

DIGITAL LOGIC TESTING
AND SIMULATION

SECOND EDITION

Alexander Miczo

A JOHN WILEY & SONS, INC., PUBLICATION

DIGITAL LOGIC TESTING
AND SIMULATION

Copyright

2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data

:

Miczo, Alexander.
Digital logic testing and simulation / Alexander Miczo—2nd ed.

p. cm.
Rev. ed. of: Digital logic testing and simulation. c1986.
Includes bibliographical references and index.
ISBN 0-471-43995-9 (cloth)
1. Digital electronics—Testing. I. Miczo, Alexander. Digital logic testing and simulation

II. Title.

TK7868.D5M49 2003
621.3815

′

48—dc21
2003041100

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

CONTENTS

Preface xvii

1 Introduction 1

1.1 Introduction 1

1.2 Quality 2

1.3 The Test 2

1.4 The Design Process 6

1.5 Design Automation 9

1.6 Estimating Yield 11

1.7 Measuring Test Effectiveness 14

1.8 The Economics of Test 20

1.9 Case Studies 23
1.9.1 The Effectiveness of Fault Simulation 23
1.9.2 Evaluating Test Decisions 24

1.10 Summary 26

Problems 29

References 30

2 Simulation 33

2.1 Introduction 33

2.2 Background 33

2.3 The Simulation Hierarchy 36

2.4 The Logic Symbols 37

2.5 Sequential Circuit Behavior 39

2.6 The Compiled Simulator 44
2.6.1 Ternary Simulation 48

vi

CONTENTS

2.6.2 Sequential Circuit Simulation 48

2.6.3 Timing Considerations 50

2.6.4 Hazards 50

2.6.5 Hazard Detection 52

2.7 Event-Driven Simulation 54

2.7.1 Zero-Delay Simulation 56

2.7.2 Unit-Delay Simulation 58

2.7.3 Nominal-Delay Simulation 59

2.8 Multiple-Valued Simulation 61

2.9 Implementing the Nominal-Delay Simulator 64

2.9.1 The Scheduler 64

2.9.2 The Descriptor Cell 67

2.9.3 Evaluation Techniques 70

2.9.4 Race Detection in Nominal-Delay Simulation 71

2.9.5 Min–Max Timing 72

2.10 Switch-Level Simulation 74

2.11 Binary Decision Diagrams 86

2.11.1 Introduction 86

2.11.2 The Reduce Operation 91

2.11.3 The Apply Operation 96

2.12 Cycle Simulation 101

2.13 Timing Verification 106

2.13.1 Path Enumeration 107

2.13.2 Block-Oriented Analysis 108

2.14 Summary 110

Problems 111

References 116

3 Fault Simulation 119

3.1 Introduction 119

3.2 Approaches to Testing 120

3.3 Analysis of a Faulted Circuit 122

3.3.1 Analysis at the Component Level 122

3.3.2 Gate-Level Symbols 124

3.3.3 Analysis at the Gate Level 124

CONTENTS

vii

3.4 The Stuck-At Fault Model 125

3.4.1 The AND Gate Fault Model 127

3.4.2 The OR Gate Fault Model 128

3.4.3 The Inverter Fault Model 128

3.4.4 The Tri-State Fault Model 128

3.4.5 Fault Equivalence and Dominance 129

3.5 The Fault Simulator: An Overview 131

3.6 Parallel Fault Processing 134

3.6.1 Parallel Fault Simulation 134

3.6.2 Performance Enhancements 136

3.6.3 Parallel Pattern Single Fault Propagation 137

3.7 Concurrent Fault Simulation 139

3.7.1 An Example of Concurrent Simulation 139

3.7.2 The Concurrent Fault Simulation Algorithm 141

3.7.3 Concurrent Fault Simulation: Further Considerations 146

3.8 Delay Fault Simulation 147

3.9 Differential Fault Simulation 149

3.10 Deductive Fault Simulation 151

3.11 Statistical Fault Analysis 152

3.12 Fault Simulation Performance 155

3.13 Summary 157

Problems 159

References 162

4 Automatic Test Pattern Generation 165

4.1 Introduction 165

4.2 The Sensitized Path 165

4.2.1 The Sensitized Path: An Example 166

4.2.2 Analysis of the Sensitized Path Method 168

4.3 The D-Algorithm 170

4.3.1 The D-Algorithm: An Analysis 171

4.3.2 The Primitive D-Cubes of Failure 174

4.3.3 Propagation D-Cubes 177

4.3.4 Justification and Implication 179

4.3.5 The D-Intersection 180

viii

CONTENTS

4.4 Testdetect 182

4.5 The Subscripted D-Algorithm 184

4.6 PODEM 188

4.7 FAN 193

4.8 Socrates 202

4.9 The Critical Path 205

4.10 Critical Path Tracing 208

4.11 Boolean Differences 210

4.12 Boolean Satisfiability 216

4.13 Using BDDs for ATPG 219
4.13.1 The BDD XOR Operation 219
4.13.2 Faulting the BDD Graph 220

4.14 Summary 224

Problems 226

References 230

5 Sequential Logic Test 233

5.1 Introduction 233

5.2 Test Problems Caused by Sequential Logic 233
5.2.1 The Effects of Memory 234
5.2.2 Timing Considerations 237

5.3 Sequential Test Methods 239
5.3.1 Seshu’s Heuristics 239
5.3.2 The Iterative Test Generator 241
5.3.3 The 9-Value ITG 246
5.3.4 The Critical Path 249
5.3.5 Extended Backtrace 250
5.3.6 Sequential Path Sensitization 252

5.4 Sequential Logic Test Complexity 259
5.4.1 Acyclic Sequential Circuits 260
5.4.2 The Balanced Acyclic Circuit 262
5.4.3 The General Sequential Circuit 264

5.5 Experiments with Sequential Machines 266

5.6 A Theoretical Limit on Sequential Testability 272

CONTENTS

ix

5.7 Summary 277

Problems 278

References 280

6 Automatic Test Equipment 283

6.1 Introduction 283

6.2 Basic Tester Architectures 284

6.2.1 The Static Tester 284

6.2.2 The Dynamic Tester 286

6.3 The Standard Test Interface Language 288

6.4 Using the Tester 293

6.5 The Electron Beam Probe 299

6.6 Manufacturing Test 301

6.7 Developing a Board Test Strategy 304

6.8 The In-Circuit Tester 307

6.9 The PCB Tester 310

6.9.1 Emulating the Tester 311

6.9.2 The Reference Tester 312

6.9.3 Diagnostic Tools 313

6.10 The Test Plan 315

6.11 Visual Inspection 316

6.12 Test Cost 319

6.13 Summary 319

Problems 320

References 321

7 Developing a Test Strategy 323

7.1 Introduction 323

7.2 The Test Triad 323

7.3 Overview of the Design and Test Process 325

7.4 A Testbench 327
7.4.1 The Circuit Description 327
7.4.2 The Test Stimulus Description 330

x

CONTENTS

7.5 Fault Modeling 331
7.5.1 Checkpoint Faults 331
7.5.2 Delay Faults 333
7.5.3 Redundant Faults 334
7.5.4 Bridging Faults 335
7.5.5 Manufacturing Faults 337

7.6 Technology-Related Faults 337
7.6.1 MOS 338
7.6.2 CMOS 338
7.6.3 Fault Coverage Results in Equivalent Circuits 340

7.7 The Fault Simulator 341

7.7.1 Random Patterns 342
7.7.2 Seed Vectors 343
7.7.3 Fault Sampling 346
7.7.4 Fault-List Partitioning 347
7.7.5 Distributed Fault Simulation 348
7.7.6 Iterative Fault Simulation 348
7.7.7 Incremental Fault Simulation 349
7.7.8 Circuit Initialization 349
7.7.9 Fault Coverage Profiles 350
7.7.10 Fault Dictionaries 351
7.7.11 Fault Dropping 352

7.8 Behavioral Fault Modeling 353
7.8.1 Behavioral MUX 354
7.8.2 Algorithmic Test Development 356
7.8.3 Behavioral Fault Simulation 361
7.8.4 Toggle Coverage 364
7.8.5 Code Coverage 365

7.9 The Test Pattern Generator 368

7.9.1 Trapped Faults 368
7.9.2 SOFTG 369
7.9.3 The Imply Operation 369
7.9.4 Comprehension Versus Resolution 371
7.9.5 Probable Detected Faults 372
7.9.6 Test Pattern Compaction 372
7.9.7 Test Counting 374

7.10 Miscellaneous Considerations 378
7.10.1 The ATPG/Fault Simulator Link 378

CONTENTS

xi

7.10.2 ATPG User Controls 380

7.10.3 Fault-List Management 381

7.11 Summary 382

Problems 383

References 385

8 Design-For-Testability 387

8.1 Introduction 387

8.2 Ad Hoc Design-for-Testability Rules 388

8.2.1 Some Testability Problems 389

8.2.2 Some Ad Hoc Solutions 393

8.3 Controllability/Observability Analysis 396

8.3.1 SCOAP 396

8.3.2 Other Testability Measures 403

8.3.3 Test Measure Effectiveness 405

8.3.4 Using the Test Pattern Generator 406

8.4 The Scan Path 407

8.4.1 Overview 407

8.4.2 Types of Scan-Flops 410

8.4.3 Level-Sensitive Scan Design 412

8.4.4 Scan Compliance 416

8.4.5 Scan-Testing Circuits with Memory 418

8.4.6 Implementing Scan Path 420

8.5 The Partial Scan Path 426

8.6 Scan Solutions for PCBs 432

8.6.1 The NAND Tree 433

8.6.2 The 1149.1 Boundary Scan 434

8.7 Summary 443

Problems 444

References 449

9 Built-In Self-Test 451

9.1 Introduction 451

9.2 Benefits of BIST 452

9.3 The Basic Self-Test Paradigm 454

xii

CONTENTS

9.3.1 A Mathematical Basis for Self-Test 455

9.3.2 Implementing the LFSR 459

9.3.3 The Multiple Input Signature Register (MISR) 460

9.3.4 The BILBO 463

9.4 Random Pattern Effectiveness 464

9.4.1 Determining Coverage 464

9.4.2 Circuit Partitioning 465

9.4.3 Weighted Random Patterns 467

9.4.4 Aliasing 470

9.4.5 Some BIST Results 471

9.5 Self-Test Applications 471

9.5.1 Microprocessor-Based Signature Analysis 471

9.5.2 Self-Test Using MISR/Parallel SRSG (STUMPS) 474

9.5.3 STUMPS in the ES/9000 System 477

9.5.4 STUMPS in the S/390 Microprocessor 478

9.5.5 The Macrolan Chip 480

9.5.6 Partial BIST 482

9.6 Remote Test 484

9.6.1 The Test Controller 484

9.6.2 The Desktop Management Interface 487

9.7 Black-Box Testing 488

9.7.1 The Ordering Relation 489

9.7.2 The Microprocessor Matrix 493

9.7.3 Graph Methods 494

9.8 Fault Tolerance 495

9.8.1 Performance Monitoring 496

9.8.2 Self-Checking Circuits 498

9.8.3 Burst Error Correction 499

9.8.4 Triple Modular Redundancy 503

9.8.5 Software Implemented Fault Tolerance 505

9.9 Summary 505

Problems 507

References 510

10 Memory Test 513

10.1 Introduction 513

CONTENTS

xiii

10.2 Semiconductor Memory Organization 514

10.3 Memory Test Patterns 517

10.4 Memory Faults 521

10.5 Memory Self-Test 524

10.5.1 A GALPAT Implementation 525

10.5.2 The 9N and 13N Algorithms 529

10.5.3 Self-Test for BIST 531

10.5.4 Parallel Test for Memories 531

10.5.5 Weak Read–Write 533

10.6 Repairable Memories 535

10.7 Error Correcting Codes 537

10.7.1 Vector Spaces 538

10.7.2 The Hamming Codes 540

10.7.3 ECC Implementation 542

10.7.4 Reliability Improvements 543

10.7.5 Iterated Codes 545

10.8 Summary 546

Problems 547

References 549

11

I

DDQ

 551

11.1 Introduction 551

11.2 Background 551

11.3 Selecting Vectors 553

11.3.1 Toggle Count 553

11.3.2 The Quietest Method 554

11.4 Choosing a Threshold 556

11.5 Measuring Current 557

11.6

I

DDQ

 Versus Burn-In 559

11.7 Problems with Large Circuits 562

11.8 Summary 564

Problems 565

References 565

xiv

CONTENTS

12 Behavioral Test and Verification 567

12.1 Introduction 567

12.2 Design Verification: An Overview 568

12.3 Simulation 570

12.3.1 Performance Enhancements 570

12.3.2 HDL Extensions and C++ 572

12.3.3 Co-design and Co-verification 573

12.4 Measuring Simulation Thoroughness 575

12.4.1 Coverage Evaluation 575

12.4.2 Design Error Modeling 578

12.5 Random Stimulus Generation 581

12.6 The Behavioral ATPG 587

12.6.1 Overview 587

12.6.2 The RTL Circuit Image 588

12.6.3 The Library of Parameterized Modules 589

12.6.4 Some Basic Behavioral Processing Algorithms 593

12.7 The Sequential Circuit Test Search System (SCIRTSS) 597

12.7.1 A State Traversal Problem 597

12.7.2 The Petri Net 602

12.8 The Test Design Expert 607

12.8.1 An Overview of TDX 607

12.8.2 DEPOT 614

12.8.3 The Fault Simulator 616

12.8.4 Building Goal Trees 617

12.8.5 Sequential Conflicts in Goal Trees 618

12.8.6 Goal Processing for a Microprocessor 620

12.8.7 Bidirectional Goal Search 624

12.8.8 Constraint Propagation 625

12.8.9 Pitfalls When Building Goal Trees 626

12.8.10 MaxGoal Versus MinGoal 627

12.8.11 Functional Walk 629

12.8.12 Learn Mode 630

12.8.13 DFT in TDX 633

12.9 Design Verification 635

12.9.1 Formal Verification 636

12.9.2 Theorem Proving 636

CONTENTS

xv

12.9.3 Equivalence Checking 638

12.9.4 Model Checking 640

12.9.5 Symbolic Simulation 648

12.10 Summary 650

Problems 652

References 653

Index 657

xvii

PREFACE

About one and a half decades ago the state of the art in DRAMs was 64K bytes, a
typical personal computer (PC) was implemented with about 60 to 100 dual in-line
packages (DIPs), and the VAX11/780 was a favorite platform for electronic design
automation (EDA) developers. It delivered computational power rated at about one
MIP (million instructions per second), and several users frequently shared this
machine through VT100 terminals.

Now, CPU performance and DRAM capacity have increased by more than three
orders of magnitude. The venerable VAX11/780, once a benchmark for performance
comparison and host for virtually all EDA programs, has been relegated to muse-
ums, replaced by vastly more powerful PCs, implemented with fewer than a half
dozen integrated circuits (ICs), at a fraction of the cost. Experts predict that shrink-
ing geometries, and resultant increase in performance, will continue for at least
another 10 to 15 years.

Already, it is becoming a challenge to use the available real estate on a die.
Whereas in the original Pentium design various teams vied for a few hundred addi-
tional transistors on the die,

1

 it is now becoming increasingly difficult for a design
team to use all of the available transistors.

2

The ubiquitous 8-bit microcontroller appears in entertainment products and in
automobiles; billions are sold each year. Gordon Moore, Chairman Emeritus of Intel
Corp., observed that these less glamorous workhorses account for more than 98% of
Intel’s unit sales.

3

 More complex ICs perform computation, control, and communi-
cations in myriad applications. With contemporary EDA tools, one logic designer
can create complex digital designs that formerly required a team of a half dozen
logic designers or more. These tools place logic design capability into the hands of
an ever-growing number of users. Meanwhile, these development tools themselves
continue to evolve, reducing turn-around time from design of logic circuit to receipt
of fabricated parts.

This rapid advancement is not without problems. Digital test and verification
present major hurdles to continued progress. Problems associated with digital logic
testing have existed for as long as digital logic itself has existed. However, these
problems have been exacerbated by the growing number of circuits on individual
chips. One development group designing a RISC (reduced instruction set computer)
stated,

4

 “the work required to ... test a chip of this size approached the amount of
effort required to design it. If we had started over, we would have used more
resources on this tedious but important chore.”

xviii

PREFACE

The increase in size and complexity of circuits on a chip, often with little or no
increase in the number of I/O pins, creates a testing bottleneck. Much more logic
must be controlled and observed with the same number of I/O pins, making it more
difficult to test the chip. Yet, the need for testing continues to grow in importance.
The test must detect failures in individual units, as well as failures caused by defec-
tive manufacturing processes. Random defects in individual units may not signifi-
cantly impact a company’s balance sheet, but a defective manufacturing process for
a complex circuit, or a design error in some obscure function, could escape detec-
tion until well after first customer shipments, resulting in a very expensive product
recall.

Public safety must also be taken into account. Digital logic devices have become
pervasive in products that affect public safety, including applications such as trans-
portation and human implants. These products must be thoroughly tested to ensure
that they are designed and fabricated correctly. Where design and test shared tools in
the past, there is a steadily growing divergence in their methodologies. Formal veri-
fication techniques are emerging, and they are of particular importance in applica-
tions involving public safety.

Each new generation of EDA tools makes it possible to design and fabricate chips
of greater complexity at lower cost. As a result, testing consumes a greater percent-
age of total production cost. It requires more effort to create a test program and
requires more stimuli to exercise the chip. The difficulty in creating test programs
for new designs also contributes to delays in getting products to the marketplace.
Product managers must balance the consequences of delaying shipment of a product
for which adequate test programs have not yet been developed against the conse-
quences of shipping product and facing the prospect of wholesale failure and return
of large quantities of defective products.

New test strategies are emerging in response to test problems arising from these
increasingly complex devices, and greater emphasis is placed on finding defects as
early as possible in the manufacturing cycle. New algorithms are being devised to
create tests for logic circuits, and more attention is being given to design-for-test
(DFT) techniques that require participation by logic designers, who are being asked
to adhere to design rules that facilitate design of more testable circuits.

Built-in self-test (BIST) is a logical extension of DFT. It embeds test mechanisms
directly into the product being designed, often using DFT structures. The goal is to
place stimulus generation and response evaluation circuits closer to the logic being
tested.

Fault tolerance also modifies the design, but the goal is to contain the effects of
faults. It is used when it is critical that a product operate correctly. The goal of pas-
sive fault tolerance is to permit continued correct circuit operation in the presence
of defects. Performance monitoring is another form of fault tolerance, sometimes
called active fault tolerance, in which performance is evaluated by means of special
self-testing circuits or by injecting test data directly into a device during operation.
Errors in operation can be recognized, but recovery requires intervention by the
processor or by an operator. An instruction may be retried or a unit removed from
operation until it is repaired.

PREFACE

xix

Remote diagnostics are yet another strategy employed in the quest for reliable
computing. Some manufacturers of personal computers provide built-in diagnostics.
If problems occur during operation and if the problem does not interfere with the
ability to communicate via the modem, then the computer can dial a remote com-
puter that is capable of analyzing and diagnosing the cause of the problem.

It should be obvious from the preceding paragraphs that there is no single solu-
tion to the test problem. There are many solutions, and a solution may be appropri-
ate for one application but not for another. Furthermore, the best solution for a
particular application may be a combination of available solutions. This requires that
designers and test engineers understand the strengths and weaknesses of the various
approaches.

THE ROADMAP

This textbook contains 12 chapters. The first six chapters can be viewed as building
blocks. Topics covered include simulation, fault simulation, combinational and
sequential test pattern generation, and a brief introduction to tester architectures.
The last six chapters build on the first six. They cover design-for-test (DFT), built-in
self-test (BIST), fault tolerance, memory test,

I

DDQ

 test, and, finally, behavioral test
and verification. This dichotomy represents a natural partition for a two-semester
course. Some examples make use of the Verilog hardware design language (HDL).
For those readers who do not have access to a commercial Verilog product, a quite
good (and free) Verilog compiler/simulator can be downloaded from http://
www.icarus.com. Every effort was made to avoid relying on advanced HDL con-
cepts, so that the student familiar only with programming languages, such as C, can
follow the Verilog examples.

PART I

Chapter 1 begins with some general observations about design, test, and quality.
Acceptable quality level (AQL) depends both on the yield of the manufacturing pro-
cesses and on the thoroughness of the test programs that are used to identify defec-
tive product. Process yield and test thoroughness are focal points for companies
trying to balance quality, product cost, and time to market in order to remain profit-
able in a highly competitive industry.

Simulation is examined from various perspectives in Chapter 2. Simulators used
in digital circuit design, like compilers for high-level languages, can be compiled or
interpreted, with each having its distinct advantages and disadvantages. We start by
looking at contemporary hardware design languages (HDL). Ironically, while soft-
ware for personal computers has migrated from text to graphical interfaces, the
input medium for digital circuits has migrated from graphics (schematic editors) to
text. Topics include event-driven simulation and selective trace. Delay models for
simulation include 0-delay, unit delay, and nominal delay. Switch-level simulation

xx

PREFACE

represents one end of the simulation spectrum. Behavioral simulation and cycle
simulation represent the other end. Binary decision diagrams (BDDs), used in
support of cycle simulation, are introduced in this chapter. Timing analysis in syn-
chronous designs is also discussed.

Chapter 3 concentrates on fault simulation algorithms, including parallel,
deductive, and concurrent fault simulation. The chapter begins with a discussion of
fault modeling, including, of course, the stuck-at fault model. The basic algorithms
are examined, with a look at ways in which excess computations can be squeezed
out of the algorithms in order to improve performance. The relationship between
algorithms and the design environment is also examined: For example, how are the
different algorithms affected by the choice of synchronous or asynchronous design
environment?

The topic for Chapter 4 is automatic test pattern generation (ATPG) for combi-
national circuits. Topological, or path tracing, methods, including the D-algorithm
with its formal notation, along with PODEM, FAN, and the critical path, are
examined. The subscripted D-algorithm is examined; it represents an example of
symbolic propagation. Algebraic methods are described next; these include Bool-
ean difference and Boolean satisfiability. Finally, the use of BDDs for ATPG is
discussed.

Sequential ATPG merits a chapter of its own. The search for an effective sequential
ATPG has continued unabated for over a quarter-century. The problem is complicated
by the presence of memory, races, and hazards. Chapter 5 focuses on some of the
methods that have evolved to deal with sequential circuits, including the iterative test
generator (ITG), the 9-value ITG, and the extended backtrace (EBT). We also look at
some experiments on state machines, including homing sequences, distinguishing
sequences, and so on, and see how these lead to circuits which, although testable,
require more information than is available from the netlist.

Chapter 6 focuses on automatic test equipment. Testers in use today are extraor-
dinarily complex; they have to be in order to keep up with the ICs and PCBs in pro-
duction; hence this chapter can be little more than a brief overview of the subject.
Testers are used to test circuits in production environments, but they are also used to
characterize ICs and PCBs. In order to perform characterization, the tester must be
able to operate fast enough to clock the circuit at its intended speed, it must be able
to accurately measure current and voltage, and it must be possible to switch input
levels and strobe output pins in a matter of picoseconds. The Standard Test Interface
Language (STIL) is also examined in this chapter. Its goal it to give a uniform
appearance to the many different tester architectures on the marketplace.

PART II

Topics covered in the first six chapters, including logic and fault simulators, ATPG
algorithms, and the various testers and test strategies, can be thought of as building
blocks, or components, of a successful test strategy. In Chapter 7 we bring these
components together in order to determine how to leverage the tools, individually

PREFACE

xxi

and in conjunction with other tools, in order to create a successful test strategy. This
often requires an understanding of the environment in which they function, includ-
ing such things as design methodologies, HDLs, circuit models, data structures, and
fault modeling strategies. Different technologies and methodologies require very
different tools.

The focus up to this point has been on the traditional approach to test—that is,
apply stimuli and measure response at the output pins. Unfortunately, existing
algorithms, despite decades of research, remain ineffective for general sequential
logic. If the algorithms cannot be made powerful enough to test sequential logic,
then circuit complexity must be reduced in order to make it testable. Chapters 8
and 9 look at ways to improve testability by altering the design in order to improve
access to its inner workings. The objectives are to make it easier to apply a test
(improve controllability) and make it easier to observe test results (improve
observability). Design-for-test (DFT) makes it easier to develop and apply tests via
conventional testers. Built-in self-test (BIST) attempts to replace the tester, or at
least offload many of its tasks. Both methodologies make testing easier by reducing
the amount and/or complexity of logic through which a test must travel either to
stimulate the logic being tested or to reach an observable output whereby the test
can be monitored.

Memory test is covered in Chapter 10. These structures have their own problems
and solutions as a result of their regular, repetitive structure and we examine some
algorithms designed to exploit this regularity. Because memories keep growing in
size, the memory test problem continues to escalate. The problem is further exac-
erbated by the fact that increasingly larger memories are being embedded in
microprocessors and other devices. In fact, it has been suggested that as micropro-
cessors grow in transistor count, they are becoming de facto memories with a little
logic wrapped around them. A growing trend in memories is the use of memory
BIST (MBIST). This chapter contains two Verilog implementations of memory
test algorithms.

Complementary metal oxide semiconductor (CMOS) circuits draw little or no
current except when clocked. Consequently, excessive current observed when an IC
is in the quiescent state is indicative of either a hard failure or a potential reliability
problem. A growing number of investigators have researched the implications of this
observation, and determined how to leverage this potentially powerful test strategy.

I

DDQ

 will be the focus of Chapter 11.
Design verification and test can be viewed as complementary aspects of one

problem, namely, the delivery of reliable computation, control, and communications
in a timely and cost-effective manner. However, it is not completely obvious how
these two disciplines are related. In Chapter 12 we look closely at design verifica-
tion. The opportunities to leverage test development methodologies and tools in
design verification—and, conversely, the opportunities to leverage design verifica-
tion efforts to obtain better test programs—make it essential to understand the rela-
tionships between these two efforts. We will look at some evolving methodologies
and some that are maturing, and we will cover some approaches best described as
ongoing research.

xxii

PREFACE

The goal of this textbook is to cover a representative sample of algorithms and
practices used in the IC industry to identify faulty product and prevent, to the extent
possible,

tester escapes

—that is, faulty devices that slip through the test process and
make their way into the hands of customers. However, digital test is not a “one size
fits all” industry.

Given two companies with similar digital products, test practices may be as dif-
ferent as day and night, and yet both companies may have rational test plans. Minor
nuances in product manufacturing practices can dictate very different strategies.
Choices must be made everywhere in the design and test cycle. Different individuals
within the same project may be using simulators ranging from switch-level to cycle-
based. Testability enhancements may range from ad hoc techniques, to partial-scan,
to full-scan. Choices will be dictated by economics, the capabilities of the available
tools, the skills of the design team, and other circumstances.

One of the frustrations faced over the years by those responsible for product qual-
ity has been the reluctance on the part of product planners to face up to and address
test issues. Nearly 500 years ago Nicolo Machiavelli, in his book

The Prince

,
observed that “fevers, as doctors say, at their beginning are easy to cure but difficult
to recognise, but in course of time when they have not at first been recognised, and
treated, become easy to recognise and difficult to cure.

5

” In a similar vein, in the
early stages of a design, test problems are difficult to recognize but easy to solve;
further into the process, test problems become easier to recognize but more difficult
to cure.

REFERENCES

1. Brandt, R., The Birth of Intel’s Pentium Chip—and the Labor Pains,

Business Week

, March
29, 1993, pp. 94–95.

2. Bass, Michael J., and Clayton M. Christensen, The Future of the Microprocessor Business,

IEEE Spectrum

, Vol. 39, No. 4, April 2002, pp. 34–39.

3. Port, O., Gordon Moore’s Crystal Ball,

Business Week

, June 23, 1997, p. 120.

4. Foderaro, J. K., K. S. Van Dyke, and D. A. Patterson, Running RISCs,

VLSI Des.

,
September–October 1982, pp. 27–32.

5. Machiavelli, Nicolo, The Prince and the Discourses, in

The Prince

, Chapter 3, Random
House, 1950.

1

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 1

Introduction

1.1 INTRODUCTION

Things don’t always work as intended. Some devices are manufactured incorrectly,
others break or wear out after extensive use. In order to determine if a device was
manufactured correctly, or if it continues to function as intended, it must be tested.
The test is an evaluation based on a set of requirements. Depending on the complex-
ity of the product, the test may be a mere perusal of the product to determine
whether it suits one’s personal whims, or it could be a long, exhaustive checkout of a
complex system to ensure compliance with many performance and safety criteria.
Emphasis may be on speed of performance, accuracy, or reliability.

Consider the automobile. One purchaser may be concerned simply with color and
styling, another may be concerned with how fast the automobile accelerates, yet
another may be concerned solely with reliability records. The automobile manufac-
turer must be concerned with two kinds of test. First, the design itself must be tested
for factors such as performance, reliability, and serviceability. Second, individual
units must be tested to ensure that they comply with design specifications.

Testing will be considered within the context of digital logic. The focus will be on
technical issues, but it is important not to lose sight of the economic aspects of the
problem. Both the cost of developing tests and the cost of applying tests to individual
units will be considered. In some cases it becomes necessary to make trade-offs. For
example, some algorithms for testing memories are easy to create; a computer pro-
gram to generate test vectors can be written in less than 12 hours. However, the set of
test vectors thus created may require several millenia to apply to an actual device.
Such a test is of no practical value. It becomes necessary to invest more effort into
initially creating a test in order to reduce the cost of applying it to individual units.

This chapter begins with a discussion of quality. Once we reach an agreement on
the meaning of quality, as it relates to digital products, we shift our attention to the
subject of testing. The test will first be defined in a broad, generic sense. Then we
put the subject of digital logic testing into perspective by briefly examining the
overall design process. Problems related to the testing of digital components and

2

INTRODUCTION

assemblies can be better appreciated when viewed within the context of the overall
design process. Within this process we note design stages where testing is required.
We then look at design aids that have evolved over the years for designing and
testing digital devices. Finally, we examine the economics of testing.

1.2 QUALITY

Quality frequently surfaces as a topic for discussion in trade journals and periodi-
cals. However, it is seldom defined. Rather, it is assumed that the target audience
understands the intended meaning in some intuitive way. Unfortunately, intuition
can lead to ambiguity or confusion. Consider the previously mentioned automobile.
For a prospective buyer it may be deemed to possess quality simply because it has a
soft leather interior and an attractive appearance. This concept of quality is clearly
subjective: It is based on individual expectations. But expectations are fickle: They
may change over time, sometimes going up, sometimes going down. Furthermore,
two customers may have entirely different expectations; hence this notion of quality
does not form the basis for a rigorous definition.

In order to measure quality quantitatively, a more objective definition is needed.
We choose to define quality as the degree to which a product meets its requirements.
More precisely, it is the degree to which a device conforms to applicable specifica-
tions and workmanship standards.

1

 In an integrated circuit (IC) manufacturing envi-
ronment, such as a wafer fab area, quality is the absence of “drift”—that is, the
absence of deviation from product specifications in the production process. For digi-
tal devices the following equation, which will be examined in more detail in a later
section, is frequently used to quantify quality level:

2

AQL =

 Y

(1

−

T

)

 (1.1)

In this equation, AQL denotes acceptable quality level, it is a function of

Y

 (product
yield) and

T

 (test thoroughness). If no testing is done, AQL is simply the

yield

—that
is, the number of good devices divided by the total number of devices made. Con-
versely, if a complete test were created, then

T

 = 1, and all defects are detected so no
bad devices are shipped to the customer.

Equation (1.1) tells us that high quality can be realized by improving product
yield and/or the thoroughness of the test. In fact, if

Y

 ≥

 AQL, testing is not required.
That is rarely the case, however. In the IC industry a high yield is often an indication
that the process is not aggressive enough. It may be more economically rewarding to
shrink the geometry, produce more devices, and screen out the defective devices
through testing.

1.3 THE TEST

In its most general sense, a test can be viewed as an experiment whose purpose is to
confirm or refute a hypothesis or to distinguish between two or more hypotheses.

THE TEST

3

Figure 1.1 depicts a test configuration in which stimuli are applied to a device-
under-test (DUT), and the response is evaluated. If we know what the

expected
response

 is from the correctly operating device, we can compare it to the response of
the DUT to determine if the DUT is responding correctly.

When the DUT is a digital logic device, the stimuli are called

test patterns

 or

test
vectors

. In this context a

vector

 is an ordered

n

-tuple; each bit of the vector is
applied to a specific input pin of the DUT. The expected or predicted outcome is
usually observed at output pins of the device, although some test configurations per-
mit monitoring of test points within the circuit that are not normally accessible dur-
ing operation. A tester captures the response at the output pins and compares that
response to the expected response determined by applying the stimuli to a known
good device and recording the response, or by creating a

model

 of the circuit (i.e., a
representation or abstraction of selected features of the system

3

) and simulating the
input stimuli by means of that model. If the DUT response differs from the expected
response, then an

error

 is said to have occurred. The error results from a

defect

 in the
circuit.

The next step in the process depends on the type of test that is to be applied. A
taxonomy of test types

4

 is shown in Table 1.1. The classifications range from testing
die on a bare wafer to tests developed by the designer to verify that the design is cor-
rect. In a typical manufacturing environment, where tests are applied to die on a
wafer, the most likely response to a failure indication is to halt the test immediately
and discard the failing part. This is commonly referred to as a go–nogo test. The
object is to identify failing parts as quickly as possible in order to reduce the amount
of time spent on the tester.

If several functional test programs were developed for the part, a common prac-
tice is to arrange them so that the most effective test program—that is, the one that
uncovers the most defective parts—is run first. Ranking the effectiveness of the test
programs can be done through the use of a fault simulator, as will be explained in a
subsequent chapter. The die that pass the wafer test are packaged and then retested.
Bonding a chip to a package has the potential to introduce additional defects into the
process, and these must be identified.

Binning is the practice of classifying chips according to the fastest speed at
which they can operate. Some chips, such as microprocessors, are priced according
to their clock speed. A chip with a 10% performance advantage may bring a 20–50%
premium in the marketplace. As a result, chips are likely to first be tested at their
maximum rated speed. Those that fail are retested at lower clock speeds until either
they pass the test or it is determined that they are truly defective. It is, of course, pos-
sible that a chip may run successfully at a clock speed lower than any for which it
was tested. However, such chips can be presumed to have no market value.

Figure 1.1

Typical test configuration.

DUTStimulus
Response

4

INTRODUCTION

Diagnosis may be called for when there is a yield crash—that is, a sudden, signif-
icant drop in the number of devices that pass a test. To aid in investigating the
causes, it may be necessary to create additional test vectors specifically for the pur-
pose of isolating the source of the crash. For ICs it may be necessary to resort to an
e-beam probe to identify the source. Production diagnostic tests are more likely to
be created for a printed circuit board (PCB), since they are often repairable and gen-
erally represent a larger manufacturing cost. Tests for memory arrays are thorough
and methodical, thus serving both as go–no-go tests and as diagnostic tests. These
tests permit substitution of spare rows or columns in order to repair the memory
array, thereby significantly improving the yield.

Products tend to be more susceptible to yield problems in the early stages of their
existence, since manufacturing processes are new and unfamiliar to employees. As a
result, there are likely to be more occasions when it is necessary to investigate prob-
lems in order to diagnose causes. For mature products, yield is frequently quite
high, and testing may consist of sampling by randomly selecting parts for test. This
is also a reasonable strategy for low complexity parts, such as a chip that goes into a
wristwatch.

To protect against yield problems, particularly in the early phases of a project,

burn-in

 is commonly employed. Burn-in stresses semiconductor products in order to

TABLE 1.1 Types of Tests

Type of Test Purpose of Test

Production
Wafer Sort or Probe
Final or Package

Test of manufactured parts to sort out those that are faulty
Test of each die on the wafer.
Test of packaged chips and separation into bins (mili-

tary, commercial, industrial).
Acceptance Test to demonstrate the degree of compliance of a device

with purchaser’s requirements.
Sample Test of some but not all parts.
Go–nogo Test to determine whether device meets specifications.
Characterization or

engineering
Test to determine actual values of AC and DC parameters

and the interaction of parameters. Used to set final
specifications and to identify areas to improve pro-
cess to increase yield.

Stress screening (burn-in) Test with stress (high temperature, temperature cycling,
vibration, etc.) applied to eliminate short life parts.

Reliability (accelerated
life)

Test after subjecting the part to extended high temperature
to estimate time to failure in normal operation.

Diagnostic (repair) Test to locate failure site on failed part.
Quality Test by quality assurance department of a sample of each

lot of manufactured parts. More stringent than final
test.

On-line or checking On-line testing to detect errors during system operation.
Design verification Verify the correctness of a design.

THE TEST

5

identify and eliminate marginal performers. The goal is to ensure the shipment of
parts having an acceptably low failure rate and to potentially improve product reli-
ability.

5

 Products are operated at environmental extremes, with the duration of this
operation determined by product history. Manufacturers institute programs, such as
Intel’s ZOBI (zero hour burn-in), for the purpose of eliminating burn-in and the
resulting capital equipment costs.

6

When stimuli are simulated against the circuit model, the simulator pro-
duces a file that contains the input stimuli and expected response. This informa-
tion goes to the tester, where the stimuli are applied to manufactured parts.
However, this information does not provide any indication of just how effec-
tive the test is at detecting defects internal to the circuit. Furthermore, if an
erroneous response should occur at any of the output pins during testing of
manufactured parts, there is no insight into the location of the defect that
induced the incorrect response. Further testing may be necessary to distinguish
which of several possible defects produced the response. This is accomplished
through the use of fault models.

The process is essentially the same; that is, vectors are simulated against a model
of the circuit, except that the computer model is modified to make it appear as
though a fault were present. By simulating the correct model and the faulted model,
responses from the two models can be compared. Furthermore, by injecting several
faults into the model, one at a time, and then simulating, it is possible to compare the
response of the DUT to that of the various faulted models in order to determine
which faulted model either duplicates or most closely approximates the behavior of
the DUT.

If the DUT responds correctly to all applied stimuli, confidence in the DUT
increases. However, we cannot conclude that the device is fault-free! We can only
conclude that it does not contain any of the faults for which it was tested, but it could
contain other faults for which an effective test was not applied.

From the preceding paragraphs it can be seen that there are three major aspects of
the test problem:

1. Specification of test stimuli

2. Determination of correct response

3. Evaluation of the effectiveness of the stimuli

Furthermore, this approach to testing can be used both to detect the presence of
faults and to distinguish between several faults for repair purposes.

In digital logic, the three phases of the test process listed above are referred to as
test pattern generation, logic simulation, and fault simulation. More will be said
about these processes in later chapters. For the moment it is sufficient to state that
each of these phases ranks equally in importance; they in fact complement one
another. Stimuli capable of distinguishing between good circuits and faulted cir-
cuits do not become effective until they are simulated so their effects can be deter-
mined. Conversely, extremely accurate simulation against very precise models with

6

INTRODUCTION

ineffective stimuli will not uncover many defects. Hence, measuring the effective-
ness of test stimuli, using an accepted metric, is another very important task.

1.4 THE DESIGN PROCESS

Table 1.1 identifies several types of tests, ranging from design verification, whose
purpose is to ensure that a design conforms to the designer’s intent, to various kinds
of tests directed toward identifying units with manufacturing defects, and tests
whose purpose is to identify units that develop defects during normal usage. The
goal during product design is to develop comprehensive test programs before a
design is released to manufacturing. In reality, test programs are not always ade-
quate and may have to be enhanced due to an excessive number of faulty units
reaching end users. In order to put test issues into proper perspective, it will be
helpful here to take a brief look at the design process, starting with initial product
conception.

A digital device begins life as a concept whose eventual goal is to fill a perceived
need. The concept may flow from an original idea or it may be the result of market
research aimed at obtaining suggestions for enhancements to an existing product.
Four distinct product development classifications have been identified:

7

First of a kind
Me too with a twist
Derivative
Next-generation product

The “first of a kind” is a product that breaks new ground. Considerable innovation
is required before it is implemented. The “me too with a twist” product adds incre-
mental improvements to an existing product, perhaps a faster bus speed or a wider
data path. The “derivative” is a product that is derived from an existing product.
An example would be a product that adds functionality such as video graphics to a
core microprocessor. Finally, the “next-generation product” replaces a mature
product. A 64-bit microprocessor may subsume op-codes and basic capabilities,
but also substantially improve on the performance and capabilities of its 32-bit
predecessor.

The category in which a product falls will have a major influence on the design
process employed to bring it to market. A “first of a kind” product may require an
extensive requirements analysis. This results in a detailed product specification
describing the functionality of the product. The object is to maximize the likelihood
that the final product will meet performance and functionality requirements at an
acceptable price. Then, the behavioral description is prepared. It describes what the
product will do. It may be brief, or it may be quite voluminous. For a complex
design, the product specification can be expected to be very formal and detailed.
Conversely, for a product that is an enhancement to an existing product, documenta-
tion may consist of an engineering change notice describing only the proposed
changes.

THE DESIGN PROCESS

7

Figure 1.2

Design flow.

After a product has been defined and a decision has been made to manufacture
and market the device, a number of activities must occur, as illustrated in Figure 1.2.
These activities are shown as occurring sequentially, but frequently the activities
overlap because, once a commitment to manufacture has been made, the objective is
to get the product out the door and into the marketplace as quickly as possible. Obvi-
ously, nothing happens until a development team is put in place. Sometimes the larg-
est single factor influencing the time-to-market is the time required to allocate
resources, including staff to implement the project and the necessary tools by which
the staff can complete the design and put a manufacturing flow into place. For a
device with a given level of performance, time of delivery will frequently determine
if the product is competitive; that is, does it fall above or below the performance–
time plot illustrated in Figure 1.3?

Once the behavioral specification has been completed, a functional design must
be created. This is actually a continuous flow; that is, the behavior is identified, and
then, based on available technology, architects identify functional units. At that
stage of development an important decision must be made as to whether or not the
product can meet the stated performance objectives, given the architecture and tech-
nology to be used. If not, alternatives must be examined. During this phase the logic
is partitioned into physical units and assigned to specific units such as chips, boards,
or cabinets. The partitioning process attempts to minimize I/O pins and cabling
between chips, boards, and units. Partitioning may also be used to advantage to sim-
plify such things as test, component placement, and wire routing.

The use of hardware design languages (HDLs) for the design process has become
virtually universal.Two popular HDLs, VHDL (VHSIC Hardware Description Lan-
guage) and Verilog, are used to

Specify an architecture
Partition the architecture into smaller modules
Synthesize an RTL description
Verify that a structural implementation corresponds to the architectural design
Check out microcode and/or diagnostic programs
Serve as documentation

Figure 1.3

Performance–time plot.

Concept
Behavioral

design
RTL

design
Logic
design

Physical
design

Mfg.
Allocate
resources

Pe
rf

or
m

an
ce

Time

Too late
Too little

8

INTRODUCTION

A behavioral description specifies what a design must do. There is usually little
or no indication as to how it must be done. For example, a large case statement
might identify operations to be performed by an ALU in response to different values
applied to a control field. The RTL design refines the behavioral description. Opera-
tions identified at the behavioral level are elaborated upon in more detail. RTL
design is followed by logic design. This stage may be generated by synthesis pro-
grams, or it may be created manually, or, more often, some modules are synthesized
while others are manually designed or included from a library of predesigned mod-
ules, some or all of which may have been purchased from an outside vendor. The use
of predesigned, or core, modules may require selecting and/or altering components
and specifying the interconnection of these components. At the end of the process, it
may be the case that the design will not fit on a piece of silicon, or there may not be
enough I/O pins to accommodate the signals, in which case it becomes necessary to
reevaluate the design.

Physical design specifies the physical placement of components and the routing
of wires between components. Placement may assign circuits to specific areas on a
piece of silicon, it may specify the placement of chips on a PCB, or it may specify
the assignment of PCBs to a cabinet. The routing task specifies the physical connec-
tion of devices after they have been placed. In some applications, only one or two
connection layers are permitted. Other applications may permit PCBs with 20 or
more interconnection layers, with alternating layers of metal interconnects and insu-
lating material.

The final design is sent to manufacturing, where it is fabricated. Engineering
changes must frequently be accommodated due to logic errors or other unexpected
problems such as noise, timing, heat buildup, electrical interference, and so on, or
inability to mass produce some critical parts.

In these various design stages there is a continuing need for testing. Require-
ments analysis attempts to determine whether the product will fulfill its objectives,
and testing techniques are frequently based on marketing studies. Early attempts to
introduce more rigor into this phase included the use of design languages such as
PSL/PSA (Problem Statement Language/Problem Statement Analyzer).

8

 It provided
a way both to rigorously state the problem and to analyze the resulting design.
PMS (Processors, Memories, Switches)

9

 was another early attempt to introduce
rigor into the initial stages of a design project, permitting specification of a design
via a set of consistent and systematic rules. It was often used to evaluate architec-
tures at the system level, measuring data throughput and looking for design bottle-
necks. Verilog and VHDL have become the standards for expressing designs at all
levels of abstraction, although investigation into specification languages continues
to be an active area of research. Its importance is seen from such statements as
“requirements errors typically comprise over 40% of all errors in a software
project”

10

 and “the really serious mistakes occur in the first day.”

3

A design expressed in an HDL, at a level of abstraction that describes intended
behaviors, can be formally tested. At this level the design is a requirements docu-
ment that states, in a simulation language, what actions the product must perform.
The HDL permits the designer to simulate behavioral expressions with input vectors

DESIGN AUTOMATION

9

chosen to confirm correctness of the design or to expose design errors. The design
verification vectors must be sufficient to confirm that the design satisfies the behav-
ior expressed in the product specification. Development of effective test stimuli at
this state is highly iterative; a discrepancy between designer intent and simulation
results often indicates the need for more stimuli to diagnose the underlying reason
for the discrepancy. A growing trend at this level is the use of formal verification
techniques (cf. Chapter 12.)

The logic design is tested in a manner similar to the functional design. A major
difference is that the circuit description is more detailed; hence thorough analysis
requires that simulations be more exhaustive. At the logic level, timing is of greater
concern, and stimuli that were effective at the register transfer level (RTL) may not
be effective in ferreting out critical timing problems. On the other hand, stimuli that
produced correct or expected response from the RTL circuit may, when simulated by
a timing simulator, indicate incorrect response or may indicate marginal perfor-
mance, or the simulator may simply indicate that it cannot predict the correct
response.

The testing of physical structure is probably the most formal test level. The test
engineer works from a detailed design document to create tests that determine if
response of the fabricated device corresponds to response of the design. Studies of
fault behavior of the selected circuit family or technology permit the creation of
fault models. These fault models are then used to create specific test stimuli that
attempt to distinguish between the correctly operating device and a device with the
fault.

This last category, which is the most highly developed of the design stages, due
to its more formal and well-defined environment, is where we will concentrate our
attention. However, many of the techniques that have been developed for structural
testing can be applied to design verification at the logic and functional levels.

1.5 DESIGN AUTOMATION

Many of the activities performed by architects and logic designers were long ago
recognized to be tedious, repetitious, error prone, and time-consuming, and hence
could and should be automated. The mechanization of tedious design processes
reduces the potential for errors caused by human fatigue, boredom, and inattention
to mundane details. Early elimination of errors, which once was a desirable objec-
tive, has now become a virtual necessity. The market window for new products is
sometimes so small that much of that window will have evaporated in the time that it
takes to correct an error and push the design through the entire fabrication cycle yet
another time.

In addition to the reduction of errors, elimination of tedious and time-consuming
tasks enables designers to spend more time on creative endeavors. The designer can
experiment with different solutions to a problem before a design becomes frozen in
silicon. Various alternatives and trade-offs can be studied. This process of automat-
ing various aspects of the design process has come to be known as

electronic design

10

INTRODUCTION

automatio

n (EDA). It does not replace the designer but, rather, enables the designer
to be more productive and more creative. In addition, it provides access to IC design
for many logic designers who know very little about the intricacies of laying out an
IC design. It is one of the major factors responsible for taking cost out of digital
products.

Depending on whether it is an IC, a PCB, or a system comprised of several PCBs,
a typical EDA system supports some or all of the following capabilities:

Data management

Record data
Retrieve data
Define relationships
Perform rules checks

Design analysis/verification

Evaluate performance/capabilities
Simulate
Check timing

Design fabrication

Perform placement and routing
Create tests for structural defects
Identify qualified vendors

Documentation

Extract parts list
Create/update product specification

The data management system supports a data base that serves as a central repository
for all design data. A data management program accepts data from the designer, for-
mats it, and stores it in the data base. Some validity checks can be performed at this
time to spot obvious errors. Programs must be able to retrieve specific records from
the data base. Different applications require different records or combinations or
records. As an example, one that we will elaborate on in a later chapter, a test pro-
gram needs information concerning the specific ICs used in the design of a board, it
needs information concerning their interconnections, and it needs information con-
cerning their physical location on a board.

A data base should be able to express hierarchical relationships.

11

 This is espe-
cially true if a facility designs and fabricates both boards and ICs. The ICs are
described in terms of logic gates and their interconnections, while the board is
described in terms of ICs and their interconnections. A “where used” capability for a
part number is useful if a vendor provides notice that a particular part is no longer
available. Rules checks can include examination of fan-out from a logic gate to
ensure that it does not exceed some specified limit. The total resistive or capacitive
loading on an output can be checked. Wire length may also be critical in some appli-
cations, and rules checking programs should be able to spot nets that exceed wire
length maximums.

ESTIMATING YIELD

11

The data management system must be able to handle multiple revisions of a design
or multiple physical implementations of a single architecture. This is true for manu-
facturers who build a range of machines all of which implement the same architecture.
It may not be necessary to maintain an architectural level copy with each physical
implementation. The system must be able to control access and update to a design,
both to protect proprietary design information from unauthorized disclosure and to
protect the data base from inadvertent damage. A lock-out mechanism is useful to pre-
vent simultaneous updates that could result in one or both of the updates being lost.

Design analysis and verification includes simulation of a design after it is
recorded in the data base to verify that it is functionally correct. This may include
RTL simulation using a hardware design language and/or simulation at a gate level
with a logic simulator. Precise relationships must be satisfied between clock and
data paths. After a logic board with many components is built, it is usually still pos-
sible to alter the timing of critical paths by inserting delays on the board. On an IC
there is no recourse but to redesign the chip. This evaluation of timing can be
accomplished by simulating input vectors with a timing simulator, or it can be done
by tracing specific paths and summing up the delays of elements along the way.

After a design has stabilized and has been entered into a data base, it can be fab-
ricated. This involves placement either of chips on a board or of circuits on a die and
then interconnecting them. This is usually accomplished by placement and routing
programs. The process can be fully automated for simple devices, or for complex
devices it may require an interactive process whereby computer programs do most
of the task, but require the assistance of an engineer to complete the task. Checking
programs are used after placement and routing.

Typical checks look for things such as runs too close to one another, and possible
opens or shorts between runs. After placement and routing, other kinds of analysis
can be performed. This includes such things as computing heat concentration on an
IC or PCB and computing the reliability of an assembly based on the reliability of
individual components and manufacturing processes. Testing the structure involves
creation of test stimuli that can be applied to the manufactured IC or PCB to deter-
mine if it has been fabricated correctly.

Documentation includes the extraction of parts lists, the creation of logic dia-
grams and printing of RTL code. The parts list is used to maintain an inventory of
parts in order to fabricate assemblies. The parts list may be compared against a mas-
ter list that includes information such as preferred vendors, second sources, or alter-
nate parts which may be used if the original part is unavailable. Preferred vendors
may be selected based on an evaluation of their timeliness in delivering parts and the
quality of parts received from them in the past. Logic diagrams are used by techni-
cians and field engineers to debug faulty circuits as well as by the original designer
or another designer who must modify or debug a logic design at some future date.

1.6 ESTIMATING YIELD

We now look at yield analysis, based on various probability distribution functions.
But, first, just how important are yield equations? James Cunningham

12

 describes a

12

INTRODUCTION

situation in which a company was invited to submit a bid to manufacture a large
CMOS custom logic chip. The chip had already been designed at another company
and was to have a die area of 2.3 cm

2

. The company had experience making CMOS
parts, but never one this large. Hence, they were uncertain as to how to estimate
yield for a chip of this size.

When they extrapolated from existing data, using a computer-generated best-fit
model, they obtained a yield estimate

Y

 = 1.4%. Using a Poisson model with

D

0

 = 2.1, where

D

0

 is the average number of defects per unit area

A

, they obtained an
estimate

Y

 = 0.8%. They then calculated the yield using Seeds’ model,

13

 which gave

Y

 = 17%. That was followed by Murphy’s model.

14

 It gave

Y

 = 4%. They decided to
average Seeds’ model and Murphy’s model and submit a bid based on 11% die sort
yield. A year later they were producing chips with a yield of 6%, even though

D

0

had fallen from 2.1 to 1.9 defects/cm

2

. The company had started to evaluate the neg-
ative binomial yield model

Y

 = (1 +

D

0

A

/

α

)

−

α

. A value of

α

 = 3 produced a good fit
for their yield data. Unfortunately, the company could not sustain losses on the prod-
uct and dropped it from production, leaving the customer without a supply of parts.

Probability distribution functions are used to estimate the probability of an event
occurring. The binomial probability distribution is a discrete distribution, which is
expressed as

(1.2)

If P is the probability of a defect on a die, then P(k) is the probability of k defects on
the die, when there are a total of n = D0Aw defects, where Aw is the area of the wafer.
The probability P is D0A/D0Aw = A/Aw. Substituting into Eq. (1.2) yields

(1.3)

To derive the equation for a die with no defects, set k = 0. This yields

(1.4)

The first distribution that was frequently used to estimate yields was the Poisson
distribution, which is expressed as

for k = 0, 1, 2, ... (1.5)

where λ0 is the average number of defects per die. For die with no defects (k = 0),
the equation becomes . If λ0 = .5, the yield is predicted to be .607. In
general, the Poisson distribution requires that defects be uniformly and randomly
distributed. Hence, it tends to be pessimistic for larger die sizes. Considering again

P k() n!
k! n k–()!-----------------------Pk 1 P–()n k–=

P k() n!
k! n k–()!-----------------------

A
Aw

 k
1 A

Aw
-------–

 n k–
=

P k 0=() 1 A
Aw
-------–

D0 Aw

=

P k()
e

λ– 0λ0
k

k!
-----------------=

P 0() e λ0–=

ESTIMATING YIELD 13

the binomial distribution, if the number of trials, n, is large, and the probability p of
occurrence of an event is close to zero, then the binomial distribution is closely
approximated by the Poisson distribution with λ = n ⋅ p.

Another distribution commonly used to estimate yield is the normal distribution,
also known as the Gaussian distribution. It is the familiar bell-shaped curve and is
expressed as

(−∞ < k < ∞) (1.6)

The variable µ represents the mean, σ represents the standard deviation, and σ2

represents the variance. If n is large and if neither p or q is too close to zero, the
binomial distribution can be closely approximated by a normal distribution. This can
be expressed as

(1.7)

where np represents the mean for the binomial distribution, is the standard
deviation, npq is the variance, and x is the number of successful trials.

When Murphy investigated the yield problem in 1964, he observed that defect
and particle densities vary widely among chips, wafers, and runs. Under these cir-
cumstances, the Poisson model is likely to underestimate yield, so he chose to use
the normalized probability distribution function. To derive a yield equation, Murphy
multiplied the probability distribution function with the probability p that the device
was good, for a given defect density D, and then summed that over all values of D,
that is,

(1.8)

He substituted for the probability that the device was good. However, he
could not integrate the bell-shaped curve, so he approximated it with a triangle func-
tion. This gave

(1.9)

By substituting other expressions for f(D) in Eq. (1.8), other yield equations result.
Seeds used an exponential distribution function . Substituting
this into Eq. (1.8), he obtained

(1.10)

In 1973 Charles Stapper15 derived a yield equation that is often referred to as a

negative binomial distribution. By substituting and the gamma

P k() 1

σ 2π
--------------e k µ–()2– 2σ2⁄=

P
n ∞→
lim a x np–

npq
--------------- b≤ ≤

 1

2π
---------- e u

2– 2⁄ ud
a

b
∫=

npq

Y pf D() Dd
0

∞
∫=

p e Da–=

Y 1 e
D0 A––

D0 A

 2

=

f D() e D D0⁄– D0⁄=

Y 1
1 D0 A+
--------------------=

p x() e λ– λx x!⁄=

14 INTRODUCTION

distribution function into Murphy’s equation [Eq. (1.8)]

and integrating, he obtained

(1.11)

The mean of the gamma function is given by µ = α/λ, whereas the variance
is given by α/λ2. Compare these with the mean and variance of the negative
binomial distribution, sometimes referred to as Pascal’s distribution: mean = nq/p
and variance = nq/p2.

The parameter α in Eq. (1.11) is referred to as the cluster parameter. By selecting
appropriate values of α, the other yield equations can be approximated by
Eq. (1.11). The value of α can be determined through statistical analysis of defect
distribution data, permitting an accurate yield model to be obtained.

1.7 MEASURING TEST EFFECTIVENESS

In this chapter the intent has been to survey some of the many approaches to digital
logic test. The objective is to illustrate how these approaches fit together to produce
a program targeted toward product quality. Hence, we have touched only briefly on
many topics that will be covered in greater detail in subsequent chapters. One of the
topics examined here is fault modeling. It has been the practice, for over three
decades, to resort to the use of stuck-at models to imitate the effects of defects. This
model was more realistic when (small-scale integration) (SSI) was predominant.
However, the stuck-at model, for practical reasons, is still widely used by commer-
cial tools. Basically put, this model assumes that an input or output of a logic gate
(e.g., an inverter, an AND gate, an OR gate, etc.) is stuck to a logic value 0 or 1 and
is insensitive to signal changes from the signal that drives it.

With this faulting mechanism the process, in rather general terms, proceeds as
follows: Computer models of digital circuits are created, and faults are injected
into the model. The fault-free circuit and the faulted circuit are simulated. If there
is a difference in response at an observable I/O pin, the fault is classified as
detected. After many faults are evaluated in this manner, fault coverage is
computed as

Fault coverage = No. faults detected / No.faults modeled

Given a fault coverage number, there are two questions that occur: How accurate is
it, and for a given fault coverage, how many defective chips are likely to become
tester escapes? Accuracy of fault coverage will depend on the faults selected and the
accuracy of the fault model relative to real defect mechanisms. Fault selection
requires a statistically meaningful random sample, although it is often the practice to

f λ() 1

Γ α()βα-------------------λα 1– e λ β⁄–=

Y 1 D0 A+ α⁄() α–=

MEASURING TEST EFFECTIVENESS 15

fault simulate a universal sample of faults, meaning faults applied to all logic ele-
ments in a circuit. The fault model, like any model, is an imperfect replica. It is
rather simplistic when compared to the various, complex kinds of defects that can
occur in a circuit; therefore, predictions of test effectiveness based on the stuck-at
model are prone to error and imprecision. The number of tester escapes will depend
on the thoroughness of the test—that is, the fault coverage, the accuracy of that fault
coverage, and the process yield.

The term defect level (DL) is used to denote the fraction of shipped ICs that are
bad. It is computed as

DL = Number of faulty units shipped / Total no. units shipped (1.12)

It has also been variously referred to as field reject rate and reject ratio. In this sec-
tion we adhere to the terminology used by the original authors in their derivations.

Over the past two decades a number of attempts have been made to quantify the
effectiveness of test programs—that is, determine how many defective chips will be
detected by the tester and how many will slip through the test process and reach the
end user. Different researchers have come up with different equations for comput-
ing defect level. The discrepancies are based on the fact that they start with differ-
ent assumptions about fault distributions. Some of it is a result of basing results on
different technologies, and some of it is a result of working with processes that
have different quality levels, different failure mechanisms, and/or different defect
distributions. We present here a survey of some of the equations that have been
derived over the years to compute defect level as a function of process yields and
test coverage.

In 1978 Wadsack16 derived the following equation:

yr = (1 − f) ⋅ (1 − y) (1.13)

where yr denotes the field reject rate—that is, the fraction of defective chips that
passed the test and were shipped to the customer. The variable y, 0 ≤ y ≤ 1, denotes
the actual yield of the process, and f , 0 ≤ f ≤ 1, denotes the fault coverage. In 1981
Williams and Brown developed the following equation:

DL = 1 − Y (1− T) (1.14)

In this equation the field reject rate is DL (defect level), the variable Y represents the
yield of the manufacturing process, and the variable T represents the test percentage
where, as in Eq. (1.13), each of these is a fraction between 0 and 1.

Example If it were possible to test for all defects, then

f = 1 and yr = (1 − 1) ⋅ (1 − y) = 0 from Eq. (1.13)

T = 1 and DL = 1 − Y (1 − 1) = 0 from Eq. (1.14)

16 INTRODUCTION

On the other hand, if no defective units were manufactured, then

y = 1 and yr = (1 − f) ⋅ (1 − 1) = 0 from Eq. (1.13)

Y = 1 and DL = 1 − 1(1−T) = 0 from Eq. (1.14)

In either situation, no defective units are shipped, regardless of which equation is
used. ��

For either of these equations, if the yield is known, it is possible to find the fault
coverage required to achieve a desired defect level. Using Eq. (1.14), the test frac-
tion T is

(1.15)

Example Integrated circuits (ICs) are manufactured on wafers—round, thin silicon
substrates. After processing, individual ICs are tested. The wafer is diced and the die
that tested bad are discarded. If the yield of good die is 60%, and we want a defect level
not to exceed 0.1%, what level of testing must we achieve? Using Eq. (1.15), we get

��

This equation is pessimistic for VLSI. In later paragraphs we will look at other
equations that, based on clustering of faults, give more favorable results. Neverthe-
less, this equation illustrates an important concept. Test cost is not a linear function.
Experience indicates that test cost follows the curve illustrated in Figure 1.4.

This curve tells us that we reach a point where substantial expenditures provide
only marginal improvement in testability. At some point, additional gains become
exorbitantly expensive and may negate any hope for profitability of the product.
However, looking again at Eq. (1.14), we see that the defect level is a function of
both testability and yield. Therefore, we may be able to achieve a desired defect
level by improving yield.

Figure 1.4 Typical cost curve for testing.

T 1 1 DL–()log
Y()log

------------------------------–=

T 1 1 0.001–()log
0.6()log

-----------------------------------– 1 0.001956– 0.9980= = =

C
os

t

Percent tested
100%0% 50%

MEASURING TEST EFFECTIVENESS 17

Example Yield is improved to Y = 70%; what percentage of testing must be
achieved to hold DL below 0.1%?

��

Equations (1.13) and (1.14) give the same results at the endpoints, but slightly
different results between the endpoints. To understand why, it is necessary to look at
the assumptions behind the derivations. Wadsack assumes that yi = (1 − y)i, where yi
represents the chips with i faults and y represents the actual functional yield.
Williams and Brown assume the existence of n faults, that all faults have equal prob-
ability Pn of occurrence, and that the number of chips with i faults is

Working out the derivations from these different starting points results in the differ-
ent equations. However, regardless of which equation is used, the key point is that,
in order to achieve an acceptable quality level AQL (= 1 − DL), the fault coverage
has to be nearly perfect. In the words of Williams and Brown, the equations are
intended to “give estimates for quick calculations.” Wadsack, in his paper, points
out that even in a circuit with 100% fault coverage, a failure occurred on the tester
after the point where the test program had achieved 100% coverage of the faults.
But then he points out that, in general, his derivation tends to be pessimistic.

Other authors have found the equations to be pessimistic; that is, even with fault
coverage significantly less than that required by the equations, the quality level is
better than predicted by the equations. For instance, Wiscombe17 states that the
Williams–Brown model “predicts higher defect levels than seen in practice.” Max-
well et al. point out that for a defect level of less than 0.1%, the Williams–Brown
equation required fault coverage in excess of 99.6%. However, they were able to
realize those defect levels with about 96% fault coverage.18

The question of fault coverage versus defect levels was studied by Agrawal et al.
in 1982.19 Their study was motivated by the observation that the defect level equa-
tions “produced satisfactory results for chips with high yield (typically, SSI and
MSI), but the predictions were too pessimistic for larger chips with lower yield.” The
authors hypothesize the existence of n faults for a faulty chip, and then examine the
consequences of that assumption. They derive the following equation:

(1.16)

In this equation, y is the yield, n0 is the average number of faults on a faulty chip, f is
the fault coverage, and r(f) is the field reject rate for f. If the fault coverage is held
fixed, then the defect level goes down as n0 increases. The papers cited here suggest
that the value n0 = 3 appears to give reasonably good results at predicting defect level.

The model that was used to develop Eq. (1.16), referred to as the JSCC model,
was subsequently refined using what the authors called the CAD model.20 A Poisson

T 1 1 0.001–()log
0.7()log

-----------------------------------– 1 0.0028– 0.9972= = =

n

i
 1 Pn–()n i– Pi

n

r f() 1 f–() 1 y–()e
n0 1–() f–

y 1 f–() 1 y–()e
n0 1–() f–

+
---=

18 INTRODUCTION

distribution is assumed for the faults, and the number of defects is assumed to have a
clustered negative binomial distribution. With those assumptions the authors derived
a reject ratio r(f) = [y(f) − y] /y, where

y(f) = [(1 + Ab(1 − e− c f)] −a (1.17)

In this equation, A is the chip area, f is the fault coverage, and a, b, and c are model
parameters that are estimated by fitting y(f) versus f to the experimental data.

In yet another derivation,21 presented at a workshop in Springfield, Massachu-
setts, and referred to as the SPR model, the reject ratio rn = (yn − y)/yn is computed
as a function of the yield yn , after n vectors, and the true yield y. The variables yn
and y are computed as a function of the number of chips tested, the number of
applied vectors, and the number of chips failing at vector i. The authors point out
that the required data are derived from wafer probe. The calculations do not depend
on estimated fault coverage of the test vectors. In this same study21 the authors com-
pare the five models for defect level estimation.

Comparison of the five models was done by gathering statistics on a high-volume
chip at Delco Electronics. The chip was a 3-micron digital CMOS IC with 99.7%
fault coverage. The test program consisted of 12,188 clock periods, and the cumula-
tive fault coverage was computed after each vector. Of the 72,912 die initially con-
sidered, 847 chips that failed parametric test and 7699 chips that failed continuity
test were removed from consideration. Of the remaining 64,366 chips, 18,476 failed
the functional test. This resulted in an apparent yield of 71.30%. The true yield,
using the SPR model, was estimated to be 70.92%. The results of the comparison are
presented in Table 1.2.

In most columns the spread between these formulas varies by as much as a factor
of two. The one exception is the last column, where the SPR and JSSC models differ
by an order of magnitude. The bottom row of the table lists the actual fraction of
defects detected at various stages of testing the chips. For the rightmost column, cor-
responding to a fault coverage of 99.70%, all the vectors had been applied, so no
additional defects were found. However, each of the models predicts that additional
tester escapes will occur.

TABLE 1.2 Comparing Yield

Model
Fault Coverage

20% 50% 80% 91% 95% 98% 99.70%

SPR 0.11291 0.08005 0.03531 0.02160 0.00927 0.00702 0.00532
JSSC 0.21383 0.11373 0.03730 0.01548 0.00834 0.00362 0.00048
CAD 0.21714 0.12439 0.04556 0.01985 0.01090 0.00432 0.00064
Wadsack 0.23267 0.14542 0.05817 0.02617 0.1454 0.00582 0.00087
Williams 0.24038 0.15788 0.06642 0.03046 0.01704 0.00685 0.00103

Actual 0.18440 0.08340 0.02830 0.01330 0.00740 0.00210 0

MEASURING TEST EFFECTIVENESS 19

Although the Williams–Brown model tends to be the least accurate, at least for
the data in this experiment, it appears to be the most popular, based on frequency of
appearance in the literature. This may be due in large part to its simplicity, which
makes it easy for engineers to explain the relationship between quality, process
yield, and fault coverage. Perhaps, more significantly, any of these models can tell
the user when the fault coverage must be improved. For example, if the user wants
no more than 1000 defects per million (DPM), then all of these models convey the
message that 98% fault coverage is insufficient.

The SPR model computes tester escapes without benefit of fault simulation. A
drawback to this approach is the fact that, without fault coverage estimates for the
test program, it could require several iterations on the test floor acquiring data before
the test program is adequate. By contrast, when developing a test program with the
aid of fault coverage estimates, it is more likely that the test will be at, or near,
required coverage levels before it is used on the test floor.

Up to this point, when talking about fault coverage, the number used in the
calculations was simply the number of modeled faults that were detected, divided
by the total number of modeled faults. It has been assumed, for a given test cover-
age, that the coverage is uniform across the circuit. However, that may not be the
case. Consider the test for a large chip, consisting of several functions. The test
program may be a concatenation of several smaller test programs, each of which
targets a single function. Suppose there are six clearly identifiable functions on
the chip, then there might be six distinct test programs targeting the individual
functions. The tests for five of the functions may be near 100%, while the test for
the remaining function may be closer to 70%. Gross defects that might be
detected in the other functions could escape detection in the function with low
coverage.

Maxwell22 showed that it is necessary to get a uniformly high coverage across the
entire area of the chip. Also worth noting is the fact that each function may have
some unique characteristics. For example, one function may be sensitive to noise.
Another may use unique elements from a standard library, one or more of which are
prone to failure. Conceivably a latch or flip-flop, for whatever reason, may have dif-
ficulty holding a particular state. These properties may not all be adequately
addressed in one or more of the test programs.

Other investigations of defect levels have been performed. McCluskey and
Buelow introduce the term test transparency (TT).4 It is the fraction of all defects
that are not detected by a test procedure:

TT = defects not detected / total no. defects = 1 − m/n

where n is the total number of defects and m is the number of defects detected. They
show that, for DL ≤ 0.1% and Y ≥ 90%, DL = TT · (1 − y). They state that it is
customary to estimate test transparency by the percentage of single-stuck faults that
are not detected by the test, TT ≥ 1 − T, where T is the test coverage. Using 1 − T as
an estimate for TT gives DL = (1 − T) · (1 − y), which is the Wadsack equation
developed in 1978.

20 INTRODUCTION

1.8 THE ECONOMICS OF TEST

In previous sections we examined some factors that affect the quality of test pro-
grams. In this section we examine factors that influence the cost of test. Quality and
test costs are related, but they are not inverses of one another. As we shall see, an
investment in a higher-quality test often pays dividends during the test cycle.

Test related costs for ICs and PCBs include both time and resource. As pointed
out in previous sections, for some products the failure to reach a market window
early in the life cycle of the product can cause significant loss of revenue and may in
fact be fatal to the future of the product. The dependency table in Figure 1.5 shows
test cost broken down into four categories23—some of which are one-time, non
recurring costs whereas others are recurring costs. Test preparation includes costs
related to development of the test program(s) as well as some potential costs
incurred during design of the design-for-test (DFT) features. DFT-related costs are
directed toward improving access to the basic functionality of the design in order to
simplify the creation of test programs.

Many of the factors depicted in Figure 1.5 imply both recurring and nonrecur-
ring costs. Test execution requires personnel and equipment. The tester is amor-
tized over individual units, representing a recurring cost for each unit tested, while
costs such as probe cards may represent a one-time, nonrecurring cost. The test-
related silicon is a recurring cost, while the design effort required to incorporate
testability enhancements, listed under test preparation as DFT design, is a nonre-
curring cost.

The category listed as imperfect test quality includes a subcategory labeled as
tester escapes, which are bad chips that tested good. It would be desirable for tester
escapes to fall in the category of nonrecurring costs but, regrettably, tester escapes

Figure 1.5 Cost/benefit dependencies of DFT.

Test preparation Test generation

Tester program

DFT design

Test execution Hardware

Tester

Test related silicon

Imperfect test
quality

Escape

Lost performance

Lost yield

Pe
rs

on
ne

l c
os

t
T

es
t c

ar
d

co
st

Pr
ob

e
co

st
Pr

ob
e

li
fe

D
ep

re
ci

at
io

n
V

ol
um

e
T

es
te

r
se

tu
p

tim
e

T
es

te
r

ca
pi

ta
l c

os
t

W
af

er
 r

ad
iu

s
D

ie
 a

re
a

W
af

er
 c

os
t

D
ef

ec
t d

en
si

ty

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

**

THE ECONOMICS OF TEST 21

are a fact of life and occur with unwelcome regularity. Lost performance refers to
losses caused by increases in die size necessary to accommodate DFT features. The
increase in die size may result in fewer die on a wafer; hence a greater number of
wafers must be processed to achieve a given throughput. Lost yield is the cost of dis-
carding good die that were judged to be bad by the tester.

The column in Figure 1.5 labeled “Volume” is a critical factor. For a consumer
product with large production volumes, more time can be justified in developing a
comprehensive test plan because development costs will be amortized over many
units. Not only can a more thorough test be justified, but also a more efficient test—
that is, one that reduces the amount of time spent in testing each individual unit. In
low-volume products, testing becomes a disproportionately large part of total prod-
uct cost and it may be impossible to justify the cost of refining a test to make it more
efficient. However, in critical applications it will still be necessary to prepare test
programs that are thorough in their ability to detect defects.

A question frequently raised is, “How much testing is enough?” That may seem
to be a rather frivolous question since we would like to test our product so thor-
oughly that a customer never receives a defective product. When a product is under
warranty or is covered by a service contract, it represents an expense to the manufac-
turer when it fails because it must be repaired or replaced. In addition, there is an
immeasurable cost in the loss of customer goodwill, an intangible but very real cost,
not reflected in Figure 1.5, that results from shipping defective products.

Unfortunately we are faced with the inescapable fact that testing adds cost to a
product. What is sometimes overlooked, however, is the fact that test cost is recovered
by virtue of enhanced throughput.24 Consider the graph in Figure 1.6. The solid line
reflects quality level, in terms of defects per million (DPM) for a given process,
assuming no test is performed. It is an inverse relationship; the higher the required
quality, the fewer the number of die obtainable from the process. This follows from the
simple fact that, for a given process, if higher quality (fewer DPM) is required, then
feature sizes must be increased. The problem with this manufacturing model is that, if
required quality level is too high, feature sizes may be so large that it is impossible to
produce die competitively. If the process is made more aggressive, an increasing num-
ber of die will be defective, and quality levels will fall. Point A on the graph corre-
sponds to the point where no testing is performed. Any attempt to shrink the process to
get more units per wafer will cause quality to fall below the required quality level.

Figure 1.6 The benefits of test.

Process capability
low

high

required quality

benefit of test
A

B

Q
ua

lit
y

22 INTRODUCTION

However, if devices are tested, feature sizes can be reduced and more die will fit
on each wafer. Even after the die are tested and defective die are discarded, the num-
ber of good die per wafer exceeds the number available at the larger feature sizes.
The benefit in terms of increasing numbers of good die obtainable from each wafer
far outweighs the cost of testing the die in order to identify those that are defective.

Point B on the graph corresponds to a point where process yield is lower than the
required quality level. However, testing will identify enough defective units to bring
quality back to the required quality level. The horizontal distance from point A to
point B on the graph is an indication of the extent to which the process capability
can be made more aggressive, while meeting quality goals. The object is to move as
far to the right as possible, while remaining competitive. At some point the cost of
test will be so great, and the yield of good die so low, that it is not economically fea-
sible to operate to the right of that point on the solid line.

We see therefore that we are caught in a dilemma: Testing adds cost to a product,
but failure to test also adds cost. Trade-offs must be carefully examined in order to
determine the right amount of testing. The right amount is that amount which mini-
mizes total cost of testing plus cost of servicing or replacing defective components.
In other words, we want to reach the point where the cost of additional testing
exceeds the benefits derived. Exceptions exist, of course, where public safety or
national security interests are involved.

Another useful side effect of testing that should be kept in mind is the informa-
tion derived from the testing process. This information, if diligently recorded and
analyzed, can be used to learn more about failure mechanisms. The kinds of defects
and the frequency of occurrence of various defects can be recorded and this informa-
tion can be used to improve the manufacturing process, focusing attention on those
areas where frequency of occurrence of defects is greatest.

This test versus cost dilemma is further complicated by “time to market.” Quality
is sometimes seen as one leg of a triangle, of which the other two are “time to mar-
ket” and “product cost.” These are sometimes posited as competing goals, with the
suggestion that any two of them are attainable.25 The implication is that quality,
while highly desirable, must be kept in perspective. Business Week magazine, in a
feature article that examined the issue of quality at length, expressed the concern
that quality could become an end in itself.26

The importance of achieving a low defect level in digital components can be
appreciated from just a cursory look at a typical PCB. Suppose, for example, that a
PCB is populated with 10 components, and each component has a defect level
DL = 0.999. The likelihood of getting a defect free board is (0.999)10 = 0.99004; that
is, one of every 100 PCBs will be defective—and that assumes no defects were
introduced during the manufacturing process. If several PCBs of comparable quality
go into a more complex system, the probability that the system will function cor-
rectly goes down even further.

Detecting a defective unit is often only part of the job. Another important aspect of
test economics that must be considered is the cost of locating and replacing defective
parts. Consider again the board with 10 integrated circuits. If it is found to be
defective, then it is necessary to locate the part that has failed, a time-consuming and

CASE STUDIES 23

error-prone operation. Replacing suspect components that have been soldered onto a
PCB can introduce new defects. Each replaced component must be followed by retest
to ensure that the component replaced was the actual failing component and that no
new defects were introduced during this phase of the operation. This ties up both tech-
nician and expensive test equipment. Consequently, a goal of test development must
be to create tests capable of not only detecting a faulty operation but to pinpoint,
whenever possible, the faulty component. In actual practice, there is often a list of sus-
pected components and the objective must be to shorten, as much as possible, that list.

One solution to the problem of locating faults during the manufacturing process
is to detect faulty devices as early as possible. This strategy is an acknowledgment
of the so-called rule-of-ten. This rule, or guideline, asserts that the cost of locating a
defect increases by an order of magnitude at every level of integration. For example,
if it cost N dollars to detect a faulty chip at incoming inspection, it may cost 10N
dollars to detect a defective component after it has been soldered onto a PCB. If the
component is not detected at board test, it may cost 100 times as much if the board
with the faulty component is placed into a complete system. If the defective system
is shipped to a customer and requires that a field engineer make a trip to a customer
site, the cost increases by another power of 10. The obvious implication is that there
is tremendous economic incentive to find defects as early as possible.

This preoccupation with finding defects early in the manufacturing process also
holds for ICs.27 A wafer will normally contain test circuits in the scribe lanes between
adjacent die. Parametric tests are performed on these test circuits. If these tests fail,
the wafer is discarded, since these circuits are far less dense than the circuits on the
die themselves. The next step is to perform a probe test on individual die before they
are cut from the wafer. This is a gross test, but it detects many of the defective die.
Those that fail are discarded. After the die are cut from the wafer and packaged, they
are tested again with a more thorough functional test. The objective? Avoid further
processing, and subsequent packaging, of die that are clearly defective.

1.9 CASE STUDIES

Finally, we present the results of two studies into test thoroughness versus AQL and
the consequences of decisions made with respect to test. The first is a classic study
published in 1985 that serves to underscore the importance of achieving high fault
coverage. The second is a study into the economics of multi-chip modules (MCMs).
A model was created and parameters were varied in order to discern their effect on
total product cost.

1.9.1 The Effectiveness of Fault Simulation

In this study, the results of which are shown in Figure 1.7, the authors were
concerned with the fact that at 96.6% fault coverage they were still getting too
many field rejects, and the costs of packaging and test were excessive.4,28 A decision
was made to improve the test program and determine what impact that would have
on the defect level.

24 INTRODUCTION

Figure 1.7 Fallout during test.

In their study, investigators analyzed 22,506 die. Of these, 4006 were eliminated
at the start of testing because of failures due to gross defects, including opens,
shorts, and so on. Then, 18,500 die were subjected to a functional test. The initial
test consisted of 858 vectors that provided 96.6% fault coverage. This test identified
6341 failing devices. Over time, the initial test was increased to 992 vectors to
address specific field reject problems encountered during production. During this
study the test was enhanced by the addition of another 298 vectors to bring the total
vector count to 1290. During their experiment, investigators recorded the vector
number at which failures occurred. The original 858 vectors uncovered 6341 defec-
tive chips. The added 432 vectors uncovered an additional 103 defective chips.

1.9.2 Evaluating Test Decisions

The second study examined test decisions involving (MCMs). The MCM is a hybrid
manufacturing technique in which several ICs are placed on an intermediate level of
packaging. It can be used to package incompatible technologies such as CMOS and
TTL, or it can be used to package digital circuits together with analog circuits that
can’t tolerate the noise generated by digital circuits. It can also be used to package
digital circuits together with memory, such as cache memory, or it can be used to
package two digital circuits that are either (a) too big to be placed on a single chip
with existing technology or (b) those in which yield of a single, larger chip may be
unacceptable. In this last instance, the MCM may be an intermediate phase until
manufacturing advances permit the individual digital chips to be integrated onto a
single die.

MCMs are often manufactured using known good die (KGD). The KGD is a bare
die that has gone through extensive testing. In a normal flow, wafer sort is performed
on individual die before they have been cut from the wafer. This is a test whose pur-
pose is to identify, as quickly as possible, those die that are grossly defective. Then,
those die that pass the test at wafer sort are packaged and tested more thoroughly. By
contrast, KGD must be thoroughly tested on the wafer because they will be sold as

Gross

858
Vectors
96.6%

Boolean ParametricWafer

432
Vectors
99.9%

fail fail fail

22.5 18.5 12 7

4 6.5 5

pass pass pass

Number
of die in
thousands

18,500 12,159
pass pass

fail fail

12,056

6,341 103
Number
of die

CASE STUDIES 25

bare die, and the buyer will mount them directly onto the MCM without benefit of
an additional layer of packaging. As a consequence of this approach, the MCMs that
use these die must be processed in a clean room, which adds to manufacturing cost.

The cost of manufacturing MCMs is affected in significant ways by choices made
with regard to test. Some of the factors include: chip yield and the thoroughness of
test, the number of chips on the MCM, yield of the interconnect structure, yield of
the bonding and assembly processes, and effectiveness of test and rework for detect-
ing, isolating, and repairing defective modules. The High-Level Test Economics
Advisor (Hi-TEA) evaluates decisions made with respect to these and other factors,
including cost of materials and processes, yield parameters, and test parameters.29

The metrics used by Hi-TEA are cost and quality: Hi-TEA attempts to optimize one
while the other serves as a constraint.

The Hi-TEA user enters many parameters and/or assumptions into the system.
Some of these inputs are easily obtained, such as the cost of labor and materials used
to package and test the MCMs. Other costs are initially guesses, which can be refined
as experience accumulates. In the paper cited here, the authors included several tables
contrasting MCM cost versus chip AQL. One of the interesting results brought out was
the trade-offs required to compensate for poor quality level of ICs used to populate the
MCMs in some of their examples. It was also interesting to note that as AQL for the
chips increased from 80% to 99.9%, total cost for MCMs followed a bell-shaped
curve, first increasing, then decreasing, so that with 99.9% AQL, it cost less to manu-
facture MCMs that met a given AQL goal. Another byproduct of higher chip AQL was
a significant reduction in the number of defective MCMs shipped to customers.

Figure 1.8 provides a summary of test cost versus quality trade-offs for several
different test and DFT strategies. The test vehicle for this study was an MCM that
contained a CPU, a coprocessor, and ten 4-Mbit SRAM chips. The clock speed for
this MCM was faster than that of any existing workstations at the time of the design.
It was assumed that there would be three defects per square inch for the CMOS CPU
and coprocessors, and six defects per square inch for the BICMOS SRAM wafers. It

Figure 1.8 Cost/quality trade-offs for various test/DFT strategies.

780

800

820

840

860

880

900

C
os

t (
$)

0

10,000

20,000

D
ef

ec
t l

ev
el

 (
pp

m
)

Cost
Defect level

B
as

e

95
%

 d
ie

 te
st

Pa
rt

ia
l D

FT

Fu
ll

D
FT

T
es

t c
on

tr
ol

le
r

Pa
rt

ia
l a

ss
em

bl
y

26 INTRODUCTION

was also assumed that 10% of the die would fail during burn-in. Test coverage at
wafer probe was 80%, and coverage at the die level was 99%. Substrate yield was
99.999% and test coverage for MCM test was 95% of all possible defects, including
faulty die, assembly errors, and so on.

From the base test, the next case reduced by half the test time for the die. As a
result, the fault coverage for the die decreased from 99% to 95%. From Figure 1.8 it
can be seen that, compared to the base case, final product cost increased by about
5% and defect level went up by almost 70%.

The next objective was to study the impact of DFT and built-in self-test (BIST)
on the cost and quality of the MCMs. The first experiment involved adding DFT and
BIST to the CPU and coprocessor. Compared to the base case, the use of partial
DFT reduced defect level from 10,000 to about 3000 ppm while reducing cost from
$845 to about $830. For the full DFT case the defect level remained about the same
as with the partial DFT case, but cost fell to about $805. An advantage that did not
get factored into these computations is the availability of the DFT features at higher
levels of integration, such as systems test.

The use of a test controller on the MCM was intended to evaluate the situation
where the manufacturer has no control over the ICs used in the design. In this sce-
nario, the test controller provides greater access to the individual chips on the
MCM. The cost of the additional test controller chip added $60 to the cost of the
MCM, but its presence helped to reduce the overall test cost slightly when com-
pared to the base case. The defect level was reduced by almost 80% relative to the
base case.

The final scenario considered testing the MCM after the SRAMs were attached.
If defects were encountered, they were repaired and the MCM retested. Then, when
the partial assembly passed the test, the CPU and coprocessor were mounted and the
MCM was retested. In this scenario the SRAMs can be considered hardcore (cf.
Section 9.7.1) and used to test the remaining logic on the MCM. Because diagnosis
is improved, it is less expensive to isolate defects and make repairs. Special fixtures
can be created to improve access to test points on the MCM. Note that this case pro-
vides the lowest overall cost of the MCM, although the defect level is slightly higher
than when DFT is used.

1.10 SUMMARY

During the past three decades a great deal of research has gone into the various fac-
ets of IC design, including system architectures, equipment used to create digital cir-
cuits with ever-shrinking feature sizes, and EDA tools used to facilitate the
migration from concept to digital product. Along the way, quality has benefited from
a better understanding of defect mechanisms, the development of better test methods
to identify and diagnose the causes of defects, and a better understanding of the
technical and economic trade-offs required to achieve desired quality levels.

Product reliability is another beneficiary as digital products have migrated from
SSI (small-scale integration), through very-large-scale integration (VLSI), into deep

SUMMARY 27

submicron (DSM). Greater integration has resulted in fewer assembly steps and
fewer soldering joints. As far back as 1979 it was reported that, based on five billion
device hours of experience, LSI devices with 70 to 100 gates per chip experienced
twice the failure rate of SSI devices with four to eight gates per chip. Put another
way, LSI devices experienced one-seventh the failure rate of SSI devices, on a per-
gate basis.30 CMOS technology, running at much lower power levels than equivalent
circuits implemented in previous technologies (ECL, TTL, etc.), has contributed to
improved reliability.

As the IC industry matures, and engineers gain a better understanding of the
many factors that contribute to yield loss, they are able to apply this new-found
knowledge to reduce both the sizes and the numbers of defects that occur in a given
die area, with the result that yields increase. This is all the more remarkable in view
of the fact that feature sizes continue to shrink and chip complexity continues to
increase. A relationship between complexity and minimum defect size is suggested
in Figure 1.9, where trends are projected to the year 2010.31

The incentive to shrink die size is motivated by a rather basic imperative, improved
profitability.32 Consider a wafer with N die and a yield Y. There will be Y × N good die
on the wafer. Each of these will be sold for Z dollars, producing an income of
Y × N × Z . This income must exceed the cost of designing, manufacturing, packaging,
testing, and marketing the chips. If die size is reduced, there will be more die on each
wafer, but the number of bad die may increase. If shrinking the die size causes a dis-
proportionately larger increase in the number of good die, then income increases,
assuming production costs do not go up disproportionately. Given a fixed selling price,
then, the object is to find die size and yield that maximize the product term Y × N × Z .

A simplistic analysis could lead to the conclusion that the number of good die
must increase disproportionately. Consider the following: If there were simply a
fixed number of point defects on a wafer, and they caused (1 − Y) die to fail, then
doubling the number of die on a wafer would produce N + (1 − Y) × N good die. In
effect, the overall yield increases. However, it is not quite that simple.

Figure 1.9 Complexity versus defect size.

1995 1998 2001 2004 2007 2010

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1.0

D
ef

ec
t s

iz
e

C
om

pl
ex

ity

Year

Relative decrease in
minimum defect size

Relative increase
in complexity

28 INTRODUCTION

As feature sizes shrink, supply voltages are reduced. This reduces power con-
sumption, heat dissipation, and failures caused by electric fields greater than the cir-
cuit can tolerate. But, reducing the supply voltage increases gate delay and thus
reduces the maximum clock rate. To compensate for this, the threshold voltage (the
voltage at which the transistor turns on) is reduced. If the threshold voltage is
reduced too far, leakage current becomes excessive. It is estimated that for every 60
mV that the threshold is lowered, leakage current increases by an order of magni-
tude.33 New failure mechanisms may be introduced into the process. Lower operat-
ing voltages imply less noise margin. Traces on the die are closer together, resulting
in greater potential for crosstalk. Greater capacitive coupling exists. Also, some
point defects on the wafer that may not have been problems at larger feature sizes
may become problems as feature sizes are reduced.

In summary, processes are improving, but as long as the universe is subject to
entropy, defects will continue to occur. The existence of defects implies a need for
test programs capable of detecting them, whether it be for reducing field rejects or to
help debug first silicon. The existence of chips with larger gate count implies a need
to develop more efficient test programs. The emergence of new fault mechanisms
implies a need for new test algorithms targeting those fault mechanisms. Further-
more, the ability to accurately compute defect level is important because it tells us
that, given levels of testability and yield beyond which we cannot hope to improve
(economically), we must expect a certain percentage of defective units shipped and
plan our business strategy accordingly, whether it be to stock more spare parts or to
improve our service department.

Another factor that has grown in importance in recent years is end-user expecta-
tions. In 1994, when a floating point problem was encountered in early Pentium
processors, the first inclination by Intel Corp. was to downplay the significance of
the problem, asserting that a typical user might only encounter an incorrect calcula-
tion once every 27 years. The outcry far exceeded anything that was anticipated by
Intel. They found that in order to maintain a favorable public image, it was necessary
to establish a generous return policy for anyone with a Pentium based microproces-
sor system. The resulting message from this experience is that, with electronic
products more pervasive than ever in many different end-user products, there is a
less forgiving public unwilling to understand or tolerate defective products. One slip
by a major vendor, and there will be another company waiting in the wings, ready to
step in and exploit the opportunity.

It is interesting to note that the delivery of correct and reliable computing is influ-
enced by factors that can be classified as nontechnical. For example, IBM’s Server
Group claims that the mean time between critical failures (MTBCF) of its System/390
mainframe is 20 to 30 years, where MTBCF is the average time between failures that
force a reboot and initial program load.34 A large part of the reason for this is because
the core software is extremely stable, a change is implemented only if it is determined
beyond all doubt that a bug exists. Of course, the hardware must also be stable.

One of the design parameters for a new system being developed is mean time
before failure (MTBF). The goal is to keep a system up and running as long as possi-
ble. However, another parameter that often must be considered when developing a new

PROBLEMS 29

system is mean time to repair (MTTR). While it is desired not to have a system fail, in
some circumstances it may be even more desirable to be able to get a system up and
running again after it has failed. This may necessitate the inclusion of hardware whose
sole purpose is to help diagnose and isolate failure to a field replaceable unit (FRU).
Design-for-test or built-in self-test may be vitally necessary to achieve MTTR goals.

Change, and an urge for novelty, are key aspects of human existence, but some-
times these urges must be resisted. This ability to resist the urge to make changes
unless it is absolutely necessary to do so is cited as a major reason for Intel’s suc-
cess. In an article in the San Jose Mercury News, the story is told of a drop in yield at
one of Intel’s foundries.35 An investigation revealed that a processing change caused
wafers to move more quickly from one station to the next. As a result, the tempera-
ture of the wafers as they arrived at the next station deviated from what it had previ-
ously been, and the deviation was enough to adversely affect the yield of the die on
those wafers.

This drop in yield was notable because Intel reportedly practices a policy called
“Copy Exactly.” This practice involves building a fabrication plant as part of the
research and development process for a new product. The R&D process involves not
just the designers of a next generation chip, but also the people in manufacturing
who must fabricate and test it. Once a manufacturing process is put into place,
changes are not made until after considerable debate and considerable examination
of the data. This is basically an implementation of concurrent engineering, which is
defined as “a systematic approach to the integrated, concurrent design of products
and their related processes, including manufacture and support.”36

An appreciation for the relationship between test cost, yield, and reject rate can
be gained by considering an analogous situation in the field of communications.
When communicating through a noisy medium, communications can be made more
reliable by increasing transmission power. However, Shannon’s theorem for com-
munications in a noisy channel tells us that it is possible to make the transmission
error rate arbitrarily small by resorting to error correcting codes (ECC). The most
economic solution is found by factoring in both the cost of transmission power and
the cost of employing ECC circuitry to find a solution that allows the most reliable
communication at the highest possible rate, at the lowest possible cost.

Consider that the objective, when processing wafers, is to ship only good die. If
field reject rate is too high, it could be improved by resorting to larger feature sizes.
However, it can also be improved by employing a more thorough test that identifies
more of the defective die before they are shipped to customers. The most economic
solution is a complex function of process yield and test coverage.

PROBLEMS

1.1 For a semiconductor process with a yield Y = 0.7, compute the defect level
DL by means of Eqs. (1.13) and (1.14) for values of T equal to 0.7, 0.8, 0.9,
and 0.975. Repeat using Eq. (1.16), with values of n0 equal to 1 and 3. Repeat
all calculations for Y = 0.9.

30 INTRODUCTION

1.2 Assume that the relative cost, Cd , of diagnosing and repairing defects,
expressed as a function of the percentage t of faults tested, is

. Furthermore, assume that the cost Cp of achieving a
particular test percentage t is . What value of t will minimize
total cost?

1.3 Using Eq. (1.14), draw a graph of defect level versus fault coverage using
each of the following values of yield as a parameter: Y = {.40, .50, .70, .90,
.95}.

1.4 Using Eq. (1.5), calculate P(0) for λ0 = {.25, .5, .75, 1.0, 2.0}. Repeat using
Eq. (1.10) and assume D0A = {.25, .5, .75, 1.0, 2.0}. Repeat using Eq. (1.11),
for α = 2 and for α = 4.

1.5 Assume two randomly distributed defects per square inch, and assume that
each defect only affects one die. If there are four die on each square inch of
wafer, what is the yield? If feature sizes are shrunk so that there are nine die
per square inch, what is the yield?

1.6 Assume that the maximum allowable reject rate for a particular IC is 500
ppm. Use Eq. (1.5) to draw a graph of yield versus fault coverage for values
of n0 = 0, 1, 2, 3, 4, 5.

1.7 Given an MCM with 20 die, each of which has an AQL of 99.5%, what is the
probability of a fault-free MCM?

REFERENCES

1. Doyle, E. A. Jr., How Parts Fail, IEEE Spectrum, October 1981, pp. 36–43.

2. Williams, T. W., and N. C. Brown, Defect Level as a Function of Fault Coverage, IEEE
Trans. Comput., Vol. C-30, No. 12, December 1981, pp. 987–988.

3. Rechtin, Eberhardt, The Synthesis of Complex Systems, IEEE Spectrum, July 1997,
Vol. 34, No. 7, pp. 51–55.

4. McCluskey, E. J. and F. Buelow, IC Quality and Test Transparency, Proc. Int. Test Conf.,
1988, pp. 295–301.

5. Donlin, Noel E., Is Burn-in Burned Out?, Proc. Int. Test Conf., 1991, p. 1114.

6. Henry, T. R., and Thomas Soo, Burn-in Elimination of a High Volume Microprocessor
Using IDDQ, Proc. IEEE Int. Test Conf., 1996, pp. 242–249.

7. Weber, Samuel, Exploring the Time to Market Myths, ASIC Technol. News, Vol. 3, No.
5, September 1991, p. 1.

8. Teichrow, D., and E. A. Hershey, III, PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems, IEEE Trans.
Software Eng., Vol. SE-3, No. 1, January 1977, pp. 41–48.

9. Bell, C. G., and A. Newell, Computer Structures: Readings and Examples, McGraw-
Hill, New York, 1971.

Cd 100 0.7t–=
C p

t
100 t–
----------------=

REFERENCES 31

10. Davis, A. M., and D. A. Leffingwell, Using Requirements Management to Speed Delivery
of Higher Quality Applications, Technical Report 0001, Requisite, Inc., http://
www.requirement.com/requisite.

11. Sanborn, J. L., Evolution of the Engineering Design System Data Base, Proc. 19th D.A.
Conf., 1982, pp. 214–218.

12. Cunningham, J. A., The Use and Evaluation of Yield Models in Integrated Circuit
Manufacturing, IEEE Trans. Semicond. Mfg., Vol. 3, No. 2, May 1990, pp. 60–71.

13. Seeds, R. B., Yield and Cost Analysis of Bipolar LSI, Proc. IEEE IEDM, Washington,
D.C., October 1967.

14. Murphy, B. T., Cost-Size Optima of Monolithic Integrated Circuits, Proc. IEEE, Vol. 52,
December 1964, pp. 1537–1545.

15. Stapper, C. H., Defect Density Distribution for LSI Yield Calculations, IEEE Trans.
Electron Devices, Vol. ED-20, July 1973, pp. 655–657.

16. Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May–
June 1978, pp. 1475–1488.

17. Wiscombe, Paul C., A Comparison of Stuck-at Fault Coverage and IDDQ Testing on Defect
Levels, Proc. Int. Test Conf., 1993, pp. 293–299.

18. Maxwell, P. C., R. C. Aitken, V. Johansen, and I. Chiang, The Effect of Different Test Sets
on Quality Level Prediction: When Is 80% Better than 90%?, Proc. Int. Test Conf., 1991,
pp. 358–364.

19. Agrawal, V. D., S. C. Seth, and P. Agrawal, Fault Coverage Requirement in Production
Testing of LSI Circuits, IEEE J. Solid-State Circuits, Vol. SC-17, No. 1, February 1982,
pp. 57–61.

20. Das, D. V., S. C. Seth, P. T. Wagner, J. C.Anderson, and V. D. Agrawal, An Experimental
Study on Reject Ratio Prediction for VLSI Circuits: Kokomo Revisited, Proc. 1990 Int.
Test Conf., pp. 712–720.

21. Seth, S. C. and V. D. Agrawal, On the Probability of Fault Occurrence, in Defect and Fault
Tolerance in VLSI Systems, ed. I. Koren, pp. 47–52, Plenum, New York, 1989.

22. Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of Different
Areas of an Integrated Circuit, IEEE Trans. CAD, Vol. 14, No. 5, May 1995, pp. 603–607.

23. Wei, S., P. K. Nag, R. D. Blanton, A. Gattiker, and W. Maly, To DFT or Not to DFT?, Proc.
Int. Test Conf., 1997, pp. 557–566.

24. Aitken, R. C., R. K. Scudder, and P. C. Maxwell, Never Mind the Cost of Test—Look at
the Value!, Test Cost Reduction Workshop, SEMI 1997, pp. D1–D5.

25. Young, Lewis H., Electronic Business Today, October 1995, p. 50.

26. Business Week, August 8, 1994.

27. Thompson, Tom, How to Make the World’s Fastest CPUs, Byte Magazine, Vol. 22, No. 2,
February 1997, pp. bona3–bona12.

28. Daniels, R. G., and W. C. Bruce, Built-In Self-Test Trends in Motorola Microprocessors,
IEEE Des. Test, Comput., April 1985, Vol. 2, No. 2, pp. 64–71.

29. Abadir, M. S., et al., Analyzing Multichip Module Testing Strategies, IEEE Des. Test
Comput., Spring 1994, Vol. 11, No. 1, pp. 40–52.

30. Slana, Matthew F., Workshop Report: Computer Elements for the 80’s, IEEE Comput.,
Vol. 12, No. 4, April 1979, p. 102.

31. Vallett, David P., IC Failure Analysis: The Importance of Test and Diagnostics, IEEE Des.
Test, July–September 1997, Vol. 14, No. 3, pp. 76–82.

32 INTRODUCTION

32. Oldham, William G., The Fabrication of Microelectronic Circuits, Sci. Am., September
1977, Vol. 237, No. 3, pp. 111–128.

33. Pountain, Dick, Amending Moore’s Law, Byte Magazine, March 1998, pp. 91–95.

34. Halfhill, Tom R., Crash-Proof Computing, Byte Magazine, April 1998, pp. 60–74.

35. Gillmor, Dan, Curb on Tweaking Made Intel Strong, San Jose Mercury News, August 18,
1997, p. 1E.

36. Carter, Donald E., and B. S. Baker, Concurrent Engineering: The Product Development
Environment for the 1990s, Addison-Wesley, Reading, MA, 1992.

33

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 2

Simulation

2.1 INTRODUCTION

Simulation is an imitative process. It is used to study relationships between parame-
ters that interact in a system. In some cases it may point out errors that cause a design
to respond incorrectly. In other cases it permits optimization of a design for maxi-
mum performance or economy of operation or construction. In still other situations,
the system may be so complex that simulation is the only way that variables affecting
the design, and their interaction with each other, can be controlled and studied.

In order to imitate the behavior of a product or system, simulation employs mod-
els. A model is an imperfect replica. It must contain enough information to accu-
rately represent the behavior of the variables of interest in the process or system
being studied, but must not be so complex as to obscure details of the variables and
their relationships or so intricate that its cost approaches that of simply building the
device or system to be studied.

This chapter will focus on methods used to simulate digital logic circuits in order
to predict their behavior in the presence of various stimuli and environmental fac-
tors. Note that the accuracy of the prediction of circuit response depends on the
accuracy and level of detail of the circuit model provided to the simulator. In future
chapters we will examine fault simulation and other methods for verifying correct-
ness of designs and correctness of the fabricated product. Much can be learned by
comparing and contrasting methodologies used in simulation, and fault simulation,
with those used in design verification. In fact, as circuits get larger and more com-
plex, the arguments for integrating design and test activities become more compel-
ling. To the extent that the design effort can be leveraged in the manufacturing test
development task, the overall development cost for design and test can be reduced.

2.2 BACKGROUND

Early designers of digital logic implemented their circuits on printed circuit boards
(PCBs) using integrated circuits (ICs) characterized as small-scale integration (SSI),

34

SIMULATION

medium-scale integration (MSI), and large-scale integration (LSI). Logic designers
seldom simulated their designs. Rather, they created

prototype

s. After the prototype
was debugged, layout of the PCB would begin. If design errors were discovered
after the PCB was fabricated, the errors were repaired with wires that were color-
coded to indicate an engineering change order (ECO).

The prototype is a physical mockup of the circuit being designed. Connections
are made by wire wrap or other means that can be easily altered to correct design
errors. It is used to evaluate logical correctness and, possibly, timing characteristics
of a design. The prototype is attractive because it can run at or near design speed, it
can be evaluated under actual operating conditions, it does not require detailed sim-
ulation models of the components used in the design, and it can be run with virtually
unlimited amounts of stimuli. Various types of test equipment can be hooked up to
the design to evaluate its performance, debug problems, and determine relative tim-
ing margins and voltage levels. If the system configuration includes operational soft-
ware and diagnostic tests, development and debug of this software can begin on the
prototype.

The prototype has its drawbacks. Many months of effort and great expenditure of
resources may be required to build the prototype.

1

 It normally accommodates only a
single experiment at a time and a considerable amount of time may be required to
set up experiments. If the prototype goes down for any length of time because of
failure or damage to a critical part, the entire design team may be idled. Further-
more, with increasing amounts of logic being incorporated into single ICs, proto-
types offer less insight into timing issues.

In the late 1970s, simulation began to play a more important role in IC design.
Foundries emerged that accepted logic designs and converted them to working sili-
con. Much of the “glue” logic on PCBs that was implemented with SSI and MSI
parts began to find its way into ICs. This led to PCBs that were less densely popu-
lated, requiring fewer manufacturing steps. As a result, PCBs became more econom-
ical to produce, and a welcome byproduct of this evolution was an increase in
reliability.

The United States Department of Defense (DoD) recognized a problem in this
migration to custom ICs. The DoD required that there be a second source for com-
ponents used in digital circuits. Their concern was that a sole supplier might become
financially insolvent, and critical components used in weapons systems would no
longer be available. The advent of design tools and foundries capable of producing
unique digital functions prompted the DoD to initiate the VHSIC (Very High Speed
Integrated Circuit) program. The goal was to learn as much as possible about this
coming revolution in digital design.

To address the problem of sole sources for digital circuits, the DoD determined
that there would have to be a common language for describing digital designs. Then,
when a supplier provided a digital circuit for a DoD system, if it were not a standard,
off-the-shelf part that was available from two or more sources, the supplier would be
required to provide a formal description in a language sanctioned by the DoD. To
that end, DoD sponsored a conference at the Woods Hole Oceonographic Center in
the summer of 1981. Many experts on hardware description languages (HDLs) met

BACKGROUND

35

to discuss the various aspects of HDLs. A number of these languages already
existed. In fact, the IBM/360 family of computers had been described in APL (A
Programming Language) in 1963.

2

 Other HDLs appeared over the years, the most
common of these being A Hardware Programming Language (AHPL),

3

 which is
based on APL, Computer Description Language (CDL),

4

 and Digital Description
Language (DDL).

5

From VHSIC and the Woods Hole conference, VHSIC Hardware Description
Language (VHDL) eventually emerged. At the same time that VHDL was being
defined and refined, the Verilog HDL was emerging as a commercial product. Ver-
ilog was initially proprietary, but eventually became an open language. As a result,
two widely accepted HDLs currently exist, and a large number of design and test
tools based on these languages have appeared in the marketplace.

Simulators based on these two languages have benefited from numerous
enhancements that have improved their efficiency, effectiveness, and ease of use.
Simulators exist that can operate on models described at levels of abstraction rang-
ing from switch level to behavioral. The behavioral descriptions can represent
designs equivalent to hundreds of thousands up to millions of logic gates. Further-
more, these simulators can process circuits described at multiple levels of abstrac-
tion: part behavioral, part gate-level, and part switch-level. The simulators support
creation of test stimuli with numerous constructs that provide flexible control of
simulation, afford visibility into intermediate results generated during simulation,
and include print and debug capabilities that enable the user to identify precisely
where timing and/or behavior fail to meet specifications.

The prototype, though not as popular as it once was, nevertheless endures.
Modern-day prototypes appear in the form of emulation systems made from field-
programmable gate arrays (FPGAs).

6

 These are used to evaluate large, complex
designs that would take enormous amounts of time to simulate in software. With an
emulator running at clock speeds of 5 to 10 MHz, performance gains of up to six
orders of magnitude are possible over logic simulation on a workstation.

In a sense we have come full circle with the growing use of reusable macros, or

virtual components

 (VC), which are analogous to the MSI and LSI components used
in previous generation designs. The emphasis is on “reusable,” meaning that the VC
is a general function that can be stored in a library and pulled into almost any
design. As an example, a counter may have parallel load, count-up and count-down
capabilities. A user might then hard-wire the VC to perform only a count-up opera-
tion. An IC that is designed using VCs becomes a

system-on-a-chip

 (SoC). The com-
pany that designs the SoC, sometimes called a

core module

or

drop-in function

,

may
not fabricate the design, but, rather, may make the design available to other compa-
nies in the form of RTL code. The other company then inserts or drops it into a
larger design. Companies that sell these designs do not sell components, rather, they
sell

intellectual property

 (IP).
The behavior of these cores is usually described in Verilog and/or VHDL. A

design team could conceivably create a fairly large design completely out of core
modules, just as early designers connected SSI, MSI, and LSI components
together. Since core modules are used by many customers, designers who use

36

SIMULATION

them may feel comfortable in assuming that the cores are designed correctly and
would focus their design effort on verifying the interconnects between two or
more of these modules.

2.3 THE SIMULATION HIERARCHY

Digital systems can be described at levels of abstraction ranging from behavioral to
geometrical. Simulation capability exists at all of these levels. The

behavioral
description

 is the highest level of abstraction. At this level a system is described in
terms of the algorithms that it performs, rather than how it is constructed. The devel-
opment of a large system may begin by characterizing its behavior at the behavioral
level, particularly if it is a “first of a kind” (cf. Section 1.4). A goal of behavioral
simulations is to reveal conceptual flaws.

When simulating behaviorally, the user is interested in determining things like
optimum instruction set mix. This is done by studying the effects of sequences of
instructions on data flow. Data flow through system elements can also be studied at
this level in order to detect potential bottlenecks. For example, it serves no useful
purpose to put a more powerful CPU into a system if the existing CPU is always
waiting for data from a memory or I/O unit. Trade-offs between hardware and soft-
ware can also be determined. If some software sequences are executed often, such as
when servicing interrupt requests, performance might be improved by implementing
the sequence in hardware. Partitioning, or modular decomposition, can also be per-
formed at this level, to determine the best allocation of functions to modules. When
behavioral simulations are complete, the behavioral model can serve as a specifica-
tion for the system design.

Once the system has been specified, a

register transfer level (RTL)

model, some-
times referred to as a

functional

 model, can be used to describe the flow of data and
control signals within and between functional units. The circuit is described in terms
of flip-flops, registers, multiplexers, counters, arithmetic logic units (ALUs), encod-
ers, decoders, and elements of similar level of complexity. Data can be represented
at various levels of abstraction, ranging from Booleans to complex numbers, or can
be represented as ASCII strings. The building blocks and their controlling signals
must be interconnected so as to function in a manner consistent with the preceding
behavioral level description.

A

logic

 model describes a system by means of switching elements or gates. At
this level the designer is interested in correctness of designs intended to implement
functional building blocks and units. Performance or timing of the design is a con-
cern at this level. Closely related to the logic model is the

switch-level

 model used to
describe behavior of metal oxide semiconductor (MOS) circuits.

7

 A switch-level
network consists of nodes connected by transistors. Each node has value 0, 1, Z, or
X and each transistor is open, closed, or indeterminate. Logic processing is aug-
mented by capabilities needed to perform strength resolution when a node is driven
by two or more MOS devices. The capacitance at a node may be sufficient to hold a
charge after all drivers are turned off, so the node behaves like a latch. If this

THE LOGIC SYMBOLS

37

property of MOS devices is recognized by a simulator, greater accuracy in predict-
ing circuit behavior may be possible.

A

circuit

 level model is used on individual gate and functional level devices to
verify their behavior. It describes a circuit in terms of devices such as resistors,
capacitors, and current sources. The simulation user is interested in knowing what
kind of switching speeds, voltages, and noise margins to expect. Finally, the

geomet-
rical

 level model describes a circuit in terms of physical shapes.
Simulation at a high level of abstraction requires less detailed processing; hence

simulation speed is greater and more input stimuli can be evaluated in a given
amount of CPU time. In most cases the loss of detail is known and accepted. How-
ever, there are instances where the designer may be unaware that information is lost,
information whose absence may obscure details essential to a proper understanding
of the circuit’s behavior. The importance of the information may depend on whether
the product being designed is synchronous or asynchronous. In synchronous
designs, clocking of bistable devices is usually controlled in such a way as to make
them less susceptible to unexpected pulses caused by transient signals. In asynchro-
nous designs, where designers have the freedom to create clock pulses for flip-flops
and latches, circuits are more susceptible to erratic behavior.

2.4 THE LOGIC SYMBOLS

Test problems, as well as other circuit issues, are often described most effectively
by means of schematic diagrams. Figure 2.1 introduces the logic symbols that are
used in this text, together with truth tables describing their behavior. In these sche-
matics the binary values, 0 and 1, are augmented with the values X and Z. X repre-
sents an unknown or indeterminate signal value, while Z represents a floating
signal. A net assumes the value Z when it is not being driven by any logic element,
it has effectively been disconnected from the circuit. In Figure 2.1(e), the tri-state
element has the enabling input

En

. When

En

 = 1 the tri-state element behaves like a
buffer, and when

En

 = 0 the tri-state output is disconnected from its input, regard-
less of what value appears at the input. That condition is represented by a Z on the
output.

A small bubble or circle on an input, output, or enable of a logic element repre-
sents an inverted signal. For example, the inverters shown in Figure 2.1(b) comple-
ment the logic value applied at the input. On an enable signal, such as the tri-state
buffer, a bubble indicates an active low enable, meaning that the output floats when
the enable is high and input data passes through the tri-state device when the enable
is low.

The inputs and outputs of logic functions are called

terminals

 or

ports

. Any wire
that connects two or more terminals is called a

net

. The term net will also apply to
any set or collection of interconnected terminals. An input terminal that is physically
accessible at an IC pin or logic board pin is called a

primary input

. An output termi-
nal that is physically accessible is called a

primary output

. An output terminal of a
logic function will also sometimes be called a

node

.

38

SIMULATION

Figure 2.1

Some basic switching elements.

The AND circuit and the OR circuit are commonly referred to as

gates

. The
AND, sometimes referred to as a

conjunction

, is high, or true, if all of its inputs are
high. A low on any input to the AND circuit is called a

blocking signal

; it can block
or gate out signals applied to other inputs, thus preventing them from passing
through to the output. The OR, or

disjunction

, is low if all of its inputs are low. A
logic 1 on any input to the OR is a blocking signal. Over time, the term gate has

I F

0 0

1 1

0 X X 0
X 0 X 0
X X 0 0
1 1 1 1

I1 I2 I3 F

En I F

0 X Z

1 0 0

1 1 1

(a) Buffer (b) Inverter

(c) AND gate (d) OR gate

(e) Tri-state gate (f) Exclusive-OR

S

G

D

(g) NMOS (h) PMOS

S

G

D

(i) CMOS

NG PG

Z 0 L L
Z 1 H H

Z X X X

Z Z Z Z

0 1 X Z

0
1

X

Z

GATE
S
O
U
R
C
E

S

D

I F

0 1

1 0

I F I F

I F

FI2
I3

I1

0 0 0 0
1 X X 1
X 1 X 1
X X 1 1

I1 I2 I3 F

I2

I3

I1

F

I

En

F I2

I1
F

I1 I2 F

0 0 0

0 1 1

1 0 1

1 1 0

0 1 X Z

0 Z L L0
1 Z H H1
X Z X XX
Z Z Z ZZ

GATE
S
O
U
R
C
E

SEQUENTIAL CIRCUIT BEHAVIOR

39

come to embrace the other elements (Exclusive-OR, tri-state, etc.), even though
their behavior as gates is not so evident.

An AND gate with a bubble on its output is a NAND gate. It has been known for
almost a century that the NAND can be used to implement other logic functions.

8

The two-input NAND is often used as a measure of complexity for a circuit. For
example, if the size of a function is described as being 20,000 gate equivalents, those
20,000 gates are understood to be two-input NAND gates.

Logic functions can be expressed in terms of MOS transistors. The basic building
blocks are the NMOS and PMOS devices. The terminals are identified as S, G, and D,
denoting source, gate, and drain. The transistor conducts when the gate is active. The
NMOS device in Figure 2.1(g) conducts when the gate is at logic 1, and the PMOS
device conducts when the gate is at logic 0. The symbol L denotes a value of 0 or Z at
the drain, whereas H denotes a value of 1 or Z. The CMOS device has both negative
gate (NG) and positive gate (PG). The values on these gates are normally the comple-
ment of one another. The CMOS device conducts when NG is 1 and PG is 0. The tran-
sistor level model is more accurate in terms of representing the actual physical structure
of the circuit, but the level of detail may be so great as to obscure its basic functionality.

Logic operations can be described using Boolean equations. The equation

Z = A

⋅

B + C

⋅

D

is called a

sum-of-products

, sometimes said to be in

disjunctive normal form

. A dot
(

⋅

) indicates an AND operation, a plus (+) indicates an OR operation, and a bar
above a variable indicates that it is complemented. The same logic operation can be
described by

Z =

(

A + C

)

⋅

(

B + C

)

⋅

(

A + D

)

⋅

(

B + D

)

This form is called a

product-of-sums

, also said to be in

conjunctive normal form

. For
this logic operation the sum of products is more economical, requiring two AND gates
and one OR gate, whereas the second expression requires four OR gates and one AND
gate. For other logic functions the product of sums may be more economical.

2.5 SEQUENTIAL CIRCUIT BEHAVIOR

A generic sequential circuit is often represented by the Huffman model

9

 in
Figure 2.2. The circuit consists of a combinational part and feedback lines

Y

1

,

 ...

,

 Y

L

,
which pass through delay elements

d

1

,

 ...

,

 d

L

 and then act as additional inputs to the
combinational logic. The set of values {

y

1

,

 y

2

,

 ...

,

 y

L

} constitute the present state of
the machine, while the values {

Y

1

,

 Y

2

,

 ...

,

 Y

L

} constitute the next state. Because there
are a finite number of possible states, the circuit is called a

finite state machine

. The
outputs

z

i

 are a function

zi = zi(x1, ..., xn, y1, ..., yL)

40 SIMULATION

Figure 2.2 Huffman model.

of the values on the inputs and the present state. The delay elements d1, ..., dL may
represent distributed delay inherent in the logic devices, they may represent lumped
delay elements specifically designed to delay signals by some known fixed amount,
they may be flip-flops controlled by one or more clock signals, or they may be com-
posed of elements from each of these types. If the devices are all controlled by a
common clock signal (or signals), then the circuit is synchronous; that is, its actions
are synchronized by some external signal(s). If the delays are inherent in the
devices, and not otherwise controllable by signals external to the circuit, the circuit
is classified as asynchronous.

A circuit that has both clocked and unclocked delays may be placed in either
category; the distinction often depends on the exact purpose of the asynchronous
signals. A circuit in which memory devices can be asynchronously set or reset, but
that is otherwise completely controlled by clock signals, is usually classified as syn-
chronous. Sequential circuits are sometimes referred to as cyclic, a reference to the
presence of feedback or closed loops, as distinguished from combinational circuits,
which are termed acyclic. However, authors will also sometime distinguish between
sequential cyclic and sequential acyclic circuits (cf. Section 5.4.1).

A frequently used memory element is the cross-coupled latch, implemented
using either NOR gates or NAND gates, as depicted in Figure 2.3. These latches
may appear by themselves or as constituent building blocks in other memory
devices. The value on output Y at time tn+1 is determined by values on the Set and
Reset input lines and by the present state of the latch. Given a present state y, and
values on its Set and Reset inputs, the next state can be determined from a state table
(cf. Figure 2.3). The value within the state table, at the intersection of a row corre-
sponding to the present state and a column corresponding to the applied input
value(s), specifies the next state to which the circuit will transition.

Entries containing dashes denote indeterminate states. For the NOR latch the col-
umn corresponding to (Set,Reset) = (1,1) contains dashes. It would be illogical to set
and reset the latch simultaneously; and if the combination (1,1) were applied, fol-
lowed by the combination (0,0), the final state of each such device appearing in the

... ...

...

...
...Combinational

logic

d1

dL

x1
x2

xn

z1
z2

zn

y1 Y1

yL YL

SEQUENTIAL CIRCUIT BEHAVIOR 41

Figure 2.3 Cross-coupled latches.

circuit would depend on the physical properties of that device. A similar consider-
ation holds if the sequence {(0,0), (1,1)} were applied to the inputs of the NAND
latch. A latch may be preceded by gates that permit it to be controlled by a clock.
This is illustrated in Figures 2.4(a) and 2.4(b). In Figure 2.4(b) there is a single Data
input whose value is inverted in one of two paths so the latch never sees the illegal
input combination (0,0).

Clock-controlled flip-flops, or bistables as they are sometimes called, are used
extensively in digital circuits. The basic building blocks of sequential circuits are the
D (Delay) and the JK flip-flops. The D flip-flop simply delays a signal for one clock
period. The JK flip-flop behaves like the cross-coupled NOR latch but permits the
input combination (1,1). These, along with their state tables, are illustrated in
Figure 2.5. Another common flip-flop, the T (Toggle) flip-flop, switches state in
response to every active clock edge. A well-known theorem in sequential machine
theory states that any of these circuits can be configured to emulate any of the oth-
ers. For example, if the J and K inputs to a JK flip-flop are both tied to logic 1, the
resulting circuit becomes a T flip-flop. Note that the Preset and Clear inputs on the
D and JK flip-flop of Figure 2.5 are active low, so a logic 0 on the Preset input forces

Figure 2.4 Gated latches.

Set

Reset
Y

SR

(b) NAND Latch

Y
01 0

00

11 0

01

_

_

10 11

0

1

Set

Reset

Y

SR

(a) NOR Latch

Y
0 0 1

00

1

01
_

_

10 11

0

1 0 1

Y

Enable

DataSet

Reset

Y

Enable

(a) (b)

42 SIMULATION

Figure 2.5 The standard flip-flops.

the Q output of these flip-flops to switch to a logic 1, while a 0 on the Clear
forces Q to a logic 0. The clock input (CLK) is active on a positive edge for both
the D and JK flip-flops.

The latch is similar in behavior to the D flip-flop. However, it is level-sensitive
rather than edge-sensitive, meaning that the clock is replaced by an enable (EN)
input and the value at the Data input appears at the output whenever the EN input is
active. When EN switches to the inactive state, the value at the Q output is unaf-
fected by signal changes at the Data input. Like the Preset and Clear lines, an active
low Enable is represented by a bubble at the EN input.

The flip-flops depicted above can be implemented as level-sensitive flip-flops or
as edge triggered flip-flops. A level-sensitive flip-flop responds to a high or low
clock level, whereas an edge-triggered flip-flop responds to a rising or falling clock
edge. The flip-flop in Figure 2.6 is a level-sensitive JK flip-flop implemented in a
master/slave configuration. When the clock is high, data can enter the first stage or
master. When the clock goes low, the data in the first stage are latched and the sec-
ond stage, the slave latch, becomes transparent so data that was in the first stage are
now transferred to the outputs.

The edge-triggered D flip-flop (DFF), shown in Figure 2.7, is somewhat more
complex in its operation.10 It has Preset and Clear lines with which the output Q can
be forced to either a 1 or 0 state independent of the values on the Data and Clock
lines. When the Preset and Clear are at 1 and the clock is low, then the complement
of the value at the Data input appears at the output of N4. Also, under these condi-
tions, the output of N1 has the same value as the Data input. Therefore, the input to
N2 at this time matches the value on the Data line, and the value on the input to N3 is
the complement of the value on the Data input.

When Clock goes high, the values at the inputs to N2 and N3 appear, inverted, at
their outputs. They are then inverted once again as they go through N5 and N6 so that
the output of N5 matches the value on the Data line. There is an important point to
note about this configuration: If Data is low when Clock goes high, then the output
of N3 goes low and prevents further changes in Data from propagating through N4. If
Data is high, then when Clock goes high, the high value at the output of N1 causes a
0 to appear at the output of N2. The 0 blocks changes at the Data input from propa-
gating through N1 and N3.

J
K

QD Q

D flip-flop JK flip-flop

Preset

Clear

Preset

Clear

JK

Q
0 1

00

1 1

01

1

0

10

0

1

CLK CLK
0
1

0

0
1

D

Q

1

1
0

11

0

0

SEQUENTIAL CIRCUIT BEHAVIOR 43

Figure 2.6 Level-sensitive JK flip-flop.

The circuit is sensitive to the rising edge of the Clock input. Data cannot get
through N2 and N3 when Clock is low, and shortly after Clock goes high the data are
latched so the flip-flop is insensitive to further changes at the Data input. However,
data changes during the positive edge transition can cause unpredictable results.
Therefore, these flip-flops are usually specified by their manufacturers with two key
parameters: setup and hold time. Setup time is the interval during which a signal
must be stable at an input terminal prior to the occurrence of an active transition at
another input terminal. Hold time is the interval during which a signal must be stable
at an input terminal following an active transition at another input terminal. In the
flip-flop of Figure 2.7, setup and hold specify the duration of time during which the
Data input must be stable relative to the Clock input.

With several levels of abstraction available for representing circuit behavior, it is
reasonable to ask, “At what level of abstraction should a circuit be described?”
There is no clear-cut answer to this question. Different engineers, with different
objectives, find it necessary to work at different levels of abstraction. Consider the
following example:

Figure 2.7 Edge-triggered delay flip-flop.

Q

Clear

Preset

CLK

Q

J

K

Preset

Clear

Data

Clock

Q

Q

N1

N2

N3

N4

N5

N6

44 SIMULATION

Example The frequency divider in Figure 2.8(a) may appear to be well-behaved.
But if the latches are designed and used as shown in Figure 2.8(b), a pulse can be seen
that the designer may not have anticipated.11 If the unwanted pulse contains enough
energy, the following flip-flop may be clocked more often than expected. ��

Engineers responsible for designing and characterizing circuits for cell libraries
must be aware of, and must document, precise details of a circuit’s operation. Logic
designers who instantiate that circuit in their design must be aware that the Enable
has a minimum pulse width requirement of 8 ns.

2.6 THE COMPILED SIMULATOR

Compilers for programming languages can be characterized as compiled or inter-
preted. Simulators are similarly characterized as compiled or event-driven. The
compiled simulator is created by converting a netlist directly into a series of
machine language instructions that reflect the functions and interconnections of the
individual elements of the circuit. For each logic element there exists a series of one
or more machine language instructions and a corresponding entry in a circuit value
table that holds the current value for that element. The event-driven simulator, some-
times called table-driven, operates on a circuit description contained in a set of
tables, without first converting the network into a machine language image. We will
first examine the compiled simulator.

The compiled simulator is constructed using the host computer’s repertoire of
machine language instructions. Each element in the circuit is evaluated using one or
more instructions of the host computer. The results are stored in a table that contains

Figure 2.8 Frequency divider with spurious pulse.

D Q

Q

D Q

Q
Enable

4 ns

4 ns
4 ns

4 ns

Data

Enable
0 6 4 10

12 18 20

8 16

(a)

(b)

14

THE COMPILED SIMULATOR 45

an entry for each logic element being simulated. The instructions that simulate the
circuit elements obtain their required input values from this table and store their
results back into the table. Circuit preparation for simulation includes rank-ordering,
defined below:

Definition 2.1 A state point is any primary input, primary output, or latch/flip-flop
input or output. Primary inputs and latch/flip-flop outputs are called input state
points. Primary outputs and latch/flip-flop inputs are called output state points.

Definition 2.2 A cone, also called a cone of logic, is the set of elements encoun-
tered during a backtrace from an internal circuit node, called the apex, to input state
points.

Definition 2.3 A predecessor of a logic element is a logic element that lies in its
cone.

Definition 2.4 A cone of logic is rank-ordered, sometimes said to be levelized, if
the elements in the cone are numbered such that every element in the cone has a num-
ber that is greater than that of any of its predecessors.

Definition 2.5 The level of a logic element in a combinational circuit is a measure
of its distance from the primary inputs. For any given gate, the level assigned is one
greater than the highest level assigned to the gates that drive it. The level of the pri-
mary inputs may be chosen to be 0 (0-origin) or 1 (1-origin).

The apex of a cone often coincides with an output state point, but may be any
internal node. When backtracing from an apex to input state points, all of the ele-
ments driving each element encountered during the backtrace are included in the
cone of logic. The input state points are the drivers of the circuit defined by the cone.
Note that if a cone is rank-ordered, then any sub-cone contained in that cone is also
rank-ordered. The simulator takes advantage of rank-ordering to ensure that no ele-
ment is evaluated until all of its predecessors have been evaluated. In Figure 2.9 the
input to flip-flop M is an output state point. The cone of logic driving that state point,
or apex, indicated by the dashed lines, contains the elements G, H, I, J, and K. The
input state points that drive this cone are the primary inputs B, C, D, E, F and the
output of flip-flop A.

A program for rank-ordering elements in a circuit begins by marking all of the
primary inputs. Then, each unmarked element in the circuit is examined. It is
marked if all of its inputs have been marked. If level numbers are required, the level
assigned to each gate is the highest level among the driving gates, plus one. After all
elements have been processed, if at least one additional element has been marked
and if there are elements that have not yet been marked, the process is repeated. For
a combinational circuit, the process terminates after a finite number of passes
through the circuit. For a sequential circuit, elements in a loop may not get marked
because they are interdependent; for example, element A cannot get marked because

46 SIMULATION

Figure 2.9 Circuit for simulation example.

element B has not been marked, and element B cannot get marked because element A
has not been marked. A procedure for dealing with sequential loops is described in
Section 5.3.2. Here we illustrate the operation of the compiled simulator.

Example A simulator will be created for the cone of combinational logic driving
flip-flop M in Figure 2.9. It will use assembler language instructions for the 80×86
microprocessor.

; Set up stack for return values
PUSH DS ; Put return addr. on stack
MOV AX,0 ; Clear register
PUSH AX ; Put return addr. (0) on stack
; Initialize data segment address
MOV AX, DSEG ; Initialize DS
MOV DS, AX ; –– by way of Reg. AX
; Begin simulation
MOV AX, PI_TABLE ; Load input A into Reg AX
MOV BX, PI_TABLE + 2 ; Load input B into Reg BX
AND AX, BX ; G = A & B
MOV GATE_TABLE, AX ; Store result for gate G

MOV AX, PI_TABLE + 4 ; Load input C into Reg AX
MOV BX, PI_TABLE + 6 ; Load input D into Reg BX
AND AX, BX ; compute C & D
XOR AX, 0FFFFFH ; Compute !(C & D)
MOV GATE_TABLE + 2, AX; H = !(C & D)

MOV AX, PI_TABLE + 8 ; Load input E into Reg AX
MOV BX, PI_TABLE + 10 ; Load input F into Reg BX

A
B

C

D

E

F

G

H I

J

K

Clk
Clear

L

M

N

A

THE COMPILED SIMULATOR 47

AND AX, BX ; Compute E & F
MOV GATE_TABLE + 6, AX ; J = E & F

MOV AX, GATE_TABLE ; Load value of G into AX
MOV BX, GATE_TABLE + 2 ; Load value of H into BX
OR AX, BX ; compute G | H
MOV BX, PI_TABLE + 8 ; Load input E into Reg BX
OR AX, BX ; Compute result, gate I
MOV GATE_TABLE + 4, AX ; Store result for gate I

MOV AX, GATE_TABLE + 4 ; Load value of I into AX
MOV BX, GATE_TABLE + 6 ; Load value of J into BX
XOR AX, BX ; Compute I ^ J
MOV GATE_TABLE + 8, AX ; Store K = I ^ J
RET

The network is compiled into machine code by a preprocessor that reads a
description of the circuit expressed in terms of logic elements and interconnecting
nets. A table called PI_TABLE contains an entry for each primary input, while
another table, called GATE_TABLE, contains an entry for each gate in the circuit.
There is a one-to-one correspondence between primary inputs and locations in
PI_TABLE, and between circuit nets and locations in GATE_TABLE. The first step
in this simulation is to load the locations represented by PI_TABLE into Reg. AX
and PI_TABLE + 2 into Reg. BX. The values on the two primary inputs represented
by these locations are ANDed together and the result stored in GATE_TABLE, at a
location corresponding to the output of gate G. The next group of instructions com-
pute the value on the NAND gate H. Note that the host machine’s XOR instruction
is used, together with the argument 0FFFFH, to complement the result before stor-
ing it at GATE_TABLE + 2.

The remaining gates are processed in similar fashion, and then the simulator
returns to the calling program. Note that when simulating the exclusive-OR gate the
simulator stores a result for gate I and then immediately loads the same value into
Register AX. Since the simulator is called repetitively with many input vectors,
every effort should be made to optimize its performance. This can be done by rank-
ordering the circuit. If a gate drives another gate, all of whose other inputs have been
processed, then the destination gate satisfies the rank-order criteria and can be the
next gate simulated. In that case, the value in the accumulator can be used without
being reloaded. It will still be necessary to save the calculated result in
GATE_TABLE if the driving gate drives two or more destination gates, or if the con-
trol program must provide the ability to inspect intermediate simulation results on
internal circuit nets after a simulation pass. ��

The compiled simulator can also be implemented using two tables or arrays:
the READ array and the WRITE array. In this implementation it is not absolutely

48 SIMULATION

necessary to rank-order a circuit. As each vector is read, new values on primary
inputs are stored in the READ array. Each element is then simulated as before,
except that they may be processed in random order. When an element is simulated,
its input values are obtained from the READ array and its result is stored in the
WRITE array.

After all elements have been simulated, contents of the READ and WRITE arrays
are compared. If they differ, the contents of the WRITE array are transferred to the
READ array and the circuit is again simulated. [In practice, it is simpler to exchange
names; the READ (WRITE) array in pass n becomes the WRITE (READ) array in
pass n + 1.] Eventually, after a finite number of passes, contents of the two arrays
must match if simulating a combinational circuit and the simulator can go on to the
next input vector. Although this obviates the need for rank-ordering, it may be quite
inefficient, requiring several passes before all input changes propagate to the outputs.

2.6.1 Ternary Simulation

In sequential circuits the values on many internal nets are determined by values on
feedback lines. When power is first applied to a circuit, these values are indetermi-
nate; they do not assume known values until the circuit is reset or until the latches and
flip-flops are loaded with known values from other circuit elements on which they are
functionally dependent. Hence it is necessary, at a minimum, to be able to represent a
third value, the indeterminate state. This requires the use of two binary values to rep-
resent the three simulation values. One such mapping establishes the following corre-
spondence between the three simulation values and the two-bit vectors:

The simulation program must be expanded accordingly, but first the operations on
these two-bit vectors must be defined. It turns out that the processing is similar to
processing of single-bit values in most cases. For example, to AND a pair of argu-
ments, individual bit positions are ANDed. The OR operation behaves similarly.
Primitives that invert arguments, such as the Inverter and the exclusive-OR, require
special attention because a (1,0) is not the complement of an X. The inverter can be
processed by complementing the individual bits and swapping them. The exclusive-
OR of variables A and B is complicated by the fact that A and B could both be X. The
computation may best be processed as A ⋅ B + A ⋅ B.

2.6.2 Sequential Circuit Simulation

When simulating a rank-ordered combinational circuit described in terms of stan-
dard logic gates, operation of the compiled simulator is quite straightforward. How-
ever, sequential logic requires additional processing before the compiled simulator

0 0,0

1 1,1

X 0,1

THE COMPILED SIMULATOR 49

Figure 2.10 NAND latch.

can proceed. Consider the cross-coupled NAND latch of Figure 2.10(a). Before gate
1 is simulated, a value is needed from gate 2. But simulation of gate 2 requires a
value from gate 1. The latch could be extracted in its entirety from the circuit and
replaced with a call to an evaluation routine. Then, after simulation reached the
point where all inputs to the latch were stable, the evaluation routine could deter-
mine the new values on the output of the latch. For a NAND latch the evaluation
routine is not difficult to derive. For an asynchronous state machine comprised of
many states, the task of creating an evaluation routine is formidable. An alternate
approach is to cut feedback lines in the circuit model (cf. Section 5.3.2). If a cut is
made from gate 1 to gate 2, the circuit model of Figure 2.10(b) is obtained.

After all loops in the circuit have been cut, the network is compiled. The circuit
is now a pseudo-combinational circuit in which a feedback line has been replaced
by a pseudo-input, designated SI, and a pseudo-output, designated SO. The
pseudo-inputs are treated as primary inputs when rank-ordering and compiling the
circuit.

Before simulation commences, the control program sets all pseudo-inputs to the
X state. Then, during any single pass through the compiled simulator, each element
is simulated once. It may be the case that the value on a pseudo-output is not the
same as the value on the corresponding pseudo-input. In that case, the values on the
pseudo-outputs are transferred to the corresponding pseudo-inputs and simulation is
performed again. If the pseudo-outputs and pseudo-inputs continue to disagree, after
some predetermined number of passes, it is concluded that the circuit is oscillating
and the pseudo-inputs and pseudo-outputs that are oscillating are set to the X state.
The control program then permits additional passes through the simulator, each time
setting to X any additional pseudo-inputs that did not agree with their corresponding
pseudo-outputs. Eventually the circuit stabilizes with some of the pseudo-inputs in
the X state.

The pseudo inputs and pseudo outputs are analogous to having READ and
WRITE arrays, but only for feedback lines. In fact, if the entire circuit is simulated
using READ and WRITE arrays, then not only is it not necessary to rank-order the
circuit, it is also not necessary to cut the loops. It is, however, still necessary to
detect oscillations and inhibit them with the X state.

Set

SI

Reset

Q

SO

(b) After cut

Set

Reset

(a) Before cut

Q1

2

1

2

50 SIMULATION

2.6.3 Timing Considerations

Elements used to fabricate digital logic circuits introduce delay. Ironically, although
technologists constantly try to create faster circuits by reducing delay, sequential
logic circuits could not function without delay; the circuits rely both on correct logi-
cal operation of the components in the circuit and on correct relative timing of sig-
nals passing through the circuit. However, this delay must be taken into account
when designing and testing circuits. Suppose the inverter in the latch of Figure 2.8
has a delay of n nanoseconds. If Data makes a 0 to 1 transition and Enable makes a
1 to 0 transition approximately n nanoseconds later, the cross-coupled NAND latch
sees an input of (0,0) for about n nanoseconds followed by an input of (1,1). This
produces unpredictable results. The problem is caused by the delay in the inverter. A
solution to this problem is to put a buffer in the noninverting signal path so that sig-
nals Data and Data reach the NANDs at the same time.

In the latch circuit just cited, a race exists. A race is a situation in which two or
more signals are changing simultaneously in a circuit. The race may be caused by
two or more input signals changing simultaneously, or it may be the result of a sin-
gle input change propagating along two or more signal paths from a net with multi-
ple fanout. Note that a latch or flip-flop implies a race condition since these devices
will always have at least one element whose signal both goes outside of the device
and also feeds back to an input of the latch or flip-flop. Races may or may not affect
the behavior of a circuit. A critical race exists if the behavior of a circuit depends on
the order in which signals arrive at a common function or device, such as a flip-flop.
Such races can produce unexpected and unwanted results.

2.6.4 Hazards

Unanticipated events in circuits can result from logic conditions that have been
ignored up to this point, namely, hazards. A hazard is a chance event; it is the pos-
sible occurrence in a circuit of a momentary value opposite to that which is
expected. Hazards can exist in combinational or sequential circuits, and they can be
the result of the way in which a circuit is designed or they may be an inherent prop-
erty of a function. In sequential circuits it is possible for unwanted and unexpected
pulses to occur in combinational logic and propagate to sequential elements where
they can cause erroneous state transitions to occur. Consider the circuit of
Figure 2.11. If A = B = R = 1 and S changes from 1 to 0, then by virtue of the delay
associated with the inverter, both AND gates, and subsequently the OR gate, will
have a 0 output for a period corresponding to the delay of the inverter. After that
period, the output of the OR gate returns to 1, but the pulse may persist long
enough to set the latch. That pulse, sometimes referred to as a glitch or spike, can
be avoided by adding a third AND gate to create the product term A ⋅ B. This term is
added to the sum S = A ⋅ S + S ⋅ B + A ⋅ B, and the glitch is avoided.

The hazard just illustrated is called a static hazard. A static hazard exists if the
initial and final values on a net are the same but at some intermediate time the net

THE COMPILED SIMULATOR 51

Figure 2.11 Circuit with hazard.

may assume the opposite value. If the initial and final values are 0 (1), then the haz-
ard is sometimes called a 0-hazard (1-hazard). A dynamic hazard exists if the initial
and final values on a net are different and if, after achieving the final value, the net
may assume the initial state one or more times. In other words, there is a dynamic
hazard if it is possible to have 2n + 1 transitions on a net for some integer n greater
than 0. Note that the definition of a hazard only states that spurious transitions may
occur; because of the variability of propagation delays, they may or may not actually
occur.

Hazards are also categorized as logic or function hazards. Given a function f, a
p-variable logic hazard exists for a p-variable input change U to V if

1. f(U) = f(V).

2. All 2p values specified for f in the subcube (cf. Section 4.3.1) defined by the p
changing inputs are the same.

3. During the input change U to V a spurious hazard pulse may be present on the
output.

The hazard illustrated in Figure 2.11 is a logic hazard. In the subcube defined by
A,S,B,R = (1,X,1,1), both values of f are 1. It has been shown that logic hazards can
be eliminated by including all prime implicants in the implementation of a circuit.12

A function hazard exists for the function f and the input change U to V iff*

1. f(U) = f(V).

2. There exist both 1s and 0s specified for f within the 2p cells of the subcube
defined by the p inputs that changed.

Function hazards cannot be designed out of the circuit. Consider again the circuit
of Figure 2.11. There is a function hazard when going from A,S,B,R = (1,0,0,1)
to A,S,B,R = (0,1,1,1) because the input transition may go through the points
A,S,B,R = (0,0,0,1) and A,S,B,R = (0,0,1,1) and the function f has value 0 at both
points. The intermediate values assumed during operation will depend both on cir-
cuit delays and on the order in which the inputs change.

*We use iff as an abbreviation for “if and only if.”

B

S

A

R

S

R

A

B

S 0 1 1 0

1 1 0 0

52 SIMULATION

2.6.5 Hazard Detection

The compiled simulator performs logic evaluations. However, it ignores inherent
delays in circuit elements. Furthermore, the cutting of feedback lines presumes
that delay is lumped at that particular point where the cut occurred. Consider the
NAND latch with the feedback line cut (Figure 2.10). If a transition occurs in
which both Set and Reset lines change from 0 to 1, then the simulation result is
totally dependent on where the cut occurred. With the cut illustrated in
Figure 2.10(b), gate 2 will be simulated first and the latch will stabilize at Q = 1. If
the cut was made from gate 2 to gate 1, then gate 1 will be simulated first and the
latch will stabilize at Q = 0. This problem results from the assumption that the
input changes arrived simultaneously and that the delays were lumped at one
point. By moving the cut, in effect lumping the delay at another point in the circuit
model, the simulator computed a different answer. In actual circuits, delay is dis-
tributed and the circuit could in fact oscillate if the input changes occurred suffi-
ciently close together.

It was pointed out in Section 2.6.4 that circuit behavior can be affected by
hazards. Hazards are a consequence of delay in circuit elements. The static haz-
ard, which causes a momentary change to the opposite state on signal lines that
should remain unchanged, may be of sufficient duration to cause a NAND latch
to change state. If the inputs are S,R = 1,1 and the present state is Q = 0, then a
momentary 1-0-1 glitch on the Set line could cause it to latch up in the Q = 1
state. But the compiled logic simulator will not detect glitches if it is only simu-
lating logic 1 and 0.

To address this problem a ternary algebra, consisting of the symbols (0,1,X), was
proposed.12 The values were already in use to handle unknown values associated
with feedback lines. However, ternary values can be applied to inputs whenever a
change occurs. In effect, the ternary algebra describes the transition region in
switching devices. It permits an approximation to continuous signals, as illustrated
in Figure 2.12, by representing the “in between” time when a signal is neither a 0
or 1. In fact, if a signal fans out from a source, that signal could simultaneously rep-
resent a 0 to one device and a 1 to another device due to differences in switching
characteristics of the driven devices. The ternary algebra tables for the AND gate
and the OR gate are shown in Figure 2.13. The following two lemmas follow
directly from the ternary algebra tables.

Figure 2.12 The transition region.

0
X

1

THE COMPILED SIMULATOR 53

Figure 2.13 Ternary algebra tables.

Lemma 2.1 If one or more gate inputs are changed from 0 to X, or 1 to X, the gate
output will either remain unchanged or change to X.

Lemma 2.2 If one or more gate inputs are changed from X to a known value, the
gate output will either remain unchanged or change from X to a known value.

The following theorems flow from the lemmas:

Theorem 2.1 If one or more ternary inputs to a combinational logic network
changes from 1 to X or 0 to X, then the network output either remains unchanged or
changes to X.

Theorem 2.2 If one or more ternary inputs to a combinational logic network
changes from X to 1 or X to 0, then the network output either remains unchanged or
changes from X to 1 or X to 0.

Theorem 2.3 The output f(a1, ..., an) of a combinational logic network may change
as a result of changing inputs a1, ..., an iff

f(X, ..., X, ap+1, ..., an) = X

With these theorems a pair of procedures can be defined for determining whether or
not a circuit will be affected by static hazards, critical races, or essential hazards dur-
ing a given input state change. Using the Huffman model, proceed as follows:

Procedure A. Determine all changing Y signals. Changing inputs are first set to X. If
any Yi outputs change to X, change the corresponding yi inputs and resimulate. Con-
tinue until no additional Yi changes are detected.

Procedure B. Determine which Y signals stabilize. Set changing inputs from X to their
new binary state and simulate. If any Yi changes from X to 1 or 0, then change the
corresponding yi and resimulate. Continue until no additional Yi changes occur.

Theorem 2.4 If feedback line Yk = 1(0) after applying Procedure A and Procedure B
to a sequential circuit for a given input-state change starting in a given internal state,

0

X

1

AND

0

0

0

0

X

0

X

X

1

0

X

1

0

X

1

OR

0

0

X

1

X

X

X

1

1

1

1

1

54 SIMULATION

then the Yk feedback signal must stabilize at 1(0) for this transition regardless of the
values of the (finite) delays associated with the logic gates.

These theorems state that if ternary algebra is used when simulating, and unstable
feedback lines are handled in accordance with procedures A and B, then:

1. Hazards, races and oscillations are automatically detected.

2. For a circuit with n feedback lines, at most 2n simulation passes are required.

Example For the NAND latch of Figure 2.10(b), the original input Set = Reset = 0
results in a 1 on pseudo-input SI. With ternary simulation the Set and Reset lines both
switch from 0 to X, and then from X to 1. Procedure A is applied first. Gate 2 is sim-
ulated and the (1, X) combination on the inputs causes an X on the output. This value
is input to gate 1 and, together with the X on the other input, causes gate 1 to switch
to X. This X then appears on the pseudo-output.

Since the value on SO differs from the value on SI, the value on SO is transferred
to SI and the circuit is resimulated with the X values on the Set, Reset and pseudo-
input. The circuit is now stable with an X on SI and SO. Procedure B is now applied.
The inputs are changed to 1 and the circuit is resimulated. Note, however, that the X
on the pseudo-input causes an X to occur on the output of gate 2; this in turn causes
an X on the output of gate 1 and, subsequently, on the pseudo-output SO. The circuit
is “stable” in the unknown state. ��

2.7 EVENT-DRIVEN SIMULATION

A latch or flip-flop does not always respond to activity on its inputs. If an enable or
clock is inactive, changes at the data inputs have no effect on the circuit. Compiled
simulators in the past have used a method called stimulus bypass to take advantage
of this fact.13 Flip-flops were modeled as an integral body of machine code in which
the first few instructions checked key inputs to determine if internal activity were
possible. The property of digital networks, whereby a very small amount of activity
occurs during a given time step, is often termed latency. As it turns out, the amount
of activity within a circuit during any given timestep is often minimal and may ter-
minate abruptly.

Since the amount of activity in a time step is minimal, why simulate the entire
circuit? Why not simulate only the elements that experience signal changes at their
inputs? This strategy, employed at a global level, rather than locally, as was the case
with stimulus bypass, is supported in Verilog by means of the sensitivity list. The
following Verilog module describes a three-bit state machine. The line beginning
with “always” is a sensitivity list. The if-else block of code is evaluated only in
response to a 1 → 0 transition (negedge) of the reset input, or a 0 → 1 transition
(posedge) of the clk input. Results of the evaluation depend on the current value of
tag, but activity on tag, by itself, is ignored.

EVENT-DRIVEN SIMULATION 55

module reg3bit(clk, reset, tag, reg3);
input clk, reset, tag;
output reg3;
reg [2:0] reg3;
always@(posedge clk or negedge reset)
 if(reset == 0)
 reg3 = 3'b110;
 else // rising edge on clock
 case(reg3)
 3'b110: reg3 = tag ? 3'b011 : 3'b001;
 3'b011: reg3 = tag ? 3'b110 : 3'b001;
 3'b001: reg3 = tag ? 3'b001 : 3'b011;
 default: reg3 = 3'b001;
 endcase
endmodule

Verilog will be used in this text to describe circuits. The reader not familiar with
Verilog, but familiar with C programming, should be able to interpret the Verilog
examples with little difficulty since Verilog is, syntactically, quite similar to C, and
the examples in this text use only the most basic features of the language. The inter-
ested reader not familiar with HDLs should consult texts dedicated to Verilog14 and
VHDL.15 The IEEE Verilog Language Reference Manual (LRM) is another valuable
source of information.16

When a signal change occurs on a primary input or the output of a circuit ele-
ment, an event is said to have occurred on the net driven by that primary input or ele-
ment. When an event occurs on a net, all elements driven by that net are evaluated. If
an event on a device input does not cause an event to appear on the device output,
then simulation is terminated along that signal path.

Event-driven simulation can be performed in either a zero or a nominal delay
environment. A zero-delay simulator ignores delay values within a logic element; it
simply calculates the logic function performed by the element. A nominal-delay
simulator assigns delay values to logic elements based on manufacturer’s recom-
mendations or measurements with precision instruments. Some simulators, trying to
strike a balance between the two, perform a unit-delay simulation in which each
logic element is assigned a fixed delay, and since the elements are all assigned the
same delay, the value 1 (unit delay) is as good as any other.

The nominal delay simulator can give precise results but at a cost in CPU time.
The zero delay simulator usually runs faster but does not indicate when events
occur, so races and hazards can present problems. The unit-delay simulator lies
between the other two in range of performance. It records time units during simu-
lation, so it requires more computations than zero-delay simulation, but the mech-
anism for scheduling events is simpler than for time based simulation. However,
regarding all element delays as being equal can produce inaccurate results in tim-
ing sensitive circuits and may give the user a false sense of security. Unit delay

56 SIMULATION

simulation in sequential circuits does, however, have the advantage that time
advances; so if oscillations occur, they will eventually reach the end of the clock
period and be detected without a need for additional code dedicated to oscillation
detection.

2.7.1 Zero-Delay Simulation

Event-driven, zero-delay simulation will be considered first. The zero delay is obvi-
ously not a delay at all; the term simply denotes a simulation environment in which
propagation delay is ignored. When performing event-driven simulation, it is not
necessary to rank-order the circuit. Before simulating the first input pattern, all
nodes are initialized to X. Then, whenever an element assumes a new value, whether
it be a primary input changing as a result of new stimuli being applied or an internal
element changing as a result of event propagation, any elements driven by that ele-
ment are simulated.

The Event-Driven, Zero-Delay Simulator An event-driven, zero-delay sim-
ulator can be implemented by means of the READ/WRITE arrays described ear-
lier, and associating a flag bit with each entry in the arrays. If an event occurs at
the output of an element, the elements affected by that event are identified and
flagged for simulation in the next pass. When no new events occur during a pass,
the circuit is stable. Alternatively, elements that must be simulated in the next
pass can be placed on a first-in first-out (FIFO) stack, assuming they are not
already on the stack. When the stack is empty at the end of a pass, the circuit is
stable.

Example Event-driven simulation will be illustrated using the circuit in
Figure 2.14. At the first time interval, denoted by column heading t0, all elements
driven by inputs 1, 2, 3, and 5 are simulated. Simulation causes the outputs of gates 6
and 7 to switch from X to 0. Simulation of gate 8 produces a 1 on its output. These
changes cause gate 9 to be simulated, with the result that a 1 appears on its output.
At time t1, input 1 changes from a 1 to 0. However, there is no change on the output
of gate 6, so simulation for time t1 is done. Input 2 changes at time t2, causing gate 9

Figure 2.14 Zero-delay simulation.

t0t1t2t3t4

1 1 1 0

0 1 0 0

1 0 0 0
1 0 X X

1

1

1

0
1

0 0 0 0

1

2

3
4

5

6

7

8

9

EVENT-DRIVEN SIMULATION 57

to be simulated. The output of gate 9 does not change. Gate 7 is simulated at time
t3, but again no output activity occurs. At time t4, input events cause all gates to be
simulated. ��

In this tiny example it is difficult to appreciate the value of event driven simulation,
but in a circuit containing many thousands of gates, a situation as occurred in time t1
can happen frequently and can provide substantial savings in computer time. The
simulation at time t1 was terminated almost immediately because a single input
change occurred that had virtually no effect on the circuit.

Hazard Detection Using Multiple Values The three-valued hazard analysis
can be used with event-driven, zero-delay simulation without having to rank-order
or cut the feedback lines in the model. Simply perform an intermediate X value sim-
ulation on all changing inputs and the circuit will stabilize. However, the three-val-
ued simulation will not detect dynamic hazards. A nine-valued simulation can be
performed to detect dynamic hazards.17 The nine values denote various combina-
tions of stable and changing signals. The values are used in conjunction with opera-
tor tables for the basic logic operations. The symbols are defined in Table 2.1. The
operation table for the AND gate is given in Table 2.2. From this table, any pair of
incoming signals to a two-input AND gate can be processed to determine whether
the result will cause a static or dynamic hazard. For example, if one of the inputs is a
constant 0, the output must be a constant 0. With a static 0-0 hazard on one input,
there will always be a static 0-0 hazard on the output unless another input to the
AND gate blocks it with a constant 0. The circuit in Figure 2.15 illustrates creation
of a dynamic 0-1 hazard in a pair of NAND gates. The table for the AND gate is eas-
ily extendable to n, n ≥ 2, since the AND operation is commutative and associative.

Table 2.3 gives the hazard detection results for the NAND latch of Figure 2.10(a).
In this table the columns correspond to values on the Reset input and the rows corre-
spond to values on the Set input. The values in the lower right quadrant of this table
contain two values. The actual value assumed at the output depends on the previous
state of the latch. If the Q output is presently true, then the first value is assumed. If
false, then the second value is assumed.

TABLE 2.1 Symbols for Hazard Detection

Symbol Meaning Complement

0 constant 0 1
1 constant 1 0
/ dynamic hazard 0-1 \
\ dynamic hazard 1-0 /
^ 0-1 transition, hazard-free ∨
∨ 1-0 transition, hazard-free ^
M 0-0 static hazard W
W 1-1 static hazard M
* race condition *

58 SIMULATION

2.7.2 Unit-Delay Simulation

Unit-delay simulation operates on the assumption that all elements in a circuit pos-
sess identical delay time. It has the advantage that it is easier to implement than
nominal-delay simulation. In fact, when every element has unit delay, the READ/
WRITE array implementation described in Section 2.6 for zero delay simulation is
sufficient since each pass through the simulator corresponds to advancement of
events through one level of logic. Primary inputs can switch values while other
events are still propagating to outputs. When copying the WRITE array into the
READ array, if entries that change during the simulation pass are flagged, then per-
formance can be enhanced by simulating only those elements that experience events
at their inputs.

Figure 2.15 Creation of dynamic hazard.

TABLE 2.2 Hazard Detection During and Operation

AND 0 1 M W * ^ ∨ / \

0 0 0 0 0 0 0 0 0 0
1 0 1 M W * ^ ∨ / \
M 0 M M M M M M M M
W 0 W M W * / \ / \
* 0 * M * * * * * *
^ 0 ^ M / * ^ M / M
∨ 0 ∨ M \ * M ∨ M \
/ 0 / M / * / M / M
\ 0 \ M \ * M \ M \

TABLE 2.3 Hazard Detection for NAND Latch

0 ^ M / * 1 ∨ W \

0 1 ∨ W \ * 0 ^ M /
^ 1 * W * * 0 ^ * /
M 1 ∨ W \ * 0 ^ M /
/ 1 * W * * 0 ^ * /
* 1 * W * * * * * *
1 1 1 1 1 * 1-0 1-^ 1-* 1-^
∨ 1 ∨ W \ * ∨-0 W-^ \-M W-/
W 1 * W * * ∨-0 W-^ * W-/
\ 1 ∨ W \ * ∨-0 W-^ \-M W-/

w
/

EVENT-DRIVEN SIMULATION 59

When creating test stimuli for a timing-sensitive circuit, the unit-delay simulator
can give a false sense of security. Timing for the actual circuit may not resemble the
results predicted by the unit-delay simulator. When simulating test stimuli in order
to generate a test program, it may be necessary to insert additional gates with unit
delay into the circuit model so as to force the simulator to predict correct circuit
response for a given set of input stimuli. Another drawback to unit-delay simulation
is the fact that, because all elements have nonzero delay, the circuit cannot be rank-
ordered for simulation purposes. Hence, elements may be unnecessarily evaluated
several times in a single period.

Unit delay can be useful in applications such as gate arrays. These are inte-
grated circuits made up of a fixed array of rows and columns. At the intersection
of each row and column is an identical device that may be a NAND gate, a NOR
gate, or a collection of transistors and resistors. The logic designer implements a
function on a gate array by specifying the connections of switching elements at
row/column intersections. Metal layers are provided to accomplish the intercon-
nections. Switching elements connected in this way often have the same switch-
ing speed, in which case a unit delay is meaningful. If the switching speeds are
integral multiples of one another, then unit delay can still be effectively
employed.

2.7.3 Nominal-Delay Simulation

Zero-delay simulation with three or nine values can provide correct simulation
results because it can accurately predict hazards and races. However, it is worst-case
or pessimistic because it ignores the time dimension and collapses all computations
into zero time. As a result, it may see conflicts that do not occur in real time. A
designer may intend for an asynchronous state machine to receive two or more
events during the same clock period. The designer will make use of the delay in the
devices and, if necessary, incorporate additional delay into signal paths to ensure
that the signals arrive at the state machine in the correct sequence. The zero-delay
simulator, not recognizing the delay information, concludes that a race exists and
that an unpredictable state transition will occur. As a result, it may put the state
machine into an indeterminate state.

Nominal delay represents the real delay of a device. However, the accuracy of
that representation depends on how accurately the delay is calculated. For example,
the nominal delay along a signal path may be calculated solely from delay values
given for individual cells residing in a macrocell library. There was a time in the past
when these values would have been sufficient to give reasonably accurate delay val-
ues. Now, however, for devices operating on the leading edge of technology, the
contribution to total circuit delay by the components may be exceeded by the delay
inherent in their interconnections. As a result, an accurate accounting of the total
delay between points in a circuit is often possible only after layout, when delays are
calculated for the components and interconnections, and back-annotated to the cir-
cuit model.

60 SIMULATION

Figure 2.16 Transport versus inertial delay.

A number of types of delays exist for describing circuit behavior. The two major
hardware description languages, Verilog and VHDL, support inertial delay and
transport delay. Inertial delay is a measure of the elapsed time during which a signal
must persist at an input of a device in order for a change to appear at an output. A
pulse of duration less than the inertial delay does not contain enough energy to cause
the device to switch. This is illustrated in Figure 2.16 where the original waveform
contains a short pulse that does not show up at the output. Transport delay is mean-
ingful with respect to devices that are modeled as ideal conductors; that is, they may
be modeled as having no resistance. In that case the waveform at the output is
delayed but otherwise matches the waveform at the input. Transport delay can also
be useful when modeling behavioral elements where the delay from input to output
is of interest, but there is no visibility into the behavior of delays internal to the
device.

The length of time required to propagate a signal from one physical point to
another through wire is sometimes referred to as media delay; this time is approxi-
mately one nanosecond per foot of wire. As circuits continue to shrink and devices
continue to switch at faster speeds, the media delay becomes a significantly larger
percentage of the total elapsed time in a circuit and it is not unusual for media delay
to account for a majority of the cycle time on a high-performance circuit.

The amount of time it takes to switch from 0 to 1 is called rise time. The delay in a
transition from 1 to 0 is called fall time. The elapsed time required to switch from a 1
or 0 to Z is called turn off delay. Delays can also be characterized according to whether
they represent minimum delay, typical delay, or maximum delays. Thus the Verilog
tranif1 primitive could have as many as nine delay values associated with it. These
include min, typical, and max for each of the rise, fall, and turn-off delays. Differences
in rise and fall times are often due to capacitance and storage effects of transistors used
to implement switching circuits, whereas differences in minimum, typical, and maxi-
mum delay values are more likely to result from variations during manufacturing.

Manufacturer’s data books identify several kinds of propagation delay, and the
list of delays will generally depend on the product. For example, the manufacturer’s
data book may specify tDOV (Data Out Valid) to be the interval from when an active
clock edge appears at a device to when an n-wide output data bus contains valid data
for that device. A complete characterization of a complex functional unit usually
contains many such time intervals.

Ambiguity delay is sometimes used to express the difference between nominal
and maximum or minimum delays. This may be of use in PCBs populated by many

Original waveform

Output (transport delay)

Output (inertial delay)

MULTIPLE-VALUED SIMULATION 61

ICs—some of which may run faster than nominal, and others of which may run
slower than nominal. This ambiguity may have to be considered if behavior of a
PCB does not match simulation predictions.

When applying a test to a circuit on a tester, ambiguity delay can result from
skew at the tester pins. Although the test program may specify that two or more sig-
nals change at the same time, the actual time between events on the tester may occur
picoseconds or nanoseconds apart due to various physical considerations. In asyn-
chronous circuits, in particular, it may be necessary to use the simulator to determine
if this skew or ambiguity delay represents a problem. This can be done by inserting
random delays at the circuit inputs so that events no longer occur simultaneously at
the start of a tester cycle. If the circuit is sensitive to delays at the inputs, staggering
the switching times may reveal the problems.

2.8 MULTIPLE-VALUED SIMULATION

When a device first powers up, there is uncertainty as to the states of its storage
elements—for example, flip-flops and latches. Races, hazards, undefined inputs,
and transition regions (when a signal value is between a 0 and 1) are additional
factors that contribute to uncertainty. Ternary simulation, which adds the symbol
X to the binary {0,1} values, has been used to represent indeterminate values. It is
also useful for resolving values in designs where two or more circuits may simul-
taneously drive a bus, although, as we shall see, conflicts can sometime be
resolved by examining combinations of signals. The resolution of these combina-
tions is not always performed in accordance with the rules of Boolean algebra.
The evaluation of transistor-level circuits also depends on multiple values, as well
as signal strengths.

A tri-state device is one in which the output may assume a logic 1 or logic 0 state,
or the output may be disconnected from the remainder of the circuit, in which case
the device has no effect on the circuit. In this third state, the output is in a high-
impedance state. This circuit is used when the outputs of two or more devices are
tied together and alternately drive a common electrical point, called a bus. A circuit
employing two tri-state drivers is illustrated in Figure 2.17.

When input A = 1, the tri-state device controlled by A behaves as an ordinary
buffer. When A = 0 the output E1 assumes the high impedance state, represented by
the symbol Z. With a high impedance capability, two or more tri-state outputs can be

Figure 2.17 Circuit employing tri-state drivers.

A

B

C

D

E1

E2

Wire-
gate E3

62 SIMULATION

tied directly together. However, if this is done, one rule must be observed. Two tri-
state controls must not be active at the same time. In Figure 2.17, A and C must not
be simultaneously high. If both are high and if the output of one device is low and
the output of the other is high, then there is a low-resistance path from power to
ground; in a very short time, one or both of the devices could overheat and become
permanently damaged.

Note that the wire-gate in Figure 2.17 is represented by a resolution function, its
purpose is to indicate to the simulator that there are two or more elements driving
the net. A simulator could be designed to check every net for multiple drivers each
time it computes the value at that net, but wire logic is more efficient: It is inserted
into the circuit model when the model is created. Then, when the simulator encoun-
ters a wire-gate, it immediately enters a function that checks the outputs of all driv-
ers and resolves the signal driving that net.

Although circuit designs normally do not permit two or more tri-state devices to be
active simultaneously, design errors do occur and a logic designer may want to employ
simulation in order to identify conditions wherein two or more drivers become simul-
taneously active. This requires that the simulator be able to correctly predict the behav-
ior of bus-oriented circuits. It may be the case that, in the environment in which the IC
is intended to operate, no pair of tri-state controls will be simultaneously active. But,
when the IC is being tested, the tester represents an artificial environment. In this envi-
ronment it is possible for signals to simultaneously activate two or more tri-state driv-
ers. It is important that this situation be identified and corrected.

To resolve problems that may occur when the outputs of tri-state drivers are con-
nected together, a set of simulation values incorporating both value and strength
can be used. Figure 2.18 represents a resolution function, variations of which have
been used in commercial simulation products. The values shown in Figure 2.18 are
based on the binary values 0 and 1, but each of these values is extended by attach-
ing strengths and then by adding ranges of signals. First consider the strengths. A
logic 1 or 0 can be represented as strong, weak, or floating. The strong value is gen-
erated by a logic device that is driving an output. For example, an AND gate nor-
mally produces a driving 1 or 0 on its output. A weak value drives a node, but it has
a weaker strength than the strong value. The weak signal could be produced by a
small transistor. The floating 1 or 0 represents a charge trapped at a node. Ranges of

Figure 2.18 Logic ranges.

1 (S1)

1 (W1)

1 (Z1)

0 (Z0)

0 (W0)

0 (S0)

Strong

Weak

Floating

Floating

Weak

Strong

XZ

SZ1SW1 SZX

WWX

WSX

SWX

SZ0

ZSX

ZWX

WZXWZ1

WZ0

SW0

MULTIPLE-VALUED SIMULATION 63

values occur when there is uncertainty as to the correct value. For example, if a tri-
state device with an active high enable has a 1 on its input, and its enable has an X,
the output of the device could be a strong 1 if the enable were a 1 or it could be a
floating 1 if the enable were a 0.

Another ambiguous region occurs when a tri-state device with active-high enable
has an X on its input and a 0 on its enable. The output in that case could be a floating
1 or a floating 0. The range Z1 to Z0 is represented as Z. To represent regions of
ambiguity, the chart in Figure 2.18 extends the six initial value/strength entries by
considering contiguous regions of values. The region from strong 1 to floating 1 is
designated SZ1. The region from strong 1 to weak 1 is denoted SW1. The region
from floating 1 to floating 0 is the familiar Z. If a signal is totally ambiguous (i.e., it
could take on any of the six primary values), its value is totally unknown, or X.
Other ranges may straddle both logic 1 and 0 values. For example, the value SZX
straddles the range from a strong 1 to a floating 0; hence the third character in the
identifier is an X. When the range lies completely in the region of logic 1 or logic 0,
the third character is a 1 or 0.

Example To understand how the 21-value logic system can help to eliminate pes-
simism, consider again the circuit in Figure 2.17. Assume A = X and B = C = D = 1.
If the circuit is simulated using ternary simulation, then the X at input A will produce
an X at E1. The signal at E2 will be a 1. Since E1 could be a 0 or 1, the wire-gate must
be assigned the value X.

Now, suppose the circuit is evaluated using the 21-value system. With an X on the
control input A and 1 on B, the value at E1 could be a 1 or it could be a floating 1,
denoted as Z1. With a 1 on E2, a 1 on E1 will resolve to a 1 at E3. If E1 has the value
Z1, then the values 1 and Z1 at the wire-gate will again resolve to a 1 at E3. In either
case, the output is resolved to a known value. ��

The 21-value system can be extended further. The value X is normally used to
denote an unknown value. In Figure 2.17, if E1 = 0 and E2 = 1, the 21-value logic
would assign an X to F3. But, the consequences of these assignments are more than
simply that the output is unknown. There is clearly a conflict, and it could cause per-
manent damage to an IC. Where two values are obviously and clearly driving a node
to opposite values, this should be spelled out as a conflict. Thus a 22nd value, C, can
be introduced, denoting a situation in which two devices are driving a node to oppo-
site values. Another useful value is U (uninitialized). It can be assigned to all nodes
at the start of simulation, and it can be used to identify nodes that have never been
initialized during a simulation. If the signal U persists at a node to the end of simula-
tion, the user can conclude that the node was never assigned a value. This may sug-
gest that the node requires a reset capability.

The example in Figure 2.17 illustrates a situation where two devices whose out-
puts are connected together must not have conflicting values. In other situations it is
not only permissible but desirable to have two or more devices simultaneously driv-
ing a net with conflicting values. This is the case in Figure 2.19. If the dynamic RAM
(DRAM) cell is selected, by virtue of the word line WL being active, the bit line BL

64 SIMULATION

Figure 2.19 DRAM cell using transmission gate.

may be attempting to read the contents of the DRAM cell, or it may be trying to
write a value into the cell. When writing into the cell, the value on the bit line is a
strong 1 or 0, whereas the value in the capacitor is a floating 1 or 0. As a result, sim-
ulation of the circuit will result in a new value being written into the cell, regardless
of what value had previously been there.

2.9 IMPLEMENTING THE NOMINAL-DELAY SIMULATOR

A number of factors must be taken into consideration when implementing a simula-
tor. Events must be scheduled in the proper order in order to support concurrent
operation of the elements in the circuit being simulated. Sometimes events that were
scheduled have to be un-scheduled. Data structures and evaluation techniques must
be defined. The choice of evaluation technique can have a significant impact on sim-
ulation performance. Other aspects of simulation must be decided. What kind of
error handling is to be implemented for races, conflicts, setup and hold violations,
and so on?

2.9.1 The Scheduler

Nominal-delay simulation recognizes the inherent delay in logic elements. However,
because of this variability in their delays, individual elements cannot simply be
placed in a FIFO queue as they are encountered. The element being simulated may
experience an event at its output that occurs earlier than some elements previously
scheduled and later than others. Hence, it must be scheduled for processing at the
right time relative to other events. This can be done through the use of a linear linked
list. In this structure an event notice is used to describe an activity that must be per-
formed and the time at which it must be performed. The notices are arranged in the
order in which they must be performed. Included in each event is a pointer to the
next event notice in the list. When an event is to be scheduled, it is first necessary to
find its proper chronological position in the linked list. Then, the pointer in the pre-
ceding link is made to point to the newly inserted event, and the pointer that was in
the preceding event is inserted into this newly inserted event so that it now points to
the next event.

Bit line

Word line

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 65

Figure 2.20 The converging lists scheduler.

To insert an event in this linked list, it is necessary to search, on average, half the
elements in the linked list and modify two pointers. As the number of events grows,
due to increased system size or increased activity, the average search time grows. To
reduce this time, the scheduling mechanism shown in Figure 2.20 is used.18 It is a
combination of a vertical time mapping table, also called a delta-t loop or “timing
wheel,”19 and a number of horizontal lists. The vertical list represents integral time
slots at which various events occur. If an event is to occur at time i , then either it is
the first event, in which case a pointer is inserted at slot i to identify the event to be
processed, or other events may already have been scheduled, in which case the
present event is appended to the end of the list. Note that the event may be the result
of a gate simulation, in which case the event is to be processed at future time, or the
event may be a print request or other such request for service. These service requests
scheduled on the wheel are often referred to as bulletins.

A further refinement, called nonintegral event timing,20 defines the slots in the
vertical list as intervals. If an event occurs within the time interval represented by
that slot, then it must be inserted into its correct position in the horizontal linked list.
Therefore, the search through a linked list must again be performed. However, the
search is through a much smaller list. Performance is enhanced by making the verti-
cal list as large as is practical, although not so big that a large average number of
slots go unused.

Remote rangeImminent range

Vertical
list

Present
time

TH1

TH2

TH3

TH5

66 SIMULATION

To handle events that occur far in the future, imminent and remote ranges are
used. These are implemented by means of thresholds shown in the converging lists
scheduler of Figure 2.20. All but two of the wheel slots link directly to threshold
TH1. The remaining two slots link first to TH2 and TH3, and then to TH1. From
TH1, the linked list terminates on TH5, which represents infinity. The thresholds are
control notices; they can be scheduled like elements and represent requests for ser-
vice, such as printout of simulation results. When inserting an item into a horizontal
list, if TH1 is encountered, then the item is inserted between TH1 and the item previ-
ously linked to TH1. If time of occurrence of an event exceeds imminent time, then
it is inserted into its appropriate slot in the remote list. During simulation, if TH2 or
TH3 is encountered, then imminent time is increased, the new maximum imminent
time is stored in control notice TH1, and items from the remote range are retrieved
and inserted (converged) into their proper place in the imminent range.

In order to obtain correct simulation results when an event is simulated, it is neces-
sary that any change at the inputs cause a simulation using the values that exist on the
other inputs at the time when the event arrives at the given input. Therefore, the input
change is simulated immediately, but the output value is not altered until some future
time determined by the delay of the element. This imitates the behavior of a logic ele-
ment with finite, nonzero delay. An event appears at a gate input; and at some future
time, depending on element delay, the effects (if any) of that event appear on the ele-
ment output and propagate forward to the inputs of gates that are driven by that gate.

If simulation does not result in a change on the output of an element, it is tempting
to assume that nothing further need be done with that element. However, it is possi-
ble that a simulation indicates no change, but a previously scheduled change
occurred and presently exists on the scheduler. For example, suppose a two-input
AND gate with propagation delay of 10 ns has values (1, 0) on its inputs at time t
when a positive pulse of duration 3 ns reaches the second input. The simulation result
at time t is a 1, which differs from the 0 presently on the output, so the event is placed
on the scheduler for processing at time t + 10. At t + 3, when simulating the change
to 0, the simulator computes a 0 on the output, which matches the present value.
Therefore, the simulator may incorrectly conclude that no scheduling is required.

One solution to this problem is to always put the event on the scheduler regard-
less of whether or not there is a change on the output. Then, when it is processed
later, if its output value is equal to its present value, drop it from further processing.
In the example just given, the AND gate is simulated at time t and placed on the
scheduler. It is simulated at t + 3 and again placed on the scheduler. At t + 10 it is
retrieved from the scheduler and its output is checked. The current value is 0 and the
new value is 1, so the element output is updated in the descriptor cell and the result
propagated forward. At t + 13 the process is repeated, this time with the present
value equal to 1 and the computed value switching back to 0.

Another approach that can save scheduling time makes use of a schedule marker.
It is used as follows: Simulate the input event.

� If there is an output event, schedule the change and increment the schedule
marker.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 67

� If there is no output event and schedule marker equals 0, no activity is required.

� If there is no output event and schedule marker is greater than 0, schedule the
change and increment the marker.

� When an output event is processed, decrement the schedule marker.

Occasionally an event on the output of an element is followed almost immedi-
ately by another event with a pulse duration less than the inertial delay of the ele-
ment. In that case, the user may want to retain the glitch and propagate it to
succeeding logic to determine if it could cause a problem. While the glitch should
not propagate if all elements have delay values exactly equal to their nominal values,
delay values that vary slightly from nominal can cause the pulse to exceed the iner-
tial delay of the element.

It may be the case that the glitches are in data paths where, even if they do occur,
they are not likely to cause any problems and their presence clutters up the output
from the simulator. In that case it is desirable to suppress their effects. Consider a 2-
input AND gate with tp-nanosecond propagation delay and suppose its present input
values are (1, 0). If it has inertial delay of ti nanoseconds and if a pulse of duration
tg , tg < ti , appears on its lower input, then it is scheduled for a change at t + tp and
again at t + tp + tg nanoseconds. In that case, it would be desirable to delete the
change at t + tp from the scheduler before it is processed since it would otherwise
cause unwanted changes to be scheduled in successor elements.

If the time at which an element is placed on the scheduler is recorded, that informa-
tion can be used to determine if the duration of the output signal value exceeds the iner-
tial delay. In the situation just described, the time t + tp is recorded. When the next
output change occurs at t + tp + tg , its time of occurrence is compared with the previ-
ous time. If the signal duration does not exceed the inertial delay, the recorded time of
the previous change is used to search the appropriate linked list on the schedule for the
event to be deleted. If a previous change occurred but its time was not recorded, it would
be necessary to search all time slots on the scheduler between t + tp and t + tp + tg .

2.9.2 The Descriptor Cell

During simulation, information describing each element in a circuit is stored in a
descriptor cell. The cell contains permanent information, including pointers for each
input and output, and descriptive information about the element represented by that
cell, such as its function and delay values. It also contains data that change during
simulation, including the schedule marker and logic values on the inputs and outputs
of the element. A descriptor cell is illustrated in Figure 2.21(a) for an element with
one output. The first few entries point to devices that drive the inputs of the element
represented by this descriptor cell. There is an entry for each input, and each entry
has a field that indicates the element input number. Since input values are stored in
the descriptor cell, the input number is used to access and update the correct bits in
the descriptor cell during simulation. The last entry points to destination input(s)
that are driven by this element.

68 SIMULATION

Figure 2.21 The descriptor cell.

An element with two or more outputs will have a corresponding number of out-
put entries in the descriptor cell. A simple circuit and its descriptor cell model are
illustrated in Figures 2.21(b) and 2.21(c), respectively. Each descriptor cell corre-
sponds to an element in the circuit model, and the nets that interconnect circuit ele-
ments are represented in the model by linked lists that thread their way through the
descriptor cells. For example, primary input A drives input 1 of gate D, which is
located at memory location 9 in this example. Therefore, the output pointer of
descriptor cell A points to location 9, corresponding to the first entry of D. Gate F
fans out to two places so the linked list extends through the descriptor cell for G, and
then to the descriptor cell for E. A pointer then returns to F, where the high order
field is 0. In the configuration illustrated here, when traversing the linked list to find
the fanout elements for a particular device, the traversal is halted when a word is
encountered in which the high-order field is 0.

To illustrate the scheduling process using the scheduler and descriptor cells, sup-
pose we want to schedule input A for a change at time ti. To do so, we check the
schedule marker A. If it is not busy, we take the output pointer from cell A, location 2,
and attach it to the linked list at scheduler slot ti (assumes an integral timing sched-
uler). If nothing is scheduled at time ti, then schedule location ti contained a pointer
to one of the thresholds TH1, TH2, or TH3. The threshold pointer is placed in loca-
tion 2, while schedule location ti receives the value 9.

A
B

C

D

E

F G

(a) (b)

F

4
3
2
1

0
1
2
3
4
5
6

Descriptor

Descriptor

0

C
6
7
8 14

G

24
25
26

1 15

Descriptor

Descriptor

Descriptor

Descriptor

A
0
1
2 0 9

Descriptor

0

B

10

3
4
5

D

(c)

9
10
11
12
13

2 2
1 5

0 19

F

E

2 13
1 18

0 24

2
1

8
23

0 20

14
15
16
17
18

19
20
21
22
23

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 69

If other elements are already scheduled for time ti, then this operation automat-
ically links the descriptor cells. Suppose C had already been scheduled. Then the
schedule contains the value 14 and location 8 contains the threshold pointer. To
schedule a change on A, its output pointer is exchanged with the slot on the verti-
cal list. Slot ti on the vertical list then contains 9, location 2 contains the value 14,
and location 8 contains a pointer to threshold TH1, TH2, or TH3. Therefore, at
time ti a change on the first input of D will be simulated, as will a change on E.
When processing for time ti is complete, all pointers are restored to their original
values.

If an element is busy, as indicated by its schedule marker, and it must be sched-
uled a second time, it becomes necessary to obtain an unallocated memory cell for
scheduling this second event. The address of the spare cell is placed in the schedule,
and the spare cell contains a pointer to the cell to be scheduled. If other events are
scheduled in the time slot, then this spare cell must also contain a link to the addi-
tional events.

Example The circuit in Figure 2.22 will be used to illustrate nominal delay simu-
lation. Alphabetic characters inside the logic symbols represent gate names and the
numbers represent gate delays. All nets are initially set to X. Detailed computations
are shown in Table 2.4. At time t0, input D changes from X to 0. At time t2 the inputs
are set to the values (X,1,1,1). At time t4, input A changes from X to 0 and input C
changes from 1 to 0. At t8, input C changes back to 1. In this table, the times at which
activity take place are indicated, as well as the values on the inputs and the gates at
those times. For each of the logic gates, there are two values: The first is the logic
value on the output of the gate, and the second is the value of the schedule marker.
The comments indicate what activity is occurring. For example, at time t0, input D
changes, so gate F is simulated; its output changes from X to 0, so it is scheduled for
time t5 and its schedule marker is incremented to 1.

At time t2, E and F are both simulated because of input changes. There is no
change on the output of E and its schedule marker is 0, so it is not scheduled. How-
ever, F does change from its present value so it is scheduled for update at time t7 and
its schedule marker is again incremented. The remaining entries are similarly inter-
preted. Note that at time t8 the output of F has the value 1, and it is simulated with
(1,1) on its inputs. Although the simulation result is a 1, F is put on the scheduler
because its schedule marker is nonzero. ��

Figure 2.22 Circuit to illustrate timing.

A

B

C
D

E/4

F/5

G/4

0 −1

1

X− 0 −1

X− 1− 0

1

1− 0

70 SIMULATION

2.9.3 Evaluation Techniques

A number of techniques have been developed to evaluate response of the basic logic
gates to input stimuli. For AND gates and OR gates, evaluation can be performed by
looping on input values, two at a time, using AND and OR operations of the host
computer’s machine language instruction set. As we saw, it also works for ternary
algebra. It is also possible to assign numerical values to ternary values as follows:

0-1

X-2

1-3

Then the AND of several inputs is the minimum value among all inputs and the OR
is the maximum value among all inputs.

For binary values (i.e., no Xs), it is possible to count 1s on AND gates and count
0s on OR gates. If an n input AND gate has n - i inputs at 1, for i > 0, then the output
evaluates to 0. Whenever an input changes, the number of inputs having value 1 is
incremented or decremented. If the number of inputs at 1 reaches n, the output is
assigned the value 1. A similar approach works for an OR gate except it is necessary
to count 0s.

Logic gates can also be evaluated using a truth table. This approach has the
advantage that it will work with any circuit whose behavior can be described by a
truth table. It is quite efficient when input values are grouped together in the descrip-
tor cell so that the processing program can simply pick up the inputs field of the
descriptor cell and use it to immediately index into a table that contains the output
value corresponding to that input combination. It can also be used for ternary simu-
lation or n-valued simulation. It requires log2(n) bits for each input and the table can
become excessively large but the simulation is quite rapid.

TABLE 2.4 Delay Calculations

A B C D E F G Comments

t0 X X X 0 X 0 X 1 X 0 Simulate F, schedule it for t5
t2 X 1 1 1 X 0 X 2 X 0 Simulate E and F, schedule F for t7
t4 0 1 0 1 X 1 X 3 X 0 Simulate E and F, schedule E for t8, F

for t9
t5 0 1 0 1 X 1 0 2 X 0 F ← 0, simulate G, no change
t7 0 1 0 1 X 1 1 1 X 1 F ← 1, simulate G, schedule G for t11

t8 0 1 1 1 0 0 1 2 X 1 E ← 0, simulate F and G
G unchanged, schedule F for t13

t9 0 1 1 1 0 0 0 1 X 2 F ← 0, simulate G, schedule G for t13

t11 0 1 1 1 0 0 0 1 1 1 G ← 1
t13 0 1 1 1 0 0 1 0 0 1 G ← 0, F ← 1, schedule G for t17

t17 0 1 1 1 0 0 0 0 1 0 G ← 1

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 71

For logic gates such as the OR and the AND, three- or four-valued simulation
requires two bits for each input. A six-input gate then requires a truth table, or
lookup table, of 4096 two-bit entries. Only one table would be necessary because an
AND (OR) gate with fewer than six entries could be computed by using the same
table and filling on the left with 1s (0s). Furthermore, since AND and OR are both
associative operations, a gate with more than six inputs could be computed using
successive lookups.

The zoom table takes the truth table one step further. Rather than examine the
function code to determine gate type, truth tables for the various functions are
placed in contiguous memory. The function code is appended to the input values by
placing the function code adjacent to the input values in the descriptor cell. Then,
the catenated function/input value serves as an index into a much larger truth table to
find the correct output value for a given function and set of inputs. The program
implementation is more efficient because fewer decisions have to be made, one sim-
ple access to the value table produces the value regardless of the function.

For multiple-valued simulation, such as that described in Section 2.8 (Figure 2.18),
two-dimensional lookup tables can be created based on the logic/strength levels used
in the system. For example, if a 21-value system is used, then 21 × 21 lookup tables
are created. The input values are used to create an index into that table. The index is
used to retrieve the output response corresponding to these input values. For an n-input
AND or OR gate, this process is repeated by means of a loop until all inputs have been
evaluated.

