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Preface

Ants, single-celled creatures such as the cellular slime mold, plants and animals in
ecosystems, and (even) human beings can congregate and display miraculously com-
plex behaviors.* Say a colony of ants in a tree needs to move to another tree, perhaps
in search of food. Some ants build a bridge by joining their bodies in a chain stretch-
ing from one limb in one tree to another limb in another tree. Other ants cross over
this ant structure, walking over their peers. Once all the ants have crossed over, the
ants in the bridge begin to gracefully undo the structure, crossing one by one. Each
ant only repeats simple actions, over and over again; the net result of thousands of
ants working together is the miracle of the bridge, which allows the ant colony to
migrate.

In our own human society we hope to emulate this level of cooperation. Each one of
us is useful to others in some way: we write, lay bricks, act in the theater, farm, drive
buses, repair helicopters, tend to the sick, make coffee... As individuals, we repeat the
same acts again and again, whether it be making coffee cup after coffee cup or seeing
patient after patient. The net result of all these acts is our complex, wonderful society.

So, what does all this have to do with IP routing? Each router in a network repeats
simple processes over and over again, as described in the specification of the routing
protocol it is executing. The net result of all the routers in a network repeating these
simple processes is IP routing, or the movement of IP packets in a network.

* The New York Times has reported some intriguing examples of such behavior, quoting research work from the
Santa Fe Institute in New Mexico (“Mindless Creatures Acting Mindfully,” The New York Times, March 23,
1999, Science Times).
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My advice to you, the student of IP routing, is this: study the simple behaviors of
each ant, and make sure you understand them in detail. There is no other way to
understand how IP networks behave as ordered organisms.

Audience
This text assumes that the reader has knowledge of basic networking concepts—the
ISO/OSI model, bridging versus routing, IP addressing, TCP/IP, etc.

This text is not meant to replace Cisco manuals. Use this text to build concepts. IP
routing commands are described as they are used to illustrate concepts; however,
this text does not contain an exhaustive list of all IP routing commands. Use Cisco
documentation for details on commands, to find out which IOS release supports new
features, and for the (inevitable) bug lists.

Most of the time I have used addresses from the private address pool. However,
sometimes I have had to dip into the registered address pool, especially when talking
about BGP. If you use the examples in this book, be careful that you do not choose
addresses that conflict with existing addresses in your environment.

Organization
This book is comprised of eight chapters:

Chapter 1, Starting Simple
This chapter introduces the basic concepts of IP routing. It will show you the
simplest method of creating entries in a routing table—by defining static routes.

Chapter 2, Routing Information Protocol (RIP)
RIP is the earliest dynamic routing protocol. This chapter describes RIP in detail,
including a discussion of the Distance Vector (DV) algorithms that are the foun-
dation of RIP and other routing protocols. Since RIP is the simplest dynamic
routing protocol, it is a great tool from which to learn. It may be a good idea to
study this chapter even if you do not intend to use RIP.

Chapter 3, Interior Gateway Routing Protocol (IGRP)
IGRP is Cisco’s proprietary routing protocol, which directly descended from
RIP. IGRP contains some features that make it much more useful than RIP. This
chapter focuses on these new features (study Chapter 2 to learn about the foun-
dations of IGRP—the DV protocols).

Chapter 4, Enhanced Interior Gateway Routing Protocol (EIGRP)
The DV algorithms employed by RIP and IGRP have inherent limitations. EIGRP
is Cisco’s proprietary routing protocol, which interworks seamlessly with IGRP
but attempts to overcome these limitations. EIGRP supports classless networks
and Variable Length Subnet Masks (VLSM).
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Chapter 5, Routing Information Protocol Version 2 (RIP-2)
RIP-2 is an attempt to bring RIP back into vogue. RIP-2 is really RIP with sup-
port for classless networks and VLSM. RIP-2 still has all the limitations of DV
protocols, such as long convergence times.

Chapter 6, Open Shortest Path First (OSPF)
OSPF is an open routing protocol. It is most commonly used to build large IP
networks. The standards bodies are focusing their work on OSPF, and it is con-
stantly evolving. OSPF is not a DV protocol: OSPF is based on the Dijkstra algo-
rithm. This chapter explains Dijkstra in detail and lays the foundation of how to
build hierarchical networks using OSPF.

Chapter 7, Border Gateway Protocol 4 (BGP-4)
BGP is the glue that binds the thousands of networks that comprise the Internet.
Routing in the Internet is quite different from routing in intranets. There are sev-
eral new concepts in this chapter.

Chapter 8, Administrative Controls
This chapter describes the administrative tools available to all the routing proto-
cols. These tools are used to block the advertisement of routing updates, set up
preferences for one routing protocol over another, and more.

Conventions Used in This Book
Italic

Used for emphasis and the first use of technical terms, as well as for the names of
networks and routers used in the examples.

Constant Width
Used for IP addresses.

Constant width italic
Used for replaceable parameter names in command syntax.

Code blocks are used throughout the text to make concepts concrete. Line numbers
in the lefthand margins are used to refer to specific pieces of the code block. To
avoid confusion, within each chapter the line numbers used in the code blocks start
at 1 and continue consecutively through the end of the chapter. Code lines that are
in bold but are not numbered are also of particular relevance to the surrounding text.

NewYork#sh ip ospf interface
...
Ethernet0 is up, line protocol is up

1 Internet Address 172.16.1.1/24, Area 0
2 Process ID 10, Router ID 172.16.251.1, Network Type BROADCAST, Cost: 10

  ...
Serial0 is up, line protocol is up
  Internet Address 172.16.250.1/24, Area 0
  Process ID 10, Router ID 172.16.251.1, Network Type POINT_TO_POINT, Cost: 64
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The use of “…” in the code block indicates that some lines (which were not useful in
the discussion) have been omitted.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/iprouting/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com
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Chapter 1
In this chapter:

• What Is IP Routing?
• Directly Connected Networks
• Static Routing
• Dynamic Routing
• The Routing Table
• Underlying Processes
• Summing Up

CHAPTER 1

Starting Simple

What Is IP Routing?
A young woman boards a commuter train in a small town in Quebec, changes trains
a couple of times, and, a day later, arrives in New York City. She walks up the stairs
from the platform into Grand Central Terminal, looks up above her head, and, for
the first time, sees the constellations, hundreds of feet above on the ceiling.

A high school student in New Zealand downloads maps of Sri Lanka from a local (Sri
Lankan) web site. The maps show the natural features, the political boundaries, the
flora and fauna, rainfall, ancient kingdoms, languages, and religions. The download
takes thousands of IP packets that find their way from Sri Lanka to the student’s PC
in New Zealand.

Just as our Canadian friend changed trains at several stations along the way, the IP
packets from the Sri Lankan web site may have bounced through dozens of routers
before arriving at the student’s machine.

The routing of IP packets in an IP network is the set of tasks required to move an IP
packet from router to router to its destination, as specified in the IP header field.
This book is about the set of tasks that accomplish IP routing.

There are similarities in routing concepts between IP networks, transportation sys-
tems, and mail delivery operations. Throughout this text, we will often illustrate IP
routing concepts by comparison with these other systems.
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Directly Connected Networks
When our Canadian visitor finally picks up her bags and is ready to head out of
Grand Central Terminal, she looks around for the exit signs. On one end, below a
row of immense windows, is a sign saying “Vanderbilt Avenue.” Below the opposite
row of tall windows is a sign saying “Lexington Avenue.” Under the large stone
arches is a sign reading “42nd Street” (Figure 1-1).

Just as the streets around Grand Central Terminal are immediately accessible to any
traveler, a router has directly attached networks that are immediately accessible (in
other words, that do not require any specific routing mechanism to discover). Con-
sider router R, in the following example. Networks 1.0.0.0, 10.1.1.0, and 10.1.2.0
are directly connected to the router:

hostname R
!
interface Ethernet0
ip address 1.1.1.1 255.0.0.0
!
interface Ethernet1
ip address 10.1.1.4 255.255.255.0
!
interface Ethernet2
ip address 10.1.2.4 255.255.255.0
...

In fact, the moment these networks are connected to the router they are visible in R’s
routing table. Note in the following output that the command to display the routing
table is show ip route (in EXEC mode). Also note the “C” that is prepended to the
entries in the routing table, indicating that the routes were discovered as directly
connected to the router:

R#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

Figure 1-1. Grand Central Terminal and the adjoining streets

Park Ave.

East 42nd St.

Vanderbilt Ave.
Madison Ave.

Lexington Ave.

Grand Central
Terminal
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       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

C    1.0.0.0/8 is directly connected, Ethernet0
     10.0.0.0/8 is subnetted, 2 subnets
C       10.1.1.0/24 is directly connected, Ethernet1
C       10.1.2.0/24 is directly connected, Ethernet2

Directly connected networks are automatically installed in the routing table if the
interface to the network is up. Figure 1-2 shows router R with its directly connected
networks. (The EXEC command show interface will show the state of the interfaces).
In the previous example, it is assumed that all three interfaces to the directly con-
nected networks are up. If an interface to a directly connected network goes down,
the corresponding route is removed from the routing table.

If multiple IP addresses are attached to an interface (using secondary addresses), all
the associated networks are installed in the routing table.

Static Routing
Our Canadian friend has always wanted to see the New York Public Library. She gets
directions at the information booth: “Make a right on 42nd Street; walk three blocks;
look for the lions in front of the library.” The information-booth attendant may have
no idea that the library is closed that day, or that the sidewalk on 42nd Street is
blocked just then because of fire trucks and 41st Street may be the preferable route.
The information booth has given the same directions to the library for the last hun-
dred years and hopefully will for hundreds more—the route from Grand Central Sta-
tion to the library, in other words, is static.

In a similar vein, a network administrator can create a static route. So, to reach net-
work 146.1.0.0, we may add the command:

ip route 146.1.0.0 255.255.0.0 1.1.1.2

Figure 1-2. Router R with its directly connected networks

Router R

1.0.0.0/8

10.1.1.0/24 10.1.2.0/24
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which says to get to network 146.1.0.0/16, go to the next hop of 1.1.1.2. This speci-
fies a fixed path to 146.1.0.0/16, as shown here, where the contents of the routing
table are displayed using the EXEC command show ip route:

R#sh ip route
...

1 S    146.1.0.0/16 [1/0] via 1.1.1.2

Even if 1.1.1.2 goes down, an alternate path—shown via R2 in Figure 1-3—cannot
be used until a second static route is specified:

ip route 146.1.0.0 255.255.0.0 1.1.1.3

The syntax of the static route command is:

ip route network [mask] {address | interface} [distance]

where network and mask specify the IP address and mask of the destination. The
next hop may be specified by its IP address or by the interface on which to send the
packet. To point a static route to an interface (Ethernet0 in this case), use:

ip route 146.1.0.0 255.255.0.0 interface Ethernet0

Static routes are smart to the extent that if the next hop (interface or IP address)
specified goes down, the router will remove the static route entry from the routing
table.

In line 1, the static route in the routing table is accompanied by “[1/0]”. This speci-
fies the administrative distance and the metric associated with the route. We’ll dis-
cuss distance and metrics in the next section.

As should be obvious, static routing does not scale well. As the network grows, the
task of maintaining static routes becomes more and more horrendous.

Figure 1-3. Router R’s connectivity to 146.1.0.0

1.0.0.0/8

10.1.1.0/24 10.1.2.0/24

1.1.1.1

1.1.11.1.1.2

R2R1

R

146.1.0.0/16

,ch01.21583  Page 4  Wednesday, January 9, 2002  12:23 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Dynamic Routing | 5

Dynamic Routing
After the public library, our Canadian visitor jumps into a taxi to go crash at a
friend’s place in Brooklyn. “Go over the Brooklyn Bridge,” she tells the driver. They
head downtown. Suddenly, the driver slams on his brakes and makes an abrupt turn.
Cars all around jam on their brakes, and pedestrians run hither and thither. “The
radio said it is an hour to go over the bridge! We will take the tunnel!” the driver
shouts to the back seat. This is an example of dynamic routing in a transportation
system. What is dynamic routing in IP networks? Dynamic routing protocols allow
each router to automatically discover one or more paths to each destination in the
network. When the network topology changes, such as when new paths are added or
when paths go out of service, dynamic routing protocols automatically adjust the
contents of the routing table to reflect the new network topology.

Dynamic routing relies on (frequent!) updates to discover changes in network topol-
ogy. In the example in Figure 1-3, when the path R3 ➝ R4 is added to the network it
can be automatically discovered by a routing protocol, such as RIP, EIGRP, or OSPF.

The routing protocols in use today are based on one of two algorithms: Distance Vec-
tor or Link State. Distance Vector (DV) algorithms broadcast routing information to
all neighboring routers. In other words, each router tells all of its neighbors the
routes it knows. When a router receives a route (from a neighbor) that is not in its
routing table, it adds the route to its table; if the router receives a route that is
already in its routing table, it keeps the shorter route in its table. DV algorithms are
sometimes also described as routing by rumor: bad routing information propagates
just as quickly as good information. Link State algorithms operate on a different par-
adigm. First, each router constructs its own topological map of the entire network,
based on updates from neighbors. Next, each router uses Dijkstra’s algorithm to
compute the shortest path to each destination in this graph. Both DV and Link State
algorithms are described in further detail in the chapters that follow.

In the previous paragraph, we spoke of the “shorter” or “shortest” path in the con-
text of both DV and Link State algorithms. Since a router may know of multiple
paths to a destination, each routing protocol must provide a mechanism to discover
the “shorter” or “shortest” path based on one or more of the following criteria: num-
ber of hops, delay, throughput, traffic, reliability, etc. A metric is usually attached to
this combination; lower metric values indicate “shorter” paths. For each routing pro-
tocol discussed in the chapters that follow, we will describe how the route metric is
computed.

A network under a single administrative authority is described as an autonomous sys-
tem (AS) in routing parlance. Interior gateway protocols (IGPs) are designed to sup-
port the task of routing internal to an AS. IGPs have no concept of political boundaries
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between ASs or the metrics that may be used to select paths between ASs. RIP, IGRP,
EIGRP, and OSPF are IGPs. Exterior gateway protocols (EGPs) are designed to sup-
port routing between ASs. EGPs deploy metrics to select one inter-AS path over
another. BGP is the most commonly used EGP.

Routing architectures may be broadly classified as flat or hierarchical. Flat routing
implies that all routes are known to all peers—all routers in the network are equal,
possessing the same routing information. Hierarchical routing implies that some
routers possess only local routes, whereas others possess a little bit more informa-
tion, and still others possess even more.

Let’s draw an analogy to the postal system. When I write a letter to a friend in India,
the postman in the U.S. may have no idea where India is. He forwards all foreign
mail to a designated post office in his state. That designated post office must know
every postal system in the world. Such a system, in which some post offices are
regional and some handle foreign mail, could be described as hierarchical.

In large IP networks, only a few routers need to know every route in the network.
These routers are sometimes described as core routers. Around the core routers is a
layer of distribution routers that need not possess the complete routing table. When a
distribution router receives a packet whose destination IP address does not appear in
its local routing table, the distribution router simply forwards the packet to a core
router.

In the earlier example of the high school student in New Zealand accessing a web site
in Sri Lanka, the small router in the high school in New Zealand probably has only a
tiny routing table, with no routing entries for Sri Lanka. The high school router will
forward all traffic for unknown destinations to another router, which in turn may for-
ward the traffic to another one. Large IP networks exhibit several layers of hierarchy.

As we will see in the chapters that follow, some routing protocols have features that
make it easier to build hierarchies. These features include route aggregation, class-
lessness, the use of default routes, and the flexibility with which routes can be
exchanged with other routing protocols.

RIP is an example of an almost completely flat routing protocol. OSPF exhibits sev-
eral features that permit the design of hierarchical networks.

As with any other algorithm, routing algorithms may also be categorized based on
their complexity, flexibility, overhead, memory and CPU utilization, robustness, and
stability. These properties of routing algorithms are of interest to the routing engi-
neer, since he provides the (router) infrastructure to execute these algorithms.

The Routing Table
At Grand Central Terminal, a big wall lists all the destinations and their correspond-
ing track numbers (see Figure 1-4). Passengers find their destination on this wall and
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then proceed to the indicated platforms. Similarly, a routing table must contain at
least two pieces of information: the destination network and the next hop toward
that destination. This reflects a fundamental paradigm of IP routing: hop-by-hop
routing. In other words, a router does not know the full path to a destination, but
only the next hop to reach the destination.

Routes are installed in the routing table as they are learned through the mechanisms
we have been discussing: directly connected networks, static routes, and dynamic
routing protocols. A typical routing table in a Cisco router looks like this:

Router>show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

2 177.130.0.0/30 is subnetted, 2 subnets
C       177.130.17.152 is directly connected, Serial1
C       177.130.17.148 is directly connected, Serial0

3 10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
4 S       10.0.0.0/8 [1/0] via 160.4.115.74
5 S       10.254.101.0/24 [1/0] via 160.4.101.4
6      162.162.0.0/24 is subnetted, 2 subnets

O IA    162.162.101.0 [110/3137] via 11.175.238.4, 02:16:02, Ethernet0
                      [110/3137] via 11.175.238.3, 02:16:02, Ethernet0
O IA    162.162.253.0 [110/3127] via 11.175.238.4, 02:25:43, Ethernet0
                      [110/3127] via 11.175.238.3, 02:25:43, Ethernet0

7 O E2 192.188.106.0/24 [110/20] via 11.175.238.33, 20:49:59, Ethernet0
...

Note that the first few lines of the output attach a code to the source of the routing
information: “C” and “S” denote “connected” and “static”, respectively, as we saw
earlier, “I” denotes IGRP, etc. This code is prepended to each routing entry in the
routing table, signifying the source of that route.

Figure 1-4. Destinations and track numbers at Grand Central Terminal

Departures

Destination

New Haven

Cos Cob

Valhalla

Dover Plains

Bronxville

Time

9:18

9:21

9:24

9:31

9:42

Track number

17

22

11

19

12
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The body of the routing table essentially contains two pieces of information: the desti-
nation and the next hop. So, 177.130.0.0 (line 2) has two subnets, each with a 30-bit
mask. The two subnets are listed in the following two lines.

Line 3 shows an interesting case. 10.0.0.0 has two subnets: 10.0.0.0/8 and 10.254.
101.0/24. Not only are the subnet masks different, but the subnets are overlapping. A
destination address of 10.254.101.1 would match both route entries! So, should a
packet for 10.254.101.1 be routed to 160.4.115.74 or 160.4.101.4? Routing table
lookups follow the rule of longest prefix match. 10.254.101.1 matches 8 bits on line 4
and 24 bits on line 5—the longer prefix wins, and the packet is forwarded to 160.4.
101.4. 162.162.0.0 (line 6) has two subnets, each of which is known via two paths.
192.188.106.0 (line 7) is not subnetted.

What if a route is learnt via multiple sources—say, via OSPF and as a static entry?
Each source of routing information has an attached measure of its trustworthiness,
called administrative distance in Cisco parlance. The lower the administrative dis-
tance, the more trustworthy the source.

Table 1-1 shows the default administrative distances.

Thus, if a route is known both via OSPF and as a static entry, the static entry, not the
entry known via OSPF, will be installed in the routing table.

Note that distance information and the route metric appear in the output of show ip
route inside square brackets with the distance information first, followed by a “/”
and the route metric: [distance/metric].

Administrative distance is only considered internally within a router; distance infor-
mation is not exchanged in routing updates.

Table 1-1. Default administrative distances

Route source Default distance

Connected interface 0

Static route 1

External BGP 20

IGRP 100

OSPF 110

IS-IS 115

RIP 120

EGP 140

Internal BGP 200

Unknown 255
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Underlying Processes
Behind the scenes, there are three key sets of processes running on each router that
make up IP routing. I have already discussed examples from each of these three sets
in the preceding sections. These processes may be organized into three categories:

1. Processes associated with the discovery of paths to various destinations in the
network. These processes include dynamic routing protocols, such as RIP and
IGRP, as well as static route entries. This text describes these processes in detail.

2. Processes that maintain the IP routing table. These processes receive updates
from all dynamic routing protocols running on the router as well as from static
route entries. By attaching administrative distance values to each routing infor-
mation source, these processes break ties when multiple sources (e.g., OSPF and
static route entries) report paths to the same destination. I discussed the use of
administrative distance values in the previous section. Other examples from this
group of processes will be discussed in Chapter 8.

3. Processes involved with the forwarding of IP packets. These processes are
invoked when a router receives a packet to forward. The result of the match
between the destination IP address in the packet and the contents of the IP rout-
ing table may be a match with one entry in the routing table, a match with more
than one entry in the routing table, a match with a default route, etc. One gen-
eral rule here is the rule of longest prefix match—if there is more than one
match, the match with the longest subnet mask (or prefix) wins. Further, the
outcome of these processes depends on whether the router is configured for
classful or classless route lookups.

Several concepts that have not yet been discussed were thrown into the preceding
discussion. For instance, we have not yet talked about classful versus classless route
lookups or about default routes. These concepts will be addressed in later chapters.
However, this early lesson in the division of processes should help you to under-
stand and classify concepts more quickly.

Summing Up
Dynamic routing protocols are the mainstay of IP routing. Thus, without ado, I will
begin with RIP and then, moving on in order of complexity, will discuss IGRP,
EIGRP, OSPF, and BGP-4.
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Chapter 2
In this chapter:

• Getting RIP Running
• How RIP Finds Shortest Paths
• Convergence
• Subnet Masks
• Route Summarization
• Default Route
• Fine-Tuning RIP
• Summing Up

CHAPTER 2

Routing Information
Protocol (RIP)

RIP is the first in a family of dynamic routing protocols that we will look at closely.
Dynamic routing protocols automatically compute routing tables, freeing the net-
work administrator from the task of specifying routes to every network using static
routes. Indeed, given the complexity of and number of routes in most networks,
static routing usually is not even an option.

In addition to computing the “shortest” paths to all destination networks, dynamic
routing protocols discover alternative (second-best) paths when a primary path fails
and balance traffic over multiple paths (load balancing).

Most dynamic routing protocols are based on one of two distributed algorithms: Dis-
tance Vector or Link State. RIP, upon which Cisco’s IGRP was based, is a classic
example of a DV protocol. Link State protocols include OSPF, which we will look at
in a later chapter. The following section gets us started with configuring RIP.

Getting RIP Running
Throughout this book, we’ll be using a fictional network called TraderMary to illus-
trate the concepts with which we’re working. TraderMary is a distributed network
with nodes in New York, Chicago, and Ames, Iowa, as shown in Figure 2-1.

As a distributed process, RIP needs to be configured on every router in the network:

hostname NewYork
...
interface Ethernet0
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ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
ip address 172.16.250.1 255.255.255.0
!
interface Serial1
ip address 172.16.251.1 255.255.255.0
...
router rip
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
ip address 172.16.250.2 255.255.255.0
!
interface Serial1
ip address 172.16.252.1 255.255.255.0
...

router rip
network 172.16.0.0

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0

Figure 2-1. TraderMary’s network

172.16.251.0

.1

.2

.2

.1

T1
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172.16.252.0
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172.16.250.0.1 .2

S1

S1
S0
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NewYork

172.16.1.0

192.168.1.0
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S0 S0

Chicago

172.16.50.0
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!
interface Serial0
ip address 172.16.252.2 255.255.255.0
!
interface Serial1
ip address 172.16.251.2 255.255.255.0
...

router rip
network 172.16.0.0

Notice that all that is required of a network administrator to start RIP on a router is
to issue the following command:

router rip

in global configuration mode and to list the networks that will be participating in the
RIP process:

network 172.16.0.0

What does it mean to list the network numbers participating in RIP?

1. Router NewYork will include directly connected 172.16.0.0 subnets in its
updates to neighboring routers. For example, 172.16.1.0 will now be included in
updates to the routers Chicago and Ames.

2. NewYork will receive and process RIP updates on its 172.16.0.0 interfaces from
other routers running RIP. For example, NewYork will receive RIP updates from
Chicago and Ames.

3. By exclusion, network 192.168.1.0, connected to NewYork, will not be adver-
tised to Chicago or Ames, and NewYork will not process any RIP updates
received on Ethernet0 (if there is another router on that segment).

Next, let’s verify that all the routers are seeing all the 172.16.0.0 subnets:

NewYork>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.0 is directly connected, Ethernet0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0 [120/1] via 172.16.251.2, 0:00:19, Serial1
R       172.16.252.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
                     [120/1] via 172.16.251.2, 0:00:19, Serial1
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Chicago>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.50.0 is directly connected, Ethernet0
C       172.16.250.0 is directly connected, Serial0
C       172.16.252.0 is directly connected, Serial1
R       172.16.1.0 [120/1] via 172.16.250.1, 0:00:01, Serial0
R       172.16.100.0 [120/1] via 172.16.252.2, 0:00:10, Serial1
R       172.16.251.0 [120/1] via 172.16.250.1, 0:00:01, Serial0
                     [120/1] via 172.16.252.2, 0:00:10, Serial1

Ames>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

1 172.16.0.0/16 is subnetted, 6 subnets
C       172.16.100.0 is directly connected, Ethernet0
C       172.16.252.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.252.1, 0:00:21, Serial0
R       172.16.1.0 [120/1] via 172.16.251.1, 0:00:09, Serial1
R       172.16.250.0 [120/1] via 172.16.252.1, 0:00:21, Serial0
                     [120/1] via 172.16.251.1, 0:00:09, Serial1

The left margin in the output of the routing tables shows how the route was derived.
“C” indicates a directly connected network; “R” indicates RIP. Further note that
there is some indentation in the output. The subnets of 172.16.0.0 are indented
under line 1, which gives us the number of subnets (6) in 172.16.0.0 and the subnet
mask that is associated with this network (/16). The routing table provides this
information for every major network number it knows, indenting the subnets below
the major network number.

Configuring RIP is fairly straightforward. We’ll examine how RIP works in more
detail in the next section.

How RIP Finds Shortest Paths
All DV protocols essentially operate the same way: routers exchange routing updates
with neighboring (directly connected) routers; the routing updates contain a list of
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network numbers along with the distance (metric, in routing terminology) to the
networks. Each router chooses the shortest path to a destination network by com-
paring the distance (or metric) information it receives from its various neighbors.
Let’s look at this in more detail in the context of RIP.

Let’s imagine that the network is cold-started—i.e., all three routers are powered up
at the same time. The first thing that happens after IOS has finished loading is that
the router checks for its connected interfaces and determines which ones are up.
Next, these directly connected networks are installed in each router’s routing table.
So, right after IOS has been loaded and before any routing updates have been
exchanged, the routing table would look like this:

NewYork>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C       171.16.1.0 is directly connected, Ethernet0
C       171.16.250.0 is directly connected, Serial0
C       171.16.251.0 is directly connected, Serial1

Chicago>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C       171.16.50.0 is directly connected, Ethernet0
C       171.16.250.0 is directly connected, Serial0
C       171.16.252.0 is directly connected, Serial1

Ames>sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

C       171.16.100.0 is directly connected, Ethernet0
C       171.16.250.0 is directly connected, Serial0
C       171.16.252.0 is directly connected, Serial1
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The routers are now ready to update their neighbors with these routes.

RIP Update
RIP updates are encapsulated in UDP. The well-known port number for RIP updates
is 520. The format of a RIP packet is shown in Figure 2-2.

Note that RIP allows a station to request routes, so a machine that has just booted
up can request the routing table from its neighbors instead of waiting until the next
cycle of updates.

The destination IP address in RIP updates is 255.255.255.255. The source IP address
is the IP address of the interface from which the update is issued.

If you look closely at the update you will see that a key piece of information is miss-
ing: the subnet mask. Let’s say that an update was received with the network num-
ber 172.31.0.0. Should this be interpreted as 172.31.0.0/16 or 172.31.0.0/24 or 172.
31.0.0/26 or …? This question is addressed later, in the “Subnet Masks” section.

Figure 2-2. Format of RIP update packet

0
Common command values:
1    RIP request– Used by a
      system to request routing
      table data
2    RIP response– Routing
      table data; either a
      response to a request or
      a regularly scheduled
      update

7 15 31

Command Version All 0s

Address family identifier All 0s

IP address

All 0s

All 0s

Metric

Routing entry

Routing entry

. . . Up to a total of 25 routing
entries can be accommodated
in one message, given a
maximum message size of
512 octets

2 for IP

1    RIP Version 1
 2   RIP Version 2 (which is
       discussed in a later
       chapter)
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RIP Metric
The RIP metric is simply a measure of the number of hops to a destination network.
172.16.100.0, which is directly connected to Ames, is zero hops from Ames but one
hop from NewYork and Chicago. You can see RIP metrics in the routing table:

NewYork>sh ip route
...
Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.0 is directly connected, Ethernet0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0 [120/1] via 172.16.251.2, 0:00:19, Serial1
R       172.16.252.0 [120/1] via 172.16.250.2, 0:00:11, Serial0

[120/1] via 172.16.251.2, 0:00:19, Serial1

This routing table shows the [distance/metric] tuple in bold. Every hop between two
routers adds 1 to the RIP metric. Thus, NewYork sees the Ames segment (172.16.
100.0) as one hop via the direct 56-kbps link and two hops via the T-1 to Chicago.
NewYork will prefer the direct one-hop path to Ames.

The simplicity of the RIP metric is an asset in small, homogenous networks but a lia-
bility in networks with heterogeneous media. Consider the following comparison:
the transmission delay for a 1,000-octet packet is 143 ms over a 56-kbps link and 5 ms
over a T-1 link. Neglecting buffering and processing delays, two T-1 hops will cost
10 ms in comparison to 143 ms via the 56-kbps link. Thus, the two-hop T-1 path
between NewYork and Ames is quicker; indeed, the designers of TraderMary’s net-
work may have put in the 56-kbps link only for backup purposes. However, RIP does
not account for line speed, delay, or reliability. For this, we will look to the next DV
protocol—IGRP.

Let’s look at one more example of RIP metrics for TraderMary’s network. Let’s say
that the T-1 link between NewYork and Chicago fails. As soon as NewYork (or Chi-
cago) detects a failure in the link, all routes associated with that link are purged from
the routing table, and, upon receipt of the next update, NewYork (Chicago) will learn
the routes to Chicago (NewYork) via Ames. NewYork’s routing table would look like
this:

NewYork>sh ip route
...
Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.0 is directly connected, Ethernet0
C       172.16.251.0 is directly connected, Serial1
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R       172.16.50.0 [120/2] via 172.16.251.2, 0:00:23, Serial1
R       172.16.100.0 [120/1] via 172.16.251.2, 0:00:23, Serial1
R       172.16.252.0 [120/1] via 172.16.251.2, 0:00:23, Serial1

As we discussed in the previous chapter, the distance value associated with RIP is
120. Note that directly connected routes do not show a distance or metric value.
Directly connected routes have a distance value of 0 and thus show the most pre-
ferred route to a destination, no matter how low the metric value of a route to the
same network may be through another routing source (such as RIP).

The RIP metrics we saw in the previous examples were 1 or 2. It turns out that a RIP
metric of 16 signals infinity (or unreachability). Why is it necessary to choose a maxi-
mum value for the RIP metric? Without a maximum hop count, a route can propa-
gate indefinitely during certain failure scenarios, resulting in indefinitely long
convergence times. This is discussed further in the “Convergence” section under
“Counting to infinity.”

Processing RIP Updates
The following rules summarize the steps a router takes when it receives a RIP update:

1. If the destination network number is unknown to the router, install the route
using the source IP address of the update (provided the hop count is less than 16).

2. If the destination network number is known to the router but the update contains
a smaller metric, modify the routing table entry with the new next hop and metric.

3. If the destination network number is known to the router but the update con-
tains a larger metric, ignore the update.

4. If the destination network number is known to the router and the update contains
a higher metric that is from the same next hop as in the table, update the metric.

5. If the destination network number is known to the router and the update con-
tains the same metric from a different next hop, RFC 1058 calls for this update
to be ignored, in general. However, Cisco differs from the standard here and
installs up to four parallel paths to the same destination. These parallel paths are
then used for load balancing.

Thus, when the first update from Ames reaches NewYork with the network 172.16.
100.0, NewYork installs the route with a hop count of 1 using rule 1. NewYork will
also receive 172.16.100.0 in a subsequent update from Chicago (after Chicago itself has
learned the route from Ames), but NewYork will discard this route because of rule 3.

Steady State
It is important for you as the network administrator to be familiar with the state of
the network during normal conditions. Deviations from this state will be your clue to
troubleshooting the network during times of network outage.
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The following output will show you the values of the RIP timers. Note that RIP
updates are sent every 30 seconds and the next update is due in 24 seconds, which
means that an update was issued about 6 seconds ago. We will discuss the invalid,
hold-down, and flush timers later, in the “Convergence” section.

NewYork>sh ip protocol

Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 24 seconds
Invalid after 90 seconds, hold down 90, flushed after 180

One key area to look at in the routing table is the timer values. The format Cisco
uses for timers is hh:mm:ss (hours:minutes:seconds). You would expect the time
against each route to be between 0 and 30 seconds. If a route was received more than
30 seconds ago, that indicates a problem in the network. You should begin by check-
ing to see if the next hop for the route is reachable. As an example, in line 1, 172.16.
50.0 was learned 11 seconds ago from 172.16.250.2 (on Serial0).

NewYork>sh ip route
...
Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.9 is directly connected, Ethernet0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1

2 R       172.16.50.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0 [120/1] via 172.16.251.2, 0:00:19, Serial1
R       172.16.252.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
                     [120/1] via 172.16.251.2, 0:00:19, Serial1

Parallel Paths
There are two equal-cost paths to network 172.16.252.0 from NewYork—one adver-
tised by Ames and the other by Chicago. NewYork will install both routes in its rout-
ing table:

NewYork>sh ip route
...
Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.9 is directly connected, Ethernet0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0 [120/1] via 172.16.251.2, 0:00:19, Serial1
R       172.16.252.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
                     [120/1] via 172.16.251.2, 0:00:19, Serial1
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Both paths are utilized to forward packets. How is traffic split over the two links?
The answer depends on the switching mode configured on the Cisco router. Two
common switching modes are process switching and fast switching.

Process Switching
Process switching results in packet-by-packet load balancing—one packet travels out
on serial0 and the next packet travels out on serial1. Packet-by-packet load balanc-
ing is possible while process switching because in this switching mode the router
examines its routing table for every packet it receives.

Process switching is configured as follows:

NewYork#-config#interface serial0
NewYork#-config-if#no ip route-cache

Packet switching is very CPU-intensive, as every packet causes a routing table lookup.

Fast Switching
In this mode, only the first packet for a given destination is looked up in the routing
table, and, as this packet is forwarded, its next hop (say, serial0) is placed in a cache.
Subsequent packets for the same destination are looked up in the cache, not in the
routing table. This implies that all packets for this destination will follow the same
path (serial0).

Now, if another packet arrives that matches the routing entry 204.148.185.192, it will
be cached with a next hop of serial1. Henceforth, all packets to this second destina-
tion will follow serial1.

Fast switching thus load-balances destination-by-destination (or session-by-session).
Fast switching is configured as follows:

NewYork#-config#interface serial0
NewYork#-config-if#ip route-cache

In fast switching, the first packet for a new destination causes a routing table lookup
and the generation of a new entry in the route cache. Subsequent packets consult the
route cache but not the routing table.

Convergence
Changes—planned and unplanned—are normal in any network:

• A serial link breaks

• A new serial link is added to a network

• A router or hub loses power or malfunctions

• A new LAN segment is added to a network
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All routers in the routing domain will not reflect these changes right away. This is
because RIP routers rely on their direct neighbors for routing updates, which in turn
rely on another set of neighbors. The routing process that is set into motion from the
time of a network change (such as the failure of a link) until all routers correctly reflect
the change is referred to as convergence. During convergence, routing connectivity
between some parts of the network may be lost and, hence, an important question
that is frequently asked is “How long will the network take to converge after such-and-
such failure in the network?” The answer depends on a number of factors, including
the network topology and the timers that have been defined for the routing protocol.

The following list defines the four timers that are key to the operation of any DV pro-
tocol, including RIP:

Update timer (default value: 30 seconds)
After sending a routing update, RIP sets the update timer to 0. When the timer
expires, RIP issues another routing update. Thus, RIP updates are sent every 30
seconds.

Invalid timer (default value: 180 seconds)
Every time a router receives an update for a route, it sets the invalid timer to 0.
The expiration of the invalid timer indicates that six consecutive updates were
missed—at this time, the source of the routing information is considered suspect.
Even though the route is declared invalid, packets are still forwarded to the next
hop specified in the routing table. Note that prior to the expiration of the invalid
timer RIP would process any updates received by updating the route’s timers.

Hold-down timer (default value: 180 seconds)
When the invalid timer expires, the route automatically enters the hold-down
phase. During hold-down, all updates regarding the route are disregarded—it is
assumed that the network may not have converged and that there may be bad
routing information circulating in the network. The hold-down timer is started
when the invalid timer expires. Thus, a route goes into hold-down state when
the invalid timer expires. A route may also go into hold-down state when an
update is received indicating that the route has become unreachable—this is dis-
cussed further later in this section.

Flush timer (default value: 240 seconds)
The flush timer is set to 0 when an update is received. When the flush timer
expires, the route is removed from the routing table and the router is ready to
receive an update with this route. Note that the flush timer overrides the hold-
down timer.

Let’s consider Figure 2-3. Here is a snapshot of A’s routing table (when all entities are up):

A>sh ip route
...

C       192.168.1.0 is directly connected, Ethernet1
     172.17.0.0/16 is subnetted, 6 subnets
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C       172.17.1.9 is directly connected, Ethernet0
C       172.17.250.0 is directly connected, Ethernet1
C       172.17.251.0 is directly connected, Ethernet2
R       172.17.50.0 [120/1] via 172.17.250.2, 0:00:11, Ethernet1
R       172.17.100.0 [120/1] via 172.17.251.2, 0:00:19, Ethernet2
R       172.17.252.0 [120/1] via 172.17.250.2, 0:00:11, Ethernet1
                     [120/1] via 172.17.251.2, 0:00:19, Ethernet2

This table shows that 11 seconds ago A received an update for 172.17.50.0 from 172.
17.250.2 (B). The update and invalid timers for a route are reset (set to 0) every time
a valid update is received for the route. At the moment this routing-table snapshot
was taken, A’s invalid timer for 172.16.50.0 and B’s update timer for 172.16.50.0
would both be 11 seconds.

Let’s say that at this very time, B was disconnected from its LAN attachment to A. A
would now stop receiving updates from B. 30 seconds after the cut, the routing table
would look like this:

A>sh ip route
...

C       192.168.1.0 is directly connected, Ethernet1
     172.17.0.0/16 is subnetted, 6 subnets
C       172.17.1.9 is directly connected, Ethernet0
C       172.17.250.0 is directly connected, Serial0
C       172.17.251.0 is directly connected, Serial1
R       172.17.50.0 [120/1] via 172.17.250.2, 0:00:41, Serial0
R       172.17.100.0 [120/1] via 172.17.251.2, 0:00:19, Serial1
R       172.17.252.0 [120/1] via 172.17.250.2, 0:00:41, Serial0
                     [120/1] via 172.17.251.2, 0:00:19, Serial1

The invalid timer for 172.16.50.0 is now at 41 seconds. A would still continue to for-
ward traffic for 172.17.50.0 via Ethernet0. The assumption RIP makes is that an
update was lost or damaged in transit from B to A, even though the route is still
good. This assumption holds good until the invalid timer expires (180 seconds or 6

Figure 2-3. Three routers connected using Ethernet segments
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update intervals from the last update). Before the invalid timer expires, A will receive
and process any updates received regarding 172.16.50.0. Once the invalid timer
expires, the route is placed in hold-down and subsequent updates about 172.16.0.0
are suppressed under the assumption that the route has gone bad and that bad rout-
ing information may be circulating in the network. The route will go into hold-down
180 seconds from the last update, or 169 seconds after the cut. At this time, the rout-
ing table would look like this:

A>sh ip route
...

C       192.168.1.0 is directly connected, Ethernet1
     172.17.0.0/16 is subnetted, 6 subnets
C       172.17.1.9 is directly connected, Ethernet0
C       172.17.250.0 is directly connected, Serial0
C       172.17.251.0 is directly connected, Serial1
R       172.17.50.0 is possibly down,
          routing via 172.17.250.2, Serial0
R       172.17.100.0 [120/1] via 172.17.251.2, 0:00:19, Serial1
R       172.17.252.0 [120/1] is possibly down,
          routing via 172.16.250.2, Ethernet1
                     [120/1] via 172.17.251.2, 0:00:19, Serial1

The route remains in hold-down until the hold-down timer expires or until the route
is flushed, whichever happens first. Using default timers, the flush timer would go off
first, 229 seconds after the cut. Router A would then learn the route to 172.17.50.0
when the next update arrived from C, which could be between 0 and 30 seconds
after the route has been flushed, or 229 to 259 seconds from the cut.

The events just described are illustrated in Figure 2-4.

Speeding Up Convergence
When a router detects that an interface is down, it immediately flushes all routes it
knows via that interface. This speeds up convergence, avoiding the invalid, hold-
down, and flush timers.

Figure 2-4. Route convergence after a failure
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Can you now guess the reason why the case study used earlier (routers A, B, and C
connected via Ethernet segments) differs slightly from TraderMary’s network in New
York, Chicago, and Ames?

We couldn’t illustrate the details of the invalid, hold-down, and flush timers in Trad-
erMary’s network because if a serial link is detected in the down state, all routes that
point through that interface are immediately flushed from the routing table. In our
case study, we were able to pull B off its Ethernet connection to A while keeping A
up on all its interfaces.

Split horizon

Consider a simple network with two routers connected to each other (Figure 2-5).

Let’s say that router A lost its connection to 172.18.1.0, but before it could update
B about this change, B sent A its full routing table, including 172.18.1.0 at one hop.
Router A now assumes that B has a connection to 172.18.1.0 at one hop, so A
installs a route to 172.18.1.0 at two hops via B. A’s next update to B announces
172.18.1.0 at two hops, so B adjusts its route 172.18.1.0 to three hops via A! This
cycle continues until the route metric reaches 16, at which stage the route update is
discarded.

Split horizon solves this problem by proposing a simple solution: when a router
sends an update through an interface, it does not include in its update any routes
that it learned via that interface. Using this rule, the only network that A would send
to B in its update would be 172.18.1.0, and the only network that B would send to A
would be 172.18.2.0. B would never send 172.18.1.0 to A, so the previously
described loop would be impossible.

Counting to infinity

Split horizon works well for two routers directly connected to each other. However,
consider the following network (shown in Figure 2-6).

Let’s say that router A stopped advertising network X to its neighbors B and E. Rout-
ers B, D, and E will finally purge the route to X, but router C may still advertise X to
D (without violating split horizon). D, in turn, will advertise X to E, and E will adver-
tise X to A. Thus, the router (C) that did not purge X from its table can propagate a
bad route.

Figure 2-5. Split horizon
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This problem is solved by equating a hop count of 16 to infinity and hence disregard-
ing any advertisement for a route with this metric.

In Figure 2-6, when B finally receives an advertisement for X with a metric of 16, it
will consider X to be unreachable and will disregard the advertisement. The choice of
16 as infinity limits RIP networks to a maximum diameter of 15 hops between nodes.
Note that the choice of 16 as infinity is a compromise between convergence time and
network diameter—if a higher number were chosen, the network would take longer
to converge after a failure; if a lower number were chosen, the network would con-
verge faster but the maximum possible diameter of a RIP network would be smaller.

Triggered updates

When a router detects a change in the metric for a route and sends an update to its
neighbors right away (without waiting for its next update cycle), the update is
referred to as a triggered update. The triggered update speeds convergence between
two neighbors by as much as 30 seconds. A triggered update does not include the
entire routing table, but only the route that has changed.

Poison reverse

When a router detects that a link is down, its next update for that route will contain
a metric of 16. This is called poisoning the route. Downstream routers that receive

Figure 2-6. Counting to infinity
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this update will immediately place the route in hold-down (without going through
the invalid period).

Poison reverse and triggered updates can be combined. When a router detects that a
link has been lost or the metric for a route has changed to 16, it will immediately
issue a poison reverse with triggered update to all its neighbors.

Neighbors that receive unreachability information about a route via a poison reverse
with triggered update will place the route in hold-down if their next hop is via the
router issuing the poison reverse. The hold-down state ensures that bad information
about the route (say from a neighbor that may have lost its copy of the triggered
update or may have issued a regular update just before it received the triggered
update) does not propagate in the network.

Triggered updates and hold-downs can handle the loss of a route, preventing bad
routing information. Why, then, do we need the count-to-infinity limits? Triggered
updates may be dropped, lost, or corrupted. Some routers may not ever receive the
unreachability information and may inject a path for a route into the network even
when that path has been lost. Count to infinity would take care of these situations.

Setting timers

The value of RIP timers on a Cisco router can be seen in the following example:

Chicago>sh ip protocol

Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 24 seconds
Invalid after 90 seconds, hold down 90, flushed after 180

These timers could be modified to allow faster convergence. The following command:

timers basic 10 25 30 40

would send RIP updates every 10 seconds instead of every 30 seconds. The other
three timers specify the invalid, hold-down, and flush timers, respectively. These tim-
ers can be configured as follows:

NewYork#config
NewYork-config#router rip
NewYork-config#timers basic 10 25 30 40

However, RIP timers should not be modified without a detailed understanding of
how RIP works. Potential problems with decreasing the timer values are that updates
will be issued more frequently and can cause congestion on low-bandwidth net-
works, and that congestion in the network is more likely to cause routes to go into
hold-down; this, in turn, can cause route flapping.

Do not modify RIP timers unless absolutely necessary. If you modify
RIP timers, make sure that all routers have the same timers.
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If an interface on a router goes down, the router sends a RIP request out to the other,
up interfaces. This speeds up convergence if any of the other neighbors can reach the
destinations that were missed in the first request.

Subnet Masks
Looking closely at Figure 2-2, we see that there is no field for subnet masks in RIP.
Let’s say that router SantaFe received an update with the following routes in the IP
address field:

192.100.1.48
192.100.1.64
192.100.2.0
10.0.0.0

And let’s say that SantaFe has the following configuration:

hostname SantaFe
!
interface Ethernet 0
ip address 192.100.1.17 255.255.255.240
!
interface Ethernet 1
ip address 192.100.1.33 255.255.255.240
!
router rip
network 192.100.1.0
network 192.100.2.0

How would the router associate subnet masks with these routes?

• If the router has an interface on a network number received in an update, it
would associate the same mask with the update as it does with its own interface.
Consequently, RIP does not permit Variable Length Subnet Masks (VLSM).

• If the router does not have an interface on the network number received in an
update, it would assume a natural mask for the network number.