Example For an AND gate with the number of inputs equal to “pincount” and with
the value at input i stored at pinval(i), using a 21 × 21 lookup table, the C code used
to evaluate the output response might appear as follows:

result = 1; // initialize result to 1
for (i = 0; i < pincount; i++) // loop through all inputs
result = lookup_table + result * 21 + pinval(i); ��

2.9.4 Race Detection in Nominal-Delay Simulation

The zero-delay simulator resorted to multiple-value simulation to detect transient
pulses caused by hazards. These unwanted signals are caused by delay in physical
elements and can be detected by the nominal delay simulator using just the logic
values {0,1} and individual element delay values—if the transients occur for nomi-
nal delay values. However, a hazard is only the possibility of a spurious signal, and
the transient may not occur at nominal delay values. But, individual physical ele-
ments usually vary from nominal ratings; and some combination of real devices,
each varying from its nominal value, may combine to cause a transient that would
not have occurred if all elements possessed their nominal values. To further compli-
cate matters, a transient may be innocuous or it may cause erroneous state transi-
tions. In a circuit with many thousands of elements, how do we decide what delay
values to simulate? Do we simulate only nominal delays? Do we also simulate
worst-case delays?

72 SIMULATION

Consider again the cross-coupled NAND latch. Erroneous behavior can occur if
unintended pulses arrive at either the Set or Reset input. If the latch is cleared and a
negative pulse of sufficient duration occurs on its Set line, it becomes set. Quite pos-
sibly, this situation will only occur for delay values that are significantly beyond
nominal value. Furthermore, in a circuit with many thousands of gates there may
only be a few asynchronous latches that are susceptible to glitches.

Potential problems can be addressed by identifying asynchronous latches, using
the gate ordering technique described earlier. Then, with the latch inputs identified
and grouped together, proceed with simulation. If a net changes value, and if that net
is flagged as an input to an asynchronous latch, check other nets in that set for their
most recent change. If another net previously changed within some user specified
time range, a critical race may exist. The race exists if some combination of delay
variances can combine to cause the first input change to occur later than the second
input change. Therefore, trace the changing signals back to primary inputs or to a
common origin. Increase the delay on all elements along the path to the latch input
whose event occurred first. Decrease the delay on the elements along the path to the
latch input that changed last, then resimulate. If this causes a reversal in the order in
which the two inputs change, then a critical race exists.

Subsequent action depends on the reason for the simulation. For design verifica-
tion, an appropriate course of action is to provide a message to the user advising
either that primary input events are occurring too close together or that an event at a
gate with fanout has caused a critical race. If patterns are being developed for the
tester, then a state transition that is dependent upon the order in which two or more
inputs change indicates a problem because it may be impossible to obtain repeatable
tests on the tester. Many PCBs may respond correctly when tested, but every so
often one or more fails. Attempts to isolate the problem can be frustrating because
the individual components respond correctly when tested.

One possible solution is to alter the input stimuli by postponing one or more of
the input stimuli changes to a later time period. This is sometimes referred to as
deracing. If the race results from an event at a common fanout point, then some-
where along one of the two paths it may be possible to identify a gate by means of
which an event can be inhibited. This is illustrated in Figure 2.23. An event reaches
both the Set and Clear inputs of a latch. One path goes through an OR gate, the other
path goes through other combinational logic. The event through the OR gate may be
inhibited by first setting a 1 on the other input.

2.9.5 Min–Max Timing

The earliest and latest possible times at which a signal can appear at some point in a
circuit can be determined through the use of min–max timing simulation. In this
method each element is assigned a minimum and a maximum switching time. Dur-
ing simulation, these minimum and maximum times are added to cumulative earliest
and latest times as the signal propagates through the circuit. The time interval
between the earliest and latest times at which a signal switches is called the ambigu-
ity region.

IMPLEMENTING THE NOMINAL-DELAY SIMULATOR 73

Figure 2.23 Blocking a propagation path.

The circuit in Figure 2.24 illustrates the computation of minimum and maxi-
mum delay values. The first block contains the numbers 0 and 10. These could
represent the range of uncertainty as to when a signal arrives at a PCB from a
backplane or from a tester due to skew caused by wiring, fixtures, and so on. The
next block represents logic with a timing range of 20–30 ns, after which the cir-
cuit fans out to two other blocks. The upper path has a cumulative delay ranging
from 25 to 47 ns by the time it arrives at the last block, and the bottom path has
a cumulative delay of 40–70 ns. If the rightmost block represents an AND gate
and if the signal arriving at the upper input is a falling signal, and the signal
arriving at the lower input is a rising signal, then the numbers indicate a time
region from 40 to 47 when there is uncertainty because the numbers imply that
the lower input may rise as early as time 40 and the upper input may not fall
until time 47.

A more careful analysis of the circuit reveals that there is a component 20/40 that
is common to both signal paths. This component represents common ambiguity. If
the common ambiguity is subtracted, it can be seen that the upper path will arrive at
the AND gate no later than 7 ns after it fans out from the common element. The sig-
nal on the lower path will not arrive until at least 13 ns after the upper input change
arrives. If this common ambiguity is ignored, then a pulse is created on the output of
the gate and propagated forward when it could not possibly occur in the actual
circuit. This pulse could result in considerable unnecessary activity in the logic
forward of that point where the pulse occurred.

Figure 2.24 Min–max timing.

0

1− 0

Set

Clear

0/10 20/30

5/7

20/30

25/47

40/70

20/40

74 SIMULATION

If the block on the right were an edge-triggered Delay flip-flop in which the
upper input were the Data input and the bottom input were the Clock input, then
results of the common ambiguity may be more catastrophic. With the common
ambiguity, it is impossible to determine if the data arrived prior to the clock or after
the clock. Hence, it would be necessary to set the flip-flop to X. To get accurate
results, the common ambiguity must be removed.

A common ambiguity region can be identified with the help of the causative
link.21 This is simply a pointer included in the descriptor cell that points back to the
descriptor cell of the element that caused the change. If two inputs change on a
primitive and there is overlap in their ambiguity regions, then the simulator traces
back through the causative links to determine if there is a common fanout point that
caused both events. If a common source is found, then the ambiguity at the point is
subtracted from the minimum and maximum change times of the two signals in
question. If there is still overlap, then the block currently under consideration is set
to X during the interval when the signals overlap if it is a logic gate or its state is set
to X if it is a flip-flop.

2.10 SWITCH-LEVEL SIMULATION

Logic designers frequently find it necessary to simulate at different levels of abstrac-
tion. For a circuit containing hundreds of thousands, or millions, of gate equivalents,
simulation at the RTL level is necessary. Simulation at a lower level of abstraction
would require unacceptably long simulation times. However, on other occasions a
more detailed simulation level may be required. For example, if a new function is
created for a cell library, it may be designed at the transistor level and simulated at
that level to ensure that it responds correctly. When satisfied that it is correct, it is
added to the cell library and a gate or RTL level model may then be created for sim-
ulation purposes.

Consider the circuit in Figure 2.25, the intended function is F = E ⋅ (A +
C) ⋅ (B + D). But it was not designed by connecting AND and OR macrocells
together! Rather, it was created by means of a transistor network in such a way that,
depending on the values of A, B, C, D and E, there is always a connection from F to
either VDD or Gnd (but not both). So, is it correct? It is important to verify that the
transistors have been connected correctly. The consequence of inserting such a
design into a cell library with subtle errors could be catastrophic, possibly affecting
more than one product release before being discovered.

The circuit in Figure 2.25 could be verified using Spice, an analog simulator that
models circuits at the electrical level and uses continuous values to the accuracy
possible (32 or 64 bits) on the host computer. For the small circuit in Figure 2.25,
Spice would be acceptable. However, for much larger circuits, Spice simulations
could require a great deal of CPU time. For such circuits, switch-level simulation
often represents a reasonable compromise between analog and gate-level simula-
tion, particularly when debugging.

SWITCH-LEVEL SIMULATION 75

Figure 2.25 CMOS circuit.

Circuit behavior can, in general, be evaluated more rapidly when simulating at
the logic level. For example, consider the circuit in Figure 2.25. If inputs A,B,C,D,E
change from (0,1,1,0,1) to (1,1,1,0,1), an evaluation of one OR gate reveals that no
event occurs beyond the inputs to that OR gate. While this provides faster simula-
tion, when considering fault simulation, as will be seen in subsequent chapters, the
switch-level model more accurately predicts circuit behavior in the presence of
defects. Switch-level models can be accurately extracted from layout information,
ignoring unimportant details while retaining circuit information that represents
logic behavior. Hence modeling and simulation can be more precise at switch level
than at gate level while running faster than a detailed electrical simulation using
Spice.

Switch-level circuits are modeled as nodes connected by transistors that act as
voltage-controlled switches. When turned on, a transistor connects two nodes; and
when turned off, it isolates the nodes (i.e., the transistor acts as a very high resis-
tance). If a node has sufficient capacitance, it can act as a memory device when
isolated from all other nodes. This is known as dynamic memory. Other character-
istics of switch-level circuits include bidirectional signal flow, resistance ratios,
and charge sharing. The switch-level model uses discrete values to represent cir-
cuit elements and voltage levels, in contrast to Spice, which uses continuous val-
ues. This is accomplished by limiting the resistance and capacitance of the
transistors to a small number of discrete values. The number of discrete values is
just enough to permit representation of different circuit configurations, including
transistor ratios, and resolution of their logic values in the presence of different
signal values.

A switch-level model is a set of nodes {n1, n2, ..., nn} connected by a set of tran-
sistors {t1, t2, ..., tm}. Each node ni may be an input node or a storage node. Input

VDD

A C

B D

F

A

C

B

D
E

E

B

D

C

A

F

E

76 SIMULATION

nodes are those such as VDD, Gnd, data, and clock inputs that drive transistor source
and drains. Storage node ni has state yi ∈ {0, 1, X} and a size ∈ {k1, ..., kmax}. The
value X represents an uninitialized node or one whose logic value lies between 0
and 1, such as when values 1 and 0 are applied simultaneously to a node. Node sizes
are ordered such that k1 < k2 < ⋅⋅⋅ < kmax, where the ordering (<) denotes the capaci-
tance of a node relative to other nodes. Input nodes have size ω, (kmax < ω). The
number of sizes, max, is arbitrary but chosen so as to permit all relative sizes to be
correctly expressed. A node state is defined by the pair <v,s>, where v is the logic
value and s is the signal strength. The transistor ti has state zi ∈ {0, 1, X} and
strength γ ∈ {γ1, γ2, ..., γmax}, where the ordering γ1 < γ2 < ⋅⋅⋅ < γmax indicates rela-
tive conductance. The state of a switch-level circuit is given by vectors y = (y0, y1,
..., yn) and z = (z0, z1, ..., zm). The excitation function E gives the steady-state
response of the nodes for an initial set of node states when the transistors are held
fixed in states determined by the initial node states

E(y) = F[y, z(y)] (2.1)

where z(y) denotes the vector of transistor states created when the nodes are in states
given by the vector y. The operation of a switch-level circuit can be simulated by
repeatedly computing the excitation states for the nodes and setting the nodes to
these states until a stable state is reached. This is expressed as

(2.2)

where maxstep denotes the maximum number of iterations. If the circuit has not sta-
bilized at the end of maxstep steps, it may indicate oscillations in the circuit, which
suggests that some of the nodes should be set to X.

When a signal passes through a transistor, its strength is determined by the tran-
sistor size. This is indicated in Figure 2.26(a), where State(VDD) = <1, ω>,
state(Gnd) = <0, ω> and state(A) = <0, ω> or <1, ω> depending on whether input A
has logic value 0 or 1. Transistor T1, a depletion mode transistor, is a pullup with
strength γ1, transistor T2 has strength γ2. The state at node Z is determined by the
connection function.22 The first step in determining the state at a node is to find the
strength of the strongest applied signal(s). When A = 1, applied signals from VDD
and Gnd converge at Z with strength γ1 and γ2. Since there are two signals driving
node Z, the signal value v at Z must be resolved. The set W of all applied signals
with maximum applied strength is formed. In this example, state γ2 is the strongest
signal and it has a single source. Once the set W is formed, the following rules
apply:

If W contains X or it contains both 0 and 1, then v = X.

If W contains 0 but does not contain 1 or X, then v = 0.

If W contains 1 but does not contain 0 or X, then v = 1.

If W does not contain 0, 1, or X, then v = Z.

y′ Ek

k maxstep→
lim y()=

SWITCH-LEVEL SIMULATION 77

Figure 2.26 Switch-level circuits.

In this example, W = {0}, so v = 0. This operation is often denoted by the # operator,
and it uses the lattice structure depicted in Figure 2.27. In this structure, <0, κi> and
<1, κi> resolve to <X, κi>, whereas <0, κi> and <e, κj>, e ∈ {0,1,X}, j < i, resolves
to <0, κi>. In general the higher strength, often called the least upper bound (lub),
prevails.

Figure 2.26(b) contains a somewhat more complex circuit: It is a static RAM cell
made up of two cross-coupled inverters, I2 (T3 and T4) and I3 (T5 and T6). The data
signal is inverted by inverter I1 (T1 and T2). If write is high, then the signal data
passes through T8 where it shares a common node with transistor T7. But T7 has
strength γ1 and the data signal appearing at T8 may have strength γ2 or γ3. In either
case its strength is stronger than that of the signal coming from T7, so data will con-
trol I2, which in turn controls I3. Note that if write = 0, then the value coming from
T8 is Z, so the signal coming from T7 will control T4.

Figure 2.27 Lattice representation of the # operator.

A

VDD

T1,g1

T7,g1

T2,g2

T1,g2

T2,g3

T3,g2

T4,g3

T5,g2

T6,g3T8,g3

Z

data

VDD VDD

Z

write

VDD

(a) (b)

I1

I2 I3

<x, w>

<1, kmax>

<0, w>

<0, k1> <1, k1>

<1, w>

<1, k2><0, k2>

<0, kmax>

<1, w>

<x, kmax>

<x, k1>

78 SIMULATION

So far, calculations have been intuitive. However, to implement a simulator capa-
ble of evaluating circuit behavior in response to applied stimuli, it is necessary to
define processing rules that anticipate all circumstances. For logic simulation, where
the elements are unidirectional, evaluation can consist of repeated table lookups
until the output response is resolved. In fact, if the circuit is expressed in terms of
unidirectional transistors (e.g., the Verilog nmos, pmos, and cmos primitives),
simple extensions to the gate-level simulator are sufficient.

However, when a circuit is modeled in terms of the Verilog tran, tranif0 and
tranif1, rtran, rtranif0, rtranif1 primitives, a gate-level simulator is no longer ade-
quate. As can be seen from Figure 2.26(b), some nodes are driven by two or more
transistors. The problem is compounded by the fact that the transistors have different
strengths. The state at a node can be calculated using the connection function, but
with a large number of bidirectional transistors, an event at a node could propagate
through many transistors, each event necessitating numerous additional calculations.

Early attempts at solving the problem of simulating switch-level elements
attempted to extend the capabilities of the gate-level simulator. One artifice to
achieve this modeled the bidirectional transistor as a pair of unidirectional transis-
tors connected back-to-back.23 Unfortunately, the two transistors can form a cycle in
which signals become trapped. This is seen in Figure 2.28. In Figure 2.28(a) the
transistor controlled by input A is bidirectional, whereas in Figure 2.28(b) it has
been replaced by two unidirectional transistors with signal direction denoted by the
arrows.24 In Figure 2.28(a) the value at D is <4, 0>. Let B switch from 1 to 0. The
path from Gnd to C is blocked, so the contribution from the lower transistor, con-
trolled by input B, is Z. However, from Figure 2.28(b) it can be seen that one of the
back-to-back transistors controlled by input A is driving node C with state <4, 0>
and the other transistor is driving node D with <4, 0>. As a result the depletion tran-
sistor, with a strength of 3, cannot alter the value at D and so the output of the
NAND circuit is 0 when it should be 1.

Figure 2.28 Trapped signal.

A = 1

VDD

D

B = 1

C

(3)

(4)

(4)

A

VDD

B

(3)

(4)

(4)

A

(5) (5)

(5) (5)

(a) (b)

C

D

SWITCH-LEVEL SIMULATION 79

Figure 2.29 Partitioned network.

A large transistor network described in terms of bidirectional transistors, such as
the Verilog tran, tranif0 and tranif1, can be quite confusing to analyze, even for
humans who can employ experience, intuition, and pattern recognition to decom-
pose a network into smaller subcircuits with recognizable features. For the computer
this human process must be replaced by a series of precise, methodical steps before
the computer can analyze and determine the behavior of the circuit. The first step in
this process is partitioning.

Two partitioning schemes have been devised, they are referred to as static parti-
tioning and dynamic partitioning. Static partitioning breaks a circuit into compo-
nents by cutting the leads that drive the gates. This is illustrated in Figure 2.29,
where a transistor network has been broken into three components, referred to as
channel connected components, labeled A, B, and C. The connection from transis-
tors t1 and t2 to transistor t6 is cut, so t1 and t2 become a standalone component
labeled A. Also, the connection from t5 and t6 to transistor t8 is cut, causing t7 and t8
to become a separate component labeled B. The remaining four transistors, t3, t4, t5,
and t6, become component C. The second way to partition, dynamic partitioning,
uses the logic values on the transistor gates. If the value on a gate is 0, then the tran-
sistor, for evaluation purposes, is nonexistent. However, this method requires that
the circuit be repeatedly partitioned as node values change in response to events on
input nodes.

Note that because individual components are evaluated independently from the
rest of the circuit, it is quite straightforward to merge switch-level simulation with
gate- and RTL-level simulation. Evaluating individual components can become
complicated, but the components themselves become unidirectional elements, so in
their interactions with other circuit components they can be scheduled like logic

VDD

I1

VDD

I2

VDD

Z

t1,g1

t2,g2

t3,g1

t4,g2

t5,g2
t6,g2

t7,g1

t8,g2

n3

n1

n2

A

B

C

80 SIMULATION

gates. If an event occurs on one or more inputs, the component is evaluated, and if
one or more of its outputs change, the components driven by the changing output(s)
are evaluated.

Component evaluation is based on events appearing at both of the original cir-
cuit inputs, these would be I1 and I2 in Figure 2.29, and the inputs created by par-
titioning. Component A has a single input, I1. Component B also has a single
input, the wire driving the gate of transistor t8. That wire is also an output of com-
ponent C. The inputs to component C are I2 and the two wires driving transistors t5
and t6.

In order to evaluate a component and find its steady state, it is necessary to find,
for a set of signal values applied to the input pins of the circuit, a set of steady-state
values vi at internal nodes ni such that v = f(v). From Eq. (2.2) it was seen that this
could require as many as maxstep iterations. The solution v is referred to as the least
fixed point of f. The discussion here, from Bryant,25,26 characterizes the problem by
means of the following expression:

v = E * x ∨ y ∨ G * v (2.3)

where v is the minimum set of steady-state signals satisfying the equation. In
Eq. (2.3) E is a matrix in which eij equals the strength of the strongest transistor
connecting storage node ni and input node ij or 0 if no such transistor exists. The
component xj of vector x is equal to ω if input node ij is 1, or λ if input node ij is 0.
The components yj of vector y represent the size of node nj. The matrix G describes
the interconnections of the storage nodes; that is, gij is equal to the strength of the
strongest transistor connecting nodes ni and nj. The operator ∨ is the least upper
bound (lub) operation and * denotes matrix multiplication. In matrix multiplication,
individual elements are multiplied using the operator ∩, where a ∩ b denotes the
minimum of a and b, and addition of the resulting product terms is accomplished
using the lub ∨.

Equation (2.1) is solved iteratively until it stabilizes—that is, until v = f(v). Note
that in this equation the value at node ni represents the combined effect of

1. The direct connection to each input node ij as determined by eij ∩ xj

2. The initial charge yi at node ni

3. The connections gij ∩ vj from node ni to other nodes in the circuit

What happens when the circuit contains Xs? Before addressing this question, some
definitions are in order. The vectors a and b obey the ordering a ≤ b iff ai ≤ bi (that is,
ai < bi or ai = bi) for all i. The lub of a set of signals ∈ {0, 1, X} equals 1 (0) iff all
elements of the set are 1 (0), else it is X. Consider the mapping f : Bn → Tm, its ter-
nary extension is defined as the function f t : Tn → Tm such that

f t (a) = lub{f(b)|b ∈ Bn, b ≤ a}

SWITCH-LEVEL SIMULATION 81

Expressed in words, when some inputs to f t equal X, then each output assumes a
Boolean value iff it would assume this value for all possible combinations of 0s and
1s. In the following matrix equations, that is essentially what the equations for u and
d provide.

r = Emin ⋅ ||x || ↑ ||y || ↑ Gmin ⋅ r (2.4)

u = block(Emax ⋅ x ↑ y ↑ Gmax ⋅ u, r) (2.5)

d = block(Emax ⋅ ↑ y ↑ Gmax ⋅ u, r) (2.6)

In these equations, ||a || denotes the strength of a, a denotes the strength of a if a
has state 1 or X, and 0 otherwise, and a denotes the strength of a if a has state 0 or
X, and 0 otherwise. The operator ↑ yields the maximum of its arguments, and the
dot (⋅) denotes matrix multiplication with ∩ corresponding to element multiplication
and ↑ corresponding to addition. Given two strength values a and b, block(a,b)
equals a if a ≥ b and it equals 0 otherwise. The matrices Emin and Gmin represent the
matrices E and G, but with the proviso that transistors in the X state have 0 conduc-
tance. Conversely, Emax and Gmax represent the matrices E and G but with transistors
in the X state assumed to be fully conducting.

A node ni will have state 1 iff no combination of transistor conductances could
cause the node to assume the value 0 or X. This implies that di = 0. Likewise, ni
will have target state 0 iff ui = 0. As a result, the value at node ni is determined to
be

(2.7)

Example Component C of Figure 2.29 will be used to illustrate the evaluation
process. Initial input values will be I1, I2 = (0, 1). The first step will be to evaluate
Eq. (2.4) for r.

↑ ↑ (2.8)

Component C has three input nodes, VDD, Gnd, and I2, and two storage nodes, n1
and n2. The matrix E indicates a connection between Gnd and n1, as a result of I2
having value 1. There are no other direct connections between the input nodes and
the storage nodes. All three of the input nodes have strength ω. The strengths of the
storage nodes are set to κ1. The matrix G reflects the fact that transistor t6 is con-
ducting, because node n3 is a 1 (it is the complement of I1). Therefore a connection

ni

1 if di 0=

0 if ui 0=

X otherwise

=

r λ γ 2 λ
λ λ λ

ω
ω
ω

⋅=
κ1

κ1

λ γ 2

γ 2 λ
r1

r2

⋅

82 SIMULATION

exists between n1 and n2. Note also that the matrix G is symmetric. Equation (2.8)
reduces to

(2.9)

At this point it is necessary to make use of the following equation:

 (2.10)

Equation (2.10) asserts that r can be solved by initializing r1 and r2 to 0 and then solv-
ing iteratively until a steady state is reached. That yields

r1 = 0 γ2 γ2 γ2

r2 = 0 κ1 γ2 γ2

It still remains to solve Eqs. (2.5) and (2.6) for u and d. Note that E, Emin, and Emax

are identical because none of the inputs or storage nodes are at X. The same is true
for G, Gmin, and Gmax. The matrix x evaluates to [ω 0 ω]T so u becomes

(2.11)

For convenience, let u = block(v, u) and d = block(e, d). Setting v1 = v2 = 0 and then
iterating, we obtain

v1 = 0 κ1 κ1

v2 = 0 κ1 κ1

Solving for e is similar, except that x becomes [0 ω 0]T. Thus,

e1 = 0 γ2 γ2 γ2

e2 = 0 λ γ2 γ2

This results in

u1 = block (v1, r1) = block(κ1, γ2) = 0

u2 = block (v2, r2) = block(κ1, γ2) = 0

= ↑
κ1

κ1
↑

γ2

λ

γ2

γ2

r2

r1↓
↓r1

r2

r f s
k

k ∞→
lim 0()=

= ↑
κ1

κ1
↑

λ
λ

γ2

γ2

u2

u1↓
↓u1

u2

,
u1

u2

block

SWITCH-LEVEL SIMULATION 83

d1 = block (e1, r1) = block(γ2, γ2) = γ2

d2 = block (e2, r2) = block(γ2, γ2) = γ2

From Eq. (2.7) it follows that n1 = n2 = 0, so the output of component C is 0. That
becomes an input to component B, where it gets inverted, so Z = 1. ��

This small example required a large number of mathematical computations in
order to achieve a final steady state. While it provides a theoretical basis for
switch-level simulation, it is not practical. In practice, simulation programs that
compute next state for a switch-level circuit bear a resemblance to those used in
gate-level simulation. This will be illustrated using the switch-level algorithm
adapted from Bose et al.27

We start with some definitions. A transistor is in the indefinite state if the value
on its gate is X. A path in a channel-connected component is a set of transistors in
which the source (drain) of one is connected to the drain (source) of another transis-
tor in the set. A definite path is one in which no transistors are in the indefinite state.
The strength of a signal along a path is the minimum of the signal strength at the
path source and the minimum strength transistor along the path. A path is blocked at
node i if i is the destination of a stronger path. A downgoing path originates at a
source node with logic value 0 or X, whereas an upgoing path originates at a source
node with logic value 1 or X.

The strength of the strongest downgoing definite path to node i that is unblocked
at all nodes prior to i is denoted def0,i. The strongest downgoing path, definite or
indefinite, to node i that is unblocked at all nodes prior to i is denoted indef0,i. The
strongest upgoing paths are denoted similarly, that is, def1,i and indef1,i. The maxi-
mum strength of the signal flow through transistor j connecting nodes p and q is
denoted sw_maxv,j, where v ∈ {0,1}. Given a switch-level circuit with n nodes, the
algorithm follows:

// initialize nodes
for (all nodes i)
if yi ∈ {0,X} then def0,i = κi
else def0,i = λ

for (all nodes i)
if yi ∈ {1,X} then def1,i = κi
else def1,i = λ

for (all transistors connecting nodes n and m)
sw_max0,t = sw_max1,t = λ

// compute strongest definite paths to nodes
for (all strengths s in decreasing order)
for (each i with def0,i = s and s ≥ def1,i)
for (each “on” transistor t connecting i to m)
if def0,m does not dominate min(s,σt)

84 SIMULATION

set sw_max0,t to max(sw_max0,t, min(s, σt))
set def0,m to max(def0,m, min(s, σt))

for (each i with def1,i = s and s ≥ def0,i)
for (each “on” transistor t connecting i to m)
if def1,m does not dominate min(s,σt)
set sw_max1,t to max(sw_max1,t, min(s, σt))

set def1,m to max(def1,m, min(s, σt))
// quit early if no transistor is indefinite
if all transistors are definite
for (all nodes i)
if def0,i dominates def1,i then set yi to 0
else if def1,i dominates def0,i then set yi to 1
else set yi to X

Example Given the circuit in Figure 2.30, assume that VDD and Gnd have strength 7,
and the transistors have strengths between 3 and 6, as indicated. The storage nodes all
have strength 1; with the exception of the output F (node n3), it has strength 2. The val-
ues on the gate inputs are A,B,C,D,E = (0,1,1,0,1). The pairs of numbers in the figure
represent the values sw_max0,i and sw_max1,i. So, for example, through the NMOS
transistor E (connected to VDD), the strength of the 1 signal is 6, while the strength of
the 0 signal is 0. Since the NMOS transistor A is turned off, both the 0 and 1 signals
through A are 0. Note, however, that the PMOS transistor A is on, so from node n3 there
is an upgoing signal of strength 3 through A. The PMOS transistor D is on, so the
strength of the 0 signal is 5 and the strength of the 1 signal is 0. The remaining
transistors are evaluated similarly.

Figure 2.30 Computing node signals.

VDD

A C

B D

F

A

C

B

D

E

E

(5)

(4)

(3)

(4)

(6)

(5)(4)

(3)(4)

(6)

n5n4

n3

n2

n1

(0,6)

(0,3)(0,0)

(0,0)(0,3)

(0,0) (5,0)

(0,0)(0,3)

(0
,0

)

n1 = (≤1, 6)

n2 = (≤1, 3)

n3 = (≤2, 3)

n4 = (≤1, 3)

n5 = (5, ≤1)

SWITCH-LEVEL SIMULATION 85

Figure 2.31 Problems from evaluation ordering.

The definite pairs def0,i and def1,i are listed to the right of the drawing. For node n1
the values are (≤1, 6). Since the NMOS transistor E is turned on, the upgoing signal
provided by VDD is equal to the strength of transistor E, which is 6. There is no down-
going path to node n1 from any transistor, so the 0 strength of node n1 is, at most, the
node strength, which is 1. The strongest upgoing signal to node n2 comes from tran-
sistor C. It has strength 3. The remaining nodes are evaluated similarly. Because there
is an upgoing path of strength 3 to the output node F, and a downgoing path of
strength ≤2 to node F, the output resolves to a logic 1.

Note that the algorithm calls for processing nodes in decreasing order of
strengths. The reason for this can be seen in this next example. ��

Example Figure 2.31 contains an inverter with an output transistor B.24 Start by
propagating the signal from VDD. It causes the signal <3, 1> to appear at the output.

 Now consider what happens when the signal from Gnd is processed.The signal at
Gnd appears at node M as <4, 0>. This signal is attenuated as it passes through B to
become <3, 0> at output N. Now the two signals <3, 1> and <3, 0> are resolved to X
at N.

When Gnd is processed first, the signal <4, 0> appears at M. It is then propagated
through B, to the output, where it is attenuated to become <3, 0>. The signal from
VDD is processed next. It reaches M, where it appears as <3, 1>. The signals <4, 0>
and <3, 1> at M resolve to <4, 0>. That signal is attenuated through transistor B to
become <3, 0> at N. ��

Up to this point, no mention has been made of what to do when Xs are encoun-
tered. In the discussion of matrix calculations, the matrices u and d identify nodes
that conflict, and those that converge, when Xs are present. The conflicting nodes are
set to X, and the nodes that converge are set to the converged value. In the algorithm
described here, the extension of the algorithm for indefinite paths performs a similar
function:

for (all nodes i) // compute strengths of indefinite
// paths to nodes

initialize indef0,i to def0,i

A = 1

B = 1

M
N

VDD

(3)

(4)

(3)

86 SIMULATION

initialize indef1,i to def1,i
for (all strengths s in decreasing order)
for (each i with indef0,i = s and s ≥ def1,i)
for (each “on” or “indefinite” transistor t

connecting i to m)
if indef0,m does not dominate min(s,σt)
set sw_max0,t to max(sw_max0,t, min(s, σt))

set indef0,m to max(def0,m, min(s, σt))
for (each i with indef1,i = s and s ≥ def0,i)
for (each “on” or “indefinite” transistor t

connecting i to m)
if indef1,m does not dominate min(s,σt)
set sw_max1,t to max(sw_max1,t, min(s, σt))

set indef1,m to max(indef1,m, min(s, σt))
for (all nodes i) // compute new logic values of

// nodes
if def0,i dominates indef1,i then set yi to 0
else if def1,i dominates indef0,i then set yi to 1
else set yi to X

2.11 BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) provide a means for representing circuit behavior
by means of graphs. In recent years they have grown in importance because of their
applicability to several areas of digital design, including simulation, automatic test
pattern generation, synthesis, and design verification. Here we discuss their applica-
tion to simulation—in particular, cycle simulation (see Section 2.12). In subsequent
chapters we discuss their application to other areas of electronic design automation
(EDA).

2.11.1 Introduction

Binary decision diagrams were introduced by Sheldon Akers in 1978.28 Akers’ work
was based on research into binary decision programs by C. Y. Lee.29 BDDs can be
used to represent Boolean expressions in a form that resembles a decision tree.
BDDs are implementation-free, they can determine the response of a circuit to input
stimuli but offer no insight into the structure of the circuit. This can be considered an
advantage, because it permits circuits described at very different levels of abstrac-
tion to be compared for equivalence.

We start with some basic definitions, derived from Aho et al.30 A graph G = (V,
E) is a finite, nonempty set of vertices V and a set of edges E. The edges are pairs of
vertices (v1, v2) where v1, v2 ∈ V. If the edges are ordered pairs, then the graph is said
to be a directed graph. In a directed graph the edge (v1, v2) is said to be from v1 to v2,

BINARY DECISION DIAGRAMS 87

where v1 is called the tail and v2 is the head. A path is a sequence of edges of the
form (v1, v2), (v2, v3), ..., (vn−1, vn). The path is from v1 to vn, and is of length n – 1. A
cycle is a path that begins and ends at the same vertex.

A directed graph with no cycles is called a directed acyclic graph (DAG). A tree
is a DAG that satisfies the following properties:

1. There is exactly one vertex, called the root, which no edges enter.

2. Every vertex except the root has exactly one entering edge.

3. There is a unique path from the root to each vertex.

If (v1, v2) ∈ V, where V is a tree, then v1 is the parent of v2 and v2 is the child of v1. A
vertex with no descendents is called a terminal vertex, also called a leaf; the
remaining vertices are called nonterminal vertices. If a path exists from vi to vj,
then vi is an ancestor of vj, and vj is a descendent of vi. An ordered tree is one in
which some ordering rule is imposed on the children of each vertex. A binary tree is
an ordered tree in which each vertex v has at most two children, denoted low(v) and
high(v). The edge from vertex v to low(v) corresponds to the value v = 0 and is
sometimes called the 0-edge. Likewise, the edge leading to high(v) corresponds to
the value v = 1 and is sometimes called the 1-edge. A nonterminal vertex v has
associated with it an attribute index(v) ∈ {1, 2, ..., n}. A terminal vertex v has as
attribute a value value(v) ∈ {0, 1}.

The number of vertices in a binary decision tree grows exponentially. A tree gen-
erated from three variables {x1, x2, x3} has seven nonterminal vertices and eight ter-
minal vertices. In general, a binary decision tree has 2n − 1 nonterminal vertices and
2n terminal vertices. This does not represent any appreciable savings over the corres-
ponding truth table with its 2n rows. However, a binary decision diagram (BDD)
offers significant potential savings. It permits many edges to terminate at any given
vertex. One immediately obvious gain is in the representation of the terminal verti-
ces. When all the terminal vertices have value 0 or 1, then there only need be two
terminal vertices, one with value 0 and the other with value 1. A computer program
used to represent the function can immediately free up 2n − 2 structures used to rep-
resent the terminal vertices.

Figure 2.32 Binary decision tree.

x1

x2
x2

x3x3
x3 x3

0

00

0 1

1

1

1

11

f

0

00

1

11

00000 1

88 SIMULATION

Example Consider the binary tree in Figure 2.32. It corresponds to the equation

f = x1 ⋅ x2 ⋅ x3+x1 ⋅ x2 ⋅ x3 + x1 ⋅ x2 ⋅ x3

The complete truth table corresponding to this BDD is

Note that in the binary decision tree the vertices are labeled xi, with the root ver-
tex labeled x1. In the discussion that follows, we will often label a vertex solely with
the subscript, which serves as its index. When using subscripts of the xi as indices,
indices of descendents will appear in ascending order; that is, if vertex v is nontermi-
nal, we require index(v) < index(low(v)) and index(v) < index(high(v)).

To evaluate a function for particular values of x1, x2 and x3 in a truth table, search
down the truth table until matching values are found, then look for the value of the
function in the rightmost column of the same row. To evaluate a function using a
BDD, start at the root and follow the 0- and 1-edges corresponding to the binary val-
ues assigned to the variables. For example, if x1 is 1, x2 is 0 and x3 is 1, then take the
1-edge from vertex x1 to vertex x2, take the 0-edge from vertex x2 to vertex x3, and
take the 1-edge out of x3. This process terminates at a vertex assigned the value 0.

This BDD was generated by arbitrarily assigning variable x1 as the root and cre-
ating a 0-edge and a 1-edge from that root. This causes two subgraphs to be cre-
ated. In each of these subgraphs the variable x2 serves as the root. This process can
be repeated at the subgraphs with root x2. Further iterations eventually lead to ter-
minal vertices, with terminal values matching the values in the truth table entry cor-
responding to the edge values on the path from the root to the given terminal
vertex.

The reader may recognize this as a repeated application of Shannon’s expansion:

f(x1, x2, ..., xi, ..., xn) = xi ⋅ f(x1, x2, ..., 1, ..., xn) + xi ⋅ f(x1, x2, ..., 0, ..., xn)

For the equation given in the example above, the first application of Shannon’s
expansion yields the results shown in Figure 2.33. Note that it is not necessary to
create the truth table for a Boolean expression. Continued applications of Shannon’s
expansion will yield the binary decision tree shown in Figure 2.32.

x1 x2 x3 f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0 ��

BINARY DECISION DIAGRAMS 89

Figure 2.33 Applying Shannon’s expansion.

The BDD in Figure 2.32 was drawn in such a way that there was a terminal corre-
sponding to every entry in the truth table. However, many of the branches are unnec-
essary. For example, the rightmost path (x1, x2) = (1,1) leads to x3, but both terminal
vertices emanating from x3 are 0, regardless of whether x3 is 0 or 1. This branch of
the tree can be pruned and the 1-edge from x2 can terminate with a 0. Another way to
shorten the graph is to represent the terminal vertex as x3 or x3. This produces the
BDD shown in Figure 2.34(a). Note that a BDD can be redrawn with any variable as
the root. This often yields significantly different BDDs, as seen when comparing
Figures 2.34(a) and 2.34(b), which represent the same function.

This process can be reversed. A sum-of-products Boolean equation can be derived
from the BDD. First, label the branches emanating from x1 as f1 and f2. Then, f can be
expressed as f = x1 ⋅ f1 + x1 ⋅ f2. Pursuing this a step further, vertex f1 can be represented
as f1 = x2 ⋅ g1 + x2 ⋅ g2 and vertex f2 can be represented as f2 = x2 ⋅ h1 + x2 ⋅ h2. From
Figure 2.34 it can be seen that g1 = x3, g2 = x3, h1 = x3, and h2 = 0. From here, the min-
terms for f are readily obtained (a minterm is a sum-of-products term in which every
variable appears in true or complement form). The maxterms can be found by tracing
all paths to leafs with value 0 (a maxterm is a product-of-sums term in which every
variable appears in true or complement form).

Some useful BDDs are illustrated in Figure 2.35. The D flip-flop in
Figure 2.35(a) retains its existing value if the clock, C, is 0. If C is 1 (and, assuming
a positive edge), then the value at the D input is transferred to the output Q. The for-
mula for this operation is Qk + 1 = QkCk + DkCk. Behavior of the toggle flip-flop in
Figure 2.35(b) obeys the formula Qk + 1 = CkTk Qk + CkQk + TkQk.

Figure 2.34 Reduced BDD.

x1
0 1

f = x1 • x2 • x3 + x1 . x2 . x3 + x1 . x2 . x3

f1 = x2 . x3 + x2 . x3 f2 = x2 . x3

x1

x2x2

x3x3x3

0

0

0

1

11

f

0

x2

x1

x3

0

0

1

1

f

0x3

(a) (b)

90 SIMULATION

Figure 2.35 Some useful BDDs.

Figure 2.35(c) implements the equation f = A ⋅ B ⋅ C + A ⋅ C. Figure 2.35(d) imple-
ments the same equation, but two new concepts are introducted in this BDD. First,
the right branch exiting from A now goes straight down and shares the variable C
with variable B. Second, there is a bubble on the edge emanating from B and termi-
nating on C. This bubble is used to indicate that the value is to be complemented.
So, if the BDD is traversed from the entry point at the top, through the left branch
emanating from A, and then through the right branch emanating from B, the final
result f is not C, but rather C; for example, if C is 0, then f = 1. The general rule is: If
there are an odd number of bubbles (inversions) in the path from the entry point to
the terminal vertex, the result is complemented. If an even number of bubbles are
encountered, the result is not inverted.

Figure 2.35(e) illustrates the BDD for the expression f = A ⊕ B ⊕ C. In this
example, both edges emanating from A terminate at vertex B, and the edges emanat-
ing from B both terminate on vertex C. It clearly illustrates the rule concerning the
number of inversions mentioned in the previous paragraph. The BDDs in
Figure 2.35(f) represent a full-adder; they illustrate yet one more new concept. The

(b) (c) (d)

(e) (f) (g)

C

Q D

Qk +1

0 1

(a)

Ei

Ai Ci

Ci +1

Ei

Si

Ai

Ei

Bi

E3

S3

E2

A2 E2

S2

E1

A1 E1

S1

E0

A0 E0

S0

Cin

E2

E1

E0

0

E3

G

A2

A1

A0

A3

E2

E1

E0

1

E3

P

A2

A1

A0

A3

Cin

Cout

A

B

C

f

C

A

B

0

10

10 C

f

C0

1

0

10

f

A

B

C

Qk +1

T

Q Q

0
1

0 1

BINARY DECISION DIAGRAMS 91

edge out of Ci+1 terminates on Ei. But Ei is not an input variable. It is an intermedi-
ate variable whose value is calculated using the rightmost BDD in Figure 2.35(f).
Thus, if Ai = Bi = 1 and Ci = 0, then Ei is determined to be 0. So, when calculating
the sum Si and carry Ci+1, the left branch is taken out of Ei in both BDDs to get a
carry of 1 and a sum of 0.

In Figure 2.35(g) all of these concepts are combined to get a complete set of
BDDs for a 4-bit adder with carry look-ahead (CLA). The values for the Ei are
obtained from the BDD in Figure 2.35(f). To connect several of these together to
represent a 16- or 32-bit data path, it would be necessary to develop a BDD for a
CLA. The inputs to the CLA will be driven by the propagate (P), generate (G), and
Cout outputs from the BDD in Figure 2.35(g).

Given a set of values assigned to the inputs of a circuit, BDDs can be used to
compute the circuit response to that set of values. The BDD can be stored in a data
structure using pointers. From the root this BDD can be traversed in a programming
language like C or C++ quite easily to obtain the circuit response to a given set of
inputs. Consider, for example, the reduced BDD in Figure 2.34(b). If x2 = 0, the
value of the expression is immediately determined to be equal to x3. Compare that
with the number of programming steps required to evaluate an RTL expression rep-
resenting the three original minterms. First, the variables have to be complemented.
Then, two AND operations are required to evaluate each minterm. Finally, the
results for the three minterms have to be ORed together to produce the final result.
For event-driven simulation the comparison becomes more complex because the
number of computations depends on how many inputs change and how far the
events propagate through the circuit. There is a fixed overhead associated with creat-
ing the initial BDDs in storage, but for large circuits with many input vectors, that
represents a small percentage of the overall computation time.

2.11.2 The Reduce Operation

In the discussion that follows we examine some algorithms introduced by Bryant.31

Restrictions are imposed on the circuit description in order to achieve a canonical
form for BDDs representing the circuit. This will make it possible to describe algo-
rithms that reduce, merge, and otherwise manipulate BDDs. Given two combina-
tional circuits represented in a reduced, ordered BDD canonical form, it becomes
possible to compare the circuits in order to determine whether they represent differ-
ent functions, or are just different expressions of the same circuit. The two circuits
may originally be sum-of-products or product-of-sums, or one or both representa-
tions may be expressed at the RTL level. The canonical form also makes it possible
to synthesize circuits described at different representations or levels of abstraction to
the same resulting circuit.

The canonical form imposes a total ordering on the variables in a Boolean func-
tion of n variables. In this total ordering, the variables are numbered consecutively
from 1 to n, and this numbering remains constant throughout processing. To achieve
this ordering, it is convenient to simply label the variables as xi , 1 ≤ i ≤ n, as we
have done previously. Vertices are assigned indices corresponding to the subscripts,

92 SIMULATION

in ascending order. A graph formed in this fashion is called a function graph. Func-
tion graphs form a proper subset of conventional BDDs. By virtue of the numbering,
the graphs are also acyclic.

Definition 2.6 A function graph G having root vertex v denotes a function fv
defined recursively as

1. If v is a terminal vertex:

a. If value (v) = 1, then fv = 1.

b. If value (v) = 0, then fv = 0.

2. If v is a nonterminal vertex with index(v) = i, then fv is the function

fv(x1, ..., xn) = xi . flow(v)(x1, ..., xn) + xi . fhigh(v)(x1, ..., xn)

The formula for fv is Shannon’s expansion. A unique path from the root to a terminal
vertex is defined by assigning logic values to all the xi.

Definition 2.7 Function graphs G and G' are isomorphic if there exists a 1-to-1
mapping σ from the vertices of G onto the vertices of G' such that for vertices v ∈ G
and v' ∈ G', either v and v' are both terminal vertices with value(v) = value(v'), or v
and v' are both nonterminal vertices with index(v) = index(v'), σ(low(v)) = low(v'),
and σ(high(v)) = high(v').

Proving that two function graphs are isomorphic begins by mapping the root of G
onto the root of G'. The children of the root of G are then mapped onto the children
of the root of G'. This mapping continues until either there are no more vertices to
process, or an attempt to map a vertex in G to a vertex in G' fails.

Definition 2.8 For any vertex v in a function graph G, the subgraph rooted by v is
defined as the graph consisting of v and all of its descendents.

Definition 2.9 A function graph G is reduced if it contains no vertex v with
low(v) = high(v), nor does it contain distinct vertices v and v' such that the subgraphs
rooted by v and v' are isomorphic.

Theorem 2.5 For any Boolean function f, there is a unique (up to isomorphism)
reduced function graph denoting f. Any other function graph denoting f contains
more vertices.

The proof, by induction, can be found in Bryant’s original paper. We now pro-
ceed to describe some algorithms introduced by Bryant. The most important of these
algorithms are the Reduce algorithm, which transforms any arbitrary graph into a
unique, reduced graph representing the same function, and the Apply algorithm,
which performs a specified operation, such as AND, OR, XOR, and so on, upon two

BINARY DECISION DIAGRAMS 93

BDDs. However, first it is helpful to define a data structure that describes the
vertices in the BDD. The following structure, expressed in the C programming lan-
guage, contains information needed to process the vertices, and facilitates traversals
of the BDD:

struct vertex {
struct vertex *parent, *low, *high;
int index;
int id;
char value; // 0, 1 or X
char mark;

}

Table 2.5 describes the entries in this structure. The index is taken from the subscript
of variable xi . The id field can be used when assigning numbers to the vertices dur-
ing an operation. The mark field can be initially set to 0 or 1. Suppose the field is ini-
tially set to 0. Then, when traversing the BDD, mark can be set nonzero to indicate
that the vertex has been visited. A simple rule when traversing the graph is to start at
the root. Then, for vertex v, first visit low(v) if it is unmarked. If it is marked, and if
high(v) is also marked, then set the mark of vertex v nonzero, and move up to the
parent vertex. Repeat until all vertices are marked. This is described more formally
in the following procedure:

procedure Traverse(v:vertex)
{
 v.mark := not v.mark;
// ... perform operations here ...
 if (v.index < n+1)
 { // v nonterminal
 if(v.mark != v.low.mark) Traverse(v.low);
 if(v.mark != v.high.mark) Traverse(v.high);
 }
 return;
}

TABLE 2.5 Field Values for BDD Structure

Field Terminal Nonterminal

low null low(v)
high null high(v)
index n + 1 index(v)
val value(v) X

94 SIMULATION

Traverse is a basic utility that is employed by other functions to perform tasks such
as to search BDDs or to assign unique integers to each vertex that it visits. For exam-
ple, a counter may be used and vertices assigned ids in either ascending or descend-
ing order.

It was previously stated that variables must adhere to a total ordering during pro-
cessing. All operations performed on a BDD must adhere to that same ordering of
the variables. If the order is changed, it must be changed for all operations. BDDs
that adhere to this ordering are referred to as ordered BDDs (OBDDs). If, in addition
to the ordering, the BDDs are reduced, using the Reduce algorithm, the OBDDs
become reduced, ordered BDDs (ROBDDs). The ROBDDs produced by the Reduce
algorithm are unique; hence if two circuits represented in BDD form, with their vari-
ables in the same order, are reduced to identical ROBDDs, then the original circuits
from which they were derived are identical.

The Reduce algorithm is given below, in a pseudo-language. It will be illustrated
using Figure 2.36. Note that it will be convenient to refer to a BDD representing
function f as Bf. The first step is to group the vertices into n + 1 lists, where each ver-
tex with index i is linked to list position i. This can be done using the Traverse algo-
rithm. Then the linked lists are processed, beginning with list n + 1—that is, the list
of terminal vertices.

function Reduce(v: vertex): vertex;
var subgraph: array[1..|G|] of vertex;
var vlist: array[1..n+1] of list;
{
Put each vertex u in list vlist[u.index] // use
// Traverse

nextid = 0;
for(i = n+1; i >= 0; i--); // start with terminal
// vertices

{
Q = empty set;
for(each u in vlist[i])do
if (u.index == n+1)
add <key,u> to Q // key=(u.value) (terminal

// vertex)
else if (u.low.id = u.high.id)
u.id = u.low.id; // redundant vertex

else add <key,u> to Q; // key = (u.low.id,
// u.high.id)

// NOTE: u.id not added to Q if (u.low.id == u.high.id)
sort(Q); // by keys
oldkey = (–1,–1); // unmatchable key
for(each <key,u> in Q) { //removed, in order

BINARY DECISION DIAGRAMS 95

if (key == oldkey)
u.id = nextid; // matches existing vertex

else { // unique vertex
nextid = nextid+1;
u.id = nextid;
subgraph[nextid] = u;
u.low = subgraph[u.low.id];
u.high = subgraph[u.high.id];
oldkey = key;

}
}
return(subgraph[u.id]);

}
}

When processing the terminal vertices in vlist n + 1, a 2-tuple <key, u> is added
to set Q for each terminal vertex u ∈ vlist[n + 1]. Key is actually the value 0 or 1 of
the terminal vertex. After all terminal vertices have been processed, the set Q is pro-
cessed. Two terminal vertices are retained, one for each binary value. The terminal
vertex with value 0 is assigned the id 1, and the terminal vertex with value 1 is
assigned the id 2. These ids appear in enclosed in diamonds in Figure 2.36.

After the terminal vertices have been processed, the nonterminal vertices are
processed, starting with vlist[n]. First, Q is reset to the empty set, and then each
of the four vertices linked to vlist[3] is processed in turn. Note that for i = n, if
u.low.id = u.high.id, then the low and high edges emanating from vertex u both ter-
minate on a terminal vertex with value 0 or 1. Hence, the vertex can immediately be
replaced by low(u). In Figure 2.36 the leftmost vertex with index 3 can be replaced
by the terminal vertex with value 0. In practice, the low(v) from the leftmost vertex
with index 2 can be connected to a terminal vertex with value 0.

Figure 2.36 Assigning ids to vertices.

1

2

33

0

00

0 1

1

1

1

10 0 0

Bf

2

33

0

00 1

1

1

0 1 011 2

3 4

6

5

96 SIMULATION

After the remaining vertices with index 3 have been processed, the set Q will
have three entries corresponding to index 3. The first entry in Q will have key <1,
2>, and the remaining two entries will both have key <2, 1>. The keys are sorted and
duplicates are discarded. In Figure 2.36, the rightmost vertex with index 3 is dis-
carded and the 1-edge from its parent vertex is reset so as to point to the other vertex
with key <2, 1>. The two remaining vertices with index 3 are assigned ids 3 and 4,
again enclosed in diamonds.

The next vlist to be processed is vlist[n – 1], in this case vlist[2]. The leftmost
vertex with index 2 is assigned key <1, 3>. The rightmost vertex with index 2 is dis-
carded because its low(u) and high(u) both point to the same vertex. Hence, the 1-
edge emanating from the root connects to the vertex with index 3 and id 4. The left-
most vertex is assigned id 5. Finally, vlist[1] is processed and assigned id 6. The
ROBDD that results from applying the Reduce algorithm to the BDD in Figure 2.36
is shown in Figure 2.37. To build the equivalent ROBDD from the original BDD, it
is necessary to keep track of the vertices in the ROBDD using linked lists. Then,
after the entire original BDD has been processed, a ROBDD is constructed using
the linked lists of vertices, adjusting pointers from discarded vertices to the vertices
that were assigned ids. Finally, the original BDD can be discarded and its memory
freed up.

It was stated earlier that variables must be ordered when creating ROBDDs.
However, there is no rule dictating the order, only that the same ordering must be
maintained during all processing. In fact, because ROBDDs are very sensitive to the
ordering chosen, a considerable amount of research has been expended trying to find
ideal orderings for the variables. For example, if the variables in Figure 2.37 are
rearranged so that x2 becomes the root, then the ROBDD in Figure 2.38 results. It
represents the same function as the ROBDD in Figure 2.37, but has one more non-
terminal vertex. Some functions are extremely sensitive to ordering of the variables.

2.11.3 The Apply Operation

Given two functions f and g, and a logic operation 〈op〉, the result f 〈op〉g can be
obtained by applying 〈op〉 directly to the expressions for f and g, using the distribu-
tive, commutative, and other familiar rules for manipulating Boolean expressions.

Figure 2.37 Reduced binary decision diagram.

1

2

3
0

0

0 1

1

1

f

3

0

1

0 1

BINARY DECISION DIAGRAMS 97

Figure 2.38 Another ROBDD for the same function.

Another approach is to apply 〈op〉 to the values of f and g in corresponding rows of
their truth tables. A third method, given complete binary decision trees for f and g, is
to apply 〈op〉 to corresponding terminal vertices of the trees. However, in practice, f
and g are likely to be reduced, and available computer memory, in all likelihood, is
not sufficient to permit expanding the OBDDs to binary decision trees. The Apply
algorithm addresses this problem. Given two OBDDs Bf and Bg, Apply operates on
them recursively and produces a resulting OBDD that represents Bf 〈op〉 Bg. It is
based on the following recursion, obtained by performing 〈op〉 on Shannon’s expan-
sion for the functions f and g:

(2.12)

The Apply algorithm starts at the roots of two OBDDs Bf and Bg, corresponding
to functions f and g, and descend toward the terminal vertices. At any time during
the discussion that follows, the corresponding vertices of f and g that Apply is oper-
ating on will be considered roots rf and rg of corresponding subgraphs. The Apply
algorithm is constantly producing resulting vertices rf 〈op〉 rg. During this descent,
there are several possibilities that must be considered:

1. Roots rf and rg are both terminal vertices.

2. Roots rf and rg are nonterminal vertices with identical indices i.

3. rf is a nonterminal vertex with index i, and rg is either a terminal vertex or a
nonterminal with index j, for j > i.

If roots rf and rg are both terminal vertices, then the value of the terminal vertex
for the resulting OBDD is value(rf) 〈op〉 value(rg). If roots rf and rg are nonterminal
vertices and have identical indices i, then the Apply algorithm is applied to the low
and high vertices of rf and rg; that is, the corresponding vertex of the resultant

2

1

3

0

0

0 1

1

1

f

3

0

1

0 1

1

1
0

f op〈 〉g xi f
xi 0=

op〈 〉g
xi 0=

() xi f
xi 1=

op〈 〉g
xi 1=

()⋅+⋅=

98 SIMULATION

OBDD has a 0-arc to apply(〈op〉, low(rf), low(rg)) and a 1-arc to apply(〈op〉, high(rf),
high(rg)). This is basically an iteration of Shannon’s equation, as expressed in
Eq. (2.12). The third case requires a little more analysis. Note that there is actually a
fourth case where i > j, and rf is either nonterminal or terminal. However, the prob-
lem is symmetrical, so the processing follows that of case 3.

If the root rg has index j > i, then the subfunction corresponding to rg is indepen-
dent of the variable xi. In that case, = . So

Therefore and in Eq. (2.12) can both be replaced by g. As a result,

the 0-arc in the resultant OBDD is determined by apply(〈op〉, low(rf), rg) and the
1-arc is determined by apply(〈op〉, high(rf), rg). If rg is a terminal vertex, then 〈op〉
may cause the resulting vertex to assume a binary value, in which case the resulting
vertex is terminal. This would happen, as an example, if rg is terminal with binary
value 0 and 〈op〉 is an AND operation.

The Apply algorithm follows:

function Apply(v1, v2: vertex; <op>: operator): vertex;
var T: array[1..|G1|, 1..|G2|] of vertex;
function Apply-step(v1, v2: vertex): vertex;

// recursive
{
u = T[v1.id, v2.id];
if (u != NULL)
return(u); // already evaluated

u = new vertex record;
u.mark = FALSE;
T[v1.id, v2.id] = u; // add vertex to table
u.value = v1.value <op> v2.value;
if (u.value != X) { // create terminal vertex
u.index = n+1;
u.low = NULL;
u.high = NULL;

}
else { // create nonterminal, continue descent
u.index = Min(v1.index, v2.index);

 //---
if (v1.index == u.index)

{ vlow1 = v1.low; vhigh1 = v1.high; }
else { vlow1 = v1; vhigh1 = v1; }

g xi 0= g xi 1=

g xi g xi 0= xi g xi 1=⋅+⋅= xi xi+() g xi 0= g xi 0==⋅=

g xi 0= g xi 1=

BINARY DECISION DIAGRAMS 99

 //---
if (v2.index == u.index)

{ vlow2 = v2.low; vhigh2 = v2.high; }
else{ vlow2 = v2; vhigh2 = v2; }

 //---
u.low = Apply-step(vlow1, vlow2);
u.high = Apply-step(vhigh1, vhigh2);

}
return(u);

}
{ // Main routine
initialize all elements of T to null;
u = Apply-step(v1,v2);
return(Reduce(u));

}

The Apply algorithm will be illustrated using the circuit in Figure 2.39. The OBDDs
Bf and Bg represent the AND gates f and g. All 0-arcs go directly to terminal vertex
with value 0. The object will be to synthesize an OBDD for the entire circuit, given
the OBDDs for f and g.

The Bf in Figure 2.40 is an expanded version of the Bf in Figure 2.39. In
Figure 2.40 there are two vertices with index 2. Both edges terminate on a vertex
with index 3. Likewise, the vertex with index 3 has two edges terminating on the
terminal vertex with value 0. It would be possible to completely expand a BDD to
achieve a binary decision tree—that is, one in which all possible terminal vertices
exist. Then a logic operation could be applied to corresponding terminal vertices.
However, Apply does not pad the BDD in this way. Rather, if one BDD has a vertex

Figure 2.39 OR’ing two BDDs.

1

1

3
0

1

0 1

2

1

0

0

4

1

1

0 1

5

0

0

Bf Bg

G

x1
x2

x4

x5

x3

g1

f2

f3

f4 f5

f1

g2

g3g4

100 SIMULATION

Figure 2.40 Applying the Apply algorithm.

at position i and the other does not, then Apply goes directly to the vertex at posi-
tion j, where j > i. If j = n + 1, then performing 〈op〉 on a pair of vertices may
cause a terminal vertex to be created. For example, if 〈op〉 is the AND operation,
and one vertex is a terminal vertex with value 0, then performing 〈op〉 on that ver-
tex and any other vertex from the other BDD will always result in a terminal ver-
tex with value 0.

The Apply algorithm will be illustrated by OR’ing ROBDDs Bf and Bg in
Figure 2.39. The calculations are shown in Figure 2.40(a), and the reduced ROBDD
is shown in Figure 2.40(b). The starting point for the Apply algorithm is the pair of
root vertices, f1 and g1. The first step is to create a root vertex corresponding to the
OR of Bf and Bg. In Figure 2.40(a) this vertex is assigned the label (f1, g1). From
there, Apply begins its descent down the edges of each OBDD. It first calculates
low(f1, g1). Starting at the low edge of f1, i t arrives at terminal vertex f4, with
index(f4) = 6. Since index(g1) = 4, which is less than index(f4), Apply remains at g1.
The OR operation is applied to terminal vertex f4 and nonterminal vertex g1, and it
yields vertex g1.

Apply then calculates high(f1, g1). Index(high(f1)) = 2 and index(high(g1)) = 5,
so Apply stays at g1, rather than descending to its child vertex. The OR applied to f2
and g1 is indeterminate, so a nonterminal vertex with index 2 is created and assigned
the label (f2, g1). Next, Apply processes vertices f4 and g1. Low(f4) and low(g1) are
both terminal vertices with values 0, so performing the OR operation on these verti-
ces results in a terminal vertex that is assigned the label (f4, g3). Processing high(f4)
and high(g1) produces a vertex with label (f4, g2) and index 5. The remaining verti-
ces are processed in similar fashion.

1
1

5

0 1

0

1

2

1

0

0

(f1, g1)

3

4

1

1

0

0

4

0

0

0
4

5

10

1

0

5

1

(f4, g1)

(f
4,

 g
3)

(f4, g1)

(f3, g1)

(f2, g1)

(f4, g1)

(f4, g2)

(f4, g2)

(f4, g2)

(f
4,

 g
4)

(f
4,

 g
3)

(f5, g1)

(f
4,

 g
3)

(f
4,

 g
4)

(f
4,

 g
3)

(f
4,

 g
3)

(f
4,

 g
4)

(f
4,

 g
3)

1

1

3
0

1

2

1

0

0

1

1

0 1

5
0

0

(a) (b)

1

1

1

10

0

0

0
4

CYCLE SIMULATION 101

Note that in Figure 2.40(a) some vertices appear more than once. For example,
vertex (f4, g1) appears three times. The subgraph with root (f4, g1) need not be pro-
cessed each time it is encountered. The table T is used to identify vertices in the
resultant BDD that have already been processed. When such a vertex is encountered,
a pointer to the original vertex is inserted in the BDD. This can result in significant
savings in processing time. Because T may represent a sparse matrix, the actual
implementation can be a hash table in order to minimize the amount of memory
required.

The Restriction algorithm is a useful utility. Given a function f, Restriction con-
verts f into . Restriction traverses the BDD, like Traverse, looking for point-
ers to a vertex v such that index(v) = i. When such a pointer is encountered, it is
changed to point to low(v) if b = 0, or it is changed to point to high(v) if b = 1. Then
Reduce is called to reduce the graph.

The Composition algorithm is used to obtain a graph for a hierarchical network.
For example, an n-wide adder may contain n full adders connected in a ripple carry
configuration. The following equation represents a function f1 for which function f2
is to be substituted for variable xi. The ROBDD for this function can be derived
directly through application of the Restriction and Composition algorithms, fol-
lowed by Reduce. A more efficient implementation of the Composition algorithm
can be found in Bryant’s original paper.31

2.12 CYCLE SIMULATION

New design starts continue to grow in gate count, and the amount of CPU time
required to simulate these designs tends to grow disproportionate to gate count,
implying a growing need for simulation speed. A simple example helps to shed light
on this situation. Suppose a circuit has n functions and that, in the worst case, each
function interacts with all of the others. Ignoring for the moment the complexity of
the interactions, there are n × (n − 1)/2 potential interactions between the n func-
tions. Thus, in the worst case, the number of interactions grows proportional to the
square of the number of functions.

Handshaking protocols between functions also grow more complex. Internal
status and mode control registers act as extensions to device I/O pins. To verify the
growing number of interactions requires more stimuli. In addition, the growing
number of gates and functions in the circuit model generate more events that must
be evaluated during each clock cycle. The combination of more functionality and
more stimuli requires an exponentially growing amount of CPU time to complete
the evaluations. A consequence of this is a growing difficulty to create and simulate
enough stimuli to verify design correctness. As a result, design errors are more
likely to escape detection until after tape-out, at which time the discovery of errors
requires another expensive iteration through the design cycle.

f xi b=

f1 xi f 2= f2 f1 xi 0=() f2 f1 xi 1=()⋅+⋅=

102 SIMULATION

Cycle simulation is one of the answers to the growing need for greater verifica-
tion power. Cycle simulation evaluates logic elements and functions across clock
cycle boundaries without regard to intermediate values. Its purpose is to evaluate
input stimuli as rapidly as possible. Designs are required to be synchronous so that
every possible technique can be leveraged during simulation. Rank-ordering is used
so that elements only need to be evaluated once during each clock period. Circuit
delays are ignored, and the number of logic values is usually limited to three or four
{0, 1, X, Z}. Internal representation of the circuit may be in terms of binary decision
diagrams (BDDs), so intermediate values are totally obscured. To insure that a cir-
cuit operates at its intended speed when fabricated, circuit delays are measured by
timing analysis programs that are written specifically for that purpose and run inde-
pendently of simulation. The designer plays a role in this simulation mode by mod-
eling circuits at the highest possible level of abstraction without losing essential
details.

A number of methods have been developed to speed up simulation while reduc-
ing the amount of workstation memory required to perform simulations.
Figure 2.41 provides a taxonomy of such approaches.32 From the figure it can be
seen that simulation performance can benefit from enhancements in software, hard-
ware, and circuit modeling. Chapter 12 will examine analytical methods for design
verification.

Modeling efficiencies can be realized in several ways. The Verilog HDL sup-
ports user defined primitives (UDPs). These permit a user to define the behavior
of small functions such as multiplexers, full-adders, latches, delay flip-flops,
and so on, by means of lookup tables rather than as interconnections of several
individual logic gates. A single table lookup then replaces several logic gate
evaluations.

Figure 2.41 Simulation performance factors.

Simulation
performance

Modeling

Zero
delay

Software

Coding
efficiencies

Behavioral
models

Rank
ordering

Statistical
bias

Data flow
machines

Massively
parallel

machines

Hardware

Algorithm
improvements

Special
architectures

Faster
CPU

Tighter code
Compiled code

CYCLE SIMULATION 103

Figure 2.42 Computing output value efficiently.

Statistical bias can be used to advantage both in the simulator and in the model.
Consider the circuit in Figure 2.42. In Verilog the circuit might be coded as

Z = A & B & (C | (D & (E | F)));

An intelligent simulator will process it as if it had been encoded as

if ((A == 0) | (B == 0)) Z = 0;
else if (C == 1) Z = 1;
else if (D == 0) Z = 0;
else if ((E == 1) | (F == 1)) Z = 1;
else Z = 0;

As soon as the value of Z has been determined, the simulator breaks out of the if/
else construct since there is no need for further processing. If logic values 0 and 1
are equally probable on all nets, then 50% of the time A is 0 and further calcula-
tions cease. Similar considerations hold for B, so that 75% of the time it is unnec-
essary to go beyond the first line. Similar considerations hold for the remaining
lines.

Rank-ordering was discussed in Section 2.6, where it was pointed out that it was
a necessary requirement for efficient simulation. An event-driven simulator does not
require rank-ordering to correctly simulate a circuit, but can benefit from it. If a
combinational array such as an ALU or multiplier is being evaluated, rank-ordering
can ensure that no element is evaluated more than once. However, either all elements
must be assigned zero delay or, if delay values are present, they must be ignored.
The simulator can be implemented with both the timing wheel and the READ/
WRITE array scheduling mechanisms. Then, the more efficient READ/WRITE
array can be used in place of the timing wheel when groups of zero-delay logic are
encountered in order to realize further CPU savings. In general, the use of two
scheduling mechanisms permits synchronous and asynchronous logic to be segra-
gated and processed separately.

Stimulus ordering refers to the practice of ordering stimuli at primary inputs in
such a way as to reduce the number of logic events propagating through a circuit.
When simulating a combinational circuit where simulation results do not depend

Z
A

C

D

E

F

B

U1

U2

U3

U4

104 SIMULATION

on the existing state of the circuit, a common practice is to apply randomly gener-
ated stimuli to the circuit to verify its correctness. Large numbers of vectors can be
generated with very little effort on the part of the person performing the verifica-
tion. For example, if verifying an array multiplier, the logic designer can write a
computer program to randomly generate input arguments A and B as integers, mul-
tiply them to obtain the product, then decompose A and B into their binary equiva-
lents and apply them to the design. The binary result computed during simulation is
then converted to decimal and compared with the value computed by the computer
program.

When many random input values change from one vector to the next, a huge
number of simulation events can occur in a gate-level circuit model. On large com-
binational arrays with thousands, or tens of thousands, of logic gates, ordering vec-
tors based on their Hamming distances (cf. Chapter 10) can sometimes produce
major savings of simulation time. To understand the principle, consider a simple 2-
input AND gate. If the input combinations are ordered as A,B = {(0,0), (1,1), (1,0),
(0,1)}, there are a total of five input events. If the input combinations are reordered
as A,B = {(0,0), (0,1), (1,1), (1,0)}, each vector causes a single input event, so there
are a total of three input events. For a combinational block of logic, results are not
affected by the order in which vectors are simulated, so rearranging the input vectors
in order to minimize events from one vector to the next may yield significant savings
in CPU time.

In general, the goal of cycle-based simulation is to squeeze out all unnecessary
computations while correctly determining circuit response to input stimuli. In order
to eliminate computations, assumptions usually must be made. For example, it must
be safe to assume that hazards will not destabilize the circuit. To safely make this
assumption, state transitions must be synchronized by external clock(s) that are
unaffected by internal logic activity. Furthermore, the durations of clock periods
must be independent of circuit activity, and it is necessary to verify, independent of
simulation, that logic events in the circuit will propagate to their destinations within
the allotted time period.

If a circuit can be correctly simulated with only the values 0 and 1, the circuit
model can be further simplified, and control statements, such as case statements
and if statements, do not have to consider the consequences of indeterminate val-
ues. But, to get correct values, it must be possible to initialize all flip-flops to 1 or
0 at the beginning of simulation. Storage elements must be explicitly defined.
This means that storage created by feedback loops in combinational logic, such as
latches created by cross-coupled NAND or cross-coupled NOR gates, must be
forbidden.

Wherever possible, blocks of detailed circuitry should be replaced by models
expressed at a higher level of abstraction, eliminating intermediate variables along
the way. If, for example, an ALU has been thoroughly characterized and its behavior
can be expressed by a case statement, that code should be used in place of a more
detailed RTL or gate-level model. This is especially true when running regression
tests, provided that the circuitry expressed at a higher level of abstraction has not,
itself, become the subject of change activity. The circuit in Figure 2.43 can be used

CYCLE SIMULATION 105

Figure 2.43 Circuit illustrating cycle simulation.

to illustrate this. A more concise description of its behavior is provided by the fol-
lowing Verilog code:

module litl_alu (i1,i2,i3,i4,i5,z);
input i1, i2, i3, i4, i5;
output z;
reg z;
always @(i1 or i2 or i3 or i4 or i5)
 case({i3,i4})
 2'b00: z = i1 | i2;
 2'b01: z = i1 ^ i2 ^ i5;
 2'b10: z = i1 & i2;
 2'b11: z = !(i1 ^ i2 ^ i5);
 endcase
endmodule

The use of ROBDDs to evaluate cones of logic can provide huge performance
gains. Consider first the evaluation of the circuit using a zero-delay simulator. All
the nets are initialized to X, and then the vector I1, I2, I3, I4, I5 = (0, 0, 0, 0, 0) is
applied to the circuit. Every element in the circuit has to be evaluated. Now suppose
I2 switches to 1. Gates J, K, N, and P switch states. Each logic gate evaluation
requires that the simulator acquire two or more values corresponding to the inputs of
that gate and perform the appropriate calculation. The evaluation of the RTL code
significantly reduces the amount of computation required.

Now consider what happens when ROBDDs are used. The ROBDD for the cir-
cuit in Figure 2.43 is shown in Figure 2.44. To determine the output response of the

I1

I2

I3

I4

I5

Z

A

B

C

D

E

F

G

H

J

K

L

O

M

N

P

106 SIMULATION

Figure 2.44 ROBDD for circuit in previous figure.

circuit for the input combination (0,0,0,0,0), simply traverse all the 0-arcs of the
ROBDD. Recall from the previous section that there is a data structure for each ver-
tex, and the data structure contains pointers corresponding to the 0-edge and the 1-
edge. It is a simple matter to traverse these structures until arriving at a terminal ver-
tex, in this case the vertex with value 0. When I2 changes to 1, the entire ROBDD is
again traversed; however, this time the path leads to the terminal vertex with value 1.

In both traversals it was only necessary to follow links in data structures corre-
sponding to four vertices. For a larger combinatorial array, such as an ALU, the sav-
ings in CPU time may be two or more orders of magnitude. The one drawback to
this approach is that BDDs for some arrays, such as multipliers, cannot be reduced.
When circuits contain large arrays whose BDD representation cannot be reduced
and are too large to fit into memory, a hybrid approach can be used. Those networks
can be rank-ordered and simulated using event propagation. Other judgments can
also be made; for example, if an RTL expression is obviously a counter, then the
entire block of code representing the counter can be treated as a single function and
simulated as such. This will require that the logic designer model constructs such as
counters unambiguously, so the simulator can recognize their behavior.

2.13 TIMING VERIFICATION

As systems grow larger and as design, simulation, and test grow more complex, syn-
chronous design techniques become more attractive. The use of one or more master
clocks to synchronize events makes it possible to simulate logical and functional
behavior in a zero delay environment. If, in addition, the system is provided with a
master reset that forces all memory elements into a known starting state, it becomes

01
10

1

1

0

0

1
0

0
1

0

0 1

0

0

1
0

1

1

0

1 0

1

1

1

22

333

4444

55

TIMING VERIFICATION 107

possible to dispense with the indeterminate X value and restrict simulation to the
Boolean values 0 and 1.

A key feature of this design methodology is the fact that all registers and flip-
flops are controlled by one or more clock signals that are either not gated with
combinational logic or are gated only within the framework of a very closely con-
trolled set of design rules. This operation is illustrated in Figure 2.45 for a circuit
with a single clock. The elements labeled A, B, C, and D may be registers or single
flip-flops. At no time in this circuit is any clock signal generated or controlled by
logic operations performed in combinational logic. Clock line layout, powering, and
delay calculations are performed independently of the logic controlled by the clocks.

Just as clock distribution is a science independent of logic design, zero-delay
simulation requires an independent means for computing propagation delay along
signal paths. If delay is excessive, a signal will not reach its destination before the
next clock pulse. If the delay is too short, hold time requirements for the flip-flops
may be violated. Two methods for performing timing verification include path enu-
meration and block oriented analysis.33

2.13.1 Path Enumeration

Path enumeration starts at a particular element, either an I/O pin or a stored state
variable, and traces through the logic until a termination point is reached, either an
I/O pin or a stored state variable. Maximum element delays encountered along the
paths are added to accumulative a total as the program traces the path. Rise and fall
times are both used to precisely calculate propagation time.34

Example The circuit in Figure 2.46 will be used to illustrate path enumeration. To
calculate the propagation time required for a signal originating at E to reach L, start
at L and work back toward the inputs. Assume that a rising signal has reached L. In
that case the rise time for gate K is used as the initial sum. It is added to the rise time
for gates I and J. The fall time for G is added next because a 0 to 1 transition at the
output of gate J requires a 1 to 0 transition at input E. Next, the propagation time for
a falling signal to reach gate L is calculated. To get this value the fall times for gates
K, I, and J and the rise time for gate G are added. The larger of the two sums becomes
the propagation time from E to L. ��

Figure 2.45 Synchronous circuit.

A

B

C

D

Clock

108 SIMULATION

Figure 2.46 Path analysis circuit.

An important point in the rationale for timing verification is the fact that, at some
point during operation of a circuit, the signal along the path being calculated will be
the controlling signal for some output. For example, if inputs A,B,C and D in
Figure 2.46 are assigned the values (0,0,1,0), then the output is totally dependent on
the value assigned to input E. If it has value 0(1), then output L has value 0(1). When
the path being analyzed is the controlling signal, path enumeration must determine
which signal originating at the input, 0 or 1, takes longer to propagate to the output.
It must then determine, among all paths into a bistable, the path that has maximum
propagation delay when it has the controlling signal. The implicit assumption that
all other signals are set up to propagate the signal whose delay is being calculated
makes it possible to ignore the logic function performed by the elements along that
path. It is only necessary to know the rise and fall delays of each element and
whether or not the element inverts the signal.

2.13.2 Block-Oriented Analysis

In this method the program starts at some assumed time with signals at primary
inputs and bistables. Furthermore, required arrival times are assigned to destination
elements. The elements, or blocks, that are driven by the primary inputs and bista-
bles are processed to find the earliest and latest time at which a signal could propa-
gate through them. Then, elements driven by these elements are processed. In
general, no element is processed until all elements driving its inputs are processed.
This requires that the circuit be rank-ordered.

The block-oriented method identifies the worst path leading up to each block and
feeds this information forward. This is continued until a primary output or bistable is
reached. Then, the difference between the required arrival time and the propagation
time is computed. This value is called slack. A negative slack indicates excessive
propagation time.

After all paths have been propagated forward, computations are performed in the
opposite direction. The propagation value at the element that drives the primary out-
put or bistable is subtracted from the required arrival time to determine when the
signals must arrive at the inputs to this block. The previously computed propagation

A

B

C

D

E

F

G

H

I
J

K
L

TIMING VERIFICATION 109

numbers are subtracted to find the slack at the inputs to this block, and the process is
continued until the source elements are reached.

Example Referring again to Figure 2.46, assume each of the elements has identical
rise and fall delay of 5 units. Also, assume that input changes occur at time 0 and that
maximum propagation delay to output L is 18 units. Gates F and H can both be pro-
cessed to give delay of 5 units on their outputs, but J cannot be processed until G is
processed. After G is processed, the delay at the output of J is the greater of the values
on D and G plus the delay of J. Since the delay at G is 5 units, the delay at J is 10
units. In similar fashion, the delay at I is 15 units and the delay at primary output L is
20 units, which results in a slack of −2 at the output.

The computations are now performed in reverse, starting with the required arrival
time and using the previously calculated propagation times. The slack on the inputs
to K are +8, +8, and −2, derived by computing the required arrival time at the inputs
to K, 18 − 5 = 13, and subtracting from that the propagation delay at the outputs of F,
H, and I. The required arrival time at the inputs to F, H, and I is 13 − 5 = 8. The slack
at the inputs to F and H is 8 and the slack at the inputs to I are +8 and −2. Continuing,
we find that the slack at E is −2 and a critical path with excessive propagation time
has been identified. ��

If looking for early arrival times, the computations use minimum values. If sepa-
rate rise and fall times are used, then pairs of numbers are maintained and inverting
elements must be identified. A falling edge delay at the output of an inverting ele-
ment is computed by taking the greater of the rise delays at its input and adding the
fall delay of the element.

The object of timing verification is to find signal paths having long (or short)
delay times. If propagation time along such paths is excessive, the path delay can be
reduced either by redesigning the logic, by selecting faster components, or by
assigning different physical dimensions to elements within an IC. A consequence of
redesigning circuits to switch faster is that they may then consume more power.
Increased power consumption may be offset by finding signal paths where the tim-
ing margin is greater than it needs to be and, if possible, redesigning the devices to
consume less power.35

A major benefit of timing verification is the fact that signal paths do not get over-
looked. Simulation only provides information on those signal paths that are exer-
cised by the applied stimuli. By contrast, during timing verification all paths are (or
can be) analyzed. However, some practical considerations must be taken into
account. Path enumeration can generate large amounts of data. It may be necessary
to reduce the amount of data generated so that the user is not overwhelmed. To
achieve this, it must be possible for the user to specify printout only of paths that fall
within some user-defined range, either above or below some threshold value.

For engineering design changes, it is not necessary to recompute all paths; there-
fore the user should have an option to specify signal paths of interest. Other consid-
erations include the ability to detect and properly handle feedback paths in
combinational logic, as well as paths that exceed some given clock period but which

110 SIMULATION

Figure 2.47 A false path.

are known to require two or more clock cycles to complete their operation. Clock
skew must be factored into the overall analysis since the time required for a clock
signal to reach numerous devices throughout a design, whether a chip or board, can
vary significantly.

The user may have to be careful to spot paths that appear to be problem paths but
which require logic combinations that cannot occur in practice. An example of this
is redundancies in combinational logic. Consider the circuit in Figure 2.47. The
delays are indicated at the inputs to the logic elements, and the rise and fall delays
are assumed to be identical. The total delay from input A to output F is 9 units. From
B to F through C is 10 units and from B to F through D is 6 units. It would appear
that the longest delay path from any input to output F is 10 units. But, closer exami-
nation of the circuit reveals that it implements the function A ⋅B + B, which can be
simplified to A + B, so the apparent longest path is redundant. This is an example of
a false path.

2.14 SUMMARY

Simulation techniques span the spectrum from switch-level to behavioral. At one
end of the spectrum, switch-level simulation provides considerable detail about the
behavior of virtually every transistor in the circuit. However, there is a price to pay
for this detail. Simulation takes much longer to complete. At the other end of the
spectrum, behavioral simulation provides very little detail. It is not concerned with
how the response is computed; its purpose is to investigate architectural parameters
and trade-offs. RTL and gate-level simulation lie somewhere in the middle of this
spectrum. The object at these levels is to design a circuit at the highest possible level
of abstraction that can be processed by synthesis tools. Nevertheless, there are occa-
sions, particularly with commodity chips, when design at the transistor level, at least
for part of the chip, may be necessary in order to meet performance goals or die size
restrictions.

The two basic approaches to simulation are interpreted and compiled. Interpreted
simulation does not require preprocessing circuits into machine language models.
For short simulation runs, an interpretive simulation may operate more efficiently,
since the compiled simulator has greater overhead when creating the model. A com-
piled simulation executes more efficiently once the circuit is compiled. Hence for

C

D
E

B

A
5

6

4

4

2
F

PROBLEMS 111

simulation jobs where large amounts of stimuli are to be applied, such as regression
suites that are run frequently, compiled simulation may be the preferred mode of
operation.

An understanding of the concepts underlying simulation, at its various levels of
abstraction, benefits users as well as those who implement the tools. By understand-
ing the concepts involved, including the cost/benefit trade-offs, the user can select
the right tool for his or her application. In future chapters we will see that this is true
of other aspects of test, including fault simulation and ATPG. A word of caution is in
order about abstraction. The process of abstraction strips away irrelevant detail in
order to focus on parameters of interest. Determining which detail is relevant and
which is irrelevant requires some judgment and experience. As an example, zero-
delay simulation runs faster than nominal-delay simulation, but if applied to an
asynchronous design, simulation results may become totally meaningless.

When dealing with digital circuits, large numbers of value/strength symbols may
seem unusual to the inexperienced logic designer. We are accustomed to thinking in
terms of 1s and 0s. Nevertheless, this spectrum of values has proven its worth. One
of the early architects of a family of computers has explained to this author how a
persistent problem in one of the models was traced to an uninitialized node. A new
simulator, which incorporated the value U, representing uninitialized, was employed
after the model had been in service for six months, and it successfully identified the
troublesome node. On yet another occasion, a noisy bus caused reliability problems.
An interim solution was the use of a piece of wire acting as an antenna. When noise
became excessive, the clock was shut down. Eventually, with the help of simulation,
the noise problems were tracked down and resolved.

Simulation technology has made great strides in the past three decades, both in
terms of simulation speed and gate count of the circuits processed. Users have
become more sophisticated in their choice of simulator algorithm, using switch-
level where necessary, and behavioral simulation, sometimes aided by hardware
accelerators, where possible. Advances over the past decade in simulation technol-
ogy have been aided by the emergence and growing popularity of two hardware
design languages, Verilog and VHDL. Successive generations of these languages are
approaching a common base.

PROBLEMS

2.1 Prove that A ⋅ B + C ⋅ D = (A + C) ⋅ (B + C) ⋅ (A + D) ⋅ (B + D).

2.2 Design a JK flip-flop based on the D flip-flop.

2.3 Modify the compiled simulator of Section 2.6 to enable it to perform three-
valued simulation on the cone of logic in Figure 2.9.

2.4 Modify the compiled simulator of the previous problem so that it can perform
3-valued simulation on a cross-coupled NAND latch. Create pseudo-inputs
and pseudo-outputs, check for oscillations.

112 SIMULATION

Figure 2.48 Karnaugh map.

2.5 State a general rule determining the minimum duration necessary for the pulse
on the Enable line of the circuit in Figure 2.8(b) in order to prevent a glitch.

2.6 For the Karnaugh map in Figure 2.48:

(a) Identify a 1-hazard.

(b) Identify all transitions for which 1-hazards can be avoided.

(c) Find a dynamic hazard.

2.7 Using a Karnaugh map, explain why the hazard in the circuit of Figure 2.11
is prevented by the additional AND gate.

2.8 Assume that the buffers in Figure 2.49 have delays indicated by the
numbers following the pound signs, and assume that all gates have zero
delay. Also assume a signal change from A,B,C,D,E = (0,1,1,1,0) to
A,B,C,D,E = (1,0,0,0,1) occurs. How many evaluations are required by an
event-driven simulator to determine the state of the circuit? Count each
event propagation through the delay elements as one evaluation. Next,
assume that the buffers have zero delay and that the circuit is rank-ordered.
How many evaluations are required under those assumptions?

2.9 In Figure 2.50, if elements are evaluated starting with the event occurring at
input A1, and then in ascending order to input An, how many events must be
propagated? If the elements are evaluated in descending order, from input An
to input A1, how many events must be propagated?

Figure 2.49 Delay calculations.

1

0

0

0

1

1

0

0

0

0

1

0

1

0

1

0

x1

x2

x3

x4

Z

A

B

C

E

D
#4

#3

#2

#1

#1

PROBLEMS 113

Figure 2.50 Event propagation.

2.10 Rank-order the circuit in Figure 2.43 and assign level numbers to each of the
gates.

2.11 Using the delay flip-flop in Figure 2.7, cut the feedback lines and explain how
to perform a zero-delay simulation, using Procedures A and B of
Section 2.6.5. Apply the following sequence of inputs: Preset, Clock, Data,
Clear = {(1,0,1,0), (1,0,1,1), (1,1,1,1), (1,0,0,1), (1,1,0,1), (0,1,0,1)}. Show
details of your work.

2.12 Using the delay flip-flop in Figure 2.7, assume that the rise and fall
propagation times of the NAND gates are all 5 ns. What happens when an
active clock edge appears with a pulse width of 8 ns? What is the minimum
required setup time required for the circuit? What is the minimum required
hold time?

2.13 Consider the circuit in Figure 2.51. Assume the initial assignment of values
on the nodes are all Xs and that the circuit is rank-ordered; that is, no element
is evaluated until all its inputs have been evaluated. Assume the input values
are applied in ascending order; that is, A,B,C,D = {(0,0,0,0), (0,0,0,1), ...,
(1,1,1,1)}. How many evaluations are necessary to complete the simulation?
Suppose inputs are reordered as follows: A,B,C,D = {(0,0,0,0), (1,1,1,1),
(0,0,0,1), (1,1,1,0), ..., (0,1,1,1), (1,0,0,0)}. Now how many evaluations are
necessary? Find a stimulus ordering that minimizes the number of
calculations required to simulate all 16 input combinations.

2.14 Create a nine-valued simulation table capable of detecting hazards at an OR
gate.

Figure 2.51 Counting events.

A1

An

An−1

An−2

A2

.

.

.

.

0→ 0

0→ 1

0→ 1

0→ 1
0→ 1
0→ 1

X1
X2 Xn−2

Xn−1
Xn

A0

F

A

B

C

D

114 SIMULATION

Figure 2.52 Path timing.

2.15 Given the following four combinations on the inputs of a three-input AND
gate, what is the resulting output for each of the combinations?

input 1 M / W M

input 2 W ^ ^ *

input 3 1 \ ^ M

2.16 Prove Lemmas 2.1 and 2.2 and Theorems 2.1 through 2.4.

2.17 Using Figure 2.52:

(a) Compute the timing of the paths from A, B, C, and D to the output for
both 1 and 0. Assume the rise time of the NAND gates is 8 ns and the
fall time is 5 ns.

(b) What maximum value would you get if you ignored the signal inver-
sions and just used average propagation delay? Maximum propagation
delay?

2.18 Referring to the circuit in Figure 2.29, describe the events that take place
when inputs I1 and I2 change from (0,0) to (0,1), then to (1,0), and then to
(1,1). What is the function of that circuit? Describe it in terms of Verilog
PMOS and NMOS transistors. Describe it in terms of tranif0 and tranif1
transistors.

2.19 Partition the circuit in Figure 2.29 dynamically and evaluate the circuit for
the four input combinations. Show your calculations.

2.20 Partition the circuit in Figure 2.26(b) statically. Describe the events that occur
when the cell has value 0 and is being updated to store a logic 1.

2.21 In the example using Figure 2.30, change input B from 1 to X and recompute
the node and switch values.

2.22 Are the two circuits in Figures 2.53(a) and 2.53(b) equivalent? Explain your
answer.

2.23 Partition the circuit in Figure 2.54 into components. Apply various binary
combinations to inputs A, B, C to determine the function of the circuit.

2.24 Using the gate-level model in Figure 2.43, the RTL model (litl_alu), and the
ROBDD in Figure 2.44, contrast the amount of work that must be performed

A

B

C

D

PROBLEMS 115

Figure 2.53 Comparing circuits.

Figure 2.54 Determining the function.

to evaluate the following six input vectors: (0,0,1,1,0), (1,0,0,0,1), (1,1,0,1,0),
(0,1,1,0,1), (1,1,1,0,1), (1,0,1,0,1). For the gate-level model, consider the
number of event-driven evaluations if the circuit elements all have one unit
of delay versus the number of evaluations if all elements have zero delay and
the circuit is rank-ordered.

2.25 Create a ROBDD for the function f = x1 ⋅ x2 + x3 ⋅ x4 + x5 ⋅ x6.

A

F

B

C

A

F

B

C

C

(a) (b)

g1

g1 g1

g1

g1

g2 g2

VDD

B

C

n2

n5

n1

n3
n4

A Z

116 SIMULATION

2.26 Create a ROBDD for the function f = x1 ⋅ x4 + x2 ⋅ x5 + x3 ⋅ x6. Compare it with
the ROBDD created in the previous problem. Can you generalize your
conclusion?

2.27 Create ROBDDs for the equations f1 and f2, below. Use the Apply algorithm
to compute f1 ⊕ f2.

f1 = x1 ⋅ x2 ⋅ x3 + x1 ⋅ x2 ⋅ x3 + x1 ⋅ x2 ⋅ x3

f2 = (x1 ⋅ x2) ⊕ x3

2.28 Prove Shannon’s expansion. Hint: Consider the function whose terms are
expressed in standard sum-of-products form; that is, every variable appears
in true or complement form in each term, and there is a term in the function
corresponding to every row in the truth table that evaluates to 1.

REFERENCES

1. Druian, R. L., Functional Models for VLSI Design, Proc. 20th D.A. Conf., 1983,
pp. 506–514.

2. Falkoff, A. D., K. E. Iverson, and E. H. Sussenguth, Formal Description of System/360,
IBM Syst. J., 3, 1964, pp. 198–262.

3. Hill, F. J., and G. R. Peterson, Computer Aided Logical Design: With Emphasis on VLSI,
4th ed., John Wiley & Sons, New York, 1993.

4. Chu, Y., Introduction to Computer Organization, Prentice-Hall, Englewood Cliffs, NJ,
1970.

5. Duley, J. R., and D. L. Dietmeyer, A Digital System Design Language (DDL), IEEE
Trans. Comput., Vol. C-17, September 1968, pp. 850–861.

6. Kumar, Jainendra, Prototyping the M68060 for Concurrent Verification, IEEE Des. Test,
Vol. 14, No. 1, January–March 1997, pp. 34–41.

7. Bryant, R. E., A Switch-level Model and Simulator for MOS Digital Systems, IEEE
Trans. Comput., Vol. C-33, No. 2, February 1984, pp. 160–177.

8. Sheffer, H. M., A Set of Five Independent Postulates for Boolean Algebras, Trans. Am.
Math. Soc., Vol. 14, 1913, pp. 481–488.

9. Huffman, D. A., The Synthesis of Sequential Circuits, J. Franklin Inst., Vol. 257, 1954,
pp. 161–190 and 275–303.

10. The TTL Data Book, 2nd ed., Texas Instruments, Dallas, TX, pp. 6–48.

11. Ulrich, E., and D. Hebert, Speed and Accuracy in Digital Network Simulation Based on
Structural Modeling, Proc. 19th D.A. Conf., 1982, pp. 587–593.

12. Eichelberger, E. B., Hazard Detection in Combinational and Sequential Switching
Circuits, IBM J. Res. Dev., Vol. 9, No. 2, March 1965, pp. 90–99.

13. Hardie, F. H., and R. J. Suhocki, Design and Use of Fault Simulation for Saturn Computer
Design, IEEE Trans. Electron. Comput., Vol. EC-16, No. 4, August 1967, pp. 412–429.

14. Thomas, Don, and Phil Moorby, The Verilog Hardware Description Language, 3rd ed.,
Kluwer, Boston, 1996.

REFERENCES 117

15. Palnitkar, Samir, Verilog HDL, Prentice-Hall, Upper Saddle River, NJ, 1996.

16. IEEE 1364 Standard, Verilog Hardware Description Language Reference Manual
(LRM), IEEE Standards Assoc., Piscataway, NJ.

17. Fantauzzi, G., An Algebraic Model for the Analysis of Logical Circuits, IEEE Trans.
Comput., Vol. C-23, No. 6, June 1974, pp. 576–581.

18. Phillips, N. D., and J. G. Tellier, Efficient Event Manipulation: The Key to Large Scale
Simulation, Proc. 1978 IEEE Int. Test Conf., pp. 266–273.

19. Ulrich, E. G., Exclusive Simulation of Activity in Digital Networks, Commun. ACM,
Vol. 12, No. 2, February 1969, pp. 102–110.

20. Ulrich, E. G., Non-integral Event Timing for Digital Logic Simulation, Proc. 14th D.A.
Conf., 1976, pp. 61–67.

21. Bowden, K. R., Design Goals and Implementation Techniques for Time-Based Digital
Simulation and Hazard Detection, Proc. 1982 Int. Test Conf., pp. 147–152.

22. Hayes, J. P., A Logic Design Theory for VLSI, Proc. Caltech Conf. VLSI, January 1981,
pp. 455–476.

23. Holt, D., and D. Hutchings, A MOS/LSI Oriented Logic Simulator, Proc. 18th D.A.
Conf., 1981, pp. 280–287.

24. Bryant, R. E., A Survey of Switch-Level Algorithms, IEEE Des. Test, August 1987,
pp. 26–40.

25. Bryant, R. E., A Switch-Level Model of MOS Logic Circuits, VLSI 81, August 1981,
pp. 329–340.

26. Bryant, R. E., A Switch-Level Model and Simulator for MOS Digital Systems, IEEE
Trans. Comput., Vol. C-33, No. 2, February 1984, pp. 160–177.

27. Bose, S., V. D. Agrawal, and T. G. Szymanski, Algorithms for Switch Level Delay Fault
Simulation, Proc. IEEE Int. Test Conf., 1997, pp. 982–991.

28. Akers, S. B., Binary Decision Diagrams, IEEE Trans. Comput., Vol. C-27, No. 6, June
1978, pp. 509–516.

29. Lee, C. Y., Representation of Switching Circuits by Binary Decision Programs, Bell Syst.
Tech. J., Vol. 38, July 1959, pp. 985–999.

30. Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974, pp. 51–55.

31. Bryant, E. Randal, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., August 1986, Vol. C-35, No. 8, pp. 677–691.

32. Miczo, A. et al., The Effects of Modeling on Simulator Performance, IEEE Des. Test,
Vol. 4, No. 2, April 1987, pp. 46–54.

33. Hitchcock, R. B., Timing Verification and the Timing Analysis Program, Proc. 19th D.A.
Conf., 1982, pp. 594–604.

34. Wold, M. A., Design Verification and Performance Analysis, Proc. 15th D.A. Conf., 1978,
pp. 264–270.

35. Ng, P. et al., A Timing Verification System Based on Extracted MOS/VLSI Circuit
Parameters, Proc. 18th D.A. Conf., 1981, pp. 288–292.

119

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 3

Fault Simulation

3.1 INTRODUCTION

Thus far simulation has been considered within the context of design verification.
The purpose was to determine whether or not the design was correct. Were all the
key control signals of the design checked out? What about the data paths, were all
the “corners” or endpoints checked out? Are we confident that all likely combina-
tions of events have been simulated and that the circuit model responded correctly?
Is the design ready to be taped out?

We now turn our attention to simulation as it relates to manufacturing test. Here
the objective is to create a test program that uncovers defects and performance prob-
lems that occur during the manufacturing process. In addition to being thorough, a
test program must also be efficient. If design verification involves a large number of
redundant simulations, there is unnecessary delay in moving the design to tape-out.
If the manufacturing test program involves creation of redundant test stimuli, there
is delay in migrating the test program to the tester. However, stimuli that do not
improve test thoroughness also add recurring costs at the tester because there is the
cost of providing storage for all those test stimuli as well as the cost of applying the
excess stimuli to every chip that is manufactured.

There are many similarities between design verification and manufacturing test
program development, despite differences in their objectives. In fact, design verifi-
cation test suites are often used as part (or all) of the manufacturing test program. In
either case, the first step is to create a circuit model. Then, input stimuli are created
and applied to the model. For design verification, the response is examined to ascer-
tain that it matches the expected response. For test program development the
response is examined to ensure that faults are being detected. This process, “apply
stimuli–monitor response,” is continued until, based on some criteria, the process is
determined to be complete.

Major differences exist between manufacturing test program development and
design verification. Test programs are often constrained by physical resources, such
as the tester architecture, the amount of tester memory available, or the amount of

120

FAULT SIMULATION

tester time available to test each individual integrated circuit (IC). The manufactur-
ing test usually can only observe activity at the I/O pins and is considerably less
flexible in its ability to create input vectors because of limitations on timing genera-
tors and waveform electronics in the tester. Design verification, using a hardware
design language (HDL) and conducted within a testbench environment, has virtually
infinite flexibility in its ability to control details such as signal timings and relation-
ships between signals. Commands exist to monitor and display the contents of regis-
ters and internal signals during simulation. Messages can be written to the console if
illegal events (e.g., setup or hold violations) occur inside the model.

Another advantage that design verification has over manufacturing test is the fact
that signal paths from primary inputs to primary outputs can be verified piecemeal.
This simply means that a logic designer may check out a path from a particular
internal register to an output port during one part of a test and, if satisfied that it
works as intended, never bother to exercise that path again. Later, with other objec-
tives in mind, the designer may check out several paths from various input ports to
the aforementioned register. This is perfectly acceptable as a means of determining
whether or not signal paths being checked out are designed correctly. By contrast,
during a manufacturing test the values that propagate from primary inputs to internal
registers must continue to propagate until they reach an output port where they can
be observed by the tester. Signals that abruptly cease to propagate in the middle of
an IC or PCB reveal nothing about the physical integrity of the device.

An advantage that manufacturing test has over design verification is the assump-
tion, during manufacturing test development, that the design is correct. The assump-
tion of correctness applies not only to logic response, but also to such things as setup
and hold times of the flip-flops. Hence, if some test stimuli are determined by the
fault simulator to be effective at detecting physical defects, they can be immediately
added to the production test suite, and there is no need to verify their correctness. By
way of contrast, during design verification, response to all stimuli must be carefully
examined and verified by the logic designer.

Some test generation processes can be automated, for example, combinational
blocks such as ALUs can be simulated using large suites of random stimuli. Simula-
tion response vectors can be converted from binary to decimal and compared to
answers that were previously calculated by other means. For highly complex control
logic, the process is not so simple. Given a first-time design, where there is no exist-
ing, well-defined behavior that can be used as a “gold standard,” all simulation
response files must be carefully inspected. In addition to correct logic response, it
will usually be necessary to verify that the design performs within required time
constraints.

3.2 APPROACHES TO TESTING

Testing digital logic consists of applying stimuli to a device-under-test (DUT) and
evaluating the response to determine whether the device is responding correctly.
An important part of the test is the creation of effective stimuli. The stimuli can be
created in one of three ways:

APPROACHES TO TESTING

121

1. Generate all possible combinations.

2. Develop test programs that exercise the functionality of the design.

3. Create test sequences targeted at specific faults.

Early approaches to creation of stimuli, circa 1950s, involved the application of
all possible binary combinations to device inputs to perform a complete functional
verification of the device. Application of 2

n

 test vectors to a device with

n

 inputs was
effective if

n

 was small and if there were no sequential circuits on the board.
Because the number of tests, 2

n

, grows exponentially with

n

, the number of tests
required increases rapidly, so this approach quickly ran out of steam.

In order to exercise the functionality of a device, such as the circuit in Figure 3.1,
a logic designer or a test engineer writes sequences of input stimuli intended to drive
the device through many different internal states, while varying the conditions on
the data-flow inputs. Data transformation devices such as the ALU perform arith-
metic and logic operations on arguments provided by the engineer and these, along
with other sequences, can be used to exercise storage devices such as registers and
flip-flops and data routing devices such as multiplexers. If the circuit responds with
all the correct answers, it is tempting to conclude that the circuit is free of defects.
That, however, is the wrong conclusion because the circuit may have one or more
defects that simply were not detected by the applied stimuli. This lack of account-
ability is a major problem with the approach—there is no practical way to evaluate
the effectiveness of the test stimuli. Effectiveness can be estimated by observing the
number of products returned by the customer, so-called “tester escapes,” but that is a
costly solution. Furthermore, that does not solve the problem of diagnosing the
cause of the malfunction.

In 1959, R. D. Eldred

1

 advocated testing hardware rather than function. This was
to be done by creating tests for specific faults. The most commonly occurring faults
would be modeled and input stimuli created to test for the presence or absence of
each of these faults. The advantages of this approach are as follows:

Figure 3.1

Functional view of CPU.

Decode
LogicTiming

and
Control

MUX Regs.

CONTROL DATA PATH

Status Reg.

Inst.
Reg.

Misc.
control

ALU

122

FAULT SIMULATION

1. Specific tests can be created for faults most likely to occur.

2. The effectiveness of a test program can be measured by determining how
many of the commonly occurring faults are detected by the set of test vectors
created.

3. Specific defects can be associated with specific test vectors. Then, if a DUT
responds incorrectly to a test vector, there is information pointing to a faulty
component or set of components.

This method advocated by Eldred has become a standard approach to developing
tests for digital logic failures.

3.3 ANALYSIS OF A FAULTED CIRCUIT

A prerequisite for being able to test for faults in a digital circuit is an understanding
of the kinds of faults that can occur and the consequences of those faults. To that
end, we will analyze the circuit of Figure 3.2. We hypothesize the presence of a fault
in the circuit, namely, a short across resistor

R

4

. Then a test will be created that is
capable of detecting the presence of that fault.

3.3.1 Analysis at the Component Level

In the analysis that follows, the positive logic convention will be used. Any voltage
between ground (Gnd) and +0.8 V represents a logic 0. A voltage between +2.4 V
and +5.0 V (Vcc) represents a logic 1. A voltage between +0.8 V and +2.4 V repre-
sents an indeterminate state, indicated by the symbol X. The bipolar NPN transistors

Q

1

 through

Q

6

 behave like on/off switches when used in digital circuits. A low volt-
age on the base cuts off a transistor so that it cannot conduct. The circuit behaves as
though there were an open circuit between the emitter and collector. A high voltage
on the base causes the transistor to conduct, and the circuit behaves as though a
direct connection exists between the emitter and collector.

With these definitions, it is possible to analyze the fault and its effects on the cir-
cuit. Note that with the resistor shorted, the base of

Q

3

 is held at ground. It will not
conduct and behaves like an open switch. This causes the voltage at the collector of

Q

3

 to remain high, a logic 1, which in turn causes the base of

Q

5

 and the emitter of

Q

4

 to remain high.

Q

4

 will not be able to conduct because its base cannot be made
more positive than its emitter. However,

Q

5

 is capable of conducting, depending on
the voltage applied to its emitter by

Q

6

.
If

Z

 is high (

Z =

1), the positive voltage on the base of

Q

6

 causes it to conduct;
hence it is in effect shorted to ground. Therefore, the base of

Q

5

 is more positive than
the emitter, transistor

Q

5

 conducts, and the output goes low. If

Z

 is low (

Z =

0),

Q

6

 is
cut off. Since it does not conduct, the base and emitter of

Q

5

 are at the same poten-
tial, and it is cut off. Therefore the output of

Q

5

 goes high and the output of

 F

is at
logic 1. As a result of the fault, the value at output

F

 is the complement of the value
at input

Z

 and is totally independent of any signals appearing at

X

1

,

X

2

,

Y

1

, and

Y

2

.

ANALYSIS OF A FAULTED CIRCUIT

123

Figure 3.2

Component-level circuit.

We now know how the circuit behaves when the fault is present. But how do we
devise input stimuli that will tell us if the fault is present? It is assumed that the out-
put

F

 is the only point in the circuit that can be observed, internal nodes cannot be
probed. This restriction tells us that the only way to detect the fault is to create input
stimuli for which the output response is a function of the presence or absence of the
fault. The response of the circuit with the fault will then be opposite that of the fault-
free circuit.

First, consider what happens if the fault is not present. In that case, the output is
dependent not only on

Z,

 but also on

X

1

,

X

2

,

Y

1

, and

Y

2

. If the values on these inputs
cause the output of

Q

3

 to go high, the faulted circuit cannot be distinguished from
the fault-free circuit, because the circuits produce identical signals at the output of

Q

3

 and hence identical signals at the output

F

. However, if the output of

Q

3

 is low,
then an analysis of the circuit as done previously reveals that the output

F

 equals

Z

.
Therefore, when

Q

3

 is low, the signal at

F

 is opposite what it would be if the fault
were present, so we conclude that we want to apply a signal to the base of

 Q

3

 that
causes the collector to go low. A positive signal on the base will produce the desired
result. Now, how do we get a high signal on the base of

Q

3

? To determine that, it is
necessary to analyze the circuits preceding

Q

3

.
Consider the circuit made up of

Q

1

,

R

1

,

D

1

, and

D

2

. If either

X

1

 or

X

2

 is at logic 0,
then the base of

Q

1

 is at ground potential; hence

Q

1

 acts like an open switch. Like-
wise, if

Y

1

 or

Y

2 is at logic 0, then Q2 acts like an open switch. If both Q1 and Q2 are
open, then the base of Q3 is at ground. But we wanted a high signal on the base of Q3.
If either Q1 or Q2 conducts, then there is a complete path from ground through R4,
through Q1 or Q2, through R2 to Vcc. Then, with the proper resistance values on R1,
R2, and R4, a high-voltage signal appears at the base of Q3. Therefore, we conclude

F
Q4 Q5

Vcc

R6

D5

R4

Vcc

X1

X2

Y1

Y2

Z
Q6

R5

R7

D1

D2

D3

D4

Vcc

Q2

Q1

R1 R2

R3

Q3

Vcc

R8

124 FAULT SIMULATION

that there must be a high signal on X1 and X2 or Y1 and Y2 (or both) in order to deter-
mine whether or not the fault is present. Note that we must also know what signal is
present on input Z. With X1 = X2 = 1 or Y1 = Y2 = 1, the output F assumes the same
value as Z if the fault is not present and assumes the opposite value if the fault is
present.

3.3.2 Gate-Level Symbols

Analyzing circuits at the transistor level in order to calculate signal values that dis-
tinguish between good and faulty circuits is quite tedious. It requires circuit engi-
neers capable of analyzing complex circuits because, within a given technology,
there are many ways to design circuits at the component level to accomplish the
same end result, from a logic standpoint. In a large circuit with thousands of individ-
ual components, it is not obvious, exactly what logic function is being performed by
a particular group of components. Further complicating the task is the fact that a cir-
cuit might be implemented in one of several technologies, each of which has its own
unique way to perform digital logic operations. For instance, in Figure 3.2 the sub-
circuit made up of D1 through D5, Q1 through Q3, and R1 through R3 constitutes an
AND-OR-Invert circuit. The same subcircuit is represented in a complementary
metal–oxide semiconductor (CMOS) technology by the circuit in Figure 3.3. The
two circuits perform the same logic operation but bear no physical resemblance to
one another!

3.3.3 Analysis at the Gate Level

The complete gate equivalent circuit to the circuit in Figure 3.2 is shown in
Figure 3.4. We already stated that Q1 through Q5, D1 through D5, and R1 through R3
constitute an AND-OR-Invert. The components Q3, R5, and R6 constitute an Inverter
and the transistors Q4, Q5 together make up an Exclusive-NOR (EXNOR, an exclu-
sive-OR with its output complemented.) Hence, the circuit of Figure 3.2 can be rep-
resented by the logic diagram of Figure 3.4.

Figure 3.3 CMOS AND-OR-Invert.

F

X1

X2

Y1

Y2

THE STUCK-AT FAULT MODEL 125

Figure 3.4 The gate equivalent circuit.

Now reconsider the fault that we examined previously. When R4 was shorted, the
output of Q3 could not be driven to a low state. That is equivalent to the NOR gate
output in the circuit of Figure 3.4 being stuck at a logic 1. Consequently, we want to
assign inputs that will cause the output of the NOR gate, when fault-free, to be
driven low. This requires a 1 on one of the two inputs to the gate. If the upper input is
arbitrarily selected and required to generate a logic 1, then the upper AND gate must
generate a logic 1, requiring that inputs X1 and X2 must both be at logic 1. As before,
a known value must be assigned to input Z so that we know what value to expect at
primary output F for the fault-free and the faulted circuits. The reader will (hope-
fully) agree that the circuit representation of Figure 3.4 is much easier to analyze.

The circuit representation of Figure 3.4, in addition to being easier to work with
and requiring fewer details to keep track of, has the additional advantage of being
understandable by people who are familiar with logic but not familiar with transistor-
level behavior. Furthermore, it is universal; that is, a circuit can be represented in terms
of these symbols regardless of whether the circuit is implemented in MOS, TTL, ECL,
or some other technology. As long as the circuit can be logically modeled, it can be
represented by these symbols. Another important advantage of this representation, as
will be seen, is that computer algorithms can be defined on these logic operations
which are, for the most part, independent of the particular technology chosen to imple-
ment the circuit. If the circuit can be expressed in terms of these symbols, then the cir-
cuit description can be processed by the computer algorithms.

3.4 THE STUCK-AT FAULT MODEL

A circuit composed of resistors, diodes, and transistors can be represented as an
interconnection of logic gates. If this gate-level model is altered so as to represent a
faulted circuit, then the behavior of the faulted circuit can be analyzed and tests
developed to distinguish it from the fault-free circuit. But, for what kind of faults
should tests be created? The wrong answer can result in an extremely difficult prob-
lem. As a minimum, a fault model must possess the following four properties:

1. It must correspond to real faults.

2. It must have adequate granularity.

3. It must be accountable.

4. It must be easily automated.

F

Z

X1

Y1

Y2

X2

126 FAULT SIMULATION

The fault in the circuit of Figure 3.2 was represented as a NOR gate output stuck-
at-1 (SA1). What happens if diode D1 is open? If that fault is present, it is not possi-
ble to pull the base of Q1 to ground potential from input X1. Therefore input 1 of the
AND gate, represented by D1, D2, R1 and Q1, is SA1. What happens if there is an
open from the common connection of the emitters of Q1 and Q2 to the emitter of Q1?
Then, there is no way that Q1 can provide a path from ground, through R4, Q1, and
R2 to Vcc. The base of Q3 is unaffected by any changes in the AND gate. Since the
common connection of Q1 and Q2 represents an OR operation (called a wired-OR or
DOT-OR), the fault is equivalent to an OR gate input stuck-at-0 (SA0).

The stuck-at fault model corresponds to real faults, although it clearly does not
represent all possible faults. It has been well known for many years that test pro-
grams based on the stuck-at model can detect all stuck-at faults and still fail to iden-
tify all defective parts.2 The term granularity refers to the resolution or level of
detail at which a model represents faults. A model should represent most of the
faults that occur within gate-level models. Then, if a test detects all of the modeled
faults, there is a high probability that it will detect all of the actual physical defects
that may occur. A fault model with fine granularity is more useful than a model with
coarse granularity, since a test may detect all faults from a fault class with coarse
granularity and still miss many microscopic defects.

An n-input combinational circuit can implement any of functions. To verify
with absolute certainty that the circuit implements the correct function, it is neces-
sary to apply all 2n input combinations and confirm that the circuit responds cor-
rectly to each stimulus. That could take an enormous amount of time. If a randomly
chosen subset of all possible combinations is applied, there is no way of measuring
the effectiveness of the test, unless a correlation can be shown between the number
of test pattern combinations applied and the effectiveness of the test. By employing
a fault model, we can account for the faults, determining via simulation which faults
were detected and on what vector they were first detected.

Given that we want to use fault models, as well as employ simulation to deter-
mine how many faults are detected by a given test program, what fault model should
be chosen? We could assign a status for each of the nets in a circuit, according to the
following list:

fault-free

stuck-at-1

stuck-at-0

Given a circuit containing m nets that interconnect the various components, if all
possible combinations are considered, then there are 3m circuits described by the m
nets and the three possible states of each net. Of these possibilities, only one corre-
sponds to a completely fault-free circuit.

If all possible combinations of shorts between nets are considered, then there are

22n

m

i

i 2=

m

∑ 2m m– 1–=

THE STUCK-AT FAULT MODEL 127

shorts that could occur in an actual circuit. The reader will note that we keep bump-
ing into the problem of “combinatorial explosion”; that is, the number of choices or
problems to be solved explodes. To attempt to test for every stuck-at or short fault
combination is clearly impractical.

As it turns out, many component defects can be represented as stuck-at faults on
inputs or outputs of logic gates. The SAx, x ∈{0,1}, fault model has become univer-
sal. It has the attraction that it has sufficient granularity that a test which detects a
high percentage of the stuck-at faults will detect a high percentage of the real defects
that occur. Furthermore, the stuck-at model permits enumeration of faults. For an n-
input logic gate, it is possible to identify a specific set of faults, as well as their effect
on circuit behavior. This permits implementation of computer algorithms targeted at
those faults. Furthermore, by knowing the exact number of faults in a circuit, it is
possible to keep track of those that are detected by a test, as well as those not
detected. From this information it is possible to create an effectiveness measure or
figure of merit for the test.

The impracticality of trying to test for every conceivable combination of faults in
a circuit has led to adoption of the single-fault assumption. When attempting to cre-
ate a test, it is assumed that a single fault exists. Most frequently, it is assumed that
an input or output of a gate is SA1 or SA0. Many years of experience with the stuck-
at fault model by many digital electronics companies has demonstrated that it is
effective. A good stuck-at test which detects all or nearly all single stuck-at faults in
a circuit will also detect all or nearly all multiple stuck-at faults and short faults.
There are technology-dependent faults for which the stuck-at fault model must be
modified or augmented; these will be discussed in a later chapter.

Another important assumption made in the industry is the reliance on solid fail-
ures; intermittent faults whose presence depends on environmental or other external
factors such as temperature, humidity, or line voltage are assumed to be solid fail-
ures when creating tests. In the following paragraphs, fault models are described for
AND, OR, Inverter, and the tri-state buffer. Fault models for other basic circuits can
be deduced from these. Note that these gates are, in reality, low-level behavioral
models that might be implemented in CMOS, TTL, ECL, or any other technology.
The gate-level function hides the transistor level implementation details, so the tests
described here can be viewed as behavioral test programs; that is, all possible com-
binations on the inputs and outputs of the gates are considered, and those that are
redundant or otherwise add no value are deleted.

3.4.1 The AND Gate Fault Model

The AND gate is fault-modeled for inputs SA1 and the output SA1 and SA0. This
results in n + 2 tests for an n-input AND gate. The test for an input SA1 consists of put-
ting a logic 0 on the input being tested and logic 1s on all other inputs (see Figure 3.5).
The input being tested is the controlling input; it determines what value appears on the
output. If the circuit is fault-free, the output goes to a logic 0; and if the fault is present,
the output goes to a logic 1. Note that if any of the inputs, other than the one being
tested, has a 0 value, that 0 is called a blocking value, since it prevents the test for the
faulted pin from propagating to the output of the gate.

128 FAULT SIMULATION

Figure 3.5 AND gate with stuck-at faults.

An input pattern of all 1s will test for the output SA0. It is not necessary to explic-
itly test for an output SA1 fault since any input SA1 test will also detect the output
SA1. However, an output SA1 can be detected without detecting any input SA1 fault
if two or more inputs have logic 0s on their inputs, therefore it can be useful to retain
the output SA1 as a separate fault. When tabulating faults detected by a test, counting
the output as tested when none of the inputs is tested provides a more accurate esti-
mate of fault coverage. Note that a SA0 fault on any input will produce a response
identical to that of fault F4. The all-1s test for fault F4 will detect a SA0 on any input;
hence, it is not necessary to test explicitly for a SA0 fault on any of the inputs.

3.4.2 The OR Gate Fault Model

An n-input OR gate, like the AND gate, requires n + 2 tests. However, the input val-
ues are the complement of what the values would be for an AND gate. The input
being tested is set to 1 and all other inputs are set to 0. The test is checking for the
input SA0. The all-0s input tests for the output SA1 and any input SA1. A logic 1 on
any input other than the input being tested is a blocking value for the OR gate.

3.4.3 The Inverter Fault Model

The Inverter can be modeled with a SA0 and SA1 on its output, or it could be mod-
eled with SA1 and SA0 on its input. If it fails to invert, perhaps caused by a short
across a transistor, and if both stuck-at faults are detected, the short fault will be
detected by one of the stuck-at tests.

3.4.4 The Tri-State Fault Model

The Verilog hardware description language recognizes four tri-state gates: bufif0,
bufif1, notif0, and notif1. The bufif0 (bufif1) is a buffer with an active low (high)
control input. The notif0 (notif1) is an inverter with an active low (high) control
input. Figure 3.6 depicts the bufif0. Behavior of the others can be deduced from that
of the bufif0.

Five faults are listed in Figure 3.6, along with the truth table for the good circuit
G, and the five faults F1 through F5. Stuck-at faults on the input or output, F3, F4, or
F5, can be detected while the enable input, En, is active. Stuck-at faults on the
enable input present a more difficult challenge.

0

1

1

0/1

I2 I3 G F1

F1 − I1 SA1

F2 − I2 SA1

F2 F3 F4

F3 − I3 SA1

F4 − Out SA0

F5 − Out SA1

F5

I1

I2

I3

I1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
1

0
0
0
1
0
0
0
1

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

THE STUCK-AT FAULT MODEL 129

Figure 3.6 bufif0 with faults.

If fault F1 occurs, the enable is always active, so the bufif0 is always driving the
bus to a logic 1 or 0. There are two possibilities to consider: One possibility is that
no other device is actively driving the bus. To detect a fault, it is necessary to have
the fault-free and faulty circuits produce different values at the output of the bufif0.
But, from the truth table it can be seen that the only way that good circuit G and
faulty circuit F1 can produce different values is if G produces a Z on the output and
F1 produces a 1 or 0. This can be handled by connecting a pullup or pulldown resis-
tor to the bus. Then, in the absence of a driving signal, the bus floats to a weak 1 or 0.
With a pullup resistor—that is, a resistor connected from the bus to VDD (logic 1)—a
logic 0 on the input of the bufif0 forces the output to a value opposite that caused by
the pullup.

The other possibility is that another bus driver is simultaneously active. Eventu-
ally, the two drivers are going to drive the bus to opposite values, causing bus conten-
tion. During simulation, contention causes the bus to be assigned an indeterminate
X. If the signal makes it to an output, the X can only be a probable detect. In prac-
tice, the contending values represent a short, or direct connection, between ground
and power, and the excess current causes the IC to fail completely.

The occurrence of fault F2 causes the output of the bufif0 to always be discon-
nected from the bus. When the enable on the good circuit G is set to 0, the fault-free
circuit can drive a 1 or 0 onto the bus, whereas the faulty circuit is disconnected; that
is, it sees a Z on the bus. This propagates through other logic as an X, so if the X
reaches an output, the fault F2 can only be recorded as a probable detect. As in the
previous paragraph, a pullup or pulldown can be used to facilitate a hard detect—
that is, one where the good circuit and faulty circuit have different logic values.

3.4.5 Fault Equivalence and Dominance

When building fault lists, it is often the case that some faults are indistinguishable
from others. Suppose the circuit in Figure 3.7 is modeled with an SA0 fault on the
output of gate B and all eight input combinations are simulated. Then that fault is
removed and the circuit is modeled with an SA0 fault on the top input of gate D and
resimulated. It will be seen that the circuit responds identically at output Z for both
of the faults. This is not surprising since the output of B and the input of D are tied to
the same net. We say that they are equivalent faults. Two faults are equivalent if there
is no logic test that can distinguish between them. More precisely, if Ta is the set of

En I G F1

0

0

1

1

0

1

0

1

0

1

Z

Z

0

1

0

1

Z

Z

Z

Z

0

0

Z

Z

1

1

Z

Z

1

1

1

1

F1 − En SA0

F2 − En SA1

F2 F3 F4

F3 − I SA0

F4 − I SA1
I

En

Out

F5 − Out SA1

F5

130 FAULT SIMULATION

tests that detect fault a and Tb is the set of tests that detect fault b, and if Ta = Tb, then
it is not possible to distinguish a from b. A set of faults that are equivalent form an
equivalence class. In such instances, a single fault is selected to represent the equiv-
alence class of faults.

Although a tester cannot logically distinguish which of several equivalent faults
causes an error response at an output pin, the fact that some equivalence classes may
contain several stuck-at faults, and others may contain a single fault, is sometimes
used in industry to bias the fault coverage. If an equivalence class representing five
stuck-at faults is undetected, it is deemed, in such cases, to have as much effect on
the final fault coverage as five undetected faults from equivalence classes containing
a single fault. From a manufacturing standpoint, this weighting of faults reflects the
fact that not all faults are equal; a fault class with five stuck-at faults has a higher
probability of occurring than a fault class with a single stuck-at fault.

In a previous subsection it was pointed out that the fault list for an n-input AND
gate consisted of n + 2 entries. However, any test for an input i SA1 simultaneously
tested the output for a SA1. The converse does not hold; a test for a SA1 on the out-
put need not detect any of the input SA1 faults. We say that the output SA1 fault
dominates the input SA1 fault. In general, fault a dominates fault b if Tb ⊆ Ta. From
this definition it follows that if fault a dominates fault b, then any test that detects
fault b will detect fault a.

A function F is unate in variable xi if the variable xi appears in the sum-of-products
expression for F in its true or complement form but not both. The concept of fault
dominance for logic elements can now be characterized:3

Theorem 3.1 Given a combinational circuit F(x1, x2, ..., xn), a dominance relation
exists between faults on the output and input xi iff F is unate in xi.

A function is partially symmetric in variables xi and xj if F(xi, xj) = F(xj, xi). A
function is symmetric if it is partially symmetric for all input variable pairs xi, xj.
With those definitions we have:

Theorem 3.2 If a logic gate is partially symmetric for inputs i and j, then either
faults on those inputs are equivalent or no dominance relation holds.

Theorem 3.3 In a fan-out free circuit realized by symmetric, unate gates, tests
designed to detect stuck-at faults on primary inputs will detect all stuck-at faults in
the circuit.

Figure 3.7 Equivalent and dominant faults.

D1

Sel

D0

A

B

C

D Z

THE FAULT SIMULATOR: AN OVERVIEW 131

Equivalence and dominance relations are used to reduce fault list size. Since
computer run time is affected by fault list size, the reduction of the fault list, a pro-
cess called fault collapsing, can reduce test generation and fault simulation time.
Consider the multiplexer of Figure 3.7. An SA0 fault on the output of NOR gate D is
equivalent to an SA1 fault on any of its inputs, and an SA1 fault on the output of D
dominates an SA0 fault on any of its inputs. SA0 faults on the inputs to gate D, in
turn, are equivalent to SA0 faults on the outputs of gates B and C. Therefore, for the
purposes of detection, if SA0 faults on the inputs of gate D are detected, SA0 faults
on the outputs of gates B and C can be ignored.

3.5 THE FAULT SIMULATOR: AN OVERVIEW

The use of fault simulation is motivated by a desire to minimize the amount of
defective product shipped to customers. Recall, from Chapter 1, that defect level is a
function of process yield and the thoroughness of the test applied to the ICs. It is
obvious that the amount of defective product (tester escapes) can be reduced by
improving yield or by improving the test. To improve a test, it is first necessary to
quantify its effectiveness. But, how?

Fault simulation is the process of measuring the quality of a test. Test stimuli that
will eventually be applied to the product on a tester are themselves first evaluated by
applying them to circuit models that have been slightly altered to imitate the effects
of faults. If the response at the circuit outputs, as determined by simulation, differs
from the response of the circuit model without the fault, then the fault is detectable
by those stimuli. After the process is performed for a sufficient number of modeled
faults, an estimate T, called the fault coverage, or test coverage, is computed. The
equation is

T = (# faults detected)/(# faults simulated)

The variable T reflects the quality or effectiveness of the test stimuli. Fault simula-
tion is performed on a structural model, meaning that the model describes the sys-
tem in terms of realizable physical components. The term can, however, refer to any
level except behavioral, depending upon whether the designer was creating a circuit
using geometrical shapes or functional building blocks. The fault simulator is a
structural level simulator in which some part of the structural model has been altered
to represent behavior of a fault. The fault simulator is instrumented to keep track of
all differences in response between the unfaulted and the faulted circuit.

Fault simulation is most often performed using gate-level models, because of
their granularity, although fault simulation can also be performed using functional or
circuit level models. The stuck-at fault model, in conjunction with logic gates, makes
it quite easy to automatically inject faults into the circuit model by means of a com-
puter program. Fault simulation serves several purposes besides evaluating stimuli:

� It confirms detection of a fault for which an ATPG generates a test.

� It computes fault coverage for specific test vectors.

132 FAULT SIMULATION

Figure 3.8 Circuit with fault.

� It provides diagnostic capability.

� It identifies areas of a circuit where fault coverage is inadequate.

Confirm Detection When creating a test, an automatic test pattern generator
(ATPG) makes simplifying assumptions. By restricting its attention to logic behavior
and ignoring element delay times, the ATPG runs the risk of creating test vectors that
are susceptible to races and hazards. A simulator, taking into account element delays
and using hazard and race detection techniques, may detect anomolous behavior
caused by the pattern and conclude that the fault cannot be detected with certainty.

Compute Fault Coverage The ability to identify all faults detected by each
vector can reduce the number of iterations through an ATPG. As will be seen in the
next chapter, an ATPG targets specific faults. If a fault simulator identifies faults that
were detected incidentally by a vector created to detect a particular fault, there is no
need to create test vectors to detect those other faults. In addition, the fault simula-
tor can identify vectors that detect no faults, potentially reducing the size of a test
program.

Example Suppose the pattern A,B,C,D,E,F = (0,1,1,1,0,0) is created to test for the
output of gate H SA1 in the circuit of Figure 3.8. Simulating the fault-free circuit pro-
duces an output of 0. Simulating the same circuit with a SA1 on the output of H
produces a 1 on the circuit output; hence the fault is detected. But, when the effects
of a SA1 on the upper input to gate G are simulated using the same pattern, we find
that this fault also causes the circuit to respond with a 1 and therefore is detected by
the pattern. Several other faults are detected by the pattern. We leave it as an exercise
for the reader to find them. ��

Diagnose Faults Fault diagnosis was more relevant in the past when many dis-
crete parts were used to populate PCBs. When repairing a PCB, there was an eco-
nomic incentive to obtain the smallest possible list of suspect parts. Diagnosis can
also be useful in narrowing down the list of suspect logic elements when debugging
first silicon during IC design. When a dozen masks or more are used to create an IC
with hundreds of thousands of switching elements, and the mask set has a flaw that
causes die to be manufactured incorrectly, knowing which vector(s) failed and
knowing which faults are detected by those vectors can sometimes significantly
reduce the scope of the search for the cause of the problem.

A

B

C

D

E

F

G

H
I

K

J

THE FAULT SIMULATOR: AN OVERVIEW 133

Figure 3.9 Test stimuli evaluation.

Consider again the circuit in Figure 3.8. If the circuit correctly responds with a 0
to the previous input pattern, there would not have been a SA1 fault on the output of
gate H. If the next pattern applied is A,B,C,D,E,F = (0,0,1,1,0,1) and an incorrect
response occurs, the stuck-at-1 on the output of gate H would not be suspect. By
eliminating the signal path that contains gate H as a candidate, the amount of work
involved in identifying the cause of the defect has been reduced.

Identify Areas of Untesteds When a test engineer writes stimuli for a circuit,
he may expend much effort in one area of the circuit but very little effort in another
area. The fault simulator can provide a list of faults not yet detected by test stimuli
and thus encourage the engineer to work in an area of the circuit where very few
faults have been detected. Writing test vectors targeted at faults in those areas fre-
quently gives a quick boost to the fault coverage.

The overall test program development workflow, in conjunction with a fault sim-
ulator, is illustrated in Figure 3.9. The test vectors may be created by an ATPG or
supplied by the logic designer or a diagnostic engineer. The ATPG is fault-oriented,
it selects a fault from a list of fault candidates and attempts to create a test for the
fault. Because stimuli created by the ATPG are susceptible to races and hazards, a
logic simulation may precede fault simulation in order to screen the test stimuli. If
application of the stimuli causes many races and hazards, it may be desirable to
repair the stimuli before proceeding with fault simulation.

After each test vector has been fault-simulated, faults which cause an output
response that differs from the correct response are checked off in the fault list, and
their response at primary outputs may be recorded in a data base for diagnostic pur-
poses. The circuits used here for illustrative purposes usually have a single output,
but real circuits have many outputs and several faults may be detected in a given pat-
tern, with each fault possibly producing a different response at the primary outputs.

START

test
patternsPerform logic

simulation

Stable
pattern

?

Fault
simulate

Record all
faults detected

Resolve races
or conflicts

coverage
adequate DONE

yes

no

no

yes

Generate
more

vectors

134 FAULT SIMULATION

By recording the output response to each fault, diagnostic capability can be signifi-
cantly enhanced. After recording the results, if fault coverage is not adequate, the
process is continued. Additional vectors are generated; they are checked for races
and conflicts and then handed off to the fault simulator.

3.6 PARALLEL FAULT PROCESSING

Section 2.6 contains a listing for a compiled simulator that uses the native instruc-
tion set of the 80 × 86 microprocessor to simulate the circuit of Figure 2.9. With
just some slight modifications, that same simulator can be instrumented to per-
form fault simulation. In fact, as we shall see, a fault simulator can be viewed con-
ceptually as a logic simulator augmented with some additional capabilities,
namely, the ability to keep track of differences in response between two nearly
identical circuits.

For purposes of contrast, we discuss briefly the serial fault simulator; it is the
simplest form of fault simulation. In this method a single fault is injected into the
circuit model and simulated with the same stimuli that were applied to the fault-free
model. The response at the outputs is compared to the response from the fault-free
circuit. If the fault causes an output response that differs from the expected response,
the fault is marked as detected by the applied stimuli. After the fault has been
detected, or after all stimuli have been simulated, the fault is removed and another
fault is injected into the circuit model. Simulation is again performed. This is done
for all faults of interest, and then the fault coverage T is computed.

In the serial fault simulator, fault injection can be achieved for a logic gate simply
by deleting an input. An entry in the descriptor cell of Figure 2.21 is blanked out and
the input count is decremented. When a net connected to the input of an AND gate is
deleted from the list of inputs to that AND gate, the logic value on that net no longer
has an effect on the AND gate; hence the AND gate behaves as though that input
were stuck-at-1. Likewise, deleting an input to the OR gate causes that input to
behave as though it were stuck-at-0.

3.6.1 Parallel Fault Simulation

When the 80 × 86 compiled simulator described in Section 2.6 processed a circuit, it
manipulated bytes of data. For ternary simulation, one bit from each of two bytes
can be used to represent a logic value. This leaves seven bits unused in each byte.
The parallel fault simulator can take advantage of the unused bits to simulate faulted
circuits in parallel with the good circuit. It does this by letting each bit in the byte
represent a different circuit. The leftmost bit (bit 7) represents the fault-free circuit.
The other seven bits represent circuits corresponding to seven faults in the fault list.
In order to use these extra bits, they must be made to represent values that exist in
faulted circuits. This is accomplished by “bugging the simulator.” Fault injection in
the simulator must be accomplished in such a way that individual faults affect only a
single bit position.

PARALLEL FAULT PROCESSING 135

Figure 3.10 Parallel fault simulation.

Example OR gate I in Figure 3.10 is modeled with a SA0 on its top input. Bit 7
represents the fault-free circuit and bit 6 represents the faulted circuit. Prior to simu-
lation, the control program makes an alteration to the compiled simulator. The
instruction that loads the value from GATE_TABLE into register AX is replaced by
a call to a subroutine. The subroutine loads the value from GATE_TABLE into reg-
ister AX and then performs an AND operation on that value using the 8-bit mask
10111111. The subroutine then returns to the compiled simulator.

This method of bugging the model has the effect of causing the OR gate to always
receive a 0 on its upper input, regardless of what value is generated by AND gate G.
Suppose A = B = C = 1 and D = E = F = 0. Inputs A, B, and C are assigned an 8-bit
vector consisting of all-1s, while D, E, and F are assigned vectors consisting of all-
0s. During simulation the good circuit, bit 7, will simulate the OR gate with input values
(1,0,0) and the circuit corresponding to bit 6 will simulate the OR with input
values (0,0,0). As a result, bit positions 7 and 6 of the result vector will receive
different values at the output of gate I. ��

In practice, the bugging operation can use seven bits of the byte. In the example
just described, bit 5 could represent the fault corresponding to the center input of
gate I SA0. Then, when the program loads the value from GATE_TABLE+2 into
register BX, it again calls a subroutine. In this instance it applies the mask 11011111
to the contents of register BX, forcing the value from gate H to always be 0, regard-
less of what value was computed for H. When bugging a gate output, the value is
masked before being stored in GATE_TABLE. If modeling a SA1 fault on an input,
the program performs an OR instruction using a mask containing 0s in all bit posi-
tions except the one corresponding to the faulted circuit, where it would use a 1.

In a combinational circuit or a fully synchronous sequential circuit, one pass
through the simulator is sufficient to obtain fault simulation results. In an asynchro-
nous sequential circuit it is possible that the fault-free circuit or one or more of the
faulty circuits is oscillating. In a compiled model in which feedback lines are repre-
sented by pseudo-outputs and corresponding pseudo-inputs (see Section 2.6.2),
oscillations would be represented by differences in the values on pseudo-outputs and
corresponding pseudo-inputs. In this case it would be necessary to run additional
passes through the simulator in order to either (a) get stable values on the feedback
lines or (b) deduce that one or more of the circuits is oscillating.

1 1111111

A

B

C

D

E
F

G

H I

J

K

1 1111110

0 0000000

136 FAULT SIMULATION

At the end of a simulation cycle for a given input vector, entries in the circuit
value table that correspond to circuit outputs are checked by the control program.
Values in bit positions [6:0] that differ from bit 7, the good circuit output, indicate
detected faults—that is, faults whose output response is different from the good cir-
cuit response. However, before claiming that the fault is detected by the input pat-
tern, the differing values must be examined further. If the good circuit response is X
and the faulted circuit responds with a 0 or 1, detection of that fault cannot be
claimed.

3.6.2 Performance Enhancements

In the 80×86 program, when performing byte-wide operations, parallel simulation
can be performed on the good circuit and seven faulted circuits simultaneously. In
general, the number of faults that can be simulated in parallel is a function of the
host computer architecture. A more efficient implementation of the parallel fault
simulator would use 32-bit operations, permitting fault simulation of 31 faults in the
time that the byte-wide fault simulator fault simulated 7 faults. Members of the IBM
mainframe family, which are able to perform logic operations in a storage-to-storage
mode, can process several hundred faulted circuits in parallel.

Regardless of circuit architecture, a reasonable-sized circuit will contain more
faults than can be simulated in parallel. Therefore, numerous passes through the
simulator will be required. On each pass a fault-free copy of the simulator is
obtained and bugged. The number of passes is equal to the total number of faults to
be simulated divided by the number of faults that can be simulated in a single pass.
It is interesting to note that although we adhere to the single-fault assumption, it is
relatively easy to bug the simulator to permit multiple-fault simulation.

The compiled simulator is memory efficient. Augmented with just a circuit value
table and a small control program, the compiled simulator can simulate very large
circuits. Simulation time is influenced by three factors:

The number of elements in the circuit

The number of faults in the fault list

The number of vectors

As the circuit size grows, the size of the compiled simulator grows, and, because
there are more elements, there will be more faults; therefore more fault simulation
passes are necessary. Finally, more vectors are usually required because of the
increased number of faults. As a result of these three factors, simulation time can
grow in proportion to the third power of circuit size, although in practice the degra-
dation in performance is seldom that severe.

A number of techniques are used to reduce simulation time. Most important are
the concepts of fault dominance and fault equivalence, which remove faults that do
not add information during simulation (cf. Section 3.4.5). Simulation time can be
reduced through the use of stimulus bypass and the sensitivity list (cf.
Section 2.7). These techniques avoid the execution of code when activity in that
code is not possible.

PARALLEL FAULT PROCESSING 137

Circuit partitioning can be useful in reducing simulation time, depending on the
circuit. If the subcircuits that drive two distinct sets of outputs have very few gates in
common, then it becomes more efficient to simulate them as separate circuits. The
faults that occur in only one of the two subcircuits will not necessitate simulation of
elements contained only in the other subcircuit. Circuit partitioning can be accom-
plished by backtracing from a primary output as follows:

1. Select a primary output.

2. Put gates that drive the primary output onto a stack.

3. Select an unmarked gate from the stack and mark it.

4. Put its unmarked driving gates onto the stack.

5. If there are any unmarked entries on the stack, go back to step 3.

The gates on the stack constitute a subcircuit, called a cone, which can be pro-
cessed as a single entity. Where two subsets of outputs define nearly disjoint circuits
of approximately the same size, the simulator for each circuit is about half its former
size; there are half as many faults, hence perhaps as few as half as many vectors for
each circuit. Thus, total fault simulation time could decrease by half or more.

A practice called fault dropping is used to speed up fault simulation performance.
The simulator drops faults from the fault list and no longer simulates them after they
have been detected. Continued simulation of detected faults can be useful for diag-
nostic purposes, as we shall see later, but it requires additional simulation time.
Many faults, perhaps as many as half or more, are detected quite early in the simula-
tion, within the first 10% of the applied test vectors. By dropping those faults, the
number of passes through the fault simulator for each vector is significantly reduced.

States applied analysis4 employs logic simulation to determine which faults are
detectable by a given set of test vectors. During fault simulation, an AND gate is
evaluated to determine if stuck-at-1 faults are detectable at its inputs. To detect a
fault on an input to an AND gate, it is necessary to have a 0 on the faulted input and
logic 1s on all other inputs. With that combination, a fault-free gate responds with a
0 at its output, and a gate with a stuck-at-1 fault on that input responds with a 1 at its
output. An analogous consideration applies to the OR gate. If, for a complete set of
test vectors, an n-input AND gate never receives an input stimulus consisting of a 0
on input i and 1s on the remaining n − 1 inputs, then the stuck-at-1 fault on input i
will never be sensitized. Since the fault is not sensitized, it is pointless to fault simu-
late that fault.

3.6.3 Parallel Pattern Single Fault Propagation

Parallel fault simulation uses the extra bits in a word to fault simulate n − 1 faults in
parallel, where n is the word size or register size of the host computer. Parallel pat-
tern single fault propagation (PPSFP) can be thought of as being orthogonal to par-
allel fault simulation.5 Each bit in a computer word represents a distinct vector. The
fault-free circuit is first simulated and the response at the output pins is recorded for

138 FAULT SIMULATION

that vector. Then, given a host computer with an n-bit wide data path, n vectors are
simulated in parallel. However, only one fault is considered, and the circuit is com-
binational.

Consider again the circuit of Figure 3.10. For the sake of illustration, assume that
we are going to apply all 64 possible input combinations to the six inputs. We would
start by applying 32 vectors to the fault-free circuit. Since we are going to apply all
combinations, we could simply create a truth table for the six values. Then, for the
first 32 vectors, the simulation values would be

A = 01010101010101010101010101010101
B = 00110011001100110011001100110011
C = 00001111000011110000111100001111
D = 00000000111111110000000011111111
E = 00000000000000001111111111111111
F = 00000000000000000000000000000000

In this matrix, the leftmost column represents the first vector, the second column
represents the second vector, and the remaining columns are interpreted likewise.
The first row is the sequence of values applied to primary input A by each of the 32
vectors, the second row is applied to input B, and so on. As a result, this matrix
causes logic 0 to be applied to all inputs on the first vector, and on the second vector
the value on input A changes from 0 to 1. When simulating the fault-free circuit, the
simulation begins, as before, by ANDing together the values representing inputs A
and B. That is followed by ANDing C and D, then complementing the result.The
remaining operations are determined similarly. The result is

00010001000100010001000100010001 = AB = G
11111111111100001111111111110000 = CD = H
00000000000000000000000000000000 = EF = J
11111111111100011111111111111111 = AB + CD + E = I
11111111111100011111111111111111 = K

Vector K represents the fault-free response of the circuit for each of the 32 vectors.
To get the circuit response for a stuck-at-0 fault on the input to gate I driven by gate
G, replace the response vector AB by the all-0 vector and resimulate. The result is

11111111111100001111111111111111 = K

Note that, counting the leftmost bit as position 31, bit 16 is 0, where it had previ-
ously been a logic 1. Hence, we conclude that the vector A,B,C,D,E,F = 111100 will
detect a stuck-at-0 on the input to gate I that is driven by gate G.

In a much larger, more realistic circuit, made up of tens or hundreds of thousands
of gates, it is inefficient to simulate all of the gates. Rather, fault simulation can
begin at the point where the fault occurs, and proceed forward toward the outputs. If
the circuit is rank-ordered, then no element is evaluated until all of its predecessors

CONCURRENT FAULT SIMULATION 139

are simulated, so the correct values will already have been computed during simula-
tion of the fault-free circuit. For the faulted gate, the vector representing the values
on the input or output that is faulted is modified to represent the stuck-at value for all
of the applied vectors.

If a compiled fault simulator is used, a jump can be made into the compiled
netlist at the point where the fault exists. A table-driven simulator can simply pick
up the values at the fault origin and propagate logic events forward (recall that an
event is a signal change). Since, in combinational circuits it is not uncommon for a
high percentage of stuck-at faults, perhaps 50% or more, to be detected within the
first 32 vectors, many faults will only require one pass through the simulator. Further
savings can be realized on a circuit with many output pins by halting simulation as
soon as an error signal reaches any output pin.

3.7 CONCURRENT FAULT SIMULATION

It should be clear by now that the purpose of fault simulation is to evaluate the effec-
tiveness of a set of input vectors for detecting stuck-at faults in a circuit. The fault
simulator does this by determining whether or not the set of vectors establishes a
path from the point where the fault originates to one or more output pins, such that
the good circuit and faulted circuit respond differently all along that path. In addi-
tion, the parallel fault simulation algorithms use the host computer resources to pro-
cess either n faults in parallel or n vectors in parallel.

The concurrent fault simulation algorithm is capable of simulating n faults
simultaneously, where n may represent one fault or it may represent several thou-
sand faults.6 Records are kept for each fault as it causes error signals to occur.
When the error signal is blocked, or prevented from propagating further in the cir-
cuit, no additional records are generated for that fault. The number of faults, n, that
can be simulated concurrently is limited only by the amount of memory available.
We begin by examining the underlying concepts of concurrent fault simulation in
detail for the case where n is one and then describe the concurrent fault simulation
algorithm more formally.

3.7.1 An Example of Concurrent Simulation

The circuit in Figure 3.11 will be used to illustrate concurrent fault simulation.
Assume the presence of a stuck-at-1 fault on the top input to gate H. The circuit will
first be analyzed without the stuck-at fault. The circuit is annotated with logic 1s and
0s. With the values indicated, the 1 at primary input C is inverted by F to become a
0 at the input to H. That, in turn, causes the output of H to become a 1. However, the
signal cannot propagate because the 0 from G is a blocking signal at J and the 1 at
primary input E is a blocking signal at K. A second vector is now applied in which
the value of A switches to a 0. This causes the output of G to switch to a 1. That, in
turn, causes the output of J to switch to a 1.

140 FAULT SIMULATION

Figure 3.11 Simulating small changes.

Now consider what happens when the top input to gate H is SA1. In the presence
of the fault, H simply inverts the signal at input D. With a 1 at the D input, the output
of H is a 0. As in the previous case, signal paths through both J and K are blocked
during the first vector. On the second vector, G switches to a 1 and the signal from H
is now enabled through the bottom input to J. However, the output of H is now a 0
because of the fault, so the output of J fails to switch, it remains a 0.

The stuck-at fault on the input to H affected only the signal path connecting H to
J and K, and the output response at J. Furthermore, the effect of the fault was visible
at an output only on the second vector. During the first vector the fault response
from H propagated to J and K, but the blocking signals J and K prevented the signal
from propagating to the output.

In this small circuit a fault affected a significant part of its behavior. In real cir-
cuits a fault may affect less than one percent of the circuit values. In such circum-
stances it makes no sense to simulate the entire faulted circuit. The simulator is more
efficient if it only keeps track of those signals that are affected by the fault. To do so,
it must have a way to record the circuit faults, and it must have a way to record cir-
cuit values that are affected by the faults. This can be done by allocating a field to
represent fault type in the data structures that represent the circuit topology.

For example, the data structure for an n-input AND gate may have a special code
to represent each of its inputs SA1. Another code might indicate a SA0 on the out-
put. Additional codes can be used to represent shorts across adjacent pins, or internal
faults that can only be detected by special combinations on the inputs—for example,
0s on two or more inputs. Then, during simulation, the simulator checks the input
values at the gate currently being processed to determine if they cause any of the
faults at that gate to become sensitized. If a fault becomes sensitized, its effects are
propagated forward. This tremendous flexibility in modeling defects is one of the
major attractions of the concurrent fault simulator.

To propagate the effects of the fault, it is necessary to record all signal values that
differ from the values in the fault-free circuit wherever they occur. These can be
recorded using a flag to indicate that a particular element or net has values for the
faulted circuit that differ from the values computed for the original circuit. In many
cases the original circuit and the faulted circuit can be simulated simultaneously. For
example, on the first vector, the inverter produced a 0 at the input to H, whereas the
faulted circuit has a constant 1 at that input.

A

B

C

D

E

F

G

H

J

K

1

1

1

1

1

0

0

1

CONCURRENT FAULT SIMULATION 141

Now, when simulating gate H, its output produces a 1 for the original circuit and
a 0 for the faulted circuit, and these signals can be propagated simultaneously. But,
what happens when the value on input pin D is 0 for a particular vector? The output
of H is then a 1 regardless of what value appears at its upper input. If D changes to a
1 on the next vector, the original circuit retains a 1 at the output of H, but in the
faulted circuit H switches to 0. The simulator must be able to propagate this event
for the faulted circuit without corrupting the value existing in the original circuit.

3.7.2 The Concurrent Fault Simulation Algorithm

The operations described in the preceding subsection will be formalized; but before
doing so, it will be helpful to briefly review and summarize the operations that took
place. First, all differences between the original and modified circuits were explic-
itly identified. Although a stuck-at fault was assumed, the analysis could just as eas-
ily have been describing a design change, wherein we wanted to contrast circuit
behavior with and without the inverter labeled F. Then, two situations were identi-
fied for which it would be necessary to evaluate signals in the faulty circuit:

1. Whenever an event occurred in the original circuit for which a different signal
occurred in the faulted circuit.

2. Whenever an event in the original circuit did not propagate to the gate output,
but caused a signal in the faulted circuit to propagate to the gate output and
beyond—for example, the change at the output of gate G.

It was not obvious in this small circuit, but the error signal for the faulty circuit
could, in this second case, spread throughout the circuit and cause many hundreds or
thousands of differences. For example, if a fault caused the wrong function to be
selected in an ALU, over half of the gates in the ALU array could have incorrect
logic values.

Concurrent fault simulation is essentially a data processing task. Its purpose is to
record data that identify differences in simulation response between two or more cir-
cuits. While it can be used to distinguish differences between virtually any two cir-
cuits, its primary purpose is to compute fault coverage for test programs. The
differences that it records are those between the fault-free circuit and one or more
(usually many more) faulty circuits that are very similar to the fault-free circuit, dif-
fering only in that each of the faulty circuits represents a different fault. The goal is
to determine, for each of the faulty circuits, whether or not the effects of the mod-
eled faults are observable at a primary output where they can be detected by a tester.

To perform a concurrent fault simulation, it is necessary to define data structures
that record simulation differences between the circuits. However, first it must be
decided which differences are important. For example, one piece of information that
must be permanently maintained throughout simulation is the source, or location, of
defects for each of the faulted copies of the circuit. Another piece of information is
the value of error signals generated for each of the defects. When an error signal
arrives at a gate, it is also necessary to identify which pin or pins receive the error
signal.

142 FAULT SIMULATION

Figure 3.12 (a) Circuit for concurrent fault simulation. (b) Circuit with linked fault effects.

Recording information in the concurrent fault simulator is accomplished by
appending or linking new copies of a circuit element to the original element. These
copies appear wherever faults cause signal values in a circuit to differ from good cir-
cuit signals. Furthermore, new circuit elements are added for as long as the error sig-
nal continues to propagate. This is illustrated conceptually in Figure 3.12. In (a) the
fault-free circuit is illustrated with correct logic values at each net. In (b) a modified
version is illustrated in which each of the gates is replicated several times. In the fol-
lowing discussion, the element X is followed by the subscript i, which is interpreted
as follows:

A

B

C

D

E

F

G

H

J

K

1

1

0

1

0

1

0

0

0

0

(a)

A

B
G0

1

1
0

G1
0

G2
0

G3
1

G4
1

J0
0

J1
0

J2
0

J3

J0
0

J0
0

J0
0

J0
0

H0

H1

H2

H3

H0

K0

0
0

0

K10
0

K2

0
0

K4

0

0

K0

1

0
1

K0

1

0
1

F1

H3

0

0

0

0

0

0

1

0

1

0

0
1

0

1

G3

G4

F1

H3

1

1

1

1

7/9 ns 6/8 ns

1

0

0

0

C
F0

0

1

F1

0

D

1

1

0

1

1

1

F1

E
(b)

1

1

0

0

1

0

1

1

1

1
0

0

1

0

CONCURRENT FAULT SIMULATION 143

0 fault-free circuit

1 input 1 SAX

...

n input n SAX

n + 1 output SA0

n + 2 output SA1

where the element X is assumed to have n inputs and SAX denotes SA1 for an AND
gate, SA0 for an OR gate.

The purpose of the multiple copies of the various gates is to simultaneously rep-
resent the fault-free gate and instances of the gate where either faults originate or the
logic value at the input of the gate is affected by faults occurring at other gates. The
concurrent fault simulation algorithm recognizes two classes of faults, namely, fault
origins and fault effects. A fault origin (FO) is a gate at which a fault originates. An
input fault origin (IFO) occurs on a gate input, and an output fault origin (OFO)
occurs on the output. Fault origins are linked together and attached to the unfaulted
gate. A separate FO is used for each fault.

If an FO causes the input value at a destination gate to differ from that of the
fault-free gate, then a fault effect (FE) is created or diverged and attached to the fault
list of the destination gate. Whenever the output value of an FO or FE is different
from that of the corresponding unfaulted circuit, the FE or FO is said to be visible.
When the output of an FE or FO becomes visible, an FE is diverged at the destina-
tion gate. FEs continue to be diverged forward in the circuit until either the error sig-
nal is no longer visible or a primary output is encountered. When the error signal is
no longer visible, the FE is converged .7

These concepts are illustrated in Figure 3.12(b). Note first that there are five cop-
ies of gate G. The copy G0, driven by inputs A and B, corresponds to the fault-free
circuit. The remaining four copies are all IFOs. Copy G1 (G3) has one input SA1
(SA0) and the other input driven by input B. Copy G2 (G4) has one input SA1 (SA0)
and the other input driven by input A. There are two copies of gate F, one corre-
sponding to the fault-free circuit and an OFO corresponding to the output SA0. Gate
H has a fault-free copy H0 and IFOs for SA1 faults on each of its inputs as well as an
OFO for a SA1 fault on its output. It also has an FE, which consists of unfaulted
copy H0 driven by fault origin F1. Gates J and K also have several copies which are
interpreted similarly.

The circled logic values in the figure are used to denote signals that are SA1 or
SA0; hence the gate at which they occur are IFOs or OFOs. FEs are indicated by an
unfaulted copy of a gate in which one or more inputs are sourced by an FO or FE. In
the discussion that follows, the notation X0/Yi represents a fault effect that originates
at fault origin Yi and is diverged at gate X to drive an unfaulted copy X0 of X. The
rise and fall delays for the elements are indicated above the unfaulted copy of the
elements.

Before describing the rules for concurrent fault simulation, we informally describe
what happens when an event occurs. Given the signal conditions and the attached

144 FAULT SIMULATION

fault effects indicated in Figure 3.12(b), suppose that primary input D changes to 0. It
drives not only the unfaulted circuit H0 but also some copies, including H1 and the
fault effect H0 /F1. Fault origin H2 is unaffected by the event because the gate input
connected to primary input D is stuck-at-1. The OFOs H3 and H4 are unaffected by
any input change. The gate H0 in the unfaulted circuit must be simulated. The corre-
sponding gates H1 and H0 /F1 in the faulted circuit must also be simulated.

When H0 is simulated, its output switches from 0 to 1, therefore it must be sched-
uled for processing at time t + 4. Gate H1 also changes but the value on H0 /F1 does
not change; therefore H1 is scheduled but H0 /F1 is dropped from further processing.
Gates H0 and H1 are retrieved from the scheduler at time t + 4 and their outputs are
updated. Fault lists attached to gates in the fanout of gate H0 are processed. We
describe here only the processing for gate J0. Fault effects H3 and H0 /F1 no longer
differ from H0, so they are converged and dropped from the fault list attached to J0.
However, H2 and H3 now differ from H0, so those fault signals must be linked to the
fault list attached to J0; that is, they are diverged at J0. Also, the change on H0
reaches the lower input of FEs J0 /G3 and J0 /G4, so those FEs must be simulated.
Since the outputs of those FEs change, they must be placed on the scheduler.

The fault origin H1 was also simulated. Its output is identical to that of the
unfaulted copy. A check of the fault list attached to J0 shows that there is no fault
effect labeled H1 in the list, so no further processing need take place. Those fault
effects that eventually reach a primary output—in this case J4, J0 /G3 and J0 /G4—
define a sensitized path from the fault origin to the output; hence they correspond to
detected faults.

It is possible that the faulted copy changes and the unfaulted copy does not
change. For example, if the change on input D is followed by a change on input C,
then H2 will change while H0 remains unchanged. In that case, it is necessary to trace
the faulted output change to the destination gate(s) and perform divergence and con-
vergence, as the situation warrants. It is also possible that the unfaulted copy may
change in one direction while the faulted copy changes in the opposite direction, as
would be the case when primary input A changes. G0 and G2 change to 1, G4 changes
to 0, and G1 and G3 are unaffected. Furthermore, because the rise and fall times for G
are different, G0 and G4 are placed in different time slots on the scheduler.

This model expands and contracts as input signals change. The basic fault-free
circuit remains fixed, but the remainder of the circuit is quite fluid. Gates with fault
signals are added when fault effects cause the value on a gate input to differ from the
corresponding value on the good circuit. Gates in the fanout of a faulted element
continue to exist as long as the error signal persists. If the logic values on a gate
change so that an error signal is no longer distinguishable from the fault-free signal,
then that path terminates. When an error signal terminates, its forward propagation
path must be deleted in its entirety.

Implementation of the concurrent fault simulator does not require complete
descriptor cells for each fault signal that differs from the good circuit signal.
Rather, an abbreviated descriptor cell (ADC) is used for FEs and FOs, since much
of the information required by the simulator for the purpose of evaluation is identi-
cal for faulted and fault-free circuits. A typical format for the ADC is illustrated in

CONCURRENT FAULT SIMULATION 145

Figure 3.13. The fault-free cell and all related faulted cells are linked via pointers.
With the exception of the ADC, FOs and FEs are similar to regular gates. They use
the same functions as fault-free elements to schedule and evaluate elements. How-
ever, events on FOs and FEs can only affect FEs with the same identification num-
ber, whereas the signal from the good gate affects both the fault-free circuit and all
faulted circuits. The receiving pin number and the input states are needed to com-
pute the behavior of the element with the error signal and contrast it with the
response of the fault-free element. To help expedite processing, ADCs can be
ordered by fault identification number when linked to a descriptor cell.

When a logic change occurs on the output of a gate in a fault-free circuit, pro-
cessing for an FO or an FE depends on whether it is linked to the fault list for the
source gate, called the emission list (ELIST), or the fault list for the destination gate,
called the receive list (RLIST), or both. The rules are as follows:

If in ELIST only: Diverge a copy (an FE) of the destination gate with input states
identical to those that existed on the unfaulted destination gate before the
change arrived.

If in RLIST only: If it is an OFO, no action is taken. If it is an IFO, simulate
unless the input change occurred on the faulted input. If an FE, simulate with
the same change that occurred on the good gate.

If in both: If the FE or FO output value in ELIST is X, then take the same action
as when the FE or FO is in RLIST only. Otherwise, compare the input states of
the FE in the RLIST to the states on the unfaulted gate and converge if they
are identical.

Example The events that occur when input D changes from 1 to 0 are described
again. The event at D is applied to the input of H0 and simulated. Because its output
changes, H0 is scheduled for processing in time slot t + 4. After H0 is scheduled, its
attached fault list is processed. No faults were attached to primary input D, so there
is no ELIST; hence the “in RLIST only” rule is used. H1 and H2 are IFOs, so H1 is
simulated but H2 is not simulated. H3 is an OFO; therefore no action is taken. H0 /F1
is an FE so it is simulated with the same event that occurred on the unfaulted gate.

When H0 is retrieved from the scheduler, gates J0 and K0 are simulated. However,
only the processing for J0 is described here. The output of gate J0 did not change; nev-
ertheless, the fault list attached to J0 must be processed. J1 is simulated and its output
changes, so it must be scheduled. J2 is faulted on the input that changed, so no pro-
cessing is required. J3 and J4 are OFOs, so they are not processed. Fault effects G3
and G4 are in the RLIST but not in the ELIST for H0, so they are simulated and placed
on the scheduler.

Figure 3.13 Abbreviated descriptor cell.

Misc. *next (Link to next ADC)

Receiving Pin no. Fault ID Input states SA1/SA0

146 FAULT SIMULATION

There are two FOs, H2 and H3, in the ELIST of H0 that differ from H0 and are not
in the RLIST, so it is necessary to diverge FEs J0 /H2 and J0 /H3 with input values
identical to the values on J0 before the change arrived. There are two FEs, J0 /F1 and
J0 /H3, that are in both the ELIST and the RLIST. The logic values on the inputs of
J0 /F1 and J0 /H3 are identical to the values on the inputs of J0 after the event arrived
from H; therefore the two FEs are converged. ��

Events originating in the good circuit can affect good circuits and possibly all faulted
circuits, according to the rules given above. However, events generated by a fault circuit
can only affect faulted circuits with the same fault ID. Therefore, when the output of H1
changed, the only fault IDs that it will affect are those labeled H1 in the fault list
attached to J and K. Since there are none and since the output of H1 remains identical
to the value on the unfaulted circuit H0, no further processing is required.

3.7.3 Concurrent Fault Simulation: Further Considerations

Concurrent fault simulation was explained using the rather simple circuit of
Figure 3.11. That circuit had simple logic elements, including AND, OR, and XOR
gates. To fully appreciate the concurrent fault simulation algorithm, it is important to
realize that its operation is not materially affected by the types of elements in the cir-
cuit. Apart from the processing required to cope with divergence and convergence of
fault origins and fault effects, in other respects the processing of these short-lived
fault elements is identical to the processing of the more permanent good circuit ele-
ments. Fault modeling capabilities are far more flexible than for other fault simula-
tion algorithms because a faulted model can represent a delay fault or virtually any
other fault for which modeling code can be written.

Latches and flip-flops are processed in a manner similar to the logic elements. In
fact, user defined primitives (UDPs) found in many Verilog designs, as well as RTL
models, can be processed just like logic elements. A major problem with UDPs and
RTL models is the fact that granularity can be quite coarse. A UDP, even if it is
strictly combinational, may contain reconvergent logic, hence stuck-at faults on the
inputs of the UDP may not represent all possible internal stuck-fault modes. If an
RTL model has storage elements, the state of one or more of these elements may be
affected by an error signal entering the model. It is necessary to recognize that the
state is affected and the states for all error signals must be recorded, just as states for
logic gates are recorded.

If an RTL module has many sequential elements, fault processing may be accom-
plished by diverging individual copies of the RTL block for every fault that appears
at its inputs, as well as for every fault that causes one or more of its internal storage
elements to assume an incorrect value. This can require a massive amount of mem-
ory. An alternative approach, which may provide faster processing speed and more
efficient memory utilization, would be to create submodules for every latch or flip-
flop in the RTL module. Then, if a fault effect causes one or more of these flip-flops
or latches to assume an incorrect value, link lists of fault effects can be linked to
them just as they would if they were primitive gate-level elements. It would not be

DELAY FAULT SIMULATION 147

necessary to create an entire RTL block for a fault that affected only a single flip-
flop within the RTL module. The FEs that affected only a single flip-flop would only
be linked to that flip-flop.

When simulating sequential circuits, faults can cause a circuit to enter an incor-
rect circuit state and remain there for an indefinite period. A register may be loaded
from a bus, and that value may be held for many hundreds or thousands of clock
cycles, without being used. Finally, the value may be read by some other functional
unit, and the error signal may propagate forward and eventually be detected at an
output pin. If it is necessary to diagnose the source of an error at an output pin, it
may require some careful analysis to build a causal link back to the fault origin.

Efficient memory management is critical to good performance when performing
concurrent fault simulation. Virtual memory management is often used by operating
systems in order to share main memory among different jobs, but it is not practical
for concurrent fault simulation. The simulation run will simply thrash. If a run
requires more main memory that is available on the host system, the fault simulator
should split the fault list into two or more partitions and run them individually.

It is interesting to note that splitting the fault list can sometimes improve perfor-
mance even in cases where there is sufficient memory to perform the simulation in a
single pass through the fault simulator. This occurs because the fault simulator is
processing linked lists of fault effects; and as the fault list increases, these link lists
grow in length, with the result that traversing these link lists begins to seriously
impact performance. The number of passes is estimated based on circuit size, fault
list size, the amount of available memory, and the amount of memory used to imple-
ment the descriptor cells and abbreviated descriptor cells. Since some of the num-
bers are dependent on the implementation, they must be derived empirically.

A concurrent fault simulator will sometimes classify a fault as hypertrophic. A
hypertrophic fault spreads throughout a circuit and causes FEs to be linked to a great
many logic elements. An earlier paragraph described a fault in control logic that
caused the wrong function in an ALU to be performed. If an OR operation was sup-
posed to be performed, but a fault causes a subtract operation to be performed, then
conceivably half or more of the logic signals in the ALU could be incorrect. Some-
times a concurrent fault simulator will drop a hypertrophic fault on the assumption
that a fault so pervasive will inevitably cause an FE to reach an output and become
detected. A hyperactive fault is one that causes a large number of evaluations. Some-
times a fault can cause oscillations in a circuit. This is an especially serious problem
if a zero-delay loop is oscillating because the scheduler cannot advance time until
the oscillation is resolved. The oscillating signals can be set to X, or the fault origin
can be deleted.

3.8 DELAY FAULT SIMULATION

The emergence of deep submicron technology (DSM) has brought ever faster ICs. It
has also brought a growing vulnerability to delay faults—that is, manufacturing
imperfections that cause a device to fail to operate correctly at its intended clock

148 FAULT SIMULATION

speed—even though it may be functionally correct. Defects that would not have
affected performance in a previous generation device suddenly induce erratic behav-
ior. It may not be a solid defect, such as an open, or a short between two metal runs
on an IC. Rather, it might be a wire run with too much resistance, capacitance, or
loading, which manifests itself as excessive propagation delay, either at room tem-
perature or at the low or high end of the operating spectrum. For example, ICs
intended for the automotive market have to operate correctly at temperatures up to
120°F in the Arizona desert, and down to −50°F in the upper midwest and Canada.

As a result of these operating extremes, it has become increasingly important to
develop tests for critical paths—that is, those paths with the greatest delay from a
source to a destination. The source may be either a primary input or the output of a
flip-flop, while the destination may be a primary output or the input of another flip-
flop. This is illustrated in Figure 3.14. Rising edges emanate from U1 and U2. These
signals result from logic 1s on the inputs of U1 and U2 being clocked through the
flip-flops and replacing 0s on their outputs. The rising edge from U1 passes through
some combinational logic, indicated by the pair of wavy lines, and reaches U3 as a
rising edge. The edge from U2 reaches U4 after experiencing an odd number of
inversions. The rising edge is blocked on its way to U5, perhaps because it had to
pass through an AND gate whose other input is the blocking 0 value.

It was pointed out in Section 3.7.1 that the concurrent fault simulator is well-
suited to modeling many types of faults. Among those that it is well-suited to han-
dling is edge propagation. Whenever the value on the input of a flip-flop is the com-
plement of the value on its output, an edge emanates from the flip-flop on the next
active clock edge. A fault-effect (FE) can be diverged from that flip-flop which can
be processed in a manner analogous to the way in which FEs are processed for
stuck-at faults. If the FE representing the edge (an edge FE) reaches the input of one
or more destination flip-flops, it becomes trapped in that flip-flop.

Referring again to Figure 3.14, the input to U3 is an edge that originated at U1. If
the circuit is working correctly, a 1 is clocked into U3 during operation. If there is a
delay fault, the 1 fails to reach U3 before the next clock edge and a 0 gets clocked
into U3. This is represented by the 1/0 at the output of U3, which represents 1 on the
good circuit and 0 on the faulty circuit. Once a delay fault has been clocked in, it can
be treated like a stuck-at fault at the destination flip-flop. Propagation of the FE from
that point can be performed exactly as it is performed for stuck-at faults. If the FE
reaches an output, the tester can determine whether the delay fault affected U3.

Once an edge FE becomes trapped, it continues to exist until it either reaches an
output or converges. However, the FEs representing edges are removed at the end of
each clock period by a garbage collection routine. Another delay FE does not appear
at the flip-flop until once again the input and output of the flip-flop are complements
of one another. This is analogous to the fault origin (FO) for stuck-at faults. Note
that it is possible for an edge FE to initially becomes blocked at an AND gate or an
OR gate. Suppose an edge FE reaches a 2-input AND gate which has a 0 on its other
input. That other input may change from 0 to 1 after the edge FE arrives. In that
case, the edge FE should remain converged, because there is another path of longer
duration than the path from U1 to U3.

DIFFERENTIAL FAULT SIMULATION 149

Figure 3.14 Delay fault propagation.

The abbreviated descriptor cell, Figure 3.13, is slightly modified in order to
reflect that fact that the FE represents an edge rather than a stuck-at fault. The fault
ID has to be expanded in order to identify the source and destination of the edge. A
postprocessor can then use the fault IDs to identify all paths that have been exercised
by the test. The user can inspect the report to determine if the most critical paths
have been exercised. The delay fault simulation capability is easily integrated into
an existing concurrent fault simulator with very little effort. Of course the effective-
ness of edge fault simulation depends totally on the effectiveness of the vectors that
are evaluated. In Chapter 7 we examine methods for generating test vectors directed
at delay faults.

3.9 DIFFERENTIAL FAULT SIMULATION

The differential fault simulation (DSIM) algorithm described here, so called because
of its use of the differences between any two circuits, is based on the assumption
that the circuit being fault simulated is synchronous and that all circuit elements
have zero delay. These assumptions are not unlike those on which parallel fault sim-
ulation and PPSFP fault simulation are based. However, DSIM goes beyond them in
that it retains state information from one vector to the next; hence it can be applied
to sequential circuits.8 In that respect, it bears a resemblance to the concurrent fault
simulation algorithm.

DSIM will be described with the help of some notation. The term Bi,j denotes the
circuit status for the ith fault and the jth vector. The circuit state for faulty circuit
Bi+1 , j is derived from faulty circuit Bi,j by simulating the differences of their fault
origins as the initial fault events. The circuit corresponding to i = 0 is the fault-free
circuit. The circuit state for B0, j is obtained by performing a logic simulation of the

0

1/0

0

0/1

U1

U2

U3

U4

U5

U6

U7

150 FAULT SIMULATION

inputs for the jth vector. Note that when simulating a sequential circuit, there are
usually state differences at the storage elements, and these must also be evaluated.
The algorithm for DSIM follows:

for(i = 0; i < no_vectors; i = i+1) {
if(i == 0) // first vector
initialize circuit; // set all nodes to X

else {
remove previous injected fault; // fault-site event

// source
restore current states; // state-difference event

 // source
apply primary input values; // input-difference event

// source
perform event-driven simulation;
record next-state differences;
store primary output values;
sensitized_output_counter = 0;
for (all undetected faults) {
remove previous injected fault; // fault-site
 // event source

inject current fault;
recover current states;// state-difference event
 // source
perform event-driven simulation;
record next-state differences;
if (sensitized_output_counter > 0) // FE reached
 // output pin
drop the fault;

}
}

}

The general approach in DSIM is to define events that must be propagated forward
to the outputs. For the fault-free circuit, events on primary inputs are referred to as
input difference event sources. For faulted circuits, both the previously injected
fault, which is removed, and the current fault, which is injected, are referred to as
fault site event sources. Regardless of whether the event is an input event or a fault
event, the operation is essentially the same: Establish the initial events and then per-
form event-driven simulation from the point where the event originated, until either
a primary output or a memory element is reached, or the events converge. If a fault
event reaches an output, an output counter is adjusted. After simulation of each
faulty circuit, if the counter has a nonzero value, the fault is detected.

DEDUCTIVE FAULT SIMULATION 151

Since error signals are only recorded at memory elements, the amount of memory
required to retain a history of each fault is considerably less than that required for
concurrent fault simulation. However, the fact that error signals are stored at mem-
ory elements implies that all memory elements must be explicitly identified. If all
storage elements are modeled as latch or flip-flop primitives, it becomes trivial to
identify them. However, if there are storage elements defined by feedback created by
logic primitives, such as cross-coupled NAND gates, or, worse still, more complex
feedback configurations, this may cause DSIM to compute erroneous results.

3.10 DEDUCTIVE FAULT SIMULATION

Deductive fault simulation9 simulates only the fault-free circuit. The simulator
deduces which faults are tested by each input vector and creates lists of those that
are sensitized at each node. In some respects it is analogous to concurrent fault sim-
ulation. As simulation proceeds, some faults cease to be sensitized, their effects
become blocked, and they are dropped by the simulator. Meanwhile, other faults
become sensitized and are added to the list of sensitized faults.

To illustrate, consider the fault-propagating characteristics of a three-input OR
gate. Associated with each input is a list of faults from preceding logic that are sen-
sitized up to the input of the OR gate. If the present values on the OR gate inputs are
all 0s, then the fault list on the output of the OR gate is the union of the fault lists on
all the inputs. This follows from the fact that the fault list on any input is the set of
faults that cause that input to assume a value that is opposite to its correct value.
Conversely, if the fault-free signals at all three nodes are 1s, then a fault symptom
could propagate through the OR gate only if it could cause all three inputs to assume
incorrect values. Therefore, the set of faults that propagates to the output of the OR
gate is the set that results from the intersection of the fault lists at the three inputs. If
one or two inputs are at 1 and the other is at 0, then the computations get slightly
more complex.

Example Assume an OR gate for which the fault lists are:

A = {1,2,4,7,11}

B = {2,5,7,8}

C = {1,3,7,12}

If all three input values are 0, then the output fault list is
where d1 represents a SA1 on the OR gate output. For the sets A, B, and C listed
above, D = {1,2,3,4,5,7,8,11,12,d1}. If all three inputs are at logic 1, then the output
fault list is the set where ∩ denotes set intersection and
{d0} denotes the output SA0. In this example, D = {7, d0}. If the upper two inputs
are logic 1s and the lower input is a 0, then the only way to get an incorrect output is
if a fault f changes the values of the upper two inputs but does not change the lower

D A B C d1{ }∪ ∪ ∪=

D A B C d0{ }+∩ ∩=

152 FAULT SIMULATION

output—that is, if . In this example, fault 2 fits that requirement;
hence it will propagate to the output if the OR inputs are {1,1,0}. To that intersection
the output fault d0 is added. The result is D = {2, d0}. If any single input is at 1, then
that input SA0 will also propagate to the output and must be added to the list.

A general rule for processing OR gates follows:

� To the fault list at each input, add the fault corresponding to that input SA0 if
the value on that input is a 1,

� If all inputs are 0, then form the union of all these sets and add the fault corre-
sponding to the output SA1.

� If one or more inputs are 1, then

� Form the intersection S of sets corresponding to inputs that have 1s.
� Form the union T of sets corresponding to inputs that have 0 values.
� Compute S – T.
� Add the fault corresponding to the output SA0.

Deductive fault simulation can require processing enormous lists of faults using
equations for manipulation of these lists which vary according to the values on the
inputs of the gate being processed. In an event-driven environment, extensive list
processing may be required even when no logic activity occurs. For example, if the
three input OR gate has values (1,1,0) on its inputs and if the inputs change to
(1,0,0) in response to a logic change, then the formula for computing the output fault
list changes; hence the output fault list for the gate must be recomputed, even though
no logic activity occurred on the output of the gate. If the fault list on the gate output
changes, then the fault list must be recomputed forward for gates in the fanout list of
that gate, and this must be continued until fault list changes cease. Further complica-
tions occur when performing n-value simulation, n ≥ 3, and when sequential circuit
simulation is performed.

3.11 STATISTICAL FAULT ANALYSIS

We have been concerned, up to this point, with modeling faults and performing sim-
ulation on circuits in such a way that the effectiveness of a test program is deter-
mined by how many of the faults modeled in the circuit are detected. The objective
was to (a) get an accurate accounting of how many of the faults are detected and (b)
use this as a figure of merit for the test program. If the percentage of faults detected
is too low, then more test vectors must be created and fault simulated against the
remaining undetected faults. This is repeated iteratively with different sets of test
vectors in order to boost the fault coverage to an acceptable level.

The purpose of statistical fault analysis (Stafan) is to obtain an estimate of the
fault coverage without simulating all of the faults.10,11 A logic simulation is per-
formed on the circuit. During the logic simulation, statistics are compiled at the
various internal nodes. These statistics involve counting the numbers of 1s and 0s
that occur on each internal net. The following entities are defined for each net in the
circuit:

f A B C–∩∈

��

STATISTICAL FAULT ANALYSIS 153

C1(n)—the one-controllability, the probability of net n having a value of one on a
randomly selected vector

C0(n)—the zero-controllability, the probability of net n having a value of zero on
a randomly selected vector

B1(n)—the probability of sensitizing a path from net n to a primary output, given
that the value of the line is one.

B0(n)—the probability of sensitizing a path from net n to a primary output, given
that the value of the line is zero.

During logic simulation, counters are maintained for each internal net. The zero-
count is incremented at the end of each vector when the value on that net is 0, and the
one-count is incremented when the value is a 1. After N vectors, the one- and zero-
controllabilities are computed as C1(n) = one-count/N and C0(n) = zero-count/N. A
third counter is maintained for each net. It is called the sensitization counter. It is
incremented if the net is sensitized to the output of the gate that it is driving. For an
n-input AND gate, input j is sensitized to the output if all other inputs are at logic 1.
For an OR gate, input j is sensitized to the output if all other inputs are at logic 0.
After N vectors, the one-level sensitization probability for net n is computed as
S(n) = sensitization-count/N.

At the start of simulation, the observabilities of all primary outputs are set to 1.
Then, observabilities are computed working back to the inputs. Consider an AND
gate with n inputs, and assume the AND gate drives net p. A value of 1 on input j is
observable at p only when all inputs to the gate are at logic 1. This is the same as the
probability of C1(p). Note that C1(p) is the joint probabibility that net j equals one
and that j is observable at p. The conditional probability that j is observable at p,
given that j is a one, is C1(p)/C1(j). This term can then be used to determine the
observability of j. The equation is

To this point there has been an implicit assumption that a net drives only one input.
That, however, seldom happens in practice. More likely, a net drives two or more
gate inputs. If net j drives two gates with output nets p and q and if their paths to the
outputs are completely independent, then the observability of j is the probability of
the union of B1(p) and B1(q). However, independent paths are also rare. More likely,
the paths to the outputs share common logic. To address this issue, the authors pro-
pose the following equation:

In this equation, i1 through ik denote the fanout paths for net j. When α = 1, B1(j)
is observable independently through each of the m fanout branches, hence the
observability is the sum of the observabilities of the branches. However, when
α = 0, then B1(j) is observable through fanout branches that are interdependent by
virtue of divergent and reconvergent logic, so B1(j) is at least as observable as the
largest of the individual observabilities.

B0 j() B0 p() S j() C1 p()–
C0 j()--------------------------------⋅=

B1 j() 1 a–()max B1 ik() a B1 ik()
k 1=

m
∪+=

1 ≤ k ≤ m

154 FAULT SIMULATION

The discussion so far has centered on combinational circuits. Sequential circuits
require a more detailed analysis. Where the sequential nature of the circuit results
from cross-coupled NAND or NOR latches, the analysis involves conceptually cut-
ting the loop and analyzing it as an iterative array. Loop counters to count occur-
rences of loop-sensitization states are also used. The interested reader can find
details in the original sources. Here we discuss the actual computations of fault cov-
erage, once the various node statistics are generated during simulation. Assume that
we wish to detect an SA1 fault on net j. The probability of detection of that fault is
D1(j) = C0(j) ⋅ B0(j); that is, it is the joint probability of controlling the net to a
zero and the probability of observing a zero on that net.

Given that the probability of detecting a given fault on any single vector is x, then
the probability X(N) of detecting that fault by a set of N vectors is X(N) = 1 − (1 − x)N;
that is, the probability is one minus the probability of not detecting the fault by any of
the N vectors. Because the number of vectors is finite, random errors were shown to
produce a biased estimate of fault coverage. Hence, the second term on the right-hand
side is divided by a correction factor:

In this correction factor, the term β is a constant of proportionality whose value is
determined empirically. With this correction factor, the probability of detecting fault
xi in a test program containing N vectors is

Once the probability of detection is known for a given fault, the cumulative fault
coverage for all K faults, for N vectors, can be determined from

How effective is Stafan at predicting fault coverage for a set of test vectors? The
authors compared results with those obtained from a deterministic fault simulator on
a 64-bit ALU with 4376 faults. A set of 155 vectors produced 75.09% estimated
fault coverage. They then ranked the faults according to the probability of detection
provided by Stafan. Based on a coverage estimate of 75.09%, 3286 faults with high-
est probability were assumed to be detected, whereas the remaining 1090 faults were
assumed undetected. Of the 1090 undetected faults, 1036 were confirmed to be
undetected by the deterministic fault simulator. Of the 3286 faults that were
assumed to be detected by Stafan, all but 46 were confirmed to be detected by the
deterministic fault simulator. In their investigation of the effectiveness of Stafan, the
authors report that setting the parameter α = 1 (independent paths to the outputs)
gave good correlation with deterministic fault simulation. For β, the value β2/6 = 5.0
produced a good match with fault simulation. These values of α and β were found to
produce good results on other circuits as well.

W x() 1 N 1–
6

-------------β2 x
1 x–
-----------–=

f i N() 1
1 xim–()
W xim()---------------------

m 1=

N

∏–=

F N() 1
K
---- f i N()

i 1=

K

∑=

FAULT SIMULATION PERFORMANCE 155

3.12 FAULT SIMULATION PERFORMANCE

Feature sizes of integrated circuits have shrunk with remarkable regularity over the
years, with the result that increasingly larger numbers of transistors are squeezed
onto a given area of silicon each year. One result of all this is that fault simulation of
large circuits can take many hours, or days. Hence, fault simulation performance is
of vital importance. It was pointed out at the beginning of this chapter that growing
circuit size implied a growing fault list as well as a larger number of test vectors
required to stimulate all the faults in the circuit. These three parameters—circuit
size, fault count, and number of vectors—suggest that simulation time may, in the
worst case, increase in proportion to the third power of circuit size. As a result, it is
vitally necessary to exploit every possible opportunity to improve fault simulation
performance.

Consider the performance of parallel fault simulation. A compiled, zero-delay
fault simulator is not able to correctly predict the behavior of asynchronous circuits
where correct response depends on being able to recognize and process critical
propagation delays. It will only handle combinational and synchronous sequential
circuits. When fault simulating a synchronous sequential circuit and processing 31
faults in parallel, together with the fault-free circuit, the parallel fault simulator
must simulate all of the vectors before processing another 31 faults, unless all of
the faults are detected before the end of the vector set is reached. (If a design imple-
ments full scan, it can be considered to be a combinational circuit for purposes of
analysis.)

The PPSFP fault simulator, by virtue of the fact that it simulates multiple vectors
in parallel, is only able to process combinational or full-scan circuits. However, in
this restricted environment, it is capable of operating extremely fast. In combina-
tional circuits, it is not uncommon for many (most) faults to be detected in the first
10 to 15 vectors. For these faults it only requires a single pass through the fault sim-
ulator to detect the fault and delete it from further consideration because PPSFP is
simultaneously simulating 32 vectors.

Dropping faults in the parallel fault simulator is more complicated because 31
faults are processed in parallel, and the vectors are usually simulated until all are
detected. The probability of selecting 31 faults that will all be detected before the
end of the simulation is usually quite low. It is possible to check the number of faults
detected at various points during simulation and, when some threshold is reached,
stop simulating that group of faults and restart with a new set, where the undetected
faults from the terminated group are kept and undetected faults from the fault list are
added to replace the faults that are dropped. That, of course, introduces some redun-
dancy into the process. Parallel fault simulation is one method that would benefit
from states applied analysis.

Numerous methods have been devised to speed up fault simulation. Some of
them were previously discussed, including fault dropping, states applied analysis,
and simulating only one representative fault from a set of equivalent faults. Other
methods for improving performance of fault simulation include rank-ordering, rear-
ranging vectors, and statistical fault simulation.

156 FAULT SIMULATION

It was mentioned in Section 2.6 that the circuit model for a compiled simulator
had to be rank-ordered in order to get correct results. Rank-ordering can also benefit
concurrent fault simulation. Given a circuit in which all or most of the circuit ele-
ments have zero delay, if the logic elements are simulated in random order, some of
the elements may be simulated multiple times during each vector. This is especially
true for large combinational blocks. In one particular incident, this author was fault
simulating a large combinational array multiplier in which the elements all had zero
delay and were randomly positioned in the circuit model. A counter inserted in the
fault simulator for debug purposes indicated that some logic gates in the cones of the
high-order output bits were being simulated a hundred times or more during each
vector. After rank-ordering and resimulating the circuit so that no element was simu-
lated until all its predecessors had been simulated, fault simulation time was reduced
from almost a full day down to about an hour.

When a concurrent fault simulator processes a combinational circuit, the amount
of activity during fault simulation is affected by the number of input event changes
that occur during each vector. Again, in some unpublished experiments performed
by this author, vectors were randomly applied to the array multiplier. The same vec-
tors were then reordered so as to reduce the number of input events from one vector
to the next, and again they were fault simulated. The rearranged vectors produced
significantly less total activity during simulation and, as a result, fault simulation
time was considerably less. Where pseudo-random vectors are generated and
applied to combinational logic, a cursory examination and rearrangement of the vec-
tors, based on Hamming distance (cf. Chapter 10), can yield a significant payback in
reduced simulation time.

Statistical fault sampling is another technique that is effective in reducing simula-
tion time for both concurrent and parallel fault simulation. It provides an estimate of
fault coverage, and hence the quality of a test, by simulating a small random sample
of the faults. Sufficient faults can be simulated to give an arbitrarily high level of
confidence that the fault coverage is within some range of the predicted value. Sta-
tistical fault simulation can be preceded by a states applied analysis.12 If analysis
reveals that the percentage of potentially detectable faults is not sufficient to yield
the required fault coverage, then there is no point in performing fault simulation
until the percentage of potentially detected faults is increased.

It is possible to combine the features of parallel and concurrent fault simula-
tion.13 The parallel value list (PV) simulates all faults in one pass, as in concurrent
fault simulation, but stores faulty values using individual bit positions in a word.
Each fault is uniquely identified by a group number and bit position pair. Faults
grouped together in a given parallel value word are chosen based on their proximity
to one another. If they are close together in the circuit and if no activity is present in
that area of the circuit, the fault word is dropped from forward propagation quickly.
The evaluation techniques also differ, depending on whether the output activity
occurred on the fault-free or the faulted copy of the gate.

Improvements to the concurrent fault simulation algorithm can be achieved
through coding techniques. In one example, a simulation program was repro-
grammed to take advantage of the computer architecture.14 Short loops with many

SUMMARY 157

branches, which can be destructive of performance in a pipelined architecture, were
modified via loop unrolling. A series of operations was recoded to operate on several
contiguous arguments. As an example, the following C code increases the total
amount of code but reduces the number of jumps that must be performed.

for (i = 0; i < 32; i = i + 4) {
a(i) = b(i) + k;
a(i + 1) = b(i + 1) + k;
a(i + 2) = b(i + 2) + k;
a(i + 3) = b(i + 3) + k;

}

Since many programs are characterized by the fact that a high percentage of CPU
time is spent in a small part of the program, identifying high usage code (via soft-
ware profiling tools) and modifying it can sometimes significantly increase overall
performance of the program. In the example just cited, rearranging events for opti-
mized processing led to a reported three-to-one performance enhancement while
performing gate-level simulation. In contemporary processors with pipelined archi-
tectures, techniques to improve performance may depend heavily on the host work-
station, and a technique that provides significant improvement on one workstation
may provide little or no improvement on another workstation. Cache size in the host
computer also has a bearing on performance. Clearly, the bigger the cache, the better
the performance. But, for a given cache size, coding techniques that use code cur-
rently in cache, rather than fetching code from main memory, can provide signifi-
cant payback.

A number of approaches to speeding up fault simulation have involved hardware
acceleration architectures. The simplest approach is to use an accelerator architected
for design verification. Single faults are injected into the circuit model, and response
of the faulted model is compared to that of the fault-free model to determine if the
fault causes an incorrect response at an output pin. This is basically an adaptation of
the serial fault simulation method. Other accelerator approaches have been designed
specifically for fault simulation. Hardware accelerators tend to be competitive when
first announced; but because of the rapid rate at which standard workstations evolve in
performance, software programs running on the workstations gradually catch up and
eventually outpace the accelerators in terms of performance. Being an all-software
solution, they enjoy a cost advantage as well, since the workstation can serve both as a
fault simulation platform and as a general purpose workstation platform, so when not
being used for fault simulation they provide a payback by virtue of being used for
other applications.

3.13 SUMMARY

Digital electronics is pervasive: These devices appear in every aspect of our lives,
and consumers take for granted the presence of electronic devices that perform con-
trol functions found in so many of our appliances, entertainment centers, and modes

158 FAULT SIMULATION

of transportation. As a result, consumers are less tolerant of failing devices than they
once were. This makes it all the more imperative that devices be verified to be fault-
free by manufacturers. That, in turn, makes it imperative that manufacturers employ
test programs that are very thorough in ferreting out malfunctioning products. Fault
simulation is critical to the performance of this task.

Before the emergence of fault simulation, digital designs were tested using func-
tional test programs that attempted to verify the functionality of PCBs. For small
designs, using discrete components, it was not too difficult to identify and exercise
all “corners” of the design, as well as all combinations of inputs and internal states.
If a faulty product reached a customer, it would be analyzed upon return and a test
would be developed targeting that defect. As devices became more complex, and
more combinations of inputs plus internal states failed to be tested, it became appar-
ent that test programs would have to be evaluated to quantify their effectiveness at
separating good product from bad. Fault simulation programs were developed for
this purpose.

Several fault simulation algorithms have emerged over the past three decades. In
each instance the objective has been to reduce the number of computations and/or
memory requirements in order to render the problem tractable. Some differences in
approach result from differences in basic assumptions about the circuit being evalu-
ated. When simplifying assumptions are made, it is possible to take advantage of
those assumptions to produce a faster product, but one that will not function cor-
rectly when those assumptions do not hold. Hence, the user must understand the
capabilities and limitations of the tool that he or she chooses to use in order to obtain
maximum benefit from it.

But, even before understanding the algorithms, the user must understand that
fault coverage is an approximation to the true thoroughness of a test. Its accuracy
depends on the fault model chosen. With greater granularity, a greater number of
faults are used in a given circuit to estimate the fault coverage, and the fault cover-
age estimate will be more accurate. However, generating the estimate will be more
time-consuming.

The parallel and concurrent fault simulation algorithms have come to dominate
the field. Parallel fault simulation and PPSFP are quite powerful for circuits that
conform to design guidelines, including synchronous designs. Concurrent fault sim-
ulation requires more memory to perform effectively, but it is able to handle a wider
range of circuits, synchronous or asynchronous, as well as many more defect modes.

The deductive fault simulator was once used in at least one commercial fault
simulator (LASAR—logic automated stimulus and response), but it doesn’t have the
speed advantage of parallel fault simulation for synchronous circuits and it doesn’t
have the robustness of concurrent fault simulation for asynchronous circuits. One
interesting feature of LASAR was the use of the NAND gate to model all logic ele-
ments. It’s been well known since early in the twentieth century that NAND gates
could be used to model any other logic element.15 By relying on a single primitive,
the processing rules for deductive fault simulation were greatly simplified.

With growing circuit size, increased use of core modules, and the appearance of
more memory arrays in circuit models, the need for behavioral simulation capability

PROBLEMS 159

is growing. In fact, the ideal fault simulator will be able to process circuits ranging
from transistor level to high-level RTL. The concurrent fault simulator fits these
requirements; other fault simulation technologies come up short at one end or the
other, or both.

Effective use of simulation requires a knowledge of the design environment in
which the tools will be used. Assumptions that hold in one design environment may
not hold in another. Tools developed for use in combinational or synchronous
sequential designs may give totally inaccurate results if applied to asynchronous
sequential designs. On the other hand, the synchronous design environment permits
simplifying assumptions that can help to speed up simulation. However, perfor-
mance improvements in some instances are gained at the expense of generality; the
algorithms simply will not work on many circuits.

Many claims are made for the various algorithms that have been published over
the years. Making comparisons is difficult, because an algorithm that is quite effi-
cient on one circuit may perform rather poorly on other circuits. Some of the perfor-
mance advantages may be inherent in the algorithms, with a particular algorithm
being “tuned” to recognize and apply special processing techniques to certain, com-
monly occurring circuit configurations. But some of the performance advantages
seen in practice may be more a result of a general proficiency with which the algo-
rithms are coded. Effective coding can cause an algorithm to perform as much as
two or three times more efficiently than it might otherwise perform. Fault simulation
is one of those applications where 5–10% of the software code consumes 95% of the
execution time. Recognizing and optimizing that 5–10% of the code can yield a sig-
nificant payback.

PROBLEMS

3.1 Create the truth table for a three-input OR gate corresponding to that of the
AND gate in Figure 3.5. Show the response for SA0 faults on the inputs and
the SA0 and SA1 faults on the output.

3.2 Given a four-input AND gate with six faults: SA1 on each of the four inputs,
and SA0 and SA1 on the output. Applying the following five vectors toggles
all pins to 0 and 1 : A,B,C,D = {(1000), (0100), (0010), (0001), (1111)}. What
is the fault coverage?

3.3 Given a 32-bit ALU with two 32-bit input ports, a carry-in, and five function
select bits (i.e., a total of 70 inputs), the test engineer creating the test program
decides to simply apply all possible combinations to the inputs. If vectors are
applied and response evaluated at the rate of 10,000,000 test vectors per
second, how long will it take to exhaustively test the circuit?

3.4 In Section 3.6 it was stated that detection of a fault could not be claimed if
the fault-free circuit responds with X and the faulty circuit responds with 0
or 1. Why?

160 FAULT SIMULATION

Figure 3.15 Dominance relationships.

3.5 The bufif0 in Figure 3.6 drives a bus. If the enable is not active, the bus is
floating (disconnected from the driver). One way to cope with this situation
is to connect the bus to a pullup or pulldown. Then, if no driver is actively
driving the bus, the bus assumes a weak 1 (H) or a weak 0 (L) value that can
be overcome by an active 1 or 0. Recreate the truth table in Figure 3.6, assume
the existence of a pullup, and replace the Z’s by H’s. Explain how to detect
the stuck-at faults F1 through F5 in this situation.

3.6 A commercial fault simulator is likely to create 12 faults for the multiplexer
in circuit in Figure 3.7; identify them.

3.7 Generate a list of stuck-at faults for each of the primitive logic gates in
Figure 2.44. Using dominance and equivalence properties, collapse the fault
lists.

3.8 Given the following sets Ta through Te of tests for faults a, b, c, d, e, show all
dominance and equivalence relationships between these test sets.

Ta = {t1, t2, t3, t4, t5}

Tb = {t3, t4}

Tc = {t3, t4, t6, t7}

Td = {t3, t4}

Te = {t2, t8}

3.9 Identify the dominance and equivalence relationships between the four faults
in the circuit of Figure 3.15.

3.10 Prove the dominance and equivalence theorems.

3.11 The circuit on the left, in Figure 3.16, is represented on the right by a
functional block. Find a set of vectors that detect all SA0 and SA1 faults on
the pins of the functional block model but fails to detect a SA1 on the top
input to AND gate D in the gate-level model.

Figure 3.16 Hidden fault.

SA0

SA1

SA1

SA0

A

Sel

B
D

C

E

A

Sel

B
MUX

PROBLEMS 161

Figure 3.17 Using deductive fault simulation.

3.12 Finish the fault simulation example for Figure 3.10 in Section 3.6.1. What is
the result vector at the outputs of AND gate J and XOR K?

3.13 In the circuit of Figure 3.10, assume 10 faults: SA1 faults on the inputs to gates
G, H, and J, SA0 faults on the inputs to gate I, and an SA1 fault at input E. The
following four vectors are applied to the circuit: A,B,C,D,E,F = {(000011),
(010110), (110001), (001101)}. Perform parallel fault simulation on the circuit
and identify the faults detected by each vector. Perform states applied analysis;
is there any savings in computation time?

3.14 Perform parallel pattern single fault propagation (PPSFP) on the circuit of
Figure 3.10 using the faults and vectors defined in the preceding problem.

3.15 Again using the circuit in Figure 3.10, and the faults and vectors defined in
problem 3.13, use Stafan to estimate fault coverage for the 10 faults.

3.16 The four vectors of Problem 3.13 are applied to the circuit in Figure 3.10, and
the fourth vector responds incorrectly. What faults are most likely to have
occurred? What faults are most likely not to have occurred?

3.17 The circuit in Figure 3.17 has four stuck-at faults, indicated by the arrows.
Two vectors are applied: A,B,C,D,E,F = {(011011), (011111)}. Use
deductive fault simulation to determine all of the faults detected by each of
the two vectors.

3.18 Using concurrent fault simulation, along with the four faults and two input
vectors from the previous problem, determine which of the four are detected.
Show your work.

3.19 Using PPSFP, find all input combinations that will detect a SA0 fault on the
input to gate I that is driven by gate H in Figure 3.10. Find all combinations
that will detect a SA1 on the lower input to gate K.

3.20 It was stated in Section 2.7 that a circuit had to be rank-ordered in order to
get correct results with a compiled simulator. Is that strictly correct? Explain.

3.21 For the circuit in Figure 3.10, write the code for a parallel fault simulator that
fault simulates a multiple fault consisting of a SA0 on the output of G and a
SA1 on the input of J driven by primary input E.

A

B

C

D

E

F

162 FAULT SIMULATION

Figure 3.18 A MUX with stuck-at faults.

3.22 For the circuit in Figure 3.10, write the code for a parallel fault simulator that
fault simulates a short between the output of G and the input of J driven by
primary input F. Assume that the short acts like a wired AND, that is, if either
the output of G or input J is at 0, the entire shorted network assumes the value 0.

3.23 Given the circuit in Figure 3.18, assume three faults: a SA1 on the left input
to each of the two indicated AND gates, and a SA1 on the select line Sel.
Which of the three faults can be detected when Sel is set to 0?

3.24 Joe bought a very old house and had Sam the electrician rewire the light
switches in the stairwell leading to the upstairs bedrooms so that the light
could be turned on and off both at the foot of the stairs and at the upstairs
landing. When Sam completed the wiring he turned on the circuit breaker and
the light came on. He went upstairs and flicked the switch to both positions,
and the light went off and came back on. Sam went downstairs and repeated
the exercise, with successful results. He then turned the light off. Later that
night Joe awakened and decided to go downstairs and check out the
refrigerator. He flipped the light switch but the light did not turn on. Explain
what happened.

REFERENCES

1. Eldred, R. D., Test Routines Based on Symbolic Logic Statements, J. ACM, Vol. 6, No. 1,
January 1959, pp. 33–36.

2. Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May–
June 1978, pp. 1475–1488.

3. Mei, K. C. Y, Fault Dominance in Combinational Circuits, Digital Syst. Lab., Report No.
2, Stanford University, August 1970.

4. Case, G. R., SALOGS-IV, A Program to Perform Logic Simulation and Fault Diagnosis,
Proc. 15th D.A. Conf., 1978, pp. 392–397.

5. Waicukauski, J. A. et al., Fault Simulation for Structured VLSI, VLSI Syst. Des., Vol. 6,
No. 12, December 1985, pp. 20–32.

0
Sel

SA1

MUX

1

REFERENCES 163

6. Ulrich, E. G., and T. Baker, Concurrent Simulation of Nearly Identical Digital Networks,
Computer, Vol. 7, No. 4, April 1974, pp. 39–44.

7. Schuler, D. M., and R. K. Cleghorn, An Efficient Method of Fault Simulation for
Digital Circuits Modeled from Boolean Gates and Memories, Proc. 14th D.A. Conf.,
1977, pp. 230–238.

8. Cheng, W., and M. Yu, Differential Fault Simulation for Sequential Circuits, J. Electron.
Testing: Theory and Applications, Vol. I, 1990, pp. 7–13.

9. Armstrong, D.B., A Deductive Method for Simulating Faults in Logic Circuits, IEEE
Trans. Comput., Vol. C-21, No. 5, May 1972, pp. 464–471.

10. Jain, S. K., and V. D. Agrawal, Statistical Fault Analysis, IEEE Des. Test, Vol. 2, No. 1,
February 1985, pp. 38–44.

11. Jain, S. K., and V. D. Agrawal, STAFAN: An Alternative to Fault Simulation, Proc. 21st
D.A. Conf., 1984, pp. 18–23.

12. Case, G. R., A Statistical Method for Test Sequence Generation, Proc. 12th D.A. Conf.,
1975, pp. 257–260.

13. Moorby, P. R., Fault Simulation Using Parallel Value Lists, Proc. ICCAD, 1983,
pp. 101–102.

14. Krohn, H. E., Vector Coding Techniques for High Speed Digital Simulation, Proc. 18th
D.A. Conf., 1981, pp. 525–529.

15. Sheffer, H. M., A Set of Five Independent Postulates for Boolean Algebras, Trans. Am.
Math. Soc., Vol. 14, 1913, pp. 481–488.

165

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 4

Automatic Test Pattern Generation

4.1 INTRODUCTION

In Chapter 3 we looked at fault simulation. Its purpose is to evaluate test programs in
order to measure their effectiveness at distinguishing between faulty and fault-free
circuits. The question of the origin of test stimuli was ignored for the moment; we
simply noted that test programs could be derived from test stimuli originally
intended for design verification, or stimuli could be written specifically for the pur-
pose of exercising the circuit to reveal the presence of physical defects, or stimuli
could be produced by an automatic test pattern generator (ATPG). We now turn our
attention to the ATPG. However, we also examine two alternatives to fault simula-
tion in this chapter: testdetect and critical path tracing. These two methods share
much common terminology, as well as methodology, with corresponding ATPGs, so
it is convenient to group them with their corresponding ATPGs.

A number of techniques have emerged over the past three decades to generate test
programs for digital circuits. For combinational circuits several of these, including
D-algorithm, PODEM, FAN and Boolean differences, have been shown to be true
algorithms, in the sense that, given enough time, they will eventually come to a halt;
that is, there is a stopping rule. If one or more tests exist for a given fault, they will
identify the test(s). For sequential circuits, as we will see in the next chapter, no such
statement can be made. Push-button solutions capable of automatically generating
comprehensive test programs for sequential circuits require assistance in the form of
design-for-test (DFT), which will be a subject for a later chapter. In this chapter, we
will examine the algorithms and procedures for combinational logic and attempt to
understand their strengths and weaknesses.

4.2 THE SENSITIZED PATH

In Section 3.4, while discussing the stuck-at fault model, it was pointed out that
whenever fault modeling alternatives were considered, combinatorial explosion

166

AUTOMATIC TEST PATTERN GENERATION

resulted. The number of choices to make, or the number of problems to solve, liter-
ally explodes. The stuck-at fault model is a necessary consequence of the combina-
torial explosion problem. A further consequence of this problem is the

single-fault
assumption

. When attempting to create a test, it is assumed that a single fault exists.
Experience with the stuck-at fault model and the single-fault assumption indicates
that they are effective; that is, a good stuck-at test that detects all or nearly all single
stuck-at faults in a circuit will also detect all or nearly all multiple stuck-at faults and
short faults.

The stuck-at fault has been defined as the fault model of interest for basic logic
gates, and tests for detecting stuck-at faults on these gates have been defined. How-
ever, individual logic gates do not occur in practice. Rather, they are interconnected
with many thousands of other similar gates to form complex circuits. When embed-
ded in a much larger circuit, there is no immediate access to the gate. Hence it
becomes necessary to use surrounding circuitry to set up the inputs to the gate under
test and to cause the effects of the fault to travel forward and become visible at an
output pin where these effects can be observed by a tester.

4.2.1 The Sensitized Path: An Example

The circuit in Figure 2.43, repeated here as Figure 4.1, will be used to illustrate the
process. The goal is to find a test for an SA0 on input 3 of gate

K

 (i.e., the input
driven by gate

H

; on schematic drawings, inputs will be numbered from top to bot-
tom). Since gate

K

 is an OR gate, the test for input 3 SA0 requires that input 3 be set
to 1 and the other inputs be set to 0. Two problems must be solved: First, logic
values must be computed on the primary inputs that cause the assigned test values to
appear at the inputs of

K

. Second, the values assigned to the primary inputs must
make the fault effect visible at the output. In addition, the values computed on the
primary inputs during these operations must not conflict.

Figure 4.1

Sensitizing a path.

I1

I2

I3

I4

I5

Z

A

F

G

H

JB

C

D

E

L

K

N

O

PM

THE SENSITIZED PATH

167

We attempt to create a sensitized path from the fault origin to the output. A

sensi-
tized path

 of a fault

f

 is a signal path originating at the fault origin

f

 whose value all
along the path is functionally dependent on the presence or absence of the fault. If the
sensitized path terminates at a net that is observable by test equipment, then the fault is

detectable

. From the response at the output, it can be determined whether or not the tar-
geted fault occurred. The process of extending a sensitized path is called

propagation

.
Gate

H

, which drives the faulted input of gate

K

, is an AND gate, and a logic 1 on
its output only occurs if all its inputs have logic 1 values. This is called

implication

; a
1 on the output of an AND gate implies logic 1 on all its inputs. This implication oper-
ation can be taken a step further. The top input of H is driven directly by

I

2

, and its
bottom input is driven by

I

1

. Hence, both of these inputs must be assigned a logic 1.
This implication operation can be applied yet again. A 1 on the input to inverter

A

implies a 0 on its output, and that 0 drives gate

G

. Therefore, the output of gate

G

 is a
0. Fortunately, that 0 is consistent with the initial values assigned to the inputs of

K

.
Other implications remain.

I

2

 drives NOR gate

F

 with a 1, causing the output of gate

F

to become 0. Again, that value is consistent with the original assignments to

K

.
Finally,

I

1

 drives NOR gate

J

, and gate

J

 responds with a 0, so once again the assign-
ment is consistent with the required values on

K

.
All that remains to get a 1 from gate

H

is to get 1s from gate

B

 and gate

C

. Gate

B

is a two-input NAND gate, and it generates a 1 if either of its inputs is a 0. We
choose

I

3

 and set it to 0. We still need to get a 1 from gate

C

. It is a two-input OR
gate and its upper input, from

I

3

, was already set to 0. So, we set

I

4

 to 1.
All of the inputs to

K

 have now been satisfied, so the output of

K

 is a 0 if the
NOR gate is operating correctly, and the output of

K

 is 1 if the fault exists. At this
point we introduce the D-notation. The letter D (discrepancy) represents a

composite
signal

 1/0, where the first number represents the value on the fault-free circuit, and
the second number represents the value on the faulty circuit. The letter D represents
the composite signal 0/1, meaning that the fault-free circuit has the value 0 and the
faulty circuit has the value 1. The output of gate

K

 is D.
A D will now be propagated forward through gate

M

. To do so requires a logic 1
on the other input to

M

, driven by gate

L

. The output of gate

D

 is a 0, by virtue of the
0 on input

I

3

. However, a 1 can be obtained from gate

E

 by assigning a 1 to input

I

5

.
All of the inputs have now been assigned; the values are

I

1

,

I

2

,

I

3

,

I

4

,

I

5

 = (1,1,0,1,1).
However, a problem seems to appear. NAND Gate

M

 has a D and a 1 on its
inputs. That produces a D on the output. Now, gate

N

 has a D and a D on its inputs.
That means that the fault-free circuit applies 0 and 1 to gate

N

, and the faulty cir-
cuit applies 1 and 0. So both the fault-free and the faulty circuits respond with a 0
on the output of gate

N

. One solution is to back up to the last assignment,

I

5

 = 1,
and change it to

I

5

 = 0, so that the assignments on the primary inputs are

I

1

,

I

2

,

I

3

,

I

4

,

I

5

 = (1,1,0,1,0). Then, the output of

E

 becomes 0. That causes the output of

L

 to
become 0, which in turn causes the output of

M

 to become 1. A D and 1 on the
input to

N

 cause a D to appear on its output. Since

 L

 = 0, the other input to

P

 is 0,
and the D makes it through

P

 to the output

Z. As we will see, if we had considered
all possible propagation paths, this last operation, changing the value on I5, would
not have been necessary.

168 AUTOMATIC TEST PATTERN GENERATION

4.2.2 Analysis of the Sensitized Path Method

The operation that just took place will now be analyzed, and some observations will
be made. The process of backing up and changing assignments is called justifica-
tion, also sometimes referred to as the consistency operation. The two processes,
propagation and justification, can be used to find a test for almost any fault in the cir-
cuit (redundant logic, as we shall eventually see, presents testing problems). Fur-
thermore, propagation and justification can be applied in either order. We chose to
start by propagating from the point of fault to an output. It would be possible to first
justify the assignments on the four inputs of gate H, then propagate forward to the
output, one gate at a time, each time justifying all assignments made in that step of
the propagation.

During the propagation phase all required assignments are placed on the assign-
ment stack. Then, in the justification phase, the assignment stack expands and con-
tracts. When the stack is finally empty, the justification phase is complete. In the
second approach, processing begins with the justification process, attempting to sat-
isfy initial assignments on the gate whose input or output is being tested. Each time
the assignment stack empties, control reverts to the propagation mode and the sensi-
tized path extends one gate closer to the outputs. Then, control again reverts to the
justification routine until the assignment table is again empty. Control passes back
and forth in this fashion until the sensitized path reaches an output and all assign-
ments are satisfied.

Implication When assignments are made to individual gates, they sometimes
carry implications beyond the immediate assignment. An implication is an assign-
ment that is a direct consequence of another assignment. Only one assignment is
possible. Consider the assignment of a logic 1 to the output of gate H. This implied
that all of its inputs must be 1, implying that I1 and I2 must both be 1. Once I1 had
been assigned a 1, that implied a 0 on the output of inverter A, which in turn implied
a 0 on the output of G. These operations will be stated more formally in a later sec-
tion, because now it is sufficient to point out that these implications obviated the
need to make choices at various points during the operation.

The Decision Table During propagation and justification, gates are encountered
where choices must be made. For example, when a 0 was required from the NOR
gate labeled F, the value 1 was assigned to the upper input. This choice caused a
problem because it resulted in an assignment I1 = 0 that conflicted with a previous
assignment I1 = 1. Because a choice existed, it was possible to back up and make an
alternate choice that eventually proved successful. In large, complex circuits with
much fanout, complex multilevel decisions often must be made. If all decisions at a
given gate have been tried without success, then the decision stack must be popped
and a decision made at the next available decision point. Furthermore, assignments
to all gates following the point at which the decision was made must be erased, and
any mechanism used to keep track of decisions for the gate that was popped off the
decision stack must be reset. The decision table maintains a record of choices, or
alternatives.

THE SENSITIZED PATH 169

The implication operation is of value here because it can often eliminate a num-
ber of decisions. For example, the initial test for gate H assigned a logic 1 to input I2.
But assigning a 1 to I2 forces—that is, implies—a 0 on the output of gate F. As a
result, if implication is performed, there is no need to justify F = 0, and that in turn
eliminates the need to make a decision at gate F.

The Fault List The fault, input 3 of gate K, was selected arbitrarily in order to
demonstrate propagation and justification techniques. In actual practice the entire set
of stuck-at faults would be compiled into a fault list. That list would then be col-
lapsed using dominance and equivalence (cf. Section 3.4.5). Each time a test vector
is created for a fault in the circuit, that test vector would be fault simulated in order
to determine if any other faults are detected. The objective is to avoid performing
test vector generation on faults that have already been detected.

For example, the test for input 3 of K SA1 causes the fault-free circuit to assume
the value Z = 0. If input 3 of K were actually SA1, the output would assume the
value 1. But several other faults would also cause Z to assume the value 1, the most
obvious being the output of P SA1. Other faults causing a 1 output include outputs
of gate N or gate O SA1. In fact, any fault along the sensitized path that causes the
value on that path to assume a value other than the correct value will be detected by
the test vector.

The importance of this observation lies in the fact that if we can determine
which previously undetected faults are detected by each new test vector, then we
can check them off in the fault list and do not need to develop test vectors to spe-
cifically test for these faults. Several techniques for accomplishing this will be
described later.

Making Choices The sensitized path method for generating tests was used
during the early 1960s.1 When this method reached a net with fanout during propa-
gation, it arbitrarily selected a single path and continued to pursue its objective of
reaching an output. Unfortunately, this blind pursuit of an output occasionally
ignored easy solutions.

Consider what happens when an attempt is made to propagate a test through gate
M in Figure 4.2. Assume that the inputs to gates M and Q are primary inputs and that
the upper input to gate N is driven by other complex logic. Assume also that gate P
drives a primary output while gate N drives other complex logic. Gate P is not diffi-
cult to control. Its lower input, driven by gate Q, can be set to 1 with a 0 at either
input to Q. Gate N represents greater difficulties because a logic assignment at its
upper input must be justified through other logic, and a test at its output must be
propagated through additional logic. An arbitrary propagation choice could result in
an attempt to drive a test through the upper gate. In fact, if a program did not
examine the function associated with the fanout to gate P, it might go right past a
primary output and attempt to propagate a test through complex sequential logic at
the output of gate N.

170 AUTOMATIC TEST PATTERN GENERATION

Figure 4.2 Choosing the best path.

By ordering the inputs and fanout list for each gate, the program can be forced to
favor (a) inputs that are easiest to control and (b) the propagation path that reaches a
primary output with least difficulty whenever a decision must be made. An
algorithm called SCOAP, which methodically computes this ordering for all gates in
a circuit, will be described in Section 8.3.1.

The Reconvergent Path A difficulty inherent in the sensitized path is the fact
that it might not be able to create a test for a fault when a test does exist.2 This can be
illustrated by means of the circuit in Figure 4.3. Consider the output of NOR gate B
SA0. Inputs I2 and I3 must be 0 in order to get a 1 on the output of B in the fault-free
circuit. In order for the fault to propagate through gate E, input I1 must be 0. Hence
the output of E is 0 for the fault-free circuit, and it is 1 for the faulty circuit. In order
for E to be the controlling input to gate H, the other three inputs to H must be set to 0.

To get a 0 at the output of F, one of its inputs must be set to 1. Since the output of B
is SA0, input I4 must be set to 1. The output of gate C then assumes the value 0 which,
together with the 0 on I3, causes the output of gate G to become 1. The sensitized path
is now inhibited, so there does not appear to be a test for the fault. But a test does exist.
The input assignment (0,0,0,0) will detect a SA0 fault at the output of gate B.

4.3 THE D-ALGORITHM

The inability to generate a test for the fault at the output of gate B in Figure 4.3
occurred because the sensitized path procedure always attempts to propagate fault

Figure 4.3 Effect of reconvergent fanout.

M
N

Q
P

I1

I2

I3

I4

A

B

C

D

E

F

G

H

THE D-ALGORITHM 171

symptoms through a single path. In the example it was necessary to make a choice
because of the presence of fanout. In fact, that was the problem with the first exam-
ple, that used Figure 4.1. It was not necessary to perform that last operation in which
I5 was changed from 1 to 0. Even though the D and D canceled each other out at gate
N, the D at the output of gate M would have propagated through gate O and made it
to the output as a D. Rather than make a choice, the D-algorithm is capable of prop-
agating a sensitized signal through all paths when it encounters a net with fanout.

We start by formally defining the D-notation of Roth by means of the following
table.3 The D simultaneously represents the signal value on the good circuit (GC)
and the faulted circuit (FC) according to the following table:

Conceptually, the D represents logic values on two superimposed circuits. When the
good circuit and the faulted circuit have the same value, the composite circuit value
will be 0 or 1. When they have different values, the composite circuit value will be
D, indicating a 1 on the good circuit and 0 on the faulted circuit, or D, indicating a 0
on the good circuit and 1 on the faulted circuit.

At the output of gate B in Figure 4.3, where a SA0 fault was assigned, the fault-free
circuit must have logic value 1; therefore a D is assigned to that net. The goal is to
propagate this D to a primary output. Since the output of B drives two NOR gates, the
D is assigned to an input of gate E and to an input of gate F. Suppose we require that the
other input to both of these NOR gates be the nonblocking value; that is, we assign
I1 = I4 = 0. What value appears at the outputs of E and F? The inputs are 0 and D on
both NOR gates, and the D represents 1 on the good circuit and 0 on the faulted circuit.
So NOR gate inputs 0 and 1 are ORed together and inverted to give a 0 on the output of
the fault-free circuit, and NOR gate inputs 0 and 0 are ORed and inverted to give a 1 on
the output of the faulty circuit. Hence, the outputs of gates E and F are both D.

Two sensitized paths, both of which have the value D, are now converging on H.
If NOR gates D and G both have output 0, then the inputs to H are (0,0,0,0) for the
good circuit and (0,1,1,0) for the faulted circuit. Since H is a NOR gate, its output is
1 for the good circuit and 0 for the faulted circuit; that is, its output is a D. However,
we are not yet done. We need to obtain 0 from gates D and G. Since all of the inputs
are assigned, all we can do is inspect the circuit and hope that the input assignments
satisfy the requirement D = G = 0. Luckily, that turns out to be the case.

4.3.1 The D-Algorithm: An Analysis

A small example was analyzed rather quickly, and it was possible to deduce with lit-
tle difficulty what needed to be done at each step. A more rigorous framework will

FC
GC

0 1

0 0 D

1 D 1

172 AUTOMATIC TEST PATTERN GENERATION

now be provided. We begin with a brief description of the cube theory that Roth
used to describe the D-algorithm.

A singular cube of a function is defined as an assignment

where the xi are inputs, the yj are outputs, and ei ∈{0, 1, X}. A singular cube in
which all input coordinates are 0 or 1 is called a vertex. A vertex can be obtained
from a singular cube by converting all Xs on input coordinates to 0s and 1s.

A singular cube a contains the singular cube b if b can be obtained from a by
changing some of the Xs in a to 1s and 0s. Alternatively, a contains b if it contains
all of the vertices of b. The intersection of two singular cubes is the smallest singular
cube containing all of their common vertices. It is obtained through use of the inter-
section operator that operates on corresponding coordinates of two singular cubes
according to the following table:

The dash (—) denotes a conflict. If one singular cube has a 0 in a given position and
the other has a 1, then they are in conflict; the intersection does not exist. Two singu-
lar cubes are consistent if a conflict at their output intersections implies a conflict on
their input intersections. In terms of digital logic, this simply says that a stimulus
applied to a combinational logic circuit cannot produce both a 1 and a 0 on an out-
put. The term singular is used to denote the fact that there is a one-to-one mapping
between input and output parts of the cube. We will henceforth drop the term singu-
lar; it will be understood that we are talking about singular cubes. Furthermore, to
simplify notation, we will restrict our attention in what follows to single output
cubes, the definitions being easily generalized to the multiple output case.

A cover C is a set of pairwise consistent, nondegenerate cubes, all referring to the
same input and output variables. Given a function F, a cover of F is a cover C such
that each vertex v ∈ F is contained in some c ∈ C. A prime cube of a cover is one
that is not contained in any other c ∈ C. If the output part of a cube has the value 0,
the cube will be called a 0-point; if it has value 1, it will be called a 1-point; and if it
has value X (don’t care), it will be called an X-point. An extremal is a prime cube
that covers a 0-point or 1-point that no other prime cube covers.

Example The function can be represented by the cube of
Figure 4.4. The set of vertices for this cube is as follows:

I 0 1 X

0 0 — 0

1 — 1 1

X 0 1 X

x1 … xn y1 … ym, , , , ,() e1 e2 … em n+, , ,()=

F a0a1 a0a2+=

THE D-ALGORITHM 173

The following is a covering for the function which consists of prime cubes (asterisks
denote extremals):

The set of cubes for which the output is a 1 is denoted p1. Likewise, p0 denotes the
set of cubes whose output is 0. The reader should verify that each vertex of F is
contained in at least one extremal. Two intersections follow:

In the first intersection the cube (0, 1, 1, 1) is the smallest cube that contains all
points common to the two vectors intersected. The second intersection is null. From
Figure 4.4 it can be seen that the two cubes have no points in common. The set of
extremals contains all of the vertices; hence it completely specifies the function for
all defined outputs.

The reader familiar with the terms “implicant” and “prime implicant” may note a
similarity between them and the cubes and extremals of cube theory. An implicant is
a product term that covers at least one 1-point of a function F and does not cover any
0-points. An implicant is prime if

1. For any other implicant there exists a 1-point covered by the first implicant
that is not covered by the second implicant, and

2. When any literal is deleted, the resulting product term is no longer an
implicant of the function.

a0 a1 a2 F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

* 1 1 X 1

p1X 1 1 1

* 0 X 1 1

* 1 0 X 0

p0X 0 0 0

* 0 X 0 0

X 1 1 1 1 0 X 1

0 X 1 1 0 X 0 0
0 1 1 1 —

��

174 AUTOMATIC TEST PATTERN GENERATION

Figure 4.4 Cube representation of a function.

Implicants and prime implicants deal with product terms that cover 1-points,
whereas cubes deal with both 1-points and 0-points. The cover corresponds to the
set of implicants for both the function F and its complement F. The collection of
extremals corresponds to the set of prime implicants for both the function F and its
complement F.

4.3.2 The Primitive D-Cubes of Failure

A primitive is an element that cannot be further subdivided; processing power is
built into the D-algorithm. Up to this point the basic switching gates have been
regarded as primitives. As we shall see, the D-algorithm can accommodate primi-
tives that are composites of several basic switching gates. A fault model for the
D-algorithm is called a primitive D-cube of failure (PDCF). The two-input AND
gate will be used to describe the procedure for generating a PDCF. We start with a
cover for the AND gate, in which the input vertices are numbered 1 and 2, and the
output vertex is number 3.

If input 1 is SA1, then the output is completely dependent on input 2. The cover then
becomes

1 2 3

0 0 0

p00 1 0

1 0 0

1 1 1 } p1

1 2 3

0 0 0

f01 0 0

0 1 1

f11 1 1

(0,0,0) (0,0,1)

(1,0,1)

(1,1,1)(1,1,0)

(0,1,0)

(1,0,0)

(0,1,1)

(0,X,1)a0

a2

a1

(1,1,X)

(X,1,1)

THE D-ALGORITHM 175

(When referring to the faulted circuit, the set of 0-points is denoted as f0 while the set
of 1-points is as f1.) We now have two distinct circuits. The first one produces an out-
put of 1 only when both inputs are at 1. The second circuit produces an output of 1
whenever the second input is a 1, regardless of the value applied to the first input. A
cursory examination of the two sets of vertices reveals an input combination, (0,1),
that causes a 0 output from the fault-free circuit and a 1 from the faulted circuit. The
vector (0,1) is clearly, then, a test for the presence of the SA1 fault on input 1.

Are there any other tests for input 1 SA1? The answer can be determined by per-
forming a point-by-point comparison of vertices from the two sets of vertices. In this
case, there is only one test for input 1 SA1. This test is the PDCF for the SA1 fault
on input 1 of the AND primitive. The comparison of vertices from the two sets can
be performed using the intersection table of the previous section. When we get to the
output, we do not flag it as a conflict; rather, we assign a D, where D and D have the
meanings described previously.

If the two-input AND gate is faulted with its output SA1, the cover for this
faulted two-input AND gate becomes

There are three tests for the output SA1, and any of these tests can be chosen for the
fault. However, from the first two entries it is observed that the second input can be
either a 0 or a 1 (i.e., its value does not matter), suggesting the test (0, X). Likewise,
from the first and third entries it can be concluded that (X, 0) is a test for the fault.
The value of this observation lies in the fact that only one input needs to be assigned.
Can this be computed algorithmically?

Consider again the input SA1 fault for the two-input AND gate. The cover for the
good circuit can be described in terms of extremals. For the good circuit the cover is

For the faulted gate the cover is

1 2 3

0 0 1

f1
0 1 1

1 0 1

1 1 1

1 2 3

0 X 0

p0X 0 0

1 1 1 } p1

1 2 3

X 0 0 } f0
X 1 1 } f1

176 AUTOMATIC TEST PATTERN GENERATION

The vertex (0,1) is contained in the input parts of the cubes (0, X, 0) ∈ p0 and (X, 1,1)
∈ f1. The input parts of these two cubes can be intersected to yield the original vertex
(0,1). The intersection of an element from p0 with an element from f1 has produced a
test for input 1 of the AND gate SA1. This, then, suggests the following general
method for finding test(s) for a particular fault:

1. Create a cover consisting of extremals for both the fault-free and faulted
circuits.

2. Intersect members of f0 with members of p1.

3. Intersect members of f1 with members of p0.

Since there must be at least one vertex that produces different outputs for the good
circuit and faulted circuit (why?), either step 2 or step 3 (or both) must result in a non-
empty intersection. Note that the intersections need not necessarily result in a vertex.

Example Consider the output of the two-input AND gate SA1. The cover f1 con-
sists of the single cube (X, X, 1). Intersecting it with the extremals in p0 results in the
two tests (0, X, D) and (X, 0, D). (When performing steps 2 and 3 above, only the
input parts are intersected.) ��

PDCFs were developed for a rather elementary circuit, namely an AND gate. We
leave it as an exercise for the reader to develop PDCFs for other elementary gates
such as OR, NAND, NOR, and Invert. We point out that the technique for creating
PDCFs is quite general. Given a cover for a circuit G and its faulted counterpart, the
method just described can create a test for the circuit. As an example, consider the
AND-OR-Invert (AOI) of Figure 4.5. The circuit with input 1 SA1 is denoted G*.
The Karnaugh maps for G and G* are

Figure 4.5 AND-OR-Invert (AOI) circuit.

1 0 1 1
0 0 0 0

1 0 1 1

1 0 1 1

X1

X3

X4

X2

1 0 0 1

0 0 0 0

1 0 0 1

1 0 0 1

X1

X3

X4

X2

G G*

G

X1

X2

Y1

Y2

THE D-ALGORITHM 177

The extremals for G and G* are

The complete set of intersections p0 ∩ f1 and p1 ∩ f0 yields

Either of these two vectors will distinguish between the fault-free circuit and the
circuit with input 1 SA1.

4.3.3 Propagation D-Cubes

The D-algorithm provides methods for processing circuits composed of a network
of primitives. Associated with each primitive is a set of rules for propagating tests
through it and for justifying test assignments from its outputs back to its inputs. Dur-
ing propagation a sensitized signal, D or D, appears at one or more inputs to a prim-
itive, and the remaining inputs must be assigned logic values that cause the output to
be totally dependent on the sensitized signal. It is also assumed, in keeping with the
single-fault assumption, that the primitive through which the fault is propagating is
fault-free; that is, the fault of interest occurred elsewhere and the task is to drive it to
an observable output.

Since the goal is to drive a test through the primitive, a situation must be created
in which the response at the output of the primitive in the fault-free circuit is 1 and
the response at the output of the primitive in the faulted circuit is 0, or conversely.
This tells us that if the input part of the cube for the primitive in the fault-free circuit
is in p0, then the input part of the cube for the primitive in the faulted circuit must be
in p1, and vice versa. This suggests that we again want to perform intersections. We
will perform intersections, but the previous intersection table cannot be used

X1 X2 X3 X4 G X1 X2 X3 X4 G*

1 1 X X 0

 p0

X 1 X X 0

 f0X X 1 1 0 X X 1 1 0

0 X 0 X 1

p1

X 0 0 X 1

 f10 X X 0 1 X 0 X 0 1

X 0 0 X 1

X 0 X 0 1

0 1 0 X D

0 1 X 0 D

178 AUTOMATIC TEST PATTERN GENERATION

because it prohibited conflicts. We are now actually looking for conflicts so we use
the following table:

The row and column labels represent the values on input i of the first and second
cubes, respectively. Since elements from p0 are intersected with elements from p1, a
conflict will always appear on the output. A conflict will also appear on at least one
input coordinate position. If all possible intersections are performed, a table of
entries called propagation D-cubes is created. Then, when a signal must propagate
through a primitive, a search is made through the table for an entry with D and D
values that match the signals on the input position(s) of the primitive through which
a signal is being propagated. That entry identifies the values that must occur on other
inputs to the circuit.

Example Using the cover for the AND-OR-Invert of Figure 4.5, and intersecting p0
with p1, the following propagation D-cubes are obtained for the AND-OR-Invert:

There are actually 16 propagation D-cubes. The other eight are obtained by
intersecting p1 with p0. They can also be obtained by exchanging D and D signals
on both the inputs and outputs. In actual practice it is often necessary to restrict the
propagation D-cube tables to contain only those propagation D-cubes having a
single D or D among the inputs. That is because it is possible to have as many as
22n–1 propagation D-cubes for a function with n inputs. For a function with 6 inputs,
this could result in a table of 2048 entries if all single and multiple D and D signals
were maintained on the inputs. Multiple D and D values on the inputs are needed
much less frequently than single D or D signals and can be created from the cover
when needed.

0 1 X

0 0 D 0

1 D 1 1

X 0 1 X

1 2 3 4 G

D 1 0 X D

1 D 0 X D

D 1 X 0 D

1 D X 0 D

0 X D 1 D

0 X 1 D D

X 0 D 1 D

X 0 1 D D ��

THE D-ALGORITHM 179

Figure 4.6 AOI with AND gate input.

4.3.4 Justification and Implication

We created a set of inputs for a primitive circuit and saw how to propagate the resulting
test through other logic in order to make the test visible at an output. Signal assignments
made to the outputs of primitives during the propagation phase must also be justi-
fied. Consider the circuit of Figure 4.6. It is the AND-OR-Invert with input 1 now
driven by an AND gate. We want to again test input X1 for the SA1 fault. Therefore
input X1 of the AOI must be 0. Because we are familiar with the behavior of the
AND gate, we can easily deduce that either input X5 or X6 must be 0 to get the
required 0 at X1. Alternatively, we can go to the cover for the AND gate and select an
entry from p0. The selected entry will tell us what values must be applied to the
inputs in order to get the required 0 on the output.

The selected entry may not always be acceptable. In Figure 4.7 we again consider
the AOI as a primitive. It is configured as a 2-to-1 multiplexer by virtue of the
inverter. If the goal is to create a test for a SA1 on the net labeled X2 , then the first
step is to apply (1, 0, 0, X) to nets X1 , X2 , X3, and X4 . These assignments must be
justified. Assuming the 1 on net X1 can be justified, then the 0 assigned to net X2
must be justified. When we examine the cover for the inverter, we find that we need
a 1 on the input. This requires a 1 on the output of the AND gate. We then seek to
justify the 0 on net X3 , but it requires a 0 from the AND gate. A conflict exists. It is
obviously not possible to get a 0 and 1 simultaneously from the AND gate.

To resolve this conflict, an alternate decision must be made. Fortunately another
PDCF, (1, 0, X, 0), exists for the fault. With this alternate PDCF net, X3 no longer
requires an assignment. The original PDCF (1, 0, 0, X) implied a 0 at the output of the
AND gate and hence to the input of the inverter. That in turn implied a 1 on the output
of the inverter and produced a conflict. Had the implications of the test (1, 0, 0, X)
been extended, the computations required to justify the assignment on net 1 could
have been avoided.

Figure 4.7 AOI as a multiplexer.

G

X1

X2

X3

X4

X5

X6

X5

X1

X2

X3

X4
X6

C
om

b.
lo

gi
c

G

180 AUTOMATIC TEST PATTERN GENERATION

4.3.5 The D-Intersection

Covers, PDCFs, and propagation D-cubes have now been developed. These must be
used to create tests for circuits composed of numerous interconnected primitives.
This will be accomplished by means of the D-intersection that we define with the
help of another of our ubiquitous intersection tables.

The D-intersection table defines the results of a pairwise intersection of corre-
sponding elements of two vectors whose elements are members of the set {0, 1, D,
D, X}. The elements represent the values on the inputs of a circuit as well as the
values on the outputs of individual primitives in the circuit.The dash (—) indicates a
conflict, in which case the intersection does not exist. We postpone discussion of λ
and µ until later.

The D-intersections will be used to extend a sensitized path from the point of a
fault to the inputs and outputs of the circuit. The first step is to select a fault and
assign a PDCF. The propagation D-cubes and the cover are then used in conjunction
with the D-intersection table to form subsets of connected nets where we say that
two nets are connected if the values assigned to them are the direct result of (a) the
assignment of a PDCF or (b) a succession of one or more nontrivial D-intersections.

A nontrivial intersection requires that the vectors being intersected have at least
one common coordinate position in which neither of them has an X value.

The set of all connected nets forms a subcircuit called the test cube, also some-
times called a D-chain. Associated with a test cube are an activity vector and a
D-frontier. The activity vector consists of those nets of the test cube that (a) are out-
puts of the test cube and (b) have a value D or D assigned.

The D-frontier is the set of gates with outputs not yet assigned that have one or
more input nets contained in the activity vector. The objective is to start with the
PDCF and form an expanding test cube via D-intersections between an existing test
cube and the propagation D-cubes and members of the primitive covers until the test
cube reaches the circuit inputs and outputs.

Example The D-algorithm will be used to create a test for the circuit in Figure 4.3.
Operations will be listed in tabular form, numbers will be assigned to relevant steps,
and we will refer to the step numbers as we explain the operations. The calculations
are shown in Figure 4.8.

D-INTERSECTION TABLE

0 1 X D D

0 0 — 0 — —

1 — 1 1 — —

X 0 1 X D D

D — — D µ λ
D — — D λ µ

THE D-ALGORITHM 181

Figure 4.8 D-chain for Schneider’s counterexample.

In the first step a PDCF was assigned for a SA0 on the output of gate 6. It was then
propagated through gate 9. The intersection produced the result µ on the output of
gate 6. We now give the rules for processing the µ and λ symbols:

1. If one or more µs occur, convert them to the corresponding D or D signals that
appear in the test cube and propagation D-cube.

2. If one or more λs occur, complement all D and D signals in the propagation
D-cube, perform the intersection again, and convert the resulting µs according
to rule 1.

3. if µs and λs both occur, the intersection is null.

In accordance with rule 1, the µ on the output of gate 6 is converted to a D.
Because gate 6 fans out to two gates, the activity vector consists of gates 6 and 9 and
the D-frontier consists of gates 10 and 12. We refrain from implying signals in this
example, choosing instead to propagate through gate 10 in step 4. We again produce
a µ which is converted to a D.

In step 6, propagation occurs through gate 12, producing a λ on gates 9 and 10. The
D and D signals in the propagation D-cube are complemented, and for convenience
the step is relabeled as step 6′. This results in µ appearing on gates 9 and 10. These are
then both converted to D in step 7. In this step a multiple path was propagated through

1 2 3 4 5 6 7 8 9

X X0 0 X D X X X

0 D

10 11 12

1.

2.

X X X

000 X X X Xm

m

m m

X X X
0 0 0 X X D X X X X X3.

D

D
D

D

D

D

D

D

D

DD

D

D D

D

D

DD

DD04.

0 0 0 0 X X X X X

000 0 X D X X X X

0 DD 0

000 0 X D X 0 l l 0

0 0 0 0 X D X 0 D0

X 1 0

000 0 X D 1 D00

X 1 0

0 0 0 0 1 D 1 0 D0

5.

6.

7.

8.

9.

10.

0 00 0 X D X X X X

0 DD 0

000 0 X D DX 0 0

5.

6.

182 AUTOMATIC TEST PATTERN GENERATION

gate 12. The values at the inputs to gate 12 are (0, 0, 0, 0) for the fault-free circuit and
(0, 1, 1, 0) for the faulted circuit. If propagation D-cubes with multiple D and D sig-
nals are not stored in the propagation D-cube table, it would be necessary to create the
required propagation D-cube, using the cover consisting of vertices.

Finally, having propagated a signal to the output, assignments to internal gates
must now be justified. In step 8 the assignment of a 0 to gate 11 is justified by assign-
ing a 1 to gate 7 and an X to input 3. In step 9 the same is done for gate 8. It is also
necessary to justify the values assigned to gates 7 and 5, but at this stage it merely
requires confirming that the values on their inputs satisfy the requirements on the out-
puts, since there are no more assignments that can be made. The final test cube is
shown in line number 10. ��

Fortunately, it was not necessary to invoke rule 3, µ and λ did not occur simulta-
neously. If they had, then it indicates that the test cube and the propagation D-cube
have D and D signals in more than one common position. Furthermore, some of the
signals were in agreement and some were in conflict. Therefore, complementing all
D and D signals in the propagation D-cube will not resolve the conflict.

The D-algorithm is sometimes referred to as a two-dimensional algorithm, in
contrast to path sensitization, which has been characterized as one-dimensional.
Strictly speaking, the path sensitization method is not even an algorithm, but, rather,
a procedure. The distinction lies in the fact that an algorithm can always find a solu-
tion if a solution exists. In other respects they are similar, since both an algorithm
and a procedure can be programmed, such that a next step or a criterion for termina-
tion always exists. The reader is cautioned to note that authors are not consistent on
the usage of these terms, some calling an algorithm that which is more accurately
called a procedure. While we may not always strictly adhere to this distinction, the
reader should be aware that when an author sets out to demonstrate that his method
is an algorithm, he must show that it will find a solution whenever a solution exists.

The proof that the D-algorithm is an algorithm consists of showing that if a test
cube c(T,F) exists for failure F, the test cube c(T,F) must be contained in a PDCF.
Also, a test cube must contain a connected chain of coordinates having values D or
D linking the output of the faulted gate to a primary output. Given a particular gate
through which the test passes on its way to an output, the test cube c(T,F) must be
contained in some propagation cube of the gate in question since the propagation
D-cubes are constructed so as to define all possible combinations by which a test can
be propagated through the gate. Finally, the fact that all propagation D-cubes are
candidates for intersection, including those with multiple propagation paths, assures
that all possible chains can be constructed, implying that, given a particular test, the
D-algorithm will find that test (if it does not find some other test first).

4.4 TESTDETECT

The D-algorithm is used to construct sensitized paths extending from fault origins to
primary outputs. The D-notation keeps track of values along the way, and the tables

TESTDETECT 183

that define operations on pairs of logic signals and/or D-symbols make it possible to
evaluate progress, as well as to identify nodes where signals occur that block or
impede the progress of the D-signals. Using this same D-notation, Paul Roth devel-
oped a procedure, called Testdetect, that relies on D-signals to determine which
faults are detected by a given input vector.4

To understand the operation of Testdetect, consider the circuit in Figure 4.1. The
input pattern I1, I2, I3, I4, I5 = (0, 0, 1, 0, 0) is applied to the circuit. This input pattern
results in a 0 at the output Z. Obviously, if the output is SA1, the fault will be detected.
The outputs of gates K, L, N, and O are all 1s for the fault-free circuit. If the output of
any of these gates is SA0, that fault will cause the output to assume the value 1; hence
those SA0 faults will also be detected. It is possible to continue tracing back toward
the inputs, from any fault that is detected, to identify other faults that will be detected.
For example, if an SA0 on the output of gate L is detectable, then any fault on the input
of L that causes its output to assume the value 0 is also detectable.

Testdetect formalizes this approach. It selects a fault and determines whether a
D-chain can be extended from this fault to an observable output. However, in this
inverse D-algorithm, all signal values are fixed. The objective is not to create a test
but rather, having created a test, to determine what other faults are detected by the
input vector. Therefore, the object is to determine, for a given fault, if its effects
propagate through a series of gates, eventually reaching an output.

A D-list keeps track of gates in the D-frontier while progressing toward primary
outputs. A gate is selected from the D-list, and it is determined whether the fault will
propagate through the gate. If not, then the D-chain has died on that path; and if the
D-list is empty, the fault will not be detected by that test vector. If the fault does
propagate through the gate, then the gate or gates in the fanout from that gate are
placed in the D-list. This continues until either

1. A primary output is encountered, or

2. The D-list becomes empty.

A third criteria for stopping exists:

Lemma 4.1 If at any stage in the computation for failure F, the D-frontier reduces
to a single net L and there is no reconvergent fanout beyond the D-frontier, then F is
testable iff if L is testable.5

Rules for determining whether or not a fault propagates through an element are the
same as those used in the D-algorithm. For an AND gate with a D or D on an input (or
inputs), if the other inputs are all 1s, then the D or D will propagate to the output of
the gate. In general, if the good circuit signal causes a 1 (0) on the output of the gate
and the fault causes a 0 (1), then the fault signal propagates to the output of the gate.

Example For the circuit of Figure 4.1, with the inputs I1,I2,I3,I4,I5 = (0,0,1,0,0), the
output of gate L has a 1. An SA0 on the output of L produces a D, which shows up at
the output of the circuit as a D. Hence the SA0 is detected. If the upper input to gate
L is SA0, then (D,0) produces a D on the output of L. By the lemma, the fault is
detected. However, an SA0 on the output of gate D must be analyzed all the way to
the output because there are two gates, J and L, in its D-list.

184 AUTOMATIC TEST PATTERN GENERATION

A D is assigned to the output of gate D, indicating a SA0 on its output, and J and
L are placed in the D-list. We assume that the circuit has been rank-ordered, and we
require that when there are two or more entries in the D-list, the lower numbered gate
to be selected first. (Why?) Therefore, gate J is selected for processing. The inputs to
gate J are (0,0,1,D). Since the 1 on the third input is inverted at the input, the output
of J is a D. This causes K to be placed in the D-list. Since it precedes L (alphabeti-
cally), it is processed next. The D from gate J, together with the 0s on its other inputs,
causes a D to appear on its output. Gate L is processed next, and a D appears on its
output. The subcircuit consisting of M, N, O, and P represents an exclusive-OR, so
the D signals appearing at the inputs to this subcircuit cancel at the output. Hence the
fault on the output of gate 9 is not detected by this test pattern. ��

The failure to detect a fault on the output of gate D, despite the fact that it drives
a gate on which faults are detected, is caused by reconvergence of two sensitized
paths that cancel each other out. If there were no problems with reconverging logic,
Testdetect could run quite rapidly and work straight from the outputs back to the
inputs. However, reconvergent fanout necessitates that all fanout branches be exam-
ined. In the example, we looked at a situation where a pair of D-chains diverged at
the D-frontier. It is possible to have a D-frontier with a single element that is detect-
able and still not have a detectable fault. Such a condition is illustrated in Figure 4.9.

With the input combination 1, 2, 3 = (1, 0, 0), a fault on the output of gate 5 is detect-
able. But, consider what happens if the input combination 1, 2, 3 = (1, D, 0) is applied
to test for an SA1 at input 2. This causes a D to appear at the output of gate 5 and causes
a D to appear at the output of gate 4. With D and D on its inputs, the output of gate 6 is
a 0. We are left with only gate 5 in the D-list, and that was previously determined to be
detectable by the applied pattern, yet the SA1 at primary input 2 is not detectable
because the 0 on the output of gate 6 prevents the D at gate 5 from reaching the output.

4.5 THE SUBSCRIPTED D-ALGORITHM

Given an AND gate or an OR gate, for each input fault to be tested the D-algorithm
must recompute a propagation path from that gate to a primary output. This effort
becomes increasingly redundant for circuits in which many gates have a large num-
ber of inputs. Elimination of these redundant computations is one of the objectives
of the subscripted D-algorithm, or A-algorithm (AALG).6

Figure 4.9 Recombining sensitized paths.

6

1

2

3
7

1

0

0

0

D

D

D

D
4

5

8

THE SUBSCRIPTED D-ALGORITHM 185

The AALG goes farther, however. Whereas the D-algorithm selects a single fault
and justifies fixed binary values on the inputs of the corresponding gate, AALG
simultaneously justifies symbolic assignments on all inputs in a process called back-
propagation. The first step in this process is to select a gate and assign the symbol
D0 to its output. This symbol is propagated to a primary output using the same
forward-propagation techniques employed in the D-algorithm. If the gate has m
inputs, then a symbol Di, 1 ≤ i ≤ m, is assigned to each of its inputs.The Di are called
flexible signals; they may represent 0 or 1, depending on what values are required
for a particular test.

After the D0 signal has been successfully propagated to an output, all of the Di
are back-propagated to primary inputs. If the back-propagation is completely suc-
cessful, then tests for the output fault and all of the gate input faults can be computed
simply by inspecting values at the primary inputs. This is illustrated in the circuit of
Figure 4.10, where the input vector I has value I = (X, 0, D1, D2, 0, 0).

This vector is interpreted by referring back to the gate where the Di originated. A
test for the output of gate 16 SA0 requires both of its inputs to be 1, that is, D1,
D2 = (1, 1), which requires inputs 3, 4 = (1, 0). Tests for SA1 on inputs 1 and 2 of
gate 16 require D1, D2 = (0, 1) and (1, 0), respectively. Therefore, the tests for these
three faults are

(X, 0, 1, 0, 0, 0)

(X, 0, 0, 0, 0, 0)

(X, 0, 1, 1, 0, 0)

The input assignments are not unique. For example, the input vector I could have
been assigned the values (D1, 1, X, D2, 1, 1). Several other possibilities exist,
depending on choices made at gates where decisions were required during
back-propagation.

Figure 4.10 Illustrating the subscripted D-algorithm.

D0
D1

D2D2

D1

D1

1

2

3

5

6

X

0

0

15

7

4

0 0

0

9

10

11

12

13

14

16

17

18

8

186 AUTOMATIC TEST PATTERN GENERATION

We now discuss the rules for back-propagation. Basically, each Di is back-
propagated toward the inputs along as many paths as possible. This is done through
replication. When symbolically propagating back through an element, the symbol Di
at the output is replicated at the inputs, according to the following rules:

1. If a gate inverts a signal, then the inputs are assigned Di.

2. Di (or Di) is replicated at all inputs if no input has been previously assigned.

3. Di can be replicated at some inputs if all others are assigned noncontrolling
values.

Example Given a three-input NAND gate, with one of its inputs assigned a logic 1,
and Dj assigned to its output during back-propagation, the remaining two inputs are
assigned D j. ��

This proliferation of Di signals enhances the likelihood of establishing a sensitized
path from one or more primary inputs to input i of the gate presently being tested, in
contrast to propagation of a single replica, which may require considerable back-
tracking* in response to conflicts. However, it is still possible to encounter conflicts.
In fact, with flexible signals increasing exponentially in number as progress continues
toward the inputs, conflicts are virtually inevitable in any realistic circuit. Efficient
handling of conflicts is imperative if performance is to be realized.

A conflict can occur during back-propagation as a result of a signal Di and a con-
flicting value of that same signal attempting to control a gate, or as a result of two
different signals Di and Dj attempting to control a gate, or a conflict may occur at a
gate with fanout if two or more signal paths reconverge at the gate and one of the
paths has a flexible signal while another has a fixed binary value.

The situation in which conflicting values of the same flexible signal try to control
a gate is illustrated in the upper path of Figure 4.10. The assignment of D1 on the
output of gate 13 during back-propagation initially results in the replication of D1 on
each of its inputs, hence on the outputs of gates 9 and 10. Back-propagation then
produces replicas of D1 on both inputs of gates 9 and 10. However, we are now faced
with the prospect of flexible signal D1 on both the input and output of inverter I7.
This conflict can be resolved by assigning a 0 or 1 to the output of gate 7. Choosing
a 1 forces 0s on the input of gate 7 and the lower input of gate 9, which forces a 0 on
the output of gate 9 and also causes the upper input to gate 9 to be reassigned to X.

The conflict between flexible signals Dj and Dk can be illustrated by assigning D0
to gate 14. Forward propagation and justification along the upper path are the same
as in the D-algorithm. We therefore restrict our attention to the consequences of a D0
on gate 14. This requires D1 and D2 on the inputs to gate 14. Back-propagation then
attempts to assign both D1 and D2 to the output of gate 8. Again, the conflict is

*In the discussion that follows, the terms backtracing and backtracking will be used. It is easy to confuse
them. Backtracing is the process of working backward in the circuit model, while backtracking is the pro-
cess of correcting for a conflict between node values.7

THE SUBSCRIPTED D-ALGORITHM 187

resolved by assigning a fixed binary value to the output of gate 8. If a 1 is assigned,
then one of the inputs must be set to 0. However, the other flexible signal can still be
instantiated.

Generally, when an input must be set to a controlling value—for example, a 0 on
an input to an AND or NAND gate—it is usually preferable to choose the input that
is easiest to control. However, in the present case an additional criterion may exist. If
a fault on one of the two inputs to gate 14 has already been detected, then the flexi-
ble signal D1 or D2 corresponding to the undetected input fault can be favored when
a choice must be made. When D1 and D2 converge at the output of gate 8, if it is
found that the upper input to gate 14 has already been tested, then D1 can be purged
by assigning a 0 to the upper input of gate 8.

When a conflict occurs, its resolution usually requires that segments of Di chains
be deleted. AALG accomplishes this with functions called DROPIT and DRBACK.8

DROPIT purges a chain segment when the end closest to the primary inputs is
known. It works forward toward the gate under test. It must examine fanouts as it
progresses, so if two converging paths both have flexible signals, then both chain
segments must be deleted. When a flexible signal is deleted, it may be replaced by a
fixed binary signal. This signal, when assigned to the input of a gate, may be a con-
trolling value for that gate and thus implies a logic value on the output. In that case,
the output must be further traced to the input of the gate(s) in its fanout to determine
whether this output value is a controlling value at the input of the gate in its fanout.

When D0 was assigned to the output of gate 14, a conflict occurred at gate 8, so a 1
was assigned to its output, which required a 0 on one of its inputs. Primary input 6
was chosen. This required that the D2 chain from P.I. 6 to the input of gate 14 be
purged. A 0 on P.I. 6 implies a 0 on the output of gate 12, so the flexible signal D2 ini-
tially assigned at the output of gate 12 must be purged and the path traced another
level. At gate 14 the enabling signal 0 is assigned to the lower input and the flexible
signal D1 is assigned to the upper input. Therefore DROPIT can stop at that point.

If Dj controls the output and one or more Di control the inputs, it may be desir-
able to propagate Dj toward the inputs and purge the Di signals. In that case the end
of the chain farthest from the PIs is known and DRBACK purges the chain. Working
back toward the PIs, it may have to purge a considerable number of flexible signals
since the signals were originally replicated when working toward the inputs.

The functions DROPIT and DRBACK are not always invoked independently of
one another. When DROPIT is purging flexible signals and replacing them with
fixed binary signals, it may be necessary to invoke DRBACK to purge other chain
segments. This is seen in the upper branch of the circuit in Figure 4.10. Primary
input 2 was assigned a 0 because of a conflict. Therefore DROPIT, working for-
ward from primary input 2, purges D1 and replaces it with a 0. The 0 on the lower
input of gate 9 blocks the gate and therefore DRBACK must pick up the chain seg-
ment on the upper input and delete it back to input 1 and replace it with X. Then
DROPIT regains control and proceeds forward. The 0 on the input of gate 7
implies a 0 on the output and hence a 0 on the input to gate 13. Since a 0 on an OR
gate is not a controlling value, the forward purge can stop, leaving gate 13 with
(0, D1) on its inputs.

188 AUTOMATIC TEST PATTERN GENERATION

To help identify and purge unwanted chain segments, flexible signals are never
implied forward to primary outputs during back-propagation. As an example, in
Figure 4.10, when back-propagating from gate 9 toward primary inputs, any assign-
ment to primary input 2 will necessarily imply the inverse signal on the output of
gate 7. However, if the flexible signal is assigned, then at some later point DROPIT
may go unnecessarily along signal paths, deleting flexible signals and replacing
them with controlling logic values where it may be unnecessary.

In measurements of performance, it has been found that AALG creates an input
pattern with flexible signals in about the same time that the D-algorithm generates a
single pattern. Overall time comparison for typical circuits shows that it frequently
processes a circuit in about 30% of the time required by the D-algorithm. AALG is
especially efficient, for reasons explained earlier, when working on circuits that have
gates with large numbers of inputs, as is sometimes the case with programmable
logic arrays (PLAs). The efficiency of AALG can be enhanced by first selecting pri-
mary outputs and then selecting gates with large numbers of inputs. Gates for which
the output has not yet been tested are chosen next since they usually indicate regions
where fault processing has not yet occurred. Finally, scattered faults are processed.
On those faults AALG occasionally defaults to the conventional D-algorithm.

4.6 PODEM

The D-algorithm selects a fault from within a circuit and works outward from that
fault back to primary inputs and forward to primary outputs, propagating, justifying
and implicating logic assignments along the way. In circuits that rely heavily on
reconvergent fanout, such as parity checkers and error detection and correction
(EDAC) circuits, the D-algorithm may encounter a significant number of conflicting
assignments. When that happens it must find a node where an arbitrary choice was
made and choose an alternate assignment. This can be very CPU and/or memory
intensive, depending on how many conflicts occur and how they are handled.

PODEM (path-oriented decision making)9 reduces the number of remade deci-
sions by selecting a fault and assigning logic values directly at the circuit inputs to
create a test. Much of its efficiency results from its ability to exploit the fact that sig-
nal polarity along sensitized paths is irrelevant. For example, when the D-algorithm
propagates a D or D through an XOR, it assigns a 1 or 0 to the other input, the
choice being arbitrary and often depending on how the software was coded. It may
then go to great lengths to justify that choice, despite the fact that either choice is
equally effective, and the chosen value may eventually produce a conflict, necessi-
tating a remade decision. PODEM, as we shall see, implicitly propagates through
the XOR, eliminating the need to make a choice at the other input, thus obviating the
need to make or alter a decision.

PODEM begins by initializing the circuit to Xs. A fault is chosen, and PODEM
backs up through the logic until it arrives at a primary input, where it assigns a
binary value, 0 or 1. Implications of this assignment are propagated forward. If
either of the following propositions is true, the assignment is rejected.

PODEM 189

1. The net for the selected stuck fault has the same logic value as the stuck fault.

2. There is no signal path from an internal net to a primary output such that the
internal net has value D or D and all other nets on the signal path are at X.

Proposition 1 excludes input combinations that cause the fault-free circuit to assume
the same value as the stuck-at value at the site of the fault. Proposition 2 rejects
input combinations that block all possible paths from the fault to the outputs. If the
test is not complete and if there is no path to an output that is free to be assigned,
then there is no way to propagate a test to an output.

When PODEM makes assignments to primary inputs, it employs a branch-and-
bound method.10 This process is represented by the tree illustrated in Figure 4.11.
An assignment is made to a primary input and is implied forward. If the assignment
does not violate proposition 1 or 2, it is retained and a branch is added to the tree. If
a violation occurs, the assignment is rejected and the node is flagged to indicate that
one value had been unsuccessfully tried. The tree is thus bounded. If the node had
been previously flagged, then it is completely rejected and it becomes necessary to
back up in the tree until an unflagged node is encountered, at which point the alter-
nate value is implied. The process continues until a successful test is created or the
process returns to the start node and both choices have been tried. If that occurs, it is
concluded that a test does not exist. The criterion for a successful test is the same as
that employed by the D-algorithm, namely, that a D or D has propagated from the
point of a fault to a primary output.

If PODEM rejects the initial assignment to the ith input selected, and if there are n
primary inputs, then 2n–i combinations have been eliminated from further consider-
ation. If the initial assignment to the first primary input is rejected, then the number of

Figure 4.11 Branch-and-bound without backtrace.

PI4 = 1

PI3 = 0

PI2 = 1

PI1 = 1PI1 = 0

PI2 = 0

PI5 = 0

PI4 = 0

SUCCESS

All PIs initially
set to X }{START

190 AUTOMATIC TEST PATTERN GENERATION

combinations to be considered has been cut in half. We say, therefore, that PODEM
examines all input combinations implicitly. It does not have to explicitly evaluate all
assignments in order to determine if a test exists. Since it will consider all possible
input combinations if necessary to find a test, it can be concluded that if PODEM does
not find a test, a test does not exist; hence it follows that PODEM is an algorithm.

PODEM can be implemented by means of a last-in, first-out (LIFO) stack. As
primary inputs are selected, they are placed on the stack. A node is flagged if the
initial assignment was rejected and the alternate choice is being tried. If a node
assignment violates one of the two propositions and the node is flagged, then the
node is popped off the stack, thus bounding the graph. Nodes continue to be popped
off until an unflagged node is encountered. The process terminates when a test is
found or the stack becomes empty.

Example The branch-and-bound method is illustrated in Figure 4.11, correspond-
ing to an SA0 on input 3 of gate K of the circuit in Figure 4.1. In this example, the ini-
tial trial assignments are arbitrarily chosen to be 0. When a 0 is assigned to I1 a
problem occurs immediately because the output of gate H becomes 0, and that violates
rule 1 above. Therefore the assignment is rejected and the alternate value is assigned.
The initial assignment to I2 is rejected for the same reason. The assignment I3 = 0 is
retained, at least for the moment, because it does not violate either of the two rules.

The next assignment, I4 = 0, has to be rejected because it causes the output of gate C
to become 0, which causes the output of gate H to become 0, again violating rule 1. The
assignment I4 = 1 does not violate either of the rules, so it is retained. Finally, the assign-
ment I5 = 0 completes the test. ��

PODEM uses the branch-and-bound technique, but its performance is improved
substantially by the use of a backtrace feature. The backtrace starts at the gate under
test or at some other gate along the propagation path and determines an initial objec-
tive. The initial objective is a net value and logic value (n, e), e ∈ {0,1}, that satisfy the
value at the net, either helping to propagate a fault from the input to the output of the
faulted gate or helping to extend a sensitized path from the fault origin to an output.

With an initial objective as its starting point, backtrace works back to the primary
inputs. During processing, backtrace may encounter a gate such as an AND where
all inputs must be set to noncontrolling values. If that happens, it processes the
inputs in order, from the most difficult to the least difficult to control. If the
backtrace encounters a gate where it is necessary to set an input to the controlling
state—for example, a 1 on an input to an OR gate—it chooses the input that is
easiest to control to the desired value.

Example Consider again the circuit in Figure 4.1. For the SA0 on input 3 of gate K,
the output of gate F must be 0, so one of its inputs must be 1. If the top input is chosen,
the 1 comes from inverter A, which requires that I1 be 0. Implying this assignment
causes the output of gate H to become 0. Since gate H drives the third input to K, which
is being tested for a SA0 fault, that input must be a 1. This conflict necessitates that
primary input I1 be set to 1, which implies a 0 on the output of gate A.

PODEM 191

Since I1 is set to 1, the top input to K remains unassigned, so another backtrace
must be performed from that input, but values implied by the logic 1 on I1 must not
be altered. Therefore, the 0 on the output of gate F is justified this time by a 1 on input
I2. The second input to K also requires a 0, which is required from gate G. But that
value is satisfied at this point by the 0 at the output of gate A. The third input to K, the
input being tested for a SA0 fault, must be set to 1. A backtrace from that input may
encounter gate B or C, both of which must provide a 1. Assume that gate B is pro-
cessed first. Gate B equals 1 only if one of its inputs is 0, so set I3 to 0. At this point,
gate C is still at X. To get a 1 from gate C requires another backtrace, which causes
input I4 to be set to 1.

The sensitized path must now be propagated forward to the output. If the circuit is
rank-ordered and if the rule is to drive the fault to the highest numbered gate, using the
crude metric that the highest numbered gate is closest to an output, then gate N is cho-
sen for propagation. With the sensitized signal on the upper input to gate N, the lower
input to N must be a 1. Since K has the test signal D, it is necessary to get a 0 from gate
L. The upper input to L has a 0, and I4 = 1, so the backtrace chooses I5 to be 0. ��

The backtrace operation determines which primary inputs are relevant when test-
ing a given fault. Furthermore, the backtrace often, but not always, chooses the cor-
rect value as the initial trial value for the branch-and-bound operation. A smart
backtrace—that is, one that uses clever heuristics—can reduce the number of back-
tracks needed on the primary inputs. This will be seen in Section 4.7, which
discusses the FAN algorithm. The algorithm for PODEM is described below in
pseudo-C-code; that is, it follows the C programming language syntax for loop
control. For example, in C the expression

for(;;) { ... one or more lines of code ... }

represents an infinite loop. The only way out is to perform a break somewhere in the
code. The open parentheses and close parentheses ({}) are used in lieu of begin and
end to demark a block of two or more lines of code, and they are used to denote a set
or collection of objects. For example, {primary inputs} denotes a set of primary
inputs. Which primary inputs are being referred to will be evident from the context.
Also, two consecutive equal signs (==) indicate a comparison. Note that the back-
trace routine searches for an X-path. That is a path from the D-frontier to a primary
output which has the value X along its entire length.

PODEM() // call with gate no. and stuck-pin number

{
for(;;) {
status = backtrace(); // returns FAIL or P.I.
if (status == FAIL) { // back up on input

// assignments
for(;;) { // loop through P.I.s

192 AUTOMATIC TEST PATTERN GENERATION

if (decision_stack == EMPTY)
return(FAIL); //no more P.I.s,

//undetectable fault
else if (decision_stack.flag == 0) { //try alt.

value
P.I.[j] = - P.I.[j]; //complement the

//assignment
decision_stack.flag = 1;
break;

}
else { // back up
P.I.[j] = X;
decision_stack.flag = 0;
pop decision_stack;

}
}

}
//either fall-through or come here after
//returning from backtrace(), i.e., status == P.I.

imply P.I.s;
if (TEST == success) //D or DBAR reached P.O.
return (TEST); //return with test vector

}
}

backtrace() //initial objective
{
if (G.U.T. output != X) { //gate under test
for(;;) { //loop through D-frontier
choose gate B in D-frontier closest to an output;
if (gate == NULL) //either D-frontier is empty,
return(FAIL); //or no X-path to an output

//exists
else if (X-path exists from B to output){

//propagate
set output of B to 1(0) if AND/NOR(NAND/OR);
break;

}
else continue; //check next entry in D-frontier

}
}
else { //output of G.U.T. is X

FAN 193

if (stuck fault is on G.U.T. input pin) {
if (faulted input == X)
faulted input = -(stuck-fault direction);

else //propagate value
set G.U.T. output to 1(0) if G.U.T. is AND/NOR
(NAND/OR);

}
else
G.U.T. output = -(stuck-fault value); // complement

}
for(;;) { //work back until a P.I. is reached
if (objective net driven by P.I.[j])
return(P.I.[j]); //reached a P.I.

else { //objective net is driven by gate Q
if ((OR/NAND and C_O == 1) or (AND/NOR and C_O == 0))
choose new objective net n; //input to Q

// n = X, and EASIEST to control
else

// ((OR/NAND and C_O == 0) or (AND/NOR and C_O == 1))
choose new objective net n; //input to Q

// n = X, and HARDEST to control
}
if (Q == NAND/NOR) //complement the current

//objective level
objective level = -(C_O logic level);

else //Q is AND/OR
objective level = C_O logic level;

}
}

4.7 FAN

FAN11 (fanout-oriented test generation algorithm), like PODEM, uses implicit enu-
meration. However, it employs a number of additional features designed both to
reduce the number of backtracks and to minimize the amount of processing during
each backtrack. Some of the more significant enhancements include:

� Maximum use of implication, forward and back

� Multiple backtrace

194 AUTOMATIC TEST PATTERN GENERATION

� Unique sensitization

� Stop at head lines

� Seek consistency at fanout points

PODEM assigns binary values to primary inputs and implies them forward. By
way of contrast, FAN implies assignments in both directions to the fullest extent
possible in order to more quickly detect conflicts. Consider the circuit in Figure 4.1.
Suppose the bottom input of gate G is SA1. The PDCF is (1,1, 0, 0) (note that the
bubble on input 3 represents a signal inversion). When all implications, forward and
back, of that PDCF are carried out, the fault is immediately seen to be undetectable.
However, PODEM may perform several computations, even on this small circuit,
before it concludes that the fault is undetectable. These faults cause ATPG programs
to expend a lot of useless computational effort because many possibilities frequently
must be explored before it can be concluded that the fault is undetectable. If a circuit
has many undetectable faults, the ATPG may expend half or more of its CPU time
attempting to create tests for these faults. Efficient operation of an ATPG dictates
that undetectable faults be found as quickly as possible.

The multiple backtrace enables FAN to reduce the number of backtraces and
more quickly identify conflicts. Consider again the circuit in Figure 4.1. When justi-
fying a 1 on the third input of gate K, PODEM used two backtraces: The first back-
trace set I3 to 0, and the second backtrace set I4 to 1. When FAN is backtracing, it
recognizes that a 1 on the output of gate H requires that all of its inputs be at 1, so
those values are immediately assigned to its inputs. Any assignment that conflicts
with those assignments is immediately recognized. In addition, the backtrace from
the third input of K to the inputs of H are avoided.

The PODEM algorithm, as published, chooses the input that is most difficult to con-
trol if all inputs must be assigned noncontrolling values. The reason for choosing the
most difficult assignment is that if there is a problem, or conflict, that choice is usually
most likely to reveal the conflict as quickly as possible. However, PODEM only assigns
the input that is most difficult to control. Thus, if a three-input AND gate requires 1s on
all inputs, and all inputs are driven by primary inputs, PODEM will backtrace three
times. The multiple backtrace assigns 1s to all three inputs immediately.

The unique sensitization operation is performed whenever the D-frontier consists of
a single gate. Consider the circuit in Figure 4.12. AND gate G is being tested for a SA1
fault on its upper input. The fault must propagate through the multiplexer and then
through AND gate H. In order for the fault effect to get through gate H, its upper input
must be 1. But, when setting up the PDCF, it is possible that the upper input to H was
set to its blocking value. A lot of unnecessary computations might be performed before
that conflict is revealed. FAN searches forward along the propagation path to an output
searching for these situations. Note that the fault propagates through the select line of
the mux, which enters reconvergent logic, so nothing can be said about the logic inside
that function. When a situation such as that which exists at gate H is encountered, the
nonblocking value, in this case the logic value 1, is implicated back toward the primary
inputs. The values on the primary inputs must establish a 0 on the faulted input to G,
and at the same time they must establish a 1 on the upper input of H.

FAN 195

Figure 4.12 Unique sensitization.

Backtracing in FAN is aided by the observation that fanout-free regions (FFRs)
usually exist in the circuit being tested. FFRs are single-output subcircuits that do
not contain reconvergent logic; hence they can be justified without concern for
conflicts. As a result, a backtrace can stop at the outputs of the FFRs. After all
other assignments have been made, justification of the FFRs can be performed.
This can be seen in the circuit in Figure 4.13, which will be used to help define
some terminology.

When a net drives two or more gates, the part of the net common to every branch
is called a fanout point. In Figure 4.13 the segment J, which is common to J1 and J2,
is a fanout point. (In this circuit, except for fanout branches, nets will be identified
with the gates that drive them.) If a path exists from a fanout point forward to a net
P, then P is said to be bound. A net that is not bound is free. In Figure 4.14 the nets
A, B, C, D, E, F, G, H, I, and J are free nets, and the nets J1, J2, K, and L are bound
nets. Note that the net connecting the output of gate J to gates K and L has three
identifiable segments: segment J, which is the fanout point; segment J1, which
drives gate K; and segment J2, which drives gate L. Free nets that drive bound nets,
either directly, as in the case of the fanout point J, or through a logic gate, as in the
case of K, are called head lines; they define a boundary between free lines and
bound lines.

The FAN algorithm works with objectives. These are logic assignments that must
be satisfied during the search for a test solution. A backtrace in FAN begins with ini-
tial objectives. At the start of the algorithm initial objectives are determined by the

Figure 4.13 Identifying head lines.

Z

A

MUX

B

C
D

E

Sel

F

G H

A

B

E

F

H K

G

C

D

L
J2

J1

J

head lines

I

J

}

196 AUTOMATIC TEST PATTERN GENERATION

Figure 4.14 Identifying/resolving a conflict.

PDCF. The initial objectives become current objectives upon entering the routine,
denoted Mback, that performs the multiple backtrace. During the backtrace, logic
assignments are made in response to current objectives. These assignments become
new current objectives, or they may become head objectives or fanout point objec-
tives, which must eventually be satisfied. Objectives that occur at head lines are
called head objectives. Objectives at fanout points are called fanout point objectives
(FPOs).

While assigning logic values to justify current objectives during backtrace, FAN
stops at fanout points and head lines until all current objectives have been satisfied.
Then the backtrace selects an FPO closest to the primary output, if one exists. Head
objectives are always satisfied last, after all other objectives have been satisfied,
since there is no reconvergent fanout and they can be satisfied without fear of con-
flict. If the FPO has conflicting requirements, the conflict must be resolved. A con-
flict occurs if, during the multiple backtrace, two or more paths converge on the
fanout point with different requirements. If the FPO does not require conflicting
assignments, the MBack routine continues from this FPO.

In order to maintain a record of logic values that must be assigned during back-
trace, as well as to recognize conflicts, FAN employs an objective expressed as a trip-
let (s, n0(s), n1(s)). In this triplet, s denotes the objective net, n0(s) is the number of
times a 0 is required at s during the backtrace, and n1(s) is the number of times a 1 is
required at s. A conflict exists if both n0(Ai) and n1(Ai) are nonzero. If a conflict exists,
the rule is: If n0(A) < n1(A), assign a 1 to the fanout point, otherwise assign a 0.

Logic values assigned during backtrace depend on (a) the function of the logic
gate through which the backtrace passes and (b) the value required at the output of
that gate. For an AND/NAND gate, a 1/0 on the output requires 1s on all inputs. For
an OR/NOR gate, a 0/1 on the output requires 0s on all inputs. In addition, if the out-
put is complemented, then the values n0 and n1 are reversed in the triplet. For exam-
ple, given a NOR gate with triplet (Z, u, v) at its output, the triplet assigned to each
of its inputs Xi is (Xi, v, u) if a 1 is needed at the output.

N

M

G

K

L

H

J

1
0

1

1

10

(R,0,1)

P 0

B

A

D

C (C,0,3)

F

E

U

T

(K,3,0)
(P,0,2)

(Q,0,2) (U,1,0)

(T,1,0)

(S,2,0)

S

(N,0,1)

(M,0,3)

(G,2,3)
(L,0,2)

(H,0,3)

(J,2,0)(B,3,2)

(A,0,2)

(D,0,0)

R

Q

FAN 197

If a controlling value is required on the input of a gate (0 on an AND or NAND
gate, 1 on an OR or NOR gate), then the backtrace is made through the input that is
easiest to control. Assume a logic gate with inputs X1 ..., Xn, and output Y, and, with-
out loss of generality, assume that input X1 is the easiest input to control. Then Table
4.1 contains the criteria used to compute the values n0 and n1 at each input net.

Consider the AND gate: If a 0 is required at its output, then a 0 must be applied to
one of its inputs. Assign a 0 to the input that is easiest to control, unless that input
has already been tried and rejected. The values n0(X1) and n1(X1) at that input are
equal to the value at the output. For noncontrolling inputs we have n0(Xi) = 0 and
n1(Xi) = n1(Y). Similar considerations hold for the NAND gate except that from
Table 4.1 it can be seen that the subscripts are reversed. The analysis for the OR and
NOR gates are similar, but complementary.

At FPOs the values n0 and n1 are summed. This is in recognition of the fact that,
during backtrace, two or more paths driven by that FPO may have requirements to
justify signals further along toward the output. Furthermore, if two or more nets
require the same value from an FPO, by summing their requirements, it is possible
to determine how many signal paths depend on each value, 0 or 1, generated by
that FPO.

These computations can be illustrated using the circuit in Figure 4.13. Assume
the values (J1,1,1) and (J2,1,2) occur at segments J1 and J2 during backtrace in order
to justify assignments made closer to the output. The value 0 has weight 2, and the
value 1 has weight 3. When this happens, the logic value 1 is chosen to be assigned
at the FPO. But, since that represents a conflict, the multiple backtrace is halted at
this point and conflict resolution is performed. That involves backtracking on
assignments made to the FPO and trying alternate assignments. If a self-consistent
set of assignments to the FPOs cannot be found, the fault is undetectable.

TABLE 4.1 Assignment Criteria

Function 0-count 1-count Controllability

1 AND n0(X1) = n0(Y) n1(X1) = n1(Y) Easiest 0

2 AND n0(Xi) = 0 n1(Xi) = n1(Y) Others

3 NAND n0(X1) = n1(Y) n1(X1) = n0(Y) Easiest 0

4 NAND n0(Xi) = 0 n1(Xi) = n0(Y) Others

5 OR n0(X1) = n0(Y) n1(X1) = n1(Y) Easiest 1

6 OR n0(Xi) = n0(Y) n1(Xi) = 0 Others

7 NOR n0(X1) = n1(Y) n1(X1) = n0(Y) Easiest 1

8 NOR n0(Xi) = n1(Y) n1(Xi) = 0 Others

9 NOT n0(X) = n1(Y) n1(X) = n0(Y)

10 Fanout
n0 X() n0 Xi()

i 1=

k

∑= n1 X() n1 Xi()
i 1=

k

∑=

198 AUTOMATIC TEST PATTERN GENERATION

Example The circuit in Figure 4.14 will be used to illustrate the operation of FAN.
In this circuit, inputs A and B are primary inputs, while C, D, E, and F are inputs from
other parts of the circuit and, where choices must be made, we will assume that C, D,
E, and F are the more difficult choices. Calculations are summarized in Table 4.2. The
example starts with objectives at the nets R, T, and U. The values on nets T and U are
summed to give the value (S,2,0) at net S. Likewise, the triplets at N and P are summed
to yield the triplet (M,0,3). This requires a 0 on one of the inputs to M and, for sake of
illustration, we assume that net K is the easiest to control. Because M is a NAND, the
values n0 and n1 of the triplet at K are reversed. Eventually, the fanout point G is
reached, but with conflicting requirements. Since segment H has a higher weight, a 1 is
assigned to fanout point G. Since G is a headline, assignments to A and B are postponed.

Because G has conflicting requirements, the function MBack is exited and FAN
implies the value 1 that was assigned to G. The assignment conflicts with the require-
ment at L. That requirement comes from net Q, whose objective is (Q,0,2). But that
objective might be satisfied by the unidentified logic driven by net F, in which case the
conflict at G is resolved. If, however, the conflict cannot be resolved, the alternate
value, 0, is assigned to G. The conflict along that path can be resolved by assigning a 0
to net D. All affected triplets must then be recomputed. Then MBack selects an FPO
from which it backtraces in order to obtain and satisfy new current objectives. ��

We leave it to the reader to complete this example. The FAN algorithm is
described in pseudo-C-code at the end of this section.

The first step in FAN is to assign a PDCF for the fault. Then, a backtrace flag is
set. The flag enables MBack to distinguish between those instances where a back-
trace starts from a set of initial objectives (IO), entry A, or from a set of fanout point
objectives (FPO), entry B. Entry B to the backtrace routine is entered in order to
continue a multiple backtrace that terminated at a fanout point.

TABLE 4.2 Keeping Track of Objectives

Current Objectives Stem Obj. Head Obj.

(R,0,1), (T,1,0), (U,1,0)
(T,1,0), (U,1,0), (N,0,1)
(U,1,0), (N,0,1) (S,1,0)
(N,0,1) (S,2,0)

(S,2,0), (M,0,1)
(P,0,2), (Q,0,2) (M,0,1)
(Q,0,2) (M,0,3)
(L,0,2) (M,0,3)
(J,2,0) (M,0,3)

(G,2,0)
(K,3,0) (G,2,0)
(H,0,3) (G,2,0)

(G,2,3)
(F,0,2) (G,2,3)

FAN 199

A sensitized value, D or D, results either from a stuck-fault on the output of a
gate, or from a stuck-fault on the input of the gate, in which case it is implied to the
output of the gate. The sensitized value continues to be propagated forward from
there. If the output of the faulted gate only drives a single destination gate, then the
sensitized signal can be propagated to the output of that gate, with the result that
additional nonblocking assignments on the input of that gate are added to the set of
initial objectives. If the D-frontier consists of two or more entries, FAN examines
the entries in the D-frontier to ensure that they are all legitimate; that is, they all
propagate to output pins and are not blocked. Then FAN orders these paths in terms
of ease or difficulty of propagation. However, like the D-algorithm, an implementa-
tion in FAN must, if necessary, eventually consider all single and multiple propaga-
tion paths at FPOs to truly be considered an algorithm.

The MBack routine has two entries. At entry A the initial objectives become the
set of current objectives {CO}. If {CO} is non-empty, then an objective is selected.
While MBack traces back through the circuit, if it encounters a head line, that head
line is added to the set of head objectives {HO}. If it encounters a logic gate, then it
must be determined if the gate requires a controlling or noncontrolling value on its
inputs. As previously discussed, the rules in Table 4.1 are used to select an input and
a value to be assigned to that input. The net driving the input is added to the set of
current objectives. If the net is a fanout branch, then n0 and n1 are updated. However,
fanout points are not processed until all of the nonfanout gates are justified.

The other entry to MBack is entry B. This entry is used if the set of current objec-
tives is empty, then an FPO is selected from the set {FPO}. If there is no conflict,
MBack continues from the FPO. However, if the node has conflicting requirements,
then the conflict has to be resolved. This is accomplished by means of a backtrack
through the FPO assignments.

Initially the backtrace flag is on if there are unjustified nets at the completion of the
implication stage. At this point all sets of objectives are initialized to empty (EMPTY)
and the backtrace flag is reset. If there are unjustified lines, they become the set of ini-
tial objectives {IO}. If the error signal did not reach a primary output, a gate in the D-
frontier is added to {IO}. A multiple backtrace is then performed by the MBack func-
tion. If the backtrace flag is not on, then there are no nets waiting for logic assign-
ments. In that case, the set of fanout point objectives {FPO} are examined. If the set
is nonempty, then a multiple backtrace is performed from a selected FPO. At the
completion of the multiple backtrace, if there are no conflicts at any fanout points,
then the set of header objectives {HO} are processed. If there is a conflict at a fanout
point—that is, both n0(f) and n1(f) are nonzero—then the value assigned is based on
which value is larger. Since both values are nonzero, there is obviously a conflict that
must be resolved. Looking again at the final_objective function, a value is assigned
and a return is made to the implication step, where a conflict leads to block 8.

FAN() //call with gate no. and stuck-pin number
{
assign PDCF; //primitive D-cube of

//failure

200 AUTOMATIC TEST PATTERN GENERATION

backtrace_flag = A; //backtrace from
//unjustified lines

for(;;) //loop forever
{
implicate assignments; //forward and back
if (backtrace unnecessary)
backtrace_flag = B; //process FPO

if (fault signal reached a P.O.) {
if (# unjustified bound lines == 0) {
justify free lines; //done
return (TEST);

}
else {
final_objective();
assign value to final objective line;

}
}
else {
if (# gates in D-frontier > 1) { //choose gate

//closest to P.O.
final_objective();
assign value to final objective line;

}
else if (# gates in D-frontier == 1)
unique sensitization;

else { //no. gates == 0
if (there are untried combinations) {
set untried combination;
backtrace_flag = B;

}
else
return (FAIL);

}
}

}
}

final_objective()
{
mb = 0;
if (backtrace_flag == A)
mb = MBack(A);

FAN 201

else if (fanout objectives != EMPTY)
mb = MBack(B);

if (mb == D) { //MBack() returns with ‘C’ or ‘D’
final_objective = FPO;
return;

}
for (;;)
{
if (head_objectives == EMPTY)
mb = MBack(A);

choose Head Objective;
if (headline unspecified)
break;

}
Head Objective = Final Objective;

}

MBack(flag)
{
if (flag == A) {
backtrace_flag = 0;
if (# unjustified_lines > 0)
{initial_objective} = unjustified lines;

if(fault signal did not reach P.O.)
add gate in D-frontier to initial objectives;

{current_objective} = {initial_objective};
if ({current_objective} != EMPTY) {
choose current_objective;
next_obj();

}
else {
if (FPO == EMPTY)
return(C);

else
flag = B; //force execution of the “flag == B”

//code
}

}
if (flag == B) {
choose FPO p closest to P.O.;
if ((p reachable from fault line) or ((n0 == 0) or

(n1 == 0)))

202 AUTOMATIC TEST PATTERN GENERATION

next_obj();
else
return(D);

}
}

next_obj() //next objective
{
if (current_objective == headline)
add current_objective to head_objectives;

else if (current_objective driven by FPO)
add n0 and n1 to FPO //(Table 4.1, rule #10);

else //determine next objectives
backup through gates using Table 4.1 rules #1-9;

//add them to the set of current objectives
}

4.8 SOCRATES

FAN started with PODEM and added enhancements whose purpose was to elimi-
nate unnecessary backtracks and reduce the amount of processing time between
backtracks. In like manner, Socrates12 started with FAN and identified enhance-
ments that were able to realize further performance gains. Socrates identified
improvements in the implication, unique sensitization, and multiple backtrace pro-
cedures. In addition, Socrates added support for complex primitives such as adders,
multiplexers, encoders, and decoders, as well as XOR and XNOR gates with an
arbitrary number of inputs.

Consider first the implication operation. In Figure 4.15(a) the signal on input A is
a 1. That value passes through both OR gates, implying 1s on the outputs of both OR
gates, thus implying a 1 on the output of the AND gate. Now consider the situation
in Figure 4.15(b). The output of the AND gate is a 0, which implies that input A
must be a 0. This follows from the logic identity (A ⇒ D) ⇔ (~D⇒ ~A), known as
the contrapositive, where the tilde (~) is used to denote the complement. The value
of this observation lies in the fact that if a 0 is assigned to the output of the AND
gate during a backtrace, input A must be assigned a 0; it cannot be treated as a deci-
sion and postponed until later. This, in turn, can lead to earlier recognition of con-
flicts and reduce the number of backtracks.

To recognize these situations, a learning phase is performed prior to entering the
test generation phase. During this learning phase, a 0 is applied to net ni and implied.
The result is then analyzed. This is repeated using the value 1. Assume that, during
the implication, ni is initialized to the value vi, vi ∈ {0,1}, and net nj receives the value
vj, vj ∈ {0,1} as a result of the implication, that is, (value(ni) = vi) ⇒ (value(nj) = vj).
Let nj be driven by gate g. Thus if (1) vj requires all inputs of g to have noncontrolling

SOCRATES 203

Figure 4.15 Implications.

values and (2) a forward implication has contributed to the assignment vj to net nj ,
then the implication (value(nj) = vj) ⇒ (value(ni) = vi) is worth learning. Condition 1
is satisfied if vj is 1(0) and g is an AND/NOR (OR/NAND) gate, or if g is an XOR or
XNOR gate. An additional function, check_path(nj, ni), checks the network to
ensure that there is no directed path from nj to ni. If the circuit is combinational and
rank-ordered and if j > i, check_path() returns the value 0.This ensures that condi-
tion 2 has been satisfied.

It is possible that the procedure just described will not find an implication where
an implication exists; that is, the procedure is a sufficient, but not necessary, condi-
tion to establish than an implication cannot be performed by the implication proce-
dure. However, the payback from the process, in general, outweighs the cost of
performing the learning operation.

The unique sensitization in FAN handles situations in which the D-frontier con-
sists of a single gate and all paths from the D-frontier to the primary output pass
through that gate. Like improved implication, the unique sensitization is accom-
plished by means of circuit preprocessing.

Definition 4.1 A signal y is said to dominate signal x, y ∈ dom(x), if all directed
paths from x to the primary outputs of the circuit pass through y.

Let x be the only signal in the D-frontier. Let the set of signals dom(x) = {y1, y2,
..., yn} be the output signals of their corresponding gates in the set G = {g1, g2, ..., gn}.
Then, for all gates g ∈ G, the noncontrolling value is assigned to all those inputs of
g that cannot be reached from x on any signal path. This is illustrated in Figure 4.16.
The output of gate a has a D assigned. The signal diverges at gates b and c and then
reconverges at inputs e and f of gate g. In this situation the signal d must be set to 1,
the noncontrolling value.

Figure 4.16 Improved unique sensitization.

(a) (b)

B

C

A
1 D

B

C

A
0

D

c

d

a

b

D
e
f g

204 AUTOMATIC TEST PATTERN GENERATION

Figure 4.17 Uniquely sensitizing multiple paths.

Definition 4.2 A signal y is said to be the immediate dominator of signal x if y ∈
dom(x), and y is the element of dom(x), that has the lowest circuit level.

In this definition, the level of an element in a combinational circuit is determined
by rank-ordering the circuit elements (cf. Section 2.6). If the immediate dominators
of all signals are known, the dominators of any signal x can be determined recur-
sively. For example, if signal y is an immediate dominator signal x, and signal z is an
immediate dominator of signal y, then signal z is a dominator of signal x.

An additional rule for unique sensitization is required in order to handle the sit-
uation depicted in Figure 4.17. Assume that signal a is the only signal in the D-
frontier, or a dominator of the only signal in the D-frontier. It branches out to
three AND gates, all of which have an input from signal b. In addition, one of the
AND gates has a third input c. Assume signal a is the only signal in the D-
frontier, or a dominator of the only signal in the D-frontier, and it branches out to
gates g1, g2, ..., gn, all of which require the same noncontrolling value 0 or 1. If
signal b branches out to all the same gates g1, g2, ..., gn, then b is assigned the
noncontrolling value.

The multiple backtrace in Socrates takes advantage of the fact that some com-
monly occurring circuit configurations are processed as primitives. For example,
the gates M, N, O, and P in Figure 4.1 constitute an XOR. If the diagram is altered
so that gates K and L drive an XOR, the circuit function remains unchanged but
three fanout branches are eliminated. An important point to bear in mind about the
XOR is that a sensitized path on one input of a two-input XOR is propagated to its
output regardless of the binary value on the other input. For example, the values
(D,0) produce a D on the output, and (D,1) produce a D on the output. Therefore,
when propagating through an XOR or XNOR, it is only necessary to ensure that
the other input has a known value and that both inputs do not have sensitized val-
ues. This line of reasoning can be extended to n-input XOR gates, which Socrates
supports.

PODEM was not adversely affected by the XOR because it did not attempt to jus-
tify assignments on the inputs of XOR gates—in contrast to the D-algorithm, which,
particularly in parity trees, can thrash about trying to find a self-consistent set of
assignments to the circuit, making and changing assignments to resolve conflicts.
However, representing the XOR as a primitive simplifies test generation because it

a

c
b

f

e

dx

D

D

D

1

THE CRITICAL PATH 205

can be recognized as such, whereas representing it as a collection of lower-level
gates doesn’t solve the problem that caused the D-algorithm to thrash about and
simply introduces more fanout points, which introduce additional processing.
Socrates uses Table 4.3, analogous to Table 4.1, to compute the objective triplets
when an XOR is encountered:

In this table, cij represents the controllability cost for setting x1 to i and x2 to j, for
i, j ∈ {0,1}, where x1 and x2 are the inputs to the two-input XOR and y is the output.
Other, higher-level primitives require similar specific formulas. The main advantage
of higher-level primitives is the reduction of fanout branches. But it is sometimes
possible to realize opportunities not readily inferred from the gate level model. For
example, if a two-input multiplexer has 1s on both data inputs, the output is going to
be 1, even if the select line has an X.

4.9 THE CRITICAL PATH

The D-algorithm starts at a fault origin and works outward from there, stretching the
sensitized path toward outputs and inputs. PODEM selects a fault and attempts to
sensitize a path by working from the primary inputs. FAN adopts features from both
the D-algorithm and PODEM. The critical path13 starts at primary outputs and
works back toward primary inputs. It has been implemented commercially as
LASAR (logic automated stimulus and response)14 and was the ATPG companion to
the LASAR deductive fault simulator mentioned in the summary to Chapter 3. It
enjoyed considerable commercial success for several years, having been marketed
by several companies. Like the simulator, the ATPG only recognizes the NAND
gate. This not only simplified deductive fault simulation computations, but also sim-
plified computations for ATPG. In order for critical path to process circuits imple-
mented with other logic primitives, those primitives must be remodeled in terms of
the NAND gate (cf. Figure 4.18).

Processing rules for a circuit being processed by critical path are defined in terms
of forcing values and critical values as they apply to the NAND gate. The forcing
rules for an n-input NAND gate are as follows:

1. If the output of a NAND gate is 0, then the inputs are all forced to 1.
2. If the inputs are all 1, the output is forced to 0.
3. If the output is 1 and all inputs except input i are 1, then input i is forced to 0.

TABLE 4.3 Multiple Backtrace for Two-Input XOR

Formula Condition

n0(x1) = n0(y) n0(x2) = n0(y) c00 < c11

n1(x1) = n0(y) n1(x2) = n0(y) c00 ≥ c11

n0(x1) = n0(x1) + n1(y) n1(x2) = n1(x2) + n1(y) c01 < c10

n1(x1) = n1(x1) + n1(y) n0(x2) = n0(x2) + n1(y) c01 ≥ c10

206 AUTOMATIC TEST PATTERN GENERATION

Figure 4.18 Some simple transformations.

A value on a node is critical if its existence is required to establish a test. The
rules are as follows:

1. If the output of a NAND gate is a 0, and it is critical, then the inputs are all
critical 1s.

2. If the output is a critical 1 and if all inputs except input i are 1s, then input i is
a critical 0.

If a NAND gate has a critical 0 on its input, then the other input assignments are all
necessary 1s; that is, it is necessary that they be 1s in order for input i to be critical.
In order for a NAND gate to provide a necessary 1 on its output, at least one of its
inputs must have a 0 assigned. That input is always arbitrary or noncritical.

The creation of a test starts with the selection of an output pin and assignment of a
0 or 1 state to that pin. From that pin an attempt is made to extend critical values as far
back as possible toward the inputs using the rules for establishing critical values. Then,
after the path is extended as far back as possible, the necessary states are established.
When complete, a critical path extends from an output pin back to either some internal
net(s) or to one or more input pins (or both). The critical paths define a series of nets or
signal paths along which any gate input or output will, if it fails, cause the selected out-
put to change from a correct to an incorrect value. Since the establishment of a 0 on an
output pin requires 1s on all the inputs to the NAND gate connected to that output, it is
possible to have several critical paths converging on an output pin.

Upon successful creation of a test, the next test begins by permuting the critical 0
on the lowest-level NAND gate that has one or more inputs not yet tested—that is,
the critical 0 closest to the primary inputs. The 0 is assigned to one of the other
inputs to that NAND gate and the input that was 0 is now assigned the value 1. The
test process then backs up again from the critical 0 to primary inputs, attempting to
satisfy these new assignments. A successful test at any level may result in a critical 0
at a lower level becoming a candidate for permutation before another critical 0 on
the NAND gate that was just processed. However, once selected, a NAND gate will
be completely processed before another one is selected closer to the output. Eventu-
ally, after all the inputs to the gate driving the output have been permuted, the output
pin is then complemented, if the complement value hasn’t already been processed,
and the process is repeated.

(a) 3-input OR (b) Exclusive-OR

THE CRITICAL PATH 207

Figure 4.19 Critical assignments.

The practice of postponing necessary assignments until the critical path(s) have
been extended as far back as possible can help to minimize the number of conflicts
that occur. Figure 4.19 illustrates a situation where a net fans out to two NAND
gates (gate 3 is actually an inverter). Assuming that the outputs of gates 2 and 3 are
both critical, if the upper input of gate 2 is established as far back as possible, and
the necessary 1 on the lower input to gate 2 is extended, the assignments on gate 2
will later have to be reversed in order to get a 0 on the input to gate 3. Since the 1 on
the output of gate 3 is critical, by the rules for critical assignments, the input to gate
3 is also critical; hence it will be processed before the necessary 1 on the input to
gate 2. This avoids having to undo some assignments.

Conflicts can occur despite postponement of necessary assignments. When this
occurs, the rule is to permute the lowest arbitrary assignment that will affect the con-
flict. This is continued until a self-consistent set of assignments is achieved. These
concepts will be illustrated using the circuit of Figure 4.20.

Example The first step is to assign a 0 to the output F, which implies 1s on all the
inputs to gate number 8. Then gate 5 is selected in an attempt to extend the critical
path through one of its inputs. That requires inputs 1, 2, 3 = (0,1,1). Hence, input 1 is
critical and inputs 2 and 3 are necessary. We must then get a 1 on the output of gate
6. We try to extend another critical path. Since the middle input of gate 6 is the com-
plement of the value on input 3, a second critical path cannot be extended back
through gate 6 without disturbing the critical path already set up through gate 5. How-
ever, the values already assigned on 1,2, and 3 do satisfy the critical 1 value needed
at the output of gate 6.

We then try to extend the critical path through gate 7. This also fails. Worse, still,
the values already assigned to the inputs are in conflict with the critical 1 assigned to

Figure 4.20 Creating a critical path.

2

3

0

1

0

1

1

2

3

1

1
2
3

4

5

6

7
9

8 F

208 AUTOMATIC TEST PATTERN GENERATION

the output of gate 7 because they force gate 7 to produce a logic 0. We go back to
gate 5 and permute the assignments on its inputs. A critical 0 is assigned to the mid-
dle input and we now have an assignment (1, 2, 3) = (1, 0, 1) that produces 1s on the
outputs of 5, 6, and 7. A critical path now exists from input 2, through gates 5 and 8,
to the output F. Critical paths also exist from the outputs of gates 6 and 7 to the out-
put F. ��

4.10 CRITICAL PATH TRACING

The purpose of critical path tracing (CPT) is to estimate the fault coverage provided
by a test program.15,16 CPT performs a logic simulation on a circuit and then, based
on simulation results, it identifies gates with sensitive values, where gate input i is
sensitive if complementing the value of i changes the value of the gate output. Sensi-
tive inputs can be identified on the basis of the dominant logic value (DLV). A DLV
at a gate input is one that forces an output to a value, regardless of the values on the
other inputs. For example, the DLV for AND and NAND gates is 0, while the DLV
for OR and NOR gates is 1. Note that, unlike the previous subsection where critical
path ATPG required all gates to be NANDs, CPT recognizes critical values for ORs,
NORs, and ANDs, in addition to NANDs. The following statements hold for DLVs:

1. If only one input i has a DLV, then i is sensitive.

2. If all inputs have the complement of the DLV, then all inputs are sensitive.

3. If neither 1 or 2 holds, then no input is sensitive.

A net n is said to have critical value v ∈ {0,1} in a test T if T detects the fault n
SAv. CPT involves tracing from POs, which are critical (assuming they have a
known value) and backtracing along sensitive paths to create critical paths. The
critical paths identify detectable faults. In the circuit in Figure 4.21 the dots denote
inputs that are sensitive. The bold lines indicate a critical path. At gate G, both of the
inputs are DLVs, so neither of them is sensitive and the backtrace stops there. Faults
along the critical path can all be declared detected.

Figure 4.21 Tracing the critical path.

A

B

E

F
I

H

G

J

L
C

D

M

1

1

0

1

0

1

1

1

0

0

1

K
0

1

Y

Z

CRITICAL PATH TRACING 209

Ignore for the moment the output Y and consider just the cone feeding output Z.
At gate M both input values are DLVs, so neither input is sensitive. But inspection of
the circuit suggests that an SA0 on the stem emanating from gate I is detectable at
output Z. A concurrent fault simulation of the circuit would show that if the stem
were SA0, then the outputs of both J and K would be 1; hence the output of M would
be 1 in the presence of the fault and would be detected. Interestingly, if logic simula-
tion produced a 0 on the output of I, then both inputs to M would be 1; that is, both
inputs would have DLVs, and CPT would detect the fault.

CPT preprocesses a circuit to identify its cones, which are then represented as an
interconnection of FFRs. After a logic simulation has been performed and sensitive
inputs have been marked, CPT backtraces, from a primary output. As it backtraces,
it identifies critical paths inside fanout-free regions (FFRs) contained in the cone,
where an FFR is a cone (cf. Section 3.6.2) that has no reconvergent fanout. The
inputs to a FFR are fanout branches (FOB) and primary inputs without FOBs. If a
stem is encountered during backtrace through a FFR, it is checked to determine if it
is critical. If it is critical, then critical path tracing continues from that stem.

If circuits did not contain reconvergent fanout, CPT would be straightforward.
However, reconvergence is an attribute of just about all digital circuits, and one of
the consequences of reconvergence is self-masking, in which a fault effect (FE)
propagates along two or more paths and reconverges with opposite parities or
polarities at a gate, where the FEs cancel out. As an example, if gate K in
Figure 4.21 were a buffer, rather than an inverter, then the lower input to M would
be sensitized. A fault at the stem emanating from I could reach the sensitized
input through the buffer, but an inverted version would reach the upper input by
way of gate J. Because of self-masking, stem processing requires a great deal of
analysis, and determining criticality of a stem takes up a major part of the compu-
tation time for CPT.

One approach to stem processing is to use fault simulation. However, just the
stem faults are fault-simulated.17 If a stem fault is marked as detected, the
corresponding FFR is analyzed by backtracing as was described here. Since the
number of stem faults is significantly less, often one-third to one-quarter of the
total number of faults, the amount of fault simulation time should be significantly
reduced, and backtracing the FFRs can be considerably faster than fault simula-
tion for faults in the FFR. However, an unpublished study of concurrent fault sim-
ulation for stem faults suggests that even though there are many fewer faults, the
amount of CPU time for stem fault simulation can take longer than fault simula-
tion of an industry standard fault list.18 This is probably due to the fact that two
faults are attached to every stem, and one or the other of these two faults propa-
gates on every vector, and it propagates along two or more FOBs, thus generating
a large number of fault events.

For CPT, then, the problem is to determine if a stem S is critical, given that one or
more of its FOBs is critical. The stem S was reached from one or more critical FOBs
during backtracing. So it would be expected that the stem fault would propagate for-
ward along the critical FOB(s), to the output of the FFR, unless self-masking
occurred.

210 AUTOMATIC TEST PATTERN GENERATION

We now provide an overview of stem analysis, but, first, some definitions are in
order. The level of a net is computed as follows: A primary input is assigned level 0,
and the level of a gate output is 1 + imax where imax is the highest level among the lev-
els of the gate inputs. If a test T activates fault f in a single-output circuit and if T
sensitizes net y to f, but does not sensitize any other net with the same level as y, the
y is said to be a capture line of f in test T. A test T detects a fault f iff all the capture
lines of f in T are critical in T.

In a single-output circuit, a net y that lies on all paths between net x and the PO is
said to be a cover line of x. If all paths between x and its cover line y have the same
inversion parity, then y is said to be an equal parity cover line of x. Note that a cap-
ture line is defined on the basis of the applied test, while a cover line of x is always a
capture line of a fault on x in any test that detects it. Note also that self-masking can-
not occur in a region between a stem and its equal parity cover line, hence a stem
that has an equal parity cover line is critical in any test in which any of its FOBs is
critical. When backtracing, any such stem can be marked as critical.

Some additional properties of FFRs prove to be useful: given a set of inputs {xi}
to a FFR, let vi be the value of xi for test T and let pi be the inversion parity of the
path from xi to the FFR output. Then:

1. If fault effects arrive on a subset {xk} of FFR inputs such that at least one
input in {xk} is critical and all the inputs in {xk} have the same XOR pk⊕ vk,
then the FFR propagates fault effects.

2. All critical inputs {xj} of an FFR have the same XOR pk⊕ vk .

3. If FEs arrive only on critical inputs of an FFR, then the FFR propagates FEs.

4. If a fault only affects one FFR input, and that input is noncritical, then the
FFR does not propagate the fault effect.

The value of these properties lies in the fact that they can lead to efficient stem anal-
ysis by obviating the need to analyze the gates inside a FFR. If a property holds,
then a decision can be immediately made as to whether a fault propagates to the out-
put of the FFR.

As pointed out earlier, the analysis can sometimes miss faults that actually are
detected. Hence, CPT can turn out to be slightly pessimistic. It is argued that this
approximation is not serious since the situation rarely occurs and, additionally, the
stuck-at fault model is, itself, only an approximation.

4.11 BOOLEAN DIFFERENCES

Up to this point the methods that have been described can be characterized as path
tracing. A netlist is provided and the algorithm or procedure attempts to create a sen-
sitized path from the fault to an output pin. We now turn our attention to Boolean
differences. In this method, an equation describes the set of tests for a given fault.
The equation is usually quite complex, and a large part of the work involves reduc-
ing the equation to a manageable size.

BOOLEAN DIFFERENCES 211

Given a function F that describes the behavior of a digital circuit, if a fault occurs
that transforms the circuit into another circuit whose behavior is expressed by F*,
then the 1-points of the function T,

T = F ⊕ F*

define the complete set of tests capable of distinguishing between F and F*.

Example A test will be created for a shorted inverter (gate 5) in the circuit of
Figure 4.22. The equation for circuit behavior is

With a shorted inverter, the equation becomes

Then

It can be seen from this equation that if x2 = 0 and x4 = 1, then a 1 on either x1 or x3
will cause the fault-free circuit and the faulted circuit to produce different outputs
(verify this); hence a test has been found that is capable of detecting the presence of
the shorted inverter. ��

For the moment we restrict our attention to input faults. Given a function
F(x1,x2,...,xn), the Boolean difference19 of F with respect to its ith input variable is
defined as

Figure 4.22 Circuit with shorted inverter.

F x4 x1 x2+() x1 x3+()⋅ ⋅=

F∗ x4 x1 x2+() x1 x3+()⋅ ⋅=

F F∗⊕ F F∗⋅ F F∗⋅+=

x2 x4 x1 x3+()⋅ ⋅=

Di F() F x1 … xi … xn, , , ,() F x1 … xi … xn, , , ,()⊕=

x1

x2

x3

5
6

97

x4

F

8

212 AUTOMATIC TEST PATTERN GENERATION

The following properties20 hold for the difference operator (in what follows, the
AND operation takes precedence over the exclusive-OR):

1. Di(F) = Di(F)

2. Di(F(x1,...,xi,...,xn)) = Di(F(x1,...,xi, ...,xn))

3. Di(Dj(F)) = Dj(Di(F))

4. Di(F · G) = F · Di(G) ⊕ G · Di(F) ⊕ Di(F) · Di(G)

5. Di(F + G) = F · Di(G) ⊕ G · Di(F) ⊕ Di(F) · Di(G)

6. Di(F ⊕ G) = Di(F) ⊕ Di(G)

We outline the proof for property 4, but first we state some properties of the
Exclusive-OR operator:

(a) F ⊕ F = 0

(b) F ⊕ 0 = F

(c) F ⊕ G = G ⊕ F

(d) G = F ⊕ F ⊕ G

(e) F + G = F ⊕ G ⊕ F · G

(f) F · G ⊕ F · H = F· (G ⊕ H)

(g) F(x) = xi · F(x1, ..., 1, ..., xn) ⊕ xi · F(x1, .., 0, ..., xn)

We now sketch the proof. For notational convenience we omit the subscript associ-
ated with the variable xi and the functions F and G. It is understood that the func-
tions are differenced with respect to the ith variable, xi, and that Fe, e ∈ {0,1},
denotes F(x1, ... , e, ... , xn). The property (g) will be used to expand the left-hand
side:

Di(F · G) = Di[x · Fi ⊕ x · F0) · (x · G1 ⊕ x · G0)]

= [(x · F1 ⊕ x · F0) · (x · G1 ⊕ x · G0)]

⊕[(x · F1 ⊕ x · F0) · (x · G1 ⊕ x · G0)]

= x · F1 · G1 ⊕ x · F0 · G0 ⊕ x · F1 · G1 ⊕ x · F0 · G0

We take note of the first two terms in the expansion and use properties (a) and (b) to
add the terms indicated in braces:

= G1 · x · F1 ⊕ {G1 · x · F0 ⊕ G1 · x · F0 }

⊕ G0 · x · F0 ⊕ {G0 · x · F1 ⊕ G0 · x · F1}

⊕ x · F1 · G1 ⊕ x · F0 · G0

BOOLEAN DIFFERENCES 213

The braces are dropped, terms 1 and 2 are grouped, as are 4 and 5, and properties (c)
and (f) are used, thereby yielding

= {[(x · F1 ⊕ x · F0) · G1] ⊕ [(x · F1 ⊕ x · F0) · G0] }

⊕ x · F0 · G1 ⊕ x · F1 · G0 ⊕ x · F1 · G1 ⊕ x · F0 · G0

The term in braces is recognized as F · Di(G). This yields

Di(F · G) = F · Di(G) ⊕ x · G0 · Di(F) ⊕ x · G1 · Di(F)

where the second and third terms were obtained by grouping product terms with a
common x or x variable and factoring. Factoring once again yields

Di(F · G) = F · Di(G) ⊕ Di(F) · [x · G1 ⊕ x · G0]

= F · Di(G) ⊕ Di(F) · [G ⊕ G ⊕ x · G1 ⊕ x · G0]

= F · Di(G) ⊕ G · Di(F) ⊕ Di(F) · [G ⊕ x · G1 ⊕ x · G0]

When G is expanded to x · G1 ⊕ x · G0 , the expression in square brackets is recog-
nized as Di(G). We leave the details as an exercise.

Now consider again the circuit of Figure 4.22. We will attempt to create a test for
input x3 SA0. However, rather than try to solve the problem by brute force as we did
previously, this time we attempt to exploit the six relationships that we have just
defined. We start by defining the following functions:

g = x4

h = (x1 + x2)(x1 + x3)

Property 4 can now be used to compute the difference relative to input x3:

D3(g · h) = g· D3(h) ⊕ h · D3(g) ⊕ D3(g) · D3(h)

A cursory glance at the expression tells us that much remains to be done. Are there
any shortcuts? Fortunately, the answer is yes. We digress briefly to define the con-
cept of independence. A function F(X), X = (x1,..., xi,..., xn), is independent of xi if
F(X) is logically invariant under complementation of xi. This definition leads to:

Theorem 4.1 The function F(X) is independent of xi iff Di(F) = 0.

If the function F(X) is independent of xi, then the difference operator possesses the
following properties:

7. Di(F) = 0

8. Di(F · G) = F · Di(G)

9. Di(F + G) = F · Di(G)

214 AUTOMATIC TEST PATTERN GENERATION

Alternatively, if F(X) is a function only of xi, then

10. Di(F) = 1

With these additional properties, we now return to the problem. Since g = x4 is inde-
pendent of x3, it follows that D3(g) = 0; hence

D3(g · h) = g · D3(h)

If two new functions are defined,

u = x1 + x2

v = x1 + x3

then property 4 can be applied to D3(h) to get

g · D3(h) = g · D3(u · v)

= g · u · D3(v) (from property 9)

Property 5 can now be used to yield

D3(x1 + x3) = x1 · D3(x3) ⊕ x3 · D3(x1) ⊕ D3(x3) · D3(x1)

The independence theorem permits the last two terms to be discarded, yielding

D3(F) = x4 · (x1 + x2) · x1 · D3(x3)

= x1 · x4 (x1 + x2)

= x1 · x4

The circuit of Figure 4.22 is a multiplexer with an enable input. The select line is x1,
the enable is x4, and the data inputs are x2 and x3. The final equation says that an
error on input x3 will be visible at the output if the multiplexer is enabled and if input
x3 is selected, (x1 = 0). The Boolean difference method has, in effect, created a sensi-
tized path from input x3 to an output. It now remains but to apply a 1 and a 0 to x3 in
order to exercise and completely test the path from x3 to the output.

Up to this point the discussion has been limited to primary inputs. It is also possi-
ble to detect faults internal to a circuit using the Boolean difference. First, consider
the internal node to be just another input xn+1. Then express the behavior of the cir-
cuit as a function of the original inputs and the new input. The internal node will, in
general, be some function G of the same set of inputs. To test for a SA1 (SA0), cre-
ate a path from the newly created “input” to the output and, in addition, force that
“input” to assume the value 0(1). Hence, we want to compute the solution for

BOOLEAN DIFFERENCES 215

xn+1 · Dn+1(F) = 1 for a SA1 fault

xn+1 · Dn+1(F) = 1 for a SA0 fault

Example In order to contrast the amount of computation required, we will again
create a test for the shorted inverter, this time using the Boolean difference. The out-
put of gate 5 is now treated as an input. F is expressed as

F = x4 · (x2 + x5) · (x1 + x3)

In this case, the function G is simply x1.
Now applying the difference operator and the given properties to F yields

G · Dn+1(F) = G · [x4 · (x1 + x3) · D5(x2 + x5)] (properties 4 and 7)

= G · [x4 · (x1+x3) · (x2·D5(x5))] (property 5)

= G · [x4 · (x1 + x3) · x2] (property 10)

The expression within the square brackets specifies the necessary conditions on the
inputs in order to propagate the fault to the output. Since the fault is a shorted
inverter, either value of x1 will distinguish the faulty circuit from the fault-free
circuit. ��

The Boolean differences have been developed quite thoroughly; for instance, if G
is a function G(u,v) of u and v, and u = u(x1, ..., xn), v = v(xn+1, ..., xn+m), where u and
v share no variables in common, then the following chain rule holds:

Di(G) = D1(G) · Di(u)

where D1(G) is the difference of G with respect to u and Di(u) is the difference of u
with respect to its ith variable. With the chain rule, the Boolean differences behaves
much like the path sensitization approaches.

Example The chain rule will be applied to input x3 of the circuit of Figure 4.22. The
first step is to separate the expression for the circuit into subexpressions that have no
variables in common:

if

u = x1 · x3

v = x2 · x1 + x4

then

F = u + v

F x2 x1⋅ x1 x3⋅ x4+ +=

216 AUTOMATIC TEST PATTERN GENERATION

and

D3(F) = D1(F) · D3(u)

From this point it is a simple exercise to compute the final result, which is left as an
exercise. ��

4.12 BOOLEAN SATISFIABILITY

The Boolean satisfiability algorithm is an ATPG method for combinational circuits
that is not purely structural nor purely algebraic.21 It creates a formula expressing
the Boolean difference between the good and faulted circuits, then it applies a Bool-
ean satisfiability algorithm to the resulting formula. The satisfiability algorithm
derives a conjunctive normal form (CNF) description of the circuit from the netlist.
Like Boolean difference the good and faulty circuit descriptions are XOR’ed. The
algorithm then attempts to find a minimal solution for the XOR’ed circuit.

Consider the equation Z = X. In terms of logic, this equation is equivalent to
(Z → X) ⋅ (X → Z). We now use another logic identity. In propositional logic, the
expression (Z → X) is equivalent to (Z + X); that is, a false premise can imply any-
thing. The expression (Z → X) ⋅ (X → Z) now becomes (Z + X) ⋅ (Z + X). For this
expression to be true, either X and Z must both be true (1), or both must be false (0).

We now take the discussion a step further by means of the equation Z = X ⋅ Y, for
the AND gate. This equation leads to the following formula: (Z → X ⋅ Y) ⋅ (X ⋅ Y → Z).
The next step yields

(Z + X ⋅ Y) ⋅ (X ⋅ Y + Z) = (Z + X) ⋅ (Z + Y) ⋅ (X + Y + Z).

The individual terms are referred to as clauses. Clauses with one, two, or three terms
are unary, binary, or ternary clauses, respectively. For any two-input AND gate the
expression evaluates to 1 only if the values are consistent with the values in the truth
table. Table 4.4 lists formulas for several gate types. Formulas for logic gates with
three or more inputs can be deduced from the table and the preceding discussion.

TABLE 4.4 Formulas for Satisfiability

Formula Gate Type

(Z + X) ⋅ (Z + X) Buffer

(Z + X) ⋅ (Z + X) Inverter

(Z + X) ⋅ (Z + Y) ⋅ (X + Y + Z) Two-input AND

(Z + X) ⋅ (Z + Y) ⋅ (X + Y + Z) Two-input NAND

(Z + X) ⋅ (Z + Y) ⋅ (X + Y + Z) Two-input OR

(Z + X) ⋅ (Z + Y) ⋅ (X + Y + Z) Two-input NOR

(X + Y + Z) ⋅ (X + Y + Z) ⋅ (X + Y + Z) ⋅ (X + Y +Z) Two-input XOR

BOOLEAN SATISFIABILITY 217

Figure 4.23 Circuit for satisfiability calculations.

Given the circuit in Figure 4.23, the original circuit Z = A ⋅ B + C ⋅ D is indicated
by the dashed lines. It can be described in conjunctive normal form by means of the
following formula:

(n1 + A) ⋅ (n1 + B) ⋅ (A + B + n1) ⋅ (n2 + C) ⋅ (n2 + D) ⋅ (C + D + n2)

⋅ (Z + n1) ⋅ (Z + n2) ⋅ (n1 + n2 + Z)

We hypothesize an SA1 fault on input C. Then, as in the Boolean difference, we take
the XOR of the fault-free and faulty circuits. The operation is combined in
Figure 4.23 where BD = Z ⊕ Z*. Note that the two circuits, Z and Z*, share a com-
mon subcircuit, the AND gate with inputs A and B. The CNF formula for this subcir-
cuit becomes

(n1 + A) ⋅ (n1 + B) ⋅ (A + B + n1) ⋅ (n2 + C) ⋅ (n2 + D) ⋅ (C + D + n2)

⋅ (Z + n1) ⋅ (Z + n2) ⋅ (n1 + n2 + Z)

⋅ (n'2 + C') ⋅ (n'2 + D) ⋅ (C‘+ D + n'2) ⋅ (C') ⋅ (Z* + n1) ⋅ (Z* + n'2) ⋅ (n1 + n'2 + Z*)

⋅ (Z + Z* + BD) ⋅ (Z + Z* + BD) ⋅ (Z + Z* + BD) ⋅ (Z + Z* + BD)

In this formula the first two lines correspond to the fault-free circuit enclosed in the
dashed lines. The third line corresponds to the path back from Z* to the inputs.
Because the AND operation is idempotent, it is not necessary to repeat the AND
gate driving n1. Furthermore, we have imposed an additional requirement. Since we
are testing for a SA1 on input C’, we add the term (C’) on line 3, which can only be
true if C’ is 1. The fourth line in this formula represents the XOR.

This represents a rather prodigious formula for such a small circuit. A solution to
this formula is a set of binary values for the variables that cause the formula to eval-
uate to 1. To find a solution, note that two-input AND/OR gates contribute two
binary clauses and one ternary clause. The binary clauses will be referred to as
2CNF clauses. Note also that if a circuit is made up entirely of gates that have two
inputs, then 66.6% of the clauses will be in 2CNF. In practice, it is more likely that

Z

B

A

D

C n2

n1

n2

Z*

C

D

BD

218 AUTOMATIC TEST PATTERN GENERATION

80% to 90% of the clauses will belong to 2CNF. This observation suggests the
following approach to finding a consistent set of assignments:

� Assign values to members of 2CNF in some methodical way.

� Use the ternary (and other) clauses as constraints.

We begin by defining an array V of 2CNF variables. A pointer i points to the first
unbound variable in V, it is initialized to 0. The variable dir is used to keep track of
whether we are proceeding forward or backtracking, it is initialized to indicate for-
ward processing. During processing, i > 0, the sequence of bound values V[0], V[1],
..., V[i – 1] represents the current prefix of V. The goal is to find a set of assignments
to the variables in V that is consistent with the ternary clauses. It is also advanta-
geous to find inconsistencies as quickly as possible. For example, variable P may
appear in five binary clauses, and variable Q may appear in two binary clauses. In
general, conflicts are more likely to be found if P is assigned before Q.

Other strategies to reduce the amount of calculations include assigning and
implying unary clauses, as well as other variables that have known values. For
example, in the example above, with a SA1 on input C, the PDCF is C, D = (0,1).
Also, BD must equal 1; else we do not have a test. These assignments can be imme-
diately implied. They in turn imply other assignments, with the result that we are left
with the binary clause (A + B). Either A or B can be assigned a 0 to force this binary
clause to be 1.

Boolean satisfiability can also benefit from strategies like those used by FAN and
Socrates. If it is known that a fault must propagate through an AND gate or an OR
gate, then the other inputs to that gate must be set to noncontrolling values. The
learned implications of Socrates can also contribute to improvements in perfor-
mance. The satisfiability algorithm is described below in pseudo C code.

SAT()
{

dir = 0; //forward
V = NULL; //initially, all unbound
i = 0; //point to V(0), the first unbound variable
for(;;) {
if(dir == Forward) {
for(; i < size(V); i = i+1) //find unbound entry
if (V[i] is bound)
break;

if(i == size(V))
return (SUCCESS);

V[i-1] = 0;
set implications of V[i-1];
i = i + 1;

}

USING BDDs FOR ATPG 219

else { //dir == Backward
if (i == 0)
return (FAIL);

temp = V[i-1];
undo implications of V[i-1];
set V[i-1] unbound;
if(temp == 0) {
V[i-1] = 1;
set implications of V[i-1];

}
else
i = i-1;

}
if(no clause falsified)
dir = Forward;

else
dir = Backward;

}
}

4.13 USING BDDs FOR ATPG

Boolean difference can find a test for a fault if that fault is detectable. A combina-
tional network is compared (exclusive-ORed) against a faulted version of that same
network, and the solution is an equation describing the entire solution space for the
fault. Because of its general nature, Boolean difference can be applied to any
faulted network, not just a network with an SA1 or SA0. Boolean satisfiability pro-
vides a method for creating formulas describing fault-free and faulted circuits, and
it provides a method for solving the formulas. The method we now present also
solves the problem of exclusive-ORing a fault-free and a faulty circuit. The use of
binary decision diagrams (BDDs) parallels that of Boolean difference. Given a
reduced, ordered BDD (ROBDD) for a fault-free network, along with an ROBDD
for the faulted network, the XOR of these two ROBDDs produces a BDD that
describes the entire solution space for the fault. Unlike path tracing methods, the
amount of time required to create a solution is independent of whether or not a solu-
tion exists. We will look at an example in which a test for a stuck-at fault is gener-
ated using ROBDDs. That will be followed by a look at research into generating
fault lists based on BDDs.

4.13.1 The BDD XOR Operation

Section 2.11 presented a discussion of binary decision diagrams (BDDs). During
that discussion some algorithms were presented, including the Traverse, Reduce,

220 AUTOMATIC TEST PATTERN GENERATION

Figure 4.24 ROBDD for SA0 on gate K.

and Apply. Section 2.11.3 presented an example in which a BDD for a circuit was
constructed from BDDs for two subcircuits. The subsequent BDD was then reduced.
This can be continued incrementally until an entire netlist is represented by a
ROBDD.

In Section 2.12 a ROBDD was presented corresponding to the netlist in
Figure 4.1 (originally Figure 2.43). Here we present, in Figure 4.24(a), an OBDD
(not reduced) for Figure 4.1, but with a stuck-at fault on input 3 of gate K. There are
two differences between this BDD and the BDD in Section 2.12. First, the 0-edge
and 1-edge from vertex 5, reached by traversing edges 1, 1, 0, 1, has 0- and 1-edges
terminating at terminal vertices 1 and 0, respectively, whereas in the BDD represent-
ing the unfaulted circuit, the 0- and 1-edge from vertex 5 terminate at terminal verti-
ces 0 and 1, respectively. The second difference occurs in vertex 4, reached by
traversing edges 1, 1, 1. In the original BDD the 0-edge from that vertex terminates
on terminal vertex 1; in the BDD representing the faulted circuit, the 0-edge termi-
nates on terminal vertex 0.

The ROBDD shown in Figure 4.24(b) is the result of using Apply to compute the
XOR of the ROBDD in Figure 2.45 and the OBDD in Figure 4.24(a). The closed form
Boolean expression for this graph is I1⋅I2⋅ (I3 + I4). Although that expression repre-
sents the entire realm of solutions for the stuck-at fault of input 3 of K, for some of the
solutions I5 must be assigned a known value, either 0 or 1, it cannot be left at X.

4.13.2 Faulting the BDD Graph

BDDs can be used to generate test vectors directly for digital circuits—that is, with-
out resorting to the use of a gate-level network. For circuits with a small number of

(a) (b)

1

1

3

0

1

2

1

0

0

4

1

1

0 1

4

0
0

4

01
10

4

1

1

0

0

4

3 3

2

3

4

5 5

1
0

0
1

0

0

0

1

1
0

1

0

1

0

1 0

1

1

1

2

USING BDDs FOR ATPG 221

Figure 4.25 BDD implemented with 2-to-1 multiplexers.

inputs, such as the circuit represented by the BDD in Figure 4.25(a), with inputs
x1, x2, and x3, an obvious way to generate input vectors is to activate all paths
through the diagram. For Figure 4.25(a), the set of vectors would be
x1,x2,x3 = {0X0,0X1,100,101,11X}. If the circuit is implemented using 2-to-1
multiplexers, then stuck-at faults on the inputs of the multiplexers will all be
detected. This can be seen in Figure 4.25(b), which implements the BDD in
Figure 4.25(a). The set of five vectors that were just computed will detect stuck-at
faults on all the I/O pins of these multiplexers. Unfortunately, because of recon-
vergent fanout inside the multiplexers, it cannot be certain that all the faults inside
the multiplexers will be detected.

The use of BDDs to generate test vectors has been studied in some detail. Abadir
and Reghbati22 defined a 2901 4-bit microprocessor slice23 in terms of BDDs. The
individual functions of the device, including the registers, the source and destination
selectors, and the ALU, were each modeled using BDDs. Faults were then defined in
terms of the signals that connected these functional elements. Two classes of faults
were defined: Class 1 faults affected the connection variables, and Class 2 faults
included any functional faults that altered an output of a module while executing one
of the module’s experiments, where an experiment in this context is a path from the
output variable to an exit value, and the exit value is defined as the value of the ter-
minal vertex. Complete tests for the circuit were based on tests for the individual
functions.

Testing for Class 1 faults consisted of assigning values to variables that sensitize
a selected input. A test for input Cin SA0 in the 4-bit ripple carry adder of
Figure 4.26 can be obtained by setting Cin = 1 and observing S0. The response at S0
will depend on the value of E0, which in turn depends on A0 and B0. However, if it is
desired to propagate the SA0 on Cin through output S1, then E0 must be set to a 1.
Testing for Class 2 faults involves walking through all the paths in the BDDs so that
all functional possibilities defined by the BDDs are exercised.

In a subsequent study of the effectiveness of test programs based on BDDs, it was
pointed out that simply traversing BDDs, using the Class 1 and Class 2 fault models,
does not ensure good fault coverage.24 Traversing BDDs verifies that a device performs

0 1

f

x1

x2

x3

x3

0

MUX

0 1
MUX

(a) (b)

x1

x2

x3x3

0

0

1

1

f

0

0 11

0

1

222 AUTOMATIC TEST PATTERN GENERATION

Figure 4.26 BDD for ripple-carry adder.

its intended function, but does not confirm that the device gets the right answer for
the right reason—that is, that it does not perform other undesired functions in addi-
tion to the intended function. Consider, for example, a four-input AND gate that
requires four input events to be true in order to trigger an output event. The negation
of any single input event can block the output event from occurring. If two input
events are blocking the output event, a logic 0 appears at the output of the AND gate,
but it does not confirm that the input event being tested is the one that blocked the
output event. Similarly, for an OR gate, any input may trigger an output event, but if
two or more inputs are true, no judgment can be made as to whether the input being
tested is the one that triggered the output event.

The authors proposed a new functional fault model based on BDDs, and they
applied fault simulation to a gate-level model of their circuits to validate the tests
that were created. First, they define a functional fault as one that can alter the path of
an experiment, but which cannot cause the creation or deletion of vertices, or change
vertex connections in the BDD. Then, the following lemma is posited:

Lemma 4.2 For any detectable fault, there always exists a complete path in a BDD
that leads to a different exit value.

Definition 4.3 Side effects for the current experiment are all the other experiments
whose output values are complementary to the current experiment.

Definition 4.4 An on-path side effect is one that differs from the current experiment
in only the vertex variables with assigned values.

Definition 4.5 An off-path side effect is one that differs from the current experiment
in not only the vertex variables with assigned values but also some don’t care vari-
ables.

S3

S2

S1

S0

A0
E0

E0

E1

E1

E2

E2

E3

E3

A1

A2

A3

Cin

Cout

Ei

Ai

Bi

USING BDDs FOR ATPG 223

Definition 4.6 Two off-path side effects are disjoint if their don’t care terms can be
set independently; otherwise they are joint side effects.

Definition 4.7 A 0-experiment is an experiment that has a 0 outcome. A 1-experi-
ment is an experiment that has a 1 outcome.

Theorem 4.2 All the detectable faults of an experiment can be detected if the test
set is formed with the unknowns assigned values that select side effects.

The objective in this approach is to exercise every experiment to verify that all paths
through the circuit work correctly. In addition, don’t care terms that correspond to
unknown vertex values are set in such a way that all detectable wrong paths can be
detected.

Example The BDD in Figure 4.27 has the following experiments:

0-experiments: A,B,C = 00x, 011, 1x0

1-experiments: A,B,C = 010, 1x1

When the current experiment is A,B,C = 011, the expected output is 0. An onpath
side effect is A,B,C = 010. This means that an SA0 fault at input C will cause a 1 at
the output, hence it will be detected. For the 0-experiment A,B,C = 00x, the expected
result is 0. An off-path side effect is 010; it causes the 1-edge to be taken from B. An
SA1 at input B causes the 1-edge to be taken, so if input C is set to 0, the circuit
responds with a 1, and the SA1 is detected. ��

Theorem 4.3 For a binary decision diagram that has m 0-experiments and n
1-experiments, the upper and lower bounds for the size of its test set N are 2mn and
m + n, respectively.

Proof In the worst case, every 1-experiment is an off-path side effect for the 0-experi-
nents, and all of them are needed to detect vertices with unknown values. Thus, the size
of the test set for the 0-experiments is mn. Similarly, it is mn for the 1-experiments,
so N = 2mn. If all the side effects for 0-experiments and 1-experiments are on-path

Figure 4.27 BDD for experiments.

C0

1

0

10

f

A

B

224 AUTOMATIC TEST PATTERN GENERATION

side effects, then these m + n experiments define all the tests, and that is the lower
bound.

Because BDDs represent the behavior of a circuit, without regard to how it is
constructed, structural information detailing the circuit’s internal organization can
easily be overlooked. Consider the BDD for the ripple-carry adder shown in
Figure 4.26. This BDD could be used to characterize the behavior of a carry-
lookahead adder. But the lack of detail describing the implementation of the circuit
can lead to some stuck-at faults being overlooked. In their article, Chang et al.
confirm that BDDs for the ripple-carry adder, when used to generate tests for the
carry-lookahead adder, miss some of the faults that are detected when using the
more detailed BDD.24

4.14 SUMMARY

The purpose of ATPG is to create test vectors that sensitize enough unique signal
paths through a circuit, to observable outputs, such that if the circuit passes the test,
there is a high degree of confidence that the circuit is free of defects. It is desirable to
accomplish this with the smallest possible number of test vectors so that the circuit
spends the least possible amount of time on the tester.

Numerous methods have been devised to create test patterns for combinational
logic. The methods range from topological to algebraic and they date from the early
1960s to the present. Some are effective and widely used, whereas others are prima-
rily of academic interest. They all have one thing in common: Their objective is to
create input patterns that cause the output response of a circuit to depend on the
presence or absence of some hypothesized set of faults. Secondary objectives, not
explicitly addressed in this chapter, but which will be addressed in more detail in
later chapters, include:

Thoroughness (comprehensiveness)

Ease of use

Ease of implementation

Fault resolution (ability to identify which fault occurred)

Efficiency (minimum number of vectors to achieve coverage goals)

Among the path tracing methods, the sensitized path was first to appear. R. D.
Eldred advocated modeling stuck-at faults and creating specific tests to detect these
faults. However, the first suggestion for the use of the sensitized path is attributed to
an unidentified attendee at a conference at the University of Michigan in 1961. Path
sensitizing programs had already been well developed by C. B. Steiglitz and others1

when the D-algorithm was introduced in 1966. The D-algorthm provides a formal
calculus for computing test vectors, and it explores the entire solution space, if nec-
essary; hence it qualifies as an algorithm. In fact, it was the first method shown to be
an algorithm. It relies on PDCFs and propagation D-cubes that are derived from a
truth table and which can be created for any reasonable-sized entry in a cell library.

SUMMARY 225

In combinational arrays that have many repetitive structures, it may be more eco-
nomical to create custom-tailored primitives than to decompose library entries into
their gate-level constituents.

PODEM enjoys an advantage over the D-algorithm on circuits that contain a
great deal of reconvergent fanout, particularly circuits such as parity checkers that
contain large numbers of XOR gates, because the basic D-algorithm will frequently
attempt to justify specific logic values on inputs to XORs when either value is ade-
quate. PODEM is elegant in its simplicity and quite straightforward to implement.
However, that elegance comes at a price. FAN identifies situations where PODEM
makes unnecessary calculations and adds enhancements to eliminate them. The goal
of FAN is to reduce the number of backtracks and reduce the amount of processing
time for each backtrack. Some of these techniques, such as the forward and back
imply operations, are adopted directly from the D-algorithm. Socrates identifies
additional enhancements, resulting in further performance gains. The critical path,
employed in the LASAR test generation system, enjoyed commercial success in the
era when PCBs were made up of SSI, MSI, and LSI (small-,medium-, and large-
scale integration) parts.

It is interesting to contrast the different methods. LASAR works back from the
outputs, whereas PODEM works forward from the inputs. The D-algorithm starts at
the point of a fault, in the middle of a circuit, and propagates forward to an output,
while working backwards to justify assignments as it proceeds. The D-algorithm can
be implemented so as to perform complete justification back to the input pins for
every step of the propagation, or, alternatively, it can be implemented so as to propa-
gate completely to the outputs and save all justification steps until it has completed
the propagation phase. Different circuits may favor one or another of these justifica-
tion approaches.

Algebraic techniques are quite thorough and complete, it is possible to get a
closed-form expression that describes the entire solution space for a given stuck-
at fault. They demonstrate the disparate ways in which to approach and solve a
problem. However, converting a netlist into Boolean equations (for both the fault-
free and faulty circuits) and performing an exclusive-OR on these two represen-
tations is a nontrivial task. Boolean satisfiability lies somewhere between the
pure structural algorithms and the algebraic methods. It translates the netlist to a
conjunctive normal form. A search for a solution then involves finding a consis-
tent set of assignments for the binary clauses while the ternary clauses serve as
constraints.

BDDs have been growing in popularity in recent years, because of their wide-
spread applicability to several areas of electronic design automation. It is interesting
to note that one of the earliest applications of BDDs was to implement ATPG algo-
rithms. The basic BDD functions, Reduce, Apply, Traverse, and so on, have appli-
cability to simulation, as was seen in Chapter 2, and they have applicability to
ATPG. Given a ROBDD for the fault-free and faulty circuits, the XOR operation is
straightforward, and there are no backtracks. Furthermore, in contrast to other
methods, the amount of CPU time does not depend on whether or not the fault is
detectable.

226 AUTOMATIC TEST PATTERN GENERATION

It is important to note that, while the various ATPG algorithms each has
advocates claiming that their method is superior to all others, in the final analysis,
performance of a given algorithm often depends on how it was implemented. A
method may, in theory, be an algorithm, but if the program takes shortcuts, it may no
longer be an algorithm. Furthermore, ATPG is one of those applications where 95%
of the CPU time is spent in 5% of the code. It is not unusual for implementations of
the same algorithm to differ in performance by a factor of two or more simply
because one algorithm was implemented more efficiently than the other in that criti-
cal 5%. Benchmark circuits also influence the outcome of performance compari-
sons. For every algorithm there is a circuit that favors it, and there is another circuit
that will reduce its performance to a crawl.

PROBLEMS

4.1 A 32-bit ALU is to be tested with an exhaustive test (i.e., applying all possible
input combinations). The ALU has 70 inputs: two 32-bit ports, a carry-in, and
five op-codes to select the operation to be performed. If a tester can apply
stimuli at the rate of one vector every 10ns, how long will it take to apply the
entire test?

4.2 A four-input AND gate is exercised with the following test pattern set, which
causes all of the inputs and the output to switch in both directions: (1,0,0,0),
(0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1). Assuming SA1 faults on each of the
input pins, and SA0 and SA1 faults on the output, what is the fault coverage?

4.3 For the example in Section 4.3.1, the cube (1, X, 1, 0) is a prime cube but it
is not an extremal. Why?

4.4 List the PDCFs for a four-input NOR gate. Assume faults on all inputs and
two faults on the output.

4.5 Find a function for which 22n–1 distinct propagation D-cubes exist.

4.6 How many vertices are represented by the vector (1, 0, D, X, 0, X, D, X)?

4.7 Given the following cubes: a = (1, 0, X), b = (X, 0, 0), c = (1, 1, 1), d = (X,
X, 1), e = (X, X, 0).

(a) Determine which cubes contain others.

(b) Perform all pairwise intersections, using the table in Section 4.3.1.

4.8 Two shipments of ICs have become mixed up. The ICs implement the
functions F and F*, defined below. How would you tell them apart if you had
access to a tester?

F = a ⋅ b ⋅ c + b ⋅ c ⋅ d + a ⋅ b ⋅ d + a ⋅ c ⋅ d

F* = (a + b) ⋅ (c + d)

PROBLEMS 227

Figure 4.28 Creating the D-chains.

4.9 During creation of a sensitized path, two or more D and/or D signals converge
on inputs to a primitive element. If the propagation table does not contain
cubes with multiple D and D signals, explain how you would determine what
value from the set {0,1,D,D} would propagate to the output.

4.10 Using the D-algorithm, create a test for a SA0 fault on the bottom input of
gate 7 in the circuit of Figure 4.28. Show the D-chains for each step of the
process.

4.11 Given an AND gate that drives five destination gates, what is the maximum
number of propagation paths that D-algorithm must explore before it can
conclude that a solution does not exist?

4.12 Create propagation D-cubes for the odd parity equation Odd = I1 ⊕ I2 ⊕ I3 ⊕
I4, where ⊕ denotes exclusive-OR.

4.13 The following user defined primitive (UDP) describes a 2-to-1 multiplexer.

primitive MUX2_1 (Q, A, B, SEL);
output Q;
input A, B, SEL;
 table
 // A B SEL : Q
 0 0 ? : 0 ;
 1 1 ? : 1 ;
 0 ? 0 : 0 ;
 1 ? 0 : 1 ;
 ? 0 1 : 0 ;
 ? 1 1 : 1 ;
 endtable
endprimitive

Using the UDP, create the PDCFs and propagation D-cubes. The 2-to-1 mul-
tiplexer has reconvergent fanout inside the circuit, resulting in a fault that
may not be detected by test vectors that detect faults on the pins. How would
you compensate for that?

1

2

3

4

5

6

7

9

8

228 AUTOMATIC TEST PATTERN GENERATION

4.14 Create PDCFs and propagation D-cubes for the full-adder characterized by the
following two verilog equations. First create truth tables for Sum and Carry.
Then, from the truth tables, create the PDCFs and propagation D-cubes.

Sum = A ^ B ^ Cin;

Carry = A & B | A & Cin | B & Cin;

4.15 In Section 4.5 it was stated that the subscripted D-algorithm could find many
other tests for the indicated faults on gate 16 of Figure 4.10. Find as many
solutions as you can.

4.16 Apply the pattern (11010) to the circuit in Figure 4.1 and use testdetect to find
all stuck-at faults on gate inputs and outputs that are detected by that pattern.

4.17 Using PODEM, find a test for the indicated fault in Figure 4.29.

4.18 Use PODEM to find a test for a SA1 on the top input to gate D in Figure 4.1.

4.19 The bottom input to gate G in Figure 4.1 is redundant. Using PODEM, prove
that the input is redundant.

4.20 Given a two-input XOR gate, explain what happens when sensitized values
arrive at both inputs. Consider all four cases: (D,D), (D,D), (D,D), (D,D).

4.21 Create a NAND-equivalent version of the circuit in Figure 4.1, use critical
path to generate tests for all four input stuck-at faults on the NOR labeled J.
Note that the bubble on its third input implies that the input must be tested
for a fault of the opposite polarity from the others.

4.22 Use FAN to generate a test for a SA0 on the output of gate B in the circuit of
Figure 4.3.

4.23 Finish the computations for the Boolean difference example at the end of
Section 4.11.

4.24 Use the Boolean difference to find a test for a fault on the middle input to gate
8 in Figure 4.20.

4.25 In the example used to describe Boolean satisfiability, the initial formula
reduced to (A + B) after all implications were performed. Show the details;
that is, prove that this result is correct.

Figure 4.29 Finding a test with PODEM.

1

2

3

4
5

6

7

9
8

PROBLEMS 229

Figure 4.30 0- and 1-experiments.

4.26 Use Boolean satisfiability to find a test for a SA0 on the bottom input to gate
7 in Figure 4.22.

4.27 Two equations were given for the circuit in Figure 4.22, one for the good
circuit, g, and another for the faulted circuit, f. Use the Apply algorithm to
create ROBDDs Bg and Bf. Then compute Apply(⊕, Bg, Bf) .

4.28 In the 3-of-5 majority function M(A, B, C, D, E) illustrated in Figure 4.30:

list all of the 0-experiments and all of the 1-experiments,

determine the bounds on the number of tests required,

from the BDD, generate the tests required to fully test the circuit.

4.29 Given the equation F = D ⋅ ((A ⋅ B) + (A ⋅ C)), create a BDD with A as the root
and repeat the previous problem.

4.30 The following equations describe a carry look-ahead (CLA):

Cn+x = G0 + P0Cn

Cn+y = G1 + P1G0 + P1P0Cn

Cn+z = G2 + P2G1 + P2P1G0 + P2P1P0Cn

G = G3 + P3G2 + P3P2G1 + P3P2P1G0

P = P3P2P1P0

Create a BDD for the CLA. Show how to connect it with four of the BDDs
in Figure 2.35(g) to form a 16-bit adder.

4.31 Using the circuit in Figure 4.1, generate the ROBDD corresponding to a SA0
on input 2 of gate M. Then use Apply to compute the XOR of that ROBDD
and the ROBDD in Figure 2.44. Reduce the resulting OBDD and convert it
to a closed form Boolean expression.

0

00

0 1

1

1

1

M(A,B,C,D,E)

0

0

0
1

1

1

0 1E

1
10 0

A

B

CC

B

C

D D

230 AUTOMATIC TEST PATTERN GENERATION

REFERENCES

1. Case, P. W. et al., Design Automation in IBM, IBM J. Res. Dev., Vol. 25, No. 5, September
1981, pp. 631–646.

2. Schneider, P. R., On the Necessity to Examine D-chains in Diagnostic Test Generation—
An Example, IBM J. Res. Dev., Vol. 10, No. 1, January 1967, p. 114.

3. Roth, J. P., Diagnosis of Automata Failures: A Calculus and a Method, IBM J. Res. Dev.,
Vol. 10. No. 4, July 1966, pp. 278–291.

4. Roth, J. P. et al., Programmed Algorithms to Compute Tests to Detect and Distinguish
Between failures in Logic Circuits, IEEE Trans. Comput., Vol. EC-16, No. 5, October
1967, pp. 567–580.

5. Roth, J. P., Computer Logic, Testing, and Verification, Chapter 3, Computer Science Press,
Potomac, MD, 1980.

6. Benmehrez, C., and J. F. McDonald, Measured Performance of a Programmed
Implementation of the Subscripted D-algorithm, Proc. 20th Des. Autom. Conf., 1983,
pp. 308–315.

7. Kirkland, Tom, and M. R. Mercer, Algorithms for Automatic Test Pattern Generation,
IEEE Des. Test, Vol. 5, No. 3, June 1988, pp. 43–55.

8. McDonald, J. F., and C. Benmehrez, Test Set Reduction Using the Subscripted
D-algorithm, Proc. 1983 Int. Test Conf., October 1983, pp. 115–121.

9. Goel, P., An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic
Circuits, IEEE Trans. Comput., Vol. C-30, No. 3, March 1981, pp. 215–222.

10. Lawler, E. W., and D. E. Wood, Branch-and-Bound Methods—A Survey, Oper. Res.,
Vol. 14, 1966, pp. 669–719.

11. Fujiwara, H., and T. Shimono, On the Acceleration of Test Generation Algorithms, IEEE
Trans. Comput., Vol. C-32, No. 12, December 1983, pp. 1137–1144.

12. Schulz, M. H. et al., SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System, IEEE Trans. CAD, Vol. 7, No. 1, January 1988, pp. 126–137.

13. Wang, David T., An Algorithm for the Generation of Test Sets for Combinational Logic
Networks, IEEE Trans. Comp., Vol. C-24, No. 7, July 1975, pp. 742–746.

14. Thomas, J. J., Automated Diagnostic Test Programs for Digital Networks, Computer
Des., August 1971, pp. 63–67.

15. Abramovici, M. et al., Critical Path Tracing—An Alternative to Fault Simulation, Proc.
20th Des. Automat., Conf., 1983, pp. 214–220.

16. Abramovici, M. et al., Critical Path Tracing—An Alternative to Fault Simulation, IEEE
Des. Test Mag., Vol. 1, No. 1, February 1984, pp. 83–93.

17. Hong, S. J., Fault Simulation Strategy for Combinational Logic Networks, Proc. 8th Int.
Symp. on Fault-Tolerant Computing, 1978, pp. 96–99.

18. Miczo, A., Concurrent Fault Simulation: Some Performance Measurements, unpublished
paper.

19. Sellers, F. F. et al., Analyzing Errors with the Boolean Difference, IEEE Trans. Comput.,
Vol. C-17, No. 7, July 1968, pp. 676–683.

20. Akers, S. B., On a Theory of Boolean Functions, J. SIAM, Vol. 7, December 1959.

21. Larrabee, T., Test Pattern Generation Using Boolean Satisfiability, IEEE Trans. CAD.,
January 1992, pp. 4–15.

REFERENCES 231

22. Abadir, M. S., and H. K. Reghbati, Test Generation for LSI: A Case Study, Proc. 21st Des.
Autom. Conf., 1984, pp. 180–195.

23. The Am2900 Family Data Book, Advanced Micro Devices, Inc., Sunngvale, CA, 1979.

24. Chang, H. P. et al., Structured Functional Level Test Generation Using Binary Decision
Diagrams, Proc. 1986 Int. Test Conf., pp. 97–104.

233

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 5

Sequential Logic Test

5.1 INTRODUCTION

The previous chapter examined methods for creating sensitized paths in combina-
tional logic extending from stuck-at faults on logic gates to observable outputs. We
now attempt to create tests for sequential circuits where the outputs are a function
not just of present inputs but of past inputs as well. The objective will be the same:
to create a sensitized path from the point where a fault occurs to an observable out-
put. However, there are new factors that must be taken into consideration. A sensi-
tized path must now be propagated not only through logic operators, but also
through an entirely new dimension—time. The time dimension may be discrete, as
in synchronous logic, or it may be continuous, as in asynchronous logic.

The time dimension was ignored when creating tests for faults in combinational
logic. It was implicitly assumed that the output response would stabilize before
being measured with test equipment, and it was generally assumed that each test pat-
tern was independent of its predecessors. As will be seen, the effects of time cannot
be ignored, because this added dimension greatly influences the results of test pat-
tern generation and can complicate, by orders of magnitude, the problem of creating
tests. Assumptions about circuit behavior must be carefully analyzed to determine
the circumstances under which they prevail.

5.2 TEST PROBLEMS CAUSED BY SEQUENTIAL LOGIC

Two factors complicate the task of creating tests for sequential logic: memory and
circuit delay. In sequential circuits the signals must not only be logically correct, but
must also occur in the correct time sequence relative to other signals. The test prob-
lem is further complicated by the fact that aberrant behavior can occur in sequential
circuits when individual discrete components are all fault-free and conform to their
manufacturer’s specifications. We first consider problems caused by the presence of
memory, and then we examine the effects of circuit delay on the test generation
problem.

234

SEQUENTIAL LOGIC TEST

5.2.1 The Effects of Memory

In the first chapter it was pointed out that, for combinational circuits, it was possible
(but not necessarily reasonable) to create a complete test for logic faults by applying
all possible binary combinations to the inputs of a circuit. That, as we shall see, is
not true for circuits with memory. They may not only require more than 2

n

 tests, but
are also sensitive to the

order

 in which stimuli are applied.

Test Vector Ordering

The effects of memory can be seen from analysis of the
cross-coupled NAND latch [cf. Figure 2.3(b)]. Four faults will be considered, these
being the input SA1 faults on each of the two NAND gates (numbering is from top
to bottom in the diagram). All four possible binary combinations are applied to the
inputs in ascending order—that is, in the sequence (Set, Reset) = {(0,0), (0,1), (1,0),
(1,1)}. We get the following response for the fault-free circuit (FF) and the circuit
corresponding to each of the four input SA1 faults.

In this table, fault number 2 responds to the sequence of input vectors with an output
response that exactly matches the fault-free circuit response. Clearly, this sequence
of inputs will not distinguish between the fault-free circuit and a circuit with input 2
SA1.

The sequence is now applied in the exact opposite order. We get:

The Indeterminate Value

When the four input combinations are applied in
reverse order, question marks appear in some table positions. What is their signifi-
cance? To answer this question, we take note of a situation that did not exist when
dealing only with combinational logic; the cross-coupled NAND latch has

memory

.
By virtue of feedback present in the circuit, it is able to remember the value of a sig-
nal that was applied to the set input even after that signal is removed.

Input Output

Set Reset FF 1 2 3 4

0 0 1 0 1 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 1 0 0 0 1 1

Input Output

Set Reset FF 1 2 3 4

1 1 ? ? 0 1 ?

1 0 0 0 0 0 ?

0 1 1 0 1 1 1

0 0 1 0 1 1 1

TEST PROBLEMS CAUSED BY SEQUENTIAL LOGIC

235

Because of the feedback, neither the Set nor the Reset line need be held low any
longer than necessary to effectively latch the circuit. However, when power is first
applied to the circuit, it is not known what value is contained in the latch. How can
circuit behavior be simulated when it is not known what value is contained in its
memory?

In real circuits, memory elements such as latches and flip-flops have indetermi-
nate values when power is first applied. The contents of these elements remain
indeterminate until the latch or flip-flop is either set or reset to a known value. In a
simulation model this condition is imitated by initializing circuit elements to the
indeterminate X state. Then, as seen in Chapter 2, some signal values can drive a
logic element to a known state despite the presence of indeterminate values on
other inputs. For example, the AND gate in Figure 2.1(c) responds with a 0 when
any single input receives a 0, regardless of what values are present on other
inputs. However, if a 1 is applied while all other inputs are at X, the output
remains at X.

Returning to the latch, the first sequence began by applying 0s to both inputs,
while the second sequence began by applying 1s to both inputs. In both cases the
internal nets were initially indeterminate. The 0s in the first sequence were able to
drive the latch to a known state, making it possible to immediately distinguish
between correct and incorrect response. When applying the patterns in reverse order,
it took longer to drive the latch into a state where good circuit response could be dis-
tinguished from faulty circuit response. As a result, only one of the four faults is
detected, namely, fault 1. Circuits with faults 2 and 3 agree with the good circuit
response in all instances where the good circuit has a known response. On the first
pattern the good circuit response is indeterminate and the circuit with fault 2
responds with a 0. The circuit with fault 3 responds with a 1. Since it is not known
what value to expect from the good circuit, there is no way to decide whether the
faulted circuits are responding correctly.

Faulted circuit 4 presents an additional complication. Its response is indetermi-
nate for both the first and second patterns. However, because the good circuit has a
known response to pattern 2, we do know what to look for in the good circuit,
namely, the value 0. Therefore, if a NAND latch is being tested with the second set
of stimuli, and it is faulted with input 4 SA1, it might come up initially with a 0 on
its output when power is applied to the circuit, in which case the fault is not
detected, or it could come up with a 1, in which case the fault will be detected.

Oscillations

Another complication resulting from the presence of memory is
oscillations. Suppose that we first apply the test vector (0,0) to the cross-coupled
NAND latch. Both NAND gates respond with a logic 1 on their outputs. We then
apply the combination (1,1) to the inputs. Now there are 1s on both inputs to each of
the two NAND gates—but not for long. The NAND gates transform these 1s into 0s
on the outputs. The 0s then show up on the NAND inputs and cause the NAND out-
puts to go to 1s. The cycle is repetitive; the latch is oscillating. We do not know what
value to expect on the NAND gate outputs; the latch may continue to oscillate until a
different stimulus is applied to the inputs or the oscillations may eventually subside.

236

SEQUENTIAL LOGIC TEST

If the oscillations do subside, there is no practical way to predict, from a logic
description of the circuit, the final state into which the latch settles. Therefore, the
NAND outputs are set to the indeterminate X.

Probable Detected Faults

When we analyzed the effectiveness of binary
sequences applied to the NAND latch in descending order, we could not claim with
certainty that stuck-at fault number 4 would be detected. Fortunately, that fault is
detected when the vectors are applied in ascending order. In other circuits the ambi-
guity remains. In Figure 2.4(b) the Data input is complemented and both true and
complement values are applied to the latch. Barring the presence of a fault, the latch
will not oscillate. However, when attempting to create a test for the circuit, we
encounter another problem. If the Enable signal is SA1, the output of the inverter
driven by Enable is permanently at 0 and the NAND gates driven by the inverter are
permanently in a 1 state; hence the faulted latch cannot be initialized to a known
state. Indeterminate states were set on the latch nodes prior to the start of test pattern
generation and the states remain indeterminate for the faulted circuit. If power is
applied to the fault-free and faulted latches, the circuits may just happen to come up
in the same state.

The problem just described is inherent in any finite-state machine (FSM). The
FSM is characterized by a set of states

Q

 = {

q

1

,

q

2

, ...,

q

s

}, a set of input stimuli

I

 = {

i

1

,

i

2

, ...,

i

n

}, another set

Y

 = {

y

1

,

y

2

, ...,

y

m

} of output responses, and a pair of
mappings

M

:

 Q

×

I

→

Q

Z

:

 Q

×

I

→

Y

These mappings define the next state transition and the output behavior in response
to any particular input stimulus. These mappings assume knowledge of the current
state of the FSM at the time the stimulus is applied. When the initial stimulus is
applied, that state is unknown unless some independent means such as a reset exists
for driving the FSM into a known state.

In general, if there is no independent means for initializing an FSM, and if the
Clock or Enable input is faulty, then it is not possible to apply just a single stimu-
lus to the FSM and detect the presence of that fault. One approach used in industry
is to mark a fault as a

probable detect

 if the fault-free circuit drives an output pin
to a known logic state and the fault causes that same pin to assume an unknown
state.

The industry is not in complete agreement concerning the classification of proba-
ble detected faults. While some test engineers maintain that such a fault is likely to
eventually become detected, others argue that it should remain classified as undetec-
ted, and still others prefer to view it as a probable detect. If the probable detected
fault is marked as detected, then there is a concern that an ATPG may be designed to
ignore the fault and not try to create a test for it in those situations where a test
exists.

TEST PROBLEMS CAUSED BY SEQUENTIAL LOGIC

237

Figure 5.1

Initialization problem.

The Initialization Problem

Consider the circuit of Figure 5.1. During simula-
tion, circuit operation begins with the D flip-flop in an unknown state. In normal
operation, when the input combination

A

 =

B

 =

C

 = 0 is applied and the flip-flop is
clocked, the

Q

 output switches to 0. The flip-flop can then be clocked a second time
to obtain a test for the lower input of gate 3 SA1. If it is SA1, the expected value is

Q

 = 1; and if it is fault-free, the expected value is

Q

 = 0.
Unfortunately, the test has a serious flaw! If the lower input to gate 3 is SA1, the

output of the flip-flop at the end of the first clock period is indeterminate because the
value at the middle input to gate 3 is initially indeterminate. It is driven by the flip-
flop that has an indeterminate value. After a second clock pulse the value at

Q

 will
remain at X; hence it may agree with the good circuit response despite the presence
of the fault. The fallacy lies in assuming correct circuit behavior when setting up the
flip-flop for the test. We depended upon correct behavior of the very net that we are
attempting to test when setting up a test to detect a fault on that net.

To correctly establish a test, it is necessary to assume an indeterminate value from
the flip-flop. Then, from the D-algorithm, we know that the flip-flop must be driven
into the 0 state, without depending on the input to gate 3 that is driven by the flip-
flop. The flip-flop value can then be used in conjunction with the inputs to test for
the SA1 on the lower input of gate 3. In this instance, we can set

A

 =

C

 = 0,

B

 = 1.
Then a 1 can be clocked into the flip-flop from gate 2. This produces a 0 on the out-
put of the flip-flop which can then be used with the assignment

A

 =

B

 = 0 to clock a
0 into the flip-flop. Now, with

Q

 = 0 and

A

 =

B

 =

C

 = 0, another clock causes D to
appear on the output of the flip-flop.

Notice that input

C

 was used, but it was used to set up gate 2. If input

C

 were
faulted in such a way as to affect both gates 2 and 3, then it could not have been used
to set up the test.

5.2.2 Timing Considerations

Until now we have assumed that erroneous behavior on circuit outputs was the result
of

logic

 faults. Those faults generally result from actual physical defects such as
opens or shorts, or incorrect fabrication such as an incorrect connection or a wrong

Q

A

B

C

1

2

3

4 D F

Clock

A F

0 C

0 Q

1 Q

1 0

SA1

B

0

1

0

1

238

SEQUENTIAL LOGIC TEST

component. Unfortunately, this assumption, while convenient, is an oversimplifica-
tion. An error may indeed be a result of one or more logic faults, but it may also be
the case that an error occurs and none of the above situations exists.

Defects exist that can prevent an element from behaving in accordance with its
specifications. Faults that affect the performance of a circuit are referred to as

para-
metric

 faults, in contrast to the logic faults that have been considered up to this
point. Parametric faults can affect voltage and current levels, and they can affect
gain and switching speed of a circuit. Parametric faults in components can result
from improper fabrication or from degradation as a consequence of a normal aging
process. Environmental conditions such as temperature extremes, humidity, or
mechanical vibration can accelerate the degradation process.

Design oversights can produce symptoms similar to parametric faults. Design
problems include failure to take into account wire lengths, loading of devices, inad-
equate decoupling, and failure to consider worst-case conditions such as maximum
or minimum voltages or temperatures over which a device may be required to oper-
ate. It is possible that none of these factors may cause an error in a particular design
in a well-controlled environment, and yet any of these factors can destabilize a cir-
cuit that is operating under adverse conditions. Relative timing between signal paths
or the ability of the circuit to drive other circuits could be affected.

Intermittent errors are particularly insidious because of their rather elusive
nature, appearing only under particular combinations of circumstances. For exam-
ple, a logic board may be designed for nominal signal delay for each component as a
safety margin. Statistically, the delays should seldom accumulate so as to exceed a
critical threshold. However, as with any statistical expectation, there will occasion-
ally be a circuit that does exceed the maximum permissible value. Worse still, it may
work well at nominal voltages and /or temperatures and fail only when voltages and/
or temperatures stray from their nominal value. A new board substituted for the orig-
inal board may be closer to tolerance and work well under the degraded voltage and/
or temperature conditions. The original board may then, when checked at a depot or
a board tester under ideal operating conditions, test satisfactorily.

Consider the effects of timing variations on the delay flip-flop of Figure 2.7. Cor-
rect operation of the flip-flop requires that the designer observe minimal setup and
hold times. If propagation delay along a signal path to the Data input of the flip-flop
is greater than estimated by the designer, or if parametric faults exist, then the setup
time requirement relative to the clock may not be satisfied, so the clock attempts to
latch the signal while it is still changing. Problems can also occur if a signal arrives
too soon. The hold time requirement will be violated if a new signal value arrives at
the data input before the intended value is latched up in the flip-flop. This can hap-
pen if one register directly feeds another without any intervening logic.

That logic or parametric faults can cause erroneous operation in a circuit is easy
to understand, but digital test problems are further compounded by the fact that
errors can occur during operation of a device when its components behave as
intended. Elements used in the fabrication of digital logic circuits contain delay.
Ironically, although technologists constantly try to create faster circuits and reduce
delay, sequential logic circuits cannot function without delay; circuits depend both

SEQUENTIAL TEST METHODS

239

on correct logic operation of circuit components and on correct relative timing of
signals passing through the circuit. This delay must be taken into account when
designing and testing circuits.

Suppose the inverter driven by the Data input in the gated latch circuit of
Figure 2.4(b) has a delay of

n

 nanoseconds. If the Data input makes a 0-to-1 transi-
tion followed by a 0-to-1 transition on the Enable approximately

n

 nanoseconds
later, the two cross-coupled NAND gates see an input of (0,0) for about

n

 nanosec-
onds followed by an input of (1,1). This produces unpredictable results, as we have
seen before. The problem is caused by the delay in the inverter. A solution to this
problem is to put a buffer in the noninverting signal path so the Data and Data sig-
nals reach the NANDs at about the same time.

In each of the two circuits just cited, the delay flip-flop and the latch, a race
exists. A

race

 is a condition wherein two or more signals are changing simulta-
neously in a circuit. The race may be caused by multiple simultaneous input signal
changes, or it may be the result of a single signal change that follows two or more
paths from a fanout point. Note that any time we have a latch or flip-flop we have a
race condition, since these devices will always have at least one element whose sig-
nal both goes outside the device and feeds back to an input of the latch or flip-flop.
Races may or may not affect the behavior of a circuit. A

critical race

 exists if the
behavior of a circuit depends on the outcome of the race. Such races can produce
unanticipated and unwanted results.

Hazards can also cause sequential circuits to behave in ways that were not
intended. In Section 2.6.4 the consequences of several kinds of hazards were con-
sidered. Like timing problems, hazards can be extremely difficult to diagnose
because their effect on a circuit may depend on other factors, such as marginal volt-
ages or an operating temperature that is within specification but borderline. Under
optimal conditions, a glitch caused by a hazard may not contain enough energy to
cause a latch to switch state; but under the influence of marginal operating condi-
tions, this glitch may have sufficient energy to cause a latch of flip-flop to switch
states.

5.3 SEQUENTIAL TEST METHODS

We now examine some methods that have been developed to create tests for sequen-
tial logic. The methods described here, though not a complete survey, are representa-
tive of the methods described in the literature and range from quite simple to very
elaborate. To simplify the task, we will confine our attention in this chapter to errors
caused by logic faults. Intermittent errors, such as those caused by parametric faults
or races and hazards, will be discussed in subsequent chapters.

5.3.1 Seshu’s Heuristics

Some of the earliest documented attempts at automatically generating test pro-
grams for digital circuits were published in 1965 by Sundaram Seshu.

1

 These

240

SEQUENTIAL LOGIC TEST

made use of a collection of heuristics to generate trial patterns or sequences of pat-
terns that were then simulated in order to evaluate their effectiveness. Seshu identi-
fied four heuristics for creating test patterns. The test patterns created were
actually trial test patterns whose effectiveness was evaluated with the simulator. If
the simulator indicated that a given pattern was ineffective, the pattern was
rejected and another trial pattern was selected and evaluated. The four heuristics
employed were

Best next or return to good

Wander

Combinational

Reset

We briefly describe each of these:

Best Next or Return to Good

The best next or return to good begins by
selecting an initial test pattern, perhaps one that resets the circuit. Then, given a
(

j

−

 1)st pattern, the

j

th pattern is determined by simulating all next patterns,
where a

next pattern

 is defined as any pattern that differs from the present pattern
in exactly one bit position. The next pattern that gives best results is retained.
Other patterns that give good results are saved in a pushdown stack. If no trial
pattern gives satisfactory results at the

j

th step, then the heuristic selects some
other (

j

−

 1)st pattern from the stack and tries to generate the

j

th vector from it. If
all vectors in the stack are discarded, the heuristic is terminated. A pattern may
give good results when initially placed on the stack but no longer be effective
when simulating a sequential circuit because of the feedback lines. When the pat-
tern is taken from the stack, the circuit may be in an entirely different state from
that which existed when the pattern was placed on the stack. Therefore, it is nec-
essary to reevaluate the pattern to determine whether it is still effective.

Wander The wander heuristic is similar to the best next in that the (j − 1)st vec-
tor is used to generate the jth by generating all possible next vectors. However,
rather than maintain a stack of good patterns, if none of the trial vectors is accept-
able, the heuristic “wanders” randomly. If there is no obvious choice for next pat-
tern, it selects a next pattern at random. After each step in the wander mode, all next
patterns are simulated. If there is no best next pattern, again wander at random and
try all next patterns. After some fixed number of wander steps, if no satisfactory next
pattern is found, the heuristic is terminated.

Combinational The combinational heuristic ignores feedback lines and
attempts to generate tests as though the circuit were strictly combinational logic by
using the path sensitization technique (Seshu’s heuristics predate the D-algorithm).
The pattern thus developed is then evaluated against the real circuit to determine if it
is effective.

SEQUENTIAL TEST METHODS 241

Reset The reset heuristic required maintaining a list of reset lines. This strategy
toggles some subset of the reset lines and follows each such toggle by a fixed num-
ber of next steps, using one of the preceding methods, to see if any useful informa-
tion is obtained.

The heuristics were applied to some rather small circuits, the circuit limits being
300 gates and no more than 48 each of inputs, outputs, and feedback loops. Addi-
tionally, the program could handle no more than 1000 faults. The best next or return
to good was reported to be the most effective. The combinational was effective pri-
marily on circuits with very few feedback loops. The system had provisions for
human interaction. The test engineer could manually enter test patterns that were
then fault simulated and appended to the automatically generated patterns. The heu-
ristics were all implemented under control of a single control program that could
invoke any of them and could later call back any of the heuristics that had previously
been terminated.

5.3.2 The Iterative Test Generator

The heuristics of Seshu are easy to implement but not effective for highly sequen-
tial circuits. We next examine the iterative test generator (ITG)2,3 which can be
viewed as an extension to Seshu’s combinational heuristic. Whereas Seshu treats a
mildly sequential circuit as combinational by ignoring feedback lines, the iterative
test generator transforms a sequential circuit into an iterative array by means of
loop-cutting. This involves identifying and cutting feedback lines in the computer
model of the circuit. At the point where these cuts are made, pseudo-inputs SI and
pseudo-outputs SO are introduced so that the circuit appears combinational in
nature. The new circuit C contains the pseudo-inputs and pseudo-outputs as well as
the original primary inputs and primary outputs. This circuit, in Figure 5.2, is repli-
cated p times and the pseudo-outputs of the ith copy are identified with the pseudo-
inputs of the (i + 1)st copy.

The ATPG is applied to circuit C consisting of the p copies. A fault is selected in
the jth copy and the ATPG tries to generate a test for the fault. If the ATPG assigns a
logic value to a pseudo-input during justification, that assignment must be justified in
the (j − 1)st copy. However, the ATPG is restricted from assigning values to the
pseudo-inputs of the first copy. These pseudo-inputs must be assigned the X state. The

Figure 5.2 Iterative Array.

...

...

...

C1...

PIs

POs

...

...

...

Cp

PIs

POs

...

...

...

C2

PIs

POs

... ...

...

...

Cp−1

PIs

POs

X
X

Feedback Lines

...

...

...

Cj

PIs

POs

...

242 SEQUENTIAL LOGIC TEST

objective is to create a self-initializing sequence—that is, one in which all require-
ments on feedback lines are satisfied without assuming the existence of known val-
ues on any feedback lines at the start of the test sequence for a given fault. From the
jth copy, the ATPG tries to propagate a D or D forward until, in some copy Cm,
m ≤ p, the D or D reaches a primary output or the last copy Cp is reached, in which
case the test pattern generator gives up.

The first step in the processing of a circuit is to “cut” the feedback lines in the cir-
cuit model. To assist in this process, weights are assigned to all nets, subject to the
rule that a net cannot be assigned a weight until all its predecessors have been
assigned weights, where a predecessor to net n is a net connected to an input of the
logic element that drives net n. The weights are assigned according to the following
procedure:

1. Define for each net an intrinsic weight IW equal to its fanout minus 1.

2. Assign to each primary input a weight W = IW.

3. If weights have been assigned to all predecessors of a net, then assign a
weight to that net equal to the sum of the weights of its predecessors plus its
intrinsic weight.

4. Continue until all nets that can be weighted have been weighted.

If all nets are weighted, the procedure is done. If there are nets not yet weighted,
then loops exist. The weighting process cannot be completed until the loops are cut,
but in order to cut the loops they must first be identified and then points in the loops
at which to make the cuts must be identified.

For a set of nets S, a subset S1 of nets of S is said to be a strongly connected com-
ponent (SCC), of S if:

1. For each pair of nets l, m in S1 there is a directed path connecting l to m.

2. S1 is a maximal set.

To find an SCC, select an unweighted net n and create from it two sets B(n) and
F(n). The set B(n) is formed as follows:

(a) Set B(n) initially equal to {n} ∪ {all unweighted predecessors of n}.

(b) Select m ∈ B(n) for some m not yet processed.

(c) Add to B(n) the unweighted predecessors of m not already contained in B(n).

(d) If B(n) contains any unprocessed elements, return to step b.

Set F(n) is formed similarly, except that it is initially the union of n and its
unweighted successors, where the successors of net m are nets connected to the out-
puts of gates driven by m. When selecting an element m from F(n) for processing, its
unweighted and previously unprocessed successors are added to F(n). The intersec-
tion of B(n) and F(n) defines an SCC.

SEQUENTIAL TEST METHODS 243

Continue forming SCCs until all unweighted nets are contained in an SCC. At
least one SCC must exist for which all predecessors—that is, inputs that originate
from outside the loop—are weighted (why?). Once we have identified such an SCC,
we make a cut and assign weights to all nets that can be assigned weights, then make
another cut if necessary and assign weights, until all nets in S1 have been weighted.
The successor following the cut is assigned a weight that is one greater than the
maximum weight so far assigned. Any other gates that can be assigned weights are
assigned according to step 3 above. When the SCC has been completely processed,
select another SCC (if any remain), using the same criteria, continuing until all
SCCs have been processed.

The selection of a point in an SCC A at which to make a cut requires assignment
of a period to each gate in A. The period for a gate k is the length of the shortest
cycle containing k. Let B represent a subset of blocks of minimum period within A.
If B is identical to A, then select a gate g in A that feeds a gate outside A and make a
cut on the net connecting g with the rest of A.

If B is a proper subset of A, then consider the set U of nets in A − B that have
some predecessors weighted. Let U1 ⊆ U be the set of nearest successors of B in
U. Then U1 is the set of candidate nets, one of whose predecessors will be cut.
Select an element in U1 driven by a weighted net of minimal weight. Since the
weights assigned to nets indicate relative ease or difficulty of controlling the nets,
gates with input nets that have low weights will be easiest to control; hence a cut
on a net feeding such a gate should cause the least difficulty in controlling the
circuit.

Example The JK flip-flop of Figure 5.3 will be used to illustrate the cut process.
First, according to step 1, an intrinsic weight is assigned to each net. (Each net num-
ber is identified with the number of the gate or primary input that drives it.)

Figure 5.3 Cutting Loops.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0 2 0 2 1 0 0 1 1 0 0 1 1

Q

Clear

Preset

Clock

Q

J

K

1

2

3

4

5

6

7

8

9

10

11

12

13

14

244 SEQUENTIAL LOGIC TEST

Next, assign weights:

From step 2 it is determined that line 6 must be assigned a weight of 3. At this point
no other line can be assigned. The unweighted successors of the weighted lines con-
sists of the set

A = {7,8,9,10,11,12,13,14}

A net is chosen and its SCC is determined. If net 7 is arbitrarily chosen, we find that
its SCC is the entire set A. Since the SCC is the only loop in the circuit, all predeces-
sors of the SCC are weighted so processing of the SCC can proceed.

We compute the periods of the nets in the SCC and find that nets 9, 10, 13, and 14
have period 2. Therefore, B = {9, 10, 13, 14}. In the set A − B = {7, 8, 11, 12} all
nets have at least one weighted predecessor, so U = A − B. It also turns out that
U1 = U in this case. A net in U1 is selected that has a predecessor of minimal weight,
say gate 7. A cut is made on net 14 between gate 14 and gate 7. The maximum
weight assigned up to this point was 3. Therefore, we assign a weight of 4 to net 7.
At this point weights cannot be assigned to any additional nets because loops still
exist. The SCC is

A = {8,9,10,11,12,13,14}

The process is repeated, this time a cut is made from gate 13 to gate 8. A weight of 5
is assigned to net 8. This leaves two SCCs, C = {9,10} and D = {13,14}. C must be
chosen because D has unweighted predecessors. A cut is made from 9 to 10. A weight
of 6 is assigned to net 10 and a weight of 2 + 4 + 6 + 1 = 13 to net 9. Weights can now
be assigned to nets 11 and 12. Net 11 is assigned a weight of 13 + 3 + 0 = 16 and net
12 is assigned a weight of 9. Finally, a cut is made from 13 to 14. Net 14 is given the
weight 17 and 13 is given the weight 36. ��

The ITG will now be illustrated, using the circuit in Figure 5.4. The original circuit
had one feedback line from the output of J to the input of H that was cut and replaced
by a pseudo-input SI and a pseudo-output SO. The logic gates and primary inputs will
be labeled with letters, and a subscript will be appended to the letters to indicate
which copy of the replicated circuit is being referred to during the discussion.

We assume a SA1 fault on the output of gate E. A test for that fault requires a D
on the net; so, starting with replica 2, we assign A2 = 1. The output of E drives gates
F and G, and here the ITG reverts to the sensitized path method, it chooses a single
propagation path based on weights assigned during the cut process. The weights
influence the path selection process: The objective is to try to propagate through the
easiest apparent path. In this instance, the path through gate F2 is selected. It
requires a 0 from D2, which in turn requires a 1 on input B2. Propagation through K2
requires a 1 from J2 and hence 0s on input C2 and gate H2. The 0 on H2 requires that

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0 2 0 2 3

SEQUENTIAL TEST METHODS 245

Figure 5.4 Iterated pseudo-combinational circuit.

pseudo-input SI2 be a 1. The presence of a non-X value on a pseudo-input must be
justified, so it is necessary to back up to the previous time image.

A 1 on the pseudo-output of J1 implies 0s on both of its inputs. A 0 from H1
requires a 1 on one of its inputs. We avoid SI1 and try to assign G1 = 1. That requires
E1 = 0, but E1 is SA1. We cannot now, in this copy, assume that the output of E1 is
fault-free. Since it is assumed SA1, we could assign a D, but that places a D and an
X on H1, a combination for which there is no entry in the D-algorithm intersection
tables.