SantaFe’s routing table would look like this:

SantaFe>sh ip route
...
Gateway of last resort is not set

R       10.0.0.0 [120/1] via 192.100.1.18, 0:00:11, Ethernet0
R       192.100.2.0 [120/1] via 192.100.1.18, 0:00:11, Ethernet0
     192.100.1.0/16 is subnetted, 4 subnets
C       192.100.1.16 is directly connected, Ethernet0
C       192.100.1.32 is directly connected, Ethernet1
R       192.100.1.48 [120/1] via 192.100.1.18, 0:00:11, Ethernet0
R       192.100.1.64 [120/1] via 192.100.1.18, 0:00:11, Ethernet0

SantaFe represents 192.100.1.48 and 192.100.1.64 with a 28-bit mask even though
the subnet mask was not conveyed in the RIP update. SantaFe was able to deduce the
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28-bit mask because it has direct interfaces on 192.100.1.0 networks. This assump-
tion is key to why RIP does not support VLSM.

SantaFe represents 192.100.2.0 and 10.0.0.0 with their natural 24-bit and 8-bit
masks, respectively, because it has no interfaces on those networks. Chapter 5 cov-
ers RIP-2, an extension of RIP that supports VLSM.

Route Summarization
Consider the router Phoenix, which connects to SantaFe and sends the RIP updates
shown earlier:

192.100.1.48
192.100.1.64
192.100.2.0
10.0.0.0

Phoenix may have been configured as follows (see Figure 2-8, later in this chapter):

hostname Phoenix
ip subnet-zero
!
interface Ethernet 0
ip address 192.100.1.18 255.255.255.240
!
interface Ethernet 1
ip address 192.100.1.49 255.255.255.240
!
interface Ethernet 2
ip address 192.100.1.65 255.255.255.240
!
interface Ethernet 3
ip address 192.100.2.1 255.255.255.240
!
interface Ethernet 4
ip address 192.100.2.17 255.255.255.240
!
interface Ethernet 5
ip address 10.1.0.1 255.255.0.0
!
interface Ethernet 6
ip address 10.2.0.1 255.255.0.0
!
router rip
network 192.100.1.0
network 192.100.2.0
network 10.0.0.0

Phoenix did not send detailed routes for 192.100.2.0 or 10.0.0.0 when advertising to
SantaFe because Phoenix summarized those routes. As I stated earlier, since Phoenix
did not have interfaces on those networks, it couldn’t have made sense of those
routes anyway.
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Default Route
A routing table need not contain all routes in the network to reach all destinations.
This simplification is arrived at through the use of a default route. When a router
does not have an explicit route to a destination IP address, it looks to see if it has a
default route in its routing table and, if so, forwards packets for this destination via
the default route.

In RIP, the default route is represented as the IP address 0.0.0.0. This is convenient
because 0.0.0.0 cannot be confused with any Class A, B, or C IP address.

One situation in which default routes can be employed in an intranet is in a core net-
work that has branch offices hanging off it (Figure 2-7).

Consider the topology of this figure. Since the branch offices have only one connec-
tion (to the core), all routes to the core network and to other branches can be
replaced with a single default route pointing toward the core network. This implies
that the size of the routing table in the branch offices is just the number of directly
connected networks plus the default route.

So, router Portland may be configured as follows:

hostname Portland
...
interface Ethernet 0
ip address 192.100.1.17 255.255.255.240
!
interface Serial 0
ip address 192.100.1.33 255.255.255.240
!
router rip
network 192.100.1.0

An examination of Portland’s routing table would show the following:

Figure 2-7. Branch offices only need a default route
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Portland>sh ip route
...
Gateway of last resort is not set

     192.100.1.0/28 is subnetted, 2 subnets
C       192.100.1.16 is directly connected, Ethernet0
C       192.100.1.32 is directly connected, Serial0
R    0.0.0.0 [120/1] via 192.199.1.34, 0:00:21, Serial0

The default route may be sourced from router core1 as follows:

hostname core1
...
interface Serial 0
ip address 192.100.1.34 255.255.255.240
!
router rip
network 192.100.1.0
!
ip route 0.0.0.0 0.0.0.0 null0

Note that the default route 0.0.0.0 is automatically carried by RIP—it is not listed in
a network number statement under router rip.

The advantage of using a default in place of hundreds or thousands of more specific
routes is obvious—network bandwidth and router CPU are not tied up in routing
updates. The disadvantage of using a default is that packets for destinations that are
down or not even defined in the network are still forwarded to the core network.

Default routes are tremendously useful in Internet connectivity—where all (thou-
sands and thousands of) Internet routes may be represented by a single default route.

Yet another use of default routes is in maintaining reachability between a routing
domain running RIP and another routing domain with VLSM. Since VLSM cannot
be imported into RIP, a default route pointing to the second domain may be defined
in the RIP network.

Routes to hosts

Some host machines listen to RIP updates in “quiet” or “silent” mode (Figure 2-8).
These hosts do not respond to requests for RIP routes or issue regular RIP updates.
Listening to RIP provides redundancy to the hosts in a scenario in which multiple
routers are connected to a segment. If the routers have similar routing tables, it may
make sense to send only the default route (0.0.0.0) to hosts.

Fine-Tuning RIP
We saw in the section on RIP metrics that the preferred path between NewYork and
Ames would be the two-hop path via Chicago rather than the one-hop 56-kbps path
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that RIP selects. The RIP metrics can be manipulated to disfavor the one-hop path
through the use of offset lists:

hostname NewYork
...
router rip
network 172.16.0.0
offset-list 10 in 2 serial1
...
access-list 10 permit 172.16.100.0 0.0.0.0

hostname Chicago
...
router rip
network 172.16.0.0

Ames#config terminal
router rip
network 172.16.0.0
offset-list 20 in 2 serial1
...
access-list 20 permit 172.16.1.0 0.0.0.0

NewYork adds 2 to the metric for the routes specified in access list 10 when learned
via serial1, and Ames adds 2 to the metric for the routes specified in access list 20
when learned via serial1. The direct route over the 56-kbps link thus has a metric of
3, and the route via Chicago has a metric of 2. The new routing tables look like this:

NewYork>sh ip route
...
Gateway of last resort is not set

C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.1.0 is directly connected, Ethernet0

Figure 2-8. RIP routes to hosts
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C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0 [120/2] via 172.16.250.2, 0:00:19, Serial0
R       172.16.252.0 [120/1] via 172.16.250.2, 0:00:11, Serial0
                     [120/1] via 172.16.251.2, 0:00:19, Serial1

Ames>sh ip route
...
Gateway of last resort is not set

     172.16.0.0/16 is subnetted, 6 subnets
C       172.16.100.0 is directly connected, Ethernet0
C       172.16.252.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
R       172.16.50.0 [120/1] via 172.16.252.1, 0:00:21, Serial0
R       172.16.1.0 [120/2] via 172.16.251.1, 0:00:09, Serial1
R       172.16.250.0 [120/1] via 172.16.252.1, 0:00:21, Serial0
                     [120/1] via 172.16.251.1, 0:00:09, Serial1

The syntax for offset lists is as follows:

offset-list {access-list} {in | out} offset [type number]

The offset list specifies the offset to add to the RIP metric on routes of interface type
(Ethernet, serial, etc.) and number (interface number) that are being learned (in) or
advertised (out).

An offset list can also be applied to default routes. Thus, in Figure 2-7, let’s consider
the scenario where Portland is given a second connection to a backup router core2.
core2 may originate a default with a higher metric:

hostname core2
...
interface Serial 0
ip address 192.100.2.34 255.255.255.240
!
router rip
network 192.100.2.0
offset-list 30 out 3 serial0
!
ip route 0.0.0.0 0.0.0.0 null0
!
access-list 30 permit 0.0.0.0 0.0.0.0

Portland would prefer the default via core1 because the metric from core1 would be
lower by 3. Portland would use the default from core2 if core1 or the link to core1
went down.

Summing Up
RIP is a relatively simple protocol, easy to configure and very reliable. The robust-
ness of RIP is evident from the fact that various implementations of RIP differ in

,ch02.21718  Page 31  Wednesday, January 9, 2002  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Routing Information Protocol (RIP)

details and yet work well together. A standard for RIP wasn’t put forth until 1988 (by
Charles Hedrick, in RFC 1058). Small, homogeneous networks are a good match for
RIP. However, as networks grow, other routing protocols may look more attractive
for several reasons:

• The RIP metric does not account for link bandwidth or delay.

• The exchange of full routing updates every 30 seconds does not scale for large
networks—the overhead of generating and processing all routes can be high.

• RIP convergence times can be too long.

• Subnet mask information is not exchanged in RIP updates, so Variable Length
Subnet Masks are not supported.

• The RIP metric restricts the network diameter to 15 hops.
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• Speeding Up Convergence
• Route Summarization
• Default Routes
• Classful Route Lookups
• Summing Up

CHAPTER 3

Interior Gateway
Routing Protocol

(IGRP)

The second Distance Vector protocol that we will examine is the Interior Gateway
Routing Protocol, or IGRP. IGRP and RIP are close cousins: both are based on the
Bellman-Ford Distance Vector (DV) algorithms. DV algorithms propagate routing
information from neighbor to neighbor; if a router receives the same route from mul-
tiple neighbors, it chooses the route with the lowest metric. All DV protocols need
robust strategies to cope with bad routing information. Bad routes can linger in a
network when information about the loss of a route does not reach some router (for
instance, because of the loss of a route update packet), which then inserts the bad
route back into the network. IGRP uses the same convergence strategies as RIP: trig-
gered updates, route hold-downs, split horizon, and poison reverse.

IGRP has been widely deployed in small to mid-sized networks because it can be
configured with the same ease as RIP, but its metric represents bandwidth and delay,
in addition to hop count. The ability to discriminate between paths based on band-
width and delay is a major improvement over RIP.

IGRP is a Cisco proprietary protocol; other router vendors do not support IGRP.
Keep this in mind if you are planning a multivendor router environment.

The following section gets us started with configuring IGRP.

Getting IGRP Running
TraderMary’s network, shown in Figure 3-1, can be configured to run IGRP as follows.
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Like RIP, IGRP is a distributed protocol that needs to be configured on every router
in the network:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.0
!
interface Serial1
description New York to Ames link
ip address 172.16.251.1 255.255.255.0
...
router igrp 10
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
ip address 172.16.250.2 255.255.255.0
!
interface Serial1
ip address 172.16.252.1 255.255.255.0
...

Figure 3-1. TraderMary’s network
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router igrp 10
network 172.16.0.0

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
ip address 172.16.252.2 255.255.255.0
!
interface Serial1
ip address 172.16.251.2 255.255.255.0
...

router igrp 10
network 172.16.0.0

The syntax of the IGRP command is:

router igrp {process-id | autonomous-system-number}

in global configuration mode. The networks that will be participating in the IGRP
process are then listed:

network 172.16.0.0

What does it mean to list the network numbers participating in IGRP?

1. NewYork will include directly connected 172.16.0.0 subnets in its updates to
neighboring routers. For example, 172.16.1.0 will now be included in updates to
the routers Chicago and Ames.

2. NewYork will receive and process IGRP updates on its 172.16.0.0 interfaces
from other routers running IGRP 10. For example, NewYork will receive IGRP
updates from Chicago and Ames.

3. By exclusion, network 192.168.1.0, connected to NewYork, will not be adver-
tised to Chicago or Ames, and NewYork will not process any IGRP updates
received on Ethernet0 (if there is another router on that segment).

Next, let’s verify that all the routers are seeing all the 172.16.0.0 subnets. Here is
NewYork’s routing table:

NewYork#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set
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     172.16.0.0/24 is subnetted, 6 subnets
I       172.16.252.0 [100/10476] via 172.16.251.2, 00:00:26, Serial1
                     [100/10476] via 172.16.250.2, 00:00:37, Serial0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
I       172.16.50.0 [100/8576] via 172.16.250.2, 00:00:37, Serial0
C       172.16.1.0 is directly connected, Ethernet0
I       172.16.100.0 [100/8576] via 172.16.251.2, 00:00:26, Serial1
C    192.168.1.0/24 is directly connected, Ethernet1

Here is Chicago’s table:

Chicago#sh ip route
...
Gateway of last resort is not set

     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.252.0 is directly connected, Serial1
C       172.16.250.0 is directly connected, Serial0
I       172.16.251.0 [100/10476] via 172.16.250.1, 00:01:22, Serial0
                     [100/10476] via 172.16.252.2, 00:00:17, Serial1
C       172.16.50.0 is directly connected, Ethernet0
I       172.16.1.0 [100/8576] via 172.16.250.1, 00:01:22, Serial0
I       172.16.100.0 [100/8576] via 172.16.252.2, 00:00:17, Serial1

And here is Ames’s table:

Ames#sh ip route
...
Gateway of last resort is not set

     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.252.0 is directly connected, Serial0
I       172.16.250.0 [100/10476] via 172.16.251.1, 00:01:11, Serial1
                     [100/10476] via 172.16.252.1, 00:00:21, Serial0
C       172.16.251.0 is directly connected, Serial1
I       172.16.50.0 [100/8576] via 172.16.252.1, 00:00:21, Serial0
I       172.16.1.0 [100/8576] via 172.16.251.1, 00:01:11, Serial1
C       172.16.100.0 is directly connected, Ethernet0

The IGRP-derived routes in these tables are labeled with an “I” in the left margin.
The first line in each router’s table contains summary information:

172.16.0.0/24 is subnetted, 6 subnets

Note that all three routers show the same summary information—NewYork, Chicago,
and Ames show all six subnets.

Note also that network 192.168.1.0, defined on NewYork interface Ethernet1, did
not appear in the routing tables of Chicago and Ames. To be propagated, 192.168.1.0
would have to be defined in a network statement under the IGRP configuration on
NewYork:

hostname NewYork
...
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router igrp 10
network 172.16.0.0
network 192.168.1.0

Getting IGRP started is fairly straightforward. However, if you compare the routing
tables in this section to those in the previous chapter on RIP, there is no difference in
the next-hop information. More importantly, the route from NewYork to network
172.16.100.0 is still over the direct 56-kbps path rather than the two-hop T-1 path.
The two-hop T-1 path is better than the one-hop 56-kbps link. As an example, take a
512-byte packet; it would take 73 ms to copy this packet over a 56-kbits/s link ver-
sus 5 ms over two T-1 links. Our expectation is that IGRP should install this two-
hop T-1 path, since IGRP has been touted for its metric that includes link band-
width and delay. The later section “IGRP Metric” explains why IGRP installs the
slower path. The “Modifying IGRP metrics” section leads us through the configura-
tion changes required to make IGRP install the faster path.

A key difference in this configuration is that, unlike in RIP, each IGRP process is
identified by an autonomous system (AS) number. AS numbers are described in
detail in the next section.

How IGRP Works
Since IGRP is such a close cousin of RIP, we will not repeat the details of how DV
algorithms work, how updates are sent, and how route convergence is achieved.
However, because IGRP employs a much more comprehensive metric, I’ll discuss the
IGRP metric in detail. I’ll begin this discussion with AS numbers.

IGRP Autonomous System Number
Each IGRP process requires an autonomous system number:

router igrp autonomous-system-number

The AS number allows the network administrator to define routing domains; routers
within a domain exchange IGRP routing updates with each other but not with rout-
ers in different domains. Note that in the context of IGRP the terms “autonomous
system number” and “process ID” are often used interchangeably. Since the IGRP
autonomous system number is not advertised to other domains, network engineers
often cook up arbitrary process IDs for their IGRP domains.

Let’s say that TraderMary created a subsidiary in Africa and that the new topology is
as shown in Figure 3-2.

Note that IGRP is running in the U.S. and Africa with AS numbers of 10 and 20,
respectively. The U.S. routers now exchange IGRP routes with each other, as before,
and the routers Nairobi and Casablanca exchange IGRP updates with each other.
IGRP updates are processed only between routers running the same AS number, so
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NewYork and Nairobi do not exchange IGRP updates with each other. We will see
this in more detail later, when we look at the format of an IGRP update.

The advantage of creating small domains with unique AS numbers is that a routing
problem in one domain is not likely to ripple into another domain running a differ-
ent AS number. So, for example, let’s say that a network engineer in Africa config-
ured network 172.16.50.0 on Casablanca (172.16.50.0 already exists on Chicago).
The U.S. network would not be disrupted because of this duplicate address. In
another situation, an IGRP bug in IOS on Chicago could disrupt routing in the U.S.,
but Nairobi and Casablanca would not be affected by this problem in the AS 10.

The problem with creating too many small domains running different IGRP AS num-
bers is that sooner or later the domains will need to exchange routes with each other.
The office in New York would need to send files to Nairobi. This could be accom-
plished by adding static routes on NewYork (to 172.16.150.0) and Nairobi (to 172.
16.1.0). However, static routes can be cumbersome to install and administer and do
not offer the redundancy of dynamic routing protocols. Dynamic distribution of
routes between routing domains is discussed in Chapter 8.

In the meantime, all I will say is to use good judgment when breaking networks into
autonomous systems. Making a routing domain too small will require extensive
redistributions or the creation of static entries. Making a routing domain too big
exposes the network to failures of the type just described.

The boundary between domains is often geographic or organizational.

IGRP Metric
The RIP metric was designed for small, homogenous networks. Paths were selected
based on the number of hops to a destination; the lowest hop-count path was
installed in the routing table. IGRP is designed for more complex networks. Cisco’s
implementation of IGRP allows the network engineer to customize the metric based

Figure 3-2. TraderMary’s U.S. and African networks
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on bandwidth, delay, reliability, load, and MTU. In order to compare metrics
between paths and select the least-cost path, IGRP converts bandwidth, delay, reli-
ability, delay, and MTU into a scalar quantity—a composite metric that expresses the
desirability of a path. Just as in the case of RIP, a path with a lower composite met-
ric is preferred to a path with a higher composite metric.

The computation of the IGRP composite metric is user-configurable; i.e., the net-
work administrator can specify parameters in the formula used to convert band-
width, delay, reliability, load, and MTU into a scalar quantity.

The following sections define bandwidth, delay, reliability, load, and MTU. We will
then see how these variables can be used to compute the composite metric for a path.

Interface bandwidth, delay, reliability, load, and MTU

The IGRP metric for a path is derived from the bandwidth, delay, reliability, load,
and MTU values of every media in the path to the destination network.

The bandwidth, delay, reliability, load, and MTU values at any interface to a media
can be seen as output of the show interface command:

router1#sh interface ethernet 0
Ethernet0 is up, line protocol is up
  Hardware is AmdP2, address is 0010.7bcf.e340 (bia 0010.7bcf.e340)
  Description: Lab Test
  Internet address is 1.13.96.1/16
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
  Encapsulation ARPA, loopback not set, keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
...

The bandwidth, delay, reliability, load, and MTU for a media are defined as follows:

Bandwidth
The bandwidth for a link represents how fast the physical media can transmit
bits onto a wire. Thus, an HSSI link transmits approximately 45,000 kbits every
second, Ethernet runs at 10,000 kbps, a T-1 link transmits 1,544 kbits every sec-
ond, and a 56-kbps link transmits 56 kbits every second.

Ethernet0 on router1 is configured with a bandwidth of 10,000 kbps.

Delay
The delay for a link represents the time to traverse the link in an unloaded net-
work and includes the propagation time for the media. Ethernet has a delay
value of 1 ms; a satellite link has a delay value in the neighborhood of 1 second.

Ethernet0 on router1 is configured with a delay of 1,000 ms.

Reliability
Link reliability is dynamically measured by the router and is expressed as a
numeral between 1 and 255. A reliability of 255 indicates a 100% reliable link.

Ethernet0 on router1 is 100% reliable.

,ch03.21897  Page 39  Wednesday, January 9, 2002  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Interior Gateway Routing Protocol (IGRP)

Load
Link utilization is dynamically measured by the router and is expressed as a
numeral between 1 and 255. A load of 255 indicates 100% utilization.

Ethernet0 on router1 has a load of 1/255.

MTU
The MTU, or Maximum Transmission Unit, represents the largest frame size the
link can handle.

Ethernet0 on router1 has an MTU size of 1,500 bytes.

The MTU, bandwidth, and delay values are static parameters that Cisco routers
derive from the media type. Table 3-1 shows some common values for bandwidth
and delay. These default values can be modified using the commands shown in the
next section.

The reliability and load values are dynamically computed by the router as five-
minute exponentially weighted averages.

Modifying interface bandwidth, delay, and MTU

The default bandwidth and delay values may be overridden by the following inter-
face commands:

bandwidth kilobits
delay tens-of-microseconds

So, the following commands will define a bandwidth of 56,000 bps and a delay of
10,000 ms on interface Serial0:

interface Serial0
bandwidth 56
delay 1000

These settings affect only IGRP routing parameters. The actual physical characteris-
tics of the interface—the clock-rate on the wire and the media delay—have no rela-
tionship to the bandwidth or delay values configured as in this example or seen as

Table 3-1. Default bandwidth and delay values

Media type Default bandwidth Default delay

Ethernet 10 Mbps 1,000 ms

Fast Ethernet 100 Mbps 100 ms

FDDI 100 Mbps 100 ms

T-1 (serial interface)a

a All serial interfaces on Cisco routers are configured with the same default bandwidth (1,544 kbits/s) and delay (20,000 ms) parameters.

1,544 kbps 20,000 ms

56 kbps (serial interface) 1,544 kbps 20,000 ms

HSSI 45,045 kbps 20,000 ms
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output of the show interface command. Thus, interface Serial0 in the previous exam-
ple may actually be clocking data at 128,000 bps, a rate that will be governed by the
configuration of the modem or the CSU/DSU attached to Serial0. Note that, by
default, Cisco sets the bandwidth and delay on all serial interfaces to be 1,544 kbps
and 20,000 ms, respectively (see Table 3-1).

Note that delay on an interface is specified in tens of microseconds. Thus:

delay 1000

describes a delay of 10,000 ms.

The MTU on an interface can be modified using the following command:

mtu bytes

However, the MTU size has no bearing on IGRP route selection. The MTU size
should not be modified to affect routing behavior. The default MTU values repre-
sent the maximum allowed for the media type; lowering the MTU size can impair
performance by causing needless fragmentation of IP datagrams.

Later in this chapter we will see how modifications to the bandwidth and delay
parameters on an interface can affect route selection.

IGRP routing update

IGRP updates are directly encapsulated in IP with the protocol field (in the IP
header) set to 9. The format of an IGRP packet is shown in Figure 3-3.

Just like RIP, IGRP allows a station to request routes. This allows a router that has
just booted up to request the routing table from its neighbors instead of waiting for
the next cycle of updates, which could be as much as 90 seconds later for IGRP.

The destination IP address in IGRP updates is 255.255.255.255. The source IP
address is the IP address of the interface from which the update is issued.

Each update packet contains three types of routes:

Interior routes
Contain subnet information for the major network number associated with the
address of the interface to which the update is being sent. If the IGRP update is
being sent on a broadcast network, the internal routes are subnet numbers from
the same major network number that is configured in the broadcast media.

System routes
Contain major network numbers that may have been summarized when a net-
work-number boundary was crossed.

Exterior routes
Represent candidates for the default route. Unlike RIP, which uses 0.0.0.0 to
represent the default, IGRP uses specific network numbers as candidates for the
default by tagging the routes as exterior.
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Interior, system, and exterior routes appear in order in each update packet. The count
of interior, system, and exterior routes identifies the route type for each route entry.

Note that the IGRP update has only three octets for the destination network-number
field, whereas IP addresses are four octets in length. IGRP extracts the four-octet IP
address using the heuristic shown in Table 3-2.

Just like RIP, IGRP updates do not contain subnet mask information. This classifies
both RIP and IGRP as classful routing protocols. Subnet mask information for routes
received in IGRP updates is derived using the same rules as in RIP.

When an update is received for a route, it contains the bandwidth, delay, reliability,
load, and MTU values for the path to the destination network via the source of the
update. I already defined bandwidth, delay, reliability, load, and MTU for an inter-
face. Now let’s define these parameters again for a path.

Figure 3-3. Format of an IGRP update packet

Table 3-2. Deriving the four-octet IP destination address from the three-octet destination field

Route type Heuristic to derive four-octet IP destination address

Interior route The first octet is derived from the IP address of the interface that received the update;
the last three octets are derived from the IGRP update.

System route The route is assumed to have been summarized. The last octet of the IP destination
address is 0.

Exterior route (default route) The route is assumed to have been summarized. The last octet of the IP destination
address is 0.
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Path bandwidth, delay, reliability, load, and MTU

The following list defines bandwidth, delay, reliability, load, and MTU for a path:

Bandwidth
The bandwidth for a path is the minimum bandwidth in the path to the destina-
tion network. Compare a network to a sequence of pipes for the transmission of
a fluid; the slowest pipe (or the thinnest pipe) will dictate the rate of flow of the
fluid. Thus, if a path to a network is through an Ethernet segment, a T-1 line,
and another Ethernet segment, the path bandwidth will be 1,544 kbps (see
Table 3-1).

Delay
The delay for a path is the sum of all delay values on the path to the destination
network. The IGRP unit of delay is in tens of microseconds. A path through a
network via an Ethernet segment, a T-1 line, and another Ethernet segment will
have a path delay of 22,000 ms or 2,200 IGRP delay units (see Table 3-1).

The IGRP update packet has three octets to represent delay (in units of tens of
microseconds). The largest value of delay that can be represented is 224 × 10 ms,
which is roughly 167.7 seconds. 167.7 seconds is thus the maximum possible
delay value for an IGRP network. All ones in the delay field are also used to indi-
cate that the network indicated is unreachable.

Reliability
The reliability for a path is the reliability of the least reliable link in the path.

Load
The load for a path is the load on the most heavily loaded link in the path.

MTU
The MTU represents the smallest MTU along the path. MTU is currently not
used in computing the metric.

Note that, in addition to these parameters, the update packet includes the hop count
to the destination. The default maximum hop count for IGRP is 100. This default
can be modified with the command:

metric maximum-hops hops

The maximum value for hops is 255. A network with a diameter over 100 is very
large indeed, especially for a network running IGRP. Do not expect to modify the
maximum hop count for IGRP, even if you are working for an interstellar ISP. Large
networks will usually require routing features that do not exist in IGRP.

The bandwidth, delay, reliability, load, and MTU values for the path selected by a
router can be seen as output of the show ip route command:

NewYork#show ip route 172.16.100.0
Routing entry for 172.16.100.0 255.255.255.0
  Known via "igrp 10", distance 100, metric 8576
  Redistributing via igrp 10
  Advertised by igrp 10 (self originated)
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  Last update from 172.16.251.2 on Serial1, 00:00:29 ago
  Routing Descriptor Blocks:
  * 172.16.251.2, from 172.16.251.2, 00:00:29 ago, via Serial1
      Route metric is 8576, traffic share count is 1
      Total delay is 21000 microseconds, minimum bandwidth is 1544 Kbit
      Reliability 255/255, minimum MTU 1500 bytes
      Loading 1/255, Hops 2

IGRP composite metric

The path metric of bandwidth, delay, reliability, load, and MTU needs to be expressed
as a composite metric for you to be able to compare paths. The default behavior of
Cisco routers considers only bandwidth and delay in computing the composite metric
(the parameters reliability, load, and MTU are ignored):

Metric = BandW + Delay

BandW is computed by taking the smallest bandwidth (expressed in kbits/s) from all
outgoing* interfaces to the destination (including the destination) and dividing
10,000,000 by this number (the smallest bandwidth). For example, if the path from a
router to a destination Ethernet segment is via a T-1 link, then:

BandW = 10,000,000/1,544 = 6,476

Delay is computed by adding the delays from all outgoing interfaces to the destina-
tion (including the delay on the interface connecting to the destination network) and
dividing by 10:

Delay = (20,000 + 1,000)/10 = 2,100

And then the composite metric for the path to the Ethernet segment would be:

Metric = BandW + Delay = 1,000 + 2,100 = 3,100

Let’s now go back to TraderMary’s network to see why router NewYork selected the
direct 56-kbps link to route to 172.16.100.0 and not the two-hop T-1 path via Chicago:

NewYork>sh ip route
...
I       172.16.100.0 [100/8576] via 172.16.251.2, 0:00:31, Serial0
...

The values of the IGRP metrics for these paths can be seen here:

Ames#sh interface Ethernet 0
Ethernet0 is up, line protocol is up

* The concept of an outgoing interface is best illustrated with an example. In TraderMary’s network, the out-
going interfaces from NewYork to 172.16.100.0 will be NewYork interface Serial0, Chicago interface Serial,
and Ames interface Ethernet0. When computing the metric for NewYork to 172.16.100.0, we will use the
IGRP parameters of bandwidth, delay, load, reliability, and MTU for these interfaces. We will not use the
IGRP parameters from interfaces. However, unless they have been modified, the parameters on this second
set of interfaces would be identical to the first.
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  Hardware is Lance, address is 00e0.b056.1b8e (bia 00e0.b056.1b8e)
  Description: Lab Test
  Internet address is 172.16.100.1/24
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
  Encapsulation ARPA, loopback not set, keepalive set (10 sec)
...

NewYork# show interfaces serial 0
Serial 0 is up, line protocol is up
Hardware is MCI Serial
Internet address is 172.16.250.1, subnet mask is 255.255.255.0
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Encapsulation HDLC, loopback not set, keepalive set (10 sec)
...

There are two paths to consider:

1. NewYork ➝ Ames ➝ 172.16.100.0.

Bandwidth values in the path: (serial link) 1,544 kbits/s, (Ethernet segment)
10,000 kbits/s

Delay values in the path: (serial link) 2,000, (Ethernet segment) 100

Smallest bandwidth in the path: 1,544

BandW = 10,000,000/1,544 = 6,476
Delay = 2,000 + 100 = 2,100
Metric = BandW + Delay = 8,576

2. NewYork ➝ Chicago ➝ Ames to 172.16.100.0.

Bandwidth values in the path: (serial link) 1,544 kbits/s, (serial link) 1,544 kbits/s,
(Ethernet segment) 10,000 kbits/s

Delay values in the path: (serial link) 2,000, (serial link) 2,000, (Ethernet seg-
ment) 100

Smallest bandwidth in the path: 1,544

BandW = 10,000,000/56 = 6,476
Delay = 2,000 + 2,000 + 100 = 4,100
Metric = BandW + Delay = 10,576

NewYork will prefer to route via the first path because the metric is smaller. Why
does NewYork use a bandwidth of 1,544 for the 56-kbps link to Ames? Go back to
Table 3-1 and you will see that the default bandwidth and delay values of 1,544 kbps
and 20,000 ms apply to all serial interfaces, regardless of the speed of the modem
device attached to the router port.

The IGRP metric can be customized to use reliability and load with the following for-
mula (Equation 1):

Metric = k1 × BandW + k2 × BandW/(256–load) + k3 × Delay

where the default values of the constants are k1 = k3 = 1 and k2 = k4 = k5 = 0.
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If k5 is not equal to zero, an additional operation is done:

Metric = Metric × [k5/(reliability + k4)]

The constants k1, k2, k3, k4, and k5 can be modified with the command:

metric weights tos k1 k2 k3 k4 k5

where tos identifies the type of service and must be set to zero (because only one type
of service has been defined).

Plugging the default values of k1, k2, k3, k4, and k5 into Equation 1 yields:

Metric = BandW + Delay

which we saw earlier.

To make the metric sensitive to the network load (in addition to bandwidth and
delay), set k1 = k2 = k3 = 1 and k4 = k5 = 0. This yields:

Metric = BandW + BandW/(256–load) + Delay

The problem with using load in the metric computation is that it can make a route
unstable. For example, a router may select a path through router P as its next hop to
reach a destination. When the load on the path through P rises, in a few minutes
(the value of load is computed as a five-minute exponentially weighted average) the
metric for the path through P may become larger than the metric for an alternative
path through router Q. The traffic then shifts to Q; this causes the load to increase
on the path through Q and the path through P becomes more attractive. Thus, set-
ting k2 = 1 can make a route unstable and cause traffic to bounce between two
paths. Further, abrupt changes in metric cause flash updates; the route may also go
into hold-down.

Instead of selecting the best path based on load, you may consider load balancing
over several paths. Load balancing occurs automatically over equal-cost paths. If two
or more paths have slightly different metrics, you may consider modifying the band-
width and delay parameters to make the metrics equal and to utilize all the paths. See
the example on modifying bandwidth and delay parameters in the next section.

To make the metric sensitive to network reliability (in addition to bandwidth and
delay), set k1 = k3 = k5 =1 and k2 = k4 = 0. In the event of link errors, this will cause
the metric on the path to increase, and IGRP will select an alternative path when the
metric has worsened enough. A typical action in today’s networks is to turn a line
down until the transmission problem is resolved, not to base routing decisions on
how badly the line is running.

Cisco strongly recommends not modifying the k1, k2, k3, k4, and k5
values for IGRP.
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Modifying IGRP metrics

TraderMary’s network was still using the 56-kbps path between NewYork and Ames,
even when IGRP was running on the routers (refer to “Getting IGRP Running”).
Why is it that NewYork and Ames did not pick up the lower bandwidth for the 56-
kbps link?

Table 3-1 contains the key to our question. All serial interfaces on a Cisco router are
configured with the same bandwidth (1,544 kbps) and delay (20,000 ms) values.
Thus, IGRP sees the 56-kbps line with the same bandwidth and delay parameters as
a T-1 line.

In order to utilize the 56-kbps link only as backup, we need to modify TraderMary’s
network as follows:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.0
!
interface Serial1
description New York to Ames link
bandwidth 56
ip address 172.16.251.1 255.255.255.0
...
router igrp 10
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
description Chicago to New York link
ip address 172.16.250.2 255.255.255.0
!
interface Serial1
description Chicago to Ames link
ip address 172.16.252.1 255.255.255.0
...

router igrp 10
network 172.16.0.0
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hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
description Ames to Chicago link
ip address 172.16.252.2 255.255.255.0
!
interface Serial1
description Ames to New York link
bandwidth 56
ip address 172.16.251.2 255.255.255.0
...

router igrp 10
network 172.16.0.0

The new routing tables look like this:

NewYork#show ip route
...
Gateway of last resort is 0.0.0.0 to network 0.0.0.0

     172.16.0.0/24 is subnetted, 6 subnets
I       172.16.252.0 [100/10476] via 172.16.250.2, 00:00:43, Serial0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
I       172.16.50.0 [100/8576] via 172.16.250.2, 00:00:43, Serial0
C       172.16.1.0 is directly connected, Ethernet0
I       172.16.100.0 [100/10576] via 172.16.250.2, 00:00:43, Serial0
C    192.168.1.0/24 is directly connected, Ethernet1

Chicago#sh ip route
...
Gateway of last resort is not set

     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.252.0 is directly connected, Serial1
C       172.16.250.0 is directly connected, Serial0
I       172.16.251.0 [100/182571] via 172.16.250.1, 00:00:01, Serial0
                     [100/182571] via 172.16.252.2, 00:01:01, Serial1
C       172.16.50.0 is directly connected, Ethernet0
I       172.16.1.0 [100/8576] via 172.16.250.1, 00:00:01, Serial0
I       172.16.100.0 [100/8576] via 172.16.252.2, 00:01:01, Serial1

Ames#sh ip route
...
Gateway of last resort is not set

     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.252.0 is directly connected, Serial0
I       172.16.250.0 [100/10476] via 172.16.252.1, 00:00:24, Serial0
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C       172.16.251.0 is directly connected, Serial1
I       172.16.50.0 [100/8576] via 172.16.252.1, 00:00:24, Serial0
I       172.16.1.0 [100/10576] via 172.16.252.1, 00:00:24, Serial0
C       172.16.100.0 is directly connected, Ethernet0

Let’s now go back to TraderMary’s network and corroborate the metric values seen
for 172.16.100.0 in router NewYork’s routing table. The following calculations show
TraderMary’s network as in Figure 3-1 but with IGRP bandwidth and delay values
for each interface. There are two paths to consider:

1. NewYork ➝ Ames ➝ 172.16.100.0.

Bandwidth values in the path: (serial link) 56 kbits/s, (Ethernet segment) 10,000
kbits/s

Smallest bandwidth in the path: 56

BandW = 10,000,000/56 = 178,571
Delay = 2,000 + 100 = 2100
Metric = BandW + Delay = 180,671

2. NewYork ➝ Chicago ➝ Ames ➝ 172.16.100.0

Bandwidth values in the path: (serial link) 1,544 kbits/s, (serial link) 1,544 kbits/s,
(Ethernet segment) 10,000 kbits/s

Smallest bandwidth in the path: 1,544

BandW = 10,000,000/1,544 = 6,476
Delay = 2,000 + 2,000 + 100 = 4,100
Metric = BandW + Delay = 10,576

Using the lower metric for the path via Chicago, NewYork’s route to 172.16.100.0
shows as:

NewYork>sh ip route
...
I       172.16.50.0 [100/1] via 172.16.250.2, 0:00:31, Serial0
I       172.16.100.0 [100/10576] via 172.16.250.2, 0:00:31, Serial0
I       172.16.252.0 [100/1] via 172.16.250.2, 0:00:31, Serial0

Let’s corroborate IGRP’s selection of the two-hop T-1 path in preference to the one-
hop 56-kbps link by comparing the transmission delay for a 1,000-octet packet. A
1,000-octet packet will take 143 ms (1,000 × 8/56,000 second) over a 56-kbps link
and 5 ms (1,000 × 8/1,544,000 second) over a T-1 link. Neglecting buffering and pro-
cessing delays, two T-1 hops will cost 10 ms in comparison to 143 ms via the 56-kbps
link.

Processing IGRP updates

The processing of IGRP updates is very similar to the processing of RIP updates,
described in the previous chapter. The IGRP update comes with an autonomous sys-
tem number. If this does not match the IGRP AS number configured on the router
receiving the update, the entire upgrade is disregarded. Thus, routers NewYork and
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Nairobi in TraderMary’s network will receive updates from each other but will dis-
card them.

Each network number received in the update is checked for validity. Illegal network
numbers such as 0.0.0.0/8, 127.0.0.0/8, and 128.0.0.0/16 are sometimes referred to
as “Martian Network Numbers” and will be disregarded when received in an update
(RFCs 1009, 1122).

The rules for processing IGRP updates are:

1. If the destination network number is unknown to the router, install the route
using the source IP address of the update (provided the route is not indicated as
unreachable).

2. If the destination network number is known to the router but the update con-
tains a smaller metric, modify the routing table entry with the new next hop and
metric.

3. If the destination network number is known to the router but the update con-
tains a larger metric, ignore the update.

4. If the destination network number is known to the router and the update con-
tains a higher metric that is from the same next hop as in the table, update the
metric.

5. If the destination network number is known to the router and the update con-
tains the same metric from a different next hop, install the route as long as the
maximum number of paths to the same destination is not exceeded. These paral-
lel paths are then used for load balancing. Note that the default maximum num-
ber of paths to a single destination is six in IOS Releases 11.0 or later.

Parallel Paths
For the routing table to be able to install multiple paths to the same destination, the
IGRP metric for all the paths must be equal. The routing table will install several par-
allel paths to the same destination (the default maximum is six in current releases of
IOS).

Load-sharing over parallel paths depends on the switching mode. If the router is con-
figured for process switching, load balancing will be on a packet-by-packet basis. If
the router is configured for fast switching, load balancing will be on a per-destination
basis. For a more detailed discussion of switching mode and load balancing, see
Chapter 2.

Unequal metric (cost) load balancing

The default behavior of IGRP installs parallel routes to a destination only if all routes
have identical metric values. Traffic to the destination is load-balanced over all
installed routes, as described earlier.
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Equal-cost load balancing works well almost all the time. However, consider Trader-
Mary’s network again. Say that TraderMary adds a node in London. Since traffic to
London is critical, the network is engineered with two links from New York: one run-
ning at 128 kbps and another running at 56 kbps. Figure 3-4 shows unequal-cost load
balancing.

The routers are first configured as follows:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
...
interface Serial2
bandwidth 128
ip address 172.16.249.1 255.255.255.0
!
interface Serial3
bandwidth 56
ip address 172.16.248.1 255.255.255.0
...
router igrp 10
network 172.16.0.0

hostname London
...
interface Ethernet0
ip address 172.16.180.1 255.255.255.0
!
interface Serial0
bandwidth 128
ip address 172.16.249.2 255.255.255.0
!
interface Serial1
bandwidth 56
ip address 172.16.284.2 255.255.255.0
...
router igrp 10
network 172.16.0.0

Figure 3-4. Unequal-cost load balancing

S2
S3

NewYorkLondon
172.16.248.0
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However, if you check NewYork’s routing table you will see that all traffic to Lon-
don is being routed via the 128-kbps link:

NewYork>sh ip route
...
172.16.0.0/24 is subnetted, ...
I       172.16.180.0 [100/80225] via 172.16.249.2, 00:01:07, Serial2
...

This is because the NewYork ➝ London metric is 80,225 via the 128-kbps path and
180,671 via the 56-kbps path.

The problem with this routing scenario is that the 56-kbps link is entirely unused,
even when the 128-kbps link is congested. Overseas links are expensive: the network
design ought to try to utilize all links. One way around this problem is to modify the
IGRP parameters to make both links look equally attractive. This can be accom-
plished by modifying the 56-kbps path as follows:

hostname NewYork
...
interface Serial3
bandwidth 128
ip address 172.16.248.1 255.255.255.0
...

With this approach, both links would appear equally attractive. The routing table for
NewYork will look like this:

NewYork>sh ip route
...
172.16.0.0/24 is subnetted, ...
I       172.16.180.0 [100/80225] via 172.16.249.2, 00:01:00, Serial2
                     [100/80225] via 172.16.248.2, 00:01:00, Serial3

However, traffic will now be evenly distributed over the two links, which may con-
gest the 56-kbps link while leaving the 128-kbps link underutilized.

Another solution is to modify IGRP’s default behavior and have it install unequal-
cost links in its table, balancing traffic over the links in proportion to the metrics on
the links. The variance that is permitted between the lowest and highest metrics is
specified by an integer in the variance command. For example:

router igrp 10
network 172.16.0.0
variance 2

specifies that IGRP will install routes with different metrics as long as the largest met-
ric is less than twice the lowest metric. In other words, if the variance is v, then:

highest metric ≥ lowest metric × v

The maximum number of routes that IGRP will install will still be four, by default.
This maximum can be raised to six when running IOS 11.0 or later.
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Going back to TraderMary’s network, the metric value for the 128-kbps path to Lon-
don is 80,225 while the metric value for the 56-kbps path is 180,671. The ratio
180,671/80,225 is 2.25; hence, a variance of 3 will be adequate. NewYork may now
be configured as follows:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
...
interface Serial2
bandwidth 128
ip address 172.16.249.1 255.255.255.0
!
interface Serial3
bandwidth 56
ip address 172.16.248.1 255.255.255.0
...
router igrp 10
network 172.16.0.0
variance 3

And the routing table for NewYork will look like this:

NewYork>sh ip route
...
172.16.0.0/24 is subnetted, ...
I       172.16.180.0 [100/80225] via 172.16.249.2, 00:01:00, Serial2
                     [100/180671] via 172.16.248.2, 00:01:00, Serial3

Traffic from NewYork to London will be divided between Serial2 and Serial3 in the
inverse ratio of their metrics: Serial2 will receive 2.25 times as much traffic as Serial3.

The default value of variance is 1. A danger with using a variance value of greater
than 1 is the possibility of introducing a routing loop. Thus, NewYork may start
routing to London via Chicago if the variance is made sufficiently large. IGRP checks
that the paths it chooses to install are always downstream (toward the destination)
by choosing only next hops with lower metrics to the destination.

Steady State
It is important for you as the network administrator to be familiar with the state of
the network during normal conditions. Deviations from this state will be your clue to
troubleshooting the network during times of network outage. This output shows the
values of the IGRP timers:

NewYork#sh ip protocol
Routing Protocol is "igrp 10"
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  Sending updates every 90 seconds, next due in 61 seconds
  Invalid after 270 seconds, hold down 280, flushed after 630
  Outgoing update filter list for all interfaces is
  Incoming update filter list for all interfaces is
  Default networks flagged in outgoing updates
  Default networks accepted from incoming updates
  IGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
  IGRP maximum hopcount 100
  IGRP maximum metric variance 1
  Redistributing: igrp 10
  Routing for Networks:
    172.16.0.0
  Routing Information Sources:
    Gateway         Distance      Last Update

1     172.16.250.2         100      00:00:40
2     172.16.251.2         100      00:00:09

  Distance: (default is 100)

Note that IGRP updates are sent every 90 seconds and the next update is due in 61
seconds, which means that an update was issued about 29 seconds ago.

Further, lines 1 and 2 show the gateways from which router NewYork has been
receiving updates. This list is valuable in troubleshooting—missing routes from a
routing table could be because the last update from a gateway was too long ago.
Check the time of the last update to ensure that it is within the IGRP update timer:

NewYork#show ip route
...
Gateway of last resort is not set

     172.16.0.0/24 is subnetted, 6 subnets
I       172.16.252.0 [100/10476] via 172.16.251.2, 00:00:26, Serial1
                     [100/10476] via 172.16.250.2, 00:00:37, Serial0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
I       172.16.50.0 [100/8576] via 172.16.250.2, 00:00:37, Serial0
C       172.16.1.0 is directly connected, Ethernet0
I       172.16.100.0 [100/8576] via 172.16.251.2, 00:00:26, Serial1
C    192.168.1.0/24 is directly connected, Ethernet1

One key area to look at in the routing table is the timer values. The format that
Cisco uses for timers is hh:mm:ss (hours:minutes:seconds). You would expect the
time against each route to be between 00:00:00 (0 seconds) and 00:01:30 (90 sec-
onds). If a route was received more than 90 seconds ago, that indicates a problem in
the network. You should begin by checking to see if the next hop for the route is
reachable.

You should also be familiar with the number of major network numbers (two in the
previous output—172.16.0.0 and 192.168.1.0) and the number of subnets in each
(six in 172.16.0.0 and one in 192.168.1.0). In most small to mid-sized networks,
these counts will change only when networks are added or subtracted.
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Speeding Up Convergence
Like RIP, IGRP implements hold-downs, split horizon, triggered updates, and poi-
son reverse (see Chapter 2 for details on these convergence methods). Like RIP, IGRP
also maintains an update timer, an invalid timer, a hold-down timer, and a flush
timer for every route in the routing table:

Update timer (default value: 90 seconds)
After sending a routing update, IGRP sets the update timer to 0. When the timer
expires, IGRP issues another routing update.

Invalid timer (default value: 270 seconds)
Every time a router receives an update for a route, it sets the invalid timer to 0.
The expiration of the invalid timer indicates that the source of the routing infor-
mation is suspect. Even though the route is declared invalid, packets are still for-
warded to the next hop specified in the routing table. Note that prior to the
expiration of the invalid timer, IGRP would process any updates received by
updating the route’s timers.

Hold-down timer (default value: 280 seconds)
When the invalid timer expires, the route automatically enters the hold-down
phase. During hold-down all updates regarding the route are disregarded—it is
assumed that the network may not have converged and that there may be bad
routing information circulating in the network. The hold-down timer is started
when the invalid timer expires.

Flush timer (default value: 630 seconds)
Every time a router receives an update for a route, it sets the flush timer to 0.
When the flush timer expires, the route is removed from the routing table and
the router is ready to receive a new route update. Note that the flush timer over-
rides the hold-down timer.