The other alternative is to assign a 1 to the pseudo-input, but that is no improve-
ment because the same situation is encountered in the next previous time image. In
practice, a programmed implementation may actually try to justify through the
pseudo-input and go into a potential infinite loop. An implementation must therefore
impose an upper limit on the number of previous time images. If all assignments are
not justified by the time it reaches the limit, it must either give up on that fault or
determine whether an alternative path exists through which to propagate the fault. In
the present case, we can try to propagate through G2.

Propagation through G2 requires B2 = 0. Then, propagation through H2 requires a
0 on the pseudo input and propagation through J2 requires C2 = 0. Now, however, by
implication F2 = 0, so it is not possible to propagate through K2. Therefore, we
propagate through the pseudo-output SO2. The 0 on SI2 is justified by means of a 0
on J1. That is justified by putting a 1 on primary input C1.

SO1

K1A1

B1

SI1

C1

F1

G1

H1

J1

D1

E1

SO2

K2
A2

B2

SI2

C2

F2

G2

H2

J2

D2

E2

SO3

K3A3

B3

SI3

C3

F3

G3

H3

J3

D3

E3

SA1

D
D

D

D

1

1

0

0

0 D

D

D
D

D

D

D

0

246 SEQUENTIAL LOGIC TEST

A D now appears on the pseudo-input of time image 3. Assigning G3 = 0 and
C3 = 0 places a D on the output of J3. We set B3 = 1 to justify the 0 from G3 and
then try to propagate the D on J3 through K3 by assigning F3 = 1. This requires
D3 = E3 = 0. We again find ourselves trying to set the faulted line to a 0. But this
time we set it to D, which causes D to appear on the output of F3. Hence both
inputs to K3 are D and its output is D. The final sequence of inputs is

On the first time image, T1 inputs A and B have X values. We assign values to
these inputs as per the following rule: If the jth coordinate of the ith pattern is an X,
then set it equal to the value of the jth coordinate on the first pattern number greater
than i for which the jth coordinate has a non-X value. If no pattern greater than i has
a value in the jth coordinate position, assign the most recent preceding value. If the
jth coordinate is never assigned, then set it to the dominant value; that is, if the input
feeds an AND gate set it to 0 and if it feeds an OR gate set it to 1. The objective is to
minimize the number of input changes required for the test and hence minimize or
eliminate races.

The reader may have noted that the cross-coupled NOR latch received input com-
bination (1,1) in time image 1. According to its state table, this is an illegal input
combination. Automatic test pattern generators occasionally assign combinations
that are illegal or illogical when processing sequential circuits. It is one of the rea-
sons why test patterns generated for sequential circuits must be verified through
simulation.

5.3.3 The 9-Value ITG

When creating a test using ITG, it is sometimes the case that more constraints are
imposed than are absolutely necessary. Consider again the circuit of Figure 5.4. We
started by attempting to propagate a test through gate F. That would not work, so we
propagated through G. If we look again at the problem and examine the immediate
effects of propagating a test through gate F, we notice that the faulted circuit,
because it produces a 0 on the upper input when A = B = 1, will produce a 1 on the
output of K regardless of what value occurs on the lower input of K.

The D that was propagated to K implies that the upper input to K will be 1 in
the fault-free circuit. Therefore the output of K for the unfaulted circuit depends
on the value at its lower input. Since we want a sensitized signal on the output of
K, the fault-free circuit must produce a 0 at the circuit output; therefore we want a
1 on the lower input to K.

A 1 can be obtained at the lower input to K by forcing J to produce a 1. This
requires that both inputs to J be 0, which requires the output of H to be 0. Backing

T1 T2 T3

A X 1 1

B X 0 1

C 1 0 0

SEQUENTIAL TEST METHODS 247

up one more step in the logic, we find that H is 0 if either the pseudo-input or G is
1. Gate G cannot be 1 because primary input B is 1. Therefore, a 1 must come
from the pseudo-input. This is the point where we previously failed. The presence
of the fault made it impossible to initialize the cross-coupled latch. Nevertheless,
we will try again. However, this time we ignore the existence of the fault in the
previous copy since we are only concerned with justifying a signal in the good
circuit.

We create a previous time image and attempt to justify a 1 on its pseudo-output.
A 1 can be obtained with C = 0 and G = 1, which requires B = E = 1, and implies
A = 0. Therefore, a successful test is I1 = (1,0,0) and I2 = (1,1,0).

In order to distinguish between assignments required for faulted and unfaulted
circuits, a nine-value algebra is used.4 The definition of the nine values is shown in
Table 5.1. The dashes correspond to unspecified values. The final column shows the
corresponding values for the D-algorithm. It is readily seen that the D-algorithm
symbols are a subset of the nine-value ITG symbols. Tables 5.2 through 5.4 define
the AND, OR, and Invert operations on these signals.

TABLE 5.1 Symbols for Nine-Value ITG

Good Faulted ITG Symbol D Symbol

0 0 0 0
0 X G0 —
0 1 S0 D
X 0 F0 —
X X F1 —
X 1 U X
1 0 S1 D
1 X G1 —
1 1 1 1

TABLE 5.2 AND Operations on Nine Values

0 G0 S0 F0 U G1 S1 F1 1

0 0 0 0 0 0 0 0 0 0
G0 0 G0 G0 0 G0 G0 0 G0 G0

S0 0 G0 S0 0 G0 G0 0 S0 S0

F0 0 0 0 F0 F0 F0 F0 F0 F0

U 0 G0 G0 F0 U U F0 U U
G1 0 G0 G0 F0 U G1 S1 U G1

S1 0 0 0 F0 F0 S1 S1 S0 S1

F1 0 G0 S0 F0 U U S0 F1 F1

1 0 G0 S0 F0 U G1 S1 F1 1

248 SEQUENTIAL LOGIC TEST

To illustrate the use of the tables, we employ the same circuit but start by
assigning S0 to the output of E2 in Figure 5.5. The signal is propagated to the upper
input of K2, where, due to signal inversions, it becomes S1. To propagate an S1
through the NAND, we check the table for the AND gate. With S1 on one of its
inputs, a sensitized signal S1 can be obtained at the output of the AND by placing
either S1, G1, or a 1 on the other input. The inversion then causes the output of the
NAND to become S0. The signal G1 is the least restrictive of the signals that can be
placed on the other input since it imposes no requirements on the input for the
faulted circuit.

Propagation requires a signal on the other input to F2 that will not block the sen-
sitized signal. From the table for the OR, we confirm that propagation through F2 is

Figure 5.5 Test generation with the nine-value ITG.

TABLE 5.3 OR Operations on Nine Values

0 G0 S0 F0 U G1 S1 F1 1

0 0 G0 S0 F0 U G1 S1 F1 1
G0 G0 G0 S0 U U G1 G1 F1 1
S0 S0 S0 S0 F1 F1 1 1 F1 1
F0 F0 U F1 F0 U G1 S1 F1 1
U U U F1 U U G1 G1 F1 1
G1 G1 G1 1 G1 G1 G1 G1 1 1
S1 S1 G1 1 S1 G1 G1 S1 1 1
F1 F1 F1 F1 F1 F1 1 1 F1 1
1 1 1 1 1 1 1 1 1 1

TABLE 5.4 Invert Operations On Nine Values

X 0 G0 S0 F0 U G1 S1 F1 1
Y 1 G1 S1 F1 U G0 S0 F0 0

SO1

K1A1

B1

SI1

C1

F1

G1

H1

J1

D1

E1G1 G1

G1

G1

G1
G0

G0

G1

S0

S0

S1
G0

G0

X

G0

G0

G1

SO2

K2A2

B2

SI2

C2

F2

G2

G0

H2

J2

D2
E2

SA1

SEQUENTIAL TEST METHODS 249

successful with G0 on the other input. That implies a G1 on the input of gate
D2. Since the input to D2 is a primary input, the signal is converted to 1. Justi-
fying G1 from J2 requires G0 from each of its inputs. Therefore, we need a G0
from gate H2, which implies a 1 at an input to H2. The output of G2 is 0 so the
value G1 must be obtained from the pseudo-input. We create a previous time
image and require a G1 from J1. We then need G0 from primary input C and
also from H1. That implies a G1 from one of the inputs to H1, which implies G0
on both inputs to gate G1. A G0 from inverter E1 is obtained by placing a G1 on
its input.

When justifying assignments, different values may be required on different paths
emanating from a gate with fanout. These may or may not conflict, depending on the
values required along the two paths. If one path requires G1 and the other requires
S1, then both requirements can be satisfied with signal S1. If one path requires G1
and the other requires S0, then there is a conflict because G1 requires that the
unfaulted circuit produce a logic 1 at the net and S0 requires that the unfaulted cir-
cuit produce a logic 0.

5.3.4 The Critical Path

We have seen that, when attempting to develop a test for a sequential circuit, it
is often not possible to reach a primary output in the present time frame (cf.
Figure 5.2); fault effects must be propagated through flip-flops, into the next
time image. But, when entering the next time frame, propagating the fault effect
forward may require additional values from the previous time frame. Hence, it
may become necessary to back up into the previous time frame in order to sat-
isfy those additional values. This process of propagating, and then backing up
into previous time frames, may occur repeatedly if a fault effect requires propa-
gation through several future time frames. Resolving conflicts across time
frames becomes a major problem. The critical path method described in Chap-
ter 4 has sequential as well as combinational circuit processing capability.
Because it always starts at a primary output and works back in time, it avoids
this problem.

Its operation on a sequential circuit is described by means of an example, using
the JK flip-flop of Figure 5.3. Recall that the critical path begins by assigning a
value to an output. It then works its way back toward the input pins, creating a criti-
cal path along the way. Therefore, we start by assigning a 0 to the output of gate 13.
This puts critical 1s on the inputs of gate 13, any one of which failing to the opposite
state will cause an erroneous output.

Gate 11 is then selected. A 0 is assigned to gate 6 to force a 1 from gate 11. To
make it critical we assign a 1 to gate 9. The assignment of a 0 to gate 6 forces assign-
ment of 1s to input 3 and gate 12. Gate 14 is selected next. Since gate 13 is a 0 and
gate 12 is a 1, we can create a critical 0 by assigning a 1 to input 5. The presence of
a 0 on gate 13 also implies a 1 on the output of gate 8; hence gate 10 has a 0 on its
output. To ensure that gate 9 has a 1, a 0 is assigned to gate 7. That in turn requires
input 1 be assigned a 1.

250 SEQUENTIAL LOGIC TEST

Notice that the loop consisting of {13,14} has 1s on all predecessor inputs while
the loop {9,10} is forced to its state by the 0 on gate 7. Since the inputs to loop
{13,14} cannot force it to its state, the loop must be initialized to its state by a previ-
ous pattern. Therefore, the loop {13,14} becomes the initial objective of a preceding
pattern. An assignment of 0 to input 5 and a 1 to inputs 1 and 3 forces the latch to the
correct state.

One additional operation is performed here. The Clear input to gate 14 is made
critical by reversing the values on the loop {13,14} in a previous third time image.
The Preset is set to 0 and the Clear is set to 1. The complete input sequence then
becomes

The pattern at time T1 resets the latch {13,14}. The pattern at time T2 sets the latch;
hence the 0 on input 5 at time T2 is critical. Then, at time T3, there is a critical path
from input 3, through gates 6, 11, and 13. A failure on that path will cause the latch
{13,14} to switch to the opposite state.

5.3.5 Extended Backtrace

The critical path is basically a justification operation, since its starting point is a
primary output. Operating in this manner, it completely avoids the propagation
operation, as well as the justification operations that may occur at each time-
frame boundary. The extended backtrace (EBT)5 bears some resemblance to the
critical path. However, before backing up from a primary output, it selects a
fault. Then, from that fault, a topological path (TP) is traced forward to an out-
put. The TP may pass through sequential elements, indicating that several time
frames are required to propagate the fault effect to an observable output. Along
the way, other sequential subcircuits may need to be set up. This is illustrated in
Figure 5.6.

In this hypothetical circuit, assume that the state machine has eight states and that
input I controls the state transitions. Assume that net L2 = 1 when in state S8, L3 = 1
when in state S7, and L7 = 1 when in S6. Otherwise L2, L3, and L7 equal 0. The com-
parator contains a counter, denoted B, and when the value in B equals the value on
the A input port, net L1 = 0, otherwise L1 = 1. The goal is to create a test for the SA1
fault on net L1.

One approach to solving this goal might be to begin by justifying the condition
A = B at the comparator. Once a match is obtained, the next clock pulse causes the

T1 T2 T3

1 0 1 1

2 X X 1

3 1 1 1

4 X X X

5 1 0 1

SEQUENTIAL TEST METHODS 251

Figure 5.6 Aligning Sequential Circuits.

value 0 on L1 to propagate through the flip-flop and reach AND gate F. To propagate
through F it is necessary for nets L2 and L6 to be justified to 1. Should they be pro-
cessed individually, or should they be processed in parallel? And should the vectors
generated when processing L2 and L6 be positioned in the vector stream prior to, or
after, those generated while justifying the comparator? The problem is complicated
by the fact that L6 not only depends on E, but also requires the state machine to tran-
sition through states S6 and S7, whereas L2 requires the state machine to be in state
S8. The human observer can see that these are sequentially solvable, but the com-
puter lacks intuition.

EBT begins by creating a TP to the output. The TP includes L1, F, and Z.
From the output Z, the requirement L5, L2, L6 = (0,1,1) is imposed. This consti-
tutes a current time frame (CTF) solution or vector. This CTF will often require
a previous time frame (PTF) vector. The PTF is the complete set of assignments
to flip-flops and primary inputs that satisfy the requirements for the CTF. Essen-
tially, EBT is backing up along all paths in parallel, but with the proviso that the
fault effect must propagate along the TP. Eventually, the goal is to reach a vector
that does not rely on a PTF. At that point a self-initializing sequence exists that
can test the fault. This last vector that is created is the first to be applied to the
circuit.

EBT is simplified by the fact that forward propagation software is not required.
However, the TP imposes requirements as it is traced forward, so during backtrace
the TP requirements must be added to the requirements encountered during back-
trace in order for the fault to become sensitized and eventually propagate forward to
an output. Another advantage to EBT is the fact that vectors do not need to be
inserted between vectors already created. Since processing always works backwards

QD

CLK

QD

A = B

Comparator

I

A

load

State
Machine

L1

L2

clear

QD
L4

E
L6

L5

En

L3

ZF

L7

En

252 SEQUENTIAL LOGIC TEST

in time, each PTF vector eventually becomes the CTF vector, and a new PTF is cre-
ated, if necessary. Also, unlike critical path, EBT is fault oriented. This may permit
shorter backtraces, since, for example, if a 1 is needed from a three-input NAND
gate, the values (0,X,X) would be sufficient, whereas critical path requires (0,1,1).
The trade-off, of course, is that there may be fewer fault detections per test vector
sequence. In a complex sequential circuit, this may be a desirable trade-off.

5.3.6 Sequential Path Sensitization

The next system we look at is called the Sequential Path Sensitizer (SPS).6 Its
approach to sequential ATPG is to extend the D-notation into the time domain. The
D and D of the combinational D-algorithm, together with their chaining rules, are
subsumed into an expanded set of symbols and rules for creating chains that tran-
scend time. All combinational logic in the cone (cf. Section 3.6.2) of a flip-flop or
latch is gathered up and combined with the destination flip-flop to create a super
flip-flop. Similarly, all combinational logic in the cone of a primary output is
treated as a super output block. State transition properties, including extended D-
cubes, for these super flip-flops are derived in terms of the behaviors of latches and
flip-flops.

In another departure from conventional practice, SPS does not explicitly model
faults. Rather, it sensitizes paths from primary inputs to primary outputs via
sequences of input vectors and then propagates 0 and 1 along the path.7 If an incor-
rect response occurs at an output during testing, the defect lies either along the sen-
sitized path or on some attendant path used to sensitize the critical path. Path
intersection can be used to isolate the source of the erroneous response.

We begin by considering the behavior of a negative edge triggered JK flip-flop
with output F and inputs J, K, R, S, and C, where the S and R inputs are active high.
The JK flip-flop is capable of four distinct activities: Set, Reset, Toggle, and At-Rest,
denoted by the symbols σ, ρ, τ, and α. The following equations express these
actions:

Set: (5.1)

Reset: (5.2)

Toggle: (5.3)

At Rest: (5.4)

In these equations, C/C denotes a true-to-false clock transition and denotes
absence of the true-to-false transition. A complete set of state transitions can be
expressed in terms of the preceding four equations. These yield

F(i + 1)/1 = σ + τF(i) + αF(i) (5.5)

F(i + 1)/0 = ρ + τF(i) + αF(i) (5.6)

σ S R J K C C⁄⋅ ⋅()⋅⋅ J K S R C C⁄⋅ ⋅ ⋅ ⋅+=

ρ S R J K C C⁄⋅ ⋅()⋅⋅ J K S R C C⁄⋅ ⋅ ⋅ ⋅+=

τ J K S R C C⁄⋅ ⋅ ⋅ ⋅=

α J K S R⋅ ⋅ ⋅ S R C C⁄⋅ ⋅+=

C C⁄

SEQUENTIAL TEST METHODS 253

where F(i)/1 indicates that F is true at time i and F(i)/0 indicates that F is false at
time i. Equation (5.5) states that a true output occurs at time i + 1 if a set is per-
formed, or if the flip-flop is toggled when it is originally in the false state, or if it is
true and is left at rest. Equation (5.6) is interpreted similarly. From these equations,
primitive D-cubes can be derived that are then used to define local transition condi-
tions for the super flip-flops. They constitute a covering set of cubes for the σ, ρ, τ,
and α and state control equations. Some of the D-cubes are listed in Table 5.5.

Corresponding to the D-cubes listed in the table is a set of inhibit D-cubes that
can be obtained by complementing all of the D and D terms. The final column in the
table indicates the derivation of the D-cube. For example, the first D-cube was
derived from the first term of Eq. (5.1). The interpretation of each entry is similar to
that of the D-cubes of the D-algorithm. The first D-cube states that with Clock and
Reset at 0, and flip-flop output F at 0, the output F is sensitive to a D on the Set
input. The coordinates within each cube are grouped in terms of output variables,
internal variables, and controllable input variables. The cubes for a given condition
are arranged in hierarchical order corresponding inversely to the number of non-X
state memory variable coordinates in the cube required to facilitate generation of ini-
tializing sequences. In all, four distinct activities are defined for SPS:

1. Identify super flip-flops and super output blocks. Determine D-cubes for each
of these super logic blocks.

2. Trace super logic block D-cubes to define sequential D-chains that define
sequential circuit propagation paths.

3. Determine an exercise sequence for each sequential logic D-chain.

4. Determine an initialization sequence for each sequential logic D-chain.

In the first step, after defining the super logic blocks as described earlier and
developing D-cubes for the basic memory elements, this information is used to

TABLE 5.5 Some D-Cubes

F S R J K C Initial State F Equation/Term

D D 0 X X 0 0 5.1/1
D D 0 0 0 X 0 5.1/1
D D 0 X X 1 0 5.1/1
D 0 0 D 0 1/0 0 5.1/1
D 0 0 1 0 D/0 0 5.1/2
D 0 0 1 1 D/0 0 5.1/2
D 0 D X X 0 1 5.3
D 0 D 0 0 X 1 5.2/1
D 0 D X X 1 1 5.2/1
D 0 0 0 D 1/0 1 5.2/2
D 0 0 0 1 D/0 1 5.2/2
D 0 0 1 1 D/0 1 5.3

254 SEQUENTIAL LOGIC TEST

develop D-cubes for the super logic blocks by extending the basic memory element
D-cubes through the preceding combinational logic.

In the second step, beginning with a super logic block D-cube that generates an
observable circuit output, proceed as in the D-algorithm to chain D-cubes back to
inputs. During this justification phase, other super flip-flops may be reached that are
inputs to the one being processed. These super flip-flops are chained as in the D-
algorithm by means of an extended set of symbols to permit computation of state
transitions. The extended symbols and their intersection rules are given in Table 5.6.
An explanation of the symbols follows the table.

Note that in the explanation some symbols are identified as input symbols and
some are identified as output symbols. The output symbols identify possible states
of super flip-flops that correspond to possible states of the latch or JK flip-flop
from which the super flip-flop was derived. Therefore, the outputs of these super
flip-flops are expressed in terms of true and false final states, toggles, and at-rest
conditions. When using Table 5.6 to intersect an input value with an output value,
the result provided by the table is a flip-flop output value that is compatible with
input requirements on the element(s) driven by that flip-flop. For example, if ele-
ment inputs connected to a net require a logic 1 in a present time frame, then that

TABLE 5.6 Intersection Table

D D D/0 D/1

0 1 X 1/0 0/1 d d T T t t A A

D, 0 0 * 0 * 0/1 * d * T A T * A
D, 1 * 1 1 1/0 * d * T * T A A *
X 0 1 X 1/0 0/1 d d T T t t A A

D/0, 1/0 * 1/0 0/1 1/0 * * * T * T * * *
D/1, 0/1 0/1 * 0/1 * 0/1 * * * T * T * *

d * d d * * d * * T * t A *
d d * d * * * d T * t * * A
T * T T T * * T — — — — — —
T T * T * T T * — — — — — —
t A T t T * * t — — — — — —
t T A t * T t * — — — — — —
A * A A * * A * — — — — — —
A A * A * * * A — — — — — —

Inputs Outputs

1 = true state t = true final state
0 = false state t = false final state
X = don’t care T = 0/1 toggle
1/0 = true-to-false transition T = 1/0 toggle
0/1 = false-to-true transition A = true at rest
D, D, D/0, D/1 = D-states A = false at rest
d, d = asynchronous D-inputs * = prohitited state

SEQUENTIAL TEST METHODS 255

value can be justified by a flip-flop that is true at rest, A, or one that is presently true
but which will toggle to false on the next time frame, either t or T. The symbols t and
T have identical meaning during the exercising sequence: They differ slightly during
the initializing sequence, as will be explained later. The dashes indicate impossible
conditions and the asterisks correspond to conflicting choices, as in the original D-
algorithm.

When intersecting D-cubes, the following rules must be followed:

1. No latch or flip-flop output may be left with a 1/0, 0/1, D/1 or D/0 state.

2. There must be no d or d terms left on the latch or flip-flop coordinates of a
resultant cube.

3. Cubes that are asynchronously coupled via unclocked inputs must be inter-
sected in the same time frame.

If a toggle state occurs, additional cubes must be combined with the original
cube in order to completely define that step of the sequence. Cubes that are cou-
pled by means of a d or d or by means of unclocked inputs must be combined via
intersection.

The circuit in Figure 5.7 will be used to illustrate the sequential path sensitizer.
Cubes are chained from the output back toward inputs, and these are used to create
an initializing and exercising sequence for the propagation path.

We begin by identifying the super flip-flops and the super output block. The
super output consists of a single AND gate labeled block Z. There are two JK
flip-flops and a Set–Reset (S–R) latch. The JK flip-flop behavior is described by
Eqs. (5.1)–(5.6). The S–R latch is at rest when both inputs are low. It is set (out-
put high) or reset (output low) when the corresponding input is high. The S–R
latch and flip-flop Y have no combinational logic preceding them. The JK flip-
flop labeled V is preceded by an OR gate, two inverters, and two AND gates.
These gates and flip-flop V are bundled together and processed as a single super

Figure 5.7 Circuit for sequential path sensitization.

A

B

C Z

K

J
Set Y

K

J
Set V

S

R

U

D

E
F

256 SEQUENTIAL LOGIC TEST

flip-flop. The next step is to create D-cubes for the four super flip-flops U, V, Y, and
Z. These cubes are contained in Table 5.7 and are assigned names to facilitate the
description that follows.

The cube name consists of the letter U, V, Y, or Z originally assigned to the super
flip-flop, complemented if necessary, followed by one of the symbols σ, ρ, τ, or α to
indicate whether the action is a Set, Reset, Toggle, or At-Rest. If more than one entry
exists for an action, they are numbered.

Having created D-cubes for the super output block and the super flip-flops,
sequential paths from the outputs to the inputs are identified in order to construct an
exercising sequence. If the cube Zσ1 is selected, corresponding to a true state on the
output Z, we see that it specifies a d on flip-flop Y, which must now be justified.

The d is justified by going across the top of Intersection Table 5.6 until reaching
the column labeled d. In that column there appear to be six possible choices. How-
ever, only three of the entries in that column, t, T, and A, can be obtained from the
output of a super flip-flop. Going across those rows to the left, we see that signals t,
T, and A can be created by intersection with t, T, and A. We then go to the set of D-
cubes for Y in Table 5.7 and search for one that produces t, T, or A without causing a

TABLE 5.7 Super Flip-Flop Cubes

Z U V Y A B C D E F Cube name

t X X d X X X X X 1 Zσ1

t X X 1 X X X X X d Zσ2

t X X d X X X X X 1 Zρ1

t X X 1 X X X X X d Zρ2

X d X t X X X X X X Yσ1

X 0 D t X X X X 1/0 X Yσ2

X 0 D t X X X X 1/0 X Yρ
X 0 X A X X X X 0 X Yα
X 0 X A X X X X 0 X Yα
X d t X X X X X X X Vσ1

X 0 t X X X 1 D 1/0 X Vσ2

X 0 t X X X 1 1 D/0 X Vσ3

X 0 t D X X 0 X 1/0 X Vσ4

X 0 t 1 X X D 0 1/0 X Vσ5

X 0 A X X X X X 0 X Vα
X 0 t X X X 1 D 1/0 X Vρ1

X 0 t D X X 0 X 1/0 X Vρ2

X 0 t 0 X X D 1 1/0 X Vρ3

X 0 A X X X X X 0 X Vα
X t X X d 0 X X X X Uσ
X A X X 0 0 X X X X Uα
X t X X 0 d X X X X Uρ
X A X X 0 0 X X X X Uα

SEQUENTIAL TEST METHODS 257

conflict. For purposes of illustration we select Yσ2. It requires a D from input V and a
0 from input U.

Table 5.6 is used to justify the D. The column with header D reveals that a D
occurs at the input to Y if V is true while at rest, A, or if it is presently true but toggles
false, T, at the next time frame. Since no cubes exist in Table 5.7 with a T on the out-
put of V, we check entries from Table 5.6 with A and find, by going across to the left,
that they result from intersection with either an A or t on the output of V. From the
D-cubes for V in Table 5.7, Vσ4 is selected. Finally, in similar fashion, a 0 is justified
on U by means of cube Uα.

Four cubes have now been identified that extend a sensitized path back from out-
put Z to primary inputs and other elements. Before continuing, we point out that the
sensitized path extends through both logic and time, since the cubes impose switch-
ing conditions as well as logic values. As a result, intersections are more complex
and require attention to more detail than is the case with the D-algorithm. Some
cubes must be intersected in the same time frame, and others, linked by synchronous
switching conditions, are used to satisfy conditions required in the preceding time
frame.

Consider the first D-cube selected, Zσ1. It creates a t on the output of Z by assign-
ing a 1 and a d to the inputs of the AND gate. The 1 is satisfied by assigning a 1 to
input F. The d, which is an asynchronous D, must be justified in the present time
frame. This is accomplished by intersecting Zσ1 with the second cube previously
selected, Yσ2. Performing the intersection according to the rules in Table 5.6, we
obtain the following:

The resultant cube applies a 0 to the Set input of flip-flop Y. The fourth cube pre-
viously selected, Uα, which was chosen to justify the 0 on the Set input, is asyn-
chronously coupled to Y via the unclocked Set input. Therefore, according to the
intersection rules, it must be intersected with the previous result.

The remaining cube, Vσ4, was selected to justify a D on the input to Y. Since the
input is synchronized to the clock, the cube Vσ4 becomes part of the preceding time
frame. Values on Z, U, V, and Y for this resultant cube are interpreted by using the
legends at the bottom of Table 5.6. Super blocks Z, U and Y have both a final value

t X X d X X X X X 1 Zσ1

X 0 D t X X X X 1/0 X Yσ2

t 0 D t X X X X 1/0 1

t 0 D t X X X X 1/0 1

X A X X 0 0 X X X X Uα
t A D t 0 0 X X 1/0 1

258 SEQUENTIAL LOGIC TEST

and a switching action specified. During an exercising sequence the t denotes a
transition on the outputs of Z and Y from a present state of 0 to a final state of 1. The
A on U denotes a super flip-flop that is false at rest; that is, its final value is false and,
furthermore, it did not change. Therefore, the Set input to Y is inactive. Super flip-
flop V has a D, which is an input value; therefore no final value is specified for that
super flip-flop.

The interpretation, then, of the resultant cube is that there is an output of 1,
0, X, 1 at time n + 1 from the four super blocks. At time n the circuit requires
values 0, 0, 1, 0 on the outputs of the super blocks and values A, B, C, D, E,
F = (0, 0, X, X, 1/0, 1) on the primary inputs. Note that the clock value is spec-
ified as 1/0 and is regarded as a single stimulus, although in fact it requires two
time images.

The values (Z, U, V, Y) = (0, 0, 1, 0) required on the super blocks at time n must
now be justified. The original third cube, Vσ4, which was selected to justify a D at
the input to V, puts a t on the output of V and requires a 0 on the input driven by U.
Its combinational logic inputs require a 0 on input C and a D on the input from super
flip-flop Y. The t represents a true final state on V and therefore satisfies the require-
ment imposed by the previously created pattern. However, we still need 0s on the
other super flip-flops. We must justify these values without conflicting with values
of the cube Vσ4.

There is already an apparent conflict. The cube requires a D on Y, and the pre-
viously created cube requires a 0 on Y. However, the D is an input to the super
flip-flop at time n − 1 as specified by the cube Vσ4. The 0 is an output require-
ment at time n and the cube Vσ4 specifies that flip-flop V is to perform a toggle.
The apparent problem is caused by the fact that a loop exists. We attempt to jus-
tify the 0 required on U. The cube Uρ will justify the 0. We then select Zρ1 to get
a 0 on Z, and we select Yρ to get a 0 on Y. The intersection of these cubes yields
the following:

All columns except column 4, corresponding to super flip-flop Y, follow directly
from the intersection table. As mentioned, the fourth column requires a d output
from Y and a D input. In addition, the cube Yσ2 requires a 1/0 toggle. Therefore,
we intersect a D and t to get T and then intersect T with d to again get a T. The
exercising sequence is now complete. The values t, A, T, T satisfy the require-
ments for 0, 0, 1, 0 that we set out to obtain, but they in turn impose initial
conditions of 1, 0, 0, 1. We therefore must create an initialization sequence by
continuing to justify backward in time until we eventually reach a point in which

t X X d X X X X X 1 Zρ1

X 0 D t X X X X 1/0 X Yσ2

X t X X 0 d X X X X Uρ
X 0 t D X X 0 X 1/0 X Vσ4

t A T T 0 d 0 X 1/0 1

SEQUENTIAL LOGIC TEST COMPLEXITY 259

all of the super blocks have X states. To satisfy the assignments 1, 0, 0, 1, we
intersect the following:

During creation of the initialization sequence, we are aided by an additional
observation. The t, which implied a true final state and a false start state while build-
ing the exercising sequence, still implies a true final state but implies an x state while
constructing the initializing sequence. Therefore the values t, A, T, t on the super
blocks satisfy the 1,0,0,1 requirement and also imply a previous state of X, 0, 1, X
on the super block outputs. Thus, two of the super blocks can be ignored.

To get the previous state in which U = 0 and V = 1, we intersect:

Again, the t satisfies the requirement for V = 1 and specifies a previous don’t care
state. Since we are constructing an initializing sequence at this point, rather than an
exercising sequence, the D is ignored; that is, it is treated as a logic 1. A 0 is now
required on the output of super flip-flop U. The D-cube Uρ is used, which puts a t on
the output of the flip-flop, hence a 0 preceded by a don’t care state. The inputs for that
cube are 0 and d. The d is again treated as a 1 because this is the initializing sequence.
The task is done; we now go back and reconstruct the entire sequence. We get:

5.4 SEQUENTIAL LOGIC TEST COMPLEXITY

A general solution to the test problem for sequential logic has proven elusive. Recall
that several algorithms exist that can find a test for any fault in a combinational circuit,

t X X d X X X X X 1 Zσ1

X t X X 0 d X X X X Uρ
X 0 t X X X 1 D 1/0 X Vρ1

X 0 D t X X X X 1/0 X Yσ2

t A T t 0 d 1 D 1/0 1

X A X X 0 0 X X X X Uα
X 0 t X X X 1 D 1/0 X Vσ2

X A t X 0 0 1 D 1/0 X

n Z U V Y A B C D E F

1 X X X X 0 1 X X X X

2 X 0 X X 0 0 1 1 1/0 X

3 X 0 1 X 0 1 1 0 1/0 1

4 1 0 0 1 0 1 0 X 1/0 1

5 0 0 1 0 0 0 X X 1/0 1

6 1 0 X 1

260 SEQUENTIAL LOGIC TEST

if a test exists, given only a list of the logic elements used in the circuit and their inter-
connections. No comparable theoretical basis for sequential circuits exists under the
same set of conditions.

5.4.1 Acyclic Sequential Circuits

The analysis of sequential circuits begins with the circuit of Figure 5.8. Although it
is sequential, it is loop-free, or acyclic. There is no feedback, apart from that which
exists inside the flip-flops. In fact, the memory devices need not be flip-flops, the
circuit could be implemented with delays or buffers to obtain the required delay.
The circuit would not behave exactly the same as a circuit with clocked flip-flops,
since flip-flops can hold a value for an indefinite period if the clock is halted,
whereas signals propagate unimpeded through delay lines. However, with delay
lines equalling the clock period, it would be impossible for an observer strobing the
outputs to determine if the circuit were implemented with delay lines or clocked
flip-flops.

If the circuit is made up of delay lines, then for many of the faults the circuit
could be considered to be purely combinational logic. The signal at the output fluc-
tuates for a while but eventually stabilizes and remains constant as long as the inputs
are held constant. If a tester connected to the output samples the response at a suffi-
ciently late time relative to the total propagation time through the circuit, the delay
lines would have no more effect than wires with zero delay and could therefore be
completely ignored.

If the delays are flip-flops, how much does the analysis change? Suppose the goal
is to create a test for an SA1 fault on the top input to gate B4. A test for the SA1 fault
can be obtained by setting I1 = 0, FF2 = X and FF3 = 1. If FF4 represents time image
n, then a 1 is required on primary input I6 in time image n − 1 in order to justify the
1 on FF3 in time image n. Propagation through FF5 in time image n + 1 is achieved
by requiring FF7 = 1. That can be justified by setting I5 = 1 in time image n and
I4 = 1 in time image n − 1. The entire sequence becomes

Figure 5.8 An acyclic sequential circuit.

FF5

FF4

B5I6

B4
B3

FF2

FF3

FF7

B2

FF1

B6

B1

FF6

I1

I2

I3

I4

I5

Out

SEQUENTIAL LOGIC TEST COMPLEXITY 261

Figure 5.9 The acyclic rank-ordered circuit.

To summarize, a fault is sensitized in time image n, and assignments are justified
backward in time to image n − 1 and are propagated forward in time to image n + 1.
The result finally appears at an observable output in time image n + 2. Of interest here
is the fact that the test pattern could almost as easily have been generated by a combi-
national ATPG. The circuit has been redrawn as an S-graph in Figure 5.9, where the
nodes in the graph are the original flip-flops. The logic gates have been left out but the
connections between the nodes represent paths through the original combinational
logic. The nodes have been rank-ordered in time, with the time images indicated at the
top of Figure 5.9. Because FF7 fans out, it appears twice, as does its source FF6.

In order to test the same fault in the redrawn circuit, the flip-flops can be ignored
while computing input stimuli and the rank-ordered circuit can be used to determine
the time images in which stimuli must occur. For test purposes, the complexity of
this circuit is comparable to that of a combinational circuit. Since the number of test
patterns for a combinational circuit with n inputs is upper bounded by 2n, the num-
ber of test patterns for this pseudo-combinational circuit is upper-bounded by
k · 2n, where k is circuit depth; that is, k is the maximum number of flip-flops in any
path between any input and any output.

Example A test will be created for the bottom input of B4 SA1. The input stimuli are

Time I1 I2 I3 I4 I5 I6 Out

n − 1 X X X 1 X 1 X

n 0 X X X 1 X X

n + 1 X X X X X X X

n + 2 D

I1 I2 I3 I4 I5 I6

1 1 1 1/1 1/1 0

FF5

FF4

I6

FF2

FF3

FF7
FF6

I4

I5

I5

I4

FF6

I3 I2 I1

Out

n n + 1 n + 2 n + 3 n + 4 n + 5

FF1FF7

262 SEQUENTIAL LOGIC TEST

The double assignments for I4 and I5 represent values at different times due to fanout.
If destination flip-flops exist in different time images, we can permit what would nor-
mally be conflicting assignments. If the fanout is to two or more destination flip-flops,
all of which exist in the same time image, then the assignments must not conflict.
From the rank-ordered circuit it is evident that the values must occur in the following
time images:

The previously generated test sequence can be shifted three units forward in time
and merged with the second test sequence to give

5.4.2 The Balanced Acyclic Circuit

The concept of using a combinational ATPG for the circuit of Figure 5.8 breaks
down for some of the faults. For example, an SA0 on the top input to B6, driven by
FF6, cannot be tested in this way because the fault requires a 0 for sensitization and
a 1 for propagation. The circuit is said to be unbalanced because there are two fanout
paths from FF7 to the output and there are a different number of flip-flops in each of
the fanout paths.

When every path between any two nodes in an acyclic sequential circuit has the
same number of flip-flops, it is called a balanced acyclic sequential circuit. The
sequential depth dmax of the balanced circuit is the number of nodes or vertices on
the longest path in the S-graph. Given a balanced circuit, the sequential elements in

Out I1 I2 I3 I4 I5 I6 Time

X X X X 1 X X n

X X X X X 1 X n + 1

X X X 1 X X X n + 2

X X 1 X 1 X 0 n + 3

X 1 X X X 1 X n + 4

X X X X X X X n + 5

D n + 6

Out I1 I2 I3 I4 I5 I6 Time

X X X X 1 X X n

X X X X X 1 X n + 1

X X X 1 1 X 1 n + 2

X 0 1 X 1 1 1 n + 3

X 1 X X X 1 X n + 4

D X X X X X X n + 5

D n + 6 ��

SEQUENTIAL LOGIC TEST COMPLEXITY 263

Figure 5.10 A strongly balanced circuit.

the model can be replaced by wires or buffers. Vectors can then be generated for
faults in the resulting circuit model using a combinational ATPG. The vector thus
generated is applied to the circuit for a duration of dmax + 1 clock cycles.8

An internally balanced acyclic sequential circuit is one in which all node pairs
except those involving primary inputs are balanced.9 Like the balanced sequential
circuit, the internally balanced circuit can be converted to combinational form by
replacing all flip-flops with wires or buffers. However, one additional modification
to the circuit model is required: The primary inputs that are unbalanced are split
and represented by additional primary inputs so that the resulting circuit is bal-
anced. Then, the combinational ATPG can be used to create a test pattern. Each test
pattern is replicated dmax + 1 times. The logic bits on the replicated counterpart Ij' to
the original input Ij must be inserted into the bitstream for input Ij at the appropriate
time.

Another distinction can be made with respect to balanced circuits. A strongly
balanced acyclic circuit is balanced and, in addition, all paths from any given node
in the circuit to the primary inputs driving its cone have the same sequential depth.10

This is illustrated in Figure 5.10. A backtrace from Out to any primary input
encounters three flip-flops. For test purposes, the model can be altered such that the
flip-flops are converted to buffers. Then, test vectors for individual faults can be
generated by a combinational ATPG. These are then stacked and clocked through
the actual circuit on successive clock periods. The last vector, applied to the inputs
at time n, will cause a response at Out during time n + 3.

A hierarchy of circuit types, based on sequential constraints, is represented in
Figure 5.11 (combinational circuits are most constrained). A general sequential
circuit can be converted to acyclic sequential by means of scan flip-flops (cf.
Chapter 8). The flip-flops to be scanned can be chosen using a variant of the loop-
cutting algorithm described in Section 5.3.2. Given an acyclic circuit, it has been
shown that a balanced model of the circuit can be created for ATPG purposes. Each

FF8

FF6

B5
I4

B4
B2

FF2

FF3

FF7

B1

FF1

B3FF4

I1

I2

I3

I5

I6 FF5

Out

264 SEQUENTIAL LOGIC TEST

Figure 5.11 Classification based on sequential constraints.

vector created by the combinational ATPG is then transformed into a test sequence
for the actual circuit.11 It is reported that this approach reduces the ATPG time by an
order of magnitude while producing vector lengths comparable to those obtained by
sequential ATPGs.

5.4.3 The General Sequential Circuit

Consider what happens when we make one alteration to the circuit in Figure 5.8.
Input I5 is eliminated and a connection is added from the output of B5 to the input of
B6. With this one slight change the entire nature of the problem has changed and the
complexity of the problem that we are trying to solve has been compounded by
orders of magnitude. In the original circuit the output was never dependent on inputs
beyond six time frames. Furthermore, no flip-flop was ever dependent on a previous
state generated in part by that same flip-flop.

That has changed. The four flip-flops FF1, FF2, FF4, and FF7 constitute a state
machine of 16 states in which the present state may be dependent on inputs that
occurred at any arbitrary time in the past. This can be better illustrated with the state
transition graph of Figure 5.12. If we start in state S1 the sequence 1011111... takes

Figure 5.12 State transition graph.

Sequential

Acyclic Sequential

Internally Balanced

Balanced

Strongly
Balanced

Combinational Most constrained

Least constrained

S1 S7

S5S6S4

S2 S8

S3

0/0

1/0

0/0

1/0

1/0

0/00/0

1/1

1/0

1/1

0/0

0/0

0/1

1/1 1/1

0/0

SEQUENTIAL LOGIC TEST COMPLEXITY 265

us to S2{S7, S8, S5, S6}*, where the braces and asterisk denote an arbitrary number
of repetitions of the four states in braces. From the almost identical sequence
11011111..., we get the state sequence S2, S3{S3,S4,S1,S2}*. The corresponding
output sequences are 0,0{0,0,0,1}* and 0,1,0{1,1,0,1}*, a significant difference
in output response that will continue as long as the input consists of a string of
1s. In a circuit with no feedback external to the flip-flops the output sequences
will coincide within k time images where k again represents the depth of the
circuit.

How much effect does that feedback line have on the testability of the circuit? We
will compute an upper bound on the number of test patterns required to test a state
machine in which the present state is dependent on an input sequence of indetermi-
nate length—that is, one in which present state of the memory cells is functionally
dependent upon a previous state of those same memory cells.

Given a state machine with n inputs and M states, 2m−1 < M < 2m, and its corre-
sponding state table with M rows, one for each state, and 2n columns, one for each
input combination, there could be as many as 2n unique transitions out of each
state. Hence, there could be as many as M · 2n, or approximately 2m+n, transitions
that must be verified. Given that we are presently in state Si, and we want to verify
a transition from state Sj to state Sk, it may require M − 1 transitions to get from Si
to Sj before we can even attempt to verify the transition Sj → Sk. Thus, the number
of test vectors required to test the state machine is upper bounded by 22m+n, and
that assumes we can observe the present state without requiring any further state
transitions.

The argument was derived from a state table, but is there a physical realization
requiring such a large number of tests? A realization can, in fact, be constructed
directly from the state table. The circuit is implemented with m flip-flops, the out-
puts of which are used to control m multiplexers, one for each flip-flop. Each mul-
tiplexer has M inputs, one for each row of the state table. Each multiplexer input is
connected to the output of another multiplexer that has 2n inputs, one correspond-
ing to each column of the state table. The inputs to this previous bank of multi-
plexers are fixed at 1 and 0 and are binary m-tuples corresponding to the state
assignments and the next states in the state table. In effecting state transitions, the
multiplexers connected directly to the flip-flops select the row of the state table
and the preceding set of multiplexers, under control of the input signal, select the
column of the state table, thus the next state is selected by this configuration of
multiplexers.

In this implementation M · 2n m-tuples must be verified, one for each entry in the
state table. From the structure it can be seen that checking a given path could
require as many as M − 1 transitions of the state machine to get the correct selection
on the first bank of multiplexers. Consequently, the number of test patterns required
to test this implementation is upper bounded by 22m+n. This is not a practical way to
design a state machine, but it is necessary to consider worst-case examples when
establishing bounds. Of more significance, the implementation serves to illustrate
the dramatic change in the nature of the problem caused by the presence of feed-
back lines.

266 SEQUENTIAL LOGIC TEST

Figure 5.13 Canonical implementation of state table.

Example Consider the machine specified by the following state table and flip-flop
state assignments:

This machine can be implemented in the canonical form of Figure 5.13. ��

5.5 EXPERIMENTS WITH SEQUENTIAL MACHINES

Early efforts at testing state machines consisted of experiments aimed at determin-
ing the properties or behavior of a state machine from its state table.12 Such experi-
ments consist of applying sequences of inputs to the machine and observing the
output response. The input sequences are derived from analysis of the state table and
may or may not also be conditional upon observation of the machine’s response to
previous inputs. Sequences in which the next input is selected using both the state
table and the machine’s response to previous inputs are called adaptive experiments.

I

0 1 Q1 Q1

S0 S0 S2 S2 0 0

S1 S3 S2 S1 0 1

S2 S1 S0 S2 1 0

S3 S2 S3 S3 1 1

D Q1

0
1

1
1

0
0

1
1

A B

A B

D Q0

0
0

1
0

1
0

0
1

MUX

MUX

I

Clock

EXPERIMENTS WITH SEQUENTIAL MACHINES 267

The selection of inputs may be independent of observations at the outputs. Those in
which an entire input sequence is constructed from information contained in the
state table, without observing machine response to previous inputs, are called preset
experiments.

A sequence may be constructed for one of several purposes. It may be used to
identify the initial or final state of a machine or it may be used to drive the machine
into a particular state. Sequences that identify the initial state are called distinguish-
ing sequences, those that identify the final state are called homing sequences. A
sequence that is designed to force a machine into a unique final state independent of
the initial state is called a synchronizing sequence (the definitions here are taken
from Hennie13).

The creation of input sequences can be accomplished through the use of trees in
which the nodes correspond to sets of states. The number of states in a particular set
is termed its ambiguity. The root will usually correspond to maximum ambiguity,
that is, the set of all states.

Example Consider the state machine whose transitions are described by the state
table of Figure 5.14. Can the initial state of this machine be determined by means of
a preset experiment?

The object is to find an input sequence that can uniquely identify the initial state
when we start with total ambiguity and can do no more than apply a precomputed set
of stimuli and observe output response. From the state table we notice that if we apply
a 0, states A and D both respond with a 1 and both go to state A. Clearly, if an input
sequence starts with a 0, it will never be possible to determine from the response
whether the machine started in state A or D. If the sequence begins with a 1, a 0
response indicates a next state of B or E and a 1 response indicates a next state of A,
B, or C. Therefore, a logic 1 partitions the set of states into two subsets that can be
distinguished by observing the output response of the machine.

Applying a second 1 further refines our knowledge because state B produces a 1
and state E produces a 0. Hence an input sequence of (1,1) enables us, by working
backwards, to determine the initial state if the output response begins with a 0. The
0 response indicates that the initial state was a C or E. If a second 0 follows, then the
machine must have been in state E after the first input, which indicates that it must
originally have been in state C. If the second response is a 1, then the machine is in

Figure 5.14 State table.

A

B

C

D

E

A/1

C/0

D/0

A/1

B/0

C/1

A/1

E/0

B/1

B/0

0 1
I

268 SEQUENTIAL LOGIC TEST

Figure 5.15 Preset experiment.

state B, indicating that it was originally in state E. But what if the initial response
was 1? Rather than repeat this analysis, we resort to the use of a tree, as illustrated in
Figure 5.15, in which we start with maximum ambiguity at the root and form
branches corresponding to the inputs I = 0 and I = 1. We create subsets comprised of
the next states with set membership based on whether the output corresponding to
that state is a 1 or 0.

When a 0 is applied to the set with maximum ambiguity, the path is immediately
terminated because states A and D merged; that is, they produced the same output and
went to the same next state, hence there was no reason to continue the path. When a
1 is applied, two subsets are obtained with no state mergers in either subset. From this
branch of the tree, if the second input is a 1, then a third input of either a 0 or 1 leads
to a leaf on the tree in which all sets are singletons. If the second input is a 0, then
following that with a 1 leads to a leaf in which all sets are singletons. We conclude,
therefore, that there are three preset distinguishing sequences of length three, namely,
(1, 1, 0), (1, 1, 1), and (1, 0, 1). If the sequence (1, 1, 0) is applied to the machine in
each of the five starting states, we get

From the output response the start state can be uniquely identified. It must be
noted that a state machine need not have a distinguishing sequence. In the example
just cited, if a 1 is applied while in state E and the machine responds with a 1, then
another merger would result and hence no distinguishing sequence exists. Another
terminating rule, although it did not happen in this example, is as follows: Any leaf
that is identical to a previously occurring leaf is terminated. There is obviously no
new information to be gained by continuing along that path.

Start State Output Response Final State

A 1 0 0 B

B 1 1 0 D

C 0 0 0 C

D 1 1 1 A

E 0 1 1 A

(ABCDE)
0 1

(AA)(BCD) (ABC)(BE)
0 1

(A)(CD)(BC) (AC)(E)(A)(B)

(E)(C)(B)(C)(B)(A)(D)(E)(A)(B)(A)(A)(D)(CD) (C)(C)(B)(B)(E)

0 1 0 1

X

��

EXPERIMENTS WITH SEQUENTIAL MACHINES 269

Because the distinguishing sequence identifies the initial state, it also uniquely
identifies the final state; hence the distinguishing sequence is a homing sequence.
However, the homing sequence is not necessarily a distinguishing sequence. Con-
sider again the machine defined by the state table in Figure 5.14. We wish to find one
or more input sequences that can uniquely identify the final state while observing
only the output symbols. Therefore, we start again at the source node and apply a 0
or 1. However, the path resulting from initial application of a 0 is not discarded
because we are now interested in the final state rather than initial state; therefore
state mergers do not cause loss of needed information.

Example We use the same state machine, but only pursue the branch that was pre-
viously deleted, since the paths previously obtained are known to be homing
sequences. This yields the tree in Figure 5.16.

From this continuation of the original tree we get several additional sequences of
outputs that contain enough information to determine the final state. However,
because of the mergers these sequences cannot identify the initial state and therefore
cannot be classified as distinguishing sequences. ��

The synchronizing sequence forces the machine into a known final state indepen-
dent of the start state. We again use the state machine of Figure 5.14 to illustrate the
computation of the synchronizing sequence. As before, we start with the tree in which
the root is the set with total ambiguity. The computations are illustrated in Figure 5.17.

Starting with the total ambiguity set, we apply 0 and 1 and look at the set of a 1
possible resulting states. With a 0 the set of successor states is (ABCD), and with a 1
the set of successor states is (ABCE). We then consider the set of all possible succes-
sor states that can result from these successor states. From the set of successor states
(ABCD) and an input of 0 the set of successor states is the set (ACD). We continue
until we either arrive at a singleton state or all leaves of the tree are terminated. A
leaf will be terminated if it matches a previously occurring subset of states or if it
properly contains another leaf that was previously terminated. In the example just
given, we arrive at the state A upon application of the sequence (0, 0, 0, 0). Other
sequences exist; we leave it to the reader to find them.

Figure 5.16 Determining final state.

(ABCDE)
0 1

(AA)(BCD) (ABC)(BE)

(A)(A)(CD) (C)(E)(AB)

(A)(A)(A)(D) (A)(A)(B)(E)

0 1

(D)(B)(A)(C) (E)(A)(AC)

(B)(A)(A)(D) (B)(C)(C)(E)

0 1

0 1

270 SEQUENTIAL LOGIC TEST

Figure 5.17 Synchronizing sequence.

The same state machine will now be used to describe how to create an adaptive
homing sequence. Recall that adaptive experiments make use of whatever informa-
tion can be deduced from observation of output response. From the state table it is
known that if a 0 is applied and the machine responds with a 1, then it is in state A
and we can stop. If it responds with a 0, then it must be in B, C, or D. Either a 0 or 1
can be chosen as the second input. If a 0 is chosen, we find that with an output
response of 1 the machine must again be in state A and with a response of 0 it must
be in state C or D. Finally, with a third input there is enough information to uniquely
identify the state of the machine. Adaptive experiments frequently permit faster con-
vergence to a solution by virtue of their ability to use the additional information pro-
vided by the output response.

The distinguishing sequence permits identification of initial state by observation
of output response. This is possible because the machine responds uniquely to the
distinguishing sequence from each starting state. The existence of a distinguishing
sequence can therefore permit a relatively straightforward construction of a checking
sequence for a state machine. The checking sequence is intended to confirm that the
state table correctly describes the behavior of the machine. It is required that the
machine being evaluated not have more states than the state table that describes its
behavior. The checking sequence consists of three parts:

1. Put the machine into a known starting state by means of a homing or synchro-
nizing sequence.

2. Apply a sequence that verifies the response of each state to the distinguishing
sequence.

3. Apply a sequence that verifies state transitions not checked in step 2.

The state machine in Figure 5.14 will be used to illustrate this. The machine is
first placed in state A by applying a synchronizing sequence. For the second step, it
is necessary to verify the response of the five states in the state table to the distin-
guishing sequence since that response will subsequently be used to verify state

(ABCDE)

(ABCD) (ABCE)

0 1

(ACD) (ABCE) (ABCD) (ABCE)

(AD)

(A) (BC)

(BCE)

(BCD) (ABE)

00 1 1

0 1

0 1 0 1

X X X

EXPERIMENTS WITH SEQUENTIAL MACHINES 271

transitions. To do so, a sequence is constructed by appending the distinguishing
sequence (1, 1, 0) to the synchronizing sequence. If the machine is in state A, it
responds to the distinguishing sequence with the output response (1, 1, 0). Further-
more, the machine will end up in state B. From there, state B can be verified by
again applying the distinguishing sequence.

This time the output response will be (1, 1, 0) and the machine will reach state D.
A third repetition verifies state D and leaves the machine in state A, which has
already been verified. Therefore, from state A a 1 is applied to put the machine into
state C where the distinguishing sequence is again applied to verify state C. Since
the machine ends up in state C, a 1 is applied to cause a transition to state E. Then
the distinguishing sequence is applied one more time to verify E. At this point the
distinguishing sequence has been applied while the machine was in each of the five
states. Assuming correct response by the machine to the distinguishing sequence
when starting from each of the five states, the input sequence and resulting output
sequence at this point are as follows:

The synchronizing sequence is denoted by s.s., and the distinguishing sequence is
denoted by d.s. The dashes (—) denote points in the sequence where inputs were
inserted to effect transitions to states that had not yet been verified. The output val-
ues for the synchronizing sequence are unknown; hence they are omitted.

If the machine responds as indicated above, it must have at least five states
because the sequence of inputs (1, 1, 0) occurred five times and produced five differ-
ent output responses. Since we stipulated that it must not have more than five states,
we assume that it has the same number of states as the state table. Now it is neces-
sary to verify state transitions. Two transitions in step 2 have already been verified,
namely, the transition from A to C and the transition from C to E; therefore eight
state transitions remain to be verified.

Since the distinguishing sequence applied when in state E leaves the machine in
state A, we start by verifying the transition from A to A in response to an input of 0.
We apply the 0 and follow that with the distinguishing sequence to verify that the
machine made a transition back to state A. The response to the distinguishing
sequence puts the machine in state B and so we arbitrarily select the transition from
B to C by applying a 0. Again it is necessary to apply the distinguishing sequence
after the 0 to verify that the machine reached state C from state B. The sequence now
appears as follows:

s.s d.s. d.s. d.s. — d.s. — d.s.

input.....0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0

output................... 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1

s.s d.s. d.s. d.s. — d.s. — d.s. — d.s.

input.........0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0

output.................. 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0

272 SEQUENTIAL LOGIC TEST

We continue in this fashion until all state transitions have been confirmed. At this
point six transitions have not yet been verified; we leave it as an exercise for the
reader to complete the sequence.

5.6 A THEORETICAL LIMIT ON SEQUENTIAL TESTABILITY

The D-algorithm described by Paul Roth14 is known to be an algorithm in the strict-
est sense. It can generate tests for combinational circuits, given no more than a struc-
tural description of the circuit, including the primitives that make up the circuit and
their interconnections. In this section it is shown that such a claim cannot be made
for general sequential circuits under the same set of conditions.

The pulse generator of Figure 5.18 demonstrates that this is not true for asynchro-
nous sequential circuits. In normal operation, if it comes up in the 0 state when
power is applied, it remains in that state. If it comes up in the 1 state, that value
reaches the reset input and resets it to 0 (assuming an active high reset). Since it is
known what stable state the circuit assumes shortly after powering up, it can be
tested for all testable faults. Simply apply power and check for the 0 state on the out-
put. Then clock it and monitor the output for a positive going pulse that returns to 0.

A simulator that operates on a structural model begins by initializing all the nets
in the circuit to the indeterminate X state. The X at the Q output of the self-resetting
flip-flop could be a 1 or a 0. If a simulator tries to clock in a 1, both possible states of
X at the reset input must be considered. If the X represents a 1, it holds the circuit to
a 0. If the X represents 0, it is inactive and the clock pulse drives the output to 1.
This ambiguity forces the simulator to leave an X on the Q output. So, despite the
fact that the circuit is testable, with only a gate-level description to work with, the
simulator cannot drive it out of the unknown state.

For the class of synchronous sequential machines, the Delay flip-flop in which the
Q output is connected to the Data input, essentially an autonomous machine, is an
example of a testable structure that cannot be tested by an ATPG, given only structural
information. We know that there should be one transition on the output for every two
transitions on the clock input. But, again, when all nets are initially set to the indeter-
minate state, we preclude any possibility of predicting the behavior of the circuit.

It is possible to define the self-resetting flip-flop as a primitive and specify its
behavior as being normally at 0, with a pulse of some specified duration occurring at
the output in response to a clock input. That, in fact, is frequently how the circuit is
handled. The monostable, or single shot, is available from IC manufacturers as a sin-
gle package and can be defined as a primitive.

Figure 5.18 Self-resetting flip-flop.

DELAYD Q

R
Clock

A THEORETICAL LIMIT ON SEQUENTIAL TESTABILITY 273

Figure 5.19 State transition graphs.

If the self-resetting flip-flop is modeled as a primitive and if the autonomous
machine is excluded, can it be shown that synchronous sequential machines are test-
able under the same set of conditions defined for the D-algorithm? To address this
question, we examine the state transition graphs of Figure 5.19. One of them can be
tested by a gate-level ATPG, using only structural information; the other cannot,
even though both of them are testable.

The state tables for the machines of Figure 5.19(a) and 5.19(b) are shown in
Figures 5.20(a) and 5.20(b), respectively. For machine A the synchronizing
sequence I = (0, 1, 0, 1, 0) will put the machine in state S1. For machine B the syn-
chronizing sequence I = (0, 0) will put the machine in state S3. The length and nature
of the synchronizing sequence plays a key role in determining whether the machine
can be tested by a gate-level ATPG. Consider the machine shown in Figure 5.21; it is
an implementation of the machine in Figure 5.19(a). Assign an initial value of (X,X)
to the flip-flops labeled Q1, Q0. Because a synchronizing sequence of length 5 exists,
we know that after the application of 5 bits the machine can be forced into state S1.
However, upon application of any single stimulus, whether a 0 or 1, machine A has
an ambiguity of at best 3 and possibly 4. Because the ambiguity is greater than 2,
two bits are required to represent the complete set of successor states, hence simula-
tion of any binary input value must leave both output bits, Q1 and Q0, uncertain; that
is, both Q1 and Q0 could possibly be in a 0 state or a 1 state, hence, both Q1 and Q0
remain in the X state.

Figure 5.20 State tables.

S0 S1

S2

S3
0

1

0
1

0 1

1

0
0

(a)

S0 S1

S2

S3
0

1

1

0 1

1

0

(b)

S0

S1

S2

S3

S1

S3

S1

S0

S1

S2

S3

S0

0 1 0 1
Data

S0

S1

S2

S3

S1

S3

S1

S3

S1

S2

S3

S0

Data

274 SEQUENTIAL LOGIC TEST

Figure 5.21 Implementation of the state machine.

In general, if a synchronizing sequence exists for an M-state machine, 2m−1 < M ≤
2m, implemented with m flip-flops, the machine is testable. It is testable because the
synchronizing sequence will drive it to a known state from which inputs can be
applied that will reveal the presence of structural defects. A synchronizing sequence
can be thought of as an extended reset; conversely, a reset can be viewed as a syn-
chronizing sequence of length 1. However, if no single vector exists that can reduce
ambiguity to 2m−1 or less, then all flip-flops are capable of assuming either binary
state. Put another way, no flip-flop is capable of getting out of the indeterminate
state.

Given a vector that can reduce ambiguity enough to cause one flip-flop to assume
a known value, after some number of additional inputs are applied the ambiguity
must again decrease if one or more additional flip-flops are to assume a known state.
For an M-state machine implemented with m flip-flops, 2m−1 < M ≤ 2m, the ambigu-
ity must not exceed 2m−2. What is the maximum number of input vectors that can be
applied before that level of ambiguity must be attained?

Consider the situation after one input has been applied and exactly one flip-
flop is in a known state. Ambiguity is then 2m−1. From this ambiguity set it is pos-
sible to make a transition to a state set wherein ambiguity is further reduced, that
is, additional flip-flops reach a known value, or the machine may revert back to a
state in which all flip-flops are in an unknown state, or the machine may make a
transition to another state set in which exactly one flip-flop is in a known state.
(In practice, the set of successor states cannot contain more states than its prede-
cessor set.) For a machine with m flip-flops, there are at most 2m transitions such
that a single flip-flop can remain in a known state, 0 or 1. After 2m transitions, it
can be concluded that, if the ambiguity is not further resolved, it will not be
resolved because the machine will at that time be repeating a state set that it pre-
viously visited.

Q1D

Clock

Q0D

Q1

Q0

Data

A THEORETICAL LIMIT ON SEQUENTIAL TESTABILITY 275

Given that i flip-flops are in a known state, how many state sets exist with ambi-
guity 2m− i? Or, put another way, how many distinct state sets with i flip-flops in a
known state can the machine transition through before ambiguity is further
reduced or the machine repeats a previous state set? To compute this number, con-
sider a single selection of i positions from an m-bit binary number. There are
ways these i bits can be selected from m positions and 2i unique values these i
positions can assume. Therefore, the number of state sets with ambiguity 2m− i, and
thus the number of unique transitions before either repeating a state set or reduc-
ing ambiguity, is . Hence, the synchronizing sequence is upper bounded by

From the preceding we have the following:

Theorem Let M be a synchronous, sequential M-state machine, 2m−1 < M ≤ 2m,
implemented with m binary flip-flops. A necessary condition for M to be testable by
a gate-level ATPG using only structural data is that a synchronizing sequence exist
having the property that, with i flip-flops in a known state, the sequence reduces the
ambiguity to 2m−i−1 within input stimuli.15

Corollary The maximum length for a synchronizing sequence that satisfies the
theorem is 3m − 2m − 1.

The theorem states that a synchronizing sequence of length ≤ 3m − 2m − 1 permits
design of an ATPG-testable state machine. It does not tell us how to accomplish the
design. In order to design the machine so that it is ATPG-testable, it is necessary that
state assignments be made such that if ambiguity at a given point in the synchroniz-
ing sequence is 2m−i, then state assignments must be made such that the 2i states in
each state set with ambiguity equal to i all have the same values on the 2m−i flip-
flops with known values.

Example The state machine described in the following table has a synchronizing
sequence of length 4. The synchronizing sequence is I = (0, 1, 1, 0).

The state sets that result from the synchronizing sequence are

{S0, S1} → {S2, S3} → {S0, S2} → {S0}

0 1

S0 S0 S2

S1 S1 S3

S2 S0 S0

S3 S1 S2

m
i

2i m
i

 ⋅

2i

i 1=

m 1–

∑ m
i

 ⋅ 3m 2m– 1–=

2i m
i

 ⋅

276 SEQUENTIAL LOGIC TEST

Figure 5.22 Machine with length 4 synchronizing sequence.

If we assign flip-flop Q1 = 0 for states S0 and S1, Q1 = 1 for states S2 and S3, and
Q0 = 0 for states S0 and S2, then simulation of the machine, as implemented in
Figure 5.22, causes the machine to go into a completely specified state at the end of
the synchronizing sequence. ��

The importance of the proper state assignment is seen from the following
assignments.

From the synchronizing sequence we know that the value 0 puts us in either state
S0 or S1. However, with this set of state assignments, Q1 may come up as a 0 or 1;
the same applies to Q0. Hence, the synchronizing sequence is not a sufficient
condition.

We showed the existence of a state machine with synchronizing sequence that
could not be tested by an ATPG when constrained to operate solely on structural
information. It remains to show that there are infinitely many such machines.
The family in Figure 5.23 has an infinite number of members, each member of
which has a synchronizing sequence but, when implemented with binary flip-
flops, cannot be driven from the unknown to a known state because the ATPG,
starting with all flip-flops at X, cannot get even a single flip-flop into a known
state.

Q1 Q2

S0 — 0 1

S1 — 1 0

S2 — 1 1

S3 — 0 0

Q1D

Clock

Q0D

Q1
Data

SUMMARY 277

Figure 5.23 Family of state machines.

5.7 SUMMARY

The presence of memory adds an entirely new dimension to the ATPG problem. A
successful test now requires a sequence of inputs, applied in the correct order, to a
circuit in which some or all of the storage elements may initially be in an unknown
state. New types of faults must be considered. We must now be concerned not only
with logic faults, but also with parametric faults, because proper behavior of a
sequential circuit depends on storage elements being updated with correct values
that arrive at the right time and in the correct order.

Several methods for sequential test pattern generation were examined, including
critical path, which was examined in the previous chapter. Seshu’s heuristics are pri-
marily of historical interest although the concept of using multiple methods, usually
a random method followed by a deterministic approach, continues to be used. The
iterative test generator permits application of the D-algorithm to sequential logic.
The 9-value ITG can minimize computations for developing a test where a circuit
has fanout. Extended backtrace discards the forward trace and aligns sequential
requirements by working back from the output, once a topological path has been
identified. Sequential path sensitizer extends the D-algorithm to sequential circuits
and defines rules for chaining the extended symbols across vector boundaries.

Other methods for sequential test pattern generation exist that were not covered
here. In one very early system, called the SALT (Sequential Automated Logic
Test)16 system, latches were modeled at the gate level. Loops were identified and
state tables created, where possible, for latches made up of the loops. An extension
of Boolean Algebra to sequential logic is another early system not discussed here.17

More recent sequential ATPG systems have been reported in the literature but have
had very little impact on the industry.

Despite numerous attempts to create ATPG programs capable of testing sequen-
tial logic, the problem has remained intractable. While some sequential circuits are
reasonably simple to test, others are quite difficult and some simply cannot be tested
by pure gate-level ATPGs. State machines, counters, and other sequential devices

0 1

I

S0

S1

.

.

.

Sn−1

Sn

S1

S2

.

.

.

Sn

S0

S0

S0

.

.

.

Sn−2

Sn−1

278 SEQUENTIAL LOGIC TEST

interacting with complex handshaking protocols make it extremely difficult to
unravel the behavior in the proper time sequence. In addition to complexity, another
part of the problem is the frequent need for long and costly sequences to drive state
machines and counters into a state required to sensitize or propagate faults.

The sequential test problem was also examined from a complexity viewpoint.
Synchronizing sequences can be used to show that entire classes of testable sequen-
tial circuits exist that cannot be tested within the same set of groundrules specified
by the D-algorithm. However, more importantly, designers must understand test-
ability problems and design circuits for which tests can be created with existing
tools. In other words, they must design testable circuits. We will have more to say
concerning the issue of design-for-testability (DFT) in Chapter 8. Then, in
Chapter 12 we will examine behavioral ATPG, which uses models described at
higher levels of abstraction.

PROBLEMS

5.1 Using the method described in Section 5.3.2, cut the loops in the D flip-flop
circuit of Figure 2.7. Convert it into a pseudo-combinational circuit by
creating pseudo-inputs and pseudo-outputs.

5.2 Using the pseudo-combinational DFF from the previous problem, use the
ITG and D-algorithm to find tests for the following faults:

Bottom input to gate N1 SA1

Bottom input to gate N4 SA1

Top input to gate N5 SA1

5.3 Attempt to create a test for a SA1 on input 3 of gate 3 of the D flip-flop in
Figure 2.7. What is the purpose of that input?

5.4 Find a test for each of the four input SA1 faults on the cross-coupled NAND
latch of Figure 2.3. Merge these tests to find the shortest sequence that can
detect all four faults.

5.5 Section 4.3.5 defines an intersection table for the values {0, 1, D, D, X}.
Create an equivalent table for the 9-value ITG. Show all possible intersections
of each of the nine values with all the others. Indicate unresolvable conflicts
with a dash.

5.6 Redesign the circuit in Figure 5.1 by replacing the DFF with the gated latch
of Figure 2.4(b). Cut all loops and use the 9-value ITG to find a test for the
fault indicated in Figure 5.1.

5.7 Create a table for the exclusive-OR similar to Tables 5.2 and 5.3.

5.8 Use the critical path method of Section 5.3.4 to find a test for a SA1 fault on
the Data input of the D flip-flop in Figure 2.7. Show your work.

PROBLEMS 279

5.9 Use EBT to find a test for the indicated fault in the circuit of Figure 5.6. For
the state machine, use the circuit in Figure 5.12. Identify the TP, and show
your work.

5.10 Substitute a D flip-flop for the JK flip-flop in the circuit of Figure 5.7. Assume
the existence of a set input. Duplicate the calculations for the path exercised
in the text, using this D flip-flop.

5.11 Show that a SA1 on the top input to B6 in Figure 5.8 cannot be tested using a
combinational ATPG.

5.12 In the circuit of Figure 5.8, replace FF7 by a primary input. The resulting
circuit is now internally balanced. Describe how you would use a
combinational ATPG to detect a fault on the bottom input of gate B2.

5.13 A flip-flop can be made into a scan flip-flop if it has a means whereby it can
be serially loaded independent of its normal operation. In such a mode, the
output of the circuit acts as an additional input to the circuit, and the input to
the flip-flop acts as an additional output (see Chapter 8). The circuit of
Figure 5.8 can be made into an internally balanced circuit if one flip-flop is
converted to a scan flip-flop. Which one is it? What is the sequential depth of
the resulting circuit?

5.14 Using the circuit in Figure 5.24, create state machines for the fault-free and
faulty circuits. From the state machines, create a sequence that can detect the
SA1 fault.

5.15 Complete the checking sequence for the example that was started in
Section 5.5.

5.16 Find a synchronizing sequence for the following state machine:

5.17 Describe an algorithm for finding a preset distinguishing sequence.

5.18 The machine (a) below has synchronizing sequence 101. If it starts in state
C, and the machine (b) starts in state A, then the input sequence 101 causes

0 1
S0 S0 S4

S1 S1 S5

S2 S2 S6

S3 S3 S7

S4 S0 S2

S5 S1 S3

S6 S0 S0

S7 S0 S1

280 SEQUENTIAL LOGIC TEST

Figure 5.24 Johnson Counter.

identical responses from the two machines. Assuming the application of the
sequence 101 to the two machines under the conditions just stated, find a
sequence that exercises each state transition in machine (a) at least once,
without verification, and causes an identical output response from (b); that is,
show that step 2 of the checking sequence is necessary.

REFERENCES

1. Seshu, S., On an Improved Diagnosis Program, IEEE Trans. Electron. Comput.,
Vol. EC-14, No. 2, February 1965, pp. 76–79.

2. Putzolu, G., and J. P. Roth, A Heuristic Algorithm for the Testing of Asynchronous
Circuits, IEEE Trans. Comput., Vol. C20, No. 6, June 1971, pp. 639–647.

3. Bouricius, W. G. et al., Algorithms for Detection of Faults in Logic Circuits, IEEE Trans.
Comput., Vol. C-20, No. 11, November 1971, pp. 1258–1264.

4. Muth, P., A Nine-Valued Circuit Model for Test Generation, IEEE Trans. Comput.,
Vol. C-25, No. 6, June 1976, pp. 630–636.

5. Marlett, Ralph, EBT: A Comprehensive Test Generation Technique for Highly Sequential
Circuits, Proc. 15th Des. Autom. Conf., June 1978, pp. 332–339.

6. Kriz, T. A., A Path Sensitizing Algorithm for Diagnosis of Binary Sequential Logic, Proc.
9th Symposium on Switching and Automata Theory, 1970, pp. 250–259.

7. Kriz, T. A., Machine Identification Concepts of Path Sensitizing Fault Diagnosis, Proc.
10th Symposium on Switching and Automata Theory, Waterloo, Canada, October 1969,
pp. 174–181.

0 1 0 1

A C/0 B/0 A A/0 B/0

B A/0 B/1 B C/1 C/0

C B/1 C/1 C B/0 A/1

(a) (b)

U3 U2 U1

U5

U4 Z

CLK

Clear

REFERENCES 281

8. Gupta, R. et al., The BALLAST Methodology for Structured Partial Scan Design, IEEE
Trans. Comput., Vol. 39, No. 4, April 1990, pp. 538–548.

9. Fujiwara, H. A New Class of Sequential Circuits with Combinational Test Generation
Complexity, IEEE Trans. Comput., Vol. 49, No. 9, pp. 895–905, September 2000.

10. Balakrishnan, A., and S. T. Chakradhar, Sequential Circuits With Combinational Test
Generation Complexity, Proc. 9th Int. Conf. on VLSI Design, January 1996, pp. 111–117.

11. Kim, Y. C., V. D. Agrawal, and Kewal K. Saluja, Combinational Test Generation for
Various Classes of Acyclic Sequential Circuits, IEEE Int. Test Conf., 2001, pp. 1078–1087.

12. Moore, E. F., Gedanken—Experiments on Sequential Machines, Automation Studies,
Princeton University Press, Princeton, NJ, 1956, pp. 129–153.

13. Hennie, F. C., Finite-State Models for Logical Machines, Wiley, New York, 1968.

14. Roth, J. P., Diagnosis of Automata Failures: A Calculus and a Method, IBM J. Res. Dev.,
Vol. 10, No. 4, July 1966, pp. 278–291.

15. Miczo, A. The Sequential ATPG: A Theoretical Limit, Proc. IEEE Int. Test Conf., 1983,
pp. 143–147.

16. Case, P. W. et al., Design Automation in IBM, IBM J. Res. Dev., Vol. 25, No. 5, September
1981, pp. 631–646.

17. Hsiao, M. Y., and Dennis K. Chia, Boolean Difference for Fault Detection in
Asynchronous Sequential Machines, IEEE Trans. Comput., Vol. C-20, November 1971,
pp. 1356–1361.

283

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 6

Automatic Test Equipment

6.1 INTRODUCTION

Digital circuits have always been designed to operate beyond the point where they
could be reliably manufactured on a consistent basis. It is a simple matter of eco-
nomics: By pushing the state of the art—that is, aggressively shrinking feature sizes,
then testing them and discarding those that are defective—it is possible to obtain
greater numbers of ICs from a single wafer than if they are manufactured with more
conservative feature sizes (cf. Section 1.8 for more discussion on this practice).

This strategy depends on having access to complex, and sometimes very expen-
sive, test equipment. This strategy also depends on being able to amortize tester cost
over many hundreds of thousands, or millions, of ICs. As ICs become more complex,
running at faster clock speeds, with greater numbers of I/O pins, requirements on the
tester become greater. More pins must be driven and monitored. Tolerances grow
increasingly tighter, and there is less margin for error. Clock skew and jitter must be
controlled more tightly, and the increasing amount of logic, running at ever higher
clock speeds, requires the ability to switch greater amounts of current in less time.

Early testers were quite simple: Input pins were driven by stimuli stored in
memory. After some predetermined clock cycle the output pins were strobed and
their responses compared to expected responses (cf. Figure 6.1). Many early testers
were designed and manufactured by end users, particularly mainframe vendors.
With time, however, and the increasing complexity of the ICs and PCBs being
tested, it became prohibitively expensive to design and build these testers. Compa-
nies were formed for the explicit purpose of designing and building complex testers
and, although these testers were quite expensive, it was nevertheless more economi-
cal to buy than to build in-house.

Over the years, many tester architectures and test strategies have evolved in order
to locate defects in ICs and PCBs and provide the highest possible quality of
delivered goods at the lowest possible price.This chapter provides a very brief over-
view of some of the more important highlights and concepts involved in applying
test stimuli to digital circuits and monitoring their response. Space does not permit a

284

AUTOMATIC TEST EQUIPMENT

Figure 6.1

Basic test configuration.

more thorough investigation of the many tester architectures and strategies that have
been devised to test digital devices during design debug and manufacturing test.

6.2 BASIC TESTER ARCHITECTURES

Functional testers apply stimuli to input pins of a device-under-test (DUT) and
sample the response at output pins after sufficient time has elapsed to permit signals
to propagate and settle out. The tester then compares sampled response to expected
response in order to determine whether the DUT responded correctly to applied
stimuli. Depending on their capabilities, these testers can be used to test for correct
function, characterize and debug initial parts, and perform speed binning.

6.2.1 The Static Tester

Functional testers can be characterized as static or dynamic. A

static tester

, such as
the one depicted in Figure 6.1, applies all signals simultaneously and samples all
output pins at the end of the clock period. Device response is compared to the
expected response and, if they do not match, the controlling computer is given
relevant information such as the vector number and the pin or pins at which the
mismatch was detected. The static tester does not attempt to accurately measure

when

 events occur. Therefore, if a signal responds correctly but has excessive propa-
gation delay along one or more signal paths, that fact may not be detected by the
static tester. These testers are primarily used for go–nogo production testing.

A general-purpose tester must have enough pins to drive the inputs and to monitor
the outputs of the DUT. In fact, in order to be general purpose, the tester must have
enough pins to drive and sample the I/Os of the largest DUT that might be tested by
that tester. Furthermore, since it is not known how many of the I/Os on the DUT are
inputs, and how many are outputs, it must be possible to configure each of the tester
pins as an input or as an output. If a device has more pins than the tester, it may be
possible to extend the capabilities of the tester through the use of clever techniques
such as driving two or more inputs from a single tester channel and/or multiplexing IC
output pins to a single tester channel where they may be sampled in sequence.

DUT

s
t
i
m
u
l
i

CPU

r
e
s
p
o
n
s
e

e
x
p
e
c
t

Pass/Fail

Test
pgm

BASIC TESTER ARCHITECTURES

285

When considering a tester for purchase, its maximum operating speed may be an
important consideration, depending on the purpose for which it is being purchased.
But other factors, including accuracy, resolution, and sensitivity, must be given
equal weight.

1

Accuracy

 is a measure of the amount of uncertainty in a measure-
ment. For example, if a voltmeter is rated at an accuracy of ±0.1% and measures
5.0 V, the true voltage may lie anywhere between 4.95 V and 5.05 V.

Resolution

refers to the degree to which a change can be observed. Referring again to the volt-
meter, if it is a digital voltmeter, its resolution is expressed as a number of bits. How-
ever, the last few bits may not be meaningful if measurements are being taken in a
noisy environment. If the noise is random and there is a need for greater resolution,
samples can be averaged. This is done at the expense of sampling rate.

Sensitivity

 describes the smallest absolute amount of change that can be detected
by a measurement. For the voltmeter, sensitivity might be expressed in millivolts or
microvolts. Note that these three factors do not necessarily depend on one another. A
device may have high resolution or high sensitivity but may not necessarily meet
accuracy requirements for a particular application. Moreover, a device may have
high sensitivity, but its ability to measure small signal changes may be limited by
other devices in the test setup such as the cables used to make the measurements.

Tester programming is another important consideration. Test programs that are
used to control testers are normally created on general-purpose computers. They
may be derived from design verification vectors, from an ATPG, or from vectors
specifically written to exercise all or part of a design in order to uncover manufactur-
ing defects. When the developer is satisfied that the test program is adequate, it is
ported to the tester.

The tester will have facilities similar to those found on a general-purpose com-
puter, including tape drives, a modem and/or network card, and storage facilities
such as a hard drive. These facilities allow the tester to read a final test program that
exists in ASCII form and compile it into an appropriate form for eventual execution
on the tester. Other facilities supported by the computer include the ability to debug
tester programs on the tester. This may include features such as printing out failing
response from the DUT, altering input values or expect values, masking failing pins
and switching mode from stop on first failure to stop after

n

 failures, for some arbi-
trary

n

.
When the compiled program is needed, it is retrieved from hard disk. The part of

the test program that defines input stimuli and expected response is directed to

pin
memory

. Behind each channel on the tester there is a certain amount of pin memory
capable of storing the stimuli and response for that particular channel. The goal is to
have enough memory behind each tester channel to store an entire test sequence.
However, testers may allow pin memory to be reloaded with additional stimuli and
response from the hard drive. When refreshing pin memory, each memory load may
require an initialization sequence, particularly if the DUT contains dynamic parts.
Some parts may also run very hot, and the additional time on the tester, waiting for
pin memory to be updated, may introduce reliability problems for the part.

Many of the pins on a typical DUT may be bidirectional pins, acting sometimes
as inputs and sometimes as outputs. Therefore, on a general-purpose tester, it must

286

AUTOMATIC TEST EQUIPMENT

be possible to dynamically change the function of the pins so that during execution
of a test a tester channel may sometimes drive the pin that it is connected to, and
sometimes sample that same pin. This and other pieces of information must be pro-
vided in the test program developed by the test engineer. Other information that
must be provided includes information such as voltage and current limits. A subse-
quent section will examine a tester language designed to configure tester channels
and control the tester.

6.2.2 The Dynamic Tester

It is increasingly common for ICs to be designed to operate in applications where, in
order to operate correctly with other ICs mounted on a complex PCB, they must
adhere closely to propagation times listed in their data sheets. In such applications,
excessive delays can be a serious problem. Isolating problems on a PCB caused by
excessive propagation delays is especially difficult when all the ICs have passed
functional test and are assumed to be working correctly. It is also possible that cor-
rect behavior of an IC involves outputting short-lived pulses that are present only
briefly but are nevertheless necessary in order to trigger events in other ICs. These
situations, excessive delay and appearance of pulses at output pins, are not handled
well by static testers. Other challenges to static testers include application of tests to
devices such as dynamic MOS parts that have minimum operating frequencies.

To exercise devices at the clock frequency for which they were designed to oper-
ate, to schedule input changes in the correct order, and to detect timing problems and
pulses, the

dynamic tester

 is employed. It is also sometimes called a

high-speed
functional tester

 or a

clock rate tester

. It can be programmed to apply input signals
and sample outputs at any time in a clock cycle. It is more complex than the static
tester since considerably more electronics is required. Whereas many functions in
the static tester are controlled by software, in the dynamic tester they must be built
into hardware in order to provide resolution in the picosecond range.

The dynamic tester solves some problems, but in doing so it introduces others.
Whereas the static tester employs low slew rates (the rate at which the tester changes
signal values at the circuit inputs), the dynamic tester must employ high slew rates
to avoid introducing timing errors. However, high slew rates increase the risk of
overshoot, ringing, and crosstalk.

2

 Programming the tester also requires more effort
on the part of the test engineer, who must now be concerned not only with the signal
values on the circuit being tested but also with the time at which they occur. The task
is further complicated by the fact that these timings are also dynamic, being able to
change on a vector-by-vector basis, as different functions inside the IC control or
influence the signal directions and logic values on the I/O pins.

The architecture of a dynamic tester is illustrated in Figure 6.2.

3

 The test pattern
source is the same set of patterns that are used by the static tester. However, they are
now controlled by timing generators and wave formatters. The test patterns are
initially loaded into pin memory and specify the logic value of the stimulus or the
expected response. The remaining circuits specify when the stimulus is to be applied
or when the response is to be sampled. The system is controlled by a master clock

BASIC TESTER ARCHITECTURES

287

Figure 6.2

Architecture of shared-resource tester.

that determines the overall operating frequency of the board and controls a number
of timing generators. Each of the timing generators employs delay elements and
other pulse-shaping electronics to generate a waveform with programmable place-
ment of leading and trailing edges. The placement of these edges is determined by
the user and can be specified to within a few picoseconds, depending on the accu-
racy of the tester.

The number of timing generators used in a functional tester depends on whether
it is a shared resource or tester-per-pin architecture. A

shared resource

 tester
(Figure 6.2) contains fewer timing generators than pins and employs a switching
matrix to distribute the timing signal to tester pins, whereas the

tester-per-pin

 archi-
tecture (Figure 6.3) employs a timing generator for each tester pin. Programming the
shared resource tester requires finding signals that have common timing and con-
necting them to the same tester channel so that they can share wave formatters and
pin electronics. The switching matrix in the shared resource tester can contribute to
skewing problems, so eliminating the switching matrix makes it easier to deskew
and thus improve the accuracy of the tester.

4

 Another factor that makes the tester-
per-pin more accurate is the fact that there is always one fixed-length signal path to
the DUT, so the timing can be calibrated for that one path.

Figure 6.3

Architecture of tester-per-pin tester.

Master
clock

DUT

Timing
generators

N × M Switching
matrix

Wave
formatters

Pin
electronics

Master
clock DUT

Timing
generators Wave

formatters
Pin

electronics

288

AUTOMATIC TEST EQUIPMENT

The programming of a tester for a given DUT requires a file containing logic
stimulus values to be applied and expected values at the DUT outputs. However,
other files are required, including a

pin map

 and a file with detailed instructions as to
how the waveforms are to be shaped by the pin electronics. The pin map identifies
the connectivity between the tester and the DUT. The input stimuli and the expected
output responses are stored in tester memory in some particular order. For example,
pins 1 through 8 of the DUT may be an eight-bit data path. Furthermore, this data
path may be bidirectional. When the pins on the DUT are connected to channels on
the tester, it is important that the 8-bit data path on the DUT be associated with the
eight channels that are driving or sampling that data path.

6.3 THE STANDARD TEST INTERFACE LANGUAGE

Tester programming languages have tended to be proprietary. Because testers from
different companies emphasize different capabilities, it was argued that proprietary
languages were needed to fully and effectively take advantage of all of the unique
features of a given tester. A major problem with this strategy was that if a semicon-
ductor company owned testers from two or more tester companies, test program
portability presented a major problem. If the company wanted to use both of these
testers to test a device in a production environment, its engineering staff had to have
experts knowledgeable in the test languages provided by each of these testers. For a
small company, this could be a major drain on assets, and a single-test engineer
might find it difficult to keep up with all the nuances, as well as changes, revisions,
and so on, for multiple-test programming languages.

The Standard Test Interface Language (STIL) was designed to provide a common
programming language that would let test engineers write a test program once and
port it to any tester. It has been approved by the Institute of Electrical and Electronic
Engineers (IEEE) as IEEE-P1450.

5

 Its goal is to be “tester independent.”

6

 This is
achieved by having the language represent data in terms of its intent rather than in
terms of a specific tester.

7

 Thus, it is left to the tester companies to leverage to full
advantage all of the features of their particular testers, given a test program written
in STIL.

STIL provides support for definition of input stimuli and expected response data
for test programs. But it also provides mechanisms for defining clocks, timing infor-
mation, and design-for-test (DFT) capabilities in support of scan-based testing. One
of its capabilities is a ‘UserKeywords’ statement that supports extensibility by
allowing the user to add keywords to the language. STIL was initiated as a tool for
describing test programs for testers, but its flexibility and potential have made it
attractive as a tool for defining input to simulation and ATPG tools. It also offers an
opportunity to reduce the number of data bases. Rather than have several data bases
to capture and hold data and results from different phases of the design, test, and
manufacturing process, STIL offers an opportunity to consolidate these data bases
with a potential not only to reduce the proliferation of files, but also to reduce the
number of opportunities for errors to creep into the process. Already there is a

THE STANDARD TEST INTERFACE LANGUAGE

289

growing interest in adding enhancements to facilitate the use of STIL in areas where
it was not originally intended to be used.

8

An example of usage of STIL is presented here to illustrate its use. The circuit
will be an 8-bit register with inputs

D

0

 –

D

7

 and outputs

Q

0

 –

Q

7

. It will have an
asynchronous, active low clear, an active-high output OE, and a clock with active
positive edge. When OE is low, the output of the register floats to Z.

Example

STIL 0.0;
// 8-bit Reg. with clock and clear
Signals {
CLK In;
CLR In;
OE In;
D0 In; D1 In; D2 In; D3 In; D4 In; D5 In; D6; In; D7 In;
Q0 Out; Q1 Out; Q2 Out; Q3 Out; Q4 Out; Q5 Out; Q6 Out;

Q7 Out;
}
SignalGroups {
INBUS ‘D0 + D1 + D2 + D3 + D4 + D5 + D6 + D7’;
OUTBUS ‘Q0 + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7’;
ALL ‘CLK + CLR + OE + INBUS + OUTBUS’;

}
Spec timingspec {
Category prop_time {
tplh { Min ‘2.00ns’; Typ ‘3.00ns’; Max ‘4.00ns’; }
tphl { Min ‘2.00ns’; Typ ‘3.00ns’; Max ‘4.00ns’; }
tpzl { Min ‘5.25ns’; Typ ‘6.00ns’; Max ‘7.00ns’; }
tpzh { Min ‘4.50ns’; Typ ‘5.50ns’; Max ‘6.50ns’; }
tplz { Min ‘3.45ns’; Typ ‘4.20ns’; Max ‘5.75ns’; }
tphz { Min ‘3.45ns’; Typ ‘4.20ns’; Max ‘5.75ns’; }
strobe_width ‘3.00ns’;

}

}
Selector typical_mode {
tplh Typ;
tphl Typ;
tpzl Typ;
tpzh Typ;
tplz Typ;
tphz Typ;

290

AUTOMATIC TEST EQUIPMENT

}
Timing timing_info {
WaveformTable first_group {
Period ‘50ns’:
Waveforms {
CLR { 0 { ‘0ns’ ForceDown; }}
CLR { 1 { ‘0ns’ ForceUp; }}
OE { 01 { ‘0ns’ ForceDown/ForceUp; }}
CLK { 01 { ‘0ns’ ForceDown/ForceUp;
CLK_edge: ‘25ns’ ForceUp/Forcedown; }}

INBUS { 01 { ‘0ns’ ForceDown/ForceUp; }}
OUTBUS { L { ‘0ns’ X; ‘CLK_edge+tpzl’ l;

‘@+strobe_width’ X;}
H { ‘0ns’ X; ‘CLK_edge+tpzh’ h; ‘@+strobe_width’ X;}
D { ‘0ns’ X; ‘CLK_edge+tplz’ t; ‘@+strobe_width’ X;}
U { ‘0ns’ X; ‘CLK_edge+tpzh’ t; ‘@+strobe_width’ X;}
F { ‘0ns’ X; ‘CLK_edge+tphl’ l; ‘@+strobe_width’ X;}
R { ‘0ns’ X; ‘CLK_edge+tplh’ h; ‘@+strobe_width’ X;}
X { ‘0ns’ X; } }

} // end Waveforms
} // end WaveformTable first_group

} // end Timing

PatternBurst stimuli {
PatList { exercise_part; }

}
PatternExec {
Timing timing_info;
Selector typical_mode;
Category prop_time;
PatternBurst stimuli;

} // end PatternExec

Pattern exercise_part {
W first_group;
// first vector must define states on all signals
V { ALL=00000000000XXXXXXXX; } // clear the reg’s,

// don’t measure
V { CLR=1; OUTBUS=XXXXXXXX; } // release the clear,

 // don’t measure
V { ALL=01100000000LLLLLLLL; } // outputs enabled

THE STANDARD TEST INTERFACE LANGUAGE

291

V { CLK=0; INBUS=FF; OUTBUS=RRRRRRRR; } // all switching
// to high

V { INBUS=55; OUTBUS=FHFHFHFH; } // some switch to low
} // end patterns

��

The first line in an STIL program identifies the STIL version. That is followed by
a comment. Comments in STIL follow the format employed in the C programming
language. A pair of slashes (//) identify a comment that extends to the end of a line.
Comments spanning several lines are demarcated by /* ... */.

Immediately following the comment is a block that identifies the I/O signals used
in the design. Each signal in the design is identified as an In, Out, or InOut. Signals
may be grouped for convenience, using the SignalGroups block. The inputs D0
through D7 to the individual flip-flops of the 8-bit register are grouped and assigned
the name INBUS. In similar fashion the outputs of the 8-bit register are grouped and
given the name OUTBUS. Then, the entire set of input and output signals are
grouped and assigned the name ALL. These groupings prove convenient later when
defining vectors.

The Spec block defines specification variables. The Spec block is assigned a
name, but it is for convenience only; the name is not used in any subsequent refer-
ence. In this example a Category is defined and assigned the name prop_time. Several
categories can be defined and used at different places in the test program. Six of the
variables in category prop_time are propagation delays that will be used later when
defining the WaveformTable. The names of the Spec entries are arbitrary and, in fact,
any number of entries could be used in the Spec block. For example, a user may have
a legitimate reason to define unique propagation times from X to Z, 0, and 1.

Three values, a minimum, typical, and maximum, are assigned to each of the six
variables in the Spec block. A seventh variable called strobe_width has one value
that defines the duration of a strobe measurement on an output. The Selector block
determines which of the Spec values to use. There are four possibilities: Min, Typ,
Max, or Meas. Meas values are determined and assigned during test execution time;
they are not explicitly specified in the Spec information.

The Timing block follows the Selector block. It is given the name timing_info. It
contains definitions for one or more WaveformTables. In the example presented here
there is just one WaveformTable, and it is assigned the name first_group. The first
statement assigns a period of 50 ns to all the test vectors that use first_group. Then,
some Waveforms are defined. The first one is for CLR, the clear signal. The number
0 follows the signal name CLR. It is called a WaveformChar, abbreviated WFC.
Although any character may be used to represent the waveform following the WFC,
it is good practice to use a character that has some recognizable meaning because
the WFC will be used in the ensuing vectors.

A signal may have several waveforms, but each one must have a different WFC.
In STIL a waveform is a series of time/event pairs. In the waveform for CLR the
keyword ForceDown follows the time 0 ns. So, at time 0 a ForceDown event occurs;
CLR is driven low if it had previously been at a high value. If a signal is in the off
(Z) state, it is turned on and driven low. Notice that in the example given above,

292

AUTOMATIC TEST EQUIPMENT

there are two waveforms for CLR that have identical timing, so they could actually
be merged. However, they were kept separate for illustrative purposes.

Merging is illustrated by the waveform for the output enable OE. At 0 ns OE
could switch to either 0 or to 1. Therefore a single WFC 01 represents this time/
event pair, and both possibilities are described on that one line. The first entry,
ForceDown, corresponds to WFC 0. The second entry, following the slash, corre-
sponds to WFC 1. The character string 01 is called a WFC_LIST.

The next waveform defines the behavior for CLK. Like OE, the CLK signal uses
a WFC_LIST. One new thing to note here is the introduction of an event_label defi-
nition called CLK_edge. Labels defined in this way are scoped to the Wave-
formTable in which they are defined. The label is useful in relating subsequent
events to the clock edge. The CLK waveform is followed by a waveform for INBUS.
It also has a rather simple waveform. However, one distinction here lies in the fact
that the waveform applies to all the signals D0 through D7.

The last entry in the WaveformTable is for OUTBUS. Recall that it is the set of
outputs Q0 through Q7. There are seven entries for OUTBUS, and each has its own
WFC. The first entry for OUTBUS has an L as its WFC. At time 0 ns the tester is
told to look for an X on the output. This is simply a way to tell the tester not to mea-
sure at this time. Then, at time CLK_edge + tpzl the tester is told to expect

l

 (the let-
ter

l

), which is a compare logic low window. In the CLK waveform CLK_edge was
defined to occur at 25 ns. So, the tester should start monitoring the OUTBUS at 25
ns + tpzl. Since Typ values were selected by the Selector, and the Typ value for tpzl
was defined to be 6.00 ns, the tester should start monitoring at 31.00 ns. The next
field begins with the @ symbol. The @ symbol is used to refer to present time,
which was defined to be CLK_edge + tpzl in the previous field. So @+strobe_width
is 31.00 ns + 3.00 ns, meaning that the tester should continue to monitor OUTBUS
until 34.00 ns.

Each of the first six entries for OUTBUS corresponds to one of the six entries in the
Spec block. The seventh entry is for those vectors where the output is unknown, and
the tester is instructed not to strobe. The letters

l

,

h

, and

t

 are called events and indicate
a window strobe. The letter

t

 is used when the response is supposed to be high imped-
ance during the entire strobe window. Several other events are defined in P1450.

The PatternBurst block, with the name “stimuli,” specifies a list of patterns that
are executed in a single execution. The example contains one PatList called
“exercise_part.” There could be several pattern lists, with the user choosing different
sets of patterns for different runs. One of the pattern lists could be a common initial-
ization sequence that several designers or test engineers use to ensure consistency
across several test programs. The PatternExec follows the PatternBurst block; it con-
tains the commands that pull together all the information needed to perform a test
run. The PatternBurst entry is required, the other three entries are optional. If there
are multiple entries for Category, Selector, or Timing, then the entry is required in
the PatternExec block to avoid ambiguity. In the example above, these blocks only
had single entries, so they could have been omitted. It might, however, be good cod-
ing practice to include them as reminders for possible expansion of the test program
in the future.

USING THE TESTER

293

We finally come to the list of patterns that will be applied to the DUT. The set of
patterns is given the name exercise_part, the same name that appears in the PatList
that is part of the PatternBurst block. The first line following the open parenthesis
begins with the letter W, it selects the WaveformTable entry that is to be used. The
first_group following the W identifies the entry in the WaveformTable. It is used
exclusively in this small example, but in a large, complex circuit there could be sev-
eral WaveformTable entries. Suppose OUTBUS in the above example were bidirec-
tional. Then there would need to be a WaveformTable entry describing its behavior
when OUTBUS is acting as an output, and another to describe its behavior when it is
acting as an input.

The next entry in the vector list is a comment. A test program, like many other
programs, may take on a life of its own, existing for many years after the original
creator has gone on to some other calling. It is a good practice to identify what is
supposed to be accomplished in each part of a test program, for your benefit as well
as some other individual far in the future, since you are the one who may have to
debug it or modify it to test an ECO (engineering change order) at some future date.

The V at the beginning of the next line defines one vector. The first vector assigns
values to all the inputs and specifies X’s on all the outputs. The tester interprets this
to mean that it is not required to measure the output values. The next vector causes
the CLR to be released. Since the output has not been enabled, the outputs are float-
ing. However, in this example the tester is told not to measure the outputs. On the
third vecor the outputs are enabled and the expected response is listed. Notice that in
the WaveformTable the CLK signal is 0 for 25 ns and 1 for 25 ns when the WFC is a
0. Hence, this set of vectors has a period of 50 ns. It also should be mentioned that if
a signal is not specified in a vector, it retains its last value, so it was not actually nec-
essary to specify CLK = 0 in the fourth vector.

It is beyond the scope of this text to explore all of the capabilities of STIL. The
interested reader can consult the IEEE Standard P1450, which contains, in addition
to the formal specification of the STIL language, many illustrative examples. As pre-
viously pointed out, the language is intended to be independent of any specific tester
architecture. It is possible, of course, that a particular program written in STIL calls
for capabilities beyond that which a particular tester is capable of, but so long as a
tester has the capabilities called for in a particular test program, then it is the respon-
sibility of a compiler provided by that tester vendor to translate the STIL program
into a binary form acceptable to the target tester. If an IC manufacturer has several
different testers, then, in theory, at least, the same STIL test program should be able
to be ported to any of the testers simply by recompiling it. This gives the IC manu-
facturer much greater flexibility in allocating resources as products mature and
needs change.

6.4 USING THE TESTER

Digital testers are used to functionally test ICs and PCBs in order to determine
whether they respond correctly to applied stimuli. But testers can also be used to

294

AUTOMATIC TEST EQUIPMENT

Figure 6.4

Strobe placement.

locate the source of problems, to characterize parts, and to perform speed binning.
Consider the example that was used to illustrate the STIL tester programming lan-
guage. A waveform for the third vector in the example is illustrated in Figure 6.4.
The OE signal switches high at the beginning of the waveform, while CLK switches
low. Any changes on INBUS also take place at this time. At time 25 ns, CLK begins
to switch high. CLK eventually triggers signal changes at the output of the register.
The total elapsed time from the beginning of the change on CLK to the time when
OUTBUS is strobed is determined by the values in Spec block and Selector block.
Although only tphl and tplh are shown in Figure 6.4, there are actually six propaga-
tion times listed in the Spec block.

The PatternExec block selected typical_mode from the Selector block. Therefore
tplh and tphl values are both 3.00 ns. The strobe_width value, from the Spec block,
is given as 3.00 ns. So the tester begins to strobe the OUTBUS at 28.00 ns and con-
tinues to strobe until 31.00 ns. OUTBUS is represented here by a single waveform.
It could be treated collectively, with all eight signals

Q

0

 –

Q

7

 strobed at the same
time. If a shared resource tester is being used, then all the OUTBUS signals would
be driven by the same wave formatter.

If a tester-per-pin tester is being used, strobe placement could be identical for
each of the signals

Q

0

–

Q

7

, like the shared resource tester, or there could be a
unique strobe placement for each signal. With its flexibility, the tester-per-pin might
be programmed to strobe all signals concurrently during one vector; then it could be
reconfigured on-the-fly to individually strobe the signals on another vector when
OUTBUS is being driven by other, unrelated signals. In some proprietary tester pro-
gramming languages, these programming instructions are called

timing sets

(TSETs).

9

TSETs can be used to characterize various properties of a device relative to

parameters such as voltage, temperature, or clock period. The parameter is varied
about some nominal value as a test is applied to the device. An output pin is period-
ically strobed in order to identify when the pin responds correctly and when it
responds incorrectly. A two-dimensional plot called a schmoo is created that char-
acterizes behavior at a particular I/O pin relative to the parameter of interest. This is
illustrated in Figure 6.5, where the schmoo shows pass/fail regions at an output pin

OE

CLK

INBUS

OUTBUS

tphl
tplh

strobe_width

USING THE TESTER

295

Figure 6.5

A schmoo plot.

as a function of applied voltage. As the voltage decreases, the fail region increases.
If the specification for this IC calls for it to function correctly with a 21 ns clock
period at 4.0 V, it would just barely meet requirements. Schmoo plots can take on
many appearances; for example, the PASS region may be bounded on the right,
where the device again fails, yielding an elliptical shape.

When testers apply signals to ICs, they may be programmed to apply logic values
specified in pin memory for the entire clock period, or they may be programmed to
apply the specified value for part of a period and apply some other value for the
remainder of that period. Some commonly used formats include return-to-comple-
ment (sometimes called surround-by-complement, or XOR), return-to-zero, return-
to-one, return-to-high-impedance, and nonreturn. Figure 6.6 illustrates nonreturn
and return-to-one waveforms. Timing generator

TG

1

 is programmed to go high from
25 ns to 30 ns. Timing generator

TG

2

 is programmed to go high from 15 ns to 30 ns.

Figure 6.6

Nonreturn and return-to-one waveforms.

V
C

C 5.0

4.0

3.0

6.0

6.5

18 ns 19 ns 20 ns 21 ns 22 ns 23 ns 24 ns

FAIL

PASS

0 ns 50 ns 100 ns 150 ns 200 ns

TG1

TG2

PD1

PW1

PD2

PW2

296

AUTOMATIC TEST EQUIPMENT

Pin data

PD

1

 and

PD

2

 are identical; a logic 1 in pin memory is followed by a
logic 0, another 1, and then a 0. However, because the timing generators are differ-
ent and the waveform formats chosen are different, the resulting pin waveforms

PW

1

and

PW

2

 are very different. When

PW

1

 goes low, it remains low for 50 ns. When

PW2 goes low, it remains low for 22.5 ns. The timing generators determine when the
signal changes, but the formatter determines its duration.

As mentioned earlier, complex, high-speed funcional testers are used to test ICs
and PCBs to ensure that they operate correctly. But these testers are also being used
to characterize new devices. During design, simulators and other electronic design
automation (EDA) tools are used at great length to predict how a new design will
work, once it is fabricated. However, predicting the behavior of a new technology,
always a difficult task, is increasingly complicated by deep submicron effects that
were often ignored in earlier technologies.10 Not only are cell libraries more difficult
to characterize, but estimating delay in the wiring between cells must take into
account three-dimensional effects that were previously ignored. Guard bands are
used to provide a margin of safety during design, to increase the likelihood that the
device will operate correctly at its specified clock period. Nevertheless, it is becom-
ing increasingly important to measure critical parameters at speed on a tester to
ensure that they respond correctly.

In addition to verifying that a device operates correctly at its specified clock
speed, the tester can be used to determine its maximum operating frequency, as well
as to generate schmoo plots in order to determine how far the voltage can be
dropped before the device fails. Even when the device works correctly at rated
speed, the effects of altering clock speed and voltages on noise and crosstalk are dif-
ficult to predict with EDA tools.

The engineering test station is targeted to the design engineer. Its design goal is
flexibility, in order to allow easy setup of tests, quick change of test parameters, and
easy debug. A device can be characterized and debugged on the station, and when
the designers are satisfied that the device is working correctly, test information accu-
mulated during this phase is passed on to production, where the priority shifts to
maximizing throughput.

One of the parameters that is normally measured on a new device is propagation
time. The specification sheet may call for a signal change to occur at an output pin 8
ns after an active clock edge. The output pin may be schmoo’ed in order to deter-
mine whether it meets the 8 ns propagation time as well as to determine the margin
of error at that pin. After all of the pins are plotted, there is a good database for
determining which, if any, pins may represent problems during production.

When characterizing a device on an engineering test station, what happens if the
device fails to respond correctly at its intended frequency? The first thing that can
be done is to alter the clock frequency. Perhaps the device will operate correctly at a
slower frequency. If the device fails to operate correctly at any frequency, then it is
logical to assume that there is either a physical failure that occurred during the man-
ufacturing process or a design error. If several parts are available and if all of them
fail in an identical fashion, then the logical assumption is that there is a design error
that occurred during either the logic design process or the physical design process.

USING THE TESTER 297

Figure 6.7 Stretch-and-shrink test.

This will require that someone familiar with the logic investigate the response pat-
terns applied by the tester and determine where the defect is most likely to have
occurred. At some point it may be necessary to enlist the support of an E-Beam
prober to shed more light on the problem (cf. Section 6.5).

But, what happens if the device fails when running at its design frequency, but
manages to operate successfully when the clock frequency is lowered? In this case it
would be useful to know when the circuit first responds with incorrect results. This
can be done by using a stretch-and-shrink approach.11 In this mode of operation, all
but one of the test vectors are operated at the slower clock period where the circuit
operates correctly. The first time through the vectors, the clock period for the first
vector is set to the intended design clock period. If the test passes, then the second
vector clock cycle is shrunk and the test is repeated. This is continued until eventu-
ally the test program fails. This is illustrated in Figure 6.7, where DataOut is cross-
hatched. This response may have been induced many vectors earlier by a fault that
caused some register or latch to assume an incorrect value.

With a short period on a single preceding vector, and given that the device
worked correctly when all the clock periods were applied at normal duration, there
is a high likelihood that the incorrect response occurred on the vector with the
shrunken cycle. Recall from Chapter 2, where simulation was discussed, that typi-
cally only a small percentage of elements in a circuit exhibit logic activity on any
given vector. So, knowing on which vector the error occurred can significantly
reduce the scope of the search for the problem. In fact, this knowledge, along with
information obtained from timing analysis (cf. Chapter 7), can often narrow the
search down to just a few critical signal paths. At that point an E-beam can help to
further isolate the problem or confirm suspicions as to what path is causing the fail-
ure. Armed with this knowledge, the logic designer can approach the redesign effort
with greater confidence that the next iteration will be successful.

The stretch-and-shrink test in Figure 6.7 is referred to as the ripple technique.
Other approaches can also be employed. In the domino technique, if the first n test
runs are successful, then the clock period for all of those vectors is held at the

Normal Shrink Normal Normal

Clock

DataIn

DataOut

Failed response

298 AUTOMATIC TEST EQUIPMENT

shrunken value. It might also be effective to use a variation on a binary search
wherein half of the vectors up to the point of failure are run at a shortened clock
period in order to expedite the debug process. It is also possible to reverse the entire
process, shortening all the clock cycles and then lengthening one or more on each
run until the test passes.

The engineering teststation is a powerful tool for characterizing and debugging
new designs. It can also be quite useful when it comes time to redesign the product.
Existing production units of a device can be evaluated to determine how much mar-
gin exists between the specified operating frequency and the target frequency in a
redesigned part. The stretch-and-shrink technique can be used to find those vectors
where the device begins to fail. That information can be used to help calibrate infor-
mation obtained from EDA tools. Conservative design rules may have resulted in a
device that is being operated far below the maximum frequency at which it is capa-
ble of operating.

A successful program for characterizing devices on an engineering workstation
requires stimuli that exercise all of the critical paths inside the device, as well as for-
matting capabilities in order to measure when signals appear at the output pins.
These are part of an AC test strategy. But a device that is plugged into a PCB affects
its environment. It may place an excessive load on other devices such that they are
unable to drive it, or it may have insufficient drive to control other devices. To guard
against this possibility, it is necessary to perform DC tests.

The DC test consists of forcing a voltage and measuring current, or forcing cur-
rent and measuring voltage. This is usually accomplished with the aid of a paramet-
ric measurement unit (PMU). It can be mechanically switched to replace a driver or
detector that is connected to a pin during normal production test operation. The
PMU can force a very precise voltage and measure the resulting current flow, or
force a very precise current and measure the resulting voltage. Measurements per-
formed during DC test include power consumption, opens and shorts, input and out-
put leakage, input and output load, and leakage.12

When characterizing a device, it is necessary to put the device into a state that
permits the desired measurements to be made. A functional program may be run
until arriving at a desired output state. Then the measurement is taken. Alternatively,
a logic designer or test engineer may write a program whose sole purpose is to drive
the circuit into the desired state. For an output leakage test, it is necessary to put the
circuit into a state in which the outputs are tri-stated, then measure IOZ, the current at
an output when it is in the off-state.

Leakage current IIL is measured by forcing a low-level voltage onto an input by
means of the PMU and measuring the current. In similar fashion, leakage current IIH
is measured by forcing a high-level voltage onto an input while measuring the cur-
rent. The high-level output voltage VOH is that voltage which, according to the prod-
uct specification, corresponds to a high level at the output. VOL corresponds to a low
level at the output. VOH is measured by driving the device to a state in which the pin
being measured is on, or high, while VOL is measured when the pin is low. Values for
these parameters are determined such that the outputs can drive several inputs or
loads with adequate noise margin. Guardbands may be established in order to ensure

THE ELECTRON BEAM PROBE 299

that the device operates correctly when driving the maximum number of loads in the
presence of noise and other environmental factors.

6.5 THE ELECTRON BEAM PROBE

When debugging first silicon, the IC tester can apply stimuli and monitor response
in order to determine whether or not the device responds correctly. However, when
the response is incorrect, debugging the IC can be a long drawn-out process. This is
especially true with respect to a system-on-chip (SOC) that may be comprised of
several diverse elements such as CPU, digital signal processor, cache memory,
memory management unit, bus control units, and so on. Some of these functional
units may have been designed in-house, and some may have been acquired from
intellectual property (IP) providers. Some of the acquired units may be soft-core,
acquired as RTL code, whereas other units may be hard-core, with only layout and
functional specification information provided.

When the device does not work, an error signal may not appear at an I/O pin for
many hundreds of clock cycles. When debugging one of these complex devices, it
may be impossible to determine the source of an erroneous signal without some vis-
ibility into the inner workings of the device, particularly when two or more IP mod-
ules are exchanging signals with one another, or even when they are communicating
with units designed in-house.

Physical probing of individual die was once possible, when feature sizes were
two microns and greater. With shrinking feature sizes and rapidly growing num-
bers of transistors, physical probing is no longer feasible. With smaller feature
sizes the die is more susceptible to damage, and capacitive loading from the probe
can distort signals being observed. In addition, the probing process can be
extremely time-consuming, tedious, and error prone because the designer must
visually distinguish a signal line to be probed from among thousands of such lines
that appear nearly identical.

Noncontact probing can be done through the use of the scanning electron micro-
scope (SEM). In this method a die is placed in a vacuum chamber and a focused
beam of electrons is directed at the die while the circuits on the die are in operation.
The beam is normally blanked (cut off), but is unblanked and allowed to impinge on
the die at a time when a voltage sample is desired. When electrons are fired at the
die, regions of high voltage attract the electrons while regions of low voltage repel
them. A collector captures electrons that are repelled from the surface of the die, and
the quantity of electrons captured at a given time is used to estimate the voltage at
the point on the surface where the beam was aimed. If the SEM and the device are
properly synchronized, the SEM can be used to sample voltages at specified points
in several consecutive clock cycles.

Capabilities of the SEM include measurement accuracy of 10 mV with a time
resolution of 100 ps.13 A beam diameter of 0.8 µm can be achieved with a rule of
thumb recommending that beam diameter be approximately W/5, where W is the
width of the interconnections on the die to be investigated.14 The accelerating

300 AUTOMATIC TEST EQUIPMENT

voltage of an e-beam must be limited in order to avoid radiation damage to the
device being observed. On the order of 1 or 2 kV is usually suggested as a safe limit.

The method of estimating voltage by collecting electrons repelled from the sur-
face, called voltage contrast, can be used to create waveforms or complete images.
In the waveform mode the electron beam is pointed at a location on the die and the
waveform at that point is constructed by strobing while the die is clocked through a
number of states. This mode of operation is quite similar to that of an oscilloscope or
logic analyzer. In the image mode a picture of the complete die, or some designated
part of the die, is constructed by scanning an area of interest. By repeating this oper-
ation, several images can be obtained and averaged to minimize the effects of noise
and produce a complete image of voltage activity on the top level of the die.

The use of a CAD (computer-aided design) system enhances the efficiency with
which e-beam is used. The CAD system may contain physical information describ-
ing the die, including the (x, y) coordinates of the endpoints of top-level intercon-
nects. This information can be used to locate particular interconnects on a die and
can therefore be used to help position the e-beam accurately. This integration of e-
beam, in the waveform mode, together with CAD and a source of input test vectors,
then becomes analogous to the printed circuit-board tester. The values on a connec-
tor are obtained by the e-beam system and can be compared with expected values
derived from simulation to determine if the values on the connector are correct.

The e-beam system is not intended to be used as a production tester. It is slow
compared to a conventional tester and may need several hours to acquire enough
information to diagnose a problem. The logic states provided by the e-beam at the
top-level interconnects may not be sufficient to diagnose problems; analog wave-
forms at components underneath the top level may also be required. To analyze a die
that has already been packaged, it is necessary to de-lid the device, and that is poten-
tially destructive.

The e-beam is best used where short, repetitive cycles of operation can be set up.
Nevertheless, it has proven successful for such applications as failure analysis and
yield enhancement. When excessive numbers of devices fail with similar symptoms,
it is reasonable to expect that the same failure mechanism is causing all or most of
the failures. The e-beam may help trace those to design or process errors. If a device
operates successfully at some clock frequency but fails when the frequency is
increased slightly, it may be possible that a single design factor is limiting perfor-
mance and that identification and correction of that one factor may permit a signifi-
cant increase in the clock frequency. The e-beam also proves useful as a research
tool to characterize technology and circuit properties.

One of the problems encountered when using e-beam is the fact that it can be
difficult to determine which nodes should be probed. If an error is detected at an I/O
pin, the fault responsible for the error may have occurred many clock cycles previ-
ous to the clock cycle when symptoms were first detected. An approach to solving
this problem, called dynamic fault imaging (DFI), uses the image mode to build
fault cubes.15 The fault cube (Figure 6.8) is a series of images from successive
machine cycles which are stacked on top of each other to show the origin of a fault
and the divergence of error signal(s) in subsequent image frames as a result of that

MANUFACTURING TEST 301

Figure 6.8 Fault cube.

fault. The first step in DFI is to construct voltage contrast images for good and faulty
die for several clock cycles. Then the good and faulty device images are differenced
to form an image that highlights the areas of the die where different voltage levels
exist. On successive clock cycles the fault effects can then be seen to propagate
through the die and affect increasing numbers of other states.

The DFI method is under computer control and employs special image proces-
sors. It creates a 512 × 512 image in which each pixel (picture element) is resolved
to 8 bits in order to represent a wide range of voltage levels. Pseudocolor lookup
tables are used to false color an image so as to enhance visual analysis. As many as
64K images can be averaged to improve resolution. The system has a MOVIE mode
in which up to 32 images can be displayed in sequence, either forward or backward
in time. A PROBE mode can select the values from the same (x, y) coordinate
position of many consecutive images and use these values to construct a waveform
corresponding to the voltage at that point on the die. In fact, waveforms correspond-
ing to several (x, y) positions can be created and displayed simultaneously in a logic
analyzer format. This kind of integrated design debug system may become routine
as more and more complete systems are integrated onto single pieces of silicon.

6.6 MANUFACTURING TEST

To this point the tester has been considered primarily with respect to how it can be
used to characterize newly designed devices. However, much of the previous discus-
sion on tester programming and measurement accuracy relates directly to any dis-
cussion of manufacturing test. Manufacturing test employs a wide spectrum of
instruments in the ongoing effort to distinguish between good and bad products. It
uses functional testers, but it also attempts to make use of testers that depend on spe-
cial probing techniques, including visual inspection. In this section the first step will
be to examine the overall test environment. From there we will see how individual
test strategies fit into that environment.

302 AUTOMATIC TEST EQUIPMENT

Figure 6.9 The manufacturing test process.

The rule-of-ten guideline introduced in Chapter 1 asserts that the cost impact of a
defective component escalates rapidly as it progresses undetected through the manu-
facturing process. Consequently, the guideline serves as a motivation for detecting
defective components as early as possible in the manufacturing cycle.

Manufacturers of complex digital equipment acknowledge the validity of the
rule-of-ten by putting in place comprehensive test strategies that distribute test
resources throughout the manufacturing process. Testing may begin, as shown in
Figure 6.9, with incoming inspection. At this station, components from vendors may
be tested to ensure that they comply with some minimum set of specifications. Com-
ponents may also be exposed to environmental hazards or physical abuse that could
induce failures during shipping. A second purpose of incoming inspection is to
selectively sort parts. For example, if two or more products use the same IC but one
product uses it in a signal path requiring tighter tolerances or faster parts, it may be
necessary to sort the parts at incoming inspection and route the parts with preferred
characteristics to the design where they are most needed. This is often called speed
binning. A thorough screening may, as a beneficial side effect, influence a vendor to
improve quality control.

Bare-board testing is employed to detect defects in PCBs before they are popu-
lated with components. The object of the test is to verify point-to-point continuity
and to check isolation, including high-resistance leakage, between metal runs on
the board. Bare-board testers generally use self-learning. In this mode of opera-
tion, a tester takes readings between pairs of points on a known good board and
stores the results in a file which becomes the test. Multilayer boards may have any
number of metal interconnection layers sandwiched between insulating material
and connected together by means of through-holes in the insulating material. They
can be tested after each metal layer is deposited so that if defects exist, it is still
possible to fix them.

The contacts for the measurements are made by means of a bed-of-nails fixture.
This is a plate in which spring-loaded probes come into physical contact with metal
on the PCB. Each of these probes is connected to a driver/receiver pair in the tester so
that the probe can either drive a continuity test or monitor the connection between two
points. This is illustrated in Figure 6.10 where each trace is contacted by a probe and
measurements are enabled. Some manufacturers are starting to use visual recognition

Incoming
inspection

Bare
board
test

Functional
board test

System
test Ship

Manufacturing
management

system

In-circuit test

IEEE 1149.1
boundary scan

MANUFACTURING TEST 303

Figure 6.10 Probing traces on a PCB.

systems to detect opens and shorts; however, visual techniques, although capable of
higher throughput, cannot quantify resistance and are not as effective at verifying
conductivity of through-hole plating.16

The boards that pass bare-board test are populated with components. In past years
these boards would often be tested with an in-circuit tester (ICT). The ICT also uses
the bed-of-nails fixture to make contact with electrical points on the board. The board
to be tested is placed on a perimeter gasket and then a vacuum is used to pull the
board down onto the fixture and into contact with spring-loaded nails or contacts. A
wiring harness connects these nails to the tester. When the nails are brought into con-
tact with the board, the tester, under program control, selectively applies signals to
some of the nails and monitors others. In this way the tester can test individual com-
ponents, including ICs, resistors, and inductors used within a circuit.

The ICT is capable of identifying defects introduced during manufacturing.
These defects include missing components, wrong components, components
inserted with wrong orientation, solder shorts between adjacent pins, and opens
resulting from bent pins or cold solder joints. Often several of these defects can be
detected in a single pass through the tester. The ICT then prints out a work order
explicitly identifying and requesting repair of all the defects. Since the ICT is capa-
ble of applying functional tests to integrated circuits, it can also detect failed ICs
which, although checked at incoming inspection, might still fail during the manufac-
turing process from such things as electrostatic discharge or excessive heat.

Note that in Figure 6.9 the ICT shares a box with IEEE 1149.1 boundary scan,
often referred to as JTAG (Joint Test Action Group). With packaging techniques
making IC connections increasingly inaccessible, it became necessary to find new
ways to access connections on the PCB. For this reason the ICT has given way to
JTAG on most manufacturing test floors. JTAG will be described in some detail in
Section 8.6.2.

From the in-circuit tester, the board goes to a functional tester. This tester applies
signals to edge pins and exercises the board as a complete functional entity. Since it
is testing the board as a unit, it can detect faults that the in-circuit tester may not
detect, including faulty behavior caused by excessive delay. Components may be
functionally correct, and individually respond correctly to stimuli, but one or more
of them may respond too slowly as a result of parametric faults. The cumulative

304 AUTOMATIC TEST EQUIPMENT

delays may alter the order in which two or more signals appear at a device. A slow
arriving data or clock at a flip-flop will eventually cause an incorrect value to be
clocked in. The dynamic or high-speed functional tester can also detect signals that
are too slow in arriving at board edge pins. The functional tester has special facilities
for diagnosing fault locations, as well as provisions for margin testing of clock fre-
quency and voltage ranges, features that are useful for detecting intermittents.

After a board has passed board test, either with or without one or more trips to a
repair station, it must next be checked out as part of a system. A complete system is
assembled and exercised in an operational environment. The problems now encountered
include defects resulting from cabling problems, bent pins, high resistance contacts, and
erroneous behavior resulting from cumulative delays over two or more boards.

An important component of modern-day manufacturing environments is the
manufacturing management system (MMS). The MMS records the manufacturing
history of a board during its passage through the production cycle. Information col-
lected on the board includes a history of test results. If a board fails at a particular
test station, the cause is diagnosed, it is repaired, and then it is retested. If a board
repeatedly fails and is tying up excessive resources, a decision must eventually be
made, based on its history, either to continue retesting and repairing it or to scrap it.
Information from the MMS can help in making the decision. By compiling statistics
on types of defects, and when they occur, the MMS can also help to correct manu-
facturing processes that are error-prone. In addition, if excessive numbers of boards
are incorrectly diagnosed, the MMS may be able to provide an indication that the
test for that board must be upgraded.

The MMS can also be used to optimize the overall test strategy. As a product
matures, it frequently becomes less prone to manufacturing defects. If statistics indi-
cate that a board rarely fails the in-circuit test, it may become cost effective to
bypass the in-circuit test and send the board directly to the functional test station. If,
at a later date, the failure rate increases and exceeds some threshold, the MMS can
issue a message noting this fact and recommend that boards be routed back through
the in-circuit tester.

This strategy may, of course, be modified to execute the in-circuit test and omit
the functional test unless a threshold at the functional test station is exceeded. In
either case, the optimum strategy must be to use feedback from the MMS to mini-
mize the overall cost of testing. That may mean reducing the amount of capital tied
up in expensive test equipment or reducing skill levels required to operate the equip-
ment. The data from the MMS must be periodically reviewed to determine if addi-
tional test equipment should be purchased or if it might be more cost effective to
move some mature boards away from a particular teststation in order to make it
available for new products that must be tested.

6.7 DEVELOPING A BOARD TEST STRATEGY

An effective PCB test strategy is one that finds as many defective devices as possible at
the lowest possible cost. The strategy is often flexible, reacting to changing situations

DEVELOPING A BOARD TEST STRATEGY 305

Figure 6.11 Pareto chart.

on the manufacturing floor. Much of that change is dictated by the MMS. IC vendors
may be changed due to unavailability of ICs from the original vendor. Processes on
the manufacturing floor may be changed to reduce cost. These changes could result
in fewer defects, or they could result in more defects. The MMS may spot a link
between a new vendor and greater numbers of defects. Alternatively, changing ven-
dors may correct a problem and result in shifting priorities. What was once a major
problem becomes a lower priority. Another problem that was once lower priority
suddenly becomes the focus of attention. Pareto charts are used to help prioritize
problems. The Pareto chart is a bar chart that displays, along the Y-axis, a parameter
such as number of defects, frequency of occurrence, or total cost of correcting
defects. The vertical bars identify different problems relative to the Y-axis.

Consider the Pareto chart in Figure 6.11. The first column on the left represents
opens that occur during soldering of components onto a PCB. In this Pareto chart it
occurs more frequently than any other defect type. Resources addressing this prob-
lem will result in a greater number of defect-free PCBs than if some other problem
were first addressed. From this chart it might be deduced that solder opens and
shorts can possibly be corrected simultaneously. Some judgment is also required
because, after analysis, it might be determined that it is a simple, easier matter to fix
the problem of missing parts.

The test engineer has at his or her disposal several types of equipment for identi-
fying defective PCBs. Here we consider strategies involving a structural test
employing JTAG or ICT plus the functional board tester. In setting up a test floor,
the test engineer may be required to choose between a functional board test or a
structural test, or the test engineer may adopt both strategies, in which case it is nec-
essary to determine an effective mix of equipment and personnel. The strategy cho-
sen will have a significant impact on manufacturing throughput because boards that
reach a system with one or more defects will have to be debugged in the system. A
complex system represents significant revenue; if one or more systems must be
available at all times to debug faulty boards, then capital is tied up. The object, then,
is to minimize the number of faulty boards that reach the system while also mini-
mizing the cost of equipment and labor.

N
o.

 o
f

de
fe

ct
s

So
ld

er
 o

pe
n

So
ld

er
 s

ho
rt

B
ad

 p
ar

t

M
is

or
ie

nt
ed

W
ro

ng
 p

ar
t

M
is

si
ng

 p
ar

t

306 AUTOMATIC TEST EQUIPMENT

Figure 6.12 Test strategy.

The structural test, as pointed out, is very efficient at finding manufacturing
faults; it requires less skill to operate, and test programs are easier to prepare and can
be prepared more quickly. In terms of cost of equipment, the JTAG/ICT test is usu-
ally cheaper (but an ICT fixture can prove to be a major expense). On the other hand,
the functional board tester provides an environment more closely resembling the
environment in which the board will ultimately operate. With a good test program, it
will find all of the faults that the structural tester will find as well as performance
faults that the structural tester will not find. These additional faults are likely to be
those that are most difficult to find when a board is plugged into a system.

The types of testing strategies employed are closely related to the volumes of
boards manufactured, the number of defects per board, the amount of time required
to diagnose and repair defects, and the cost of labor. A common practice is to send
boards through the structural tester in order to find the more obvious problems, and
then send the boards through the functional board tester (FBT), as illustrated in
Figure 6.12.

This strategy uses the structural tester to good advantage to find the most obvious
faults at lowest cost; then a functional test is used prior to testing the PCB in a sys-
tem. If there is high yield at the structural tester, meaning that most faults are found
and removed at that station, then most boards will pass at the functional board tester
and several structural testers can be used for each functional board tester. If yield
from the structural tester is very high, say in excess of 98%, and the system is rela-
tively inexpensive in comparison to a functional board tester, then it may be more
economical to omit the functional board test station. Faulty boards that escape detec-
tion at the structural tester may be debugged directly in the system. Factored into
this approach, of course, must be the cost of more highly trained technicians to
debug boards in a system.

Variations on this approach can be employed. If very few PCBs coming from
manufacturing are defective, then it may be more economical to test directly at the
functional board tester and send failing boards back to the structural tester for diag-
nosis. After a board has visited the structural tester, if it still fails at the functional
board tester, then it might be debugged at the functional board tester.

If it is decided that only one of the two test strategies is to be employed, then the
specific objectives of the manufacturing environment must be considered. It is gen-
erally accepted that the structural tester can be brought on-line more quickly. If
faulty boards coming from the tester are not a problem, either because they can be
tested in the system or because they can be discarded if the problem is not quickly

ICT

Repair

FBT

Repair

System
test

THE IN-CIRCUIT TESTER 307

isolated, then the structural tester is probably a good approach. If there are a large
quantity of identical boards for which test programs are easily written, or if the PCB
must satisfy critical timing requirements, the functional board tester may be the best
choice. Regardless of the strategy chosen, the ultimate goal is to limit the number of
defective units that reach system test. Diagnosis of faults in complex systems is
extremely difficult, hence costly, and there is great economic incentive to limit the
number of faulty units that reach system test.

Trade-offs like those discussed for structural test and functional board test also
exist when testing components. In this case, though, it is a trade-off between testing
die at wafer sort and testing the packaged die. The test at wafer sort is a test of the
individual die before they are cut from the wafer. This is often a gross test whose
purpose is to identify devices that are clearly dead. The die are marked to indicate
whether they passed or failed the test. Those that fail are immediately discarded and
those that pass are packaged. Then a more comprehensive package test is performed
to ensure that the packaged IC is free of defects.

Wafer sort is directed toward identifying as many defective die as is reasonably
possible before incurring the expense of packaging them. There are many die on a
wafer, and a 70% yield implies that about a third of them will be defective. In addi-
tion, many of those that are defective will fail very early in the test, so it makes sense
to apply a brief test that quickly identifies most of those that are defective and dis-
card them before the packaging step is performed. A complete functional test at sort
may not identify many more defective die, while subjecting the wafer to a much
longer test time.

After the die are cut from the wafer and packaged, a complete functional test can
be applied. Even though individual die have been tested while still a part of the
wafer, defects can creep in during the packaging process. So, at this stage, before the
packaged ICs are shipped to the customer, a complete test of the packaged ICs is
performed. Defects that occurred during the assembly process, as well as those
faulty die that escaped detection during wafer sort, should be detected here, assum-
ing the fault coverage is adequate.

6.8 THE IN-CIRCUIT TESTER

The third step in Figure 6.9 offers two approaches. The test at this stage may be
performed by an in-circuit tester (ICT) or it may be performed by accessing special
built-in circuits that support the IEEE 1149.1 standard. For many years the ICT was
commonplace on test floors. The dual in-line packages (DIPs) had leads that were
physically accessible and the leads were typically 0.10 in. apart. A bed-of-nails fixture
came into contact with the PCB, and many manufacturing defects could be diagnosed
and repaired quickly in a single pass through the test. This early fault detection can
reduce the need for expensive equipment, it can reduce the diagnostic skills required
on the part of operators, and it can lower the work-in-process inventory levels.

In recent years, more complex packaging methods have made it virtually impos-
sible to physically access signals on the PCB; as a result, a Joint Test Action Group

308 AUTOMATIC TEST EQUIPMENT

Figure 6.13 The guard circuit.

(JTAG) developed a standard that was eventually accepted by the IEEE (IEEE
1149.1). This will be discussed in Section 8.6.2. A problem with IEEE 1149.1 is the
fact that not all ICs support this standard. There is an incentive for PCB manufactur-
ers to support it, but IC manufacturers sometime see it as a cost burden.

The ICT physically probes individual components on the PCB by means of the
bed-of-nails and makes use of libraries of tests for individual components. The ICT
is able to measure resistances and verify functionality of devices while they are sol-
dered in-place on the PCB. Capacitors can also be tested for shorts. During the test,
some devices are backdriven, so tests must be applied for a short duration so as not
to damage components while testing other components. When one or more devices
is determined to be faulty, a diagnostic message is printed outlining the problem(s)
detected, and a work order is issued to repair the board. This approach significantly
reduces the cost of initially preparing tests at the board level, as well as the cost of
debugging the test, and then, after the test is certified to be correct, the cost of diag-
nosing and repairing faulty boards.

A functional test can be applied to an IC on the PCB by bringing the bed-of-nails
fixture in contact with the board and selectively overdriving individual ICs with
large currents while monitoring the IC outputs for correct response. The measure-
ment of resistances makes use of a guard circuit.17 This circuit (see Figure 6.13)
employs an op-amp. A known voltage Ei is applied through a precision resistor Ri.
The op-amp amplifies the voltage at the (−) terminal and reverses its polarity as it
attempts to minimize the voltage difference between its inputs. With a high-gain op-
amp the voltage difference is negligible, there is negligible current flow through the
op-amp, and the current through Ri is equal to the current through Rf , so the follow-
ing results are obtained:

Ei/Ri = Ix = Eo/Rf

Since Ei and Ri are known, Rf can be computed by measuring Eo.
Advantages that have been cited for in-circuit testing include:

Test programming is simplified.

Common manufacturing errors are rapidly detected and diagnosed.

Rf

Eo
Ei

Ri

A
−

+

THE IN-CIRCUIT TESTER 309

All (or most) faults can be detected in a single pass through the teststation.

Test equipment is cheaper and easier to use.

Test revision due to design changes is usually simpler.

Analog components can be tested.

When forcing voltage levels on IC inputs, the outputs of devices that normally
drive the IC are backdriven. This operation can damage the devices as it tests them.
Failures can be caused by current densities, and temperature excursions can be
immediate or cumulative.18 The high currents used with in-circuit testers can cause
failure in poor wire bonds, but, interestingly, this may be viewed as a desirable side
effect since it may precipitate failure of a potentially unreliable bond. Backdriving is
a more serious problem when, after a component is tested, it is then backdriven and
damaged while testing another component. It is recommended that testing proceed
from outputs to inputs in order to test devices after they are stressed. Furthermore, it
is recommended that backdriving of low-output impedance devices be avoided.

In-circuit testers are provided with libraries of tests for the more commonly avail-
able IC types. However, a test from the manufacturer’s library may not be usable
because of the manner in which a device is used in a circuit. For example, if an out-
put from a device directly drives one or more of its inputs, that input may become
uncontrollable from a test in the library and may necessitate writing a modified test.
Clear and set lines, as well as chip select lines, may be tied to power or ground, thus
making them uncontrollable.

Precautions may have to be taken even when the test can be applied as it exists on
the library. Clock lines on flip-flops and complex LSI devices must be protected
from transients which can occur when switching large currents.19 Buses should
receive special attention. All devices driving a bus should first be tri-stated to verify
that none of the outputs is faulted in such a way as to pull the bus to a low or high
value. Then each device can be tested individually while other devices connected to
the bus are inhibited. The inhibit technique can be useful for other devices beside
those with tri-state outputs. For example, if the output of a device loops back on
itself through a NAND gate, then that feedback can be inhibited by forcing another
input of the NAND to a 0.

The in-circuit tester requires a large number of connections from the board under
test to the tester; it may require several hundreds or even thousands of wires. The
number of wires is held down by assigning a single probe to each net, regardless of
how many inputs and outputs are connected to it. At the tester this probe is con-
nected to both a driver and a receiver, which are electronically switched depending
on whether the probe is presently driving an input or monitoring an output.

The use of a single probe at each net has an additional advantage in that it
increases the probability of detecting an open on a PCB. Consider the net illustrated
in Figure 6.14. Suppose that terminals 1 and 2 are connected to tri-state outputs and
that terminals 3, 4, and 5 are connected to IC inputs. If a single nail is used and
placed in contact with terminal 1, then an open between terminal 1 and 2 will be
detected when terminal 2 is monitored and an open will be detected between termi-
nal 1 and any of 3, 4, or 5 whenever any of them is to be driven.

310 AUTOMATIC TEST EQUIPMENT

Figure 6.14 Bus with multiple drivers and receivers.

In-circuit testing is not a panacea for all testing problems. It does not detect
timing problems. A board may pass the test at an in-circuit station and still fail to
perform correctly when plugged into a system. Some devices cannot be backdriven.
Others, such as complex VLSI devices, require longer backdrive times, and the dura-
tion required may exceed safe limits. Failures that appear at a customer’s site are fre-
quently more subtle and less likely to be diagnosed by the in-circuit tester. It is
possible that a defective device may cause misleading symptoms; it may pass the in-
circuit test but adversely affect another device driving it during actual operation.
Shorts between functionally unrelated runs on printed circuit boards may affect
operation but go undetected by the in-circuit tester.

The manner in which the circuit board is packaged may prevent it from being
tested by the in-circuit tester. A board may contain more nets than the ICT can
control. If a board is populated on both sides or if for some other reason nodes are
inaccessible, then the in-circuit tester cannot be used. Products that are designed for
military use require conformal coating that makes their nodes inaccessible to the in-
circuit tester. Some circuits are enclosed within cooling units that make them
inaccessible. Dense packaging can make in-circuit test impractical, and some cir-
cuits are so sensitive that the capacitance of the in-circuit probe will cause the circuit
to malfunction.20 Future packaging practices, such as (a) complete elimination of
boards and (b) three-dimensional wiring, may further restrict the applicability of in-
circuit test. For all of these reasons a manufacturing strategy will often require a mix
of ICTs and functional testers, as illustrated in Figure 6.12.

6.9 THE PCB TESTER

The growing pervasiveness of digital logic products and their growing complexity,
as well as the increasing cost of testing and the need to reduce this cost, has, ironi-
cally, sometimes made it necessary to invest more capital in test equipment in order
to reduce the overall cost of testing. The objective of improved test equipment is to
increase throughput by providing a better test, one that can

Provide high-fault coverage

Run on the tester

Provide good diagnosis

1

2

3

4

5

THE PCB TESTER 311

Clearly, a test must provide high-fault coverage. To invest several million dollars
in test equipment and highly skilled personnel, and then attempt to distinguish
between good and faulty PCBs with a test that has low-fault coverage, can be an
exercise in futility, with unacceptable numbers of tester escapes. The ideal goal of a
test is to identify specific failed components on a PCB. However, even identifying
the existence of a problem, such as a signal path with excessive timing, can save
time because it eliminates the need to isolate the problem to a specific board later
when testing a complete system.

High-fault coverage, as we have seen in previous chapters, requires good control-
lability and observability. Controllability may be improved if the functional tester,
like the ICT, can backdrive internal points in a circuit. Observability in a PCB can be
enhanced through the use of test points. A test may be able to take advantage of
socket-mounted ICs that can be removed. With the IC removed, individual pins for
that IC become accessible and can be controlled or observed to improve fault cover-
age and diagnosis.

Printed circuit-board (PCB) testers, like their IC counterparts, are able to create
and apply waveforms that are controlled and shaped by pin electronics and format-
ters. This makes it possible to test PCBs that are functionally the same, but have dif-
ferent timing, using TSETs to compensate for the differences in timing. Complex
clock and data patterns can be applied to test not only for incorrect logic response
but also for PCBs with excessive delays and missing pulses. However, as we will
see, the main feature that distinguishes PCB testers from IC testers is the related
hardware that permits the tester to diagnose problems within the board.

6.9.1 Emulating the Tester

High-fault coverage is dependent on the quality of the stimuli, and the ability of the
stimuli to take advantage of the controllability and observability of the circuit being
tested. However, it is important to note that fault simulation results can be signifi-
cantly affected by TSETs. A fault simulator can only register detection of a fault if it
causes the faulted circuit to differ from the good circuit during the time when an out-
put is being strobed and only if the faulted and good circuits are stable during that
period. Therefore, the architecture of the simulator must reflect the architecture of
the tester.

This is illustrated in Figure 6.15, where the functional tester is contrasted with
the fault simulator. The drive and detect circuitry in the tester use information in the
TSETs to schedule primary input changes at the correct time and check for fault
detection on primary outputs at times when specific signals are expected. The fault
simulator’s stimulus or vector file corresponds to the logic 1s and 0s in the tester’s
pin memory, or drive RAMs.

Just as the tester’s detect electronics can be programmed to strobe an output at
some specific time, the fault simulator must be able to strobe the output of its circuit
model at the same time in order to determine the response of the fault-free circuit as
well as to determine if any fault detections occurred. Schmoo plots can be generated
during characterization to determine where output signal changes and pulses will

312 AUTOMATIC TEST EQUIPMENT

Figure 6.15 Simulation environment versus tester environment.

occur, and both the fault simulator and tester can be programmed to detect not only
solid failures but also delay faults.

6.9.2 The Reference Tester

Test stimuli for automatic test equipment can be obtained either from test patterns
written by circuit designers and/or diagnostics engineers, or from an ATPG, or from
some combination of these sources. The test response can be obtained either by simu-
lating the test stimuli or by running the test stimuli on a reference board and monitor-
ing response. The responses from the reference goard, also called the known good
board (KGB) or “golden” board, are recorded in a data file and then used as a stan-
dard of comparison for production boards. An alternative approach is to use a tester
that can run a test simultaneously on two boards, one of them being the KGB. Then, if
there is a miscompare during the test, it is assumed that the production board is faulty.

The KGB approach has the advantage that a test can be written very quickly, with
a test for a logic board sometimes being operational within one or two days. How-
ever, the approach has some pitfalls, the most obvious being the need to ensure that
the KGB is initially free of defects. If running comparison test on two boards simul-
taneously, the KGB must be maintained in fault-free condition. It may be difficult to
hang onto a KGB used for comparison purposes if a complex system, representing a
large source of revenue, cannot be shipped to a customer for lack of a circuit board.

When using a KGB, it is necessary to initialize all memory elements on the board
to a known value at the start of a test and keep the board in a known state during the
test. Random patterns used as test stimuli can create races and hazards, causing
unpredictable state transitions, and result in miscompares on boards that are actually
good. The failure to initialize a single memory element may go unnoticed for several
months if the element is biased to come up in the same state every time. Then, a sub-
tle manufacturing process change, such as rerouting a wire, may change the out-
come of a critical race and produce erroneous results several months after a test was
thought to be stable.

CONTROL OBSERVE

Stimulus Response

Expect
RAMs

Fault Simulation

Drive
electronics

Circuit
under

test

Detect
electronics

Drive
RAMs

Input
timing

Output
timing

Simulation
model

Tester

THE PCB TESTER 313

When using a KGB, it is difficult to provide a qualitative measure of a test, since
the estimate of test quality is usually derived from fault simulation. One solution to
this problem is to use two KGBs, insert a fault in one of them, and then run the tests
to determine if the inserted fault was actually detected. After this is performed for
some sufficiently large and representative sample of faults, a fairly accurate measure
of fault coverage can be obtained. It is, however, time-consuming and could cause
permanent damage to a KGB. Opens are usually harmless to insert, and excessive
delays can be emulated with capacitive loading, but inserted shorts could cause a
KGB to no longer be a KGB. Furthermore, it is usually not known how the results
are affected by engineering change orders. It is also difficult or impossible, when
using VLSI components, to emulate many of the faults that occur inside the chip.

6.9.3 Diagnostic Tools

A useful diagnostic tool employed during functional test is the guided probe. It is
used when an error is detected at a board edge pin or internal net that is being moni-
tored. Upon detection of an error the guided probe is used to isolate the source of the
error. This can be accomplished by either manually or automatically probing
selected points on the circuit board. When probing is performed manually, a display
device instructs (guides) the operator to contact specified points on the circuit board
with a hand-held probe. Automatic probing can be accomplished by means of a bed-
of-nails fixture or by a motor-driven probe. The automatic probe requires that the
tester have a data file with information on the X, Y coordinates of each pin of each
chip on the board relative to a reference point (usually at one corner of the PCB).

The probing operation starts with the board edge pin or internal net at which
the tester detects an erroneous signal. From the data base that describes the physi-
cal makeup of the board, the tester determines which IC drives the output pin. The
tester then

1. Determines which inputs on that IC control the value on the erroneous output.

2. Directs the guided probe to an input of the IC.

3. Runs the entire test while monitoring the values on the input.

4. Repeats steps 2 and 3 for all inputs that affect that output.

If the tester detects an error signal on the output of an IC but does not detect an
error signal on any of its inputs, the IC is identified as being potentially at fault. If an
erroneous signal is detected on an input at any point during application of the test,
then it is assumed that the error occurred at some device between the device pres-
ently being probed and the board inputs. Therefore, it is necessary to again back up
to the IC that is driving the input pin on the IC currently being checked. This is done
until an IC is found with an incorrect output but no incorrect inputs.

The guided probe can be very efficient at locating faulty components. It can help
to substantially reduce the skill level required to detect and diagnose most faults on
a circuit board because, in theory at least, the operator places the probe on IC pins in
response to directions from the tester and then, when the tester detects an IC with a

314 AUTOMATIC TEST EQUIPMENT

Figure 6.16 Time-dependent data transfer.

wrong output but correct inputs, it instructs the operator to replace that IC. However,
it is not foolproof. Consider the circuit of Figure 6.16.

Two tri-state registers are tied together at their outputs and are connected to the
inputs of a third register. Register R2 is held in the high-impedance state. Register
R1 is enabled for a brief time during the middle of a clock period. While it is
enabled, data from R1 is clocked into R3. If erroneous data is found in R3 by the
guided probe, it examines the inputs. If it examines the inputs at the end of the clock
period when R1 and R2 are both at high impedance, it may conclude that R3 is
faulty when, in fact, R3 may have received faulty data from R1.

Notice in the previous paragraphs that a device was declared to be faulty if its
output had an error signal but its inputs were correct. In practice, however, it is not
quite that simple. If an IC is driving another IC, and the net which interconnects
them is SA0 or SA1, it is possible that one of several equivalent faults may have
caused the erroneous signal. A fault may exist in the IC which drives the net, or a
fault may exist in an IC whose input is connected to the net.

With three or more devices connected to a single net, as in Figure 6.17, resolution
of the problem becomes more critical because, if devices are replaced until the board
passes the test, a large number of good devices may be unnecessarily replaced
before the failing device is discovered. This not only entails several trips to the
repair station, but also several passes through the tester, and the entire process of
debug and diagnosis may have to be repeated each time. In the meantime, each
device removed and replaced increases the possibility of irreparable damage to the
board, and there is no assurance that the faulty device will be found.

Figure 6.17 Isolating a failing IC.

R1

R2

R3

En

En

THE TEST PLAN 315

To help resolve this problem, an electronic knife can be employed.21 Its purpose
is to locate faults internal to a device after the guided probe has identified a net
with an erroneous signal. It is capable of employing both DC tests and AC ratio
measurements. DC testing measures node resistance by forcing a DC current and
measuring the change in DC voltage. If DC tests do not reveal the cause of the
problem, then AC ratio measurements are applied. Current is again injected and
voltage measurements made at each device connected to the failing net. The device
with the lowest impedance is diagnosed as being at fault. This diagnosis assumes
that the voltage on a node is controlled by the lowest impedance, and the device
controlling the failing net is bad. Success of this measurement technique also rests
on the accuracy of the voltage measurements, which in turn depends on the integ-
rity of the test probes, including their physical geometry.

6.10 THE TEST PLAN

A functional board tester requires several files in order to test a circuit board. The
data in these files can be classified as test stimuli or diagnostic data. The test stimuli
defines the vectors that are applied to every board and can be broken down into data
that describe the board test environment and data that define the actual stimuli to be
applied. Data that are accessed in response to detection of an error is diagnostic data.

One of the first files generated for a test program is the pin map. This file defines
a mapping between I/O pins on the board under test and digital channels on the
tester. Its purpose is to ensure that drivers and receivers at the tester drive or monitor
the correct signals on the board under test. When test plans are written using sym-
bolic names, these symbolic names will be linked to corresponding channel num-
bers. It is also necessary to define voltage levels for logic 1 and logic 0, as well as
voltage ranges or tolerances, since these values will vary depending on the technol-
ogy used. In addition, they may vary if it is required that a board be tested at operat-
ing margins. A board that normally operates at 5.0 V may be tested at 4.5 V and
5.5 V to determine if it can operate correctly at these voltage extremes. Intermittent
errors can sometimes be induced at these marginal voltages.

If debug facilities such as the guided probe and electronic knife are available,
then effective use of these resources require that the tester have knowledge of each
physically accessible IC pin and test points, including their physical location and
the expected logic values for each input vector applied. As with edge pins, the
tester may require information defining the probe voltage levels corresponding to
logic 1 and 0.

A circuit interconnection file is necessary if a guided probe is used to trace
error signals from an output pin back toward board inputs. The interconnection file
describes all connections between ICs. A second file that is useful in conjunction
with the guided probe is one that lists all inputs that affect each output of each IC
on the board. In a circuit such as that depicted in Figure 6.18, the middle input to
U1 was supposed to be a 1, but a 0 was detected by the tester. Rather than probe all
of the inputs to U2, it is only necessary to probe those inputs that are in the cone of

316 AUTOMATIC TEST EQUIPMENT

Figure 6.18 Optimizing guided probe operation.

logic that affects U1. This file reduces the number of measurements required and
thus cuts down on the number of probe errors. This is particularly important when
probing with a hand-held probe, on a densely populated board, since such boards are
especially susceptible to misprobes.

Fault dictionaries (cf. Section 7.7.10) were once a popular approach to debugging
PCBs. However, the immense amount of data required to diagnose failures in
present-day PCBs makes it impractical to employ this approach for any but the
smallest circuits. For PCBs that use large ICs, simulation is often impractical. In
order to compile a response file for internal nodes, it may be necessary to employ
response learning by capturing circuit response at each internally accessible node
for the entire duration of the test.

This can be accomplished using the same method that is used to probe the PCB
when attempting to diagnose the cause of failures. A probe is brought into contact
with each internally accessible node, and the test is run in its entirety. Response is
captured and stored at the end of each clock period, to be later used as part of the
diagnostic operation. Caution is required here. If simulation is used, unitialized
nodes or nodes whose values are indeterminate because of races or hazards can be
identified by the simulator. However, capturing response by probing internal
nodes during each clock period may result in recording unstable values that differ
from one PCB to the next, or from one lot to the next. Good communications
between the design team and the test team are important in resolving problems
related to initialization.

6.11 VISUAL INSPECTION

Up to this point we have considered testing in the context of applying stimuli and
monitoring response. However, many defects can be detected by visual inspection. It
was estimated that in 1997 approximately 40,000 people were employed to visually
inspect PCBs for errors.22 Unfortunately, the track record for visual inspection by
humans has been rather poor. When two or more people inspect the same PCB under
identical conditions, they tend to agree less than half the time. As a result, other
inspection methods are being developed to improve on this record.

U11/0

U2

VISUAL INSPECTION 317

Automated optical inspection (AOI) has been used effectively. It offers better consis-
tency than humans, who are prone to errors due to fatigue and boredom. AOI captures a
visual image of a PCB and stores this in computer memory. Then, production PCBs are
scanned and the image is compared to the stored image. While it is not susceptible to
errors that humans are prone to, it is nevertheless limited to line-of-sight inspection. It is
also susceptible to changes in reflection, possibly caused by boards that are warped or
by residues remaining on the PCB, which can cause a high false reject rate.

Infrared thermography is another method being used for visual inspection.23

Scanning cameras detect invisible infrared radiation emitted by an object or group of
objects during test. Electro-optics in the scanner convert this radiation into video
signals for display on a monitor. A 256-color palette permits identification of the
temperature of the object being scanned. Since failure rates increase exponentially
as temperature rises, infrared scanning can detect not only failures, but potential reli-
ability problems at nodes where the circuit responds correctly but may be subject to
possible imminent failure due to elevated temperatures.

An advantage of scanning cameras over other means of measuring temperature,
such as the use of thermocouples, is their ability to measure temperature without the
need for physical contact. Not only does this speed up the measurement process, and
make it possible to examine a greater number of nodes, but scanning does not con-
duct heat away from a junction while the temperature is being read. Temperature
accuracy for the infrared thermography cameras is reported to be within ±2°C. In
addition to its use for spotting elevated temperatures that may indicate the existence
of defects or reliability problems, the data can also be used to suggest redesign in
areas of the PCB where everything works as intended, but the circuit runs too hot
because of the proximity of devices to one another.

Another technique being used for visual inspection is X rays. One advantage of
automated X-ray inspection (AXI) is its ability to see through a PCB and thus
inspect both sides of a PCB simultaneously. This has obvious advantages when both
sides of a PCB are populated with components. Energy levels of the X rays are cho-
sen so as to be able to pass through materials such as silicon and copper, but be
absorbed by solder. Thus, the X rays are able to penetrate such things as RF shields.
A major application of AXI is the inspection of solder joints. A ball grid array
(BGA) contains many small balls of solder on the underside of the chip. When the
chip is placed on the board, the solder is reflowed, causing connections to be made
to the PCB. Problems that can occur with the reflow process include missing solder,
insufficient solder, improper solder placement, and solder bridges.24

The image created by an X ray is a dark round circle where the solder appears. If
two solder balls short out during reflow, the solder bridge between the two balls is
dark. If an IC is not precisely placed on a PCB, the solder will not line up perfectly
with the pads on the PCB. In either of these cases, computer enhancement of the
image generated by the X ray will reveal the problems. Solder voids can also be iden-
tified. These occur when volatile compounds are trapped inside the solder. During
solder reflow the compounds vaporize and pop through the solder, producing the
voids. AXI can also detect missing or misaligned components, as well as incorrect
orientation of polarized capacitors. Some AXI systems can have difficulty identifying

318 AUTOMATIC TEST EQUIPMENT

opens caused by a failure of the solder ball to make contact with the pad. In general,
hairline cracks can be difficult for the AXI to detect.

AXI systems usually can only take an image of part of a PCB. A computer can
then evaluate the acquired image against a stored image to determine if there are any
problems. Then it can automatically reposition the PCB for the next image. Some
systems can move the PCB up or down relative to the X-ray source. This causes a
change in magnification of the PCB. The PCB can also be rotated so that oblique
views of a PCB can be obtained.This permits examination of interior plated-through
connections.

Yet another method for detecting faults is time-domain reflectometry (TDR). It
can be used to determine where a signal pin is open or shorted and to measure the
length of an electrical path.25 A digital sampling oscilloscope (DSO) equipped with
a TDR module is used. The TDR module generates a voltage edge with a fast rise-
time, and the DSO records that edge and the signals reflected back to the TDR.
These reflections constitute a waveform that can be stored and later recalled during
testing to compare with waveforms obtained at suspect nodes on a PCB. Figure 6.19
contains waveforms taken under different circumstances.

The probe tip contact point identifies the time at which the probe tip causes some
of the signal to be reflected. However, most of the signal is reflected at the end of the
signal path. The distance of the signal path can be measured using half the time from
the probe point to the end of signal. Half the total propagation time is 230 ns. Using
1.4 × 108 m/s as the velocity of propagation in copper yields a distance of 16.1 mm
from the signal pin to the end of the signal path. A waveform for a failing unit is also
illustrated in Figure 6.19. The energy is reflected from an open in the substrate much
earlier than expected from the signal in the fault-free circuit. The point at which the
reflected signal starts to rise can help to pinpoint the location of the open in the cir-
cuit. Waveforms can be obtained from unassembled substrates to further help in iso-
lating opens.

Figure 6.19 TDR comparison of waveforms.

0.05

0

−0.05

−0.10

−0.15

−0.20

−0.25

−0.30
0 200 400 600 800 1000

Correlation unit

Substrate

Probe tip

Failing unit

V
ol

ta
ge

 (
V

)

Time (ps)

Probe tip contact point

End of signal
pin path

TEST COST 319

6.12 TEST COST

In coming chapters we will examine methodologies for designing circuits so as to make
them easier to test. We end this chapter with some data that give a breakdown on test
system cost and follow that with some suggestions for reducing the cost of device test.

In a study published in 1995, Hewlett-Packard looked at all of the factors that con-
tributed to total system test cost. Their cost breakdown findings were as follows:26

25% Purchased hardware
12% Purchased software

22% Labor cost of software development

12% Labor cost of hardware development

10% Fixturing

19% Other

A conclusion of the Hewlett-Packard study was that the cost of hardware, how-
ever expensive, was only a fraction of total test cost. Suggestions for reducing the
cost of device test include the following:27

1. Obtain a system with high calibration stability.
2. Include test modes in the circuit under test.
3. Standardize on key suppliers.
4. Use optimum program development tools.
5. Optimize test programs.
6. Upgrade system components (e.g., CPUs), when possible.
7. Use dual test-head systems if possible.
8. As products mature, reduce test program length.

Some of the suggestions are obvious. Others, such as item 2, will be discussed in the
following chapters. Some of the items directly touch on cost of ownership. For
example, if throughput can be enhanced by means of newer, faster, or more flexible
equipment, overall system cost can be amortized over many more devices to be
tested, thus reducing test cost per unit. Optimizing test programs may not be so
obvious. The goal is to find defective devices as soon as possible. That is where fault
simulation comes in. If fault simulation reveals that one test is more effective than
another for finding faults, that test should be run first. The goal is always to find
defective devices as early as possible in the test cycle. Eventually, as indicated by
item 8, the less effective test may eventually not be needed at all as products and
processes mature.

6.13 SUMMARY

Tester architectures represent a complex and ever-changing field. It is impossible to
do justice to such a diverse topic in a brief chapter. In addition to tester-per-pin

320 AUTOMATIC TEST EQUIPMENT

testers, there are also sequencer-per-pin testers, which are more capable, more elab-
orate, but also more expensive. In addition, the ongoing quest to make ICs smaller
and more dense has resulted in increasing numbers of ICs that contain memory and
analog functions in addition to digital circuits. Like the digital circuits, these memo-
ries and analog circuits must be tested.

Manufacturing processes constantly evolve, putting more circuits on a given die
size at the same, or lower, cost. However, this concentration of circuitry exacerbates
the test function. The net result is that now the cost of test may consume half or more
of the total cost of an IC by the time it is shipped. This cost includes nonrecurring
expenses such as the testers and the cost of fixures. Recurring costs include the cost of
running the test programs and diagnosing problems. The high skills levels required to
run this entire operation imply the need for constant training and upgrading of skills.

Ever-increasing clock speeds of digital devices add another dimension to the test
problem. Testers must run faster in order to characterize and test these faster ICs. Speed
binning to find the fastest ICs depends on the tester being able to operate at high speeds.
These fast testers must be calibrated more often in order to guarantee accuracy at speed
and to avoid false negatives—that is, causing good ICs to fail a test and be rejected.

Users attempt to economize on test cost by testing multiple devices in parallel.
However, the payback is not linear. Many failures occur on the first few vectors, at
which time the test is usually halted and the device discarded. So, for example, when
testing two devices individually, one of which is good and the other is bad, the total
test time may be 10% greater than the test time for one good device. When testing
those two devices in parallel, the test must run to completion. So the savings in test
time may be only 10% over the test time when testing the devices individually.

Tester languages have always been a source of confusion. Testers from different
companies have traditionally employed unique, proprietary programming lan-
guages. STIL may help to alleviate some of the confusion. Only time will tell if it
will be embraced by the test equipment community. A previous attempt by the
Department of Defense (DOD) to develop a standard test language resulted in
ATLAS (Abbreviated Test Language for All Systems).28 The goal of ATLAS was to
define a test in terms of the product to be tested without regard to the tester being
used. It, in effect, defines the test for a virtual machine. If a particular tester has a
compiler for ATLAS, it can run the test.

The ATLAS language, like STIL, has a preamble that defines the test environ-
ment, followed by a procedural section that specifies stimuli and response. It permits
testing of digital and analog devices and contains numerous constructs for looping
and program control, as well as a specific command to leave the ATLAS language so
that the user can use non-ATLAS commands to support capabilities which cannot be
supported in the ATLAS language.

PROBLEMS

6.1 Write a STIL program for the test in Figure 6.4 that is used to check for timing
compliance (i.e., using tsets to check for critical timing paths).

REFERENCES 321

6.2 In the example of Section 6.3, suppose the 8-bit Register has bidirectional
outputs and a selector input that enables it to load the register from the D
inputs or from the bidirectional pins when the output is disabled. Modify the
STIL program to reflect this capability.

6.3 In the example, Section 6.3, CLR and OE have identical waveforms. Using
that observation, how would you rewrite the example to make it more
concise?

6.4 In the example, Section 6.3, identify the strobe start and stop times for each
of the seven entries for OUTBUS in WaveformTable.

6.5 Describe how you would write a STIL program to implement (1) a stretch-
and-shrink test program and (2) a schmoo plot.

6.6 Given a process with 70% yield. Assume that you have a test that covers
100% of the faults, but takes 6 s to run. Also assume that you have 200 die on
a wafer. Assume that fault coverage for the test is 66.6%, 82.7%, 89.6%,
94.7%, 98.6%, and 100% after 1, 2, 3, 4, 5, and 6 s, respectively. Finally,
assume that the cost of packaging is $.10 per die and that tester time is $.10
per second at both sort test and package test. Determine a strategy to
minimize total test cost.

REFERENCES

1. DeSantis, T., Resolution versus Accuracy versus Sensitivity: Cutting Through the
Confusion, Eval. Eng., December 1998, pp. 10–16.

2. Sulman, D. L., Clock-Rate Testing of LSI Circuit Boards, Proc. 1978 IEEE Test Conf.,
pp. 66–70.

3. Catalano, M. et al., Individual Signal Path Calibration for Maximum Timing Accuracy in
a High Pincount VLSI Test System, Proc. Int. Test Conf., 1983, pp. 188–192.

4. Bierman, H., VLSI Test Gear Keeps Pace with Chip Advances, Electronics, April 19,
1987, pp. 125–128.

5. Standard Test Interface Language (STIL) for Digital Test Vector Data, IEEE-P1450, Draft
0.9, May 1997.

6. Taylor, T., Standard Test Interface Language (STIL): Extending the Standard, Proc. Int.
Test Conf., 1998, pp. 962–970.

7. Taylor, T., and G. A. Maston, Standard Test Interface Language (STIL): A New Language
for Patterns and Waveforms, Proc. Int. Test Conf., 1996, pp. 565–570.

8. Biggs, N., STIL: The Device-Oriented Database for the Test Development Lifecycle,
Proc. Int. Test Conf., 1999, p. 1149.

9. Levin, H. et al., Design of a New Test Generation System for Performance Testing of LSI
Digital Printed Circuit Boards, Proc. Int. Test Conf., October 1982, pp. 541–547.

10. Walker, M. G., Modeling the Wiring of Deep Submicron ICs, IEEE Spectrum, March
2000, Vol. 37, No. 3, pp. 65–71.

11. Bego, P. M., The Value of an Optimized Engineering Test Station, Eval. Eng., November
1998, pp. 12–25.

322 AUTOMATIC TEST EQUIPMENT

12. Stevens, A. K., Component Testing, Chapter 4, Addison-Wesley, Reading, MA, 1986.

13. Goto, Y. et al., Electron Beam Prober for LSI Testing with 100 PS Time Resolution, Proc.
Int. Test Conf., October 1984, pp. 543–549.

14. Kollensperger, P. et al., Automated Electron Beam Testing of VLSI Circuits, Proc. Int.
Test Conf., October 1984, pp. 550–556.

15. May, T. C. et al., Dynamic Fault Imaging of VLSI Random Logic Devices, Int. Rel.
Physics Symp., April 1984.

16. Shapiro, D., Universal-Grid Bareboard Testers Offer Users Many Benefits, Electron. Test,
July 1984, pp. 88–94.

17. Schwedner, F. A., and S. E. Grossman, In-Circuit Testing Pins Down Defects in PC
Boards Early, Electronics, September 4, 1975, pp. 98–102.

18. Sobotka, L. J., The Effects of Backdriving Digital Integrated Circuits During In-Circuit
Testing, Proc. Int. Test Conf., November 1982, pp. 269–286.

19. Mastrocola, Aldo, In-Circuit Test Techniques Applied to Complex Digital Assemblies,
Proc. Int. Test Conf., 1981, pp. 124–131.

20. Miklosz, J., ATE: In-Circuit and Functional, Electron. Eng. Times, January 3, 1983,
pp. 25–29

21. Miczo, A., Digital Logic Testing and Simulation, Chapter 6, John Wiley & Sons, New
York, 1986.

22. Runyan, S., X-Ray May be PC-Board Key, Electron. Eng. Times, April 21, 1997, p. 52.

23. Smith, D., Infrared Thermography Maintains PCB Reliability, Test Meas. Europe,
Autumn 1993, pp. 33–34.

24. Titus, J., X-Ray Systems Reveal Hidden Defects, Test Meas. World, February 1998,
pp. 29–36.

25. Odegard, C., and C. Lambert, Reflectometry Techniques Aid IC Failure Analysis, Test
Meas. World, May 2000, pp. 53–58.

26. Business Trends, Hardware Is Fraction of Total Cost, Electron. Bus. Today, December.
1995, p. 26.

27. Iscoff, R., VLSI Testing: The Stakes Get Higher, Semicond. Int., September 1993,
pp. 58–62.

28. IEEE Standard ATLAS Test Language, IEEE, New York, 1981.

323

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 7

Developing a Test Strategy

7.1 INTRODUCTION

The first five chapters provided a survey of algorithms for logic simulation, fault
simulation, and automatic test pattern generation. That was followed by a brief sur-
vey of tester architectures and strategies to maximize tester effectiveness while min-
imizing overall test cost. We now turn our attention to methods for combining the
various algorithms and testers in ways that make it possible to achieve quality levels
consistent with product requirements and design methodologies.

It has been recognized for some time now that true automatic test pattern genera-
tion is a long way from realization, meaning that software capable of automatically
generating high-quality tests for most general sequential logic circuits does not cur-
rently exist, nor is it likely to exist in the forseeable future. Hence, it is necessary to
incorporate testability structures in digital designs to make them testable.

We begin this chapter with a look at the design and test environment. That will
provide a framework for discussion of the various topics related to test and will help
us to see how the individual pieces fit together. Most importantly, by starting with a
comprehensive overview of the total design and test process, we can identify oppor-
tunities to port test stimuli created during design verification into the manufacturing
test development process. After examining the design and test environment, we will
take an in-depth look at fault modeling because, in the final analysis, the fault model
that is chosen will have a significant effect on the quality of the test. Other topics
that fit into a comprehensive design and test framework, including design-for-test
(DFT) and built-in-self-test (BIST), will be discussed in subsequent chapters.

7.2 THE TEST TRIAD

Several strategies exist for developing test programs for digital ICs; these include:

Functional vectors
Fault-directed vectors

I

DDQ

324

DEVELOPING A TEST STRATEGY

Functional vectors may be derived from design verification suites or they may be
written specifically to serve as manufacturing test programs. A fault simulator may
be part of the selection/development process or the test program developer may take
it on faith that his test program will effectively distinguish between faulty and fault-
free product. Fault-directed vectors are usually generated by an automatic test pat-
tern generator (ATPG), although the current state of the art in ATPG is quite primi-
tive and commercial programs currently in existence operate either in full-scan or in
partial-scan mode, where the percentage of storage devices (flip-flops and latches) in
the scan path is usually in excess of 50% of the total number of storage devices. The

I

DDQ

 test strategy (cf. Chapter 11) is based on the observation that CMOs circuits
normally draw near-zero quiescent current when the clock is halted, and therefore
defects in the form of shorts to ground or power will generate a quiescent current
that is orders of magnitude greater than the normal quiescent current.

In a paper published in 1992, it was shown that a high-quality test benefited from
all three of the test methodologies listed above.

1

 The authors examined in detail a chip
that contained 8577 gates and 436 flip-flops. A total of 26,415 die were analyzed.
These were die that had passed initial continuity and parametric tests. Three different
tests were applied to the die. The functional test had a coverage of 76.4% and the
combined functional plus scan tests produced a combined stuck-at coverage of 99.3%.

Of the 26,415 die that were analyzed, 4349 were determined to be faulty. The
Venn diagram in Figure 7.1 shows the distribution of failures detected by each of the
three methods. Of the defective die, 2655 failed all three tests, 1358 die failed only
the

I

DDQ

 test, 25 die failed only the functional test, and 19 failed only the scan test,
while 134 die failed both the functional and scan test, but passed the

I

DDQ

 test. There
were 122 die that failed

 I

DDQ

 and scan, but not the functional test, and 36 that failed

I

DDQ

 and functional but not the scan test. For a product that requires the highest possi-
ble quality, the results suggest that tests with high stuck-at coverage and

I

DDQ

 test are
necessary. In this chapter we will focus on the functional test; in subsequent chapters
we will examine in detail the scan, partial-scan, and

I

DDQ

 test methodologies.

Figure 7.1

Results of different tests.

Fail
functional

Fail
scan

Fail
IDDQ

2655

36

25

19

1358

122

134

Distribution of failing die in each test class.

OVERVIEW OF THE DESIGN AND TEST PROCESS

325

7.3 OVERVIEW OF THE DESIGN AND TEST PROCESS

A functional test program of the type referred to in the previous section can be
derived as a byproduct of the design verification process. This section examines the
design and test process, starting with the data flow diagram of Figure 7.2, which
highlights the main features of a design and test workflow for an IC. The main fea-
tures of the data flow diagram will be briefly described here; subsequent sections
will cover the operations in greater detail. The

testbench

 is a hardware design lan-
guage (HDL) construct that instantiates a top-level module of a design whose cor-
rectness is being evaluated, together with additional software whose purpose is to
stimulate the design and capture/print out response values. We assume in this discus-
sion that the top-level circuit is an IC, rather than a PCB. We assume, further, that
the circuit instantiated in the testbench is described using RTL (register transfer
level) language constructs.

The testbench affords great flexibility in creating test stimuli for a design. The stimuli
can be written in the same language as the circuit model, or in a special language per-
haps better suited to describing waveforms to be applied to the circuit. The designer
can incrementally add stimuli to the testbench and simulate until, at some point, he
or she becomes convinced that circuit behavior conforms to some specification.

Figure 7.2

Design and test workflow.

Testbench

Stimuli Circuit

Netlist

Netlist
compiler

Flattened netlist

Faultlist
compiler

Fault file

Fault
simulator ATPG

Filter

Test vectors

Manual or
program
generated

Reports

Library

Synthesis

Tester

326

DEVELOPING A TEST STRATEGY

At that point the design will be converted into a netlist. The conversion process can
be performed manually or it can be accomplished through the use of synthesis pro-
grams. In practice, a typical IC will be synthesized using a combination of manual
and automatic means. Some modules, including memories (RAM and ROM) and
large data path functions, are often handcrafted. In addition, state machines, control
paths, and other logic that are synthesized via synthesis programs may receive addi-
tional scrutiny from the logic designer if subsequent simulation or timing analysis
reveals that timing constraints are not satisfied.

The synthesized netlist is usually partitioned along the same boundaries as the
original circuit, with the original RTL modules now represented as an interconnec-
tion of

macrocells

 or

standard cells

. The macrocells are low-level functions, rang-
ing from simple buffers to full-adders and multiplexers. The netlist compiler
flattens the netlist so that module boundaries become indistinguishable. However,
naming conventions are used that make it possible to identify, hierarchically,
where the logic element originated. For example, if top-level module

A

 contains
module

B

, and

B

 contains an AND gate labeled

C

, then in the flattened netlist the
AND gate could be recognized as

A.B.C

, or it could be recognized as

B.C

, where
the top-level module

A

 is implied; that is, every element is contained in the top-
level module.

From the flattened netlist the fault-list compiler produces a fault file. The fault file
is extremely important because it is used to measure the effectiveness of test pro-
grams. The fault-list compiler must create a fault list that is representative of faults
in the circuit, but at the same time it must be careful to produce a fault list that can
be simulated in a reasonable amount of CPU time. It is possible for the fault simula-
tor to be extremely accurate and efficient, and still produce deceptive and/or mean-
ingless results if the fault list that it is working from is not a representative fault list.
Walking the tightrope between these sometimes conflicting requirements of accu-
racy and speed is a major challenge that will receive considerable attention in this
chapter.

The fault simulator and ATPG algorithms received considerable attention in pre-
vious chapters. Here we simply note that, if a test strategy includes an ATPG, then
the netlist must be expressed as an interconnection of primitives recognized by the
ATPG. If the netlist includes primitives not recognized by the ATPG, these primi-
tives must be remodeled in terms of other primitives for which the ATPG has pro-
cessing capability. This is usually accomplished as part of the library development/
maintenance task. A singular cover, propagation D-cubes, and primitive D-cubes of
failure (PDCF) may also exist for circuit primitives, either in a library or built into
the ATPG.

The purpose of the filter in Figure 7.2 is to select design verification vectors and
reformat them for the target tester. By including a fault simulation operation in this
phase of the task, it is possible to intelligently select a small subset of the design ver-
ification vectors that give acceptable fault coverage. This is necessary because
design verification usually involves creation and simulation of far more vectors than
could possibly fit into a tester’s memory. More will be said about this in a subse-
quent section.

A TESTBENCH

327

In this chapter, fault simulation and ATPG will be examined from the user’s per-
spective. What kind of reports should be generated, and how do test programs get
translated into tester format? Users have, in the past, been quite critical of fault sim-
ulators, complaining that they simply produced a fault coverage number based on
the test vectors and the fault list, without producing any meaningful suggestions,
help, or insight into how to improve on that number. We will examine ways in which
fault simulation results can be made more meaningful to the end user.

The workflow depicted in Figure 7.2 is quite general; it could describe almost any
design project. The circuit being designed may be constrained by rigid design rules
or it may be free form, with the logic designers permitted complete freedom in how
they go about implementing their design. However, as details get more specific (e.g.,
is the design synchronous or asynchronous?), choices start becoming bounded. Many
of the vexing problems related to testing complex sequential circuits will be post-
poned to subsequent chapters where we address the issue of design-for-testability
(DFT). For now, the focus will be on the fault simulator and the ATPG and how their
interactions can be leveraged to produce a test program that is thorough while at the
same time brief.

7.4 A TESTBENCH

A testbench will be created for the circuit in Figure 7.3 using Verilog. A VHDL
description at the structural level would be quite similar, and the reader who under-
stands the following discussion should have no difficulty understanding an equiva-
lent VHDL description of this circuit. The testbench instantiates two modules; the
first is the circuit description, while the second contains the test stimuli, including
timing data. The circuit description is hierarchical, containing modules for a mux
and a flip-flop. The test stimulus module follows the hierarchical netlist testbench.

7.4.1 The Circuit Description

The Verilog circuit description that follows is rather brief. The reader who wishes to
acquire a more thorough understanding of the Verilog HDL is encouraged to consult

Figure 7.3

Gate-level interconnection.

SEL

CLR

E

CK

TSE

C

D Y

Clr

F

G

BA

328

DEVELOPING A TEST STRATEGY

one of the many textbooks dedicated to that subject. Because the language is quite
robust, the following code represents but one of several ways to describe a particular
behavior. Also note that the first line of each module is set in boldface for conve-
nience in locating the start of each new module.

'timescale 1 ns / 100 ps

module testbench;

ckt7p3 X1 (tse, sel, ck, clr, y);
stimuli X2 (tse, sel, ck, clr, y);
endmodule

module ckt7p3 (tse, sel, ck, clr, y);

input tse, sel, ck, clr;
inout y;
wire hold;
wire load, choose;
mux2 x1 (.A(hold), .B(load), .Sel(sel), .C(choose));
dff x2 (.Q(hold),.QN(),.data(choose),.clock(ck),
.preset(1'b1),.clear(clr));
bufif1 #(7,7) x3 (y, hold, tse);
buf #(4,4) (load, y);
endmodule

module mux2(A, B, Sel, C);

input A, B, Sel;
output C;
not #(5,5) n1 (Sel_, Sel);
and #(5,5) n2 (L1, Sel_, A);
and #(5,5) n3 (L2, Sel, B);
or #(6,6) n4 (C, L1, L2);
endmodule

module dff(Q,QN,data,clock,preset,clear);

input data; input clock; input preset; input clear;
output Q;
output QN;
nand #(5,5)N1 (L1, preset,L4, L2),
N2 (L2, L1, clear, clock),
N3 (L3, L2, clock, L4), N4 (L4, L3, data, clear),
N5 (Q, preset, L2, QN), N6 (QN, Q, L3, clear);

endmodule

module stimuli(tse, sel, ck, clr, y);

output tse, sel, ck, clr;
inout y;

A TESTBENCH

329

reg [3:0] inputs;
reg ck;
parameter clock_high = 50; // 100ns period, clock high 50ns
'define cycle #1000 inputs = 4'b
assign {tse, sel, clr, y} = inputs;
initial begin
ck = 0;
$dumpfile("ckt7p3.dump");
$dumpvars(3, X1);
$monitor($time,," tse = %b sel = %b ck = %b clr = %b

 y = %b",
tse, sel, ck, clr, y);

'include "ckt7p3.fvc" // include vector file
$finish; // end simulation

end
always #clock_high ck = ~ck;
endmodule

// ckt7p3.fvc -- tse, sel, clr, y
#0 inputs = 4'b110Z; // Reset
'cycle 0111; 'cycle 0111;
'cycle 101Z; 'cycle 101Z;
'cycle 110Z; 'cycle 111Z;
'cycle 0111; 'cycle 101Z;
'cycle 101Z; 'cycle 0110;

The first module in the listing is the top-level testbench, aptly named

testbench

. It
begins with a timescale compiler directive that allows modules with different time
units to be simulated together. The first number specifies the unit of measurement
for delays in the module, and the second number specifies the accuracy with which
delay values are rounded before being used in simulation. In the modules that fol-
low, delays are multiples of 1 ns, and they are rounded to 100 ps during simulation.
So, if a delay value of 2.75 is specified, it represents 2.75 ns and is rounded to 2.8 ns.
The next entry is the name of the module, which ends with a semicolon, as do most
lines in Verilog. The modules

ckt7p3

 and

stimuli

 are then instantiated.

Ckt7p3

 con-
tains the circuit description while the module

stimuli

 contains the test program. End-
module is a keyword denoting the end of the module.

The circuit

ckt7p3

 again begins by listing the module name, followed by a declara-
tion of the I/O ports in the circuit. The second line of ckt7p3 defines the ports

tse

,

sel

,

ck

, and

clr

 as inputs. The third line defines the port

y

as an inout—that is, a bidirec-
tional signal. The signals

hold

,

load

, and

choose

 are internal signals. As wires, they
can carry signals but have no persistence; that is, there is no assurance that values on
those signals will be valid the next time the module is entered during simulation.

330

DEVELOPING A TEST STRATEGY

The next line instantiates

mux2

. It is a two-input multiplexer whose definition fol-
lows the definition for

ckt7p3

. Note that the signals in

mux2

 are associated with
wires in

ckt7p3

 by using a period (.) followed by the signal name from

mux2

 and
then the wire called

hold

 in

ckt7p3

 is enclosed in parentheses. The signal named

Q

in

dff

 is also associated with the wire

hold

. It is not necessary to associate names in
this fashion, but it is less error-prone. If this method is not employed, then signals
become position-dependent; in large circuits, errors caused by signals inadvertently
juxtaposed can be extremely difficult to identify.

The

dff

 instantiated in

ckt7p3

 is the next module listed. It corresponds to the cir-
cuit in Figure 2.8. The signal 1’b1 connected to the preset in the

dff

 denotes a logic
1. Similarly, 1’b0 denotes a logic 0. The next element in

ckt7p3

 is called

bufif1

. The

bufif1

 is a tri-state buffer and is a Verilog primitive. There is a corresponding ele-
ment called

bufif0

.

Bufif1

 is active when a logic 1 is present on its enable pin. Bufif0
is active when the enable signal is a logic 0. Other Verilog primitives in the above
listing include buf, and, or, and nand. Any Verilog simulator must provide simula-
tion capability for the standard primitives.

Verilog does not support built-in sequential primitives for the latches and flip-
flops; however, it does support user-defined primitives (UDPs). The UDP is defined
by means of a truth table, and the facility for defining UDPs allows the user to
extend the set of basic primitives supported by Verilog. Through the use of UDPs it
is possible for the user to define any combination of gates as a primitive, so long as
the model only contains a single output pin. Sequential elements can also be defined.
The requirement is that the sequential element must directly drive the output.

7.4.2 The Test Stimulus Description

The module called stimuli has the same I/O ports as ckt7p3. However, in this module
the signals that were inputs in ckt7p3 have become outputs. The inout signal y
remains an inout. A 4-bit register named inputs is defined. The “reg” denotes an
abstract storage element that is used to propagate values to a part. The signal called
ck is defined as a register. Then a parameter called clock_high is defined and set
equal to 500. That is followed by the definition of the ASCII string #1000
inputs = 4’b. These two statements are used to define a clock period of 1000 ns, with
a 50% duty cycle. The values in the register inputs are assigned to the input and
inout signals by means of the assign statement that follows.

An initial statement appears after the assign statement. The first initialization
statement causes a 0 to be assigned to ck prior to the start of simulation. Then a
dump-file statement appears; it causes internal signal values to be written to a dump
file during simulation. The dumpvars statement requests that the dump be per-
formed through three levels of hierarchy. The dump file holds values generated by
internal signals during simulation so that they can later be retrieved for visual wave-
form display.

In the ckt7p3 circuit, there are three levels of hierarchy; the top level contains
mux2 and dff, and these in turn contain lower-level primitive elements. The monitor
statement requests that the simulator print out specified values during simulation so

FAULT MODELING 331

that the user can determine whether the simulation was successful. It instructs the
simulator on how to format the signal values. The text enclosed in quotes is the for-
mat statement; it is followed by a list of variables to be printed. The include state-
ment requests that a file named ckt7p3.fvc be included; this file contains the stimuli
to be simulated. The $finish indicates the end of simulation. The ck signal is
assigned an initial value of 0. Then, every 500 ns it switches to the opposite state.

The next file contains the stimuli used during simulation. Although the stimuli in
this example are vectors listed in matrix form, they could just as easily be generated
by a Verilog model whose sole purpose is to emit stimuli at random times, thus imi-
tating the behavior of a backplane. In this vector file, the word cycle is replaced by
the ASCII text string defined in stimuli.v. That text contains a time stamp, set to the
value 1000. The simulator applies each vector 1000 time units after the previous
vector. The time stamp is followed by the variable inputs; it causes the following
four values to be assigned to the variable inputs from which they will subsequently
be assigned to the four I/O ports by the assign statement.

The values begin with the number 4, indicating the number of signal values in the
string; the apostrophe and the letter b indicate that the string is to be interpreted as a
set of binary signals. The four values follow, ended by a semicolon. The values are
from the set {0, 1, X, Z}. The fourth value is applied to the inout signal y. Recall the
y is an inout; sometimes it acts as an input, and other times it acts as an output.
When y acts as an input, a logic 0 or 1 can be applied to that pin. When y acts as an
output, then the I/O pad is being driven by the tri-state buffer, so the external signal
must be a floating value; in effect the external driving signal is disconnected from
the I/O pad.

7.5 FAULT MODELING

In Chapter 3 we introduced the basic concept of a stuck fault. That was followed by
a discussion of equivalence and dominance. The purpose of equivalence and domi-
nance was to identify stuck-at faults that could be eliminated from the fault list, in
order to speed up fault simulation and test pattern generation, without jeopardizing
the validity of the fault coverage estimate computed from the representative faults.
Other factors that must be considered were postponed so that we could concentrate
on the algorithms. The fault list is determined, at least in part, by the primitives
appearing in the netlist. But, even within primitives, defects in different technologies
do not always produce similar behavior, and there are several MOS and bipolar tech-
nologies in use.

7.5.1 Checkpoint Faults

Theorem 3.3 asserted that in a fanout-free circuit realized by symmetric, unate gates,
it was sufficient to put SA1 and SA0 faults on each primary input. All of the interior
faults are either equivalent to or dominate the faults on the primary inputs. All faults
interior to the circuit will be detected if all the faults on the inputs are detected. This

332 DEVELOPING A TEST STRATEGY

suggests the following approach: identify all fanout-free regions. Start by identify-
ing logic elements that drive two or more destination gates. That part of the wire
common to all of the destination gate inputs is called a stem. The signal path that
originates at a primary input or at one of the fanout paths from a stem is called a
checkpoint arc.2 Faults on the gate inputs connected to checkpoint arcs are called
checkpoint faults.

It is possible to start out with a fault set consisting of SA0 and SA1 faults at all
checkpoint arcs and stems. This set can be further reduced by observing that if two
or more checkpoint arcs terminate at the same AND (OR) gate, then the SA0 (SA1)
faults on those arcs are equivalent and all but one of them can be deleted from the
fault list. The remaining SA0 (SA1) fault can be transferred to the output of the gate.

Example The circuit in Figure 7.4 has eight checkpoint arcs: four primary inputs
and two fanout paths from each of P and R. Therefore, there are initially 16 faults.
Faults on the inputs of the inverters can be transferred to their outputs; then the faults
on the output of Q can be transferred to the input to S. The 16 faults now appear as
SA0 and SA1 faults on the outputs of P and R and on each of the three inputs to S and
T. The SA0 faults at the inputs of AND gates S and T are equivalent to a single SA0
fault on their outputs; hence they can be represented by equivalent SA0 faults, result-
ing in a total of 12 faults. ��

Using checkpoint arcs made it somewhat simpler to algorithmically create a min-
imum or near minimum set of faults, in contrast to assigning stuck-at faults on all
inputs and outputs of every gate and then attempting to identify and eliminate equiv-
alent or dominant faults. In general, it is a nontrivial task to identify the absolute
minimum fault set. Recall that fault b dominates fault a if Ta ⊆ Tb , where Te is the
set of all tests that detect fault e. If b is a stem fault and a is a fault on a checkpoint
arc and is Ta = Tb, then fault b can be omitted from the fault list. But, consider the
circuit of Figure 4.1. If the test vector (I1, I2, I3, I4, I5) = (0, 0, 1, 0, 0) is applied to
the circuit, an SA0 on the output of gate D will not be detected, but an SA0 on the
input to gate I driven by gate D will be detected, as will an SA0 on the input to
inverter J (verify this).

Figure 7.4 Propagating a signal.

D1

D0

S

E

1
1

0

e
e

e
VU

S

T

P Q

R

FAULT MODELING 333

Checkpoint faults can be associated with unique signal path fragments. This is
illustrated in Figure 7.4. The bold lines identify a signal path from input D0 to the
output. During design verification it would be desirable to verify that the indicated
path behaves as intended. Verification involves propagating a signal e ∈ {0,1} from
input D0 to the output while all other signals are in an enabling state. But, there are
many such signal path fragments. How can we be sure that all such paths have been
verified?

Note that sensitization of the path is no more and no less than a sensitization of
the SA1 on the input to gate T and an SA0 on the output of gate T. An SA1 on the
input to T can only be detected if a logic 0 can be propagated from D0 to the output
V in such a way that the output value functionally depends on the presence or
absence of the stated fault. Meanwhile, an SA0 on the output of T can only be
detected if a 1 can be successfully propagated from D0 to V. Hence, if tests can be
created that detect both of those faults, then a test has been created that can serve as
part of a design verification suite.

The point of this discussion is that if a test detects all stuck-at faults, then the test
is also useful for verifying correctness of the design (note that it is necessary, of
course, to verify circuit response to the stimuli). Conversely, if a design verification
suite detects all checkpoint faults, then that suite is exercising all signal path frag-
ments during times when they act as controlling entities—that is, when the circuit is
conditioned such that an output is functionally dependent on the values being propa-
gated. If the test does not detect all of the faults, then it is missing (i.e., not exercis-
ing), some signal path fragments. Hence, the fault coverage number is also a useful
metric for computing thoroughness of a design verification suite.

7.5.2 Delay Faults

A circuit may be free of structural defects such as opens and shorts and yet produce
incorrect response because propagation delay along one or more signal paths is
excessive. Simply propagating 1 and 0 along these paths, while sufficient to detect
stuck-at faults, is not sufficient to detect delay faults since the signal propagating to
a flip-flop or primary output may have the same value as the previous signal. It can-
not then be determined whether the signal clocked into the flip-flop or observed at a
primary output is the new signal or the old signal.

Detecting delay faults requires propagating rising and falling edges along signal
paths (cf. Section 3.8). The existence of checkpoint faults as identifiers of unique
signal paths for propagation of 1 and 0 suggests the following strategy to detect both
stuck-at faults and delay faults:

1. Identify all unique signal paths.

2. Select a path, apply a 0 to the input, then propagate through the entire path.

3. Repeat the signal propagation with a 1, and then again with a 0, on the input.

4. Continue until all signal paths have been exercised.

334 DEVELOPING A TEST STRATEGY

The test strategy just described will check delay relative to clock pulse duration
along paths where source and destination may be flip-flops and/or I/O pins. The
strategy is also effective for detecting stuck-open faults in CMOS circuits (see
Section 7.6.3). The number of unique signal paths will usually be considerably less
than the number of checkpoint faults since several faults will usually lie along a
given signal path. Since the task of identifying signal paths and creating rising and
falling edges can be compute-intensive, it may be advisable to identify signal paths
most likely to have excessive delay and limit the propagation of edges to those paths.

Note that a complete signal path can include several flip-flops. It is not an easy
task to set up and propagate rising and falling edges along all segments of such
paths. For example, an ALU operation may be needed in a CPU to set up a 0 or 1. By
the time the complementary value has been set up several state transitions later, the
original value may have changed unintentionally. A concurrent fault simulator can
be instrumented to identify and track edge faults, just as easily as it tracks stuck-at
faults, and it can identify paths or path segments that have been exercised by rising
or falling edges.

7.5.3 Redundant Faults

Redundant connections can cause a fault to be undetectable. A connection is defined
as redundant if it can be cut without altering the output functions of a circuit.3 If a
circuit has no redundant connections, then it is irredundant. The following theorem
follows directly from the definition of redundancy.

Theorem 7.1 All SA1 and SA0 faults in a combinational circuit are detectable iff
the circuit is irredundant.

The simplest kind of redundancy, when discrete components are used, is to tie
two or more signal pins together at the input of an AND gate or and OR gate. This is
done when an n-input gate is available in an IC package and a particular application
does not require all the inputs. For example, if an AND gate has inputs A, B, and C
and if inputs A and B are tied together, then input combinations A, B, C = (0,1,1) or
(1,0,1) are not possible. So SA1 faults on inputs A and B are undetectable.

Consider what happens when an open occurs on a net where two inputs are tied
together (Figure 7.5). There are two possibilities:

1. An open occurs somewhere between the common connection point and one of
the inputs.

2. An open occurs prior to the common connection point.

Figure 7.5 AND gate with redundant input.

B
A

C

FAULT MODELING 335

If an open exists between the common connection and the gate input, then the
fault cannot be detected. If an open occurs prior to the common connection of the
inputs, then the open affects both inputs and circuit behavior is the same as if there
were a single input with a SA1 on the input.

The redundancy just described is easily spotted simply by checking for identical
names in the gate input list. If matching signal names are found, then all but one sig-
nal can be deleted. Other kinds of redundancy can be more difficult to detect.
Redundancy incorporated into logic to prevent a hazard will create an undetectable
fault. If the fault occurs, it may or it may not produce an error symptom since a haz-
ard represents only the possibility of a spurious signal. No general method exists for
spotting redundancies in logic circuits.

7.5.4 Bridging Faults

Faults can be caused by shorts or opens. In TTL logic, an open at an input to an
AND gate prevents that input from pulling the gate down to 0; hence the input is
SA1. Shorts can be more difficult to characterize. If a signal line is shorted to ground
or to a voltage source, it can be modeled as SA0 or SA1, but signal lines can also be
shorted to each other. In any reasonably sized circuit, it is impractical to model all
pairs of shorted nets. However, it is possible to identify and model shorts that have a
high probability of occurrence.

Adjacent Pin Shorts A function F is elementary in variable x if it can be
expressed in the form

F = x* ⋅ F1

or

F = x* + F2

where x* represents x or x and F1, F2 are independent of x. An elementary gate is a
logic gate whose function is elementary. An input-bridging fault of an elementary
gate is a bridging fault between two gates, neither of which fans out to another cir-
cuit. With these definitions, we have:4

Theorem 7.2 A test set that detects all single input stuck-at faults on an elementary
gate also detects all input-bridging faults at the gate.

The theorem states that tests for stuck-at faults on inputs to elementary gates, such
as AND gates and OR gates, will detect many of the adjacent pin shorts that can
occur. However, because of the unpredictable nature of pin assignment in IC pack-
ages (relative to test strategies), the theorem rarely applies to IC packages. It is com-
mon in industry to model shorts between adjacent pins on these packages because
shorts have a high probability of occurrence, due to the manufacturing methods used
to solder ICs to printed circuit boards.

336 DEVELOPING A TEST STRATEGY

Adjacent pin shorts may cause a signal on a pin to alter the value present on the
other pin. To test for the presence of such faults, it is necessary to establish a sensi-
tized signal on one pin and establish a signal on the other pin that will pull the sensi-
tized pin to the failing value. If the sensitized value D (D) is established on one of
the pins, then a 0 (1) is required on the adjacent pin. Given a pair of pins P1 and P2,
the following signal combinations will completely test for all possibilities wherein
one pin may pull another to a 1 or 0.

P1: D D 0 1
P2: 0 1 D D

It is possible to take advantage of an existing test to create, at the same time, a
test for adjacent pin shorts. If a path is sensitized from an input pin to an output pin
during test pattern generation and if a pin adjacent to the input pin has an x value
assigned, then that x value can be converted to a 1 or 0 to test for an adjacent pin
short. The value chosen will depend on whether the pin on the sensitized path has a
D or D.

Programmable Logic Arrays Shorts created by commercial soldering tech-
niques are easily modeled because the necessary physical information is available.
Recall that IC models are stored in a library and are described as an interconnection
of primitives. That same library entry can identify the I/O pins most susceptible to
solder shorts, namely, the pins that are adjacent.

Structural information is also available for programmable logic arrays (PLAs)
and can be used to derive tests for faults with a high probability of occurrence.
Logically, the PLA is a pair of arrays, the AND array and the OR array. The upper
array in Figure 7.6 is the AND array. Each vertical line selects a subset of the input
variables, as indicated by dots at the intersections or crosspoints, to create a prod-
uct term. The lower array is the OR array. Each horizontal line selects a subset of
the product terms, again indicated by dots, to create a sum-of-products term at the
outputs.

Figure 7.6 Programmable logic array.

x1

x4

x3

x2

y1

y2

TECHNOLOGY-RELATED FAULTS 337

The PLA is susceptible to bridging faults and crosspoint faults.5 The crosspoint
fault is a physical defect caused by a diode at a crosspoint that is connected (uncon-
nected) when it should not (should) have been connected. In the AND array, the
product term logically shrinks if a device is disconnected and the product term logi-
cally expands if an additional input variable is connected to the vertical line. In the
OR array, a product term is added if an additional column is connected into the cir-
cuit, and a product term will disappear from the circuit output if a column is not con-
nected where required.

Bridging faults can occur where lines cross. The symptom is not necessarily the
same as when an additional device is connected into a circuit. For example, the
bridging fault may cause an AND operation, whereas the crosspoint fault may cause
an OR operation. The crosspoint open is similar in behavior to opens in conventional
gates. The bridging fault, like shorts between signal lines in any logic, is compli-
cated by the fact that a signal is affected by a logically unrelated signal. However,
the regular structure of the PLA makes it possible to identify potential sources of
bridging faults and to perform fault simulation, if necessary, to determine which of
the possible bridging faults are detected by a given set of test patterns.

7.5.5 Manufacturing Faults

Creation of test stimuli and their validation through fault simulation can be a very
CPU-intensive activity. Therefore, when testing PCBs it has been the practice to
direct test pattern generation and fault simulation at fault classes that have the high-
est probability of occurrence. In the PCB environment, two major fault classes
include manufacturing faults and field faults. Manufacturing faults are those that
occur during the manufacturing process, and include shorts between pins and opens
between pins and runs on the PCB. Field faults occur during service and include
opens occurring at IC pins while the IC is in service, but also include internal shorts
and opens.

Testing in a manufacturing environment is often restricted to manufacturing
faults because it is assumed that individual ICs have been thoroughly tested for
internal faults before being mounted on the board. Although this can significantly
reduce CPU time, the test so generated suffers from the drawback that it may be
inadequate for detecting faults that occur while the device is in service. Studies of
fault coverage conducted many years ago on PCBs comprised mainly of SSI and
MSI parts showed that tests providing coverage for about 95% of the manufacturing
faults often provided only about 70–75% coverage for field faults.6,7 This problem
of granularity has only gotten worse as orders of magnitude more logic is integrated
onto packages with proportionately fewer additional pins.

7.6 TECHNOLOGY-RELATED FAULTS

The effectiveness of the stuck-at fault model has been the subject of heated debate
for many years. Some faults are technology-dependent and cause behavior unlike

338 DEVELOPING A TEST STRATEGY

the traditional stuck-at faults. Circuits are modeled with the commonly used logic
symbols in order to convey a sense of their behavior, but in practice it is quite diffi-
cult to correlate faults in the actual circuit with faults in the behaviorally equivalent
circuit represented by logic gates. This is particularly true of faults that cause feed-
back (i.e., memory), in a combinational circuit.

7.6.1 MOS

A metal oxide semiconductor (MOS) circuit can also be implemented in ways that
make it difficult to characterize faults. The circuit of Figure 7.7 is designed to imple-
ment the function

F = (A + C)(B + D)

With the indicated open it implements

F = A ⋅ B + C ⋅ D

It is not immediately obvious how to implement this MOS circuit as an intercon-
nection of logic gates so as to conveniently represent both the fault-free and faulted
versions (although it can be done).

7.6.2 CMOS

The complementary metal oxide semiconductor (CMOS) NOR circuit is illus-
trated in Figure 7.8. When A and B are low, both p-channel transistors are on, and
both n-channel transistors are off. This causes the output to go high. If either A or
B goes high, the corresponding upper transistor(s) is cut off, the corresponding
lower transistor(s) is turned on, and the output goes low.

Conventional stuck-at faults occur when an input or output of a NOR circuit
shorts to VSS or VDD or when opens occur at the input terminals. Opens can cause
SA1 faults on the inputs because the input signal cannot turn off the corresponding

Figure 7.7 MOS circuit with open.

VSS

VDD

C

D

A

B

F

open

TECHNOLOGY-RELATED FAULTS 339

Figure 7.8 CMOS circuit.

p-channel transistor and cannot turn on the corresponding n-channel transistor. Opens
can also occur in a transistor or at the connection to a transistor. Three such faults can
be identified in the two-input NOR gate of Figure 7.8. These faults, usually referred
to as stuck-open faults, include a defective pulldown transistor connected to A or B or
an open pullup transistor anywhere between the output channel and VDD.8

If Q4 is open, a logic 1 at A can cut off the path to VDD but it cannot turn on the
path to VSS. Therefore, the value at F will depend on the electrical charge trapped at
that point when signal A goes high. The equation for the faulted circuit is

Fn+1 = An+1 ⋅ Bn+1 + An ⋅ Bn ⋅ Fn

Table 7.1 illustrates the effect of all seven faults. In this table, F represents the fault-
free circuit. F1 and F2 represent the output SA0 and SA1, respectively. F3 and F4
represent open inputs at A and B. F5 and F6 correspond to opens in the pulldown
transistors connected to A or B or the leads connected to them. F7 is the function cor-
responding to an open anywhere in the pullup circuit.

Some circuit output values become dependent on previous values held by circuit
elements when the circuit is faulted, so that in effect the faulted circuit exhibits
sequential circuit behavior. For example, note from Table 7.1 that F5 differs from F,
the fault-free circuit, only in row 3, and then only when F has value 0 and F5 had a 1 at
the output on the previous pattern. To detect this fault, it is necessary to establish the
values (0, 0) on the inputs A and B. This produces the value 1 at the output of the
gate.Then, the values (1, 0) are applied to the inputs and the sensitized value is prop-
agated to an output.

TABLE 7.1 Fault Behavior for CMOS NOR

A B F F1 F2 F3 F4 F5 F6 F7

0 0 1 0 1 1 1 1 1 Fn

0 1 0 0 1 0 1 0 Fn 0
1 0 0 0 1 1 0 Fn 0 0
1 1 0 0 1 0 0 0 0 0

FQ3 Q4

Q2

Q1

p-channel

n-channel VSS

VDD

A

B

340 DEVELOPING A TEST STRATEGY

A suggested approach for testing stuck-open faults9 develops tests for the tradi-
tional stuck-at faults first. When simulating faults, the previous pattern is checked to
see if the value Fn from the previous pattern, in conjunction with the present value,
will cause the output of the gate to be sensitized on the present pattern. In the situa-
tion cited in the previous paragraph, if the previous pattern causes a (0,0) to appear
on the inputs of the NOR, and if the present pattern applies a (0,1) or (1,0) to the
NOR, then one of the two stuck-opens on the pull down transistors is sensitized at
the output of the NOR and it simply remains to simulate it to determine if it is sensi-
tized to an output.

If stuck-open faults remain undetected after all stuck-at faults have been pro-
cessed, it becomes necessary to explicitly sensitize them using a two-pattern
sequence. The first pattern need only set up the initial conditions on the gate being
tested. The second pattern must cause an error signal to be propagated to an output.
Note that when simulating these patterns, it is also possible to check for detection of
other stuck-open faults. CMOS library models may be too complex to process by
comparing past and present values on input pins. It may be necessary to perform a
switch-level fault simulation to determine if an input combination sensitizes a
particular transistor open. As pointed out in Section 2.10, channel connected com-
ponents can be simulated at the switch level and, if the output differs from the
fault-free component, a fault effect can be diverged as a unidirectional element by
a concurrent fault simulator.

7.6.3 Fault Coverage Results in Equivalent Circuits

The preceding examples illustrate the problems that exist when digital circuits are
modeled at the gate level. In another investigation, this one involving emitter-cou-
pled logic (ECL), a macro-cell library that included functions at the complexity of
full-adders was examined. The authors demonstrated a need for test patterns over
and above those that gave 100% coverage of the stuck-at faults for the gate-equiva-
lent model.10 Wadsack identified a similar situation wherein a small CMOS circuit
had 100% stuck-at coverage and yet, on the tester, devices were failing on vectors
after the point where 100% stuck-at coverage had occurred.11

It is simply not possible to represent a large ensemble of transistors as a collection
of gates and expect to obtain a perfect test for the transistor level circuit by creating
tests for the gate equivalent model. The larger the ensemble, the more difficult the
challenge. Recall the observation made in Chapter 1: Testing is as much an economic
challenge as it is a technical challenge. The ideal technical solution is to perform
fault simulation at the transistor level. That, however, is not economically feasible.

To see just how difficult the problem of modeling circuit behavior can be, con-
sider the rather simple circuit represented in Figure 7.9 as a sum of products and as a
product of sums. These circuits are logically indistinguishable from one another,
except possibly for timing variations, when analyzed at the terminals. However, the
set of six vectors listed below will test all SA1 and SA0 faults in the NAND model
but only 50% of the faults in the NOR model. In fact, two of the NOR gates could be
completely missing and the test set would not discover it!12

THE FAULT SIMULATOR 341

Figure 7.9 Two equivalent circuits.

Fortunately, circuits in real life are rarely that small. Fault coverage for structurally
equivalent circuits generally tends to converge as it approaches 100%. This can be
interpreted to mean that if your coverage for the gate equivalent circuit is 70%, it
doesn’t matter whether the real fault coverage is 68% or 72%, you can be reasonably
confident that many faulty devices will slip through the test process. If your cover-
age is computed to be 99.9%, the real coverage may be 99.7% or 99.94%. In either
case you will have significantly fewer tester escapes than when the fault simulator
predicts 70% coverage. Fault simulation results, while not exact, can set realistic
expectations with respect to product defect levels.

7.7 THE FAULT SIMULATOR

Although there is a growing trend toward DFT as circuits continue to grow larger,
there still remain many products that are small enough to be adequately tested using
vectors generated either during design verification or manually as part of a targeted
test vector generation process. In this section we will discuss some features and

Test Set

x1 x2 x3 x4

1: 1 1 1 1

2: 0 0 0 0

3: 1 0 0 0

4: 0 1 0 0

5: 0 0 1 0

6: 0 0 0 1

X1 X4X2 X3 X1 X4X2 X3

342 DEVELOPING A TEST STRATEGY

attributes of fault simulation that will enable a user to design strategies that are more
productive, irrespective of whether or not an ATPG is employed.

7.7.1 Random Patterns

The use of random patterns is motivated by the efficiency curve shown in Figure 7.10.
The first dozen or so patterns applied to a combinational logic circuit typically detect
anywhere from 35% to 60% of the faults selected for testing, after which the rate of
detection falls off.

To see why this curve holds, consider that any of functions can be imple-
mented by a simple n-input, 1-output circuit. Any single test pattern in which all
inputs have known values, 0 or 1, will partition the functions into two equivalence
classes, based on whether the output response is a 1 or 0. The response of half the
functions will match the response of the correct circuit. A second input will further
partition the functions so that there are four equivalence classes. The functions in
three of the classes will disagree with the correct circuit in one or both of the output
responses. In general, for a combinational circuit with n inputs, and assuming all
inputs are assigned a 1 or 0, the percentage of functions distinguished from the cor-
rect function after m patterns, m < 2n, is given by the following formula:

The object of a test is to partition functions into equivalence classes so that the
fault-free circuit is in a singleton set relative to functions that represent faults of
interest. Since a complete partition of all functions is usually impractical, a fault
model, such as the stuck-at model, defines the subset of interest so that the only
functions in the equivalence class with the fault-free circuit are functions corre-
sponding to faults with low probability of occurrence. A diagnostic test can also be
defined in terms of partitions; it attempts to partition the set of functions so that as
many functions as practical, representing faults with high probability of occurrence,
are in singleton sets.

Figure 7.10 Test efficiency curve.

22n

PD
1

22n

1–
---------------- 22n i–

i 1=

m

∑⋅

100%⋅=

Number of patterns

Pe
rc

en
t d

et
ec

te
d

THE FAULT SIMULATOR 343

Example The 16 possible functions that can be represented by a two-input circuit
are listed below. The two-input EXOR circuit is represented by F6. Its output is 1
whenever A and B differ.

Application of any single pattern to inputs A and B distinguishes between F6 and
eight of the other 15 functions. Application of a second pattern will further distin-
guish F6 from another four functions. Hence, after two patterns, the correct function
is distinguished from 80% of the possible functions. The formula expresses percent-
age tested for these single-output combinational functions strictly on the basis of the
number of unique input patterns applied and makes no distinction concerning the
values assigned to the inputs. It is a measure of test effectiveness for all kinds of
faults, single and multiple, and suggests why there is a high initial percentage of
faults detected.

However, the formula does not provide any information about particular classes
of faults, and, in fact, simulation of single stuck-at faults generally reveals a some-
what slower rise in percent of faults detected. This should not be surprising, how-
ever, since there are many more multiple faults than single faults and there is no
evidence to suggest that detection of single and multiple faults occurs at the same
rate. As pointed out earlier in this chapter, detection rates between manufacturing
and field faults differs significantly.

Random patterns are significantly less effective when applied to sequential cir-
cuits. They are also ineffective, after the first few patterns, against certain fault
classes with high probability of occurrence, such as stuck-at faults in combinational
circuits. At that point the problem has shifted. Initially, the goal is to detect large
numbers of faults. Then, after reaching some threshold, the goal is to detect specific
faults. When random patterns are employed, their use is normally followed by deter-
ministic calculation of test patterns for specific faults.

7.7.2 Seed Vectors

Random vectors are quite useful in combinational circuits. However, sequential cir-
cuits with tens or hundreds of thousands of logic gates and numerous complex state
machines engaged in extremely detailed and sometimes lengthy “hand-shaking”
sequences tend to be quite random-resistant, meaning that sequences of input stim-
uli applied to the circuit must be precisely calculated to steer the circuit through
state transitions. Any single misstep in a sequence of n vectors can frustrate attempts
to reach a desired state. Logic designers frequently spend considerable amounts of

A B
F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
��

344 DEVELOPING A TEST STRATEGY

time developing test sequences whose purpose is to steer a design through carefully
calculated state transitions in order to check out and verify that the design is correct.
These vector sequences, captured from a testbench, can often be used to advantage
as part of a manufacturing test or as a framework for developing a more comprehen-
sive manufacturing test.

Consider, again, the test triad discussed at the beginning of this chapter. It was
pointed out that a comprehensive and effective test strategy can benefit from a func-
tional test even in those instances where a high-fault-coverage test is generated by a
full-scan-based ATPG. The functional vectors can be derived from the testbench
used for design verification. With effective fault management tools the faults
detected by the functional test sequences can be deleted from the fault list and the
ATPG can focus its attention on those faults that escaped detection by the functional
test vectors.

Capturing test vectors requires answering two questions: How are the test vectors
to be captured and, after capturing them, which vector sequences should be kept? In a
typical testbench, the sequences of vectors applied to the design may employ
extremely complex timing. During a single clock period, numerous vectors may be
generated by the testbench and applied at random intervals to the design. Furthermore,
the design may have many bidirectional pins that are constantly switching mode, some
acting as inputs and others acting as outputs. If these sequences of vectors are to be
ported to a tester, they must conform to the tester’s architectural constraints.

The tester will have a finite, limited amount of memory while the testbench may
be generating stimuli randomly, pseudo-randomly or algorithmically during each
clock period. Furthermore, many of the sequences created by the testbench may be
repetitive and may not be contributing to overall fault coverage. By contrast, within
the confines of the limited amount of tester memory it is desirable to store, and
apply to the design, a test program that is both efficient and effective. The tester is an
expensive piece of hardware; if the test program that is being applied to the IC is
ineffective, then the user of that tester is not getting a reasonable return on invest-
ment (ROI).

Capturing Design Verification Vectors A testbench used in conjunction
with an HDL model can be quite simple. It might simply be an array of vectors
applied, in sequence, to the target device. Alternatively, the testbench may be a com-
plex behavioral model whose purpose is to emulate the environment in which the
design eventually operates. In the former case, it is a simple matter to format the
array of vectors and input them to a fault simulator as depicted in Figure 7.2. Many
sequences of vectors can be sent through the fault simulator and evaluated, with
those most effective at improving fault coverage retained and formatted for the
tester. Because fault simulation is a compute-intensive activity, the task of evaluat-
ing design verification suites can be accomplished more quickly through the use of
fault sampling (discussed in Section 7.7.3).

When a design verification suite is generated by a complex bus functional model
(BFM) or similar such behavioral entity, with signals emanating from the stimulus
generator at seemingly random times during each clock cycle, and converging on a

THE FAULT SIMULATOR 345

design that contains numerous bidirectional pins, the task of selecting vector suites
and formatting them for the tester becomes a bit more involved. Referring again to
Figure 7.2, code can be inserted in the testbench to sample stimuli arriving at the cir-
cuit from the stimulus generator. The criteria for selecting stimuli may include cap-
turing stimuli at the I/O pads of the circuit under test whenever a clock edge occurs.
The stimuli are then written to a file that can be evaluated via fault simulation, with
the more effective stimuli formatted and ported to the tester.

One problem that must be addressed is signal direction on bidirectional pins. An
I/O pad may be driven by the stimulus generator, or it may be driven by the circuit
under test. This requires that enable signals on tri-state drivers be monitored. If the
enable signal is active, then the bidirectional pin is being driven by the circuit under
test. In that case, the vector file being created by the capture code in the testbench
must insert a Z in the vector file. The Z represents high impedance; that is, the tester,
and, consequently, the fault simulator, is disconnected from that pin so as not to cre-
ate a conflict. This is illustrated in Figure 7.11. The external driver, in this case the
vector file being generated in the testbench, will drive the I/O pad at some times, and
at other times the internal logic of the IC will drive the pad. When the internal logic
is driving the pad, the external signal must be inactive.

The circuit in Figure 7.3 and described in Section 7.4.1 illustrates the issues dis-
cussed here. It has four inputs and a bidirectional pin. The bidirectional pin some-
times acts as an output, in which case the externally applied signal must be Z. At
other times the pin is used to load the register, so it acts as an input. At that time, the
enable on the tri-state driver must not be active.

A potential problem when capturing stimuli at I/O pads is inadequate setup time.
If signals at I/O pads are captured at the same time that a clock edge occurs, then
data signal changes will occur simultaneous with the occurrence of clock edges. To
resolve this the tester and the fault simulator must reshape the clock by delaying it
sufficiently to satisfy setup time requirements. This is illustrated in Figure 7.12
where the original clock signal, CLK, is reshaped using timing sets (TSETs) on the
tester. The rising edge can be delayed an arbitrary amount through use of the TSETs.
A rather simple way to accomplish this is to request, via the TSET, that the clock
signal be the complement of the value contained in the tester memory for the dura-
tion specified. Then, at the end of the elapsed period, CLK assumes the value con-
tained in pin memory.

Figure 7.11 Bidirectional I/O pad.

External
driver

I/O
pad

ts-enable

346 DEVELOPING A TEST STRATEGY

Figure 7.12 Shifting the clock edge.

Determining Which Vectors to Retain A typical design verification effort
may generate many millions of test sequences, far more than could possibly fit into a
typical tester memory. To select from these sequences a subset that provides good
coverage of physical defects in the design requires fault simulation. But, fault simu-
lation is a CPU intensive task. To perform a detailed fault simulation of all the
design verification suites can take an incredibly long time. To assist in the selection
process, two approaches can be employed: fault sampling and fault coverage pro-
files. We will now discuss each of these concepts in detail.

7.7.3 Fault Sampling

When a circuit is modeled at the gate level, the size of the fault list for that circuit,
after collapsing, is generally in the range of 2.5X, where X is the number of logic
gates. So, for example, a 100,000 gate circuit can be expected to have about 250,000
stuck-at faults in its fault list. If the objective is to sift through a large number of
design verification vector suites in order to find a subset that provides useful fault
coverage, then it is unnecessary to fault simulate the entire list of faults.

The practice of sampling can be put to good use in fault simulation. The object
is to evaluate the effectiveness of one or more sets of test vectors with the smallest
possible expenditure of CPU time, subject to the availability of main memory.
When designers are generating many hundreds or thousands of test programs,
often simulating them on specialized hardware simulators or emulators, over a
period of several months, it is not practical to fault simulate all of the sequences in
detail.

Fault sampling selects a subset of a total fault population for consideration during
fault simulation. The goal is to quickly get a reasonably accurate estimate of the
fault coverage produced by a set of test vectors. We consider here the development
provided by Wadsack.13 Consider a population of N faults and a test that can detect
m of those faults. Assume that n out of N faults will be simulated. Let f = m/N and
F = X/n, where X is the number of faults detected from the random sample. Then f is
the actual fault coverage and F is an approximation of f based on the sample. The
variance of F is shown to be

CLK

0 100 200 300T1 T2

CLKD

Var F() 1 n N⁄–() f 1 f–() 1 n⁄()⋅ ⋅ ⋅=

THE FAULT SIMULATOR 347

A 95% confidence level is twice the square root of the variance, so f = F ± 2(Var(F))1/2.
The graph in Figure 7.13 shows the variance for a 10% sample when N = 100,000. This
graph reveals that the fractional error Z is likely to be less than 1%. Furthermore, the
error is greatest at a coverage of 50% and approaches 0 as the fault coverage
approaches 100%.

7.7.4 Fault-List Partitioning

Fault simulation can be extremely memory intensive, particularly when event-
driven, full-timing, concurrent fault simulation is being performed on a large cir-
cuit. It is often the case that complete fault simulation of an entire fault set for large
circuits simply is not possible due to insufficient memory. In such cases, the set of
faults can be partitioned into several smaller sets and each fault set can be simulated
individually. The results can be used to update a master fault list. If a fault list is
partitioned into, say, 10 subsets, each containing 10% of the faults from a master
fault list, then 10 passes will be required to completely fault simulate all of the sub-
sets. If each of the subsets is a pseudo-random selection of faults, without replace-
ment, from the master fault list, then the fault coverage percentage from each of
these partitions should be approximately the same, as discussed in the preceding
subsection. If the fault partition is made up of faults, all selected from the same
functional area of the IC, then the fault coverage from these partitions can show
substantial variation.

Fault partition sizes can be determined by the fault simulator. The operating sys-
tem can advise as to how much memory is available to keep track of fault effects.
The size of the data structure used to record fault effects is known and, with experi-
ence, a reasonably accurate estimate can be made of the number of fault effects that
exist, on average, for each fault origin. With this information, it is possible to esti-
mate how many faults can be processed in each fault simulation pass. If the esti-
mate is too optimistic, and not enough memory exists to process all of the faults,
then some of the faults can be deleted and fault simulation can continue with the
reduced fault list. Those faults that were deleted can be added back in a subsequent
fault partition.

Figure 7.13 Ninety-five percent confidence interval.

0.0 0.2

0.002

0.000

1.0

0.004

0.60.4 0.8

0.006

0.008

0.010

Z
 -

 F
ra

ct
io

na
l e

rr
or

 F - Sample fault coverage

348 DEVELOPING A TEST STRATEGY

7.7.5 Distributed Fault Simulation

Distributed fault simulation can be part of a comprehensive strategy in which the
initial goal is to find a set of test programs that achieve high fault coverage, using
fault sampling techniques. After there is some degree of confidence that the test pro-
grams produce high coverage, then a complete fault simulation of all faults from a
master fault list can be performed, and the results can then be gathered up by the
control program. If, at this point, the fault coverage is still marginally below that
level needed to achieve a corporate AQL (acceptable quality level), then additional
test programs, or perhaps some DFT, can be used to reach the target fault coverage
level. In fact, this may be a critical juncture at which to make a decision as to
whether or not the use of design verification vectors should be abandoned and
replaced with a different test strategy, such as a full DFT. The decision might be
made because the coverage goals cannot be achieved otherwise, or the decision
might be made because the cost of testing each chip (time on the tester) may be too
great.

When a fault list is partitioned, individual partitions can be run serially, on the
same workstation, or they can be run in parallel over a network. A control program
running on a master workstation can spawn subordinate processes on other worksta-
tions connected via the network. When these subordinate processes finish, they
report their results to the control program, and the results are used to update a master
fault list. These subordinate processes can be run as background tasks with low pri-
ority so that if a user is working interactively on a workstation, for example, editing
a file, the subordinate process will not interfere with his or her activities.

7.7.6 Iterative Fault Simulation

During design verification, a common practice is to generate multiple files of stim-
uli. Each such file will be targeted at a specific area of the design, and these files
may be created by different designers. There is often overlap between these files. If
these files are to be used as part of the test program, then a common practice is to
iterate through these files and determine how much coverage is provided by each of
the design verification suites. With a large number of these design verification suites,
it is not uncommon to see that some suites will provide significant coverage, while
others may provide either very little coverage or perhaps no additional coverage.

If some suites provide very little coverage, then a decision must be made as to
whether or not the use of those suites is justified. Their contribution to overall
improvement in AQL may be negligible, while the test may contain so many vectors
as to add a significant amount of time on the tester. A strategy that may prove useful
is to fault simulate all of the design verification suites with a sample, say 10%, of the
fault set. Toss out the suites that provide no additional coverage, then rank the
remaining suites based on how much fault coverage they contribute to the total and
resimulate. Some of the suites that had very low coverage during the first iteration
may now drop out completely. This is essentially a covering operation, and it does
not improve the fault coverage; the same faults will be detected, assuming the same
fault sample is used, but the objective is to find the smallest set of suites that achieve

THE FAULT SIMULATOR 349

that fault coverage, hence the smallest number of vectors, thus reducing the amount
of time the device spends on the tester.

7.7.7 Incremental Fault Simulation

Incremental fault simulation permits the user to conditionally create and apply stim-
uli to the circuit. These stimuli may be experimental. For example, the user may be
trying to drive the circuit into a particular state in order to sensitize a group of faults
that would otherwise go undetected. In order to achieve the goal, the user must be
able to apply the stimuli and monitor response, including internal states of the cir-
cuit. In the event that stimuli do not achieve their desired end, it is also necessary, to
be able to delete some or all of the stimuli. This implies an ability to checkpoint the
circuit, and to back up to that checkpoint if analysis of simulation results identifies
incorrect state transitions or some other reason for failure to improve fault coverage.

7.7.8 Circuit Initialization

Indeterminate states at the beginning of a simulation present a significant problem
for fault simulators. Some designs, in particular those that take advantage of DFT
structures, are able to initialize some or all of the circuit storage elements quite
quickly, often simply by toggling a reset input. However, there are circuits that
require complex sequences to drive all of the flip-flops and latches into a known
state. Many fault detections during this initialization period are probable detects, in
which the good circuit has a known value e ∈ {0,1}, and the faulty circuit has an
unknown value, X. This composite signal e/X may propagate to an output where it is
recorded as a probable detect. In this case, the response for the fault-free circuit is
known, but the response for the faulty circuit has, on average, only a 50% probabil-
ity of possessing a binary value that is different from the good circuit. A problem
with probable detects is the fact that many applications require absolute detections,
particularly in products where health or public safety are at risk. The probable detect
may cause the fault simulator to ignore later absolute fault detects, thus obscuring
the true fault coverage.

One way to deal with this is to simply ignore faults detected at the I/O pins until
initialization is complete. However, this does not resolve the problem of probable
detects. Suppose a reset input on a flip-flop is stuck to the inactive state. Then, in a
concurrent fault simulator, the fault origin will spawn fault effects (cf. Section 3.7.2)
that will reach an I/O pin, where they will be ignored until the fault simulator is told
to begin recording detected faults.

An alternate approach is for the fault simulator to be configured to postpone
propagation of fault effects until the circuit has reached a known state. Then, after
the circuit has been initialized, if a flip-flop output switches from 0 to 1 (1 to 0), and
if that transition causes a transition on an output, then a fault on, for example, the
clock line would prevent the transition from occurring, and the observable signal
would appear stable at the output when it should be switching. Thus, faults can be
detected with certainty. In this arrangement it is possible that faults may actually be

350 DEVELOPING A TEST STRATEGY

detected sooner on the tester. But they could only be recorded as a probable detect
by the fault simulator. This strategy requires the user to create an initialization
sequence that fully initializes the circuit.

An alternate strategy for getting a full and accurate tabulation of faults that are
absolute detects, and those that are only probable detects, is to run fault simulation
twice. During the first run, fault simulation is configured to count only absolute
detections. Then, on a final run, fault simulation is run with all the undetected faults,
but it is configured to count probable detects. It may then be possible to set a thresh-
old, requiring that a fault be counted as a probable detect if it is detected some mini-
mum number of times. In commercial products, a default of five or ten probable
detects is often set as a default.

7.7.9 Fault Coverage Profiles

For many years, fault simulation simply consisted of generating lists of faults, col-
lapsing the lists, and then running one or more files of test vectors against the netlist
and fault list to determine fault coverage provided by the set(s) of test vectors. If
fault coverage was satisfactory, their job was done. But, if fault coverage was unsat-
isfactory, engineers writing additional test vectors to improve fault coverage fre-
quently would work in the blind. It was possible to get a list of detected and
undetected faults, but the data were simply too overwhelming to be of any value.
The fault coverage profiler, or reporter, as it is sometimes called, is a data reduction
tool. It enables the user to generate detailed reports on fault coverage.

An overall fault coverage of 90% for an IC is a composite of fault coverages for
many smaller functions that make up the design. For example, a 90% fault coverage
for a microprocessor is a composite fault coverage over control logic, ALU, inter-
rupt control, I/O control, and so on. It is not uncommon for individual fault cover-
ages to vary over a wide range. In fact, it would be unusual if fault coverages for
different parts of a design were all within one or two percentage points of the com-
posite fault coverage.

The profiler reads the master fault file and extracts results for modules identified
by the user. For example, the interrupt logic in a microprocessor might be spread
across several submodules grouped together under a top-level module identified as
INT. The user can request fault coverage statistics for INT and for all submodules
contained in INT. Alternatively, the user may request that the profiler list only the
undetected faults in that section of logic.

If fault coverage for a particular module is unsatisfactory, the user can request a
further breakdown. Suppose that a microprocessor contains a register bank made up
of 16 registers, and that a small subset of them were used constantly during design
verification, to the exclusion of all other registers. A fault coverage profile will
reveal that the register bank has unacceptably low fault coverage. A further request
for more details from the profiler can give additional details, showing fault coverage
for each individual register. Being able to zoom in and spot those precise functions
that have poor coverage is a significant productivity enhancer. Rather than blindly
create test vectors and fault simulate in the hopes that fault coverage will improve,

THE FAULT SIMULATOR 351

the profiler makes it possible to explore specific areas of a design and identify those
in need of improvement.

Knowing where undetected faults reside sometimes is enough to improve cover-
age with minimal effort. Consider the aforementioned register bank. If for some rea-
son they are overlooked during generation of a test, the profiler can reveal that fact
immediately and, once it known, all that is required is that load and store instruc-
tions be executed to test these registers. The fault coverage is then improved with
negligible effort. An important side effect of this strategy is a higher quality test. It
has been reported that a test in which several functions have approximately equal
coverage will generally experience fewer tester escapes than another test with the
same total fault coverage, but with the coverage more unevenly distributed across
the modules.14

7.7.10 Fault Dictionaries

During fault simulation it is common for several faults to be detected by each test
pattern. When testing a printed circuit board it is desirable to isolate the cause of an
erroneous output to as small a group of candidate faults as is practical. Therefore,
rather than stop on the first occurrence of an output error and attempt to diagnose the
cause of an error, a tester may continue to apply patterns and record the pattern num-
ber for each failing test pattern. At the conclusion of the test, the list of failed pat-
terns can be used to retrieve diagnostic data that identifies potential faults detected
by each applied pattern. If one or more faults are common to all failed patterns, the
common faults are high-probability candidates.

To assist in identifying the cause of an erroneous response, a fault dictionary can
be used. A fault dictionary is a data file that defines a correspondence between faults
and symptoms. It can be prepared in several ways, depending on the amount of data
generated by the fault simulator.15 If the ith fault in a circuit is denoted as Fi, then a
set of binary pass–fail vectors Fi = (fi1, fi2, . . ., fin) can be created, where

These vectors can be sorted in ascending or descending order and stored for fast
retrieval during testing. During testing, if errors are detected, a pass–fail vector
can be created in which position i contains a 1 if an error is detected on that pat-
tern and a 0 if no error is detected. This vector is compared to the pass–fail vectors
created from simulation output. If one, and only one, vector is found to match the
pass–fail vector resulting from the test, then the fault corresponding to that pass–
fail vector is a high-probability fault candidate. It is possible of course that two or
more nonequivalent faults have the same pass–fail vector, in which case it is possi-
ble to distinguish between them only if they have different symptoms; that is, they
fail the same test pattern numbers but produce different failing responses at the
output pins.

fik

1 if fi is detected by test Tk

0 otherwise

=

352 DEVELOPING A TEST STRATEGY

Example The following table lists four tests and pass–fail vectors corresponding
to five failing circuits, f1 through f5.

Faults f2 and f5 are both detected by test T1. If tests T2 and T4 also fail, then the
vector F2 matches the pass–fail vector. If T4 is the only additional test to fail, then F5
is a match. Faults f1 and f4 have identical pass–fail vectors. The only hope for distin-
guishing between them during testing is to compare the actual output response to the
predicted response for faulty circuits f2 and f4.

Because the matrices are quite sparse, it is generally more compact to simply cre-
ate a list of the failing test numbers for each fault. The fault number then serves as
an index into the list of failing test numbers for that fault. Then, when one or more
tests fail at the tester, the fault simulator output indicates which faults are the poten-
tial cause of each test pattern failure. These faults are used to access the fault dictio-
nary to find the fault for which the failing test numbers most closely match the
actually test failures observed at the tester.

Test generation and fault simulation are based on the single fault assumption;
hence the fault list for a failing test can be inaccurate. This is especially true on the
first few patterns applied to a circuit since that is when gross defects are most fre-
quently detected. However, after the first few patterns, gross defects have usually been
detected and there is a growing likelihood that errors are the result of single stuck-at
faults. In that case the fault data recorded by the simulator for each pattern becomes
more reliable as a source of diagnostic data. Nevertheless, even without the presence
of gross physical defects, unmodeled faults such as noise, crosstalk, or parametric
faults produce error symptoms that are not always detectable by fault dictionaries.

7.7.11 Fault Dropping

In the past, when PCBs were made up of many discrete components, fault dictionar-
ies were a popular means of diagnosing and repairing these PCBs. At that time the
stuck-at fault model more closely approximated many of the fault mechanisms that
occurred on the PCB. In addition, the number of logic elements in the circuit was
much smaller, so fault dictionaries were more practical. Fault dictionaries are not as
popular as they once were, because circuits have increased in size to the point where
the amount of storage required for diagnostic data is simply too great. Another

T1 T2 T3 T4

F1 0 1 0 0

F2 1 1 0 1

F3 0 0 1 0

F4 0 1 0 0

F5 1 0 0 1 ��

BEHAVIORAL FAULT MODELING 353

problem is the fact that fault simulation of large circuits takes exorbitant amounts of
CPU time. The number of faults for a typical, gate-level circuit usually runs, on
average, about two and a half faults per logic gate. To simulate every fault on every
pattern becomes impractical.

For PCBs, automatic test equipment can isolate faults by means of probing
algorithms. In such cases, diagnostic data are not required so there is no need to
continue simulating a fault after it has been detected, thus permitting it to be
deleted from the fault list. This process, called fault dropping, can significantly
speed up simulation. If full fault simulation is impractical, but diagnostic data is
required, then a possible compromise between full fault simulation and fault drop-
ping is to keep a count of the number of times that a fault has been detected. After
the fault has been detected some specified number of times, it is dropped from fur-
ther simulation.

The criterion for determining when to drop a fault is a function of circuit size
and the number of faults detected with each pattern. The objective is to reduce
simulation time while obtaining enough information to minimize the number of
components that must be replaced on a board in order to restore it to proper opera-
tion. The problem is complicated by the fact that equivalent faults will always
appear together if they have not been reduced to a single equivalent fault. For
diagnostic purposes the amount of CPU time can sometimes be reduced if the
ATPG is required to create patterns for maximum resolution rather than maximum
comprehension. More test patterns are created, but fewer faults are detected by
each pattern; thus fault resolution is achieved more quickly and faults are dropped
sooner.

If a fault contained in a list of faults for the nth test pattern is the only previously
undetected fault in that list, it can be dropped from further simulation. The reasoning
here is that if any of the other faults actually exist in the device being tested, then
during testing they will cause an output error on an earlier pattern. If the nth pattern
is the first to fail, then the lone previously undetected fault is the likeliest fault to
have occurred.

7.8 BEHAVIORAL FAULT MODELING

In previous sections we looked in detail at fault modeling. It is important to bear in
mind that a fault model is exactly that, a model. As such it is an imperfect replica.
Faults are modeled as SA1 and SA0 on AND gates and OR gates. However, as we
saw in Section 2.13, networks of transistors do not always bear a physical resem-
blance to corresponding gate-level models. The purpose of the gate-level model is to
limit the scope of the problem. By using logic gates, some accuracy is sacrificed, but
it is possible to expedite a solution. If a problem requires too much detail it may not
be solvable in reasonable time. However, if too much accuracy is sacrificed, the
answer becomes meaningless. It is necessary to strike a balance.

Standard cell libraries typically contain a detailed layout describing the physical
implementation of a cell, and a description of the behavior of that cell at the logic

354 DEVELOPING A TEST STRATEGY

level. A significant amount of effort goes into the design of standard cell libraries to
ensure that the behavior of each member is described as accurately as possible, both
with respect to logic behavior and with respect to propagation delays from input
pins to output pins. However, as we previously saw, matching logic behavior to tran-
sistor-level implementation with enough accuracy to detect all physical defects is no
trivial task. The task can become even more of a challenge as we look at behavioral
modeling of circuits.

7.8.1 Behavioral MUX

A problem with gate-level modeling of functions is that different technologies
employ different basic building blocks. The NAND gate is natural for CMOS, and
the NOR gate is natural for ECL. The NAND conveniently implements a sum of
products whereas the NOR more conveniently implements a product of sums. The
circuits in Figure 7.9 are implemented as

F = (x1 + x2 + x3 + x4) ⋅ (x1 + x2 + x3 + x4) ⋅ (x1 + x2 + x3 + x4) ⋅ (x1 + x2 + x3 + x4)

or

F = x1 ⋅ x2 + x1 ⋅ x2 + x3 ⋅ x4 + x3 ⋅ x4

depending on which technology is chosen to implement the function.
While behavioral models of common functions can be too abstract to permit

accurate, detailed analysis of defect activity, gate-level models are also vulnerable.
In fact, sometimes, ironically, behavioral descriptions can produce better tests. Con-
sider the simple 2-to-1 multiplexer in Figure 7.14. Once again, we represent both the
sum-of-products and product-of-sums versions of the circuit. The following table
lists four vectors and the faults detected at the NAND circuit and at the NOR circuit.

Figure 7.14 Two implementations of the 2-to-1 multiplexer.

Faults Detected

A B C F (NAND) (NOR)

0 1 0 0 1.1, 2.1 SA1 3.1 SA0

1 0 1 0 1.2, 2.2 SA1 3.2 SA0

X 1 1 1 3.2 SA1 2.2 SA0

1 X 0 1 3.1 SA1 1.1 SA0

A
S

B

A

S
B

4 1

2
4

1

3

2

3

BEHAVIORAL FAULT MODELING 355

We consider six faults in each circuit. For the NAND (NOR) circuit we consider
SA1 (SA0) on each input of the three NAND (NOR) gates. All six of the faults in the
NAND circuit are detected. However, only four of the six faults in the NOR circuit
are detected. Input 2 of NOR gate 1 and input 1 of NOR gate 2 may or may not be
detected, depending on which value is assigned to the don’t cares.

An alternative view of the multiplexer as a functional entity is provided by the
following Verilog equation:

f = (Select) ? A : B;

In this equation, if Select is 1, then f = A, else if Select = 0, f = B. Faults in the
functional unit can be classified as control faults or data faults. The data faults are
as follows:

1. Cannot propagate 0 through A.

2. Cannot propagate 1 through A.

3. Cannot propagate 0 through B.

4. Cannot propagate 1 through B.

The control faults are as follows:

5. Select A, got B.

6. Select A, got both ports, that is, A + B.

7. Select B, got A.

8. Select B, got A + B.

The eight functional faults can be detected with the following four test vectors.

Comparing this table with the previous table suggests that the don’t cares in the
previous table should be set to 0. If we set them to 0 and again check the faults in
the NOR gate model of the multiplexer, we find that the previously undetected
faults have now been detected.

The preceding results can be generalized to any multiplexer. For an n-to-1
MUX, 2n tests verify that 0 or 1 can be propagated through the n ports. Selection
of the wrong port is detected by using the same 2n vectors and putting values on
other ports that are complementary to the value placed on the selected port. With
the single-fault assumption it is not necessary to put opposing values on all ports.

A B C F
Faults

Detected

0 1 0 0 1,5,6

1 0 0 1 2

1 0 1 0 3,7,8

0 1 1 1 4

356 DEVELOPING A TEST STRATEGY

For a 4-to-1 MUX with two select lines, S1 and S0, port 1 is selected by setting S1,
S0 = (0, 0). A single select line fault is likely to select either port 2 (S1, S0 = 0, 1) or
port 3 (S1, S0 = 1, 0) but not port 4 (S1, S0 = 1, 1).

Other functional entities can be similarly processed. The objective is to identify
invariant properties common to all or most physical realizations. Then, effective
tests can be created without detailed structural descriptions. There is the added
advantage that test pattern generation can be started before the design has been com-
pleted. Basic functional entities include:

Elementary gates: AND, OR Invert, simple combinations

Latches, flip-flops: JK, D, T

Multiplexers

Encoders and decoders

Comparators

Parity checkers

Registers

ALUs: logic, arithmetic—fixed point, binary coded decimal (BCD), floating point

Memory arrays

State machine

In the final analysis, fault models are used to evaluate the effectiveness of test vec-
tors for detecting physical defects in logic circuits. To that end, the modeling of
faults for functional primitives should reflect the types of physical defects that are
likely to occur and their effect on functional behavior. For example, a binary counter
with parallel load capability must be able to perform a parallel load, it must be able
to advance the count to the next higher binary stage, and it must be resettable. A
physical defect that alters any of these functional capabilities must be modeled in
terms of its effect on the function.

The fault model must reflect device behavior when the fault is present, because it
is only by simulating the behavior of the faulted circuit and observing the conse-
quences of that behavior at an output pin that detection can be claimed for the fault.
For example, if the output of the ith flip-flop in a counter is SA1, then the counter
begins counting with an initial value of 2i rather than 0 following a reset. In normal
operation, when counting up, bit position i resets to zero when bit position i + 1
switches to 1. To simulate faulted operation it must be forced to remain at 1.

7.8.2 Algorithmic Test Development

When performing fault-directed testing, an ATPG, or a test engineer, selects a partic-
ular fault and generates a test for that fault. However, for memories, fault-directed
testing is not used. Because memories have a regular structure, it is possible to apply
very concise algorithmic test programs that test them more thoroughly with less
effort on the part of the test engineer. These algorithmic programs test not only
stuck-at faults, but many other kinds of defects as well (cf. Chapter 10).

BEHAVIORAL FAULT MODELING 357

Other functions are amenable to algorithmic test patterns. These tests fall into
the category of black box tests; that is, these are tests developed without any visibi-
lity into the structure of the device being tested. We begin with the n-wide bus. It
could be an address or data bus connected to memory, or any other data path requir-
ing two or more wires to carry data into or out of some functional unit. Assume that
2i−1 < n ≤ 2i, for i an integer and i > 0. Then construct an i × n matrix by means of
the following code:

i = 5; // no. rows in matrix == log2(bus width)
n = power(2,i); // n = 2**i
for(k = 1; k <= i; k++) { // row k of matrix
limit = power(2,i-k); // limit = 2**(i-k)
for(m = 0; m < n/limit; m++)
for (p = 0; p < limit; p++) {
index = limit * m + p; // create p zeros
row[index] = m % 2; // followed by p ones
fprintf(stderr, "%c", row[index]+'0');

}
fprintf(stderr,"\n");

}

The matrix created by this C program, when i = 5, is as follows (the last line was
added manually):

00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101
1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0

For an n-bit bus, this matrix checks that each wire can propagate both 0 and 1. Note
that the rightmost column did not receive a 0, and the leftmost column did not
receive a 1, hence the need to manually add an (i + 1)st row. It is worth noting that
this matrix also checks for “stuck-to-neighbor” faults. Pick any two columns j and k,
then the values in columns j and k will differ in one of the vectors. That follows from
the fact that the columns generate every possible combination from 0 to 2i − 1.
Whether two nets with different values assume the value 0 or 1 in the presence of a
bridging fault depends on the technology. An interesting observation: Whenever the
number of bus bits doubles, a single additional vector is required.16

Now consider the possible faults that could occur in the ith stage of an n-bit binary
counter. The output of the ith stage could be SA0 or SA1. If the counter has parallel
load capability, these faults can be revealed by loading all 0s and all 1s. If the counter
does not have a load capability, a clear operation can force the counter to all 0s and

358 DEVELOPING A TEST STRATEGY

reveal an SA1 at the output of the ith stage. More challenging are the interstage con-
nections. When the current value in the counter is 2i − 1, an active clock edge causes
the ith stage to switch from 0 to 1 and all lower stages switch from 1 to 0 if the
counter increments correctly. If all stages up to the ith stage are 1s, and the ith stage
is 0, this 0 blocks a carry from propagating to higher stages. If the counter is decre-
menting, a borrow propagates through 0s until it reaches a stage whose value is 1.

If a carry into stage i + 1 is SA1, then clearing and clocking the counter will
cause the (i + 1)th stage to switch to 1. On the other hand, if the carry logic is SA0,
the sequence generated by the code below will reveal the fault. The following Ver-
ilog code illustrates these operations (keywords are highlighted to improve readabil-
ity). If a commercial Verilog simulator is not available, the Icarus Verilog simulator
(www.icarus.com) can be used to simulate the example. The output is written into a
file called response.fil.

module b16ctr(ctrout,din,clk); // behavioral 16-bit
// counter

output [15:0] ctrout;
input [19:0] din;
input clk;
wire loadall = din[3], incrcntr = din[2];
wire decrcntr = din[1], reset = din[0];
reg [15:0] ctrout;
wire load = loadall & reset;
always @(posedge clk) begin

if(load == 0)
ctrout <= din[19:4];

else if((incrcntr == 1) | (decrcntr == 1))
ctrout <= (decrcntr == 1) ? ctrout - 1 : ctrout + 1;

end
endmodule
module testbench;
reg [19:0] din; // din[3:0] = (load, incr, decr, reset)
reg clk;
wire [15:0] ctrout;
integer i, response;
b16ctr X1 (ctrout, din, clk);
initial begin

response = $fopen(“response.fil”);
#1 clk = 1’b1;

 end
always begin

#24 clk = ~clk;
#1 if(clk == 1)

BEHAVIORAL FAULT MODELING 359

$fdisplay(response, $time,” %b %b %b %b”,
clk, din[19:4], din[3:0], ctrout);

end
always begin

#1
$fdisplay(response,”// check propagate circuits”);
vec_gen(1’b1, 4’b1101, 20’h0);

$fdisplay(response,”// check borrow circuits”);
vec_gen(1’b0, 4’b1011, 20’hFFFF0);

$fdisplay(response,”// check propagate inhibit”);
vec_gen(1’b1, 4’b1101, 20’hFFFE0);

$fdisplay(response,”// check borrow inhibit”);
vec_gen(1’b0, 4’b1011, 20’h00010);

$fclose(response);
$finish;

end
task vec_gen;
input shift_in;
input [3:0] control_bits;
input [19:0] all_din;
begin
din[19:0] = all_din;
for(i = 0; i < 16; i = i+1) begin
#50; din = {din[18:4], shift_in, 4’b0001};
#50; din[3:0] = control_bits;

end
end

endtask
endmodule

We next consider a fixed-point ALU. The following Verilog RTL code describes
the 74181, a 4-bit ALU slice that was once commonly used as a discrete component
on printed circuit boards and which has since served as a template for ALU macro-
cells for many component libraries (cf. Figure 7.23).

module xy (X,Y,S3,S2,S1,S0,A,B);
input S3, S2, S1, S0;
input A, B;
output X, Y;
wire X = !(A & (S3 & B | S2 & !B));
wire Y = !(A | S0 & B | S1 & !B);
endmodule

360 DEVELOPING A TEST STRATEGY

module sn74181(F3,F2,F1,F0,A_EQ_B,P,CN4,G,S3,S2,S1,S0,
 A3,A2,A1,A0,B3,B2,B1,B0,M,CN);
output F3, F2, F1, F0;
output A_EQ_B;
output P, CN4, G;
input S3, S2, S1, S0;
input A3, A2, A1, A0;
input B3, B2, B1, B0;
input M, CN;
wire X3, X2, X1, X0, Y3, Y2, Y1, Y0;
wire CN4 = !G | X0 & X1 & X2 & X3 & CN;
wire P = !(X0 & X1 & X2 & X3);
wire G = !(Y0 & X1 & X2 & X3 | Y1 & X2 & X3 | Y2 & X3

| Y3);
wire F3 = X3 ^ Y3 ^ (M | !(CN & X0 & X1 & X2 | Y0 & X1 &

X2 | Y1 & X2 | Y2));
wire F2 = X2 ^ Y2 ^ (M | !(CN & X0 & X1 | Y0 & X1

| Y1));
wire F1 = X1 ^ Y1 ^ (M | !(CN & X0 | Y0));
wire F0 = X0 ^ Y0 ^ (M | !(CN));
wire A_EQ_B = F3 & F2 & F1 & F0;
xy U3 (X3,Y3,S3,S2,S1,S0,A3,B3);
xy U2 (X2,Y2,S3,S2,S1,S0,A2,B2);
xy U1 (X1,Y1,S3,S2,S1,S0,A1,B1);
xy U0 (X0,Y0,S3,S2,S1,S0,A0,B0);
endmodule

When S = {1,0,0,1} and M = 0, the 74181 performs an add operation, F = A + B + CN.
For the add operation, Xi = !(Ai & Bi); and Yi = !(Ai | Bi). With these values a typical
term Fi becomes

Fi = ! (Yi ^ Xi ^ (Yi−1 | Xi−1 & Yi−1 Xi−1 & Xi−2 & Yi−2 | | Xi−1 & ... & X0 & CN));

An algorithmic test will be described next that controls the Xi and Yi signals by
means of the Ai and Bi signals. A significant part, but not all, of the circuit elements
can be tested using the add operation. For example, when performing the add opera-
tion, the combination Xi, Yi = {0,1} cannot be achieved. That combination can be
obtained by selecting logic operations for the op-code S. The following Verilog code
implements the algorithm for an 8-bit data path:

module testbench;
reg [8:0] A, B, WALK;
reg Cin;

BEHAVIORAL FAULT MODELING 361

wire [7:0] F;
integer i, j, response;
alu X1 (A[8:1], B[8:1], Cin, F);
initial
response = $fopen(“response.fil”);

always begin
for(j = 0; j < 9; j = j+1) begin
Cin = (j == 0) ? 1 : 0;
WALK = 9’b1 << j;
for(i = j; i <= 8; i = i+1) begin
A[8:0] = 9’b0 ^ WALK;
B[8:0] = 9’h1FF ^ WALK << i-j+1;
#10 $fdisplay(response, $time,” %b %b %b %b”,
A[8:1], B[8:1], Cin, WALK);

end
$fdisplay(response, ““);
end

$fclose(response);
$finish;

end
endmodule

As mentioned before, any Verilog simulator will run the code and write the results
into the file response.fil. For an n-wide ALU, the algorithm generates n ⋅ (n + 1)/2
vectors. This test walks a 1 across the A port. That 1 is added to the argument at the B
port to create generate and propagate signals. The A and B arguments can be reversed
and the test applied again. After this algorithmic test has been run, a small number of
logic operations can be performed to detect the remaining undetected faults.

When an algorithmic test exists for a particular function, it can be used for design
verification as well as for manufacturing test. The Verilog code needed to drive the
circuit through a series of state transitions that deliver the ALU operands to the ALU
ports can be added to the Verilog code to make a complete test.

Although the logic designer may only be concerned with confirming that the
function is correctly wired to the rest of the circuit, a comprehensive, prepackaged
algorithmic test that detects all faults will serve two purposes: It will verify that all
inputs are connected correctly to the rest of the circuit, and it will serve as an effec-
tive manufacturing test. Such tests are, like memory tests, often easy to program
concisely. Note that an algorithmic test is not necessarily the smallest test, in terms
of vector count. For another view, directed toward determining the smallest set of
vectors, see Section 7.9.5.

7.8.3 Behavioral Fault Simulation

The advent of RTL logic design and the resulting reliance on logic synthesis has
had a major impact on design styles and productivity. By expressing a design at a

362 DEVELOPING A TEST STRATEGY

higher level of abstraction, the designer can focus on circuit behavior until the
model responds correctly. However, from the standpoint of developing and evaluat-
ing test programs, RTL design introduces its own problems. We discussed the
implications of granularity in Section 3.4. While it would be desirable to fault sim-
ulate at the RTL level, the level of granularity is so coarse that results may be
totally meaningless. The fault coverage number, which is a metric whose purpose is
to quantify the goodness or thoroughness of a test, may be deceptively optimistic.
As an example, it was pointed out in Section 7.5.6 that fault coverage of manufac-
turing faults is often far more optimistic than fault coverage of field faults for the
same circuit.

Fault simulation at the RTL level may be desirable in order to propagate faults
through behavioral models that do not have structural counterparts, or it may be
desirable in order to evaluate the quality of a test. If the purpose is to propagate
faults through behavioral elements that do not have gate-level counterparts, a prefer-
able alternative may be to synthesize the circuit into a gate-level model. If that is not
practical, then fault simulation at the RTL level can be accomplished in a concurrent
fault simulator by processing the behavioral module(s) in the same way that the
built-in primitives are processed; that is, when a fault effect arrives at one or more
inputs to the behavioral module, a pointer to that module is placed on the time
wheel. At the appropriate time the module is evaluated and the fault effects are fur-
ther propagated (cf. Section 3.7).

It may be desirable to fault simulate RTL modules in order to get a first-order esti-
mate of fault coverage. This can be helpful in spotting testability issues before a design
is synthesized. Test-resistant logic can then be redesigned before synthesis is per-
formed. In such cases, physical defects must be modeled realistically, so as to satisfy
the criteria of Section 3.4 and permit faults to be simulated accurately and quickly.

Fault insertion in functional models can be accomplished in a variety of ways.
The simplest way, for individual faults, is to introduce a fault variable v into an
expression such that the expression evaluates correctly if v = 0, indicating that the
fault is not present, and incorrectly when v = 1, indicating that the fault is present.
Notationally, this can be expressed as

F = v ⋅ fg + v ⋅ ff

where fg denotes response for the good circuit and fg denotes response for the faulted
circuit. If a function has many possible faults, it usually requires less CPU time if,
whenever possible, a single multivalued fault variable is used to specify either the
unfaulted function or one of n faulted models. Then, the fault variable is set before
the function is evaluated. Upon entering the function, the fault variable is evaluated
once. For a 2-to-1 mux, the following case statement determines whether the fault-
free code or code corresponding to a particular fault is executed.

reg [15:0] fault_num;
case (fault_num)
16’d0:

BEHAVIORAL FAULT MODELING 363

16’d1: A = 1;
16’d2: A = 0;
16’d3: B = 1;
16’d4: B = 0;
16’d5: A = B;
16’d6: A = A | B;
16’d7: B = A;
16’d8: B = A | B;

endcase
case (S)
0: F = A;
1: F = B;
X: if (A == B);

F = A;
else
F = X;

endcase

The fault number fault_num determines which case statement is executed. Case 0
corresponds to the fault-free circuit. After a fault is inserted, the second case state-
ment executes the simulation code. If the control signal is indeterminate, but the
inputs match, the output is set equal to the inputs; otherwise it is set equal to X. If A
and B are m-bit wide ports, then a more detailed bit-by-bit comparison is necessary.

What happens when the case statement is incomplete? A simple solution is to
ignore the effects of faults for which behavior is undefined. In a case statement that
decodes op-codes, the default may be to take no action for op-codes that are unrec-
ognized. Such a fault then becomes undetectable, unless it can propagate to an out-
put by way of some other signal path. If the purpose of the case statement is to
decode op-codes, then a possible solution is to load the model’s Instruction Register
with Xs. The fault may then eventually become a probable detect.

For more complex functions, such as a CPUs, additional complications arise.
Simulation during design verification may be performed at far too high a level of
abstraction to permit meaningful fault analysis. In such a case it may be possible to
break a behavioral module into several smaller submodules and apply SA0 and SA1
faults on each input and output pin of each of these submodules. This provides
greater granularity and may help to identify paths that fail to get exercised when
writing verification suites.

A more meaningful fault estimate may be obtained by performing operations on
arguments at a lower level of abstraction. For example, in an ALU, a fault simula-
tion result may be meaningless if the operation F = A + B is performed at the behav-
ioral level, particularly when one or both arguments have indeterminate values. But,
if simulation is performed by adding bits iteratively from lowest to highest bit posi-
tion, including the propagate and generate bits Pi and Gi (see Section 7.8.2), then

364 DEVELOPING A TEST STRATEGY

fault simulation results may be meaningful, even when some of the bit positions are
indeterminate. The sum begins at the carry-in and proceeds from low-order to high-
order bit position. If an input bit position is indeterminate in one vector, but the
other input and the carry-in are both 0s, the indeterminate value is blocked from
propagating to the next higher position. The iterative method lends itself to any
argument size since the number of iterations can be an argument in a loop control
statement.

The iterative approach also permits simulation of faults internal to the ALU.
However, all the Pi and Gi must first be computed, based on the values Ai and Bi.
Then, as with the MUX previously described, an individual Ai, Bi, Pi, or Gi is
faulted, based on the fault number. The ALU result is then computed for either the
fault-free or some faulty circuit. The sum at position i is computed using Ai, Bi and a
carry Ci into position i where

Ci = Gi−1 + Pi−1 ⋅ Ci− 1

The Gi and Pi can be computed once. Then, individual parameters can be faulted and
the effects computed in a loop until all fault effects have been analyzed.

7.8.4 Toggle Coverage

It was pointed out in Section 7.5.2 that checkpoint faults, barring redundancies in
the netlist, uniquely correlated to 2-tuples of type <signal path, logic value>. High
coverage of these faults, using design verification vectors, usually indicates a thor-
ough design verification suite—that is, one that checks most, if not all, of the
obscure corners of a design. This raises the following question: If a test suite thor-
oughly exercises an RTL design, does it also give good fault coverage? Expressed
another way, high coverage of an RTL design is necessary if a verification suite is
to provide high fault coverage, but is it sufficient? Before addressing that question,
we address the following question: “How do we determine whether a test suite
provides thorough design verification coverage?”

One method that has been used for many years is toggle coverage. This operation
keeps track of the number of times each net in a circuit switches from 0 to 1 and
from 1 to 0. For a bus driven by two or more tri-state drivers, the operation may
count the number of transitions to and from the high-impedance state as well. Tog-
gle coverage is performed during gate-level simulation, and it is quite easy to com-
pute the count at that level of detail.

Toggle coverage can be used to advantage to determine where “hot spots” exist
on an IC. In CMOS ICs power consumption is proportional to switching activity. It
is possible that total power consumption in an IC is well under some predetermined
upper limit. However, it may be the case that a large amount of power consumption
occurs in a relatively small area of a chip where a disproportionately large amount
of switching activity takes place. By performing toggle counts during gate-level
logic simulation and linking switching activity to X-Y coordinates on the die, it is

BEHAVIORAL FAULT MODELING 365

possible to identify areas of the die where this concentrated switching activity
causes local hot spots that lead to premature failure of the IC. If hot spots are
detected, the logic can be rearranged on the die and resimulated with the toggle
count option. It is important to note that gate-level simulation must be performed
with nominal or back-annotated delays. A unit or zero-delay simulation, and partic-
ularly a rank-ordered simulation, will not accurately reflect the number of times
each logic element switches in a given time frame.

For design verification, the fact that toggle count is performed at the gate level pre-
sents a problem. Since so much of IC design activity is at the RTL level, a gate-level
toggle count is performed after a design has been synthesized. If toggle count reveals
that verification is inadequate in some areas of the design, two problems exist. First, a
synthesized design is usually difficult or impossible to trace. Arbitrary name assign-
ments during synthesis often bear little or no correspondence to the original RTL.
The larger the module, the more difficult it is to relate the gate level to the original
RTL. A second problem, if design flaws are uncovered as a result of additional test
suites written to improve toggle count, is that the synthesis process must be repeated.
It is much preferred to identify errors in the design before it is synthesized.

7.8.5 Code Coverage

An alternative to toggle count is code coverage. It is measured during RTL simula-
tion. Code coverage has been used for many years by software developers to measure
thoroughness of test suites written for programs expressed in high-level languages
(HLLs). For HDLs it not only can point to areas of a design where coverage is low,
but also can point to areas where coverage is adequate and can thus save the designer
some time. The most obvious metric is block coverage. It. identifies lines of code that
were executed and lines that were overlooked during creation of test suites. Coverage
reports can be generated on a module basis, with results identifying (a) the percent-
age of lines of code that were executed in each module and (b) the specific lines of
code that failed to get exercised. By knowing the percentage of lines of code in each
module that were covered, the user can target modules with the lowest coverage
results and write tests to exercise the unverified code in those modules.

Another form of code coverage is expression coverage. In this mode, individual
expressions are evaluated in greater detail. Consider the following expression:

Y = A & B | C & D;

Any set of values would exercise the equation, (A,B,C,D) = (0,0,0,0) is one such set
of values. If the only goal was to confirm that the expression had been executed,
those values would satisfy the requirement. However, if this equation controlled the
operation of some major function, very little information is gained from the values
just cited. If we were interested in an event corresponding to variable A, we might
want variable B to be a 1, in order to verify that A is able to block the event controlled
by Y, or we might want A to be 1 and B to be 1, in order to verify that A is able to trig-
ger the event controlled by Y. Furthermore, if both C and D were always 1, then any

366 DEVELOPING A TEST STRATEGY

values assigned to A and B would be blocked from having an effect downstream in
the logic.

A more meaningful assessment of the equation provides feedback indicating
which of the four variables controlled the outcome of the expression during simula-
tion. Interestingly, this is precisely what fault simulation does. Expression coverage
at the RTL level in a code coverage tool accomplishes something very similar to what
fault simulation accomplishes at the gate level. The major difference is that code cov-
erage only measures controllability while fault simulation measures controllability
and observability; that is, a fault effect must be driven to an observable output.

A third code coverage metric is path coverage. In Verilog it measures the thor-
oughness of coverage for all possible paths through “initial” and “always” blocks, as
well as within each “forever,” “while,” “repeat,” and “for loop” construct. Fixed inte-
gers or variables used to specify the number of iterations through a loop can be
checked to determine whether the full range of values was exercised. Paths through
successive conditional blocks can be checked. So, if there are two successive if...else
expressions, there are two paths through the first expression and two paths through
the second, but there are four distinct paths through the two constructs taken jointly.
There may be circumstances when it is desirable to verify all four paths through the
code. Other forms of coverage can be evaluated using code coverage. Case state-
ments representing state machines can be evaluated to insure that all states have
been visited and that all arcs have been traversed. A case statement may represent a
multiplexer, and it may be desirable to verify that all paths through the multiplexer
have been exercised.

How effective is code coverage? A study was performed to compare the results of
code coverage versus fault simulation, using the same test vector sequences to eval-
uate both operations.17 An initial set of test vectors was captured from a design veri-
fication testbench where they were used to check out an RTL model. These vectors
were reapplied to the RTL model after it had been instrumented for code coverage.
The instrumentation process consists of compiling the RTL design code and embed-
ding PLI (programming language interface) calls during the compilation. The calls
kept track of which lines of code were evaluated, and they also kept track of what
values appeared on the variables in those lines of code.

The same vectors were fault simulated against a gate-level model of the circuit.
The results of these two operations are illustrated in Figure 7.15. The fault coverage
profiles, both code coverage and fault simulation coverage, were plotted for several
levels of hierarchy. The leftmost column indicated coverage for the entire design. The
next few columns indicate coverage for each of the top-level submodules. Eventually,
continuing down the hierarchy in this fashion, coverage at the far right is provided for
the smallest modules. The dotted line indicates RTL code coverage, and the dashed
line indicates fault coverage. The coverages for this particular circuit track rather well
for the larger modules; it is only at the extreme right, representing modules that con-
sist of perhaps four to eight lines of RTL code, that the correspondence breaks down.

After examining the results and identifying where the fault coverage was unac-
ceptably low, additional test vectors were written, specifically targeting low cover-
age areas of the chip. These brought total coverage up to 92.35%. The two sets of

BEHAVIORAL FAULT MODELING 367

Figure 7.15 Fault coverage versus code coverage (80.45%).

vectors were then resimulated against the instrumented RTL model, and the results
again were plotted. The correspondence between code coverage and fault coverage
improved as fault coverage increased to 92.35%. This is seen in Figure 7.16.

It is interesting to note that for some modules, code coverage was higher than
fault coverage, while for other modules fault coverage was higher than code cover-
age. One should be careful not to read too much into a single investigation. A prob-
lem with using code coverage vectors for manufacturing test is that designers are not
obligated to propagate results all the way to outputs. A designer may verify that it is
possible to load a register, or traverse a state machine, and stop at that point. Further-
more, the designer may load a register directly via the testbench, rather than apply
signals at the inputs and propagate them through internal logic in order to load a reg-
ister. This discussion can be summed up with the observation that high code cover-
age is a necessary, but not sufficient, condition for high-fault coverage.

Figure 7.16 Fault coverage versus code coverage (92.35%).

100

80

60

40

20

0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0

Code cover Fault cover

Code cover Fault cover

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0
0

20

40

60

80

100

368 DEVELOPING A TEST STRATEGY

7.9 THE TEST PATTERN GENERATOR

In Chapters 4 and 5 we examined in detail the algorithms currently used in ATPGs.
In the next chapter we will examine DFT methods that have evolved to make ATPG
useful as a tool for creating effective test programs. In this section we examine some
methods that have been developed to either enhance the capabilities of ATPG or
make it more flexible, as well as make it easier for users to tailor it to specific needs.

7.9.1 Trapped Faults

When logic signals are clocked through a sequential digital circuit, error signals
produced by the faults frequently are clocked into storage elements, including
latches and flip-flops. These faults are referred to as trapped faults. If the flip-flop
clock is gated, or if the flip-flop has a hold mode, permitting it to hold existing con-
tents or clock in new data under control of a select line, then it is possible that fault
effects may remain in the flip-flop for many clock cycles. Oftentimes these trapped
faults occur in registers that are remarkably easy to control and observe. For exam-
ple, general-purpose registers in a microprocessor are controlled via Load and Store
instructions. If a particular register contains one or more trapped faults, these
trapped faults can be driven to the output bus and thus detected, simply by inserting
the appropriate Store instruction.

It is a simple matter for a fault simulator to be instrumented with code to monitor
the registers and identify those that contain trapped faults at any given time during
fault simulation. The simulator can count the number of fault effects, if any, that
become trapped in each storage element. This information can be used to prioritize
the storage devices according to how many fault effects are trapped in each device.
The volume of data is usually intractable during the initial stages of fault simulation,
but the strategy can become valuable during the latter stages of simulation.

A comprehensive strategy employing this capability can be deployed as follows:

1. Fault simulate and update the master fault file.

2. Read in the undetected faults.

3. Resimulate the undetected faults with the trapped faults feature turned on.

The first and second steps are normal fault simulation steps. However, the third step
involves rerunning fault simulation with the undetected faults and the test vectors
that were previously run. No additional faults will be detected with these vectors.
However, by identifying faults that become trapped in storage devices, it becomes
possible to alter the test program in order to flush out some of these trapped faults.
The user may be given the ability to specify registers that the ATPG should monitor.
For example, general-purpose registers in a microprocessor can be directly read out
with the Store instruction, so they would be candidates for monitoring. Either the
vectors that are being simulated can be altered to enhance the fault coverage, or an
altered version can be attached to the end of the existing vectors in order to improve
the coverage.

THE TEST PATTERN GENERATOR 369

7.9.2 SOFTG

A wealth of data about fault effects exists in the data structures of a concurrent fault
simulator. Rather than pick a fault at random from a master fault list, the ATPG can
target one of these trapped faults. The simulator oriented fault test generator
(SOFTG) does exactly that. It inspects the results of simulation to determine if any
faults are trapped in a flip-flop that is close to a primary output.18 If it finds a trapped
fault that appears to be easy to propagate, that fault is selected as the next candidate
by the ATPG. Since the ATPG uses the current state of the circuit, it does not need to
create an initializing sequence; rather, it only needs to create a propagation
sequence.

In a typical implementation of this concept the ATPG creates a sequence of vec-
tors and passes these on to the fault simulator, which accepts the vectors and
resumes fault simulation from that point where it previously left off. Initially, during
the first few vectors, there is no previous state and circuit state is indeterminate, so
an initializing sequence is passed to the fault simulator. After fault simulating a
sequence of vectors passed to it by the ATPG, the fault simulator turns control over
to an executive routine that examines the circuit state and locates trapped faults, as
indicated by the fault effects.

The executive routine then determines if the ATPG should propagate a trapped
fault or target a new fault from the master fault list. A number of criteria must be
considered when selecting a candidate fault. A register may have many trapped
faults linked to it, or there may be a register close to an output that has several unde-
tected faults trapped in it. It could very well be the case that faults in a register are
blocked by an enable signal on tri-state buffers that control access to a bus con-
nected to output pins. Enabling the tri-state buffers may be a very simple operation.

Some trapped faults may propagate in response to a clock edge. However, some
faults may be dead-end faults. Figure 7.17 illustrates a situation where a select line
is controlled by flip-flop S. If flip-flop A is selected and flip-flop B has trapped faults
that we wish to propagate to the output, then it would seem to be a simple operation
to select B and cause the trapped faults to propagate to F. However, in the process of
setting up the Select line it is possible that the entire history of flip-flop B changes. A
new value is clocked in, and all of the trapped faults disappear, to be replaced by an
entirely new set of linked fault effects (or perhaps, none). In that case, any effort to
propagate trapped faults will be in vain. This can be detected by the fault simulator
and, when it happens, the fault simulator should be equipped with a roll-back feature
permitting it to delete the added vectors, unless they detect other, untargeted, faults.

7.9.3 The Imply Operation

In his original article on the D-algorithm,19 Roth propagated sensitized signals on
one or more test paths all the way to the outputs before performing justification. In
a subsequent paper,20 Roth described a modified D-algorithm, called DALG-II, in
which the full implication of every assignment is carried out at every step of the
propagation or justification phase. In general, an implication exists if, as a result of

370 DEVELOPING A TEST STRATEGY

Figure 7.17 Dead-end fault.

existing assignments on the inputs and output(s) of a primitive, only one entry in the
cover exists that does not conflict with existing assignments. If no entry exists, then
a conflict has occurred.

Example In Figure 7.18 we want to derive a test for an SA0 on the upper input of
gate J. We start by assigning the PDCF (1, 0) to the inputs. The 0 on the lower input
implies 1s on D and E. A 1 on the output of gate I and a 1 on the input from D implies
a 0 on the output of G. That implies 1s on inputs B and C. Finally, a D propagates
through J. That requires a 1 on the upper input to K. Input B was previously assigned
a 1, so a 0 is implied on input A and the test is complete. ��

When decisions are encountered, they can frequently be postponed. Gate-level test
pattern generation is one endeavor where it is desirable to put off making decisions
whenever possible. We avoided a decision in the example just described by starting
with the lower input to gate J. If the upper input had been selected first for process-
ing, then a decision would be required as to which input to gate I would be assigned
a 0. That could have caused a 0 to be assigned to input D, resulting in a conflict. By
postponing the decision, it was ultimately avoided. The general rule is to avoid mak-
ing decisions as long as any alternate activity can be performed. When decisions are
made, it is necessary to record enough information so that if a decision leads to a
conflict, it is possible to restore the circuit to the state that existed when the decision
was made. This permits an alternate decision to be made and evaluated.

Figure 7.18 The implication operation.

MUX

Select

A

B

F

S

Clock

A

B

D

LC

E

F

J

1

1

0

0

1

1

1

0
D

1

SA0

DG
I K

H

THE TEST PATTERN GENERATOR 371

7.9.4 Comprehension Versus Resolution

When creating test stimuli for digital circuits it is possible to bias the algorithm for
either maximum or minimum fault detection with each pattern. If it is only necessary
to determine whether an IC is good or bad, and there is no requirement to diagnose
the cause of a failure, then we may want to make that determination with a minimum
number of vectors; that is, we want maximum fault coverage or comprehension with
each test vector. Minimizing the number of test vectors will reduce the amount of
CPU time required for fault simulation. Furthermore, it can reduce the amount of
storage space required to store stimulus and response data at the test station. On the
other hand, when testing a printed circuit board that may contain up to 200 IC pack-
ages, it is desirable to locate a failed IC so that the board can be repaired. This can
often be done more easily if fewer failures are detected by each test pattern.

The algorithm can be biased by applying propagating or nonpropagating input
values to primitives during the justification phase. This is illustrated in the circuit of
Figure 7.19. When testing the output of gate 10 SA0, we may select (0, 0) for the
inputs or we may select either of (0, 1) or (1, 0). If we select (0, 0), then no fault on
preceding logic will propagate through the NAND gate and the only fault detected is
the output of gate 10 SA0. If (1, 0) or (0, 1) is selected, then other faults can propa-
gate through gate 8 or 9 to the output.

The concept of deadening, or desensitizing, propagation paths in order to
increase resolution can be enhanced by initially selecting faults at or near primary
outputs and desensitizing signal paths at every opportunity. Maximizing comprehen-
sion when using the D-algorithm may be achieved in combinational circuits by ini-
tially selecting faults at or near the inputs and selecting propagating values
whenever possible. It can also be achieved by using dynamic compaction, as
explained in the next section, or the subscripted D-algorithm (Section 4.5).

Another feature proposed by Roth for DALG-II is the “fast plunge.” Frequently,
at fanout points, the next gate selected for propagation is the lowest numbered gate
in the fanout list. In the circuit of Figure 7.19, a D on input 1 would be propagated
through gate 5. However, the fast plunge selects the highest numbered gate, in this
instance gate 8, and propagates through it rather than through gate 5. Since rank
ordering assigns higher numbers to gates furthest from primary inputs, the algorithm
will often get to an output in a smaller number of steps, and with fewer gate assign-
ments requiring justification. Another motive for selecting a gate other than the low-
est numbered gate in the fanout list is that, because of reconvergent fanout, it may be
more difficult to propagate through a lower numbered element.

Figure 7.19 Extending a sensitized path.

4

3

2

1

10

86
5

7

9

372 DEVELOPING A TEST STRATEGY

7.9.5 Probable Detected Faults

We looked at probable detects in some detail in Section 5.2.1. It was pointed out that
some faults in sequential circuits make it impossible to drive the circuit into a known
state. When the fault-free circuit is able to enter a known state, it is possible to pre-
dict the correct value at an observable output. However, because the response of the
faulty circuit is indeterminate, it might respond with the same value as the fault-free
circuit, or it might produce a value that differs from the fault-free circuit. We can tell
if a flip-flop is responding correctly by observing whether or not it is capable of
propagating both logic values.

Consider the circuit in Figure 7.20. If the CLK input is SA1, the output of the
flip-flop is indeterminate. However, in a properly working flip-flop the output fol-
lows the input when an active edge is applied to the clock. Hence, we can require
that it be marked as a 1/x detect if the fault-free flip-flop has a 1 on its output, and if
that value is propagated to the output. If the fault-free flip-flop has a 0 on its output
and if the output of the flip-flop is detected, then we can mark it as a 0/x detect. If
both 1/x and 0/x detects occur, then the stuck-at fault on the CLK input can be
marked as detected.

7.9.6 Test Pattern Compaction

Quite often a test for a given fault requires assigning values to relatively few of the
primary inputs. If there are several patterns with a small number of input values
assigned, then pairs of these test patterns can frequently be merged, provided that
none of the input positions conflict. The general rule for merging is:

If one vector has a 1 in position i and the other vector has a 0 in position i, they
cannot be merged.

If one vector has e ∈{0,1,X} in position i and the other has X, then position i is
assigned the value e.

This process is called static compaction. Sequences of vectors can also be merged.
When self-initializing sequences of test patterns are created for sequential circuits,
as is done when employing the iterative test generator, an entire sequence can be
placed immediately following another sequence. However, the number of test pat-
terns can sometimes be significantly reduced by merging sequences.

Figure 7.20 Counting probable detects.

CLK

D

THE TEST PATTERN GENERATOR 373

Example We will attempt to merge the following two sequences of patterns.

 (1) (2)

1: 1 X 0 0 1 1 1: X 1 0 1 X 1

2: 0 0 X 0 1 0 2: 0 0 X 1 0 X

3: 1 1 1 0 X 0 3: 0 0 X X 1 1

4: 0 1 0 X 1 X 4: 1 X X 1 0 0

5: X X 1 1 X 1

We start with the first pattern of the second sequence and compare it with the last pat-
tern of the first sequence. There is a conflict in the third bit position. We then compare
it to the fourth pattern of the first sequence. This time there is no conflict. However,
we cannot simply merge the patterns because the sequences are chronologically
dependent. All four patterns of the second sequence must be applied in strict
sequence. Therefore, it is necessary to compare the second pattern of the second
sequence with the last pattern of the first sequence. If they conflict, the sequences can-
not be merged. In this case there is no conflict so the two sequences can be merged
by combining the last two patterns of the first sequence with the first two of the sec-
ond sequence. This produces

1: 1 X 0 0 1 1

2: 0 0 X 0 1 0

3: 1 1 1 0 X 0

4: 0 1 0 1 1 1

5: 0 0 1 1 0 1

6: 0 0 X X 1 1

7: 1 X X 1 0 0

Test pattern reduction can be accomplished dynamically while patterns are
being created.21 In this approach the ATPG attempts to create tests for additional
faults after a test has already been successfully created for a fault. In Figure 7.21 a
test was created for the top input of gate Q SA1. This test was extended as far back
as possible toward the inputs in an attempt to maximize fault comprehension.
However, the PDCF for this fault immediately causes all paths from gates O and P
to become “blocked”; that is, fault effects cannot propagate through those paths.
However, in the circuit shown, gate M has fanout that leads to another primary
output. It is possible that additional faults can be selected and sensitized to the
other output. To do so would require selecting a fault and sensitizing a path to the
other output, subject to the constraint that values must not be changed on gate
inputs that have already been assigned. Values on those inputs are fixed and must
not change.

��

374 DEVELOPING A TEST STRATEGY

Figure 7.21 Dynamic compaction.

We attempt to propagate additional tests through gates that are not blocked. To
increase the likelihood of selecting faults that can be successfully tested, cones are
created from the outputs. Two cones are illustrated in Figure 7.21 by means of the
dashed lines. Cones generally overlap since signals, especially control signals, affect
many areas of logic. If a given fault is only contained in cones whose outputs
already have assigned values, then it is pointless to select that fault during dynamic
compaction.

In the circuit of Figure 7.21 a test on gate K could not be propagated to output
S because it is blocked from the output. It cannot be propagated to output T
because it is not contained in the cone of T. If an output has not yet had a value
assigned, then a fault contained in the cone of that output is a candidate for test
creation. If the test attempt fails because of excessive numbers of blocked gates,
then continue until either a fault is found in that cone for which a test can be
achieved or until no more untested faults exist for which a test has not been
attempted. At some point in the creation of any one test pattern it becomes
impractical to try to continue to create tests. Obviously, if all outputs in the cir-
cuit are assigned values, no additional faults can be propagated to these outputs.
It also becomes difficult when nearly all of the inputs, ≥85%, have already been
assigned values.

7.9.7 Test Counting

An interesting question, related to test compaction, is the following: “What is the
smallest set of vectors needed to detect all of the stuck-at faults in a given circuit?”
Consider the following expression, taken from the 74181 ALU in Section 7.8.2.

assign F3 = X3 ^ Y3 ^ (M | !(CN & X0 & X1 & X2 | Y0 & X1 & X2 | Y1 & X2 | Y2));

A
B

D
S

C

E L

P

O

K

T
M

R

F

G

H
I

J

0
0

1

1
0

1blocked

blocked

blocked

not
blocked

N

Q

THE TEST PATTERN GENERATOR 375

This expression is illustrated in Figure 7.22. A rather straightforward way to find a
minimal test set would be to fault simulate all input combinations, then create a
matrix of vector number versus faults detected. From that matrix it becomes a cover-
ing problem, much like the fault dictionaries discussed in Section 7.7.10; that is, find
the smallest set of vectors that detects all faults. However, for large circuits with
many inputs the matrix approach becomes impractical.

A small circuit such as the one in Figure 7.22 can be examined analytically with-
out too much difficulty. First, note that some stuck-at faults can be tested in parallel.
For example, if input X3 and the output of gate F are both 1s, then SA0 faults on
either input to G will be detected at the same time. Therefore, tests for these faults
can be readily merged with tests for other faults; thus for purposes of analysis, faults
on these inputs can be ignored.

Tests for SA1 faults on AND gates A, B, and C, as well as on the inverter D, can
exploit the fact that the tests do not block each other. However, each of the four
inputs to gate A requires a separate test. Furthermore, a test for SA0 on each of the
inputs to gate E requires a separate test. Hence, just from this brief, informal analy-
sis it can be seen that there is a requirement for at least eight distinct test vectors for
the circuit. In addition, a ninth vector is required to detect an SA0 on the input to F
driven by input M, since M must be 0 in each of the preceding eight vectors to avoid
blocking the propagation path from gate E to the output.

While the circuit in Figure 7.22 requires a minimum of nine vectors to detect all
of its stuck-at faults, what is quite remarkable is the fact that the circuit in
Figure 7.22 is but a very small piece of the circuit shown in Figure 7.23; it doesn’t
even include the selection logic used to generate Xi and Yi, and yet it has been shown
that the circuit in Figure 7.23 can be fully tested with just 12 vectors.22

The method used to determine the number of vectors required to test the circuit
of Figure 7.23 is called test counting. It does not compute the actual vectors needed
to test the circuit, nor does it determine precisely how many vectors are needed.
Rather, test counting derives a lower bound for the test counts. In order to determine
the lower bound, some definitions are required. The test values 0+, 1+, 0−, and 1− are
interpreted as follows: A 0+ denotes a logic value 0 on a net that will detect an SA1

Figure 7.22 Circuit diagram for output F3.

Cn
X0
X1
X2
Y0
X1
X2

Y1
X2

Y2
M

Y3
X3

F3

A

B

D

C G
H

F
E

376 DEVELOPING A TEST STRATEGY

Figure 7.23 74181 ALU.

fault on that net. The net is sensitive to a SA1 fault. A 0− denotes a logic 0 that will
not detect an SA1 fault on the net. In this case the net is insensitive to the SA1 fault.
The 1+ and 1− are interpreted analogously. The + and − are called sensitivity values.
These values can be determined by simulating the circuit and identifying the sensi-
tized paths reaching the output.

M

A = B

B3

A3

S 0
S 2

S 1

F0

S 3

B2

A2

B1

A1

B0

A0

F3

F2

F1

X

Y

Cn−4

Cn

1

2

3

4

2

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

7

27

28

29

30

31

32

38

42

33

XY

XY

XY

XY

3

4

5

54

8

39

40

41

58

43

44

45

46

47

48

49

50

51

52

63

59

34

60

35

61

36

62

55

56

57

53
37

THE TEST PATTERN GENERATOR 377

More interesting are the following values. They can be determined without simu-
lating the circuit:

a0
+, a0

−, a1
+, a1

−, a0, a1, a
+, a−

Given a circuit C, a set of test vectors T, and a net A, then

a0
+ is the number of test vectors in T that produce a test value 0+ on A

a1 is the number of test vectors in T that produce a test value 1 on A

a− is the number of test vectors in T that produce a sensitivity value − on A

The remaining five values are interpreted similarly. The symbol δ is used to repre-
sent the total number of test vectors in T.

In order to count the number of vectors required to test a combinational circuit, it
is necessary to start with the basic building blocks, the logic elements. Consider
a 4-input AND gate with inputs A, B, C, and D and output E. If (A, B, C, D,
E) = (0+, 1−,1−,1−,0+), this can be interpreted to mean that a 0 on input A will detect
an SA1 on that input if the other inputs are nonblocking (i.e., logic 1), and an SA1
on the output of that gate is detectable at the output of the circuit. Put another way,
the PDCF (0,1,1,1) on the inputs must propagate to the output. Since the test values
on the inputs to the AND gate are mutually exclusive, the test count e0

+ at the output
E of the AND gate is 4.

Now, consider the circuit in Figure 7.23. We will informally analyze it to deter-
mine the number of test vectors needed to test for stuck-at faults on all the gate
inputs. The interested reader can find a much more rigorous treatment of the subject
in the original article.22 The computations are performed by way of repeated passes
through the circuit, until a complete pass through the circuit results in no more
changes to any of the test values. However, in our simple circuit we will start at the
inputs and, in one pass, compute all of the numbers. Note that at the output of gate A
the value of a0

+ is 4. The value of b0
+ is 3, c0

+ is 2 and d0
+ is 1. These test values are

not mutually exclusive; that is, the AND gates and the buffer can be tested in paral-
lel. When these tests are propagated through the NOR labeled E, the test value e1

+

becomes 4.
Testing the NOR is analogous to testing the AND. The test values (A, B, C, D,

E) = (1+, 0−,0−,0−,0+) are complementary, and the value of e1
+ is 4. The values for

the pair of test values (e0
+, e1

+) is (4, 4). The total number of tests required at this
point in the circuit is the sum of the two numbers, or 8. One final calculation is
required at the OR gate labeled F. This requires one additional vector, so the final
result is δ = 9. Recall that we determined that we could test the exclusive-OR gates
in parallel with the tests coming from the preceding logic.

Note that this is a lower bound on the number of test vectors needed to test all of
the modeled faults in the circuit. The test counts are computed without knowing
what test vectors are applied to the circuit. In addition, the test count is affected by
the choice of faults. Also note that when a circuit element fans out to two or more

378 DEVELOPING A TEST STRATEGY

elements, this must be taken into account. For example, if a stem A drives two
checkpoint arcs B and C and the two arcs do not reconverge, then the possible values
for (A, B, C) could be (0+, 0+, 0+), (0+, 0+, 0−), (0+, 0−, 0+), (0−, 0−, 0−), (1+, 1+, 1+),
(1+, 1+, 1−), (1+, 1−, 1+) or (1−, 1−, 1−). If there is reconvergence, the number of possi-
bilities increases and the computational complexity likewise increases.

Is there any value to test counting, or is it just an academic exercise? Given a
scan-based circuit, it may be useful to know whether the number of vectors gener-
ated for a region of combinational logic is minimal or near minimal, since more vec-
tors imply a longer test. That requires a greater amount of time on a tester, which
adds to the cost of the die. In a large combinational array, test counting may prove
useful in assessing the effectiveness of inserting test points at various places in the
circuit to improve observability. Quantifying the improvement in vector count can
help to make a more effective decision regarding cost of the test point versus cost of
tester time for the die.

7.10 MISCELLANEOUS CONSIDERATIONS

A number of issues must be considered when developing a digital test plan. Some of
these relate to design-for-testability (DFT) and will be postponed until the next
chapter. However, other issues crop up during development of test programs or
when evaluating different methodologies, and they must be resolved before test pro-
gram development begins. We will examine some of those issues in this section.
Before proceeding we note that, in the past, it was not uncommon for vendors to
develop languages to control their fault simulators and/or ATPG programs. This is
one of those areas that is giving way to standards: The Standard Test and Interface
Language (STIL) discussed in Chapter 6 is not only suitable for the tester environ-
ment, it is sufficiently robust that it can also be used as an input medium for fault
simulation and ATPG tools.

7.10.1 The ATPG/Fault Simulator Link

It was previously pointed out that an ATPG can be linked with a fault simulator
under control of an executive routine. The ATPG creates sequences targeted at
specific faults, and the fault simulator determines if the target fault was detected.
In addition, the fault simulator identifies any other faults detected by the sequence
passed on to it by the ATPG. If the sequence fails to detect the target fault and if
no other faults are detected, the sequence is usually discarded. However, if any
faults are detected, the sequence is retained and appended to the end of the test
sequence.

Sequences can fail to accomplish their intended task for a number of reasons. The
ATPG may simply have miscalculated. Often, when creating sequences targeted at a
specific fault, the ATPG overlooks side effects that invalidate the sequence. One
such problem is a failure to properly process bidirectional pins. The ATPG may
attempt to drive a bidirectional pin with an external signal when the tri-state driver

MISCELLANEOUS CONSIDERATIONS 379

for that I/O pad is active. A properly implemented fault simulator can recognize
such conflicts and report the condition to the ATPG. This is especially important
because the ATPG does not know how to deal with timing, and bidirectional pins
frequently switch in the middle of a clock cycle.

Sometimes a sequence is invalidated by races or hazards. In the circuit depicted
in Figure 7.24, two inputs switch at approximately the same time. As a result, there
is the possibility of a negative-going pulse from the OR gate that may be of suffi-
cient duration to cause the latch to make a permanent, but unintended, state transi-
tion. The transition, in turn, may block a fault effect from propagating forward to an
output. A nominal delay fault simulator can identify race conditions that invalidate
the work done by the ATPG. Not all states or input conditions cause problems. For
example, the hazard depicted above will not cause an error if the output is already at
logic 1.

If latches exist in a design, then vulnerable states must be identified. Require-
ments must be established for hazard-free signals on the inputs during the creation
of a test pattern. This will reduce the freedom of choice on inputs to a logic gate.
The hazard in Figure 7.24 may occur because of the manner in which justification is
performed. If the ATPG simply requires that the output of the OR gate be at 1, then
establishment of conditions for a 1 on the lower input to the OR gate would be
deemed sufficient by the ATPG to satisfy the logic conditions imposed by the justifi-
cation process. However, when an additional requirement is imposed that the net be
hazard-free, the ATPG must consider previous assignments on the gate and deter-
mine if any hazard conditions are created as a result of the signal change. Further-
more, there may be a requirement that the circuit be free from exposure to dynamic
as well as static hazards since a dynamic hazard on some circuits, such as a counter,
can cause erratic counting operation.

A Delay flip-flop (DFF) must not be exposed to hazards on its Clock, Set, or
Reset lines. A Data input may experience several changes during a clock period, but
it is assumed that the data will stabilize before the clock is applied. For the cross-
coupled NAND latch, the following requirements must hold:

Figure 7.24 Occurrence of hazard.

Set Reset Q

1-1* X-1 0-0

X-1 1-1* 1-1

Reset

1-1
0-0

1-1

0-0
1-0
0-1

Set

380 DEVELOPING A TEST STRATEGY

In this table the first entry states that when the Reset goes from x to 1, the Set is at
1, and the latch is in state Q = 0, then the Set line must be free of hazards (an
asterisk denotes the hazard-free requirement). In the second case, when in the
state Q = 1, the Reset line must be hazard-free. Basically, any combination of
internal state and input combination that could cause a state change in response to
an unwanted pulse on an input line requires that the input line that is vulnerable to
the pulse be hazard-free.

7.10.2 ATPG User Controls

Many design starts are so large that it is impractical to consider anything other than
a full-scan test mode (cf. Chapter 8). However, there remain applications where the
logic count is small enough that sequential ATPG can be considered. One such
example might be battery operated human implants. Every effort is made to mini-
mize gate count in such devices, so as to prolong battery life. The ability to control
or influence operation of the ATPG can sometimes provide significant productivity
enhancements in these situations. A freeze pin feature lets the user assign certain
inputs to specific binary values, either for an entire run or for some specified number
of vectors. A variation on that approach allows the user to specify certain combina-
tions of input values that must be prohibited. Again, this could be for a fixed number
of vectors or for an entire run. Input combinations can be prohibited if they cause
transitions into illegal states or if they cause simultaneous toggling of either (a)
clock and data inputs of a flip-flop or (b) load and clock inputs of a serial/parallel
register. Other options may permit the user to include instructions on how to handle
multiple clocks that require special sequencing.

When inputs are assigned a fixed value, these assignments are implicated by the
ATPG and cause other logic gates to become blocked, just as during dynamic
compaction. The same can be done for logic combinations on inputs. If two inputs
are inhibited from being high simultaneously, then whenever one of them is set
high by the ATPG, the other is immediately set low and all possible implications
are performed.

The next logical extension of the concept of controlling or influencing the ATPG
is the guidance file. This feature allows the user to provide a sequence of vectors that
instruct the ATPG on how to drive the circuit into a particular state. By instructing
the ATPG on how to navigate through complex control logic, such as state machines,
which would otherwise be difficult to control, it may be possible for the ATPG to
perform useful work in a circuit where it would otherwise simply thrash about
unproductively. A particularly important area where the guidance file is useful is in
those circuits that have convoluted initialization sequences. It is not unusual for an
ATPG to fail completely on circuits where it could not compute the initialization cir-
cuit, but then produce useful results when the initialization sequence is provided by
the user.

A potential pitfall in the use of guidance files is the fact that a bad, or incorrect,
guidance file can be counterproductive. The ATPG may produce worse results than it

MISCELLANEOUS CONSIDERATIONS 381

would without the guidance file. In addition, it could produce large numbers of vec-
tors that do not increase fault coverage, but merely consume time on the tester. This
is where the fault simulator can provide feedback, identifying sequences where the
guidance file drove the circuit into an incorrect state.

7.10.3 Fault-List Management

The ability to manipulate fault lists is an important aspect of test program develop-
ment. We saw earlier (Section 7.7.9) that a profiler tool can be very useful in identi-
fying areas of a design where fault coverage is below acceptable levels. It may be
desirable to target faults in those areas for special attention. When doing so, it may
be more efficient if the fault list only contained faults from that part of the design
being worked on. Otherwise, if an ATPG is being used, it may spend considerable
CPU time pursuing faults from regions where fault coverage is already deemed
acceptable. Other considerations must be taken into account; for example, there may
be regions of the design that are to be tested using memory test or BIST. If a major
function has dedicated BIST, then faults in that region of the design can be deleted
from the fault list.

When several logic designers are working on a large circuit, they may be respon-
sible for creating both the design verification vectors and the manufacturing test vec-
tors for their part of the design. In such a case, they may prefer to run fault
simulation strictly on those functions that are part of their responsibility. If the vec-
tors they create have little effect on functions other than the one they are designing,
then fault simulating other functions with their vectors will add little or nothing to
overall fault coverage, but will slow down their fault simulation runs. In such cases a
merge fault capability should be provided that can merge results from several
designers into a master fault list.

The concept of granularity was discussed in Section 3.4. The general consensus
in the test industry is that gate-level, stuck-at fault coverage gives acceptable results,
consistent with the amount of CPU time required to fault simulate the test and the
amount of tester time required to run the test. Occasionally, it may be desirable to
fault simulate at the transistor level, but it will be costly in terms of CPU time if the
circuit is very large, more than a few thousand gate equivalents.

Conversely, some users of fault simulation prefer to fault simulate at the macro-
cell level. They embed commands in library cells instructing the fault simulator to
only fault the I/O ports. It is argued that stuck-at faults at a level of abstraction lower
than cell I/O ports are speculative; that is, they cannot be shown to correspond to
actual structural faults. However, test vectors can often provide 100% detection of
port faults and still miss faults inside the cells. In fact, testing is an inexact science.
Wadsack8 describes an experiment where a device failed on a tester after the point in
the vector file where the fault simulator reported 100% fault coverage. Yet, evidence
suggests that, in general, fault coverage is better than the number predicted by the
stuck-at model.

382 DEVELOPING A TEST STRATEGY

7.11 SUMMARY

In this chapter our purpose was to examine many different facets of test and tie them
together into a comprehensive test strategy. Some methodologies have not yet been
discussed, but at least with a clear picture of where we are, it is easier to go forward
and determine how to fit other tools and strategies into the overall picture. It is also
easier to make a judgment as to whether or not other tools are necessary and, if so,
which tools can best help us reach our quality goals. Remember, in the final analysis
the object is quality, not fault coverage. Fault coverage is a necessary, but not always
sufficient, condition for quality. Fault coverage by itself may not guarantee protec-
tion against tester escapes, as was seen during discussion of the test triad at the
beginning of this chapter.

Logic designers generate incredible amounts of intellectual property when creat-
ing test sequences to verify their designs. These vectors often accompany the design
to the foundry, where they are used as the manufacturing test. Unfortunately, cus-
tomers do not always fault simulate the vectors they send to the foundry. Several
years ago, Texas Instruments was quoted as saying that 60% of their customers did
not perform fault grading.23 That is risky because the vectors serve as an acceptance
criteria. If the fault coverage provided by the vectors is low, the customer receives
chips from the foundry whose quality is suspect.

Fault modeling is an important aspect of test program development. It is impor-
tant to model at a level of detail that gives meaningful results while ensuring that
fault simulation runs complete in a reasonable amount of time. Good fault manage-
ment tools are critical to this effort. They should allow a test development team to
focus their efforts in a way that maximizes productivity. The tools should also facili-
tate maximum leverage of test programs generated for design verification. Even in
those cases where an ATPG is used, design verification vectors can be useful if first
silicon does not function as intended on the tester. A logic designer may be com-
pletely befuddled by test vectors that were created by an ATPG. That same designer
is often able to quickly diagnose and debug failures that occur while the tester is
running vectors that he created.

Test vectors are often created in similar ways, whether intended for design verifi-
cation or for manufacturing test. A major difference is that the designer, when
checking out a design, often uses functions that have already been thoroughly
debugged and checked out, so he or she only wants to make sure that the function
has been properly connected into a larger design. However, when creating a test
whose purpose is to detect physical defects, it is necessary to exercise all functional-
ity in the design.

Despite significant amounts of research into behavioral fault simulation, it is still
performed primarily at the gate level using the stuck-at fault model. This is so because
the approach works; that is, fault coverage provided by the stuck-at fault model is rea-
sonably accurate, based on three decades of experience, and because no other
approach offers a compelling reason to replace the existing system. One area where it
would seem that the industry could benefit from the behavioral or functional approach
is in the development of algorithmic test programs for standard functions. Some

PROBLEMS 383

functions lend themselves nicely to algorithmic test program development, in a sense
analogous to the test programs that have evolved over the years for memory tests.

PROBLEMS

7.1 Derive PDCFs and propagation cubes from the truth table (a) in the example
in Section 7.5.1.

7.2 For the stem driven by gate Q in Figure 7.4, find vectors that detect the
checkpoint faults emanating from that stem but do not detect the stem fault.

7.3 List all of the checkpoint and stem faults for the circuit in Figure 4.1. Collapse
this list to get a minimal list of faults for the circuit. Starting at the Inputs, I1,
..., I5, how many unique signal paths from inputs to outputs can you identify?

7.4 Using the circuit in Figure 4.1, verify that the pattern (I1, I2, I3, I4, I5) = (0, 0,
1, 0, 0) detects SA0 faults on inputs to gates I and L, but not on the output of
gate D. Identify all faults detected by that pattern.

7.5 The circuit in Figure 4.1 has a redundant input on gate G. Which input is it?
Explain your answer.

7.6 Identify all faults in the NOR circuit that are detected by the six test vectors
developed for the NAND circuit of Figure 7.9. Create a pass–fail vector for
each fault and use that to create a fault dictionary. Which two NOR gates
could be completely missing from the circuit and fail to be detected by the
test sequence given in Section 7.6.4?

7.7 Given the expression Y = A ⋅ B + C ⋅ D ⋅ E + F ; if the vectors A,B,C,D,E =
{000000, 010000, 001100} were applied to the circuit, what is the total
expression coverage for the circuit?

7.8 The critical path was described in Section 4.6.3. Explain how you would apply
it to the circuit in Figure 7.22 in order to get a minimum set of test vectors.

7.9 For the circuit of Figure 7.23, generate a minimum set of vectors that will
detect all faults in the cone of output F3.

7.10 For the circuit in Figure 7.22:

(i) Change the function of gate A to a NAND. Then compute the number of
vectors required to test all of the stuck-at faults.

(ii) Assume that gate A is an eight-input AND gate. Then what is the mini-
mum number of vectors required to test all of the stuck-at faults?

7.11 Using the circuit in Figure 7.18, create the smallest possible complete test set
for

(a) Maximum resolution

(b) Maximum comprehension

384 DEVELOPING A TEST STRATEGY

Figure 7.25 Full-adder circuit.

7.12 In the full-adder circuit of Figure 7.25, the five vectors (one per column) will
detect all port faults. Find a stuck-at fault inside the macrocell that is not
detected by the five vectors.

7.13 Given the following two-input logic gates, with values on the inputs and
output as indicated, which of the assignments imply additional values?

7.14 Given the following matrix of test patterns versus faults detected:

(a) If pattern 4 is the only failure, which fault is most likely to have
occurred?

(b) If all four tests fail, which fault is most likely to have occurred?

7.15 Use static compaction to minimize the following set of vectors: {01X0X0,
10X0X0, X001X0, X010X0, X0X001, X0X010, 11X0X0, X0X0X0,
11X0X0, X011X0, X0X011}.

In1 IN2 OUT

OR x x 0

OR 1 x x

NOR x x 1

NAND 1 x 1

AND 0 x 0

Fault Number

1 2 3 4 5 6 7 8

1 1 1 1

Pattern 2 1 1 1

Number 3 1 1 1

4 1 1 1

SUM

CARRY

10010 A

10100 B

11000 C

REFERENCES 385

7.16 Merge the following three sequences of patterns:

1 1 1 X X 0 X 1 X X 1 0 1 1 0 0 1 1

X 1 X 1 1 X X 0 X 1 X 1 1 X 1 1 1 0

0 0 X X 0 1 X 0 0 0 0 1 0 0 0 X X 0

1 X X 0 X 1 1 1 1 X 1 0 1 X X X 1 0

1 1 1 0 1 0

7.17 Find a sequence of four tests that will detect all seven CMOS NOR gate faults.

7.18 Explain how you would create a four-vector set that provides 100% fault
coverage for a parity checker of arbitrary size n > 0.

7.19 Using the Apply and Reduce algorithms (cf. Section 2.11), create BDDs for
the two circuits in Figure 7.9 and show that they are equivalent.

7.20 Use test counting to find a minimum set of vectors that detect all the stuck-at
faults in the circuit of Figure 4.1.

7.21 If you have access to a commercial logic synthesis program and fault
simulator, synthesize the 16-bit counter b16ctr given in Section 7.8.2 and
fault simulate it using the test bench given in that same section.

7.22 Repeat the previous problem, using the algorithmic test for an ALU and n
copies of the 74181 (or other ALU).

REFERENCES

1. Maxwell, P. C., R. C. Aitken, V. Johansen, and I. Chiang, The Effectiveness of IDDQ,
Functional and Scan Tests: How Many Fault Coverages Do We Need?, Proc. Int. Test
Conf., October 1992, pp. 168–177.

2. Goel, P., J. Grason, and D. Siewiorek, Structural Factors in Fault Dominance for
Combinational Logic Circuits, Proc. Fault Tolerant Comput. Symp., 1971.

3. Armstrong, D. B., On Finding a Nearly Minimal Set of Fault Detection Tests for
Combinational Logic Nets, IEEE Trans. Electron. Comput., Vol. EC-15, No. 1, February
1966, pp. 66–73.

4. Mei, K. C. Y, Bridging and Stuck-at Faults, IEEE Trans. Comput., Vol. C-23, No. 7, July
1974, pp. 720–727.

5. Son, K., and D. K Pradhan, Design of Programmable Logic Arrays for Testability, Proc.
IEEE Test Conf., 1980, pp. 163–166.

6. Szygenda, S. A., and A. A. Lekkos, Integrated Techniques for Functional and Gate-Level
Digital Logic Simulation, Proc. 10th Des. Autom. Conf., pp. 159–172.

7. Thomas, J. J., Common Misconceptions in Digital Test Generation, Comput. Des.,
January 1977, pp. 89–94.

8. Wadsack, R. L., Fault Modelling and Logic Simulation of CMOS and MOS Integrated
Circuits, Bell Syst. Tech. J., Vol. 57, No. 5, May–June 1978, pp. 1449–1474.

386 DEVELOPING A TEST STRATEGY

9. El Ziq, Y. M., Automatic Test Generation for Stuck-Open Faults in CMOS VLSI, Proc.
18th D.A. Conf., 1981, pp. 347–354.

10. Beh, C. C. et al., Do Stuck Fault Models Reflect Manufacturing Defects?, Proc. IEEE Test
Conf., 1982, pp. 35–42.

11. Wadsack, R. L., Fault Coverage in Digital Integrated Circuits, Bell Syst. Tech. J., May–
June 1978, pp. 1475–1488.

12. Miczo, A., Fault Modelling for Functional Primitives, Proc. IEEE Test Conf., 1982,
pp. 43–49.

13. Wadsack, R. L., Design Verification and Testing of the WE 32,100 CPUs, IEEE Des. Test,
August 1984, pp. 66–75.

14. Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of
Different Areas of an Integrated Circuit, IEEE Trans. Comput.-Aided Des. Int. Circuits
Syst., Vol. 14, No. 5, May 1995, pp. 603–607.

15. Chang, H. Y., E. Manning, and G. Metze, Fault Dictionaries, Fault Diagnosis of Digital
Systems, Chapter 5, John Wiley & Sons, New York, 1970.

16. Megill, N., Techniques for Reducing Pattern Count for Functional Testing, Proc. 1979 Int.
Test Conf., pp. 90–94.

17. Miczo, A., Enhanced Test Through Improved RTL Code Coverage, Proc. High Level Des.
Validation & Test Workshop, November 1997, pp. 99–104.

18. Snethen, T. J., Simulator-Oriented Fault Test Generator, Proc. 14th D.A. Conf., 1977,
pp. 88–93.

19. Roth, J. P., Diagnosis of Automata Failures: A Calculus and a Method, IBM J. Res. Dev.,
Vol. 10, No. 4, July 1966, pp. 278–291.

20. Roth, J. P. et al., Programmed Algorithms to Compute Tests to Detect and Distinguish
Between Failures in Logic Circuits, IEEE Trans. Electron. Comput., Vol. EC-16, No. 5,
October 1967, pp. 567–580.

21. Goel, P., and Barry C. Rosales, Test Generation & Dynamic Compaction of Tests, Proc.
1979 Int. Test Conf., pp. 189–192.

22. Akers, S. B., and B. Krishnamurthy, Test Counting: A Tool for VLSI Testing, IEEE
Des. & Test of Computers, Vol. 6, No. 5, October 1989, pp. 58–77.

23. Anonymous, Comput. Des., April 1, 1991, p. 64.

387

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 8

Design-For-Testability

8.1 INTRODUCTION

Chapter 7 focused on methods for integrating design and test activities by capturing
verification suites written by logic designers and converting them to test programs.
For some ICs, especially those with reasonably high yield, test programs derived from
a thorough design verification suite, combined with an

I

DDQ

 test (cf. Chapter 11), may
produce quality levels that meet or exceed corporate requirements.

When it is not possible, or practical, to achieve fault coverage that satisfies
acceptable quality levels (AQL) through the use of design verification suites, an
alternative is to use an automatic test pattern generator (ATPG). Ideally, one
would like to reach fault coverage goals merely by pushing a button. That, how-
ever, is not consistent with existing state of the art. It was pointed out in
Chapter 4 that several ATPG algorithms can, in theory at least, create a test for
any fault in combinational logic for which a test exists. In practice, even when a
test exists for a large block of combinational logic, such as an array multiplier,
the ATPG may fail to generate a test because of the sheer volume of data that
must be manipulated.

However, the real stumbling block for ATPG has been sequential logic. Because
of the inability of ATPGs to successfully deal with sequential logic, a growing num-
ber of digital designs are being designed in compliance with formal design-for-test-
ability (DFT) rules. The purpose of the rules is to reduce the complexity of the test
problem. DFT guidelines prohibit design practices that impede testability, and they
usually call for the insertion of special constructs into designs solely to facilitate
improved testability. The focus over the past two decades has shifted from testing
function to testing structure. As an additional benefit, testable designs are frequently
easier to design and debug. The design restrictions that make it easier to generate
test programs also tend to prohibit design practices that introduce difficult to diag-
nose design errors. The payback is not only higher quality, but also faster time-to-
volume; in addition, fault coverage requirements are achieved much sooner, and
products reach the marketplace sooner.

388

DESIGN-FOR-TESTABILITY

8.2 AD HOC DESIGN-FOR-TESTABILITY RULES

When small-scale integration (SSI), medium-scale integration (MSI), and large-
scale integration (LSI) were the dominant levels of component integration, large
systems were often partitioned so that data flow paths and control circuits were
placed on separate printed circuit boards (PCBs). Most PCBs in a given design con-
tained data flow circuits that were not difficult to test using an ATPG. A lesser num-
ber contained the more complex control logic and handshaking protocols. Test
programs for control logic would be created by requiring a logic designer or test
engineer to write vectors that were then fault simulated to determine their effective-
ness. Since the complex PCBs made up a smaller percentage of the total, test cre-
ation was not excessively labor-intensive. The task of writing tests for these boards
was further simplified by the fact that sequential transitions in control logic could
often be observed directly at I/O pins rather than indirectly through observation of
their effects on data flow logic.

The evolution of technology has brought about an era where individual ICs now
possess hundreds of thousands to millions of gates. RAM and ROM often reside on
the same IC with complex logic. Individual I/O pins serve multiple purposes, acting
both as inputs and as outputs. The increasing gate to pin ratio results in fewer I/O
pins with which to gain access to the logic to be tested. Architecturally, many chips
have complex arbitration sequences that require several exchanges of signals before
anything meaningful happens inside the chip. All of these factors contribute to poten-
tially long test programs that strain the resources of available test equipment and
point to the conclusion that test issues must be considered early in the design cycle.

It was pointed out in Section 1.2 that acceptable quality level (AQL) is a function
of both the process yield and the thoroughness of the test program. If the process
yield is high enough for a given product, it may not need a test, only an occasional
sampling to ensure that processing steps remain within tolerances. Consider an IC
for a digital wristwatch. It could be very expensive to test every chip for all stuck-at
faults. But the yield on such chips is high enough that an occasional sampling of ICs
is adequate to ensure that they will function correctly; and if an occasional defective
IC slips through the screening process unnoticed, it is not likely to have severe eco-
nomic consequences.

Ad hoc DFT addresses circuit configurations that make it difficult or impossible
to create effective test programs, or cause excessively long test sequences. The
adverse effects of these circuit configurations may be local, affecting only a few
logic elements, or they may be global, wherein a single circuit construct causes an
IC or PCB to become completely untestable. Some problems may manifest them-
selves only under adverse environmental conditions—for example, temperature
extremes, humidity, physical vibrations, and so on. A solution to a particular prob-
lem is sometimes quite simple and straightforward, the most difficult part of the
problem being the recognition that there is a problem.

Testability problems for digital circuits can be classified as controllability or
observability problems (or both).

Controllability

 is a measure of the ease or difficulty
with which a net can be driven to a known logic state.

Observability

 is a measure of

AD HOC DESIGN-FOR-TESTABILITY RULES

389

the ease or difficulty with which a logic value on a net can be driven to an output
where it can be measured. Note that observability is often a function of controllabil-
ity, meaning that it may be impossible to observe a given internal node if the circuit
cannot be driven to (i.e., controlled to) a given state. Expressed in terms of controlla-
bility and observability, the goal of DFT is to make the behavior of a circuit easier to
control and observe.

We begin by looking at some circuit configurations that cause problems in digital
circuits. That will be followed by an examination of techniques used to improve
controllability and observability. The solutions are often rather straightforward, and
frequently there is more than one solution, in which case the solution chosen will
depend on the resources available, such as the amount of board or die space and/or
number of edge pins. Ad hoc solutions target specific test problems uncovered dur-
ing the design and test process, and in fact similar test problems may be solved quite
differently on different projects. In later sections we will look at formal methods for
DFT. A

formal

 DFT methodology, as used in this text, refers to a methodology that
is well-defined, rigorous, and thorough. It is usually adopted at the very beginning of
a project.

8.2.1 Some Testability Problems

Design practices that adversely affect controllability and observability are best
understood in terms of the difficulties they create for simulation and ATPG software.
It is not possible to list all of the design practices that cause testing difficulties, since
some practices may be harmless in one application, yet detrimental in another. The
emphasis will be on understanding why certain practices create untestable designs
so the designer can exercise some judgment when uncertain about whether a partic-
ular design practice causes problems.

In the past, when many PCBs were designed using SSI, MSI, and LSI, in-circuit
testers were commonly used as the first testing station, because they could quickly
find many obvious errors such as ICs mounted incorrectly on the PCB, the wrong IC
in a particular slot, IC pins failing to make contact with metal runs, or solder shorts
between pins (cf. Section 6.6). However, in those applications where the in-circuit
tester is used, design practices can reduce its effectiveness. In-circuit testers access
tests from a standard library of tests and apply those tests to components on a PCB.
These tests make assumptions about controllability and observability of I/O pins on
the devices. If a device cannot be controlled and if the test cannot be modified or a
new test obtained, then the device cannot be tested.

Unused IC signals such as chip-select and output-enable are usually tied to an
enabling state. For example, a common practice in PCB design is to tie unused
inputs of Delay and J-K flip-flops directly to ground or power. This is especially true
for Set and Clear lines on discrete flip-flops in those applications where they are not
required to be initialized at system start-up time. This practice impedes the ability of
the in-circuit tester to control the device. If an in-circuit tester is used as part of the
test strategy for a PCB, unused pins that must be controlled during test should be
tied to power or ground through a resistor.

390

DESIGN-FOR-TESTABILITY

Disabled Set and Clear lines cause further problems when a flip-flop is used as a
frequency divider. In Figure 8.1 an oscillator driving toggle flip-flops presents a
problem for test because its operating frequency may be known but not its phase. At
a given point in time, is it rising or falling? For test purposes, the oscillator must be
controlled. However, even when it is controlled, the circuit presents problems. Two
clock pulses at a toggle input generate one pulse at its

output, producing a frequency
divider. Two or more toggle flip-flops can be tied in series to further reduce the main
clock frequency. The value at the output of the divider circuit is not known at any
given time, nor does it need to be known for correct operation of the circuit, since
other handshaking signals are used to synchronize the exchange of data between
devices clocked at different frequencies. What is known is that the output will
switch at a fraction of the main clock frequency, and therefore some device(s) will
be clocked at the lower rate.

A frequency divider can produce the usual problems associated with indetermi-
nate states for simulation and test. However, even when the correct state can be
determined, if several frequency divider stages are connected in series, then a large
number of input patterns must be applied to cause a single change at the output of
the frequency divider. These patterns can require exorbitant amounts of CPU time to
simulate and, worse still, exorbitant amounts of time on a tester.

Several methods exist for creating pulse generators in sequential circuits and vir-
tually all of them cause problems for ATPG programs. The methods include use of
single shots, also known as self-resetting flip-flops, as well as circuits that gate a sig-
nal with a delayed version of that same signal. The single-shot is shown in
Figure 8.2(a), and the gated signal is shown in Figure 8.2(b). A correct and complete
description of the behavior of either of these circuits requires the use of the time
domain. A logic event occurs but persists only for some brief elapsed time, after
which the circuit reverts to its previous state. However, ATPGs generally see only
the logic domain, they do not recognize the time domain. When the ATPG clocks the
single-shot, the 0 at Q will eventually reset the flip-flop. But, since the ATPG does
not recognize the passage of time, it will conclude that the flip-flop immediately
returns to 0. Similar considerations hold for the circuit of Figure 8.2(b).

Another problem is presented by the circuit in 8.2(a). Generally, an ATPG con-
siders storage elements to be in the indeterminate state when power is first applied.
As a result, the

Q

 and

Q

 outputs are initially set to

x

, and that causes an

x

 to appear
at the Reset input. If the ATPG attempts to clock a logic 1 through the flip-flop and

Figure 8.1

Peripheral clocked by frequency divider.

T

Osc.

Peripheral

Control and data

T T

Micro-
processor

AD HOC DESIGN-FOR-TESTABILITY RULES

391

Figure 8.2

Pulse generators.

sees the

x

 on the Reset input, it will leave the flip-flop in the

x

 state. Note that since
the circuit will settle in a known state, a dummy AND gate can be added to the cir-
cuit to force the circuit model to assume that known state.

An important distinction between this circuit and the frequency divider is the
fact that it is known how the self-resetting flip-flop behaves when power is applied.
If it comes up with

Q

 = 0, then it is in a stable state. If

Q

 is initially a 1 following
application of power, then the 0 on

Q

 causes it to reset. Therefore, regardless of the
initial state, it is predictably in a 0 state within a few nanoseconds after power is
applied.

When the state of a device can be determined, the ATPG or simulator can be
given an assist. In this case, any of the following three methods can be used:

1. Model the circuit as a primitive (a monostable).

2. Specify an initial state for the circuit.

3. Use a dummy reset.

If the circuit is modeled as a primitive, then a pulse on the clock input to this primi-
tive causes an output pulse of some duration determined by the delay. Allowing the
user to specify an initial state, or using a special ATPG cell in a library, can solve the
problem, since either value causes it to achieve a stable state. However, if an indeter-
minate logic value should reach the clock line at a later point in time, it could cause
the circuit to revert to the indeterminate state.

In combinational logic, when many signals converge at a single node, such as
when an AND gate has many inputs, then observability of fault symptoms along
any individual path converging on that gate requires setting all other inputs to 1 (the
nonblocking value). If this node in turn fans out to several other gates, then control-
lability of those gates is diminished in proportion to the difficulty in setting the con-
vergent node to a 0 or 1. An AND gate with

n

 inputs recognizes 2

n

 input
combinations. All but 1 of those combinations produces a 0 at the output. If even a
single input is difficult to set to 1, that input can block a test path for all other
inputs. If the output of the AND gate fans out to other logic, that one gate affects
observability of logic up to that point and it affects controllability of logic following
that node.

(a)

(b)

QD

Q Delay

392

DESIGN-FOR-TESTABILITY

An 8-bit bus may carry a 7-bit ASCII code together with a parity bit intended to
produce even parity. The parity checker may be designed so that its output is normally
low unless some fault causes odd parity to occur on the bus. But some faults in the par-
ity checker may inhibit it from going high. To detect these faults, it must be possible to
get odd parity on the 8-bit bus, but the bus is designed to generate even parity. Hence a
test input to the parity checker is required or the parity generator that creates the bus
parity bit must be controllable independent of its parity-generating logic.

Counters, like frequency dividers, can cause serious test problems because a
counter with

n

 stages may require up to 2

n

 clocks to drive it into a particular state if
it does not have a parallel load capability. If the counter has a serial load capability,
then any value can be loaded into it in

n

 clock steps. Some other design practices
that cause test problems include the following:

�

Connecting drivers in parallel to get more drive capability

�

Randomly assigning unused states in state machines

�

Gating clock lines with data signals

Parallel drivers are a problem because if one of the drivers should fail, the result may
be an intermittent error whose occurrence depends on unpredictable environmental
factors and internal operating conditions. Repeating the problem for the purposes of
diagnosis and repair becomes almost impossible under such conditions.

Unused states in a state machine are often assigned so as to minimize logic. As a
result, an erroneous transition into an unassigned state, followed by a transition to a
valid state, may go undetected but cause data corruption. The severity of the prob-
lem depends on the application. To err on the side of safety, a transition into an ille-
gal state should normally cause some noticeable symptom such as an error signal or,
at the very least, continued transitions into the same illegal state, that is, a “hangup,”
so an operator can detect the presence of the malfunction before serious damage is
done by the device. Transitions into incorrect states can occur when hazards cause
unintended pulses on clock lines of flip-flops. One way to avoid this is to avoid gat-
ing clock signals with data signals. This can be done by using the data signal that
would be used to gate the clock to control a multiplexer instead, as shown in
Figure 8.3. The Load signal that the designer might have used to gate the clock is
used instead to either select new data for input to the flip-flop or to hold the present
state of the flip-flop.

Figure 8.3

Load enable for flip-flop.

MUX D Q

Clock

Load

New data

AD HOC DESIGN-FOR-TESTABILITY RULES

393

8.2.2 Some Ad Hoc Solutions

The most obvious approach to solving observability problems is to connect a tester
directly to the output of a gate that has poor observability. Since that is quite imprac-
tical in dense ICs, methods have been devised over the years to employ functional I/O
pins during test. Troublesome internal circuits can be routed to these pins in order to
improve testability. A major problem with this approach is the cost of I/O pins.
Design teams are reluctant to cede these pins to the solution of test problems. How-
ever, as feature sizes continue to shrink, more real estate becomes available on the
die, and logic becomes available to permit the sharing of I/O pins (cf. Section 8.4).

If a particular region of an IC has low observability, it is possible to route several
internal nodes to an output through an observability tree, depicted in the dashed
lines in Figure 8.4. Several signals can be directly observed, and symptoms do not
become blocked or transformed by other logic.

Note that the observability tree connects four internal signals to a parity tree
whose output drives an I/O pin. If an error signal appears at any one (or an odd num-
ber) of parity tree inputs, the parity tree output will have the wrong value and the
fault will be detected. Many faults can simultaneously produce error signals at the
inputs to the parity tree and become detected, just as they would at any other I/O pin.
If a fault causes error signals to appear at two, or an even multiple, of parity tree
inputs, the signals will cancel out and the fault will escape detection. That, however,
is highly improbable, and even more unlikely to occur on many vectors. The parity
tree shown here has four inputs, but, in practice, the number of inputs is limited only
by practical concerns. For each multiple of two, the depth of the parity tree increases
one level. So, a 32-input parity tree will be five levels deep. The depth must be taken
into consideration since it might exceed the clock period of the circuit.

Internal nodes that should be connected to the parity tree inputs shown in
Figure 8.4 can be selected by means of fault simulation. The fault simulator is run
with a fault list consisting only of undetected faults. If the fault simulator is instru-
mented to observe the nodes at which error signals appear, it can maintain a count at
each of these nodes. Since all of the error signals emanate from undetected faults, the
count of unique fault effects passing through a given node is a measure of the number
of undetected faults that could be detected if that node were made to be observable.

Figure 8.4

Observability enhancement.

test_out

394

DESIGN-FOR-TESTABILITY

Figure 8.5

Controllability for 1 or 0 state.

At the conclusion of fault simulation, the nodes can be ranked based on the num-
ber of undetected faults observed at each node. Note, however, that if

n

1

 faults are
observed at node

N

1

, and

n

2

 faults are observed at node

N

2

, the total

T

d

 of faults that
become detectable by making both nodes observable is

T

d

≤

n

1

 +

n

2

 because some of
the undetected faults may be included in the count for each of the two nodes. Because
observability tends to be rather uneven across an IC, many undetected faults often are
clustered together in a local area. Hence, this observability enhancement can be quite
effective when targeted at regions of the circuit that have low observability.

Controllability can be improved by adding an OR gate or an AND gate to a cir-
cuit, together with additional I/O pins. The choice depends on whether the difficulty
lies in obtaining a logic 0 or logic 1 state. The logic designer may be aware, either
from a testability analysis tool or from a basic understanding of the circuit, that the 0
state is easily obtained but that setting up the 1 state requires an elaborate sequence
of state transitions occurring in strict chronological order. In that case a two-input
OR gate is used. One input comes from the net that is difficult to control, and the
other input is tied to an edge pin. In normal use the input is grounded through a pull
down resistor; during testing the input is pulled up to the logic 1 state when that
value is needed. Where the logic 0 is difficult to obtain, an AND gate is used.

If the test environment, including the technology and packaging, permit direct
access to the IC pins, then the edge pin connection can be eliminated. The IC pin is
tied only to pull-up or pull-down resistors, as in Figure 8.5, and the tester is placed
directly in contact with the IC pin by some means.

If both logic values must be controlled, then two gates are used, as illustrated in
Figure 8.6(a). The first gate inhibits the normal signal when its test input is brought
low, and the second gate is used to insert the desired test signal. This configuration
gives complete control of the signal appearing on the net for both the 0 and 1 states

Figure 8.6

Total controllability.

Test

Signal
Signal . Test

Test

Signal
Signal + Test

(b)

Sel

test_signal

MUX

(a)

AD HOC DESIGN-FOR-TESTABILITY RULES

395

at the cost of two I/O pins and two gates. The inhibit signal for several such circuits
can be connected to a single I/O pin, to reduce the number of edge pins required.
This configuration can be implemented without I/O pins if the tester can be con-
nected directly to the IC pins; otherwise a multiplexer can be used, with the

Sel

 sig-
nal used to choose the source. If switches are allowed on the PCB, then
controllability of the net can be achieved by replacing the multiplexer with a switch.

Total controllability and observability at a troublesome net can be achieved by
bringing the net to a pair of edge pins, as shown in Figure 8.7(a). These pins are
reconnected at the card slot. This solution may, of course, create its own problems if
the extra wire length picks up noise or adds excessive delay to the signal path. An
alternate circuit, shown in Figure 8.7(b), uses a tri-state gate. In normal operation
the tri-state control is held at its active state and the bidirectional I/O pin is unused.
During test, the bidirectional pin is used to observe logic values when the tri-state
control is active or to inject signals when the tri-state disables the output of the pre-
ceding gate. A single tri-state control can disable several gates to minimize the num-
ber of I/O pins required.

Some additional solutions, where possible, to testability problems include the
following:

1

�

Use sockets for complex devices such as microprocessors and peripherals.

�

Make memory read/write lines accessible at a board edge pin.

�

Buffer the primary inputs to a circuit.

�

Put analog devices on separate boards.

�

Use removable jumper wires.

�

Employ standard packaging.

�

Provide good documentation.

As explained in Chapter 6, automatic test equipment (ATE) usually has different
drive characteristics from the devices that will drive primary input pins during normal
operation. If devices are connected directly to primary input pins without buffering,
critical timing relationships between the signals may not be maintained by the ATE.

Analog devices, such as analog-to-digital and digital-to-analog converters, usually
must be tested functionally over their entire range. This becomes exceedingly difficult
when they are on the same board with digital logic. Voltage regulators placed on a board
with digital logic can, if performing marginally, produce many seemingly different and
unrelated symptoms within the digital logic, thus making diagnosis more difficult.

Figure 8.7

Total controllability and observability.

(a) (b)

396

DESIGN-FOR-TESTABILITY

Finally, some practical considerations to aid in diagnosis of faults can provide a
substantial return on investment. Removable jumper wires may significantly reduce
the amount of time required to diagnose failures. Standard packaging, common ori-
entation, spacing and numbering can reduce error and confusion during trouble-
shooting. Good documentation can be invaluable when trying to diagnose the cause
of a failure.

8.3 CONTROLLABILITY/OBSERVABILITY ANALYSIS

In the previous section we described some techniques for solving particular testabil-
ity problems. Some of the configurations virtually always create test problems.
Other circuit configurations are not problems in and of themselves but can become
problems when they appear in excessive numbers. A small number of flip-flops, con-
nected in a straightforward manner without feedback, apart from that which exists
inside the flip-flops, and without critical timing dependencies, can be relatively easy
to test. Testability problems occur when large numbers of flip-flops are connected in
serial strings such that control of each flip-flop depends on first controlling its prede-
cessors in the chain. Examples that we have seen include the counter and the fre-
quency divider.

Fortunately, the counter and frequency divider are reasonably easy to recognize.
In many circuits the nodes that are difficult to test are not so easy to identify. For
example, an AND gate may be controlled by several signals and it, in turn, may con-
trol several other logic gates. The node may be a problem or it may, in fact, be rather
easy to test. Programs for measuring testability have been developed that help to
determine which nodes are most likely to be problems.

8.3.1 SCOAP

SCOAP (Sandia Controllability Observability Analysis Program) is a testability
analysis program that assigns numbers to nodes in a circuit.

2

 The numbers reflect the
relative ease or difficulty with which internal nodes can be controlled or observed,
with higher numbers being assigned to nodes that are more difficult to control or
observe. The program computes both combinational and sequential controllability
and observability numbers for each node; furthermore, controllability is broken
down into 0-controllability and 1-controllability, recognizing the fact that it may be
relatively easy to generate one of the states at the output of a logic gate while the
other state may be difficult to produce. For example, to get a 0 on the output of an
AND gate requires a 0 on any single input. However, to get a 1 on the output
requires that 1s be applied to all inputs. That, in general, will be more difficult for
gates with larger numbers of inputs. Because observability depends on controllabil-
ity, the controllability equations will be discussed first.

The Controllability Equations

The

e

-controllability,

e

∈

 {0,1}, of a node
depends on the function of the logic element driving the node and the controllability
of the inputs to that element. If the inputs are difficult to control, the output of that

CONTROLLABILITY/OBSERVABILITY ANALYSIS

397

function will be difficult to control. In a similar vein, the observability of a node
depends on the elements through which its signals must propagate to reach an out-
put. Its observability can be no better than the observability of the elements through
which it must be driven. Therefore, before applying the SCOAP algorithm to a cir-
cuit, it is necessary to have, for each primitive that appears in a circuit, equations
expressing the 0- and 1-controllability of its output in terms of the controllability of
its inputs, and it is necessary to have equations that express the observability of each
input in terms of both the observability of that element and the controllability of
some or all of its other inputs.

Consider the three-input AND gate. To get a 1 on the output, all three inputs must
be set to 1. Hence, controllability of the output to a 1 state is a function of the con-
trollability of all three inputs. To produce a 0 on the output requires only that a sin-
gle input be at 0; thus there are three choices and, if there exists some quantitative
measure indicating the relative ease or difficulty of controlling each of these three
inputs, then it is reasonable to select the input that is easiest to control in order to
establish a 0 on the output. Therefore, the combinational 1- and 0-controllabilities,

CC

1

(

Y

) and

CC

0

(

Y

), of a three-input AND gate with inputs

X

1

,

X

2

 and

X

3

 and output

Y

 can be defined as

CC

1

(

Y

) =

CC

1

(

X

1) + CC1(X2) + CC1(X3) + 1

CC0(Y) = Min{CC0(X1), CC0(X2), CC0(X3)} + 1

Controllability to 1 is additive over all inputs and to 0 it is the minimum over all
inputs. In either case the result is incremented by 1 so that, for intermediate nodes,
the number reflects, at least in part, distance (measured in numbers of gates) to pri-
mary inputs and outputs. The controllability equations for any combinational func-
tion can be determined from either its truth table or its cover. If two or more inputs
must be controlled to 0 or 1 values in order to produce the value e, e ∈ {0,1}, then
the controllabilities of these inputs are summed and the result is incremented by 1. If
more than one input combination produces the value e, then the controllability num-
ber is the minimum over all such combinations.

Example For the two-input exclusive-OR the truth table is

The combinational controllability equations are

CC0(Y) = Min{CC0(X1) + CC0(X2), CC1(X1) + CC1(X2)} + 1

CC1(Y) = Min{CC0(X1) + CC1(X2), CC1(X1) + CC0(X2)} + 1 ��

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 0

398 DESIGN-FOR-TESTABILITY

The sequential 0- and 1-controllabilities for combinational circuits, denoted SC0 and
SC1, are computed using similar equations.

Example For the two-input Exclusive-OR, the sequential controllabilities are:

SC0(Y) = Min{SC0(X1) + SC0(X2), SC1(X1) + SC1(X2)}

SC1(Y) = Min{SC0(X1) + SC1(X2), SC1(X1) + SC0(X2)} ��

When computing sequential controllabilities through combinational logic, the value
is not incremented. The intent of a sequential controllability number is to provide an
estimate of the number of time frames needed to provide a 0 or 1 at a given node.
Propagation through combinational logic does not affect the number of time frames.

When deriving equations for sequential circuits, both combinational and sequen-
tial controllabilities are computed, but the roles are reversed. The sequential control-
lability is incremented by 1, but an increment is not included in the combinational
controllability equation. The creation of equations for a sequential circuit will be
illustrated by means of an example.

Example Consider a positive edge triggered flip-flop with an active low reset but
without a set capability. Then, 0-controllability is computed with

CC0(Q) = Min{CC0(R), CC1(R) + CC0(D) + CC0(C) + CC1(C)}

SC0(Q) = Min{SC0(R), SC1(R) + SC0(D) + SC0(C) + SC1(C)} + 1

and 1-controllability is computed with

CC1(Q) = CC1(R) + CC1(D) + CC0(C) + CC1(C)

SC1(Q) = SC1(R) + SC1(D) + SC0(C) + SC1(C) + 1 ��

The first two equations state that a 0 can be obtained on the output of the delay flip-
flop in either of two ways. It can be obtained either by setting the reset line to 0, or it
can be obtained by setting the reset line to 1, setting the data line to 0, and then cre-
ating a rising edge on the clock line. Since four events must occur in the second
choice, the controllability figure is the sum of the controllabilities of the four events.
The sequential equation is incremented by 1 to reflect the fact that an additional time
image is required to propagate a signal through the flip-flop. (This is not strictly true
since a reset will produce a 0 at the Q output in the same time frame.) A 1 can be
achieved only by clocking a 1 through the data line and that also requires holding
the reset line at a 1.

The Observability Equations The observability of a node is a function of
both the observability and the controllability of other nodes. This can be seen in
Figure 8.8. In order to observe the value at node P, it must be possible to observe the

CONTROLLABILITY/OBSERVABILITY ANALYSIS 399

Figure 8.8 Node observability.

value on node N. If the value on node N cannot be observed at the output of the circuit
and if node P has no other fanout, then clearly node P cannot be observed. However,
to observe node P it is also necessary to place nodes Q and R into the 1 state. There-
fore, a measure of the difficulty of observing node P can be computed with the fol-
lowing equation:

CO(P) = CO(N) + CC1(Q) + CC1(R) + 1

In general, the combinational observability of the output of a logic gate that drives
the input of an AND gate is equal to the observability of that AND gate input, which
in turn is equal to the sum of the observability of the AND gate output plus the 1-
controllabilities of its other inputs, incremented by 1.

For a more general primitive combinational function, the observability of a given
input can be computed from its propagation D-cubes (see Section 4.3.3). The pro-
cess is as follows:

1. Select those D-cubes that have a D or D only on the input in question and 0, 1,
or X on all the other inputs.

2. For each cube, add the 0- and 1-controllabilities corresponding to each input
that has a 0 or 1 assigned.

3. Select the minimum controllability number computed over all the D-cubes
chosen and add to it the observability of the output.

Example Given an AND-OR-Invert described by the equation F = (A · B + C · D),
the propagation D-cubes for input A are (D, 1, 0, X) and (D, 1, X, 0). The combina-
tional observability for input A is equal to

CO(A) = Min{CO(Z) + CC1(B) + CC0(C),CO(Z) + CC1(B) + CC0(D)} + 1 ��

The sequential observability equations, like the sequential controllability equa-
tions, are not incremented by 1 when computed through a combinational circuit. In
general, the sequential controllability/observability equations are incremented by 1
when computed through a sequential circuit, but the corresponding combinational
equations are not incremented.

P

Q
R

N

400 DESIGN-FOR-TESTABILITY

Example Observability equations will be developed for the Reset and Clock lines
of the delay flip-flop considered earlier. First consider the Reset line. Its observability
can be computed using the following equations:

CO(R) = CO(Q) + CC1(Q) + CC0(R)

SO(R) = SO(Q) + SC1(Q) + SC0(R) + 1

Observability equations for the clock are as follows:

CO(C) = Min{CO(Q) + CC1(Q) + CC1(R) + CC0(D) + CC0(C) + CC1(C),

CO(Q) + CC0(Q) + CC1(R) + CC1(D) + CC0(C) + CC1(C)}

SO(C) = Min{SO(Q) + CC1(Q) + SC1(R) + SC0(D) + SC0(C) + SC1(C),

SO(Q) + SC0(Q) + SC1(R) + SC1(D) + SC0(C) + SC1(C)} + 1 ��

Equations for the Reset line of the flip-flop assert that observability is equal to the
sum of the observability of the Q output, plus the controllability of the flip-flop to a
1, plus the controllability of the Reset line to a 0. Expressed another way, the ability
to observe a value on the Reset line depends on the ability to observe the output of
the flip-flop, plus the ability to drive the flip-flop into the 1 state and then reset it.
Observability of the clock line is described similarly.

The Algorithm Since the equations for the observability of an input to a logic
gate or function depend on the controllabilities of the other inputs, it is necessary to
first compute the controllabilities. The first step is to assign initial values to all pri-
mary inputs, I, and internal nodes, N:

CC0(I) = CC1(I) = 1

CC0(N) = CC1(N) = ∞

SC0(I) = SC1(I) = 1

SC0(N) = SC1(N) = ∞

Having established initial values, each internal node can be selected in turn and the
controllability numbers computed for that node, working from primary inputs to pri-
mary outputs, and using the controllability equations developed for the primitives.
The process is repeated until, finally, the calculations stabilize. Node values must
eventually converge since controllability numbers are monotonically nonincreasing
integers.

Example The controllability numbers will be computed for the circuit of
Figure 8.9. The first step is to initially assign a controllability of 1 to all inputs and ∞

CONTROLLABILITY/OBSERVABILITY ANALYSIS 401

Figure 8.9 Controllability computations.

to all internal nodes. After the first iteration the 0- and 1-controllabilities of the inter-
nal nodes, in tabular form, are as follows:

After a second iteration the combinational 1-controllability of node 7 goes to a 4 and
the sequential controllability goes to 0. If the nodes had been rank-ordered—that is,
numbered according to the rule that no node is numbered until all its inputs are num-
bered—the second iteration would have been unnecessary. ��

With the controllability numbers established, it is now possible to compute the
observability numbers. The first step is to initialize all of the primary outputs, Y, and
internal nodes, N, with

CO(Y) = 0

SO(Y) = 0

CO(N) = ∞

SO(N) = ∞

Then select each node in turn and compute the observability of that node. Continue
until the numbers converge to stable values. As with the controllability numbers,
observability numbers must eventually converge. They will usually converge much
more quickly, with the fewest number of iterations, if nodes closest to the outputs
are selected first and those closest to the inputs are selected last.

N CC0(N) CC1(N) SC0(N) SC1(N)

6 2 3 0 0

7 2 ∞ 0 ∞
8 2 3 0 0

9 2 2 0 0

10 7 4 0 0

R

1

2

3

4

5

6

7

8

9
10

402 DESIGN-FOR-TESTABILITY

Example The observability numbers will now be computed for the circuit of
Figure 8.9. After the first iteration the following table is obtained:

On the second iteration the combinational and sequential observabilities of node 9
settle at 7 and 0, respectively. ��

SCOAP can be generalized using the D-algorithm notation (cf. Section 4.3.1).
This will be illustrated using the truth table for the arbitrary function defined in
Figure 8.10. In practice, this might be a frequently used primitive in a library of
macrocells. The first step is to define the sets P1 and P0. Then create the intersection
P1 ∩ P0 and use the resulting intersections, along with the truth table, to create con-
trollability and observability equations. The sets P1 and P0 are as follows:

P1 = {(0,0,0), (0,1,0), (1,0,1), (1,1,0)} = {(0,x,0), (1,0,1), (x,1,0)}

P0 = {(0,0,1), (0,1,1), (1,0,0), (1,1,1)} = {(0,x,1), (1,0,0), (x,1,1)}

The intersection table P1 ∩ P0 is as follows:

N CO(N) SO(N)

9 ∞ ∞
8 5 0

7 5 0

6 5 0

5 7 0

4 7 0

3 8 0

2 7 0

1 7 0

A B C Z

0 0 D D

D 0 0 D

0 1 D D

D 0 1 D

1 0 D D

1 D 1 D

1 D 0 D

1 1 D D

1 x D D

x 1 D D

CONTROLLABILITY/OBSERVABILITY ANALYSIS 403

Figure 8.10 Truth table for arbitrary function.

Note first that some members of P1 and P0 were left out of the intersection table. The
rows that were omitted were those that had either two or three D and/or D signals as
inputs. This follows from the fact that SCOAP does not compute observability
through multiple inputs to a function. Note also that three rows were crossed out and
two additional rows were added at the bottom of the intersection table. The first of
these added rows resulted from the intersection of rows 1 and 3. In words, it states
that if input A is a 1, then the value at input C is observable at Z regardless of the
value on input B. The second added row results from the intersection of rows 3 and
8. The following controllability and observability equations for this function are
derived from P0, P1, and their intersection:

CO(A) = min{CC0(B) + CC0(C), CC0(B) + CC1(C)} + CO(Z) + 1

CO(B) = min{CC1(A) + CC1(C), CC1(A) + CC0(C)} + CO(Z) + 1

CO(A) = min{CC0(A), CC1(A) + CC0(B),CC1(B)} + CO(Z) + 1

CC0(Z) = min{CC0(A) + CC1(C), CC1(A) + CC0(B) + CC0(C),CC1(B) + CC1(C)} + 1

CC1(Z) = min{CC0(A) + CC0(C), CC1(A) + CC0(B) + CC1(C),CC1(B) + CC0(C)} + 1

8.3.2 Other Testability Measures

Other algorithms exist, similar to SCOAP, which place different emphasis on cir-
cuit parameters. COP (controllability and observability program) computes con-
trollability numbers based on the number of inputs that must be controlled in order
to establish a value at a node.3 The numbers therefore do not reflect the number of
levels of logic between the node being processed and the primary inputs. The
SCOAP numbers, which encompass both the number of levels of logic and the
number of primary inputs affecting the C/O numbers for a node, are likely to give a
more accurate estimate of the amount of work that an ATPG must perform. How-
ever, the number of primary inputs affecting C/O numbers perhaps reflects more

0

0

0

0

1

1

1

1

A

0

0

1

1

0

1

0

1

C

1

1

0

0

0

1

1

0

ZB

0

0

1

1

0

0

1

1

404 DESIGN-FOR-TESTABILITY

accurately the probability that a node will be switched to some value randomly;
hence it may be that it more closely correlates with the probability of random fault
coverage when simulating test vectors.

Testability analysis has been extended to functional level primitives. FUNTAP
(functional testability analysis program)4 takes advantage of structures such as n-
wide data paths. Whereas the single net may have binary values 0 and 1, and these
values can have different C/O numbers, the n-wide data path made up of binary sig-
nals may have a value ranging from 0 to 2n – 1. In FUNTAP no significance is
attached to these values; it is assumed that the data path can be set to any value i,
0 ≤ i ≤ 2n − 1, with equal ease or difficulty. Therefore, a single controllability number
and a single observability number are assigned to all nets in a data path, independent
of the logic values assigned to individual nets that make up the data path.

The ITTAP program5 computes controllability and observability numbers, but, in
addition, it computes parameters TL0, TL1, and TLOBS, which measure the length
of the sequence needed in sequential logic to set a net to 0 or 1 or to observe the
value on that node. For example, if a delay flip-flop has a reset that can be used to
reset the flip-flop to 0, but can only get a 1 by clocking it in from the Data input, then
TL0 = 1 and TL1 = 2.

A more significant feature of ITTAP is its selective trace capability. This feature
is based on two observations. First, controllabilities must be computed before
observabilities, and second, if the numbers were once computed, and if a change is
made to enhance testability, numbers need only be recomputed for those nodes
where the numbers can change. The selection of elements for recomputation is simi-
lar to event-driven simulation. If the controllability of a node changes because of the
addition of a test point, then elements driven by that element must have their con-
trollabilities recomputed. This continues until primary outputs are reached or ele-
ments are reached where the controllability numbers at the outputs are unaffected by
changing numbers at the inputs. At that point, the observabilities are computed back
toward the inputs for those elements with changed controllability numbers on their
inputs.

The use of selective trace provides a savings in CPU time of 90–98% compared
to the time required to recompute all numbers in a given circuit. This makes it ideal
for use in an interactive environment. The designer visually inspects either a circuit
or a list of nodes at a video display terminal and then assigns a test point and imme-
diately views the results. Because of the quick response, the test point can be shifted
to other nodes and the numbers recomputed. After several such iterations, the logic
designer can settle on the node that provides the greatest improvement in the C/O
numbers.

The interactive strategy has pedagogical value. Placing a test point at a node with
the worst C/O numbers is not always the best solution. It may be more effective to
place a test point at a node that controls the node in question, since this may improve
controllability of several nodes. Also, since observability is a function of controlla-
bility, greatest improvements in testability may sometimes be had by assigning a test
point as an input to a gate rather than as an output, even though the analysis program
indicates that the observability is poor. The engineer who uses the interactive tool,

CONTROLLABILITY/OBSERVABILITY ANALYSIS 405

particularly recent graduates who may not have given much thought to testability
issues, may learn with such an interactive tool how best to design for testability.

8.3.3 Test Measure Effectiveness

Studies have been conducted to determine the effectiveness of testability analysis.
Consider the circuit defined by the equation

F = A · (B + C + D)

An implementation can be realized by a two-input AND gate and a three-input OR
gate. With four inputs, there are 16 possible combinations on the inputs. An SA1 fault
on input A to the AND gate has a 7/16 probability of detection, whereas an SA0 on
any input to the OR gate has a 1/16 probability of detection. Hence a randomly gener-
ated 4-bit vector applied to the inputs of the circuit is seven times as likely to detect
the fault on the AND gate input as it is to detect a fault on a particular OR gate input.

Suppose controllability of a fault is defined as the fraction of input vectors that set a
faulty net to a value opposite its stuck-at value, and observability is defined as the
fraction of input vectors that propagate the fault effect to an output.6 Testability is then
defined as the fraction of input vectors that test the fault. Obviously, to test a fault, it is
necessary to both control and observe the fault effect; hence testability for a given fault
can be viewed as the number of vectors in the intersection of the controllability and
observability sets, divided by the total number of vectors. But, there may be two reason-
ably large sets whose intersection is empty. A simple example is shown in Figure 8.11.
The controllability for the bottom input of gate numbered 1 is 1/2. The observability is
1/4. Yet, the SA1 on the input cannot be detected because it is redundant.

In another investigation of testability measures, the authors attempt to determine
a relationship between testability figures and detectability of a fault.7 They parti-
tioned faults into classes based on testability estimates for the faults and then plotted
curves of fault coverage versus vector number for each of these classes. The curves
were reasonably well behaved, the fault coverage curves rising more slowly, in gen-
eral, for the more difficult to test fault classes, although occasionally a curve for
some particular class would rise more rapidly than the curve for a supposedly easier
to test class of faults. They concluded that testability data were a poor predictor of
fault detection for individual faults but that general information at the circuit level
was available and useful. Furthermore, if some percentage, say 70%, of a class of
difficult to test faults are tested, then any fixes made to the circuit for testability pur-
poses have only a 30% chance of being effective.

Figure 8.11 An undetectable fault.

1
3B

A

2

406 DESIGN-FOR-TESTABILITY

8.3.4 Using the Test Pattern Generator

If test vectors for a circuit are to be generated by an ATPG, then the most direct way
in which to determine its testability is to simply run the ATPG on the circuit. The
ability (or inability) of an ATPG to generate tests for all or part of a design is the best
criterion for testability. Furthermore, it is a good practice to run test pattern genera-
tion on a design before the circuit has been fabricated. After a board or IC has been
fabricated, the cost of incorporating changes to improve testability increases
dramatically.

A technique employed by at least one commercial ATPG employs a preprocess
mode in which it attempts to set latches and flip-flops to both the 0 and 1 state before
attempting to create tests for specific faults in a circuit.8 The objective is to find trou-
blesome circuits before going into test pattern generation mode. The ATPG compiles
a list of those flip-flops for which it could not establish the 0 and/or 1 state. When-
ever possible, it indicates the reason for the failure to establish desired value(s). The
failure may result from such things as races in which relative timing of the signals is
too close to call with confidence, or it could be caused by bus conflicts resulting from
inability to set one or more tri-state control lines to a desired value. It could also be
the case that controllability to 0 or 1 of a flip-flop depends on the value of another
flip-flop that could not be controlled to a critical value. It also has criteria for deter-
mining whether the establishment of a 0 or 1 state took an excessive amount of time.

Analysis of information in the preprocess mode may reveal clusters of nodes that
are all affected by a single uncontrollable node. It is also important to bear in mind
that nodes which require a great deal of time to initialize can be as detrimental to
testability as nodes that cannot be initialized. An ATPG may set arbitrary limits on
the amount of time to be expended in trying to set up a test for a particular fault.
When that threshold is exceeded, the ATPG will give up on the fault even though a
test may exist.

C/O numbers can be used by the ATPG to influence the decision-making process.
On average, this can significantly reduce the amount of time required to create test
patterns. The C/O numbers can be attached to the nodes in the circuit model, or the
numbers can be used to rearrange the connectivity tables used by the ATPG, so that
the ATPG always tries to propagate or justify the easiest to control or observe signals
first. Initially, when a circuit model is read into the ATPG, connectivity tables are
constructed reflecting the interconnections between the various elements in the cir-
cuit. A FROM table lists the inputs to an element, and a TO table lists the elements
driven by a particular element.

By reading observability information, the ATPG can sort the elements in the TO
table so that the most observable path is selected first when propagating elements.
Likewise, when justifying logic values, controllability information can be used to
select the most controllable input to the gate. For example, when processing an
AND gate, if it is necessary to justify a 0 on the output of the AND gate, then the
input with the lowest 0-controllability should be tried first. If it cannot be justified,
then attempt the other inputs, always selecting as the next choice the input, not yet
attempted, that is judged to be most controllable.

THE SCAN PATH 407

8.4 THE SCAN PATH

Ad hoc DFT methods can be useful in small circuits that have high yield, as well as
circuits with low sequential complexity. For ICs on small die with low gate count, it
may be necessary to get only a small boost in fault coverage in order to achieve
required AQL, and one or more ad hoc DFT solutions may be adequate. However, a
growing number of design starts are in the multi-million transistor range. Even if it
were possible to create a test with high-fault coverage, it would in all likelihood take
an unacceptably long time on a tester to apply the test to an IC. However, it is sel-
dom the case that an adequate test can be created for extremely complex devices
using traditional methods. In addition to the length of the test, test development cost
continues to grow. Another factor of growing importance is customer expectations.
As digital products become more pervasive, they increasingly are purchased by cus-
tomers unsympathetic to the difficulties of testing, they just want the product to
work. Hence, it is becoming imperative that devices be free of defects when shipped
to customers.

The aforementioned factors increase the pressure on vendors to produce fault-
free products. The ever-shrinking feature sizes of ICs simultaneously present both a
problem and an opportunity for vendors. The shrinking feature sizes make the die
susceptible to defects that might not have affected it in a previous generation of
technology. On the other hand, it affords an opportunity to incorporate more test
related features on the die. Where die were once core-limited, now the die are more
likely to be pad-limited (cf. Figure 8.12). In core-limited die there may not be suffi-
cient real estate on the die for all the features desired by marketing; as a result, test-
ability was often the first casualty in the battle for die real estate. With pad-limited
die, larger and more complex circuits, and growing test costs, the argument for more
die real estate dedicated to test is easier to sell to management.

8.4.1 Overview

Before examining scan test, consider briefly the circuit of Problem 8.10, an eight-
state sequential circuit implemented as a muxed state machine. It is fairly easy to
generate a complete test for the circuit because it is a completely specified state
machine (CSSM); that is, every state defined by the flip-flops can be reached from
some other state in one or more transitions. Nonetheless, generating a test program

Figure 8.12 The changing face of IC design.

Core-limited die Pad-limited die

408 DESIGN-FOR-TESTABILITY

becomes quite tedious because of all the details that must be maintained while prop-
agating and justifying logic assignments through the time and logic dimensions. The
task becomes orders of magnitude more difficult when the state machine is imple-
mented using one-hot encoding. In that design style, every state is represented by a
unique flip-flop, and the circuit becomes an incompletely specified state machine
(ISSM)—that is, one in which n flip-flops implement n legal states out of 2n possible
states. Backtracing and justifying logic values in the circuit becomes virtually
impossible.

Regardless of how the circuit is implemented, with three or eight flip-flops, the
test generation task for a fault in combinational logic becomes much easier if it
were possible to compute the required test values at the I/O pins and flip-flops,
and then load the required values directly into the flip-flops without requiring sev-
eral vectors to transition to the desired state. The scan path serves this purpose. In
this approach the flip-flops are designed to operate either in parallel load or serial
shift mode. In operational mode the flip-flops are configured for parallel load.
During test the flip-flops are configured for serial shift mode. In serial shift mode,
logic values are loaded by serially shifting in the desired values. In similar fash-
ion, any values present in the flip-flops can be observed by serially clocking out
their contents.

A simple means for creating the scan path consists of placing a multiplexer just
ahead of each flip-flop as illustrated in Figure 8.13. One input to the 2-to-1 multi-
plexer is driven by normal operational data while the other input—with one excep-
tion—is driven by the output of another flip-flop. At one of the multiplexers the
serial input is connected to a primary input pin. Likewise, one of the flip-flop outputs
is connected to a primary output pin. The multiplexer control line, also connected to
a primary input pin, is now a mode control; it can permit parallel load for normal
operation or it can select serial shift in order to enter scan mode. When scan mode is
selected, there is a complete serial shift path from an input pin to an output pin.

Since it is possible to load arbitrary values into flip-flops and read the contents
directly out through the serial shift path, ATPG requirements are enormously simpli-
fied. The payoff is that the complexity of testing is significantly reduced because it
is no longer necessary to propagate tests through the time dimension represented by
sequential circuits. The scan path can be tested by shifting a special pattern through

Figure 8.13 A scan path.

MUX MUX

Register Register

Out 1 Out 2

Select

Scan in
Data 2Data 1

MUX

Register

Scan out

Data N

Out N

THE SCAN PATH 409

the scan path before even beginning to address stuck-at faults in the combinational
logic. A test pattern consisting of alternating pairs of 1s and 0s (i.e., 11001100....)
will test the ability of the scan path to shift all possible transitions. This makes it
possible for the ATPG to ignore faults inside the flip-flops, as well as stuck-at faults
on the clock circuits.

During the generation of test patterns, the ATPG treats the flip-flops as I/O
pins. A flip-flop output appears to be a combinational logic input, whereas a flip-
flop input appears to be a combinational logic output. When an ATPG is propagat-
ing a sensitized path, it stops at a flip-flop input just as it would stop at a primary
output. When justifying logic assignments, the ATPG stops at the output of flip-
flops just as it would stop at primary inputs. The only difference between the
actual I/O pins and flip-flop “I/O pins” is the fact that values on the flip-flops must
be serially shifted in when used as inputs and serially shifted out when used as
outputs.

When a circuit with scan path is used in its normal mode, the mode control, or
test control, is set for parallel load. The multiplexer selects normal operational data
and, except for the delay through the multiplexer, the scan circuitry is transparent.
When the device is being tested, the mode control alternates between parallel load
and serial shift. This is illustrated in Figure 8.14.

The figure assumes a circuit composed of four scan-flops that, during normal
mode, are controlled by positive clock edges. Data are serially shifted into the
scan path when the scan-enable is high. After all of the scan-flops are loaded,
the scan-enable goes low. At this point the next clock pulse causes normal cir-
cuit operation using the data that were serially shifted into the scan-flops. That
data pass through the combinational logic and produce a response that is
clocked into destination scan-flops. Note that data present at the scan-input are
ignored during this clock period. After one functional clock has been applied,
scan-enable again becomes active. Now the Clk signal again loads the scan-
flops. During this operation, response data are also captured at the scan-out pin.
That data are compared to expected data to determine whether or not any faults
are present in the circuit.

The use of scan tremendously simplifies the task of creating test stimuli for
sequential circuits, since the circuit is essentially reduced to a combinational ATPG
for test purposes, and algorithms for those circuits are well understood, as we saw
in Chapter 4. It is possible to achieve very high fault coverage, often in the range of

Figure 8.14 Scan shift operation.

Clk

SI1 SI2 SI3 SI4 X SI1 SI2 SI3 SI4scan-input

scan-enable

scan-out XSO1 SO2 SO3 SO4 SO1 SO3SO2 SO4

410 DESIGN-FOR-TESTABILITY

Figure 8.15 Scan flip-flop symbol.

97–99% for the parts of the circuit that can be tested with scan. Equally important
for management, the amount of time required to generate the test patterns and
achieve a target fault coverage is predictable. Scan can also help to reduce time on
the tester since, as we shall see, multiple scan paths can run in parallel. However,
it does impose a cost. The multiplexers and the additional metal runs needed to
connect the mode select to the flip-flops can require from 5% to 20% of the real
estate on an IC. The performance delay introduced by the multiplexers in front of
the flip-flops may impose a penalty of from 5% to 10%, depending on the depth of
the logic.

8.4.2 Types of Scan-Flops

The simplest form of scan-flop incorporates a multiplexer into a macrocell together
with a delay flip-flop. A common symbol denoting a scan-flop is illustrated in
Figure 8.15. Operational data enter at D, while scan data enter at SI. The scan
enable, SE, determines which data are selected and clocked into the flip-flop.

Dual Clock Serial Scan An implementation of scan with dual clocks is shown
in Figure 8.16.9 In this implementation, comprised of CMOS transmission gates, the
goal was to have the least possible impact on circuit performance and area overhead.

Figure 8.16 Flip-flop with dual clock.

QD

SI
SE

CK

R

D

SI

Dclk

Sclk

Q

SO_L

Dclk

Sclk

Master

Slave

Scan slave

Jam latch

THE SCAN PATH 411

Dclk is used in operational mode, and Sclk is the scan clock. Operational data and
scan data are multiplexed using Dclk and Sclk. When operating in scan mode, Dclk
is held high and Sclk goes low to permit scan data to pass into the Master latch.
Because Dclk is high, the scan data pass through the Slave latch and, when Sclk
goes high, pass through the Scan slave and appears at SO_L.

Addressable Registers Improved controllability and observability of sequen-
tial elements can be obtained through the use of addressable registers.10 Although,
strictly speaking, not a scan or serial shift operation, the intent is the same—that is,
to gain access and control of sequential storage elements in a circuit. This approach
uses X and Y address lines, as illustrated in Figure 8.17. Each latch has an X and Y
address, as well as clear and preset inputs, in addition to the usual clock and data
lines. A scan address goes to X and Y decoders for the purpose of generating the X
and Y signals that select a latch to be loaded. A latch is forced to a 1 (0) by setting
the address lines and then pulsing the Preset (Clear) line.

Readout of data is also accomplished by means of the X and Y addresses. The
selected element is gated to the SDO (Serial Data Out) pin, where it can be
observed. If there are more address lines decoded than are necessary to observe
latches, the extra X and Y addresses can be used to observe nodes in combinational
logic. The node to be observed is input to a NAND gate along with X and Y signals,
as a latch would be; when selected, its value appears at the SDO.

The addressable latches require just a few gates for each storage element. Their
affect on operation during normal operation is negligible, due mainly to loading
caused by the NAND gate attached to the Q output. The scan address could require
several I/O pins, but it could also be generated internally by a counter that is initially
reset and then clocked through consecutive addresses to permit loading or reading of
the latches.

Random access scan is attractive because of its negligible effect on IC perfor-
mance and real estate. It was developed by a mainframe company where perfor-
mance, rather than die area, was the overriding issue. Note, however, that with
shrinking component size the amount of area taken by interconnections inside an IC
grows more significant; the interconnect represents a larger percentage of total chip

Figure 8.17 Addressable flip-flop.

Data

Clock

Clear

Preset

X
Y

Q

SDO

412 DESIGN-FOR-TESTABILITY

area. The addressable latches require that several signal lines be routed to each
addressable latch, and the chip area occupied by these signal lines becomes a major
factor when assessing the cost versus benefits of the various methods.

8.4.3 Level-Sensitive Scan Design

Much of what is published about DFT techniques is not new. They have been
described as early as December 196311 and again in April 1964.12 Detailed descrip-
tion of a scan path and its proposed use for testability and operational modes is
described in a patent filed in 1968.13 Discussion of scan path and derivation of a for-
mal cost model were published in 1973.14 The level-sensitive scan design (LSSD)
methodology was introduced in a series of papers presented at the Design Automa-
tion Conference in 1977.15–17

LSSD extends DFT beyond the scan concept. It augments the scan path with addi-
tional rules whose purpose is to cause a design to become level sensitive. A level-sen-
sitive system is one in which the steady-state response to any allowed input state
change is independent of circuit and wire delays within the system. In addition, if an
input state change affects more than one input signal, then the response must be inde-
pendent of the order in which they change.15 The object of these rules is to preclude
the creation of designs in which correct operation depends on critical timing factors.

To achieve this objective, the memory devices used in the design are level-sensitive
latches. These latches permit a change of internal state at any time when the clock is
in one state, usually the high state, and inhibit state changes when the clock is in the
opposite state. Unlike edge-sensitive flip-flops, the latches are insensitive to rising and
falling edges of pulses, and therefore the designer cannot create circuits in which cor-
rect operation depends on pulses that are themselves critically dependent on circuit
delay. The only timing that must be taken into account is the total propagation time
through combinational logic between the latches.

In the LSSD environment, latches are used in pairs as illustrated in Figure 8.18.
These latch pairs are called shift-register latches (SRL), and their operation is con-
trolled by multiple clocks, denoted A, B, and C. The Data input is used in opera-
tional mode whereas Scan-in, which is driven by the L2 output of another SRL, is
used in the scan mode. During operational mode the A clock is inactive. The C clock
is used to clock data into L1 from the Data input, and output can be taken from
either L1 or L2. If output is taken from L2, then two clock signals are required. The
second signal, called the B clock, clocks data into L2 from the L1 latch. This config-
uration is sometimes referred to as a double latch design.

When the scan path is used for testing purposes, the A clock is used in conjunc-
tion with the B clock. Since the A clock causes data at the Scan-in input to be latched
into L1, and the Scan-in signal comes from the L2 output of another SRL (or a pri-
mary input pin), alternately switching the A and B clocks serially shifts data through
the scan path from the Scan-in terminal to the Scan-out terminal.

Conceptually, LSSD behaves much like the dual-clock configuration discussed
earlier. However, there is more to LSSD, namely, a set of rules governing the man-
ner in which logic is clocked. Consider the circuit depicted in Figure 8.19. If S1, S2,

THE SCAN PATH 413

Figure 8.18 The shift register latch.

and S3 are L1 latches, the correct operation of the circuit depends on relative timing
between the clock and data signals. When the clock is high, there is a direct combi-
national logic path from the input of S1 to the output of S3. Since the clock signal
must stay high for some minimum period of time in order to latch the data, this
direct combinational path will exist for that duration.

In addition, the signal from S1 to S2 may go through a very short propagation
path. If the clock does not drop in time, input data to the S1 latch may not only get

Figure 8.19 Some timing problems.

L1

L2

Data
C

Scan-in

A

B

Scan-in

Data

C

A
B

L1

L2

S1 S2 S3

C
om

bi
na

tio
na

l
lo

gi
c

C
om

bi
na

tio
na

l
lo

gi
c

A

B

C

414 DESIGN-FOR-TESTABILITY

latched in S1 but may reach S2 and get latched into S2 a clock period earlier than
intended. Hence, as illustrated in waveform A the short propagation path can cause
unpredictable results. Waveform C illustrates the opposite problem. The next clock
pulse appears before new data reaches S2. Clearly, for correct behavior it is neces-
sary that the clock cycle be as short as possible, but it must not be shorter than the
propagation time through combinational logic.

The use of the double latch design can eliminate the situation in waveform A.
To resolve this problem, LSSD imposes restrictions on the clocking of latches.
The rules will be listed and then their effect on the circuit of Figure 8.19 will be
discussed.

1. Latches are controlled by two or more nonoverlapping clocks such that a latch
X may feed the data port of another latch Y if and only if the clock that sets the
data into latch Y does not clock latch X.

2. A latch X may gate a clock C1 to produce a gated clock C2 that drives another
latch Y if and only if clock C3 does not clock latch X, where C3 is any clock
produced from C1.

3. It must be possible to identify a set of clock primary inputs from which the
clock inputs to SRLs are controlled either through simple powering trees or
through logic that is gated by SRLs and/or nonclock primary inputs.

4. All clock inputs to all SRLs must be at their off states when all clock primary
inputs are held to their off states.

5. The clock signal that appears at any clock input of an SRL must be controlled
from one or more clock primary inputs such that it is possible to set the clock
input of the SRL to an on state by turning any one of the corresponding pri-
mary inputs to its on state and also setting the required gating condition from
SRLs and/or nonclock primary inputs.

6. No clock can be ANDed with the true value or complement value of another
clock.

7. Clock primary inputs may not feed the data inputs to latches, either directly or
through combinational logic, but may only feed the clock input to the latches
or the primary outputs.

Rule 1 forbids the configuration shown in Figure 8.19. A simply way to comply
with the rules is to use both the L1 and L2 latches and control them with nonover-
lapping clocks as shown in Figure 8.20. Then the situation illustrated in waveform A
will not occur. The contents of the L2 latch cannot change in response to new data at
its input as long as the B clock remains low. Therefore, the new data entering the L1
latch of SRL S1, as a result of clock C being high, cannot get through its L2 latch,
because the B clock is low and hence cannot reach the input of SRL S2. The input to
S2 remains stable and is latched by the C clock.

The use of nonoverlapping clocks will protect a design from problems caused by
short propagation paths. However, the time between the fall of clock C and the rise

THE SCAN PATH 415

Figure 8.20 The two-clock signal.

of clock B is “dead time”; that is, once the data are latched into L1, the goal is to
move it into L2 as quickly as possible in order to realize maximum performance.
Thus, the interval from the fall of C to the rise of B in Figure 8.20 should be as brief
as possible without, however, making the duration too short. In a chip with a great
many wire paths, the two clocks may be nonoverlapping at the I/O pins and yet may
overlap at one or more SRLs inside the chip due to signal path delays. This condi-
tion is referred to as clock skew. When debugging a design, experimentation with
clock edge separation can help to determine whether clock skew is causing prob-
lems. If clock skew problems exist, it may be necessary to change the layout of a
chip or board, or it may require a greater separation of clock edges to resolve the
problem.

The designer must still be concerned with the configuration in waveform C; that
is, the clock cycle must exceed the propagation delay of the longest propagation
path. However, it is a relatively straightforward task to compute propagation delays
along combinational logic paths. Timing verification, as described in Section 2.13,
can be used to compute the delay along each path and then print out all critical paths
that exceed a specified threshold. The design team can elect to redesign the critical
paths or increase the clock cycle.

Test program development using the LSSD scan path closely follows the tech-
nique used with other scan paths. One interesting variant when testing is the fact that
the scan path itself can be checked with what is called a flush test.16 In a flush test the
A and B clocks are both set high. This creates a direct combinational path from the
scan-in to the scan-out. It is then possible to apply a logic 1 and 0 to the scan-in and
observe them directly at the scan output without further exercising the clocks. This
flush test exercises a significant portion of the scan path. The flush test is followed by
clocking 1s and 0s through the scan path to ensure that the clock lines are fault-free.

Another significant feature of LSSD, as implemented, is the fact that it is sup-
ported by a design automation system that enforces the design rules.17 Since the
design automation system incorporates much knowledge of LSSD, it is possible to
check the design for compliance with design rules. Violations detected by the check-
ing programs can be corrected before the design is fabricated, thus ensuring that
design violations will not compromise the testability goals that were the object of
the LSSD rules.

The other DFT approaches discussed, including non-LSSD scan and addressable
registers, do not, in and of themselves, inhibit some design practices that traditionally

C

B

416 DESIGN-FOR-TESTABILITY

have caused problems for ATPGs. They require design discipline imposed either by
the logic designers or by some designated testability supervisor. LSSD, by requiring
that designs be entered into a design data base via design automation programs that
can check for rule violations, makes it difficult to incorporate design violations with-
out concurrence of the very people who are ultimately responsible for testing the
design.

8.4.4 Scan Compliance

The intent of scan is to make a circuit testable by causing it to appear to be strictly
combinational to an ATPG. However, not all circuits can be directly transformed
into combinational circuits by adding a scan path. Consider the self-resetting flip-
flop in Figure 8.21. Any attempt to serially shift data through the scan-in (SI) will be
defeated by the self-resetting capability of flip-flop S2. The self-resetting capability
not only forces S2 back to the 0 state, but the effect on S3, as data are scanned
through, is unpredictable. Whether or not scan data reach S3 from S2 will depend on
the value of the Delay as well as the period of the clock.

A number of other circuit configurations create similar complications. This
includes configurations such as asynchronous set and clear inputs and flip-flops
whose clock, set, and/or clear inputs are driven by combinational logic. Two prob-
lems result when flip-flops are clocked by derived clocks—that is, clocks generated
from subcircuits whose inputs are other clocks and random logic signals. The first of
these problems is that an ATPG may have difficulty creating the clocking signal and
keeping it in proper synchronization with clock signals on other flip-flops. The other
problem is the fact that the derived clock may be glitchy due to races and hazards.
So, although the circuit may work correctly during normal operation, test vectors
generated by an ATPG may create input combinations not intended by the designers
of the circuit and, as a result, the circuit experiences races and hazards that do not
occur during normal operation.

Latches are forbidden by some commercial systems that support scan. Scan-
based ATPG tools expect the circuit they are processing to be a pure combinational
circuit. Since the latches hold state information, logic values emanating from the
latches are unpredictable. Therefore, those values will be treated as Xs. This can
cause a considerable amount of logic to become untestable. One way to implement

Figure 8.21 A reset problem.

Delay

Mode

Serial-in

QD

SI
SE

CK

R

QD

SI
SE

CK Q

QD

SI
SE

CK

R

S1 S2 S3

THE SCAN PATH 417

testable latches is shown in Figure 8.22.18 When in test mode, the TestEnable signal
is held fixed at 1, thus blocking the feedback signals. As a result, the NAND gates
appear, for purposes of test, to be inverters. A slight drawback is that some faults
become undetectable. But this is preferable to propagating Xs throughout a large
block of combinational logic.

If there are D latches present in the circuit—that is, those with Data and Enable
inputs—then a TestEnable signal can be ORed with the Enable signal. The TestEnable
signal can be held at logic 1 during test so that the D latch appears, for test purposes,
to be a buffer or inverter.

Many scan violations can be resolved through the use of multiplexers. For exam-
ple, if a circuit contains a combinational feedback loop, then a multiplexer can be
used to break up the loop. This was illustrated in Figure 8.3 where the configuration
was used to avoid gating the clock signal. To use this configuration for test, the Load
signal selects the feedback loop during normal operation, but selects a test input sig-
nal during test. The test input can be driven by a flip-flop that is included in the scan
chain but is dedicated to test, that is, the flip-flop is not used during normal opera-
tion. This circuit configuration may require two multiplexers; One is used to select
between Load and Data, and the second one is used to choose between scan-in and
normal operation.

Tri-state circuits can cause problems because they are often used when two or
more devices are connected to a bus. When several drivers are connected to a bus, it
is sometimes the case that none of the drivers are active, causing the bus to enter the
unknown state. When that occurs, the X on the bus may spread throughout much of
the logic, thus rendering a great deal of logic untestable for those vectors when the
bus is unknown.

One way to prevent conflicts at buses with multiple drivers is to use multiplexers
rather than tri-state drivers. Then, if there are no signals actively driving the bus, it
can be made to default to either 0 or 1. If tri-state drivers are used, a 1-of-n selector
can be used to control the tri-state devices. If the number of bus drivers n is 2d−1 < n
< 2d, there will be combinations of the 2d possible selections for which no signal is
driving the bus. The unused combinations can be set to force 0s or 1s onto the bus.
This is illustrated in Figure 8.23, where d = 2, and one of the four bus drivers is con-
nected to ground. If select lines S1 and S2 do not choose any of D1, D2, or D3, then
the Bus gets a logic 0. Note that while the solution in Figure 8.23 maintains the bus
at a known value regardless of the values of S1 and S2, a fault on a tri-state enable
line can cause the faulty bus to assume an indeterminate value, resulting in at best a

Figure 8.22 Testable NAND latch.

Q

Q

Q

Q

S

R

S

R

TestEnable

418 DESIGN-FOR-TESTABILITY

Figure 8.23 Forcing a bus to a known value.

probable detect. When a multiplexer is used, both good and faulty circuits will have
known, but different, values.

A potentially more serious situation occurs if a circuit is designed in such a way
that two or more drivers may be simultaneously active during scan test. For exam-
ple, the tri-state enables may be driven, directly or indirectly, by flip-flops. If two or
more drivers are caused to become active during scan and if they are attempting to
drive the circuit to opposite values, the test can damage the very circuit it is
attempting to evaluate for correct operation.

8.4.5 Scan-Testing Circuits with Memory

With shrinking feature sizes, increasing numbers of ICs are being designed with
memory on the same die with random logic. Memory often takes up 80% or more of
the transistors on a die in microprocessor designs while occupying less than half the
die area (cf. Section 10.1). Combining memory and logic on a die has the advan-
tages of improved performance and reliability. However, ATPG tools generally treat
memory, and other circuitry such as analog circuits, as black boxes. So, for scan test,
these circuits must be treated as exceptions. In the next two chapters we will deal
with built-in self-test (BIST) for memories, here we will consider means for isolat-
ing or bypassing the memory so that the remainder of the IC can be tested.