Setting Timers
IGRP timers can be modified to allow faster convergence. The configuration:

router igrp 10
timers basic 30 90 90 180

would generate IGRP updates every 30 seconds, mark a route invalid in 90 seconds,
keep the route in hold-down for 90 seconds, and flush the route in 180 seconds.

However, IGRP timers should not be modified without a detailed understanding of
route convergence in Distance Vector protocols (see Chapter 2). Selecting too short a
hold-down period, for example, may cause bad routing information to persist in a
network. Selecting too long a hold-down period would increase the time it takes to
learn a route via a different path after a failure.
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Changing timers also presents the danger that sooner or later someone will config-
ure a router with default timers. This may cause route flapping; i.e., routes to some
network numbers may become intermittently invisible.

Do not modify IGRP timers unless absolutely necessary. If you modify
IGRP timers, make sure that all routers have the same timers.

Disabling IGRP Hold-Downs
IGRP hold-downs can be disabled with the command:

router igrp 10
no metric holddown

thus speeding up convergence when a route fails. However, the problem with turn-
ing off hold-downs is that if a triggered update regarding the failure does not reach
some router, that router could insert bad routing information into the network.
Doesn’t this seem like a dangerous thing to do?

Split horizon, triggered updates, and poison reverse are implemented in IGRP much
like they are in RIP.

Route Summarization
IGRP summarizes network numbers when crossing a major network-number bound-
ary, just like RIP does. Route summarization reduces the number of routes that need
to be exchanged, processed, and stored.

However, route summarization does not work well in discontiguous networks. Con-
sider the discontiguous network in Figure 3-5. Router X will receive advertisements
for 10.0.0.0 from both routers A and B. If X sent packets with the destination 10.1.
1.1 to B, the packet would be lost—B would have to drop the packet because it
would not have a route for 10.1.1.1 in its table. Likewise, if X sent packets with the
destination 10.2.1.1 to A, the packet would be lost—A would have to drop the
packet because it would not have a route for 10.2.1.1.

Figure 3-5. Contiguous and discontiguous networks
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Both IGRP and RIP networks must be designed in contiguous blocks of major net-
work numbers.

Default Routes
IGRP tracks default routes in the exterior section of its routing updates. A router
receiving 10.0.0.0 in the exterior section of a routing update would mark 10.0.0.0 as
a default route and install its next hop to 10.0.0.0 as the gateway of last resort. Con-
sider the network in Figure 3-6 as an example in which a core router connects to sev-
eral branch routers in remote sites.

The core router is configured as follows:

hostname core1
!
interface Ethernet0
 ip address 192.168.1.1 255.255.255.0
...
interface Serial0
ip address 172.16.245.1 255.255.255.0
...
router igrp 10

3 redistribute static
 network 172.16.0.0

4 default-metric 10000 100 255 1 1500
!
no ip classless

5 ip default-network 10.0.0.0
6 ip route 10.0.0.0 255.0.0.0 Null0

The branch router is configured as follows:

hostname branch1
...

Figure 3-6. Branch offices only need a default route

branch1

Default
(0.0.0.0)

Other branches

core1

,ch03.21897  Page 57  Wednesday, January 9, 2002  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Interior Gateway Routing Protocol (IGRP)

interface Serial0
ip address 172.16.245.2 255.255.255.0
...
router igrp 10
redistribute static
network 172.16.0.0
!
no ip classless

An examination of branch1’s routing table would show:

branch1#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 172.16.245.1 to network 10.0.0.0

     172.16.0.0/24 is subnetted, 1 subnets
C       172.16.245.0 is directly connected, Serial0
I*   10.0.0.0/8 [100/8576] via 172.16.245.1, 00:00:26, Serial0

Note that network 10.0.0.0 has been flagged as a default route (*). To ensure that
the default route works, let’s do a test to see if branch1 can ping 192.168.1.1, even
though 192.168.1.0 is not in branch1’s routing table:

branch1#ping 192.168.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 40/50/80 ms

Here are the steps we followed in the creation of the default route:

1. Network 10.0.0.0 was flagged as a default route by core1 (line 5).

2. Network 10.0.0.0 was defined via a static route (line 6).

3. The default route was redistributed into IGRP, which then placed the route in
the exterior section of its update message to branch1 (line 3).

4. A default metric was attached to the redistribution (line 4).

There are a few things to note when creating default routes in IGRP. First, IGRP does
not use 0.0.0.0 as a default route. Thus, if 0.0.0.0 were defined in place of 10.0.0.0,
IGRP would not convey it. Second, how should one choose which network number
to flag as a default route? In the previous example, the network 10.0.0.0 does not
need to be a real network number configured on an interface; it could just be a ficti-
tious number (that does not exist as a real number in the network) to which all
default traffic will be sent. Using a fictitious number instead of a real network num-
ber as the default route can have certain advantages. For example, a fictitious net-
work number will not go down if an interface goes down. Further, changing the ideal
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candidate for the default route can be much easier with fictitious network numbers
than with real network numbers.

Multiple Default Routes
To increase the reliability of the connection to branches, each branch may be con-
nected to two core routers:

hostname core2
!
interface Ethernet0
 ip address 192.168.1.1 255.255.255.0
...
interface Serial0
ip address 172.16.246.1 255.255.255.0
...
router igrp 10
 redistribute static
 network 172.16.0.0
 default-metric 10000 100 255 1 1500
!
no ip classless
ip default-network 10.0.0.0
ip route 10.0.0.0 255.0.0.0 Null0

branch1 will now receive two default routes:

branch1>sh ip route
...
Gateway of last resort is 172.16.250.1 to network 10.0.0.0

     172.16.0.0/24 is subnetted, 2 subnets
C       172.16.245.0 is directly connected, Serial1
C       172.16.246.0 is directly connected, Serial0
I*   10.0.0.0/8 [100/8576] via 172.16.245.1, 00:00:55, Serial0
                [100/8576] via 172.16.246.1, 00:00:55, Serial1

Note that it is also possible to set up one router (say, core1) as primary and the sec-
ond router (core2) as backup. To do this, set up the default from core2 with a worse
metric, as shown in line 7:

hostname core2
!
interface Ethernet0
 ip address 192.168.1.1 255.255.255.0
...
interface Serial0
ip address 172.16.246.1 255.255.255.0
...
router igrp 10
 redistribute static
 network 172.16.0.0

7 default-metric 1544 2000 255 1 1500
!
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no ip classless
ip default-network 10.0.0.0
ip route 10.0.0.0 255.0.0.0 Null0

Classful Route Lookups
Router branch1 is configured to perform classful route lookups (see line 7 in the pre-
vious code block). A classful route lookup works as follows:

1. Upon receiving a packet, the router first determines the major network number
for the destination. If the destination IP address is 172.16.1.1, the major net-
work number is 172.16.0.0. If the destination IP address is 192.168.1.1, the
major network number is 192.168.1.0.

2. Next, the router checks to see if this major network number exists in the routing
table. If the major network number exists in the routing table (172.16.0.0 does),
the router checks for the destination’s subnet. In our example, branch1 would
look for the subnet 172.16.1.0. If this subnet exists in the table, the packet will
be forwarded to the next hop specified in the table. If the subnet does not exist
in the table, the packet will be dropped.

3. If the major network number does not exist in the routing table, the router looks
for a default route. If a default route exists, the packet will be forwarded as speci-
fied by the default route. If there is no default route in the routing table, the
packet will be dropped.

Router branch1 is able to ping 192.168.1.1 as a consequence of rule 3:

branch1#ping 192.168.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 40/50/80 ms

However, let’s define a new subnet of 172.16.0.0 on core1 (and then block the adver-
tisement of this subnet with an access list on lines 8 and 9) and see if branch1 can
reach it using a default route:

hostname core1
!
interface Ethernet0
 ip address 192.168.1.1 255.255.255.0
!
interface Ethernet1
ip address 172.16.10.1 255.255.255.0
...
interface Serial0
ip address 172.16.245.1 255.255.255.0
...
router igrp 10
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 redistribute static
 network 172.16.0.0
 default-metric 10000 100 255 1 1500
 distribute-list 1 out serial0
!
no ip classless
ip default-network 10.0.0.0
ip route 10.0.0.0 255.0.0.0 Null0
!

8 access-list 1 deny 172.16.10.0 0.0.0.255
9 access-list 1 permit 0.0.0.0 255.255.255.255

branch1#sh ip route
...
Gateway of last resort is 172.16.245.1 to network 10.0.0.0

     172.16.0.0/24 is subnetted, 1 subnets
C       172.16.245.0 is directly connected, Serial0
I*   10.0.0.0/8 [100/8576] via 172.16.245.1, 00:00:26, Serial0

branch1#ping 192.168.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.10.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 40/50/80 ms

This demonstrates the use of rule 2, which causes the packet for 172.16.10.1 to be
dropped. Note that in this example 172.16.10.1 did not match the default route,
whereas 192.168.1.1 did match the default.

Classless route lookup, the other option, is discussed in Chapter 5.

Summing Up
IGRP has the robustness of RIP but adds a major new feature—route metrics based
on bandwidth and delay. This feature—along with the ease with which it can be con-
figured and deployed—has made IGRP tremendously popular for small* to mid-sized
networks. However, IGRP does not address several problems that also affect RIP:

• The exchange of full routing updates does not scale for large networks—the
overhead of generating and processing all routes in the AS can be high.

* The definition of small, medium, and large IP networks can be discussed ad nauseam because of the number
of variables involved (number of routers and routes, network bandwidth/utilization, network delay/latency,
etc.), but rough measures are as follows: small—a few dozen routers with up to a few hundred routes;
medium—a few hundred routers with a few thousand routes; large—anything bigger than medium.
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• IGRP convergence times can be too long.

• Subnet mask information is not exchanged in IGRP updates, so Variable Length
Subnet Masks (VLSM) and discontiguous address spaces are not supported.

These issues may be too significant to overlook in large IP networks in which
address-space conservation may necessitate VLSM, full route updates would be so
large that they would consume significant network resources (serial links to branches
tend to saturate quickly, and smaller routers may consume a lot of CPU power just
to process all the routes at every update interval), and the convergence times may be
too long because of the network diameter. Even small to mid-sized networks may
choose not to implement IGRP if convergence time is an issue.
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Chapter 4
In this chapter:

• Getting EIGRP Running
• EIGRP Metric
• How EIGRP Works
• Variable Length Subnet Masks
• Route Summarization
• Default Routes
• Troubleshooting EIGRP
• Summing Up

CHAPTER 4

Enhanced Interior
Gateway Routing

Protocol (EIGRP)

The Enhanced Interior Gateway Routing Protocol (EIGRP), referred to as an
advanced Distance Vector protocol, offers radical improvements over IGRP. Tradi-
tional DV protocols such as RIP and IGRP exchange periodic routing updates with
all their neighbors, saving the best distance (or metric) and the vector (or next hop)
for each destination. EIGRP differs in that it saves not only the best (least-cost) route
but all routes, allowing convergence to be much quicker. Further, EIGRP updates are
sent only upon a network topology change; updates are not periodic.

Getting EIGRP running is not much more difficult than getting IGRP running, as we
will see in the section “Getting EIGRP Running.”

Even though EIGRP offers radical improvements over IGRP, there are similarities
between the protocols. Like IGRP, EIGRP bases its metric on bandwidth, delay, reli-
ability, load, and MTU (see the “EIGRP Metric” section).

The fast convergence feature in EIGRP is due to the Diffusing Update Algorithm
(DUAL), discussed in “How EIGRP Works.”

EIGRP updates carry subnet mask information. This allows EIGRP to summarize
routes on arbitrary bit boundaries, support classless route lookups, and allow the
support of Variable Length Subnet Masks (VLSM). This is discussed in “Variable
Length Subnet Masks” and “Route Summarization.”

Setting up default routes in EIGRP is discussed in “Default Routes.”

Troubleshooting EIGRP can be tricky. This chapter ends with some troubleshooting
tips in “Troubleshooting EIGRP.”
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EIGRP is a Cisco proprietary protocol; other router vendors do not support EIGRP.
Keep this in mind if you are planning a multivendor router environment.

This chapter focuses on EIGRP’s enhancements over IGRP: the use of DUAL; and
the use of subnet masks in updates, which in turn allow VLSM and route summari-
zation at arbitrary bit boundaries. This chapter does not cover router metrics in
detail or the concept of parallel paths. Those concepts have not changed much in
EIGRP. I assume that the reader is familiar with IGRP.

Getting EIGRP Running
TraderMary’s network, shown in Figure 4-1, can be configured to run EIGRP as
follows.

Just like RIP and IGRP, EIGRP is a distributed protocol that needs to be configured
on every router in the network:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.0
!
interface Serial1
description New York to Ames link
bandwidth 56
ip address 172.16.251.1 255.255.255.0

Figure 4-1. TraderMary’s network
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...
router eigrp 10
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
description Chicago to New York link
ip address 172.16.250.2 255.255.255.0
!
interface Serial1
description Chicago to Ames link
ip address 172.16.252.1 255.255.255.0
...

router eigrp 10
network 172.16.0.0

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
description Ames to Chicago link
ip address 172.16.252.2 255.255.255.0
!
interface Serial1
description Ames to New York link
bandwidth 56
ip address 172.16.251.2 255.255.255.0
...

router eigrp 10
network 172.16.0.0

The syntax of the EIGRP command is:

router eigrp autonomous-system-number

in global configuration mode. The networks that will be participating in the EIGRP
process are then listed:

network 172.16.0.0

What does it mean to list the network numbers participating in EIGRP?

1. Router NewYork will include directly connected 172.16.0.0 subnets in its
updates to neighboring routers. For example, 172.16.1.0 will now be included in
updates to the routers Chicago and Ames.
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2. NewYork will receive and process EIGRP updates on its 172.16.0.0 interfaces
from other routers running EIGRP 10. For example, NewYork will receive
EIGRP updates from Chicago and Ames.

3. By exclusion, network 192.168.1.0, connected to NewYork, will not be adver-
tised to Chicago or Ames, and NewYork will not process any EIGRP updates
received on Ethernet0 (if there is another router on that segment).

The routing tables for NewYork, Chicago, and Ames will show all 172.16.0.0 sub-
nets. Here is NewYork’s table:

NewYork#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

1 172.16.0.0/24 is subnetted, 6 subnets
D       172.16.252.0 [90/2681856] via 172.16.250.2, 00:18:54, Ethernet0/0
C       172.16.250.0 is directly connected, Ethernet0/0
C       172.16.251.0 is directly connected, Ethernet0/1
D       172.16.50.0 [90/2195456] via 172.16.250.2, 00:18:54, Ethernet0/0
C       172.16.1.0 is directly connected, Loopback0
D       172.16.100.0 [90/2707456] via 172.16.250.2, 00:18:54, Ethernet0/0
C    192.168.1.0/24 is directly connected, Loopback1

The EIGRP-derived routes in this table are labeled with a “D” in the left margin.
Note that the routing table provides summary information (as in line 1). Line 1 con-
tains subnet mask information (24 bits, or 255.255.255.0) and the number of sub-
nets in 172.16.0.0 (6).

In addition to the routing table, EIGRP builds another table called the topology table:

NewYork#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

P 172.16.252.0/24, 1 successors, FD is 2681856
         via 172.16.250.2 (2681856/2169856), Serial0
         via 172.16.251.2 (46738176/2169856), Serial1
P 172.16.250.0/24, 1 successors, FD is 2169856
         via Connected, Serial0
P 172.16.251.0/24, 1 successors, FD is 46226176
         via Connected, Serial1
P 172.16.50.0/24, 1 successors, FD is 2195456
         via 172.16.250.2 (2195456/281600), Serial0
P 172.16.1.0/24, 1 successors, FD is 128256
         via Connected, Ethernet0

2 P 172.16.100.0/24, 1 successors, FD is 2707456
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3          via 172.16.250.2 (2707456/2195456), Serial0
4          via 172.16.251.2 (46251776/281600), Serial1

This topology table shows two entries for Ames’s subnet, 172.16.100.0 (line 2). Only
the lower-cost route (line 3) is installed in the routing table, but the second entry in
the topology table (line 4) allows NewYork to quickly converge on the less preferred
path if the primary path fails.

Note that network 192.168.1.0, defined on NewYork interface Ethernet1, did not
appear in the routing tables of Chicago and Ames. To be propagated, 192.168.1.0
would have to be defined in a network statement under the EIGRP configuration on
NewYork:

hostname NewYork
...
router eigrp 10
network 172.16.0.0
network 192.168.1.0

Each EIGRP process is identified by an autonomous system (AS) number, just like
IGRP processes. Routers with the same AS numbers will exchange routing informa-
tion with each other, resulting in a routing domain. Routers with dissimilar AS num-
bers will not exchange any routing information by default. However, routes from one
routing domain can be leaked into another domain through the redistribution com-
mands—this is covered in Chapter 8.

Compare the routing table in this section with the corresponding table for IGRP in
Chapter 3. The essential contents are identical: the same routes with the same next
hops. However, the route metrics look much bigger and the route update times are
very high. IGRP routes would have timed out a while ago.

EIGRP metrics are essentially derived from IGRP metrics. The following section pro-
vides a quick summary.

EIGRP Metric
The EIGRP composite metric is computed exactly as the IGRP metric is and then
multiplied by 256. Thus, the default expression for the EIGRP composite metric is:

Metric = [BandW +Delay] × 256

where BandW and Delay are computed exactly as for IGRP (see the section “IGRP
Metric” in Chapter 3). In summary, BandW is computed by taking the smallest band-
width (expressed in kbits/s) from all outgoing interfaces to the destination (includ-
ing the destination) and dividing 10,000,000 by this number (the smallest
bandwidth), and Delay is the sum of all the delay values to the destination network
(expressed in tens of microseconds).

Further, note that the total delay (line 6), minimum bandwidth (line 6), reliability
(line 7), minimum MTU (line 7), and load (line 8) for a path, which are used to
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compute the composite metric (line 5), are shown as output of the show ip route
destination-network-number command:

NewYork#sh ip route 172.16.50.0
Routing entry for 172.16.50.0 255.255.255.0
  Known via "eigrp 10", distance 90, metric 2195456, type internal
  Redistributing via eigrp 10
  Last update from 172.16.250.2 on Serial0, 00:00:21 ago
  Routing Descriptor Blocks:
  * 172.16.50.0, from 172.16.250.2, 00:00:21 ago, via Serial0

5 Route metric is 2195456, traffic share count is 1
6       Total delay is 21000 microseconds, minimum bandwidth is 1544 Kbit
7       Reliability 255/255, minimum MTU 1500 bytes
8       Loading 1/255, Hops 1

Converting route metrics between EIGRP and IGRP is very straightforward: EIGRP
metrics are 256 times larger than IGRP metrics. This easy conversion becomes
important when a network is running both IGRP and EIGRP, such as during a migra-
tion from IGRP to EIGRP.

Just like IGRP, EIGRP can be made to use load and reliability in its metric by modi-
fying the parameters k1, k2, k3, k4, and k5 (see the “IGRP Metric” section in the pre-
vious chapter).

The constants k1, k2, k3, k4, and k5 can be modified with the following command:

metric weights tos k1 k2 k3 k4 k5

Cisco strongly recommends not modifying the k1, k2, k3, k4, and k5
values for EIGRP.

How EIGRP Works
Unlike traditional DV protocols such as RIP and IGRP, EIGRP does not rely on peri-
odic updates: routing updates are sent only when there is a change. Remember that
RIP and IGRP reset the invalid and flush timers upon receiving a route update. When
a route is lost, the updates stop; the invalid and flush timers grow and grow (the tim-
ers are not reset), and, ultimately, the route is flushed from the routing table. This
process of convergence assumes periodic updates. EIGRP’s approach has the advan-
tage that network resources are not consumed by periodic updates. However, if a
router dies, taking away all its downstream routes, how would EIGRP detect the loss
of these routes? EIGRP relies on small hello packets to establish neighbor relation-
ships and to detect the loss of a neighbor. Neighbor relationships are discussed in
detail in the next section.

RIP and IGRP suffer from a major flaw: routing loops. Routing loops happen when
information about the loss of a route does not reach all routers in the network because
an update packet gets dropped or corrupted. These routers (that have not received the
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information about the loss of the route) inject bad routing information back into the
network by telling their neighbors about the route they know. EIGRP uses reliable
transmission for all updates between neighbors. Neighbors acknowledge the receipt of
updates, and if an acknowledgment is not received, EIGRP retransmits the update.

RIP and IGRP employ a battery of techniques to reduce the likelihood of routing
loops: split horizon, hold-down timers, and poison reverse. These techniques do not
guarantee that loops will not occur and, in any case, result in long convergence
times. EIGRP uses the Diffusing Update Algorithm (DUAL) for all route computa-
tions. DUAL’s convergence times are an order of magnitude lower than those of tra-
ditional DV algorithms. DUAL is able to achieve such low convergence times by
maintaining a table of loop-free paths to every destination, in addition to the least-
cost path. DUAL is described in more detail later in this chapter.

DUAL can support IP, IPX, and AppleTalk. A protocol-dependent module encapsu-
lates DUAL messages and handles interactions with the routing table. In summary,
DUAL requires:

1. A method for the discovery of new neighbors and their loss (see the next sec-
tion, “Neighbor Relationship”).

2. Reliable transmission of update packets between neighbors (see the later section
“Reliable Transport Protocol”).

3. Protocol-dependent modules that can encapsulate DUAL traffic in IP, IPX, or
AppleTalk. This text will deal only with EIGRP in IP networks (see the later sec-
tion “Protocol-Dependent Module”).

I’ll end this section with a discussion of EIGRP packet formats.

Neighbor Relationship
A router discovers a neighbor when it receives its first hello packet on a directly con-
nected network. The router requests DUAL to send a full route update to the new
neighbor. In response, the neighbor sends its full route update. Thus, a new neigh-
bor relationship is established in the following steps:

1. When a router A receives a hello packet from a new neighbor B, A sends its
topology table to router B in unicast updates with the initialization bit turned on.

2. When router B receives a packet with the initialization bit on, it sends its topol-
ogy table to router A.

The interval between hello packets from any EIGRP-speaking router on a network is
five seconds (by default) on most media types. Each hello packet advertises hold-
time—the length of time the neighbor should consider the sender up. The default
hold-time is 15 seconds. If no hellos are received for the duration of the hold-time,
DUAL is informed that the neighbor is down. Thus, in addition to detecting a new
neighbor, hello packets are also used to detect the loss of a neighbor.

,ch04.22056  Page 69  Wednesday, January 9, 2002  12:24 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: Enhanced Interior Gateway Routing Protocol (EIGRP)

The hello-interval can be changed with the following command in interface configu-
ration mode:

ip hello-interval eigrp autonomous-system-number seconds

Lengthening the hello-interval will also lengthen the route convergence time. How-
ever, a longer hello-interval may be desirable on a congested network with many
EIGRP routers.

If the hello-interval is changed, the hold-time should also be modified. A rule of
thumb is to keep the hold-time at three times the hello-interval.

ip hold-time eigrp autonomous-system-number seconds

Note that the hello-interval and hold-time need not be the same for all routers on a
network. Each router advertises its own hold-time, which is recorded in the neigh-
bor’s neighbor table.

The default hello-interval is 60 seconds (with a hold-time of 180 seconds) on multi-
point interfaces (such as ATM, Frame Relay, and X.25) with link speeds of T-1 or
less. Hello packets are multicast; no acknowledgments are expected.

The following output shows NewYork’s neighbors. The first column—labeled H—is
the order in which the neighbors were learned. The hold-time for 172.16.251.2
(Ames) is 10 seconds, from which we can deduce that the last hello was received 5
seconds ago. The hold-time for 172.16.250.2 (Chicago) is 13 seconds, from which we
can deduce that the last hello was received 2 seconds ago. The hold-time for a neigh-
bor should not exceed 15 seconds or fall below 10 seconds (if the hold-time fell
below 10 s, that would indicate the loss of one or more hello packets).

NewYork#sh ip eigrp neighbor
IP-EIGRP neighbors for process 10
H   Address                 Interface   Hold Uptime   SRTT   RTO  Q  Seq
                                        (sec)         (ms)       Cnt Num
1   172.16.251.2            Se0/1         10 00:17:08   28  2604  0  7
0   172.16.250.2            Se0/0         13 00:24:43   12  2604  0  14.

After a neighbor relationship has been established between A and B the only EIGRP
overhead is the exchange of hello packets, unless there is a topological change in the
network.

Reliable Transport Protocol
The EIGRP transport mechanism uses a mix of multicast and unicast packets, using
reliable delivery when necessary. All transmissions use IP with the protocol type field
set to 88. The IP multicast address used is 224.0.0.10.

DUAL requires guaranteed and sequenced delivery for some transmissions. This is
achieved using acknowledgments and sequence numbers. So, for example, update
packets (containing routing table data) are delivered reliably (with sequence numbers)
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to all neighbors using multicast. Acknowledgment packets—with the correct sequence
number—are expected from every neighbor. If the correct acknowledgment number
is not received from a neighbor, the update is retransmitted as a unicast.

The sequence number (seq num) in the last packet from the neighbor is recorded to
ensure that packets are received in sequence. The number of packets in the queue
that might need retransmission is shown as a queue count (QCnt), and the smoothed
round trip time (SRTT) is used to estimate how long to wait before retransmitting to
the neighbor. The retransmission timeout (RTO) is the time the router will wait for
an acknowledgment before retransmitting the packet in the queue.

Some transmissions do not require reliable delivery. For example, hello packets are
multicast to all neighbors on an Ethernet segment, whereas acknowledgments are
unicast. Neither hellos nor acknowledgments are sent reliably.

EIGRP also uses queries and replies as part of DUAL. Queries are multicast or uni-
cast using reliable delivery, whereas replies are always reliably unicast. Query and
reply packets are discussed in more detail in the next section.

Diffusing Update Algorithm (DUAL)
All route computations in EIGRP are handled by DUAL. One of DUAL’s tasks is
maintaining a table of loop-free paths to every destination. This table is referred to as
the topology table. Unlike traditional DV protocols that save only the best (least-cost)
path for every destination, DUAL saves all paths in the topology table. The least-cost
path(s) is copied from the topology table to the routing table. In the event of a fail-
ure, the topology table allows for very quick convergence if another loop-free path is
available. If a loop-free path is not found in the topology table, a route recomputa-
tion must occur, during which DUAL queries its neighbors, who, in turn, may query
their neighbors, and so on… hence the name “Diffusing” Update Algorithm.

These processes are described in detail in the following sections.

Reported distance

Just like RIP and IGRP, EIGRP calculates the lowest cost to reach a destination based
on updates* from neighbors. An update from a router R contains the cost to reach the
destination network N from R. This cost is referred to as the reported distance (RD).
NewYork receives an update from Ames with a cost of 281,600, which is Ames’s cost
to reach 172.16.100.0. In other words, the RD for Ames to reach 172.160.100.0 as
reported to NewYork is 281,600. Just like Ames, Chicago will report its cost to reach
172.16.100.0. Chicago’s RD is 2,195,456 (see Figure 4-2).

* Unlike RIP and IGRP, EIGRP updates are not periodic. EIGRP updates are sent only when there is a topo-
logical change in the network.
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Feasible distance and successor

NewYork will compute its cost to reach 172.16.100.0 via Ames and Chicago. New-
York will then compare the metrics for the two paths. NewYork’s cost via Ames is
46,251,776. NewYork’s cost via Chicago is 2,707,456. The lowest cost to reach a des-
tination is referred to as the feasible distance (FD) for that destination. NewYork’s FD
to 172.16.100.0 is 2,707,456 (BandW = 1,544 and Delay = 4,100). The next-hop
router in the lowest-cost path to the destination is referred to as the successor. New-
York’s successor for 172.16.100.0 is 172.16.50.1 (Chicago).

Feasibility condition and feasible successor

If a reported distance for a destination is less than the feasible distance for the same
destination, the router that advertised the RD is said to satisfy the feasibility condi-
tion (FC) and is referred to as a feasible successor (FS). NewYork sees an RD of
281,600 via Ames, which is lower than NewYork’s FD of 2,707,456. Ames satisfies
the FC. Ames is an FS for NewYork to reach 172.16.100.0.

Loop freedom

The feasibility condition is a test for loop freedom: if the FC is met, the router adver-
tising the RD must have a path to the destination not through the router checking
the FC—if it did, the RD would have been higher than the FD.

Let’s illustrate this concept with another example. Consider the network in Figure 4-3.
The metric values used in this example have been simplified to small numbers to
make it easier to follow the concept.

Router A’s best route to network N is via router B, and the cost of this path is 100
(A’s FD to N is 100). Router X also knows how to get to network N; X advertises N

Figure 4-2. Ames is a feasible successor for 172.16.100.0
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to A in an update packet (A copies this information into its topology table). In the
event that A’s link to B fails, A can use the route to N via X if X does not use A to get
to N (in other words, if the path is loop-free). Thus, the key question for A to answer
is whether or not the path that X advertises is loop-free.

Here is how A answers this question. Let’s say that X advertises N with a metric of
90 (X’s RD for N). A compares 90 (RD) with 100 (FD). Is RD < FD? This compari-
son is the FC check. Since A’s FD is 100, X’s path to N must not be via A (and is
loop-free). If X advertises N with a metric of 110, X’s path to N could be via A (the
RD is not less than the FD, so the FC check fails)—110 could be A’s cost added to
the metric of the link between A and X (and, hence, is not guaranteed to be free of a
loop).

Topology table

All destinations advertised by neighbors are copied into the topology table. Each des-
tination is listed along with the neighbors that advertised the destination, the RD,
and the metric to reach the destination via that neighbor. Let’s look at NewYork’s
topology table and zoom in on destination 172.16.100.0. There are two neighbors
that sent updates with this destination: Chicago (172.16.250.2) and Ames (172.16.
251.2), as shown on lines 9 and 10, respectively:

NewYork#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

...
P 172.16.100.0/24, 1 successors, FD is 2,707,456

9 via 172.16.250.2 (2,707,456/2,195,456), Serial0
10          via 172.16.251.2 (46,251,776/281,600), Serial1

Chicago sent an update with an RD of 2,195,456, and Ames sent an update with an
RD of 281,600. NewYork computes its own metric to 172.16.100.0: 2,707,456 and
46,251,776 via Chicago and Ames, respectively. NewYork uses the lower-cost path
via Chicago. NewYork’s FD to 172.16.100.0 is thus 2,707,456, and Chicago is the

Figure 4-3. Loop freedom
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successor. Next NewYork checks to see if Ames qualifies as a feasible successor.
Ames’s RD is 281,600. This is checked against the FD. Since the RD < FD (281,600
< 2,707,456), Ames is a feasible successor (see Figure 4-2).

Note that not all loop-free paths satisfy the FC. Thus, NewYork’s topology table does
not contain the alternate path to 172.16.50.0 (via Ames). The FC guarantees that the
paths that satisfy the condition are loop-free; however, not all loop-free paths satisfy
the FC.

Let’s take a closer look at 172.16.50.0 (Chicago) in NewYork’s topology table:

NewYork#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

...
P 172.16.50.0/24, 1 successors, FD is 2195456
         via 172.16.250.2 (2195456/281600), Serial0

Notice that Ames (172.16.251.2) did not become a feasible successor, even though
Ames offers a valid loop-free path. The condition that Ames would have to satisfy to
become a feasible successor is for its RD to be less than NewYork’s FD to 172.16.50.0.
Ames’s RD can be seen from Ames’s routing table:

Ames#sh ip route
...
     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.252.0 is directly connected, Serial0
D       172.16.250.0 [90/2681856] via 172.16.252.1, 00:21:10, Serial0
C       172.16.251.0 is directly connected, Serial1

11 D       172.16.50.0 [90/2195456] via 172.16.252.1, 00:21:10, Serial0
D       172.16.1.0 [90/2707456] via 172.16.252.1, 00:15:36, Serial0
C       172.16.100.0 is directly connected, Ethernet0

Ames’s metric to 172.16.50.0 is 2,195,456 (line 11). This will be the metric that Ames
reports to NewYork. The RD is thus 2,195,456. NewYork’s FD to 172.16.50.0 is
2,195,456. The RD and the FD are equal, which is not surprising given the topology:
both NewYork and Ames have identical paths to 172.16.50.0—a T-1 link, a router,
and the destination Ethernet segment. Since the condition for feasible successor is
that RD < FD, Ames is not an FS for 172.16.50.0 (see Figure 4-4).

The output of show ip eigrp topology shows only feasible successors. The output of
show ip eigrp topology all-links shows all neighbors, whether feasible successors or
not.

Note the “P” for “passive state” in the left margin of each route entry in NewYork’s
topology table. Passive state indicates that the route is in quiescent mode, implying
that the route is known to be good and that no activities are taking place with respect
to the route.
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Any of the following events can cause DUAL to reevaluate its feasible successors:

• The transition in the state of a directly connected link

• A change in the metric of a directly connected link

• An update from a neighbor

If DUAL finds a feasible successor in its own topology table after one of these events,
the route remains in passive state. If DUAL cannot find a feasible successor in its
topology table, it will send a query to all its neighbors and the route will transition to
active state.

The next section contains two examples of DUAL reevaluating its topology table. In
the first example, the route remains passive; in the second example, the route
becomes active before returning to the passive state.

Convergence in DUAL— local computation

Let’s say that the NewYork ➝ Chicago link fails (Figure 4-5).

NewYork’s routing table shows that 172.16.100.0 and 172.16.50.0 are learned via
this link (Serial0):

NewYork#sh ip route
...
     172.16.0.0/24 is subnetted, 6 subnets
...
D       172.16.50.0 [90/2195456] via 172.16.250.2, 00:18:54, Serial0
D       172.16.100.0 [90/2707456] via 172.16.250.2, 00:18:54, Serial0
...

These routes become invalid. DUAL attempts to find new successors for both desti-
nations—172.16.50.0 and 172.16.100.0.

Figure 4-4. Ames is not a feasible successor for 172.16.50.0
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Let’s start with 172.16.100.0. DUAL checks the topology table for 172.16.100.0:

NewYork#sh ip eigrp topology
...
P 172.16.100.0/24, 1 successors, FD is 2707456

12 via 172.16.250.2 (2707456/2195456), Serial0
13          via 172.16.251.2 (46251776/281600), Serial1

Since Serial0 is down, the only feasible successor is 172.16.251.2 (Ames). Let’s review
how Ames qualifies as an FS. The FS check is:

• RD < FD.

• RD=281,600 (line 13).

• FD=2,707,456 (line 12).

• Since 281,600 < 2,707,456, Ames qualifies as an FS.

In plain words, this implies that the path available to NewYork via Ames (the FS) is
independent of the primary path that just failed. DUAL installs Ames as the new suc-
cessor for 172.16.100.0.

In our case study, only one FS was available. In general, multiple FSs may be avail-
able, all of which satisfy the condition that their RD < FD, where FD is the cost of
the route to the destination via the successor that was just lost.

DUAL will compute its metric to reach the destination via each FS. Since DUAL is
searching for the successor(s) for this destination, it will choose the minimum from
this set of metrics via each FS. Let the lowest metric be Dmin. If only one FS yields
this metric of Dmin, that FS becomes the new successor. If multiple FSs yield met-
rics equal to Dmin, they all become successors (subject to the limitation in the maxi-
mum number of parallel paths allowed—four or six, depending on the IOS version
number). Since the new successor(s) is found locally (without querying any other

Figure 4-5. Link failure
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router), the route stays in passive state. After DUAL has installed the new successor,
it sends an update to all its neighbors regarding this change.

How long does this computation take? We simulated the failure of the NewYork ➝

Chicago link in our laboratory. To measure how long EIGRP would take to converge
after the failure of the link, we started a long ping test just before failing the New-
York ➝ Chicago link:

NewYork#ping
Protocol [ip]:
Target IP address: 172.16.100.1
Repeat count [5]: 1000
...
Sending 1000, 100-byte ICMP Echos to 172.16.100.1, timeout is 2 seconds:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Success rate is 99 percent (999/1000), round-trip min/avg/max = 1/3/92 ms

Note that only one ping packet was lost during this computation, implying that the
convergence time (including the time to detect the failure of the link) was in the
range of two to four seconds.

Convergence in DUAL—diffusing computation

Let’s next follow the steps that DUAL would take for 172.16.50.0. Notice that this is
a different case in that when Serial0 is down, NewYork has no feasible successors in
its topology table (see line 14).

NewYork#sh ip eigrp topology
...
P 172.16.50.0/24, 1 successors, FD is 2195456

14 via 172.16.250.2 (2195456/281600), Serial0
...

DUAL knows of no feasible successors, but NewYork has a neighbor that may know
of a feasible successor. DUAL places the route in active state (see line 15) and sends a
query to all its neighbors:

NewYork#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

...
15 A 172.16.50.0/24, 0 successors, FD is 2195456, Q

    1 replies, active 00:00:06, query-origin: Local origin
    Remaining replies:

16 via 172.16.251.2, r, Serial1
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which in this case is only 172.16.251.2 (Ames, as in line 16). NewYork sets the reply
flag on (line 16), which indicates that NewYork expects a reply to the query. Ames
receives the query and marks its topology table entry for 172.16.50.0 via NewYork as
down. Next, Ames checks its topology table for a feasible successor:

Ames#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

...
17 P 172.16.50.0/24, 1 successors, FD is 2195456

         via 172.16.252.1 (2195456/281600), Serial0
...

and finds that it has a successor (172.16.252.1). Ames sends a reply packet to New-
York with an RD of 2,195,456 (line 17). NewYork marks the route as passive and
installs a route for 172.16.50.0 via 172.16.251.2 (Ames).

In general, if DUAL does not find a feasible successor, it forwards the query to its
neighbors. The query thus propagates (“diffuses”) until a reply is received. Routers
that did not find a feasible successor would return an unreachable message. So, if
Ames did not have a feasible successor in its topology table, it would mark the route
as active and propagate the query to its neighbor, if it had another neighbor. If Ames
had no other neighbor (and no feasible successor) it would return an unreachable
message to NewYork and mark the route as unreachable in its own table.

When DUAL marks a route as active and sets the r flag on, it sets a timer for how
long it will wait for a reply. The default value of the timer is three minutes. DUAL
waits for a reply from all the neighbors it queries. If a neighbor does not respond to a
query, the route is marked as stuck-in-active and DUAL deletes all routes in its topol-
ogy table that point to the unresponsive neighbor as a feasible successor.

Protocol-Dependent Module
The successors in the DUAL topology table are eligible for installation in the routing
table. Successors represent the best path to the destination known to DUAL. How-
ever, whether the successor is copied into the routing table is another matter. The
router may be aware of a route to the same destination from another source (such as
another routing protocol or via a static route) with a lower distance. The IP protocol-
dependent module (PDM) handles this task. The PDM may also carry information in
the reverse direction—from the routing table to the topology table. This will occur if
routes are being redistributed into EIGRP from another protocol.

The PDM is also responsible for encapsulating EIGRP messages in IP packets.
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EIGRP Packet Format
EIGRP packets are encapsulated directly in IP with the protocol field set to 88. The
destination IP address in EIGRP depends on the packet type—some packets are sent
as multicast (with an address of 224.0.0.10) and others are sent as unicast (see the
earlier section “Reliable Transport Protocol” for more details). The source IP address
is the IP address of the interface from which the packet is issued.

Following the IP header is an EIGRP header. Key fields in the EIGRP header are as
follows, and are also shown in Figure 4-6:

• The opcode field specifies the EIGRP packet type (update, query, reply, hello).

• The checksum applies to the entire EIGRP packet, excluding the IP header.

• The rightmost bit in the flags field is the initialization bit and is used in establish-
ing a new neighbor relationship (see “Neighbor Relationship” earlier in this
chapter).

• The sequence and ack fields are used to send messages reliably (see “Reliable
Transport Protocol” earlier in this chapter).

• The AS number identifies the EIGRP process issuing the packet. The EIGRP pro-
cess receiving the packet will process the packet only if the receiving EIGRP pro-
cess has the same AS number; otherwise, the packet will be discarded.

Figure 4-6. Format of EIGRP packets
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The fields following the EIGRP header depend on the opcode field. Of particular
interest to routing engineers is the information in updates. We will ignore the other
types of EIGRP messages and focus on IP internal route updates and IP external
route updates.

Internal routes contain destination network numbers learned within this EIGRP AS.
For example, NewYork learns 172.16.50.0 from EIGRP 10 on Chicago as an internal
route.

External routes contain destination network numbers that were not learned within
this EIGRP AS but rather derived from another routing process and redistributed
into this EIGRP AS.

Internal and external routes are represented differently in the EIGRP update.

Internal routes

Internal routes have a type field of 0x0102. The metric information contained with
the route is much like IGRP’s (see Chapter 3). However, there are two new fields:
next hop and prefix length. Figure 4-7 shows the value field for the IP internal route.

The next hop identifies the router to send packets destined for destination, the net-
work number of the destination. In general, the next hop field for internal routes will
be the IP address of the router on the interface on which it is issuing the update.

The prefix length field signifies the subnet mask to be associated with the network
number specified in the destination field. Thus, if an EIGRP router is configured as
follows:

ip address 172.16.1.1 255.255.255.0

it will advertise 172.16.1.0 with a prefix length of 24.

Figure 4-7. EIGRP internal route
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Likewise, if the router is configured as follows:

ip address 172.16.250.1 255.255.255.252

it will advertise 172.16.250.0 with a prefix length of 30.

External routes

Additional fields are required to represent the source from which external routes are
derived, as shown in Figure 4-8.

The next hop field identifies the router to send packets destined for destination, the
network number of the destination. This field was absent in the IGRP update. Let’s
look at what this field signifies.

In IGRP, if router X sends an update to router A with a destination network number
of N, router A’s next hop for packets to N will be X. In EIGRP, router X can send an
update to router A with a destination network number of N and a next hop field of Y.
This is useful, say, in a scenario where X and Y are running RIP and X is redistribut-
ing routes from RIP to IGRP. When X sends an update to its neighbors on a shared
network, X can tell them to send traffic for network N directly to Y and not to X. This
saves X from having to accept traffic on a shared network and then reroute it to Y.*

Figure 4-8. EIGRP external route

* You may ask why this cannot be handled by ICMP redirects. Cisco does not support redirects between routers.
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The originating router, originating AS, external protocol metric, and external protocol
ID fields specify information about the router and the routing process from which
this route was derived. The external protocol ID specifies the routing protocol from
which this route was derived. Here is a partial list of external protocol IDs: IGRP—
0x01; EIGRP—0x02; RIP—0x04; OSPF—0x06; BGP—0x09. Thus, if a route was
learned from RIP with a hop count of 3 and redistributed into EIGRP, the originat-
ing router field would contain the address of the RIP router, the originating AS field
would be empty, the external protocol metric would be 3, and the external protocol
ID would be 0x04.

The arbitrary tag field is used to carry route maps.

Candidate default routes are marked by setting the flags field to 0x02. A flags field of
0x01 indicates an external route (but not a candidate default route).

The other parameters in the external route packet are similar to those in IGRP.

Variable Length Subnet Masks
Unlike RIP and IGRP, EIGRP updates carry subnet mask information. The network
architect now has the responsibility of using addresses wisely. Reviewing Trader-
Mary’s configuration, a mask of 255.255.255.0 on the serial links is wasteful: there
are only two devices on the link, so a 24-bit mask will waste 252 addresses. A 30-bit
mask (255.255.255.252) allows two usable IP addresses in each subnet, which fits a
serial line exactly.

Let’s say that the network architect decided to subdivide 172.16.250.0 using a 30-bit
mask for use on up to 64 possible subnets. The subnets that thus become available
are:

1. 172.16.250.0

2. 172.16.250.4

3. 172.16.250.8

4. …

64. 172.16.250.252

The serial links in TraderMary’s network can be readdressed using these subnets:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
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ip address 172.16.250.1 255.255.255.252
!
interface Serial1
description New York to Ames link
bandwidth 56
ip address 172.16.250.5 255.255.255.252
...
router eigrp 10
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
description Chicago to New York link
ip address 172.16.250.2 255.255.255.252
!
interface Serial1
description Chicago to Ames link
ip address 172.16.250.9 255.255.255.0
...

router eigrp 10
network 172.16.0.0

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
description Ames to Chicago link
ip address 172.16.250.10 255.255.255.0
!
interface Serial1
description Ames to New York link
bandwidth 56
ip address 172.16.250.6 255.255.255.0
...

router eigrp 10
network 172.16.0.0

NewYork’s routing table now looks like this:

NewYork#sh ip route
...
     172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
D       172.16.250.8/30 [90/2681856] via 172.16.250.2, 00:18:54, Serial0
C       172.16.250.0/30 is directly connected, Serial0
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C       172.16.250.4/30 is directly connected, Serial1
D       172.16.50.0/24 [90/2195456] via 172.16.250.2, 00:18:54, Serial00
C       172.16.1.0/24 is directly connected, Ethernet0
D       172.16.100.0/24 [90/2707456] via 172.16.250.2, 00:18:54, Serial0
C    192.168.1.0/24 is directly connected, Ethernet1

Note that each route is now accompanied by its mask. When 172.16.0.0 had uni-
form masking, the routing table did not show the mask.

Further, let’s say that Casablanca is a small office with only a dozen people on the
staff. We may safely assign Casablanca a mask of 255.255.255.192 (a limit of 62 usable
addresses). Forward-thinking is important when assigning addresses. When running
IGRP, the network architect may have had the foresight to assign addresses from the
beginning of the range. Excess addresses should not be squandered, such as by ran-
domly choosing addresses for hosts. A general rule is to start assigning addresses from
the beginning or the bottom of an address range. When a site is shrinking, again keep
all addresses at one end.

Using subnet masks that reflect the size of the host population conserves addresses.
Put on your plate only as much as you will eat.

Route Summarization
The default behavior of EIGRP is to summarize on network-number boundaries.
This is similar to RIP and IGRP and is a prudent way for a routing protocol to reduce
the number of routes that are propagated between routers. However, there are some
enhancements in the way EIGRP summarizes routes that merit a closer look.

Automatic Summarization
Say TraderMary’s network expands again, this time with a node in Shannon. Shan-
non gets connected to the London office via a 56-kbps link, as shown in Figure 4-9.

Figure 4-9. Route summarization
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Shannon has three Ethernet segments with an IP subnet on each: 172.20.100.0/24,
172.20.101.0/24, and 172.20.102.0/24. The routers in London and Shannon are con-
figured to run EIGRP 10 in keeping with the routing protocol in use in the U.S. Shan-
non will advertise 172.20.0.0/16 to London because the serial link from London to
Shannon represents a network-number boundary (172.20.0.0/172.16.0.0). Shannon
itself will see all 172.16.0.0 subnets (without summarization) because it has a directly
connected 172.16.0.0 network.

In EIGRP, the router doing the summarization will build a route to null0 (line 18) for
the summarized address. Let’s check Shannon’s routing table:

Shannon#sh ip route 172.20.0.0
...
     172.20.0.0/16 is subnetted, 6 subnets
C       172.20.100.0/24 is directly connected, Ethernet0
C       172.20.101.0/24 is directly connected, Ethernet1

18 D       172.20.0.0/16 is a summary, 00:12:11, Null0
C       172.20.102.0/24 is directly connected, Ethernet2

The route to null0 ensures that if Shannon receives a packet for which it has no route
(e.g., 172.20.1.1), it will route the packet using the null interface, thereby dropping
the packet, rather than using some other route for the packet (such as a default route).

Now, let’s muddy the picture up a bit. TraderMary acquires a small company in
Ottawa which also happens to use a 172.20.0.0 subnet—172.20.1.0! The new pic-
ture looks something like Figure 4-10.

Ottawa is also configured to run EIGRP 10 with a link from NewYork. Since the IP
address on the link is 172.16.0.0, Ottawa will send a summary update of 172.20.0.0
to NewYork.

We have a problem now. There are two sources advertising 172.20.0.0, and depend-
ing on where we are in the network, we will be able to route only to Ottawa or

Figure 4-10. TraderMary’s networks in Shannon and Ottawa
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Shannon. Thus, NewYork will install 172.20.0.0 only via Ottawa, and London will
install 172.20.0.0 only via Shannon.

Unlike RIP and IGRP, EIGRP provides the option of disabling route summarization.
Thus, Shannon and Ottawa can be configured as follows:

hostname Shannon
...
router eigrp 10
network 172.16.0.0
network 172.20.0.0
no auto-summary

hostname Ottawa
...
router eigrp 10
network 172.16.0.0
network 172.20.0.0
no auto-summary

When no auto-summary is turned on, Shannon and Ottawa will advertise their sub-
nets to the rest of the network. The subnets happen to be unique, so any router will
be able to route to any destination in the network.*

Note that no auto-summary was required only on the Shannon and Ottawa routers.
NewYork and London and other routers will pass these subnets through (without
summarizing them). Summarization happens only at a border between major net-
work numbers, not at other routers.

The moral of this story is that EIGRP networks do not have to be contiguous with
respect to major network numbers. However, I do not recommend deliberately
building discontiguous networks. Summarizing on network-number boundaries is an
easy way to reduce the size of routing tables and the complexity of the network. Dis-
abling route summarization should be undertaken only when necessary.

Manual Summarization
EIGRP allows for the summarization of (external or internal) routes on any bit
boundary. Manual summarization can be used to reduce the size of routing tables.

In our example, the network architect may decide to allocate blocks of addresses to
NewYork, Ames, Chicago, etc. NewYork is allocated the block 172.16.1.0 through
172.16.15.0. This may also be represented as 172.16.0.0/20, signifying that the first
four bits of the third octet in this range are all zeros, as is true for 172.16.1.0 through
172.16.15.0.

* If the subnets overlapped, disabling route summarization would not do us any good. There are other meth-
ods to tackle duplicate address problems, such as Network Address Translation (NAT).
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hostname NewYork
...

19 interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!

20 interface Ethernet2
ip address 172.16.2.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.0
ip summary-address eigrp 10 172.16.0.0 255.255.240.0
!
interface Serial1
description New York to Ames link
bandwidth 56
ip address 172.16.251.1 255.255.255.0

21 ip summary-address eigrp 10 172.16.0.0 255.255.240.0
...
router eigrp 10
network 172.16.0.0

NewYork now has two Ethernet segments (lines 19 and 20) from this block and has
also been configured to send a summary route for this block (line 21) to its neigh-
bors. The configuration of these routers is as shown in Figure 4-1. Here’s NewYork’s
routing table:

NewYork#sh ip route
...
     172.16.0.0/16 is variably subnetted, 8 subnets, 2 masks
D       172.16.252.0/24 [90/2681856] via 172.16.250.2, 00:01:44, Serial0
C       172.16.250.0/24 is directly connected, Serial0
C       172.16.251.0/24 is directly connected, Serial1

22 D       172.16.0.0/20 is a summary, 00:03:22, Null0
C       172.16.1.0/24 is directly connected, Ethernet0
C       172.16.2.0/24 is directly connected, Ethernet2
D       172.16.50.0/20 [90/2195456] via 172.16.250.2, 00:01:45, Serial0
D       172.16.100.0/20 [90/2707456] via 172.16.250.2, 00:01:45, Serial0
C    192.168.1.0/24 is directly connected, Ethernet1

Note that NewYork installs a route to the null interface for the summarized address
(172.16.0.0/20, as in line 22). Further, routers Ames and Chicago install this aggre-
gated route (line 23) and not the individual 172.16.1.0/24 and 172.16.2.0/24 routes:

Chicago#sh ip route
...
     172.16.0.0/16 is variably subnetted, 8 subnets, 2 masks
C       172.16.252.0/24 is directly connected, Serial1
C       172.16.250.0/24 is directly connected, Serial0
D       172.16.251.0/24 [90/2681856] via 172.16.250.1, 00:02:30, Serial0
                        [90/2681856] via 172.16.252.2, 00:02:30, Serial1
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C       172.16.50.0/24 is directly connected, Ethernet0
23 D       172.16.0.0/20 [90/2195456] via 172.16.250.1, 00:02:12, Serial0

D       172.16.100.0/20 [90/2195456] via 172.16.252.2, 00:02:10, Serial1

The address aggregation commands on NewYork reduce the routing-table size in the
rest of the network. Note that address aggregation plans need to be laid out ahead of
time so that network numbers can be allocated accordingly. Thus, in the previous
example, NewYork was allocated a block of 16 subnets:

172.16.96.0 through 172.16.15.0

Continuing this scheme, Ames may be allocated a block of 16 addresses that envelop
the network number it is currently using (172.16.100.0):

172.16.96.0 through 172.16.111.0

and Chicago may be allocated a block of 16 addresses that envelop the network num-
ber it is currently using (172.16.50.0):

172.16.48.0 through 172.16.63.0

Ames could now be configured to summarize its block using the statement on its
serial interfaces:

ip summary-address eigrp 10 172.16.0.0 255.255.240.0

and Chicago could be configured to summarize its block using the statement on its
serial interfaces:

ip summary-address eigrp 10 172.16.0.0 255.255.240.0

Default Routes
EIGRP tracks default routes in the external section of its routing updates. Candidate
default routes are marked by setting the flags field to 0x02.

Default routes are most often used to support branch offices that have only one or
two connections to the core network (see Figure 4-11).

The core router is configured as follows:

hostname core1
!
interface Ethernet0
 ip address 192.168.1.1 255.255.255.0
...
interface Serial0
ip address 172.16.245.1 255.255.255.0
...
router eigrp 10

24 redistribute static metric 56 100 255 1 255
 network 172.16.0.0
!
ip classless

25 ip route 0.0.0.0 0.0.0.0 Null0
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The branch router is configured as follows:

hostname branch1
...
interface Serial0
ip address 172.16.245.2 255.255.255.0
...

26 router eigrp 10
network 172.16.0.0

An examination of branch1’s routing table would show:

branch1#sh ip route
...
Gateway of last resort is 172.16.251.1 to network 0.0.0.0

     172.16.0.0/24 is subnetted, 6 subnets
C       172.16.245.0 is directly connected, Serial0
...

27 D*EX 0.0.0.0/0 [170/46251776] via 172.16.245.1, 00:01:47, Serial0

Since the default route is an external route, it is tagged with a distance of 170 (line 27).

The following steps were followed in the creation of this default route:

1. Network 0.0.0.0 was defined as a static route on core1 (see line 25).

2. Network 0.0.0.0 was redistributed into EIGRP 10 (see line 24).

3. A default metric was attached to the redistribution (line 24).

4. EIGRP 10 was turned on in branch1 (line 26).

To increase the reliability of the connection to branches, each branch may be con-
nected to two core routers. branch1 will now receive two default routes. One router
(say, core1) may be set up as the primary, and the second router (core2) as backup.
To do this, set up the default from core2 with a worse metric, as we did for IGRP in
Chapter 3.

Figure 4-11. Branch offices only need a default route
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Troubleshooting EIGRP
EIGRP can be difficult to troubleshoot because of its complexity. As a reminder, the
best preparation for troubleshooting a network is to be familiar with the network
and its state during normal (trouble-free) conditions. Become familiar with the rout-
ing tables, their sizes, the summarization points, routing timers, etc. Also, plan ahead
with “what-if” scenarios. What if router X failed or link Y dropped? How would con-
nectivity recover? Will all the routes still be in every router’s table? Will the routes
still be summarized?

Perhaps the second-best preparation for troubleshooting a network is the ability to
track network implementations and changes. If network implementations/changes
are made in a haphazard way with no central control, an implementation team may
walk away from a change (unaware that their change caused an outage) and it may
take the troubleshooting team hours, or even days, to unravel the events that led to
the outage. Besides making the network more vulnerable, such loose methods of net-
work operation create bad relationships between teams.

The following sections are a partial list of network states/conditions to check when
looking for clues to routing problems in EIGRP.

Verifying Neighbor Relationships
If a router is unable to establish a stable relationship with its neighbors, it cannot
exchange routes with those neighbors. The neighbor table can help check the integ-
rity of neighbor relationships. Here is a sample of NewYork’s neighbor table:

NewYork#sh ip eigrp neighbor
IP-EIGRP neighbors for process 10
H   Address                 Interface   Hold Uptime   SRTT   RTO  Q  Seq
                                        (sec)         (ms)       Cnt Num
1   172.16.251.2            Se0/1         10 00:17:08   28  2604  0  7
0   172.16.250.2            Se0/0         13 00:24:43   12  2604  0  14

First, check that the neighbor count matches the number of EIGRP speakers. If rout-
ers A, B, and C share an Ethernet segment and run EIGRP 10, all four routers should
see each other in their neighbor tables. If router C is consistently missing from A and
B’s tables, there may be a physical problem with C or C may be misconfigured (check
C’s IP address and EIGRP configuration). Next, look for one-way neighbor relation-
ships. Is C in A and B’s tables, but are A and B not in C’s table? This could indicate a
physical problem with C’s connection or a filter that is blocking EIGRP packets.

If the hold-time exceeds 15 seconds (or the configured hold-time), the network may
be congested and losing hellos. Increasing the hello-interval/hold-time may be a
quick fix to the problem.

The uptime should reflect the duration that the routers have been up. A low uptime
indicates that the neighbor relationship is being lost and reestablished.
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The QCnt should be 0 (or at least should not exceed 0 on a consistent basis).

In summary, if a problem is found in the neighbor relationship, you should do the
following:

1. Check for bad physical infrastructure.

2. Ensure that router ports are plugged into the correct hubs.

3. Check for filters blocking EIGRP packets.

4. Verify router configurations—check IP addresses, masks, EIGRP AS numbers,
and the network numbers defined under EIGRP.

5. Increase the hello-interval/hold-time on congested networks.

The command to clear and reestablish neighbor relationships is:

clear ip eigrp neighbors [ip address | interface]

Repeatedly clearing all neighbor relationships causes the loss of routes
(and the loss of packets to those routes). Besides, repeatedly issuing
clear commands usually does not fix the problem.

Stuck-in-Active
A route is regarded as stuck-in-active (SIA) when DUAL does not receive a response
to a query from a neighbor for three minutes, which is the default value of the active
timer. DUAL then deletes all routes from that neighbor, acting as if the neighbor had
responded with an unreachable message for all routes.

Routers propagate queries through the network if feasible successors are not found,
so it can be difficult to catch the culprit router (i.e., the router that is not responding
to the query in time). The culprit may be running high on CPU utilization or may be
connected via low-bandwidth links. Going back to TraderMary’s network, when
NewYork queries Ames for 172.16.50.0, it marks the route as active and lists the
neighbor from which it is expecting a reply (line 28):

NewYork#sh ip eigrp topology
IP-EIGRP Topology Table for process 10

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

...
A 172.16.50.0/24, 0 successors, FD is 2195456, Q
    1 replies, active 00:00:06, query-origin: Local origin
    Remaining replies:

28 via 172.16.251.2, r, Serial1

If this route were to become SIA, the network engineer should trace the path of the
queries to see which router has been queried, has no outstanding queries itself, and
yet is taking a long time to answer.
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Starting from NewYork, the next router to check for SIA routes would be 172.16.
251.2 (line 28). Finding the culprit router in large networks is a difficult task, because
queries fan out to a large number of routers. Checking the router logs would give a
clue as to which router(s) had the SIA condition.

Increase active timer

Another option is to increase the active timer. The default value of the active timer is
three minutes. If you think the SIA condition is occurring because the network diam-
eter is too large, with several slow-speed links (such as Frame Relay PVCs), it is pos-
sible that increasing the active timer will allow enough time for responses to return.
The following command shows how to increase the active timer:

router eigrp 10
timers active-time minutes

For the change to be effective, the active timer must be modified on every router in
the path of the query.

EIGRP Bandwidth on Low-Speed Links
EIGRP limits itself to using no more than 50% of the configured bandwidth on
router interfaces. There are two reasons for this:

1. Generating more traffic than the interface can handle would cause drops,
thereby impairing EIGRP performance.

2. Generating a lot of EIGRP traffic would result in little bandwidth remaining for
user data.

EIGRP uses the bandwidth that is configured on an interface to decide how much
EIGRP traffic to generate. If the bandwidth configured on an interface does not
match the physical bandwidth (the network architect may have put in an artificially
low or high bandwidth value to influence routing decisions), EIGRP may be generat-
ing too little or too much traffic. In either case, EIGRP can encounter problems as a
result of this. If it is difficult to change the bandwidth command on an interface
because of such constraints, allocate a higher or lower percentage to EIGRP with the
following command in interface configuration mode:

ip bandwidth percent eigrp AS-number percentage

Network Logs
Check the output of the show logging command for EIGRP/DUAL messages. For
example, the following message:

%DUAL-3-SIA: Route XXX stuck-in-active state in IP-EIGRP

indicates that the route XXX was SIA.
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IOS Version Check, Bug Lists
The EIGRP implementation was enhanced in IOS Releases 10.3(11), 11.0(8), and
11.1(3) with respect to its performance on Frame Relay and other low-speed net-
works. In the event of chronic network problems, check the IOS versions in use in
your network. Also use the bug navigation tools available on the Cisco web site.

Debug Commands
As always, use debug commands in a production network only after careful thought.
Having to resort to rebooting the router can be very unappetizing. The following is a
list of EIGRP debug commands:

• debug eigrp neighbors (for neighbor-relationship activity)

• debug eigrp packet (all EIGRP packets)

• debug eigrp ip neighbor (if the previous two commands are used together, only
EIGRP packets for the specified neighbor are shown)

Summing Up
EIGRP offers the following radical improvements over RIP and IGRP:

• Fast convergence—convergence is almost instantaneous when a feasible succes-
sor is available.

• Variable Length Subnet Masks are supported—subnet mask information is
exchanged in EIGRP updates. This allows for efficient use of the address space,
as well as support for discontiguous networks.

• Route summarization at arbitrary bit boundaries, reducing routing-table size.

• No regular routing updates—network bandwidth and router CPU resources are
not tied up in periodic routing updates, leading to improved network manageability.

• Ease of configuration—EIGRP can be configured with almost the same ease as
IGRP. However, troubleshooting DUAL can be difficult.

These EIGRP benefits come at the price of higher memory requirements (in addition
to the routing table, EIGRP requires memory for the topology table and the neigh-
bor table). DUAL is complex and can be very CPU-intensive, especially during peri-
ods of network instability when CPU resources are already scarce. Also, don’t forget
that the EIGRP is a Cisco proprietary protocol.

EIGRP is in use today in several mid-sized networks.
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CHAPTER 5

Routing Information
Protocol Version 2
(RIP-2)

RIP Version 2 is not a new protocol—it is RIP Version 1 with some additional fields
in the route update packet, key among them being subnet mask information in each
route entry. The underlying DV algorithms in RIP-2 are identical to those in RIP-1,
implying that RIP-2 still suffers from convergence problems and the maximum hop-
count limit of 16 hops. Hence, RIP-2 may not be your choice as the routing protocol
for a large or mid-sized network with multiple paths between segments. However,
the new features in RIP-2 may be compelling enough for you to consider migrating
an existing RIP-1 network to RIP-2. The new features in RIP-2 are summarized here:

Subnet mask
RIP-2 updates carry the subnet mask in each route entry, making RIP-2 a class-
less routing protocol that supports Variable Length Subnet Masks (VLSM), dis-
contiguous address spaces, and CIDR blocks.

Next hop IP address
RIP-2 updates carry the next hop IP address in each route entry. As we will see
later, the next hop IP address is useful when routes are being redistributed
between RIP-2 and another routing protocol.

Authentication data
Every RIP-2 packet can carry authentication data to validate the source of the
RIP-2 update. Remember that RIP-1 has no security features—any host transmit-
ting on UDP port 520 will be believed by neighbors running RIP-1.

Route tag
RIP-2 updates carry a tag in each route entry that is not used by RIP but could be
used to represent information such as the source of the route when the route is
imported from another AS (for example, BGP).
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These additions to the RIP-1 update take the place of the unused or “must be zero”
octets in the RIP-1 packet. This strategic placement has a major goal—backward
compatibility. Most versions of RIP-1 can process RIP-2 updates by ignoring the new
fields.

Configuring and using RIP-2 is similar to RIP-1 and just as easy. A major reason for
the long life of RIP may be the simplicity of the protocol and the ease of its use.

The next section gets RIP-2 running on TraderMary’s network.

Getting RIP-2 Running
RIP-1—a classful routing protocol—does not support VLSM. We’ll configure
TraderMary’s network using RIP-2—a classless routing protocol—much like we did
using RIP-1, but we will use VLSM. The distinction between classful and classless
protocols and the support of VLSM are discussed in detail in the section “Classful
Versus Classless Routing Protocols.”

TraderMary’s network is an ideal candidate for VLSM because of the mix of user seg-
ments and serial links in the 172.16.0.0 address space. Using a 24-bit mask (255.255.
255.0) on Ethernet segments yields 254 addresses per segment for hosts. However,
serial links require only 2 IP addresses—using a 24-bit mask on a serial link wastes
252 addresses. A 30-bit mask (255.255.255.252) is more appropriate for a serial link,
as it yields 2 usable IP addresses. How should 172.16.0.0 be segmented into 24-bit
subnets for users on Ethernet segments and 30-bit subnets for serial links?

Using 24-bit masks (255.255.255.0) on Ethernet segments will give us 254 host
addresses per user segment. Let’s first use this mask to subnet 172.16.0.0. The
resulting subnets can be listed as follows:

1. 172.16.1.0/24

2. 172.16.2.0/24

3. 172.16.3.0/24

4. …

253.172.16.253.0/24

254.172.16.254.0/24

Let’s now take one of these subnets (say, 172.15.250.0) and segment it further into
30-bit subnets for serial links. The resulting subnets can be listed as follows:

1. 172.16.250.0/30

2. 172.16.250.4/30

3. 172.16.250.8/30

4. 172.16.250.12/30

5. …
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63. 172.16.250.248/30

64. 172.16.250.252/30

In these two lists we have carved the 172.16.0.0 address space using two subnet
masks: 255.255.255.0 for users on Ethernet segments and 255.255.255.252 for serial
links. Let’s recap the steps we took. First, we used the shorter mask (255.255.255.0)
and listed the resulting subnets. Next, we used one subnet from the first step and
subnetted it using the longer mask (255.255.255.252). The second step is sometimes
referred to as sub-subnetting. If we were creating a nightmare of a network and had a
third mask to work with as well, we would apply the third mask (the longest mask)
on one or more subnets from either of the earlier steps. Following these steps ensures
that we do not create overlapping subnets.

If TraderMary’s network ran out of all 64 30-bit subnets, another 24-bit subnet (say,
172.16.251.0) could be carved further to yield another 64 subnets.

See Figure 5-1 for the new addresses on TraderMary’s network.

The configuration for this network is as follows:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.252
!
interface Serial1
description New York to Ames link
bandwidth 56

Figure 5-1. TraderMary’s network with VLSM
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ip address 172.16.250.5 255.255.255.252
...
router rip
version 2
network 172.16.0.0

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
description Chicago to New York link
ip address 172.16.250.2 255.255.255.252
!
interface Serial1
description Chicago to Ames link
ip address 172.16.250.9 255.255.255.0
...

router rip
version 2
network 172.16.0.0

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
description Ames to Chicago link
ip address 172.16.250.10 255.255.255.0
!
interface Serial1
description Ames to New York link
bandwidth 56
ip address 172.16.250.6 255.255.255.0
...

router rip
version 2
network 172.16.0.0

Next, let’s verify that all the routers are seeing all the 172.16.0.0 subnets:

NewYork#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set
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C       192.168.1.0 is directly connected, Ethernet1
     172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
C       172.16.1.0/24 is directly connected, Ethernet0
C       172.16.250.0/30 is directly connected, Serial0
C       172.16.250.4/30 is directly connected, Serial1
R       172.16.50.0/24 [120/1] via 172.16.250.2, 0:00:11, Serial0
R       172.16.100.0/24 [120/1] via 172.16.250.6, 0:00:19, Serial1
R       172.16.250.8 [120/1] via 172.16.250.2, 0:00:11, Serial0
                     [120/1] via 172.16.250.6, 0:00:19, Serial1

Note that this routing table shows the mask associated with each subnet: /24 or /30.

RIP-2 is supported in Cisco IOS Versions 11.1 and later.

RIP-2 Packet Format
The additions in the RIP-2 update occupy the “must be zero” or unused fields in the
RIP-1 update. This careful selection of fields allows older (pre-RIP-2) implementa-
tions of RIP to interpret a RIP-2 update by just ignoring the new fields. Let’s look
closely at the fields in the RIP-2 update shown in Figure 5-2.

RIP-2 updates are encapsulated in UDP port 520, like RIP-1 updates. However, the
destination IP address for a RIP update can be the all-ones broadcast address of 255.
255.255.255 or the reserved multicast address of 224.0.0.9. The use of the reserved
multicast address frees devices not listening to RIP-2 from the task of unwrapping
RIP-2 updates.

The fields AFI, IP address, and metric have the same semantics as in a RIP-1 update
packet. See Chapter 2 for details on these fields. The version field in RIP-2 updates is 2.

The route tag field is not used by RIP but can be used to carry an attribute assigned
to the route, such as the AS number of the EGP (for example, BGP) from which the
route was imported. The use of route tags is discussed further in Chapter 8.

Figure 5-2. Format of RIP-2 update packet
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The subnet mask field in each route entry classifies RIP-2 as a classless routing proto-
col and permits the use of VLSM and the support of discontiguous networks.

The next hop IP address is usually identical to the IP address of the source of the RIP
update. For example, in TraderMary’s network, NewYork sends an update to Ames
for 172.16.1.0. The source IP address of the RIP update will be 172.16.250.5, which
is identical to the next hop IP address. In such situations, the next hop field will con-
tain no useful information and is set to 0.0.0.0. However, consider the network
shown in Figure 5-3.

Routers R1 and R2 are running RIP-2. R4 is running EIGRP, and R3 is redistributing
routes between EIGRP and RIP-2. R4 learns 10.0.0.0 via EIGRP on interface Serial0.
R3 redistributes EIGRP into RIP-2. The next hop field can be used by R3 to indicate
to R1 and R2 that the next hop for 10.0.0.0 is 192.168.10.4. If the next hop field
were not available, R1 and R2 would have sent traffic for 10.0.0.0 to R3 (192.168.
10.3), which would then have to forward the traffic to R4.

If authentication is in use, the authentication fields take the place of the first route
entry in the RIP update packet. An AFI value of 0xFFFF indicates that the route entry
contains authentication data (not another route entry). RFC 1723 describes only sim-
ple (unencrypted) password authentication. This is indicated by setting the authenti-
cation type to 2, which leaves 16 octets for the password. In addition to simple
password authentication, Cisco also supports MD5 authentication. When using
MD5, Cisco takes the first and last route entries in each update packet to carry cryp-
tographic checksums.

RIP-1/RIP-2 Compatibility
In Chapter 2, we configured RIP as follows on NewYork in TraderMary’s network:

hostname NewYork
...
router rip
network 172.16.0.0

This configuration of RIP on a router running IOS 11.1 or later allows the receipt of
both RIP-1 and RIP-2 updates but the sending of only RIP-1 updates.

Figure 5-3. Next hop IP address
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To modify this configuration to allow the receipt of only RIP-1 updates, specify Ver-
sion 1 under RIP. In the new configuration, the router will discard any RIP-2 updates
it receives and will send only RIP-1 updates:

hostname NewYork
...
router rip
version 1
network 172.16.0.0

By extension, the following modification allows the receipt of only RIP-2 updates. In
this configuration, the router will discard any RIP-1 updates it receives and will send
only RIP-2 updates:

hostname NewYork
...
router rip
version 2
network 172.16.0.0

RIP-1/RIP-2 Interworking
The behavior of RIP can be modified further in interface configuration mode to allow
for interworking between RIP-1 and RIP-2 routers.

To send only Version 1 updates out of an interface (for example, when only RIP-1 lis-
teners exist on a network), enter the following command in interface configuration
mode:

ip rip send version 1

To send only Version 2 updates out of an interface (e.g., when only RIP-2 listeners
exist on a network), enter the following command in interface configuration mode:

ip rip send version 2

To send Version 1 and 2 updates out of an interface (e.g., when RIP-1 listeners and
RIP-2 listeners coexist on a network), enter the following command in interface con-
figuration mode:

ip rip send version 1 2

To receive only Version 1 updates on an interface (and to discard any RIP-2 updates),
enter the following command in interface configuration mode:

ip rip receive version 1

To receive only Version 2 updates on an interface (and to discard any RIP-1 updates),
enter the following command in interface configuration mode:

ip rip receive version 2

To receive Version 1 and 2 updates from an interface, enter the following command
in interface configuration mode:

ip rip receive version 1 2
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As an example, router Perth, configured as follows:

hostname Perth
...
router rip
version 2
network 172.22.0.0

has RIP-2 routers on all interfaces except Serial2, which has a legacy router running
RIP-1. To interwork with this RIP-1 router, configure the following on Serial2:

interface Serial2
ip rip receive version 1
ip rip send version 1

When interworking between RIP-1 and RIP-2 and using VLSM, remember that RIP-1
updates do not carry subnet mask information. The RIP-1 portion of your network
may end up with improper masks. You may have to resort to static routes or a
default route in the event of a discontiguity in the RIP-1 portion of the network.

Classful Versus Classless Routing Protocols
Classful routing protocols do not carry subnet masks; classless routing protocols do.
Older routing protocols, including RIP and IGRP, are classful. Newer protocols,
including RIP-2, EIGRP, and OSPF, are classless. What are the implications of using
classful versus classless routing protocols in your networks?

Let’s say that a router R received a RIP-1 update with the IP address 172.0.0.0. R
would assume that the route being advertised was for the Class B network 172.0.0.0/16.
In other words, since the subnet mask is lacking in the routing update, R assumes a
natural mask of /8, /16, and /24 for Class A, B, and C addresses, respectively. The
only time a classful routing protocol can associate a mask other than the natural
mask with an update is if R has a directly connected network with an IP address
belonging to the same class as the IP address received in the update. For example,
when Ames receives an update of 172.16.1.0 from NewYork, Ames associates a mask
of /24 with the update because Ames is able to deduce the mask from its own interface.

RIP-2 updates carry a subnet mask in each route entry. A routing protocol that car-
ries subnet masks in its updates earns the label “classless routing protocol.” The term
“classless” implies that routing decisions are not tied to the class of the IP address—
A, B, or C—but may be based on any portion of the 32-bit IP address as specified by
the mask. Router R could receive an update with the address and mask 192.168.0.0
and 255.255.0.0. This would imply that traffic for all IP addresses with “192.168” in
the first two octets should be routed as per the routing advertisement. RIP-2 is thus a
classless routing protocol.

Since RIP-2 updates carry subnet masks, it is possible to associate different subnet
masks within a single classful network—in other words, RIP-2 supports VLSM.
VLSM, a feature of classless routing protocols, is discussed further in the next section.
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VLSM
RIP-1 updates do not carry subnet mask information. A router receiving a RIP-1
route deduces the subnet mask from one of its own interfaces, if the router has the
same network number. So, for example, when NewYork receives the update 172.16.
100.0 from Ames it assumes that the mask for this network number is 255.255.255.0
because NewYork has an interface (Ethernet0) with the same mask. When using RIP-1,
there is no room for the support of VLSM.

RIP-2 updates carry subnet masks, so a router receiving the update does not have to
guess the mask. RIP-2 updates can carry masks of any length. This permits the net-
work engineer to assign subnet masks that match the true size of the host popula-
tion. The RIP-2 configuration of TraderMary’s network used 24-bit masks for user
segments and 30-bit masks for serial links.

When carving a network number into subnets of varying length, it is key that the two
subnet populations not overlap. One way to tackle this is to first carve the address
space using the shorter mask and then use one or more of the resulting subnets and
carve it further using the longer mask, as we did for TraderMary’s network.

Use of Subnet Zero
A zero subnet has all zeros in the subnet portion of the IP address. For example, 172.
16.0.0/24 (with host addresses in the range 172.16.0.1 through 172.16.0.254) is a
zero subnet. 192.168.100.0/26 is also a zero subnet: the subnet bits are bits 25 and 26
in the IP address, and both are zero.

Zero subnets cannot be used with classful routing protocols. This is because an
update for the subnet (without the mask) is indistinguishable from an update for the
entire network number. If router R received an update for 172.16.0.0, it could not tell
if the update was for the entire Class B or just a zero subnet, such as 172.16.0.0/24.
Similarly, an update for 192.168.100.0 could mean a path to the entire Class C or just
to a zero subnet, such as 192.168.100.0/28. Because of this ambiguity, zero subnets
are not permitted to be configured by Cisco IOS. However, a classless routing proto-
col clearly distinguishes between a zero subnet and the entire network. So, 172.16.0.0
255.255.255.0 would represent a zero subnet, whereas 172.16.0.0 255.255.0.0 would
represent the entire network. To configure subnet zero on a router interface, a special
command has to be turned on in global configuration mode:

ip subnet zero

This command relaxes the IOS restriction on configuring zero subnets.

Classless Inter-Domain Routing (CIDR)
Another feature of classless routing protocols is the support of CIDR. The primary
use of CIDR is to reduce the size of routing tables by aggregating several classful
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addresses in a single route entry. All Class C addresses in the range 192.168.0.0
through 192.168.255.0 can be represented by the single route 192.168.0.0/16.

The use of CIDR is most relevant in the Internet, where Class C addresses have been
allocated to various service providers in blocks. We will thus reserve further discus-
sion of CIDR to Chapter 7, where we discuss BGP and Internet routing.

Classful Versus Classless Route Lookup
To route a packet, all routers must extract the destination IP address in the packet
header. Older (or “classful”) routers take this address and compute its major Class
A, B, or C network number (for example, the address 172.16.1.1 belongs to the
major network 172.16.0.0). This major network number is matched in the routing
table. If there is no matching major network number (and there is no default route in
the routing table), the packet is dropped. If there is a match against the major net-
work number, the router proceeds to match the subnet field. If there is no matching
subnet field in the routing table, the packet is dropped. If there is a matching subnet
field, the packet is routed as specified in the route entry. This “classful” routing
behavior is described in more detail in Chapter 3.

Classless route lookups also refer to the destination IP address in the packet header.
However, classless route lookups do not compute the major Class A, B, or C net-
work number for the destination IP address. Instead, classless routing protocols use a
rule called longest prefix match. By this rule, the destination IP address from the
packet header is matched bit-by-bit against every destination IP address in the rout-
ing table. The route entry that has the longest bitwise match with the destination IP
address is chosen for routing the packet.

To turn on classless route lookups, enter the following command in global configu-
ration mode:

ip classless

To turn on classful route lookups, enter the following command in global configura-
tion mode:

no ip classless

Authentication
There are two reasons to authenticate a routing update. First, for security. After all, if
an intruder gains access to a network and begins announcing RIP routes, she will at
least disrupt traffic and, in a worse scenario, may maliciously reroute traffic to steal
critical data. The second reason for authenticating routing updates is to guard
against misconfiguration. For example, using a password on a network backbone
will ensure that if a router is attached to the backbone by mistake, it won’t begin par-
ticipating in the backbone routing protocol.
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Cisco’s implementation of RIP-2 supports two authentication modes: plain-text and
MD5. Plain-text authentication works well to guard against misconfigurations but is
not a great security solution, since plain-text passwords can be gleaned with a net-
work sniffer.

Passwords must first be defined on each router in global configuration mode. Cisco
uses the construct of a “key chain” to define passwords. Let’s define a key chain with
the name EmpireStateBldg on router NewYork. The passwords on this key chain are
2000feet and 1782 feet.

key chain EmpireStateBldg
  key 1
  key-string 2000feet
  key 2
  key-string 1782 feet

Routers Chicago and Ames in TraderMary’s network must also be configured with
the passwords 2000feet and 1782 feet. Chicago may be configured as follows:

key chain SearsTower
  key 1
  key-string 2000feet
  key 2
  key-string 1782 feet

Note that the names of the key chains are not significant: the names of the key chains
can be different on each router. The passwords—2000feet and 1782 feet—are signifi-
cant and must match.

To configure these passwords on an interface, apply the key chain to the interface:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet1
ip address 192.168.1.1 255.255.255.0
!
interface Serial0
description Link to Chicago
ip address 172.16.250.1 255.255.255.0
ip rip authentication key-chain EmpireStateBldg
!
interface Serial1
description Link to Ames
ip address 172.16.251.1 255.255.255.0
ip rip authentication key-chain EmpireStateBldg
ip rip authentication mode md5
...
router rip
version 2
network 172.16.0.0
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In this configuration, Serial1 (to Ames) is configured for encryption using MD5,
whereas Serial0 (to Chicago) is configured for plain-text authentication, which is the
default. Ames and Chicago would have to be configured for MD5 and plain-text
authentication, respectively.

A password encrypted using MD5 cannot be read in plain text, but someone could
still copy the encrypted string and play it back. Hence, Cisco introduced the concept
of key management, which allows you to define several passwords. The password
used at any given time can be defined as follows:

key chain EmpireStateBldg
  key 1
  key-string 2000feet
  accept-lifetime 13:00:00 Dec 19 1999 13:00:00 Jan 14 2000
  send-lifetime 13:00:00 Dec 19 1999 13:00:00 Jan 14 2000
  key 2
  key-string 1782 feet
  accept-lifetime 12:00:00 Jan 14 2000 infinite
  send-lifetime 12:00:00 Dec 19 2000 infinite

In this example, 2000feet is a valid password from 1:00 P.M., December 19, 1999
until 1:00 P.M., January 14, 2000. Note that there is an overlap of 1 hour on January
14 (12:00:00 to 13:00:00) during which both 2000feet and 1782 feet are valid pass-
words. This overlap is important to allow for differences in the clocks on the rout-
ers, although a time-synchronization protocol such as the Network Time Protocol
can also be used to address this issue.

If the lifetime of a key is not specified, the password is always valid.

To check which passwords are active on a router at any given time, use the follow-
ing command:

Chicago#sh key chain
Key-chain SearsTower:
    key 1 -- text "1782feet"
        accept lifetime (13:00:00 Dec 19 1999) - (13:00:00 Jan 14 2000) [valid now]
        send lifetime (13:00:00 Dec 19 1999) - (13:00:00 Jan 14 2000) [valid now]

Remember that authentication is available only in RIP Version 2; authentication is
not an option when interworking between RIP-1 and RIP-2 routers.

Route Summarization
RIP-2 summarizes on route boundaries just like RIP-1. However, given that RIP-2 is a
classless protocol and carries subnet mask information in its updates, it makes sense
to allow the network engineer to turn off route summarization to support discontigu-
ous networks. The following command in global configuration mode turns off route
summarization:

router rip
no auto-summary
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Summing Up
Why bother with RIP-2? RIP-2, after all, is still RIP. There are still the issues of con-
vergence times and a maximum diameter of 15 hops. Routing updates are sent every
30 seconds and consume network resources. The metric does not account for link
bandwidth or delay. These issues with RIP may loom large in your mind if you are
building a network from scratch. You have the choice of other, newer routing proto-
cols that do not present these headaches (although they do present other head-
aches). However, if you are building a small, homogenous network and are not too
concerned about occasional convergence problems, RIP-2 may be ideal for you.

RIP-2 may also be a good choice if you are currently running RIP-1 and are happy
with it. Maybe your network is small and likely to remain that way. Maybe the link
types and speeds in your network are homogenous, so the issue of RIP metrics hasn’t
bothered you. And maybe there aren’t so many paths between any pair of nodes that
RIP gets lost during convergence. If you are happy with RIP-1, migrating to RIP-2
may be an excellent solution if you need VLSM, discontiguous address spaces, or
authentication. You would still be dealing with RIP—familiar, easy to configure, and
reliable—but would have the added benefits of Version 2.
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CHAPTER 6

Open Shortest Path
First (OSPF)

Last year I flew from New York to Osaka for a conference. My journey began when I
hailed a cab on Broadway in downtown New York. “JFK,” I told the cabbie, telling
her my destination was John F. Kennedy Airport. I was still pushing my luggage
down the seat so I could pull my door shut when the cab started to move. The cab-
bie changed lanes twice before I got it shut. I did make it to JFK in one piece, where I
presented my ticket and boarded a flight to Osaka. At Osaka Airport, the taxi driver
bowed to me as he took my luggage from my hand. Once the luggage was properly
stowed, he asked for my destination. “New Otani Hotel,” I told him, and he bowed
again and closed my side door.

This everyday story of a passenger in transit illustrates how a traveler is able to com-
plete a journey in spite of the fact that the whereabouts of his destination are not
known to every element in the system. The cabbie in New York knows only local
destinations and so knows how to get to JFK but not to the New Otani Hotel. The
airline routes passengers between major airports. The taxi driver in Osaka also
knows only local destinations, so, when returning to New York, I tell the driver that
my destination is “Osaka Airport,” not “New York.” Any single element of the trans-
portation system knows only the local geography. This leads to obvious efficiencies:
the cabbie in New York needs to know only the New York metropolitan area, and
the taxi driver in Osaka needs to know only the area in and around Osaka; the air-
line is the backbone linking JFK to Osaka.

Much like the transportation system just described, Open Shortest Path First (OSPF)
is a hierarchical routing protocol, implying that the IP network has a geography with
each area possessing only local routing information. In contrast, RIP and IGRP are
flat, implying that there is no hierarchy in the network—every router possesses
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routes to every destination in the network. Right away, you can see that a flat rout-
ing protocol has inherent inefficiencies—in our analogy, if the architecture of the
transportation system was flat, the cabbie in New York would have to learn direc-
tions to the New Otani Hotel.

A hierarchical architecture, whether that of a transportation system or that of OSPF,
allows the support of large systems because each area is responsible only for its local
routes. RIP and IGRP cannot support very large networks because the routing over-
head increases linearly with the size of the network.

Another radical difference from RIP and IGRP is that OSPF is not a DV protocol—
OSPF is based on a Link State algorithm, Dijkstra. What is a Link State algorithm?
Link refers to a router interface; in other words, the attached network. State refers to
characteristics of the link such as its IP address, subnet mask, cost (or metric), and
operational status (up or down). Routers executing OSPF describe the state of their
directly connected links in link state advertisement (LSA) packets that are then flooded
to all other routers. Using all the LSAs it receives, each router builds a topology of the
network. The network topology is described mathematically in the form of a graph.

This topological database is the input to Dijkstra’s Shortest Path First (SPF) algo-
rithm. With itself as the root, each router runs the SPF algorithm to compute the
shortest path to each network in the graph. Each router then uses its shortest-path
tree to build its routing table. Compare this with DV protocols: DV protocols propa-
gate routes from router to router (this is sometimes called routing by rumor) and
each router chooses the best route (to each destination) from all the routes (to that
destination) that it hears.

DV protocols have to set up special mechanisms to guard against bad routing informa-
tion that could propagate from router to router. In contrast, routers running the SPF
algorithm need to ensure the accuracy of their LS databases; as long as each router has
the correct topology information, it can use the SPF algorithm to find the shortest path.

Dijkstra’s algorithm is a wonderful tool but, as we shall see in more detail later, the
SPF algorithm is expensive in terms of CPU utilization. The cost of running the algo-
rithm increases quickly as the network topology grows. This would be a problem
but, given OSPF’s hierarchical structure, the network is divided into “small” areas,
and the SPF algorithm is executed by each router only on its intra-area topology. So
how do routers in two different areas communicate with each other? All areas sum-
marize their routes to a special area called the backbone area or area 0. The back-
bone area in turn summarizes routes to all attached areas. Hence, traffic between any
two areas must pass through the backbone area (see Figure 6-1).

OSPF derives its name from Dijkstra’s SPF algorithm; the prefix “O” signifies that
it’s an “open” protocol and so is described in an “open” book that everyone can
access. That open book is RFC 2328, thanks to John Moy. In contrast, IGRP and
EIGRP are Cisco proprietary protocols. Multiple vendors support OSPF.
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Getting OSPF Running
Getting RIP, IGRP, and EIGRP running is easy, as we saw in earlier chapters. When
TraderMary’s network grew to London, Shannon, Ottawa, etc., the DV routing pro-
tocols adapted easily to the additions. Getting OSPF running on a small network is
also easy, as we will see in this chapter. However, unlike RIP, IGRP, and EIGRP,
OSPF is a hierarchical protocol. OSPF does not work well if the network topology
grows as a haphazard mesh.

In this section, we will configure OSPF on a small network. In later sections, we will
learn how to build hierarchical OSPF networks.

TraderMary’s network, shown in Figure 6-2, can be configured to run OSPF as
follows.

Figure 6-1. Overview of OSPF areas

Figure 6-2. TraderMary’s network
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Like RIP and IGRP, OSPF is a distributed protocol that needs to be configured on
every router in the network:

hostname NewYork
...
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Serial0
description New York to Chicago link
ip address 172.16.250.1 255.255.255.0
!
interface Serial1
description New York to Ames link

1 bandwidth 56
ip address 172.16.251.1 255.255.255.0
...
router ospf 10
network 172.16.0.0 0.0.255.255 area 0

The router ospf command starts the OSPF process on the router. The syntax of this
command is:

router ospf process-id

The process-id, which should be between 1 and 65,535, is used to identify the
instance of the OSPF process. The process-id configured in the previous example is
10. Router Chicago is similarly configured with the same process-id:

hostname Chicago
...
interface Ethernet0
ip address 172.16.50.1 255.255.255.0
!
interface Serial0
description Chicago to New York link
ip address 172.16.250.2 255.255.255.0
!
interface Serial1
description Chicago to Ames link
ip address 172.16.252.1 255.255.255.0
...

router ospf 10
network 172.16.0.0 0.0.255.255 area 0

Router Ames is also configured with OSPF:

hostname Ames
...
interface Ethernet0
ip address 172.16.100.1 255.255.255.0
!
interface Serial0
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description Ames to Chicago link
ip address 172.16.252.2 255.255.255.0
!
interface Serial1
description Ames to New York link

2 bandwidth 56
ip address 172.16.251.2 255.255.255.0
...

router ospf 10
network 172.16.0.0 0.0.255.255 area 0

We next identify the networks that will be participating in the OSPF process and
associate an area ID with each network. The syntax of this command is:

network address wildcard-mask area area-id

The address and wildcard-mask fields identify a network by its IP address. Networks
that match the address and wildcard-mask fields are associated with the area area-id.
How is a network’s IP address matched against address and wildcard-mask?

wildcard-mask is a string of zeros and ones. An occurrence of a zero in wildcard-mask
implies that the IP address being checked must exactly match the corresponding bit
in address. An occurrence of a one in wildcard-mask implies that the corresponding
bit in the IP address field is a “don’t care bit”—the match is already successful.

Thus, the following clause can be read as stating that the first 16 bits of an IP address
must be exactly “172.16” for the address to match the clause and be associated with
area 0 and that the next 16 bits of the IP address are “don’t care bits”:

network 172.16.0.0 0.0.255.255 area 0

Any IP address, such as 172.16.x.y, will match this address/wildcard-mask and be
assigned the area ID of 0. Any other address, such as 10.9.x.y, will not match this
address/wildcard-mask.

If an interface IP address does not match the address/wildcard-mask on a network
statement, OSPF will check for a match against the next network statement, if there
is another statement. Hence, the order of network statements is important. If an
interface IP address does not match the address/wildcard-mask on any network state-
ment, that interface will not participate in OSPF.

There is more than one method of assigning area IDs to networks. The most rigor-
ous method specifically lists every network when making a match. The wildcard
mask contains only zeros:

hostname NewYork
...
router ospf 10
network 172.16.1.1 0.0.0.0 area 0
network 172.16.250.1 0.0.0.0 area 0
network 172.16.251.1 0.0.0.0 area 0
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The most loose method is an all-ones wildcard mask:

hostname NewYork
...
router ospf 10
network 0.0.0.0 255.255.255.255 area 0

Note that in the second (loose) method, network 192.168.1.1 also belongs to area 0.

If an IP address does not match an area-ID specification, the match continues to the
next statement. So, for example, a router may be configured as follows:

network 172.16.0.0 0.0.255.255 area 0
network 192.0.0.0 0.255.255.255 area 1

An IP address of 192.168.1.1 will not match the first statement. The match will then
continue to the next statement. All IP addresses with “192” in the first 8 bits will
match the second clause and hence will fall into area 1. A network with the address
10.9.1.1 will not match either statement and hence will not participate in OSPF.

The area-id field is 32 bits in length. You can specify the area ID in the decimal num-
ber system, as we did earlier, or in the dotted-decimal notation that we use for express-
ing IP addresses. Thus, the area ID 0.0.0.0 (in dotted decimal) is identical to the area
ID 0 (in decimal); the area ID 0.0.0.100 (in dotted decimal) is identical to 100 (in deci-
mal); and the area ID 0.0.1.0 (in dotted decimal) is identical to 256 (in decimal). The
area ID of 0 is reserved for the backbone area. The area ID for nonbackbone areas can
be in the range 1 to 4,294,967,295 (or, equivalently, 0.0.0.1 to 255.255.255.255).

The show ip ospf interface command shows the assignment of area IDs to network
interfaces:

NewYork#sh ip ospf interface
...
Ethernet0 is up, line protocol is up

3 Internet Address 172.16.1.1/24, Area 0
4   Process ID 10, Router ID 172.16.251.1, Network Type BROADCAST, Cost: 10

  ...
Serial0 is up, line protocol is up
  Internet Address 172.16.250.1/24, Area 0
  Process ID 10, Router ID 172.16.251.1, Network Type POINT_TO_POINT, Cost: 64
...
Serial1 is up, line protocol is up
  Internet Address 172.16.251.1/24, Area 0

  Process ID 10, Router ID 172.16.251.1, Network Type POINT_TO_POINT, Cost: 1785
...