The circuit in Figure 8.24 illustrates the presence of shadow logic between scan
registers and memory.19 This is combinational logic that can not be directly accessed
by the scan circuits. If the shadow logic consists solely of addressing logic, then it is
testable by BIST. However, if other random logic is present, it may be necessary to
take steps to improve controllability and observability. Observability of signals at the
address and data inputs can be accomplished by means of the observability tree in
Figure 8.4. Controllability of logic between memory output and the scan register can
be achieved by multiplexing the memory Data-out signals with scanned in test data.

An alternative is to multiplex the address and Data-in signals with the Data-out
signals as shown in Figure 8.24. In test mode a combinational path exists from the
input side of memory to the output side. Address and data inputs can be exclusive-
OR’ed so that there are a total of n signals on both of the multiplexer input ports. For

1-of-4
Selector

S1

S2 Bus

D1

D2

D3

THE SCAN PATH 419

Figure 8.24 Memory with shadow logic.

example, if m = 2n, then A2i, A2i+1, and Di can be exclusive-OR’ed, for 0 ≤ i < n, to
reduce the number of inputs to the multiplexer to n. Note that it may be necessary to
inhibit memory control signals while performing the scan test.

It might be possible, for test generation purposes, to remodel a memory as a reg-
ister, then force values on the memory control pins that cause the address lines to
assume a fixed value, such as 0, during test. Better still, it might be possible to
make the memory completely transparent. In the transparent memory test mode,
with the right values on the control lines, Data-in flows directly to Data-out so that
the memory appears, for test purposes, to be direct connections between Data-in
and Data-out.

If the memory has a bidirectional Data port connected to a bus, the best approach
may be to disable the memory completely while testing the random logic. This may
require that the TestMode signal be used to disable the OE (output enable) during
scan. Then if there is logic that is being driven by the bus, it may be necessary to
substitute some other source for that test data. Perhaps it will be necessary to drive
the bus from an input port during test.

Another method for dealing with memories is to write data into memory before
scan tests are generated. Suppose the memory has an equal number of address and
data inputs. Then, before running the scan test on the chip, run a test program that
loads memory with all possible values. For example, if there are n address lines and
n data lines, load location i with the value i, for 0 ≤ i < 2n. Then, during scan test the
write enable is disabled. During test pattern generation the circuit is remodeled so
that either the address or data inputs are connected directly to the data outputs of the
memory and the memory model is removed from the circuit. If the address lines are
connected to the Data-out in the revised model, then the ATPG sets up the test by
generating the appropriate data using the address inputs. During application of the
test, the data from that memory location are written onto the Data-out lines. A defect

C
om

bi
na

ti
on

al
lo

gi
c

A
0

Am−1

DI
0

DIn−1

DO0

DOn−1

R
e
g

R
e
g

Clk

MEM

WE

TestMode

Sel

M

U

X

C
om

bi
na

tio
na

ll
og

ic

•••

•••

•••

420 DESIGN-FOR-TESTABILITY

on the data lines will cause the wrong data to be loaded into memory during the pre-
processing phase, whereas a defect on the address lines might escape detection.20,21

8.4.6 Implementing Scan Path

A scan path can be created by the logic designers who are designing the circuit, or it
can be created by software during the synthesis process. If scan is included as part of
a PCB design, the PCB designers can take advantage of scan that is present in the
individual ICs used to (a) populate the PCB and (b) connect scan paths between the
individual ICs. However, as will be seen in the following paragraphs, connecting ICs
into a comprehensive scan solution can be a major challenge because, when scan is
designed into the ICs, it is usually designed for optimal testing of the IC, with no
thought given as to how it might be used in a higher-level assembly. Vertically inte-
grated companies—that is, those that design both their own ICs as well as the PCBs
that use the ICs—can design scan into their ICs in such a way that it is useable at
several levels of integration.

For an IC designed at the register transfer level (RTL), scan path can be inserted
while writing the RTL description of the circuit, or it can be inserted by a postpro-
cessor after the RTL has been synthesized. A postprocessor alters the circuit model
by substituting scan flip-flops for the regular flip-flops and connecting the scan pins
into a serial scan path. Using a postprocessor to insert the scan path has the advan-
tage that the process is transparent to the designers, so they can focus their attention
on verifying the logic. However, when the scan is inserted into the circuit as a post-
process, it becomes necessary to re-verify functionality and timing of the circuit in
order to (a) ensure that behavior has not been inadvertently altered and (b) ensure
that delay introduced by the scan does not cause the clock period to exceed product
specification.

When an ATPG generates stimuli for a circuit, it assigns logic values to signal
names. However, it is not concerned with the order in which signal names are pro-
cessed. That is because, when it is time to apply those values to an actual IC or PCB
on a tester, a map file is created. Its purpose is to assign signal names to tester chan-
nels. The map file also accomplishes this for scan, the difference being that many
stimulus values are shifted into scan paths rather than applied broadside to the I/O
pins of the device-under-test (DUT). Whereas the stimuli at the I/O pins of an IC or
PCB must be assigned to the correct tester channel, the scan stimuli must not only
be assigned to the correct channel, but must also be assigned in the correct order.

This ordering of elements in the scan path is determined by the layout of transis-
tors on the die. That order is identified during placement and route so that vectors
generated by the ATPG can be applied in the correct order to the DUT. One job of
the place and route software is to minimize total die area. So the order of scan ele-
ments is determined by their proximity to one another. Some constraints may be
imposed by macrocells; for example, an n-wide scannable register may be obtained
from a library in the form of a hard-core cell (i.e., a cell that exists in a library in the
form of layout instructions), so its flip-flops will be grouped together in the same
scan string.

THE SCAN PATH 421

If debugging becomes necessary when trying to bring up first silicon, some
groupings, such as n-wide registers, may be easier to interpret when reading out scan
cell contents if the bits are grouped. In addition to scan-cell ordering, the tester must
know which physical I/O pins are used to implement the scan path: which pins serve
as the scan-in, which serve as the scan-out, and which pins are used for test control.

Another tester-related task that must be considered during scan design is the
application of vectors to the IC or PCB. The vectors are designed to be serially
scanned into the DUT, and some testers have special facilities dedicated to handling
serial scan and making efficient use of tester resources. One or more channels in the
tester have much deeper memory behind the scan channels. While data on the paral-
lel I/O pins are held fixed, scan data are clocked into the scan paths. Additional hard-
ware may be available on the tester permitting control of the process of loading and
unloading serial data in order to facilitate debugging of the DUT or of the test.

When testing scan-based designs with a tester that has no special provisions for
scan path, it is necessary to perform a parallelize operation. When parallelizing a
vector stream, each flip-flop in a scan path requires that a complete vector be
clocked-in.

Example Assume that a device has nine input signals, four output signals, and ten
scan-flops and that the input stimuli are 011001011. The output response is HLLH,
the scan-in values are 1011111010 and the scan response is HHHHLHLLHL. Then
the tester program for loading this vector might be as follows:

0 H 011001011 HLLH
1 H 011001011 HLLH
1 H 011001011 HLLH
0 H 011001011 HLLH
0 L 011001011 HLLH
0 H 011001011 HLLH
1 L 011001011 HLLH
0 L 011001011 HLLH
1 H 011001011 HLLH
1 L 011001011 HLLH ��

In this tester program the stimuli applied to the I/O pins are repeated ten times.
This represents a significant cost because there must be a large amount of memory
behind every pin. This result is also somewhat less intuitive, in the event that it
becomes necessary to debug test results, either when trying to get first silicon to
work or when trying to improve yield.

One reason why parallelization is used is because companies often have large
investments in expensive testers, and it is simply not practical to replace them. It
becomes important to use them and amortize their cost over several products. One
way to reduce the cost of test while using older testers is to implement multiple scan
paths in the design. In the example above, if two scan chains were used and if each

422 DESIGN-FOR-TESTABILITY

of the scan chains were five bits in length, then the total number of vectors is
reduced by half.

If there were a large number of scan vectors and if there were also a large number
of scan bits, there may not be enough memory behind the tester channels to permit
a complete test to be applied to the DUT. This argues for using multiple scan paths.
Another argument for using multiple scan paths is the fact that the application of
scan vectors is often done at a speed much slower than the intended operating speed
of the DUT. When serially shifting in a large number of scan bits during test, a lot
of switching takes place not only in the scan elements, but also in the combinational
logic driven by these scan-flops. There is a potential for heat buildup, a potential
that increases as the scan clock speed increases, introducing an unnecessary risk to
the DUT.

Since added time on the tester represents added manufacturing cost for the DUT,
it is desirable to apply the test as quickly as possible. With multiple scan paths, it is
possible to reduce time on the tester. It has been pointed out that these consider-
ations can also shorten the design cycle for designs being fabricated at a foundry.19

The less critical the tester requirements for a design, the more flexibility the foundry
has when scheduling the product on its test floor, since there may be more testers
available that are capable of handling the assignment.

Multiple scan paths are usually implemented by sharing functional signals with
scan signals at the I/O pins. At the output pins the test mode pin controls the multi-
plexing operation. The assignment of scan-flops to the multiple chains is often influ-
enced by factors in addition to scan length reduction and the proximity of scan-flops
to one another. Sometimes it becomes necessary to implement scan in designs that
use multiple clocks, or where some flip-flops are clocked by positive clock edges
and others are clocked by negative clock edges.

Consider a design with two clocks as shown in Figure 8.25. Assume for the sake
of simplicity that all of the flip-flops are active on the positive edge. This circuit has
three combinational blocks of logic, C1, C2 and C3, and each of the two clock
domains, CK1 and CK2, has two flip-flops. A feedback line exists from C3 to C1.

Figure 8.25 Circuit with two clocks.

F1

C
1

D Q

F2

D Q

F3

D Q

F4

D Q

CK1

CK2

I1

I2

I3

O3

O2

O1

C
3

C
2

THE SCAN PATH 423

The feedback line may be doing something as simple as updating a status bit in a
register, or it may be doing something that has a pervasive effect on all or most of
combinational block C1. The important thing to note is that, because of the manner
in which CK1 and CK2 are staggered, scan results become unpredictable. Consider
the clocking scheme illustrated in Figure 8.26. Loading of the scan chains alternates,
first scan chain 1 is clocked, then scan chain 2 is clocked. During this time the two
chains are independent of one another, that is, the loading of one chain has no effect
on the contents of the other.

When scan_enable goes low for a functional cycle, CK1 is pulsed first, followed
by CK2. The ATPG specified data values in flip-flops F1 and F2 is based on the
assumption that all of the flip-flops would be clocked simultaneously. But when
CK1 was functionally clocked, those values changed. Hence, the faults that were
targeted by the ATPG may or may not actually be detected when CK2 is pulsed.
Many different complications can occur when multiple clock domains exist,
depending on the feedback lines. For that reason it is recommended that fault sim-
ulation be performed to verify the fault coverage when there are multiple clock
domains.

Another problem that often has to be dealt with is the presence of both positive and
negative edge clocking. If both positive and negative edge triggered flip-flops are to be
placed in the same scan chain, it is recommended that the negative edge triggered flip-
flops be placed at the beginning of the scan chain. Another possible solution, assuming
that the clock period is of sufficient duration, is to complement the clock. However, in
large circuits there is seldom, if ever, excess time in a clock period.

The lockup latch is another solution to the problem of mixed clocks. In fact, the
lockup latch can help to alleviate many problems, including clock skew. Skew is
an observed difference in time between two events that are supposed to occur
simultaneously. When a clock is driving many hundreds or thousands of flip-flops,
those flip-flops may possess minute variations in their behavior. A possible effect
is a difference in timing between the flip-flops in a scan chain. Because two flip-
flops that are logically adjacent may be physically distant from one another, the
skew may be sufficiently pronounced as to cause the wrong value to be loaded into
a flip-flop.

Figure 8.26 Clocking sequence.

SI1 SI2 SI1 SI2X

SI3 SI4 SI3 SI4X

scan_enable

CK1

scan_in1

CK2

scan_in2

424 DESIGN-FOR-TESTABILITY

Figure 8.27 Clock skew.

Consider the circuit in Figure 8.27. There is a delay element inserted in the
scan connection between the Q output of F1 and the D input of F2. There is
another delay in the wire driving the CLK input to F2. These delays represent
resistance in the wire runs, as well as capacitance between the wire runs and other
circuit elements. Denote by Tp the total elapsed time from when F1 recognizes an
active clock edge to when the signal at the D input of F1 propagates through F1
and through the wire connecting F1 to F2. Then Tp must exceed Th + Tskew, where
Th is the hold time of F2 and Tskew is represented by the delay in the clock line. If
the clock skew is excessive, the new value loaded into F1 makes its way to the D
input of F2 before the clock edge appears and causes the new data in F1 to be
loaded into F2.

Now consider the circuit depicted in Figure 8.28. A lockup latch L2 is interposed
between F1 and F3. When CLK is low L2 is enabled, or transparent. When CLK goes
high the enable EN of L2 goes low, so the data at the output of F1 is held for an extra
half period. This effectively adds a half clock of hold time to the output of F1. This
solution can be used to solve clock skew, as well as to connect scan elements that are
in different clock domains. It is also recommended for scan chains that contain both
positive and negative edge clocks.

Even when a solution exists, such as the lockup latch, it is still advisable to group
flip-flops according to their clocking domain and edge. For example, a lockup latch
makes it possible to connect both positive and negative edge-triggered flip-flops in
the same scan chain, but, unless there is excessive clock skew, the chain should only
need a single lockup latch if all the negative edge flip-flops appear at the beginning
of the chain and all of the positive edge flip-flops appear after the negative edge flip-
flops. And, of course, when multiple scan chains are used, it is advisable to make all

Figure 8.28 The lockup latch.

F2

D Q

F1

D Q

CLK

Scan-in

F1

D Q
F3

D QD Q

EN
L2

CLK

Scan-in

Lockup
latch

THE SCAN PATH 425

of the scan chains of equal or near equal length. When different size chains occur in
a design, then the stimuli must be lined up such that all of the chains are loaded
correctly.

Because testers tend to be quite expensive, it is desirable to apply test programs
in the shortest possible time, in order to maximize throughput on the tester. One way
to accomplish this is to reduce, as much as possible, the number of vectors applied
to the circuit. However, vectors cannot simply be discarded without impairing the
quality of the test. In Section 7.9.6, static and dynamic test pattern compaction were
discussed at length. Compaction is especially attractive for scan test programs
where pairs of vectors have to be considered, in contrast to sequential test programs
where two or more sequences of n vectors, for arbitrary n, have to be merged with-
out conflict.

Another strategy for reducing test vector count in scan circuits is test set reorder-
ing. In this scheme the set of vectors is fault-simulated and then reordered so that
those yielding highest-fault coverage occur first and those with the smallest number
of detections occur at the end. Then the reordered set of vectors is fault simulated.
Often the small number of faults detected by the vectors occurring at the end are
detected by other vectors occurring earlier in the sequence. Those vectors that don’t
add to the fault detection can be discarded. This procedure may produce useful
results in two or more iterations, and the resulting savings in test time may be espe-
cially useful for high-volume commodity ICs. If the total number of vectors exceeds
the number that the tester can handle, this scheme can help to determine which vec-
tors to keep and which to omit from the test program.

Another potential savings in test time may flow from the use of scan chains of
unequal length. Conventional wisdom would argue for an assignment of flip-flops
so that all scan chains are of equal or near-equal length. However, it has been dem-
onstrated that scan chains of unequal length can sometimes be more effective,
resulting in up to a 40% reduction in test time.22 This is based on the observation
that some flip-flops are much more active than others, both functionally and when
testing a circuit. It may be the case that a block of logic—for example, an ALU or
some other deep data path circuit—requires a large number of vectors, but the num-
ber of scan-flops used to test the block is quite small. On the other hand, there may
be a large number of scan-flops involved in control logic. The control logic may be
quite shallow, perhaps containing only two or three levels of logic from input to
output scan-flops.

One way to determine assignment of scan-flops to scan chains is by ordering the
scan-flops according to the number of times that each scan-flop is assigned a known
(0 or 1) value. If a small number of scan-flops are assigned almost always, whereas
the remainder are assigned values infrequently, then the scan chains can be parti-
tioned based on the frequency of the assignments.

Example Assume that a circuit contains 500 scan-flops, a total of 600 scan vec-
tors are created by the ATPG, and that a maximum of two scan chains are permitted
for the design. Assume also that a subset of 50 scan-flops are assigned values for at
most 500 of the 600 scan vectors and that the remaining 450 scan-flops are assigned

426 DESIGN-FOR-TESTABILITY

values for at most 200 of the 600 scan vectors. If the scan-flops are divided arbi-
trarily into two chains of 250 scan-flops each, and 600 vectors are applied to each,
then 600 × 251 = 150,600 scan plus functional clocks are required to fully test the
circuit.

Now consider the situation where the scan chains are partitioned so that one scan
chain contains 50 scan-flops, and the other contains 450 scan-flops. The larger chain
requires 450 × 201 = 90,450 clocks. The smaller scan chain requires 50 × 301 = 15,050
clocks (200 vectors are scanned in concurrently with the larger chain). The total number
of clocks is 105,500, a significant reduction from the case where both chains are of
equal size. ��

8.5 THE PARTIAL SCAN PATH

The use of full-scan provides total controllability and observability. Unfortunately, it
is not always feasible to employ a full-scan test methodology. Some designs are con-
strained by area and/or performance requirements, and some circuitry is not testable
by scan. Memory blocks, including cache memory, scratchpad memory, fifos, and
register banks, which in earlier days were contained in stand-alone chips, now share
a common die with logic. These memories are normally excluded from the scan
chain and tested using memory BIST, as pointed out in Section 8.4.5. Analog cir-
cuitry represents another problem for scan. Memory and analog circuits must be iso-
lated from the digital logic, circuit partitioning becomes critical, and testing
strategies for memories and random logic must now coexist.

Sometimes full-scan is not an option because there is not enough room on the die
and the inclusion of additional logic necessitates migrating to a larger die size. This
could be the case in instances, such as gate arrays, where the die are available in dis-
crete increments. Multiple clock domains present another problem to full scan, as
was seen in the previous section. If a very small percentage of the storage elements
exist in a separate clock domain, it might be practical to completely omit them from
scan.

When full-scan is not an option, partial scan can be used to test the circuit. In this
mode some, but not all, of the flip-flops are stitched into a scan path. The partial scan
chain can include flip-flops from just a few of the more troublesome circuits, such as
status registers, counters, and state machines, to use of scan for everything except a
few timing-critical signal paths. Testability analysis tools such as SCOAP can help
to determine where partial scan would be most effective. Another way to select scan-
flops is to let the ATPG select those flip-flops that it is not able to control or observe.
Additional methods, discussed in the following paragraphs, select scan-flops based
on other criteria in order to improve fault coverage or to reduce die area dedicated to
scan or test time.

A drawback to partial-scan, depending on how it is implemented, is that it
negates one of the major benefits of scan. If a complete scan-path exists, ATPG is
tremendously simplified, there is no need for an ATPG with sequential test pattern
generation capability. A partial scan path that excludes some sequential elements but

THE PARTIAL SCAN PATH 427

leaves others in the circuit may require an ATPG with sequential circuit processing
capability.

The benefits of partial scan depend to some extent on how well the ATPG is
implemented. If the ATPG can handle latches, combinational loops, and feed-for-
ward or loop-free sequential logic (cf. Section 5.4), it has been shown that it is pos-
sible to achieve acceptable fault coverage in the neighborhood of 95% on large
circuits with about half of the flip-flops included in scan chains.23

When partial scan is being considered, the important question that must be
answered is, Which flip-flops should be scanned? The answer to that question, in
turn, will depend on the answers to the following questions:

How much increase in die size can be tolerated?

Can performance degradation be tolerated?

What is the fault coverage objective?

What are the capabilities of the ATPG?

How many test vectors can the tester handle?

The attraction of full scan lies in the fact that high-fault coverage for struc-
tural defects is relatively easy to obtain, test programs can be generated in a pre-
dictable amount of time, and there is some control over the size of the test
program. Objections to scan have always been based on the fact that it adversely
affects die size and performance. Partial scan makes it possible to mitigate some
of these concerns, such as the adverse impact on die size, and by proper selection
of flip-flops to be included in the scan chain it is often possible to avoid, or at
least minimize, performance degradation. This stems from the fact that critical
flip-flops—that is, those with critical timing—can be identified and excluded
from the scan path. This consideration helps to partially answer the question
raised above, at least in the sense of identifying flip-flops that should not be
scanned. A number of strategies have been devised over the years to help com-
plete the selection process.

When the decision is made to employ partial scan, it must be decided whether it
is actually going to be partial scan—that is, one in which just a few flip-flops are
scanned—or whether it is going to be almost-full scan. Sometimes an ATPG fails to
create an effective test for a sequential circuit due to the presence of a small amount
of circuitry that is difficult to control, such as large counters or complex state
machines. In these cases, it may be possible to put the troublesome flip-flops on a
separate clock, or on a separate branch of a clock tree, so they can be loaded while
the remainder of the circuitry is held fixed in its current state. In Figure 8.29 the val-
ues in the flip-flops on the right side of the circuit are held fixed if test control TC is
set to 0, while the partial scan flip-flops on the left side are loaded by means of the
scan-in input. In normal functional mode TC = 1, so all flip-flops are clocked by
CLK and the scan-flops receive their data from the combinational logic by means of
the multiplexers at their inputs.

428 DESIGN-FOR-TESTABILITY

Figure 8.29 Partial scan clocking.

The ATPG treats the scan-flops as primary inputs and primary outputs, just as in
full scan. However, the goal is to try to avoid using them too often. The scan-flops
may be members of a state machine that is difficult to control, but, once loaded,
other sequential circuitry may be only mildly sequential, permitting the ATPG to
achieve acceptable fault coverage. It may be the case that the state machine is not
difficult to control, but perhaps some status signals that control its transitions are
themselves too difficult to control, in which case the partial scan can be used to
select values for the status signals.

The almost-full-scan approach, in contrast to the partial scan, is often imple-
mented by starting with full scan, and then removing flip-flops based on perfor-
mance or area criteria. For example, there may be a small number of flip-flops that
are in critical timing paths, such that it is impossible for a device to meet its perfor-
mance goals if they are scanned. These performance goals may be mandatory, as in
the case of a device that absolutely must perform correctly at a designated frequency
in order to satisfy an industry standard, without which it would have no value in the
marketplace. The solution is to identify and remove from the scan chain those flip-
flops that are in the critical paths. In this mode a high percentage, often 80–90% or
more of the flip-flops, are scanned.

During test generation the flip-flops that are not in the scan path are clocked
exactly like the flip-flops that are serially connected into scan chains. However, their
D-inputs are driven not by scan-flops but, rather, by functional logic. As a result,
these inputs are being constantly stimulated by random functional data that origi-
nates at the scan-flops and passes through combinational logic. This is sometimes
referred to as “destructive partial scan” because in the process of scanning new data
into the scan chain, data in those flip-flops that are not part of the scan chain is
destroyed.

The wildly fluctuating input to these flip-flops causes their values to be unpre-
dictable, so they are treated as X-generators; that is, they generate an X state. In
other respects the implementation may resemble full scan. Fault coverage is reduced
to the extent that logic driving only these flip-flops is unobservable, as depicted in
Figure 8.30. In addition, flip-flops that generate Xs cause other faults to be, at best,
only potentially detectable. For example, the top input to gate D requires a 0 to test

D Q

Combinational logic

scan-in

CLK
TC

D Q D Q D Q D Q

THE PARTIAL SCAN PATH 429

Figure 8.30 Undetectable faults.

for a SA1, but it is not possible to apply a 1 to that input. Note that this analysis can
quickly identify the pervasive effects of state machines and other control logic that
drive a great deal of other logic.

Using simple network analysis tools it is possible to measure, for each flip-
flop, the number of faults that lie in the unobservable region, and it is possible to
count the number of faults that can only be possible detects. These numbers can
be generated for each flip-flop in the circuit and used as a basis for deciding
which flip-flops will be excluded from the scan chain. If, for example, 10% of
the flip-flops are to be excluded from scan, then the undetectable faults in their
unobservable regions, and those in the fanout from these flip-flops, can be
summed to give an approximate count of the total number of undetectable faults
in the circuit (note that unobservable regions may overlap). This gives an approx-
imate upper limit on achievable fault coverage. This upper limit can be used to
decide whether the approach is acceptable, or whether some other solution must
be pursued.

If an upper limit on fault coverage reveals that the method cannot achieve an
acceptable fault coverage goal, then one possible alternative is to employ an ATPG
with some sequential capability. In this mode the ATPG can exercise the func-
tional clock an arbitrary number of times between scan shifts, with the result that
some nonscannable flip-flops may eventually assume known values and it
becomes possible for otherwise undetectable faults to become detected. This dif-
fers from the partial scan scenario just described in that the unscanned flip-flops
start a sequence with unknown values, but can be driven to a known value during a
sequence.

Yet another alternative is to employ design verification vectors to the extent that
they are useful. These may cause 60–70% of the faults to be detected with a small
functional test. The functional test program can be truncated when it reaches dimin-
ishing returns. At that point the method just outlined can be employed, but the flip-
flops can now be ranked according to how they affect observability and controllabil-
ity of the undetected faults. The result may be quite different from the result
obtained using the complete fault list, and it may be possible to remove a signifi-
cantly greater number of flip-flops from the scan chain while achieving acceptable

D Q 1/x
x

0
1

0/x

x

0
1

0

Unobservable
region 1/x/0

B

C

DA

430 DESIGN-FOR-TESTABILITY

fault coverage. This approach has an additional advantage, as pointed out in
Section 7.2, of detecting faults during a dynamic functional test that a static, fault-
oriented scan test may miss.

A scan approach called Scan/Set was described in 1977.24 This method provided
parallel/serial flip-flops that could be loaded and read out via a scan path, but the
registers were separate from the functional logic. They therefore had somewhat less
impact on the performance of the functional logic. The Set feature, which loaded
operational flip-flops from the Scan/Set flip-flops, was used only for flip-flops
judged to be difficult to control. Multiplexers routed signals to the output pins, and
several internal points could be selected for observation by the multiplexers. Ad hoc
design rules existed as part of the system. These rules both prohibited certain design
practices and helped to select nodes to be scanned or set.

An early paper describing partial scan removed scan-flops from the circuit model,
then analyzed the remaining circuit for complexity.25 One of the rules for the system
prohibited the remaining, non-scan circuit from having a sequential depth exceeding
three, meaning that it must be possible to drive any flip-flop to a given value in no
more than three time frames. A single clock controlled both the scan and non-scan
flip-flops. Fault simulation of the complete circuit, including every scan clock, was
performed. This had the advantage that it was possible to predict the values in all of
the flip-flops, regardless of whether or not they were in the scan chain. However,
even for the relatively small circuits of that era, this led to long simulation times.

The frequency approach was another method for choosing scan-flops.26 Design
verification vectors were first used to exercise the circuit functionally and eliminate
from further consideration the faults that were detected by these vectors. During this
phase of the operation, the functional test would be truncated at a point of diminish-
ing returns—that is, at that point where many functional vectors were required to set
up the circuit in order to detect very few additional faults.

PODEM was used during the frequency approach to target undetected faults. It
generated all possible tests for targeted faults. From these tests the one requiring the
smallest number of scan-flop assignments was chosen. A record was kept of the flip-
flops required by each test. Then the goal was to select, for a given number of flip-
flops, a set of tests that covered the largest number of faults. If coverage was insuffi-
cient, additional flip-flops could be added to the partial scan chain. This would allow
additional tests to be included, thus improving fault coverage. An alternative
approach could also be considered. If a scan chain requires too much die area, or
causes the test length to exceed some threshold, this approach could be used to elim-
inate the least productive flip-flop(s) from the scan chain.

In Section 8.4.6 it was noted that, for full-scan implementations, scan-flops could
be grouped into those of high usage and those of low usage. By grouping scan-flops
and constructing scan chains accordingly, it was possible to achieve a significant
reduction in the number of clocks required to apply a test. A somewhat similar
approach was used to group flip-flops for a partial scan solution.27 This approach
assumes the existence of a partial scan chain and the use of an ATPG to create
sequences, or blocks, of vectors to test a target fault. Two observations are made
regarding these blocks:

THE PARTIAL SCAN PATH 431

Figure 8.31 Scan control for vector reduction.

1. There is a broad distribution in the frequency of usage of scan locations in a
partial scan circuit.

2. The vast majority of fault detections occur on the last vector of each block.

The scan-flops are divided into two groups, the high-frequency (HF) set, and the low-
frequency (LF) set. Whether a scan-flop falls into the HF or LF set depends on its fre-
quency of usage during test pattern generation. Scanning out the HF or both HF and
LF is accomplished by means of the circuit in Figure 8.31. When SC is set to 1, both
the LF and the HF groups are selected by the multiplexer. When SC is set to 0, only
the HF group is passed to the scanout pin SO.

During test pattern generation a fault is selected as the target, and a block of vec-
tors is generated to test this fault. On the first vector of this block, the entire partial
scan chain is scanned out in order to detect the targeted fault from the previous
block. For the remaining vectors in the block, if a scan-flop in the LF group changes,
set SC to 1. If a scan-flop in the HF group changes, but no scan-flop in the LF group
changes, set SC to 0. If no scan-flop in either group changes, do not scan, just apply
the primary inputs. It has been reported that this approach has resulted in reductions
of 60–70% in the length of test programs. This reduction in test cost must, of course,
be weighed against the added cost due to an increase in die size.

In Section 5.4 we discussed the complexity of test pattern generation. It was
pointed out that a cycle-free sequential circuit—that is, one in which there are no
feedback paths—was not much more difficult to test than a combinational circuit.
Occasionally, while backtracking, the ATPG would have to remember that some
flip-flops required different logic values in different time frames. This observation
about acyclic, or feed-forward, sequential circuits suggests that perhaps, for partial
scan, the best flip-flops to select for scan are those that can break up cycles and
reduce the circuit to a feed-forward sequential circuit.

Consider the S-graph in Figure 8.32, where the nodes represent flip-flops and the
arc represents connections between flip-flops. The vertices F1 through F4 represent
flip-flops, and the arcs represent combinational logic connecting the flip-flops. This
could conceivably represent a one-hot encoded state machine with four flip-flops. If
any one of the flip-flops F1 through F4 is scanned, then for test purposes this subcir-
cuit is acyclic. As mentioned above, the requirements on the ATPG that processes

D Q D Q D Q D Q D Qscan-in

TC
SC

0

1

HF Group LF Group

SO

• • •

432 DESIGN-FOR-TESTABILITY

Figure 8.32 S-graph of circuit with four flip-flops.

acyclic circuits are greatly simplified. It is estimated that, in general, about 25% of
the flip-flops must be scanned in order to reduce a circuit to acyclic form.28

Without additional knowledge about the circuit, the choice of which of the flip-
flops F1 through F4 should be chosen for inclusion in the partial scan path is arbi-
trary. However, it often happens that some choices may be excluded because the
flip-flop lies in a critical path, and a scan-flop causes propagation time to exceed the
clock period. Another factor that may be considered is the effect the scan-flop has on
circuit layout.29 Some routing channels may be too congested to accommodate the
scan overhead.

Test length is yet another variable that can be taken into account when choosing
flip-flops for partial scan. It is possible to create a circuit that is feed-forward, or
acyclic, but the sequential depth is excessive.30 As a result, after loading the partial-
scan chains, a large number of functional clocks may be needed to propagate the test
sequence forward to an output. Careful analysis may reveal that converting just a
few additional flip-flops to scan-flops will significantly reduce the test length, so that
overall product cost (i.e., cost of die plus cost of test), is reduced. It has been sug-
gested that an upper limit on the number of scan-flops be established. Then, if the
number of scan-flops required to break all cycles is less than the number permitted,
SCOAP or a similar such testability analysis tool can be used to select additional
flip-flops for inclusion in the scan chain.31

It may be possible to reduce test sequence length by establishing design rules.32

While this may not be an acceptable general solution, there may be instances where
choices exist for implementing macrocells in a library, and sequential test depth may
be one of the parameters used to determine which choice is adopted.

8.6 SCAN SOLUTIONS FOR PCBs

The in-circuit tester (cf. Chapter 6), was an effective means for identifying prob-
lems on printed circuit boards when dual in-line packages (DIPs) were the pre-
vailing packaging technology. However, the industry began gradually to move
away from DIPs during the 1980s, and newer packaging technologies have made
it much more difficult to access I/O pins with the in-circuit tester. Recognizing
this, electronics companies began looking for alternative methods to detect faults
on PCBs. The following defect distribution for PCBs was compiled by Hewlett-
Packard:33

F1 F3

F4

F2

SCAN SOLUTIONS FOR PCBs 433

37% — Opens

22% — Missing or wrong chip

19% — Faulty analog device

14% — Dead ICs

 7% — Shorts

 1% — Fixture

In this list, opens are the most frequently occurring type of defect. Other studies
come up with different numbers, but the profile generally follows the same trend.
Opens can be troublesome on PCBs employing ball grid array (BGA) technology. A
solder re-flow technology is used in which solder balls are placed on the bottom of
the IC. The IC is positioned on the PCB and reheated. The solder balls then melt and
make contact with metal pads on the PCB. Failure to make contact with the PCB can
result in opens. Opens can also occur if wave soldering is employed after the BGA
chip(s) are attached to the PCB. There is a tendency to suspect opens in the BGA
when the PCB fails to work properly. However, it has been reported that 75% of all
suspected solder joint failures associated with BGAs have turned out not to be the
problem.34 Removing BGAs that are fault-free results in many PCBs being need-
lessly damaged.

The NAND tree is an effective DFT methodology for detecting opens caused by
bad solder joints at IC pins. However, it is not effective at detecting the other prob-
lems in the above list. A more general solution for detecting a wider array of
defects was initially proposed by a European group, known as the JTAG (Joint Test
Action Group). They were eventually joined by companies in the United States.
Working with the IEEE, they developed the IEEE 1149.1 boundary scan standard.
In this section we first look, briefly, at the NAND tree and then look in detail at
boundary scan.

8.6.1 The NAND Tree

The NAND tree, shown in Figure 8.33, is used to provide a test for continuity
between I/O pins and the pads on a die. A NAND gate is placed between each I/O
pin and its corresponding pad. Output pins are modified through the use of a tri-
state driver so that they can be isolated from the pad during the test. The signal
called NTST_, which controls the NAND tree test, is inactive when high. When it is
set low, it isolates the output pad from the pin and also disables the output mode of
the bidirectional pin. All of the pins that are included in the NAND tree are initially
set low. The NAND tree output then expects the initial output response to be low
(logic 0).

The input assigned the number (1) is set high on the next clock cycle. The NAND
gate that it is driving goes low and, as a result, the NAND that it is driving goes high.
On the next clock cycle the input to the cell labeled (2) is set high. Its corresponding
NAND goes low, causing the NAND in cell (1) to go high, and that causes the NAND

434 DESIGN-FOR-TESTABILITY

Figure 8.33 The NAND tree.

tree output to go low. This continues until all of the cell inputs have been set high,
causing the output to alternate between 1 and 0. If there is an open between any of
the input pins and its corresponding pad on the die, the output waveform goes flat,
either a constant 1 or a constant 0.The number of pulses that appear at the NAND
tree output can reveal which input is defective.

8.6.2 The 1149.1 Boundary Scan

The IEEE 1149.1 standard35 goes beyond the NAND tree. Like the NAND tree, it
can detect opens at the I/O pins, but it can also identify shorts between I/O pins, as
well as opens and shorts on the PCB. It can identify bad ICs or the wrong IC in a
particular socket on the PCB. The boundary scan registers can be connected to an
internal scan path or BIST circuit, while isolating the IC from the board, making it
possible to test the internal circuits of the IC while it is mounted on the PCB. A com-
plete IC test may not be practical via the 1149.1 standard, but a few patterns from a
scan test can usually get high coverage (cf. Section 7.7.1). By being able to identify
defective ICs on the PCB, an internal test can often make it economically feasible to
salvage PCBs that fail board test.

It must be pointed out that 1149.1 can be applied hierarchically, to any level of
integration. The discussion that follows is based on ICs mounted on PCBs, but
could have been centered, without loss of generality, on a complex system made
up of multiple PCBs. The value of this observation stems from the fact that, with
boundary scan, it is possible to standardize test throughout an entire hierarchy,
from chip to board to system test. It should also be pointed out that boundary
scan, while a next-generation replacement for in-circuit testers, does have its own
shortcomings. Test data are serialized, causing longer test times. Because of this,
there are potential problems with keeping dynamic logic alive, as well as potential

O
E

N
T

ST
_

Bidir
cell

Bidir Output Input

N
T

ST
_

Output
cell

Input
cell

NAND tree

Output Input

Output
cell

Input
cell

NTST_

(1)(2)(3) (n)

SCAN SOLUTIONS FOR PCBs 435

problems with overdrive limits. Also, power must be applied when testing devices.
The in-circuit tester can detect many defects, such as shorts, without applying
power, thus reducing the likelihood of damaging the PCB. On the other hand, an
in-circuit tester can destroy the very device it is attempting to test when it over-
drives the IC.

The 1149.1 standard consists of a test access port (TAP), a set of registers, and a
state machine. The TAP is a set of dedicated I/O pins used to access test mechanisms
on the IC or PCB. The set of registers includes the following: a boundary scan regis-
ter that implements a scan path around the periphery of the chip, an identification
register that contains a unique code identifying the chip, an instruction register, and
a bypass register. The state machine controls the operation of the various registers. It
selects registers and causes them to be shifted or updated.

Figure 8.34 shows four ICs mounted on a PCB. Various interconnections run
between the I/O pads of the ICs. The bold lines identify the boundary scan register
(BSR). The BSR begins at the PCB input labeled TDI (test data input). It winds its
way through the I/O pads of each IC, eventually reaching the PCB output labeled
TDO (test data output). While the figure shows all of the ICs connected into the
boundary scan ring, it is not unusual to have a PCB in which some, but not all, of
the ICs are boundary scannable. The 1149.1 standard takes that into account and
was designed to accommodate such situations.

Figure 8.34 PCB with IEEE1149.1 boundary scan.

TDI

TDO

T

A

P

TMS

TCK
TAP

TAP TAP

TAP

TMS

TCK

C
or

e
lo

gi
c

C
or

e
lo

gi
c

C
or

e
lo

gi
c

C
or

e
lo

gi
c

436 DESIGN-FOR-TESTABILITY

Two additional signals are shown in Figure 8.34, the test clock (TCK) and the test
mode select (TMS). These two signals, which are distributed to a TAP controller on
each individual IC, control the state machine found in each of the TAP controllers.
The state machines, in turn, generate signals that control the boundary scan register,
as well as the identification register and other registers. Before going into detail
about the action of the state machine, we first look at a typical boundary scan cell.

The boundary scan cell shown in Figure 8.35 is a typical implementation sug-
gested, but not mandated, by the IEEE1149.1 standard. This cell can be used at
either an input pin or an output pin. If it is connected to an input, then Din represents
a signal from outside the chip, and Dout represents the signal driving the internal
circuits of the chip. The Mode input controls the routing of data through the cell; if
Mode is 0, then data external to the chip pass straight through the multiplexer. This
is the normal, functional mode. When Mode is 1, the boundary scan register is per-
forming a test-related function, which may involve shifting or capturing data. Differ-
ent mode-control signals may be used for input and output pins of the component,
and the signals are derived from the instruction in the instruction register.

The ShiftDR, ClockDR, and UpdateDR signals are generated by the state
machine and control the behavior of the cell. There are counterparts to these signals
with the names ShiftIR, ClockIR, and UpdateIR. They are used when the cell is part
of the instruction register. The ShiftIn signal may be connected to the TDI signal or
to the ShiftOut signal of a neighboring boundary scan cell. The cell contains two
registers, CAP and UPD. CAP is used to capture signals from Din or from a previous
boundary scan cell, depending on the value of ShiftDR. The ClockDR signal from
the TAP controller clocks the value into CAP. After all the CAP registers have been
updated, either in parallel from Din or serially from ShiftIn, an UpdateDR signal
clocks the contents of the CAP registers into the UPD register where, if the Mode
signal is set to logic 1, the values can all be presented simultaneously to the Dout
signals. The 1149.1 standard includes other suggested implementations of the cell.
For example, if an I/O pad is to be used as an input only, then the UPD register and
the mux driving Dout can be eliminated. Such a cell will support signal capture only.

Figure 8.35 Boundary scan cell.

G1

0
1

G1

0
1

ShiftOut

Dout

Mode

Din

ShiftDR

UpdateDRClockDRShiftIn

Latch or
flip-flop

CAP UPD

SCAN SOLUTIONS FOR PCBs 437

Figure 8.36 is a block diagram showing the relationship between the various func-
tional parts that go into the making of a boundary scan device. The previously men-
tioned input signals are accompanied here by another signal, TRST*, a test reset
signal (the asterisk denotes active low). The TRST* signal is optional. When present,
it serves as an active low reset for the TAP controller. It must not be used to reset any
of the system logic in the circuit. There are four test data registers shown in the dia-
gram, but the design-specific test data registers could, in practice, represent any num-
ber of registers. The boundary-scan register and the bypass register are mandatory,
and they are shown in solid lines. The device identification register and the design-
specific test data registers are optional, and they are enclosed in broken-line boxes.

The signal at the TDI pin can go to the instruction register or to any of the four
test data registers. The TAP controller determines whether the instruction register or
a test data register receives the data. The first step in using IEEE1149.1 is to load the
instruction register. After it has been loaded, the instruction register controls the
mode signals in the boundary register cells, and in that way it determines which of
the test data registers receives data from the TDI input.

The identification register is used to verify that a PCB has been populated with
the correct IC. It can also be used to verify that the correct version of a chip has been
used; or, in those cases where a part is manufactured by two or more vendors, the
identification register can identify the vendor. It may be the case that several ver-
sions of a PROM exist. By scanning out the identification register, it can be deter-
mined if the PROM with the correct personality has been used on the PCB. The
identification register, when implemented, is 32 bits in length. The high-order 4 bits,
31 to 28, contain the version number. Bits 27 down to 12 contain the part number.
The next 11 bits contain the manufacturer identity, and bit 0 is always a logic 1.

Figure 8.36 Block diagram of a boundary-scan device.

Instruction decode

Boundary-scan register

Device identification register

Design-specific test data reg’s

Bypass register

G1

0
1

Mux

Instruction register

T
A

P
co

nt
ro

lle
rTMS

TCK

TRST*

Reset*
ClockDR
ShiftDR
UpdateDR

Reset*
ClockIR
ShiftIR
UpdateIR

TDI
TDO

Enable
TCK*

Select

Test data registers

G

438 DESIGN-FOR-TESTABILITY

Figure 8.37 State diagram of the TAP controller.

The design-specific test data registers may represent internal scan paths or other
DFT constructs, such as shadow registers, and so on. In this way, IEEE1149.1 facil-
itates testing of a device while it is mounted on a PCB. The purpose of the bypass
register is to make it possible to access a particular IC on the board while minimiz-
ing the number of clock pulses required to pass through other ICs. Consider again
Figure 8.35. When the user targets a particular IC for testing, all of the other ICs can
be put into bypass mode. Since the bypass register is a single flip-flop, only one
clock pulse is needed to pass data through it. Thus the target IC can be accessed with
significantly fewer clock cycles.

The state machine transitions are illustrated in Figure 8.37. At power-up, or at the
presence of a logic low signal on TRST*, the state machine enters the Test-Logic-
Reset state. The state machine remains in this state as long as TMS is at logic 1. The
Instruction Register is also reset at power-up or at the occurrence of a logic low sig-
nal on TRST*. As a result, the 1149.1 circuitry is made to appear transparent and the
circuit in put into its normal, functional state. Note also that the asterisk (*) is used
in the 1149.1 standard to denote an active low signal. So, the TCK* emanating from
the TAP Controller in Figure 8.37 clocks the flip-flop driving Dout on a falling edge
of TCK.

In order to employ boundary scan, the TAP controller must leave the Test-Logic-
Reset state. This requires a positive edge on TCK while TMS is set to logic 0. Then,
the state machine enters the Run-Test/Idle state. The TAP Controller remains in this

Test-Logic-
Reset

Run-Test/
Idle

Select
DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select
IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

0
1

0 0

00

0

0

1

0

1

1

0

0

1

0

1

1

1

00

1 1

1 1

1

1 01 0

0

SCAN SOLUTIONS FOR PCBs 439

state as long as TMS is low. The circuit may simply remain idle, or the functional
logic may exercise a built-in-self-test. When TMS goes to logic 1, and a positive edge
is applied to TCK, the state machine transitions to the Select DR-Scan state. This is a
temporary state from which the state machine transitions to either the Capture-DR
state or the Select IR-Scan state, depending on whether the individual programming
the TAP controller wants to load a data register or an instruction register. The Select
IR-Scan is another temporary state from which the state machine either returns to the
Test-Logic-Reset state, or it goes down the alternate route through the state machine.

Note that the two paths through the TAP controller are identical, with the excep-
tion that actions in the left leg of the transition graph apply to the selected test data
register, while in the right leg the actions apply to the Instruction Register. As the
TAP controller transitions through the various states, the ClockDR, ShiftDR,
UpdateDR, ClockIR, ShiftIR, and UpdateIR signals are generated at appropriate
times in order to implement various instructions.

Notice also that in each leg of the state transition graph, the second state is either
Capture-DR or Capture-IR. From the capture state there is a transition to either a Shift
state or an Exit state. The Capture state is used to load, or capture, parallel data,
whereas the Shift state is used to serially shift data into the register labeled CAP. After
the registers have been loaded, either through a parallel capture or a serial shift pro-
cess, their contents can then be clocked into the update register (labeled UPD). This
can be seen in Figure 8.36 where the ShiftDR and ClockDR signals permit data to be
serially shifted from ShiftIn to ShiftOut. Alternatively, the ShiftDR and ClockDR can
be conditioned to capture the value present at Din and clock it into the CAP register.

The signals just mentioned, together with the Instruction Register, are used to
implement seven instructions. Three of them are mandatory; that is, they must be
supported in order to be in compliance with IEEE1149.1. The three mandatory
instructions are Extest, Bypass, and Sample/Preload. The optional instructions
include Intest, Runbist, Idcode, and Usercode.

The Extest instruction is used when testing circuitry external to the IEEE1149.1
compliant device. Extest has three functions:

The Bypass instruction makes use of a single shift register, called the Bypass
Register, which is placed between the TDI and TDO pins. Its purpose is to provide a
minimum-length serial path through an IEEE1149.1 compliant device to another
selected IEEE1149.1 compliant device during test or debug operations.

The Sample/Preload instruction provides two functions:

Stand-alone Tests connection from BSR to the circuit board.

Interconnect Tests connections from one boundary scan device to another.

Cluster Tests circuitry (non-scan devices or clusters) mounted
between one boundary scan device and another.

Sample Sample data during normal circuit operation.

Preload Load an initial data pattern at the latched parallel
outputs of the BSR cells.

440 DESIGN-FOR-TESTABILITY

Figure 8.38 Device identification register cell design.

The Intest instruction supports static (slow speed) testing of the internal logic of a
device. Test data are loaded onto the latched parallel outputs of the BSR cells using
the Preload function. During this test, the device is isolated from the PCB input pins.

Runbist causes a device to run a self-test. The TAP controller is in the RUN-
TEST/IDLE state during this test. At the conclusion of self-test the results are
shifted out through TDO. During self-test the device is effectively isolated from the
board because the device input and output pins are inactive.

The Idcode instruction provides access to the identification register in order to
determine the identity of a component. A suggested implementation of the Identifi-
cation register, from the 1149.1 standard, is shown in Figure 8.38. The ShiftDR sig-
nal is first set to 0 to load a hardwired ID code bit into the CAP flip-flop. Then,
ShiftDR switches to 1 to facilitate shifting out of the ID on successive pulses of
ClockDR. The Usercode allows a user-programmable identification code to be
loaded into or shifted out of a device for examination. It is essentially an extended
function of Idcode, for programmable devices. For this function to be valid, an iden-
tification register must be implemented for the IC.

Operation of the Preload instruction is illustrated in Figure 8.39. During this
instruction the boundary scan registers are loaded without interfering with the
existing state of the chip. This is particularly useful if the chip in Figure 8.39
drives two or more chips, and it is necessary to completely establish the state of
the I/O pins before enabling these values onto the outputs. For example, suppose
several memory chips drive a bus, but only one of them is permitted to be active
at any time. The Preload permits all of the CAP flip-flops to be loaded, and then
the UPD flip-flops are simultaneously loaded with the values in the CAP flip-
flops. In this way, one of the destination memory chips is selected, and the others
are deselected.

The bold lines indicate the path along which data flow during operation of the
Preload instruction. The ShiftDR signal, generated by the state machine in the TAP
controller, selects the Shift In data path. The ClockDR signal, also generated by the
state machine, clocks the data into the CAP flip-flop. The state machine remains in
the Shift-DR state for as many cycles as are needed to completely load the boundary
scan register. Then the state machine transitions through the Exit1-DR state, to the
Update-DR state. This causes the UPD flip-flop to be loaded. During this operation
the Mode input is at 0, so the Preload can be accomplished without interfering with
normal operation of the circuit.

G1

0
1

ID code bit

ShiftDR

ClockDR

From last cell CAP
To next cell

SCAN SOLUTIONS FOR PCBs 441

Figure 8.39 Data flow for Preload instruction.

Figure 8.40 illustrates the data flow for the Extest instruction. Recall that the pur-
pose of this instruction is to test interconnect circuitry between IEEE1149.1 compli-
ant chips, as well as clusters of noncompliant chips on the board. The first step in
the operation of Extest is to run the Preload instruction in order to load the boundary
scan register. The values in the CAP registers are loaded into the UPD register cells
upon entering the UpdateDR state of the state machine. Then, the Extest instruction
is loaded into the instruction register. The Mode signal changes to a 1, causing the
value in the UPD register to appear at Signal Out. In the Capture-DR state, data at
the input pins is loaded into the shift-register stage. Then, in the Shift-DR state,
results can be shifted out while new data are shifted into the shift-registers. The data
shifted out can be inspected to determine if they are correct while the Update-DR
state is again entered in order to present new data at the output pins. The process is
repeated for as many tests as are needed to completely check the interconnect logic
between the chips.

The Sample instruction is used to capture data at the input pins. This is illus-
trated in Figure 8.41. The Mode input is set to 0, so data at the input pins flow
straight through to the internal logic. Data at the output of the internal logic flow
through the cell to the output pin. At the same time the data are being captured into
the shift-register flip-flops. During debug, these data can be shifted out while the
system clock is held inactive. After inspecting the data, the system clock can be sin-
gle-stepped, and the data can again be captured, shifted out, and inspected.

The discussion presented here is strictly an overview of the material on
IEEE1149.1 boundary scan and is intended as a first understanding of its operation.
The reader who is required to implement 1149.1 on a working chip should refer to the
IEEE standard for much more detailed information of its implementation and opera-
tion, including suggested implementations of several more cells, suggested imple-
mentations consistent with the LSSD methodology, and data flow descriptions of the

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop
Signal
out

Mode

Signal in

ShiftDR

UpdateDRClockDRShift in

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop

Shift out

Signal
out

Mode

Signal in

ShiftDR

UpdateDRClockDRShift in

On-chip
logic

442 DESIGN-FOR-TESTABILITY

Figure 8.40 Data flow for Extest instruction.

Figure 8.41 Data flow for Sample instruction.

optional instructions. We have not discussed BSDL (boundary scan description lan-
guage). BSDL is a VHDL subset that is limited to the boundary scan application.36

Its objective is to serve as an easy to use, machine parsable medium for describing
boundary scan implementations. This description can then be used by CAD tools
such as synthesis, testability analysis, and test pattern generation.

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop

Shift out

Signal
out

Mode

UpdateDRClockDRShift in

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop

Shift out

Signal
out

Mode

Signal in
ShiftDR

UpdateDRClockDRShift in

Copper
track

PCB

Signal in
ShiftDR

Output cell

Input cell

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop

Shift out

Signal
out

Mode

UpdateDRClockDRShift in

G1

0
1 CAP UPD

G1

0
1Latch or

flip-flop

Shift out

Signal
out

Mode

Signal in
ShiftDR

UpdateDRClockDRShift in

On-chip
logic

Signal in

ShiftDR

SUMMARY 443

8.7 SUMMARY

System architects, logic designers, and technologists continue to create ever
larger, more complex circuits on increasingly smaller die. The interactions
between functions on the chip grow even more rapidly. Sequential ATPG pro-
grams do not work on these circuits, and manually generated test pattern genera-
tion is not an option. But even if it were possible to solve the complexity issues
and create thorough functional tests for these huge chips without having to resort
to DFT, the time required to apply the test on the tester would almost always be
prohibitive. It was pointed out in Chapter 6 that tester time is expensive. Reducing
test cost involves reducing the amount of time required to apply the test. This can
be accomplished by (a) employing scan to get high-fault coverage and (b) break-
ing a scan chain into several smaller chains in order to clock in data and clock out
response more quickly.

Testability involves trade-offs. When production volume for an IC is expected to
be in the tens of millions of units, the cost of DFT must be examined more carefully
than when volume is expected to be low. With sales volume in the millions, the non-
recurring test development cost is amortized over all those parts and cost per unit is
likely to be quite low. It may in fact be considerably less than the cost of additional
die space, so expending more engineering time to create an efficient test program, or
one that uses less die area, can be justified. However, time-to-market concerns and
recurring costs, such as the cost of tester time, must still be factored into the equation.

The use of DFT among major vendors of microprocessors is virtually universal.
As millions of transistors get integrated onto an IC, DFT is crucial both to the devel-
opment of effective test programs and to the application of these programs to the IC
while the parts are on the tester. It is worth noting that early adaptors of DFT were,
for the most part, vertically integrated companies. IC manufacturers are often prone
to looking only at the cost of the IC. From that perspective the cost of additional cir-
cuitry for test purposes appears as a cost burden. Vertically integrated companies
more readily see the benefit of enhanced test results, because the downstream cost
of bad ICs is sometimes painfully evident when those results come back from the
division or department responsible for stuffing PCBs with those chips (recall the
rule-of-ten).

IEEE1149.1 is a DFT methodology that was slow in being adopted by IC ven-
dors. They are prone to looking at it in terms of real estate cost, without considering
its value to the system integrator. In fact, it is quite difficult for the IC vendor to jus-
tify the presence of boundary scan on a chip. It takes up real estate, becomes another
potential source of defects, and contributes no functionality or features that the mar-
keting department can advertise. The PCB board manufacturer, on the other hand, is
subject to the “rule-of-ten.” He may see an entire PCB discarded, with all of its pop-
ulated parts, because a fault could not be diagnosed. He has a better appreciation for
the value of boundary scan.

When the now legendary floating point design error appeared in an early version
of the Pentium chip, it was pointed out by some industry pundits that, for the first
time, the vast majority of end users were nontechnical. Whereas in the early days of

444 DESIGN-FOR-TESTABILITY

the IC revolution most users of high-tech products were likely to be technically
inclined, and somewhat forgiving of devices that failed to perform as advertised, the
industry has since come to a crossroads where the vast majority of users, being non-
technical and less appreciative of the difficulties inherent in designing and manufac-
turing state-of-the-art devices, simply want the devices to work. Even when the
vendor replaces malfunctioning devices, there is a public relations problem that may
have significant adverse effects on the company’s reputation (and its bottom line).

Another trade-off that must be assessed is the choice between mean time before
failure (MTBF) and mean time to repair (MTTR). The ideal situation is to have sys-
tems that never fail, but that may be an unreasonable expectation. It may be prefera-
ble to design a more modular system that perhaps invites a slightly shorter duration
MTBF but one for which it is easier to detect, diagnose, and correct problems
quickly, accurately, and economically in a mass production environment.

The problems of designing testable logic have their parallel in software develop-
ment, where it was recognized years earlier that complex systems, put together by
people with a diverse range of skills and styles, will result in chaos if maintainabil-
ity is ignored until after the product is designed and developed. In either case, soft-
ware or hardware design, it is becoming widely recognized and accepted that the
designer must ask, before pencil is put to paper on the first design document, “How
am I going to diagnose the problems when this thing fails?” For the software engi-
neer the answer is structured design. For the logic designer the answer is design-for-
testability. Since it is not practical to probe inside a chip after it has been fabricated,
testability features must be designed in at the start of a project. This requires that the
designer understand testability issues and be able to anticipate testability problems
in the design.

At the same time, the project manager must understand cost. It is claimed that, as
a rule of thumb,37 “a 20% increase in area increases chip cost by about 50%.” Never-
theless, it can be asserted that

Cost(Design + Test) ≤ Cost(Design) + Cost(Test)

This equation states that product cost is best minimized by viewing design and test
as one integral activity rather than disjoint, unrelated activities. When design and
test are treated as separate issues, relationships become obscured. Decisions are
made on the basis of their impact on the number of I/O pins, amount of board real
estate taken up, and number of nanoseconds impact on performance, without con-
sidering their impact on production costs such as test development, cost of test
application, mean time to repair, scrapped units, rework, retest, and loss of customer
good will.

PROBLEMS

8.1 Given a tri-state buffer (bufif1 in Verilog terms), how would you detect a SA1
on the enable input?

PROBLEMS 445

Figure 8.42 NAND version of XOR.

8.2 A circuit has a period of 10 ns. An XOR gate has a delay of 1.5 ns. Using the
parity tree of Figure 8.4, what is the maximum number of internal nodes that
can be observed in that period?

8.3 Derive the controllability/observability equations for a two-input NAND
gate.

8.4 Use the C/O equations for the NAND gate derived in the previous problem to
compute controllability/observability numbers for the EXOR circuit in
Figure 8.42.

8.5 Compute C/O numbers for the multiplexer circuit in Figure 8.43. Then, create
a truth table for the circuit and generate the sets P1 and P0 (cf. Section 4.3.1).
Intersect these and use the results to generate C/O equations for the
multiplexer as a primitive.

8.6 Given a four-input AND gate embedded in a circuit where the CC0 numbers
are (1,1,3,∞) and the CC1 numbers are (1, 1, 8, ∞) on its inputs, and the
combinational observability of its output is 52. Compute the controllability
and observability numbers at its output.

8.7 For the delay flip-flop discussed in Section 8.3.1, derive the observability
equations for the Data input.

8.8 Derive combinational controllability/observability equations for the circuit
described by the truth table given below. Use the equations to compute the
controllability/observability numbers.

Figure 8.43 XOR—another view.

1

2

3

446 DESIGN-FOR-TESTABILITY

8.9 Given: a set of two-input AND gates connected as a binary tree with output
F. For a tree of depth k in which the inputs are equidistant from the output
(same number of nodes between each input and the output), show that

CC1(F) = 2k+1 − 1

CC0(F) = k + 1

8.10 Use the SM8 state machine in Figure 8.44 for Problems 8.10(a) through
8.10(g). Assume the existence of a master reset that initially resets all DFFs to 0.

(a) Use a gate-level, sequential ATPG algorithm of your choice (e.g., EBT,
etc.) to find a test for the indicated fault on gate 15.

(b) Create a state transition table, and then write a Verilog description of the
circuit (you may find a simulator helpful for this exercise). Map the binary
values of {Q2, Q1, Q0} onto their decimal equivalents—that is, (0,0,0) → S0,
(0,0,1) → S1, and so on.

(c) Create an S-graph for the state machine. Can you break all cycles by
scanning fewer than three flip-flops?

(d) Explain how you might use the results of part (b) to create a guidance file
for this state machine (cf. Section 7.10.2).

(e) Convert the circuit by adding scan to the three flip-flops. Create a com-
plete scan test for the indicated fault. Show the sequence of inputs (i.e., the
test vectors) that are applied to this circuit in order to detect the fault, and
then show the sequence required to scan out and observe the results.

(f) Assume that this state machine is embedded in a circuit and that the
flip-flop labeled 17 is to be omitted from the scan path and treated as an
X-generator. Identify all the undetectable faults in the cone of 17, and
identify all faults that will be only potentially detectable as a result of the
X emanating from 17.

X1 X2 X3 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

PROBLEMS 447

Figure 8.44 The SM8 state machine.

(g) Again, with flip-flop 17 omitted from the scan path, generate a test for
the indicated fault using the partial scan path. Show the sequence of inputs
applied to the circuit to test for the fault, and show the sequence of outputs
required to observe the results.

8.11 A scan path contains 10 scan-flops. Inverters are inserted between the output
of each flip-flop in the scan path and the input of the next flip-flop. The Q
output of the third scan-flop is SA1. If the scan-flops are reset and then
clocked out, what is the resulting output pattern? If, instead, the Q output of
the fourth scan-flop is SA1, then what is the resulting output pattern?

8.12 In the testable NAND latch of Figure 8.22, identify the faults that are
undetectable when in scan mode.

8.13 A scan circuit has five flip-flops. The first, third and fifth flip-flops are
positive-edge triggered. The second and fourth flip-flops are negative-edge
triggered. Assuming that you do not take any special steps to address this
configuration, describe the sequence of events as you attempt to load the
pattern 11001. What are the final contents of the scan chain? Suppose the
negative-edge triggered flip-flops are changed by XOR’ing the clock with a

D
Q2

Q2

Clock

IN
2

3

4

5

14

6

7

8

9

15

10

11

12

13

16

20

22

21

23

24

17

D
Q1

Q118

D
Q0

Q019

S-A-0

OUT

1

448 DESIGN-FOR-TESTABILITY

test signal so that all the flip-flops load on the positive edge. Describe the
results when loading the scan chain.

8.14 A circuit with 1000 scan-flops has three uniquely identifiable blocks of logic.
Block1 has 200 scan-flops and requires 300 scan vectors, block2 had 300
scan-flops and requires 80 scan vectors, and block3 has 500 scan-flops and
requires 700 vectors.

(a) If you could not break up the chains, how would you organize them to
minimize test time?
(b) If you could break up the longest chain into chains of length 300 and
200, with each requiring 400 scan vectors, how would you organize the
chains?

8.15 For the NAND tree of Figure 8.34, assume a device with 200 pins. Assume
that the pins are connected in ascending numerical order. Describe the
expected waveform when the NAND tree is being exercised. Describe the
waveform that results when pin 39 is stuck-at-1.

8.16 Assume the following sequences are applied to the TDI input of a TAP
controller. Describe the state transitions that occur in response to the sequences

1111111

11010100011110000

100000001110001101

8.17 Create an S-graph similar to that in Figure 8.33 for a four-stage counter. Can
the circuit be broken up for partial scan?

8.18 Documentation can be an important part of a DFT strategy. The circuit in
Figure 8.45 uses a 74151 one-of-eight selector (Figure 8.45). Can you identify
the function performed by this circuit? Can you guess why it was used?

8.19 Using a DFT circuit, my fault coverage improves from 86.5% to 95.7%. My
process yield was 83%. What is the improvement in my AQL?

Figure 8.45 One-of-eight selector.

I1

Y

A B C

I2 I3 I4

D1

D0

D3

D2

D5

D4

D7

D6

74151

REFERENCES 449

REFERENCES

1. Designing Digital Circuits for Testability, Hewlett-Packard Application Note 210-4,
Hewlett Packard, Loveland, CO.

2. Goldstein, L. H., Controllability/Observability Analysis of Digital Circuits, IEEE Trans.
Comput., Vol. CAS-26, No. 9, September 1979, pp. 685–693.

3. Powell, T., Software Gauges the Testability of Computer-Designed ICs, Electron. Des.,
November 24, 1983, pp. 149–154.

4. Fong, J. Y. O., On Functional Controllability and Observability Analysis, Proc. 1982 Int.
Test Conf., November 1982, pp. 170–175.

5. Goel, D. K., and R. M. McDermott, An Interactive Testability Analysis Program—ITTAP,
Proc. 19th Des. Autom. Conf., 1982, pp. 581–586.

6. Savir, J., Good Controllability and Observability Do Not Guarantee Good Testability,
IEEE Trans. Comput., Vol. C-32, No. 12, December 1983, pp. 1198–1200.

7. Agrawal, V. D., and M. R. Mercer, Testability Measures—What Do They Tell Us?, Proc.
Int. Test Conf. 1982, pp. 391–396.

8. LASAR User’s Manual, Teradyne Corp., Boston.

9. Levitt, Marc E., Designing UltraSparc for Testability, IEEE Des. Test, Vol. 14, No. 1,
January–March 1997, pp. 10–17.

10. Ando, H., Testing VLSI with Random Access Scan, Dig. CompCon.1980, February 1980,
pp. 50–52.

11. Maling, K., and E. L. Allen, A Computer Organization and Programming System for
Automated Maintenance, IEEE Trans. Electron. Comput., Vol. EC-12, December 1963,
pp. 887–895.

12. Carter, W. C. et al., Design of Serviceability Features for the IBM System/360, IBM J.
Res. Dev., Vol. 8, April 1964, pp. 115–126.

13. Hirtle, A. C. et al., Data Processing System Having Auxiliary Register Storage, U.S.
Patent No. 3,582,902, filed December 30, 1968.

14. Williams, M. J. Y., and J. B. Angell, Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and Additional Logic, IEEE Trans. Comput., Vol. C-22, No. 1,
January 1973, pp. 46–60.

15. Eichelberger, E. B., and T. W. Williams, A Logic Design Structure for LSI Testability,
Proc. 14th Des. Autom. Conf., June 1977, pp. 462–468.

16. Bottorff, P. S. et al., Test Generation for Large Logic Networks, Proc. 14th Des. Autom.
Conf., June 1977, pp. 479–485.

17. Godoy, H. C. et al., Automatic Checking of Logic Design Structures for Compliance with
Testability Ground Rules, Proc. 14th Des. Autom. Conf., June 1977, pp. 469–478.

18. Cheung, B., and L. T. Wang, The Seven Deadly Sins of Scan-Based Designs, Integrated
Syst. Des., August 1997, pp. 50–56.

19. Yohannes, Paul, Useful Design-for-Test Practices, ISD Mag., September 2000, pp. 58–66.

20. Jaramillo, K., and S. Meiyappan, 10 Tips for Successful Scan Design: Part One, EDN
Mag., February 17, 2000, pp. 67–75.

21. Jaramillo, K., and S. Meiyappan, 10 Tips for Successful Scan Design: Part Two, EDN
Mag., February 17, 2000, pp. 77–90.

450 DESIGN-FOR-TESTABILITY

22. Narayanan, S. et al., Optimal Configuring of Multiple Scan Chains, IEEE Trans. Comput.,
Vol. 42, No. 9, September 1993, pp. 1121–1131.

23. Anderson, T. L., and C. K. Allsup, Incorporating Partial Scan, ASIC & EDA, October
1994, pp. 23–32.

24. Stewart, J. H., Future Testing of Large LSI Circuit Cards, Proc. 1977 Cherry Hill Test
Conf., October 1977, pp. 6–17.

25. Trischler, Erwin, Incomplete Scan Path with an Automatic Test Generation Methodology,
Proc. Int. Test Conf., 1980, pp. 153–162.

26. Agrawal, V. et al., Designing Circuits with Partial Scan, IEEE Des. Test Comput., 1988,
pp. 8–15.

27. Morley, S. P., and R. A. Marlett, Selectable Length Partial Scan: A Method to Reduce
Vector Length, Proc. Int. Test Conf., 1991, pp. 385–392.

28. Cheng, K. T., and V. D. Agrawal, A Partial Scan Method for Sequential Circuits with
Feedback, IEEE Trans. Comput., April 1990, pp. 544–548.

29. Chen, C. et al., Layout Driven Selecting and Chaining of Partial Scan Flip-Flops, Proc.
Des. Auto. Conf., 1996.

30. Chickermane, V., and J. H. Patel, An Optimization Based Approach to the Partial Scan
Design Problem, Proc. Int. Test Conf., 1990, pp. 377–386.

31. Chickermane, V., and J. H. Patel, A Fault Oriented Partial Scan Design Approach, Proc.
Int. Test Conf., 1991, pp. 400–403.

32. Hudli, R. V., and S. C. Seth, Testability Analysis of Synchronous Sequential Circuits
Based on Structural Data, Proc. Int. Test. Conf., 1989, pp. 364–372.

33. Hewlett-Packard Co., Section 1.1.5, The Manufacturing Fault Spectrum and Boundary
Scan, Boundary-Scan Tutorial, Rev. G, 1990, pp. 1–13.

34. Dody, G., Troubleshooting BGAs, SMT: The Magazine for Electronics Assembly, July
1999, pp. 44–50.

35. IEEE, IEEE Standard Test Access Port and Boundary Scan Architecture, IEEE Standards
Board, New York, IEEE Standard 1149.1-1990, May 1990.

36. Parker, K. P., The Boundary-Scan Handbook, Kluwer Academic Publishers, Boston,
1992.

37. Walker, Martin G., Modeling the Wiring of Deep Submicron ICs, IEEE Spectrum, March
2000, p. 67.

451

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 9

Built-In Self-Test

9.1 INTRODUCTION

Numerous ATPG algorithms and heuristics have been developed over the years to
test digital logic circuits. Some of these methods can trace their origins back to the
very beginnings of the digital logic era. Unfortunately, they have proven inadequate
to the task. Despite many novel and interesting schemes designed to attack test prob-
lems in digital circuits, circuit complexity and the sheer number of logic devices on
a die continue to outstrip the test schemes that have been developed, and there does
not appear to be an end in sight, as levels of circuit integration continue to grow
unabated.

New methods for testing and verifying physical integrity are being researched and
developed. Where once the need for concessions to testability was questioned, now, if
there is any debate at all, it usually centers on what kind of testability enhancements
should be employed. However, even with design-for-testability (DFT) guidelines,
difficulties remain. Circuits continue to grow in both size and complexity. When oper-
ating at higher clock rates and lower voltages, circuits are susceptible to performance
errors that are not well-modeled by stuck-at faults. As a result, there is a growing
concern for the effectiveness as well as the cost of developing and applying test
programs.

Test problems are compounded by the fact that there is a growing need to
develop test strategies both for circuits designed in-house and for intellectual
property (IP) acquired from outside vendors. The IP, often called core modules or
soft cores, can range from simple functions to complex microprocessors. For test
engineers, the problem is compounded by the fact that they must frequently
develop effective test strategies for devices when description of internal structure
is unavailable.

There is a growing need to develop improved test methods for use at customer
sites where test equipment is not readily accessible or where the environment can-
not be readily duplicated, as in military avionics subject to high gravity stresses
while in operation. This has led to the concept of built-in self-test (BIST), wherein

452

BUILT-IN SELF-TEST

test circuits are placed directly within the product being designed. Since they are
closer to the functions they must test, they have greater controllability and observ-
ability. They can exercise the device in its normal operating environment, at its
intended operating speed, and can therefore detect failures that occur only in the
field. Another form of BIST, error detection and correction (EDAC) circuits, goes a
step further. EDAC circuits, used in communications, not only detect transmission
errors in noisy channels, but also correct many of the errors while the equipment is
operating.

This chapter begins with a brief look at the benefits of BIST. Then, circuits for
creating stimuli and monitoring response are examined. The mathematical founda-
tion underlying these circuits will be discussed, followed by a discussion of the
effectiveness of BIST. Then some case studies are presented describing how BIST
has been incorporated into some complex designs. Test controllers, ranging from
fairly elementary to quite complex, will be examined next. Following that, circuit
partitioning will be examined. Done effectively, it affords an opportunity to break a
problem into subproblems, each of which may be easier to solve and may allow the
user to select the best tool for each subcircuit or unit in a system. Finally, fault toler-
ance is examined.

9.2 BENEFITS OF BIST

Before looking in detail at BIST, it is instructive to consider the motives of design
teams that have used it in order to understand what benefits can be derived from its
implementation. Bear in mind that there is a trade-off between the perceived benefits
and the cost of the additional silicon needed to accommodate the circuitry required
for BIST. However, when a design team has already committed to scan as a DFT
approach, the additional overhead for BIST may be quite small. BIST requires an
understanding of test strategies and goals by design engineers, or a close working
relationship between design and test engineers. Like DFT, it imposes a discipline on
the logic designer. However, this discipline may be a positive factor, helping to cre-
ate designs that are easier to diagnose and debug.

A major argument for the use of BIST is the reduced dependence on expensive
testers. Modern-day testers represent a major investment. To the extent that this
investment can be reduced or eliminated, BIST grows in attractiveness as an alterna-
tive approach to test. It is not even necessary to completely eliminate testers from
the manufacturing flow to economically justify BIST. If the duration of a test can be
reduced by generating stimuli and computing response on-chip, it becomes possible
to achieve the same throughput with fewer, and possibly less expensive, testers. Fur-
thermore, if a new, faster version of a die is released, the BIST circuits also benefit
from that performance enhancement, with the result that the test may complete in
less time.

One of the problems associated with the testing of ICs is the interface between
the tester and the IC. Cables, contact pins, and probe cards all require careful atten-
tion because of the capacitance, resistance, and inductance introduced by these

BENEFITS OF BIST

453

devices, as well as the risk of failure to make contact with the pins of the device
under test (DUT), possibly resulting in false rejects. These interface devices not only
represent possible technical problems, they can also represent a significant incre-
mental equipment cost. BIST can eliminate or significantly reduce these costs.

Many circuits employ memory in the form of RAM, ROM, register banks, and
scratch pads. These are often quite difficult to access from the I/O pins of an IC;
sometimes quite elaborate sequences are needed to drive the circuit into the right
state before it is possible to apply stimuli to these embedded memories. BIST can
directly access these memories, and a BIST controller can often be shared by some
or all of the embedded memories.

Test data generation and management can be very costly. It includes the cost of
creating, storing, and otherwise managing test patterns, response data, and any diag-
nostic data needed to assist in the diagnosis of defects. Consider the amount of data
required to support a scan-based test. For simplicity, assume the presence of a single
scan path with 10,000 flip-flops and assume that 500 scan vectors are applied to the
circuit. The 500 test vectors will require 5,000,000 bits of storage (assuming 1 bit
for each input, that is, only 0 and 1 values allowed). Given that a 10,000-bit response
vector is scanned out, a total of 10,000,000 bits must be managed for the scan test.
This does not represent a particularly large circuit, and the test data may have to be
replicated for several revision levels of the product, so the logistics involved may
become extremely costly.

BIST can help to substantially reduce this data management problem. When using
BIST to test a circuit, it may be that the only input stimulus required is a reset that
puts the circuit into test mode and forces a seed value in a pseudo-random pattern
generator (PRG). Then, if a tester is controlling the self-test, a predetermined number
of clocks are applied to the circuit and a response, called a signature, is read out and
compared to the expected signature. If the signature is compressed into a 32-bit sig-
nature, many such signatures can be stored in a small amount of storage.

Another advantage of BIST is that many thousands of pseudo-random vectors
can be applied in BIST mode in the time that it takes to load a scan path a few hun-
dred times. The test vectors come from the PRG, so there is no storage requirement
for test vectors. It should also be noted that loading the scan chain(s) for every vec-
tor can be time-consuming, implying tester cost, in contrast to BIST where a seed
value is loaded and then the PRG immediately starts generating and applying a
series of test vectors on every clock. A further benefit of BIST is the ability to run at
speed, which improves the likelihood of detecting delay errors.

Some published case studies of design projects that used BIST stress the impor-
tance of being able to use BIST during field testing.

1

 One of the design practices that
supports field test is the use of flip-flops at the boundaries of the IC.

2

 These flip-flops
can help to isolate an IC from other logic on the PCB, making it possible to test the
IC independent of that other logic. This makes it possible to diagnose and repair
PCBs that otherwise might be scrapped because a bad IC could not be accurately
identified.

There is a growing use of BIST in personal computers (PCs). The Desktop Man-
agement Task Force (DMTF) is establishing standards to promote the use of BIST

454

BUILT-IN SELF-TEST

for PCs.

3

 If a product adheres to the standard, then test programs can be loaded into
memory and executed from the vendor’s maintenance depot, assuming that the PC
has a modem and is not totally dead, so a field engineer may already have a good
idea what problems exist before responding to a service request.

9.3 THE BASIC SELF-TEST PARADIGM

The built-in-self-test approach, in its simplest form, is illustrated in Figure 9.1 Stim-
uli are created by a

pseudo-random generator (PRG)

. These are applied to a combi-
national logic block, and the results are captured in a

signature analyzer

, or

test
response compactor (TRC)

. The PRG could be something as simple as an

n

-stage
counter, if the intent is to apply all possible input combinations to the combinational
logic block. However, for large values of

n

 (

n

≥

 20), this becomes impractical. It is
also unnecessary in most cases, as we shall see. A

linear-feedback shift register
(LFSR)

 generates a reasonably random set of patterns that, for most applications,
provides adequate coverage of the combinational logic with just a few hundred
patterns. These pseudo-random patterns may also be more effective than patterns
generated by a counter for detecting CMOS stuck-open faults.

The TRC captures responses emanating from the combinational logic and com-
presses them into a vector, called a signature, by performing a transformation on the
bit stream. This signature is compared to an expected signature to determine if the
logic responded correctly to the applied stimuli. There are any number of ways to
generate a signature from a bit stream. It is possible, when sampling the bit stream,
to count 1s. Each individual output from the logic could be directed to an XOR,
essentially a series of one-bit parity checkers. It is also possible to count transitions,
with the data stream clocking a counter.

Another approach adds the response at the end of each clock period to a running
sum to create a checksum. The checksum has uneven error detection capability. If a
double error occurs, and both bits occur in the low-order column, the low-order bit is
unchanged but, because of the carry, the next-higher-order bit will be complemented
and the error will be detected. If the same double bit error occurs in the high-order
bit position, and if the carry is overlooked, which may be the case with checksums,
the double error will go undetected.

Figure 9.1

Basic self-test configuration.

Pseudo-random generator (PRG)

Combinational logic

Test response compactor (TRC)

THE BASIC SELF-TEST PARADIGM

455

In fact, if there is a stuck-at-

e

 condition,

e

∈

 {0,1}, affecting the entire high-order
bit stream, either at the sending or receiving end, there is only a 50% chance that it
will be detected by a checksum that ignores carries. Triple errors can also go
undetected. A double error in the next-to-high-order position, occurring together
with a single bit error in the high-order position, will again cause a carry out but
have no effect on the checksum. In general, any multiple error that sums to zero,
with a carry out of the checksum adder, will go undetected.

Example

Given a set of

n

 8-bit words for which a checksum is to be computed,
assume that the leftmost columns of four of the words are corrupted by errors

e

1

through

e

4

, as shown.

The errors sum to zero, hence they will go undetected if the carry is ignored. Note
that the leftmost column has odd parity, so if the input to the checksum circuit was
stuck-at-1, the same erroneous result would occur.

��

A more commonly used constuct for creating signatures is the multiple-input
shift register (MISR), also sometimes called a multiple-input signature register. The
MISR and the PRG are based on the linear feedback shift register (LFSR). Before
looking at implementation details, some theoretical concepts will be examined.

9.3.1 A Mathematical Basis for Self-Test

This section provides a mathematical foundation for the PRG and MISR constructs.
The mathematics presented here will provide some insight into why some circuits are
effective and others ineffective, and will also serve as a basis for the error-correcting
codes presented in Chapter 10.

We start with the definition of a group. A

group G

 is a set of elements and a
binary operator * such that

1.

a

,

b

,

∈

G

 implies that

a

 *

b

∈

G

(closure)

2.

a

,

b

,

c

∈

G

 implies that (

a

 *

b

) *

c

 =

a

 * (

b

 *

c

) (associativity)

3. There exists

e

∈

G

 such that

a

 *

e

 =

e

 *

a

 for all

a

∈

G

(identity)

4. For every

a

∈

G

, there exists

a

−

1

∈

G

 such that

a

 *

a

−

1

 =

a

−

1

 *

a

 =

e

(inverse)

e

1

0 0 1 0 0 0 0 0

e

2

0 1 0 0 0 0 0 0

e

3

1 0 0 0 0 0 0 0

e

4

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

456

BUILT-IN SELF-TEST

A group is

commutative

, also called

abelian

, if for every

a

,

b ∈ G we have a * b = b
* a.

Example The set I = {… , −2, −1, 0, 1, 2, …} and the operator * form a group
when * represents the usual addition (+) operation. ��

Example The set S = {Si | 0 ≤ i ≤ 3} of squares is defined as follows: S0 has a notch
in the upper left corner and Si represents a clockwise rotation of S0 by i × 90 degrees.
A rotation operator R is defined such that Si R S j = Sk, where k = i + j (modulo 3). The
set S and the operator R satisfy the definition of a group. The element Sk is simply the
result of Si and Sj applied in succession. ��

Given a group G with n elements and identity 1, the number of elements in G is
called the order of G. The order of an element g ∈ G is the smallest integer e such
that ge = 1. It can be shown that e divides n.

A ring R is a set of elements on which two binary operators, + and ×, are defined
and satisfy the following properties:

1. The set R is an Abelian group under +

2. a, b ∈ R implies that a × b ∈ R

3. a, b, c ∈ R implies that (a × b) × c = a × (b × c)

4. a, b, c ∈ R implies that
a × (b + c) = a × b + a × c
(b + c) × a = b × a + c × a

If the set R also satisfies

5. a × b = b × a

then it is a commutative ring.

Example The set of even integers is a commutative ring. ��

A commutative ring that has a multiplicative identity and a multiplicative inverse for
every nonzero element is called a field.

Example The set of elements {0,1} in which + is the exclusive-OR and × is the
AND operation satisfies all the requirements for a field and defines the Galois field
GF(2). ��

Given a set of elements V and a field F, with u, v and w ∈ V and a, b, c, d ∈ F, then V
is a vector space over F if it satisfies the following:

1. The product c ⋅ v is defined, and c ⋅ v ∈ V

2. V is an Abelian group under addition

3. c ⋅ (u + v) = c ⋅ u + c ⋅ v

4. (c + d) ⋅ v = c ⋅ v + d ⋅ v

THE BASIC SELF-TEST PARADIGM 457

5. (c ⋅ d) ⋅ v = c ⋅ (d ⋅ v)

6. 1 ⋅ v = v where 1 is the multiplicative identity in F

The field F is called the coefficient field. It is GF(2) in this text, but GF(p), for any
prime number p, is also a field. The vector space V defined above is a linear associa-
tive algebra over F if it also satisfies the following:

7. The product u ⋅ v is defined and u ⋅ v ∈ V

8. (u ⋅ v) ⋅ w = u ⋅ (v ⋅ w)

9. u ⋅ (c ⋅ v + d ⋅ w) = c ⋅ u ⋅ v + d ⋅ u ⋅ w
(c ⋅ v + d ⋅ w) ⋅ u = c ⋅ v ⋅ u + d ⋅ w ⋅ u

The Euclidean division algorithm states that for every pair of polynomials S(x)
and D(x), there is a unique pair of polynomials Q(x) and R(x) such that

S(x) = D(x) ⋅ Q(x) + R(x)

and the degree of R(x) is less than the degree of D(x). The polynomial Q(x) is called
the quotient and R(x) is called the remainder. We say that S(x) is equal to R(x)
modulo D(x). The set of all polynomials equal to R(x) modulo D(x) forms a residue
class represented by R(x). If S(a) = 0, then a is called a root of S(x).

A natural correspondence exists between vector n-tuples in an algebra and poly-
nomials modulo G(x) of degree n. The elements a0, a1, … , an−1 of a vector v corre-
spond to the coefficients of the polynomial

b0 + b1g + b2g
2 + ⋅⋅⋅ + bn−1g

n−1

The sum of two n-tuples corresponds to the sum of two polynomials and scalar mul-
tiplication of n-tuples and polynomials is also similar. In fact, except for multiplica-
tion, they are just different ways of representing the algebra. If F(x) = xn − 1, then
the vector product has its correspondence in polynomial multiplication. When multi-
plying two polynomials, modulo F(x), the coefficient of the ith term is

ci = a0bi + a1bi−1 + ⋅⋅⋅ + aib0 + ai+1bn−1 + ai+2bn−2 + ⋅⋅⋅ + an−1bi+1

Since xn − 1 = 0, it follows that xn+ j = xj, and the ith term of the polynomial product
corresponds to the inner, or dot, product of vector a and vector b when the elements
of b are in reverse order and shifted circularly i + 1 positions to the right.

Theorem 9.1 The residue classes of polynomials modulo a polynomial f(x) of
degree n form a commutative linear algebra of dimension n over the coefficient field.

A polynomial of degree n that is not divisible by any polynomial of degree less
than n but greater than 0 is called irreducible.

458 BUILT-IN SELF-TEST

Theorem 9.2 Let p(x) be a polynomial with coefficients in a field F. If p(x) is irre-
ducible in F, then the algebra of polynomials over F modulo p(x) is a field.

The field of numbers 0, 1, …, q − 1 is called a ground field. The field formed by
taking polynomials over a field GF(q) modulo an irrreducible polynomial of degree
m is called an extension field; it defines the field GF(qm). If z = {x} is the residue
class, then p(z) = 0 modulo p(x), therefore {x} is a root of p(x).

If q = p, where p is a prime number, then, by Theorem 9.2, the field GF(pm),
modulo an irreducible polynomial p(x) of degree m, is a vector space of dimension
m over GF(p) and thus has pm elements. Every finite field is isomorphic to some
Galois field GF(pm).

Theorem 9.3 Let q = pm, then the polynomial xq −1−1 has as roots all the pm − 1
nonzero elements of GF(pm).

Proof The elements form a multiplicative group. So, the order of each element of
the group must divide the order of the group. Therefore, each of the pm − 1 elements
is a root of the polynomial xq − 1. But the polynomial xq − 1 has, at most, pm − 1
roots. Hence, all the nonzero elements of GF(pm) are roots of xq − 1.

If z ∈ GF(pm) has order pm − 1, then it is primitive.

Theorem 9.4 Every Galois field GF(pm) has a primitive element; that is, the multi-
plicative group of GF(pm) is cyclic.

Example GF(24) can be formed modulo F(x) = x4 + x3 + 1. Let z = {x} denote the
residue class x; that is, z represents the set of all polynomials that have remainder x
when divided by F(x). Since F(x) = 0 modulo F(x), x is a root of F(x). Furthermore,
x is of order 15. If the powers of x are divided by F(x), the first six division operations
yield the following remainders:

The interested reader can complete the table by dividing each power of x by F(x).
With careful calculations, the reader should be able to confirm that x15 = 1 modulo
F(x) but that no lower power of x equals 1 modulo F(x). Furthermore, when dividing
xi by F(x), the coefficients are cyclic; that is, if the polynomials are represented in
vector form, then each vector will appear in all of its cyclic shifts.

x0 = 1 modulo F(x) = (1,0,0,0)

x1 = x modulo F(x) = (0,1,0,0)

x2 = x2 modulo F(x) = (0,0,1,0)

x3 = x3 modulo F(x) = (0,0,0,1)

x4 = 1 + x3 modulo F(x) = (1,0,0,1)

x5 = 1 + x + x3 modulo F(x) = (1,1,0,1) ��

THE BASIC SELF-TEST PARADIGM 459

9.3.2 Implementing the LFSR

The LFSR is a basic building block of BIST. A simple n-stage counter can generate 2n

unique input vectors, but the high-order bit would not change until half the stimuli had
been created, and it would not change again until the counter returned to its starting
value. By contrast, the LFSR can generate pseudo-random sequences and it can be
used to create signatures. When used to generate stimuli, the stimuli can be obtained
serially, from either the high- or low-order stage of the LFSR, or stimuli can be
acquired from all of the stages in parallel. The theory on LFSRs presented in the previ-
ous section allows for LFSRs of any degree. However, the polynomials that tend to get
the most attention are those that correspond to standard data bus widths—for example,
16, 32, and so on. The LFSR is made up of delays (flip-flops or latches), XORs, and
feedback lines. From a mathematical perspective, XORs are modulo 2 adders in
GF(2). The circuit in Figure 9.2 implements the LFSR defined by the equation

p(x) = x16 + x9 + x7 + x4 + 1

If the LFSR has no inputs and is seeded with a nonzero starting value—for example,
by a reset that forces one or more of the flip-flops to assume nonzero initial values—
then the circuit becomes an autonomous LFSR (ALFSR). If the connections corre-
spond to a primitive polynomial, the LFSR is capable of generating a nonrepeating
sequence of length 2n, where n is the number of stages. With the input signal In
shown in Figure 9.2 the circuit functions as a TRC.

If the incoming binary message stream is represented as a polynomial m(x) of
degree n, then the circuit in Figure 9.2 performs a division

m(x) = q(x) ⋅ p(x) + r(x)

The output is 0 until the 16th shift. After n shifts (n ≥ 16) the output of the LFSR is
a quotient q(x), of degree n − 16. The contents of the delay elements, called the sig-
nature, are the remainder. If an error appears in the message stream, such that the
incoming stream is now m(x) + e(x), then

m(x) + e(x) = q’(x) ⋅ p(x) + r’(x)

and

r’(x) = r(x)

Figure 9.2 Linear feedback shift register.

+

In

Out +++

460 BUILT-IN SELF-TEST

if and only if e(x) is divisible by p(x). Therefore, if the error polynomial is not divis-
ible by p(x), the signature in the delay elements will reveal the presence of the error.

The LFSR in Figure 9.3 is a variation of the LFSR in Figure 9.2. It generates the
same quotient as the LFSR in Figure 9.2, but does not generally create the same
remainder. Regardless of which implementation is employed, the following theorem
holds:4

Theorem 9.5 Let s(x) be the signature generated for input m(x) using the polyno-
mial p(x) as a divisor. For an error polynomial e(x), m(x) and m(x) + e(x) have the
same signature if and only if e(x) is a multiple of p(x).

One of the interesting properties of LFSRs is the following:5

Theorem 9.6 An LFSR based on any polynomial with two or more nonzero coef-
ficients detects all single-bit errors.

Binary bit streams with 2 bits in error can escape detection. One such example
occurs if

p(x) = x4 + x3 + x + 1

and

e(x) = (x6 + 1) ⋅ xn

It can also be shown that, if the polynomial has an even number of terms, then it will
detect all odd numbers of errors. In addition, all single bursts of length less than the
degree of the polynomial will be detected.

9.3.3 The Multiple Input Signature Register (MISR)

The signature generators in Figures 9.2 and 9.3 accumulate signatures by serially
shifting in a bit at a time. However, that is impractical for circuits where it is desired
to compact signatures while a device is running in its normal functional mode. A
more practical configuration is shown in Figure 9.4. Two functional registers serve a

Figure 9.3 Equivalent LFSR.

+

In

Out 16 12 9 7

+

+

+

THE BASIC SELF-TEST PARADIGM 461

Figure 9.4 Test configuration using maximal LFSR and MISR.

dual purpose. When in self-test mode, one acts as an LFSR and generates as many as
2m − 1 consecutive distinct m-bit values that are simultaneously taken from m flip-
flops. A second functional register is connected to the output of the combinational
logic. It compacts the stimuli to create a signature. A test controller is used to put the
register into test mode, seed it with an initial value, and control the number of
pseudo-random patterns that are to be applied to the combinational logic.

The MISR is a feedback shift register that forms a signature on n inputs in paral-
lel. After an n-bit word is added, modulo 2, to the contents of the register, the result
is shifted one position before the next word is added. The MISR can be augmented
with combinational logic in such a way that the generated signature is identical to
that obtained with serial compession.6 The equations are computed for a given
LFSR implementation by assuming an initial value ci in each register bit position ri,
serially shifting in a vector (b0, b1, ..., bn−1), and computing the new contents (r1, r2,
..., rn) of the register following each clock. After n clocks the contents of each ri are
specified in terms of the original register contents (c1, c2, ..., cn) and the new data
that were shifted in. These new contents of the ri define the combinational logic
required for the MISR to duplicate the signature in the corresponding LFSR.

Example A register corresponding to the polynomial p(x) = x4 + x2 + x + 1 will be
used. The register is shown in equivalent form in Figure 9.5. Assume initially that flip-
flop ri contains ci. The data bits enter serially, starting with bit b0. The contents of the
flip-flops are shown for the first two shifts. After two more shifts and also making
extensive use of the fact that a ⊕ a = 0 and a ⊕ 0 = a, the contents of the flip flops are

r1 = c1 ⊕ c2 ⊕ c3 ⊕ b0

r2 = c2 ⊕ c3 ⊕ c4 ⊕ b1

r3 = c1 ⊕ c2 ⊕ b0 ⊕ b2

r4 = c1 ⊕ b0 ⊕ b1 ⊕ b3 ��

MISR

Test
control

Clock

LFSR

Combinational logic

Σ

462 BUILT-IN SELF-TEST

Figure 9.5 Fourth-degree LFSR.

For the purpose of generating effective signatures, it is not necessary that parallel
data compression generate a signature that matches the signature generated using
serial data compression. What is of interest is the probability of detecting an error.
As it turns out, the MISR has the same error detection capability as the serial LFSR
when they have an identical number of stages. In the discussion that follows, the
equivalence of the error detection capability is informally demonstrated.

Using serial data compression and an LFSR of degree r and also given an input
stream of k bits, k ≥ r, there are 2k− r − 1 undetectable errors since there are 2k− r − 1
nonzero multiples of p(x) of degree less than k that have a remainder r(x) = 0.

When analyzing parallel data compression, it is convenient to use the linearity
property that makes it possible to ignore message bits in the incoming data stream
and focus on the error bits. When clocking the first word into the register, any error
bit(s) can immediately be detected. Hence, as in the serial case, when k = r there are
no undetectable errors. However, if there is an error pattern in the first word, then the
second word clocked in is added (modulo 2) to a shifted version of the first word.
Therefore, if the second word has an error pattern that matches an error pattern in
the shifted version of the first word, it will cancel out the error pattern contained in
the register, and the composite error contained in the first and second words will go
undetected.

For a register of length r, there are 2r − 1 error patterns possible in the first word,
each of which, after shifting, could be canceled by an error pattern in the second
word. When compressing n words, there are 2(n−1)r − 1 error patterns in the first
n − 1 words. Each of these error patterns could go undetected if there is an error pat-
tern in the nth word that matches the shifted version of the error pattern in the regis-
ter after the first n − 1 words. So, after n words, there are 2(n−1)r − 1 undetectable
error patterns. Note that an error pattern in the first n − 1 words that sums to zero is
vacuously canceled by the all-zero “error” in the nth word. The number of errors
matches the number of undetectable errors in a serial stream of length n ⋅ r being
processed by a register of length r.

Example Using the LFSR in Figure 9.3, if an error pattern e1 = 00000000
01000000 is superimposed on the message bits, then after one shift of the register the
error pattern becomes e2 = 0000000010000001. Therefore, if the second word con-
tains an error pattern matching e2, it will cancel the error in the first word, causing the
error to go undetected. ��

+ + +

r1 r2 r3 r4

b0b1b2b3b4

c1

c2c1

c2

c3

c3

c4 c1⊕c2⊕c3⊕b0

c4 c1⊕c2⊕c3⊕b0

THE BASIC SELF-TEST PARADIGM 463

Figure 9.6 BILBO.

9.3.4 The BILBO

The circuit in Figure 9.4 adds logic to a functional register to permit dual-purpose
operation: normal functional mode and test response compaction. A more general
solution is the built-in logic block observer (BILBO).7 The BILBO, shown in
Figure 9.6, has four modes of operation: When B1, B2 = 0,0, it is reset. When B1,
B2 = 1,0, it can be loaded in parallel and used as a conventional register. When B1,
B2 = 0,1, it can be loaded serially and incorporated as part of a serial scan path.
When B1, B2 = 1,1, it can be used as an MISR to sum the incoming data I1 − In, or, if
the data are held fixed, it can create pseudo-random sequences of outputs.

There are a number of ways in which the BILBO can be used. One approach is to
convert registers connected to a bus into BILBOs. Then, as depicted in Figure 9.7,
either BILBO1 can generate stimuli for combinational logic while BILBO2 generates
signatures, or BILBO1 can be configured to generate signatures on the contents of the
bus. In that case, the stimulus generator can be another BILBO or a ROM whose con-
tents are being read out onto the bus. After the signature has been generated, it can be
scanned out by putting the BILBOs into serial scan mode. Then, assuming that the
results are satisfactory, the BILBOs are restored to operational mode.

Figure 9.7 BILBO used to test circuit.

D

CK

Q1
MUX

B1
B2

S1

I1 I2 In

Serial
out

F1 F2 Fn−1 Fn

Σ

D Q2 D Qn-1 D Qn

B
IL

B
O

 1

B
IL

B
O

 2

B
U

S

Co
m

bi
na

tio
na

l l
o

gi
c

464 BUILT-IN SELF-TEST

In a complex system employing several functional units, there may be several
BILBOs and it becomes necessary to control and exercise them in correct order.
Hence, a controller must be provided to ensure orderly self-test in which the correct
units are generating stimuli and forming signatures, scanning out contents and com-
paring signatures to verify their correctness.

9.4 RANDOM PATTERN EFFECTIVENESS

Signature analysis compresses long bit strings into short signatures. Nevertheless, it
is important to bear in mind that the quality of a test is still dependent on the stimuli
used to sensitize and detect faults. In order for a fault to be detected, the stimuli must
induce that fault to create an error signal in the output stream.

9.4.1 Determining Coverage

The ideal test is an exhaustive test—that is, one in which all possible combinations
are applied to the combinational logic accessed by a scan path. This is all the more
important as feature sizes continue to shrink, with the possibility of faults affecting
seemingly unrelated logic gates due to mask defects, shorts caused by metal migra-
tion or breakdown of insulation between layers, capacitive coupling, and so on. If a
combinational circuit responds correctly to all possible combinations, then it has
been satisfactorily tested for both the traditional stuck-at faults and for multiple
faults as well. Unfortunately, for most circuits this is impractical (cf. Problem 4.1).
Furthermore, some faults may still escape detection, such as those that change a
combinational circuit into a sequential circuit. In addition, parametric faults that
affect response time (i.e., delay faults) may escape detection if stimuli are applied at
a rate slower than normal circuit operation.

In circuits where exhaustive testing is not feasible, alternatives exist. One alterna-
tive is to apply a random subset of the patterns to the circuit. Another alternative is to
partition the circuit into combinational subcircuits. The smaller subcircuits can then
be individually tested.8 Additional tests can be added to test signal paths that were
blocked from being tested by the partitioning circuits.

We look first at a cone of combinational logic that is to be tested using a subset of
the pattern set. To understand this test strategy, consider a single detectable combi-
national fault in a cone of logic with m inputs. Since the fault is detectable, there is
at least one vector that will detect it. Hence, if P1 is the probability of detecting the
fault with a single randomly selected vector, then

P1 ≥ 2−m

To determine the probability of detecting the fault with n patterns, consider the
binomial expansion

a b+()n an n
1

 an 1– b1 … bn+ + +=

RANDOM PATTERN EFFECTIVENESS 465

Let a = 1 − 2−m represent the probability of not detecting the fault.

Let b = 2−m represent the probability of detecting the fault.

Then, given n patterns, only the first term an in the expansion is totally free of the
variable b. Hence, the probability Pn of detecting the fault with n patterns is

Note that this equation assumes true random sampling—that is, sampling with
replacement. However, when using an LFSR of size equal to or greater than the
number of circuit inputs, vectors do not repeat until all possible combinations have
been generated. As a result, the above equation is somewhat pessimistic, predicting
results that approach but never quite reach 100% coverage. Another factor that
affects the probability of detection is the number of patterns that detect a fault. Con-
sider a circuit comprised of an n-input AND gate. There are 2n input combinations.
Of these, only one input combination will detect a stuck-at-1 on the ith input. How-
ever, 2n − 1 patterns will detect a stuck-at-1 on the output of the AND gate. The
stuck-at-1 on the output can be characterized as an “easy” to detect fault, in the
sense that many patterns will detect it. The following equation takes into account the
number of patterns that detect the fault:9

Pn = 1 − e−kL/N

where k is detectability of the fault—that is, the number of patterns that detect the
fault, L is the total number of vectors in the test, and N is 2n, and n is the number of
inputs to the circuit.

The expected coverage E(C) is

In this equation, hk is the number of faults with detectability k. In general, faults in
real-world circuits tend to be detected by many vectors, resulting in large values of
k. A drawback to this approach to computing effectiveness of BIST is the fact that
the equation assumes a knowledge of the number of patterns that detect each fault.
But that requires fault simulating the circuit without fault dropping, an expensive
proposition. Nonetheless, this analysis is useful for demonstrating that fault cover-
age is, in general, quite good with just a few hundred pseudo-random vectors.10

9.4.2 Circuit Partitioning

The number of primary outputs in a circuit is another factor to be considered when
attempting to determine fault coverage for pseudo-random vectors. A cone may be
partially or completely subsumed by another cone, and the subsumed cone may

Pn 1 an 1 1 2 m––()n
–=–≥

E C() 1 1
n f
----- hke kL N⁄–∑–=

466 BUILT-IN SELF-TEST

actually be exhaustively tested by the applied subset of vectors while the larger
cone may receive fault coverage less than 100%. As a result the faults in the larger
cone have different probabilities of detection, depending on whether they are in
both cones or only the larger cone. An example of this is an ALU where the low-
order bits may receive 100% fault coverage while high-order bits may have some-
what less than 100% coverage. In circuits where smaller cones are subsumed by
larger cones (e.g., a functional block such as an ALU), there are frequently signals
such as carries that lend themselves to partitioning. By partitioning the circuit at
those signals, the partitioned blocks can be tested independent of one another to get
improved coverage.

At first glance it may seem necessary to partition any circuit whose input count
exceeds some threshold. But, partitioning may sometimes not be as critical as it at
first appears; this is particularly true of data flow circuits.11 Consider the 16-bit ALU
in Figure 9.8. It is made up of 4-bit slices connected via ripple carries. The carry-out
C3 and the high-order output bit F15 would seem to be equally affected by all of the
low-order bits. But the low-order bits only affect the high-order bits through the
carry bits. For example, C3 is clearly affected by C2, but the probability that A11 = 1
and B11 = 1 is 0.25; hence the probability that C2 is a 1 is P1(C2) ≥ 0.25. Likewise,
P0(C2) ≥ 0.25. So, for this particular data flow function, C3 is affected by the eight
inputs A15−12, B15−12 and a carry-in whose frequency of occurrence of 1s and 0s is
probably around 50%. In this case, physically partitioning the circuit would proba-
bly not provide any benefit.

One of the barriers to getting good fault coverage with random patterns is the
presence of gates with large fan-in and fan-out. To improve coverage, controllability
and observability points can be added by inserting scan flip-flops in the logic, just as
test points can be added to nonscan logic.12 These flip-flops are used strictly for test
purposes. Being in the scan path, they do not add to pin count. In Figure 9.9(a), the
AND gate with large fan-in will have a low probability of generating a 1 at its out-
put, adversely affecting observability of the OR gate; therefore a scan flip-flop is
added to improve observability of the OR gate. The output of an AND gate with
large fan-in can be controlled to a logic 1 by adding an OR gate, as shown in
Figure 9.9(b), with one input driven by a scan flip-flop. During normal operation the
flip-flop is at its noncontrolling value. These troublesome nets can be identified by
means of a controllability/observability program such as SCOAP (cf. Section 8.3.1).

Figure 9.8 ALU with ripple carries.

ALU(3) ALU(2) ALU(1) ALU(0)

CinA7-4 B7-4A15-12 B15-12 A3-0 B3-0A11-8 B11-8

F15-12 F11-8 F7-4 F3-0
C0C1C2C3

RANDOM PATTERN EFFECTIVENESS 467

Figure 9.9 Enhancing random test.

9.4.3 Weighted Random Patterns

Another approach to testing random pattern-resistant faults makes use of weighted
random patterns (WRP). Sensitizing and propagating faults often require that some
primary inputs have a disproportionate number of 1s or 0s. One approach developed
for sequential circuits determines the frequency with which inputs are required to
change. This is done by simulating the circuit and measuring switching activity at
the internal nodes as signal changes occur on the individual primary inputs. Inputs
that generate the highest amount of internal activity are deemed most important and
are assigned higher weights than others that induce less internal activity.13 Those
with the highest weights are then required to switch more often.

A test circuit was designed to allocate signal changes based on the weights
assigned during simulation. This hardware scheme is illustrated in Figure 9.10. An

LFSR generates n-bit patterns. These patterns drive a 1 of 2n selector or decoder. A
subset jk of the outputs from the selector drive bit-changer k which in turn drives

input k of the IC, where , and m is the number of inputs to the IC. The
number jk is proportional to the weight assigned to input k. The bit-changers are
designed so that only one of them changes in response to a change on the selector
outputs; hence only one primary input changes at the IC on any vector. When gener-
ating weights for the inputs, special consideration is given to reset and clock inputs
to the circuit.

Figure 9.10 Weighted pattern generator.

(a) (b)

......
...

jkk 1=
m∑ 2n≤

nL
F
S
R

S
e
l
e
c
t
o
r

Bit
changer

Bit
changer

Bit
changer

Input 1

Input 2

Input m

468 BUILT-IN SELF-TEST

The WRP is also useful for combinational circuits where BIST is employed. Con-
sider, for example, a circuit made up of a single 12-input AND gate. It has 4096 pos-
sible input combinations. Of these, only one, the all-1s combination, will detect a
stuck-at-0 at the output. To detect a stuck-at-1 on any input requires a 0 on that input
and 1s on all of the remaining 11 inputs. If this circuit were being tested with an
LFSR, it would take, on average, 2048 patterns before the all-1s combination would
appear, enabling detection of a stuck-at-0 at the output. In general, this circuit needs
a high percentage of 1s on its inputs in order to detect any of the faults. The OR gate
is even more troublesome since an all-0s pattern is needed to test for a stuck-at-1
fault on the output, and the LFSR normally does not generate the all-0s pattern.

To employ WRPs on a combinational circuit, it is first necessary to determine
how to bias each circuit input to a 1 or a 0. The calculation of WRP values is based
on increasing the probability of occurrence of the nonblocking or noncontrolling
value (NCV) at the inputs to a gate.14 For the AND gate mentioned previously, it is
desirable to increase the probability of applying 1s to each of its inputs. For an OR
gate, the objective is to increase the probability of applying 0s to its inputs. The
weighting algorithm must also improve the probability of propagating error signals
through the gate.

The first step in computing biasing values is to determine the number of device
inputs (NDI) controlling each gate in the circuit. This is the number of primary
inputs and flip-flops contained in the cone of that gate. This value, denoted as NDIg,
is divided by NDIi, the NDI for each input to that gate. That gives the ratio Ri of the
NCV to the controlling value for each gate. This is illustrated in Figure 9.11, where
the total number of inputs to gate D, NDID, is 9. NDIA is 4; hence the ratio Ri of
NDID to NDIA is 9 to 4. Two additional numbers, W0 and W1, the 0 weight and the
1 weight, must be computed for each gate in the circuit. Initially, these two values
are set to 1.

The algorithm for computing the weights at the inputs to the circuit proceeds as
follows:

1. Determine the NDIg for all logic gates in the circuit.

2. Assign numbers W0 and W1 to each gate; initially assign them both to 1.

Figure 9.11 Calculating bias numbers.

9:2

9:4

9:3

A

B

C

D

I9

I2

I2

I1

I8

I7

I6

I5

I4

PO

RANDOM PATTERN EFFECTIVENESS 469

3. Backtrace from each output. When backtracing from a gate g to an input gate
i, adjust the weights W0 and W1 of gate i according to Table 9.1. When a gate
occurs in two or more cones, the value of W0 or W1 is the larger of the exist-
ing value and the newly calculated value.

4. Determine the weighted value WV. It represents the logic value to which the
input is to be biased. If W0 > W1, then WV = 0, else WV = 1.

5. Determine the weighting factor WF. It represents the amount of biasing toward
the weighted value. If WV = 0, then WF = W0/W1, else WF = W1/W0.

Example Consider the circuit in Figure 9.11. Initially, all the gates are assigned
weights W0 = W1 = 1. Then the backtrace begins. Table 9.2 tabulates the results.
When backtracing from gate D to gate A, Table 9.1 states that if gate g is an OR gate,
then W0i = (Ri ⋅ W0g) and W1i = W1g for gate i. In this example, gate g is the OR gate
labeled D and W0g = W1g = 1. Also, Ri = 9/4. Thus, W0i = 9/4, or 2.25. In the next
step of the backtrace, g refers to gate A, an AND gate, and i refers to primary inputs
I1 to I4. Also, Ri = 4/1 = 4. The entry for the AND gate in Table 9.1 states that
W0i = W0g and W1i = (Ri ⋅ WIg) . So the weights for I1 to I4 are W0i = 2.25 and
W1i = 4. The remaining calculations are carried out in similar fashion.

From the results it is seen that inputs I1 to I4 must be biased to a 1 with a weighting
factor WF = 4/2.25 = 1.77. Inputs I5 and I6 are biased to a 0 with WF = 4.5/2 = 2.25.
Finally, inputs I7 to I9 have identical 0 and 1 weights, so biasing is not required for
those inputs.

TABLE 9.1 Weighting Formulas

Logic Function W0i W1i

AND W0g Ri . W1g

NAND W1g Ri . W0g

OR Ri .W0g W1g

NOR Ri .W1g W0g

TABLE 9.2 Tabulating Weights

From (g) To (i) W0i W1i

PO gate D 1 1
gate D gate A 2.25 1
gate A I1 − I4 2.25 4

gate D gate B 4.5 1
gate B I5−I6 4.5 2

gate D gate C 3 1
gate C I7 −I9 3 3

��

470 BUILT-IN SELF-TEST

The calculation of weights for a circuit of any significant size will invariably lead
to fractions that are not realistic to implement. The weights should, therefore, be
used as guidelines. For example, if a weight is calculated to be 3.823, it is sufficient
to use an integer weighting factor of 4. The weighted inputs can be generated by
selecting multiple bits from the LFSR and performing logic operations on them. An
LFSR corresponding to a primitive polynomial will generate, for all practical pur-
poses, an equal number of 1s and 0s (the all-0s combination is not generated). So, if
a ratio 3:1 of 1s to 0s is desired, then an OR gate can be used to OR together two bits
of the LFSR with the expectation that, on average, one out of every four vectors will
have 0s in both positions. Similarly, for a ratio 3:1 of 0s to 1s the output of the OR
can be inverted, or an AND gate can be used. ANDing/ORing three or four LFSR
bits results in ratios of 7:1 and 15:1. More complex logic operations on the LFSR
bits can provide other ratios.

When backtracing from two or more outputs, there is a possibility that an input
may have to be biased so as to favor a logic 0 when backtracing from one output and
it may be required to favor a logic 1 when backtracing from another output. How
this situation is handled will ultimately depend on the method of test. If test patterns
are being applied by a tester that is capable of biasing pseudo-random patterns, then
it might be reasonable to use one set of weights for part of the test, then switch to an
alternate set of weights. However, if the test environment is complete BIST, a com-
promise might require taking some average of the weights calculated during the
backtraces. Another possible approach is to consider the number of inputs in each
cone, giving preference to the cone with a larger number of inputs since the smaller
cone may have a larger percentage of its complete set of input patterns applied.

Previously it had been mentioned that one approach to determining the weights
on the inputs could be accomplished by switching individual inputs one at a time
and measuring the internal activity in the circuit using a logic simulator. Another
approach that has been proposed involves using ATPG and a fault simulator to ini-
tially achieve high-fault coverage.15 Use these test vectors to determine the fre-
quency of occurrence of 1s and 0s on the inputs. The frequency of occurrence helps
to determine the weighting factors for the individual circuit inputs. It would seem
odd to take this approach since one of the reasons for adopting BIST is to avoid the
use of ATPG and fault simulation, but the approach does reduce or eliminate the reli-
ance on a potentially expensive tester.

9.4.4 Aliasing

Up to this point the discussion has centered around how to improve fault coverage of
BIST while minimizing the number of applied vectors. An intrinsic problem that has
received considerable attention is a condition referred to as aliasing. If a fault is sen-
sitized by applied stimuli, with the result that an error signal reaches an LFSR or
MISR, the resulting signature generated by the error signal will map into one of 2n

possible signatures, where n is the number of stages in the LFSR or MISR. It is pos-
sible for the error signature to map into the same signature as the fault-free device.
With 216 signatures, the probability that the error signal generated by the fault will

SELF-TEST APPLICATIONS 471

be masked by aliasing is 1 out of 216, or about 0.0015%. If a functional register is
being used to generate signatures and if it has a small number of stages, thus intro-
ducing an unacceptably high aliasing error, the functional register can be extended
by adding additional stages that are used strictly for the purpose of generating a sig-
nature with more bit positions, in order to reduce the aliasing error.

9.4.5 Some BIST Results

The object of BIST is to apply sufficient patterns to obtain acceptable fault coverage,
recognizing that a complete exhaustive test is impractical, and that there will be
faults that escape detection. The data in Table 9.3 shows the improvement in fault
simulation, as the number of random test vectors applied to two circuits increases
from 100 to 10,000.16

For the sake of comparison, fault coverage obtained with an ATPG is also listed.
The numbers of test patterns generated by the ATPG are not given, but another
ATPG under similar conditions (i.e., combinational logic tested via scan path)
generated 61 to 198 test vectors and obtained fault coverage ranging between 99.1%
and 100% when applied to circuit partitions with gate counts ranging from 2900 to
9400 gates.17

9.5 SELF-TEST APPLICATIONS

This section contains examples illustrating some of the ways in which LFSRs have
been used to advantage in self-test applications. The nature of the LFSR is such
that it lends itself to many different configurations and can be applied to many
diverse applications. Here we will see applications ranging from large circuits with
a total commitment to BIST, to a small, 8-bit microprocessor that uses an ad hoc
form of BIST.

9.5.1 Microprocessor-Based Signature Analysis

It must be pointed out here that BIST, using random patterns, is subject to con-
straints imposed by the design environment. For example, when testing off-the-shelf
products such as microprocessors, characterized by a great deal of complex control
logic, internal operations can be difficult to control if no mechanism is provided for
that purpose. Once set in operation by an op-code, the logic may run for many clock

TABLE 9.3 Fault Coverage with Random Patterns

Number of
Gates

No. Random Patterns Fault percentage
with ATPG100 1000 10,000

Chip1 926 86.1 94.1 96.3 96.6
Chip2 1103 75.2 92.3 95.9 97.1

472 BUILT-IN SELF-TEST

cycles independent of external stimuli. Nevertheless, as illustrated in this section, it
is possible to use BIST effectively to test and diagnose defects in systems using off-
the-shelf components.

Hewlett-Packard used signature analysis to test microprocessor-based boards.18

The test stimuli consisted of both exhaustive functional patterns and specific, fault-
oriented test patterns. With either type of pattern, output responses are compressed
into four-digit hexadecimal signatures. The signature generator compacts the
response data generated during testing of the system.

The basic configuration is illustrated in Figure 9.12. It is a rather typical micro-
processor configuration; a number of devices are joined together by address and data
buses and controlled by the microprocessor. Included are two items not usually seen
on such diagrams: a free-run control and a bus jumper. When in the test mode, the
bus jumper isolates the microprocessor from all other devices on the bus. In
response to a test signal or system reset, the free-run control forces an instruction
such as an NOP (no operation) onto the microprocessor data input. This instruction
performs no operation, it simply causes the program counter to increment through
its address range.

Since no other instruction can reach the microprocessor inputs while the bus
jumper is removed, it will continue to increment the program counter at each clock
cycle and put the incremented address onto the address bus. The microprocessor
might generate 64K addresses or more, depending on the number of address bits. To
evaluate each bit in a stream of 64K bits, for each of 16 address lines, requires stor-
ing a million bits of data and comparing these individually with the response at the
microprocessor address output. To avoid this data storage problem, each bit stream
is compressed into a 16-bit signature. For 16 address lines, a total of 256 data bits
must be stored.

The Hewlett-Packard implementation used the LFSR illustrated in Figure 9.2.
Because testability features are designed into the product, the tests can be run at the
product’s native clock speed, while the LFSR monitors the data bus and accumulates
a signature.

After the program counter has been verified, the ROM can be tested by running
through its entire address space and generating a signature on each of its output pins.

Figure 9.12 Microprocessor-based signature analysis.

Microprocessor

Bus jumper

Free
run

control

ROM RAM Peripherals

Control

Data bus

Address bus

SELF-TEST APPLICATIONS 473

The ROM, like the program counter, is run through its address space by putting the
board in the free run mode and generating the NOP instruction. After the ROM has
been checked, the bus jumper is replaced and a diagnostic program in ROM can be
run to exercise the microprocessor and other remaining circuits on the board. Note
that diagnostic tests can reside in the ROM that contains the operating system and
other functional code, or that ROM can be removed and replaced by another ROM
that contains only test sequences. When the microprocessor is in control, it can exer-
cise the RAM using any of a number of standard memory tests. Test stimuli for the
peripherals are device-specific and could in fact be developed using a pseudo-
random generator.

The signature analyzer used to create signatures has several inputs, including
START, STOP, CLOCK, and DATA. The DATA input is connected to a signal point
that is to be monitored in the logic board being tested. The START and STOP sig-
nals define a window in time during which DATA input is to be sampled while the
CLOCK determines when the sampling process occurs. All three of these signals are
derived from the board under test and can be set to trigger on either the rising or fall-
ing edge of the signal. The START signal may come from a system reset signal or it
may be obtained by decoding some combination on the address lines, or a special bit
in the instruction ROM can be dedicated to providing the signal. The STOP signal
that terminates the sampling process is likewise derived from a signal in the logic
circuit being tested. The CLOCK is usually obtained from the system clock of the
board being tested.

For a signature to be useful, it is necessary to know what signature is expected.
Therefore, documentation must be provided listing the signatures expected at the IC
pins being probed. The documentation may be a diagram of the circuit with the sig-
natures imprinted adjacent to the circuit nodes, much like the oscilloscope wave-
forms found on television schematics, or it can be presented in tabular form, where
the table contains a list of ICs and pin numbers with the signature expected at each
signal pin for which a meaningful signature exists. This is illustrated for a hypothet-
ical circuit in Table 9.4.

TABLE 9.4 Signature Table

IC Pin Signature IC Pin Signature

U21 2 8UP3 U41 3 37A3
3 713A 5 84U4
4 01F6 6 F0P1
7 69CH 8 1147

9 8P7U
9 77H1 11 684C

11 10UP 15 H1C3
14 1359
15 U11A

474 BUILT-IN SELF-TEST

During test the DATA probe of the signature analyzer is moved from node to
node. At each node the test is rerun in its entirety and the signature registered by the
signature analyzer is checked against the value listed in the table. This operation is
analogous to the guided probe used on automatic test equipment (cf. Section 6.9.3).
It traces through a circuit until a device is found that generates an incorrect output
signature but which is driven by devices that all produce correct signatures on their
outputs. Note that the letters comprising the signature are not the expected 0–9 and
A–F. The numerical digits are retained but the letters A–F have been replaced by
ACFHPU, in that order, for purposes of readability and compatibility with seven-
segment displays.19

A motive for inserting stimulus generation within the circuits to be tested, and
compaction of the output response, is to make field repair of logic boards possible.
This in turn can help to reduce investment in inventory of logic boards. It has been
estimated that a manufacturer of logic boards may have up to 5% of its assets tied up
in replacement board kits and “floaters”—that is, boards in transit between customer
sites and a repair depot. Worse still, repair centers report no problems found in up to
50% of some types of returned boards.20 A good test, one that can be applied suc-
cessfully to help diagnose and repair logic boards in the field, even if only part of the
time, can significantly reduce inventory and minimize the drain on a company’s
resources.

The use of signature analysis does not obviate the need for sound design prac-
tices. Signature analysis is useful only if the bit streams at various nodes are repeat-
able. If even a single bit is susceptible to races, hazards, uninitialized flip-flops, or
disturbances from asynchronous inputs such as interrupts, then false signatures will
occur with the result that confidence in the signature diminishes or, worse still, cor-
rectly operating components are replaced. Needlessly replacing nonfaulted devices
in a microprocessor environment can negate the advantages provided by signature
analysis.

9.5.2 Self-Test Using MISR/Parallel SRSG (STUMPS)

STUMPS was the outcome of a research effort conducted at IBM Corp. in the early
1980s for the purpose of developing a methodology to test multichip logic mod-
ules.21 The multichip logic module (MLM) is a carrier that holds many chips. The
SRSG (shift register sequence generator) is their terminology for what is referred to
here as a PRG.

Development of STUMPS was preceded by a study of several configurations to
identify their advantages and disadvantages. The configuration depicted in
Figure 9.13, referred to as a random test socket (RTS), was one of those studied. The
PRG generates stimuli that are scanned into the MLM at the SRI (shift register
input) pin. The bits are scanned out at the SRO (shift register output) and are clocked
into a TRC to generate a signature. The scan elements are made up of LSSD SRLs
(shift register latches). Primary inputs are also stimulated by a PRG, and primary
outputs are sampled by a MISR. This activity is under control of a test controller that
determines how many clock cycles are needed to load the internal scan chains. The

SELF-TEST APPLICATIONS 475

Figure 9.13 Random test socket.

test controller also controls the multichip clocks (MCs). When the test is done, the
test controller compares the signatures in the MISR’s to the expected signatures to
determine if the correct response was obtained.

One drawback to the random test socket is the duration of the test. The assump-
tions are:

All of the SRLs are connected into a single scan path.
There would be about 10,000 SRLs in a typical scan chain.
The clock period is 50 ns.
About one million random vectors would be applied.
A new vector is loaded while the previous response is clocked into the MISR.

With these assumptions, the test time for an MLM is about 8 minutes, which was
deemed excessive.

A second configuration, called simultaneous self-test (SST), converts every SRL
into a self-test SRL, as shown in Figure 9.14(a). At each clock, data from the combi-
national logic is XOR’ed with data from a previous scan element, as shown in
Figure 9.14(b). This was determined to produce reasonably random stimuli. Since
every clock resulted in a new test, the application of test stimuli could be accom-
plished very quickly. The drawbacks to this approach were the requirement for a test
mode I/O pin and the need for a special device, such as a test socket, to handle test-
ing of the primary inputs and outputs.

A third configuration that was analyzed was STUMPS. The scan path in each
chip is driven by an output of the PRG (recall from the discussion of LFSRs that a
pseudo-random bit stream can be obtained from each SRL in the LFSR). The scan-
out pin of each chip drives an input to the MISR. This is illustrated in Figure 9.15,
where each chain from PRG to MISR corresponds to a one chip. The number of
clocks applied to the circuit is determined by the longest scan length. The chips with
shorter scan lengths will have extra bits clocked through them, but there is no pen-
alty for that. The logic from the primary outputs of each chip drive the primary
inputs to other chips on the MLM. Only the primary inputs and outputs of the MLM
have to be dealt with individually from the rest of the test configuration.

Multichip logic module

PR
G

... M
IS

R

...

PRG TRC

Test
controller

PO’sPI’s

}

A BSR
I

SR
O

}

MCs

476 BUILT-IN SELF-TEST

Figure 9.14 Simultaneous self-test.

Unlike RTS, which connects the scan paths of all the individual chips into one
long scan path, scan paths for individual chips in STUMPS are directly connected to
the PRG and the MISR, using the LSSD scan-in and scan-out pins, so loading stim-
uli and unloading response can be accomplished more quickly, although not as
quickly as with SST. An advantage of STUMPS is the fact that, apart from the PRG
and MISR, it is essentially an LSSD configuration. Since a commitment to LSSD
has already been made and since STUMPS does not require any I/O pins in addition
to those committed to LSSD, there is no additional I/O penalty for the use of
STUMPS.

The PRG and MISR employed in STUMPS are contained in a separate test chip,
and each MLM contains one or more test chips to control the test process. A MLM
that contained 100 chips would require two test chips. Since the test chips are about
the same size as the functional chips, they represented about a 2% overhead for
STUMPS. The circuit in Figure 9.16 illustrates how the test chip generates the
pseudo-random sequences and the signatures.

Figure 9.15 STUMPS architecture.

Data
C

Scan-in
Shift A
Shift B

L1
L2Test Mode

SRL
+

SRL
Data

Scan-in

Scan-outScan-out

(a)

(b)+

+

Scan-in

MISR

PRG
SI1 SI2 SI3 SIn

SO1 SO2 SO3 SON

C
om

b.
lo

gi
c

C
om

b.
lo

gi
c

SELF-TEST APPLICATIONS 477

Figure 9.16 The MISR/PRG chip.

9.5.3 STUMPS in the ES/9000 System

STUMPS was used by IBM to test the ES/9000 mainframe.22 A major advantage in
the use of STUMPS was the ability to avoid creating the large test data files that
would be needed if ATPG generated vectors and response were used to test the ther-
mal conduction modules (TCM). A second advantage was simplification of TCM
cooling during testing due to the absence of a probing requirement.

A typical STUMPS controller chip contained 64 channels. The fault coverage
and the signatures generated by the circuits being tested were determined by simu-
lation. Tests applied included a flush test, a scan test, an ABT test, and a logic test.
The flush test (cf. Section 8.4.3) applies a logic 1 to both A and B clocks, causing
all latches to be opened from the scan-in to the scan-out. Then a 1, followed by a 0,
are applied to the scan chain input. This will reveal any gross errors in the scan
chain that prevents propagation of signals to the scan output. The scan test clocks
signals through the scan chain. The test is designed to apply all possible transitions
at each latch.

In an ABT test the module is switched to self-test mode and the LFSR and MISR
are loaded with initial values. Then all SRLs in the scan chains are loaded with
known values while the MISR inputs are blocked. After the SRLs are loaded, the
data are scanned into the MISRs. If the correct signature is found in the MISR, the
STUMPS configuration is assumed to be working correctly. A correct signature pro-
vides confidence that the self-test configuration is working properly.

After the aforementioned three tests are applied and there is a high degree of con-
fidence that the test circuits are working properly, the logic test mode is entered.
STUMPS applies stimuli to the combinational logic on the module and creates a sig-
nature at the MISR. The tests are under control of a tester when testing individual
modules. The tester applies stimuli to the primary inputs and generates signatures at
the primary outputs. The input stimuli are generated by LFSRs in the tester, which

SRL SRL

SOi SOi+1

SRL SRL

0 1
MUX

0 1
MUXTestMode

SIi+1 SIi+2

MISR

PRG

.....

+ +

+ +

478 BUILT-IN SELF-TEST

are shifted once per test. Response at primary outputs is captured by means of SISRs
(single input signature registers) in the tester.

From the perspective of the engineers designing the individual chips, STUMPS
did not require any change in their methodology beyond those changes required to
accommodate LSSD. However, it did require changes to the Engineering Design
System (EDS) used to generate test stimuli and compute response.23 A compiled
logic simulator was used to determine test coverage from the pseudo-random pat-
terns. However, before simulation commences, design rule checking must be per-
formed to ensure that X states do not find their way into the SRLs. If that happens,
the entire MISR quickly becomes corrupted. Predictable and repeatable signatures
was also a high priority.

For this particular development effort, the amount of CPU time required to gener-
ate a complete data file could range from 12 up to 59 hours. The data file for the
TCM that required 59 hours to generate contained 152 megabytes and included test
commands, signatures, and a logic model of the part. Fault coverage for the TCMs
ranged from 94.5% up to 96.5%. The test application time ranged from 1.3 minutes
to 6.2 minutes, with an average test time being 2.1 minutes.

Diagnosis was also incorporated into the test strategy. When an incorrect signa-
ture was obtained at the MISR, the test was repeated. However, when repeated, all
chains but one would be blocked. Then the test would be rerun and the signature for
each individual scan chain would be generated and compared to an expected signa-
ture for that chain. When the error had been isolated to one or more channels, the
test would be repeated for the failing channels. However, this time it was done in
bursts of 256 patterns in order to localize the failure to within 256 vectors of where it
occured. RAM writes were inhibited during this process so the diagnostic process
was essentially a combinational process. Further resolution down to eight patterns
was performed, and then offline analysis was performed to further resolve the cause
of the error signals. The PPSFP algorithm (Section 3.6.3) was used to support this
process, simulating 256 patterns at a time.

The test time for a fault-free module was, on average, 2.1 minutes. Data collec-
tion on a faulty module extended the test time to 5 minutes. Diagnostic analysis,
which included simulation time, averaged 11.7 minutes. Over 94% of faulty mod-
ules were repaired on the basis of automatic repair calls. Less than 6% of fails
required manual analysis, and the resolution of the diagnostics averaged less than
1.5 chips per defect. This resulted, in part, from fault equivalence classes than
spanned more than one chip.

9.5.4 STUMPS in the S/390 Microprocessor

Another product in IBM that made use of STUMPS was the S/390 microprocessor.1

The S/390 is a single chip CMOS design. It incorporates pipelining and many other
design features found in contemporary high-end microprocessors. In addition, it
contains duplicate instruction and execution units that perform identical operations
each cycle. Results from the two units are compared in order to achieve high data
integrity. The S/390 includes many test features similar to those used in the ES/9000

SELF-TEST APPLICATIONS 479

system; hence in some respects its test strategy is an evolution of that used in the
ES/9000. A major difference in approaches stems from the fact that ES/9000 was a
bipolar design, with many chips on an MLM, whereas S/390 is a single-chip micro-
processor, so diagnosing faulty chips was not an issue for S/390.

The number of tester channels needed to access the chip was reduced by
placing a scannable memory element at each I/O, thus enabling I/Os to be
controlled and observed by means of scan operations. Access to this boundary
scan chain, as well as to most of the DFT and BIST circuitry, was achieved by
means of a five wire interface similar to that used in the IEEE 1149.1 standard
(cf. Section 8.6.2). An on-chip phase-locked loop (PLL) was used to multiply the
tester frequency, so the tester could be run at a much slower clock speed. Because
much of the logic dedicated to manufacturing test on the chips was also used for
system initialization, recovery, and system failure analysis, it was estimated that
the logic used exclusively for manufacturing test amounted to less than 1% of the
overall chip area.

One of the motivating factors in the choice of BIST was the calculation that the
cost of each full-speed tester used to test the S/390 could exceed $8 million. The
choice of STUMPS permitted the use of a low-cost tester by reducing the complex-
ity of interfacing to the tester. In addition, use of the PLL made it possible to use a
much slower, hence less expensive, tester. BIST for memory test eliminated the need
for special tester features to test the embedded memory. Another attraction of BIST
is its applicability to system and field testing.

Because the S/390 is a single, self-contained chip, it was necessary to design test
control logic to coexist on the chip with the functional logic. Control of the test
functions is accomplished via a state machine within each chip, referred to as the
self-test control macro (STCM). When in test mode, it controls the internal test
mode signals as well as the test and system clocks. Facilities exist within the STCM
that permit it to initiate an entire self-test sequence via modem. In addition to the
BIST that tests the random combinational logic, known as LBIST (logic BIST),
another BIST function is performed by ABIST (array BIST), which provides at-
speed testing of the embedded arrays. An ABIST controller can be shared among
several arrays. This both reduces the test overhead per array and permits reduced test
times, since arrays can be tested in parallel. The STUMPS logic tests are supple-
mented by weighted random patterns (WRP) that are applied by the tester. Special
tester hardware causes individual bits in scan-based random test patterns to be statis-
tically weighted toward 1 or 0.

The incorporation of BIST in the S/390 not only proved useful for manufacturing
and system test, but also for first silicon debug. One of the problems that was
debugged using BIST was a noise problem that would allow LBIST to pass in a nar-
row voltage range. Outside that range the signatures were intermittent and nonre-
peating, and they varied with voltage. A binary search was performed on the LBIST
patterns using the pattern counter while running in the good voltage range. The good
signatures would be captured and saved for comparison with the signatures gener-
ated outside the good voltage range. This was much quicker than resimulating, and it
led to the discovery of the noisy patterns that had narrow good response voltage

480 BUILT-IN SELF-TEST

windows. These could then be applied deterministically to narrow down the source
of the noise.

LBIST was also able to help determine power supply noise problems. LBIST
could be programmed to apply skewed or nonskewed load/unload sequences with or
without system clocks. The feature was used to measure power supply noise at dif-
ferent levels of switching activity. LBIST was able to run in a continuous loop, so it
was relatively easy to trace voltage and determine noise and power supply droop
with different levels of switching activity. Some of these same features of LBIST
were useful in isolating worst-case delay paths between scan chains.

9.5.5 The Macrolan Chip

The Macrolan (medium access controller) chip, a semicustom circuit, was designed
for the Macrolan fiber-optic local area network. It consists of about 35,000 transis-
tors, and it used BIST for its test strategy.2 A cell library was provided as part of the
design methodology, and the cells were able to be parameterized. A key part of the
test strategy was a register paracell, which could be generated in a range of bit sizes.
The register is about 50% larger than a scan flip-flop, and each bit contained two
latches, permitting master/slave, edge-triggered, or two-phase, nonoverlapping
clocking. All register elements are of this type, there are no free-standing latches or
flip-flops. Two diagnostic control bits (DiC) from a diagnostic control unit permitted
registers to be configured in four different modes:

User—the normal functional mode of the register

Diagnostic hold—contents of the register are fixed

Diagnostic shift—data are shifted serially

Test

LFSR
MISR
Generate circular shifting patterns
Hold a fixed pattern

When in test mode, selection of a particular test function is accomplished by
means of two bits in the test register. These two bits, as well as initial seed values
for generating tests, are scanned into the test register. Since the two control bits
are scanned in, the test mode for each register in the chip can be individually
selected. Thus, an individual scan chain can be serially shifted while others are
held fixed.

The diagnostic control unit is illustrated in Figure 9.17. In addition to the clock
(CLK), there are four input control signals and one output signal. Three other sig-
nals are available to handle error signals when the chip is used functionally. The chip
select (CS) makes it possible to access a single chip within a system. Control (CON)
is used to differentiate between commands and data. Transfer (TR) indicates that
valid data are available and Loop-in is used to serially shift in commands or data.
Loop-out is a single output signal.

SELF-TEST APPLICATIONS 481

Figure 9.17 Macrolan diagnostic unit.

The diagnostic unit can control a system of up to 31 scan paths, each containing
up to 128 bits. As previously mentioned, scan paths can be individually controlled
using the two DiC bits. Scan path 0 is a 20-bit counter that is serially loaded by the
diagnostic unit. It determines the number of clock cycles used for self-test; hence the
system can apply a maximum of 220 patterns. This limitation of 20 bits is imposed to
minimize the simulation time required to compute signatures as well as to limit test
time. The diagnostic unit can support chips using two or more clocks, but all regis-
ters must be driven from a master clock when testing the chip or accessing the scan
paths.

The Macrolan chip makes use of a fence multiplexer to assist in the partitioning
of the circuit. This circuit, illustrated in Figure 9.18, is controlled by a register
external bit. During normal operation the register external bit is programmed to
select input A, causing the fence to be logically transparent. When testing the chip,
the fence plays a dual role. If input A is selected, the input to the fence can be
compacted using the LFSR/MISR. When the external bit selects input B, the fence
can be used in the generation of random patterns to test the logic being driven by
the fence. Fences are also used to connect I/O pins to internal logic. This permits
chips to be isolated from other circuitry and tested individually when mounted on
a PCB.

Since the counter limits the number of tests to 220, a cone of combinational logic
feeding an output cannot be tested exhaustively if it has more than 20 inputs. Since
each output in a scan chain must satisfy that criteria with respect to the inputs to the

Function / data

Function decode
and control

Loop
number

Command

5:32
decode

DC1 select

Detect Control

Counter (LPO)

Loop 1

Loop 2

Loop N

32:1
MUX Loop

out

Loop in

DC2

TR
CS

CON
CLK

482 BUILT-IN SELF-TEST

Figure 9.18 Fence multiplexer.

cone, and since logic cones, in general, are going to share inputs, a true exhaustive
test for all the logic is virtually impossible to achieve. It is estimated that about 5%
of the logic on the Macrolan chip is tested using exhaustive testing.

The BIST strategy employed by the design team made use of quasiexhaustive
test. This test mode takes advantage of the observation that if 1 < N < 17, where N is
the number of inputs to a circuit, and if there are M = 2N+3 random vectors (i.e.,
without replacement), then PM ≥ 99.9%. Therefore, the LFSR can be cycled through
a small subset of its patterns, with the result that there is no upper limit on the length
of the LFSR, as there would be for an exhaustive test.

Another advantage to this mode of test is that two LFSRs can be used to generate
patterns in parallel as long as their lengths are different. Consider two LFSRs of
length A and B that generate maximal length sequences SA = 2A − 1 and SB = 2B − 1.
The longest possible sequence generated by the two LFSRs running in parallel is
(2A − 1) × (2B − 1), in which case their combined sequence will not repeat until
both LFSRs return to their seed values simultaneously. The sequence length then
will be the lowest common multiple of SA and SB, that is, SA+B = SA × SB. Put
another way, the highest common factor (HCF) of SA and SB must be 1, which makes
the sequence lengths of A and B coprime.

9.5.6 Partial BIST

Up to this point BIST has been discussed within the context of an all-or-nothing
environment. But many test strategies employ BIST as one of several strategies to
achieve thorough, yet economical test coverage. In particular, it is not uncommon to
see designs where there is a sizable internal RAM that is tested using memory BIST
or ROM that is tested by generating a signature on its contents while the random
logic circuitry employs scan-based DFT. The PowerPC MPC750 is an example of a
design that uses memory BIST (memory BIST will be discussed in Chapter 10). The
MPC750 also employs functional patterns to test small arrays, clock modes, speed
sorting, and other areas that were not fully tested by scan.24

The Pentium Pro employed a BIST mode to achieve high toggle coverage for
burn-in testing.25 However, this feature was not intended to achieve high-fault cover-
age. Some LFSRs were used to support BIST testing of programmable logic arrays

LFSR
MISR

Register
external bit

MUX

SEL

A
B

SELF-TEST APPLICATIONS 483

(PLAs). Interestingly, their cost/benefit analysis led them to implement equivalent
functionality in microcode for the larger PLAs. Signatures from the PLAs during
BIST were acquired and read out using a proprietary Scanout mode under micro-
code control. In an earlier Intel paper describing the use of BIST for PLAs and
microcode ROM (CROM), it was pointed out that the use of BIST during burn-in
made it possible to detect a high percentage of early life failures.26

While there is growing interest in BIST, and it becomes easier to justify as cir-
cuits get larger and feature sizes get smaller, design teams have been able to justify it
on the basis of cost/benefit analysis as far back as the early 1980s. The Motorola
MC6804P2 is externally a small 8-bit microprocessor, but internally it is a serial
architecture. It used BIST because it was determined to be cost effective as a test
solution.27 A 288-byte test program is stored in on-chip ROM; and an on-chip
LFSR, using the CCITT-16 polynomial x15 + x12 + x5 + 1, is updated at the end of
each clock during the execution of the test program. A verify mode uses the same
LFSR to test both customer and self-test ROM. The results are then compressed into
a single 16-bit signature. The LFSR monitors the data bus so that during execution
of the test program it is seldom necessary to perform compare and conditional
branch instructions.

A flowchart for the MC6804P2 self-test is illustrated in Figure 9.19. The first step
of the test checks basic ALU operations and writes results to a four-level stack. The
ports and interrupt logic are then tested. The ports can be driven by a tester for
worst-case test, or they can be tied together with a simple fixture for field test. After
the test, the LFSR is read out and the 32-byte dynamic RAM is tested, and results
are again read out. Then the RAM is filled with all-zeros, and those data are checked
at the end of the test to confirm data retention. Again, after the timer test, the results
are shifted out and a pass/fail determination is made. Finally, the data ROM test is
used to test the data space ROM, the RAM that was previously cleared, the accumu-
lator, and other miscellaneous logic.

The 288 bytes of test program are equivalent to about 1500 bus cycles. It was
estimated that because of the serial nature of the microprocessor, each bus cycle was
equivalent to about 24 clock cycles; hence the test would require about 36,000 test
vectors. The customer ROM would add another 9000 vectors. Another factor
impacting test size is the fact that the test program, if controlled by a tester, would
need more compares, data reads, and so on, to replace the reads performed by the
internal LFSR. Another motive for the BIST was its availability to customers.

Figure 9.19 Self-test flowchart.

ST
A

C
K

PO
R

T
S

R
A

M

T
IM

E
R

D
A

T
A

 R
O

M

PASS

FAIL

484 BUILT-IN SELF-TEST

9.6 REMOTE TEST

Monitoring and testing electronic devices from a distant test station has been a fun-
damental capability for many years. However, it has tended to be quite expensive,
and hence reserved for those applications where its cost could be justified. In former
years it had been reserved for large, expensive mainframes and complex factory con-
trollers. This mode of operation has recently migrated to more common devices,
including the personal computer.

9.6.1 The Test Controller

In years gone by, the test controller was an indispensable part of the overall test
strategy in many applications, including large mainframes and complex electronics
systems for controlling avionics and factory operations, where a system might be
comprised of several units, each comprised of many hundreds of thousands of logic
gates. It might have different names and somewhat different assignments in different
systems, but one thing the test controllers had in common was the responsibility to
respond to error symptoms and help diagnose faults more quickly. Test controllers
used some or all of the methods discussed in this and previous chapters, and they
used some methods that will be discussed in subsequent sections. The general range
of functions performed by the test controller include the following:

System startup

Communications with operator

System reconfiguration

Performance monitoring

System testing

Some of the earliest test controllers were used in support of mainframes. The typ-
ical test controller was a minicomputer or microprocessor. The rationale for this
approach resulted from the fact that the mainframe was implemented using a tech-
nology such as emitter-coupled logic (ECL), which ran quite hot. As a result, it was
much less reliable than the minicomputer or microprocessor that was used to apply
test programs when the mainframe was powered up or when a problem occurred.

A typical system configuration is depicted in Figure 9.20. During system startup
the test controller, or maintenance processor as it was sometimes called, was
required to initialize the main processor, set or reset specific flip-flops and indica-
tors, clear I/O channels of spurious interrupt requests, load the operating system,
and set it into operation. Communication with the operator might result in operator
requests to either conduct testing of the system or make some alterations to the stan-
dard configuration. A system reconfiguration might also be performed in response to
detection of errors during operation. Detection of a faulty I/O channel, for example,
might result in that channel being removed from operation and I/O activities for that
channel being reassigned to another channel. Some or all of the reconfiguration was
performed in conjunction with the main processor.

REMOTE TEST 485

Figure 9.20 The maintenance processor.

Performance monitoring requires observing error indicators within a system dur-
ing operation and responding appropriately. It is not uncommon for a maintenance
processor to become aware of a problem before the computer operator realizes it. If
an error signal is observed, an instruction retry may be in order. If the retry results in
another error indication of the same nature, then a solid failure is indicated and a
detailed test of some part of the system is necessary. The maintenance processor
must determine what tests to select, and it must record the internal state of the sys-
tem so that it can be restarted, whenever possible, from the point where the error was
detected.

After applying tests, decisions must be made concerning the results of the tests.
This may involve communicating with a field engineer either locally or, via remote
link, at some distant repair depot. If tests do not result in location of a fault, but the
error persists, then the field engineer may want to load registers and flip-flops in the
system with specific test data via the maintenance processor, run through one or
more cycles of the system clock, and read out the results for evaluation.

In conjunction with remote diagnosis, it is possible to maintain a database at a
depot to assist the field engineer in those situations where the error persists but a
fault cannot be located. The Remote Terminal Access Information Network
(RETAIN) system is one such example.28 It is a data base of fault symptoms that
proved difficult to diagnose. It includes the capability for structuring a search argu-
ment for a particular product symptom to provide efficient and rapid data location.
The data base is organized both on a product basis and on a symptom basis.

It should be noted that the maintenance processor must be verified to be working
correctly. However, the computer chosen to serve as the maintenance processor was
normally a mature product rather than a state-of-the-art device; it need not be fast,
only reliable. Hence, it was generally orders of magnitude more reliable than the
mainframe it was responsible for testing.

In microprogrammable systems implemented with writable control store, the
maintenance processor can be given control over loading of control store. This can
be preceded at system start-up time by first loading diagnostic software that operates
out of control store. Diagnostics written at this level generally exercise greater con-
trol over internal hardware. Tests can run more quickly since they can be designed to

Modem Maintenance
computer T

es
t

in
te

rf
ac

e

Mainframe

Remote
console

486 BUILT-IN SELF-TEST

exercise functional units without making repeated instruction fetches to main mem-
ory. In addition, control at this level makes it possible to incorporate hardware test
features such as BILBOs and similar BIST structures, and directly control them
from fields in the microcode.

Maintenance processors can be given control over a number of resources, includ-
ing power supplies and system clocks.29 This permits power margining to stress
logic components, useful as an aid in uncovering intermittents. Intermittents can
also occasionally be isolated by shortening the clock period. With an increased sys-
tem clock period, the system can operate with printed circuit boards on extender
cards. Other reconfiguration capability includes the ability to disconnect cache and
address translation units to permit operation in a degraded mode if errors are
detected in those units.

The maintenance processor must be flexible enough to respond to a number of
different situations, which suggests that it should be programmable. However,
operating speed of the maintenance processor is usually not critical, hence micro-
processor-based maintenance processors were used. One such system reported in the
literature used a Z80 microprocessor.30 The maintenance processor can trace the
flow of activity through a CPU, which proves helpful in writing and debugging both
diagnostic and functional routines in writable control store. Furthermore, the main-
tenance processor can reconfigure the system to operate in a degraded mode wherein
an IPU (internal processor unit) that normally shares processing with the CPU can
take over CPU duties if the CPU fails.

Another interesting feature of the maintenance processor is its ability to inten-
tionally inject fault symptoms into the main processor memory or data paths to
verify the operation of parity checkers and error detection and correction circuitry.31

The logging of relevant data is an important aspect of the maintenance processor’s
tasks. Whenever indicators suggest the presence of an error during execution of an
instruction, an instruction retry is a normal first response since the error may have
been caused by an intermittent condition that may not occur during instruction retry.

Before an instruction retry, all data that can help to characterize the error must be
captured and stored. This includes contents of registers and/or flip-flops in the unit
that produced the error signal. Other parameters that may be relevant include tem-
perature, line voltage, time, and date.32 If intermittents become too frequent, it may
be possible to correlate environmental conditions with frequency of occurrence of
certain types of intermittent errors. If a given unit is prone to errors under certain
stressful conditions, and if this is true in a large number of units in use at customer
sites, the recorded history of the product may indicate an area where it may benefit
from redesign.

The inclusion of internal busses in the mainframe to make internal operations
visible is also supported.33 An interesting addition to this architecture is the cyclic
redundancy check (CRC) instruction, which enables both the operational program-
mer and the diagnostic programmer to generate signatures on data buffers or instruc-
tion streams.

The scan path can be integrated with the maintenance processor, as in the
DPS88.34 In this configuration the maintenance processor has access to test vectors

REMOTE TEST 487

stored on disk. The tests may be applied comprehensively at system start-up or may
be applied selectively in response to an error indication within some unit. The tests
are applied to specific scan paths selectable from the maintenance processor. The
scan path is first addressed and then the test vectors are scanned into the addressed
serial path. Addressability is down to specific functional unit, board, and micropack
(assembly on which 50 to 100 dice are mounted and soldered). The random pattern
and signature features can be used in conjunction with the maintenance processor.16

9.6.2 The Desktop Management Interface

With the pace of technology permitting CMOS to overtake ECL technology, micro-
processors with a clock period of 1.0 ns and less at the time of this writing are replac-
ing mainframes of little more than a decade ago. The maintenance processor is not as
common as it once was. However, the now ubiquitous personal computer (PC) has
introduced a different set of problems. The mass production of millions of these PCs
puts complex devices that are difficult to test and diagnose when they fail to work
correctly into virtually every business and household. Furthermore, these PCs can be
difficult to set up or alter if the owner wants to perform an upgrade. Clashes over soft-
ware settings between application programs, or clashes over switch settings on the
motherboard, can lead to significant frustration on the part of the owner of the PC.

A solution to this situation is the Desktop Management Interface (DMI). This is a
specification defined by a consortium of vendors known as the Desktop Manage-
ment Task Force (DMTF).35 DMI 2.0 includes a remote management solution that
makes it possible to access information across the internet by means of standard
Remote Procedure Calls (RPC). The goal is to address cost of ownership problems.
By developing standardized procedures for communicating between components of
a system, it becomes possible to identify and report everything from simple opera-
tional problems, such as a device out of paper, to software problems such as conflict-
ing interrupt settings, to hardware problems such as a CPU fan failure or an
imminent hard disk head crash.

The general organization of the DMI is illustrated in Figure 9.21. The service
layer collects information from the component interface, which in turn collects data
from the hardware and software components. One of the components is an ASIC
that collects data indicating excessive temperature, incorrect voltages, fan failures,
and chassis intrusions. Information collected by the component interface is stored in
a management information file (MIF) data base.

The management application gathers information from the MIF data base and the
service layer via the management interface and reports the data by means of a
graphical user interface (GUI). The management application can run on a remote
console or on the client. System files for particular managed components can be
updated when the product itself is being updated. Vendors of managed products pro-
vide the component interface—that is, test programs, data, and product attributes in
MIF format. DMI requires a compatible BIOS that can communicate with the com-
ponent interface and service provider. Some information, such as conflicting inter-
rupt assignments or low memory or disk space, comes from the operating system.

488 BUILT-IN SELF-TEST

Figure 9.21 Desktop Management Interface (DMI).

Some of the information for DMI comes from operational modes that report such
routine problems as paper jams, open cover, or low levels of toner or paper in a
printer. Other information comes from more sophisticated analysis tools such as the
hard drive reliability standard called Self-Monitoring, Analysis and Reporting Tech-
nology (SMART). This standard provides for on-drive sensing hardware for report-
ing drive status and software to collect and intrepret that data. The object is to
measure physical degradation in the drive and alert the user to imminent failures.
These measurements are recorded in the hard drive by sensor chips that potentially
can measure up to 200 parameters such as head flying height, spin-up time, and so
on. If a measurement falls outside of some predefined range, the drive issues an
alarm that can be directed to the DMI which can display the measurement on its
GUI.36

9.7 BLACK-BOX TESTING

This chapter began with a look at circuits designed to generate stimuli and accumu-
late response patterns, or signatures. These basic tools were then used, in conjunc-
tion with maintenance processors and scan methodologies, to test large mainframes.
The solution was a global application of scan to all of the circuitry. We now turn our
attention to the testing of circuits where, for various reasons, there is no visibility
into the internal structure of the device or system. All testing is performed based on
an understanding of the functionality of the device. Because of this lack of visibility,
the methods described here are often referred to as black-box testing.

Testing of microprocessors and other complex logic devices can be aided by
ordering and/or partitioning the functions within these devices. Ordering offers
insight into the order in which functions should be tested. Furthermore, a good,
robust ordering may suggest test strategies, since different partitions may lend

Service layer

Component interface

Management interface

Management
information

data base

Desktop
mgmt. appl.

Mgmt.
console

LAN mgmt.
application

Motherboard

Scanner Monitor

Hard driveOperating
system

Appl.
SW

Plotter

Management
Applications

Managed
Products

BLACK-BOX TESTING 489

themselves to very different test methodologies. Where one partition may best be
tested with BIST, another partition may be more effectively, or economically, tested
using a conventional ATPG. A successful ordering of partitions may also be critical
for those situations where detailed knowledge of the physical structure of the
system is not available. In such cases, algorithmic test programs, such as those dis-
cussed in Chapter 7 for ALUs, counters, and so on, may be necessary. Within that
context, it is necessary to develop a test program that is thorough while at the same
time effective at diagnosing fault locations.

9.7.1 The Ordering Relation

A typical central processor unit (CPU) is illustrated in Figure 9.22. The figure is also
typical of the amount of information provided by manufacturers of microprocessors.
The information is usually provided for the benefit of the assembly language pro-
grammer. It displays a register stack, a control section, an ALU, a status register, a
data bus, instruction register, and program counter. Information is provided on the
architecture, including the instruction set, and a breakdown of the number of
machine cycles required to execute the instructions.

Two or three decades ago, when the 8-bit microprocessor was dominant, it was
not unusual to create a gate equivalent circuit and run ATPG. For contemporary,
multi-million gate circuits, that is virtually impossible. An alternative is to resort to
the use of block diagrams. In the method to be described here, a system is first parti-
tioned into macroblocks, which are high-level functional entities such as CPUs,
memory systems, interrupt processors, I/O devices, and control sections.37 The
macroblocks are then partitioned, to the extent possible, into smaller microblocks.
Testing is organized at the microblock level, hence can be quite detailed, and can take
into account the characteristics of the individual microcircuits. The objective is to
obtain a comprehensive test for the microblock while using the macroblocks to route

Figure 9.22 Typical central processor unit.

Data bus

MUX

Acc
Status

Program
counter

Inst. reg.
Main

memory

Control unit

ALU

Address bus

CnC2C1

Regs.

490 BUILT-IN SELF-TEST

test information to observable outputs. When testing the microblocks in a given
macroblock, all other macroblocks are assumed to be fault-free. Furthermore, the
microblocks within a given macroblock are ordered such that a microblock is tested
only through modules already tested.

Before discussing partitioning techniques for microblocks and macroblocks, we
discuss the concept of hardcore. Hardcore circuits are those used to test a processor.
First-degree hardcore is circuitry used exclusively for testing. It is verified indepen-
dently of a processor’s normal operational features and is then used to test the oper-
ational logic. Examples of first-degree hardcore include such things as a ROM
dedicated to test which is loaded via a special access path not used by operational
logic, a dedicated comparator for evaluating results, and watchdog timers that are
used to verify that peripherals attached to the I/O ports respond within some speci-
fied time. A given device may or may not have first-degree hardcore. If it does, then
the test strategy dictates that it be tested first. Second-degree hardcore is that part of
the operational hardware used in conjunction with first-degree hardcore to perform
test functions. Examples of this include the writable control store (WCS) used by
test microprograms to exercise other operational units as well as the control circuitry
and access paths of the WCS.

After first-degree hardcore has been verified, the second-degree hardcore is veri-
fied. Then the macroblocks are selected for testing. These are chosen such that a
macroblock to be tested does not depend for its test on another macroblock that has
not yet been tested. Individual microblocks within a chosen macroblock are selected
for testing, again with the requirement that microblocks be tested only through
other, previously tested microblocks. To achieve this, two ordering relations are
defined. The controllability relation ρ1 is defined by

A ⋅ ρ1 ⋅ B ⇔ A can be controlled through B

The observability relation ρ2 is defined by

A ⋅ ρ2 ⋅ B ⇔ A can be observed through B

With these two relations, a priority partial order ≥ is defined such that

If B ⋅ ρ1 ⋅ a and B ⋅ ρ2 ⋅ b, then B ≥ a ⋅ b

In words, a test of B must follow the test of a AND b. In effect, if B is controlled
through a and observed through b, then a and b must both be tested before B is
tested. However, it may be that two devices C and D have the property that C ≥ D
and D ≥ C. In that case A ≡ B and A and B are said to be indistinguishable. This
would be the case, for example, if two devices were connected in series and could
not possibly be tested individually. After a complete ordering has been established,
the microblocks are partitioned into layers such that each microblock is tested only

BLACK-BOX TESTING 491

through microblocks contained in previous layers. A microblock B is contained in a
layer Lk if and only if

1. B follows at least one element of Lk−1

2. All elements smaller than B are contained in the union .

Layer L0 is the hardcore; it is directly controllable and observable.
To assist in ordering microblocks, a tree is formed as illustrated in Figure 9.23. In

that figure, the dot (⋅) represents the AND operator and the plus (+) represents the OR
operator. Therefore, B ≥ C ⋅ D + E ⋅ F states that the test of B must follow either the
test of C AND D, OR it must follow the test of E AND F. In this graph, if an element
occurs twice on the graph, with elements in between, then an indistinguishability
block is defined that contains all elements joining the two occurrences of the element.

Example The ordering algorithm will be illustrated by means of the circuit in
Figure 9.24. The various elements in that circuit are assigned numbers to identify
them during the discussion that follows. We first identify the ρ1 and ρ2 relations:

From these relations the following ordering relations can be derived:

1 ≥ 0

2 ≥ 4

3 ≥ 4 ⋅ 5

4 ≥ 1 ⋅ 2 + 1 ⋅ 3

5 ≥ 3 ⋅ 4

Figure 9.23 Ordering tree.

Controlled by Observed through

1 ρ1 0 1 ρ2 0

2 ρ1 0 2 ρ2 4

3 ρ1 5 3 ρ2 4

4 ρ1 1 ⋅ (2 + 3) 4 ρ2 0

5 ρ1 4 5 ρ2 3

Li
i 0=

k 1–

∪

+
Bk

B11 B1nB12 Bj1 BjnBj2

492 BUILT-IN SELF-TEST

Figure 9.24 ALU circuit.

These relations in turn lead to the tree shown in Figure 9.25.
From the graph it can be seen that 1 does not follow any other microblock; there-

fore it is placed in layer L1. It is also evident from the ordering relations that 2 ≥ 4
and 4 ≥ 2. That can also be see from the ordering tree. This implies an indistinguish-
ability between 2 and 4. Therefore, a new block b1 = {2,4} is formed, and it replaces
both 2 and 4. We get

b1 ≥ b1

3 ≥ b1 ⋅ 5

b1 ≥ b1

b1 ≥ 1 ⋅ b1 + 1 ⋅ 3

5 ≥ 3 ⋅ 4

Two reduction properties can be applied to the fourth relation, they are

c ≥ c ⋅ d + e implies c ≥ d + e (r1)

f ≥ g + g ⋅ h implies f ≥ g (r2)

Figure 9.25 Ordering tree.

Reg.
array

Reg.

ALU

Reg.

Shifter

1

2 3

4 5

2

4

1 2 1
5

3

3 4

4

+

BLACK-BOX TESTING 493

After applying these properties, the fourth relation becomes

b1 ≥ 1

The first and third relations (b1 ≥ b1) are tautologies, so they can be eliminated and
the ordering relations become

3 ≥ b1 ⋅ 5

b1 ≥ 1

5 ≥ b1 ⋅ 3

A microblock can be put in the present layer only if it appears solely on the right-hand
side of the relation operator or if, whenever it appears on the left, the microblock(s)
on the right are in lower level layers. In this case, microblock 1 is in a lower layer and
in all other relations b1 occurs only on the right. Therefore, it can be put in L2. Setting
b2 = {3,5} yields

b2 ≥ b1

b1 ≥ 1

b2 ≥ b1

The first and third relations can be reduced using relation (r1) to give

b2 ≥ b1

b1 ≥ 1

b2 ≥ b1

Then, b2 can be placed in L3.
All microblocks have now been placed into layers. Since the register array is in

layer L1, it should be tested first. This corresponds with the fact, seen in the diagram,
that there is a separate path into and out of the register array. After it has been tested,
it can be used to test the ALU and the register denoted as component 2, which were
grouped together as indistinguishability block b1. Finally, the shifter and the register
denoted as component b2 can be tested. ��

Ordering a large number of microblocks within a macroblock can be tedious and
time-consuming, and indistinguishability classes may become too complex. These
complex classes may indicate areas in which additional hardware can be used to
good advantage to break up loops and to improve controllability and observability.

9.7.2 The Microprocessor Matrix

The microprocessor generally absorbs a great deal of logic into a single IC. There may
not be enough information to permit ordering the microblocks within a macroblock.

494 BUILT-IN SELF-TEST

An alternate strategy38 employs a matrix to relate the individual op-codes within the
microprocessor to physical entities such as registers, ALUs, condition code registers,
and I/O pins. A row of the matrix is assigned for each instruction. Several categories
of columns are assigned; these include:

1. Data movement: register–register, register–memory, memory–immediate, and
so on.

2. Operation type: AND, OR, COMPLEMENT, SHIFT, MOVE, ADD, SUB-
TRACT, MULTIPLY

3. I/O pins involved: data, address, control

4. Clock cycles involved: a column for each clock cycle

5. Condition codes affected: carry, overflow, sign, zero, parity, and so on.

If the ith instruction uses, affects, or is characterized by the property corresponding
to column j, then there is a 1 in the matrix at the intersection of the ith row and jth
column. A weight is assigned to each instruction by summing the number of 1s in
the row corresponding to that instruction. Another matrix is created in which the
rows represent functional units. Columns record such information as the number of
instructions using the unit and any other physical information that is available, pos-
sibly including number of gate levels, number of feedback paths, and number of
clocks in the unit. Note that the number of instructions that use a given unit may in
many cases be a reasonable approximation to an ordering, in the sense in which an
ordering was described in the previous subsection.

The test strategy requires that functional units with the lowest weight be tested
first. Furthermore, the unit should be tested using, as often as possible, the instruc-
tions of minimum weight. The goal is to obtain a set of programs {Pi} that test all of
the functional units. Each program Pi has a weight that is equal to the sum of the
weights of the individual instructions that make up the program. Because a given
program may test two or more functional units, in the sense that two or more units
are indistinguishable as defined in the previous subsection, a covering problem
exists. The objective, therefore, given a set {Pi} of programs that test all of the func-
tional units, is to select the set of programs of minimum weight that cover (test) all
functional units. A minimal weight test has the advantage that it can usually be
applied more quickly, requires less memory, and reduces the likelihood that a fault
will mask symptoms of another fault.

9.7.3 Graph Methods

The graph can also be used to show relationships between functional units of com-
plex digital devices such as microprocessors.39 This is illustrated in Figure 9.26,
where paths are shown from some input source to the internal resources, and from
internal resources to one or more output ports. Paths also exist between internal
resources, and there are paths that loop back onto themselves. For example, in the
hypothetical microprocessor of Figure 9.26, PC, which denotes program counter,
has such a loop. A NOOP instruction (no-operation) simply involves incrementing

FAULT TOLERANCE 495

Figure 9.26 Graph model of hypothetical microprocessor.

the program counter to the next memory location. The accumulator (AC) can be
incremented or decremented, or it can be used to receive the results of arithmetic
and logic operations, and in the process the condition codes (CC) are updated. The
individual arcs are numbered for convenience in referring to them.

If we denote an I/O port used for input as IN and denote an I/O port used for out-
put as OUT, and if we assign graph nodes to IN and OUT, then a directed arc exists
from IN to Reg. (from Reg. to OUT) if data transfer occurs, with or without transfor-
mation, from main memory or from an I/O port to register Reg. (from register Reg.
to main memory or an I/O port). Further refinements are possible. Transformation
devices such as counters and ALUs (arithmetic, logic unit) may be included in the
graph. It must be recognized that these devices require more than simply passing
data through them (cf. Section 7.8, Behavioral Fault Modeling).

9.8 FAULT TOLERANCE

If we distinguish between the logic machine, which is an abstract specification
defining tasks to be performed and algorithms to perform them, and the host, which
is the physical implementation of that abstract machine, then fault folerance can be
defined as the architectural attribute of a digital system that permits the logic
machine to continue performing its specified tasks when its physical host suffers
various kinds of component failures.40 We will look at some approaches to fault tol-
erance, but before looking at them, we distinguish between active fault tolerance and
passive fault tolerance. Active fault tolerance is the ability to recover from error sig-
nals by repeating an operation, such as instruction retry, or rereading a data buffer or
file, or requesting that a device retransmit a message. Passive fault tolerance is the
ability to detect and correct errors without intervention by the host.

R[n:0] AUX AC CC

Addr. DataOUT

Memory
or

Memory mapped I/O

PC

IN

IXSP

1

2
3 4

5
6

7 8
9

10

11
12

13 14 15
16

17 18 19
20

21

22

496 BUILT-IN SELF-TEST

These are somewhat arbitrary distinctions since even in error detection and cor-
rection (EDAC) circuits, an error signal triggers logic activity in the hardware cir-
cuits of the host physical machine to correct the data, activity that would not have
occurred if the error signal had not been detected. Perhaps a useful distinction is that
active fault tolerance requires attention at the architectural level while passive fault
tolerance contains errors before the symptoms are detected at the architectural level.
In this text we will refer to active fault tolerance as performance monitoring since it
more closely suggests the nature of the activities that take place.

The object of fault tolerance is to either prevent data contamination or to provide
the ability to recover from the effects of data contamination. Applications range
from data bases to industrial processes and transportation control. Consequences of
faulty operation range from negligible to catastrophic. Hence the cost impact of
fault-tolerant options employed may range from minor to significant. In some appli-
cations, such as space probes, it is rarely possible to repair faulty machines; hence
cost for fault tolerance must be balanced against cost for failure of a critical part,
which in turn must be equated with cost for failure of the entire mission.

9.8.1 Performance Monitoring

Performance monitoring involves the observation and evaluation of data during the
course of normal operation. The monitoring may take advantage of information
redundancy in the data or it may take advantage of structural characteristics of some
particular functional units.

Parity Bit A parity bit is an example of monitoring information redundancy. It is
claimed that in most digital systems, parity checking accounts for 70–80% of error
detection coverage.41 It can be applied to memory, control store, data and address
buses, and magnetic tape storage. Parity bits can be appended to data transmitted
between I/O peripherals and memory as well as to data transmitted via radio waves.

Signatured Instruction Stream A concept that requires an integrated software/
hardware approach is the signatured instruction stream.42 This approach, which can be
applied to both microcode and program instructions, requires that a signature be
generated on the stream of instructions coming out of memory or control store. Any
branch or merge point in a set of instructions is accompanied by a signature generated
by an assembler or compiler. The merge and branch points are illustrated in
Figure 9.27. Each node represents an instruction. A merge node is any instruction that
can be the successor to two or more instructions. In an assembler language program,
most labeled instructions represent merge nodes. A branch node is an instruction, such
as a conditional jump, that can have more than one successor.

The hardware computes a signature and then compares the computed signature
against the signature provided by the assembler or compiler. If the signatures do not
agree, there is an error in the instruction flow, either hardware or programming error,
since self-modifying code is not permissible in this environment. When generating
the signatures, it is necessary to reset the signature prior to a merge node since the

FAULT TOLERANCE 497

Figure 9.27 Graph representation of instruction stream.

value in the signature generator will normally be different for two paths converging
at a common node. This is illustrated by instruction j, which could be executed
in-line from instruction h or it could be reached by instruction e via a branch. There-
fore, if j has a label, permitting it to be reached via a branch instruction, it is
preceded by a special instruction that signals a check on the signature. Likewise, a
branch instruction at e must cause the signature to be checked and reset.

The signature, being part of the instruction stream, must be designed in at the
architectural level. Hardware and software must be designed and developed
jointly. The signature is incorporated into the instruction stream by the assembler
or compiler, which inserts an unconditional branch to location PC + 2 that causes
the machine to skip the following two bytes during execution. A 16-bit embedded
signature is inserted following the branch instruction. The special hardware rec-
ognizes the unconditional jump as being a signal that the next 16-bit word con-
tains the signature. It can actually contain the inverse, so that the sum of the
hardware calculated signature and the software calculated signature is zero. Then
a nonzero value signals the presence of an error. Conditional jumps must also be
considered. Since the instruction at node e may pass control to instruction f or
instruction j, the signature generator must be resynchronized when going to
instruction f.

A related scheme, called branch address hashing,43 incorporates a signature
into the branch address by performing a bit by bit exclusive-OR of the signature
and the branch address. This permits a significant savings in program space and
execution time. The branch address must, of course, be recovered before being
used.

Diagnostic Programs In computers where priority scheduling and time sharing
is employed, a maintenance program can reside in a part of memory and obtain a
time slice of the CPU and other resources like any user program. When it receives
control of the CPU, it executes special diagnostic procedures designed to test out as
much of the machine as possible at the program level. If an error is detected during
its performance, it can generate an interrupt to signal the operating system to load
special diagnostic programs to further isolate the cause of the error. To avoid tying
up resources during periods of peak computational demand, it can be a low-priority

a

b

c

d

e

f

g
h

j

k

498 BUILT-IN SELF-TEST

task that runs only during off-peak time periods when resources are relatively inac-
tive or during times when the program mix in memory is I/O intensive, permitting
access to the CPU.

Test Data Injection It was previously pointed out that some maintenance pro-
cessors are designed to inject test data into a circuit to specifically check parity
checkers and other error dectection devices. Some architectures are particularly well
suited to that operation. A single-instruction, multiple-data (SIMD) array processor,
which performs identical calculations on multiple streams of incoming data, is one
such example. During design of that hardware, time slots can be allocated for inser-
tion of predetermined data samples into the data streams. The processing hardware
then checks the received test data for correctness, knowing in advance what results
to expect. This can verify most, if not all, hardware between the data capturing end
and the processor.

9.8.2 Self-Checking Circuits

In some functions the output responses can be analyzed for correctness because
some responses are simply not possible in a correctly operating circuit. If they occur,
they indicate a malfunction. One such example is the 3-to-8 decoder. As designed,
only a single output can be active for any 3-bit input. If two or more outputs are
simultaneously active, there is an error in operation. If two OR gates are added to the
outputs as shown in Figure 9.28, then the circuit becomes self-testing relative to the
set of faults that either inhibit selection of an output line or cause two or more out-
puts to be simultaneously selected.40 In general, a circuit is self-testing if any mod-
eled fault eventually results in a detectable error.

If a circuit is designed so that during normal operation any modeled fault either
does not affect the system’s output or its presence is indicated no later than when the
first erroneous output appears, then the circuit is said to be fault-secure. A majority
logic decoder implemented with three AND gates and one OR gate, such that the
output M(a, b, c) = ab + bc + ac, is fault-secure against opens on inputs since, dur-
ing normal operation, all three input variables a, b, and c are identical. Therefore, a
single open on a gate input will not affect the majority function output. The 3-to-8
decoder becomes fault-secure if the outputs are monitored so that an error signal
occurs whenever more than one output is active. In fact, since it is both self-testing
and fault-secure, it is said to be totally self-checking.44

Figure 9.28 Self-testing decoder.

3-8
MUX

Error

FAULT TOLERANCE 499

The multiplexer can be designed with self-testing features that take advantage of
the function. The multiplexer must produce a logic 1(0) on its output if all data
inputs are at logic 1(0), regardless of which input port was selected. In the 2-to-1
MUX shown in Figure 9.29, five gates are used to check for correct output from a
three-gate circuit. However, only half of the input combinations can enable the error
circuitry. For values of n > 2, the checking circuitry is more efficient in usage of
components, since it still requires only five gates, but it is less efficient in percentage
of input combinations that can enable the error detection circuitry.

State machines are candidates for self-checking.45 The implementation style
known as one-hot encoding assigns a flip-flop to each state in a state machine. Con-
trast the circuits in Figure 9.30 with the circuit in Figure 5.18 (defined by the state
graph in Figure 5.16(a)). Figure 9.30(a) represents a canonical MUX implementa-
tion, with the state assignments listed below the circuit, while Figure 9.30(b) repre-
sents the equivalent one-hot encoding. Since one, and only one, flip-flop can have
the value 1 in any clock period, the parity of the state flip-flops must always be 1.
This fact can be exploited in two ways: First, a parity check of the state machine can
detect errors immediately. Second, when fault simulating or performing ATPG on
the state machine, there is instant observability through the parity check output. In
fact, the parity checker can be connected to a parity tree, so that a single I/O can be
used to monitor several state machines, as well as other logic.

9.8.3 Burst Error Correction

Error detection and correction (EDAC) codes are used with semiconductor memo-
ries in applications where errors cannot be tolerated. Such applications serve as
examples of passive fault tolerance. If an error is detected, it is repaired “on-the-fly”
by the EDAC circuitry; the processor is not aware that an error was detected and cor-
rected. We will have more to say about this in Chapter 10. Error-correcting codes
can also be used in an active fault tolerant role to correct burst errors in data trans-
mitted from disk drives to main memory.46 Disk packs have extremely thin coating
of magnetic material. Errors occurring as a result of imperfections on a disk take the
form of bursts. A type of code called Fire Codes, based on irreducible polynomials
over GF(2), can correct single bursts in extremely long input streams.

Figure 9.29 Multiplexer with self-test.

A

B

Error

2-1
MUX

S

500 BUILT-IN SELF-TEST

Figure 9.30 Mux (a) and one-hot encoding (b) implementations.

In what follows, G(x) is defined to be a code generator polynomial and M(x) is a
message polynomial of degree k – 1. From the Euclidean division algorithm (a
review of Section 9.3.1 might be helpful) we get

xn− kM(x) = G(x) ⋅ Q(x) + R(x)

where M(x) is a message polynomial of degree k − 1, G(x) is the code generator
polynomial, Q(x) is the quotient, and R(x) is the remainder. By virtue of modulo 2
arithmetic we have

G(x) ⋅ Q(x) = xn− kM(x) + R(x)

Therefore, xn− kM(x) + R(x) is a code vector for which the coefficients of xn− kM(x) of
degree less than n − k are zero and the remainder R(x) has degree less than n − k.
Therefore, in the codeword x n− kM(x) + R(x), x n−kM(x) is the original set of message
bits and R(x) is a set of check bits.

g0 g1

(a)

0 0

0 1

1 0

1 1

S0

S1

S2

S3

00
01
10
11

g0

0
1

Data
0

00
01
10
11

0
Data

1
0

Clear

C

g1

C

(b)

S0 S1

P

C

S2

C

S3

C

Data

Clear

FAULT TOLERANCE 501

Recall from Section 9.2.1 that y was defined to be a root of P(x) if P(y) = 0. The
order of a polynomial was defined to be the smallest integer e such that ye = 1, and a
polynomial P(x) was defined to be irreducible in GF(2) if there were no polynomials
P1(x) and P2(x) with coefficients in GF(2) such that P(x) = P1(x) ⋅ P2(x).

Example Consider the residue class of polynomials modulo G(x) over GF(2). If
a(x) = b(x) ⋅ G(x) + c(x), then a(x) ≡ c(x). Since G(x) = a ⋅ G(x) + 0 for a = 1, x is a
root of G(x).

Let G(x) = x3 + x + 1 over GF(2). The order of x is 7 since

x7 = G(x) ⋅ [x4 + x2 + x + 1] + 1 = 1 mod (G(x))

and no power of x of degree less than 7 has remainder equal to 1 when divided by
G(x). ��

A Fire code is defined by its generator polynomial

G(x) = P(x) ⋅ (xc − 1)

where P(x) is an irreducible polynomial over GF(2), of degree m, with roots of
order e = 2m − 1. It is also required that c not be divisible by e. The length n of the
code is the least common multiple LCM(e,c) of c and e. We then have the following
theorem.

Theorem 9.7 A vector that is the sum of a burst of length b or less and a burst of
length d or less cannot be a code vector in a Fire code if

b + d − 1 ≤ c

and m is at least as large as the smaller of b and d.

Proof We represent a burst of length b by a polynomial xi ⋅ B(x), where
degree[B(x)] = b − 1. We do likewise for D(x). Then F(x) = xi ⋅ B(x) − xj ⋅ D(x),
where we assume, without loss of generality, that i ≤ j. We use the Euclidean division
algorithm, j − i = cs + r, 0 ≤ r < c, to get

F(x) = xi[B(x) − xrD(x)] − xi+r[D(x)(xcs − 1)]

We assume F(x) is a codeword, so j − 1 < n, and F(x) is divisible by xc − 1. Therefore,
the first term on the right is divisible by xc − 1, so

B(x) − xrD(x) = (xc − 1) ⋅ H(x)

where H(x) is assumed to be nonzero. Then we get r + d − 1 = c + h, where h is the
degree of H(x). Using the inequality in the theorem, we get the result that r ≥ b + h.

502 BUILT-IN SELF-TEST

We also have that b ≥ 1 and h ≥ 0, so r ≥ b and r > h. D(x) has a zero degree term;
hence a term on the left has degree r and there is no term on the right with degree r
because h < r < c. Hence we conclude that r = 0 and H(x) = 0, so B(x) = D(x) and

F(x) = xiD(x) ⋅ (xcs − 1)

Now, for F(x) to be divisible by P(x), it is necessary that P(x) divide B(x), xcs − 1, or
xi. P(x) cannot divide B(x) since degree[P(x)] = m ≥ b > degree[B(x)] and P(x) is rel-
atively prime to x; therefore P(x) divides F(x) if and only if P(x) divides xcs − 1. We
have that e is the smallest number such that a root y of P(x) satisfies ye = 1. Therefore
cs must be a multiple of e. But c is not divisible by e, and n is the least common mul-
tiple of c and e; therefore cs is a multiple of n, which is impossible.

The number of check bits in this code is c + m and the number of information bits
is n − c − m. The code can correct any burst of length b ≤ m and simultaneously
detect any burst of length d ≤ b, where c ≥ b + d − 1.

The burst error processor is able to detect bursts because the factor xc − 1 causes
an evenly spaced interlacing of parity checks, so that the message symbols involved
in any single-parity check bit are spaced c symbols apart. None of the c parity bits
will be affected by more than a single error in any burst of length c or less. Hence, a
single burst of c or less will be reproduced in the check bits.

Example Consider the AmZ8065 Burst Error Processor.47 It has several different
user-selectable polynomials, including

g(x) = p(x) ⋅ (x − 1) = (x11 + x2 + 1) ⋅ (x − 1)

e = 211 − 1
LCM(21, 211 − 1) = 42,987

No. of check bits = 11 + 21 = 32

No. of information bits = 42,987 − 32 = 42,955

Correctable burst length = 11

The same chip has other polynomials that can correct single bursts of 11 bits in
streams of up to 585,442 bits. The register length for correction is equal to the number
of check bits; in this example, 32 flip-flops are required. The check symbols are gen-
erated by shifting a message polynomial M(x) into a divider circuit such as the one
shown in Figure 9.3, high-order bit first. After n shifts, k for the information symbols,
and n − k for the low-order zeros, the remainder is in the shift register. It is the mod-
ulo 2 inverse of the check symbols. The check symbols replace the low-order zeros
to form the code vector. ��

When a data stream is received, the nature of the received data

xn− kM(x) + R(x) = G(x) ⋅ Q(x)

FAULT TOLERANCE 503

implies that, after the complete data stream has been shifted through the decoding
register, the parity bits R(x) should be zero. If not zero, then an error has occurred. A
correctible burst error B(x) is of the form

E(x) = x jB(x) = G(x) ⋅ S(x) + R(x)

from which we get

xiR(x) = xix jB(x) − xiG(x) ⋅ S(x)

= (xn − 1) ⋅ B(x) − xiG(x) ⋅ S(x) + B(x)

where we use n = i + j. Since G(x) divides xn − 1, B(x) is the remainder after divi-
sion of xiR(x) by G(x).

This suggests the following decoding algorithm: Shift the received bits, including
the parity bits, through a register identical to the decoder. If the register contains all
zeros after the shift, there is no error. Otherwise, load the remainder R(x) and shift
until a burst B(x) of length b or less occurs in the register. If such a burst does not
occur, the error is uncorrectable. If a burst of length b or less occurs in the low-order
b bits, and all zeros occur in the remaining bits, then the number of shifts that were
applied to the remainder R(x) to form the burst indicate where the burst occurred. At
that point, the burst is added to the received message to correct it.

When data are required from a disk, the CPU normally initiates an I/O request and
continues with other operations while an I/O processor supervises the read operation
and, if required, the error correction. This illustrates the difficulty in classifying a
method of fault tolerance as active or passive. The burst error correction may appear
as passive fault tolerance to the CPU and as active fault tolerance to the I/O processor.

9.8.4 Triple Modular Redundancy

When designing a system, the cost of reliability must be balanced against the cost of
system failure or occasional transients. On a video display, an occasional glitch may
be barely perceptible. On a deep space probe, where maintenance is not possible,
errors are intolerable. Enhanced reliability involves trade-offs: It may be a matter of
using more reliable parts versus incorporating redundancy into a system; or, in a dig-
ital communications system, the choice may be the use of greater transmission
power versus the use of error correcting codes. The cost for reliable parts, or a more
powerful transmitter, tends to be a nonlinear function. To extend the mean-time-to-
failure (MTTF) by 5% may cause the price of a component to double. In such a case,
adding redundancy can produce a significant increase in availability of a system at
less cost than would be had by employing more reliable parts.

The most obvious approach to fault tolerance is the use of triple modular redun-
dancy (TMR). Using three identical computers, if Rm is the reliability of one
machine, and all have the same reliability value, then

1 = [Rm + (1 − Rm)]3 = (Rm)3 + 3(Rm)2 (1 − Rm) + 3Rm(1 − Rm)2 + (1 − Rm)3

504 BUILT-IN SELF-TEST

The reliability of the system, then, assuming no errors in the voter circuits, is

R = Pr(no failures) + Pr(one failure)

where Pr(x) denotes the probability of occurrence of x. From the previous equation
we then get

R = (Rm)3 + 3(Rm)2(1 − Rm) = 3(Rm)2 − 2(Rm)3

Now, let the reliability of the circuit be a decaying exponential of the operating time:

Rm(t) = e−ft = e−t/MTTF

where f is the failure rate and MTTF, the reciprocal of f, is the mean time to failure.
Then

R(t) = 3e−2t/MTTF − 2e−3t/MTTF

When t > MTTF, R < Rm, hence triple modular redundancy actually degrades
performance of the computer; that is, unreliable parts only make the situation worse.
Since the computer is made up of functional units, each of which is more reliable
than the entire computer, it suggests employing TMR at the level of functional units
to obtain enhanced reliability.

The equations are generated on the assumption of perfect voter circuits. This is
not unreasonable since the voter circuits are relatively simple circuits compared to
the circuits whose outputs they are evaluating. It has been shown48 that, since voter
circuits are imperfect, maximum reliability can be achieved by using TMR on cir-
cuits at that functional level where reliability of the parts equals the reliability of the
voters. However, this implies voting on circuits of approximately the same reliability
as the voters themselves, which implies that the operational circuits being voted
upon are of about the same size as the voters, which would lead not to a tripling of
the logic but to a sixfold increase in the amount of logic needed to implement a
machine.

The benefits of TMR can be enhanced by periodic maintenance. However, con-
ventional testing and fault tolerance are at odds with one another. The goal of testing
is to make a fault visible, while the goal of fault tolerance is to mask the effects of a
fault. Therefore, when testing a unit it is necessary to disengage a module from its
TMR environment or sample the outputs of the functional unit at some point prior to
the voter circuits.

An example of fault tolerance with self-diagnosis capability is the Stratus/32 in
which four processors run concurrently.49 There are two processors on a board and
two of each kind of board, including CPU, disk controller, and bus controller. If the
pair of processors on a board disagree during operation, they remove themselves
from operation and signal the system that they have failed. Maintenance software
then runs tests on the board. If it passes, the maintenance routines assume the error

SUMMARY 505

resulted from an intermittent and the board is restored to service. If the board fails
again, it is removed from service until further, more extensive service can be pro-
vided. The other pair of processors takes over its tasks. The maintenance routines
store all failure information in a log for inspection by a field engineer. A key require-
ment of the system is that failed boards be capable of being removed and replaced
while the system is on line.

9.8.5 Software Implemented Fault Tolerance

Fault tolerance can be implemented at the software level. The SIFT (Software
Implemented Fault Tolerance) system achieves fault tolerance by replication of tasks
among processing units.50 The primary method for detecting errors is through the
detection of corrupt data. Interfaces between units are rigorously defined so as to
deduce the effects of erroneous signals on a unit from a faulted unit. The level at
which fault detection and reconfiguration are accomplished is a processor, memory
module, or bus.

In the SIFT system, operation proceeds by execution of a set of tasks, each of
which consists of a sequence of iterations. After executing an iteration, a processor
places the results in its memory. A processor using the results will examine and
compare the results from all processors performing that iteration. Discrepancies are
recorded or analyzed by the executive system. An interesting concept is that of
“loose coupling.” Different processors executing the same iteration are not in lock-
step synchronization, and may in fact be out of step by as much as 50 µs. Therefore,
a transient in the system is not likely to affect all processors in the same way, thus
increasing the likelihood that an error in the data caused by a transient will be
discovered.

The number of processors performing an iteration can vary, depending on the
importance of the task. A global executive determines relative importance of tasks.
Spread of contaminated data is prevented by allowing a processor to write only into
its own local memory. A processor reading data from the faulted unit will, when
comparing that data, discover the error. Further protection from error is achieved by
enabling a processor to acquire data not only from different processors, but via dif-
ferent buses as well.