The routing tables for NewYork, Chicago, and Ames will show all 172.16.0.0 sub-
nets. Here is NewYork’s table:

NewYork#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

,ch06.22353  Page 112  Wednesday, January 9, 2002  12:25 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

OSPF Metric | 113

       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is not set

5 172.16.0.0/16 is variably subnetted, 6 subnets, 2 masks
6 O       172.16.252.0/24 [110/128] via 172.16.250.2, 01:50:18, Serial0

C       172.16.250.0/24 is directly connected, Serial0
C       172.16.251.0/24 is directly connected, Serial1

7 O       172.16.50.1/32 [110/74] via 172.16.250.2, 01:50:18, Serial0
C       172.16.1.0/24 is directly connected, Ethernet0

8 O       172.16.100.1/32 [110/138] via 172.16.250.2, 01:50:18, Serial0

The OSPF-derived routes in this table are labeled with an “O” in the left margin.
Note that the routing table provides summary information (as in line 5). This line
contains subnet mask information (24 bits, or 255.255.255.0) and the number of
subnets in 172.16.0.0 (6).

OSPF Metric
Each OSPF router executes Dijkstra’s SPF algorithm to compute the shortest-path
tree from itself to every subnetwork in its area. However, RFC 2328 does not specify
how a router should compute the cost of an attached network—this is left to the ven-
dor. Cisco computes the cost of an attached network as follows:

Cost = 108/bandwidth of interface in bits per second

Using this definition, the OSPF cost for some common media types is shown in
Table 6-1. Table 6-1 assumes default interface bandwidth. Note that the cost is
rounded down to the nearest integer.

The OSPF cost computed by a router can be checked with the command show ip ospf
interface, as in line 4 in the code block in the previous section, where the cost of the
Ethernet segment is 10. The composite cost of reaching a destination is the sum of
the individual costs of all networks in the path to the destination and can be seen as
output of the show ip route command in lines 6, 7, and 8.

Table 6-1. Default OSPF costs

Media type Default bandwidth Default OSPF cost

Ethernet 10 Mbps 10

Fast Ethernet 100 Mbps 1

FDDI 100 Mbps 1

T-1 (serial interface)a

a All serial interfaces on Cisco routers are configured with the same default bandwidth (1,544 kbits/s) and delay (20,000 ms) parameters.

1,544 kbps 64

56 kbps (serial interface) 1,544 kbps 64

HSSI 45,045 kbps 2
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The default value of the OSPF metric may not be adequate in some situations. For
example, in TraderMary’s configuration, the NewYork ➝ Ames link runs at 56 kbps,
but the default metric makes it appear to be a T-1. This was fixed by modifying the
interface bandwidth, as in lines 3 and 4 in the previous section. The command to
modify a bandwidth is:

bandwidth kilobits

Keep in mind that modifying the interface bandwidth impacts other protocols that
utilize the bandwidth parameter, such as IGRP. Modifying bandwidth may not always
be viable. In such situations, the OSPF cost of an interface may be directly specified:

ip ospf cost value

where value is an integer in the range 1 to 65,535 (OSPF sets aside two octets to rep-
resent interface cost, as we will see later in the section “How OSPF Works”).

This approach to calculating OSPF costs does not work well for network speeds
greater than 100 Mbps. The OSPF cost for all speeds greater than the reference band-
width is rounded up to 1, and there is no way to distinguish between one network
and another. The network engineer has two approaches to choose from here. First,
manually configure the OSPF cost for all interfaces equal to or faster than 100 Mbps.
For example, all FE interfaces may be configured with a cost of 8, OC-3 interfaces
with a cost of 6, and GE interfaces with a cost of 4. Second, redefine the reference
bandwidth with the following command:

ospf auto-cost reference-bandwidth reference-bandwidth

where reference-bandwidth is in Mbps. When this command is used, the cost of an
interface is calculated as:

Cost = reference-bandwidth-in-bps/bandwidth of interface in bits per second

This command is available in Cisco IOS Releases 11.2 and later. If the reference
bandwidth is modified, it must be modified on all routers in the OSPF domain. The
default value of reference-bandwidth is 108.

The developers of OSPF envisaged (as an optional feature) multiple types of service
(TOS) with differing metrics for each TOS. Using this concept, bulk data may be
routed, say, over a satellite link, whereas interactive data may be routed under the
sea. However, the TOS concept has not been carried into any major implementa-
tions—Cisco supports only one TOS.

Definitions and Concepts
Dijkstra’s algorithm solves the problem of discovering the shortest path from a single
source to all vertices in a graph where the edges are each represented with a cost. For
example, a car driver could use Dijkstra’s algorithm to find the shortest paths from
New York to major cities in the northeastern U.S. and Canada. The input to Dijkstra
would be a graph that could be represented by a matrix like that shown in Table 6-2.
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The output would be the shortest paths from New York to all other cities in the
graph. A geographical view of Table 6-2 is contained in Figure 6-3.

There are six nodes in this graph: New York, Chicago, Boston, Toronto, Detroit, and
Washington. There are nine edges in the graph, each represented by the distance
between a pair of vertices. The SPF algorithm works as follows:

1. Starting at the source node—New York—build a list of one-segment paths origi-
nating at the source node. This list will be New York ➝ Washington, New York
➝ Boston, and New York ➝ Toronto.

2. Sort this list in increasing order. The sorted list will be New York ➝ Boston
(194), New York ➝ Washington (236), and New York ➝ Toronto (496).

3. Pick the shortest path from this list—New York ➝ Boston—and move Boston to
the list of vertices for which the shortest path has been identified.

4. Next, append a new list of paths to the list that was defined in step 1. The list to
be appended consists of one-segment paths starting from Boston. This list will
be Boston ➝ Chicago and Boston ➝ Toronto. The composite list will be New
York ➝ Washington, New York ➝ Toronto, Boston ➝ Chicago, and Boston ➝

Toronto.

Table 6-2. Driving distances

Town name Town name Driving distance (miles)

New York Washington 236

New York Boston 194

Boston Chicago 996

Washington Chicago 701

New York Toronto 496

Detroit Chicago 288

Washington Detroit 527

Boston Toronto 555

Toronto Detroit 292

Figure 6-3. Geographical view of driving distances
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The algorithm continues, as in step 2, and the composite list is sorted in increasing
order with distances from the source node: New York ➝ Washington (236), New
York ➝ Toronto (496), New York ➝ Boston ➝ Toronto (194 + 555 = 749), and New
York ➝ Boston ➝ Chicago (194 + 996 = 1,190). In step 3, the shortest path is again
picked from the top of the list and Washington is added to the list of vertices for
which the shortest path has been identified. The algorithm continues until the short-
est paths to all cities have been identified.

OSPF employs Dijkstra’s SPF algorithm to compute the shortest path from a router
to every network in the graph. In OSPF terminology, this graph of the network topol-
ogy (similar to Table 6-2) is referred to as the topological database or the link state
database. Each router executes the SPF algorithm with itself as the source node. The
results of the SPF algorithm are the shortest paths to each IP network from the
source node; hence, this constitutes the IP routing table for the router.

Although the database of Table 6-2 is relatively static—driving distances change only
when new roads are built or old roads are closed—the LS database for a network is
quite dynamic because of changes in the state of subnetworks. A link may go down
or come up. A network administrator may make changes to the status of a link, such
as shutting it down or changing its cost. Every time there is any change in a router’s
LS database, Dijkstra’s SPF algorithm needs to be run again. It can be shown that the
SPF algorithm takes ElogE time to run, where E is the number of edges in the graph.

As the size of a network grows, Dijkstra will consume more and more memory and
CPU resources at each router. In other words, Dijkstra does not scale for large topol-
ogies. Fortunately, OSPF has a clever solution to this problem: break the network
into areas and execute Dijkstra only on each intra-area topology.

An area is a collection of contiguous networks and routers that share a unique area
ID. Each area maintains its own topological database: other areas do not see this
topological information. The SPF algorithm is executed on each intra-area topology
by the intra-area routers.

Containing the number of routers and networks in an area allows OSPF to scale to
support large networks. The network can grow almost without bounds with the
addition of new areas. If a single area becomes too large, it can be split into two or
more areas.

Before a router can execute the SPF algorithm, it must have the most recent topologi-
cal database for its area(s). Note the plural: a router may have interfaces in multiple
areas. A topological change in an area will cause SPF to recompute on all routers
with interfaces in that area. Routers in other areas will not be affected by the change.
Breaking a network into areas is thus akin to breaking a network into smaller, inde-
pendent networks.

Unlike flat networks such as RIP and IGRP in which each router has the same
responsibilities and tasks, OSPF’s hierarchy imposes a structure in which routers and
even areas are differentiated with respect to their roles.
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Backbone Area
The backbone area is of special significance in OSPF because all other areas must
connect to it. The area ID of 0 (or 0.0.0.0) is reserved for the backbone. Figure 6-4
shows an OSPF network comprised of a backbone area and three other areas—areas
1, 2, and 3. Note that all inter-area traffic must pass through the backbone area,
which implies that backbone routers must possess the complete topological data-
base for the network.

Backbone Router
A router with an interface in area 0 is referred to as a backbone router. A backbone
router may also have interfaces in other areas. Routers R1, R2, R3, R4, and R5 in
Figure 6-4 are backbone routers.

The backbone routers hold a topological database that describes the state of all back-
bone links, summary links describing IP networks in areas 1, 2, and 3, and external
links that describe the IP network in the RIP network.

Area or Regular Area
A regular area has a unique area ID in the range 1 (or 0.0.0.1) to 4,294,967,295
(255.255.255.255).

Figure 6-4. OSPF architecture: a high-level view
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A router in, say, area 1 will hold topological information for the state of all area 1
links, summary links that describe IP networks in areas 0, 2, and 3, and external
links that describe IP networks in those networks.

Internal Router
An internal router has interfaces in one area only. Routers R6, R7, and R8 in
Figure 6-4 are internal routers in area 1.

Area Border Router (ABR)
An area border router has interfaces in more than one area. Routers R3, R4, and R5
in Figure 6-4 are ABRs.

An ABR has topological information for multiple areas. Router R3 is an ABR that
holds topological databases for areas 0 and 1. Router R4 holds topological databases
for areas 0, 2, and 3. Router R5 holds topological databases for areas 0 and 3.

An ABR can summarize the topological database for one of its areas. Router R3 may
summarize the topological database for area 1 into area 0. Summarization is key in
reducing the computational complexity of the OSPF process.

Autonomous System Boundary Router (ASBR)
An autonomous system boundary router imports routing information from another
AS into OSPF. The routes imported into OSPF from the other AS are referred to as
external routes.

Router R9 in Figure 6-4 is an ASBR. R9 imports RIP routes from an external network
into OSPF. An ASBR may be configured to summarize external routes into OSPF.

Stub Area
Consider an area with no direct connections to any external networks. Importing
external records into this area may be unnecessary because all traffic to external net-
works must be routed to the ABRs. Such an area can use a default route (in place of
external routes) to send all external IP traffic to its ABRs.

Configuring an area as a stub area blocks the advertisement of external IP records at
the ABRs and instead causes the ABRs to generate default routes into the stub area.

Routers in a stub area hold a topological database that describes the state of all local
links, summary links describing IP networks in other areas, but no external net-
works. This reduction in the size of the topological database saves on processor and
memory resources. A stub area may use routers with less memory/CPU power or use
the spare memory/CPU resources to build a large stub area.
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There is a potential disadvantage to configuring an area as a stub area. For example,
if area 3 in Figure 6-4 is configured as a stub area, R4 and R5 will each advertise a
default route into the stub area. An external route may be closer to R4, but routers in
the stub area will lose that information and route all external traffic to R4 or R5,
depending on which one is closer. Stub areas cannot support external connections
since stub routers do not carry external LSAs. Stub areas cannot support virtual
links, which I’ll discuss later in this chapter, for similar reasons.

Totally Stubby Area
A totally stubby area carries the concept of a stub area further by blocking summary
records for IP networks in other areas at the ABRs. All inter-area and external traffic
is matched to the default route announced by the ABR(s).

In terms of LSA types, routers in totally stubby areas hold a topological database that
describes the state of all local links only.

Just like a stub area, a totally stubby area cannot support connections to external
networks.

Not So Stubby Area (NSSA)
Not so stubby areas are stub areas with one less restriction: NSSAs can support exter-
nal connections. In all other respects, NSSAs are just like stub areas—routers in
NSSAs do not carry external LSAs, nor do they support virtual links.

Any area that can be configured as a stub area but needs to support an external net-
work can be changed into an NSSA.

OSPF Topological Database
The OSPF topological database is composed of link state advertisements (LSAs).
OSPF routers originate LSAs describing a piece of the network topology; these LSAs
are flooded to other routers that then compose a database of LSAs. There are several
types of LSAs, each originating at a different router and describing a different compo-
nent of the network topology. The various types of LSAs are:

Router LSA (type 1)
A router LSA describes a router’s links (or interfaces). All routers originate router
LSAs. A router LSA is flooded to all intra-area routers.

Network LSA (type 2)
A network LSA describes a broadcast network (such as an Ethernet segment) or
a non-broadcast multi-access (NBMA) network (such as Frame Relay). All rout-
ers attached to the broadcast/NBMA network are described in the LSA. A net-
work LSA is flooded to all intra-area routers.
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Summary LSA (type 3)
A summary LSA describes IP networks in another area. The summary LSA is
originated by an ABR and flooded outside the area. Summary LSAs are flooded
to routers in all OSPF areas except totally stubby areas.

ASBR summary LSA (type 4)
ASBR summary LSAs describe the route to an ASBR. The mask associated with
these LSAs is 32 bits long because the route they advertise is to a host—the IP
address of the ASBR. ASBR summary LSAs originate at ASBRs. ASBR summary
LSAs are flooded to routers in all OSPF areas except stub areas.

External LSA (type 5)
External LSAs describe routes external to the OSPF process (in another autono-
mous system). An external route can be a default route. External LSAs originate
at the ASBR. External LSAs are flooded throughout the OSPF network, except to
stub areas.

NSSA external LSA (type 7)
NSSA external LSAs describe routes to external networks (in another autono-
mous system) connected to the NSSA. Unlike type 5 external LSAs, NSSA exter-
nal LSAs are flooded only within the NSSA. Optionally, type 7 LSAs may be
translated to type 5 LSAs at the ABR and flooded as type 5 LSAs.

OSPF Route Types
Every router in OSPF uses its local topological database as input to the SPF algo-
rithm. The SPF algorithm yields the shortest path to every known destination, which
is then used to populate the IP routing table as one of four route types:

Intra-area route
An intra-area route describes the route to a destination within the area.

Inter-area route
An inter-area route describes the route to a destination in another area. The path
to the destination comprises an intra-area path, a path through the backbone
area and an intra-area path in the destination network’s area. An inter-area route
is sometimes referred to as a summary route.

External route (type 1)
An external route describes the route to a destination outside the AS. The cost of
a type 1 external route is the sum of the costs of reaching the destination in the
external network and the cost of reaching the ASBR advertising the route.

External route (type 2)
An external route describes the route to a destination outside the AS. The cost of
a type 2 external route is the cost of reaching the destination in the external net-
work only; it does not include the cost of reaching the ASBR advertising the
route.
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When routing a packet, the routing table is scanned for the most specific match. For
example, say that the destination IP address in the packet is 10.1.1.254 and the rout-
ing table contains entries for 10.1.1.0/24 and 10.1.1.192/26. The most specific
match will be the route 10.1.1.192/26. Now, what if 10.1.1.192/26 was known as an
intra-area route and an inter-area route? OSPF prefers routes in the following order:
intra-area routes (most preferred), inter-area routes, type 1 external routes, and type
2 external routes (least preferred).

Note the order in which the rules were applied: first the route with the most specific
match was identified and then the OSPF preferences were applied. Thus, when rout-
ing the packet with the destination address 10.1.1.254, if the routing table shows 10.
1.1.0/24 as an intra-area route and 10.1.1.192/26 as a type 2 external route, the most
specific match (10.1.1.192/26) will win. If OSPF has multiple equal-cost routes to a
destination, it will load-balance traffic over those routes.

How OSPF Works
OSPF routers must first discover each other before they can exchange their topologi-
cal databases. Once each router has the complete topological database, it can use the
SPF algorithm to compute the shortest path to every network. This section focuses
on neighbor discovery and the exchange of topological databases.

Let’s begin at the beginning. OSPF packets are encapsulated directly in IP with the
protocol field set to 89. The destination IP address in OSPF depends on the network
type. OSPF uses two IP multicast addresses on broadcast and point-to-point net-
works: 225.0.0.5 for all OSPF routers and 224.0.0.6 for all DR/BDR (designated
router/backup designated router) routers. Using IP multicast addresses is more effi-
cient than using broadcast addresses. If broadcast addresses are used, all attached
devices must receive the broadcast packet, unwrap it, and then discard the contents
if they are not running OSPF. NBMA networks and virtual links use unicast
addresses because they do not support multicast addresses.

Following the IP header is the OSPF header (see Figure 6-5). The OSPF header is
common to all types of OSPF packets. The following list defines the format of the
OSPF header and the five types of OSPF packets:

Version
The OSPF version in use. The current version number is 2.

Type
There are five types of OSPF packets:

Type 1
Hello packets, described in the next section.

Type 2
Database description packets, described later under “Database Exchange.”
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Type 3
Link state requests, described in “Database Exchange.”

Type 4
Link state updates, described in “Database Exchange.”

Type 5
Link state acknowledgments, described in “Database Exchange.”

Packet length
The length of the OSPF packet, including the header.

Router ID
The router ID of the router originating the OSPF packet.

Area ID
The area ID of the network on which this packet is being sent.

Checksum
The checksum for the entire packet, including the header.

Au type
The type of authentication scheme in use. The possible values for this field are:

0 No authentication

1 Clear-text password authentication

2 MD5 checksum

Authentication data
The authentication data.

Neighbor Discovery: The Hello Protocol
Every router generates OSPF hello packets on every OSPF-enabled interface. Hello
packets are sent every 10 seconds on broadcast media and every 30 seconds on non-

Figure 6-5. Format of an OSPF header
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broadcast media. Routers discover their neighbors by listening to hellos. The output
of the command show ip ospf neighbor lists the neighbors that have been discovered.

Each hello packet contains the fields described in the following sections. The format
of a hello packet is shown in Figure 6-6.

Router ID

When the OSPF process first starts on a router (e.g., when the router is powered up)
it attempts to establish a router ID. The router ID is the name or label that will be
attached to the node representing the router in the SPF topology graph. If OSPF can-
not establish a router ID, the OSPF process aborts.

How does a router choose its router ID? There are two situations to consider here:

• If a router has one or more loopback interfaces, it chooses the highest IP address
from the pool of loopback interfaces as its router ID. Loopback interfaces are
always active.

• If a router has no loopback interfaces, it chooses the highest IP address from any
of its active interfaces as its router ID. If a router has no active interface with an
IP address, it will not start the OSPF process.

The router ID is chosen when the OSPF process first starts: the addition or deletion
of interfaces or addresses on a router after the router ID has been selected does not
change the router ID. A new router ID is picked only when the router is restarted (or
when the OSPF process is restarted).

So, for example, the router ID of NewYork can be checked as follows:

NewYork#sh ip ospf
 Routing Process "ospf 10" with ID 172.16.251.1
 Supports only single TOS(TOS0) routes
 SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
......

Figure 6-6. Format of hello packet
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In this example, the router ID was derived using the router’s highest IP address. It is
usually preferable to configure loopback interfaces to assign predictable router IDs to
OSPF routers (since a loopback interface is a virtual interface and will not go down,
as a physical interface would). The router ID must be unique within the topology
database.

The configuration on NewYork may be modified as follows:

hostname NewYork
!
interface Loopback0
 ip address 192.168.1.1 255.255.255.255
...

After NewYork is rebooted, its router ID will change as follows:

NewYork#sh ip ospf
 Routing Process "ospf 10" with ID 192.168.1.1
...

Since the router ID is critical to the OSPF process, it is important for the network
engineer to maintain a table of all router IDs.

Note the following points:

1. Since the router ID is needed only to represent the router in the SPF graph, it is
not required that OSPF advertise the router ID. However, if the router ID is
advertised, it will be represented as a stub link in a router LSA.

2. A mask of 255.255.255.255 may be chosen for the loopback interface to con-
serve on network addresses, as in the earlier example.

3. If the router ID is not advertised, any unique address can be used to represent
the router ID—the use of nonreserved IP addresses will not cause any routing-
table conflicts.

Area ID

The area ID of the interface on which the OSPF packet is being sent.

Checksum

The checksum pertaining to the hello packet.

Authentication

The authentication method and authentication data.

Network mask

The network mask of the interface on which the hello packet is being sent.
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Hello-interval

The duration between hello packets. The default value of hello-interval is 10 sec-
onds on most interfaces.

The hello-interval can be modified with the following command in interface configu-
ration mode:

ip ospf hello-interval seconds

Options

OSPF defines several optional capabilities that a router may or may not support. The
options field is one octet long, as shown in Figure 6-7.

Routers that support demand circuits set the DC bit; NSSA support is signified using
the N bit. The E bit signifies that the router accepts external LSAs—stub routers turn
off this bit. The T bit signifies the support of multiple types of service.

Router priority

A router with a higher priority takes precedence in the DR election algorithm. A
value of 0 makes the router ineligible for DR/BDR election. The default value of this
field is 1.

Router dead-interval

If no hello packets are received for the duration of the dead-interval, the neighbor is
declared dead. This value can be altered with the following command in interface
configuration mode:

ip ospf dead-interval value

Designated router (DR)

The designated router for multi-access networks. This field is set to 0.0.0.0 if no DR
has been elected on the network.

Backup designated router

The IP address of the backup designated router’s interface on this network. This field
is set to 0.0.0.0 if no BDR has been elected on the network.

Figure 6-7. Format of the options field

* * DC EA N/P MC E T
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Neighbor router ID list

The neighbor router ID list is the list of neighboring routers from which this router
has received hellos within the last dead-interval seconds. Before a router lists its
neighbor in its hello packet, the two routers must agree on the following: area ID,
authentication mechanism, network mask, hello-interval, router dead-interval, and
options fields. If these values match, the routers become neighbors and start listing
each other in their hello packets.

The following output shows NewYork’s neighbors:

NewYork#show ip ospf neighbor

Neighbor ID     Pri   State           Dead Time   Address         Interface
192.168.1.2      1 FULL/  -        00:00:31    172.16.250.2    Serial0
192.168.1.3      1 FULL/  -        00:00:32    172.16.251.2    Serial1

Note that the state of NewYork’s relationship with both neighbors is “Full,” imply-
ing that the neighbors have exchanged LS databases to become adjacent. Under nor-
mal, stable conditions, the state of each neighbor relationship should be “2-way” or
“Full.” “2-way” implies that the neighbors have seen each other’s hello packets but
have not exchanged LSAs. In the process of maturing into a “Full” relationship,
neighbors transition through the states “Exstart,” “Exchange,” and “Loading,” indi-
cating that neighbors have seen each other’s hello packets and are attempting to
exchange their LS databases. These are transitory states, all being well.

Then there are the problem states. “Down” indicates that a hello packet has not been
received from the neighbor in the last router dead-interval. “Attempt” applies to
NBMA networks and indicates that a hello has not yet been received from the neigh-
bor. “Init” implies that a hello was received from the neighbor but its neighbor
router ID list did not include the router ID of this router.

DR/BDR Election
Consider n routers on a broadcast network (such as Ethernet). If a router exchanged
its topological database with every other router on the network, (n × (n – 1)) / 2
adjacencies would be formed on the segment. This would create a lot of OSPF over-
head traffic. OSPF solves this problem by electing a designated router (DR) and a
backup designated router (BDR) on each broadcast network. Each router on a broad-
cast network establishes an adjacency with only the DR and the BDR. The DR and
the BDR flood this topology information to all other routers on the segment.

DR/BDR election can be described in the following steps. Remember that the DR/
BDR election process occurs on every multi-access network (not router). A router
may be the DR on one interface but not another.

The following description assumes that a router R has just been turned up on a
multi-access network:
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1. On becoming active on a multi-access network, the OSPF process on router R
begins receiving hellos from neighbors on its interface to the multi-access net-
work. If the hellos indicate that there already are a DR and a BDR, the DR/BDR
election process is terminated (even if R’s OSPF priority is higher than the cur-
rent DR/BDR priority).

2. If hellos from neighbors indicate that there is no active BDR on the network, the
router with the highest priority is elected the BDR. If the highest priority is
shared by more than one router, the router with the highest router ID wins.

3. If there is no active DR on the network, the BDR is promoted to DR.

The following can be stated as corollaries of the above rules:

1. If a DR and BDR have already been elected, bringing up a new router (even with
a higher priority) will not alter the identities of the DR/BDR.

2. If there is only one DR-eligible router on a multi-access network, that router will
become the DR.

3. If there are only two DR-elegible routers on a multi-access network, one will be
the DR and the other,  the BDR.

A router with a higher priority takes precedence during DR election. A priority value
of 0 indicates that the router is ineligible for DR election. The default priority value
is 1. Routers with low memory and CPU resources should be made ineligible for DR
election.

The router interface priority may be modified with the following command in inter-
face configuration mode:

ip ospf priority number

where number is between 0 and 255.

The state of an OSPF interface (including the result of the DR/BDR election process)
can be seen as output of the show ip ospf interface command:

NewYork#sh ip ospf interface
Ethernet0 is up, line protocol is up
  Internet Address 172.16.1.1/24, Area 0
  Process ID 10, Router ID 172.16.251.1, Network Type BROADCAST, Cost: 10

9 Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 172.16.251.1, Interface address 172.16.1.1

10 No backup designated router on this network
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:02

11 Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
...

Note that NewYork is the DR on Ethernet0. Since there is no other router on this net-
work, there is no BDR (line 10) and the router has not established any adjacencies
(line 11).
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Interface State
The state of an interface can have one of the following values:

Down
The interface state is down as indicated by lower-level protocols, and no OSPF
traffic has been sent or received yet.

Loopback
The interface is looped and will be advertised in LSAs as a host route.

Point-to-point
The interface is up and is recognized as a serial interface or a virtual link. After
entering the point-to-point state, the neighbors will attempt to establish
adjacency.

Waiting
This state applies only to broadcast/NBMA networks on which the router is
attempting to identify the DR/BDR.

DR
This router is the DR on the attached network.

Backup
This router is the BDR on the attached network.

DRother
This router is neither the DR nor the BDR on the attached network. The router
will form adjacencies with the DR and BDR (if they exist).

As an example, the state of NewYork’s interface to Chicago is point-to-point (line 12)
and NewYork and Chicago have established adjacency (lines 13 and 14):

NewYork#sh ip ospf interface
...
Serial0 is up, line protocol is up
  Internet Address 172.16.250.1/24, Area 0
  Process ID 10, Router ID 172.16.251.1, Network Type POINT_TO_POINT, Cost: 64

12 Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:01

13 Neighbor Count is 1, Adjacent neighbor count is 1
14     Adjacent with neighbor 69.1.1.1

  Suppress hello for 0 neighbor(s)

Neighbor Relationship
Not all neighbors establish adjacency. Neighbors may stay at “2-way” or enter into a
“Full” relationship, depending on the type of network, as follows:

Point-to-point networks
Routers on point-to-point networks always establish adjacency.
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Broadcast networks
Routers on broadcast networks establish adjacency only with the DR and the
BDR, maintaining a 2-way relationship with the other routers on the network.

Non-broadcast multi-access (NBMA) networks
Routers on NBMA networks establish adjacency only with the DR and the BDR.

Virtual links
Routers on virtual links always establish adjacency.

Database Exchange
The database description (DD) packet is used to describe the contents of the LS data-
base to a peer OSPF router. Only LSA headers are sent in DD packets; the peer
router responds by sending its own LSA headers in DD packets.

The LSA header (Figure 6-8) uniquely identifies a piece of the OSPF network topol-
ogy. The key fields in the LSA header are the advertising router, LS type, and link
state ID. The advertising router is the router ID of the originator of the LSA. The LS
type identifies the type of the LSA that follows. The link state ID depends on the LS
type, as shown in Table 6-3.

Several copies of an LSA may be circulating in a network. The LS sequence number, a
signed 32-bit integer, helps identify the most recent LSA. The first instance of an
LSA record contains a sequence number field of 0x80000001. Each new instance of
the LSA contains a sequence number that is one higher. The maximum sequence

Figure 6-8. Format of an LSA header

Table 6-3. LS type and link state ID

LS type Link state ID

1 (router LSA) Router ID of the originator of the LSA

2 (network LSA) IP address of the DR’s interface to the multi-access network

3 (summary LSA) IP address of the destination network

4 (ASBR summary LSA) Router ID of the ASBR

5 (external LSA) IP address of the destination network

0 31

Link state ID

Advertising router

Link state sequence number

Link state age

15

Options
Link state

type

Checksum Length
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number is 0x7fffffff, after which the sequence numbers are recycled. The sequence
number helps identify the most recent instance of an LSA.

Upon receiving LSA headers in DD packets, both routers check to see if this piece of
the OSPF topology is already contained in their LS databases. In this process, the
advertising router, LS type, and link state ID fields (from the LSA header) are com-
pared against the router’s LS database. If no matching records are found or if a
matching record is found with a lower sequence number, the complete LSA is
requested using the link state request packet. The LS request packet contains the LSA
header to help identify the record being sought.

In response to a link state request, a router issues a link state update containing the
LSA. The LSA completely describes the piece of OSPF topology in question. LS
updates are issued (a) in response to an LS request, as just described; (b) because of a
change in the state of the link; and (c) every 30 minutes, with a new sequence num-
ber and the age field set to 0.

All LS updates are acknowledged in link state acknowledgment packets (see Figure 6-9).

Figure 6-9. Database description, link state request, link state update, and link state
acknowledgment packets
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There are six types of LSA records, each representing a different piece of the network
topology. We’ll use TraderMary’s network with a French extension (Figure 6-10) to
take a closer look at the various LSA types.

TraderMary’s network in New York is configured as follows. NewYork2 is an ABR
with a serial link in area 1 to router Paris (line 15).

hostname NewYork2
!
interface Loopback0
 ip address 192.168.1.4 255.255.255.0
!
interface Ethernet0
 ip address 172.16.1.2 255.255.255.0
 ip pim sparse-mode
!
interface Serial1
 description Paris link
 ip address 10.0.1.2 255.255.255.0
 bandwidth 56
!
router ospf 10
 network 172.16.0.0 0.0.255.255 area 0

15 network 10.0.0.0 0.255.255.255 area 1

Figure 6-10. TraderMary’s network with a French extension
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Paris is an ASBR redistributing RIP routes from a legacy network into OSPF (line 16):

hostname Paris
!
interface Loopback0
 ip address 192.168.1.5 255.255.255.255
!
interface Ethernet0
 ip address 10.0.2.1 255.255.255.0
!
interface Serial1
 description link to NewYork2
 ip address 10.0.1.1 255.255.255.0
!
router ospf 10

16 redistribute rip metric 100 subnets
 network 10.0.0.0 0.255.255.255 area 1
!
router rip
 network 10.0.0.0

The 10.0.0.0 subnets—10.0.1.0, 10.0.2.0, and 10.0.3.0—are known to both the
OSPF and RIP processes on router Paris. Let’s see how NewYork learns these sub-
nets. Here is NewYork’s routing table:

NewYork#sh ip route
...
     10.0.0.0/24 is subnetted, 3 subnets

17 O IA    10.0.2.0 [110/1805] via 172.16.1.2, 00:07:45, Ethernet0
18 O E2    10.0.3.0 [110/100] via 172.16.1.2, 00:07:46, Ethernet0
19 O IA    10.0.1.0 [110/1795] via 172.16.1.2, 00:07:46, Ethernet0

     192.168.1.0/32 is subnetted, 1 subnets
C       192.168.1.1 is directly connected, Loopback0
     172.16.0.0/24 is subnetted, 6 subnets
O       172.16.252.0 [110/128] via 172.16.250.2, 00:07:46, Serial0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
O       172.16.50.0 [110/74] via 172.16.250.2, 00:07:46, Serial0
C       172.16.1.0 is directly connected, Ethernet0
O       172.16.100.0 [110/192] via 172.16.250.2, 00:07:46, Serial0

Note that the routing table shows that NewYork learns 10.0.3.0 as an external route
whereas 10.0.1.0 and 10.0.2.0 are learned as inter-area routes (lines 17–19)—this is
because inter-area routes are preferred over external routes. The OSPF order of route
preference, from most preferred to least preferred, is as follows: intra-area, inter-area,
type 1 external, type 2 external.

Router LSA (type 1)

A router LSA describes the advertising router’s directly connected links. Routers Chi-
cago, Ames, NewYork, and NewYork2 advertise router LSAs that are flooded
throughout area 0. NewYork’s LS database holds router LSAs from all these routers,
but for the sake of brevity I’ll show only the contents of the LSA from NewYork2.
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The number of links (as in line 20 in the upcoming code block) described in the LSA
is 1. Although NewYork2 has two directly connected links—an Ethernet segment
and a serial link—only the Ethernet segment is described in the LSA to NewYork.
This is because the serial link is in area 1 and router LSAs do not cross OSPF area
boundaries.

The link described is a transit network (line 21), implying that there are multiple
routers on the link. Other link types are point-to-point (for serial links), stub net-
work (for a network with only one router), and virtual link (for OSPF virtual links).

The value of the link ID field depends on the type of link being described, as shown
in Table 6-4.

In our example, the DR is NewYork, so the link ID (in line 22) contains NewYork’s IP
address.

The contents of the link data field also depend on the link type, as shown in Table 6-5.

In our example, the link data field (in line 23) specifies the IP address of NewYork2:

NewYork#sh ip ospf database router

       OSPF Router with ID (192.168.1.1) (Process ID 10)

Routing Bit Set on this LSA

  LS age: 209

  Options: (No TOS-capability, DC)
  LS Type: Router Links
  Link State ID: 192.168.1.4

  Advertising Router: 192.168.1.4

Table 6-4. Link type and link ID

Link type Link ID

Point-to-point Neighbor’s router ID

Transit network DR’s IP address on network

Stub network IP network number or subnet number

Virtual link Neighbor’s router ID

Table 6-5. Link type and link data

Link type Link data

Point-to-point IP address of network interface

Transit network IP address of network interface

Stub network IP network number or subnet number

Virtual link MIB II ifIndex for the router’s interface
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  LS Seq Number: 800000FF
  Checksum: 0x2BA1
  Length: 36
  Area Border Router
  AS Boundary Router

20 Number of Links: 1

21     Link connected to: a Transit Network
22      (Link ID) Designated Router address: 172.16.1.1
23      (Link Data) Router Interface address: 172.16.1.2

      Number of TOS metrics: 0
       TOS 0 Metrics: 10

Network LSA (type 2)

A network LSA describes broadcast/NBMA networks. The network LSA is origi-
nated by the DR and describes all attached routers.

The LSA in the following example is self-originated, as seen in the advertising router
field (line 24), which shows NewYork’s own router ID. The network LSA describes
the mask on the multi-access network (line 25) and the IP addresses of the routers on
the multi-access network (lines 26 and 27).

NewYork#sh ip ospf database network

       OSPF Router with ID (192.168.1.1) (Process ID 10)

           Net Link States (Area 0)

  Routing Bit Set on this LSA
  LS age: 1728
  Options: (No TOS-capability, DC)
  LS Type: Network Links
  Link State ID: 172.16.1.1 (address of Designated Router)

24 Advertising Router: 192.168.1.1
  LS Seq Number: 800000F4
  Checksum: 0x172B
  Length: 32

25 Network Mask: /24
26    Attached Router: 192.168.1.1
27    Attached Router: 192.168.1.4

Summary LSA (type 3)

A summary LSA is advertised by an ABR and describes inter-area routes.

The summary LSAs in the following example are originated by NewYork2 (192.168.
1.4) and describe routes to 10.0.1.0 and 10.0.2.0, respectively. The link state ID
describes the summary network number (lines 28 and 31). Note that each LSA
describes just one summary network number.
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NewYork#sh ip ospf database summary

       OSPF Router with ID (192.168.1.1) (Process ID 10)

            Summary Net Link States (Area 0)

  Routing Bit Set on this LSA
  LS age: 214
  Options: (No TOS-capability, DC)
  LS Type: Summary Links(Network)

28 Link State ID: 10.0.1.0 (summary Network Number)
29   Advertising Router: 192.168.1.4

  LS Seq Number: 80000062
  Checksum: 0x85A
  Length: 28

30 Network Mask: /24
    TOS: 0     Metric: 1785

  Routing Bit Set on this LSA
  LS age: 214
  Options: (No TOS-capability, DC)
  LS Type: Summary Links(Network)

31 Link State ID: 10.0.2.0 (summary Network Number)
32   Advertising Router: 192.168.1.4

  LS Seq Number: 80000061
  Checksum: 0x62F5
  Length: 28

33 Network Mask: /24
    TOS: 0     Metric: 1795

ASBR summary LSA (type 4)

An ASBR summary LSA describes the route to the ASBR. The mask associated with a
type 4 LSA is 32 bits long because the route advertised is to a host—the host being
the ASBR. ASBR summary LSAs are originated by ABRs.

The link state ID (line 34) in this example describes the router ID of Paris, which is
the ASBR redistributing RIP into OSPF. The advertising router is the ABR—
NewYork2 (line 35).

NewYork#sh ip ospf database asbr-summary

       OSPF Router with ID (192.168.1.1) (Process ID 10)

           Summary ASB Link States (Area 0)

  Routing Bit Set on this LSA
  LS age: 115
  Options: (No TOS-capability, DC)
  LS Type: Summary Links(AS Boundary Router)
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34 Link State ID: 192.168.1.5 (AS Boundary Router address)
35   Advertising Router: 192.168.1.4

  LS Seq Number: 80000061
  Checksum: 0x9A63
  Length: 28
  Network Mask: /0
    TOS: 0     Metric: 1785

External LSA (type 5)

External LSAs originate at ASBRs and describe routes external to the OSPF process.
External LSAs are flooded throughout the OSPF network, with the exception of stub
areas.

Network 10.0.1.0 is learned via RIP from NewYork2, which floods an external LSA
with a link state ID of 10.0.1.0. Interestingly, 10.0.1.0 is also known as an inter-
area route (see the section “Summary LSA (type 3)”). Router NewYork prefers the
IA route (see line 19) but will keep the external LSA in its topological database. The
advertising router (line 37) is Paris, the ASBR, which redistributes RIP into OSPF.
The forwarding address (in line 39) is 0.0.0.0, indicating that the destination for
10.0.1.0 is the ASBR. The LSA (in line 40) specifies an external route tag of 0,
which indicates a type 1 external route; a value of 1 would indicate a type 2 exter-
nal route.

NewYork#sh ip ospf database external

       OSPF Router with ID (192.168.1.1) (Process ID 10)

            Type-5 AS External Link States

  LS age: 875
  Options: (No TOS-capability, No DC)
  LS Type: AS External Link

36 Link State ID: 10.0.1.0 (External Network Number )
37   Advertising Router: 192.168.1.5

  LS Seq Number: 80000060
  Checksum: 0x6F27
  Length: 36

38 Network Mask: /24
   Metric Type: 2 (Larger than any link state path)
   TOS: 0
   Metric: 100

39 Forward Address: 0.0.0.0
40    External Route Tag: 0

...

Note that NewYork’s external database contains two other LSAs—with link state IDs
of 10.0.2.0 and 10.0.3.0—which were not shown here.
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NSSA external LSA (type 7)

NSSA external LSAs describe routes external to the OSPF process. However, unlike
type 5 external LSAs, NSSA external LSAs are flooded only within the NSSA.

There are no type 7 LSAs in this network. In fact, there aren’t even any NSSAs in this
network:

NewYork#sh ip  ospf database nssa-external

       OSPF Router with ID (192.168.1.1) (Process ID 10)

The format of the NSSA external LSA is identical to that of the AS external LSA,
except for the forwarding address field. The forwarding address field in an NSSA
external LSA always indicates the address to which traffic should be forwarded.

Flooding of LSAs

LSAs are generated every 30 minutes, or sooner if there is a change in the state of a
link. LSAs are exchanged between routers that have established adjacency, as was
described earlier.

The rules for the flooding of LSAs are governed by the hierarchical structure of
OSPF, as given in Table 6-6.

Route Summarization
RIP-1 and IGRP automatically summarize subnets into a major network number
when crossing a network-number boundary. OSPF does not automatically summa-
rize routes. Route summarization in OSPF must be manually configured on an ABR
or an ASBR. Further, OSPF allows route summarization on any bit boundary (unlike
RIP and IGRP, which summarize only classful network numbers).

Summarizing routes keeps the routing tables smaller and easier to troubleshoot.
However, route summarization in OSPF is not just a nice thing to do—it is necessary

Table 6-6. Rules for the flooding of LSAs

LSA type Originating router Area in which flooded

Router LSA (type 1) Every router Router’s local area.

Network LSA (type 2) DR Router’s local area.

Summary LSA (type 3) ABR Nonlocal area.

ASBR summary LSA (type 4) ASBR All areas except stub area, totally stubby area, or NSSA.

External LSA (type 5) ASBR All areas except stub area, totally stubby area, or NSSA.

NSSA external LSA (type 7) ASBR Router’s local area. NSSA external LSA may be forwarded by
ABR as a type 5 LSA.
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to reduce the size of the OSPF topology database, especially in a large network. A
large topology database requires a large amount of router memory, which slows
down all processes, including SPF calculations.

To allow summarization at ABRs and ASBRs, IP addresses must be carefully
assigned. First, allocate enough addresses to each area to allow for expansion. Then
set a bit boundary on which to summarize routes. This is easier said than done. Most
network engineers inherit a network with a haphazard mess of addresses and chang-
ing requirements.

Summarizing at the ABR (Inter-Area Summarization)
Consider TraderMary’s network in Figure 6-10. Network 10.0.0.0 exists in area 1,
and network 172.16.0.0 exists in area 0. Let’s see how we can summarize on these
area boundaries.

The command to summarize at an ABR is:

area area-id range address mask

where area-id is the area whose routes are to be summarized, address is a network
number, and mask specifies the number of bits in address to summarize.

The OSPF configuration on NewYork2 can now be modified to summarize 172.16.0.0
routes into area 1 (line 41) and 10.0.0.0 routes into area 0 (line 42).

hostname NewYork2
...
router ospf 10
 redistribute static metric 10
 network 172.16.0.0 0.0.255.255 area 0
 network 10.0.0.0 0.255.255.255 area 1

41 area 0 range 172.16.0.0 255.255.0.0
42 area 1 range 10.0.0.0 255.0.0.0

The routing table in Paris is now as follows. Note that Paris has only one summary
route for 172.16.0.0/16 (line 43).

Paris#show ip route
...
10.0.0.0/24 is subnetted, 2 subnets
C       10.0.2.0 is directly connected, Ethernet0
C       10.0.1.0 is directly connected, Serial1
     192.168.1.0/32 is subnetted, 1 subnets
C       192.168.1.5 is directly connected, Loopback0

43 O IA 172.16.0.0/16 [110/74] via 10.0.1.2, 1d23h, Serial1

The routing table for NewYork is now as follows. Note that NewYork has only one
summarized route for 10.0.0.0/8 (line 44).

NewYork#sh ip route
...
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O IA 10.0.0.0/8 [110/1795] via 172.16.1.2, 1d23h, Ethernet0
     192.168.1.0/32 is subnetted, 1 subnets
C       192.168.1.1 is directly connected, Loopback0
     172.16.0.0/24 is subnetted, 6 subnets
O       172.16.252.0 [110/128] via 172.16.250.2, 1d23h, Serial0
C       172.16.250.0 is directly connected, Serial0
C       172.16.251.0 is directly connected, Serial1
O       172.16.50.0 [110/74] via 172.16.250.2, 1d23h, Serial0
C       172.16.1.0 is directly connected, Ethernet0

44 O       172.16.100.0 [110/192] via 172.16.250.2, 1d23h, Serial0

When an EIGRP router summarizes, it automatically builds a route to null0 for the
summarized route. (This is explained in detail in the section “Route Summarization”
in Chapter 4). The router to null0 prevents packets that do not match a specific entry
in the routing table from following a default route. (The route to null0 causes the
packet to be dropped). However, as you saw earlier, OSPF does not build a null
route. You may want to manually add a static route to null0 on the ABR.

Summarizing at the ASBR (or External
Route Summarization)
In the configuration in Figure 6-10, Paris is the ASBR redistributing RIP into OSPF.
Note from the figure that the RIP network contains routes in the network 10.3.0.0/24
(the RIP subnets may be 10.3.1.0/24, 10.3.2.0/24, 10.3.3.0/24, … 10.3.255.0/24). It
is desirable to summarize 10.3.0.0/16 into the OSPF network rather than carrying
the individual subnets.

The routes being redistributed into OSPF can be summarized at the ASBR (which is
Paris in the previous example) using the following command:

summary-address address mask

where address defines a summary IP address and mask describes the range of addresses.

Router Paris may thus be configured as follows to summarize 10.3.0.0/16 into the
OSPF network:

hostname Paris
!
interface Loopback0
 ip address 192.168.1.5 255.255.255.255
!
interface Ethernet0
 ip address 10.0.2.1 255.255.255.0
!
interface Serial1
 ip address 10.0.1.1 255.255.255.0
!
router ospf 10
 summary-address 10.3.0.0 255.255.252.0
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 redistribute rip metric 100 subnets
 network 10.0.0.0 0.255.255.255 area 1
!
router rip
 network 10.0.0.0

The LS database will now contain a single external LSA with a link state ID of 10.3.
0.0 advertised by Paris.

Default Routes
Earlier chapters showed how a default route could be used for branch office connec-
tivity. A default route can also be used when connecting to the Internet to represent
all the routes in the Internet. Let’s say that TraderMary established a connection
from NewYork2, Serial2 (line 45) to an Internet service provider (ISP). A static
default route is also installed on NewYork2 (line 47), pointing to the ISP.

NewYork2 is configured as in line 46 to source a default route. The keyword always
implies that the default route must be originated whether or not the default route is
up. metric-value is the metric to associate with the default route (the default for this
field is 10). Note that this redistribution of a default route into OSPF makes
NewYork2 an ASBR. The keyword metric-type can be set to 1 or 2 to specify whether
the default route is external type 1 or 2 (the default is 2).

hostname NewYork2
!

45 interface Serial2
description Connection to the ISP
ip address 146.146.1.1 255.255.255.0
!
router ospf 10
network 172.16.0.0 0.0.255.255 area 0

46 default-information originate always metric-value 20 metric-type 1
!

47 ip route 0.0.0.0 0.0.0.0 interface serial2

Since the keyword always was specified, the default route will not disappear from the
OSPF routing table if Serial2 (the link to the ISP) is down. If TraderMary has two (or
more) routers connecting to ISPs and each router announced a default route into
OSPF, do not use the always keyword—if one ISP connection is lost, traffic will find
its way to the other ISP connection.

To ensure that the default route is always announced (even if Serial2 goes down)
choose the always option.

A default route of type 1 includes the internal cost of reaching the ASBR. If Trader-
Mary has multiple Internet connections, announcing a default route from each with a
metric type of 1 would have the advantage that any router in the network would find
the closest ASBR.
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Virtual Links
TraderMary is planning to establish a new office in Paris with an area ID of 2. The first
router in area 2 will be called Paris2. A direct circuit needs to be established from
NewYork2 (the ABR) to Paris2, since all OSPF areas must connect directly to the back-
bone (area 0). This international circuit has a long installation time. And, since a phys-
ical path is already available to area 2 via area 1, you may ask if OSPF provides some
mechanism to activate area 2 before the NewYork2 ➝ Paris2 circuit can be installed.
The answer is yes. OSPF defines virtual links (VLs) which can extend the backbone
area. Area 2 will directly attach to the backbone via the VL. A VL may be viewed as a
point-to-point link belonging to area 0. The endpoints of a VL must be ABRs.

In our example in Figure 6-11, a virtual link may be defined from NewYork2 to
Paris2 through area 1.

The syntax for configuring a virtual link is as follows:

area area-id virtual-link router-id [hello-interval seconds] [retransmit-interval
seconds] [transmit-delay seconds] [dead-interval seconds] [[authentication-key key] |
[message-digest-key keyid md5 key]]

Figure 6-11. Virtual link to area 2

Ames NewYork

172.16.100.0/24
172.16.1.0/24

172.16.251.0/24

172.16.250.0/24172.16.252.0/24
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10.0.2.0/24

NewYork2

Paris Paris2
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Chicago

172.16.50.0

10.0.3.0/24
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where area-id specifies the transit area and router-id specifies the ABR with which
the neighbor relationship is to be established. The four timers refer to the time
between hello packets (default is 10 s), the time between LSA retransmissions
(default is 5 s), the time by which LSAs are aged when they transmit this interface
(default is 1 s), and the router dead-interval (default is four times the hello-interval).
The parameter key is a string of characters up to 8 bytes long, keyid is in the range 1–
255, and key is an alphanumeric string up to 16 characters in length.

Remember that a virtual link can be created only between ABRs and can traverse
only one area. Paris2 is an ABR because it has connectivity to areas 1 and 2.
NewYork2 is an ABR with connectivity to areas 0 and 1. Thus, a virtual link may be
configured between Paris2 and NewYork2 traversing area 1:

hostname Paris2
!
interface Loopback1
 ip address 192.168.1.6 255.255.255.255
!
interface Loopback2
 ip address 192.168.2.1 255.255.255.0
!
interface Ethernet0
 ip address 10.0.2.2 255.255.255.0
!
router ospf 10
 network 10.0.0.0 0.255.255.255 area 1
 network 192.168.2.0 0.0.0.255 area 2
 area 1 virtual-link 192.168.1.4

hostname NewYork2
!
interface Loopback0
 ip address 192.168.1.4 255.255.255.255
!
interface Ethernet0
 ip address 172.16.1.2 255.255.255.0
!
interface Serial1
 ip address 10.0.1.2 255.255.255.0
 bandwidth 56
!
router ospf 10
 redistribute static metric 10
 network 172.16.0.0 0.0.255.255 area 0
 network 10.0.0.0 0.255.255.255 area 1
 area 1 virtual-link 192.168.1.6

 The status of the virtual link can be verified as follows:

Paris2#sh ip ospf virtual-link
Virtual Link to router 192.168.1.4 is up
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  Transit area 1, via interface Ethernet0, Cost of using 74
  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 0:00:00
    Adjacency State FULL

NewYork2#show ip ospf virtual-link
Virtual Link OSPF_VL0 to router 192.168.1.6 is up
  Run as demand circuit
  DoNotAge LSA not allowed (Number of DCbitless LSA is 8).
  Transit area 1, via interface Serial1, Cost of using 1795
  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:05
    Adjacency State FULL

VLs cannot traverse stub areas (or totally stubby areas or NSSAs). This is because
VLs belong to area 0, and in order for area 0 to route correctly it must have the com-
plete topology database. Stub areas do not contain the complete topology database.

VLs find one other use in OSPF—they may be used to repair the network in the
event that an area loses its link to the backbone. For example, in Figure 6-4, the loss
of the link R1 ➝ R4 will isolate area 2 from the rest of the network. Until the R1 ➝

R4 link is repaired, a VL may be defined between R4 and R5 to join area 2 to the
backbone.

Demand Circuits
The cost of a demand circuit, such as an ISDN link or a dial-up line, is dependent on
its usage. It is desirable to use a demand circuit only for user traffic and not for over-
head such as OSPF hellos or periodic LSAs. RFC 1793 describes modifications to
OSPF that allow the support of demand circuits. This is an optional capability in
OSPF; a router will set the DC bit in the options field if it supports the capability.
Routers that support the capability will also set the high bit of the LS age field to 1 to
indicate that the LSA should not be aged. This bit is also referred to as the do-not-
age bit. OSPF demand circuits suppress periodic hellos and LSAs, but a topology
change will still activate the demand circuit since LSA updates are required to keep
the LS database accurate. Since any large network is likely to experience frequent
topology changes, it may be prudent to define demand circuits in stub areas. Stub
areas have a limited topology database and hence are shielded from frequent topol-
ogy changes.

If a demand circuit is created in a stub area, all routers in the stub area must support
the DC option—routers that do not support demand circuits will misinterpret the
age field (as the high bit is set). An LSA with the DC bit set to 1 is flooded into an
area only if all LSAs in the database have their DC bits set to 1.
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To configure an interface as a demand circuit, enter the following command in inter-
face configuration mode on one end of the demand circuit:

ip ospf demand-circuit

LSA updates will bring up the demand circuit only if there is a change in topology.

Stub, Totally Stubby, and Not So
Stubby Areas
External LSAs are flooded through the OSPF backbone as well as through all regular
areas. Let’s test this using TraderMary’s network of Figure 6-10. A static route for
192.168.3.0 is defined (pointing to null0) on Chicago and redistributed into OSPF.
Router Chicago then advertises an external LSA with a link state ID of 192.168.3.0:

hostname Chicago
!
router ospf 10
 redistribute static metric 100 metric-type 1 subnets
 network 172.16.0.0 0.0.255.255 area 0
!
ip route 192.168.3.0 255.255.255.0 Null0

The LSA is flooded to all routers in the network. Let’s check Paris as an instance:

Paris#sh ip ospf database external

       OSPF Router with ID (192.168.1.5) (Process ID 10)

           AS External Link States

  Routing Bit Set on this LSA
  LS age: 158
  Options: (No TOS-capability)
  LS Type: AS External Link
  Link State ID: 192.168.3.0 (External Network Number )
  Advertising Router: 192.168.1.3
  LS Seq Number: 80000001
  Checksum: 0x8F67
  Length: 36
  Network Mask: /24
    Metric Type: 1 (Comparable directly to link state metric)
    TOS: 0
    Metric: 100
    Forward Address: 0.0.0.0
    External Route Tag: 0

The route to 192.168.3.0 also appears in the routing table:

Paris#sh ip route
...
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Gateway of last resort is not set
...
O E1 192.168.3.0/24 [110/302] via 10.0.1.2, 00:02:08, Serial1
...

Flooding external LSAs throughout an OSPF network may be a waste of resources.
Stub areas block the flooding of external LSAs, as we will see in the next section.

Stub Areas
Referring to Figure 6-1, the router in area 1 that connects to the RIP network floods
external LSAs into the network. It appears that nothing is gained by importing exter-
nal LSAs into areas 2 and 3, which can point all external routes to their ABRs using
default routes. Representing every external LSA in areas 2 and 3 would be a waste of
resources. With this in mind, OSPF defines stub areas. When an area is defined as a
stub area, all external LSAs are blocked at the ABRs, and, in place, the ABRs source a
single default route into the stub area.

All routers in a stub area must be configured as stub routers. Stub routers form adja-
cencies only with other stub routers and do not propagate external LSAs. (How does
a router know if its neighbor is a stub router? The E bit in the hello packet is turned
to zero if the router is a stub router).

Area 1 in TraderMary’s network can be made stubby via the following configuration
changes:

hostname NewYork2
...
router ospf 10
network 172.16.0.0 0.0.255.255 area 0
network 10.0.0.0 0.255.255.255 area 1
area 1 stub

hostname Paris
...
router ospf 10
 redistribute rip
 network 10.0.0.0 0.255.255.255 area 1
 area 1 stub

The routing table for Paris now shows a default route pointing to the ABR (New-
York2) but does not show the external route to 192.168.3.0 (sourced by Chicago):

Paris#sh ip route
...
Gateway of last resort is 10.0.1.2 to network 0.0.0.0
...
O*IA 0.0.0.0/0 [110/65] via 10.0.1.2, 00:00:35, Serial1
O IA 172.16.0.0/16 [110/74] via 10.0.1.2, 1d23h, Serial1
...
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After making this change, however, we will find that the network has lost connectiv-
ity to 10.0.3.0, which represents the RIP external network connecting to router
Paris. The reason for this is rather obvious: stub areas do not propagate external
LSAs. In other words, an ASBR cannot belong to a stub area.

The other major restriction with stub areas is that they cannot support virtual links,
because they don’t have the complete routing table. An area that needs to support a
VL cannot be a stub area.

Any area that does not contain an ASBR (i.e., does not support a connection to an
external network) and is not a candidate for supporting a virtual link should be made
a stub area.

There is one major disadvantage to configuring an area as a stub area. When multi-
ple ABRs source a default route, the routers in the stub area may fail to recognize the
shortest path to the destination network. This may help determine whether you
choose to implement an area as a regular area or as a stub area.

Totally Stubby Areas
Totally stubby areas carry the concept of stub areas further by blocking all summary
LSAs in addition to external LSAs.

In the configuration in the previous section, where Paris is configured as a stub area,
the LS database for Paris will not show external LSAs but will still show all summary
LSAs, so Paris’s routing table still shows the summarized inter-area route to 172.16.
0.0/16. If NewYork2 did not summarize the 172.16.0.0 subnets, Paris would show all
six 172.16.0.0 subnets: 172.16.1.0/24, 172.16.50.0/24, 172.16.100.0/24, 172.16.250.
0/24, 172.16.251.0/24, and 172.16.252.0/24. Totally stubby areas, unlike stub areas,
replace all inter-area routes (in addition to external routes) with a default route.

Area 1 can be configured as a totally stubby area by modifying the configuration of
NewYork2 as follows. No change is required to router Paris.

hostname NewYork2
!
router ospf 10
 redistribute static metric 10
 network 172.16.0.0 0.0.255.255 area 0
 network 10.0.0.0 0.255.255.255 area 1
 area 1 stub no-summary

Paris’s routing table now does not contain any IA routes (other than the default
sourced by NewYork2):

Paris#sh ip route
...
Gateway of last resort is 10.0.1.2 to network 0.0.0.0

     10.0.0.0/24 is subnetted, 2 subnets
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C       10.0.2.0 is directly connected, Ethernet0
C       10.0.1.0 is directly connected, Serial1
     192.168.1.0/32 is subnetted, 1 subnets
C       192.168.1.5 is directly connected, Loopback0
O*IA 0.0.0.0/0 [110/65] via 10.0.1.2, 00:00:23, Serial1

Totally stubby areas have the same restrictions as stub areas—no ASBRs (no exter-
nal LSAs) and no virtual links. Also, like stub areas, totally stubby areas see all ABRs
as equidistant to all destinations that match the default route. When multiple ABRs
source a default route, the routers in the totally stubby area may not recognize the
shortest path to the destination network.

NSSAs
What if a stub area needs to learn routes from another routing protocol? For exam-
ple, Paris—in area 1—may need to learn some RIP routes from a legacy network.
NSSAs—as specified in RFC 1587—allow external routes to be imported into an
area without losing the character of a stub area (i.e., without importing any external
routes from the backbone area).

NSSAs import external routes through an ASBR in type 7 LSAs. Type 7 LSAs are
flooded within the NSSA. Type 7 LSAs may optionally be flooded into the entire
OSPF domain as a type 5 LSAs by the ABR(s) or be blocked at the ABR(s). As with
any stub area, NSSAs do not import type 5 LSAs from the ABR.

The option (of whether or not to translate a type 7 LSA into a type 5 LSA at the
NSSA ABR) is indicated in the P bit (in the options field) of the type 7 LSA. If this bit
is set to 1, the LSA is translated by the ABR into a type 5 LSA to be flooded through-
out the OSPF domain. If this bit is set to 0, the LSA is not advertised outside the
NSSA area.

All routers in the NSSA must be configured with the nssa keyword (line 48):

hostname NewYork2
!
router ospf 10
 redistribute static metric 10
 network 172.16.0.0 0.0.255.255 area 0
 network 10.0.0.0 0.255.255.255 area 1

48 area 1 nssa

There are three optional keywords for NSSA configuration:

area 1 nssa ?
49 default-information-originate
50   no-redistribution
51 no-summary

When configured on the NSSA ABR, the default-information-originate keyword (line
49) causes the ABR to source a default route into the NSSA.

,ch06.22353  Page 147  Wednesday, January 9, 2002  12:25 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: Open Shortest Path First (OSPF)

The no-redistribution keyword (line 50) is useful on NSSA ABRs that are also ASBRs.
The no-redistribution keyword stops the redistribution of external LSAs (from the
other AS) into the NSSA.

The no-summary keyword (line 51) gives you another oxymoron—it makes the
NSSA a totally stubby NSSA, so no type 3 or 4 LSAs are sent into the area.

NSSAs are thus a variant of stub areas with one less restriction—external connec-
tions are allowed. In all other respects, NSSAs are just stub areas.

NBMA Networks
Remember how a DR is elected—basic to DR election is the broadcast or multicast
capability of the underlying network. NBMA networks such as Frame Relay or X.25
have no inherent broadcast or multicast capability, but they can simulate a broad-
cast network if fully meshed. However, a fully meshed network with n nodes
requires n × (n–1)/2 virtual circuits. The cost of n × (n–1)/2 virtual circuits may be
unpalatable, and besides, the failure of a single virtual circuit would disrupt this full
mesh.

One option around a fully meshed network is to (statically) configure the DR for the
network. The DR will then advertise the NBMA network as a multi-access network
using a single IP subnet in a network LSA.

Another option is to configure the network as a set of point-to-point networks. This
is simpler to configure, manage, and understand. However, each point-to-point net-
work wastes an IP subnet. So what? You can use VLSM in OSPF, with a two-bit sub-
net for each point-to-point network. That is a good argument. However, the trade-
off is the processing overhead of an LSA for each point-to-point network.

Let’s look at examples of each of these options.

NewYork2 is set up with a serial interface to support Frame Relay PVCs to offices in
Miami and New Orleans, as shown in Figure 6-12.

Figure 6-12. TraderMary’s Frame Relay network

192.168.10.2

192.168.10.3 192.168.10.1

DLCI 100 DLCI 200

Miami NewOrleans

NewYork2
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The command ip ospf network broadcast (lines 52, 53, and 55) makes OSPF believe
that the attached network is multi-access, like an Ethernet segment. However, since
the network has no true broadcast capability, the priorities on NewYork2, Miami,
and NewOrleans must be specified to force NewYork2 to be the DR on the NBMA
network. NewYork2 will become the DR while the state of the interface on Miami
and NewOrleans will be DRother (implying that the interface has not been elected
the DR). NewYork2 uses the default priority of 1. Miami and NewOrleans are config-
ured with a priority value of 0 (lines 54 and 56), which makes them ineligible for DR
election.

hostname NewYork2
!
interface Serial3
 ip address 192.168.10.2 255.255.255.0
 encapsulation frame-relay

52 ip ospf network broadcast
 ip ospf hello-interval 30
 keepalive 15
 frame-relay lmi-type ansi
!
router ospf 10
network 192.168.10.0 0.0.0.255 area 0

hostname Miami
!
interface Serial0
 no ip address
 encapsulation frame-relay
 keepalive 15
 frame-relay lmi-type ansi
!
interface Serial0.1 point-to-point
 ip address 192.168.10.3 255.255.255.0

53 ip ospf network broadcast
 ip ospf hello-interval 30

54 ip ospf priority 0
 frame-relay interface-dlci 100
!
router ospf 10
 network 192.168.10.0 0.0.0.255 area 0

hostname NewOrleans
!
interface Serial0
 no ip address
 encapsulation frame-relay
 bandwidth 1544
 keepalive 15
 lat enabled
 frame-relay lmi-type ansi

,ch06.22353  Page 149  Wednesday, January 9, 2002  12:25 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 6: Open Shortest Path First (OSPF)

!
interface Serial0.1 point-to-point
 ip address 192.168.10.1 255.255.255.0

55 ip ospf network broadcast
 ip ospf hello-interval 30

56 ip ospf priority 0
 frame-relay interface-dlci 200
!
router ospf 10
network 192.168.10.0 0.0.0.255 area 0

IOS releases prior to 10.0 did not support the command ip ospf network broadcast
and required the static configuration of neighbors and their priorities:

neighbor ip-address [priority number] [poll-interval seconds]

where ip-address is the IP address of the neighbor, number is the neighbor’s priority
(0–255), and seconds is the dead router poll interval.

The NBMA network may be modeled as a collection of point-to-point networks. Con-
figure the routers the same way, but configure the interfaces as point-to-multipoint
instead of broadcast and do not specify the OSPF priority, since a point-to-multipoint
network does not elect a DR (the hello protocol is used to find neighbors):

ip ospf network point-to-multipoint

The point-to-multipoint network consumes only one IP subnet but creates multiple
host routes.

You can also use subinterfaces to model the NBMA network as a collection of point-
to-point networks. Routers at the ends of a point-to-point subinterface always form
adjacency, much like routers at the ends of a serial interface. No DR election takes
place. Since OSPF supports VLSM, one cannot argue that this will waste IP address
space. However, using point-to-point subinterfaces in lieu of a single broadcast net-
work generates LSAs for every subinterface, which adds to the processing overhead.

OSPF Design Heuristics
The following sections provide a partial and ad hoc checklist to use when executing an
OSPF design. As with any other discipline, the engineer will do best if he spends time
understanding the details of OSPF and then designs his network as simply as possible.

OSPF Hierarchy
Building a large, unstructured OSPF network is courting disaster. The design of the
OSPF network must be clearly defined: all changes in the OSPF environment must
bear the imprint of the OSPF architecture. For example, when adding a new router,
the network engineer must answer the following questions:
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• Will the router be an area router, a stub router, or an ABR?

• If the router is an ABR or an ASBR, what routes should the router summarize?

• What impact would the failure of the router have on OSPF routing?

• Will this router be a DR/BDR?

• How will this router affect the performance of other OSPF routers?

IP Addressing
IP addresses must be allocated in blocks that allow route summarization at ABRs.
The address blocks must take into account the number of users in the area, leaving
room for growth. VLSM should be considered when planning IP address allocation.

Router ID
Use loopback addresses to assign router IDs. Choose the router IDs carefully—the
router ID will impact DR/BDR election on all attached multi-access networks. Keep
handy a list of router IDs and router names. This will make it easier to troubleshoot
the network.

DR/BDR
Routers with low processor/memory/bandwidth resources should be made DR-ineli-
gible. A router that becomes the DR/BDR on multiple networks may see high mem-
ory/CPU utilization.

Backbone Area
Since all inter-area traffic will traverse the backbone, ensure that there is adequate
bandwidth on the backbone links. The backbone area will typically be composed of
the highest-bandwidth links in the network, with multiple paths between routers.

The backbone should have multiple paths between any pair of nonbackbone areas. A
partitioned backbone will disrupt inter-area traffic—ensure that there is adequate
redundancy in the backbone.

Use the backbone solely for inter-area traffic—do not place users or servers on the
backbone.

Number of Routers in an Area
The maximum number of routers in an area depends on a number of factors—num-
ber of networks, router CPU, router memory, etc.—but Cisco documentation sug-
gests that between 40 and 50 is a reasonable number. However, it is not uncommon
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to have a couple of hundred routers in an area, although problems such as flaky links
may overload the CPU of the routers in the area. As a corollary of the previous argu-
ment, if you think that the total number of routers in your network will not exceed
50, all the routers can be in area 0.

Number of Neighbors
If the number of routers on a multi-access network exceeds 12 to 15 and the DR/
BDR is having performance problems, look into a higher-horsepower router for the
DR/BDR. Note that having up to 50 routers on a broadcast network is not uncom-
mon. The total number of neighbors on all networks should not exceed 50 or so.

Route Summarization
To summarize the routes:

• Allocate address blocks for each area based on bit boundaries. As areas grow,
keep in mind that the area may ultimately need to be split into two. If possible,
allocate addresses within an area in contiguous blocks to allow summarization at
the time of the split.

• Summarize into the backbone at the ABR (as opposed to summarizing into the
nonbackbone area). This reduces the sizes of the LS database in the backbone
area and the LS databases in the nonbackbone areas.

• Route summarization has the advantage that a route-flap in a subnet (that has
been summarized) does not trigger an LSA to be flooded, reducing the OSPF
processing overhead.

• If an area has multiple ABRs and one ABR announces more specific routes, all
the traffic will flow to that router. This is good if this is the desired effect. Other-
wise, if you intend to use all ABRs equally, all ABRs must have identical sum-
mary statements.

• Summarize external routes at the ASBR.

• Golden rule: summarize, summarize, summarize.

VLSM
OSPF LSA records carry subnet masks; the use of VLSM is encouraged to conserve
the available IP address space.

Stub Areas
An area with only one ABR is an ideal candidate for a stub area. Changing the area
into a stub area will reduce the size of the LS database without the loss of any useful
routing information. Remember that stub areas cannot support VLs or type 5 LSAs.
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Virtual Links
Design the network so that virtual links are not required. VLs should be used only as
emergency fixes, not as a part of the design.

OSPF Timers
In an all-Cisco network environment, the OSPF timers (hello-interval, dead-interval,
etc.) can be left to their default values; in a multivendor environment, however, the
network engineer may need to adjust the timers to make sure they match.

Troubleshooting OSPF
OSPF is a complex organism and hence can be difficult to troubleshoot. However,
since the operation of OSPF has been described in great detail by the standards bod-
ies, the network engineer would do well to become familiar with its internal work-
ings. The following sections describe some of the more common OSPF troubles.

OSPF Area IDs
When you’re using multiple network area statements under the OSPF configuration,
the order of the statements is critical. Check that the networks have been assigned
the desired area IDs by checking the output of the show ip ospf interface command.

OSPF Does Not Start
The OSPF process cannot start on a router if a router ID cannot be established.
Check the output of show ip ospf to see if a router ID has been established. If a router
ID has not been established, check to see if the router has an active interface (prefera-
bly a loopback interface) with an IP address.

Verifying Neighbor Relationships
Once a router has been able to start OSPF, it will establish an interface data struc-
ture for each interface configured to run OSPF. Check the output of show ip ospf
interface to ensure that OSPF is active on the intended interfaces. If OSPF is active,
check for the parameters described in the section “How OSPF Works.” Many OSPF
problems may be traced to an incorrectly configured interface.

NewYork#sh ip ospf interface
...
Ethernet0 is up, line protocol is up

57 Internet Address 172.16.1.1/24, Area 0
58   Process ID 10, Router ID 172.16.251.1, Network Type BROADCAST, Cost: 10

  Transmit Delay is 1 sec, State DR, Priority 1
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  Designated Router (ID) 172.16.251.1, Interface address 172.16.1.1
  No backup designated router on this network
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:02
  Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
Serial0 is up, line protocol is up

59 Internet Address 172.16.250.1/24, Area 0
60   Process ID 10, Router ID 172.16.251.1, Network Type POINT_TO_POINT, Cost: 64

  Transmit Delay is 1 sec, State POINT_TO_POINT,
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:01
  Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 69.1.1.1
  Suppress hello for 0 neighbor(s)

Remember that two routers will not form a neighbor relationship unless the parame-
ters specified in the hello protocol match.

NewYork#show ip ospf neighbor

Neighbor ID     Pri   State           Dead Time   Address         Interface
192.168.1.2      1   FULL/  -        00:00:31    172.16.250.2    Serial0
192.168.1.3      1   FULL/  -        00:00:32    172.16.251.2    Serial1

If two routers have not been able to establish a neighbor relationship and both are
active on the multi-access network (i.e., they are able to ping each other), it is likely
that their hello parameters do not match. Use the debug ip ospf adjacency command
to get details on hello parameter mismatches.

Route Summarization
If an area has multiple ABRs and one ABR announces more specific routes than the
others, all the traffic will flow to that router. This is good if this is the desired effect.
Otherwise, if you intend to use all ABRs equally, all ABRs must have identical sum-
mary statements.

Overloaded Routers
The design engineer should be familiar with OSPF—ABRs do more work than inter-
nal routers, and DRs/BDRs do more work than other routers. A router that becomes
the DR/BDR on multiple networks does even more work. Routers in stub areas and
NSSA areas do less work.

SPF Overrun
To check the number of times the SPF algorithm has executed, use the command
show ip ospf. A flapping interface may result in frequent executions of the SPF algo-
rithm that, in turn, may take CPU time away from other critical router processes.

,ch06.22353  Page 154  Wednesday, January 9, 2002  12:25 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting OSPF | 155

NewYork#sh ip ospf
61 Routing Process "ospf 10" with ID 172.16.251.1

 Supports only single TOS(TOS0) routes
62 SPF schedule delay 5 secs, Hold time between two SPFs 10 secs

 Number of DoNotAge external LSA 0
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
    Area BACKBONE(0)
    Number of interfaces in this area is 3
    Area has no authentication

63 SPF algorithm executed 24 times
    Area ranges are
    Link State Update Interval is 00:30:00 and due in 00:11:48
    Link State Age Interval is 00:20:00 and due in 00:11:48
    Number of DCbitless LSA 1
    Number of indication LSA 0
    Number of DoNotAge LSA 0

In this example, the SPF algorithm has been executed 24 times since the router was
rebooted (line 63). Note that SPF is scheduled to delay its execution for 5 seconds
after the receipt of an LSA update and the minimum time between SPF executions is
set to 10 seconds (line 61). This keeps SPF from using up all the processor resources
in the event that an interface is flapping.

To change these timers, use the following command under the OSPF configuration:

timers spf <schedule delay in seconds> <hold-time in seconds>

Using the LS Database
Since the LS database is the input to the SPF algorithm, you can analyze it to trouble-
shoot missing routes. Analyzing the LS database can be particularly useful when
you’re working with stub areas, totally stubby areas, or NSSAs, since these areas
block certain LSAs.

The output of show ip ospf database database-summary is a useful indicator of the
size of the LS database and its components. The command show ip ospf database
shows the header information from each LSA.

Network Logs
The output of the command show log contains useful historical data and may be
used to analyze a network outage.

Debug Commands
The most useful debug commands are debug ip ospf adjacency and debug ip ospf
events. These commands are useful in troubleshooting neighbor relationships. Other
debug commands available are debug ip ospf flood, debug ip ospf lsa-generation, debug
ip ospf packet, debug ip ospf retransmission, debug ip ospf spf, and debug ip ospf tree.

,ch06.22353  Page 155  Wednesday, January 9, 2002  12:25 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Open Shortest Path First (OSPF)

Summing Up
OSPF can support very large networks—the OSPF hierarchy allows almost unlim-
ited growth because new areas can be added to the network without impacting other
areas. Dijkstra’s SPF algorithm leads to radical improvements in convergence time,
and OSPF does not suffer from the routing loop issues that DV protocols manifest.

OSPF exhibits all the advantages of a classless routing protocol. Variable Length Sub-
net Masks permit efficient use of IP addresses. Discontiguous networks can be sup-
ported since LSAs carry subnet mask information, and routes can be summarized at
arbitrary bit boundaries. Summarization reduces routing protocol overhead and sim-
plifies network management.

Furthermore, OSPF does not tie up network bandwidth and CPU resources in peri-
odic routing updates. Only small hello packets are transmitted on a regular basis.

These OSPF benefits come at a price:

• OSPF is a complex protocol requiring a structured topology. A haphazard envi-
ronment, without a plan for network addresses, route summarization, LS data-
base sizes, and router performance, will yield a real mess.

• A highly trained staff is required to engineer and operate a large OSPF network.

• OSPF maintains an LS database that requires sizeable memory, and the SPF algo-
rithm can hog CPU resources if the size of the topology database has grown out
of bounds. Splitting an area to reduce the size of the LS database may not be
straightforward, depending on the topology of the area.

• OSPF assumes a hierarchical network topology—migrating a network from
another protocol to OSPF requires extensive planning.
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Chapter 7
In this chapter:
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• Route-Filtering
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• Troubleshooting BGP
• Summing Up

CHAPTER 7

Border Gateway
Protocol 4 (BGP-4)

My first passport, issued by the Government of India in 1981, bore a curious stamp
in bold red ink on one of its first pages: “NOT VALID FOR TRAVEL IN THE
REPUBLIC OF SOUTH AFRICA.”

Toward the end of the 1990s, I was traveling through Europe with a U.S. passport.
Upon landing at Schiphol Airport in Amsterdam, I was stopped by an officer and led
to a small room off to the side. There, I was made to remove my left shoe and sock.
The officer checked my sock carefully before letting me go. Once I had cleared Dutch
customs, I freely roamed up and down that beautiful country, walking barefoot over
grass and flowers, past windmills.

Nations have policies concerning who can pass through their borders. So, India did
not permit its citizens to grace the Republic of South Africa during its reign of apart-
heid. And the Dutch bar entry into their country if your left sock is not fresh and
clean.

What does all this have to do with internetworking, or BGP-4, for that matter? Each
network is an autonomous system (AS) managed by a single technical entity and
under one political administration. ASs are akin to nation states. Much as nation
states apply their immigration policies at international airports, seaports, and land
border points, the Internet is composed of ASs that use Border Gateway Protocol 4
(BGP-4) to implement inter-AS IP routing policies.

What is a routing policy? Consider the topology in Figure 7-1. TraderMary has two
links to the Internet: to ISP-A and ISP-B. TraderMary may implement a policy that all
traffic should exit and enter their network via ISP-A and that the link to ISP-B should
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be used only for backup. ISP-Global connects to both ISP-US and ISP-Finland. ISP-
US and ISP-Finland may enter into an arrangement with ISP-Global to carry transit
traffic for them across the Atlantic. All three ISPs would need to reflect this arrange-
ment in their routing policies.

The interior gateway protocols (IGPs) we discussed in earlier chapters—RIP, IGRP,
EIGRP, and OSPF—relied on a single composite metric to choose the best route to a
destination. BGP-4 implements routing policies based on a new paradigm—a set of
attributes accompanying each route are used to pick the “shortest” path across multi-
ple ASs, while also satisfying one or more routing policies.

RIP, IGRP, and OSPF are examples of IGPs. IGPs are designed for intra-AS routing.
BGP-4 is an exterior gateway protocol (EGP), designed for inter-AS routing.

BGP-4 may be used to set up routing between any two ASs. However, the most inter-
esting and complex use of BGP-4 is in the Internet: to connect client networks (such
as TraderMary) to their ISPs and ISPs to other ISPs. This chapter will focus on the
use of BGP-4 in connecting clients, such as TraderMary, to their ISPs.

BGP was first defined in RFC 1105 (1989) and was updated to BGP-2 in RFC 1163
(1990), to BGP-3 in RFC 1267 (1991), and then to BGP-4 in RFC 1771 (1995). BGP-4
is the first version that handles aggregation of prefixes along Classless Inter-Domain
Routing (CIDR) lines, as described in the next section. BGP-4 may live longer than its
forerunners because it is capable of supporting new attributes to keep up with an
evolving Internet.

Background
An AS in the Internet must be identifiable via a unique, registered AS number and
one or more unique, registered IP addresses. IP addresses in the Internet are not
carved along the classful A, B, and C boundaries, but instead use the concepts of
Classless Inter-Domain Routing (CIDR).

This section describes how an AS number and an IP block may be acquired and the
concepts behind CIDR. I begin with a discussion of the various types of ASs.

AS Types
An AS is a network managed by a single technical entity and under one political
administration. Figure 7-1 shows nine different ASs connected to each other in a
small mesh that may be seen as a microcosm of the Internet. Architecturally, these
ASs may be quite similar. Functionally, however, all ASs are not equal. TraderMary,
BrotherX, and SisterY are clients of the ISPs to which they connect. These ASs do not
carry transit traffic, implying that if you pick any IP packet from these networks, its
source or destination IP address will be internal to the AS. These ASs are referred to
as stub ASs.
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Local ISPs or regional ISPs provide transit service to stub ASs, implying that local/
regional ISPs carry transit traffic for the stub AS to other networks. The local and
regional ISPs, in turn, are clients of national ISPs and transit ISPs, which provide
transit service over wider geographies.

The moment I describe these rules, I must admit that the rules are meant to be bro-
ken. For example, it is common for larger stub ASs to bypass local/regional ISPs and
connect directly to national/transit ISPs.

Stub ASs may be further classified to describe their connectivity to the Internet, as
follows. BrotherX’s network has a single connection to ISP-A. BrotherX’s network
may be described as singly-homed. TraderMary may be described as multi-homed,
since it connects to ISP-A and ISP-B.

Multi-homing to the same ISP guards against the failure of a single link but not
against failures in the ISP’s network. Multi-homing to different ISPs also guards
against failures in an ISP’s network.

Gluing AS to AS… Physical Connectivity in the Internet
At a physical level, stub ASs typically connect to an ISP via a serial link. TraderMary
may lease a T-3 line to ISP-A and a T-1 line to ISP-B; BrotherX may lease a 56-kbps
circuit to ISP-A.

ISPs establish connections with each other at higher speeds. The NSF originally
helped establish network access points (NAPs) that provided the infrastructure over
which various ASs could exchange routes and traffic. The original NAPs were run by
Sprint (Pennauken, NJ), PacBell (San Francisco), Ameritech (Chicago), and MFS
(Washington, D.C. and San Jose). Now, there are dozens of “Internet Exchanges”
where ISPs and other ASs may connect. Several exchange points maintain excellent

Figure 7-1. An attempt to define structure in the Internet
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web sites with details on their services. For example, the Ameritech (Chicago)
exchange (http://www.aads.net/main.html) uses ATM to provide high-speed connec-
tivity. PAIX (http://www.paix.net) is located in Palo Alto, CA. The Commercial Inter-
net Exchange (http://www.cix.net) is a not-for-profit organization that provides
various interconnection options at different prices. In addition to the Exchanges,
ISPs establish private peering arrangements in which two ASs set up a private net-
work to exchange routes and traffic.

Internet Registries: IP Addresses and AS Numbers
Each device in the Internet must be identified by a unique IP address registered with
one of the Internet Registries. ARIN (http://www.arin.net) registers IP addresses for
the Americas, the Caribbean, and parts of Africa; RIPE NCC (http://www.ripe.net)
takes care of the same tasks for Europe, the Middle East, and other parts of Africa;
and APNIC (http://www.apnic.net) is responsible for Asia and the Pacific Region.

In the early to mid 1990s, it was recognized that the Internet was facing two critical
issues. First, the available IP address space, especially that of Class B numbers, was
rapidly depleting. The Class A address space was too big for most users and the
Class C address space was too small. Second, just as more and more addresses were
being allocated to users and organizations, the size of the Internet routing table was
growing more rapidly than router processing power.

RFCs 1517, 1518, 1519, and 1520 proposed a solution to these twin problems:
Classless Inter-Domain Routing (CIDR).

Classless Inter-Domain Routing (CIDR)
CIDR was revolutionary. To begin with, CIDR did away with fixed Class A, B, and C
addresses. This takes a little retraining for us old-timers who grew up on classful
addressing. We were taught that for a network of 1,000 hosts you would need a
Class B address, Class A being too big and Class C being too small. However, since
1,000 hosts can be addressed with 10 bits, any network number with 10 bits in the
host field and 32 – 10 = 22 bits in the network field would suffice. In CIDR par-
lance, such a network is described as “/22,” implying that there are 22 bits in the net-
work field. These 22 bits can be derived from any of the address ranges that were
classically described as Class A, B, and C. Thus, 20.1.4.0/22, 150.100.252.0/22, and
192.168.68.0/22 are all valid CIDR blocks with 22 bits in the network field. The net-
work administrator may then subnet the 10 bits in the host field as appropriate, just
as she would if assigned a classful IP address. By allocating addresses in blocks that
match user requirements, CIDR reduces the rate at which the available IP address
pool is depleting.

CIDR goes a step further to reduce the size of IP routing tables. The CIDR schema
proposes that clients derive IP addresses from their connected ISP rather than directly
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from an Internet Registry. In other words, ISPs derive address blocks from Internet
Registries and carve them for their clients. This address-allocation schema is described
as topological since clients derive IP addresses based on their physical connectivity.
The advantage of this schema is that each ISP needs to advertise only one aggregate
route for all its connected clients, rather than individual prefixes for each client.

All this deserves an example. Consider ISP-X. Let’s say that ISP-X owns the IP
address block 180.180.0.0/16. Uncle-P connects to ISP-X and requires 8 bits to
address his hosts. In other words, the client requires a “/24”. ISP-X will assign, say,
180.180.1.0/24 to Uncle-P. Then, the next day, Uncle-Q connects to ISP-X and also
requires 8 bits to address his hosts. ISP-X will assign, say, 180.180.2.0/24 to Uncle-Q.
ISP-X’s own routing tables hold detailed routes for all subnets in the 180.180.0.0/16
block, but ISP-X advertises only one prefix—180.180.0.0/16—to all other ASs. In
other words, ISP-X issues an aggregate 180.180.0.0/16 to other ISPs. This is illus-
trated in Figure 7-2.

One problem with this method of address assignment is that when Uncle-P decides
to use a different ISP—say, ISP-Y—Uncle-P has to return the 180.180.1.0 block to
ISP-X and readdress all his devices from a new block of addresses procured from
ISP-Y. This plan forces Uncle-P to renumber his IP addresses when he changes his
ISP.

Multi-homing to different ISPs also creates problems with this schema. Uncle-Q has
the address block 180.180.1.0/24 from ISP-X, but he also connects to ISP-Z. ISP-Z
would have to carry BrotherX’s specific route, 180.180.1.0/24. In other words, since
ISP-Z advertises BrotherX’s prefix, the routing tables in the attached ASs will see
both the aggregate 180.180.0.0/16 from ISP-X and 180.180.1.0 from ISP-A. How-
ever, addresses may still be aggregated at a higher level in the network, based on
address hierarchy.

Figure 7-2. Route aggregation using CIDR
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Route aggregation using CIDR is hierarchical, since address blocks have been allo-
cated by geography. Ideally, an ISP in Europe should see an aggregate for all CIDR-
derived routes in Japan and another aggregate for all CIDR-derived routes in Australia.

Prior to IOS Release 12.0, a router assumed that all routing information it received
was classful. This implies that the router assumed that all networks had IP addresses
that were assigned along classful lines. The following command turns off classful
behavior in IOS releases earlier than 12.0. Releases 12.0 and later assume classless
behavior by default.

ip classless

Further, in classful behavior, the use of subnet zero creates confusion in the IP rout-
ing table. If 180.180.0.0 were to be subnetted with a 24-bit mask, the subnet zero
would be 180.180.0.0/24. This subnet is easily confused with the entire address
space 180.180.0.0/16 if there are no masks in routing updates. Hence, with classful
routing protocols, it was common for the IOS to prevent the configuration of the
subnet zero on any user interface. The following command in global configuration
mode allows the configuration of subnet zero:

ip subnet-zero

Acquiring an IP Address
Every organization attached to the Internet must have a unique IP address in order
for it to have an unambiguous path in the Internet. A stub AS may derive an IP
address block from its ISP using the CIDR schema (as Uncle-P did from ISP-X) or it
may apply for an IP address block directly from an Internet Registry.

CIDR-derived addresses reduce routing-table overhead in the Internet. Internet Reg-
istry–derived addresses have the advantage of being portable: if the stub AS moves to
a different ISP, there is no need to renumber IP devices.

All devices in a network typically do not access the Internet directly. User worksta-
tions and servers employ a proxy device (such as a firewall) that has one interface on
an internal network and another on the Internet. The proxy device originates a TCP
session on behalf of the user. The proxy must have a registered IP address on its
Internet interface. The internal addresses are not visible on the Internet and so do
not need to be registered. The IP addresses we have seen thus far on TraderMary’s
network have come from the pool of private addresses reserved by the Internet
Assigned Numbers Authority (IANA). This pool of private addresses is defined by
the following ranges (see RFC 1918 for further details):

10.0.0.0    - 10.255.255.255  (10/8 prefix)
172.16.0.0  - 172.31.255.255  (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

RFC 1918 sets these addresses aside for use by any organization for numbering its
devices. These prefixes cannot be advertised into the (public) Internet.
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In the example we’ll look at later, TraderMary uses the registered Class C addresses
192.200.200.0/24 and 160.160.0.0/16 to connect to ISP-A.

Acquiring an AS Number
Each AS running BGP-4 is associated with an AS number. This AS number must be
unique and unambiguous for BGP-4 to operate correctly.

Each AS in the Internet should be identified by an AS number that is registered with
one of the Internet Registries. ARIN registers AS numbers for the Americas, the Car-
ibbean, and parts of Africa; RIPE NCC takes care of the same tasks for Europe, the
Middle East, and other parts of Africa; and APNIC does the same for Asia and the
Pacific Region.

Every AS in the Internet must have a unique AS number. However, a stub AS that is
singly-homed to an ISP may “borrow” its ISP’s AS number or use one of the AS num-
bers reserved for private use by IANA. The range of private AS numbers is 64,512
through 65,535.

Getting BGP Running
Starting BGP on a router is similar to starting any other routing process, such as RIP
or IGRP. The command to start BGP is:

router bgp AutonomousSystemNumber

where AutonomousSystemNumber is the AS number of the local router.

This is where the similarity with other routing protocols stops. When configured
under BGP, the following network statement:

network IPAddress [mask A.B.C.D]

specifies the prefix to announce to BGP peers. Compare this with the configuration
of IGPs, where the network-number statement has very different semantics: it speci-
fies the attached networks on which to discover neighbors or peers.

Speaking of peers, there are no mechanisms in BGP-4 to automatically discover
neighbors. BGP-4 requires that peers must be specified by IP address. The command
to specify a peer is:

neighbor IPAddress remote-as AutonomousSystemNumber

where IPAddress specifies the peer with an AS number of AutonomousSystemNumber.

Let’s look at TraderMary’s configuration for its connection to ISP-A, as shown in
Figure 7-3. Line 1 in the following code block starts BGP with a local AS number of
100. Line 3 specifies that the prefix 192.200.200.0/26 be announced to TrdrMary-1’s
BGP peers. Line 4 specifies that the network number 30.0.0.0 be announced as well,
with an 8-bit mask (the natural classful mask is used when a mask is not specified).
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Line 5 specifies that all static routes should also be announced. (There are two static
routes known to TrdrMary-1, as shown in lines 7 and 8). Line 6 specifies that
TrdrMary-1’s BGP peer (ISP-A) has an IP address of 192.100.100.254 and an AS
number of 192. This is the only neighbor statement, so in this example TrdrMary-1
has only one peer: ISP-A.

Here’s what the configuration looks like:

hostname TrdrMary-1
!
interface Loopback0
 ip address 192.168.1.10 255.255.255.255
!
interface Ethernet0
 description * External Network *
 ip address 192.200.200.1 255.255.255.192
!
interface Ethernet1
 ip address 172.16.1.3 255.255.255.0
!
interface Serial1
 description * to ISP-A *
 ip address 192.100.100.253 255.255.255.252
...

1 router bgp 100
2  no synchronization
3  network 192.200.200.0 mask 255.255.255.192

Figure 7-3. TraderMary’s connection to ISP-A
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4  network 30.0.0.0
5  redistribute static
6  neighbor 192.100.100.254 remote-as 192

!
ip classless

7 ip route 160.160.1.0 255.255.255.0 Ethernet1
8 ip route 192.168.3.0 255.255.255.0 Ethernet1

The configuration on ISP-A-1 is very similar. Line 9 starts BGP on ISP-A-1 with the
AS number 192. Line 10 specifies the default route being announced to TraderMary.
Line 11 specifies that ISP-A-1’s BGP peer (TrdrMary-1) has an IP address of 192.100.
100.253 and an AS number of 100:

hostname ISP-A-1
!
interface Loopback9
 ip address 98.2.0.1 255.255.0.0
!
interface Serial0
 ip address 192.100.100.254 255.255.255.252
!

9 router bgp 192
10  network 0.0.0.0
11  neighbor 192.100.100.253 remote-as 100

!
no ip classless

12 ip route 0.0.0.0 0.0.0.0 Null0

The first question to ask after both peers have been configured is whether the peers
see each other. The following command checks the status of the neighbor relation-
ship between TrdrMary-1 and ISP-A-1:

TrdrMary-1#sh ip bgp neighbor 192.100.100.254
13 BGP neighbor is 192.100.100.254,  remote AS 192, external link

 Index 1, Offset 0, Mask 0x2
14 BGP version 4, remote router ID 98.2.0.1
15 BGP state = Established, table version = 5, up for 00:00:42

...

Line 15 indicates that the BGP state is Established, which implies that the peers see
each other.

The configuration in lines 3, 4, and 5 suggests that TrdrMary-1 intends to announce
the following prefixes to ISP-A-1:

192.200.200.0/26
30.0.0.0/8
160.160.0.0/16
192.168.3.0/24

and the configuration in line 10 suggests that ISP-A-1 intends to announce the fol-
lowing prefix to TrdrMary-1:

0.0.0.0/0
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Let’s check the routing tables for these prefixes:

TrdrMary-1#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

Gateway of last resort is 192.100.100.254 to network 0.0.0.0

     192.200.200.0/26 is subnetted, 1 subnets
C       192.200.200.0 is directly connected, Ethernet0
     172.16.0.0/24 is subnetted, 1 subnets
C       172.16.1.0 is directly connected, Ethernet1
     192.168.1.0/32 is subnetted, 1 subnets
C       192.168.1.10 is directly connected, Loopback0
S    192.168.3.0/24 is directly connected, Null0
     192.100.100.0/30 is subnetted, 1 subnets
C       192.100.100.252 is directly connected, Serial1
     160.160.0.0/24 is subnetted, 1 subnets
S       160.160.1.0 is directly connected, Ethernet1
B*   0.0.0.0/0 [20/0] via 192.100.100.254, 00:00:46

TrdrMary-1 does receive the default route (as expected) and modifies its gateway of
last resort to 192.100.100.254 (the IP address of ISP-A-1).

ISP-A-1 receives three routes from TrdrMary-1, as shown in lines 16, 17, and 18:

ISP-A-1#sh ip route
...
Gateway of last resort is 0.0.0.0 to network 0.0.0.0

     192.200.200.0/26 is subnetted, 1 subnets
16 B       192.200.200.0 [20/0] via 192.100.100.253, 00:00:23
17 B    160.160.0.0/16 [20/0] via 192.100.100.253, 00:00:23

S*   0.0.0.0/0 is directly connected, Null0
18 B    192.168.3.0/24 [20/0] via 192.100.100.253, 00:20:51

...