In order to prevent incorrect control signals from producing wrong behavior in a
nonfaulted unit, each unit is autonomous. In addition, the system has been designed
to be immune to the failure of any single clock. The clock algorithm can be general-
ized such that a system can be made immune to failure of M out of N clocks when
N > 3M.

9.9 SUMMARY

The ever-increasing complexity of digital circuits has spurred growing interest in
the development of highly effective and economical test techniques. Design-for-test
was explored at length in Chapter 8. Another approach that was explored is the

506 BUILT-IN SELF-TEST

identification of invariant properties in functional units and general architectures,
such as microprocessor-based architectures, in the hope that these invariants can
lead to development of test methods applicable to general classes of architectures.
Memory architectures stand out as one such candidate; more will be said about
these in Chapter 10.

An alternate approach moves the tester into the logic, through the use of BIST
circuits, thus testing numerous smaller functional units in parallel, while applying
an exhaustive test, and testing at operational speed. This has the added benefit that
it permits testing to be performed on site so that faults can be detected and repairs
accomplished with a lower investment in expensive test equipment and spares
inventory.

It was pointed out in Chapter 1 that two tests with X% coverage may not neces-
sarily deliver the same acceptable quality level (AQL), as measured by customer
returns.51 A test composed of functional or design verification vectors may test most
functions very thoroughly, but provide very low coverage for one or more functions.
As a result, a defect in a function with low coverage may more likely escape detec-
tion. An advantage of BIST is the fact that, with pseudo-random patterns applied
across the entire design, it is likely that all functions will get about the same cover-
age. So an X% total coverage is a more accurate indication of AQL for the overall
circuit.

For large, complex systems, system availability is usually very high on the list of
priorities. This requires both reliability, in order to prevent breakdowns, and main-
tainability to get the system back into operation quickly after it has failed. Maintain-
ability, in turn, requires the ability to detect faults and diagnose their location
quickly. Because availability requires confidence in the correctness of a system’s
operation, it is necessary that intermittent errors be minimized and traced to their
origin. This has produced growing interest in fault-tolerant operation, including self-
checking circuits, EDAC, and other performance monitoring techniques. The use of
remote monitoring, in conjunction with centralized data bases such as the RETAIN
data base previously discussed, is becoming an important adjunct to other methods.
The data bases provide clues as to where design effort can be expended to improve
reliability of the product.

Reliable delivery of system performance has been largely a hardware effort. The
SIFT system, however, is one example of software fault tolerance. The signatured
instruction stream is an example of hardware and software working together to pro-
vide reliable computing. While it is not within the scope of this book to address the
subject of software correctness, nevertheless it was noted that the signatured instruc-
tion stream can occasionally detect software errors caused by unauthorized writing
into program areas during program execution. Architectures can be developed spe-
cifically to enhance the detectability of software errors.52 It has been shown that pro-
gramming errors exist that are not detectable at compile time but which can be
detected at execution time.

Much of what has been presented in this chapter has been a cursory overview. In
practice, many additional factors must be considered when implementing a particu-
lar technique. The primary objective in this chapter was to survey the available

PROBLEMS 507

options and explain their salient features so the reader will know what choices are
available and thus make an informed judgment as to which of them will fit his or her
need. Successful application of any of the methods first requires establishing objec-
tives, such as fast repair, reduction of spares inventory, less down time, fewer field
returns, reduced test expense, or some combination of the above, as budget allows.
Then, knowing the objectives, and knowing what techniques are available, it is pos-
sible to make an informed judgment as to what methods are best suited to one’s par-
ticular problem and estimate the cost for that solution.

As BIST grows more prevalent, due to cost advantages, there is an emerging
trend toward development of test modules in conjunction with functional modules
and then to treat these as one integrated module.53 For system on chip (SOC) it
becomes possible to run tests on individual SOC blocks in parallel, with each func-
tional block tested by its dedicated test circuits. All of the test circuits report back
either to the tester or to a test controller. This can help to reduce the cost of test by
getting the IC off the tester more quickly.

PROBLEMS

9.1 Given the two polynomials in Figure 9.31, compute the quotient and
signature that result from the following bitstream (rightmost bit of string
enters the LFSR first): 10000111011001001110101.

9.2 Given the LFSR and bitstream in Figure 9.32, if the bitstream is shifted into
the LFSR, rightmost bit first, until all the bits are shifted in, how many single-
bit errors in the bitstream will produce the same 4-bit signature as the error-
free bitstream?

Figure 9.31 Two polynomials.

Figure 9.32 Polynomial and bitstream.

++++In

In

Out

+ + + +

Out

01110101101101100000000110000011

+ +

508 BUILT-IN SELF-TEST

9.3 Given the following bitstreams, write a program to (a) count the number of
transitions in each bitstream and (b) count the number of 1s in each bitstream.

01100110000101011010111000110111
11100010001111001111011011010000
00010100001011010101000111110111
10010010110000010011001000101000
11011011100000011110001110111111
10010000110001011011101000011010
10110011110010110110010000010001
00100110000001011000101001110110
01110001011111101010001011101101

9.4 It was stated Section 9.3.2 that pseudo-random bitstreams can be acquired from
all stages of an LFSR in parallel. Can a single stage of a maximal length LFSR
generate a sequence that begins to repeat sooner than other stages? If not, why?

9.5 Given the circuit in Figure 4.1, 51 faults are assigned: 37 stuck-at faults on the
gate inputs, 12 stem faults on the six gates with multiple fanout, and two stem
faults on the output of inverter A. A 5-bit counter applies all 32 combinations
to the inputs. The 4-bit LFSR in Problem 9.3 is used to create a signature at the
output. Approximately how many faults will escape detection?

9.6 Given a sum-of products circuit made up of three two-input AND gates
driving a three-input OR gate, what is the probability of detection for a stuck-
at-1 fault on an AND gate input when it is being tested by a six-stage LFSR?
(i.e., I need a 01 combination on that AND gate, and every other AND gate
must have at least one 0 on its inputs, so how many such combinations are
there? Another way to look at this problem is to ask, How many times will
that input be tested?)

9.7 Using the circuit in Figure 9.33, compute the biasing numbers for weighted
random pattern generation.

Figure 9.33 Biasing numbers.

A

B

D

C

I1
I2
I3
I4

I5

I6

I7
I8
I9

I10
I11

POD

PROBLEMS 509

9.8 The LFSR in Figure 9.34 corresponds to the polynomial x12 + x6 + x4 + x + 1.
Write a program in C, Verilog or VHDL, to simulate it. Initialize stage 0 to 1,
and all other stages to 0. Clock it until the initial value reappears. How many
clock periods were required? Move the tap from position 6 to position 8 and
simulate, then to position 9 and simulate. In each case, how many clocks are
required to get back to the initial value?

9.9 Given the following two polynomials, which one is primitive?

x6 + x4 + x2 + x + 1

x6 + x5 + x2 + x + 1

9.10 Consider the 12-input OR gate discussed in Section 9.4.3. If you were using
BIST and an LFSR to test the circuit, how would you detect a stuck-at-1 fault
on the output of this circuit? If you were using an LFSR corresponding to the
polynomial x12 + x6 + x3 + x2 + 1 to test this circuit and if it was seeded with
1 in stage 0 and 0s in all other stages, what is the maximum achievable fault
coverage for the 12-input OR gate? Would weighted random patterns help?

9.11 Prove that if a polynomial has an even number of terms, then it will detect all
odd numbers of errors.

9.12 Prove that an LFSR corresponding to a polynomial of order n will detect all
bursts of degree less than the polynomial.

9.13 When using checksum to detect errors, how many double errors go
undetected when n words are being checksummed? How many triple errors?

9.14 Given an eight-input AND gate and a PRG that generates 128 patterns, using
the equation Pn = 1 − e−kL/N in Section 9.4, what is the probable fault
coverage for this circuit?

9.15 Given a circuit with eight inputs, and given a randomly selected fault, how
many vectors must be applied to ensure that the probability of detection of
that fault is greater than .99975? If the circuit has 16 inputs, how many vectors
must be applied to get a probability of detection greater than .99975?

9.16 If the probability of detection of a single randomly selected fault is .99975,
what is the probability that 100 such randomly selected faults will all be
detected?

Figure 9.34 LFSR.

0 7 9 10 111 32 54 6 8out

++ +

510 BUILT-IN SELF-TEST

9.17 Design a bit-changer for the circuit in Figure 9.10 that causes a single bit to
change on every clock.

9.18 Modify Figure 9.24 as follows: The outputs of registers 2 and 3 drive a
multiplexer that has a control line. Label the multiplexer as unit 6. The shifter
that drives register 3 now also feeds another register, labeled register 7, which
is directly observable. Rework all calculations as a result of these changes.

9.19 For the ALU of Figure 9.22, draw a graph that shows the controllability/
observability dependencies of the functional units.

9.20 Create a basic set of op-codes (e.g., ADD, OR, JUMP, etc.), for a hypothetical
microprocessor such as that illustrated in Figure 9.26. For these op-codes,
create a matrix of instructions versus functional units and status bits.

9.21 Determine the length of the Fire code generated by g(x) = F(x) ⋅ (x17 − 1).

9.22 Prove the reduction properties (r1) and (r2) in section 9.7.1.

REFERENCES

1. Huott, W. V. et al., Advanced Microprocessor Test Strategy and Methodology, IBM J. Res.
Dev., Vol. 41, No. 4/5, July/September 1997, pp. 611–627.

2. Illman, R., and S. Clarke, Built-in Self-Test of the Macrolan Chip, IEEE Des. Test, Vol. 7,
No. 2, April 1990, pp. 29–40.

3. www.dmtf.org/spec/dmis.html

4. Meggett, J. E., Error Correcting Codes and Their Implementation for Data Transmission
Systems, IRE Trans. Inf. Theory, Vol. IT-7, October 1961, pp. 234–244.

5. Smith, J. E., Measures of the Effectiveness of Fault Signature Analysis, IEEE Trans.
Comput., Vol. C-29, No. 6, June 1980, pp. 510–514.

6. Nebus, J. F., Parallel Data Compression for Fault Tolerance, Comput. Des., April 5, 1983,
pp. 127–134.

7. Konemann, B. et al., Built-in Logic Block Observation Techniques, Proc. IEEE Int. Test
Conf., 1979, pp. 37–41.

8. McCluskey, E. J., Verification Testing—A Pseudoexhaustive Test Technique, IEEE Trans.
Comput., Vol. C-33, No. 6, June 1984, pp. 265–272.

9. McCluskey, E. J. et al., Probability Models for Pseudorandom Test Sequences, Proc.
IEEE Int. Test Conf., 1987, pp. 471–479.

10. Wagner, K. D., and E. J. McCluskey, Pseudorandom Testing, IEEE Trans. Comput.,
Vol. C-36, No. 3, March 1987, pp. 332–343.

11. Illman, Richard J., Self-Tested Data Flow Logic: A New Approach, IEEE Des. Test, April
1985, Vol. 2, No. 2. pp. 50–58.

12. Eichelberger, E. B., and E. Lindbloom, Random-Pattern Coverage Enhancement
and Diagnosis for LSSD Logic Self-Test, IBM J. Res. Dev., Vol. 27, No. 3, May 1983,
pp. 265–272.

13. Schnurmann, H. D. et al., The Weighted Random Test-Pattern Generator, IEEE Trans.
Comput., Vol. c-24, No. 7, July 1975, pp. 695–700.

REFERENCES 511

14. Waicukauski, J. A. et al., A Method for Generating Weighted Random Test Patterns, IBM
J. Res. Dev., Vol. 33, No. 2, March 1989, pp. 149–161.

15. Siavoshi, F., WTPGA: A Novel Weighted Test-Pattern Generation Approach for VLSI
Built-In Self Test, Proc. IEEE Int. Test Conf., 1988, pp. 256–262.

16. Eichelberger, E.B., and E. Lindbloom, Random-Pattern Coverage Enhancement
and Diagnosis for LSSD Logic Self-Test, IBM J. Res. Dev., Vol. 27, No. 3, May 1983,
pp. 265–272.

17. Laroche, G., D. Bohlman, and L. Bashaw, Test Results of Honeywell Test Generator,
Proc. Phoenix Conf. Comput. Commun., May 1982.

18. Hewlett-Packard Corp., A Designer’s Guide to Signature Analysis, Application Note 222,
April, 1977.

19. Nadig, H. J., Testing a Microprocessor Product Using a Signature Analysis, Proc. Cherry
Hill Test Conf., 1978, pp. 159–169.

20. White, Ed, Signature Analysis-Enhancing the Serviceability of Microprocessor-Based
Industrial Products, Proc. IECI, March 1978, pp. 68–76.

21. Bardell, P. H., and W. H. McAnney, Self-Testing of Multichip Logic Modules, Proc. IEEE
Int. Test. Conf., 1982, pp. 200–204.

22. Bardell, Paul H., and Michael J. Lapointe, Production Experience with Built-in Self-test
In the IBM ES/9000 System, Proc. IEEE Int. Test Conf., 1991, pp. 28–36.

23. Keller, B. L., and T. J. Snethen, Built-in Self-test Support in the IBM Engineering Design
System, IBM J. Res. Dev., Vol. 34, March/May 1990, pp. 406–415.

24. Pyron, C. et al., Next Generation PowerPC™ Microprocessor Test Strategy
Improvements, Proc. IEEE Int. Test Conf., 1997, pp. 414–423.

25. Carbine, A. et al., Pentium Pro Processor Design for Test and Debug, Proc. IEEE Int.
Test Conf., 1997, pp. 294–303.

26. Gelsinger, P., Design and Test of the 80386, IEEE Des. Test, June 1987, pp. 42–50.

27. Kuban, J. R., and W. C. Bruce, Self-Testing the Motorola MC6804P2, IEEE Des. Test,
May 1984, pp. 33–41.

28. Hsiao, M. Y. et al., Reliability, Availability, and Serviceability of IBM Computer Systems:
A Quarter Century of Progress, IBM J. Res. Dev., Vol. 25, No. 5, September 1981,
pp. 453–465.

29. Wallach, S., and C. Holland, 32-Bit Minicomputer Achieves Full 16-Bit Compatability,
Comput. Des., January 1981, pp. 111–120.

30. Hawk, R. L., A Supermini for Supermaxi Tasks, Comput. Des., September 1983,
pp. 121–126.

31. Boone, L. et al., Availability, Reliability and Maintainability Aspects of the Sperry Univac
1100/60, Proc. 10th Fault Tolerant Computing Symp., October 1980, pp. 3–8.

32. Frechette, T. J., and F. Tanner, Support Processor Analyzer Errors Caught by Latches,
Electronics, November 8, 1979, pp. 116–118.

33. Swarz, R. S., Reliability and Maintainability Enhancements for the VAX-11/780, Proc.
8th Fault Tolerant Computing Symp., June 1978, pp. 24–28.

34. Miller, H. W., Design for Test Via Standardized Design and Display Techniques, Electron.
Test, Vol. 6, No. 10, October 1983, pp. 108–116.

35. http://www.dmtf.org

512 BUILT-IN SELF-TEST

36. Nicolaisen, Nancy, I’m Failing and I Can’t Boot Up!, Byte Magazine, October, 1997,
pp. 112NA1–112NA6.

37. Robach, C., G. Saucier, and J. Lebrun, Processor Testability and Design Consequences,
IEEE Trans. Comput., June 1976, Vol. C-25, No. 6, pp. 645–652.

38. Srini, V. P., Fault Diagnosis of Microprocessor Systems, Computer, Vol. 10, No. 1,
January 1977, pp. 60–65.

39. Thatte, S. M., and J. A. Abraham, Test Generation for Microprocessors, IEEE Trans.
Comput., Vol. C-29, No. 6, June 1980, pp. 429–441.

40. Avizienis, A., Fault-Tolerance: The Survival Attribute of Digital Systems, Proc. IEEE,
Vol. 66, No. 10, October 1978, pp. 1109–1125.

41. Bossen, D. C., and M. Y Hsiao, Model for Transient and Permanent Error-Detection and
Fault-Isolation Coverage, IBM J. Res. Dev., Vol. 26, No. 1, January 1982, pp. 67–77.

42. Sridhar, T., and S. M. Thatte, Concurrent Checking of Program Flow in VLSI Processors,
Proc. IEEE Int. Test Conf., 1982, pp. 191–199.

43. Shen, J. P., and M. A. Schuette, On-Line Self-Monitoring Using Signatured Instruction
Streams, Proc. IEEE Int. Test Conf., 1983 pp. 275–282.

44. Smith, J. E., A Theory of Totally Self-Checking System Design, IEEE Trans. Comput.,
Vol. C-32, No. 9, September 1983, pp. 831–844.

45. Miczo, A., A Self-Test Hardwired Control Section, IEEE Trans. Comput., Vol. C-32,
No. 7, July 1983, pp. 695–696.

46. Lignos, Demetrios, Error Detection and Correction in Mass Storage Equipment, Comput.
Des., October 1972, pp. 71–75.

47. AmZ8065 Product Specification, Advanced Micro Devices,Sunnyvale, CA, 94086.

48. Lyons, R. E., and W. Vanderkulk, The Use of Triple-Modular Redundancy to Improve
Computer Reliability, IBM J., April 1962, pp. 200–209.

49. Hendrie, G., A Hardware Solution to Part Failures Totally Insulates Programs, Electronics,
January 29, 1983, pp. 103–105.

50. Wensly, J. H. et al., SIFT: Design and Analysis of a Fault Tolerant Computer for Aircraft
Control, Proc. IEEE, Vol. 66, No. 10, October 1978, pp. 1240–1255.

51. Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of Different
Areas of an Integrated Circuit, IEEE Trans. CAD, Vol. 14, No. 5, May 1995, pp. 603–607.

52. Myers, G. J., Advances in Computer Architecture, Chapter 13, John Wiley & Sons, New
York, 1978.

53. Zorian, Yervant, Embedded Test Complicates SoC Realm, http://www.eedesign.com/
story/0EG20001222s0049.

513

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 10

Memory Test

10.1 INTRODUCTION

Memory is pervasive in digital products. Consider, for example, the personal com-
puter (PC). It has main memory, video memory, translation ROMs, shadow ROMs,
scratchpad memory, hard disk, floppy disk, CDROM, and various other kinds of
storage distributed throughout. In addition, the die that contains the microprocessor
may also contain one or more levels of cache.

A typical PC is depicted in the block diagram of Figure 10.1. It is basically a
memory hierarchy connected by several buses and adapters and controlled by a
CPU. The purpose for much of the hierarchy is to combine two or more storage sys-
tems with divergent capacities, speeds, and costs such that the combined system has
almost the speed of the smaller, faster, more expensive memory at almost the cost,
speed, and storage capacity of the larger, slower, less expensive memory. Clearly,
not all storage devices are part of this hierarchy. The CDROM may be used to
deliver programs and/or data to an end user, and video memory is dedicated to the
display console. The central processing unit (CPU) accesses many of these auxiliary
memory devices through a peripheral component interconnect (PCI) bus, which reg-
ulates the flow of data through the system.

Unlike the random logic that has been considered up to this point, memory storage
devices are characterized by a high degree of regularity. For example, a semiconductor
memory is organized as an array of cells, while storage on a hard drive is organized
into cylinders. This regularity of semiconductor memories permits much greater pack-
ing of transistors on die. For example, in the PowerPC MPC750, memory accounts for
85% of the transistors but only 44% of the die area.

1

 In the Alpha 21164, 80% of the
9.6 million transistors are used for three on-chip caches, but the remaining 20% of the
transistors occupy a majority of the physical die area.

2

 The various storage devices in
Figure 10.1 employ different kinds of circuits for storing and retrieving data, and dif-
ferent kinds of media for retaining data, hence they have unique failure mechanisms,
requiring different test strategies. These memories may also employ varying levels of
redundancy to detect and/or correct errors during operation.

514

MEMORY TEST

Figure 10.1

Memory distribution in a typical PC architecture.

10.2 SEMICONDUCTOR MEMORY ORGANIZATION

Because semiconductor memories are characterized by a high degree of regularity, it
is easy to devise algorithms to test them. However, because of the growing capacity
of memories, many of the tests will run for unacceptably long periods of time. A sig-
nificant problem then, when testing memories, is to identify the kinds of faults that
are most likely to occur and determine the most efficient tests for those faults.

Semiconductor memories can be characterized according to the following
properties:

Serial or random access
Volatile or nonvolatile
Static or dynamic
Destructive or nondestructive readout.

Serial

 access memories are those in which data are accessed in a fixed, predeter-
mined sequence. Magnetic tape units are an example of serial access. To read a
record it is necessary to read the entire tape up to the point where the desired data
exists. By way of contrast, a

random

 access memory (RAM) permits reading of data
at any specific location without first reading other data. When performing a read of a
FIFO (first-in, first-out) memory, the first location stored is the first to be read out.
These memories act as buffers when transferring data between functional units with
different data rates. A stack in a computer, often used to save data and return
addresses, is an example of a LIFO (last-in, first-out) memory. The last data pushed
onto the stack is the first data to become available when the stack contents are
popped from the stack.

CPU Memory
Bus

Local
Bus

Cache
controller

PCI
bridge

Main
memory

Motion
video

peripheral

Video
memory

SCSI
Host bus
adapter

LAN
adapter

ISA/EISA
bridge

PCI Bus

LAN

CD
ROM

Disk

Tape

Expansion bus

Graphics
adapter

Video
frame
buffer

Bus
master

I/O
slave

Memory
slave

SEMICONDUCTOR MEMORY ORGANIZATION

515

Figure 10.2

Dynamic memory cell.

Memories can be categorized according to whether or not they can retain infor-
mation when power is removed. A

nonvolatile

 memory can retain information when
power is removed. Examples of nonvolatile memories include magnetic cores, mag-
netic tapes, disks, MROMs, EPROMS, EEPROMS, and flash memories.

Volatile

memory devices lose information when power is removed.
Volatile memories can be further broken down into static and dynamic memories. A

static

 memory retains information as long as power is applied, while a

dynamic

 mem-
ory can lose information even when power is continuously applied. Static RAMs
(SRAMs) are flip-flops that, with their two stable states, can remain in a given state
indefinitely, without need for refresh, as long as power is applied; that is, they are static
but volatile. The dynamic RAM (DRAM), illustrated in Figure 10.2, is an example of a
dynamic memory. The cell is chosen if decoding the memory address causes its word-
line to be selected. It is basically a capacitor that can either be discharged onto the bit-
line or that can be recharged from the bit-line. Since it is a capacitor, the charge can
leak away over time. The memory system must employ refresh circuitry that periodi-
cally reads the cells and writes back a suitably amplified version of the signal.

If the contents of a memory device are destroyed by a read operation, it is classi-
fied as a

destructive readout

 (DRO); otherwise it is a

nondestructive readout

(NDRO) device. DRAMs must be refreshed when their contents are read out, since a
read causes the capacitor to discharge.

Programmable read-only memories (PROMs) are slightly more complicated to
characterize. They are static and nonvolatile. Mask programmable ROMs and fuse
programmable ROMs are programmed once and thereafter can only be read.
EPROMs (erasable PROMs) can be erased by means of ultraviolet light, which
involves physically removing them from the system in which they are installed. For
all practical purposes, they are programmed only once because it is quite inconve-
nient to erase and reprogram them, unless they are being used to emulate a new
design for the purposes of debugging that design.

EEPROMs (electrically erasable PROMs) can be reprogrammed after being
installed in a system, but their response time is slower than DRAMs or SRAMs;
hence they are confined to applications where nonvolatility is required. Flash memo-
ries are structurally almost identical to EPROMs, but they can be reprogrammed in a
system and are more dense than EEPROMs. However, EEPROMs can be pro-
grammed a bit at a time, whereas flash memories are erased a block at a time before
being reprogrammed. The Venn diagram in Figure 10.3 illustrates this distribution of
properties among the various kinds of semiconductor memories.

3

read/write select

B
it-

lin
e

Data bit

Word-line

516

MEMORY TEST

Figure 10.3

Semiconductor memory properties.

Semiconductor memories usually employ an organization called 2-D. In this orga-
nization a 2

m

×

1 memory with

m

 address lines is organized into a matrix with 2

N

rows and 2

M

columns (

N + M = m

). The address lines are split into two groups such
that

N

 lines go to a row decoder and

 M

 lines go to a column decoder. This is illus-
trated in Figure 10.4. The row decoder selects 2

N

 memory cells, and the column
decoder selects one of those to be read out of or written into memory. This idealized
organization is the subject of numerous modifications whose purpose is to permit
faster operation and/or faster test. One of the more significant changes is the division
of the memory array into several smaller arrays. This reduces loading on the bit lines.
As we shall see, it also permits multiple cells to be tested simultaneously.

Figure 10.4

A semiconductor memory organization.

Dense

Non-
volatile

Re-
writable

DRAM
ROM

EPROM

EEPROM

FLASH

. . .

. . .

..
.

..
.

R
ow

 d
ec

od
e

Column decode

A0

A1

AN

2N
 w

or
d

lin
es N×M

MEMORY
ARRAY

A
N

+
1

A
N

+
2

A
N

+
M

. . .

..
.

Data

DataDin
Dout

b0 b0 b1 b1 bm bm

R/W

CS

m = 2M

Sense Amps

MEMORY TEST PATTERNS

517

10.3 MEMORY TEST PATTERNS

In this section some classical, or legacy, memory test algorithms will be examined.
Memory test algorithms fall into two categories: functional and dynamic. A

func-
tional test

 targets defects within a memory cell, as well as failures that occur when
cell contents are altered by a read or write to another cell. A

dynamic test

 attempts to
find access time failures. The

All 1s

 or

All 0s

 tests are examples of functional tests.
These tests write 1s or 0s into all memory cells in order to detect individual cell
defects including shorts and opens. However, these tests are not effective at finding
other failure types.

A memory test pattern that tests for address nonuniqueness and other functional
faults in memories, as well as some dynamic faults, is the

GALPAT

 (GALloping
PATtern), sometimes referred to as a ping-pong pattern. This pattern accesses each
address repeatedly using, at some point, every other cell as a previous address. It
starts by writing a background of zeroes into all memory cells. Then the first cell
becomes the test cell. It is complemented and read alternately with every other cell
in memory. Each succeeding cell then becomes the test cell in turn and the entire
read process is repeated. All data are complemented and the entire test is repeated. If
each read and compare is counted as one operation, then GALPAT has an execution
time proportional to 4

N

2

, where

N

 is the number of cells. It is effective for finding
cell opens, shorts, address uniqueness faults, sense amplifier interaction, and access
time problems.

The following Verilog code illustrates the operation of the GALPAT test. First, a
RAM module of size “memdepth”

×

 1 bit is described. The RAM model contains
code used to insert a stuck-at fault at memory location 27. The RAM model is fol-
lowed by a testbench that executes the GALPAT test. The line of code that instanti-
ates the RAM passes parameters into the RAM from the testbench in order to
override the RAM size.

module

 ram(addr, datai, datao, wen, oen);

parameter

 log2_memdepth = 8, memdepth = 256;

input

 [log2_memdepth

−

1:0] addr;

input

 datai, wen, oen;

output

 datao;

reg

 ramcore[memdepth

 −

1:0];

reg

 datao;

always

 @(oen or wen or addr)

begin
if

 (!oen && wen) datao = ramcore[addr];

else if

 (oen) datao = 1

'

bz;

else

datao = 1

'

bx;

end
always

 @(negedge wen)

begin

518

MEMORY TEST

if

(addr == 27) // inject a fault at location 27
ramcore[addr] = 1'b1;

else

ramcore[addr] = datai;

end
endmodule
module

 testbench;
parameter log2_memdepth = 6;
parameter memdepth = 64;
reg [log2_memdepth−1:0] addr;
reg datain, wen, oen, memval;
wire dataout;
integer e, i, j;
ram #(log2_memdepth,memdepth)

U1(addr,datain,dataout,wen, oen);
always
begin
for(e = 0; e <= 1; e = e+1)
begin
for(i = 0; i < memdepth; i = i+1)
write(e,i); // write background of e, e ∈ {0,1}

for(i = 0; i < memdepth; i = i+1)
begin
write(!e,i);
for(j = 0; j < memdepth; j = j+1)
if(j != i)
begin //check all mem. loc. except loc. i

read(memval, j);
if(memval != e)

$display("Mem. Error at loc. %d\n",j);
end // for j

read(memval,i); // loc. i should not change
if(memval != !e)

$display("Mem. Error at loc. %d\n", j);
write(e,i); // restore value at loc. i

end // for i
end // for e
$finish;

end // always
task write; // write to memory

MEMORY TEST PATTERNS 519

input data, adval;
integer adval;
begin
datain = data;
addr = adval;
#1 wen = 0; #1 wen = 1;

end
endtask
task read; // read from memory
output data;
input adval;
integer adval;
begin
addr = adval;
#1 oen = 0;
#0.5 data = dataout;
#0.5 oen = 1;

end
endtask

endmodule

Walking Pattern is similar to the GALPAT except that the test cell is read once
and then all other cells are read. To create a Walking Pattern from the GALPAT pro-
gram, omit the second read operation in the testbench. The Walking Pattern has an
execution time proportional to 2N 2 . It checks memory for cell opens and shorts and
address uniqueness.

March, like most of the algorithms, begins by writing a background of zeroes.
Then it reads the data at the first location and writes a 1 to that address. It continues
this read/write procedure sequentially with each address in memory. When the end
of memory is reached, each cell is read and changed back to zero in reverse order.
The test is then repeated using complemented data. Execution time is of order N . It
can find cell opens, shorts, address uniqueness, and some cell interactions.

Galloping Diagonal is similar to GALPAT in that a 1 is moved through memory.
However, it is moved diagonally, checking both row and column decoders simulta-
neously. It is of order 4N 3 /2. Row and column GALPATs of order 4N 3 /2 also exist.

Sliding Diagonal (see Figure 10.5) writes a complete diagonal of 1s against a
background of 0s and then, after reading all memory cells, it shifts the diagonal hor-
izontally. This continues until the diagonal of 1s has passed through all memory
locations. The Diagonal test, of order N, will verify address uniqueness at a signifi-
cant speed enhancement over the Walk or GALPAT.

Checkerboard Test writes 1s and 0s into alternate memory locations in a check-
erboard pattern. After a time delay, which may be several seconds, the pattern is read
from memory. This pattern is used to evaluate data retention in static RAMs.

520 MEMORY TEST

Figure 10.5 The sliding diagonal test.

Surround Read Disturb starts by creating a background of all 0s. Then, each
cell in turn becomes the test cell. The test cell is complemented and the eight physi-
cally adjacent cells are repeatedly read. After a number of iterations the test cell is
read to determine if it has been affected by the read of its neighbors. The operation is
then repeated for a background of 1s. The intent is to find disturbances caused by
adjacent cell operations. Execution time depends on the number of read cycles but is
of the order N.

Surround Write Disturb is identical to the Surround Read Disturb except that a
write rather than a read is performed.

Write Recovery writes a background of 0s. Then the first cell is established as
the test cell. A 1 is written into the second cell and the first (test) cell is read. The
second cell is restored to 0 and the test cell is read again. This is repeated for the test
cell and every other cell. Every cell then becomes the test cell in turn. The entire
process is repeated using complemented data. This is an N 2 test that is directed at
write recovery type faults. It also detects faults that are detected by GALPAT.

Address Test writes a unique value into each memory location. Typically, this
could be the address of that memory cell; that is, the value n is written into memory
location n. After writing all memory locations, the data are read back. The purpose
of this test is to check for address uniqueness. This algorithm requires that the num-
ber of bits in each memory word equal or exceed the number of address bits.

Moving Inversions test4 inverts a memory filled with 0s to 1s and conversely.
After initially filling the memory with 0s, a word is read. Then a single bit is
changed to a 1, and the word is read again. This is repeated until all bits in the word
are set to 1 and then repeated for every word in memory. The operation is then
reversed, setting bits to 0 and working from high memory to low memory.

For a memory with n address bits the process is repeated n times. However, on
each repetition, a different bit of the address is taken as the least significant bit for
incrementing through all possible addresses. An overflow generates an end around
carry so all addresses are generated but the method increments through addresses by
1s, 2s, 4s, and so on. For example, on the second time through, bit 1 (when regarding
bit 0 as least significant bit, LSB) is treated as the LSB so all even addresses are gen-
erated out to the end of memory. After incrementing to address 111...110, the next
address generated is address 000...001, and then all consecutive odd addresses are

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

MEMORY FAULTS 521

generated out to the end of memory. The pattern of memory address generation
(read the addresses vertically) for the second iteration is as follows:

0000 . . . 1111
. . .
. . .
. . .

0000 . . . 1111
0011 . . . 0011
0101 . . . 0101
0000 . . . 1111

The Moving Inversions test pattern has 12BN l og2N patterns, where B is the number
of bits in a memory word. It detects addressing failures and cell opens and shorts. It
is also effective for checking access times.

10.4 MEMORY FAULTS

As memories grow larger, with more memory cells packed into an ever-shrinking
die area, the cost to manufacture a die remains fairly constant, while the time it takes
to apply test programs increases exponentially. It is variously estimated that the cost
to test a memory chip runs from 50% to 70% of the total cost of the finished prod-
uct.5 The first step in reducing the cost of memory test is to understand what fault
mechanisms are most likely to occur and then develop test programs that target
those faults. With this approach, the manufacturer and the end-user can determine
their priorities, balancing cost versus DPM (defects per million) that they can toler-
ate in their applications.

A number of different failure types can occur in semiconductor memories, affect-
ing memory cell contents, cell addressing, and the time required to read out data.
Some of the more common failures include the following:6

Cell opens or shorts

Address nonuniqueness

Cell/column/row disturb sensitivity

Sense amplifier interaction

Slow access time

Slow write recovery

Data sensitivity

Refresh sensitivity

Static data losses

Opens and shorts within semiconductor memory cells may occur because of
faulty processing, including misaligned masks or imperfect metallization. These

522 MEMORY TEST

failures are characterized by a general randomness in their nature. Opens and shorts
may occur at the chip connections to a printed circuit board. In a km × n memory
system containing km words of n bits each, and made up of memory chips of size
m × 1, a fault that occurs in bit position i of m consecutive bits is indicative of either
a totally failed chip or one in which an open or short exists between the chip and the
PCB on which it is mounted.

Address nonuniqueness results from address decoder failures that may either
cause the same memory cell to be accessed by several different addresses or several
cells may be addressed during a single access. These failures often cause some cells
to be physically inaccessible. An effective test must insure that each read or write
operation accesses one, and only one, memory cell.

Disturb sensitivity between adjacent cells or between cells in the same row or
column can result from capacitive coupling. Slow access time can be caused by slow
decoders, overloaded sense amplifiers, or an excessive capacitive charge on output
circuits. Slow write recovery may indicate a saturated sense amplifier that cannot
recover from a write operation in time to perform a subsequent read operation.

A memory cell can be affected by the contents of neighboring cells. Worse still,
the cell may be affected only by particular combinations on neighboring cells. This
problem grows more serious as the distance between neighboring cells shrinks.
Refresh sensitivity in dynamic RAMs may be induced by a combination of data
sensitivity and temperature or voltage fluctuations. Static RAM cells are normally
able to retain their state indefinitely. However, data may become lost due to leakage
current or opens in resistors or feedback paths.

Recall from Section 3.4, when discussing faults in random logic, that fault mod-
els other than the stuck-at model were examined. The one trait these models had in
common was a susceptibility to combinatorial explosion. For very small circuits, the
number of faults grew so quickly that it was simply not feasible to consider them.
Memory circuits, because of their density and the close proximity of cells to one
another, exhibit this problem of combinatorial explosion to a far greater degree.
Hence, it becomes necessary to restrict consideration to faults that are most likely to
occur.

The first step is to group the faults into three broad categories: address decoder
faults, memory array faults, and read/write logic faults. From there we use the fact,
demonstrated by Nair, Thatte, and Abraham,7 that faults in memory addressing and
read/write logic, which includes sense amplifiers, write drivers, and other supporting
logic, can be mapped onto functionally equivalent faults in the memory array. This
makes it possible to concentrate on faults in the memory array and to develop tests
addressed at the functionality of the memory array.

First consider faults in the address decode logic. A fault may cause multiple cells
to be accessed, or no cell may be accessed, or the wrong cell may be addressed. In
the case of multiple cells being addressed, the fault may be viewed as a coupling
fault between cells. If no cell is addressed, then, depending on the logic, the
response from the read logic may appear as a stuck-at-1 or a stuck-at-0. If the wrong
cell is addressed, then, given the presence of the opposite value in that cell, it
appears as a stuck-at fault.

MEMORY FAULTS 523

A fault in the read/write logic may cause an output line to be stuck-at-0 or stuck-
at-1. In either case, the corresponding cell may be considered to be stuck-at-0 or
stuck-at-1. If there are shorts or capacitive coupling between data input or data out-
put lines, these faults can be regarded as coupling between memory cells.

Three conditions, listed below, are defined by Nair et al. in order to detect the
faults in their fault model. In the conditions, a forced transition is one that occurs as
a result of the test algorithm writing into a cell.

Condition 1. Every cell must undergo each of the following two transitions, and must
be read after each transition, before undergoing any subsequent forced transitions.

(a) a 0–1 transition and

(b) a 1–0 transition.

Condition 2. For every pair of cells (i, j), cell i must be read after cell j makes a
forced transition and before cells i and j make any further forced transitions for the
following states of cell i and transitions in cell j:

(a) cell i in state 0, cell j making a 0–1 transition,

(b) cell i in state 1, cell j making a 0–1 transition,

(c) repeat a and b with cell j making a 1–0 transition.

Condition 3. For every cell triple (i, j, k), and x, y, z ∈ {0, 1}, if the test makes a
transition in cell j from y to y after cell i makes a transition from x to x and before cell
k in state z is read, then the test must possess another sequence where either:

(a) cell k in state z is read after an x to x transition in cell i and before a y to
y transition in cell j, or

(b) cell k in state z is read after a y to y transition in cell j and before an x to
x transition in cell i.

Theorem 10.1 The conditions 1 through 3 are necessary and sufficient for a test to
detect all the stuck-at and coupling faults in the memory array.

The proof of this theorem is left as an exercise for the reader. An algorithm is now
presented that addresses the faults in the fault model just described. The notation
used here is from van de Goor.8

[⇑(W0)] Initialize to all 0s

[⇑(R0,W1); ⇓(R1)] Sequence 1

[⇑(R1,W0); ⇓(R0)] Sequence 2

[⇓(R0,W1); ⇑(R1)] Sequence 3

[⇓(R1,W0); ⇑(R0)] Sequence 4

524 MEMORY TEST

Theorem 10.2 The above algorithm is a complete test for the stated memory fault
model.

The algorithm described above is of order n, denoted O(n), where n is the size of
memory. In fact, there are 30 read and write passes through memory, so the algo-
rithm is frequently described as being of complexity 30n. In their paper, Nair et al.
point out that the GALPAT, which is O(n2), does not satisfy all of condition 2. They
then define a more comprehensive fault model that includes coupling faults, and
they extend the above algorithm to address those faults.

10.5 MEMORY SELF-TEST

Memory ICs keep growing larger. The cost of manufacturing these ICs remains rela-
tively constant as they grow larger, but the cost of testing them increases, because
every cell has to be tested for several different kinds of fault mechanisms. It was
pointed out in the previous section that the cost of testing these large memory ICs
often takes up more than half of the total manufacturing cost.

One of the major contributors to test cost for memory ICs is the commercial
testers that are used to test them. In addition to the growing size of memories, the
speed at which they operate also continues to increase. In order to keep up with
memory IC technology, vendors must constantly upgrade their testers, with a result-
ant increase in cost. Another problem that must be faced is the inability to access
many of the memories because they are embedded in ICs, surrounded by random
logic. Gaining access to the address, data and control pins and controlling them with
dedicated memory test algorithms is often impossible.

As a result of these growing difficulties, memory built-in self-test (MBIST) has
become an accepted way to test many memories. BIST not only has the ability to
access embedded memories, but it also has the advantage that it can be designed in
conjunction with the memory. Thus, architectural features can be incorporated into the
design to take advantage of the presence of BIST. This includes partitioning an internal
memory array into several smaller arrays that can be tested in parallel, thus signifi-
cantly reducing total test time. Note, however, that fragmentation of memories may be a

[⇑(R0,W1,W0); ⇓(R0)] Sequence 5

[⇓(R0,W1,W0); ⇑(R0)] Sequence 6

[⇑(W1)] Initialize to all 1s

[⇑(R1,W0,W1); ⇓(R1)] Sequence 7

[⇓(R1,W0,W1); ⇑(R1)] Sequence 8

Legend:
⇑—operate in ascending order W0—write 0 W1—write 1

⇓—operate in descending order R0—read 0 R1—read 1

MEMORY SELF-TEST 525

disadvantage. If a design contains many small memories, the overhead of BIST may
be prohibitive.

Another advantage of BIST is its ability to test memory within a system while it
is in operation; hence whenever the system is powered up, the memory can be tested
for defects that may have occurred since the system was last in operation. This is
critical in systems that must be failsafe, particularly as there is some concern that
with technology approaching 0.1 micron; soft errors and noise may become major
problems.9

10.5.1 A GALPAT Implementation

A generic BIST circuit is depicted in Figure 10.6.10 For memory test the CUT would
be the memory module. The BIST must not only generate the data, but must also
contain circuits to generate memory addresses in some predetermined order. With
minor modifications to the diagram, the same test generator could be used to gener-
ate the expected response, by way of the control logic, in addition to the test pattern
sequence. In fact, the test generator could generate data to first fill all of memory
with some desired pattern, then the same test generator could generate the expected
response simultaneously with reading memory. Depending on the algorithm imple-
mented by the test generator, this BIST will test for addressing faults as well as
memory faults.

The following synthesizable Verilog code implements a BIST circuit, together
with testbench, to perform a GALPAT test. Note that the GALPAT example in
Section 10.3 was executed by the testbench; it would be analogous to application of
GALPAT from a memory tester. The reader can experiment with the parameters to
see how the circuit behaves with different memory sizes. The circuit is easily modi-
fied to perform one of several other memory test algorithms that we will discuss sub-
sequently (see the exercises at the end of the chapter). The RAM module, not listed
here, is the same one used previously (Section 10.3). It is easily altered to model
various fault mechanisms.

Figure 10.6 Generic BIST scheme.

Circuit under test
(CUT)

Control logic

Test
Generator

Response
monitor

M
U
X

Inputs Outputs

Error

Test
pattern

sequence

526 MEMORY TEST

`timescale 1ns / 100ps
module DFF(Q, CLK, set);
input CLK, set;
output Q;
reg Q;
always @(posedge CLK or posedge set)
if(set) Q = 1’b1;
else if(CLK) Q = 1’b0;

endmodule
module testbench;
parameter log2_memdepth = 4, memdepth = 16;
wire [log2_memdepth-1:0] addr;
wire datain, wen, oen, dataout, TC, err_flg;
reg T_start, TCLK;
integer counter;
DFF U1 (mem_err, TCLK, err_flg);
ram #(log2_memdepth, memdepth) U2
(addr,dataout,datain,wen,oen);

galpat #(log2_memdepth,memdepth) U3
 (addr,dataout,datain,wen,oen,TCLK,TC,err_flg,T_start);
initial begin
TCLK = 0; // test clock
T_start = 0;
counter = 0;

end
always begin
#2 T_start = 1;
#6 TCLK = ~TCLK;
if(TCLK == 1)
counter = counter + 1;

end
always @(TC or mem_err)
begin
if(mem_err)
$display(“Mem. Error at location %d, during clock

%d\n”,
addr, counter);

if(TC) begin // Test Complete
$display(“Algorithm required %d clocks\n”, counter);

MEMORY SELF-TEST 527

$finish;
end

end
endmodule
module galpat (adval, testval, memval, wen, oen, TCLK,

TC, err_flg, T_reset);
parameter log2_memdepth = 8, memdepth = 256;
output [log2_memdepth-1:0] adval;
output testval, wen, oen, err_flg, TC;
input memval, TCLK, T_reset;
reg [log2_memdepth-1:0] j, testcell;
wire [log2_memdepth-1:0] adval;
reg [2:0] GSTATE, GSTATE_next;
reg TC, e, read, write;
wire oen, wen, err_flg, testval;
`define S0 4’b000
`define S1 4’b001
`define S2 4’b010
`define S3 4’b011
`define S4 4’b100
`define S5 4’b101
`define S6 4’b110
`define S7 4’b111
always @(GSTATE or testcell or j or e or memdepth)
case(GSTATE)
`S0: GSTATE_next = (testcell == memdepth - 1)

? `S1 : `S0;
`S1: GSTATE_next = `S2;
`S2: GSTATE_next = `S3;
`S3: GSTATE_next = (j == 0) ? `S4 : `S2;
`S4: GSTATE_next = `S5;
`S5: if (testcell != memdepth-1)

GSTATE_next = `S1;
else GSTATE_next = (e == 0) ? `S6 : `S7;

`S6: GSTATE_next = `S0;
`S7: GSTATE_next = `S7;
default: GSTATE_next = `S7;

endcase
always @(negedge T_reset or posedge TCLK)

528 MEMORY TEST

if(!T_reset) begin
e = 0;
j = 0;
TC = 0; // test complete if TC == 1
testcell = 0;
GSTATE = `S0;

end
else begin
GSTATE = GSTATE_next;
case(GSTATE)
`S0: begin // write background of e, e ∈ {0,1}

read = 1; // disable read
write = 0; // enable write
testcell = testcell+1;

end
`S1: testcell = testcell+1;
`S2: begin // read neighbor

write = 1; // inhibit write
read = (j == testcell) ? 1 : 0;

end
`S3: begin // read testcell

j = j+1;
read = (j == testcell) ? 1 : 0;

end
`S4: begin // restore testcell

write = 0; // enable write
read = 1;

end
`S5: write = 1; // disable write
`S6: e = 1;
`S7: TC = 1;

endcase
end

assign wen = !TCLK | write;
assign oen = !TCLK | read;
assign err_flg = !oen & !read & (memval ^ e);
assign testval = (GSTATE == `S1 || GSTATE == `S3)

? !e : e;
assign adval = (GSTATE == `S2) ? j : testcell;
endmodule

MEMORY SELF-TEST 529

Figure 10.7 State graph for GALPAT.

In this model, corresponding to the state diagram in Figure 10.7, the background is
written during state S0. In state S1 the testcell is chosen and set to the value e. Then,
during states S2 and S3 the circuit “ping-pongs” back and forth, alternately reading
the test cell and one of the neighbor cells. In S4 the testcell is restored. S5 transitions
to S1 if additional memory locations remain to act as testcells. If all of the memory
locations have served as test cells, then e ∈ {0,1} is checked to determine if both
values have been processed. If not, then the state machine transitions from S5 to S6;
otherwise it transitions to S7, where it is done.

It is instructive to examine the gate count of this circuit as it is synthesized for
various memory sizes. The gate counts will of course vary as a function of the
options chosen during synthesis, and those will in turn depend on whether the user
chooses to optimize for speed or die area. But, nonetheless, the gate counts vary in
proportion to the number of address bits, rather than to memory size.

The GALPAT is impractical, even in BIST form, for all but the smallest memo-
ries. The problem is not the gate count but, rather, the execution time. The circuit
“ping-pongs” between states S2 and S3 for each testcell. Hence, ignoring the back-
ground write in state S0, it is of approximate duration (2n)2, where n is the number
of memory cells. This is often expressed as O(n2), read as “order of n-squared,”
meaning that computation time is dominated by the square of the number of mem-
ory cells. This BIST circuit is easily modified to implement a walking pattern, but
the inherent problem of execution time remains.

10.5.2 The 9N and 13N Algorithms

A number of BIST circuits have been proposed in the literature, and in each case the
key to successfully defining a memory BIST lies in identifying the fault classes that

SYNTHESIS SIZE FOR GALPAT

Memory size Address bits Gate Count

16 bits 4 265

64 bits 6 354

256 8 440

64 K 16 760

16 M 24 1090

S0
S1

S2 S3

S6 S5 S7

S4Start

Done

530 MEMORY TEST

are of interest and tailoring an algorithm to address those faults. Then, a hardware
implementation, or BIST, circuit can be designed to implement that algorithm. The
9N and 13N algorithms will be described here, where N is the number of memory
locations.11 The 13N has been used in the AMD K6 microprocessor.12 Implementa-
tion of BIST circuits13 for 9N and 13N is left as an exercise.

Development of the 9N and 13N algorithms began with a study of a number of
spot defects in an 8k × 8 SRAM memory. The defects were first translated to defects
in the circuit transistor diagram. Then, defects at transistor level were classified
based on equivalent faulty memory behavior. The result was six fault classes:

1. A cell is stuck-at 0 or stuck-at 1.

2. A cell is stuck-open.

3. A cell has a transition fault.

4. A cell is state coupled to another cell.

5. A multiple access fault exists from one memory cell to another.

6. A cell has a data retention fault.

In their study, the authors found that about 50% of the faults were stuck-at faults.
Data retention was the second most common fault, while multiple access faults were
least common. The 13N algorithm is used when the SRAM sense amplifiers include
a data latch. The purpose of the latch is to extend the read window of the RAM.
However, during testing, this latch can mask the effects of stuck-open faults. The 9N
algorithm is shown to be sufficient to detect all the faults of interest when there is no
data latch.

The first five rows in this algorithm constitute the 9N algorithm. The inclusion of
the final four rows extend it to a 13N algorithm. The duration of the wait depends
on the node capacitance and leakage current in the memory cells. It is proven in the
original paper that all of the fault classes of interest are detected by the 9N and/or
the 13N algorithms. We will consider here the proof for detection of coupling
faults.

Theorem 10.3 The 9N/13N algorithm detects all state coupling faults.

[⇑(W0)] Initialize to all 0s

[⇑(R0,W1)] Sequence 1

[⇑(R1,W0)] Sequence 2

[⇓(R0,W1)] Sequence 3

[⇓(R1,W0)] Sequence 4

Disable RAM Wait

[⇑(R0,W1)] Sequence 5

Disable RAM Wait

[⇑(R1)] Sequence 6

MEMORY SELF-TEST 531

Figure 10.8 Cell checking sequence for 9N algorithm.

Proof The test for state coupling is proven by demonstrating that, for any two arbi-
trary cells, all four binary combinations exist on these two cells, and are checked, at
some point during the test. We start by designating two arbitrary cells to be cell1 and
cell2. Then, in the state diagram in Figure 10.8, the binary values inside the state cir-
cles represent the values on cell1 and cell2. The arc labeled 1/R1 represents step 1,
which is a read of cell1. Then, the arc 2/W1 represents a transition to the state (1, 0),
and represents a write to cell 1. In that state, the arc 3/R2 represents a read of cell2.
The remaining transitions are interpreted similarly. The reader can confirm that all
combinations are checked at some point during the algorithm.

10.5.3 Self-Test for BIST

One of the questions that occasionally comes up concerns failures in the BIST cir-
cuits. What happens if the BIST fails? First, it should be considered that, for large
memory arrays, the BIST circuitry is a small percentage of the total die area. Con-
sequently, the DPM (defects per million) attributable to the BIST should be very
small. One way to further reduce the DPM caused by BIST is to use less aggressive
scaling in the BIST circuits so as to realize greater reliability. Another approach that
can further reduce the DPM caused by BIST is to incorporate BIST circuits in the
BIST. In Section 9.8.2 a self-test feature was described that took advantage of
the parity of one-hot encoded state machines. A large percentage of the defects in
the state machine are immediately detectable by virtue of the fact that they will
cause an even number of flip-flops to be turned on. A parity check on these flip-
flops reveals stuck-at faults not only in the flip-flops, but in the logic that controls
the state transitions.

10.5.4 Parallel Test for Memories

Conceptually, it is inviting to think of a memory as being composed of a single,
monolithic array. This is in part due to the fact that we usually have no visibility into

0 0 0 1

1 0 1 1
4/W2

3/
R

2

2/W
1

1/R1 11/R1

10/W2

9/
R

2

8/W2

7/R
2

6/
W

1

5/R
1

1/
W

1

15/R1

14/W2

13/R2

12/W
1

532 MEMORY TEST

the inner workings of the memory IC. However, the manufacturer does know inti-
mately the layout of the device. Furthermore, the manufacturer can tailor the archi-
tecture of the memory to a specific set of objectives. One of these objectives is the
test time. It is possible to divide a memory array into several smaller arrays and test
them in parallel. This can lead to a significant reduction in test time. A taxonomy for
different memory architectures includes the following:14

When testing with an external tester the SASB is the prevalent view of the mem-
ory DUT, since the tester transmits one address at a time to the IC. The SAMB usu-
ally accesses multiple bits from the same row of the DUT. The MAMB accesses
multiple bits from multiple arrays and provides the biggest improvement in test
time. In a 4-Mb DRAM designed by Toshiba, 16 bits can be tested in parallel.15 In
addition, the chips can be tested in parallel when mounted on a PCB for additional
savings in test time.

In yet another parallel test mode, an MISR (cf. Section 9.3) is used as part of a
parallel test algorithm.16 This is illustrated in Figure 10.9. It is not a true BIST
scheme since it depends on scan-in of data via a tester and scan-out of the accumu-
lated signature. The scan mechanism is a variant of the BILBO (cf. Section 9.3.4);
since it is multipurpose, it can be used to scan data in and out as well as to accumu-
late signatures.

The discussion here is simplified by assuming that there is a flip-flop in the MISR
for every sense amplifier. The designer actually has several options in this scheme.
For example, the designer could access the bit line chosen by the column decoder.
Also note that the number of flip-flops used in the MISR could exceed the number of
bit lines in order to reduce aliasing.

Figure 10.9 MISR used to test memory.

SASB Single-array single-bit

SAMB Single-array multiple bit

MASB Multiple-array single bit

MAMB Multiple-array multiple bit

M
IS

R

M
IS

R

Se
ns

e
am

ps
Se

ns
e

am
ps

Se
ns

e
am

ps
Se

ns
e

am
ps

C
ol

um
n

de
co

de
r

Row decoder Row decoder

Scan-in data Scan-out dataI/O BusBit lines

MEMORY SELF-TEST 533

Consider an N × 1 memory with k bit lines accessed by k flip-flops. Define a
p-word to be all of the memory locations that can simultaneously be written to or
read from by the MISR. A march pattern proceeds as follows:

Step 1: Write a background of zeros.

Step 2: For i = 1 to N, do the following:
(a) Read all-zeros from word(i).
(b) Write all-ones into word(i).
(c) Read all-ones from word(i).

Step 3: For i = 1 to N, do the following:

(a) Read all-ones from word(i).

(b) Write all-zeros into word(i).

(c) Read all-zeros from word(i).

Step 4: Repeat the sequence with complementary pattern.

For the modified march pattern, using the MISR, the march pattern becomes:

Step 1: Write a background of zeros.
(a) Scan all zero pattern into MISR.
(b) For i = 1 to N/k do the following: Write MISR contents into p-word(i).

Step 2: For i = 1 to N/k do the following:
(a) Read all-zeros from p-word(i).
(b) {Scan all-one pattern into MISR}—optional. Write MISR contents into p-

word(i).
(c) Read all-ones from p-word(i).

Step 3: For i = 1 to N/k do the following:
(a) Read all-ones from p-word(i).
(b) Scan all-zero pattern into MISR}—optional. Write MISR contents into p-

word(i).
(c) Read all-zeros from p-word(i).

Step 4: Repeat the sequence with complementary pattern.

The original march is a 14N algorithm. The modified march, with the scan-in,
will have duration 2[(k + N/k) + N/k(1 + k + 1 + 1) + N/k(1 + k + 1 + 1)], which
reduces to 2(2N + k + 7N/k). Because of all the scan operations, this is not a sig-
nificant savings. For example, if N = 1Mbit, and k = 1Kbit, the modified march is
approximately 4N, which represents a savings of 3.5X. However, if the contents of
the MISR are used as stimuli, then the duration of the test is 2[(k + N/k) + {k + N/
k(1 + 1 + 1)} + {k + N/k(1 + 1 + 1)}]. This reduces to 2(3k + 7N/k), or approxi-
mately 14N/k. For the 1Mbit memory, that represents a savings of about 1000X.

10.5.5 Weak Read–Write

One of the more expensive tests, in terms of test time, is the data retention test.
Recall, from discussion of the 9N and the 13N tests, that the difference between the

534 MEMORY TEST

9N and the 13N derived from the fact that 13N included two wait periods. The
duration of the wait periods can be considerable, and it represents a substantial
cost. The weak write test mode addresses this problem through the use of some
built-in test circuits. The object is to try to precipitate early failures of those ICs
that would otherwise fail during operation. This is illustrated in Figure 10.10. The
SRAM is made up of transistors M1 through M6. The additional circuitry, com-
posed of Ma through Mf, constitutes the weak write test mode (WWTM). During
normal operation the weak write circuits are disabled. Since the WWTM is nonin-
trusive, it has no impact on normal performance of the SRAM.

The operation of the circuits during test is as follows:

1. Write a background of all 0s to the memory array.

2. Enable WWTM.

3. Perform weak write one (WR1).

4. Disable WWTM.

5. Perform a read, determine if any cell has been overwritten.

6. Repeat with complementary values.

Figure 10.10 SRAM cell with weak write.

M
1

M
2

M
3

M
4

M5 M6

WL WL

B B

M
a

M
b

Mc Md

Me Mf

WR1

WR0

REPAIRABLE MEMORIES 535

The key to operation of WWTM is the use of transistors with size and bias that
permit only weak or faulty SRAM cells to be overwritten. As a result, cells that are
within specification are unaffected by the weak write circuits.

The amount of die space taken by the weak write circuits depends on how many
SRAM cells share the word lines with the WWTM circuit. If a block of memory has
128-word lines, then the additional circuitry contributed by the WWTM is less than
1%. In computing the savings in test time, two tests are considered. The pause test,
or data retention test, writes a background to the array and, after a pause of perhaps
100 ms, the array is read to determine if any cell has changed state. The read disturb
test writes a background to the array, and then it reads the array at a higher or lower
Vcc while ignoring the data. After some elapsed time the array is again read to deter-
mine if any cell has changed state.

In each of these tests, the elapsed time of the pause is measured in hundreds of
milliseconds. WWTM, conversely, required only microseconds. The impact on pro-
duction test was a savings of 20% in test time, plus the savings realized by not pack-
aging defective die. An additional fallout from WWTM is the detection of faults that
are not detected by the previous method.

10.6 REPAIRABLE MEMORIES

With the growing number of cells in each memory IC and with shrinking feature
sizes, yield becomes a more critical problem. Defect densities, measured in defects
per square centimeter, continue to decrease, as a result of improved processes and
cleaner fab rooms, but die size increases as the number of memory cells quadruples
from one generation of memories to the next. Furthermore, faulty operation can be
caused by mask imperfections or pinhole defects that would not have caused errors
in a die with larger feature sizes.

In a die populated with random logic, there is no predictable order to the place-
ment of logic cells, and faulty die are normally discarded. However, since a sig-
nificant portion of the faulty die contain only a few faulty memory cells,17 it is
possible to take advantage of the regular structure of RAM chips and add extra
rows and columns to improve yield. During test, if a memory chip is discovered to
have just a few bad cells, then one of the spare row(s) or column(s) is substituted
for the faulty row(s) or column(s) containing the bad cell(s) to create a good
memory chip.

The substitution of a row or column for another one is achieved by means of
fuses. In Figure 10.11 the SRE (spare row enable) signal is normally held high so
the output of the spare row NOR decoder is held high. If the spare row is to be
used, then an SRE fuse is blown, which enables the spare row NOR. If the spare
row NOR is selected, it disables all other NORs. There is a programming element
for each row address line. The programming elements (Figure 10.12) determine
the row address to be selected. During test, if it is determined that the die can be
repaired by substituting a spare row for a row with failed cells, then the SRE signal
is activated by blowing a fuse. The address of the failed row is then programmed

536 MEMORY TEST

Figure 10.11 Alternate row select.

into the programming elements. If the fuse in the PE is blown, the output Si is con-
nected to Ai because T1 is enabled through transistor D. If the fuse is not blown, then
the transistor T2 is activated and Si is connected to Ai.

Each programming element has a unique address. If the address fuse in that PE is
addressed, its output enables transistor P and a large current flows through the fuse,
causing it to open. These PE address lines and VDP are accessible on the die but are

Figure 10.12 Programming element.

PE PE

A0 A0

S0

...

Spare row

... ...

PE PE

SRE

Ar−1 Ar−1A1 A1 A2 A2

S1
S2 Sr−1

Programming
element
address

Row address select

P

D

VDP

Si

Ai

Ai

T2

T1

ERROR CORRECTING CODES 537

not accessible after the chip has been packaged. Each programming element has a
unique address. If the address fuse in that PE is addressed, its output enables transis-
tor P and a large current flows through the fuse, causing it to open. These PE address
lines and VDP are accessible on the die but are not accessible after the chip has been
packaged.

The spare row concept can also be applied to spare column replacement. Further-
more, more than one spare row and column can be provided. Practical consider-
ations usually limit the spares to two rows and two columns, since additional rows
and columns cause die size to grow, countering the objective of maximizing yield.
When a row or column has replaced another row or column, it is necessary to retest
the die to ensure that the substitute row or column is not defective. In addition, it is
necessary to verify that the fuse has blown and that the mechanism used to blow the
fuse has not caused damage to surrounding circuitry.

There appears to be negligible effect on memory access time due to rows or col-
umns being substituted. The presence of the additional transistor, T1 or T2, causes
roughly an 8% increase in access time. An area of concern with redundant rows and
columns is the effect on those memory tests intended to uncover disturb sensitivities.
However, comparison of test data between devices with and without redundancies
showed no significant differences.17

10.7 ERROR CORRECTING CODES

Because of shrinking cell size, semiconductor memories are increasingly prone to
random or intermittent errors. These soft errors may be caused by noise, capacitance,
or alpha particles. The alpha particles are helium nuclei resulting from decay of
radioactive elements in the packaging material.The term soft error refers to the fact
that the error is not easily repeatable and the conditions leading up to its occurrence
cannot be duplicated. Therefore a specific test to detect its presence does not exist, in
contrast to permanent or hard errors for which tests can be created. Soft errors can be
dealt with by means of error correcting codes (ECC), also called error detection and
correction codes (EDAC). We will look at hard faults, tests devised to detect these
faults, and error correcting codes used to recover from the effects of soft errors.

In 1948 Claude Shannon published his classic article entitled “The Mathematical
Theory of Communication.”18 In that paper he proved the following theorem:

Theorem 10.4 Let a source have entropy H (bits per symbol) and let a channel have
a capacity C (bits per second). Then it is possible to encode the output of the source
in such a way as to transmit at the average rate (C/H)-e symbols per second over the
channel where e is arbitrarily small. It is not possible to transmit at an average rate
greater than C/H.

This theorem asserts the existence of codes which permit transmission of data
through a noisy medium with arbitrarily small error rate at the receiver. The alterna-
tive, when transmitting through a noisy medium, is to increase transmission power

538 MEMORY TEST

to overcome the effects of noise. An important problem in data transmission is to
minimize the frequency of occurrence of errors at a receiver with the most economi-
cal mix of transmitter power and data encoding.

An analogous situation exists with semiconductor memories. They continue to
shrink in size; hence error rates increase due to adjacent cell disturbance caused by
the close proximity of cells to one another. Errors can also be caused by reduced
charge densities.19 Helium nuclei from impurities found in the semiconductor pack-
aging materials can migrate toward the charge area and neutralize enough of the
charge in a memory cell to cause a logic 1 to be changed to a 0. These soft errors,
intermittent in nature, are growing more prevalent as chip densities increase. One
solution is to employ a parity bit with each memory word to aid in the detection of
memory bit errors. A single parity bit can detect any odd number of bit errors.
Detection of a parity error, if caused by a soft error, may necessitate reloading of a
program and/or data area.

If memory errors entail serious consequences, the alternatives are to use more
reliable memories, employ error correcting codes, or possibly use some combination
of the two to reach a desired level of reliability at an acceptable cost. Since Shan-
non’s article was published, many families of error correcting codes have been dis-
covered. In memory systems the Hamming codes have proven to be popular.

10.7.1 Vector Spaces

An understanding of Hamming Codes requires an understanding of vector spaces, so
we introduce some definitions. A vector is an ordered n-tuple containing n elements
called scalars. In this discussion, the scalars will be restricted to the values 0 and 1.
Addition of two vectors is on an element-by-element basis, for example,

The addition operation, denoted by +, is the mod 2 operation (exclusive-OR) in
which carries are ignored.

Example If and ,
then . ��

Multiplication of a scalar and a vector is defined by

The inner product of two vectors and is defined as

If the inner product of two vectors is 0, they are said to be orthogonal.

v1 v2+ v11 v12 …, , v1n(,) v21 v22 …, , v2n(,)+ v11 v21+ v12 v22+ …, , v1n v2n+(,)= =

v1 0 1 1 0, , ,()= v2 1 1 0, , 0(,)=
v1 v2+ 0 1+ 1 1+ 1 0+, , 0 0+(,) 1 0 1, , 0(,)= =

a 0 1{ , }∈ v1

av1 av11 av12 … av1n, , ,()=

v1 v2

v1 v2⋅ v11 v12 …, , v1n(,) v21 v22 …, , v2n(,)⋅=

v11 v21⋅ v12 v22⋅ … v1n v2n⋅+ + +()=

ERROR CORRECTING CODES 539

A vector space is a set V of vectors which satisfy the property that all linear com-
binations of vectors contained in V are themselves contained in V, where the linear
combination u of the vectors v1, v2 ,..., vn is defined as

The following additional properties must be satisfied by a vector space:

1. If v1,v2 ∈V, then v1 + v2 ∈V.

2. (v1 + v2) + v3 = v1 + (v2 + v3).

3. v1 + e = v1 for some e ∈V.

4. For v1 ∈V, there exists v2 such that v1 + v2 = e.

5. The product a⋅v1 is defined for all v1 ∈V, a ∈{0,1}.

6. a(v1 + v2) = av1 + av2.

7. (a + b)v1 = av1 + bv1.

8. (ab)v1 = a(bv1).

A set of vectors v1, v2, ..., vn is linearly dependent if there exist scalars c1, c2, ...,
cn, not all zero, such that

If the vectors v1, v2, ..., vn are not linearly dependent, then they are said to be linearly
independent.

Given a set of vectors S contained in V, the set L(S) of all linear combinations of
vectors of S is called the linear span of S. If the set of vectors S is linearly indepen-
dent, and if L(S) = V, then the set S is a basis of V. The number of vectors in S is
called the dimension of V.

A subset U contained in V is a subspace of V if u1, u2 ∈U implies that

 for .

The following four theorems follow from the above definitions:

Theorem 10.5 The set of all n-tuples orthogonal to a subspace V1 of n-tuples forms
a subspace V2 of n-tuples. This subspace V2 is called the null space of V1.

Theorem 10.6 If a vector is orthogonal to every vector of a set which spans V1, it
is in the null space of V1.

Theorem 10.7 If the dimension of a subspace of n-tuples is k, the dimension of the
null space is n − k.

Theorem 10.8 If V2 is a subspace of n-tuples and V1 is the null space of V2, then V2
is the null space of V1.

u a1v1 a2v2
… anvn+ + += a 0 1,{ }∈

c1v1 c2v2
… cnvn+ + + 0=

c1v1 c2v2+ U∈ c1 c2, 0 1,{ }∈

540 MEMORY TEST

Example The vectors in the following matrix, called the generator matrix of V, are
linearly independent. They form a basis for a vector space of 16 elements.

(10.1)

The dimension of the subspace defined by the vectors is 4. The vectors 0111100,
1011010, and 1101001 are orthogonal to all of the vectors in G, hence they are in
the null space of G. Furthermore, they are linearly independent, so they define the
following generator matrix H for the null space of V:

(10.2)

10.7.2 The Hamming Codes

From Theorem 10.8 we see that a vector space can be defined in terms of its genera-
tor matrix G or in terms of the generator matrix H for its null space. Since a vector v
∈ V is orthogonal to every vector in the null space, it follows that

(10.3)

where is the transpose of H.
The Hamming weight of a vector v is defined as the number of nonzero compo-

nents in the vector. The Hamming distance between two vectors is the number of
positions in which they differ. In the vector space generated by the matrix G in
Eq. (10.1), the nonzero vectors all have Hamming weights equal to or greater than
three. This follows from Eq. 10.3, where the vector v selects columns of H which
sum, mod 2, to the 0 vector. Since no column of H contains all zeros, and no two
columns are identical, v must select at least three columns of H in order to sum to
the 0 vector.

Let a set of binary information bits be represented by the vector
. If G is a matrix, then the product J ⋅ G encodes the infor-

mation bits by selecting and creating linear combinations of rows of G correspond-
ing to nonzero elements in J. Each information vector is mapped into a unique
vector in the space V defined by the generator matrix G. Furthermore, if the columns
of the generator matrix H of the null space are all nonzero and if no two columns of
H are identical, then the encoding produces code words with minimum Hamming
weight equal to 3. Since the sum of any two vectors is also contained in the space,
the Hamming distance between any two vectors must be at least three. Therefore, if
one or two bits are in error, it is possible to detect the fact that the encoded word has
been altered.

G

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

=

H
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

=

��

v HT⋅ 0=

HT

J j1 j2 … jk, , ,()= k n×

ERROR CORRECTING CODES 541

If we represent an encoded vector as v and an error vector as e, then

If e represents a single bit error, then the product matches the column of H cor-
responding to the bit in e which is nonzero.

Example If G is the matrix in Eq. (10.1), and J = (1,0,1,0), then v = J ⋅ G =
(1,0,1,0,1,0,1). If e = (0,0,0,1,0,0,0), then v + e = (1,0,1,1,1,0,1). So,

The product (1,1,1) matches the fourth column of H (fourth row of HT). This implies
that the fourth bit of the message vector is in error. Since the information bits are
binary, it is a simple matter to invert the fourth bit to get the original vector
(1,0,1,0,1,0,1). ��

In this encoding the first four columns of G form an identity matrix; hence when
we multiply J and G, the first four elements of the resulting vector match the original
information vector. Such a code is called a systematic code. In general, the columns
of G can be permuted so that columns making up the identity matrix can appear any-
where in the matrix. The systematic code is convenient for use with memories since
it permits data to be stored in memory exactly as it exists outside memory. A general
form for G and H, as systematic codes, is

where is the identity matrix of dimension n, the parameter k represents the num-
ber of information bits, n is the number of bits in the encoded vector, and n − k is the
number of parity bits. The matrix P is called the parity matrix, the generator matrix
H is called the parity check matrix, and the product is called the syndrome.
When constructing an error correcting code, the parameters n and k must satisfy the
expression .

Error correcting codes employ maximum likelihood decoding. This simply says
that if the syndrome is nonzero, the code vector is mapped into the most likely mes-
sage vector. In the code described above, if the syndrome is (1,1,1), it is assumed
that bit 4 of the vector is in error. But, notice that the 2-bit error e = (1,0,0,0,1,0,0)
could have produced the same syndrome. This can cause a false correction because
maximum likelihood decoding assumes that one error is more probable than two

v e+() HT⋅ v HT⋅ e HT⋅ eHT=+=

eHT

v eHT+ 1, 0, 1, 1, 1, 0, 1()

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

1, 1, 1()= =

G Ik Pk n k–();[]=

H P n k–()k
T I n k–();[]=

In

v HT⋅

2n k– 1– n≥

542 MEMORY TEST

errors; that is, if Pi is the probability that the ith bit is received correctly, then
, where Qi is the probability of receiving the incorrect bit.

To avoid the possibility of an incorrect “correction,” an additional bit can be
added to the code vectors. This bit is an even parity check on all of the preceding
bits. The parity matrix P for the preceding example now becomes

Since the information vectors must now be even parity, any odd number of errors
can be detected. The decoding rule is as follows:

1. If the syndrome is 0, assume no error has occurred.

2. If the last bit of the syndrome is one, assume a single-bit error has occurred;
the remaining bits of the syndrome will match the column vector in H corre-
sponding to the error.

3. If the last bit of the syndrome is zero, but other syndrome bits are one, an
uncorrectable error has occurred.

In case 3, an even number of errors has occurred; consequently it is beyond the cor-
recting capability of the code. An error bit may be set when that situation is detected,
or, in a computer memory system, an uncorrectible error may trigger an interrupt so
that the operating system can take corrective action.

10.7.3 ECC Implementation

An ECC encoder circuit must create parity check bits based on the information bits
to be encoded and the generator matrix G to be implemented. Consider the informa-
tion vector and , where and

In the product J ⋅ G, the first k bits remain unchanged. However, the (k + s)th bit,
, becomes

Pi Qi> 1 Pi–=

P

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

=

J j1 j2 … jk, , ,()= G Ik Pk r×;[]= r n k–=

Pk r⋅

p11 p12 … p1r

p21 p22 … p2r

… … … …
pk1 pk2 … pkr

=

1 s r≤ ≤

gs j1 p1s⋅ j2 p2s⋅ … jk pks⋅+ + +=

jm pms⋅
m 1=

k

∑=

ERROR CORRECTING CODES 543

Figure 10.13 Error correction circuit.

Therefore, in an implementation, the (k + s)th symbol is a parity check on informa-
tion bits corresponding to nonzero elements in the sth column of P.

The encoded vector is decoded by multiplying it with the parity generator H to
compute the syndrome. This gives

Therefore, to decode the vector, encode the information bits as before, and then
exclusive-OR them with the parity bits to produce a syndrome. Use the syndrome to
correct the data bits. If the syndrome is 0, no corrective action is required. If the
error is correctible, use the syndrome with a decoder to select the data bit that is to
be inverted. The correction circuit is illustrated in Figure 10.13. With suitable con-
trol circuitry, the same syndrome generator can be used to generate the syndrome
bits.

Error correcting codes have been designed into memory systems with word
widths as wide as 64 bits20 and have been designed into 4-bit wide memories and
implemented directly on-chip.21 Since the number of additional bits in a SEC-DED
Hamming code with a 2n bit word is n + 2, the additional bits as a percentage of data
word width decrease with increasing memory width. For a 4-bit memory, 3 bits are
needed for SEC and 4 bits for SEC-DED. A 64-bit memory requires 7 bits for SEC
and 8 bits for SEC-DED.

10.7.4 Reliability Improvements

The improvement in memory reliability provided by ECCs can be expressed as the
ratio of the probability of a single error in a memory system without ECC to the
probability of a double error in a memory with ECC.22 Let be the proba-
bility of a single memory device operating correctly where is the failure rate of a
single memory device. Then, the probability of the device failing is

Memory

Syndrome
decode

Correction
circuits

Uncorrectable
error

22 16

6 16

Corrected
data

v e+() HT⋅ v1 v2 … vn, , ,() Pk r⋅

Ir

⋅ e
Pk r⋅

Ir

⋅+=

j1 j2 … jk p1 p2 … pr, , , , , , ,()=
Pk r⋅

Ir

⋅ e
Pk r⋅

Ir

⋅+

R e λt–=
λ

Q 1 R– 1 e λt––= =

544 MEMORY TEST

Given m devices, the binomial expansion yields

Hence, the probability of all devices operating correctly in a memory with m + k bits
is Rm, the probability of one failure is , and the probability of two
errors is

The improvement ratio is

Example Using a SEC-DED for a memory of 32-bit width requires 7 parity bits. If
λ = 0.1% per thousand hours, then after 1000 hours we have

��

The reliability at t = 10,000 hours is Ri = 3.5. This is interpreted to mean that the
likelihood of a single chip failure increases with time. Therefore the likelihood of a
second, uncorrectable error increases with time. Consequently, maintenance inter-
vals should be scheduled to locate and replace failed devices in order to hold the
reliability at an acceptable level. Also note that reliability is inversely proportional to
memory word width. As word size increases, the number of parity bits as a percent-
age of memory decreases, hence reliability also decreases.

The equations for reliability improvement were developed for the case of per-
manent bit-line failures; that is, the bit position fails for every word of memory
where it is assumed that one chip contains bit i for every word of memory. Data
on 4K RAMS show that 75–80% of the RAM failures are single-bit errors.23

Other errors, such as row or column failure, may also affect only part of a mem-
ory chip. In the case of soft errors or partial chip failure, the probability of a sec-
ond failure in conjunction with the first is more remote. The reliability
improvement figures may therefore be regarded as lower bounds on reliability
improvement.

When should ECC be employed? The answer to this question depends on the
application and the extent to which it can tolerate memory bit failures. ECC requires
extra memory bits and logic and introduces extra delay in a memory cycle; further-
more, it is not a cure for all memory problems since it cannot correct address line
failures and, in memories where data can be stored as bytes or half-words, use of
ECC can complicate data storage circuits. Therefore, it should not be used unless a

Q R+()m Rm mRm 1– Q … Qm+ + +=

P1 mRm 1– Q=

P2
m k+() m k 1–+()Rm k 2–+

2
-- 1 R–()2=

Ri
P1

P2

2m
m k+() m k 1–+()--

1

Rk 1– 1 R–()
------------------------------×= =

R 0.9990005=

1 R– 0.0009995=

Ri
2 32×
39 38×------------------

1
0.9940 0.0009995×--× 43.5= =

ERROR CORRECTING CODES 545

clear-cut need has been established. To determine the frequency of errors, the mean
time between failures (MTBF) can be used. The equation is

where λ is again the failure rate and d is the number of devices. Reliability numbers
for MTBF for a single memory chip depend on the technology and the memory size,
but may lie in the range of 0.01–0.2% per thousand hours. A memory
using eight 64K RAM chips with 0.1% per thousand hours would have an MTBF of
125,000 hours. A much larger memory, such as one megaword, 32 bits/word, using
the same chips would have an MTBF of 2000 hours, or about 80 days between hard
failures. Such failure rates may be acceptible, but the frequency of occurrence of
soft errors may still be intolerable.

Other factors may also make ECC attractive. For example, on a board populated
with many chips, the probability of an open or short between two IC pins increases.
ECC can protect against many of those errors. If memory is on a separate board
from the CPU, it may be a good practice to put the ECC circuits on the CPU board
so that errors resulting from bus problems, including noise pickup and open or high
resistance contacts, can be corrected. A drawback to this approach is the fact that the
bus width must be expanded to accomodate the ECC parity bits.

It is possible to achieve error correction beyond the number of errors predicted to
be correctable by the minimum distance. Suppose hard errors are logged as they are
detected. Then, if a double error is detected and if one of the two errors had been
previously detected and logged in a register, the effects of that error can be removed
from the syndrome corresponding to the double error to create a syndrome for the
error that had not been previously detected. Then, the syndrome for the remaining
error can be used to correct for its effect.

Another technique that can be used when a double error is detected is to comple-
ment the word readout of memory and store that complement back into memory.
Then read the complemented word. The bit positions corresponding to hard cell fail-
ures will be the same, but bits from properly functioning cells will be comple-
mented. Therefore, exclusive-OR the data word and its complement to locate the
failed cells, correct the word, and then store the corrected word back in memory.
This will not work if two soft errors occurred; at least one of the two errors must be
a hard error.24 This technique can also be used in conjunction with a parity bit to cor-
rect hard errors.25 In either case, whether a single-bit parity error or a double error is
detected by ECC, the correction procedure can be implemented by having the mem-
ory system generate an interrupt whenever an uncorrectable error occurs. A recovery
routine residing either in the Operating System or in microcode can then be acti-
vated to correct bit positions corresponding to hard errors.

10.7.5 Iterated Codes

The use of parity bits on rows and columns of magnetic tapes (Figure 10.14) consti-
tutes a SEC-DEC code.26 The minimum Hamming weight of the information plus

MTBF 1/dλ=

64K 8×

546 MEMORY TEST

Figure 10.14 Magnetic tape with check bits.

check bits will always be at least 4. In addition, a single-bit error in any position
complements a row parity bit, a column parity bit, and the check-on-checks parity
bit. Therefore, it is possible to correct single-bit errors and detect double-bit errors.

10.8 SUMMARY

Memories must be tested for functional faults, including cells stuck-at-1 or stuck-at-
0, addressing failures, and read or write activities that disturb other cells. Memories
must also be tested for dynamic faults that may result in excessive delay in perform-
ing a read or write. The cost of testing memory chips increases because every cell
must be tested. Some economies of scale can be realized by testing many chips
simultaneously on the tester. However, much of the savings in test time over the
years has been realized by investigating the fault classes of interest and creating
Pareto charts (cf. Section 6.7) to prioritize the failure mechanisms and address those
deemed to be most significant. With that information, a test algorithm can be
adapted that brings outgoing quality level to acceptable levels.

With feature sizes shrinking, the industry has by and large migrated from core-
limited die to pad-limited die. One consequence of this is that BIST represents an
insignificant amount of die area relative to the benefit in cost savings, both in time
required to test the memory and in the cost of the tester used for that purpose. Just
about any test algorithm can be expressed in an HDL such as Verilog or VHDL and
synthesized, with the resulting BIST circuit representing perhaps 1.0–2.0% of the
die area. Microprogrammed implementations of BIST have also appeared in the lit-
erature.27 A possible advantage of the microprogrammed implementation is that it
can be reprogrammed if fault mechanisms change over the life of the chip.

BIST circuits are not only useful during initial fabrication of the die, but they also
can be custom tailored for use in everyday operation so that if a defect has occurred
while a device is in operation, potentially catastrophic effects on program and/or
data can be prevented by running an online test. Transparent BIST can be used as
part of an online test.28 In this mode of operation an online test is run while the
device is in operation, but the transparent BIST preserved the contents of memory.

With increasing numbers of memory cells per IC, as well as smaller feature
sizes, the possibility of failure, both hard and soft, increases. When failure is

In
fo

rm
at

io
n

sy
m

bo
ls

Column
checks

C
he

ck
 o

n
ro

w
s

Check on
checks

PROBLEMS 547

detected during wafer processing, it is possible to substitute another row and/or
column for the row or column in which the failure occurred if spare rows and/or
columns are provided. This can substantially improve yield, since most of the
defective die incur defects in very few rows or colums, hence are repairable.

Recovery from errors during operation can be achieved through the use of ECCs.
Analysis of the problem indicates that significant inprovements in reliability can be
achieved with the use of ECC. The problem of soft errors was once diagnosed as
being caused by radioactive materials in the chip packaging. However, with smaller
cells, packed closer together and operating at lower voltages, it can be expected that
ECC will regain its popularity.

Finally, we note that the subject of memory design and test is both complex and
expanding in scope. This was illustrated by the diagram in Figure 10.1, where virtually
every block in that diagram contained some kind of memory. New modes of memory
storage constantly appear and existing memories continue to push the technology
envelope. It is only possible to briefly cover the existing spectrum of memory devices,
with an emphasis on the theoretical underpinnings. The reader desiring to pursue this
subject in greater detail is referred to the texts by Prince29 and van de Goor.30

PROBLEMS

10.1 Modify the memory test program of Section 10.3 to implement the following
test algorithms:

Galloping Diagonal

Checkerboard

Moving Inversions

10.2 A register set with 16 registers has an SA0 fault on address line A2 (there are
four lines, A0 – A3). Pick any memory test algorithm that can detect
addressing errors and explain, in detail, how it will detect the fault on A2.

10.3 Using your favorite HDL language/simulator, alter the galpat.v module in
Section 10.5.1 to implement the following algorithms: walking, sliding, 9N,
13N.

Run simulations for various memory sizes and, using the counter in the test-
bench, plot the number of clock cycles versus memory size.

10.4 Synthesize the BIST circuits created in the previous problem. For several
sizes of the parameters, plot the gate count versus memory size.

10.5 Insert various faults in the RAM model of Section 10.3, including SA0 and
SA1, short to neighbor, addressing faults, and so on, and note which memory
tests detect the injected faults.

10.6 Remodel the RAM circuit to show more detail—for example, sense amps,
RAS, CAS, write lines, bit lines, and so on. Then insert faults that are visible

548 MEMORY TEST

only at that level of detail. Determine, by means of simulation, which of the
memory test algorithms detect the faults.

10.7 Suppose that a particular die is made up of 55% memory and 45% random
logic. Assume that in shipped parts, memory has 2 DPM (defects per million)
and that the logic has 1100 DPM. What is the overall DPM for the chip? If
process yield for the logic is 70%, what fault coverage is needed to have less
than 500 DPM for the shipped parts?

10.8 Create the (8,4) SEC-DED matrix for the following generator matrix G.

10.9 Create the parity check matrix H corresponding to the generator matrix G of
the previous problem.

10.10 Using the (8,4) parity check matrix H of the previous problem, determine
which of the following vectors are code vectors and which have errors that
are (a) correctable, (b) detectable.

10.11 If it is known that bit 3 of all the code words has been identified as a solid
SA0, use that information and the matrix H previously given to correct the
following vectors:

10.12 For an SEC-DED code, the decoding rules were given for three conditions of
the syndrome. However, nothing was said about the condition where the last bit
of the syndrome is one, but all other bits are 0. What would you do in that case?

10.13 Prove that the inequality must hold for Hamming codes.

10.14 Prove Theorems 10.5 through 10.8.

G

1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

=

1 0 0 1 0 0 0 1
0 1 1 1 1 1 1 0
1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 0
1 1 1 0 0 0 0 1
0 1 0 1 1 1 0 1

0 1 0 0 0 1 1 1
0 1 0 1 1 0 1 0
1 0 0 1 0 0 1 0

2n k– 1– n≥

REFERENCES 549

REFERENCES

1. Pyron, C. et al., Next Generation PowerPC Microprocessor Test Strategy Improvements,
IEEE Int. Test Conf., 1997, pp. 414–423.

2. Stolicny, C. et al., Manufacturing Pattern Development for the Alpha 21164
Microprocessor, Proc. IEEE Int. Test Conf., 1997, pp. 278–286.

3. Intel Corp., Product Overview, 1993, pp. 5–12.

4. de Jonge, J. H., and A. J. Smulders, Moving Inversions Test Pattern is Thorough, Yet
Speedy, Comput. Des., Vol. 15, No. 5, May 1976, pp. 169–173.

5. van de Goor, A. J., Using March Tests to Test SRAMs, IEEE Des. Test, Vol. 10, No. 1,
March 1993, pp. 8–14.

6. Application Note, Standard Patterns for Testing Memories, Electron. Test, Vol. 4, No. 4,
April 1981, pp. 22–24.

7. Nair, J., S. M. Thatte, and J. A. Abraham, Efficient Algorithms for Testing Semiconductor
Random-Access Memories, IEEE Trans. Comput., Vol. C-27, No. 6, June 1978,
pp. 572–576.

8. van de Goor, A. J., Testing Memories: Advanced Concepts, Tutorial 12, International Test
Conference, 1997.

9. Panel Discussion, A D&T Roundtable: Online Test, IEEE Des. Test Comput., January–
March 1999, Vol. 16, No. 1, pp. 80–86.

10. Al-Assad, H. et al., Online BIST For Embedded Systems, IEEE Des. Test Comput.,
October–December 1998, Vol. 15, No. 6, pp. 17–24.

11. Dekker, R. et al., Fault Modeling and Test Algorithm Development for Static Random
Access Memories, Proc. Int. Test Conf., 1988, pp. 343–352.

12. Fetherston, R. S. et al., Testability Features of AMD-K6 Microprocessor, Proc. Int. Test
Conf., 1997, pp. 406–413.

13. Dekker, R. et al., A Realistic Self-Test Machine for Static Random Access Memories,
Proc. Int. Test Conf., 1988, pp. 353–361.

14. Franklin, M., and K. K. Saluja, Built-in Self-Testing of Random-Access Memories, IEEE
Computer, Vol. 23, No. 10, October, 1990, pp. 45–56.

15. Ohsawa, T. et al., A 60-ns 4-Mbit CMOS DRAM With Built-In Self-Test Function, IEEE
J. Solid-State Circuits, Vol. 22, No. 5, October 1987, pp. 663–668.

16. Sridhar, T., A New Parallel Test Approach for Large Memories, IEEE Des. Test, Vol. 3,
No. 4, August 1986, pp. 15–22.

17. Altnether, J. P., and R. W. Stensland, Testing Redundant Memories, Electron. Test, Vol. 6,
No. 5, May 1983, pp. 66–76.

18. Shannon, C. E., The Mathematical Theory of Communication, Bell Syst. Tech. J., Vol. 27,
July and October, 1948.

19. May, T. C., and M. H. Woods, Alpha-Particle-Induces Soft Errors in Dynamic Memories,
IEEE Trans. Electron. Dev., ED-26, No. 1, January 1979, pp. 2–9.

20. Bossen, D. C., and M. Y. Hsiao, A System Solution to the Memory Soft Error Problem,
IBM J. Res. Dev., Vol. 24, No. 3, May 1980, pp. 390–398.

21. Khan, A., Fast RAM Corrects Errors on Chip, Electronics, September 8, 1983, pp. 126–130.

550 MEMORY TEST

22. Levine, L., and W. Meyers, Semiconductor Memory Reliability with Error Detecting and
Correcting Codes, Computer, Vol. 9, No. 10, October 1976, pp. 43–50.

23. Palfi, T. L., MOS Memory System Reliability, IEEE Semiconductor Test Symp., 1975.

24. Travis, B., IC’s and Semiconductors, EDN, December 17, 1982, pp. 40–46.

25. Wolfe, C. F., Bit Slice Processors Come to Mainframe Design, Electronics, February 28,
1980, pp. 118–123.

26. Peterson, W. W., Error Correcting Codes, Chapter 5, M.I.T. Press, Cambridge, MA.,
1961.

27. Koike, H. et al., A BIST Scheme Using Microprogram ROM For Large Capacity
Memories, Proc. Int. Test Conf., 1990, pp. 815–822.

28. Nicolaidis, M., Transparent BIST For RAMs, Proc. Int. Test Conf., 1992, pp. 598–607.

29. Prince, Betty, Semiconductor Memories: A Handbook of Design, Manufacture, and
Application, 2nd ed., John Wiley & Sons, New York, 1991 (reprinted, 1996).

30. van de Goor, A. J., Testing Semiconductor Memories: Theory and Practice, Wiley & Sons,
New York, 1991 (reprinted, 1996).

551

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 11

I

DDQ

11.1 INTRODUCTION

Test strategies described in previous chapters relied on two concepts: controllability
and observability (C/O). Good controllability makes it easier to drive a circuit into a
desired state, thus making it easier to sensitize a targeted fault. Good observability
makes it easier to monitor the effects of a fault. Solutions for solving C/O problems
include scan path and various ad-hoc methods. Scan path reduces C/O to a combina-
tional logic problem which, as explained in Chapter 4, is a solved problem (theoreti-
cally, at least).

I

DDQ

 monitoring is another approach that provides complete observability. Current
drain in a properly functioning, fully static CMOS IC is negligible when the clock is
inactive. However, when the IC is defective, due to the presence of leakage in the cir-
cuit, or possibly even to an open, current flow usually becomes excessive. This rise in
current flow can be detected by monitoring the current supplied by the tester. How
effective is this technique for spotting defective ICs? In one study, it was shown that

I

DDQ

 testing with a test program that provided 60% coverage of stuck-at faults pro-
vided the same AQL as a test program with 90% stuck-at coverage without

I

DDQ

.

1

The stuck-at fault model that we have been dealing with up to this point is not
intended to address qualitative issues; its primary target is solid defects manifested as
signals stuck-at logic 1 or logic 0. An IC may run perfectly well on a tester operating at
1 or 2 MHz, at room temperature, but fail in the system. Worse still, an IC may fail
shortly after the product is delivered to the customer. This is often due to leakage paths
that degrade to catastrophic failure mode shortly after the product is put into service.

11.2 BACKGROUND

The CMOS circuit was patented in 1963 by Frank Wanlass.

2

 His two-transistor
inverter consumed just a few nanowatts of standby power, whereas equivalent
bipolar circuits of the time consumed milliwatts of power in standby mode. During

552

I

DDQ

the 1970s, companies began measuring leakage of CMOS parts to identify those that
had excessive power consumption.

3

 At times it was a useful adjunct to the traditional
functional testing for stuck-at faults, and at other times it was critical to achieve
quality levels required by customers.

The classic stuck-at fault model, while identifying unique signal paths (cf. Sec-
tion 7.5) and providing a means for quantitatively measuring the completeness of a
test for these paths, does not model many of the fault classes that can occur, particu-
larly in deep submicron circuits. In fact, as was pointed out in Section 3.4 that the
stuck-at fault can be thought of as a behavioral model for very low level behavioral
devices, namely, the logic gates.

Faults such as high-resistance bridging shorts, inside a logic gate or between con-
nections to adjacent gates, may not be visible during a functional test. A leakage
path may cause path delay, so the circuit does not operate correctly at speed, but it
may operate correctly if the circuit is tested at a speed much slower than its design
speed, since there may be enough time for a charge to build up and force the gate to
switch. Shorts between signal runs on the die are usually overlooked during func-
tional testing, because, in general, there is no fault model to determine if they have
been tested. If there were fault models for these shorts, perhaps generated by a lay-
out program, the number of these faults would be prohibitively large and would
aggravate a frequently untenable fault simulation problem (cf. Section 3.4).

Excess current detected during test may indicate reliability problems. The
inverter depicted in Figure 11.1 has a short circuit from gate to drain of

Q

1

. In nor-
mal operation, when input

A

 switches from 0 to 1, there is a brief rush of current
between

V

DD

 and ground. Shortly thereafter, a high at the gate of

Q

1

 causes a near
complete cutoff of current, the measured flow typically being a few nanoamperes.
This minuscule current flow is quite important in battery operated applications,
ranging from human implants to laptop computers. However, because of the defect,
there is a path from ground, through the drain of

Q

2

, to the source of

Q

1

 and then to
the gate. The output

F

 in this example will likely respond with the correct value,
since it is logically connected to ground through

Q

2

, but current flow will be exces-
sive, and there is the possibility of a catastrophic failure in the future.

Interestingly, although much attention is given to detection of shorts by

I

DDQ

, it
can also detect open circuits. When an open occurs, it is often the case that neither

Figure 11.1

CMOS inverter.

Short circuit

A F
A

F

Time

C
ur

re
nt IDDQ (defect)

V DD

VSS

Q1

Q2

SELECTING VECTORS

553

transistor of a transistor pair is completely turned off. As a result, a leakage path
from ground to

V

DD

 exists. This is significant because, in conventional stuck-fault
testing, a two-vector combination is required to detect stuck-open faults in CMOS
circuits (cf. Section 7.6.2).

11.3 SELECTING VECTORS

In order to measure leakage current, the circuit must be in a fully initialized state.

I

DDQ

 measurements must be made on quiet vectors—that is, vectors with very little
leakage current. During simulation, those vectors for which indeterminate values are
detected must immediately be eliminated as candidates for current measurement.
During test, when the circuit reaches a vector at which a current measurement is to
be made, the circuit must be held in a steady state for a sufficient duration to allow
all switching transients to subside. Some design rules include:

No pullups or pulldowns.

No floating nodes.

No logic contention.

If analog circuits appear in the design, they should be on separate power supplies.

No unconnected inputs on unused logic.

The purpose of these design rules is to prevent excess current flows during quies-
cent periods. Pullups and pulldowns provide resistive paths to ground or power. On
average, a node is going to be at logic 0 half the time and at logic 1 half the time. If the
node is at logic 0 and is connected to a pullup, a path exists for current flow. Floating
inputs may stabilize at a voltage level somewhere between ground and

V

DD

, thus pro-
viding a current path. Incompletely specified busses can be troublesome. For example,
if a bus has three drivers, a logic designer may design the circuit in such a way that the
select logic floats the bus when no driver is active. Hence, any inputs driven by the bus
will be floating. Bus keeper cells are recommended to prevent floating buses.

1

In general, any circuit configuration that causes a steady current drain from the
power supply runs the risk of masking failure effects, since the effectiveness of

I

DDQ

relies on the ability to distinguish between the very low quiescent current drain for a
defect-free circuit and the high current caused by a defect. Interestingly, redundant
logic, which is troublesome for functional testing, does not adversely affect

I

DDQ

testing. In fact,

I

DDQ

 can detect defects in redundant logic that a functional test can-
not detect.

11.3.1 Toggle Count

Toggle count has been used for many years as a metric for evaluating the thorough-
ness of gate-level simulations for design verification. When schematic entry was the
primary medium for developing logic circuits, and the level of abstraction was logic

554

I

DDQ

gates, toggle count could be used to identify nodes on the schematics that were
never toggled to a particular value. Those nodes were then targeted during simula-
tion, the objective being to get all or nearly all nodes toggled to both 1 and 0.

Since one of the objectives of

I

DDQ

 is to identify circuits with short circuits between
signal lines and power or ground, the toggle count can be an effective method for
determining the effectiveness of a given test. If a particular set of test vectors has a
high toggle percentage, meaning that a high percentage of nodes toggled to both 1 and
0, then it is reasonable to expect that a high percentage of shorts will be detected.

The computation is quite straightforward: simply identify the gate that is driving
each line in the circuit and note whether it has toggled to a 1 or 0 at the end of each
vector. Then, during simulation, the first step is to determine whether or not the vec-
tor can be used for

I

DDQ

. Recall that a vector cannot be a candidate if the circuit is
not yet fully initialized, or if there is bus contention. If the vector is a candidate, then
determine how many previously untoggled nodes are toggled by this vector. Since
there is usually a limit on the number of vectors for which the tester can make

I

DDQ

measurements, it is desirable to select vectors such that each vector selected contrib-
utes as many new nodes as possible to the collection of toggled nodes.

The first vector that meets acceptance criteria is generally going to provide about
50% coverage, since every node is at 1 or 0. A scheme described in the Quietest
method (next section), but that is also applicable here, establishes a percentage of the
untoggled node values as an objective. As an example, an objective might be estab-
lished that bars a vector from being selected unless it toggles at least 10% of the
currently untoggled node values. As toggle coverage increases, the 10% selection
criteria remains, but the absolute number of newly toggled node values decreases.

This procedure can be applied iteratively. For example, a given percentage may
be too restrictive; as a result, no new vectors are selected after some toggle coverage
is reached. Those vectors can be retained, and then simulation can be rerun with a
lower percentage threshold, say 5%. This will usually cause additional vectors to be
selected. If the maximum allowable number of vectors has not been reached, and the
toggle coverage has not yet reached an acceptable level, this procedure can again be
repeated with yet another lower selection percentage.

11.3.2 The Quietest Method

The

quietest method

 is based on the observation that six shorts can occur in a single
MOS transistor:

4

f

GS

gate and source

f

GD

gate and drain

f

SD

source and drain

f

BS

bulk and source

f

BD

bulk and drain

f

BD

bulk and gate

SELECTING VECTORS

555

Figure 11.2

MOS transistor short fault model.

These shorts are seen in Figure 11.2. The approach used in this method is applicable
at the transistor level or at the macrocell level. It begins with a table for a particular
cell, which could be a simple logic gate, or a full-adder, or a considerably more
complex circuit. All input combinations to the cell are fault-simulated at the transis-
tor level. This list of transistor shorts permits

I

DDQ

 fault simulation of the entire cir-
cuit to be accomplished hierarchically.

The first step is to simulate each transistor or macrocell and to fault-simulate
each of the faults. A table is created for each cell, listing I/O combinations versus
faults detected (see Figure 11.3). The NAND gate, Figure 11.3(a), is simulated, and
the table of Figure 11.3(b) is constructed. This table is a matrix of dimension

m

×

n

,
where

m

 = 2

k

 is the number of rows, and

k

 is the number of I/O pins. The circuit
shown in Figure 11.3 has two inputs and one output, so there are 2

3

 rows.
The number of columns,

n

, corresponds to the number of transistors. Each entry
in the table is a two-character octal number. The six bits corresponds to the six tran-
sistor faults, as defined in Figure 11.3(c). The all-zero row entries for combinational
logic correspond to combinations that cannot occur. For example, row 2 corresponds

Figure 11.3

Lookup table for

I

DDQ

 faults.

Gate

Source Drain

Bulk

A

B

X

i

0

1

2

3

4

5

6

7

N1

0

22

0

26

0

70

43

0

N2

0

0

0

43

0

26

43

0

P1

0

43

0

43

0

0

26

0

P2

0

43

0

0

0

43

26

0

fBG fBD fBS fSD fGD fGS

(a) (b)

(c)

N1

N2

P1 P2

556

I

DDQ

to the combination

A, B, X

 = (0,1,0), which is inconsistent with the definition of a
NAND gate. Note, however, that some combinations in sequential circuits may rely
on the presence of feedback.

Once the table is created, it can be used to compute

I

DDQ

 coverage for the cell
during normal logic simulation. At the end of each vector, the input combination on
each macrocell is examined. If the combination has not been generated by any previ-
ously selected

I

DDQ

 vector, then any short faults detected by this combination, and
not previously marked as detected, can be selected and tallied for the current vector.
After all cells have been examined, the incremental improvement in fault coverage
for the vector can be computed. If the vector satisfies some criteria, such as that
described in the previous subsection, it can be accepted and added to the collection
of vectors for which

I

DDQ

 measurements are to be made.

11.4 CHOOSING A THRESHOLD

One of the problems associated with

I

DDQ

 is choice of a current threshold. Different
devices exhibit different amounts of leakage current. Even different devices of the
same die size may have significantly different amounts of leakage current, depend-
ing on the kind of logic and/or memory that is contained on the die. Furthermore, the
same device, when tested at wafer sort and at package test, will exhibit different
leakage. The target application of the IC will influence the leakage threshold: Manu-
facturers of ICs for portable applications or human implants will have much more
stringent requirements on leakage current.

The issue is further complicated by the fact that different vectors from the same
test vector set can have noticeably different leakage currents. As a result, it is a non-
trivial task to establish a threshold for current. A threshold that is too lax results in
keeping devices that should be discarded. Conversely, a threshold that is too rigor-
ous results in discarding good devices. One source suggests that if

I

DDQ

 of the device
under test is greater than 100

µ

A for all vectors under normal conditions, the IC can-
not be tested by means of

I

DDQ

 measurement.

5

Determining a threshold starts with a histogram of

I

DDQ

 current versus number of
devices that occur in each bin of the histogram. Figure 11.4 shows a histogram for
11,405 microcontrollers.

6

 The author uses

I

SSQ

 to denote the fact that current is mea-
sured at

V

SS

 rather than

V

DD

. In an IEEE QTAG (Quality Test Action Group) survey,
respondents were asked where they would set a threshold for the data in
Figure 11.4.

7 The following results were obtained:

500–100 µA 3

100–50 µA 7

50–25 µA 4

25–10 µA 3

10–5 µA 6

<5 µA 5

MEASURING CURRENT 557

Figure 11.4 Distribution of ISSQ.

One experiment that was conducted attempted to correlate IDDQ results with the
results of functional tests. In this experiment, IDDQ was measured in die that passed
functional test with high stuck-fault coverage and in die that failed the same func-
tional tests. It was shown that 96% of parts passing the functional test measured less
than 1 µA, while only 2% of parts reading greater than 1 mA passed functional test.1

Conversely, of parts failing functional test, 83% gave IDDQ readings of over 1 mA,
while only 15% read less than 1 µA.

It has been recommended that IDDQ measurements be made at the highest possi-
ble VDD in order to ensure detection of defects that have strong nonlinear character-
istics.8 The authors of this study report that a defective IC leaked 10 nA at 5 V but
29.3 µA at 6.2 V. These same authors point out that a design that was amenable to
IDDQ testing had, nonetheless, some particular vectors in which IDDQ values were on
the order of 265 µA. In general, it seems safe to say that the selection of a threshold
will, of necessity, be empirical, since there is no hard and fast rule. Measurements
such as those described here, involving measurement of IDDQ for those that pass ver-
sus those that fail functional test, help to shed light on the subject. Measurement of
IDDQ from lots with different yields, along with die from different points on the
wafer and at different voltages and after different periods of quiescence, can help to
influence one’s judgment as to where to set the threshold.

11.5 MEASURING CURRENT

A proposed circuit for measuring IDDQ current flow that has come to be known as
the Keating–Meyer circuit is shown in Figure 11.5.8 At the beginning of the
period, Q1 is on and provides a short circuit between C1 and C2, maintaining full
voltage to the DUT. Eventually, Q1 is turned off and static current to the DUT is
obtained exclusively from C1. The value of C1 is determined from the relationship
C1 = I ⋅ t /V, where I is the desired measurement resolution, t is the elapsed time
within which it is desired to make a measurement, and V is the voltage resolution
at the op amp.

0

500

1000

1500

2000

2500

3000

N
um

be
r

in
 b

in

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 4060

ov
er

ISSQ bin (µA)

558 IDDQ

Figure 11.5 IDDQ pass/fail circuit.

Example Suppose we want a measurement resolution of 25 µA within 500 ns,
along with 10 mV at the op amp:

For the capacitance value of 1250 pF, if we wish to limit voltage drop at the DUT to
1.0 V (VCC > 4 V), for a defect-free device (IDD < 25 µA), then the voltage drop across
Q1 must be measured within t1 < CV/I = 50 µS. ��

The circuit in Figure 11.5 can also be used to measure switching currents, as well
as static IDD. For example, if a 1.0-A peak current is assumed, lasting 5 ns, then for a
desired resolution of 100 µA at 10 mV and for a 500-ns IDD measurement time,
C1 = 100 µA * 500 ns/10 mV = 5000 pF.

Turn off Q1 and clock the device at t = 0 ns. Then sample the drop across Q1 at
t = 100 ns. The total charge delivered by C1 is

The voltage across Q1 equals V = Q/C = 5 nC/.005 µF = 1 V. In these equations, the
value of C1 is critical. An optimal value must be selected in order to avoid unneces-
sarily increasing test time or producing excessive VCC drop at the DUT.

The QuiC-Mon circuit builds on the Keating–Meyer concept.9 Figure 11.6 illus-
trates the QuiC-Mon circuit. The key difference is that QuiC-Mon takes the time
derivative of the voltage at VDD. As a result, the constant-slope waveform is con-
verted into a step function and settling time improves significantly, allowing faster
measurement rates. Measurements with QuiC-Mon can be taken using IDDQ or ISSQ.
However, ISSQ provides more accurate measurements at input pins with internal
pullups when the pin is driven low. The transfer function for the QuiC-Mon circuit
of Figure 11.6 is

DUT
C1 C2

Q1

SH1

To DPS

To sample
and holds

C1
It
V

25 µA 500 ns⋅
10 mV

------------------------------------- 1250 pF= = =

Q1 i td∫ 1 A 5 ns⋅() 100 µA 97 ns⋅()+ 5 nC 9.7 pC+ 5 nC= = = =

V S
R3

R2
------ V 1

R3

R2
------ R1 C1

dV SS

dt

R3

R2
------ R1

C1

C1 CSS+
--------------------- ISSQ= = =

IDDQ VERSUS BURN-IN 559

Figure 11.6 The QuiC-Mon circuit.

If capacitor C1 is large compared to the DUT capacitance CSS, the transfer func-
tion is

When using the monitor, a number of factors must be taken into consideration in
order to achieve accuracy and speed. It is important to minimize the physical length
of the VSS path between the DUT and QuiC-Mon to reduce noise and inductance. It
is recommended that the monitor be within 2 or 3 cm of the DUT. For IDDQ testing
bypass capacitance should be minimized so measurement speed is unaffected. For
ISSQ testing, bypass capacitance is not a significant issue.

The resistor R1 can be increased to amplify QuiC-Mon’s output. However, after a
point, larger values require low-pass filtering. The circuit can achieve gains of up to
500 mV/µA at 250 kHz, which is sufficient for high-speed, submicroampere resolution.
In some applications, transient settling time limited measurement speeds to 100 kHz.

11.6 IDDQ VERSUS BURN-IN

Burn-in is a process of continuously energizing a circuit, usually under extreme
voltage or environmental conditions, in order to precipitate failures of devices that
are marginal performers due to fabrication imperfections. It is well known that most
devices that fail will do so within a few days or weeks of their initial purchase. This
is illustrated in Figure 11.7. Some devices will pass the initial testing phase, when
the testing is performed at nominal values of the key parameters, but will fail shortly
after when put into operation. By elevating parameters such as voltage and tempera-
ture, many of the devices susceptible to early life failures can be identified and dis-
carded before they are packaged and shipped to customers.

There is growing evidence that an effective IDDQ program can serve the same
purpose as a burn-in program. One of the more prevalent failures common to CMOS
circuits is the gate-oxide short (GOS). The GOS may create a high-resistance leak-
age current path that does not initially affect performance because of the high noise

VDD

V1

R1

+
−

+
−

VS

R3

R2ISSQ
VSS
CSS

C1

DUT

V S R1
R3

R2
------ ISSQ=

560 IDDQ

Figure 11.7 Bathtub curve.

margin of the field-effect transistor (FET). Eventually, over time, the resistance
decreases and the device fails.

In a paper previously cited in this chapter,1 the author evaluated the effects of
IDDQ on burn-in. It was found that the use of IDDQ reduced burn-in failures by 80%,
whereas adding additional functional tests had only a marginal effect on reducing
burn-in failures. Another study was performed on ASICs returned from the field.
The author found that nearly 70% of the parts would have failed an IDDQ test.10 In
another study the author subjected parts failing an IDDQ test to a 1000-hour life test.
The experiment revealed that about 8% of the parts that failed the IDDQ test failed the
1000-hour life test. Yet another study was conducted on 2100 die that failed IDDQ.
When subjected to burn-in, the failure rate was 10 times greater than that of a con-
trol sample.11 In yet one more previously cited study, the number of parts failing a
24-hour burn-in was reduced from a failure rate of 448 ppm to a rate of 25.6 ppm.6

A study performed at Intel was used to justify the use of IDDQ as a major part of
the test strategy on the i960JX CPU.12 The goal was to achieve ZOBI (zero hour
burn-in). This decision was shown to save about 1.25 million dollars as a result of
reduced capital costs, reduced test costs per part, and yield improvement. In order to
achieve ZOBI, it was necessary to demonstrate a defects per million (DPM) of less
than 1000 (0.1% DPM). It was also necessary to have at least 30% of burn-in hard-
ware in place for contingencies, and it was necessary to have SBLs (statistical bin
limits) on key bins at wafer sort.

The tool used by this division of Intel was an IDDQ fault simulator called iLEAK.
It generated tables based on the Quietest method (Section 11.3.2). The use of toggle
coverage and an option in iLEAK called fastileak helped to reduce the amount of
computation by screening the vector sets and choosing candidate vectors for iLEAK
to evaluate. At the end of that process, seven vectors were chosen. This set of vectors
was augmented with another six vectors, bringing the total number to 13.

The i960 CPU is a two-phase clock design, and only one of the phases is static,
so it was necessary to change the vector format to ensure that the clock would stop
during the static phase. Through experimentation it was determined that the delay
time needed to measure leakage current was 20 ms per IDDQ strobe.

A key concern in setting up the IDDQ process was to ensure defect detection with-
out overkill—that is, discarding excessive numbers of good die. To achieve this, it

Early life
failures

Useful life Wear-out period

IDDQ VERSUS BURN-IN 561

was determined that the test limit would be statistically based. This would be
accomplished by gathering IDDQ values from functionally good die from several
wafers across a skew lot, one in which material has been intentionally targeted to
reside within parametric corners of the wafer fabrication process. Skew parameters
being used were gate oxide and poly critical dimensions. From the skew lot, IDDQ
values were gathered and displayed in the form of cumulative plots. Outliers, sam-
ples that had current well outside the range of the other good die, were removed. The
remaining samples represented a Gaussian population from which a mean and stan-
dard deviation could be generated. Limits for each vector were determined using
mean plus 4σ.

It was recognized that using IDDQ at wafer sort provided the biggest payback,
because identifying and discarding ICs with high leakage current at wafer sort elim-
inated the expense of packaging and testing the packaged parts. However, it was not
known whether the methodology used for wafer sort would also be needed at pack-
age test to satisfy the DPM requirements for elimination of burn-in. A factor that had
to be considered was the temperature at test. Wafer sort was performed at lower tem-
peratures, and IDDQ provided better defect detection at lower temperatures.

The investigation of the efficacy of IDDQ at package test was designed to deter-
mine whether or not it was needed in order to eliminate burn-in. An experiment was
designed to determine the IDDQ limit and measure its effectiveness. The first goal
was to determine if IDDQ was needed at package test. A second goal, assuming that
IDDQ was necessary, was to determine limits that would minimize yield losses while
screening out latent failures.

Because the test temperature at package test was higher, thus increasing transistor
subthreshold leakage, units were tested using the following test flow:

� Use wafer sort IDDQ limits.

� Measure IDDQ (but without a pass/fail condition).

� Test units with new IDDQ limits.

It was quickly learned that the sort IDDQ limits could not be used at package test. The
IDDQ values at package test had high lot-to-lot variability and strobe-to-strobe vari-
ability. The 13 vectors used to measure IDDQ were divided into two categories, high
strobes and low strobes, based on the leakage current that was measured. Six of the
strobes fell into the high strobes category, while seven fell into the low strobes cate-
gory. For the low strobes a limit of 53 µA was set, while for the high strobes the limit
was set at 3 mA. These limits would produce about 3% IDDQ fallout at package test.

The next step in the evaluation of package test IDDQ was to run some ICs through
a test sequence to determine whether or not package test IDDQ actually detects failing
ICs. Devices that failed a high-temperature IDDQ were measured to get IDDQ values
before burn-in. After burn-in, a post burn-in check (PBIC) revealed that all the
devices that were IDDQ failures before burn-in passed all functional testing after
burn-in. From this it was concluded that IDDQ testing at package test did not provide
any additional quality or reliability.

562 IDDQ

The ZOBI evaluation was the next step in the process. This involved several
phases, during which the goal was to achieve <0.1% PBIC fallout. After some initial
steps in which testing was performed using a test program with about 82% fault cov-
erage, the fallout percentage was 0.2%. Then IDDQ screen at sort and package test
were introduced. The screen at sort reduced the PBIC fallout to 0.07%. The screen at
package test was shown to be unnecessary. ZOBI was achieved, and a system was
put in place to monitor the device based on sampling and statistical bin limits (SBL).
If IDDQ at sort is found to be excessively high for a particular lot, the SBLs trigger
the lot for burn-in.

11.7 PROBLEMS WITH LARGE CIRCUITS

An investigation of opens in CMOS circuits showed that circuits could function cor-
rectly at low frequencies, in the presence of narrow opens occurring as a result of
electromigration.13 One of the possibilities that was considered was capacitive cou-
pling with signal lines running adjacent to the open-circuited line. It was determined
that this was not the reason for the circuit responding correctly. Further investigation
suggested that tunneling current was the mechanism by which electrons managed to
pass from one side of the open to the other side. However, this property only
occurred at low frequencies. At higher frequencies there was insufficient time to
charge and discharge the transistor gates. An implication of this is that a delay fault
model should be used to detect very small opens caused by electromigration.

The changing threshold voltage Vt represents a more serious problem for IDDQ as
IC feature sizes shrink into the deep submicron region.14 IDDQ requires that defective
devices have a significantly greater quiescent current than the good devices. This dif-
ference between faulty and good circuits must take into account variations in quiescent
current for the good circuit attributable to process variations in the good circuit as well
as variations in the measurement accuracy of the tester. However, as device geometries
shrink and transistor count increases, quiescent current grows for good devices. This
leads to a collapsing of the range of quiescent currents for good and faulty devices.

The results of scaling are depicted in Figure 11.8. Dimensions of the scaled
device are shrunk by a factor S. Since dimensions are shrunk in two dimensions, die
size can be reduced by approximately S2. The shorter distances that signals have to

Figure 11.8 Device before and after scaling.

n+ n+
Gate

Source DrainL
xd

tox

Wiring

P

Voltage, V

Doping Na

P/S

V/S

L/S
Doping S*Na

tox/S

Original Device

Scaled Device

PROBLEMS WITH LARGE CIRCUITS 563

Figure 11.9 Off-state leakage current for two values of VT .

Figure 11.10 General distribution of IDDQ values seen in CMOS networks.

travel, along with reduced capacitance, contribute to improved speed. However, the
shorter channel requires a lower VT value. If voltages are held fixed while dimensions
are reduced, internal electric fields will rise, increasing the reliability risk, particularly
at the insulation between the gate and the substrate where tox (oxide thickness) has
been reduced. Consequently, the supply voltage VDD must be reduced in order to mini-
mize the electric fields in the transistors, as well as to reduce power consumption.

In order to provide optimum switching speed of transistors, the threshold voltage
VT is normally about 15–20% of VDD. Thus, as VDD continues to drop, eventually
dropping to 1.8 V, VT will be on the order of 0.3 V. A result of this, shown in
Figure 11.9, is that Ioff, and therefore IDDQ, rises by three orders of magnitude.15 A
result of this is a shift in the distribution of IDDQ values for Mg, the good circuit, and
Md, the defective circuit, as shown in Figure 11.10. Mg shifts to the right and Md
shifts to the left, making it more difficult to distinguish between good and defective
devices. The following table14 illustrates the trends in CMOS technology with scal-
ing Vt proportional to VDD at 25°C.

10−12

10−10

10−8

10−6

D
ra

in
 c

ur
re

nt
 (

I D
),

 A

Gate-source voltage (VGS), V

−0.5 0 0.5 1.0 1.5

VT = 0.3 V

Ioff

Ioff

VT = 0.6 V

Frequency

Mg Md IDDQ

Good Defective

564 IDDQ

The implication of the trends predicted for CMOS circuits is that IDDQ, at least
for the larger circuits, will be less effective and, in fact, it may be impossible to
exploit IDDQ for the largest circuits, where its contribution to distinguishing between
faulty and fault-free circuits is most critically needed. Some design-for-test sugges-
tions have been proposed to address this problem. For those circuits where the prob-
lem is most severe, and the payback most pronounced, the suggestions may be
reasonable.

11.8 SUMMARY

A number of methods for creating and evaluating test programs have been examined
up to this point. In all cases, the essential goal has been to control and observe the
circuit. Many quite elaborate methods and circuits have been designed to enhance
either controllability or observability, or both. In the case of CMOS circuits, the
observability provided by IDDQ measurements is virtually free. Rather modest
requirements in the way of design rules are sometimes necessary. But the payoff,
when these rules are enforced, can be significant when weighed against the cost.
Expressed another way, adhering to the rather modest IDDQ design rules provides tre-
mendous leverage. Exploiting this free observability simply involves monitoring
power supply current.

A quite straightforward technique for selecting vectors that provide high IDDQ
coverage involves the use of CAD tools that compute toggle coverage. This is a
design verification technique that has been in use for three decades, and numerous
tools exist that are capable of performing this task. Code coverage tools for evaluat-
ing RTL designs offer a potential for selecting test vectors before the design is even
converted to its gate-level equivalent.

There is some concern for the future of IDDQ as circuits grow larger. Bear in mind
that applications range from rather small controllers to large, multi-million transistor,
state-of-the-art microprocessors. For the smaller applications, ranging from a few
thousand gates up to a couple of hundred thousand gates, and where aggressive shrink-
age of feature size is not a priority, IDDQ is in use and has been demonstrated to be a
viable test solution. For larger applications, where shrinking feature size and growing
numbers of transistors poses a threat to the applicability of IDDQ, some DFT concepts

Year

Gates

(× 106)
VDD

(V)
Leff

(µm)
Max ioff

(nA/µm)

1995 5 3.3–2.5 0.25–0.45 5–10

1998 14 2.5–1.8 0.21–0.25 10–20

2001 26 1.8–1.5 0.1–0.15 20

2004 50 1.5–1.2 0.1–0.15 30

2007 210 <1.2 <0.1 30

REFERENCES 565

specific to IDDQ will need to evolve. Since these are the most design-intensive and are
likely to involve large design teams, including a cadre of design-for-test experts, solu-
tions that exploit IDDQ may continue to find their way into the designs.

PROBLEMS

11.1 For the NAND gate in Figure 11.3, identify all faults detected when the input
combination A, B = (1, 0) appears at the inputs. What is the total fault
coverage for that input combination?

11.2 In Figure 3.3 there is an AND-OR-Invert circuit. Create a table of I/O values
versus faults. What is the fault coverage when the sequence X1, X2, Y1,
Y2 = {(0010, 0110, 1000)} is applied to that circuit.

11.3 Discuss the relative merits of the two methods described for computing IDDQ
coverage—that is, the Quietest method versus measuring toggle count.

REFERENCES

1. Wiscombe, Paul C., A Comparison of Stuck-at Fault Coverage and IDDQ Testing on Defect
Levels, Proc. IEEE Int. Test Conf., 1993, pp. 293–299.

2. Riezenman, Michael J., Wanlass’s CMOS Circuit, IEEE Spectrum, May 1991, p. 44.

3. Baker, K., A. Bratt, A. Richardson, and A. Welbers, Development of a Class 1 QTAG
Monitor, Proc. IEEE Int. Test Conf., 1994, pp. 213–222.

4. Mao, Weiwei, R. K. Gulati, D. K. Goel, and M. D. Ciletti, QUIETEST: A Quiescent
Current Testing Methodology for Detecting Leakage Faults, Proc. Int. Conf. Comput.
Aided Des., 1990, pp. 280–283.

5. Application Note 398-3, Measuring CMOS Quiescent Power Supply Current (IDDQ) with
the HP 82000, Hewlett Packard, 1993.

6. Wallquist, K. M., On the Effect of ISSQ Testing in Reducing Early Failure Rate, Proc.
IEEE Int. Test Conf., 1995, pp. 910–915.

7. Quality Test Action Group, QTAG Main Meeting: Minutes and Assoc. Material, Proc. Int.
Test Conf., 1994.

8. Keating, M., and D. Meyer, A New Approach to Dynamic IDD Testing, Proc. IEEE Int.
Test Conf., 1987, pp. 316–321.

9. Wallquist, K. M., Achieving IDDQ/ISSQ Production Testing with QuiC-Mon, IEEE Des.
Test Comput., Fall 1995, pp. 62–69.

10. McEuen, Steven D., IDDQ Benefits, Proc. IEEE VLSI Test Conf., p. 285, 1991.

11. Kane, J., Proc. VLSI Test Symp., 1994.

12. Henry, T. R., and Thomas Soo, Burn-in Elimination of a High Volume Microprocessor
Using IDDQ, Proc. IEEE Int. Test Conf., 1996, pp. 242–249.

566 IDDQ

13. Henderson, C. L., J. M. Soden, and C. F. Hawkins, The Behavior and Testing Implications
of CMOS IC Logic Gate Open Circuits, Proc. IEEE Int. Test Conf., 1991, pp. 302–310.

14. Williams, T. W. et al., IDDQ Test: Sensitivity Analysis of Scaling, Proc. IEEE Int. Test
Conf., 1996, pp. 786–792.

15. Soden, J. M., C. F. Hawkins, A. C. Miller, Identifying Defects In Deep-Submicron CMOS
ICs, IEEE Spectrum, September 1996, pp. 66–71.

567

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

CHAPTER 12

Behavioral Test and Verification

12.1 INTRODUCTION

The first 11 chapters of this text focused on manufacturing test. Its purpose is to
answer the question, “Was the IC fabricated correctly?” In this, the final chapter, the
emphasis shifts to design verification, which attempts to answer the question, “Was
the IC designed correctly?” For many years, manufacturing test development and
design verification followed parallel paths. Designs were entered via schematics,
and then stimuli were created and applied to the design. Design correctness was con-
firmed manually; the designer applied stimuli and examined simulation response to
determine if the circuit responded correctly. Manufacturing correctness was deter-
mined by simulating vectors against a netlist that was assumed to be correct. These
vectors were applied to the fabricated circuit, and response of the ICs was compared
to response predicted by the simulator. Thoroughness of design verification test
suites could be evaluated by means of toggle counts, while thoroughness of manu-
facturing test suites was evaluated by means of fault simulation.

In recent years, most design starts have grown so large that it is not feasible to use
functional vectors for manufacturing test, even if they provide high-fault coverage,
because it usually takes so many vectors to test all the functional corners of the
design that the cost of the time spent on the tester becomes prohibitive. DFT tech-
niques are needed both to achieve acceptable fault coverage and to reduce the
amount of time spent on the tester. A manufacturing test based on scan targets
defects more directly in the structure of the circuit. A downside to this was pointed
out in Section 7.2; that is, some defects may best be detected using stimuli that tar-
get functionality.

While manufacturing test relies increasingly on DFT to achieve high-fault cover-
age, design verification is also changing. Larger, more complex designs created by
large teams of designers incorporate more functionality, along with the necessary
handshaking protocols, that must be verified. Additionally, the use of core modules,
and the need to verify equivalence of different levels of abstraction for a given
design, have made it a greater challenge to select the best methodology for a given

568

BEHAVIORAL TEST AND VERIFICATION

design. What verification method (or methods) should be selected? Tools have been
developed to assist in all phases of support for the traditional approach—that is,
apply stimuli and evaluate response. But, there is also a gradual shift in the direction
of formal verification.

Despite the shift in emphasis, there remains considerable overlap in the tools and
algorithms for design verification and manufacturing test, and we will occasionally
refer back to the first 11 chapters. Additionally, we will see that, in the final analysis,
manufacturing test and design verification share a common goal: reliable delivery of
computation, control, and communication. If it doesn’t work correctly, the customer
doesn’t care whether the problem occurred in the design or the fabrication.

12.2 DESIGN VERIFICATION: AN OVERVIEW

The purpose of design verification is to demonstrate that a design was implemented
correctly. By way of contrast, the purpose of design validation is to show that the
design satisfies a given set or requirements.

1

 A succinct and informal way to differ-
entiate between them is by noting that

2

Validation asks “Am I building the right product?”

Verification asks “Am I building the product right?”

Seen from this perspective, validation implies an intimate knowledge of the problem
that the IC is designed to solve. An IC created to solve a problem is described by a
data sheet composed of text and waveforms. The text verbally describes IC behavior
in response to stimuli applied to its I/O pins. Sometimes that behavior will be very
complex, spanning many vectors, as when stimuli are first applied in order to config-
ure one or more internal control registers. Then, behavior depends on both the con-
tents of the control registers and the applied stimuli. The waveforms provide a
detailed visual description of stimulus and response, together with timing, that
shows the relative order in which signals are applied and outputs respond.

Design verification, on the other hand, must show that the design, expressed at
the RTL or structural level, implements the operations described in the data sheet or
whatever other specification exists. Verification at the RTL level can be accom-
plished by means of simulation, but there is a growing tendency to supplement sim-
ulation with formal methods such as model checking. At the structural level the use
of equivalence checking is becoming standard procedure. In this operation the RTL
model is compared to a structural model, which may have been synthesized by soft-
ware or created manually. Equivalence checking can determine if the two levels of
abstraction are equivalent. If they differ, equivalence checking can identify where
they differ and can also identify what logic values cause a difference in response.

The emphasis in this chapter is on design verification. When performing verifica-
tion, the target device can be viewed as a white box or a black box. During

white-
box testing

, detailed knowledge is available describing the internal workings of the
device to be tested. This knowledge can be used to direct the verification effort. For

DESIGN VERIFICATION: AN OVERVIEW

569

example, an engineer verifying a digital circuit may have schematics, block dia-
grams, RTL code that may or may not be suitably annotated, and textual descrip-
tions including timing diagrams and state transition graphs. All or a subset of these
can be used to advantage when developing test programs. Some examples of this
were seen in Chapter 9. The logic designer responsible for the correctness of the
design, armed with knowledge of the internal workings of the design, writes stimuli
based on this knowledge; hence he or she is performing white-box testing.

During

black-box testing

 it is assumed that there is no visibility into the internal
workings of the device being tested. A functional description exists which outlines,
in more or less detail, how the device must respond to various externally applied
stimuli. This description, or specification, may or may not describe behavior of the
device in the presence of all possible combinations of inputs. For example, a micro-
processor may have op-code combinations that are left unused and unspecified.
From one release to the next, these unused op-codes may respond very differently if
invoked. PCB designers, concerned with obtaining ICs that work correctly with
other ICs plugged into the same PCB or backplane, are most likely to perform
black-box testing, unless they are able to persuade their vendor to provide them with
more detailed information.

Some of the tools used for design verification of ICs have their roots in software
testing. Tools for software testing are sometimes characterized as

static analysis

 and

dynamic analysis

 tools. Static analysis tools evaluate software before it has run. An
example of such a tool is

Lint

. It is not uncommon, when porting a software system
to another host environment and recompiling all of the source code for the program,
to experience a situation where source code that compiled without complaint on the
original host now either refuses to compile or produces a long list of ominous
sounding warnings during compilation. The fact is, no two compilers will check for
exactly the same syntax and/or semantic violations. One compiler may attempt to
interpret the programmer’s intention, while a second compiler may flag the error and
refuse to generate an object module, and a third compiler may simply ignore the
error.

Lint is a tool that examines C code and identifies such things as unused variables,
variables that are used before being initialized, and argument mismatches. Commer-
cial versions of Lint exist both for programming languages and for hardware design
languages. A lint program attempts to discover all fatal and nonfatal errors in a pro-
gram before it is executed. It then issues a list of warnings about code that could
cause problems. Sometimes the programmer or logic designer is aware of the coding
practice and does not consider it to be a problem. In such cases, a lint program will
usually permit the user to mask out those messages so that more meaningful mes-
sages don’t become lost in a sea of detail.

In contrast to static analysis tools, dynamic analysis tools operate while the code
is running. In software this code detects such things as memory leaks, bounds viola-
tions, null pointers, and pointers out of range. They can also identify source code
that has been exercised and, more importantly, code that has not been exercised.
Additionally, they can point out lines of code that have been exercised over only a
partial range of their variables.

570

BEHAVIORAL TEST AND VERIFICATION

12.3 SIMULATION

Over the years, simulation performance has benefited from steady advances in
both software and hardware enhancements, as well as modeling techniques.
Section 2.12 provides a taxonomy of methods used to improve simulation perfor-
mance. Nonetheless, it must be pointed out that the style of the code written by the
logic designer, as well as the level of abstraction, can greatly influence simulation
performance.

12.3.1 Performance Enhancements

Several approaches to speeding up simulation were discussed in Chapter 2. Many of
these approaches impose restrictions on design style. For example, asynchronous
circuit design requires that the simulator maintain a detailed record of the precise
times at which events occur. This is accomplished by means of delay values, which
facilitate prediction of problems resulting from races and hazards, as well as setup
and hold violations, but slow down simulation.

But why the emphasis on speed? The system analyst wants to study as many
alternatives as possible at the conceptual level before committing to a detailed
design. For example, the system analyst may want to model and study new or
revised op-codes for a microprocessor architecture. Or the analyst may want to
know how many transactions a bank teller machine can perform in a given period
of time. Throughput, memory and bandwidth requirements for system level designs
can all be more thoroughly evaluated at higher levels of abstraction. Completely
new applications can be modeled in order to perform feasibility studies whose pur-
pose is to decide how to divide functionality between software and hardware.
Developing a high-level model that runs quickly, and coding the model very early
in the conceptual design phase, may offer the additional benefit that it can permit
diagnostic engineers to begin writing and debugging their programs earlier in the
project.

The synchronous circuit, when rank-ordered and using zero delay, can be simu-
lated much more efficiently than the asynchronous circuit, because it is only neces-
sary to evaluate each element once during each clock period. Timing analysis,
performed at the structural or gate level, is then used to ensure that path delays do
not exceed the clock period and do not violate setup and hold times. Synchronous
design also makes it possible to employ compiled code, rather than interpreted code
which uses complex tables to link signals and variables. A Verilog or VHDL model
can be compiled into C or C++ code which is then compiled to the native language
of the host computer. This can provide further reduction in simulation times, as well
as significant savings in memory usage, since variables can be linked directly, rather
than through tables and pointers.

The amount of performance gain realized by compiled code depends on how it is
implemented. The simplest approach, from an implementation standpoint, is to have
all of the compiled code execute on every clock cycle. Alternatively, a pseudo-event-
driven implementation can separate the model into major functions and execute the

SIMULATION

571

compiled code only for those functions in which one or more inputs has changed.
This requires overhead to determine which blocks should be executed, but that cost
can be offset by the savings from not executing blocks of code unnecessarily.

The type of circuit being simulated is another factor that determines how much
gain is realized by performing rank-ordered, zero delay simulation. In a pure combi-
national, gate-level circuit, such as a multiplier array, if timing-based, event-driven
simulation is performed, logic gates may be evaluated multiple times in each clock
cycle because logic events occur at virtually every time slot during that period.
These events propagate forward, through the cone they are in, and converge at dif-
ferent times on the output of that cone. As a result, logic gates at or near the output
of the cone may be evaluated tens or hundreds of times. Thus, in a large combina-
tional array, rank-ordered, zero delay simulation may realize 10 to 100 times
improvement in simulation speed.

Traditionally, point accelerators have been used to speed up various facets of the
design task, such as simulation. The use of scan in an emulation model makes it pos-
sible to stop on any clock and dump out the contents of registers in order to pinpoint
the source of an incorrect response. However, while they can significantly speed up
simulation, point accelerators have their drawbacks. They tend to be quite costly
and, unlike a general-purpose workstation, when not being used for simulation they
stand idle. There is also the risk that if an accelerator goes down for any length of
time, it can leave several logic designers idle while a marketing window of opportu-
nity slowly slips away. Also, the point accelerator is a low-volume product, hence
costly to update, while the general-purpose workstation is always on an upward spi-
ral, performancewise. So the workstation, over time, closes the performance gap
with the accelerator.

By way of contrast, a cycle simulator (cf. Section 2.12), incorporating some or all
of the features described here, can provide major performance improvements over
an event-driven simulator. As a software solution, it can run on any number of
readily available workstations, thus accommodating several engineers. If a single
machine fails, the project can continue uninterrupted. If a simulation task can be
partitioned across multiple processors, further performance gains can be obtained.
The chief requirement is that the circuit be partitioned so that results only need be
communicated at the end of each cycle, a task far easier to perform in the synchro-
nous environment required for cycle simulation. Flexibility is another advantage of
cycle simulation; algorithm enhancements to a software product are much easier to
implement than upgrades to hardware.

It was mentioned earlier that a user can often influence the speed or efficiency of
simulation. One of the tools supported by some commercial simulators is the

pro-
filer

. It monitors the amount of CPU time spent in each part of the circuit model
being simulated. At the end of simulation a profiler can identify the amount of CPU
time spent on any line or group of lines of code. For compute-intensive operations
such as simulation, it is not unusual for 80–95% of the CPU time to be spent simu-
lating a very small part of the circuit model. If it is known, for instance, that 5% of
the code consumes 80% of the CPU time, then that part of the code can be reviewed
with the intention of writing it more efficiently, perhaps at a higher level of

572

BEHAVIORAL TEST AND VERIFICATION

abstraction. Streamlining the code can sometimes produce a significant improve-
ment in simulation performance.

12.3.2 HDL Extensions and C++

There is a growing acceptance of high-level languages (HLLs), particularly C and
C++, for conceptual or system level modeling. One reason for this is the fact that a
model expressed in an HLL usually executes more rapidly than the same model
expressed in an RTL language. This is based, at least in part, on the fact that when a
Verilog or VHDL model is executing as compiled code, it is first translated into C or
C++. This intermediate translation may introduce inefficiencies that the system
engineer hopes to avoid by directly encoding his or her system level model in C or
C++. Another attraction of HLLs is their support for complex mathematical func-
tions and similar such utilities. These enable the system analyst to quickly describe
and simulate complex features or operations of their system level model without
becoming sidetracked or distracted from their main focus by having to write these
utility routines.

To assist in the use of C++ for logic design, vendors provide class libraries.

3

These extend the capabilities of C++ by including libraries of functions, data types,
and other constructs, as well as a simulation kernel. To the user, these additions
make the C++ model look more like an HDL model while it remains legal C++
code. For example, the library will provide a function that implements a wait for an
active clock edge. Other problems solved by the library include interconnection
methodology, time sequencing, concurrency, data types, performance tracking, and
debugging. Because digital hardware functions operate concurrently, devices such
as the timing wheel (cf. Section 2.9.1) have been invented to solve the concurrency
issue at the gate-level. The C++ library must provide a corresponding capability.
Data types that must be addressed in C++ include tri-state logic and odd data bus
widths that are not a multiple of 2. After the circuit model has been expressed in
terms of the library functions and data types, the entire circuit model may then be
linked with a simulation kernel.

An alternative to C++ for speeding up the simulation process, and reducing the
effort needed to create testbenches, is to extend Verilog and VHDL. The IEEE peri-
odically releases new specifications that extend the capabilities of these languages.
The release of Verilog-2001, for example, incorporates some of the more attractive
features of VHDL, such as the “generate” feature. Vendors are also extending Veri-
log and VHDL with proprietary constructs that provide more support for describing
operations at higher levels of abstraction, as well as support for testbench verifica-
tion capabilities—for example, constructs that permit complex monitoring actions to
be compressed into just a few lines of code. Oftentimes an activity such as monitor-
ing events during simulation—an activity that might take many lines of code in a
Verilog testbench, and something that occurs frequently during debug—may be
implemented very efficiently in a language extension. The extensions have the
advantage that they are supersets of Verilog or VHDL; hence the learning curve is
quite small for the logic designer already familiar with one of these languages.

SIMULATION

573

A danger of deviating from existing standards, such as Verilog and VHDL, is that a
solution that provides major benefits while simulating a design may not be compatible
with existing tools, such as an industry standard synthesis tool or a design verification
tool. As a result, it becomes necessary for a design team to first make a value judgment
as to whether there is sufficient payback to resort to the use of C++ or one of the exten-
sion languages. The extension language may be an easier choice. The circuit under
design is restricted to Verilog or VHDL while the testbench is able to use all the fea-
tures of Verilog or VHDL plus the more powerful extensions provided by the vendor.

If C++ is chosen for systems level analysis, then once the system analyst is satis-
fied that the algorithms are performing correctly, it becomes necessary to convert the
algorithms to Verilog or VHDL for implementation. Just as there are translators that
convert Verilog and VHDL to C or C++ to speed up simulation, there are translators
that convert C or C++ to Verilog or VHDL in order to take advantage of industry
standard synthesis tools. The problem with automating the conversion of C++ to an
RTL is that C++ is quite powerful, with many features that bear no resemblance to
hardware, so it is necessary to place restrictions on the language features that are
used, just as synthesis tools currently restrict Verilog and VHDL to a synthesizable
subset. Without the restrictions, the translator may fail completely. Restrictions on
the language, in turn, place restrictions on the user, who may find that a well-
designed block of code employs constructs that are not supported by the particular
translator being used by the design team. This necessitates recoding the function,
often in a less expressive form.

12.3.3 Co-design and Co-verification

Many digital systems have grown so large and complex that it is, for all practical
purposes, impossible to design and verify them in the traditional manner—that is, by
coding them in an HDL and applying stimuli by means of a testbench. Confidence in
the correctness of the design is only gained when it is seen to be operating in an
environment that closely resembles its final destination. This is often accomplished
through the use of co-design and co-verification.*

Co-design simultaneously designs the hardware and software components of a
system, whereas co-verification simultaneously executes and verifies the hardware
and software components. Traditionally, hardware and software were kept at arms
length while designing a system. Studies would first be performed, architectural
changes would be investigated, and the hardware design would be “frozen,” mean-
ing that no more changes would be accepted unless it could be demonstrated that
they were absolutely essential to the proper functioning of the product. The amount
of systems analysis would depend on the category of the development effort: Is it a
completely new product, or an enhancement (cf. Section 1.4)? If it is an enhance-
ment to an existing product, such as a computer to which a few new op-codes are to
be added, then compatibility with existing products is essential, and that becomes a

*Co-design and co-verification often appear in the literature without the hyphen—that is, as codesign and
coverification.

574

BEHAVIORAL TEST AND VERIFICATION

constraint on the process. A completely new product permits much greater freedom
of expression while investigating and experimenting with various configurations.

The co-design process may be focused on finding the best performance, given a
cost parameter. Alternatively, the performance may be dictated by the marketplace,
and the goal is to find the most economical implementation, subject to the perfor-
mance requirements. Given the constraints, the design effort then shifts toward iden-
tifying an acceptable hardware/software partition. Another design parameter that
must be determined is control concurrency. A system’s control concurrency is
defined by the functional behavior and interaction of its processes.

4

 Control concur-
rency is determined by merging or splitting process behaviors, or by moving func-
tions from one process to another. In all of these activities, there is a determined
effort to keep open channels of communication between the software and hardware
developers so that the implications of tradeoffs are completely understood.

The task of communicating between diverse subsystems, some implemented in
software and some in hardware, or some in an HDL and some in a programming lan-
guage, presents a challenge that often requires an ad-hoc solution. The flow in
Figure 12.1 represents a generic co-design methodology.

5

 In this diagram, the hard-
ware may be modeled in Verilog, VHDL, or C++ or it could be modeled using field
programmable gate arrays (FPGAs). Specification of the hardware depends on its
purpose. Decisions must be made regarding datapath sizes, number and size of reg-
isters, technology, and so on.

Figure 12.1

Generic co-design methodology.

System specification

Algorithm development

Hardware-software
partitioning

Hardware synthesis Software synthesis

Interface synthesis

System simulation

Design verification System evaluation

Success
?

DONE

yes

no

MEASURING SIMULATION THOROUGHNESS

575

The interface between hardware and software must handle communications
between them. If the model is described in Verilog, running under Unix, then the
Verilog programming language interface (PLI) can communicate with software pro-
cesses using the Unix socket facility. After the design has been verified, system eval-
uation determines whether the system, as partitioned and implemented, satisfies
performance requirements at or under cost objectives. If some aspect of the design
falls short, then another partitioning is performed. This process can be repeated until
objectives are met, or some optimum flow is achieved. Note that if the entire system
is developed using C++, many communications problems are solved, since every-
thing can be compiled and linked as one large executable.

12.4 MEASURING SIMULATION THOROUGHNESS

As indicated previously, many techniques exist for speeding up simulation, thus per-
mitting more stimuli to be applied to a design in a given period of time. However, in
design verification, as in manufacturing test, it is important not to just run a lot of
stimuli, but also to measure the thoroughness of those stimuli. Writing stimuli
blindly, without evaluating their effectiveness, may result in high quantities of low-
quality test stimuli that repeatedly exercise the same functionality. This slows down
the simulations without detecting any new bugs in the design. Coverage analysis can
identify where attention needs to be directed in order to improve thoroughness of the
verification effort. Then, the percentage coverage of the RTL, rather than the quan-
tity of testbench code, becomes the criteria for deciding when to bring design verifi-
cation to a halt.

12.4.1 Coverage Evaluation

Chapter 7 explored a number of topics, including toggle coverage (Section 7.8.4),
gate-level fault simulation (Section 7.5.2), behavioral fault simulation (Section 7.8.3),
and code coverage (Section 7.8.5). Measuring toggle coverage during simulation was
a common practice many years ago. It was appealing because it did not significantly
impact simulation time, nor did it require much memory. However, its appeal for
design verification is rather limited now because it requires a gate-level model. If a
designer simulates at the gate level and finds a bug, it usually becomes necessary to
resynthesize the design, and designers find it inconvenient to interrupt verification
and resynthesize each time a bug is uncovered, particularly in the early stages of
design verification when many bugs are often found in rapid succession. As pointed
out in Section 7.8.4, toggle count remains useful for identifying and correcting hot
spots in a design—that is, areas of a die that experience excessive amounts of logic
activity, causing heat buildup. It was also argued in Chapter 7 that fault simulation
can provide a measure of the thoroughness of design verification vectors. But, like
toggle count, it relies on a gate-level model.

Code coverage has the advantage that it can be used while simulating at the RTL
level. If a bug is found, the RTL is corrected and simulation continues. The RTL is

576

BEHAVIORAL TEST AND VERIFICATION

not synthesized until there is confidence in the correctness of the RTL. As pointed
out in Section 7.8.5, code coverage can be used to measure block coverage, expres-
sion coverage, path coverage, and coverages specific to state machines, such as
branch coverage. When running code coverage, the user can identify modules of
interest and omit those that are not of interest. For example, the logic designer may
include in the design a module pulled down from a library or obtained from a ven-
dor. The module may already have been thoroughly checked out and is currently
being used in other designs, so there is confidence in its design. Hence it can be
omitted from the coverage analysis.

Code coverage measures controllability; that is, it identifies all the states visited
during verification. For example, we are given the equation

WE

 =

CS

 &

ArraySelect

 &

SectorSelect

 &

WriteRequest

;

What combinations of the input variables are applied to that expression? Does the
variable

SectorSelect

ever control the response of

WE

? In order for

SectorSelect

to
control

WE

, it must assume the values 0 and 1 while the other three inputs must be
1. For this expression, a code coverage tool can give a coverage percentage, similar
to a fault coverage percentage, indicating how many of the variables have con-
trolled the expression at one time or another during simulation. Block coverage,
which indicates only whether or not a line of code was ever exercised, is a poor
measure of coverage. When verifying logic, it is not uncommon to get the right
response for the wrong reason, what is sometimes referred to as

coincidental cor-
rectness

. For example, two condition code bits in a processor may determine a con-
ditional jump, but the one that triggered the jump may not be the one currently
being investigatated.

Consider the state machine: It is desirable to visit all states, and it is desirable to
traverse all arcs. But, in a typical state machine several variables can control the
state transitions. Given a compound expression that controls the transition from

S

i

to

S

j

, a thorough verification requires that each of the variables, at some point dur-
ing verification, causes or determines the transition to

S

j

. In general, equations can
be evaluated to determine which variables controlled the equation and, more impor-
tantly, which variable never controlled the equation throughout the course of simu-
lation. An important goal of code coverage is to verify that the input vectors
established logic values on internal signals in such a way that the outcome of a
logic transaction depends only on one particular signal, namely, the signal under
consideration.

Behavioral fault simulation, in contrast to code coverage, measures both control-
lability and observability. A fault must be sensitized, and its effects must be propa-
gated to an observable output before it can be counted as detected. One drawback to
behavioral fault simulation is the fact that the industry has never settled on an accept-
able family of faults, in contrast to gate-level fault simulation where stuck-at-1 and
stuck-at-0 faults have been accepted for more than a quarter-century.

Given a fault coverage number estimated using a gate-level model, test engineers
can usually make a reasonably accurate prediction of how many tester escapes to

MEASURING SIMULATION THOROUGHNESS

577

expect from their product lines. So, although the stuck-fault metric is not perfectly
accurate, it is a useful tool for estimating outgoing quality level. Furthermore, many
studies over the years have helped to refine our understanding of the various gate-
level fault models. For example, it is well known that fault models based on stuck-at
faults in gate-level circuits can produce widely divergent results, depending on
which faults are selected and how the fault list is collapsed. Many years ago it was
shown that vectors providing a coverage of 95% for pin faults on SSI and MSI cir-
cuits provided in the neighborhood of 70–75% fault coverage when internal faults
were considered.

6,7

Another drawback to the use of behavioral fault simulation for design verification
is the fact that it only counts as detected those faults that propagate to the output
pins. For design verification, it is frequently unnecessary to propagate behavioral
faults to an output pin, it is sufficient to sensitize (i.e., control) the faults. But, as we
have just seen, code coverage measures controllability, and its metrics are well
understood and accepted. So, if the goal is simply to sensitize logic, then code cov-
erage is adequate.

Another means for determining the thoroughness of coverage is through the use
of event monitors and assertion checkers.

8

 The

event monitor

 is a block of code that
monitors events in a model in order to determine whether some specific behavior
occurred. For example, did the applied stimuli try to write to a fifo when it was full?
This is a situation that will occur in practice; and in order to determine if the circuit
responds correctly, it is necessary to first verify that this condition occurred and then
verify that the circuit responded as desired. One way to check for this condition is to
write a block of code that checks for “fifo full” and “write enabled.” The code can be
embedded conditionally into a Verilog RTL model using <“ifdef”, “endif”> pairs, or
it can be coded as a standalone module. If the conditions “

fifo_full

” and
“

write_request

” are both found to be true, a message can be written to a log file and
the engineer can then check the circuit response to verify that it is correct.

The

assertion checker

 is implemented like an event monitor, but it is used to
detect undesirable or illegal behavior. Consider the case of a circuit that is
required to respond within 50 clock periods to a bus request. This is classified as a
temporal assertion, because the event is required to occur within a specified time
interval, in contrast to the previous example of the fifo, which is classified as a
static event—that is, one in which the events occur simultaneously. It would be
tedious to enumerate all of the possible cases that should be checked during simu-
lation, but many corner cases can be defined and monitored using monitors and
checkers.

Monitors and checkers can supplement code coverage as a means of measur-
ing the thoroughness of a test suite. If there are specific corners of a design that
the designer is interested in, monitors and checkers can explicitly check those
cases. A response from the appropriate checker can put the logic designer’s
mind at ease. It might, however, be argued that if the logic designer used code
coverage and obtained 100% expression coverage, and verified that the circuit
responded correctly for all stimuli, then the designer has already checked the
condition.

578

BEHAVIORAL TEST AND VERIFICATION

Example

Consider the fifo example cited earlier. Somewhere in the logic there may
be an expression similar to the following:

mem_avail

 =

fifo_full & write_request

;

In this expression

fifo_full

 is high if the fifo is full, and it is low otherwise.

Write_request

 goes high if an attempt is made to write to the fifo. If memory is avail-
able,

fifo_full

 is low and

mem_avail

 is low. However, if an attempt is made to write
to the fifo when it is full,

mem_avail

 goes high. If code coverage confirms 100% cov-
erage for this line of code, then all possibilities have been checked. The following is
a table of results that might be printed by a code coverage tool.

These code coverage results indicate that no write requests were attempted when
the fifo was full (count = 0). An advantage of monitors and checkers over code cov-
erage is that they check for specific events that the logic designer is concerned
about, so the designer does not have to scroll through a large file filled with detail. In
addition, code coverage only checks for controllability. The event monitor can be
coded and positioned in the model in such a way as to confirm complete transac-
tions, including events occurring at the memory and at the destinations. However,
regardless of which method is used, in the final analysis the logic designer must
understand the design and verify that the design implements the specification, rather
than his subjective interpretation of the specification.

12.4.2 Design Error Modeling

While the use of behavioral fault simulation for design verification may be of ques-
tionable value, it can be useful for evaluating a manufacturing test suite prior to syn-
thesis. The granularity is more coarse than that of the gate-level model, but it may
nevertheless point to areas of a design where coverage is particularly weak and
where design changes might be helpful. For example, controllability may be quite
poor because long input sequences are needed to reach a particular state, suggesting
that perhaps a parallel load of some counter may be desirable. Perhaps an unused
state in a state machine can be used to load a particular register in test mode in order
to improve controllability. Or this unused state may be used to gate test data out onto
a bus, thus improving observability. By including such changes at the RTL level, in
response to low behavioral fault coverage, the changes can be evaluated and verified
before the circuit is synthesized. Behavioral fault simulation can also be useful in
evaluating diagnostic programs that are intended to be run in the field.

Count

fifo_ full write_request mem_avail

3243 0 1 0

3 1 0 0

0 1 1 1

66% Expression coverage ��

MEASURING SIMULATION THOROUGHNESS

579

In earlier chapters it was noted that if a fault was modeled and detected by a fault
simulator, we can expect it to be detected when the chip is tested. However, fault
simulation cannot say anything about faults that are not modeled. In like manner,
design verification can confirm the correctness of operations that are exercised by
the applied vectors, but it cannot prove the absence of design errors in functions that
were not targeted by the vectors.

This is important to note because, even for very small circuits, the number of
potential errors becomes impractical to consider. In Section 7.7.1 an example was
given wherein, for a simple two-input circuit, 16 possible functions were defined.
For a complex sequential circuit with

n

 inputs and

m

 internal states, the number of
potential states becomes astronomical very quickly. The task of counting the exact
number of states is further exacerbated by the fact that many of the states are
unreachable in incompletely specified state machines (ISSMs). Furthermore, it is
not immediately obvious how many state transitions are required to reach a given
state from some other, arbitrary state. At best, all we can hope to do is compute an
upper bound on the number of clock cycles required to completely exercise a given
sequential circuit. The reader may recall, from Section 3.4, that these considerations
led early researchers dealing with manufacturing test to introduce the concept of a
stuck-at-fault.

Faster simulation methodologies, such as cycle simulation and point accelera-
tors, have been introduced in order to improve thoroughness of design verification.
In this approach, logic designers keep doing what they have done in the past, but
they do it faster and they do more of it, in the hopes that by using more stimuli
they will be more thorough. The problem with this method is that, like manufac-
turing test programs, if there is no way to evaluate the thoroughness or complete-
ness of the programs, it is possible to quickly reach the point of diminishing
returns: Many thousands of additional vectors are added without improving the
overall thoroughness of the verification effort. Author Boris Beizer calls it the
“pesticide paradox,” wherein insects build up a tolerance for pesticides, and the
continued application of these same pesticides does not remove any more insects
from the fields.

9

The stuck-at model has been an accepted metric for over three decades. While it
is recognized that it is not perfect, it is understood that if stuck-at coverage for a
manufacturing test is 70%, there will be many tester escapes. If stuck-at coverage is
greater than 98%, the number of tester escapes is likely to be very low. Software
analysts have used error seeding to compute a similar number. This involves the
intentional insertion or errors in a design. The design error coverage

C

DE

, analogous
to fault coverage, is

The

C

DE

 might be determined by having one group inject design errors and another
independent group write design verification suites. Just as the fault coverage based

CDE =
number of errors detected

number of errors injected * 100%

580

BEHAVIORAL TEST AND VERIFICATION

on stuck-at faults is not perfect, the design error coverage, based on injected faults,
may be either too optimistic or too pessimistic. However, if

C

DE

 = 70%, it is a
good idea to keep on writing design verification vectors. If

C

DE

 = 100% and if no
bugs have been encountered in some arbitrary interval (e.g., 1 week), then consid-
erable thought must be given to deciding whether the device is ready to be shipped,
recognizing that even if

C

DE

 = 100%, it only guarantees that all of the artificially
created and injected design errors were detected, there may still be real errors in
the design.

If error seeding is to be used, it must be decided what kind of errors to inject
into the circuit model. In view of the fact that contemporary circuits are designed
and debugged at the register transfer level, errors should be created and injected
at that level. Like fault simulation, granularity is an issue to consider. Stuck-at
faults can cause detection of gross physical defects in addition to stuck-at faults.
In like manner, gross design errors (e.g., a completely erroneous algorithm imple-
menting arithmetic/logic operations) are likely to be detected by almost any veri-
fication suite, so it makes sense to inject subtle errors that are more difficult to
discover. This includes such things as wrong operators in RTL expressions, incor-
rect variables, or incorrect subscripts. For example, consider the following Ver-
ilog expression:

always @(

sign

 or

a

 or

b

 or

c

 or

d or e)

g = (!sign) ? a | !(b | c) & d | !e : 0;

If sign is equal to 0, the complex expression is evaluated and its value is assigned to
g; else 0 is assigned to g. Some very simple errors that can be applied to this Verilog
code include leaving out a negation (!) symbol, or placing a left or right parenthesis
in the wrong place, or substituting an OR (|) for an AND (&) or vice versa. One of
the terms might be modified by adding a variable to the product. Sometimes the fail-
ure to include a variable in the sensitivity list, particularly if it is a long list, can
cause a logic designer to puzzle for quite some time over the cause of an erroneous
response in an equation that appears well-formed.

The misuse of blocking and non-blocking assignments in Verilog procedural
statements can cause confusion. Blocking assignments, indicated by the symbol (=),
can suspend, or block, a process until a register is updated. A non-blocking assign-
ment, indicated by the symbol (<=), permits a register to be evaluated, but updated at
a later time, while permitting processing to continue, hence the term non-blocking.

For more complex expressions, such as loop control, error injection can consist
of changing limits, or polarity of a control signal. In case statements intended to rep-
resent state machines, incorrect state machine behavior can be induced by switching
cases. More difficult to detect is the situation where, in one of the cases, a complex
expression is altered. In effect, a good design verification suite should exhaustively
consider all possible values of the variables in a complex expression. This is equiva-
lent to having 100% expression coverage for the expression from a code coverage
tool. Altering the order of the variables in a port list may also provide a good chal-
lenge for a design verification suite.

RANDOM STIMULUS GENERATION 581

If seeding of design errors can be accomplished by a program, similar to fault list
generation for gate-level fault simulation, some of the subjectivity that causes poten-
tial errors to be overlooked can be eliminated. The human may make a judgment as
to whether or not it is necessary to seed a particular part of a design, or to use a par-
ticular error construct. The program, on the other hand, seeds according to some pre-
determined formula. The subjectivity of the design verification process is also a
good reason why a design verification suite is best developed by individuals other
than those who designed the circuit. It also explains why software code inspections
are performed by persons other than those who wrote the software. It is not uncom-
mon for someone who wrote a block of code, whether it be HLL or HDL, to exam-
ine that code several times and not see an obvious error. A similar situation holds for
a specification. The designer may misunderstand some fine point in the specification
and, if he creates stimuli based on this misconception, his simulation results only
confirm that his design functions according to his understanding, which was initially
wrong.

A typical practice when testing S/W is to inject bugs one at a time. After a run
has completed, S/W responses with and without the injected bug are compared. If
the injected bug causes incorrect response, it has been detected. It is not necessary
to debug the circuit since the bug was injected; hence its location is known. Of
course, if the bug escapes detection, then it becomes necessary to determine why it
was not detected. In a regression test, a bug that was previously detected may now
escape detection as a result of a patch inserted to fix another bug. Design error
injection in HDL designs is quite similar to S/W testing. One noticeable difference
is the fact that response of an HDL can be examined at I/O pins. But, recalling our
previous discussion, logic designers may choose not to drive an internal state to an
I/O pin. Hence it may be necessary to capture internal state at registers and state
machines and then output that information to a file where it can be checked for
correctness.

12.5 RANDOM STIMULUS GENERATION

In previous sections we explored methods for simulating faster, so more stimuli
could be evaluated in a given amount of time, and we explored methods for mea-
suring thoroughness of design verification stimuli. A report generated during cover-
age analysis identified modules or functions where coverage was insufficient. We
now turn to stimulus generation. In this section we focus on random stimulus gen-
eration. In subsequent sections, we will explore behavioral automatic test pattern
generation.

One of the purposes of test stimuli created and applied to a design is to give us
confidence in the correctness of the design. The more functionality we verify, the
greater our confidence. Unfortunately, confidence is a subjective thing. We may feel
100% confident in a design that has only been 80% verified! For example, in a sur-
vey, circa 1990, of IC foundries that fault-simulated stimuli provided by their cus-
tomers, it was found that a typical test suite provided by customers yielded

582 BEHAVIORAL TEST AND VERIFICATION

approximately 73% fault coverage for stuck-at faults in the IC. These test suites
were developed during design verification and served as the acceptance test for ICs
provided by the foundry. Part of the reason for low coverage stems from decisions
by logic designers regarding the importance of verifying various parts of the design.
It is not uncommon for a logic designer to make subjective decisions as to which
parts of a design are “complicated” and need to be thoroughly checked out, based on
his or her understanding of the design, versus those parts of the design that are
“straightforward” and need less attention.

Random test pattern generation (RTPG) is frequently used to exercise designs.
Unlike targeted vectors, random vectors distribute stimuli uniformly across the
design, unless some biasing is built into the vectors (cf. Section 9.4.3, weighted ran-
dom patterns).

Given a sufficiently large set of random values and an unbiased set of I/O pins,
each input combination is equally probable. Given a combinational array imple-
menting arithmetic operations, it is often quite easy to create a configuration like
that of Figure 12.2 for an ALU or similar such circuit.

The random pattern generator (RPG) generates a pair of n-wide integers. These
are simulated using the circuit model, but the result is also computed independently
of the simulation. The results are then sent to a comparator that translates the integer
result into binary and compares the two results in order to determine whether the
design responded correctly. The whole process can be automated, and the number of
stimuli applied to the design is limited only by the speed of the simulation process.
A typical stopping rule for such a process is to cease testing when no more errors are
detected after some predetermined number of stimuli have responded correctly.

For sequential circuits, RTPG is a more difficult task because circuit response
depends on current state of the circuit. For example, if a chip-select is disabled, no
amount of stimuli applied to the other input pins will serve a useful purpose until the
chip-select is enabled. Even if the chip-select is enabled, stimuli on other input pins
may be ineffective if an internal control register has not been initialized. But even a
fully initialized circuit may recognize only a small number of input combinations
from its current state. A microprocessor, for example, may be in a state for which
only a single-input combination is useful. Such an example might be a hold or a halt
instruction, for which a controlling state machine only responds to a valid interrupt
request.

Figure 12.2 Applying random stimuli.

RPG Model

Compute
result

Comparator

n

n

integer

integer

RANDOM STIMULUS GENERATION 583

Another complication is the fact that contemporary microprocessors employ mul-
tiple pipelines to decode instructions and allocate resources needed to successfully
execute those instructions. Out-of-order execution of instructions, and contention
for resources by instructions being decoded and executed in parallel pipelines,
means that priorities have to be resolved. If two instructions being decoded in differ-
ent pipelines both require the same general-purpose register, which instruction gets
to use it first? Because of out-of-order execution, an op-code may attempt to per-
form an operation on a register whose value has not yet been set.

Clearly, in these complex processors, it is necessary to exercise every instruction
with all combinations of meaningful data. Load instructions should point at memory
addresses containing valid data. Branch instructions must have valid instructions at
the branch address, and the test must be configured so as to avoid infinite loops.
Conditional branches must be exercised with all condition codes and combinations
of condition codes. Furthermore, it must be verified that branches can be made to
occur, or inhibited, depending on the settings of the condition codes.

Testing the interrupt structure means not just testing for correct operation of
individual interrupts, but also testing to ensure that correct priorities are observed.
If an interrupt is being processed and another interrupt occurs, is the new interrupt
of higher or lower priority than the interrupt currently being processed? If it is of
higher priority, then current interrupt processing must be interrupted, and the new
interrupt must be processed; then the processor must resume processing the inter-
rupt that was originally being processed. In addition to the interrupt inputs, other
input pins must also be exercised at the appropriate times to determine their effect
on the behavior of the design. This includes chip select pins, memory and I/O read
and write pins, and any other pins that are able to affect the flow of control in the
design.

In a program for generating test suites for microprocessors described at the 1982
Design Automation Conference,10 the various properties of the microprocessor were
systematically captured in a file. This included information about instruction for-
mats, register file sizes, ALU operations, I/O pins, and their effects on the flow of
instructions and data. Details of addressing methods and formats included descrip-
tions of program counters, index registers, stack pointers, and relative and absolute
addressing methods. In addition, information describing controllability and observ-
ability methods of the registers was provided to the system. With this information,
the automatic generation system synthesized sequences of instructions, including
the necessary initialization sequences. Where the system might generate an exces-
sive number of instructions—as, for instance, when generating sequences that test
every register combination for a move register instruction—the user had the option
of selecting a subset adequate to satisfy the objectives of the test.

In another method, whose purpose was to verify the design of an original version
of an IBM System/6000 RISC processor, RTPG was used to make the test program
generation process more productive, comprehensive, and efficient.11 The system
developed was a dynamic, biased pseudo-random test program generator. Unlike a
so-called static approach where a test program was developed and then simulated in
its entirety, the RTPG system developed by this project was dynamic: Test

584 BEHAVIORAL TEST AND VERIFICATION

generation was interleaved with the execution of instructions. This made it possible
for the logic designer to create test programs during the early stages of design, while
implementing the op-codes.

The test program generated by RTPG is made up of three parts:

Initial state

Instructions

Expected results

The initial state specifies the contents of resources needed to execute a particular
instruction, including registers, flags, and memory contents. Instructions describe
the contents of caches or memory locations. Expected results list the final state of all
resources that were affected by the execution of the instruction. These test programs
are self-contained and include all information required for their independent execu-
tion, so they can migrate between test libraries and they can be executed in any
order.

Example

H 10000:
* A simple test program
R IP 00010000
R R1 03642998
R R8 0000000F
R R10 1E12115F
R R22 0129DFFF
R R30 800000BA
R MSR 00008000
R CR 8CC048C8
R XER 2000CD45
D 0129DFFC 4E74570E
D 03640B90 7D280411
* ------ Assembly Program -------------
I 00010000 7C48F415 a0. R2 .R8.R30
I 00010004 7CD0B02E lx R7 .R0.R22 E/A 0129DFFF
I 00010008 49BBB904 b *+29079812 T/A 01BCB90C
I 01BCB90C B141E1F8 sth R10.X′E1F8′(R1) E/A 03640B90
*------- Expected Results -------------
R IP 01BCB910
R R2 800000C9
R R7 4E74570E
R MSR 00008000
R CR 8CC048C8

RANDOM STIMULUS GENERATION 585

R XER 0000CD45
D 0129DFFC 4E74570E
D 03640B90 115F0411
END ��

In this example the header (H) is used to identify the test number. The next line,
starting with an asterisk, denotes a comment. The lines beginning with R denote reg-
isters. The instruction pointer (IP) identifies the start of the test program—in this
case, hex location 10,000. The data entries (D) define memory locations and the data
stored at those locations. The instruction (I) entries identify memory addresses and
the instructions to be saved at those locations. Note that the first three instructions
are contiguous, and then the fourth entry is some distance away from the previous
three. The instructions contain assembly code for documentation purposes. In this
sequence, the instructions sequence contains add, load, branch, and store instruc-
tions. The third instruction causes a branch to location 01BCB90C, where the store
instruction is located.

The short program in this example can be executed as soon as all of the instruc-
tions used in the example have been implemented. The RTPG initializes the registers
used by the instructions being tested, so it is not necessary to employ load and store
instructions. The RTL language used for this project was APL (a programming lan-
guage), and the tools are in-house proprietary tools. The test is constructed dynami-
cally, meaning that for each instruction there is a generation stage and an execution
stage. During the generation stage an instruction is chosen and required resources
are initialized. The execution stage is then invoked to execute the instruction and
update affected resources.

Biasing is used in this system to increase the probability of occurrence of events
that might otherwise not occur. Biasing directs the generation process toward
selected design areas so that most events are tested when the number of test pro-
grams is reasonably large. Biasing functions are used to influence the selection of
instructions, instruction fields, registers, addresses, data, and other components that
go into construction of a test program. Each instruction or process, such as an inter-
rupt or address translation, is represented by a block diagram composed of decision
and execution blocks. In every decision block the data affecting the decision are
selected in such a way that subsequent blocks are entered with user-specified or
RTPG controlled probability. As an example, the user may request that there be a
10% probability that the arguments selected for a floating point operation produce
an overflow.

The biasing functions evolve over a number of projects, so weaknesses observed
in the RTPG can be corrected by altering the probabilities; consequently, the func-
tions can be influenced by those probabilities. Code coverage techniques can be
used to evaluate the behavior of RTPG; and, by identifying weaknesses, such as
lines of code not touched by the RTPG, the results of code coverage can be used to
improve the biasing functions. Biasing can also be improved by analyzing the
effects of fault injection. Faults or design errors are injected into the model, and it is
determined whether or not they are detected by any randomly generated test

586 BEHAVIORAL TEST AND VERIFICATION

program. If, at the conclusion of the design verification effort, there are injected
errors that went undetected, then either the biasing functions need to be refined, or,
perhaps, the circuit requires a greater number of test programs in order to detect all
errors.

In yet another project employing RTPG, the object of the effort was a multipro-
cessor workstation cache controller.12 The workstations can contain up to 12 proces-
sor boards, with each processor board containing three custom VLSI chips and a
128-kbyte cache memory. Main memory is shared among the workstations. One of
the chips is a cache controller whose purpose is to make memory transparent to the
processors. It manages the cache and communicates with main memory and periph-
erals. It consists of a processor cache controller (PCC) and a snooping bus controller
(SBC). Each of these two subsystems is complex in and of itself, with many states
and transitions. When interactions between PCC and SBC are considered, there are
many thousands of possible interactions.

Although the object of this verification effort was to verify the cache controller,
it was believed that simulating the cache controller by itself would not be sufficient
to verify the system’s design. So, the simulation model consisted of all three chips,
the cache controller, the CPU, and the floating-point coprocessor. However, for the
random tester, a stub module replaced the CPU, simplified inside but accurately
modeling the interface. This model was easier to write than a full model, it allowed
for more flexible timing, and it ran faster than a full model. Three copies of the
three-chip workstation model were instantiated in order to verify the memory
design.

The stub CPU generated memory references by randomly selecting from a pre-
determined script. The scripts, an example of which is illustrated in Figure 12.3,
consist of action/check pairs, in which the action produces a state change and the
check verifies that the change happened correctly. For example, an action might
write a particular value to a memory address. The corresponding check verifies that
the update occurred correctly, or signals an error if it did not. Because of the random
sequencing, an arbitrary amount of time and a random permutation of other actions
and checks may elapse between an action and its corresponding check.

Figure 12.3 Action/check pair.

CacheOp Address Data Mode
Action

Write32 0x00000660 0x05050505 User
Check

Read32 0x00000660 0x05050505 Kernel
Write32 0x00000660 0x05050505 Kernel

End
Action

TestSet 0x0000A800 0x0 User
Check

Read32 0x0000A800 0x1 User
Write32 0x0000A800 0x0 User

End

THE BEHAVIORAL ATPG 587

In Figure 12.3 the words Action, Check, and End are keywords that delineate an
action/check pair. An entry identifies a cache operation, the cache address, the data
to be written to or read from that address, and the mode. Reserved data words can be
used to instruct the CPU to expect specific exception conditions, such as a page
fault, to occur. In the second action/check pair, the TestSet cache operation expects
the current value at address 0x0000A800 to be 0. It then sets the value to 1. A check
performed later expects a 1, and then it clears the value so the next execution of the
action will find a 0.

The RTPG was determined by its implementers and users to be a major success.
Before it was implemented, several months were spent writing design verification
tests in assembly language. These tests covered about half of the uniprocessor cases
and none of the multiprocessor cases. The initial version of the random tester, writ-
ten in a week, immediately revealed numerous errors, including significant design
problems. The final version of the RTPG required about two months and detected
over half the bugs uncovered during functional verification. The strategy devised for
the RTPG was to run until it uncovered a problem, or forever if it could not find any.
During the early stages the RTPG would run for about 20 minutes on a Sun3/160
workstation. By the end of verification, it had run continuously for two weeks on
multiple computers, using different random seeds.

12.6 THE BEHAVIORAL ATPG

The goal of behavioral ATPG (BATG) is to exploit knowledge inherent in RTL and
behavioral level circuit descriptions. ATPG programs have traditionally relied on
gate-level circuit descriptions; as circuits grew larger, the ATPGs frequently became
entangled in a myriad of details. Managing gate-level descriptions for larger circuits
requires exorbitant amounts of memory and CPU time. By exploiting behavior
rather than structure, and taking advantage of higher levels of abstraction, the
amount of detail is reduced, permitting more efficient operation. Perhaps more
importantly, it is possible to distinguish between legal and illegal behaviors of state
machines, handshaking protocols, and other functions. It is possible to recognize
state-space solutions that would be next to impossible to recognize at the gate level.
In addition, it becomes possible to recognize when a solution does not exist, and
cease exploring that path.

12.6.1 Overview

A simple example of a circuit where behavioral knowledge can be used to advantage
is the one-hot encoding of a state machine (see, for example, Figure 9.30). A gate-
level ATPG, attempting to justify an assignment to the state machine, may spend
countless hours of CPU time trying to justify a logic 1 on two or more flip-flops
when the implementation only permits a single flip-flop to be at logic 1 at any given
time. By abstracting out details and explicitly identifying legal behavior of the state
machine, this difficulty can be avoided.

588 BEHAVIORAL TEST AND VERIFICATION

In other cases the amount of CPU time required to generate a test at the gate
level, even when a test exists, is prohibitive. A circuit as basic as an 8-bit binary
counter, capable of counting from 0 to 255, can frustrate an ATPG, since it may
require as many as 256 time frames to propagate or justify primitive D-cubes of fail-
ure (PDCF). In combinational logic a 64- or 80-bit array multiplier represents a sig-
nificant challenge to a combinational ATPG, even though theory assures us
(Section 4.3) that the ATPG, if allowed to run indefinitely, will eventually find a
solution. Note that incremental improvements in ATPG performance have been real-
ized by introducing slightly larger primitives, such as 2-to-1 multiplexers and
adders, as primitives. This is a rather small concession to the need for a higher level
of modeling.

12.6.2 The RTL Circuit Image

Chapter 2 introduced a circuit model in the form of a graph in which nodes corre-
sponded to individual logic elements and arcs corresponded to connections
between elements. The nodes were represented by descripter cells containing point-
ers and other data (see Figure 2.21). The pointers described I/O connections
between the output of one element and the inputs of other elements. The ATPG
used the pointers to traverse a circuit, tracing through the interconnections in order
to propagate logic values forward to primary outputs and justify assignments back
toward the inputs.

For logic elements in an RTL circuit the descripter cells bear a similarity, but
functions of greater complexity require more entries in the descripter cell. In addi-
tion, linking elements via pointers is more complex. In gate-level circuits the
inputs of logic gates are identical in function, but in RTL circuits the inputs may
be busses and can serve much more complicated functions. The circuit in
Figure 12.4 represents a generic view of a function. It is characterized by the fact
that its inputs are control and data ports, and its outputs are status and data ports.
Furthermore, each of its ports may be ni bits wide (ni ≥ 1) and, when ni > 1, it is
important to indicate whether the high-order bit is numbered bit 0 or bit ni − 1.
Not shown in this generic model are internal registers. The registers may hold data
or control bits.

Figure 12.4 Generic representation of a function.

n1

ni mj

T

c

m1

Status

Control

s

THE BEHAVIORAL ATPG 589

In in the case of a 2-to-1 multiplexer the control could require one or two inputs.
One control bit selects one of two data inputs, and the other control bit, if present,
enables the output. If the output is disabled, it may be floating (Z state), or forced to
a 1 or 0. In the case of an ALU, an operation may require one of several functions to
be chosen, thus requiring several control bits. A connectivity graph must embrace all
of this information in some orderly way that can be used by many software routines.

When a gate-level ATPG program is implemented, one of the first questions that
must be addressed is that of support for primitives. What primitives will the ATPG
support? Will the knowledge for these primitives be built into the ATPG, or will that
knowledge be represented in tabular form? For example, an AND gate is a primitive
for which the ATPG has processing capability. The ATPG may have a routine that
simply retrieves the input count for the AND gate and then loops on input values in
order to compute the output. When justifying a 0 on the output, it selects one of the
inputs and assigns a 0 to the gate driving that input. When propagating through an
input, the ATPG knows that it must justify 1s on all the other inputs.

An alternate approach is to employ a truth table, from which PDCFs and other
information can be compiled and retrieved as needed (see Section 4.3). An advantage
of this is that new primitives can be easily supported simply by adding the appropri-
ate truth table whenever it is advantageous to do so. For example, if a circuit contains
many 2-to-1 multiplexers, it may be advantageous to represent the multiplexer as a
single primitive, rather than as several logic gates. A standard cell library may have
an ATPG model for the multiplexer. When backtracing the 2-to-1 multiplexer using
the truth table, the ATPG tries to find an entry in the table that is compatible with the
existing state of the circuit. There is no explicit awareness that the multiplexer is
making a choice, by way of its control input, from one of two inputs D0 or D1.

12.6.3 The Library of Parameterized Modules

For RTL functions, not only are data structures more complex, but processing is also
more complex. The types of functions is seemingly endless. How is it possible to
create something analogous to a gate-level ATPG? One way to control the scope of
the problem is to require that a behavioral ATPG restrict itself to synthesizable cir-
cuits. Another way to reduce the scope of the problem, when parsing an RTL circuit,
is to identify basic functions and map these into canonical forms. Then the intercon-
nection of these elements is accomplished through pointers, just as is done at the
gate level. A logical question to ask is, “How many basic functions are there?” The
Electronic Design Interchange Format (EDIF) webpage13 contains a Library of
Parameterized Functions (LPM), which lists 25 basic functions:

CONST INV AND OR XOR

LATCH FF SHIFTREG RAM_DQ RAM_IO

ROM DECODE MUX CLSHIFT COMPARE

ADD_SUB MULTIPLER COUNTER ABS BUSTRI

FSM TTABLE INPAD OUTPAD BIPAD

590 BEHAVIORAL TEST AND VERIFICATION

Some of these are obvious, others are not so obvious. The CONST model returns a
constant value. CLSHIFT is a combinatorial shifter. RAM_IO has a bidirectional
data port, while RAM_DQ has an input data port and an output data port. TTABLE
is a truth table and FSM is a finite-state machine.

Each of these entries is characterized by a number of parameters. The following
are some of the properties that characterize COUNTER:

Counter width

Direction (up, down, or dynamic)

Enable (clock or count)

Load style (synchronous or asynchronous)

Load data (variable or constant)

Set or clear (synchronous or asynchronous)

If dynamic count is specified, then the direction of count, up or down, is under con-
trol of an input pin. There are other properties that need to be considered. For exam-
ple, the width of the counter may be eight bits, but the maximum count of the
counter may be less than 2width. If a data structure exists for COUNTER that sup-
ports all of the LPM properties, then a counter that appears in an RTL description
can be represented by that data structure. If a particular property does not appear in
the RTL description, then that field in the data structure is either left blank or set to a
default value. A particular counter in a circuit may have a load capability but may
not have a set or clear. In such a case the counter can be loaded with an all-0s or all-
1s value to implement the set or clear operation.

Some of the entries, including the truth table, the finite-state machine, and the
RAM and ROM modules do not have a standard size. A RAM may be a small bank
of registers, or it could be a large cache memory. So, in addition to holding parame-
ters that characterize functionality of these devices, the data structure will need to
have variably sized data fields that hold the actual data. Memory for a truth table and
transition tables for an FSM can be allocated while the circuit model is being con-
structed, but memory for the RAM and ROM may have to be allocated dynamically.

Recognizing the presence of an LPM function in an RTL circuit description is
accomplished by recognizing keywords and commonly occurring expressions. In
Verilog the posedge and negedge keywords identify flip-flops. A case statement
could represent a multiplexer, or it could represent a state machine (cf. Figure 9.30).
The presence of posedge or negedge helps to distinguish between the multiplexer
and state machine. A construct such as a counter is detected by observing the
counter being incremented or decremented by a constant value. The b16ctr model, a
16-bit counter (see also Section 7.8.2), illustrates the increment operation.

module b16ctr(ctrout,din,clk,loadall,incrcntr,
decrcntr,rst);

parameter width = 32;
output [width-1:0] ctrout;

THE BEHAVIORAL ATPG 591

input [width-1:0] din;
input clk, rst, loadall, incrcntr, decrcntr;
reg [width-1:0] ctrout;
wire load = loadall & rst;
always @(posedge clk) begin
 if(!load)
 ctrout <= din;
 else if(incrcntr | decrcntr)
 ctrout <= (decrcntr) ? ctrout - 1 : ctrout + 1;
end
endmodule

The data width is set to 32, but it can be overridden by the invoking module, so
this model could represent a counter of any size. This example always increments or
decrements by 1. The increment value could also be a parameter or variable. For
example, if this were a program counter, the increment value might be 1, 2, or 4,
depending on whether it is incrementing by one byte, a 16-bit word, or a double
word. Also it must be noted that a set or reset input may be active low or active high.
The clock also may be positive- or negative-edge triggered. These distinctions must
be noted and recorded as part of the characterization of the counter.

An if ... else construct indicates the presence of a multiplexer. The following Ver-
ilog expression describes a 2:1 multiplexer:

wire outx = (sel == 1) ? A : B;

If the multiplexer has more than two choices, it might be expressed by means of a
case statement. A decoder can also use a case statement. A typical decoder expres-
sion may appear as follows:

case ({I1,I0})
2′b11: Y[3:0] = 4′b1000;
2′b10: Y[3:0] = 4′b0100;
2′b01: Y[3:0] = 4′b0010;
2′b00: Y[3:0] = 4′b0001;

endcase;

When a behavioral ATPG parses an RTL model and associates RTL constructs
with logic functions, the actions are similar to those performed during logic synthe-
sis. The major difference lies in what must be done after the RTL description has
been parsed. Whereas synthesis software is simply concerned with mapping an RTL
description into a gate-level equivalent, using a standard cell library or some similar
such target representation, and performing some minimizations along the way,
BATG must understand the behavior of the RTL constructs that it encounters. It

592 BEHAVIORAL TEST AND VERIFICATION

must calculate input assignments and apply them to a network of RTL functions in
order to coerce behaviors capable of exposing manufacturing defects or, alterna-
tively, traverse the circuit in order to assist a designer in exercising and confirming
the correctness of its behavior.

A starting point for BATG, when manipulating a circuit description, is to assign a
set of values to a function, equivalent to the gate-level PDCF. For an AND gate, an
input n-tuple is assigned such that a stuck-at fault on a single input causes the output
of that AND gate to be functionally dependent on the presence or absence of the
fault. An equivalent assignment at the RTL level—we shall refer to it as the primi-
tive function test pattern (PFTP)—might be determined by studying the effects of
stuck-at faults on the gate-level equivalent of the RTL function. This would lead to
the development of a PFTP capable of detecting the fault. (See Section 7.8 for a dis-
cussion of behavioral fault modeling.) An alternative is to determine PFTPs behav-
iorally. For example, when loading a register, the PFTP could contain alternating 1s
and 0s capable of detecting both stuck-at faults on inputs and shorts between adja-
cent inputs to the register. PFTPs could be designed to detect pattern sensitivity
within a device. Error modeling (Section 12.4.2) suggests some PFTPs that can be
useful for both fault detection and design verification.

A major difference between the PDCF and the PFTP is the fact that the PFTP
could be a sequence of several vectors. Once the test has been defined, it must be
justified, just as the assignment for a gate-level construct must be justified. This
involves tracing back through connectivity to find elements driving the function.
Propagation may or may not be necessary, depending on whether the user is con-
cerned with performing design verification or test vector generation.

Data representation often shapes the response to an event or situation. For a gate-
level ATPG the elements are basically simple logic devices, and except for the
latches and flip-flops, there is usually no distinction between the inputs. Testability
analysis tools, such as SCOAP, can help to differentiate between the inputs by iden-
tifying those that are easiest to control or observe, but otherwise the inputs have the
same functionality and the data structures used to represent them can be rather ele-
mentary.

Data structures for behavioral level ATPG must support the LPM or similar such
functions. If LPM functions are chosen as the prototypes, there will be 25 distinct
data structures for the 25 functions. The data structures must contain the I/O connec-
tions and parametric information for the LPM, but there must also be entries for the
PFTPs, there must be propagation knowledge similar to D-cubes, and there must be
justification values. However, each of these will be much more complex. For exam-
ple, if the value n is required from a counter, there will usually be many ways to
obtain that value. It may be loadable, or it may be necessary to reset the counter and
count up to n, or it may be possible to count up (or down) from the value currently
present in the counter.

Whereas the gate-level ATPG has rather simple processing capability for the
primitives that it recognizes, BATG subsumes these ATPG capabilities, but requires
more complex processing capability as well. Some functions are purely combina-
tional, while others are sequential. Sequential circuits may be quite elementary, such

THE BEHAVIORAL ATPG 593

as n-wide registers with parallel load capability. Others, including counters and state
machines, represent behaviors that extend over a potentially infinite number of clock
periods. Here, again, there is a wide range in degree of complexity. A counter can
often be characterized by a simple expression, whereas in a state machine each state
may have several alternatives for a next-state transition, requiring a considerably
more complex case statement to represent its behavior.

State machine behavior is further compounded by the fact that there may be mul-
tiple interlocked state machines. Behavior of a state machine may be subordinated to
the behavior of another state machine, at least in some of its states, or it may be sub-
ordinated to a counter, such that the state machine remains in state Si until the
counter reached some designated value.

12.6.4 Some Basic Behavioral Processing Algorithms

Interest in functional or behavioral level modeling for automatic test pattern genera-
tion reaches back more than two decades.14 Functional modeling techniques for test
pattern generation or fault propagation, while analogous to gate-level methods, must
of necessity be more flexible. An algorithm for an RTL circuit can be partitioned so
as to be expressed in terms of its data inputs and its control inputs, using Figure 12.4
as a paradigm. The control inputs select the input port(s), the operation to be per-
formed, and possibly a destination.