However, if you look carefully at ISP-A-1’s routing table, you’ll see that 30.0.0.0/8
(which TrdrMary-1 attempted to announce on line 4) is missing. Why is 30.0.0.0/8
not in ISP-A-1’s routing table? Think on this. We will get back to this question in the
next section.

How BGP Works
BGP’s underlying algorithm is the simple DV protocol—when a BGP speaker hears a
prefix via multiple paths, it selects the “best” path for insertion in the routing table
and announces this “best” path to other peers.
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We are already familiar with the DV protocol via RIP and IGRP. However, unlike
RIP and IGRP, BGP’s purpose is inter-AS routing, which is a different beast from
intra-AS routing. The architects of BGP created several new structures to support
inter-AS routing. This section gives an overview of these new structures.

Let’s start at the beginning. A unique, registered AS number is required for the BGP
process to connect to the Internet. Then, unlike IGPs, BGP does not contain any
mechanism for automatic neighbor discovery. The network administrator must man-
ually define BGP neighbors. This is appropriate given that the neighbor may be in
another AS.

Protocols such as RIP and OSPF are generous in exchanging updates; the network
statement permits all known subnets to be announced in updates. BGP operates
under a different paradigm—updates should be tightly controlled. Cisco’s imple-
mentation of BGP gives several methods to control not only the prefixes that are
announced but also the associated attributes.

As the Internet routing protocol, BGP must support a very large routing table: the
current size of the Internet routing table is roughly 70,000 prefixes. Given this size,
periodic refreshing (such as every 30 s in a RIP network) of this table (with the asso-
ciated attributes) would be very costly. Hence, the BGP protocol specification calls
for the prefix table to be exchanged only once, when BGP neighbors first see each
other. Thereafter, BGP updates only announce new prefixes or withdraw previously
announced prefixes.

This incremental or quiet approach to announcing prefixes reduces the routing pro-
tocol overhead but creates a new twist. Suppose that a BGP router X lost a link to a
neighbor Y. All paths known via Y would be deleted. Now, let’s suppose that router
X had a second-best route via another neighbor, Z. Since there are no periodic
updates in BGP, X would never discover the new path via Z. BGP gets around this
problem by storing all prefixes learned via all neighbors in a table called the BGP
table. The second-best route can now be learned from the BGP table. The BGP table
can be quite huge and can require a considerable chunk of router memory, espe-
cially when there are multiple neighbors.

Small, homogenous networks can get away with a single metric to describe the best
path to a destination—for example, RIP uses hop count to choose the “shortest”
path. Given the complexity of inter-AS routing, no single metric can describe the best
path across various ASs running multiple IGPs on heterogeneous media. BGP defines
a rich set of attributes that describe each path to a destination. These attributes
describe the path in various ways, allowing network administrators to implement
various routing policies. As an example, the AS-PATH attribute is a list of AS num-
bers that describe the path to the destination. Other attributes describe the origin of
the prefix, the IP address of the border router that should be used as the next hop,
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the community to which the prefix belongs, a preference indication for the adver-
tised route, etc.

The BGP route-selection algorithm uses the attribute list to select a single best path
to each known destination. Understanding this route-selection algorithm is critical to
manipulating BGP attributes to set routing policies.

The route map commands in Cisco IOS may be used to manipulate BGP attributes.
The use of route maps is described later in this chapter.

Lastly, we must talk a little more about neighbor relationships. Neighbors come in
two varieties: external and internal. If the neighbors are in different ASs, the BGP pro-
tocol between the neighbors is described as External-BGP (E-BGP). If the neighbors
are in the same AS, the neighbor relationship is described as Internal-BGP (I-BGP).

Why do we need I-BGP? After all, isn’t BGP’s purpose inter-AS routing? Yes. Con-
sider an AS with multiple E-BGP routers. In order for the AS to have a consistent
routing policy, all BGP speakers in the AS must have identical BGP tables. I-BGP is
used to propagate BGP tables through the AS to maintain a consistent routing policy.

Starting BGP
The command to start the BGP process on a Cisco router is:

router bgp AutonomousSystemNumber

where AutonomousSystemNumber is the local AS number. The AS number may be
acquired as described earlier in the section “Acquiring an AS Number.”

Neighbor Relationship
IGPs such as RIP broadcast or multicast updates, forming neighbor relationships
with all directly connected routers. In contrast, neighbor relationships in BGP-4 are
one-to-one between gateway and gateway.

After starting the BGP process, each gateway must specify its neighbor, or peer. The
command to specify the peer is:

neighbor ip_address remote-as ASNumber

A gateway may have several neighbors, so multiple instances of the neighbor com-
mand may be listed under the BGP process. In the following example, TraderMary
has added ISP-B (line 20) as a neighbor. The new topology is as shown in Figure 7-4.

hostname TraderMary-1
!
interface Loopback0
 ip address 192.168.1.10 255.255.255.255
!
interface Ethernet0
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 ip address 192.200.200.1 255.255.255.192
!
interface Ethernet1
 ip address 172.16.1.3 255.255.255.0
!
interface Serial0
 description * to ISP-B *
 ip address 200.1.1.253 255.255.255.252
!
interface Serial1
 description * to ISP-A *
 ip address 192.100.100.253 255.255.255.252
!
router bgp 100
 no synchronization
 network 192.200.200.0 mask 255.255.255.192
 network 30.0.0.0
 redistribute static

19 neighbor 192.100.100.254 remote-as 192
20  neighbor 200.1.1.254 remote-as 200

!
ip classless
ip route 160.160.1.0 255.255.255.0 Ethernet1
ip route 192.168.3.0 255.255.255.0 Ethernet1

ISP-A is configured with TraderMary as a neighbor:

hostname ISP-A-1
...
interface Serial0
 description * to TraderMary *

Figure 7-4. TraderMary’s neighbors: ISP-A and ISP-B
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 ip address 192.100.100.254 255.255.255.252
!
router bgp 192
 neighbor 192.100.100.253 remote-as 100
 neighbor 192.100.100.253 default-originate
!
no ip classless
ip route 0.0.0.0 0.0.0.0 Null0

And ISP-B is also configured with TraderMary as a neighbor:

hostname ISP-B-1
...
interface Serial1
 description * to TraderMary *
 ip address 200.1.1.254 255.255.255.252
!
router bgp 200
 network 0.0.0.0
 neighbor 200.1.1.253 remote-as 100
!
no ip classless
ip route 0.0.0.0 0.0.0.0 Null0

Since ISP-A and ISP-B have different AS numbers than TraderMary, they are E-BGP
peers; when the BGP neighbors are in the same AS, they are I-BGP peers. The neigh-
bor-building process is the same for E-BGP and I-BGP.

E-BGP peers have a restriction—they must be directly connected. This is usually not
an issue because E-BGP neighbors are often on opposite ends of a serial link. (We
will explore an exception to this restriction on E-BGP peers in the section “Load Bal-
ancing.”) When E-BGP peers issue an update, the NEXT-HOP IP address is modi-
fied to the IP address of the originating router’s outgoing interface.

I-BGP peers need not be directly connected. Further, I-BGP peers do not modify the
NEXT-HOP IP address. When running I-BGP, it is useful to configure loopback
addresses on the peering routers and use these addresses to source the I-BGP ses-
sion. Since loopback interfaces are always up, the I-BGP session will stay up as long
as there is any path between the I-BGP peers that can be discovered via an IGP.

Since all BGP exchanges are between a pair of BGP speakers, TCP port 179 can be
used for reliability. (IGPs do not use TCP for reliability. Can you think of the reason
for this?) Bear in mind that in order to establish a TCP session for the purpose of
exchanging BGP messages, the BGP neighbors must be able to route IP datagrams to
each other. In other words, the BGP neighbors must be able to reach each other via
an IGP.

The following command specifies the source of a BGP TCP session, where interface
may be the loopback interface:

neighbor ip_address update-source interface
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In the absence of this command, the source interface is the closest interface to the
neighbor, as known via an IGP. We will see a use for this command in the section
“Load Balancing.”

The command show ip bgp neighbor shows the state of the neighbor relationship
between BGP peers. Let’s take the BGP peers TrdrMary-1 and ISP-A-1 as an example:

TrdrMary-1#sh ip bgp neighbor 192.100.100.254
21 BGP neighbor is 192.100.100.254,  remote AS 192, external link

 Index 1, Offset 0, Mask 0x2
22 BGP version 4, remote router ID 98.2.0.1
23 BGP state = Established, table version = 5, up for 00:00:42
24 Last read 00:00:42, hold time is 180, keepalive interval is 60 seconds

  Minimum time between advertisement runs is 30 seconds
  Received 54821 messages, 0 notifications, 0 in queue
  Sent 54826 messages, 0 notifications, 0 in queue
  Connections established 12; dropped 11
  Last reset 00:01:05, due to : User reset request

25 No. of prefix received 1
Connection state is ESTAB, I/O status: 1, unread input bytes: 0

26 Local host: 192.100.100.253, Local port: 11070
27 Foreign host: 192.100.100.254, Foreign port: 179

...

Line 21 indicates the AS number of the remote BGP peer (ISP-A) and also shows that
this is an external link (the local AS number is different from the remote AS num-
ber). If the BGP peers had the same AS numbers, line 21 would show internal link.

The BGP router ID (line 22) is the highest IP address configured on the router. How-
ever, if loopback interfaces are configured on the router, the router ID is the highest
loopback address configured on the router.

Line 23 shows key information about the neighbor relationship. “BGP state = Estab-
lished” indicates that the peers have successfully established a TCP connection. If the
BGP peers had been unsuccessful in setting up a BGP session, line 23 would show a
BGP state of Idle, Active, or Connect.

Initially, BGP peers exchange full BGP routing tables. After that exchange, only
incremental updates are sent. A version number (line 23) tracks updates to the BGP
routing table and can be used for troubleshooting. A rapidly increasing version num-
ber indicates that a route may be flapping.

After establishing a BGP session, the routers exchange keepalives every 60 seconds
(line 24). The default hold-time is 180 seconds, following the standard rule in proto-
col design that if you miss them three times, you strike them off your list. Thus, if no
keepalives are heard from a neighbor for 180 seconds, all routes learned from that
neighbor are erased and the session is closed.

Line 25 shows the number of IP prefixes that have been received from the remote
peer.
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Lines 26 and 27 show the IP addresses of the BGP peers. Note that TCP port 179 was
used on the foreign host; the local host used an ephemeral port number of 11070.

BGP Message Types
There are four message types in BGP. The open message allows BGP peers to identify
their capabilities to each other, the update message is used to advertise/withdraw pre-
fixes, the notification message is used to send errors/close the session, and the keep-
alive message serves to keep the BGP session up. These four message types are
described in further detail in the following sections.

Open

The purpose of the open message is for BGP peers to identify their capabilities to
each other. This is the first message to be sent after BGP peers have established a
TCP session.

Each open message specifies the following parameters defining the capabilities of the
sender of the message:

BGP version number
Almost all implementations now use Version 4 (since it is the only version to
support CIDR).

AS number
If the AS number sent does not match the AS number configured in the neigh-
bor statement of the peer receiving the open message, the recipient sends a noti-
fication message indicating an error condition.

Hold timer
The duration of inactivity that will cause the sender of the open message to tear
down the session. The hold timer is reset every time a keepalive or update mes-
sage is received.

BGP identifier
This is the highest loopback address configured on the router and serves to
uniquely identify the sender of the open message.

Optional parameters length
The length of the optional parameters field.

BGP peers may authenticate each other using the MD-5 algorithm, whose “message
digest” may be placed in the open message as an optional parameter. A new optional
parameter called capability permits BGP peers to evaluate each other’s capabilities
for the support of new network-layer protocols such as IP multicast and IP Version 6.
This new parameter—capability—is backward compatible, allowing a peer that does
not support the parameter to maintain a session with a peer that does support the
parameter.
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Update

The update message is at the heart of BGP. Update messages are used to announce
one or more prefixes to a BGP peer. The sender of the prefix must have a route to the
prefix advertised, following the next-hop routing paradigm.

Sooner or later a network failure or change will cause the sender of the prefix to lose
its route to the prefix it advertised. Hence, the update message must also include the
ability to withdraw previously advertised prefixes. The update message specifies the
following parameters:

Withdrawn routes length
The length of the withdrawn routes field.

Withdrawn routes
A list of IP prefixes that the sender had announced but now wishes to withdraw.
This could be a result of a change in the network topology or configuration.

Total path attributes length
 The length of the attributes length field.

Path attributes
A list of BGP attributes that apply to the prefixes described in the network layer
reachability information field.

Network layer reachability information (NLRI)
A list of prefixes that the sender is advertising to its peer. Note that the path
attributes listed earlier apply to all prefixes in the NLRI field.

Notification

Notification messages are used to indicate an error condition such as the expiry of
the hold timer, the receipt of an unrecognized attribute type, an invalid AS number,
etc. The underlying TCP session is closed after a notification message is sent.

An error code field in the notification message identifies the type of error.

Keepalive

The default interval between keepalive messages is 60 seconds (on Cisco routers). As
per the specification, the hold timer is reset upon receipt of a keepalive or an update
message.

Originating Routes
Now that we know how to start BGP and establish BGP neighbor relationships, we
are ready to advertise prefixes between neighbors. There are three methods of trans-
ferring routes into the BGP table. Two of these methods were used by TrdrMary-1 in
the example in “Getting BGP Running.”
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hostname TrdrMary-1
...
router bgp 100
 no synchronization

28 network 192.200.200.0 mask 255.255.255.192
29  network 30.0.0.0
30  redistribute static

 neighbor 192.100.100.254 remote-as 192

In lines 28 and 29, the network statement was used to insert routes into the BGP
table. The syntax of the network statement is as follows:

network IPAddress [mask mask]

In line 28, 192.200.200.0 was advertised with a 26-bit mask, as specified by the net-
work statement. When a mask is not specified, the natural classful mask is used in
the BGP update. Hence, we would expect to see the prefix 30.0.0.0/8 in ISP-A-1’s
routing table. However, as we saw earlier, there is no entry for 30.0.0.0/8 in ISP-A-
1’s routing table. Did you think about the reason for this? You may want to take a
moment before reading on…

TrdrMary-1 did not advertise 30.0.0.0/8 to ISP-A-1 because TrdrMary-1 has no IGP
route for 30.0.0.0/8. This could be verified by checking TrdrMary-1’s BGP table:
there is no entry for 30.0.0.0/8 in that table. A router should not advertise a route
for which it does not have a path. Hence, the network-number statement alone is not
enough to advertise a prefix; the router must also have a route for the prefix via an
IGP. When the network statement is used to advertise a prefix, the ORIGIN attribute
for the route is set to IGP.

Line 30 illustrates another mechanism for inserting prefixes into BGP updates: the
redistribute static command.

TrdrMary-1 has two static routes, defined as follows:

ip route 160.160.1.0 255.255.255.0 Ethernet1
ip route 192.168.3.0 255.255.255.0 Ethernet1

Both routes are carried into TrdrMary-1’s BGP table, and henceforth to ISP-A-1, but
not quite as TraderMary may have wanted. The static route for 160.160.1.0/24 gets
copied as 160.160.0.0/16! This is because the default behavior is to use natural class-
ful network numbers. To carry network numbers exactly as specified in the static
route entries, use the BGP subcommand:

no auto-summary

When the redistribute static statement is used to advertise a prefix, BGP sets the ORI-
GIN attribute to Incomplete.

The last method for carrying routes into BGP is to redistribute an IGP into BGP. So,
for example, the following command redistributes all routes known to the OSPF pro-
cess into BGP:

redistribute ospf 10
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When redistributing a dynamic protocol into BGP, there is the risk of not knowing
what information is getting injected into BGP. Further, a flap in the IGP table will
send ripples through all BGP tables of all routers that receive the prefixes that
changed. This can be a big ripple when dealing with the Internet. In fact, ISPs will
penalize routes that are repeatedly flapping, by not advertising the routes to other
peers. (This is referred to as BGP dampening). Needless to say, redistributing a
dynamic protocol into BGP is not the preferred method of transferring routes into
BGP.

When an IGP is redistributed into BGP, the ORIGIN attribute is set to “?”.

In addition to these three methods of inserting prefixes into update packets, a BGP
peer will also advertise any prefixes it hears from other BGP peers. This behavior is
typical of DV routing protocols: pass the rumor along.

E-BGP Versus I-BGP
We have already seen a use of E-BGP in TraderMary’s network. TraderMary’s net-
work has an E-BGP peer in ISP-A. The single default route received from ISP-A can
be redistributed into TraderMary’s IGP, so there is no need for I-BGP in Trader-
Mary’s network.

ISPs typically have multiple peers in other ASs. Each external router in the ISP
receives routing information from all its E-BGP peers. For the AS to have a consis-
tent routing policy, all external routers in the ISP’s network must share their BGP
tables with each other. I-BGP peering between these routers allows them to share
their BGP tables.

E-BGP peers modify the content of the routing information that is exchanged. As an
example, E-BGP peers modify the NEXT-HOP attribute to point to their own IP
addresses. I-BGP peers do not modify the content of the routing information that is
exchanged. This ensures that all I-BGP speakers in the AS have a consistent BGP
table and hence a consistent routing policy. The architects of the AS can then set up
policies (such as “border routers P and Q will serve as exit points for destinations X,
Y, and Z”) and propagate these policies throughout the AS via I-BGP.

When a BGP speaker receives an update from an E-BGP peer, it redistributes that
update to all internal and external BGP peers. However, when a BGP speaker
receives an update from an I-BGP peer, it redistributes that update to external, but
not internal, peers. In Figure 7-5, R receives an update from an E-BGP neighbor. This
update is redistributed to K, S, T, and U. But when S receives the update from R, it
forwards it only to L, not to U or T.

In other words, when a BGP speaker receives an update from an I-BGP peer, it does
not redistribute that update to other I-BGP peers. This restriction prevents routing
updates from looping between I-BGP peers within the AS.
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Hence, in Figure 7-5, BGP speaker R must establish I-BGP relationships with S, T,
and U. For the same reason, S, T, and U must establish I-BGP relationships with
each other. In other words, a full I-BGP mesh is necessary for the AS to maintain a
consistent BGP table.

A full I-BGP mesh (n × (n – 1)) / 2 sessions, where n is the number of I-BGP peers) is
prohibitive even for mid-sized ASs. There are two common methods to get around
implementing a full I-BGP mesh: route reflectors (RRs) and confederations. Both
methods are based on the divide-and-conquer paradigm that also finds use in several
computer algorithms.

When using RRs, the backbone is divided into clusters. Each cluster has an RR and
several clients. The RRs must maintain a full I-BGP mesh, but a client in a cluster
needs to maintain a session only with its RR. The job of the RRs is to forward
updates to clients.

Confederations divide the backbone into sub-ASs. Each sub-AS must have a full I-BGP
mesh. E-BGP is run between the confederations.

Synchronization
Let’s say that the IGP in use by ISP-A is slow compared to I-BGP (see Figure 7-7 later
in this chapter). So, when TrdrMary-1 advertises 192.200.200.0/24 to ISP-A-1, ISP-
A-3 may get possession of this route via I-BGP before ISP-A-4 does via IGP. ISP-A-3
modifies the NEXT-HOP attribute for 192.200.200.0/24 to its own IP address and
begins to advertise the prefix to ISP-US. ISP-US begins forwarding traffic for 192.200.
200.0/24 to ISP-A-3. ISP-A-3’s NEXT-HOP for 192.200.200.0/24 is 192.100.100.253,
so it forwards the traffic to ISP-A-4. However, ISP-A-4 promptly drops the traffic,
since it has not yet learned this prefix via IGP. In other words, a “black hole” has
occurred in the network due to the lack of synchronization between BGP and IGP.
This black hole lasts until ISP-A-4 learns the route to 192.200.200.0/24.

The moral of this story is that ISP-A-3 should not advertise 192.200.200.0/24 to ISP-
US until all the routers in the AS learn the prefix via IGP. In routing parlance, this is
described as the synchronization of BGP with IGP.

Figure 7-5. E-BGP versus I-BGP
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Synchronization is on by default on Cisco routers, implying that a BGP speaker will
not advertise a prefix to an E-BGP neighbor until it also learns that prefix via IGP. It
is safe to turn off synchronization when the AS is not carrying any transit traffic.
Nontransit ASs such as TraderMary should turn off synchronization to avoid the
overhead of BGP/IGP interaction. The command to turn off synchronization is:

router bgp
no synchronization

The BGP Table
IGPs, such as RIP, maintain only the best route to any given destination. If the path
to a destination becomes unavailable, RIP must wait for another update with a path
to the same destination. However, BGP is a quiet protocol (a prefix is announced
only once unless there is a change). If the best path is lost, how can BGP discover the
second-best path?

The BGP process maintains a table that contains all known prefixes via all paths. The
following output shows the BGP table for TrdrMary-1 in the configuration described
in Figure 7-4:

TrdrMary-1#sh ip bgp
BGP table version is 4, local router ID is 192.168.1.10
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path
31 *  0.0.0.0          200.1.1.254            0             0 200 i
32 *>                  192.100.100.254                      0 192 i

*> 160.160.0.0      0.0.0.0                0         32768 ?
*> 192.168.3.0      0.0.0.0                0         32768 ?
*> 192.200.200.0    0.0.0.0                0         32768 i

The following is a column-by-column description of the entries in the BGP table.

“>” indicates the best route, which will be installed in the routing table. For exam-
ple, network 0.0.0.0 is known via 200.1.1.254 (line 31) and 192.100.100.254 (line
32). The preferred path is via 192.100.100.254, as indicated by the “>” in line 32.
Note that this table records the path via 200.1.1.254, even though that is not the pre-
ferred path.

Network describes the prefix in question. The BGP table lists locally generated pre-
fixes as well as prefixes learned from other peers.

Next Hop describes the IP address to forward packets to for the prefix in the Net-
work field. The next hop for prefixes learned from E-BGP peers is the IP address of
the external router. The next hop for locally generated entries is 0.0.0.0.

Metric is the MED (Multi-Exit Discriminator) attribute associated with the prefix.
The default value of this attribute is 0.
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LocPrf is the value of the LOCAL-PREF attribute attached to the prefix. A higher
LOCAL-PREF value indicates a more desirable route. The default value of the
attribute is “?”.

Weight is a Cisco proprietary attribute. The default values of the Weight attribute are
32,768 for locally originated prefixes and 0 for prefixes advertised to a neighbor.

Path is the AS-PATH attribute and is represented in the table just before the Origin
code. Thus, 0.0.0.0 is known via AS path 192 (which is the AS number of ISP-A)
and AS path 200 (which is the AS number of ISP-B). The AS path is empty for locally
generated prefixes such as 192.168.3.0.

The last column in the BGP table describes the ORIGIN attribute. The Origin codes
of “i”, “e”, and “?” refer to the ORIGIN attribute. 0.0.0.0 and 192.200.200.0/26
were inserted into BGP with network statements, so the Origin code is “i”. 160.160.
0.0 and 192.168.3.0 were inserted into BGP with the redistribute static command, so
the Origin code is “?”.

Attributes
Akin to the description in my passport of my age, place of birth, and the border
points I have crossed (there are stamps saying “Heathrow”, “Amsterdam”, “New
Delhi”, and “New York”), which helps immigration officers decide whether to check
my left or right shoe or to send me back to New York, each prefix in a BGP update
message is accompanied by a set of attributes. Just as the information in a passport
allows an immigration officer to implement her nation’s immigration policies, BGP’s
attributes allow ASs to implement their own routing policies.

The number of attributes in a BGP update is variable, because some attributes are
mandatory whereas others are discretionary. Every route update must be accompa-
nied by all mandatory attributes, while discretionary attributes may or may not be
sent in the update.

All BGP attributes fall into one of another two categories: well-known or optional. A
well-known attribute must be recognized by all BGP implementations. An optional
attribute need not be supported by all BGP implementations.

Lastly, all BGP attributes fall into one of another two categories: transitive or non-
transitive. A nontransitive attribute is of significance only to the AS that receives the
update—the attribute is not advertised to other ASs. A transitive attribute is of glo-
bal significance and is forwarded in updates to other ASs.

It is common to use route maps on Cisco routers to control or modify routing infor-
mation entering or leaving a routing process. Route maps have an intimate hook into
BGP’s attributes. Each route map is a set of numbered clauses. Clauses are applied in
order of their sequence number. Each clause contains a condition against which a
route update is matched. If a route update matches the specified condition, the set
option is used to specify an action.
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Let’s look at the syntax of a route map:

route-map map-tag [[permit | deny] | [sequence-number]]
match clauses
set actions

where map-tag is the name of the route map; the permit/deny keywords specify
whether to accept or reject the prefixes that match the match clause; the match
clauses can check for AS path, BGP community list, IP address, etc.; and the set com-
mand can modify one of several attributes associated with the route.

A route map may be applied on a peer using the neighbor command:

neighbor ip-address route-map route-map-name {in | out}

In the following example, route map example1 (clause 10) sets the MED attribute to
200 for prefixes matching access list 1. The second clause (20) permits the advertise-
ment of all other IP addresses with a MED attribute of 150:

route-map example1 permit 10
 match ip address 1
 set metric 200
!
route-map example1 permit 20
 match ip address 2
 set metric 150
!
access-list 1 permit 11.0.0.0 0.255.255.255
access-list 2 permit 0.0.0.0 255.255.255.255

This route map may be applied to neighbor 1.1.1.1 for all outgoing updates, as
shown here:

router bgp 100
...
neighbor 1.1.1.1 route-map example1 out

Route map example2 (clause 10) sets the MED to 200, the ORIGIN to IGP, and the
Weight to 1,000 for prefixes matching access list 3. The second clause (20) permits
the advertisement of all other IP addresses with a MED attribute of 150, ORIGIN of
IGP, and Weight of 2,000.

route-map example2 permit 10
 match ip address 3
 set metric 200
 set origin igp
 set weight 1000
!
route-map example2 permit 20
 match ip address 4
 set metric 150
 set origin igp
 set weight 2000
!
access-list 3 permit 11.0.0.0 0.255.255.255
access-list 4 permit 0.0.0.0 255.255.255.255

,ch07.22526  Page 179  Wednesday, January 9, 2002  12:26 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 7: Border Gateway Protocol 4 (BGP-4)

This route map may be applied to all updates learned from RIP:

router bgp 100
...
redistribute rip route-map example2

The following sections review each BGP attribute with regard to its use in imple-
menting routing policies.

ORIGIN (type code 1)

As we saw earlier, there are three methods for injecting a prefix into a BGP update
message: the network statement, the redistribute static command, and the redistribute
dynamic routing protocol command. The ORIGIN attribute describes which of these
methods was used. The length of the attribute is 1 octet and is coded as follows:

0—IGP
The prefix is interior to the originating AS. This value is set when the network
command is used to inject routes into BGP.

1—EGP
The prefix was learned via an EGP.

2—Incomplete
This most often means that the prefix was learned via static routes.

The Origin code is represented in the BGP table (show ip bgp) with the letters “i” for
IGP, “e” for EGP, and “?” for Incomplete. Although it is well known and mandatory,
the Origin code is not terribly useful in making routing decisions in today’s Internet.

AS-PATH (type code 2)

A prefix may travel from AS to AS in update messages. In the network in Figure 7-1,
ISP-A receives the prefix 192.200.200.0 from AS 100. ISP-US sees 192.200.200.0
through ASs 192 and 100. ISP-Global sees the prefix through ASs 209, 192, and 100.

Each prefix in an update message is associated with the AS-PATH attribute. The AS-
PATH attribute is the list of ASs that describes the path to the prefix.

BGP uses a rather straightforward algorithm to construct the AS-PATH attribute.
The attribute is the empty list in the AS that originates the prefix. When sending the
prefix to an E-BGP neighbor, the originating AS prepends its AS number to the AS-
PATH list. The AS-PATH list is not modified between I-BGP peers.

The AS-PATH attribute finds two uses. First, given multiple paths to a destination,
BGP-4 will prefer the path with the shortest AS-PATH length. Second, the AS-PATH
attribute is effective against routing loops: when an AS receives an update, it dis-
cards any prefixes whose AS-PATH list includes its own AS number.

Sometimes an AS will aggregate prefixes it learns from multiple ASs. Uncle-P and
Uncle-Q advertise 180.180.1.64/26 and 180.180.1.128/26, respectively. These prefixes
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are aggregated by ISP-B into 180.180.1.0/24. The AS-PATH attribute can indicate that
a prefix originated in multiple ASs using AS-SETs. So, when ISP-B advertises 180.180.
1.0/24, it can indicate that this aggregate prefix came from ASs 1001 and 1002 using
the AS-SET {1001, 1002}. Thus, ISP-Europe would see 180.180.1.0/24 with an AS-
PATH of 200, {1001, 1002}, as shown in Figure 7-6.

Since the AS-PATH attribute is used in making routing decisions, it is often manipu-
lated to influence inbound routing policies. Say that TraderMary wants all inbound
traffic to prefer its ISP-A link. The ISP-B link is to be used only when the ISP-A link is
down. To implement its policy, TrdrMary-1 can advertise 192.200.200.0/24 with a
longer AS-PATH length out of ISP-B. We will see a detailed example of this later.

The AS-PATH attribute is often used to set policies such as “do not advertise any
prefixes that originate in AS 556” or “prefer paths that traverse AS 905 over AS 111”.
A pattern matcher is required that will match AS-PATH attributes to such criteria.
Regular expressions (which are also used in Unix for pattern matching, such as in the
Unix command grep) are used to construct AS-PATH access lists. The following is a
brief tutorial on regular expressions.

Most characters and digits in regular expressions match themselves. Thus, the regu-
lar expression 10p will match only the string “10p” (but this is not too interesting an
example). The following symbols have special significance in regular expressions that
will help us construct more interesting examples.

. (period)
Matches any single character.

*
Matches 0 or more occurrences of the previous regular expression.

+
Matches 1 or more occurrences of the previous regular expression.

Figure 7-6. AS-PATH attribute
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Combining the first two symbols in this list, the regular expression .* will match any
string. The expression 100. will match any 4-character string beginning with 100,
such as “100a”, “1000”, or “1009”. The expression 1* will match the empty string,
“1”, “11”, “111”, etc.; the expression 1+ will match the same strings, with the excep-
tion of the empty string. Here are some other special symbols:

^ (caret)
Matches the beginning of a string.

$ (dollar)
Matches the end of a string.

_ (underscore)
Matches a space character, comma character, left and right braces ({, }), and left
and right parenthesis ((, )).

Combining the first two symbols, the regular expression ^$ will match the empty
string. ^100_ will match any AS-PATH list that begins with 100, in other words, lists
such as “100, 200, 130”, “100, 130”, or “100”. Here are some other examples of the
use of regular expressions in matching AS-PATH lists:

^100_
Matches any sequence starting with 100.

_100_
Matches any sequence with 100 somewhere in the path.

_100$
Matches any sequence that ends with 100.

_100_200_
Matches any sequence with 100 followed by 200 in the path.

.*
Matches any sequence starting with the local AS.

^*
Matches all ASs.

^$
Matches this AS exactly.

More BGP path selections are made on the basis of the AS-PATH attribute than any
other attribute. We’ll use the AS-PATH attribute later, in the section “Connecting to
the Internet.”

The AS-PATH attribute is well known and mandatory.

NEXT-HOP (type code 3)

Each prefix in an update message is associated with a NEXT-HOP attribute, which
describes the IP address of the interface that should receive traffic for the prefix in
question. The NEXT-HOP attribute for E-BGP peers is usually the IP address of the
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BGP peer advertising the prefix. So, when ISP-A-1 advertises a default route to
TrdrMary-1, NEXT-HOP is set to 192.100.100.254.

Consider the network shown in Figure 7-7. There are four routers in the network,
joined in a star. ISP-A-4 is at the center and is not running BGP; ISP-A-4 learns
routes via IGP. ISP-A-1, ISP-A-2, and ISP-A-3 have E-BGP peers as shown, have
I-BGP peering relationships with each other, and run IGP with ISP-A-4.

TrdrMary-1 advertises 192.200.200.0/24 to ISP-A-1 via an E-BGP session and sets
the NEXT-HOP attribute to itself (192.100.100.253).

ISP-A-1 advertises 192.200.200.0/24 to ISP-A-2 and ISP-A-3 via I-BGP sessions. ISP-
A-1 does not modify the NEXT-HOP attribute (which still reads 192.100.100.253).
(We saw this in the section “E-BGP Versus I-BGP”—I-BGP neighbors carry the next
hop unchanged, allowing the IGP to figure out the best route to the next hop).

ISP-A-4 is not running BGP, so ISP-A-1 also redistributes the prefix into an IGP so
that ISP-A-4 can forward packets for this destination.

ISP-A-3 advertises the prefix to ISP-US, modifying the NEXT-HOP attribute to point
to itself.

Figure 7-7. NEXT-HOP attribute
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In other words, E-BGP peers modify the NEXT-HOP attribute to point to their own
external IP addresses, whereas I-BGP peers do not modify the NEXT-HOP attribute.

Consider a more interesting use of the NEXT-HOP attribute, in the network shown
in Figure 7-8. Routers A, B, and X are on a shared segment. A and B belong to AS 1
and X belongs to AS 2. A and X are E-BGP peers, but B is not a BGP speaker. When
A advertises network 30.0.0.0, it would be most appropriate for X to send traffic for
this prefix to B and not to A. This feature is referred to as third-party next hop.

The NEXT-HOP attribute is well known and mandatory.

MED (type code 4)

Consider the network in Figure 7-9. There are two paths between AS 1 and AS 2. AS 1
prefers to receive traffic from AS 2 on link 1 (as opposed to link 2). AS 1 may use the
Multi-Exit Discriminator (MED) attribute to signal its preference to AS 2. Router A
advertises 11.0.0.0/8 to X with a MED value of 1; router B advertises 11.0.0.0/8 to Y
with a MED value of 10. X and Y are I-BGP peers. A lower MED value indicates the
preferred path. Both X and Y will prefer the X ➝ A link to send traffic to AS 1.

The MED attribute is nontransitive, so it is of significance only between a pair of
ASs. When AS 2 passes the prefix for network 11.0.0.0 to other ASs, it resets the
MED value to 0. Since it is in the interest of ISPs to offload traffic at the closest exit
point rather than at another gateway, ISPs usually ignore the MED attribute. The
MED attribute may be of more use between two friendly ASs.

The MED attribute is optional and nontransitive. Remember that this attribute is sig-
nificant only for inbound traffic.

Figure 7-8. Third-party next hop
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Weight

The Weight attribute is a Cisco proprietary attribute that is used locally by a router
to select a path when multiple paths are available to a prefix. The Weight attribute is
not exchanged in any BGP updates (I-BGP or E-BGP).

In the network in Figure 7-10, both P (AS 100) and Q (AS 300) announce 13.0.0.0/8
to R. Let’s say that R prefers to route traffic for 13.0.0.0 via AS 100. R can use the
Weight attribute to indicate this preference. The following configuration shows how
this may be achieved.

The route-map weight is applied to prefixes received from P (line 33). Clause 10 of
route-map weight matches any prefix that matches access list 101. Access list 101

Figure 7-9. Multi-Exit Discriminator (MED) attribute

Figure 7-10. Weight attribute
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(line 34) matches the prefix 13.0.0.0/8. Thus, the prefix 13.0.0.0/8 is assigned a
Weight of 300 when received from P:

hostname R
!
interface Serial0
 description * to Q (AS 300) *
 ip address 3.1.1.7 255.255.255.0
!
interface Serial1
 description * to P (AS 100) *
 ip address 3.1.1.254 255.255.255.252
!
router bgp 200
 no synchronization
 neighbor 3.1.1.9 remote-as 300
 neighbor 3.1.1.253 remote-as 100

33 neighbor 3.1.1.253 route-map weight in
!

34 ip access-list 101 permit ip 13.0.0.0 0.255.255.255 255.0.0.0 0.0.0.0
!
route-map weight permit 10

35 match ip address 101
 set weight 300
!
route-map weight permit 20

The BGP table of R shows that 31.0.0.0/8 is received from both P (line 36) and Q
(line 37). Line 36 shows a Weight of 300; line 37 shows a Weight of 0, which is the
default value of the Weight attribute for prefixes received from other ASs. A higher
value of the Weight attribute is preferable, so the next hop of P is installed in the
routing table.

R#sh ip bgp
...
   Network          Next Hop          Metric LocPrf Weight Path

36 *> 31.0.0.0         3.1.1.253           10             300 100 i
37 *                   3.1.1.9                0             0 300 i

The Weight attribute impacts only outgoing traffic. The default value of the Weight
attribute is 32,768 for locally originated prefixes. This ensures that if a prefix is
known via IGP as well E-BGP, the IGP route will be preferred.

LOCAL-PREF (type code 5)

The LOCAL-PREF attribute is similar to the Weight attribute, except LOCAL-PREF
is exchanged between I-BGP peers. The LOCAL-PREF attribute is used to select an
outgoing path when there are multiple exit points to another AS. A higher LOCAL-
PREF value is preferred.
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Consider the example of ISP-Europe in Figure 7-11. ISP-Europe may reach Trader-
Mary via ISP-B or via ISP-Global and ISP-US. Let’s say that ISP-Europe prefers the
path via ISP-Global because it is more reliable.

In this example, ISP-Europe-1 and ISP-Europe-2 are I-BGP peers. ISP-Europe-1 con-
nects to ISP-B and assigns a LOCAL-PREF value of 200 to all prefixes (line 38):

hostname ISP-Europe-1
!
interface Ethernet0
 ip address 10.1.1.4 255.255.255.0
!
interface Serial0
 description * to ISP-B *
 ip address 194.1.100.254 255.255.255.252
!
router bgp 2009
 no synchronization
 neighbor 10.1.1.1 remote-as 2009
 neighbor 194.1.100.253 remote-as 200

38 neighbor 194.1.100.253 route-map local-pref in
!
ip as-path access-list 1 permit _200_
!
route-map local-pref
 match as-path 1
 set local-preference 200

ISP-Europe-2 connects to ISP-Global and assigns a LOCAL-PREF value of 250 to all
prefixes (line 39):

hostname ISP-Europe-2
!
interface Ethernet0
 ip address 10.1.1.1 255.255.255.0
!
interface Serial0
 description * ISP-Global *

Figure 7-11. Local preference
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 ip address 2.1.1.7 255.255.255.0
!
router bgp 2009
 no synchronization

39 neighbor 2.1.1.9 remote-as 1300 route-map local-pref in
 neighbor 10.1.1.4 remote-as 2009
!
ip as-path access-list 1 permit _1300_
!
route-map local-pref
 match as-path 1
 set local-preference 250

The BGP tables of both routers reflect these preferences. So, for example, ISP-
Europe-1 installs both prefixes and indicates that the preferred path is via ISP-Global:

ISP-Europe-1#sh ip bgp
BGP table version is 9, local router ID is 98.2.0.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path
*  192.200.200.0    194.1.100.253         10             0 200 100 i
*>i                 2.1.1.9                0    250      0 1300 209 192 100 i
...

ISP-Europe-2 shows the following BGP table:

ISP-Europe-2#sh ip bgp
...
*> 192.200.200.0    2.1.1.9               10    250      0 1300 209 192 100 i

Note that since I-BGP peers do not modify the NEXT-HOP attribute, ISP-Europe-1
must have an IGP route to 2.1.1.9.

The LOCAL-PREF attribute is similar to the MED and Weight attributes because
both affect outbound traffic. However, there are significant differences between the
three attributes. The Weight attribute is significant only locally and impacts only
outbound traffic. The MED attribute is significant only between two ASs and is used
by one AS to control inbound traffic by dictating routing policy to another AS (which
that AS may choose to ignore). The LOCAL-PREF attribute is used by the local AS to
control its own outbound routing policies.

The LOCAL-PREF attribute is nontransitive and affects only outbound traffic.

Atomic Aggregate (type code 6)

An AS may propagate an aggregate route that causes loss of routing information.
Let’s say that AS 10 receives the prefixes 11.0.0.0/8 and 11.1.0.0/16 (from different
neighbors) with different AS-PATH attributes. If AS 10 propagates only 11.0.0.0/8
to AS 11, AS 11 will have incomplete information about the prefix. In such situa-
tions, AS 10 is required to set the Atomic Aggregate attribute to indicate this loss of

,ch07.22526  Page 188  Wednesday, January 9, 2002  12:26 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

How BGP Works | 189

information. The Atomic Aggregate attribute should not be set if AS 10 uses the AS-
SET attribute to indicate all of the originating ASs.

The Atomic Aggregate attribute is a well-known discretionary attribute.

Aggregator (type code 7)

ISP-X in Figure 7-2 aggregates prefixes received from Uncle-P and Uncle-Q. ISP-X
may use the Aggregator attribute to specify the AS number and BGP router ID of the
router performing the aggregation. The length of this attribute is always 6 octets: 4
for the AS number and 2 for the BGP router ID.

The Aggregator attribute is optional and transitive.

Community

Imagine the international flights descending upon London every few minutes from
Nairobi, Naples, New Delhi, New York… The only way for an immigration officer to
deal with this madness is to assign one or more categories to each arriving passen-
ger—Political Refugee, Senior, Criminal, Musician-type, Brit, Au Pair, etc. Based on
the assigned category, the immigration officer can make quick decisions regarding
admission into the U.K.

Just like the immigration officer, an AS can assign a community to each prefix. Sub-
sequent routing decisions can then be made based on the Community attribute.

In the following example, ISP-Finland attaches a Community attribute of 999 for
prefixes learned from its clients (SisterY, in this example). ISP-Finland may attach a
different Community attribute to prefixes learned from other ISPs.

hostname ISP-Finland-1
!
router bgp 1200
 neighbor 12.100.1.253 remote-as 108
 neighbor 12.100.1.253 route-map CLIENT in
!
ip as-path access-list 2 permit ^108$
!
route-map CLIENT permit 10
 match as-path 2
 set community 999

An examination of the details of the attributes attached to the received prefix will
show the value of the Community attribute (line 40):

ISP-Finland-1#sh ip bgp 199.199.3.0
BGP routing table entry for 199.199.3.0/24, version 5
Paths: (1 available, best #1, advertised over I-BGP)
  108
    12.100.1.253 from 12.100.1.253 (192.168.1.10)
      Origin incomplete, metric 0, valid, external, best

40 Community: 999
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Subsequent routing decisions may now be based on this Community attribute. So, all
prefixes that match a Community attribute of 999 could be advertised to other ISPs,
whereas prefixes learned from other ISPs may not be advertised to other ISPs. This
will ensure that ISP-Finland is not misused as a transit ISP by other ISPs.

The Community attribute is optional and transitive.

Path Selection
Like RIP and IGRP, BGP is a DV protocol that uses the lowest metric to select the
best path to a destination. Unlike RIP and IGRP, BGP’s decision process is relatively
complex. This complexity is due to the number of BGP attributes; each BGP
attribute has a place in the decision process. Of course, if there is only one path to a
prefix, the decision process described in this section is unnecessary: that single path
wins. Unlike RIP and IGRP, BGP’s decision process always yields a single best path:
BGP does not install multiple paths to a destination (nor does it load-balance traffic
over multiple paths).

Let’s look at the BGP decision process. The input to this algorithm is a number of
paths to the same prefix (with the same prefix length), known via BGP. Each path is
accompanied by a set of attributes. The output of the algorithm is a single best path
to the prefix. The best path is a candidate for advertisement to other BGP peers and
to be placed into the routing table.

1. Choose the path with the highest Weight, a Cisco proprietary attribute. If the
paths cannot be discriminated based on the Weight attribute, continue to the
next criterion.

2. Choose the path with the highest LOCAL-PREF value. If the paths cannot be dis-
criminated based on the LOCAL-PREF attribute, continue to the next criterion.

3. Choose the path that was locally originated via a network or aggregate com-
mand. If the paths cannot be discriminated based on this criterion, continue to
the next criterion.

4. Choose the path with the shortest AS-PATH attribute. If the paths cannot be dis-
criminated based on the AS-PATH attribute, continue to the next criterion. To
disable the AS-PATH attribute as a factor in the selection of the best route, use
the bgp bestpath as-path ignore command.

5. Choose the path with the lowest ORIGIN attribute. (IGP is lower than EGP,
EGP is lower than Incomplete). If the paths cannot be discriminated based on
the ORIGIN attribute, continue to the next criterion.

6. Choose the path with the lowest MED attribute. If the paths cannot be discrimi-
nated based on the MED attribute, continue to the next criterion. By default,
the MED attribute is considered only when a prefix is received from neighbors
in the same AS. To allow the comparison of the MED attribute when the prefix
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is received from neighbors in different ASs, use the BGP always-compare-med
command.

7. Choose an E-BGP path over an I-BGP path. If the paths cannot be discriminated
based on this criterion, continue to the next criterion.

8. Choose the path with the lowest IGP metric to the next hop. If the paths cannot
be discriminated based on IGP metric, continue to the next criterion.

9. Choose the path originated by the BGP router with the lowest router ID.

Load Balancing
As per RFC 1771, BGP installs only one best path to a destination network. This sce-
nario leaves little room to load-balance over multiple paths. However, it is possible
to use an IGP (such as IGRP) to achieve load balancing between ASs.

In the network in Figure 7-12, ISP-A and ISP-B set up two links between each other
over which traffic is to be load-balanced.

Both the peering routers set up loopback addresses (lines 41 and 46 in the following
code blocks). BGP sessions between the peers are then established between the peers
using these loopback addresses (lines 42 and 47 specify the loopback addresses of the
neighbor; lines 43 and 48 say that the BGP TCP session should originate from the
local loopback address). Since BGP normally expects its peers to be on a directly con-
nected network, the ebgp-multihop command (lines 44 and 49) relaxes this restric-
tion. None of this will work if each peer cannot route to the other’s loopback IP
address. Lines 45 and 50 set up IGRP between ISP-A-1 and ISP-B-1, which permits
the routers to share path information. Since IGRP will use both paths between the ASs
to route to the peer’s loopback address, all traffic between the ASs will use both paths.

hostname ISP-A-1
!

41 interface Loopback0
 ip address 98.2.0.1 255.255.0.0
!
interface Serial2
 description * to ISP-B *

Figure 7-12. Load balancing
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 ip address 100.1.1.1 255.255.255.0
!
interface Serial3
 description * to ISP-B *
 ip address 100.1.2.1 255.255.255.0
!
router bgp 192

42 neighbor 99.0.0.1 remote-as 200
43 neighbor 99.0.0.1 update-source loopback0
44 neighbor 99.0.0.1 ebgp-multihop

!
45 router igrp 100

 network 100.1.0.0
 network 98.0.0.0

The configuration of ISP-B-1 mirrors that of ISP-A-1:

hostname ISP-B-1
!

46 interface Loopback0
 ip address 99.0.0.1 255.255.0.0
!
interface Serial2
 description * to ISP-A *
 ip address 100.1.1.2 255.255.255.0
!
interface Serial3
 description * to ISP-B *
 ip address 100.1.2.2 255.255.255.252
!
router bgp 200

47 neighbor 98.2.0.1 remote-as 192
48  neighbor 99.0.0.1 update-source loopback0
49  neighbor 99.0.0.1 ebgp-multihop

!
50 router igrp 100

 network 100.1.0.0
 network 99.0.0.0

Route Filtering
The filtering of routes between ASs is key to implementing routing policies. The fol-
lowing section shows several route-filtering techniques.

Filtering by Prefix (Address/Mask) Information
The following BGP sub-command may be used to filter updates from a neighbor
based on the IP prefix in the update packet:

neighbor ip-address distribute-list {access-list-number | name/prefix-list
prefixlistname} {in | out}
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ip-address is the address of the BGP peer. The IP prefixes to be filtered may be speci-
fied in an access list or a prefix list.

Consider TraderMary’s network again. An access list would be appropriate to block
TrdrMary-1 from learning its own internal numbers from ISP-A:

hostname TrdrMary-1
!
interface Serial1
 description * to ISP-A *
 ip address 192.100.100.253 255.255.255.252
...
router bgp 100
neighbor 192.100.100.254 remote-as 192
neighbor 192.100.100.254 distribute-list 1 in
!
access-list 1 deny 160.160.0.0
access-list 1 deny 192.200.200.0
access-list 1 permit 0.0.0.0 255.255.255.255

Simple access lists do not allow control over the subnet mask field. So, ISP-X may
advertise 192.156.0.0/16 to peer a.b.c.d as follows:

hostname ISP-X-1
!
router bgp 222
neighbor a.b.c.d
neighbor a.b.c.d distribute-list 10 out
access-list 10 permit 192.156.0.0

However, this access list will permit 192.156.0.0/16, 192.156.0.0/17, 192.156.0.0/18,
and so on. To ensure that ISP-X advertises only 192.156.0.0/16, we need to config-
ure an extended access list that has room to specify the mask portion of the update:

access-list 101 permit ip 192.156.0.0 0.0.255.255 255.255.0.0 0.0.0.0

The format of the extended access list is:

access-list <number> permit ip <ip-address> <don't care bits> <mask> <don't care bits>

ISPs may use extended access lists on inbound updates to filter out all advertise-
ments with masks longer than a specific length. Here, access list 102 will filter out all
updates with masks longer than 24 bits:

access-list 102 deny ip 0.0.0.0 255.255.255.255 255.255.255.0 0.0.0.255

You can also use an IP prefix list for this task. The format of the ip prefix-list com-
mand is:

ip prefix-list list-name [seq seq-value] deny | permit network/len [ge ge-value]
[le le-value]

Here, the prefix list xyz allows only 192.156.0.0/16:

ip prefix-list xyz permit 192.156.0.0/16.
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Note that a modification to the filters on a BGP peer with an existing BGP session
will not take effect until the connection is reset using the clear ip bgp command.

Filtering by AS-PATH Information
The ip as-path access-list command permits updates to be filtered based on the
attached AS-PATH information:

ip as-path access-list access-list-number {permit | deny} as-regular-expression

The access-list-number should be in the range 1–199. The keyword permit/deny spec-
ifies the action to be taken if the AS-PATH information in the update matches the as-
regular-expression.

Let’s say that TraderMary wants only updates that transit AS 131. The following
configuration creates a route map called only131 that refers to the AS-PATH access
list 1, which matches only AS-PATH strings that include 131:

hostname TrdrMary-1
...
ip as-path access-list 1 permit _131_
!
router bgp 100

 neighbor 192.100.100.254 remote-as 192
 neighbor 192.100.100.254 route-map only131 in
!
route-map only131 permit 10
 match as-path 1

Connecting to the Internet
Several key design issues should be considered when connecting to the Internet.
These issues impact the reliability, performance and cost of Internet connectivity. I
will examine several design alternatives in the following sections, then look at a case
study.

Design Alternatives
There are three alternatives regarding physical connectivity between the client and
the ISP(s):

Singly-homed
A single circuit may be adequate for a small organization generating a trickle of
traffic. The client organization must choose an ISP and decide on the speed of
the access circuit. However, if that single circuit breaks, the entire organization
will be without Internet service. Hence, if the organization’s access to the Inter-
net is critical, multi-homing is warranted (even when the traffic volume is small).
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Multi-homed to the same ISP
An organization may decide to implement multiple circuits between itself and its
ISP for reliability. An organization that decides to multi-home has a more com-
plex task at hand. Should the links be of the same speed? What should the link
speeds be? How should inbound traffic be distributed over the links? How
should outbound traffic be distributed over the links?

Multi-homed to different ISPs
A multi-homed organization may consider using more than one ISP for addi-
tional reliability. This will guard against failures in a single ISP network.

There are several options regarding the routing of traffic between the client organiza-
tion and the Internet. Note that these options apply only to multi-homed clients;
singly-homed clients have only one path for inbound and outbound traffic.

In the following discussion, I will distinguish between inbound and outbound traffic.
The traffic flow from the client’s network to the Internet is referred to as outbound.
The reverse flow from the Internet to the client’s network is referred to as inbound.
Inbound and outbound flows need not be symmetrical.

There are several options regarding outbound traffic:

Default route
The simplest method of defining routes to external destinations is by configur-
ing a default route (0.0.0.0). The default route will match any destination for
which a more specific route is not known via the client’s IGP. The configuration
for the singly-homed client using a default route is identical to TraderMary’s
configuration in “Getting BGP Running.” The single default route works well in
a singly-homed scenario.

Partial routing table along with default routes
When a client is multi-homed—say, to two different ISPs—the two outbound
paths are not equal. Some networks in the Internet will be closer via one path
while others will be closer via the second path. A single default route cannot
address this asymmetry. The client has two options here. The first option is for
the client routers to import a partial set of routes from each ISP and use a default
route for the remaining routes. The second option is to import the full routing
table.

Full routing table
The full routing table may be useful in multi-homed environments to allow the
most informed decision to be made. However, at the time that this book is being
written, there are around 75,000 prefixes in the Internet. This places high
demands on router memory and CPU resources. You should have a very good
reason to import the full routing table.

Inbound routing decisions are made in the routing tables in other, external ASs. The
client may set one or more BGP attributes in an attempt to influence the flow of
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inbound traffic. However, ISPs have their own routing policies and may disregard or
override these attributes. Hence, the inbound routing policies should be implemented
in conjunction with the ISP. The methods described here use the AS-PATH attribute.

Identical AS-PATH length
The option here is for the client organization to advertise all its routes on all
paths with identical AS-PATH information.

AS-PATH prepend
The client organization may consider the AS-PATH prepend option to influence
the path that inbound traffic will take.

The following case study implements the AS-PATH prepend option to load-balance
traffic over two links.

A Case Study
BollywoodFilms has offices in Bombay and Madras in India. The corporation desires
Internet connectivity. Given the notoriously poor telecommunications infrastructure
in the South Asian subcontinent, they decide to establish two connections to the
local ISP, ISP-SouthAsia. One connection is out of router Bombay and the other is
out of router Madras. BollywoodFilms thus multi-homes to the same ISP.
Figure 7-13 shows a topology of BollywoodFilms’s external network.

BollywoodFilms owns networks 192.100.1.0/24 and 192.100.2.0/24. 192.100.1.0/24
connects to Bombay (line 51) and 192.100.2.0/24 connects to Madras (line 61). The
configurations on the routers are as follows:

Figure 7-13. Internet connectivity for BollywoodFilms

BollywoodFilms

AS 209
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192.100.1.0/24
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hostname Bombay
!

51 interface Ethernet0
 ip address 192.100.1.1 255.255.255.0
!

52 interface Serial0
 ip address 146.100.100.254 255.255.255.252
!

53 interface Serial1
 ip address 10.1.1.4 255.255.255.0
!
router bgp 209

54 network 192.100.1.0
55  network 192.100.2.0
56  neighbor 10.1.1.1 remote-as 209
57  neighbor 192.100.100.253 remote-as 109
58  neighbor 192.100.100.253 route-map metric-adj2 out

!
access-list 1 permit 192.100.2.0 0.0.0.255
access-list 2 permit 192.100.1.0 0.0.0.255
!

59 route-map metric-adj2 permit 10
 match ip address 1
 set as-path prepend 209 209
!

60 route-map metric-adj2 permit 20
 match ip address 2

hostname Madras
!

61 interface Ethernet0
 ip address 192.100.2.1 255.255.255.0
!

62 interface Serial0
 ip address 146.1.1.254 255.255.255.252
!

63 interface Serial1
 ip address 10.1.1.1 255.255.255.0
!
router bgp 209
 no synchronization

64 network 192.100.1.0
65  network 192.100.2.0
66  neighbor 10.1.1.4 remote-as 209
67  neighbor 200.1.1.253 remote-as 109
68  neighbor 200.1.1.253 route-map metric-adj out

!
access-list 1 permit 192.100.1.0 0.0.0.255
access-list 2 permit 192.100.2.0 0.0.0.255
!

69 route-map metric-adj permit 10
 match ip address 1
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 set as-path prepend 209 209
!

70 route-map metric-adj permit 20
 match ip address 2

Note that both routers advertise 192.100.1.0 and 192.100.2.0 to the ISP (lines 54,
55, 64, and 65). This ensures that inbound traffic has an alternate path if one link
fails. So, if Bombay’s link to the ISP fails, external users on 192.100.1.0 will receive
inbound traffic via Madras, since Madras advertises 192.100.1.0 to the ISP. This con-
figuration works because Bombay and Madras have a link between each other (lines
53 and 63) over which they have an I-BGP session (lines 56 and 66).

If you look a little deeper into the above configurations (lines 58, 59, 68, and 69),
you’ll see that Bombay and Madras do not advertise 192.100.1.0 and 192.100.2.0
equally. Bombay makes the AS-PATH attribute for 192.100.2.0 look unattractive to
routers in the Internet by lengthening its AS-PATH attribute using the as-path
prepend command. Madras uses the same technique to make 192.100.1.0 look unat-
tractive to Internet routers. This ensures that when both ISP links are up, inbound
traffic for 192.100.1.0 prefers to come directly into Bombay and inbound traffic for
192.100.2.0 prefers to come directly into Madras. Thus, a router in the ISP’s net-
work would have BGP table entries with two paths for each prefix:

ISP-SAsia#sh ip bgp
...
Network          Next Hop          Metric LocPrf Weight Path

71 *  192.100.1.0      146.1.1.254                          0 209 209 209 I
*>                  146.100.100.254        0             0 209 i

72 *> 192.100.2.0      146.1.1.254            0             0 209 i
*                   146.100.100.254        1             0 209 209 209 i

However, the ISP router would prefer the shorter AS-PATH:

ISP-SAsia#sh ip route
...

73 B    192.100.1.0/24 [20/0] via 192.100.100.254, 00:05:58
74 B    192.100.2.0/24 [20/0] via 200.1.1.254, 00:01:44

ISP-SouthAsia thus sees a shorter path for 192.100.1.0 via Bombay (line 71) and a
shorter path for 192.100.2.0 via Madras (line 72). If one of these lines goes down, all
inbound traffic will reroute to the other link, since the BGP tables store both paths.

However, this completes only half the screenplay. The organization decides that out-
bound traffic from Bombay should exit via Bombay and outbound traffic from
Madras should exit via Madras. To implement this policy, ISP-SouthAsia sends a
default route to Bombay and Madras, respectively. So Bombay installs a default route
that points out of its serial interface to ISP-SouthAsia (line 75) and Madras installs a
default route that points out of its serial interface to ISP-SouthAsia (line 76):

Bombay#sh ip route
...
Gateway of last resort is 192.100.100.253 to network 0.0.0.0
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75 B*   0.0.0.0/0 [20/0] via 192.100.100.253, 00:07:21
...

Madras#sh ip route
...
Gateway of last resort is 200.1.1.253 to network 0.0.0.0

76 B*   0.0.0.0/0 [20/0] via 200.1.1.253, 00:04:47
...

If Bombay loses its link to ISP-SouthAsia, it will use the default route it receives from
Madras via the I-BGP peering relationship:

Bombay#sh ip bgp
BGP table version is 72, local router ID is 192.100.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path
77 *> 0.0.0.0          192.100.100.253        0             0 109 ?

* i                 200.1.1.253            0    100      0 109 ?

And, likewise, Madras will use the default route it receives from Bombay:

Madras#sh ip bgp
BGP table version is 80, local router ID is 192.100.2.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

   Network          Next Hop          Metric LocPrf Weight Path
78 *> 0.0.0.0          200.1.1.253            0             0 109 ?

* i                 192.100.100.253        0    100      0 109 ?

Choosing an ISP
ISPs may be evaluated against several criteria that may be broadly classified under the
headings Services, Architecture, Addressing/Routing, Operations Support, and Pric-
ing. Some criteria will, of course, be more important to your organization than others.

Services
First and foremost is whether the ISP provides the services you need at your loca-
tion. If you need T-3 access in Lisbon, Portugal, can the ISP meet your requirement?

Network Architecture
Is your application so critical that even a short outage would be intolerable? If so,
you should look closely at the ISP’s network architecture. Are there redundant rout-
ers at the points of presence (POPs)? Are there redundant links between POPs? What
is the speed of the links between POPs?
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What other ISPs and providers are peers of the ISP? If you are a wine merchant in
Portugal and the majority of your distributors and customers are on ISP-Japan, you
should find out how far your ISP is from ISP-Japan. Do they have direct peering? If
not, how many intermediary networks are involved?

Addressing/Routing
Can the ISP carry the prefixes you want advertised? This may be an issue if you bor-
row a prefix from ISP-P but want to advertise the same prefix to ISP-Q.

Will the ISP support the routing policies you desire?

Operations
How is the ISP managed? What processes and resources does the ISP have in place
for managing its resources? How does the ISP monitor traffic on its backbone? At
what level of utilization is the network bandwidth upgraded? How is the network
monitored for failures? What is the average downtime?

A client’s first contact with the ISP will usually be with its Customer Service Depart-
ment. The quality of response from the Customer Service Department can make a
big difference when you are experiencing an outage and need “real”-time access to
high-level engineering support. Readily available engineering design support and
readily available, proficient engineers to help troubleshoot are important.

Price
Price, of course, is a concern. You may get a better price from a smaller, regional ISP
than from one of the major ISPs. You may even get better service from a regional ISP.
However, a larger ISP may score higher marks on its network architecture and per-
formance.

Troubleshooting BGP
You might encounter your first problem with BGP when configuring a new peering
relationship. The BGP session between the peers may not enter the Established state
(the output of show ip bgp neighbor may show other states, such as Idle, Connect, or
Active). Here are the first steps you should take when troubleshooting BGP:

1. Check the infrastructure between the peers: an ICMP ping test between the
peers is a quick test of layer-3 reachability between the peers.

2. If layer 3 reachability exists between the peers, the configuration of the peers
may be in error. Check the BGP configuration of neighbor IP addresses and AS
numbers on each peer.
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3. Check for IP filters (access lists) or firewalls between the peers that would pre-
vent a BGP TCP session (on port 179) from being formed.

4. Is there a BGP version mismatch between the peers? Look for the BGP neighbor
ip-address version number sub-command.

Once the neighbors have entered into the Established state, you may find that no
prefixes or only some prefixes are being exchanged. Here are the steps you should
take:

• If no prefixes are being exchanged, you may want to go back and make sure that
the peers are indeed in an Established state.

• If some but not all prefixes are being exchanged, check to see if a filter (an access
list, a prefix filter, or an attribute filter such as an AS-PATH filter) is blocking the
update. The show ip bgp neighbor ip-address command will show the filters that
are applied to the BGP session.

• Filter changes on established BGP sessions do not take effect until the BGP ses-
sion is reset via a clear command. BGP connections need to be reset if any BGP
policy (filter) changes are made. If the BGP table does not reflect the filters in
place, issue one of the clear commands described here. This command:

clear ip bgp [* | ip-address | peer-group]

will tear down BGP sessions with the specified neighbors. Once the sessions are
reestablished, the routing tables will reflect the current filter lists. However, the
neighbors will lose routes learned from each other, disrupting traffic between the
peers during session reestablishment. Cisco offers a new, softer approach that
enables new policies to take effect without resetting the BGP TCP connection.
This command:

clear ip bgp [* | ip-address | peer-group] [soft [in|out]]

is less harsh. The in option applies the current filter list on prefixes in the BGP
table and the out option causes updates to be sent again.

Intermittent connectivity between end-stations is often the result of a flapping inter-
face. Check the output of the show ip bgp neighbor command—an increasing version
number indicates a problem in the infrastructure between the peers.

You may encounter a seemingly bizarre situation in which you are able to get to
some parts of the Internet but not others. This may be because of the way ISPs
advertise or block various prefixes depending on the length of the prefix. This can be
a messy situation to troubleshoot, but there are several Internet sites that allow one
to trace routes to any IP address. These sites are also called “looking-glass sites.”
http://www.nanog.org provides a wealth of data with pointers to other sites, includ-
ing looking-glass sites. You can also check out http://www.merit.edu.

Also, some ISPs will tell you what routes they are seeing for your network numbers if
you call and ask. AT&T even maintains a router on which you can check routes
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(telnet route-server.cerf.net), which will respond to show ip route commands (no
password is required).

Summing Up
It’s hard to remember that BGP is based on the simple DV algorithm. Instead of one
metric (as in the case of RIP or IGRP), the protocol uses multiple attributes to choose
the best path.

The environment on which I focused in this chapter—the use of BGP by ASs such as
TraderMary to connect to one or more ISPs—is even simpler in that only a few
attributes are necessary to implement most routing policies. The essentials in this
environment are deciding on the optimum routing policy for inbound and outbound
traffic given the client’s topology and requirements, and using BGP to implement
this policy well, so that failures and load-balancing issues are adequately addressed.

ISPs typically employ BGP in more complex ways, especially with route reflectors
and confederations (to solve the problem of I-BGP meshes). This chapter did not
focus on these issues.
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CHAPTER 8

Administrative Controls

Chapter 1 classified the routing processes running on every router into three catego-
ries: (1) the processes responsible for running the routing protocols (EIGRP, OSPF,
etc.); (2) the processes that take routing information from these routing protocols
and build the routing table, exchange (redistribute) routing information between
routing protocols, and filter routing information between peers; and (3) the pro-
cesses involved with the forwarding of IP packets.

The bulk of this book is devoted to the description of routing protocols, which con-
stitute the first set of processes. The third set of processes uses the rules of longest
prefix match and classful versus classless route-lookup behavior, which I have
already discussed at length.

The second set of processes is constituted of the controls that an administrator can
exert over the routing process. This chapter describes these controls, which span all
routing protocols. Instead of discussing these controls separately in the context of
each routing protocol, I have reserved this discussion for this chapter, where I will
talk about these controls just once.

The most common administrative control is the filtering of routing information
between peers, over interfaces, or between routing protocols. Routing information
may be filtered for any number of reasons: to stop sending routing updates to serv-
ers, to partition the network, to prevent routing loops, etc. These administrative con-
trols are described in the section “Filter Routing Information.”

If a router learns a route via multiple sources, it uses a default hierarchy of adminis-
trative distances to assign preference to one source over another (as discussed in
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Chapter 1). This hierarchy can be adjusted as described later, in “Rate the Trustwor-
thiness of a Routing Information Source.” This control is used to create floating static
routes.

For various reasons, networks often run multiple routing protocols. This requires the
exchange of routing information between the routing protocols so as to present a
cohesive, integrated network. The controls for this exchange of routing information
are described in the section “Redistribute Routes.”

When a router knows of multiple equal-cost paths to a given destination, it will
install all the paths in its routing table, up to a default maximum. This default maxi-
mum number of paths to a single destination can be adjusted as described in “Maxi-
mum Number of Paths.”

Filter Routing Information
The administrative control over updates entering and leaving a routing process has
common elements across all routing protocols. As Figure 8-1 shows, both incoming
and outgoing updates may be filtered.

There are several approaches to filtering routing information. We will describe these
approaches, along with a potential use of each, in the following sections.

Block All Updates on an Interface
The passive-interface command blocks all updates from being sent on the specified
interface(s). The syntax of the command (in router configuration mode) is:

passive-interface type number

Consider the example of router R:

hostname R
...
interface Ethernet0

Figure 8-1. Filter incoming and outgoing updates
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description * EIGRP Network *
...
interface Ethernet1
description * RIP Network *
...
router rip
passive-interface ethernet0
...
router eigrp 109
passive-interface ethernet1

This command allows router R to participate in a RIP process with routers connected
on Ethernet1 and an EIGRP process with routers on Ethernet0.

This command cannot be used with BGP.

Filter the Routes Sent out in Updates
The distribute-list out command may be used to filter the routes announced in
updates to peers. The syntax of the command (in router configuration mode) is:

distribute-list access-list-number out [interface-name | routing-process]

There are two options: updates can be filtered when sent out of an interface or when
redistributed between routing processes. An access list (as specified by access-list-
number) is used in either case to specify the routes to be permitted or denied.

The following is an example of the first option. Router R is applying access list 1 to
filter the RIP updates being sent out on Ethernet1:

hostname R
...
interface Ethernet1
description * RIP Network *
...
router rip
distribute-list 1 out interface Ethernet1

Our second example shows how routes can be filtered when conveyed to another
routing protocol. Router R is running EIGRP and RIP. The routes learned from RIP
are being redistributed into EIGRP. Access list 2 specifies that networks 146.100.0.0
and 11.0.0.0 are permitted to cross over from RIP into EIGRP; all other network
numbers are blocked.

hostname R
...
interface Ethernet0
description * EIGRP Network *
...
interface Ethernet1
description * RIP Network *
...
router rip
passive-interface ethernet0
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...
router eigrp 109
redistribute rip
distribute-list 2 out rip
...
access-list 2 permit 146.100.0.0
access-list 2 permit 11.0.0.0

Filter the Routes Received in Updates
It is not possible to control the routes being advertised by a peer, but it is possible to
restrict the routes that are installed in the routing table. You can do so by applying
the distribute-list in command to a routing process, using an access list to specify the
routes to be permitted or denied:

distribute-list access-list-number in [interface-name]

In the following example, router R will not install 146.100.0.0 when it is received in
an EIGRP update on Ethernet0:

hostname R
...
interface Ethernet0
description * EIGRP Network *
...
interface Ethernet1
description * RIP Network *
...
router rip
passive-interface ethernet0
...
router eigrp 109
 distribute-list 3 in Ethernet0
...
access-list 3 deny 146.100.0.0
access-list 3 permit 0.0.0.0 255.255.255.255

Apply an Offset to a Routing Metric
When there are several paths to a destination and one path is less desirable, an offset
may be applied to (increase) the metric on the less favorable path. This subcom-
mand applies to RIP and IGRP updates only:

offset-list [access-list-number] {in | out} offset [interface-type number]

The command must specify whether the offset applies to incoming or outgoing
updates (using the in or the out keywords).

You can associate an access list with the command to specify the routes to which the
offset applies. Optionally, you can also specify an interface type and number to indi-
cate that the offset applies only to updates sent/received from a specific interface.
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Rate the Trustworthiness of a Routing
Information Source
As I discussed in detail in Chapter 1, administrative weight is the trustworthiness of a
routing information source. When a route is known via more than one source, the
source with the lower administrative distance is installed in the routing table. The
following subcommand:

distance weight [[ip-source-address ip-address-mask] [access-list-number]]

is used to specify administrative weight. Without the options, the command applies
to all routes known via the routing protocol. Thus, in the following example, a dis-
tance of 10 is attached to all RIP-derived routes and a distance of 20 is attached to all
EIGRP-derived routes:

hostname R
...
router rip
distance 10
...
router eigrp 109
distance 20

You can use the optional filters to attach an administrative weight to only the routes
derived from routing sources that pass the filters. Thus, the distance command in the
following code:

router rip
network 11.0.0.0
distance 160 11.1.1.0 0.0.0.255

attaches a distance of 160 to RIP routes derived from sources in the IP address range
11.1.1.0 through 11.1.1.255. The use of the optional filters in the distance com-
mand is discouraged; unless it is carefully planned, it can cause problems with rout-
ing loops.

Redistribute Routes
Ideally, you should run only a single IGP in any given network. However, as net-
works evolve they often end up running multiple routing protocols. How does this
happen? After all, shouldn’t the routing engineer select one routing protocol and
stick with it as the network grows?

Consider a network running RIP. The network is to be extended to support a new
business area, and the routing engineers decide not to use RIP for the extension
because of its long convergence times. Instead, they deploy EIGRP on the extension,
while continuing to use RIP on the legacy network.
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In another scenario, consider two corporations that merge and ask their network
engineers to join their networks. One network may have been running OSPF and the
other IGRP. The two routing domains in this scenario are described in Figure 8-2.

For the network in Figure 8-2 to remain cohesive—i.e., for end-stations in one
domain to reach end-stations in the other domain—router R must perform some
kind of “translation,” taking the routes from the OSPF domain and conveying them
into IGRP, and vice versa.

This “translation” of routing information from one domain (or routing protocol) to
another is known as route redistribution. Note that route redistribution is a one-way
translation of routing information from one routing protocol to another. The two-
way translation of routing information from one routing protocol to another and vice
versa is referred to as mutual redistribution.

The translation of routing information during route redistribution is akin to the
translation of texts between languages, such as French and English. A French-to-
English translator must know both languages; a router doing route redistribution
must run both routing protocols. Thus, router R in Figure 8-2 must run IGRP and
OSPF if it is to redistribute between IGRP and OSPF.

Every translation between languages leads to a loss in nuance, feeling, and depth:
how can you ever translate “Shalom”? Route redistribution usually results in some
loss of routing information: how can an OSPF IA route with a metric of 1,575 be rep-
resented in IGRP? This can lead to problems. In fact, the careless use of route redis-
tribution commands is a sure recipe for disaster. In the following section, I’ll describe
the commands used in route redistribution and some common pitfalls.

How to Redistribute
This section describes the Cisco IOS commands used in route redistribution. Route
redistribution commands allow the network engineer to (a) specify which routing
protocol to redistribute into which other protocol, (b) specify which routes to trans-
late between the routing protocols, and (c) specify the attributes of the routes in the
new routing protocol. So, for instance, if the routes are being imported into OSPF, it
should be possible to specify that the redistributed routes should be AS-external type
2 with a metric of 100.

Figure 8-2. A network with two routing domains

IGRP domainOSPF domain

Router R

,ch08.22733  Page 208  Wednesday, January 9, 2002  12:26 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Redistribute Routes | 209

The redistribute command appears as follows in router configuration mode:

redistribute protocol [process-id] {level-1 | level-1-2 | level-2}
[metric metric-value] [metric-type type-value]
[match internal | external type-value] [route-map map-tag]
[weight weight] [subnets]

The protocol keyword specifies the source protocol from which routes are being
redistributed. The source protocol may be bgp, igrp, ospf, static, connected, rip, isis,
etc.

The process-id specifies the autonomous system number of the routing process. Note
that no process-id value is needed for RIP.

The {level-1 | level-1-2 | level-2} keyword is used only for isis routes.

The metric-value specifies the metric to attach to the redistributed routes. Remember
that route metrics do not translate between routing protocols. It is usual to assign a
fixed metric to all routes when redistributing them into another routing protocol. In
the upcoming example, a metric of 100 is attached to the routes redistributed from
RIP. If a metric-value is not specified in the command, a default value of 0 is assumed.

The type-value applies to OSPF, which defines two types of external routes: type 1
and type 2.

The match keywords apply only when OSPF routes are being redistributed into
another protocol. The keywords specify which types of OSPF routes to redistribute:
internal, external, etc.

You can use a route map to control details of the redistribution or to specify the
attributes of routes when translating between protocols. In the following example,
RIP is being redistributed into OSPF. The route map only-2-hop-routes is used to
enforce the policy that only two-hop routes be redistributed into OSPF. These routes
are accepted into OSPF with a metric of 100 and as type 1 external routes.

router ospf 2
redistribute rip route-map only-2-hop-routes
!
route-map only-2-hop-routes permit
match metric 2
set metric-type 1
set metric 100

The weight keyword is used only when redistributing into BGP, to specify the Weight
attribute of the redistributed route.

The subnets keyword is used when redistributing into OSPF to specify which routes
to import from the specified protocol.

If you are experienced with RIP, you may have noticed an exception. RIP automati-
cally redistributes all static routes with a metric of 1. In other words, static routes
appear to RIP to be directly connected.
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Since IGRP’s metric is a vector, the specification of the metric of the redistributed
routes takes on a variation:

default-metric bandwidth delay reliability loading mtu

Many Pitfalls…
Route redistribution exposes the network to the risks of routing anomalies. Con-
sider the network in Figure 8-3. Routers R1 and R2 perform mutual redistribution,
exchanging routes between the two domains. Let’s say that domain 1 is using
EIGRP, and domain 2 is using OSPF. R1 and R2 are redistributing EIGRP routes into
OSPF and OSPF routes into EIGRP. The network engineer has selected two routers
for this redistribution for redundancy.

Now, consider network X in domain 1. R1 advertises X into domain 2. R2 learns X
(via OSPF) and redistributes this information into domain 1. It may appear to rout-
ers in domain 1 that X is reachable via R2! Such routing anomalies sometimes take
the shape of routing loops.

Other routing anomalies include nonoptimal routing, “black holes,” and missing
routes. These problems are often a result of carelessly redistributing routes without
paying attention to the details of the differences between routing protocols. For
example, RIP Version 1 is a classful protocol and cannot carry subnet mask informa-
tion. If an OSPF domain is using VLSM, how will the OSPF routes look to RIP? Or, if
you are redistributing IGRP into OSPF, how should the IGRP metric be translated
into the OSPF metric?

… and a Couple of Strategies
Do not run multiple routing protocols!

If you have to run multiple routing protocols (and use route redistribution), there are
a few guidelines to follow:

1. Do not run multiple routing protocols on overlapping topologies.

2. Redistribute in one direction only.

Figure 8-3. A routing anomaly as a result of route redistribution

OSPF
(Domain 2)

EIRGP
(Domain 1)

R1

R2

“x/eigrp” “x/ospf”

“x/eigrp” “x/ospf”

Network X
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3. Use distribute lists to control which routes to accept—there are examples of this
in the earlier section “Filter Routing Information.”

4. Avoid mutual redistribution (a common cause of routing loops). When mutual
redistribution seems necessary, see if you can redistribute in one direction and
use a default route in the opposite direction. Thus, in the example in Figure 8-3,
redistribute EIGRP into OSPF and (in place of redistributing OSPF into EIGRP)
define a default route in EIGRP pointing to the OSPF domain.

5. Avoid mutual redistribution at multiple routers like the plague.

6. Whatever redistribution strategy you decide to undertake, try to test it in a lab
environment before inflicting it on a production network.

Maximum Number of Paths
If the path to a destination is known via more than one equal-cost path, the routing
table will install multiple paths in the routing table and balance traffic over those
paths. To override the default maximum number of paths (which is 6 for the current
IOS releases) that can be installed in the routing table, use the following command in
router configuration mode:

maximum-paths maximum

Note that this command does not apply to BGP, which installs only one route to a
destination.

Summing Up
The administrative controls described in this chapter are useful tools for the network
engineer to have in her back pocket. To ensure that the network engineer is not
being constantly called on to use these tools to “patch” the network, it is important
that the overall routing architecture be simple and elegant. Toward this end, it may
be prudent for the network engineer to pay attention to the following:

• Hierarchy of design, reflecting a hierarchy of IP addresses

• Route summarization, reducing the size of the routing table

• Using only a small number of routing protocols in the network, as it is difficult
to be familiar with the vagaries of several different routing protocols or to han-
dle multiple route redistributions

Further, since all IOS versions exhibit bugs, limit the number of IOS versions used in
the network.
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A
ABR (area border router), 118
access lists, 193, 205
ack fields, 79
acknowledgment packets, 71
active state, 75
active timer, 92
address and wildcard-mask fields, 111
administrative distance, 8
advertising router, 129
Aggregator attribute, 189
algorithms, routing protocols, 5
always keyword, 140
areas, 116
area 0, 108
area border router (ABR), 118
area IDs, 124

area-id field, 112
assigning, 111, 112, 153

ASBR (autonomous system boundary
router), 118

ASBR summary LSAs (type 4), 120, 135
AS-PATH attribute, 180
ASs (autonomous systems), 5

Internet Registry numbers for, 163
ISPs’ peers, 175
numbers, 37, 79, 163
types, 158
unique identifiers, 158

Atomic Aggregate attribute, 188
authentication

fields, 99
MD5, Cisco support for, 99

RIP-2, 94, 104
routing updates, 103

autonomous system boundary router
(ASBR), 118

autonomous system numbers, 37, 79
acquiring, 163

autonomous systems (see ASs)

B
backbone area, 108, 117
backbone router, 117
backup designated router (see BDR)
bandwidth, 39

default values, 40
modification of, 114
path, 43

bandwidth command, 40
BDR (backup designated router), 125, 126

election, 126
BGP dampening, 175
BGP-4 (Border Gateway Protocol

4), 157–202
Aggregator attribute, 189
AS numbers, acquisition, 163
AS-PATH attribute, 180
Atomic Aggregate attribute, 188
BGP table, 167, 177

attributes, 177
configuration, 163–166
ebgp-multihop command, 191
functioning, 166–191
I-BGP and E-BGP, 168
Internet, connecting to, 194–199
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BGP-4 (continued)
load balancing, 191
LOCAL-PREF attribute, 186
MED attribute, 184
message types, 172–173
metrics, 167
neighbor relationships, 168
network statement, 174
NEXT-HOP attribute, 182
ORIGIN attribute, 180
peer specification, 163
redistribute static statement, 174
route filtering, 192–194

AS-PATH, filtering by, 194
prefix (address/mask), filtering

by, 192
route maps, 178–180
routing policies, 158
routing tables, 167

transferring routes into, 173
synchronization with I-BGP, 176
troubleshooting, 200–202
updates, attributes of, 178
Weight attribute, 185

Border Gateway Protocol 4 (see BGP-4)

C
checksum, 79, 124
CIDR (Classless Inter-Domain

Routing), 102, 158, 160–162
ip classless command, 162
route aggregation, 162

Cisco
documentation, xii
IOS commands, route redistribution, 208
MD5 support, 99
proprietary routing protocols, xii
routers, serial interface configuration, 47

classful route lookups, 60
vs. classless route lookups, 103

classful routing protocols, 42
vs. classless routing protocols, 101–103

Classless Inter-Domain Routing (see CIDR)
composite metrics, 39

IGRP, 44
confederations, 176
contiguous networks, 116

convergence, 19
DUAL, 69, 75–78

diffusing computation, 77
local computation, 75

speeding up, 22
IGRP, 55

core routers, 6

D
database description (DD) packet, 129
DCs (demand circuits), 143
DD (database description) packet, 129
dead-interval, 125
debug commands, 93
debug ip ospf adjacency command, 154, 155
debug ip ospf events command, 155
default bandwidth and delay values, 40
default routes, 28, 57, 140

creation, 58
multiple routes, 59

default-information-originate keyword, 147
delay, 39

default values, 40
path, 43
unit of measure, 41

delay command, 40
demand circuits (DCs), 143
designated router (see DR)
Diffusing Update Algorithm (see DUAL)
Dijkstra’s algorithm, 114

SPF (Shortest Path First) algorithm, 5,
108

directly connected networks, 2
discretionary attributes, 178
distance command, 207
Distance Vector algorithms (see DV

algorithms)
Distance Vector protocols (see DV protocols)
distribute-list in command, 206
distribute-list out command, 205
distribution routers, 6
DR (designated router), 125, 126

election, 126
DUAL (Diffusing Update Algorithm), 69,

71–78
convergence, 75–78

diffusing computation, 77
local computation, 75
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hello-interval, 69
neighbor relationship, 69
supported protocols, 69
topology tables, 73–75

DV (Distance Vector) algorithms, 5, 33
DV (Distance Vector) protocols, 10

timers, 20
dynamic routing, 5

protocols, 10

E
E-BGP (External-BGP), 168

peer relationships, 170
vs. I-BGP, 175

ebgp-multihop command, 191
EGPs (exterior gateway protocols), 6, 158
EIGRP (Enhanced Interior Gateway Routing

Protocol), 63
bandwidth on low-speed links, 92
configuring, 64
default routes, 88
DUAL, 71–78
IGRP, similarities to, 63
incompatibility, non-Cisco routers, 64
metrics, 67
packets, 79–82

headers, 79
IP route updates, 80

route summarization, 84–88
automatic, 84–86
manual, 86–88

transport protocol, 70
troubleshooting, 90–93

bug lists, 92
debug commands, 93
neighbor relationships, verification, 90
show logging command, 92
stuck-in-active, 91

updates, 68
Enhanced Interior Gateway Routing Protocol

(see EIGRP)
EXEC commands

show interface, 3
show ip route, 2, 4

exterior gateway protocols (EGPs), 6, 158
exterior routes, 41
external links, 171
external LSAs (type 5), 120, 136
external routes, 81, 118

types 1 and 2, 120

F
fast switching, 19
FC (feasibility condition), 72
FD (feasible distance), 72
flat routing architectures, 6
flat routing protocols, 107
floating static routes, 204
flush timer, 20
FS (feasible successor), 72

G
gateway of last resort, 57

H
hello packets, 68

format, 122–126
hello protocol, 122
hello-interval, 69, 125
hierarchical routing architectures, 6
hierarchical routing protocols, 107
hold-down timer, 20
hold-time, 69

hello-interval, and (DUAL), 70
hops, maximum value, 43

I
IANA (Internet Assigned Numbers

Authority), private addresses, 162
I-BGP (Internal-BGP), 168

mesh, 176
peer relationships, 170
synchronization, 176
vs. E-BGP, 175

IGPs (interior gateway protocols), 5, 158
BGP, load balancing of, 191

IGRP (Interior Gateway Routing
Protocol), 33–62

AS numbers, 37
bandwidth and delay commands, 40
classful route lookups, 60
composite metrics, 44
configuring a network, 33
default routes, 57
hold-downs, disabling, 56
IGRP command, 35
metrics, 33, 38

customizing, 45
parallel paths, 50

,p_ip_routingIX.fm.22935  Page 215  Wednesday, January 9, 2002  12:27 PM



This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

216 | Index

IGRP (continued)
process ID, 37
RIP, similarities to, 55
route summarization, 56
routing updates, 41
scaling, 61
timers, 55
unequal metric load balancing, 50
update packets, 41
updates

frequency, 54
processing, 49

initialization bit, 69
inter-area routes, 120
interface configuration mode, RIP-1, RIP-2

interworking, 100
interior gateway protocols (see IGPs)
Interior Gateway Routing Protocol (see

IGRP)
internal links, 171
internal router, 118
internal routes, 41, 80
Internet Exchanges, 159
Internet Registries, 160

address portability, 162
AS numbers, 163

intra-area routes, 120
invalid timer, 20
IOS commands, route redistribution, 208
IP addresses, 162

portability, 162
ip as-path access-list command, 194
ip classless command, 162
ip ospf network broadcast command, 149
ip prefix-list command, 193
ip route command, 4
IP routing, xi, 1

underlying processes, 9
IP routing commands, xii
ISPs (Internet service providers)

choice of, 199
peers, ASs, 175

K
keepalive messages, 173
key chains, 104
key management, 105

L
{level-1 | level-1-2 | level-2} keywords, 209
link reliability, 39
link state acknowledgment packets, 130
link state advertisements (see LSAs)
Link State algorithm, 5, 108
link state database, 116
link state ID, 129
Link State (LS) protocols, 10
link state request packets, 130
link utilization, 40
load, 40

path, 43
route stability, and, 46

load balancing, 10
BGP, 191

LOCAL-PREF attribute, 186
longest prefix match, 8, 103
loop freedom, 72
LS type, 129
LSAs (link state advertisements), 119

ASBR summary LSAs (type 4), 135
external LSAs (type 5), 136
flooding, 137
headers, 129
network LSAs (type 2), 134
NSSA external LSAs (type 7), 137
router LSAs (type 1), 132
sequence numbers, 129
summary LSAs (type 3), 134

M
mandatory attributes, 178
match keywords, 209
Maximum Transmission Unit (see MTU)
maximum-paths command, 211
MD5 authentication mode, RIP-2, 104
MED attribute, 184
metrics, 5, 14

EIGRP, 67
IGRP, 33, 38
OSPF, 113

metric-type keyword, 140
metric-value keyword, 140, 209
MTU (Maximum Transmission Unit), 40

path, 43
multi-homed networks, 159
mutual redistribution, 208
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N
NAPs (network access points), 159
NBMA networks, 148–150
neighbor command, BGP, 168
neighbor relationships, 69, 128, 168

BGP, verification under, 165
BGP-4, 168
EIGRP, verification under, 90

neighbor router ID list, 126
network access points (NAPs), 159
network administration

IOS commands, route redistribution, 208
multiple routing protocols,

managing, 207
routing controls, 203–211
routing information, translation between

domains, 208
steady state, 53

network logs, 92
network LSAs (type 2), 119, 134
network mask, 124
network statement, 174
networks

C and R attributes, 13
directly connected, 2
IGRP, design, 57
internal addressing, devices, 162
monitoring state of, 53
private addresses, 162

next hop IP addresses, 94, 99
NEXT-HOP attribute, 182
no auto-summary command, 174
nontransitive attributes, 178
no-redistribution keyword, 148
no-summary keyword, 148
notification message, 173
NSSA external LSAs (type 7), 120, 137
NSSAs (not so stubby areas), 119, 147

O
offset lists, 31
offset-list command, 206
opcode field, 79
open message, 172
Open Shortest Path First protocol (see OSPF)
optional attributes, 178
options field, 125
ORIGIN attribute, 180

OSPF (Open Shortest Path First) protocol, 6,
107–156

ABR (area border router), 118
administrative requirements, 156
ASBR (autonomous system boundary

router), 118
backbone area, 117
backbone router, 117
configuration, 109–113
DCs (demand circuits), 143
default routes, 140
design, 150–153
Dijkstra’s algorithm, 114
functioning, explanation of, 121
hello packets, format of, 123–126
hello protocol, 122
high-speed networks, calculating

costs, 114
interface state, 128
internal router, 118
metrics, 113
NBMA networks, 148–150
neighbor relationships, 128
network command, 111
packets, 121
regular area, 117
route summarization, 137–140

ABR (inter-area summarization), 138
ASBR (external route

summarization), 139
route types, 120
show ip ospf interface command, 112,

113
stub areas, 145
topological database, 119
troubleshooting, 153–155

area IDs, 153
debug commands, 155
failure to start, 153
logs, 155
LS database, using, 155
overloaded routers, 154
route summarization, 154
SPF overruns, 154
verification of neighbor

relationships, 153
VLs (virtual links), 141–143

outgoing interfaces, 44
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P
parallel paths, IGRP, 50
passive state, 74
passive-interface command, 204
passwords

lifetimes, 105
routers, global configuration mode, 104

paths, metrics, for defining, 43
PDM (protocol-dependent module), 78
plain-text authentication mode, RIP-2, 104
poison reverse, 24
private addresses, 162
private peering, 160
process switching, 19, 50
process-id, 110, 209
proprietary protocols, 108
protocol keyword, 209
protocol-dependent module (PDM), 78
proxies, 162

Q
QCnt (queue count), 71
queries, 71

R
RD (reported distance), 71
redistribute command, 209
redistribute static command, 174
redistribute static statement, 174
regular area, 117
reliability, 39

path, 43
replies, 71
reported distance (RD), 71
retransmission timeout (RTO), 71
RFC 1771, 158
RFC 1793, 143
RFC 1918, 162
RIP (Routing Information Protocol), 6,

10–32
compatibility, Versions 1 and 2, 99
fine tuning, 29
limitations, 31
offset lists, 31
RIP metric, 16
timers, setting, 25
updates, 15, 17

RIP-2 (Routing Information Protocol
Version 2), 94–106

authentication modes, supported, 104
configuration, 95–98
features, 94
packet format, 98–99
route summarization, 105
uses, 106
Version 1, compatibility with, 99
VLSM support, 95

route lookups, classful vs. classless, 103
route map commands, 168
route maps, 178–180, 209
route redistribution, 208

IOS commands, 208
potential problems, 210

route reflectors (RRs), 176
route summarization, 27

EIGRP, 84–88
OSPF, 137–140
RIP-2, 105

route tags, 94
route-map weight, 185
router bgp command, 163, 168
router dead-interval, 125
router igrp command, 35
router LSAs (type 1), 119, 132
router ospf command, 110
router priority, 125
router rip command, 12
routers

core routers, 6
distribution routers, 6
serial interface configuration, Cisco

models, 47
routing, 1

anomalies, 210
controls, administration of, 203–211
domains, 67
dynamic, 5
loops, 68
policies, 157

BGP, route filtering, 192–194
static, 3
updates

authentication, 103
IGRP, 41

Routing Information Protocol (see RIP)
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Routing Information Protocol Version 2
(see RIP-2)

routing protocols
algorithms, 5
classful, 42

vs. classless, 101–103
dynamic, 10
features of, 6
flat, 107
hierarchical, 107

routing tables, 7–8
administration, 203–211
BGP, size under, 167
BGP-4, transfer of routes, 173
body, 8
IGRP route labels, 36
longest prefix match, 8
timer values, 18, 54

RRs (route reflectors), 176
RTO (retransmission timeout), 71

S
sequence fields, 79
serial interface configuration, Cisco

routers, 47
serial links and subnet masking, 95
show interface command, 3, 39
show ip bgp neighbor command, 171
show ip eigrp topology command, 74
show ip ospf database command, 155
show ip ospf interface command, 112, 113,

153
show ip route command, 2, 4, 43
show ip route destination-network-number

command, 68
show log command, 155
SIA (stuck-in-active), 78, 91
singly-homed networks, 159
split horizon, 23
SRTT (smoothed round trip time), 71
static routing, 3

static routes, 3
floating, 204

stub areas, 118, 145
stub ASs, 158
stuck-in-active (SIA), 78, 91
subnet masks, 26

24- vs. 30-bit, 95
(see also VLSM)

subnets keyword, 209

subnets, zero subnets, 102
sub-subnetting, 96
successor, 72
summary LSAs (type 3), 120, 134
switching modes, 19
synchronization, 176
system routes, 41

T
timer values, 18
topological address allocation, 161
topological database, 116
topology tables, 66, 71, 73–75
TOS (types of service), 114
totally stubby areas, 119, 146
TraderMary network, 10
transit networks, 133
transitive attributes, 178
troubleshooting

BGP, 200–202
EIGRP, 90–93
OSPF, 153–155

type-value, 209

U
update message, 173
update packets, 41, 70
update timer, 20
updates, reliable transmission of, 69

V
Variable Length Subnet Masks (see VLSM)
variance command, 52
VLs (virtual links), 141–143
VLSM (Variable Length Subnet Masks), 26,

82, 102
EIGRP, support by, 82–84
OSPF, support by, 148, 150, 152
RIP-2, support by, 95, 102

W
Weight attribute, 185
weight keyword, 209
well-known attributes, 178
wildcard-mask, 111

Z
zero subnets, 102
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