To illustrate this, assume that we are to develop processing routines for an ALU.
It may have several operations, including fixed-point addition and subtraction, AND,
OR, invert, complement, all 0s, and all 1s. In addition, it may be able to pass an
argument straight through from an input port to the output port without being
altered. Each of these operations requires a specific setting on the control lines. Dur-
ing justification, if an all-0s or all-1s vector is required on the output, the appropriate
op-code is established on the control lines and the input ports are ignored. If a spe-
cific value is required on an output port and if the control lines can be set to pass a
value from an input port directly to the output, then that setting is used for justifica-
tion. If a pass-through capability exists for two input ports, then a decision may have
to be made as to which port should be chosen. If a straight pass-through does not
exist, then a logic operation can be selected. The desired value can be placed on one
port while the all-0s (all-1s) vector is placed on the other port, and an OR (AND)
operation is selected.

The entire process just described can be structured as a sequence of IF...THEN
statements. The possibility exists that one or more operations available in a function
may be blocked by virtue of the fact that the circuit, as designed, does not imple-
ment the operation. The all-0s operation may exist in the ALU but the op-code is not
implemented. If the BATG discovers that the operation is unavailable, it is marked
as BLOCKED, so no attempt is made to use it again for justification or propagation
operations. Note that this is not the same as a conflict. A BLOCKED operation
occurs if the particular operation exists in the function but is not used in the design.
A conflict occurs when, during backtracing, different paths require different values
from the same source.

594 BEHAVIORAL TEST AND VERIFICATION

Another significant difference between gate-level and functional primitives lies in
the fact that the propagation and justification rules for sequential devices can be, and
usually will be, sequences of operations rather than single operations. As a rather
simple example, the test for an edge-triggered flip-flop may be expressed as a
sequence in which a 1 on the Data line is clocked in, and then the Clear line is exer-
cised to confirm that it will, indeed, reset the flip-flop output to 0 (see Section 5.3.6
for a discussion of SPS, a sequential D-algorithm).

A more complex example of sequential devices is the serial/parallel shift register
or the counter. Processing is complicated by the presence of a Hold state, during
which the counter may be required to be inactive. The range of functional operations
can be described symbolically as

Any particular operation that must be performed can be expressed in terms of these
operators.

Example A 1 can be justified on the ith output of a counter with the sequence
CH*{UH*}2i. The notation indicates that a 1 is obtained by performing a clear, fol-
lowed by zero or more hold operations (the asterisk denotes an arbitrary number of
consecutive operations of the type specified by the operator to its immediate left).
Then the entire sequence in braces, which is a count up followed by zero or more hold
operations, is repeated the number of times indicated by the number following the
right brace, in this case 2i times. ��

The abstract operations must relate to real counters, either those available from
semiconductor manufacturers or those designed by the user. The operations corre-
spond to I/O pins that perform the operation. It is also necessary to relate operations
to such things as rising or falling clock edge, depending on which edge enables the
activity.

Rules can also be defined for propagation and implication. Again, the rules are
expressed functionally. The signal values are analogous to D-cubes in that they
specify, for a D or D on an input, exactly what signal(s) must appear on other inputs
to make the output sensitive to the D or D. For a shift register that has a clear line K
and control lines S1 and S0 which may select hold, parallel load, shift left, and shift
right, Table 12.1 expresses some of the propagation rules. In this table, y(i) repre-
sents the present value in the flip-flop at position i and Y(i) represents the new value

L left shift

R right shift

P parallel load

H hold (do nothing)

U count up

D count down

C clear

THE BEHAVIORAL ATPG 595

after clocking the register. For entry u/v in the composite column, u denotes the
action taken by the fault-free circuit and v denotes the action taken by the faulted cir-
cuit. The first line defines the conditions for propagating a D on the Clear line to out-
put i. It requires first clocking a 1 into register flip-flop y(i). The faulty circuit will
perform a hold operation. Propagating a D through control line S1 to output y(i)
requires a 1 in register bit position y(i − 1) and a 0 in position y(i). Table 12.1 is not
a complete list. For example, propagation through a control line could also be
accomplished with a 0 in y(i − 1) and a 1 in y(i).

Implication tables can also be expressed functionally. They can be created via
composition; that is, if a D (D) occurs on one or more lines, then the results can be
computed individually by first setting D = 0 (D = 1) and performing the computa-
tion, then setting D = 1 (D = 0) and again performing the computation. After com-
puting each case individually, set the output or internal state variable to 0, 1, or x if it
has value 0, 1, or x for both good circuit and faulty circuit. If it assumes value 0 (1)
for good circuit and 1 (0) for faulty circuit, set it to D (D). If it assumes value x for
good circuit, set it to x. If it assumes x only for the faulty circuit, then its value
depends on whether the user wants to consider possible detects or only absolute
detects.

The following paragraphs describe a functional test pattern generation algebra
developed for use in conjunction with HDLs.15 First, define U = {0, 1, D, D}. Then, if
Si is a subset of U, denotes the fact that x ∈ Si, and the following equations hold:

(12.1)

(12.2)

(12.3)

(12.4)

For the AND operation, the following equations define all of the combinations on
the inputs a and b which will produce the indicated value on the output c:

TABLE 12.1 Propagation Rules

Composite K S1 S0 y(i − 1) y(i) y(i + 1) A Y(i)

C/H D — — — 1 — — D
L/H 0 D 0 1 0 — — D
P/H 0 0 D — 1 — 0 D
L/L 0 1 0 D — — — D
H/H 0 0 0 — D — — D
R/R 0 1 1 — — D — D
P/P 0 0 1 — — — D D

x
Si

xsi xs j⋅ xsi s j∩=

xsi xs j+ xsi s j∪=

xsi xsi y⋅+ xsi y+=

xsi xsi y⋅+ xsi=

596 BEHAVIORAL TEST AND VERIFICATION

The Invert function is obtained by complementing the superscript; that is, if
b = a, then bi = ai, where Si is obtained by complementing each of the individual ele-
ments contained in Si.

(12.5)

(12.6)

(12.7)

(12.8)

The equations for the OR gate can be computed from the equations for the AND
gate and the inverter. Equation (12.5) states that if c is an AND gate with inputs a
and b, then a 0 is obtained on the output by setting either a or b to 0 or by putting D
and D on the inputs. Note from Eq. (12.8) that a D on both inputs does not put a 0 on
the output but, rather, a D.

These basic equations for the logic gates can be used, together with the four
rules, to compute D cubes for more complex functions.

Example JK flip-flop behavior can be represented by

Q = Jq + Kq

where q is present state and Q is next state. D-cubes are computed using

QD = (Jq + Kq)D

= (Jq)0(Kq)D + (Jq)D(Kq)0 + (Jq)D(Kq)D

= J0K0qD + JDK0qD + KDq1 + J1KDqD + JDKDqD

+ J1K1qD + JDK1qD + JDqD + J1KDqD + JDKDqD

The result can be used to create a table of propagation and justification cubes for both
D and D values. ��

The basic operators can also be used to create tables for more complex functions.
The adder can be created one bit position at a time. The sum and carry tables are cre-
ated from the exclusive-OR and the AND, respectively. These are then used to build
up one complete stage of a full adder which is then used to build an n-stage adder.
The multiplexer can be expressed in equation form as

F = S ⋅ A + S ⋅ B ;

where S is the select line, A and B are inputs, and F is the output. Since it is now
expressed in terms of OR and AND gates, the cubes for the equation can be generated.

c0 ab()0 a0 b0 aDbD aDbD+ + += =

c1 ab()1 a1b1= =

cD ab()D aDb1 a1bD aDbD+ += =

cD ab()D aDb1 a1bD aDbD+ += =

THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS) 597

12.7 THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS)

SCIRTSS was a research system that evolved over a period of several years in the
1970s and 1980s at the University of Arizona. Its purpose was to investigate the use
of RTL constructs in behavioral ATPG. The RTL language used for this purpose was
AHPL (a hardware programming language). Several novel concepts resulting from
this research will be described here.

12.7.1 A State Traversal Problem

ATPG problems caused by sequential circuits were discussed in Chapter 5. The
additional time dimension introduced by asynchronous circuits, including such
things as pulse generators, is far beyond the comprehension of ATPG programs.
However, even when a circuit is completely synchronous, complexity issues are still
capable of thwarting the ATPG. Consider the state machine implemented in
Figure 8.44. A fault on input 3 of gate 23 requires sensitization values 1, 0, 0 on flip-
flops Q2, Q1, Q0. If the ATPG performs a reset on the circuit, it would appear that the
problem is rather easily solved by driving Q2 to a 1, seemingly an easy solution.

However, from the state transition graph for that circuit, Figure 12.5, it can be
seen that it is necessary to pass through state S3 to get to state S4. But state S3 corre-
sponds to Q2, Q1, Q0 = 0, 1, 1. In other words, after performing a reset, the ATPG
must be clever enough to get Q2, Q1, Q0 = 1, 0, 0 during backtrace by first driving
the flip-flops to Q2, Q1, Q0 = 0, 1, 1. But it is not in the nature of a gate-level ATPG
to try to put a 1 on the output of a flip-flop by driving it to the 0 state. The gate-
level ATPG can deal with this situation only if it is given knowledge about the
nature of the function, or if it thrashes about randomly and fortuitously stumbles
upon a solution.

The above-mentioned problem occurs because the typical gate-level ATPG does
not take a global view of a circuit. It sees the logic gates but not the state machine.
Rules exist for the primitives (PDCFs, propagation D-cubes, etc.), and the ATPG
processes these primitives in isolation. There are relationships between flip-flops in
the circuit that are not obvious at the gate level. However, from a graph it is often a
trivial exercise to determine how to get from the reset state, S0, to the objective state

Figure 12.5 State transistion graph.

Reset

1/1

0/0
1/1 1/0

1/1

0/00/0

1/1

0/1

0/1

0/0

1/0

1/
0

0/
0

1/0

S0

S1 S2

S7

S4

S6

S3

S5

598 BEHAVIORAL TEST AND VERIFICATION

S4. This observation is the basis for SCIRTSS (Sequential CIRcuit Test Search Sys-
tem).16,17 SCIRTSS uses two models of a circuit: a detailed gate-level circuit
description and an HDL description expressed in AHPL (a hardware programming
language).

SCIRTSS employs a D-algorithm to find a sensitization state for a selected fault.
The sensitization state is a set of binary values that, when assigned to flip-flops,
latches, and primary inputs, causes a sensitized path to extend from the fault source
to either a primary output or to a stored state device, which may be a latch or flip-
flop. When the fault propagates to a stored state device, it is said to be trapped in
that element.

The D-algorithm is strictly combinational; it does not attempt to create multiple
time images in order to propagate faults through sequential elements. Once the sen-
sitization state has been computed, the D-algorithm is done. The operation up to this
point is essentially the same as that performed by a scan-based test.

In the next step, SCIRTSS diverges from the scan approach. Scan is essentially
done at this point, it simply remains to scan in the sensitization state, apply a func-
tional clock, and then shift the captured data to the scan-out pin (cf. Chapter 8).
SCIRTSS, however, attempts to drive the circuit from its present state to the state
that sensitizes the fault. This is accomplished through the use of the RTL descrip-
tion. To do this, SCIRTSS enters the sensitization search phase where it employs an
AHPL description of the circuit. The AHPL description may specify a transition
directly to a single next state or it may identify several reachable next states, as well
as the conditions that determine which of the next states is selected. The sensitiza-
tion search is essentially a tree search in which SCIRTSS, starting at the present
state, or possibly the reset state, tries to find a sequence of inputs that drive the cir-
cuit to the sensitization state.

If the sensitization search is successful, then a sequence of inputs has been found
which, starting at the present state, either makes the fault visible at an output or
causes the fault to become trapped in a latch or flip-flop. If the fault becomes
trapped, then SCIRTSS enters the propagation search. In this phase, SCIRTSS
attempts to drive the circuit through a sequence of states that cause the fault to
become visible at an output. This phase, like the sensitization phase, tries to control
the behavior of the circuit by using the AHPL description to compute transitions.

When a complete test has been achieved, including both sensitization and propa-
gation sequences, SCIRTSS again resorts to the gate-level description. This time, the
gate-level description is used to perform fault simulation. Fault simulation has three
objectives:

� It must confirm that the fault was detected.

� It must identify any other faults that were detected.

� It must identify any faults that became trapped by the applied sequence.

If there are trapped faults, then one of them is selected for processing and SCIRTSS
again goes into propagation search. If there are no trapped faults, then SCIRTSS
goes back to sensitization search. The entire process is illustrated in Figure 12.6.

THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS) 599

Figure 12.6 SCIRTSS flowchart.

The tree search conducted by SCIRTSS is subject to combinatorial explosion.
With m inputs, a search depth of k states could produce a tree with as many as 2mk

sequences, resulting in a need for massive amounts of memory and CPU time. One
way to reduce the search space is to view the control section and data path of a cir-
cuit as distinct entities (cf. Figure 3.1). When data are altered in registers that belong
to the data path, these events are viewed strictly as data transfers, not as state
changes. Note that an allowance must be made for ALU operations that affect status
registers which, in turn, affect state transitions.

Since this is essentially a search problem, and the field of artificial intelli-
gence (AI) has been refining state-space search algorithms for several decades,
it made sense to turn to the field of AI and borrow some of the techniques
developed there. Two basic tenets of AI that were applied to SCIRTSS were as
follows:

1. A limited n-level search may have a greater payback than an exhaustive n − 1
level search.

2. Self-modifying methods, based on previous results, can improve the probabil-
ity of pursuing the correct path in a search.

As a part of this strategy, when searching for sequences of state changes, heuristics
were employed. A heuristic is anything (in this case a number) that guides a search,
or otherwise helps to discover a solution. However, the heuristic is not capable of
proof. The heuristics assign a value to each circuit node during a search according to
the following formula:

Hn = Gn + w ⋅ Fn

Fault
trapped

no

yes

yes

Faultlist
empty

yes

no

Select
fault

Apply
D-algorithm

Select
trapped fault

New
sensitization state

required

Sensitization
search

no

Propagation
search

Fault
simulation

Initialize
circuit

Exit

600 BEHAVIORAL TEST AND VERIFICATION

In this formula Gn is the distance from the starting node to node n, Fn is a function of
any information available about node n as defined by the user, and w is a constant
that determines the extent to which the search is to be directed by Fn. The object is
to find the easiest or shortest path to an objective state.

Example The state transition graph in Figure 12.5 is used to illustrate a sensitiza-
tion strategy. The gate-level model for this circuit is given in Figure 8.44. If you did
Problem 8.10(b), you may find it interesting to compare your Verilog model to the
graph in Figure 12.5. A stuck-at-1 on the input to gate 23 driven by the inverter
labeled gate 1 is chosen as the target fault. The combinational D-algorithm deter-
mines that a path can be sensitized from the fault to the output if the circuit is in state
Q2, Q1, Q0 = (1, 0, 0). Therefore, a sequence of inputs is needed that cause the circuit
to transition to state S4. An assumption is made that the current state of the circuit is
indeterminate.

From the Verilog description it can be determined that it is only possible to reach
state S4 from state S3. It is possible to reach state S3 from four states, as indicated from
the search tree in Figure 12.7. Three of these states, S1, S2, and S5, can themselves be
reached from two states, while state S6 can only be reached from S5. State S1 can be
reached from S0, which can be reached by applying a Reset to the circuit.

A complete sequence for sensitizing the selected fault consists of applying a 0 to
the Reset, releasing it, then applying the sequence IN = {X, 0, 1}. Although the first
value is listed as a don’t care, it must nevertheless be a 0 or 1. As each of these is
applied, the circuit must be clocked. Then, after reaching state S4, the stuck-at input
must have value 0, requiring that IN = 1.

Finally, the entire sequence is simulated at the gate level to confirm its effective-
ness and to determine whether other faults are detected. Note that when creating a
tree, multiple occurrences of states appear. For instance, S1 is a leaf node. It may be
productive to pursue the path {S0, S1, S2, S3, S4} for the reason that within the context
of a larger circuit, this path may be easier to set up. Another justification for the longer
path may be to exercise an arc that had not previously been exercised. In such a case,
weighting schemes may be counterproductive. Also note that it can be seen from the
tree that sometimes it is possible to reach the objective state with a shorter sequence,
such as if the circuit is currently in state S5. ��

Figure 12.7 Sensitization search tree.

S4

S3

S1
S2

S1

1

0

0

S3 S0 S4

S5

S4S2

1 0 1 1 1

Reset

x

0

0 0 0

S6

S5

THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS) 601

At the conclusion of fault simulation, one or more faults may be trapped in the
flip-flops. If the output of gate 16 is S-A-1, it will not be detected when the reset is
applied, nor will the first two transitions to S1 and S3 distinguish between the good
circuit and the faulty circuit. However, in the transition to S4, the faulted circuit goes
to S5; hence a D is trapped in Q0. From the state graph, Figure 12.5, it is seen that
IN = 0 causes an output of 1 from the good circuit and an output of 0 from the
faulted circuit. Furthermore, it was not even necessary to clock the circuit.

If no faults are trapped when in state S4, and if the output of gate 12 S-A-0 is
selected from the fault list, the D-algorithm would start by assigning a PDCF of
(1, 1) to the inputs of gate 12. The fault would propagate to Q0 and become
trapped if IN = 0 and Q2, Q1, Q0 = 0, 0, 1, and the circuit is clocked. From the
graph, it is seen that there are a number of ways that the sensitization search can
go from S4 to S1. The signal IN can be set to 0 or 1, but it is also possible to reset
the circuit and go immediately to state S0; hence there are three possible successor
states to S4. Furthermore, the transition from S0 to S1 is trivial to compute.

However, it may be preferable to force the circuit through states S5 → S6 → S7
from state S4 in order to exercise additional logic and perhaps detect faults that
might otherwise require individual processing. This can be done with the heuristic.
The w term and the Fn term in the heuristic can be chosen to force SCIRTSS to go
through those additional states rather than transition directly to S1. It may also be
desirable to modify the heuristics after the process has run for some time in order to
force state transitions through other logic. This modification on-the-fly requires that
intermediate results be available for inspection.

The trapped fault in Q0 can be processed by the D-algorithm or it can be pro-
cessed directly from the graph. The D-algorithm can propagate the D in Q0 to OUT
(through gate 22) by setting IN = 0. The value IN = 0 could also have been deter-
mined from the graph. The fault-free circuit is in state S1 and the faulted circuit is in
state S0. Therefore, it is easily determined from the graph that IN = 0 causes differ-
ent outputs from the two states.

It was mentioned that SCIRTSS employs two models, a gate-level model and an
AHPL model. The AHPL model permits circuit exploration at a level of abstraction
that avoids many of the pitfalls of gate-level ATPG. Meanwhile, the gate-level model
can be quite flexible, including timing and transistor level primitives in order to
uncover serious timing problems with vectors developed by SCIRTSS. The only
restrictions on the gate-level model are those imposed by the gate-level ATPG used
to sensitize faults.

Some observations concerning SCIRTSS:

1. It must be possible to correlate abstract states Si with values on the flip-flops;
for example, if state S4 corresponds to the assignment Q2, Q1, Q0 = (1, 0, 0),
then SCIRTSS must know that.

2. The heuristics can be updated to reflect successful state transition sequences.
In the example given, a transition from S4 to S6 or S7 is performed more
quickly if the first transition is directly to state S5 rather than to S2.

602 BEHAVIORAL TEST AND VERIFICATION

3. It is possible to give up on a fault and succeed later when sensitization search
starts from another state.

4. It is not necessary to have a completely specified objective state. If the D-
algorithm leaves one or more flip-flops in the state machine unassigned, then
the objective may be a set of states determined by setting the Xs to 1 and 0. A
sensitization search is successful if any state in the set is reached.

5. During gate-level simulation it is necessary to keep track of fault effects of all
faults of interest since a fault may, over time, affect both data registers and
one or more control flip-flops. This could cause the fault to mask its own
symptoms.

6. Arguments required in the data path to cause a propagation may originate in
other registers; therefore it may be necessary to derive sensitization sequences
in which an argument is first loaded from a data port into a register or accu-
mulator and then used to propagate the fault forward to an output or flip-flop.

7. SCIRTSS, as described, frequently employed user-suggested trial vectors at
the data ports. These included such typical vectors as the all 1s, the all 0s, the
sliding diagonal (cf. Section 10.3), and so on. In addition to stuck-at faults,
these vectors also detected shorts between adjacent pins, as well as problems
caused by excessive numbers of pins switching simultaneously.

12.7.2 The Petri Net

State transition graphs are somewhat limited in their ability to model activities that
take place in digital circuits. In many circuits it is necessary for two or more pro-
cesses to occur before a subsequent task that is dependent on the results of these ear-
lier tasks can proceed. Each of these preceding tasks may execute simultaneously, or
they may execute serially. The order is usually immaterial. In a typical state machine
configuration registers, status registers and mode control registers may all need to be
configured to some particular value before another task can proceed. Some of these
are loaded by software, while some of these registers are loaded by hardware as a
result of other functions executing in the hardware.

Some hardware design languages provide constructs to accommodate these asyn-
chronous or independent activities. Typical among these are such constructs as FORK,
which causes several events to run concurrently, and JOIN, which specifies that a task
cannot proceed until those events spawned by the FORK have all completed.

The Petri net is a useful mechanism for describing the necessary convergence of
events that must occur in order to trigger a subsequent event. The Petri net is a bipar-
tite, directed graph N = {T, P, A} where18

T = {t1, t2, ..., tn} is a set of transitions.

P = {p1, p2, ..., pm} is a set of places.

(T ∪ P form the nodes of N.)

A ⊆ {T × P} ∪ {P × T} is a set of directed arcs.

THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS) 603

A marking of a Petri net is a mapping:

M : P → I

where I = {0,1,2, ...}. M assigns tokens to places in the Petri net. M can also be
thought of as a vector whose ith component represents the number of tokens
assigned to place pi. A Petri net in which every transition has exactly one input place
and one output place is a state machine.

A place may have a token (sometimes called a marker) or it may be empty. If all
of the input places to a transition have tokens, then the transition is enabled, and this
permits the transition to fire. In the process of firing, the transition moves one token
from each input place and puts one token into each output place.

Figure 12.8 illustrates a Petri net used to represent flow of control in a program.19

The transitions, represented by bars, can only be connected to places, represented by
circles, and the places can only be connected to transitions. The places from which
arcs emanate are called input places of a transition, and the places on which an arc
terminates are called output places of a transition.

Figure 12.8 Program described by Petri net.

BEGIN

n = 0;

m = 1;

i = 4;

FORK

t5: n = n + 1 t6: m = m × i

JOIN

i = i + 1

if i > 1 goto p4

END

p1

p2

p3

p5 p6

p7 p8

p9

p10

p4

p11

t1

t2

t3

t4

t7

t8

t9 t10

t6
t5

604 BEHAVIORAL TEST AND VERIFICATION

The place designated p1 has a token. Since all of the input places to t1 have mark-
ers, it is enabled and fires. Upon firing, the token is transferred to p2. When transi-
tion t2 fires, a token is placed in p3. At transition t4 a token is deposited in both p5 and
p6. Transition t7 will not fire until both p7 and p8 have tokens. An important point to
note is that place p10 has a single token, and place p10 is connected, via input arcs, to
transitions t9 and t10. Since there is only a single token in p10, both t9 and t10 are
enabled but only one of them can fire. In this case, t9 and t10 are said to be in conflict.
A conflict occurs when two transitions share a place and both become enabled, but
there is a single token. With a single token in p10, only one of t9 and t10 will fire, and
the first one to fire will disable the other. It is possible for a place to have more than
one token simultaneously, in which case it is said to be safe. If at any time during
operation of the net, no transition is ruled out as a transition that may fire some time
in the future, the net is said to be live.

A Petri net can represent a hardware implementation as well as a computer pro-
gram. In fact, although our interest is in using Petri nets to represent hardware
behavior, they have been used to represent many different processes, including
chemical processes where input places represent reacting chemicals, transitions rep-
resent reactions, output places represent the results of a reaction, and tokens repre-
sent the number of molecules of a given type.

The Petri net has been used in conjunction with SCIRTSS.20 It was used to
reduce the search cost required to reach a goal state and also to generate input
vectors used to expand the state space nodes. Because even synchronous
designs frequently require that several events be properly set up before a subse-
quent operation can occur, the Petri net can sometimes provide more insight
than a state machine representation when trying to describe complex circuit
behavior.

The following circuit will be used to illustrate the use of the Petri net, as well as
to illustrate some tree search techniques used to find a solution for a given set of
goals.21 The original circuit was expressed in AHPL (a hardware programming lan-
guage),22 This example has been translated to Verilog.

module sp(reset, clk, inp, mor);
input reset, clk;
input [3:0] inp;
output [3:0] mor;
reg [3:0] mor, mdr, ac;
reg [2:0] ir, state;
always @ (posedge clk or negedge reset)
 if (!reset)
 state = 3′b000;
 else
 case (state)
 3′b000: state = 3′b001;
 3′b001: begin

THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS) 605

 ir = inp[2:0];
 if (inp[3] == 0) state = 3′b010;
 end
 3′b010: if (ir[0] == 1) state = 3′b011; // -> state 3
 else state = 3′b111; // -> state 7
 3′b011: case (ir[2:1])
 2′b00: state = 3′b100;
 2′b01: state = 3′b101;
 2′b10: state = 3′b110;
 2′b11: state = 3′b001;
 endcase
 3′b100: begin
 mdr = inp;mor = ac;
 state = 3′b001;
 end
 3′b101: begin
 ac = inp; mor = 4′bzzzz;
 state = 3′b001;
 end
 3′b110: begin
 ac = ac & mdr; mor = ac;
 state = 3′b001;
 end
 3′b111: begin
 ac = ac >> 1; mor = ac;
 state = 3′b001;
 end
 endcase
endmodule

In this example the case statement represents a state machine. In state 3 (3′b011)
there is another case statement. This case statement represents a multiplexer, the
next state assignment depends on the values of bits 1 and 2 of the instruction regis-
ter. A synthesis program distinguishes between the two by noting that the outer case
statement is controlled by a clock edge.

We will not present a structural model of this circuit, but we can, nevertheless,
postulate the existence of a fault that becomes sensitized—that is, whose PDCF (cf.
Section 4.3.2) is satisfied—when the circuit is in state {ir, mdr, ac} = {3′b101,
4′b11XX, 4′b11XX} or in state {ir,mdr,ac} = {3′bXX0, 4′bXXXX, 3′b1XX}. The
goal tree for the initial conditions corresponding to these sensitization requirements
is shown in Figure 12.9.

The goal labeled P0 is the output place of two transitions, t1 and t2, which corres-
pond to the two sensitization states for the fault. This represents an OR condition: If

606 BEHAVIORAL TEST AND VERIFICATION

Figure 12.9 Initial goals for search.

either transition t1 or t2 fires, then a token will be deposited in P0 and the goal is sat-
isfied. Note, however, that by virtue of the rules for a Petri net, t1 cannot fire unless
there are tokens in P1 AND P2 AND P3, while t2 cannot fire unless there are tokens
in P4 AND P5. The actions represented by places P1 through P5 are listed underneath
them in the figure.

The diagram in Figure 12.10, at this point, represents the initial sensitization con-
ditions for the circuit. What we hope to achieve is the creation of an input sequence
that will drive the circuit into one or the other of the two transitions depicted in
Figure 12.9. Consider place P1. What must be done to get bits 3 and 2 of register ac
set to 1? A search of the Verilog description reveals that ac is loaded from the input
port when the circuit is in state 5. So, if state = 5 and inp = 4′b11XX, then in the next
clock period ac = 4′b11XX. But the requirements can also be satisfied when in state
6. Observe that in state 6 ac receives the AND of ac and mdr. So, if ac = 4′b11XX
AND if mdr = 4′b11XX, on the next clock ac will receive (actually, retain) the value
4′b11XX.

A complete second stage of the Petri net is given in Figure 12.10. This is not a
complete tree; several more stages are required to reach leaf nodes for this graph. We
leave it as an exercise for the reader to identify the places and complete the graph.

Figure 12.10 Second level of Petri net goal tree.

t1 t2

Goal

P5P4P3P2P1

P0

AC:11XX MDR:11XX IR:101 IR:XX0 AC:01XX

t1
t2

Goal

P5P4

P3P2P1

P0

t4

P8P2P1

t3

P7P6

t5

P6P9

t6

P12P11

t7

P12P11

t9

P8

t8

P13P7

P14P5

THE TEST DESIGN EXPERT 607

The objective is to develop one or more paths that define a transition either from
the current state of the circuit or from a reset state and, by means of the Petri net,
identify a sequence of inputs that will drive the circuit to the Goal. In either case, the
traversal is directed by means of input stimuli. By virtue of having several paths
from leaf nodes to the Goal, several options exist. One option is to traverse the short-
est path from the leaf node to the Goal. Another option is to traverse a path that
includes branches that have not yet been traversed in order to exercise heretofore
unexercised logic.

It may be desirable to spread out the traversals, choosing different paths each
time, so that a manufacturing test program exercises all paths approximately the
same number of times, rather than exercise the same path repeatedly. However, rec-
ognizing that tester time can be quite expensive, the goal of a manufacturing test
program usually is to be as short and efficient as possible, so it may be desirable to
find the “least cost” path. From Figure 12.10 it can be seen that the searches can
grow out of control quickly, and the example circuit was rather small. The SCIRTSS
project spent much effort developing cost functions to help navigate through the
logic and prune the search trees in order to find shortest paths as well as to control
the growth of goal trees.

12.8 THE TEST DESIGN EXPERT

The Test Design Expert (TDX) was a commercial endeavor motivated by the SCIR-
TSS system, and it bore some resemblence to it. But TDX included strategies, tech-
niques, and refinements that took it beyond SCIRTSS, and some of the features that
it had in common with SCIRTSS were evolved and refined. Inputs to TDX included
a netlist and an RTL description. It also employed a map file to link storage elements
in the RTL with their instantiated counterparts in the netlist.

12.8.1 An Overview of TDX

Like SCIRTSS, TDX used search heuristics to explore RTL models, but as it
evolved it added additional software tools. The Supervisor was continuously select-
ing and applying tools to the task of generating vector sequences. TDX included a
gate-level ATPG called DEPOT (DEductive, Path-Oriented Trace), which imple-
mented both the D-Algorithm and the PODEM algorithm, and TDX could select
either of them under Supervisor control.

TDX included a testability analyzer that was a variant of SCOAP, and the C/O
numbers that it generated from the netlist were used by DEPOT to help find the
best path through combinational logic. The best path usually meant propagating a
fault to a destination storage element or primary output while making the smallest
possible number of justification assignments to storage elements. This was an
important consideration because as more logic assignments are made to flip-flops
while sensitizing a fault in a sequential circuit, the more difficult it becomes to jus-
tify the values on those flip-flops while trying to sensitize the fault or propagate the

608 BEHAVIORAL TEST AND VERIFICATION

fault effect through the RTL code. Behavioral C/O numbers were also computed
and used.

A full-timing, gate-level concurrent fault simulator was integrated with the
other components of TDX. It provided a detailed analysis of fault coverage for
the vectors generated by TDX. It also performed logic simulation to verify that
sequences generated by BATG had the intended effect and were not side-
tracked by races and hazards. Outputs from TDX included a test vector file, a
response file, and various reports, including fault coverage and testability
analysis information.

The key components of TDX are shown in Figure 12.11. Input files included a
netlist, an RTL description and a map file, which linked gate-level flip-flops and
latches with their RTL counterparts. The RTL description could be provided in
VHDL or Verilog. Regardless of which language was used to describe the circuit,
when parsed, it was translated into a behavioral intermediate form (BIF) that
expressed the RTL code as a collection of cause and effect rules. The netlist could
also be provided in either VHDL or Verilog. A faultlist compiler read the netlist and
produced a list of the traditional stuck-at faults. The search heuristics were a collec-
tion of strategies, algorithms, and heuristics that could be invoked as needed by the
TDX Supervisor to solve problems.

The Supervisor controlled the overall operation of TDX. The first step was to
read in the netlist and the BIF and compile a knowledge base. The knowledge base
differs from a data base in that it “is more explicit about the objects in its universe
and how information flows between them.”23 The Supervisor analyzes the RTL
description and breaks it down into groups that correspond to state machines,
counters, multiplexers, and other familiar structures. Some parts of a circuit are
described using long series of detailed RTL equations. Those parts of the design are
stored as equations.

Figure 12.11 The Test Design Expert (TDX).

TDX
supervisor

Structural
description

RTL
description

Optional
user inputs

Knowledge
base

Fault
simulator

Search
heuristics

Testability
analyzer

Combinational
ATPGs

Fault list
manager

Test
vectors

Fault
reports

THE TEST DESIGN EXPERT 609

When reading in the RTL description, much of the initial processing was similar
to that performed by a synthesis program; that is, RTL constructs are recognized and
mapped into appropriate data structures corresponding to the common hardware
functions. In one respect, however, TDX digressed from synthesis programs. The
synthesis program works just fine with gate-level modules intermingled with RTL.
In fact, a synthesis program might accept either a pure RTL, or a mixed RTL/gate
description and produce identical gate-level netlists from them. The synthesizable
subset handles low-level detail quite well, but may have trouble with higher levels
of abstraction. TDX, conversely, was quite adept at handling higher levels of
abstraction, but often stumbled with circuits that contained too much low-level
detail. Complex, handcrafted modules in the data path part of the RTL that obscured
functionality could sometimes prove difficult for TDX.

When the Supervisor invoked the fault list compiler to compile a fault list, it
would compile either a full fault list or a fault sample of a size chosen by the user.
The fault simulator was a full-timing, gate-level concurrent fault simulator that could
accurately fault simulate both synchronous and asynchronous circuits. It was tightly
integrated with the rest of the TDX system, so it could fault simulate a sequence of
arbitrary length, pass control back to the Supervisor which would then invoke the
ATPG, and then it could regain control from the Supervisor and resume fault simu-
lating from the point where it previously left off. Alternatively, it could operate
standalone on the same fault list that had been previously processed by TDX.

TDX could initialize a circuit or it could accept initialization stimuli from the
user. Often, particularly when the circuit required complex, timing-critical
sequences, the designer could accomplish the initialization more efficiently. Some-
times it was preferable to use design verification suites to get coverage up to a cer-
tain level. In such cases it was not necessary for TDX to generate vectors until the
productivity of the user’s vectors began to diminish.

When the user provided test vectors, these would be passed directly to the fault
simulator, which would determine the coverage for these vectors. The faults that were
detected by the test vector suite would be dropped by the fault list manager, so there
would be no effort to generate tests for those faults. There were several hooks included
in the fault simulator to permit it to communicate with the Supervisor. The Supervisor
could, at any point during the process of test generation, query the fault simulator and
determine which faults had been detected and which undetected faults had produced
error signals that caused one or more flip-flops to assume an incorrect value.

Some of the capabilities of TDX included:

Gate-level combinational ATPG (D-algorithm and PODEM)

Trapped fault propagation

Controllability/observability analysis (gate level and behavioral)

Creation/manipulation of goal trees

Constraint propagation

Functional walk

Learn mode

610 BEHAVIORAL TEST AND VERIFICATION

Like SCIRTSS, TDX could target undetected faults for sensitization or it could
identify trapped faults. If the Supervisor determined that there were trapped faults, it
could choose one for propagation. If several trapped faults exist, the Supervisor
could select one based on various criteria. The criteria were not hard and fast, they
could vary during a run. As a result, a fault trapped in a flip-flop might be selected at
one point during test generation, and the same fault trapped in the same flip-flop
might be rejected at some other time during a run.

For example, suppose a fault becomes trapped in a flip-flop. Suppose that flip-
flop becomes immediately observable at an output if a tri-state enable is set to 1, and
suppose the tri-state enable is easily controllable. It is possible that several undetec-
ted faults are trapped in that flip-flop. In that case, it is desirable to enable the tri-
state control and detect the faults. However, it is also possible that another flip-flop
has trapped faults, and those faults originate in a region of the design where control-
lability and observability are very difficult. The other flip-flop, even if it requires a
more complex sequence to flush out the faults, may be a more desirable objective.

The concept of targeting trapped faults was discussed in Section 7.9.2, when the
SOFTG system was discussed. There it was pointed out that the tendency to grab a
trapped fault must be tempered by the realization that a trapped fault can lead to a
dead end. This is illustrated in the circuit of Figure 12.12, a variable-length byte-
wide shift register. The shift length is programmed by loading a value in register RS
that determines which of the registers R1–R16 will be selected and clocked into desti-
nation register R17 on the next active clock edge.

Suppose a fault effect appears in register R3. It may be an opportune time to prop-
agate that fault forward and position it closer to an output. But if R3 is not currently
selected by the multiplexer, then it must be selected by loading the correct value into
RS through select bits S3-0. However, note what happens when the value at S3-0 is
clocked into RS. The contents of R3 are propagated to R4 and are replaced by the con-
tents of R2. A knowledgeable human would recognize and allow for that possibility
by loading RS with the bits required to choose R4.

The problem of dead ends in sequential logic can be quite serious. The problem
occurs regardless of whether the fault became trapped serendipitously while another
fault was the object of propagation, or the fault may be one that was sensitized by
DEPOT. In other words, the process of selecting and sensitizing a fault may succeed in
its effort to propagate a fault effect from the fault origin to a target flip-flop, but it may,
in the sensitization process, produce a trapped fault that cannot be further propagated.

Figure 12.12 Dead end for a trapped fault.

R0 R1 R2 R15 R16

RS
4

8

8
MUX

DI7-0

DO7-0
S3-0 S R17

8

• • •

THE TEST DESIGN EXPERT 611

Note that a strategy that might be employed by an experienced test engineer,
knowing that a fault is trapped in R3, would be to set the select bits S3-0 = (1,1,1,1)
and clock the circuit until the value in R3, including the fault effect, propagates
through all the registers to the output DO7-0. By using this lookahead strategy, the
targeted fault is propagated forward, but in the process other faults may also be
flushed out of the circuit. However, if a trapped fault reaches R16, it is at a dead end
unless RS has already been set to select R17.

Dead ends are a major problem for sequential test pattern generation. In the
example just given, the 16-stage shift register, the trapped fault remained alive, it
just didn’t go where it was expected to go. More often, the trapped fault gets blocked
in the combinational logic between the flip-flop in which it is trapped and the desti-
nation flip-flop. In the fault simulator, the fault is converged at the point where it
becomes blocked. In general, whenever a fault is being sensitized or propagated, an
effort must be made to sensitize and propagate simultaneously.

Consider the circuit in Figure 12.13. A fault is sensitized at the input of a NOR
gate. When a clock edge is applied, the D will be clocked into a flip-flop where it
will become trapped. However, another flip-flop receives a 1 when the clock is
applied. Unfortunately, that 1 becomes inverted and blocks the D from propagating
any further. In order to successfully propagate the fault effect in this circuit, it must
simultaneously be sensitized in the combinational logic and propagated through the
logic corresponding to the next time image. When that happens, requirements will
be imposed on the destination flip-flops (the bank of flip-flops on the right). These
requirements will then have to be justified simultaneous with the sensitization of the
stuck-at fault. Note that a 1 was assigned to one of the flip-flops in the left bank in
order to justify a 0 from the NOR gate. That assignment can be changed to a 0, and
the other input to the NOR gate can be assigned a 1.

An alternate solution, if the flip-flop that receives a D has a hold mode, is to force
that flip-flop into the hold state. But, that also requires looking ahead. In this case,
rather than look ahead into the next time frame, the state search must simultaneously

Figure 12.13 Encountering a dead end.

0

1

D

1

1

1

x

1 0

612 BEHAVIORAL TEST AND VERIFICATION

sensitize the fault and justify the hold mode for the target flip-flop. If the trapped
fault can be held in the target flip-flop for an indeterminate number of time frames,
then a propagation path can be set up while the target flip-flop retains the fault
effect. Eventually, the trapped fault propagates forward. Of course, if the destination
is not a primary output, the same considerations hold at the new destination; that is,
the fault could be at a dead end if care is not taken to hold it until a propagation path
is established.

When trapped faults are selected by the fault simulator and passed on to the
Supervisor, the corresponding RTL level storage elements in which they are trapped
are identified by means of a map file. The Supervisor then selects from among the
heuristics. The fault chosen for propagation may be trapped in a data path, or it may
be trapped in control logic. If it is trapped in a data path, then the object is to propa-
gate it forward toward an output. If the fault is trapped in control logic, then it can
usually only be observed indirectly by means of its effects on the data path elements.
For example, suppose the fault-free circuit is attempting to perform a logic AND on
two arguments X and Y, and a fault in the control section causes an OR operation to
be selected. Then, for the values Xi = 0 and Yi = 1, the fault-free circuit responds
with a 0 and the faulty circuit responds with a 1.

The propagation in this case is not done by chance. BATG must be able to recog-
nize whether a fault effect currently being processed is in control logic or data-flow
logic. Control logic includes such things as status registers and mode control regis-
ters. For example, suppose a particular mode control register determines the display
resolution and number of colors chosen by a graphics chip. Such a register is often
write-only; it cannot be directly read out. In order to determine its contents, the data
coming out of the graphics chip must be inspected. If a defect exists in the mode
control register, data will come out at the wrong rate, or the wrong data will come
out, in which case the defect will be identified. BATG must have enough intelligence
built into it to enable it to understand, at some level, that it must set up data registers
with values that can cause incorrect values in a mode control register to appear at the
output pins of the chip in the form of incorrect data, in order for control register
faults to be identified.

Another example of indirect identification of register bits occurs when a status
register for an ALU must be checked (see Figure 3.1). To determine if an overflow
occurred during an ALU operation, a conditional jump instruction is executed. If an
overflow is supposed to occur during an ALU operation, then the jump address
should appear at the address bus. If the next sequential address appears, the overflow
bit of the status register must be stuck-at the wrong value. In this case, BATG must
set up the processor to first perform an ALU operation, and BATG must determine
what arguments are needed to either induce or avoid an overflow, depending on
which of these conditions is being checked.

Trapped fault selection is one of the activities that can be guided by heuristics. In
the early phase of test pattern generation, it is usually desirable to flush out as many
faults as possible, as quickly as possible. This can help to reduce fault simulation
time, and it can help to avoid performing complex searches on faults that would nor-
mally fall out as a byproduct of other searches. Selection criteria include ease or

THE TEST DESIGN EXPERT 613

difficulty of flushing out trapped faults. If a large register, say a 32- or 64-bit data
register, has many trapped faults, then it is a candidate for propagation. If two or
more registers have comparable numbers of trapped faults, then another level of
decision must be employed to further refine the decision process.

One of the difficult things to do in an ATPG program is to make judgment calls.
In the shift register of Figure 12.12, a comprehensive test strategy needs to consider
how many faults can be detected by propagating a value through the entire shift reg-
ister. If fault coverage for the register is high and only a few faults are undetected,
there may be no benefit in adding many clock cycles to the test in order to propagate
a value through the entire shift register. Another complicating factor is the level of
effort required to set up the values required at S3-0. It was assumed that it could be
done in one clock cycle. In reality, S3-0 may require that a state machine traverse
many states in order to reach the state that enables the needed values onto S3-0. This
is an area where TDX could have benefited from a rule-based system, invoking the
system to make decisions based on current fault coverage percentage, ease or diffi-
culty of sensitizing and propagating a fault through the RTL, payback in estimated
number of additional fault detections, and so on.

To determine how to rate trapped faults in terms of difficulty, it must be possible
to link error signals back to their fault origins. The fault origins, in turn, are linked to
the input or output of the gate at which they originate. From there the controllability
and observability numbers at the gate input or output can be used to estimate a level
of difficulty, hence a value, for that fault. It should be noted, however, that the
mechanical computation of C/O numbers does not always provide an accurate indi-
cation of the ease or difficulty in controlling or observing the fault. It is possible for
faults in control sections and the data path to have similar C/O numbers, but the
effects of faults in the data path are directly observable, while faults in control logic
are indirectly observable; that is, they are detected by observing their effects on
operations performed in the data path.

If it can be determined that many faults in a control section are trapped in the
register, then the register contents can be given a high value during the selection
process. To determine whether a fault effect originated in the control or data path
part of the circuit, the data structures can be examined by tracing from the gate
associated with the fault origin back to the flip-flops that drive that gate and for-
ward to the flip-flops that are driven by it. From the map file these are easily associ-
ated with their RTL level counterparts, which can then be related to their purpose in
the circuit.

As we saw in preceding paragraphs, trapped faults, a seemingly innocuous con-
cept, can introduce many complexities into the equation when all the issues are con-
sidered. In real-life circuits, many flip-flops and registers are buried deep in the
circuit and require many clock cycles to control and observe. Others may be easy to
control and difficult to observe or vice versa. When considering trapped faults, it
would be useful to know in advance which of the flip-flops and registers are easy to
control and/or observe. A register may have many trapped faults that are desirable to
propagate to the output, but it may be the case that it is exceedingly difficult to prop-
agate the contents of that register to the output.

614 BEHAVIORAL TEST AND VERIFICATION

Conversely, the contents of a register may be easy to propagate to the output. It
may, in fact, directly drive an internal bus that is connected to an output port. Part of
the task of TDX was to learn about the circuit. The controllability and observability
(C/O) numbers generated by the testability analysis program were a first-stage
attempt to understand C/O issues. From there, other means were used to evaluate the
ease or difficulty of propagating values to outputs. In effect, BATG was constantly
refining its understanding of how the circuit behaved, and how it could be controlled
and observed.

As fault coverage increased, heuristics for selecting trapped faults often changed.
If BATG learned how to sensitize and propagate faults in a particular area of a
design, it might be desirable to continue developing test sequences for that area until
all or nearly all the faults in that region become detected. An alternative may be to
address faults in a function for which there is little or no coverage. The rationale for
this is to get overall fault coverage up to some desirable level with the least number
of vectors. This is motivated by the fact that the user may want to hold down the
overall test length (cost) while getting the best possible fault coverage within that
test length constraint. Also, as has been pointed out in the literature, test quality is
influenced to some extent by how well fault coverage is distributed.24 When fault
coverage reaches some predefined level, it is possible at that point to begin attacking
individual faults, or small clusters of faults, with more refined heuristics.

12.8.2 DEPOT

By virtue of its architecture, TDX could propagate and justify values derived from
the RTL model by means of error modeling, or it could propagate and justify stuck-
at faults identified by a gate-level ATPG that could determine what state the circuit
had to be in for a fault to become sensitized. To that end, a gate-level combinational
test pattern generator was developed. It supported the D-algorithm and a variant of
PODEM. The gate-level ATPG was called DEPOT (DEductive, Path-Oriented
Trace).

Conceptually, when DEPOT was running, TDX, to all appearances, behaved like
any other scan-based ATPG, at least for synchronous circuits. It selected an undetec-
ted fault, then worked its way forward to a flip-flop or primary output, and justified
assignments back to primary inputs and/or flip-flops. However, at this point the sim-
ilarity to a scan-based system ceased. A priority for DEPOT was to sensitize a fault
with the smallest possible number of state assignments. Sequential state searches
were costly in terms of computations, and the greater the number of state assign-
ments, the greater the search space, and the greater the likelihood of conflicts.

Because PODEM was given a list of inputs (primary inputs and flip-flops) to
which assignments were to be made, and these inputs were selected by tracing back
from assignments that required justification, it would often make assignments that
were not essential to sensitizing a fault. It turned out that, for the purposes of gener-
ating the smallest list of assignments to flip-flops and I/O pins, the D-algorithm gen-
erally proved to be more frugal. SCOAP numbers were used to control justification
and sensitization, and these numbers were more effectively used by the D-algorithm.

THE TEST DESIGN EXPERT 615

Another priority for DEPOT was to try to match the existing state of a circuit. If
two or more sensitization solutions exist and if one of them more closely matches
the current state than any of the other solutions, then it is usually the more desirable
solution, since fewer goals are generated. It is possible, however, that only one stor-
age element needs to be changed from its existing state in order to sensitize a fault,
but it may be extremely difficult to control. A cost function involving heuristics,
including controllability/observability numbers, helped to make a decision in those
cases.

An optimal strategy was to look for easy solutions. For example, a sensitized path
may already exist for an undetected fault from its origin to the data input of a flip-
flop. Since the concurrent fault simulator had a complete record of fault effects, it
could examine logic gates driving flip-flop inputs, looking for fault effects that cor-
responded to undetected faults (cf. Figure 3.10). If one or more such fault effects
were found, then toggling the clock would cause that fault, and possibly others, to
become trapped.

Strategies that were under consideration (but not implemented) included Boolean
differences and binary decision diagrams (BDD). Given a fault to be sensitized in a
particular cone, the object was to find a closed form expression sensitizing that fault
within the cone (cf. Section 4.13.1). The expression could then be evaluated analyti-
cally, relative to the current state of the circuit, to find the best sensitization state.
The best sensitization state might be one that most closely matches the current state
of the circuit, or it might be one that is deemed least expensive (easiest), based on
some cost function. If a fault exists in two or more cones and if closed-form expres-
sions could be generated for each of the cones, a more comprehensive cost function
could be implemented.

Section 12.6.3 introduced the concept of primitive function test patterns (PFTP)
for members of the library of parameterized models (LPM). It was pointed out that a
comprehensive set of vectors, based on the functionality of individual members of
the LPM, has the advantage that all inputs to an n-wide data port can be assigned
simultaneously, permitting more faults to be detected, or more classes of faults to be
addressed, such as shorts between adjacent pins to the function. These vectors can
be used in place of vectors that were generated by DEPOT for specific faults, or vec-
tors generated by DEPOT could be merged with these vectors from the library.
Another option is to use the PFTP vectors first and then, if faults escape detection,
use DEPOT to target those faults that remain undetected.

History files were another TDX feature. Information useful in a history file
included a record of successes and failures while trying to drive a circuit into a spe-
cific state. It was found that success or failure in reaching a target state often
depended on the current state of the circuit. Sometimes the target state could be
reached merely by toggling the clock. At other times long, complex sequences were
required. It proved useful sometimes to tag a particular difficult-to-reach state to
indicate that if it were reached while trying to achieve some other goal, it should
then be considered for exploitation. This is one of those examples of trying to
develop rules that mimic behavior of the human engineer who, while developing
sequences to either verify a design or create manufacturing test programs, may

616 BEHAVIORAL TEST AND VERIFICATION

break off a particular approach and pursue another target of opportunity that appears
to give a greater payback with less effort.

The history file is also useful when analyzing closed-form expressions, such as
those obtained from boolean differences, for identifying preferred sensitization
states. History files can become enormous, so they must be limited to key control
constructs such as state machines, mode control registers, and status registers. His-
tory, together with controllability and observability values for these registers, can
then become part of a more global evaluation process. This higher level of analysis
provides a payback when what looks like a less expensive solution turns out to be
the more expensive solution, or vice versa.

12.8.3 The Fault Simulator

Since the original intent of TDX was to generate stimuli for manufacturing tests, a
fault simulator was needed to compute fault coverage and to identify undetected
faults. It was a full-timing, concurrent fault simulator, able to accurately fault simu-
late both synchronous and asynchronous circuits. The simulation engine supported
both an event-driven engine and a read/write array for processing zero delay ele-
ments. If the elements of a combinational block of logic all had zero delay, they
would be rank-ordered. This provided some of the benefits of cycle simulation, with
a payback magnified by the fact that rank-ordering not only reduced the number of
logic event evaluations, but also reduced the number of fault event evaluations, and
there tended to be, on average, about 10 times as many of these evaluations.

The fault simulator was able to fault-simulate subsequences provided by the
Supervisor, then return control to the Supervisor. After fault simulation the TDX
Supervisor would then request that the fault simulator identify a trapped fault for
propagation, in which case BATG would be invoked to perform RTL level propaga-
tion of the fault; if there were no trapped fault candidates, the Supervisor would
select a fault from the list of undetected faults and invoke DEPOT.

If there were several trapped faults, the Supervisor could identify particular regis-
ters or flip-flops in which it was interested in trapped faults, or it could request that
the fault simulator return a linked list identifying all of the storage devices that con-
tained trapped faults. Identifying trapped faults in particular registers or flip-flops
was often more valuable during the early stages of the run when it was likely that all
or almost all of the storage devices would have trapped faults. During this stage,
general-purpose registers might hold many trapped faults as a result of ALU opera-
tions. As the run progressed and fault coverage increased, the distribution of fault
effects became more sparse, and the likelihood of finding trapped faults would
decrease in inverse proportion to the fault coverage.

The fault simulator was also used as a logic simulator. In this mode it ignored the
fault effects. After a sequence of vectors was generated, the simulator logic simu-
lated them to determine if the correct destination state was reached at the end of
the sequence. If the sequence caused the circuit to behave as intended, then the
sequence would be fault-simulated to (a) identify faults that were detected by
the subsequence and (b) identify trapped faults. If the sequence failed to drive the

THE TEST DESIGN EXPERT 617

circuit into the desired end state, then the sequence could be abandoned, or an
attempt could be made to repair the sequence, (see Section 12.8.12, Learn Mode).
During this operation it was necessary for the simulator to avoid processing fault
effects. It was also necessary for the simulator to save the circuit state prior to eval-
uating one of these subsequences so that it could restore the circuit state in order to
logic simulate another subsequence if one needed to be evaluated, or to fault simu-
late a subsequence.

12.8.4 Building Goal Trees

We briefly review the concept of goal trees and searches. Figure 12.14 describes a
circuit in terms of (some of) its storage elements, which contain values representing
current state. A gate-level ATPG such as DEPOT is employed to find a sensitizing
state for a selected fault. The sensitizing state, represented as the goal state in
Figure 12.14, usually differs from the current state. Behavioral search routines
explore the RTL in order to find a sequence of input vectors that cause the circuit to
transition from the current state, or from a reset state, to the goal state.

In the SCIRTSS system, a gate-level ATPG was used to find several, or perhaps
all, possible sensitization states for a given fault. Then the search routines tried to
justify as many as possible of these states. That could be seen in the Petri net exam-
ple given in Section 12.7.2. The place labeled goal had arcs from two transitions.
Each of the transitions corresponded to a sensitization state determined by the gate-
level ATPG.

In SCIRTSS, the creation of goal trees using multiple sensitization states was
acceptable. However, in TDX it was found to be impractical. As circuits grew in size
and complexity, the number of sensitization states became prohibitively large and
goals became quite complex. An individual sensitization goal state might require
justifying several of the storage elements shown in Figure 12.14. In addition, the
number of time frames required to create a bridging sequence from the current state
to the goal state might exceed the maximum permitted. Additionally, many of these
sensitization states provided by the gate-level ATPG were quite similar, differing
perhaps in values selected from some data path element such as an ALU. In this
case, the goal trees were essentially the same, and the goal building process was
repetitious if all such sensitization states were pursued in parallel.

Figure 12.14 Creating a bridge from current state to goal state.

Data reg.
Current state

Goal state

SM1 StatusSM2INST INT PC

618 BEHAVIORAL TEST AND VERIFICATION

DEPOT would therefore be programmed to search for the most economical set of
goals based on C/O numbers. If that state could not be justified by the search rou-
tines, then DEPOT would be invoked with a request to find an alternate sensitizing
state. Earlier it was mentioned that the C/O numbers were based on a SCOAP-like
program. The sensitizing state usually required assignments for two or more
resources, such as, for example, a state machine and a data register and a status reg-
ister. It might be the case that one of them was easy to control and/or observe, while
another might be very difficult to control and/or observe.

Furthermore, there was an implicit assumption that C/O numbers were based on
starting from a reset state, while, in reality, the state search routines attempted to
build a bridge back to the current state. In many cases the best C/O numbers did not
facilitate creation of the best bridge from goal state to current state. As a result, it
was found that the C/O numbers, statistically, would give overall improvements in
performance, but there was no certainty that they would provide the best solution in
individual instances.

12.8.5 Sequential Conflicts in Goal Trees

Earlier in this section we discussed problems caused by faults that could not be
propagated; these were called dead ends. Here we examine another fundamental
problem with sequential ATPG. In this case the problem is one of justification.
Referring back to Figure 12.14, suppose that a particular fault becomes sensitized as
a result of SM1 being in state 0010 and SM2 being in state 010. Suppose also that
the instruction register INST must contain the value 01011101 and that the status
register must contain XXXX01XX; that is, Status[3:2] must contain the value 01.
Suppose that three of the four requirements are satisfied and that the only require-
ment not satisfied is the requirement that INST = 01011101.

In a combinational circuit the requirement that a PDCF for a four-input AND gate
contain the values (1,1, 0,1) might be considered an analogous condition. However,
in a combinational circuit, if there is a solution, then all of the values will be justified
in the same time frame. While propagating forward to an output, additional require-
ments are added in order to extend the sensitized path. These assignments, too, will
be satisfied in the same time frame. For a sequential circuit the situation is very dif-
ferent. Current state of individual registers may match goal requirements, or some,
possibly all, of the goals may differ from current circuit state. Satisfying these goals
is seldom as simple as backtracing through combinational logic.

In the example from Figure 12.14 just described, if one considers only the fact
that three of the goals are satisfied, it would be tempting to ignore those three goals
and only be concerned with the unsatisfied goal. However, the human, recognizing
that we are dealing with a CPU and that the instruction register and the state
machines are inextricably bound up and interdependent, will deal with the issue in a
more holistic way. The human will first try to satisfy the status register, totally ignor-
ing the goals that are currently satisfied. It may well be the case that Status[3:2] rep-
resents an overflow condition. If Status[3:2] is not satisfied and if the INST value
represents a jump on overflow (JOV), then the overflow condition must exist in order

THE TEST DESIGN EXPERT 619

for a jump to occur. So it makes no sense to attempt to justify the JOV instruction if
the overflow status is not set.

Other circuits may be more benign. Given n goals that must be satisfied, the goals
may be completely independent, meaning that their states do not depend on one
another, and it may be possible to satisfy some or all of them simultaneously. In that
case, the obvious choice, when given a set of goals to satisfy, is to select only those
registers and flip-flops that are not currently satisfied and build goal trees targeted at
those goals.

There is yet another possibility: It may be the case that several goals must be sat-
isfied, and they are not mutually dependent, but rather depend on common
resources. This is depicted in Figure 12.15. In this example there is an AND gate
driven by bits from each of three registers labeled R1, R2, and R8. DEPOT is given
the assignment of finding a circuit state to sensitize a stuck-at-1 fault on the middle
input to the AND gate. DEPOT comes up with the assignments (1, 0, 1) on the three
registers. At this point the TDX Supervisor passes control to BATG, whose job is to
figure out how to build a sequence that drives the circuit from the current state to the
goal state so that R1, R2, R8 = (1, 0, 1). Note that the configuration described here is
fairly typical in devices such as peripheral controllers and video controllers.

When BATG starts building goal trees, it backtraces from the individual registers.
Assume, without loss of generality, that R1 is chosen to be processed first, followed
by R2 and then R8. Consider how a programmer might cause the required values to
appear in the registers. In order for R1 to be justified, the programmer must first
cause the signal WE to become enabled. Then INDEX REG, an 8-bit register, must
be loaded with the correct value from the data bus in order to select R1. The program-
mer may then read out the current value in register R1, alter a single bit using a mask,

Figure 12.15 Common resources.

WE1

WE2

WE8

CLK
CLEAR

8

INDEX
REG.

R1

R2

R8

DATA
BUS

WE

1

0

1

620 BEHAVIORAL TEST AND VERIFICATION

then reload R1 with the updated value. This complete operation is then repeated for
R2 and R8. In fact, the programmer might simply write a function or macro to alter
the bit(s) of interest in the registers. The key point to note is that these operations
take place serially, because the same resource, namely, INDEX REG, is required for
each of these operations and its value must be different for each operation.

In building goal trees, BATG starts from the destination. If there is only one goal,
say R1, BATG would not have much trouble satisfying the goal. While the program-
mer must read out the value in the register in order to mask it and alter only the bit(s)
of interest, BATG can inspect the circuit model to determine the current contents of
R1 and then stuff an altered version of that value onto the data bus. Now, when
BATG selects the next goal from which to backtrace, because a different value is
required in INDEX REG, a conflict is going to occur. Recall, from discussion of the
D-algorithm, that when a conflict occurs, a decision is voided and an alternate
choice must be pursued. In the example being considered here, a conflict appears to
occur because BATG is trying to load three registers—R1, R2, and R3—with differ-
ent values from the same data bus at the same time.

A key point in solving this set of goals is the recognition of two factors: First, the
three goals R1, R2, and R8 are not interdependent goals; that is, satisfying one of
them does not depend on, or require, any particular value in either of the other two.
Second, the subordinate goal, INDEX REG, is independent of all three goals. The
value of this observation lies in the fact that, since the goals do not depend on one
another, they can be processed serially. The goal subtree for one of the registers will
not disturb the goal subtree for the others, as long as the goal subtrees do not attempt
to use the same resources in the same time frame.

12.8.6 Goal Processing for a Microprocessor

We consider again the goals in Figure 12.14. The state machines in Figure 12.16,
from an 8-bit microprocessor, will be used to illustrate how these goals are interre-
lated. The major state machine, Figure 12.16(a), has states M1 through M5. An
instruction may require anywhere from one to five M-cycles, each of which is bro-
ken down into three or more T-cycles. Instruction fetch (I-fetch) is accomplished
during T1 through T3 of M1. If memory data are not ready, the state machine transi-
tions to TW and waits there until memory provides a data ready signal.

The first M-cycle traverses at least four, and possibly six, T-states, depending on
the op-code. Other T-states include THOLD and THALT, although, in the interests of
brevity, they will not be considered further. The remaining M-cycles always contain
three T-states that are mainly used to move data to and from memory.

The JOV instruction discussed earlier is made up of three machine cycles. The
op-code is contained in the first byte, followed by two additional bytes that contain
the jump address in the event that a jump is taken. The op-code is fetched and
decoded during the first machine cycle. The next two machine cycles are used to
fetch the jump address. If the jump condition is met, then the address contained in
bytes two and three of the instruction are put out on the address bus. If the condition
is not met, then the PC (program counter) is put out on the address bus.

THE TEST DESIGN EXPERT 621

Figure 12.16 Interacting state machines.

Suppose that a test is to be created for a fault wherein the fault-free circuit exe-
cutes a jump if the overflow bit is set, and the faulty circuit proceeds to the next
instruction in sequence. Then a set of goals includes a requirement that the overflow
bit of the condition code register be set, the JOV instruction must be present in the
IR (instruction register), and, by virtue of sensitization requirements imposed by
DEPOT, the microprocessor will have to be driven to a specific M-cycle and T-state.
Also note that, following the sensitization phase, there must be a propagation phase
during which the actual jump occurs; that is, the address in bytes two and three of
the instruction are placed on the address bus. However, in this discussion we will
confine our attention to the sensitization phase.

(a) Major state machine

M1 M2 M3 M4 M5

Reset

L
A

ST
M

C

L
A

ST
M

C

L
A

ST
M

C

L
A

ST
M

C

LASTMC

(b) Minor state machine

T1

Thold

T2

TW

T3
M1

T4 T5 T6TR

TH

Reset

H
A

L
T

CC = 1

CC = 0
RB

HLDA = 1

RB

HLDA

H
O

L
D

VALID
IN

T

HOLD

Reset
HALT

M1

HV

HOLD

RB

RB

CC - Number of clock cycles in first machine cycle
M1 - Machine cycle 1
RB - READY + BIMC
BIMC - Bus Idle Machine Cycle
HV - HOLD + VALIDINT

Legend:

622 BEHAVIORAL TEST AND VERIFICATION

Now the question is, What happens when an attempt is made to satisfy the sensi-
tization goals? Since several goals must be satisfied, the first question is, Should the
backtrace proceed goal by goal, or should all of the goals in a given time frame be
processed in parallel before backing up to the previous time frame? If goals are pro-
cessed one at a time, backtracing until it is satisfied, then processing the next goal,
conflicts may not be recognized until long after most of the goals appear to be satis-
fied. In a given situation, nine out of ten goals might be satisfied, only to find that the
tenth goal is irrevocably in conflict with one or more of the others. Alternatively, if
the goals are processed in parallel, “apparent” conflicts at the start of processing
may cause the search to be abandoned, even when there is a solution if the goals are
processed serially.

Consider what happens when the goals are processed serially. Suppose the first
goal selected requires that the minor state machine be in state T3. This turns out to be
quite easy. In fact, there is a good chance that the circuit is already in state T3. The
next goal chosen may require that the major state machine must be in M3. This pre-
sents a more significant challenge, since the signal M1 in Figure 12.16 must be set to
1. The RTL description must be examined in order to identify those instructions that
have three (or more) machine cycles. Then, one of those instructions must be
selected.

The ideal situation would be to have the JOV op-code selected, but that
requires the search routines to recognize, while searching for an instruction with
three or more M-cycles, that the JOV is the only candidate not in conflict with
other goals. Humans do this fairly easily and fairly regularly, since humans rec-
ognize that they are dealing with a microprocessor, and it fits a particular behav-
ioral paradigm. Humans also instinctively recognize that what works for a
microprocessor may be a totally wrong approach for some other category of cir-
cuit, such as a digital signal processor or a video controller. It is important to note
that the human is often relying on many years of formal training, as well as con-
siderable experience, to help him or her make decisions about which goals should
be satisfied first. In fact, the human is often not even aware that he or she is think-
ing in terms of goals. Goal ordering and prioritizing is done instinctively and sub-
consciously.

As part of this training and experience, the human imposes different levels of
understanding on different types of circuits, recognizing from experience and intu-
ition the very different nature of a peripheral chip, in contrast to a microprocessor.
This may motivate the human to start by devising an overall strategy. A software
program must formalize this knowledge in order to emulate the human. And, just as
the human makes informed guesses about how a particular circuit might behave
under different circumstances, the computer program must employ heuristics that
serve as its counterpart to the human’s educated guesses. This requires a consider-
able amount of preprocessing on the part of the program to achieve a level of capa-
bility comparable to a human.

For the problem presented here, a human recognizes that the first order of busi-
ness is to set the overflow bit in the condition code register. The second step is to
load the instruction register with the JOV op-code. Then, finally, maneuver the state

THE TEST DESIGN EXPERT 623

machines into the required states. One way that a program might recognize this
priority of events is to keep track of the number of times that each storage element
switches while simulating the subsequences. Those that switch often can be judged
to be easy to control.

Those that have never switched can, at least temporarily, be judged to be difficult
to control. This is essentially a heuristic—that is, a criteria that may not be com-
pletely accurate—but may nevertheless frequently prove to be useful. For example,
the condition code bits may rarely switch, while the state machines constantly
change state. This may suggest that the condition code register should be the first
goal to be processed.

To help determine the ease or difficulty of controlling variables, TDX had an ini-
tialization mode. In this mode, TDX first attempted to initialize every storage ele-
ment or group of elements in the circuit. Devices were grouped whenever there was
a logical relationship, as when they formed a state machine or an n-wide register. In
a clean circuit—that is, a synchronous circuit where all, or nearly all, storage
devices had a set or clear line—it was relatively easy to initialize those storage ele-
ments. Devices that could not be directly set or cleared then become individual
goals. After all of the storage elements had been processed, an attempt was then
made to switch every storage element in the circuit. Again, every logical group in
the circuit (e.g., state machine or n-wide register) was treated as a single goal.

If TDX could not initialize a storage element, or cause it to switch from its current
state, the element would be flagged as uncontrollable. Since elements that could not be
controlled were often critical to the controllability of other storage elements, they
would be identified to the user. Sometimes an element could not be controlled because
it depended on another element that was, in turn, uncontrollable. By identifying a root
cause—that is, a single element that directly or indirectly controlled other elements—
it was possible to minimize the number of uncontrollable elements. By forcing the root
cause element to a 1 and 0, it was possible to determine conclusively whether the ele-
ment depending on the root cause was, itself, controllable or uncontrollable.

The user could place the uncontrollable elements into a list that could then be
used as the basis of a partial scan chain. Another option was to maintain a list of the
uncontrollable elements and periodically check them whenever simulating
sequences. If a storage element should happen to enter a known state, an attempt
was then made to decipher the applied sequence and try to determine what sequence
of events caused the storage element to either transition from an X state to a known
state, or switch from a known state to the opposite state.

Another option was to ask the user to provide a sequence that could cause the tar-
geted storage element to achieve a desired state. This sequence could then be stored
as part of a history file and retrieved as needed. However, it should be noted that
such a sequence, if it starts from the reset state, may not achieve its intended result
when entered from some other circuit state. In fact, when used with other goals, such
a sequence could be counterproductive since all the work done to generate
sequences that satisfy other goals may be completely wiped out if the reset line is
exercised. In general, depending on the reset line to help satisfy goals can be a bad
practice.

624 BEHAVIORAL TEST AND VERIFICATION

12.8.7 Bidirectional Goal Search

Working backwards from a set of destination goals can cause many conflicts. Goals
competing for the same resources (e.g., INDEX REG in Figure 12.15) cause what
appear to be unresolvable conflicts. The problem is that goal searches, like ATPG
algorithms, do not handle the time domain very well. It is sometimes easier to main-
tain consistency among goals when starting from the current state of the simulation
model and building sequences forward in time. In Figure 12.15, when attempting to
justify R1, R2, or R8, it is quickly seen that one of these registers must be selected by
INDEX REG, so INDEX REG becomes a subgoal. From the RTL it is recognized
that, for INDEX REG to be loaded, WE must be set to its enabling value. Once
INDEX REG is loaded, the selected register can be loaded on the next clock. In
some circuits it may be easier to see potential conflicts when working in a forward
direction. A natural inclination for an ATPG when justifying goals backward in time
is to try to force a resolution of the conflicts between R1, R2, and R8.

It is still important to recognize that R1, R2, and R8 are independent goals, and
INDEX REG is subordinate to each of the registers. A forward search that does not
recognize this and tries to satisfy all three concurrently will fail. This is a circuit
configuration where it is possible to recognize that the registers are in conflict. The
select lines choosing one of those registers will likely appear in a common construct,
probably a case statement, in the RTL. From there it is possible to tag them in the
knowledge base with data identifying the fact that they are mutually exclusive.
Then, while the goal tree is being constructed, it can be searched to determine if any
conflicting goals exist in the tree and if they are actually in conflict. This last condi-
tion needs to be considered because it is possible that two conflicting goals exist in a
goal tree, but they are sufficiently displaced in time that they do not conflict.

Up to this point, we considered building a sequence by starting from the target
goal set and by starting from the initial, or current, circuit state. A third option is to
build a bridging sequence to transition from current machine state to the desired
goal state by working from both directions simultaneously. When doing a bidirec-
tional search, generally fewer nodes have to be expanded.25 This is suggested in
Figure 12.17. A breadth-first search is performed from the goal state G, extending
out in all directions until it reaches initial state I. In the bidirectional search, node
expansion takes place from initial state I and goal state G simultaneously. In a typi-
cal tree, the number of nodes at each level of the tree increases from the previous
level since each node at a given level is being expanded as the tree descends. Hence
a tree of n levels, growing broader at leach level, will have more nodes than two
trees, each of level n/2.

When employing heuristics to narrow the search, it would be expected that this
phenomenon would continue to hold. However, the heuristics may be too effective.
Figure 12.17(c) illustrates a situation where a bidirectional search is performed with
the aid of heuristics. The heuristics help to narrow the search, only pursuing choices
that appear to be optimal. This is done when searching both from the initial state I
and from the goal state G. Because the search is narrowed, the two search cones in
this example bypass each other. One possible outcome is that the attempt to build a

THE TEST DESIGN EXPERT 625

Figure 12.17 Bidirectional search.

bridging sequence from the initial state to the goal state may be aborted before a
solution is achieved. Another possible outcome is that one or the other of the two
cones may eventually terminate at the desired destination, but the cost of the bidirec-
tional search may be greater than if a unidirectional search had been performed.

12.8.8 Constraint Propagation

When building goal trees, it often happens that a goal does not explicitly dictate a
value for some circuit element. Rather, the goal requires, for example, that the value
in register A be greater than the value in register B in order to establish an overflow
bit in a status register. This is referred to as a constraint. The constraint may already
be satisfied, in which case it is necessary to maintain the relationship. This is
referred to as constraint propagation. This can become problematic because, while
exploring the logic to satisfy other goals, the relationship may become negated.

Alternatively, the constraint may not currently exist and may need to be satisfied.
The constraint may be inextricably bound with other goals in such a way that it has
to be satisfied at the right point in a sequence; in some cases it may need to be satis-
fied first, in other instances it may be necessary to satisfy it after other goals have
been satisfied. Trying to force it to take effect as, say, the last goal to be satisfied
from a group of goals may disrupt other goals that have already been established.

Trying to determine how to satisfy a constraint can be a difficult problem. Con-
sider again the example of register A and register B; suppose it is necessary to per-
form a subtraction in order to produce a negative result. Which register should be
the minuend, and which register should be the subtrahend? If registers A and B are
both general-purpose registers, such that either could be the minuend and subse-
quently contain the difference, the decision could be quite different from the deci-
sion if register A is an accumulator, requiring the difference to end up in A. As a
further consideration, if A is an accumulator, it must be confirmed that the results
will still be there at the end of the goal-building process.

It may be the case that the outcome of the operation sets a flag bit in a program
status word (PSW). Then, it becomes necessary to protect the PSW whenever other
goals are being processed to ensure that the PSW is not inadvertently altered while
other parts of the goal tree are being constructed. Sometimes a PSW gets modified

(a) Breadth-first (b) Bidirectional (c) Heuristics-guided
bidirectional

I GI G
G

I

626 BEHAVIORAL TEST AND VERIFICATION

as a result of a POP instruction upon returning from a subroutine. This is another of
those situations where the human recognizes unintended side effects, but the com-
puter program may not have been developed to the point where it checks for all
these exigencies.

12.8.9 Pitfalls When Building Goal Trees

Many seemingly innocuous choices that are made when exploring RTL code can
lead to major problems. Toggling a reset line at the wrong time can destabilize an
entire sequence of goal trees built up over many time frames. In a data base there
may be a data structure that describes how to control the inputs to a register in order
to load it with a particular value. One entry may assert that the register can be set to
the all-0 state by setting a signal called CLR to 0. Unless some preliminary investi-
gation has been performed, identifying CLR as a reset state, the ASCII string “CLR”
has no more significance than any other signal string. It is only when CLR is
asserted that the consequences of toggling it to 0 are realized. The implications of
toggling a CLR line can often be realized from the RTL code. As an example, con-
sider the following Verilog code:

always @(posedge CLK or negedge CLR)
begin
if (CLR == 0)
RegA = 0;

else
RegA = DBUS;

end

This behavioral Verilog code is commonly used to reset a flip-flop or register, or to
load it from some source. In this case the source is a bus called DBUS. It is likely
that there will be many more storage elements instantiated in this manner. The CLR
signal will cause all of them to be reset simultaneously. The general nature of this
behavioral Verilog construct, along with the fact that the CLR signal is in the sensi-
tivity list, is a tip-off that it has some significance beyond its ability to load a 0 into a
register. The additional fact that CLR probably has a large number of fanout points is
a further clue that it should be approached warily when building goal trees.

When building goal trees from RTL code, many choices exist. Consider the fol-
lowing Verilog code:

always @(Sel or D0 or D1 or D2 or D3)
begin
case(Sel)
00: Mxout = D0;
01: Mxout = D1;
02: Mxout = D2;

THE TEST DESIGN EXPERT 627

03: Mxout = D3;
endcase

end

In this 4-to-1 multiplexer, Sel determines which source is connected to Mxout. This
structure will be represented in the knowledge base, together with information that
reflects the ease or difficulty of controlling the four input sources, D0, D1, D2, and
D3. One of the problems with this controllability information is the fact that it is
based on static analysis of the circuit. As an example, to get a desired value at
Mxout, controllability analysis may assert that D1 is the best choice. But, in the cur-
rent state of the circuit, D3 may be much easier to justify. Another problem with con-
trollability information is the fact that the same paths tend to get exercised
repeatedly.

By randomly choosing sources to connect to Mxout, there is the possibility that
other previously unexercised logic will get exercised; as a result, a more thorough
exercise of the entire circuit will result. Note that this tendency to repeatedly exer-
cise the same data paths is also a human tendency. This should not be surprising
because when a human is focused on setting up a particular sequence of events, he
or she does not want to be distracted by having attention drawn away to another sub-
problem involving complicated choices that cause the immediate goal to be
obscured. If choices are made based on heuristic information, there is the possibility
that the heuristics are self-reinforcing because of successes, rather than because they
represent the best choices. This behavior, too, has its counterpart in human behavior.
We tend to continue to do things that worked for us last time, rather than explore
new paths that might yield an even bigger payoff.

12.8.10 MaxGoal Versus MinGoal

It was mentioned earlier that SCIRTSS would build a goal tree in which the top level
could be the OR of several goals. This is illustrated in Figure 12.18. Three top-level
goals G1, G2, and G3 represent three different sensitization states, based on three dif-
ferent results while backtracing in order to justify a PDCF. Each of these top-level
sensitization goals Gi could require several subgoals Si to justify it. SCIRTSS would
attempt to justify all of the top-level goals. However, when TDX was being devel-
oped, using circuits for which the RTL represented many thousands of gate equiva-
lents, it was too costly to attempt to justify all of the top-level goals. Hence,
controllability and observability information was used to try to find the single most
economical top-level goal.

Given a top-level goal Gi, the subgoals Si could themselves represent a very
costly solution in terms of the number of vectors needed to build a bridge from cur-
rent circuit state. Hence, during the development of TDX, one of the experiments
performed was to compare the effectiveness of a MinGoal strategy versus a Max-
Goal strategy. TDX examined the goals Si that were needed to sensitize a fault or
propagate a trapped fault, and it determined which of these goals were already sat-
isfied. Consider the circuit in Figure 12.15, where R1, R2, and R8 had to be justified.

628 BEHAVIORAL TEST AND VERIFICATION

Figure 12.18 Multiple sensitization goal trees.

Suppose that registers R1 and R8 already had the values needed to sensitize the
fault. Then it may be the case that by loading a new value in R2, the fault would
become fully sensitized. That is essentially what the MinGoal strategy
attempted. If the goals that were already satisfied could hold their values, then
the cost of justifying the one remaining goal, in this case register R2, would usu-
ally be much less.

MaxGoal was the strategy originally implemented in TDX. Basically, it took all
of the goals Si and worked backwards, attempting to justify all of them. Quite often
this was unnecessary, and sometimes even counterproductive, because the goals that
were already satisfied, when backtracing, could introduce conflicts unnecessarily.
The strategy that was eventually settled on was to use the MinGoal strategy, and if
that failed, then a modified version of the MaxGoal strategy would be attempted. In
this modified version, if the original MinGoal was satisfied and if one or more of the
other goals became corrupted while justifying the MinGoal, then the process would
repeat, but this time the MinGoal would be augmented with the goal(s) that became
corrupted. Regardless of the strategy, the objective was to start at the goal state GS
with a set of goals, as illustrated in Figure 12.19, and work back through one or
more time frames, until finally the initial state IS is reached. Along the way, while
backtracing, at different timeframes primary input values are assigned so that when
proceeding forward from IS and making those assignments, the goal state is
reached.

Figure 12.19 Petri net illustrating event alignment.

G1

S2S1 S3

G2

S5S4 S6

G3

S9S8S7 S10 S11

OROR

G

S

I

S

THE TEST DESIGN EXPERT 629

12.8.11 Functional Walk

Up to this point the discussion of TDX has focused on the fault-directed mode, but
another of its strategies was a pure functional mode. The purpose of this mode was
to explore the circuit and acquire information that could be used to build up a know-
ledge base. TDX was quite effective at identifying state machines. As TDX evolved
to handle more complex circuits, including circuits with multiple, interacting state
machines, counters, mode control registers, status registers, instruction registers,
and data path elements, it was recognized that processing these individual constructs
did not provide a sufficient understanding of how to process a complete circuit. The
real challenge was to define and encapsulate in a knowledge base the relationships
that represent, in some sense, an understanding of the interactions between the
myriad functions.

It was possible to capture knowledge that characterized relationships between
functions while building goal trees in the fault-directed mode. However, this
approach tended to be fragmentary because goal trees were focused on building a
bridge from current state to target state. So, rather than rely solely on information
gleaned during fault-directed test, it was decided that a more rigorous approach was
needed. The functional walk was developed for this purpose. In this mode of opera-
tion, TDX attempted to methodically exercise all of the functional units in the cir-
cuit. The first step, as in other modes of operation, was to initialize all of the
sequential elements. Then, an initial pass, a so-called static analysis, was made by
examining the circuit description in order to extract information about relationships
between the functional units.

After the static analysis was completed and the initial knowledge base was con-
structed, functional walk commenced. This represented a dynamic analysis of the
circuit. During this operation, TDX attempted to transition through all of the states
of the state machines in the circuit, and it attempted to exercise all of the functional
elements. In the process of walking through the various functions, a test vector file
was created. The vectors that were created were annotated. Then, if the circuit
exploration led to an unexpected destination (e.g., an infinite loop or a dead end
from which the circuit could only recover via a circuit reset), the vectors could be
examined to determine how that state was reached. Note, however, that although this
was intended to be a functional analysis of the circuit, and every attempt was made
to explore all explicit states of the state machines, the vectors were, nevertheless,
treated as test vectors and fault-simulated. Often the fault coverage results obtained
during functional walk yielded fault coverage results comparable to those obtained
from design verification vectors provided by the circuit designers.

Although functional walk focused on state machines, it could explore other con-
trol structures and data path elements. For example, Section 7.8.2 gives examples of
vectors generated algorithmically for various functions. These vectors can be used
as the basis for exercising a data path function. For example, a behavioral vector
could specify values on the A and B input ports of an ALU, as well as the carry-in
and the mode control. Success then is defined as the ability to manipulate the circuit
so as to apply those inputs and generate the correct result at the output of the ALU.

630 BEHAVIORAL TEST AND VERIFICATION

Another goal might be to force a counter to count. This might appear as a program
counter incrementing—for example, performing a NOOP instruction.

The functional walk was implemented as a series of interconnected tables, such as
illustrated in Section 2.9.2. An implementation based on ROBDDs, called FAME
(fast, accurate, memory efficient), was in the planning stages. At the time when TDX
was under development (late 1980s to early 1990s), much progress was being made in
the field of BDDs and it was believed that these could help to solve one of the most
critical problems in TDX, namely, small blocks of highly sequential state machines
and other circuitry interconnected with counters and control registers. These often rep-
resented 5% of the circuit but 95% of the problems for TDX. The goal was to identify
blocks of RTL code representing complex, convoluted functions, extract them, and
represent them internally by means of ROBDDs rather than by interconnected tables,
since BDDs would permit a uniform, methodical approach to finding a solution.

12.8.12 Learn Mode

In previous sections it was pointed out that humans impose a great deal of structure
on a problem, based on their formal training and experience. Within that framework
of knowledge and understanding, their so-called frame of reference, humans often
understand the general concepts, but may not know all the details pertaining to how
a particular instance of a device works. That is where trial and error begins. The
human guesses at a solution and then attempts to ratify that guess. In digital logic
this ratification, or verification, is usually accomplished by means of a simulator. If
the simulation reveals that the desired goal was not achieved, then the human studies
the results, performing, in effect, a postmortem, to determine what caused circuit
behavior to deviate from intended behavior. This analysis often leads to an alternate
plan of action, one that may involve tweaking the original plan, or, conversely, it
may indicate that a radical rethinking of the problem is warranted at this point.

Using information to correct a course of action is quite commonplace. For exam-
ple, when attempting to catch a ball, humans use visual feedback to guide the hand.
An example of a negative feedback servomechanism is illustrated in Figure 12.20.26

This figure may depict the action of a device such as a thermostat. The temperature
θi in a room is monitored and compared to a desired temperature θ0. If the room
becomes too chilly, the difference e = θi − θ0 becomes too large, and this error signal
causes the furnace to be turned on. When the difference e between measured temper-
ature and desired temperature becomes sufficiently small, the furnace is turned off.
Obviously, in order to employ feedback, it is necessary to know the desired outcome.

The concept of feedback applies equally well in software. Consider the system
depicted in Figure 12.21.27 This expert system begins life with a knowledge base com-
posed of facts and relationships, usually drawn out of an expert who devoted a lifetime
to his or her craft. The facts are usually organized in the form of rules. As the expert
system is put to use in real-life situations, oversights and flawed judgment are detected.
These oversights may include missing, wrong, or incorrectly interpreted data. The
links or relationships between the data may also be incorrect. When detected, these
oversights are corrected, or, more precisely, the knowledge base is refined.

THE TEST DESIGN EXPERT 631

Figure 12.20 A negative feedback servomechanism.

A major difficulty with rule-based systems is that it is difficult to know when a
set of rules is complete (or, put another way, when the specification is complete). In
PC Magazine’s “abort, retry, fail?” column, it was reported that a German couple
out for a Christmas drive ended up in a river—apparently because their luxury car’s
computer navigation system forgot to mention that they had to wait for a ferry. The
driver kept going straight in the dark, expecting a bridge, and ended up in the
water.28

The knowledge base in Figure 12.21 lists some of the sources for rules used in
TDX. The behavioral and structural knowledge are obvious, coming from the RTL
and gate-level circuit descriptions. Domain specific knowledge was derived from
functions that were encountered while reading the circuit description. Characteris-
tic features of these functions helped to identify them while reading in the circuit
and, once it was determined, for example, that a particular construct was a counter,
it was then known how it behaved (cf. Section 12.6.3, Library of Parameterized
Modules).

User inputs can be used to further refine the knowledge base. If the user believes
that TDX has incorrectly classified an object, he or she can override the classifica-
tion attributed to the object by TDX. Furthermore, the user can add information to
further refine the knowledge base. As an example, perhaps the user knows that the

Figure 12.21 Expert system employing feedback.

K
e

Device to
measure
output in
qi’s units

qi

q0

Output

User
interface

Knowledge
refiner

Inference
engine

Knowledge
base

Behavioral

Structural

Domain-specific

User

632 BEHAVIORAL TEST AND VERIFICATION

circuit needs a complex initialization sequence. That information can be added to
the knowledge base. The goal is to organize all of the available information in the
most productive manner so as to make the user productive.

Despite the existence of the knowledge base, mistakes were still made when cre-
ating input sequences. Frequently, when generating a test vector sequence, unin-
tended side effects would invalidate the sequence. These side effects often came
from signals that had a large amount of fanout. An obvious example of this was a
tendency to toggle set or clear lines in an attempt to load a register with all 0s or all
1s, but the problem was not confined to these two signals. Failure to carefully
observe constraints (cf. Section 12.8.8) could also invalidate a sequence.

When a sequence failed to elicit the desired behavior from a circuit, the logic
simulation capability of the fault simulator was employed in support of the learn
mode. During this mode the system acts somewhat like the servomechanism or
expert system. TDX knows the current state of the circuit, and it knows the goal
state. Hence, if the circuit fails to reach the goal state, TDX has, in effect, an error
signal that can be used to indicate the degree to which the circuit diverges from the
target goal. As an example, assume that 22 clock cycles are generated in order to
reach the goal state. During creation of this sequence, TDX has a record of all the
intermediate states that must be reached. Suppose, now, that after the 10th clock
cycle the simulator finds that the circuit diverges from the state predicted by TDX
for that period.

At this point the so-called error signal is the degree to which the circuit deviates
from the goal state. One or more of the storage elements reached a state other than
that predicted by TDX. If the circuit reached the correct state on the previous clock
cycle, TDX can further examine the circuit to determine if it is even possible to
reach the goal state. By expanding signals in order to create trial sequences and sim-
ulating them, TDX can examine the results for all possible or reasonable signal val-
ues. The state of the circuit at this point may indicate where an applied signal caused
the circuit to deviate from the intended state. If the cause of the incorrect transition
is determined, then the knowledge base can be annotated to indicate that a particular
state transition has some pitfalls that must be avoided.

Sometimes TDX is unable to repair a sequence. This might happen if it is not
possible to get from the current state to the next state in a single clock period. It may
be necessary to insert multiple states, or it may be necessary to back up one or more
clock cycles. The simulator was instrumented so as to be able to roll back a simula-
tion to the current state that existed when the vector sequence was created. From
there, it could then resimulate the circuit for any specified number of clock cycles so
as to allow further analysis of the state transitions that occur during a given clock
period.

This entire learn mode operation is illustrated in Figure 12.22. If the search heuris-
tics drive the circuit from the current state to the objective state, then the sequence
that was generated is added to the end of the current test program. However, if the
search heuristics fail to drive the circuit into the objective state, then an analysis is
performed. The purpose of the analysis is to determine why the heuristics failed. The
analyzer cannot, in itself, change the search software, but it can annotate the model so

THE TEST DESIGN EXPERT 633

Figure 12.22 Learn mode.

as to influence the search heuristics. A key part of the analysis is the ability to roll
back the state of the circuit to the state that existed before the current subsequence
was applied. Then, after each vector is simulated, the state of the circuit is compared
to that which was predicted by the search heuristics while it was generating the sub-
sequence.

When the errant state is discovered, the analyzer can again back up, this time a
single step, and attempt to regenerate the next step in the subsequence, but being
careful not to revisit the previously visited state. It is possible that there is no identi-
fiable path to the objective state from the current intermediate step, in which case the
analyzer can again back up one step, assuming that it is not at the beginning of the
subsequence.

12.8.13 DFT in TDX

During the period when TDX was in development (1988–1992), gate count in
logic circuits was growing rapidly, and Moore’s law was in full force. Entire PCBs
were being subsumed into one or two ICs. In addition, memory elements and other
custom-designed modules were beginning to appear on the same die as the random
logic. Design-for-test was becoming a more important aspect of test because, even
if it were possible to develop a test that could achieve high fault coverage, the test
would require so much time on the tester that its cost would be prohibitive. As an
example, consider the power management feature for green computers. Power
management contains large counters that sometimes have little more than a reset
and a clock to control their operation. If the counter reaches its maximum count,
the computer is put into sleep mode. If a key on the keyboard is depressed, the
counter is reset. Clearly, to test this structure, it has to be possible to either load or

BATG

Vector sequence

Final state

TDX_fsim

Reached
objective stateAnalyzer

No Yes Append to end
of sequence

634 BEHAVIORAL TEST AND VERIFICATION

scan-in selected values in order to set up initial conditions for individual targeted
faults. Occasionally, when TDX was being benchmarked, customers would recog-
nize that certain features, such as the sleep mode, were testability problems, and
models would be scaled-down. Troublesome features were deleted from the model
and, during test, input combinations were applied that would freeze these features
in a known but inoperable state.

TDX imposed a limit on the number of time frames used to sensitize or propa-
gate faults. This limit was user-controllable. Often when faults could not be sensi-
tized or propagated within the default number of time frames, it was found that the
number of time frames required was far greater than the default. These faults usu-
ally pointed to areas of the design where partial scan could significantly reduce the
number of test vectors needed to generate a test for the fault. Despite the presence
of other forms of controllability/observability (C/O) analysis, RTL-level analysis
frequently proved to be a more reliable indicator. It exposed areas of a design
where large numbers of faults could not be tested within a reasonable number of
time frames, and it pointed directly at areas of a design where partial scan was
needed.

Features of TDX that were particularly effective at identifying areas of a design
in need of DFT support were the initialization phase and functional walk. In the
initialization phase, each flip-flop and latch was established an a stand-alone goal,
with the object being to initialize it and cause it to switch. Elements closest to the
primary inputs were selected first, so that when it came time to initialize a flip-flop,
those in its cone had already been processed. When an area of a design proved to be
uninitializable, there was frequently a root cause. By carefully analyzing the prob-
lem at the RTL level, TDX could often identify a source that not only was uninitial-
izable, but also controlled other functional areas of the design. One option was to
retry initialization of the root cause with a higher threshold on the number of
allowable time frames. The theory being that if the root cause could be initialized,
then those functions controlled by the root cause could become controllable.
Another strategy was to force initialization of an element that appeared to be a root
cause, and then re-try initialization of those elements that depend on a known value
in the flip-flop designated as a root cause. Functional walk was also useful in this
regard. By working forward in time, it would often find solutions that TDX could
not find by backtracing from each storage element that was established as an indi-
vidual goal.

The use of RTL to guide the search for test sequences often had the effect of
significantly reducing the length of a test program. Whereas a gate-level ATPG
employing partial scan might require 80–90% partial scan to reach a stated fault
coverage, TDX often could reach that fault coverage goal in fewer vectors and
with considerably fewer scan elements, usually requiring as little as 10–25% par-
tial scan. When targeting large combinational blocks, such as multipliers and
floating point arrays, a partial scan in which some control elements are scanned
while the data path is exercised from the primary inputs may have the dual advan-
tage of fewer vectors while simultaneously providing some of the benefits of a
behavioral test.29

DESIGN VERIFICATION 635

Section 7.8 examined strategies for creating test vectors directed at basic func-
tions, such as counters, ALUs, multiplexers, and so on. TDX had the ability to target
these constructs at the RTL level. After a function had been targeted, precomputed
sequences could be used to efficiently test those functions. These vectors had the
advantage that they not only were efficient, but they could also test for fault models
such as bridging faults, which might not be detected using patterns generated at the
gate level by a gate-level ATPG. If fault simulation revealed that there were undetec-
ted faults remaining after the precomputed sequence of vectors had been applied,
then DEPOT could go in and generate test vectors for the remaining undetected
faults.

12.9 DESIGN VERIFICATION

In the early days of digital IC design, manufacturing test and design verification
shared many common tools and methods. Simulation was the workhorse of both test
and verification. A concurrent fault simulator, at its core, was basically a logic simu-
lator with specialized processing added in order to permit two or more nearly identi-
cal circuits to be simulated concurrently. Even ATPG, at some conceptual level, is
merely an extension of what the designer does when verifying a circuit; that is, a
function in a circuit is identified and an algorithm is invoked whose purpose is to
create a sequence of vectors that exercise the logic. TDX extended that concept in
order to imitate and take advantage of some of the less-algorithmic, more ad hoc
techniques practiced by humans.

The emergence of designs ranging in size from hundreds of thousands to millions
of logic gate equivalents has necessitated a fresh look at approaches to design and
test. A quarter century of trying to create ATPG programs capable of dealing with
sequential circuits has proven unproductive. Even if such programs existed and
could generate manufacturing test sequences that provide high coverage, the test
sequences required to detect structural faults would generally be far too lengthy to
be economically practical. DFT has to be part of the solution for almost all designs.

For design verification a similar situation exists. It is not possible to simulate all
possible combinations of inputs and latch/flip-flop states. Consider a 1,000,000
gate-equivalent circuit. Typically, one could expect between 5% and 10% of those
gates to be flip-flops. But, assume instead a conservative 1%, or 10,000 storage ele-
ments. Also assume 400 primary inputs. Then, there are 210,000 + 400 unique combina-
tions on the combined state elements plus inputs (cf. Problem 3.3). This is
illustrated in Figure 12.23. The graph conveys a sense of the magnitude of the
design verification task. For a given number of input vectors, as circuit size
increases, the percentage of the design that is evaluated by the vectors decreases
rapidly. As circuits grow larger, verification involves selecting and simulating a sub-
set of the possible stimuli based on an understanding of intended circuit behavior. If
the wrong subset is chosen or an inadequate subset is chosen, critically important
interactions in the circuit fail to be examined, with the result that errors may exist in
the design when tape-out occurs.

636 BEHAVIORAL TEST AND VERIFICATION

Figure 12.23 Combinatorial explosion.

12.9.1 Formal Verification

Clearly, it is not possible, with the size of today’s circuits, to exercise all combina-
tions of values on inputs and state elements. This has led to a growing interest in for-
mal verification. Four approaches to formal verification have received considerable
attention from researchers:

Theorem proving

Equivalence checking

Model checking

Symbolic simulation

12.9.2 Theorem Proving

This method of proving that a design is correct depends on logic. Thus, before we
discuss this method, we introduce some basic definitions. In logic, a statement is a
sentence or phrase that affirms or denies an attribute about one or more objects. A
proposition is a declarative statement; it affirms or denies an attribute about one or
more objects, but it is either true or false. A statement can be ambiguous or open to
debate. For example, the statement “that was a good movie” may be true for one
viewer but false for another viewer. However, the statement “the movie ran for more
than two hours” is either true or false and can be verified. Hence it is a proposition.

An atomic proposition is a basic proposition, one that cannot be broken down
into two or more smaller units. A compound proposition is one that is composed of
two or more atomic propositions that are connected by logical connectives, such as
AND, OR, NOT, XOR, equivalence, and implies. When discussing propositional
logic, it is customary to represent these operations by the symbols ∧, ∨, ¬, ⊕, ≡, and
→, respectively. We will adhere to these conventions in this section. Some additional
comments are in order regarding propositional logic. First, equivalence is what we
often think of as the exclusive-NOR operation; that is, the expression A ⊕ B is true if

%
ag

e
co

ve
re

d

Gate equivalent count

DESIGN VERIFICATION 637

A and B are different. But A ≡ B is true if A and B are the same. Also, A → B is
equivalent to A ∨ B; that is, the expression is true if A is false, or if A is true and B is
true. The expression A → B is only false if A is true and B is false, which can be
interpreted to mean that a true premise cannot imply a false conclusion.

We have used propositional logic throughout the text; it is the backbone of the digi-
tal industry. However, it has its limitations, which in turn has led to extensions. Predi-
cate logic is one such extension. A predicate of a proposition is that which is affirmed
or denied of the subject. For example, in the sentence “the dog is in the house” the
predicate is the word “in”. In predicate logic the sentence is usually constructed using
prefix notation. The aforementioned sentence would be written as IN(dog, house) in
prefix notation. Using infix notation, the sentence would be written “dog IN house,”
although the infix form is more commonly used in conjunction with Boolean and math-
ematics operators, as in the expression A + B, where the plus sign (+) is the predicate.

Predicate logic is used in conjunction with theorem proving. While a complete
discourse on theorem proving is beyond the scope of this text, an example with a
simple circuit can help to illustrate the concept.

Example Using predicate logic, the circuit in Figure 12.24 is described in terms of
its intended behavior by means of the following equation:

Net_Spec(A,B,C,Z) = ¬(A ∧ B) ∧ C = Z

In the following equation the circuit is described in terms of its implementation:

Net_Impl(A,B,C,P,Q,Z) = (A ∧ B = P) ∧ (¬P = Q) ∧ (Q ∧ C = Z)

The object is to eliminate the intermediate variables in the predicate Net_Impl so that
it resembles the predicate Net_Spec. Given that ¬P = Q, the variable Q can be
replaced by ¬P wherever it appears. The middle term then becomes an identity, so it
can be eliminated. This yields

Net_Impl(A,B,C,P,Q,Z) = (A ∧ B = P) ∧ (¬P ∧ C = Z)

Now, using the substitution P = A ∧ B, the expression for Net_Spec results. ��

Theorem-proving software programs have been used to advantage on large com-
binational blocks of logic, but they require considerable manual guidance; hence
much research is required before they can be used on an everyday basis by anyone
but experts.

Figure 12.24 Net implementation.

A

B

C

P Q

Z

638 BEHAVIORAL TEST AND VERIFICATION

12.9.3 Equivalence Checking

Equivalence checking attempts to demonstrate that two circuits produce equivalent
(but not necessarily identical) behavior. A typical application would be a
comparison of an RTL description to a synthesized version of that same circuit.
The synthesized circuit may include gate-level functions designed using a sche-
matic editor, functions pulled off a library, and functions purchased from a third
party, or it may be a combination of logic derived from all these sources. The gate-
level circuit may include scan circuits or may be otherwise modified (e.g., retim-
ing, which shifts logic from one side of a flip-flop to the other) in order to reduce
path delays.

Demonstrating equivalence of the two circuits can be accomplished as described
in Section 2.11. Recall that ROBDDs are unique; hence if two circuits are repre-
sented by identical ROBDDs, then the circuits are identical. Given two ROBDDs,
the Traverse algorithm, described in Section 2.11.2, can be used to compare corre-
sponding vertices of the two ROBDDs. It is also possible, given circuits f and g, to
perform Apply(⊕, Bf, Bg) , where Bf and Bg are the ROBDDs for the functions f
and g.

The comparison of two circuits f and g is accomplished by comparing cones of
combinational logic bounded by primary outputs and internal flip-flops. This can
be seen in Figure 12.25 (cf. also Figure 7.21). The combinational cone driving
flip-flop DFFi has inputs A, Bd, C, and Dd. Inputs A and C are primary inputs,
whereas Bd and Dd, the delayed B and D signals, are driven by flip-flops DFF1
and DFF2. When comparing two circuits at different levels of abstraction (e.g., an
RTL description and a gate-level description), it can be difficult to correlate the
storage elements in the two models. Recall, from Section 12.8, that TDX
employed a map file to link flip-flops in the gate-level model with their counter-
parts in the RTL model. In equivalence checkers this correlation is done by means
of a computer program, and the primary outputs and flip-flops are referred to as
state points.30 The first step in mapping cones is to find the cones for each state
point in each of the two models being compared. The inputs driving a cone will be
state points. Corresponding cones for the two models will have identical state
points as inputs.

Figure 12.25 The combinational cone.

Clk

DFF2

DFF1

DFFi

A

B

C

D

Bd

Dd

DESIGN VERIFICATION 639

Given the logic corresponding to the cone for either the RTL or gate level, a
ROBDD can be generated for each cone using the Apply algorithm described in
Section 2.11. The Traverse procedure can then be used to compare cones of corre-
sponding state points. An alternative is to generate logic equations for the cones.
Given the netlist, an equation similar to Net_Impl is generated. This equation is
expressed in terms of the inputs to the cone, as well as internal signals. The equa-
tion is then reduced. This can be done as in the previous section on theorem prov-
ing, where it was shown that Net_Spec and Net_Impl were functionally identical
blocks of logic. The advantage is that storing the circuit description as equations
may require much less memory than storing the ROBDDs. When creating the
equation for a cone, the cone can first be rank-ordered. Then, rather than build up
the complete netlist and eliminate the internal variables after the complete cone
netlist has been constructed, elimination of internal variables can be performed
incrementally as the cone equations are being developed, just as is done when cre-
ating ROBDDs.

When the equation for a cone in a netlist has been created and is expressed com-
pletely in terms of state points, it remains to demonstrate that it matches the equa-
tion for the corresponding cone in the RTL circuit. One way this can be
accomplished is by numbering the state points; that is, given n state points, assign
each state point a unique variable xi, for 1 ≤ i ≤ n, as is done for ROBDDs. Then
convert the equations to disjunctive normal form and order the terms based on their
subscripts.

Example Given: the equation

(x1 ⋅ x2 + x2 ⋅ x3) ⋅ (x1 ⋅ x4 + x3 ⋅ x4)

This can be translated to

x1 ⋅ x2 ⋅ x4 + x2 ⋅ x3 ⋅ x4 + x1 ⋅ x2 ⋅ x3 ⋅ x4 + x1 ⋅ x2 ⋅ x3 ⋅ x4

Terms with three variables appear first, and they are sorted in ascending order based
on their subscripts. If terms occur with identical variables, sort them based on their
binary equivalents; that is, assign the value 1 to those in true form and assign 0 to
those that are negated. Equations for corresponding cones can then be compared on
a term-by-term basis to determine if the cones are identical. ��

Equivalence checking has reached a level of maturity where it is commonly used as
a routine part of regression testing. Whenever changes are made to a netlist—for
example, when logic is added after synthesis, including scan, clock trees, changes
(tweaks) to improve speed, clock-retiming, and so on—it is standard practice to run
regression tests to ensure that the RTL and synthesized versions remain functionally
equivalent. It must be pointed out that equivalence checking targets implementation
errors, not design errors. If an error exists in the RTL, an equivalent structural model
will contain that same error.

640 BEHAVIORAL TEST AND VERIFICATION

12.9.4 Model Checking

It is generally accepted that the ideal verification test is an exhaustive test—that is,
one that explores all possibilities and either confirms that a design responds cor-
rectly, or provides an error trace showing where the design responds incorrectly.
We have seen that for simulation, a complete, exhaustive evaluation is not possible,
even for modest-sized circuits. But model checking does perform exhaustive check-
ing. A model checker, depicted in Figure 12.26, is a software package that accepts
as inputs a circuit model and a set of properties.31 The model may be expressed in
Verilog, VHDL, or some similar such hardware design language. The model
checker evaluates the properties against the model. If the model does not satisfy the
properties, then the model checker provides a sequence, sometimes called a wit-
ness, that leads from a start state to a conflict state; otherwise the model checker
confirms that the model satisfies the property.32 The model checker uses ROBDDs
for internal representation of the circuit. This data structure can be quite efficient,
permitting the model checker to exhaustively check much larger circuits than
would be possible if data structures and linked lists were used. Previously, when we
discussed the Test Design Expert (TDX), we pointed out that the model checking
paradigm was being considered for incorporation into the TDX framework
(Section 12.8.11). Unfortunately, the TDX project ran short of funding before the
plans could be realized.

The properties that are submitted to the model checker are expressed in a propo-
sitional temporal logic, called computation tree logic (CTL). CTL recognizes the
logic operators introduced in the previous section on theorem proving, but extends
their reach by introducing additional operators, called temporal operators, that are
able to specify temporal relationships.33The temporal operators do not recognize
specific time increments, but instead express temporal relationships about variables
in a circuit. For example, if a request is issued, will a grant eventually be received?
The operators express properties of a CTL formula f along a temporal sequence, or
computation path P, which is the sequence of states visited during an execution
sequence. The temporal operators and their meanings are as follows:

Figure 12.26 Model checker flow.

G globally, a formula is true along a path P now and at all future times.

F eventually, a formula will be true along path P at some future time.

X next, a formula is true at the next instant of time.

U until, the expression f U g, is true along a path p if g is true in some state s,
and if f is true in all preceding states.

Model
checker

Model

Properties

Correct

Incorrect +
counterexample

DESIGN VERIFICATION 641

A formula that is true eventually may in fact be true at present, so a proposi-
tion or formula that is globally true is also eventually true, but not vice versa. The
next operator is generally understood to refer to an environment, such as a syn-
chronous circuit, where the next instant of time refers to the next active clock
edge.

CTL is a branching time logic; that is, from any given state, there may be sev-
eral possible branches (next states). Path quantifiers are used to indicate whether a
formula f is true along some, or all, possible branches from a state s. These are as
follows:

The path quantifiers are used in conjunction with the temporal operators. For
example, the CTL formula EGf is used to state that there exists a path in which
formula f is always (globally) true. The universal and existential quantifiers can be
expressed in terms of one another. The formula EGf is equivalent to ¬AF¬f. Ver-
bally, this states that “there exists a path along which formula f is globally true” is
equivalent to “there is no path along which formula f is eventually false.”

Two important properties that are often submitted to model checkers are safety
properties and liveness properties. A safety property expresses some undesirable
behavior that a circuit must avoid, while a liveness property expresses some desir-
able behavior required from the circuit. To illustrate this, consider a traffic light con-
troller (TLC) that regulates the flow of traffic. It must not permit simultaneous traffic
in north–south and east–west directions. This is a safety requirement. On the other
hand, cars reaching the intersection from all directions must eventually be serviced
by the TLC. This is a liveness requirement. The properties for the TLC can be writ-
ten independently of the TLC circuit model. In this respect, the properties serve as a
(partial) specification of the design. They are totally independent of the implementa-
tion; every TLC must satisfy these safety and liveness properties, regardless of
whether the TLC is regulating traffic in a busy intersection on Main Street or on a
highway where a traffic light senses occasional traffic from a farm road and eventu-
ally gives that traffic the right-of-way.

Example The following is a sample of the properties that must be satisfied for an
implementation of the traffic intersection in Figure 12.27.

AG(¬N–Go ∧ N–s → AF N–Go)

AG(¬S–Go ∧ S–s → AF S–Go)

AG(¬W–Go ∧ W–s → AF W–Go)

AG(¬E–Go ∧ E–s → AF E–Go)

AG¬(E–Go ∧ (N–Go ∨ S–Go))

EF(N–Go ∧ S–Go)

A universal path quantifier, f holds for all possible branches from state s.

E existential path quantifier, f holds on at least one path from state s.

642 BEHAVIORAL TEST AND VERIFICATION

Figure 12.27 Traffic light controller.

In this example, the letters N–s, S–s, E–s, and W–s denote sensors. The letters N–
Go, S–Go, E–Go, and W–Go are traffic signals for the indicated directions. So, in
reading the first property, the letters AG indicate that the property in parentheses must
hold globally throughout the design. The property in parentheses states that if the sen-
sor for north-going traffic is active, but the traffic signal for traffic going north is not
active, then eventually, on all paths, the N–Go signal must become true. This is a live-
ness property. The next three properties are interpreted similarly.

The fifth property is a safety property. It states that the traffic signal must
never be active in the east direction while it is also active in the north or south
direction. The last property ensures simultaneous north/south traffic flow. This is
optional; the specification may actually call for north-going traffic to simulta-
neously have the right-of-way for a left turn. In that case, south-going traffic must
be inhibited. ��

Given a specification, the model checker processes it piecemeal. In order to do
this, the CTL formula is parsed into atomic propositions and operators. Consider the
first CTL formula in the example. The parse tree for this formula is shown in
Figure 12.28. Parsing is performed on the basis of operator precedence. Note first
that the terminal vertices are atomic propositions. For the logic operators, the unary
¬ has a higher precedence than the binary operators, and the logic operators ∧ and
∨ have higher priority than →. Where there is any doubt about how a formula
might be parsed, it is recommended that parentheses be used to remove the
ambiguity.

The parsed CTL equation is evaluated by the model checker, one vertex at a
time, starting with terminal vertices. The model is examined to determine if there
are any states that satisfy N–Go. Then it is necessary to find states that satisfy ¬N–
Go—that is, states that do not satisfy N–Go. Next, states satisfying N–s must be
identified. The sets of states that satisfy ¬N–Go and N–s are intersected to satisfy
the subformula exp1 = ¬N–Go ∧ N–s. For the subformula exp2 = AF N–Go the
model checker starts with the states in which N–Go is true, then backs up from
these states, looking for states such that all paths from those states eventually
satisfy N–Go.

North

South

West
East

DESIGN VERIFICATION 643

Figure 12.28 Parse tree for CTL formula.

Now, given the sets of states satisfying exp1 and exp2, it becomes necessary to
satisfy the implication (→). Recall that implication is equivalent to exp1 ∨ exp2.
Given the set of states that satisfy exp1, the set of states that satisfy exp1 is S − exp1,
where S is the set of all states (the universe). The last step is to determine if the for-
mula AG(exp1 ∨ exp2) is true. It is true if the expression exp1 ∨ exp2 is true in all
states.

We introduce another example to illustrate model checking. This example, illus-
trated in Figure 12.29, is called the mutual exclusion problem,34 often referred to as
mutex. It is a nondeterministic state transition graph; the transitions are shown, but
the conditions under which they choose one transition over another are not shown.
For the purposes of model checking, it is not important how a particular state was
reached; it is only important to know if the state can be reached. The circuit repre-
sented by the figure consists of two concurrent processes, P1 and P2. Each process
can be in one of three regions (a region can be a software or hardware function of
arbitrary size):

The processes can be software functions or hardware functions. A software
process may be trying to access a file on a hard drive. A hardware process could
be one of several I/O devices trying to write to memory. In either case, software
or hardware, only one process is permitted to access the resource at any given
time. When a process has no need to access the resource, it is in its noncritical
region. When it needs the resource, it enters its trying region. Eventually it is
granted access to the resource, at which point the process enters its critical
region.

Ni noncritical region

Ti trying region

Ci critical region

AG

→

∧

¬

N-Go

N-s

AF

N-Go

644 BEHAVIORAL TEST AND VERIFICATION

Figure 12.29 Mutual exclusion system.

It is assumed that a process remains in its critical region for only a finite duration of
time. Hence, each process gets as many accesses to the resource as it wants. However,
since the processes are not permitted to simultaneously access the resource, the state
C1C2 is not permitted. Note, however, that S4 and S5 both represent T1T2. It would
seem that these states could be merged. However, if that were done, the merged state,
call it S4′, would have transitions to C1T2 (S7) and T1C2 (S8). There would then be a
loop S1–S4′–S8 (actually an infinite path when unrolled). Note that the graph in
Figure 12.29 is nondeterministic; hence if the arbiter were biased as a result of some
implementation detail, the system could remain in that loop indefinitely, with the result
that C1 would never get access to the resource. In technical terms, the system with the
merged state S4′ would violate a CTL liveness formula AG(T1 → AFC1).

It can be shown that the circuit in Figure 12.29 satisfies the CTL formula AG(T1
→ AFC1). This is demonstrated using the equivalent expression ¬T1 ∨ AFC1. The
model checker must identify those states for which either T1 is not true or C1 is even-
tually true (AFC1). The set of states that satisfy ¬T1 is {S0, S2, S3, S6, S7}. The set of
states that satisfy AFC1 is found iteratively, using the following function:

function MCAF(C1)
{
X = 0;
Y = MC(C1)
while (X ! = Y)
{
X = Y;
Y = Y ∪ {s | s → s′ ∈ Y};

}
return(Y);

}

MC(C1) denotes the model checker searching for the set Y of states that satisfy C1.
Once that set is found, the function MCAF(C1) loops through the set of states,

N1N2

T1T2C1N2

C1T2

T1N2

N1C2T1T2

T1C2

N1T2

S8

S3

S2S1

S0

S4

S7

S6S5

DESIGN VERIFICATION 645

searching for states whose branches all transition to C1 or AFC1. It is readily con-
firmed that initially Y = {S3, S7}. Then, after the first pass Y = {S3, S7, S1, S4}. After
the second pass Y = {S3, S7, S1, S4, S8}, and after the third pass Y = {S3, S7, S1, S4, S8,
S5}. There is one more iteration, but no new states are found, so the function halts.
The set Y is termed a fixed point. In general, if F(Y) = Y, then the set Y is termed a
fixed point. The set of states S0, S2, and S6 form a loop that does not satisfy AFC1.
However, they satisfy ¬T1, so the union of the two sets of states equals the entire set
of states. In addition to checking properties, the algorithms can also perform reach-
ability analysis, wherein the program determines which states can, and which can-
not, be reached from an initial state.

It was pointed out previously that advances in model checking have been aided
by advances in ROBDDs, in large part due to the fact that ROBDDs can represent
circuits in a very compact form. As was pointed out above, the CTL formula is
parsed and processed piecemeal. The temporal operators represent the greatest chal-
lenge. We saw that the CTL formula AF had to be solved iteratively. There are eight
pairs of quantifier/temporal operator combinations. Fortunately, they can all be
expressed in terms of AF, EU, and EX. However, expressing these as ROBDDs
requires a considerable amount of additional machinery, and it would take us too far
afield to delve more deeply into the subject. Several good texts have been written on
the subject. The first-time student may find the text by Huth and Ryan35 to be a good
introduction to the subject. For the reader looking for a more rigorous discussion,
the texts by Clarke et al.36 and Kropf37 can be found helpful.

We now explain how ROBDDs support model checking. However, a more mod-
est example will be used to explain the sequence of operations. The circuit in
Figure 12.30 is a simple 2-bit counter, with its state transition graph shown to the
right. We will create a ROBDD representing the state transitions for this circuit. The
state transition equations for this circuit are listed in Figure 12.30.

A ROBDD for a sequential circuit can be created from a truth table representing
the state transitions. This truth table is given in Figure 12.31. In that table, M
denotes the state machine transitions. Where M = 1 there is a transition; for exam-
ple, there is a transition from X1, X2 = 0, 0 to X1′, X2′ = 1, 0. Note that the variables
are interleaved; that is, it might be expected that the variables would be listed in the

Figure 12.30 Two-bit counter.

DFF1

DFF2

S0

S2

S1

S3

X1

X2

X1′

X2′

X1′ = X1

X2′ = X1 ⊕ X2

646 BEHAVIORAL TEST AND VERIFICATION

Figure 12.31 Truth table for two-bit counter.

order X1 X2 X1′ X2′, but experience suggests that interleaving usually produces more
compact ROBDDs. Also note that there are four entries for which M = 1; these
entries correspond to the four transitions of the state transition graph. The ROBDD
is illustrated to the right of the truth table, where X1, X1′, X2, X2′ are mapped to indi-
ces 1, 2, 3, and 4, respectively.

Once the truth table has been created, generating the ROBDD is straightforward
(cf. Section 2.11). Four paths in the ROBDD lead to the terminal vertex with value
1. A problem with this method is that it relied upon the truth table. The truth table is
helpful for describing, conceptually, what is being done, but for large circuits the
truth table takes more memory space than can be afforded. To avoid the expense of
building the truth table, the Apply operation is used to build the ROBDD directly.

The transition relation for a synchronous circuit can be expressed as

. For the 2-bit counter n = 2. Expressed in this form, the equations

for the 2-bit counter become (X1′ = X1) ⋅ (X2′ = X1 ⊕ X2). The equal sign (=) is treated
as an exclusive-NOR, so the equation becomes (X1′ ⊕ X1) ⋅ (X2′ ⊕ X1 ⊕ X2), which
can be simplified to (X1′ ⊕ X1) ⋅ (X2′ ⊕ X1 ⊕ X2). Repeated applications of the Apply
and Reduce algorithms can now be used on this equation to create the ROBDD
directly, without the intermediate step of creating a truth table.

Once the ROBDD has been built for the model, the next step is to build a
ROBDD for the CTL formula. As was done previously, the initial step is to parse the
CTL formula. The next step is to find the states in which the atomic propositions
hold. To illustrate this, we assume that the states X1 and X2 are atomic propositions
and associate the states Si with (X1, X2) by mapping the states into their binary

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
1
0
0
1
0
1
1
0
0
0
0
0

X1 X1′ X2 X2′ M

1

2

3
0

0

0 1

1
0

01

01

2

3

44
1

1 1

1 0

0

f i X ′i=()
1 i n≤ ≤

∏

DESIGN VERIFICATION 647

equivalents: S0 → (0, 0), S1 → (1, 0), S2 → (0, 1), S3 → (1, 1). Then, to find the
states that satisfy atomic proposition X1 we perform Apply(⋅, BM, BX1).

The model checker is most effective on reactive circuits—that is, circuits that
react to stimuli from their environment. The mutex circuit described above is an
example of such a circuit. Bus controllers, cache coherency circuits, and instruction
pipelines are other examples of circuits that have benefited from the use of model
checkers. These types of circuits are characterized by the fact that many events
occur concurrently, and checking out all the possible combinations of events by
means of simulation is impractical. As a result, subtle design errors may escape
detection until after an IC has been put into service. All appears well until, suddenly,
a user configures the IC in a way that had not previously been anticipated.

Several examples have been cited in the literature where model checking has
identified problems in designs thought to have been correctly designed. A cache
coherency protocol for a distributed, shared memory multiprocessor was verified by
means of model checking.38 Subtle errors were found that had extremely low proba-
bability of occurrence in simulation runs. The IEEE Futurebus+ cache coherence
protocol is another example of a complex system where model checking was able to
find subtle bugs in the design.39 An IBM design team used model checking to verify
the control logic in a circuit they were designing.40 Their records showed that formal
verification (FV) detected 24% of the errors that were discovered, even though sim-
ulation had preceded the use of FV. Of the errors detected by FV, they believed that
40% of those errors might not have been detected by simulation.

Despite the efficiency with which ROBDDs can represent data structures, model
checking still has problems coping with large circuits. “Even simple cores like a PCI
interface are simply too big for model-checking tools, unless someone exercises a
great deal of cleverness to figure out how to abstract the design and boil it down to
something that’s small enough for a model-checking tool to deal with.”41 Because
model checking is exhaustive, every variable doubles the state-space that must be
explored, subjecting it to state explosion.

It is estimated that model checking can handle circuits containing up to 200–400
latches or flip-flops, depending on the amount of memory available on the host com-
puter. Clearly, this is not adequate to handle multi-million gate circuits. However,
the parts of a circuit that present problems, because of concurrency, can often be
extracted from the larger circuit and verified standalone, as was done by the IBM
design team. The standalone environment is probably the most severe test, since
there are no restraints on the design in that environment. Once the verification is
complete, the function can be placed in a library where it can be called into applica-
tions as needed. In general, some of the things that can be done to handle large cir-
cuits include:

Composition Break a problem into smaller units.

Reduce data paths For example, model an ALU as a 2-bit data path.

Abstraction Eliminate variables not needed to prove a property (every
variable doubles memory requirements).

648 BEHAVIORAL TEST AND VERIFICATION

Other approaches include combining model checking with random simulation.
When the model checker fails to verify a property because it runs out of memory, the
system can attempt to verify a property by resorting to random simulation. It has
also been suggested that the ultimate verifier will combine model checking with the-
orem proving.36 The Accellera standards committee has endorsed IBM’s Sugar as a
standard to drive assertion-based verification.42 This language is a superset of CTL
in which many constructs have been added to make the language user-friendly, with-
out necessarily extending its expressiveness.

Symbolic Model Verifier (SMV) and Verification Interacting with Synthesis (VIS)
are two popular university-developed model checkers. SMV, developed at Carnegie
Mellon University, has its own language, whereas VIS, developed initially at the
University of California, Berkeley, and subsequently in collaboration with the Uni-
versity of Colorado, has a utility called Verilog to MV (VL2MV) that reads Verilog
and compiles it to BLIF-MV, the native language of VIS.

12.9.5 Symbolic Simulation

Symbolic simulation resembles logic simulation in many respects. Stimuli are pre-
sented to a simulator, which then applies the stimuli to a circuit model in order to
predict its response. The major difference between the symbolic simulator and the
logic simulator is that the set of stimuli accepted by the symbolic simulator includes
symbolic values in addition to binary values. The simulator response appears at the
output in the form of expressions. This is illustrated in Figure 12.32. In this five-
input circuit, there are 32 possible binary input combinations. To exhaustively check
all combinations applied to this circuit would require simulating 32 possible combi-
nations. By using symbols and examining the expression at the output, all 32 possi-
ble combinations are evaluated simultaneously.

For a five-input circuit, with its 32 input combinations, symbolic simulation does
not offer a significant gain, but consider the case of a 32-bit ALU. It simply is not
feasible to simulate all possible binary combinations (cf. Problem 3.3). While sym-
bolically simulating a single vector along a data path takes significantly more CPU

Figure 12.32 Symbolic simulation.

Induction If an arbiter must handle n units, perform model checking
first on a model with two units, then three, and so on.

A

B

C

S1? A : B

S2 & C

mux

S1

S2

(S1? A : B) & S2

((S1? A : B) & S2) | !S2 & C

DESIGN VERIFICATION 649

time than simulating a single vector composed of binary bits, symbolically simulat-
ing a single vector will be faster than simulating tens of thousands of randomly gen-
erated binary vectors. As to how to decide where to employ symbolic simulation,
note that an approach often used in testbenches during verification is to set up a loop
in which binary stimuli are randomly generated and simulated until there is a high
degree of confidence that the design is free of errors (Section 12.5). The presence of
loops and random stimuli in the testbench is often a clue as to where to employ sym-
bolic simulation.

When simulating an array with predictable behavior, such as an ALU, analysis of
results may be easier if binary values are assigned to the control bits. For example,
suppose an ALU has four control bits, thus being able to perform any of 16 possible
arithmetic and logic operations. In such a case, each of the 16 operations could be
simulated with symbolic values applied to the data path inputs, and each of these 16
could be individually examined to determine whether the response is correct. If one
of the 16 operations is the AND operation, then the expected output would be a0 ⋅ b0,
a1 ⋅ b1, ..., a31 ⋅ b31. This flexibility, being able to specify symbolic values on some
inputs and specify binary values on others, is particularly useful if there is insuffi-
cient computer memory to represent all the inputs symbolically.

One of the benefits of symbolic simulation is its ability to handle large circuits. It
may be somewhat constrained by the need for storage to contain the symbolic equa-
tions, but this has only negligible impact on its capacity. Perhaps of more concern is
the amount of time and effort required to examine simulation response, and the pos-
sibility that examining complex responses may be an error-prone operation, given
that equations are expressed symbolically. Also to be considered is the time needed
to examine response, versus the time it takes to set up random simulations and create
a self-checking testbench configuration.

Equivalence checking was discussed in Section 12.9.3. When state points match,
corresponding cones can be checked without too much difficulty. However, two
designs may possess equivalent behavior, but they may be so different internally that
it is difficult or impossible to get a match for the state points. For example, one
design may be expressed in terms of muxed state machines, while state machines in
the other design may be one-hot encoded. Since symbolic simulation only concerns
itself with values applied to the inputs, as well as with responses that appear at the
outputs, it may be able to help determine whether or not the two designs are behav-
iorally equivalent. If a mismatch occurs on the outputs, it is possible to pin down the
internal node where the behaviors diverge, recognizing, of course, that internal rep-
resentations will not be exact if state points do not exactly match.

Another argument put forth for symbolic simulation is the ease with which a sim-
ulation environment can be converted to accomodate symbolic simulation. There is
almost no learning curve, since the HDL model and testbench that were used for
logic simulation are easily adapted to perform symbolic simulation. This stands in
contrast to theorem proving and model checking where a major learning curve is
required.

For data path logic, the number of cycles of simulation required to complete the
simulation will be the number of cycles required to propagate the values from the

650 BEHAVIORAL TEST AND VERIFICATION

inputs, through the circuit, to some observation point, such as an output port or an
internal register. The data path may be an ALU, as mentioned earlier, or the data
path may be an internal memory or a data switching device such as a multiplexer.
Internal delays can also be represented symbolically, and they can be accumulated
as the signals propagate forward to an output.

12.10 SUMMARY

Design verification is the process of demonstrating that a design satisfies a specifica-
tion, which in turn must satisfy a set of requirements imposed by an end-user. The
importance of a complete, accurate, and unambiguous specification tends to be over-
looked. In software projects it is reported that 40–60% of all errors are requirements
errors. A requirement is a capability or feature needed by an end-user to solve a
problem or achieve an objective. Requirements management is a systematic
approach to identifying, organizing, communicating, and managing the require-
ments of an application.43 With respect to requirements, it has been said44 that “the
really serious mistakes occur in the first day.” Furthermore, the longer the time lag
from specification to discovery and repair of a bug (requirements error), the more
expensive the cost of the fix. This closely parallels the rule-of-10 (cf. Section 1.8) of
hardware design, which asserts that the cost of finding and fixing a bug in hardware
increases by a factor of 10 at each level of integration. Clearly, if the specification is
incorrect or incomplete, then verifying that the implementation matches the specifi-
cation simply verifies that the correct bugs have been designed into the product.

In the early days of digital circuit design, it was possible to simulate all or nearly
all possible input combinations to a circuit and develop complete confidence that the
design would work as intended. That is no longer possible. A typical digital circuit
ranges in size from hundreds of thousands to millions of logic gates. It is also likely
to contain many embedded memories, small and large. Some of the modules are
designed in-house, others are purchased on the open market. Those that are pur-
chased on the open market may be soft IP (intellectual property), meaning they are
described at the RTL level, or they may be hard IP, in which the end-user gets a file
containing a description expressed in a graphical description language, but the user
gets little or no information describing the internal workings of the IC.

The specification for the design may be written in a formal language, or it may be
written in everyday English (or some other spoken language). The spoken language
tends to be imprecise, with considerable ambiguity, redundancy, confusion, and/or
incompleteness. Sometimes project managers are in a hurry to start a project, and
they may initiate the project with an incomplete specification, on the expectation
that the specification will be completed as the project goes forward. But it has been
pointed out that requirements errors are 10 times more costly to correct than other
kinds of bugs.43 This is because a change in requirements may necessitate a whole-
sale restructuring of the design, whether it be software or hardware. So proceeding
with a partially complete specification may result in a large part of that development
effort being discarded, at a considerable cost in time and money.

SUMMARY 651

Contemporary logic designs are created by teams of logic designers, each of
whom has his or her preferences when it comes to such things as coding style, logic
partitioning, and verification practices. A large, expensive design, if successful, may
live for many years and may be the basis for many generations of follow-on prod-
ucts. The design must be consistent throughout in order that new team members can
take over and enhance or add new features to the design, or port it to a new technol-
ogy with minimum confusion.

The choice of verification methods is one of the issues that team members must
decide at the start of a design project. Many verification methodologies are avail-
able, and the choice of which method(s) to use may, in part, be determined by the
nature of the product being designed. Simulation can handle designs of any size, but
the amount of time available for simulation limits the number of cases that can be
explored. Random stimulus generation does not solve this problem, but distributes
stimuli more evenly across the design so that obscure bugs are more likely to be
found. It is also less labor-intensive than targeted stimulus generation, so a user may
spend more time simulating and analyzing the results of simulation. A hardware
accelerator would be especially useful in a random stimulus approach since, if no
bugs are found, the user is ready to simulate a new set of stimuli almost as soon as
the currently running simulation has completed. One drawback to random stimuli is
the fact that, if a bug is encountered, it may take longer to isolate the problem, since
it is not always immediately clear what part of the circuit the stimuli were targeting.

Formal methods are attractive for targeting logic in reactive systems. However,
they are generally not capable of assimilating entire designs. Those areas of control
logic that are complex and obscure, and thus possible sources of subtle bugs, can be
tested in a stand-alone mode, independent from the rest of the circuit. Then, once the
design team is satisfied that the function is free of bugs, it can be put in a library and
made available to anyone who has a need for it. In fact, some IEEE protocols have
been verified using formal verification, with the result that some bugs overlooked by
many members of the standards committee were found and corrected.

TDX was a commercial effort that made good progress but eventually ran out of
money. TDX used conventional arrays and linked lists to represent and process cir-
cuit images in memory. It might have benefited from the adoption of ROBDDs, as
well as the use of other model checking methodologies. It also was limited by the
capabilities of its resources. Workstations were one to two orders of magnitude less
powerful in both memory and CPU speed.

Because model checkers exhaustively analyze a circuit model, they are limited
by the amount of available memory, and thus are most useful in circuits that are
small but complex, such as arbiters and bus controllers. Model checkers might ben-
efit from the addition of methods such as those developed for TDX. The thorough-
ness of model checkers is an advantage when analyzing extremely difficult
functions such as arbiters, but there are areas of a design, particularly combinational
blocks of logic such as those found in the data flow section, where theorem proving
is more effective. Once the block of logic has been demonstrated to be correct, it
can be placed in a library and henceforth it is only necessary to confirm that it has
been correctly interfaced to the circuit in which it will be used. The entire area of

652 BEHAVIORAL TEST AND VERIFICATION

formal verification is an active area of research, and it will continue to be so well
into the future.

PROBLEMS

12.1 List all the possible functional errors (error seeding) that you can think of that
can be applied to the b16ctr model in Section 12.6.3.

12.2 Repeat the previous problem for the decoder in Section 12.6.3.

12.3 Using the state-machine description (Figure 12.5) of the SM8 circuit in
Figure 8.44, find a test sequence for an SA0 on the input of gate 16 driven by
gate 11. Contrast this with the effort required to find a test relying solely on
the gate-level description.

12.4 Starting at the reset state, S0, provide a list of the state transitions that exercise
every arc in the state machine of Figure 12.5. If you have access to a fault
simulator, fault simulate this sequence on its gate equivalent, Figure 8.44, to
determine if it will detect every fault in the circuit. (Note that in this small
circuit, if you do not have access to a fault simulator, faults can be injected
and simulated serially by means of a logic simulator).

12.5 In Section 2.12 there is a Verilog RTL model for the circuit in Figure 2.43.
Write a set of test vectors that exercise the RTL model. If you have access to
a fault simulator, evaluate your vectors against the gate-level model.

12.6 Assume that the counter in Section 12.6.4 does not have a parallel load or
reset, but does have a left shift. Assume also that the counter is 32 bits in
width. Write the sequence required to load the counter with all 0s.

12.7 For the sensitization tree of Figure 12.7, assume that the state machine is
currently in state S7. Draw a sensitization tree that identifies paths from S7 to
S4. Explain your rationale for each of the possible paths from S7 to S4, and
why you might choose each of them.

12.8 Again using the sensitization tree of Figure 12.7, how many unique paths can
you find from state S4 to S1 without using the reset?

12.9 Create a Petri net representation for the JK flip-flop.

12.10 Create a Petri net representation of the state machine in Figure 12.16(b).

12.11 In the Petri net of Figure 12.8, a token in P2 causes tokens to appear in P3 and
P4. However, a token in P6 can only cause a token to appear in either of P2 or
P7, but not both. Explain this.

12.12 Identify the places in Figure 12.10. That is, for each Pi, define the register that
needs a specific value and determine what that value is. Complete the Petri
net in Figure 12.10. With a complete graph, you must be able to identify
several sequences that take the circuit from the reset state to the Goal state.

REFERENCES 653

12.13 Using the M and T state machines illustrated in Figure 12.16, draw a product
state machine that has a corresponding state for every state pair in the original
M and T state circuits.

12.14 Using the product state machine created in the previous problem, create a
search tree that will cause the circuit to transition from the reset state to state
<M3, T4>.

12.15 Write the equations for a 3-bit counter like the 2-bit counter in Figure 12.30.
Create a truth table like the one in Figure 12.31.

12.16 Prove that the muxed and one-hot encoded versions of the circuit in
Figure 9.30 are equivalent.

12.17 Using the inheritance properties of C++, develop a series of structures that
characterize a Counter in the LPM library so that a user can specify the
properties of the counter to be used in his or her design and be able to select
the necessary structure from a library of C++ structures.

12.18 You are performing black-box testing of software whose job is to read three
numbers from a file and determine whether those three numbers define a
scalene, isoceles, equilateral, or right triangle. How many tests do you need?

REFERENCES

1. Quinnel, R. A., Kill Bugs Early with Software-Test Tools, EDN Magazine, May 23, 1996.

2. Debany, W. H. et al., Design Verification Using Logic Tests, Proc. IEEE Int. Workshop on
Rapid System Prototyping, June 1991, pp. 17–24.

3. Baird, Mike, Designers May Find C++ to Their Liking, ISD Magazine, October 2001,
pp. 48–53.

4. Thomas, D. E. et al., A Model and Methodology for Hardware-Software Codesign, IEEE
Des. & Test, September 1993, pp. 6–15.

5. Kalavade, A., and E. A. Lee, A Hardware-Software Codesign Methodology for DSP
Applications, IEEE Des. Test, September 1993, pp. 16–28.

6. Syzgenda, S. A., and A. A. Lekkos, Integrated Techniques for Functional and Gate-Level
Digital Logic Simulation, Proc. 10th Design Automation Conf., 1973, pp. 159–172.

7. Thomas, J. J., Common Misconceptions in Digital Test Generation, Comput. Des.,
January 1977, pp. 89–94.

8. Bening, L., and H. Foster, Principles of Verifiable RTL Design, Kluwer, Boston, 2000.

9. Beizer, Boris, Black-Box Testing, John Wiley & Sons, New York, 1995, p. 9.

10. Bellon, C. et al., Automatic Generation of Microprocessor Test Programs, Proc. 19th Des.
Autom. Conf., 1982, pp. 566–573.

11. Aharon, A. et al., Verification of the IBM RISC System/6000 by a Dynamic Biased
Pseudo-Random Test Program Generator, IBM Syst. J., Vol. 30, No. 4, 1991, pp. 527–538.

12. Wood, David A. et al., Verifying a Multiprocessor Cache Controller Using Random Test
Generation, IEEE Des. Test, Vol. 7, No. 4, August 1990, pp. 13–25.

654 BEHAVIORAL TEST AND VERIFICATION

13. http://www.edif.org/lpmweb/intro/functions.html

14. Breuer, M. A., and A. D. Friedman, Functional Level Primitives in Test Generation, IEEE
Trans. Comput., Vol. C-29, No. 3, March 1980, pp. 223–235.

15. Levendel, Y. H., and P. R. Menon, Test Generation Algorithms for Computer
Hardware Description Languages, IEEE Trans. Comput., Vol. C-31, No. 7, July 1982,
pp. 577–587.

16. Belt, John E., An Heuristic Search Approach to Test Sequence Generation for AHPL
Described Synchronous Sequential Circuits, Ph.D. dissertation, University of Arizona,
1973.

17. Hill, F., and B. M. Huey, A Design Language Based Approach to Test Sequence
Generation, IEEE Comput., Vol. 10, No. 6, June 1977, pp. 28–33.

18. Azema, P. et al., Petri Nets as a Common Tool for Design Verification and Hardware
Simulation, Proc. 13th D.A. Conf., 1976, pp. 109–116.

19. Dennis, J. B. et al., Computational Structures, Project MAC Progress Report VIII, July
1971, pp. 11–52.

20. Torku, E. K., and B. M. Huey, Petri Net Based Search Directing Heuristics for Test
Generation, Proc. 20th Des. Autom. Conf., 1983, pp. 323–330.

21. Torku, Emmanuel K., Fault Test Generation for Sequential Circuits: A Search Directing
Heuristic, Ph.D. dissertation, University of Oklahoma, Norman, OK, 1979.

22. Hill, F. J., and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed., Appendix B, John Wiley & Sons, New York, 1993.

23. Freundlich, Y., Knowledge Bases and Databases, IEEE Comput., Vol. 23, No. 11,
November 1990, pp. 51–57.

24. Maxwell, Peter C., Reductions in Quality Caused by Uneven Fault Coverage of Different
Areas of an Integrated Circuit, IEEE Trans. CAD, Vol. 14, No. 5, May 1995, pp. 603–607.

25. Huey, Ben M., Search Directing Heuristics for the Sequential Circuit Test Search System
(SCIRTSS), Ph.D. dissertation, University of Arizona, 1975.

26. Arbib, M. A., Brains, Machines and Mathematics, “Cybernetics,” Chapter 4, McGraw-
Hill, New York, 1964.

27. Bharath, R., An Introduction to Prolog, Appendix B, “Artificial Intelligence, Expert
Systems and Prolog,” TAB Books, 1986.

28. PC Magazine, Vol. 18, No. 10, May 25, 1999, p. 274.

29. Maxwell, P. C., R. C. Aitken, V. Johansen, and I. Chiang, The Effectiveness of IDDQ,
Functional and Scan Tests: How Many Fault Coverages Do We Need?, Proc. Int. Test
Conf., October 1992, pp. 168–177.

30. Blackett, R. K., As Good as Gold, IEEE Spectrum, Vol. 33, No. 6, June 1996, pp. 68–71.

31. Clarke, E. M., and R. P. Kurshan, Computer-aided Verification, IEEE Spectrum, June
1996, Vol. 33, No. 6, pp. 61–67.

32. Clarke, E. M. et al., Efficient Generation of Counterexamples and Witnesses in Symbolic
Model Checking, Proc. DA Conf., 1995, pp. 427–432.

33. Bochmann, Gregor V., Hardware Specification with Temporal Logic: An Example, IEEE
Trans. Comput., Vol. c-31, No. 3, March 1982, pp. 223–231.

34. Clarke, E. M. et al., Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications, ACM Trans. Programming Languages and Systems,
Vol. 8, No. 2, April 1986, pp. 244–263.

REFERENCES 655

35. Huth, R. A. M., and M. D. Ryan, Logic in Computer Science: Modelling and Reasoning
About Systems, Cambridge University Press, Cambridge, England, 2000.

36. Clarke, E. M., O. Grumberg, and D. A. Peled, Model Checking, MIT Press, Cambridge,
MA, 1999.

37. Kropf, T., Introduction to Formal Hardware Verification, Springer, Berlin, 1999.

38. McMillan, K. L., Symbolic Model Checking: An Approach to the State Explosion
Problem, Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, 1992.

39. Clarke, E. M. et al., Verification of the Futurebus + Cache Coherence Protocol, in Formal
Methods in System Design, Kluwer, Boston, MA, 1995, pp. 217–232.

40. Schlipf, T. et al., Formal Verification Made Easy, IBM J. Res. Dev., Vol. 41, No. 4/5, 1997.

41. Dill, David, quoted in Formal Verification: Assessing a Critical Technology, panel
discussion, Barbara Tuck, moderator, Computer Design, June 1998.

42. http://www.eedesign.com/story/OEG20020509s0075

43. Davis, Alan M., and Dean A. Leffingwell, Using Requirements Management to Speed
Delivery of Higher Quality Applications, Technical Report 0001, Requisite, Inc., Boulder,
CO, 1996.

44. Rechtin, Eberhardt, The Synthesis of Complex Systems, IEEE Spectrum, July 1997,
pp. 51–55.

657

Digital Logic Testing and Simulation

,

Second Edition

, by Alexander Miczo
ISBN 0-471-43995-9 Copyright © 2003 John Wiley & Sons, Inc.

INDEX

Symbols

@ symbol 292
Numerics
0-1 transition 523
0-controllability 397–398
1-0 transition 523
1-controllability 397, 399, 401
74181 ALU
 Verilog model 359–360
 gate-level drawing 376
95% confidence level 347
9-value ITG 246–249, 278

A

A-algorithm (AALG) 184–188
 back propagation 185–188
 chain segment 187–188
 DRBACK 187–188
 DROPIT 187–188
 flexible signal(s) 185–187
Abbreviated descriptor cell 145, 149
ABIST (array BIST) 479
ABT test 477
AC test 298
Acceptable fault coverage 471
Acceptable quality level (AQL) 2, 17, 23,

348, 388, 551
Accumulate signatures 460
Accuracy, definition of 285
Action/check pair 587
Active fault tolerance 495, 499
Activity vector 180–181
Acyclic circuit 40, 92, 260, 263
Adaptive experiments 266

Addition of two vectors 538
Address decoder faults 522
Address lines 515
Addressable Registers 411–412, 415
Ad-hoc DFT solutions 388–389, 393–395
Ad-hoc techniques 635
AHPL (A Hardware Programming

Language) 35, 597–598, 601, 604
Algorithmic test 356–361
Aliasing 470–471
Almost-full-scan 427
Alpha particles 537
Ambiguity
 simulation 272
 state machine 267–269, 272–275
Ambiguous region 63
AmZ8065 Burst Error Processor 502
Analysis of a Faulted Circuit 122–125
AQL

see

 Acceptable quality level
Artificial intelligence (AI) 599
Assertion checker 577
Asynchronous circuit 40, 61
ATLAS (Abbreviated Test Language for All

Systems) 320
Atomic proposition(s) 636, 642, 646
ATPG/fault simulator link 378–379
ATPG/user controls 380
Automated optical inspection (AOI) 317
Automated X-ray inspection (AXI) 317–318
Availability of a system 503, 506

B

Backdriving 309
Backtrace 186, 190–202, 205, 208, 210,

618–620, 622

658

INDEX

Backtrack 186, 193, 199, 202, 218
Balanced acyclic sequential circuit 262–264
Ball grid array (BGA) 317, 433
Bare-board testing 302
Bare die 24
Basis of

V

 539
Bed-of-nails 302, 307–308, 313
Behavioral fault modeling 353–356
Behavioral fault simulation 361–364,

575–576
Behavioral intermediate form (BIF) 608
Behavioral MUX 354–356
Behavioral processing algorithms 593–596
Behaviorally equivalent circuit 338
Biasing functions 585
Bidirectional goal search 624–625
Bidirectional pins 3344–345
Bidirectional signal flow 75
Binary decision diagram(s) (BDD) 86–101,

219–224, 615, 630, 638–639, 645–647
 0-experiment 223
 1-experiment 223
 apply algorithm 92, 96–100, 220, 638–639,

646–647
 class 1 faults 221
 class 2 faults 221
 composition algorithm 101
 faulting the BDD Graph 220–224
 reduce algorithm 91–96, 646
 restrict algorithm 101
 total ordering on the variables 91
Binary message stream 459
Binary operators 642
Binning 3
Binomial expansion 464, 544
Binomial probability distribution 12
BIST

see

 built-in self-test
Bit line 63–64
Bit-changer 467
Black box testing 357, 418, 488–489, 569
Block coverage 365, 576
Block oriented analysis 108–110
Blocking assignments 580
Blocking signal 38, 139
Blocking value 127
Boolean difference(s) 210–216, 615
Boolean satisfiability 216–219
Bound nets 195
Branch address hashing 497

Branch coverage 576
Branch node 496
Branch-and-bound 189–190
Branching time logic 641
Breadth-first search 624
Break all cycles 432
Bridging faults 335, 337, 552
BSDL (boundary scan description language)

442
Building goal trees 617–618, 626
Built-in logic block observer (BILBO)

463–464, 486, 532
Built-in-self-test (BIST)
 benefits of BIST 452
 self-Test for BIST 531
 self-test SRL 475
 Self-test control macro (STCM) 479
 self-testing circuit 498
Bulletins, scheduling 65
Burn-in 4–5, 559
Burn-in failures 560
Burst error correction 499–503
Bus contention 61, 129, 554
Bus functional model (BFM) 344
Bus keeper 553
Bypassing memory 418

C

Canonical form 266
Capacitive coupling 562
Capture internal state at registers 581
Capture line 210
Capturing design verification vectors 344–346
Case statement 590
Catastrophic failure 552
Causal link 147
Causative links 74
CCITT-16 polynomial 483
Cell libraries 296
Central processing unit (CPU) 489, 513
Chain rule 215
Channel connected component 79, 83, 340
Characterize new devices 296
Characterized by a number of parameters 590
Charge sharing 75
Charge, trapped 62
Checking sequence 270
Checkpoint arcs 332

INDEX

659

Checkpoint faults 331–333, 364
Circuit Initialization 349–350
Circuit level model 37
Circuit partitioning 137, 465–466
Clock rate tester 286
Clock skew 415, 423
Cluster parameter 14
CMOS

see

 Complementary metal oxide
semiconductor

Code coverage 365–367, 575–578, 585
Code coverage versus fault simulation 366
Code inspections 581
Coefficient field 457
Coincidental correctness 576
Column decoder 515
Combinational controllability 397–398
Combinational feedback loop 417
Combinatorial explosion 127, 165, 522, 599
Common ambiguity 73
Commutative linear algebra 457
Commutative ring 456
Compiled code 570
Compiled simulator 44–48
Complementary Metal Oxide Semiconductor

(CMOS) 38–39, 124, 338–339, 551
 stuck-open faults 454
Component evaluation 80
Component interface 487
Composite signal 1/0 167
Compound proposition 636
Comprehension Versus Resolution 371
Computation path 640
Computation tree logic (CTL) 640–646
 parsing the CTL formula 642–643
Computer Description Language (CDL) 35
Concurrent engineering 29
Concurrent fault simulation 139–149, 334,

362, 608, 616, 635
Concurrent operation 64
Concurrent processes 643
Cone(s) of logic 45–46, 105, 137, 252, 316,

374, 464, 481, 571, 638–639
Conflict(s) 172, 177–179, 186, 207, 258,

417, 624
Conformal coating 310
Conjunction 38
Conjunctive normal form (CNF) 39,

216–218
Connection function 76

Connectivity tables 406
Consistency operation 168
Consistent singular cubes 172
Constraint propagation 609, 625–626
Continuous loop, run in 480
Contrapositive 202
Control concurrency 574
Control faults 355
Control registers 568
Controllability 388, 394, 466, 551, 576–578
Controllability Equations 396–398
Controllability relation 490
Controllability/observability (C/O) 396–406,

609, 634
Controlling signal 108
Converged 143–144
Converging lists scheduler 65–66
COP (controllability and observability

program) 403
Core limited die 407, 546
Core module(s) 8, 35, 158, 451, 567
Correct destination state 616
Correlate abstract states 601
Correlate environmental conditions 486
Cost of ownership 319
Cost to test a memory chip 521
Cost/benefit analysis 483
Counter, generic model 594
Cover 172
Cover line 210
Cover of F 172
Coverage Evaluation 575–578
Co-verification 573–575
Covering problem 494
Creation of effective stimuli 120
Criteria for selecting stimuli 345
Critical value on a node 206
Critical path tracing (CPT) 208–210
Critical path(s) 148, 205–207, 249–250
Critical race 50, 239
Critical region 643
Critical value(s) 205, 208
Cross-coupled latch 40–41
Cross-coupled NAND latch 234
Crosspoint fault 337
Crosstalk 286
Cube theory 171–182
 singular 172
 test cube 180–182

660

INDEX

Current objective(s) 196, 198–199
Current time frame (CTF) 251–252
Cut feedback lines 49, 242–244
Cycle simulation 101–106, 571, 579
Cycle-free sequential circuit 431
Cyclic sequential circuit 40
Cyclic redundancy check (CRC) instruction

486

D

D flip-flop (DFF) 42–43, 89–90
DALG-II 369
D-algorithm 170–184, 272–273, 598
Data collection 478
Data faults 355
Data management system 10
DATA probe 474
Data retention test 533
Data sheet 568
Data transfer 495
Data width 591
DC test 298
D-chain 180, 183
Dead-end fault 369
Dead-end(s) 610–612, 618, 629
Deadening 371
Decision table 168
Declarative statement 636
Deductive fault simulation 151–152
Deep submicron (DSM) 26–27, 147, 552,

562
Defect 3
Defect level (DL) 15, 131
Defect size 27
Defects per million (DPM) 19, 21, 521, 531,

560–561
Defects per unit area 12
Defects that have strong nonlinear

characteristics 557
Delay 50
 ambiguity 60
 calculations 70, 106–110
 distributed 40
 fault model 147–148, 333–334, 464, 562
 inertial 60, 67
 lumped 40, 52
 maximum 60
 media 60

 minimum 60
 nominal 55, 59
 transport 60
 turn off 60
 typical 60
 unit 55, 58–59
 zero 56–57, 570–571
DEPOT (DEductive, Path-Oriented Trace)

610, 614–619
Deracing 72
Derived clocks 416
Descripter cell(s) 67–68, 134, 588
Desensitizing 371
Design error coverage 579
Design error injection 581
Design Error Modeling 578–581
Design process 6– 7, 9
Design validation 568
Design verification 568–569, 579–580, 609,

635–636
Design verification testbench 366
Design verification vectors 364
Design-for-test (DFT) 20, 327, 341,

387–389, 412, 564, 633–634
Desktop Management Interface (DMI)

487–488
Desktop Management Task Force (DMTF)

453, 487
Destination goals 624
Destructive readout (DRO) 515
Detect electronics 311–312
Detectability of a fault 405
Detectable 167
Determining which vectors to retain 346
Device-under-test (DUT) 3, 120, 122, 284
D-frontier 180–181, 183–184, 191, 194, 199,

203–204
DFT

See

 Design-for-test
Diagnosis 306
Diagnostic analysis 478
Diagnostic capability 134
Diagnostic control unit 80
Diagnostic program 7
Diagnostic program in ROM 473
Diagnostic Programs 497
Diagnostic software 485
Difference operator 212–213, 215
Differential fault simulation (DSIM) 149–151
Digital Description Language (DDL) 35

INDEX

661

Digital sampling oscilloscope (DSO) 318
Dimension of

V

 539
D-intersection 180
Directed arc 495
Directly observable 613
Discrete increments 426
Disjunctive normal form 39, 639
Distinguishing sequence(s) 267–271
Distributed fault simulation 348
Diverged 143
Divide functionality (H/W, S/W) 570
D-list 183–184
D-notation 171
Domain specific knowledge 631
Dominant logic value (DLV) 208
Dominate(s) 130, 203
Dominator 203–204
Domino technique 297
Dot product 457
Double latch design 412–413
DPM

See

 Defects per million
Drivers in parallel 392
Drop-in function 35
Dual Clock Serial Scan 410–411
Dual in-line packages (DIPs) 307, 432
Dump file 330
Duration of a strobe measurement 291
DUT

See

 Device under test
Dynamic analysis 569, 629
Dynamic fault imaging, (DFI) 300–301
Dynamic memory 75
Dynamic partitioning 79
Dynamic RAM (DRAM) 64, 515–516
Dynamic tester 286–288

E

Early life failures 483, 559
E-beam probe 4, 299–301
ECC encoder circuit 542
Economical set of goals 618
Economics Of Test 20–23, 283
Edge propagation 148
Edge triggered flip-flops 42
EEPROMs (Electrically Erasable PROMs)

515–516
Effectiveness of Fault Simulation 23–24
Effectiveness of test stimuli 5–6
Effects of Memory 234

Electromigration 562
Electronic design automation (EDA) 9–11,

86, 296, 298
Electronic Design Interchange Format

(EDIF) 589
Electronic knife 315
Elementary gate 335
Elementary in variable

x

 335
Embedded memories 524
Emission list (ELIST) 145
Emitter-coupled logic (ECL) 340, 484
Endmodule 329
Engineering change order (ECO) 34
Engineering Design System (EDS) 478
Engineering test station 296
Entropy

H

 (bits per symbol) 537
EPROMs (Erasable PROMs) 515–516
Equal parity cover line 210
Equivalence checking 568, 636, 638–639, 649
Equivalence class of faults 129–131, 136,

331, 342, 478
Equivalent circuit(s) 340–341
Error 3
Error correcting codes (ECC) 29, 499–503,

537–543
Error detection and correction (EDAC) 188,

452, 486, 496, 499, 537–545
Error detection circuitry 499
Error patterns 462
Error seeding 579
Error signal 142, 486
Error trace 640
Errors to inject 580
Estimate of fault coverage 362
Euclidean division algorithm 457, 500–503
Evaluation techniques 70–71
Even parity check 542
Event 55, 64, 139
Event driven simulation 44, 54–56, 571
Event monitor 577–578
Event notice 64
Event propagation 106
Excess current 552
Excitation function 76
Excitation states 76
Exercise sequence 253
Exercise_part 293
Exhaustive

n

−

1

 level search 599
Exhaustive test 464

662

INDEX

Expected coverage

E

(

C

) 465
Expected response 3, 284
Expected results 584
Expected signature(s) 453, 473
Expert system 630–632
Exploiting knowledge 587
Exploiting behavior 587
Expression coverage 365, 576–577
Extended backtrace (EBT) 250–252
Extended D-cubes 252–254
Extender cards 486
Extensibility 288
Extension field 458
Extension language 573
Extremal 172–173, 175

F

Failure analysis 300
Failure rate 543
Fall time 60
False negatives 320
False path 110
False reject rate 317
FAN (fanout oriented test generation

algorithm) 193–202
Fanout branches (FOB) 209
Fanout free region (FFR) 195, 209, 331–332
Fanout point 195
Fan-out point objectives (FPO) 195–196,

199–202
Fast plunge 371
Fault Behavior for CMOS NOR 338–339
Fault collapsing 131
Fault coverage 14, 131, 134, 465
Fault coverage Profile(s) 350–351, 367
Fault coverage versus defect levels 17
Fault cubes 300–301
Fault diagnosis 132
Fault dictionaries 316, 351–352
Fault directed testing 356
Fault dominance 130, 136, 331
Fault dropping 137, 352–353
Fault effect(s) (FE) 142–147, 172, 209–210,

373, 405, 602, 610–611, 616
Fault file 326
Fault injection 134
Fault insertion in functional models 362
Fault list 169

Fault list collapsing 577
Fault list compiler 609
Fault-List Management 381
Fault list manager 609
Fault-List Partitioning 347
Fault models 127–129, 331–340
Fault origin 143–145
Fault partition sizes 347
Fault sampling 346–347, 609
Fault secure 498
Fault simulate RTL modules 362
Fault Simulator 311–312, 341–353, 616–617
Fault site event sources 150
Fault tolerance 495–505
Fault-directed mode 629
Fault-directed vectors 324
Fault-list compiler 326
Faults for functional primitives 356
Fault-secure 498
Feasibility studies 570
Feedback lines 39, 48
Feed-forward sequential circuit 427, 431
Fence multiplexer 481
FFR

See

 Fanout free region
Field faults 337
Field reject rate 15
Field replaceable unit (FRU) 29
Field testing 453
Field-effect transistor (FET) 560
FIFO (first-in, first-out) memory 514
Fire code(s) 499
First silicon debug 479
First-degree hardcore 490
Fixed point of a set of states 645
Flattened netlist 326
Flush test 415, 477
Forced transition 523
Forcing values 205
Formal DFT 389
Formal verification (FV) 647
Formatting electronics 311
Forward implication 203
Free nets 195
Free run mode 472–473
Freeze pin 380
Frequency divider(s) 44, 390–392, 396
Functional board tester (FBT) 306, 315
Functional corners 567
Functional faults 355

INDEX

663

Functional model 36
Functional test pattern generation algebra 595
Functional tester(s) 284, 287, 301, 303,

310–311
Functional walk 609, 629, 630
Functionally equivalent faults 522
FUNTAP (functional testability analysis

program) 404

G

Galois field GF 456–458
Gate arrays 59
Gate equivalent, NAND 39, 74
Gate-level model 601
Gate-oxide short (GOS) 559
Gaussian distribution 13
General purpose tester 284–285
Generator matrix G 542
Generator matrix of V 540
Generic BIST circuit 525
Generic view of a function 588
Geometrical level model 37
Glitch 50, 52, 67
Goal ordering 622
Goal state 624
Goal tree(s) 605–606, 609, 618–620, 624, 629
Goals, competing 624
Go-Nogo test 3
Granularity 125–126, 337, 362, 381
Graph, definition of 86–87
 0-edge 87, 106
 1-edge 87, 106
 binary tree 87
 bipartite, directed graph 602
 directed acyclic graph (DAG) 87
 function graph 92
 graph methods for functional test 494–495
 isomorphic function graphs 92
 leaf vertex 87
 nonterminal vertices 87
 ordered tree 87
 parent of 87
 subgraph(s) 88, 92
 terminal vertex 87–88, 90, 92, 95–100
Graphical user interface (GUI) 487
Ground field 458
Group 455–456
 Abelian (commutative) group 456
 multiplicative group 458

Guard bands 296, 298
Guard circuit 308
Guidance file 380
Guided probe 313–316, 474

H

Hamming code(s) 538, 540–543
Hamming distance 104, 156, 540
Hamming weight 540
Handshaking protocols 567
Hard detect 129
Hard errors, logging 545
Hard-core IP 299, 650
Hard-core cell 420
Hardware accelerators 157
Hardware design language(s) (HDL) 7, 120,

325
Hazard(s) 50–54, 132, 239, 312
 0-hazard 51
 1-hazard 51
 detection 57–58
 dynamic hazard(s) 51, 57, 379–380
 function hazard 51
 logic hazard 51
 static hazard(s) 50, 57, 379–380
Hazard detection 52–54, 57, 58
Head lines 195
Head objective(s) 196, 198–199
Heuristic(s) 599, 601, 607, 612–614, 615,

622, 624
High frequency (HF) set 431
High leakage current 561
High level languages (HLLs) 572
High noise margin 559–560
High strobes 561
Higher levels of abstraction 587
High-level languages (HLLs) 365
High-resistance leakage 302
High-speed functional tester 286
History file 615, 623
Hi-TEA (High-Level Test Economics

Advisor) 25
Hold time 43, 238, 424
Homing sequences 267
Horizontal lists 65
Hot spots 365
Huffman model 39–40, 53

664

INDEX

Hyperactive fault 147
Hypertrophic fault 147

I

ICT See In-circuit tester
IDDQ
 coverage 556
 current drain 551
 current flow 551
 design rules 553
 empirical selection of threshold 557
 fault simulation 555, 560
 histogram of IDDQ current 556, 557
 measuring current flow 557–559
 monitoring 551
 pullups/pulldowns forbidden 553
 threshold for IDDQ, choosing 556–557
 threshold voltage Vt 562–563
Identity matrix 541
IEEE 1149.1 boundary scan 302–303,

434–442
IEEE-P1450

See

 Standard Test Interface
Language (STIL)

Image mode, E-beam 300
Immediate dominator 204
Imminent range 65–66
Implementation-free 86
Implementing the LFSR 459–460
Implication 167–168, 202, 369
Implication tables 595
Imply Operation 369–370
Improving controllability and observability

418
Improvement in memory reliability 543–545
In-circuit tester (ICT) 302–304, 307–310,

389, 434–435
Incoming inspection 302–303
Incremental fault simulation 349
Incremental improvement in fault coverage

556
Indefinite paths 85
Indefinite state 83
Indeterminate state 48, 122
Indeterminate Value (X) 234–235
Indirectably observable 613
Indistinguishable blocks 490–493
Infix notation 637
Infrared thermography 317

Inhibit D-cubes 253
Inhibit memory control signals 419
Initial conditions 605
Initial objective(s) (IO) 190, 195, 198–199
Initial state 584
Initialization mode 623
Initialization problem 237
Initialization sequence 253, 259
Initialization stimuli 609
Injecting bugs 581
Inject fault symptoms 486
Injected errors 586
Inner product of two vectors 538
Input difference event sources 150
Input fault origin (IFO) 143–145
Input-bridging fault 335
Instruction retry 486
Integrated circuit(s) (IC) 2, 33–34, 120
Intellectual property (IP) 35, 299, 451
Interdependent goals 620
Intermittent faults 486
Internally balanced acyclic sequential circuit

263
Intersection of singular cubes 172
Intersection of fault lists 151
Intersection rule(s) 254, 257
Intrinsic weight 242–243
Irreducible polynomials 457, 499
Irredundant 334
Iterative array 241
Iterative Fault Simulation 348–349
Iterative test generator (ITG) 241–246
ITTAP 404

J

JK flip-flop 41–43, 249, 596
JTAG (Joint Test Action Group) See IEEE

1149.1
Jumper wires 395
Justification 168, 593

K

Karnaugh map(s) 176
Keating-Meyer circuit 557
Knowledge base 608, 629–630
Known good board (KGB) 312–313
Known good die (KGD) 24

INDEX

665

L

Large-scale integration (LSI) 34, 388
LASAR 158, 205
Last-in, first-out (LIFO) stack 197
Lattice 77
LBIST (logic BIST) 479
Leakage current 298, 553, 556
Leakage path 552
Learn mode 609, 630–633
Learning curve 572
Learning phase 202
Least common multiple 501–502
Least fixed point 80
Least upper bound (lub) 77, 80
Level of a logic element 45
Level-sensitive flip-flops 42–43
Level sensitive scan design (LSSD) 412–

417, 474–476

A

 clock 412, 415

 B

 clock 412, 414–415

C

 clock 412–415

 L1

 latch 412–415

 L2

 latch 412–415
 design rules 414
Levelized logic 45
LFSR See Linear-feedback shift-register
Libraries of tests 309
Library of parameterized models (LPM)

589–593, 615, 631
LIFO (last-in, first-out) memory 514
Limited

n

-level search 599
Linear associative algebra over F 457
Linear linked list 64
Linear span of

S

 539
Linear-feedback-shift-register (LFSR) 454–

451, 459–462, 465, 467, 470–472, 475,
477, 481–483

Linearly independent 539
Lint 569
Liveness properties 641–642
Loading the scan chains 423, 453
Lockup latch 423–424
Logic contention 553
Lookahead strategy 611
Lookup tables 71
Loop unrolling 157
Loop-cutting algorithm 241, 263
Loop-free 260, 427

Low frequency (LF) set 431
Low strobes 561
LSSD See Level sensitive scan design

M

Macroblock(s) 490–493
Macrocells 326
Macrolan (Medium Access Controller)

480–482
Maintenance processor 484–485
Management information file (MIF) 487
Manufacturing faults 337, 362
Manufacturing management system (MMS)

302, 304
Manufacturing test 120, 301–304, 567
Map file 607–608, 612–613, 638
Master fault file 350, 368
Mathematical Basis For Self-Test 455–458
MaxGoal strategy 627–628
MaxGoal versus MinGoal 627
Maximize fault comprehension 373
Maximum ambiguity 267–268
Maximum comprehension 353
Maximum fault coverage 371
Maximum likelihood decoding 541
Maximum number of simulation steps 76
Maximum resolution 353
Maxterm 89
Mean time between failure(s) (MTBF) 28,

444, 545
Mean time to repair (MTTR) 29, 444
Mean-time-to-failure (MTTF) 503
Measuring Simulation Thoroughness

575–581
Medium-scale integration (MSI) 34, 388
Memory access time 537
Memory array faults 522
Memory behind tester channels 422
Memory built-in-self-test (MBIST) 524
Memory cell faults 530
Memory management 147
Memory organization, 2-D 515
Memory faults
 address nonuniqueness 521-522
 cell opens 521
 cell/column/row disturb 521
 data sensitivity 521
 disturb sensitivity 522

666

INDEX

 read/write logic faults 522
 refresh sensitivity 521–522
 sense amplifier interaction 521
 slow access time 521
 slow write recovery 521
 static data losses 521
Memory test
 13N algorithm 529–531
 9N algorithm 529–531
 address test 520
 all 0s 517
 all 1s 517
 checkerboard test 519
 dynamic test 517
 functional test 517
 galloping diagonal 519
 GALPAT 517–519, 524–529
 march test 519
 march pattern 533
 moving Inversions test 520
 ping-pong test 517, 529
 read disturb test 535
 sliding diagonal 519
 surround-by-complement (SBC) 395
 surround read disturb 520
 surround write disturb 520
 walking pattern 519, 529
 write Recovery 520
Merge fault 381
Merge node 496
Metal oxide semiconductor (MOS) 36, 338
Microblock(s) 489–493
Microcode 496
Microprocessor Matrix 493–494
Mimicing behavior of the human engineer 615
MinGoal strategy 627–628
Minimal test set 375
Min-Max timing 72–74
Minterm 89
Misaligned masks 521
MISR

See

 Multiple-input shift register
Mode control 408
Model 3, 33
Model checking 640–648
Modular decomposition 36
Monostable 272, 391
Multichip logic module (MLM) 474–476
Multi-chip modules (MCM) 23–24
Multiple access fault 530
Multiple-array multiple bit (MAMB) 532

Multiple-array single bit (MASB) 532
Multiple backtrace 193–194, 196–199, 202,

204–205
Multiple clock domains 412, 426
Multiple faults 464
Multiple sensitization states 617
Multiple-fault simulation 136
Multiple-input shift register (MISR) 455,

460–463, 475–478, 532
Multiple-Valued Simulation 61–64
Multiplexing Address and Data-in 418
Multiplication of scalar and vector 538
Multiplicative identity 457
Murphy’s Model 12
Mutual exclusion (mutex) problem 643
Mutually exclusive 624

N

NAND latch 41
NAND Tree 433–434
Necessary assignment 206
Negative binomial distribution 13
Negative clock edge (Negedge) 54, 422, 590
Nine-value algebra 246–249
Nine-valued simulation 57–58
NMOS device 39
Nominal delay simulation 59–61, 69–70
Non-blocking assignment 580
Noncontrolling value (NCV) 468
Noncritical assignment 206, 210
Noncritical region 643
Nondestructive readout (NDRO) 515
Non-integral event timing 65
Non-recurring costs 21
Non-repeating sequence 459
Non-return format 295
Non-scan flip-flops 430
Nonvolatile memory 515
NOR latch 40
Normal distribution 13
N-stage counter 454–459
Null space of V 539
Number of device inputs (NDI) 468

O

Obscured functionality 609
Observability equations 388, 397, 399–403,

551, 576

INDEX

667

Observability points 466
Observability relation 490
Observability tree 393
Off-path side effect 222–223
One-controllability 153
One-hot encoding 408, 499
On-path side effect 222
Operation in a degraded mode 486
Order of a polynomial 501
Ordered BDDs (OBDDs)

See

 Reduced
ordered BDDs

Ordered

n

-tuple 3
Ordering Relation 489–493
Ordering the scan-flops 425
Orthogonal vectors 538
Oscillations 49, 135, 235–236
Oscillator 390
Output fault origin (OFO) 145
Output leakage test 298
Overall test length 614
Overshoot 286

P

Package test 561
Pad limited die 407, 546
Parallel drivers 392
Parallel fault simulator 134–136, 155
Parallel load 408
Parallel pattern single fault propagation

(PPSFP) 137–139, 155
Parallel value list (PV) 156
Parallelize operation 421
Parametric faults 238, 303
Parametric measurement unit (PMU) 298
Pareto chart(s) 305, 546
Parity bit(s) 392, 496, 545
Parity checker(s) 188, 486
Parity generator H 543
Parity matrix P 541
Parity tree 393
Parse tree 642
Partial BIST 482–483
Partial scan 426–432
 benefits of 427
 choosing scan-flops 430
 destructive partial-scan 428
 drawback to partial-scan 426
Partially symmetric 130

Partitioning into layers 490
Partitioning circuit(s) 464, 481
Passes, no. of fault simulation 147
Pass-fail vector 351
Passive fault tolerance 495
Path coverage 366, 576
Path enumeration 107
Path quantifiers
 existential 641
 universal 641
PatternBurst block 292–293
PatternExec block 292
Pause test 535
PDCF

See

 Primitive D-Cube of Failure
Performance Enhancements, simulation

570–571
Performance monitoring 485, 496–498
Periodic maintenance 504
Peripheral component interconnect (PCI)

513
Permuting the critical 0 206
Personal computer (PC) 453–454, 484, 487,

533
Pesticide paradox 579
Petri net 602–607
Phase-locked loop (PLL) 479
Physical probing 299
Pin electronics 287–288, 311
Pin map 288, 315
Pin memory 285
Pitfalls When Building Goal Trees 626–627
PMOS device 39
PODEM (path oriented decision making)

188–194, 202, 205, 430, 614
Point accelerators 571, 579
Point-to-point continuity 302
Poisson distribution 12
Posedge 54, 590
Positive and negative edge clocking 423
Post burn-in check (PBIC) 561
Power consumption 364
Power management feature 633
Power margining 486
PPSFP

See

 Parallel pattern single fault
propagation

Predecessor(s) 45, 138–139, 156, 242
Predicate logic 637
Prefix notation 637
Preprocess mode 406

668

INDEX

Preset distinguishing sequence 268
Preset experiments 267
Previous time frame (PTF) 251–252
Prime implicant 51, 173
Primitive D-cubes of failure (PDCF)

174–177, 180, 588, 592
Primitive element 174, 391, 397
Primitive function test pattern(s) (PFTP)

592, 615
Primitive polynomial 458–459, 470
Printed circuit board(s) (PCBs) 4, 33, 388
Probability distribution function 11–12
Probable detected faults 129, 236, 349, 363,

372
Procedure 182
Process yield 388
Product-of-sums 39
Profiler 350, 571
Program instructions 496
Programmable logic arrays (PLAs) 336–337
Programmable read-only memories

(PROMs) 515
Programming element 535
Programming language interface (PLI) 366,

575
Propagate a trapped fault 627
Propagate faults 614
Propagation 167, 593
Propagation D-cube(s) 177–178, 181–182,

399, 597
Propagation search 598–599
Proposition 636
Propositional logic 216
Prototype 34–35
Proximity of cells to one another 522
Pseudo-combinational circuit 49
Pseudo-input(s) 49, 135, 241, 244–246
Pseudo-output(s) 49, 135, 241, 244–245, 247
Pseudo-random generator (PRG) 454,

475–476
Pseudo-random test program generator 583
Pseudo-random vectors 156
Pulse generator(s) 272, 390
Pure functional mode 629

Q

Quality 2
Quasiexhaustive test 482

QuiC-Mon circuit 558–559
Quiescent current 562
Quiescent current drain 553
Quiescent periods 553
Quiet vectors 553
Quietest method 554-556
Quotient polynomial 457

R

Race Detection 71–72
Race(s) 50, 132, 239, 312
Random access memory (RAM) 514
Random access scan 411
Random logic 535
Random pattern effectiveness 464
Random pattern resistant faults 467
Random patterns 342–343
Random sample 14
Random stimulus generation 581–587
Random test pattern generation (RTPG) 582,

586–587
Random test socket (RTS) 474–475
Random tester 587
Random-resistant 343
Rank-order 45, 47, 102–103, 106, 138, 184,

191, 203, 262, 371, 401, 570–571, 616
Reachability analysis 645
Reactive circuits 647
READ array 47–48
Receive list (RLIST) 145
Reconvergent Path 170
Record of successes 615
Recurring costs 20
Reduced ordered BDDs (ROBDD) 94,

219–220, 638–639, 645–647
Reduction properties 492
Redundant fault 334–335
Redundant logic 335, 553
Reflow process 317
Register transfer level (RTL) 36, 325
 circuit image 588–589
 models 146, 568
Regular structure 356
Reject rate 15, 17
Reject ratio 15, 18
Relative conductance 76
Reliability Improvements 543–545
Reliability of the system 504

INDEX

669

Reliability problems 552
Remainder polynomial 457
Remote Procedure Calls (RPC) 487
Remote range 65–66
Remote test 484–488
Repair station 304, 314, 474
Repairable Memories 535–537
Replacement board kits 474
Reporter 350
Requirements analysis 6,8
Requirements errors 650
Residue class 457
Resistance ratios 75
Resolution, definition of 285
Resolution function, VHDL 62
Resolution of the diagnostics 478
Response learning 316
Return on investment (ROI) 357
Return-to-complement 295
Return-to-high-impedance 295
Return-to-one 295
Return-to-zero 295
Re-verify functionality and timing 420
Ringing 286
Ripple technique 297
Rise time 60
ROBDD See Reduced ordered BDD
Roll back the state 633
Root cause 623, 634
Root of polynomial 457–458
Row decoder 515
Row or column failure 544
Rows represent functional units 494
RTL See Register transfer level
Rule-based system 631
Rule-of-ten 23, 302, 443, 650

S

Safety properties 641–642
SAMB Single-array multiple bit 532
Sampling ICs 388
SASB Single-array single-bit 532
Satisfying these goals 618
Statistical bin limits (SBL) 560
Scalars 538
Scan chains, partitioning 425
Scan chains of unequal length 425
Scan Compliance 416–418

Scan mode 408
Scan path 407, 426
 implementing scan path 420–426
 multiple scan paths 421–422
 ordering elements in the scan path 420
 violations of scan rules 415–417
Scan test 477
Scan/Set flip-flops 430
Scan-flops 409–410, 421–422, 425–431, 480
Scanning electron microscope (SEM)

299–301
Schedule marker 66–67
Scheduler for nominal delay simulation

64–67
Scheduler, First-in first-out (FIFO) 56
Scheduling process 68
Schmoo plots 294–295, 311
SCIRTSS (Sequential CIRcuit Test Search

System) 597–607, 617
SCOAP (Sandia Controllability

Observability Analysis Program) 176,
410, 415–416, 441, 447, 484, 617, 633,
641, 644

Screen at sort 562
Search heuristics 632–633
SEC-DEC code 545
Second-degree hardcore 490
Seed’s Model 12
Seeding of design errors 581
Selective trace 404
Selector block 291
Self modifying methods 599
Self-Checking Circuits 498–499
Self-initializing sequence 242, 251, 372
Self-learning 302
Self-masking 209
Self-Monitoring, Analysis and Reporting

Technology (SMART) 488
Self-resetting flip-flop 390–391, 416
Self-Test Using Multiple Parallel Signatures

(STUMPS) 474–480
 controller chip 477
 overhead for 476
Sensitive input 208
Sensitivity, definition of 285
Sensitivity list 54, 136
Sensitivity value 376
Sensitization requirements 605
Sensitization search 598–599, 601–602

670

INDEX

Sensitization state 598
Sensitization strategy 600
Sensitize fault(s) 151, 614, 627
Sensitized path 165–170, 180, 182–184
Sensitizing state 617
Sequential Circuit Test Search System

(SCIRTSS) 597–602
Sequential conflicts In goal trees 618–620
Sequential controllability 398
Sequential D-chains 253
Sequential depth 262, 430, 432
Sequential logic test complexity 259–260
Sequential Path Sensitizer (SPS) 252–259
Sequential test pattern generation 611
Serial access memories 514
Serial data compression 462
Serial Data Out 411
Serial fault simulation 134, 157
Serial/parallel shift register 594
Service layer 487
Seshu’s Heuristics 239–241
 best next or return to good 240
 combinational 240
 reset 241
 wander 240
Setup time 43, 238
S-graph 261, 431–432
Shadow logic 418
Shannon’s expansion 88, 92, 97–98
Shared resource tester 287
Shift-register latch (SRL) 412–415
Shorter channel 563
Signal strengths 61
Signature analysis 453–455, 459–464,

470–474
Signature, compressed 453
Signatured instruction stream 496
Simulator Oriented Fault Test Generator

(SOFTG) 369
Simultaneous self-test (SST) 475
Single bit error 541
Single instruction, multiple-data (SIMD) 498
Single shots 390
Single-fault assumption 127, 136, 166, 177
Skew lot 561
Skew parameters 561
Slack 108–109
Slew rate 286
Small-scale integration (SSI) 33, 388

Socrates test pattern generator 202–205, 218
Soft core(s) 299, 451
Soft errors 537–538, 544
Software implemented fault tolerance (SIFT)

505
Soft IP 650
Software profiling 157
Solder reflow 317, 433
Spare column replacement 537
Spec block 291
Specification 568
Speed binning 284, 302
Spike 50
Spotting testability issues 362
SRAM 534
SRE (Spare Row Enable) 535
SRL See Shift register latch
Standard cell libraries 353
Standard cells 326
Standard Test Interface Language (STIL)

288–293
State point(s) 45, 639, 649
State search routines 618
State table 40–41, 265–267, 269–273
State transition graph 597
 nondeterministic state transition graph 643
State Traversal Problem 597
States applied analysis 137, 155–156
State–space search algorithms 599
State machine
 completely specified state machine

(CSSM) 407
 finite state machine 39–40, 236
 incompletely specified state machine

(ISSM) 408, 579
 muxed 407
 unused states in 392
Static analysis 569,627, 629
Static partitioning 79
Static RAM(s) (SRAMs) 77, 515
Static tester 284–286
Statistical bias 103
Statistical bin limits (SBL) 562
Statistical fault analysis (STAFAN) 152–154
Statistical fault sampling 156
Steady state signals 80–83
Stem of a net 332
Stem fault 332
Stimulus bypass 54, 136

INDEX

671

Stimulus ordering 103
Stopping rule 582
Storage node 75, 80–82, 84
Stream of instructions 496
Stress logic components 486
Stretch-and-shrink 297–298
Strobe placement 294
Strobe-to-strobe variability 561
Strobe_width value 294
Strongly balanced acyclic circuit 263
Strongly connected component (SCC)

242–244
Structural model 131, 568
Structural tester 306
Stuck-At Fault(s) 125–127, 166, 464–465,

579
Stuck-fault metric 577
Stuck-open faults 334, 339–340
Stuck-to-neighbor 357
Subordinate goal 620
Subscripted D-algorithm 184–188, 371
Substitution of a row or column 535
Successor states 269, 273–274
Successors of net

m

 242
Sugar 648
Sum-of-products 39
Super flip-flop(s) 252–256, 258–259
Super logic block D-cubes 253
Switch-level
 blocked at node i 83
 model 36, 75
 simulation 74, 79
Switching matrix 287
Symbolic Model Verifier (SMV) 648
Symbolic simulation 636, 648–650
Synchronizing sequence 267, 269–271,

273–276
Synchronous circuit 40
Syndrome 541–542
System reconfiguration 484
System test 307
Systematic code 541
System-on-a-chip (SoC) 35, 299

T

T (Toggle) flip-flop 41
TAP Controller. See Test access port
Tape-out 635

Target fault 600
Target of opportunity 616
Targeting undetected faults 430
Taxonomy 102
TDX Supervisor 608, 619
Technology-Related Faults 337–339
Temporal assertion 577
Temporal operator(s) 640, 645
 eventually 640
 globally 640
 next 640
 until 640
Temporal sequence 640
Ternary algebra 52–54, 70
Ternary clause 216
Ternary extension 80
Ternary simulation 48, 61, 63, 70, 134
Test control logic 479
Test controller 484–486
Test cost(s) 20, 319
Test cost versus quality trade-offs 25
Test counting 374–378
Test data generation and management 453
Test Data Injection 498
Test Design Expert (TDX) 607–635
Test economics 20–23
Test effectiveness 14–15
Test Measure Effectiveness 405
Test pattern compaction 372–374, 425
 dynamic test pattern compaction 373–374
 static compaction 372–373
Test patterns 3
Test plan 315–316
Test Problems Caused By Sequential Logic

233–237
Test resistant logic 362
Test response compactor (TRC) 454, 459,

474
Test set reordering 425
Test transparency (TT) 19
Test vector ordering 234
Testability analysis 592
Testability analysis tools 426
Testability analyzer 607
Testability measures 405
Testable latches 417
Testdetect 182–184
Tester escape(s) 14, 18–20, 121, 131, 311,

341, 351, 579

672

INDEX

Tester time 607
Tester-per-pin architecture 287, 294
Testing strategies 306
Theorem proving 636–637
Thermal conduction modules (TCM) 477
Thoroughness of the test program 388
Through-holes 302
Throughput 570
Time-domain reflectometry (TDR) 318
Timer test 483
Timescale 329
Time-to-market 7
Time-to-volume 387
Timing analysis 570
Timing block 291
Timing generator 287
Timing sets (TSETs) 294, 311, 345
Timing verification 106–110
Timing wheel 65, 103, 572
Toggle coverage 364–365, 553–554, 560,

567, 575
Topological path (TP) 250–251
Total ambiguity 267, 269
Total controllability and observability 395
Totally self-checking 498
Tox (oxide thickness) 563
Traffic light controller (TLC) 641–642
Transfer function for the QuiC-Mon circuit

558
Transients 309
Transistor conductances 81
Transistor network 74
Transition region 52
Transparent memory test 419
Trapped signal 78
Trapped electrical charge 339
Trapped fault(s) 368–369, 598, 601,

609–613, 615–616
 propagation 609
 selection 612
Traverse algorithm 93–94, 638
Triple modular redundancy (TMR) 503–505
Tri-state device 61, 128–129
Trying region 643
Tunneling current 562
Two pattern sequence 340

U

Unate function 130
Unate gates 331
Uncontrollable node 406
Undetectable fault(s) 405, 429
Unidirectional search 625
Unintended side effects 632
Unique address 537
Unique sensitization 194
Unique signal path 333
Unix socket 575
Unobservable regions 429
Unused logic 553
Unweighted successors 242–244
User defined primitive(s) (UDPs) 102, 146,

330
User-suggested trial vectors 602

V

Vector space(s) 456, 538–540
Venn diagram 324
Verification Interacting with Synthesis (VIS)

648
Verilog
 models 358–361, 517–519, 526–528, 626
 primitives 60, 78, 128
 testbench 572–573
Verilog-2001 572
VHDL (VHSIC Hardware Description

Language) 7, 35, 60, 572–573
VHSIC (Very High Speed Integrated Circuit)

35
Virtual components (VC) 35
Visible fault effect 143
Visual Inspection 316–318
Volatile memory 514–515
Voltage contrast 300–301
Voter circuits 504

W

Wafer sort 4, 24, 307, 561
Watchdog timers 490
Wave formatter 286–287
Wave soldering 433
waveform mode 300
WaveformChar 291
WaveformTable entry 293

INDEX

673

Weak signal 62

Weak write test mode (WWTM) 534–535

Weighted random patterns (WRP) 467–470,
479, 582

Weighted value WV 469

Weighting factor WF 469

WFC_LIST 292

White-box testing 568

Wire-gate 62–63

Witness 640

Word line 63–64

Writable control store (WCS) 485, 490

WRITE array 47–48

Write test data into memory 419

Write-only 612

X

X

 and

Y

 address 411
X-generator 428

Y

Yield 2
 analysis 11–14
 crash 4
 enhancement 300

Z

Zero-controllability 153
Zero-delay simulator 105
ZOBI (zero hour burn-in) 560
ZOBI evaluation 562
Zoom table 71

	TeamLiB
	Cover
	Contents
	PREFACE
	CHAPTER 1 Introduction
	1.1 INTRODUCTION
	1.2 QUALITY
	1.3 THE TEST
	1.4 THE DESIGN PROCESS
	1.5 DESIGN AUTOMATION
	1.6 ESTIMATING YIELD
	1.7 MEASURING TEST EFFECTIVENESS
	1.8 THE ECONOMICS OF TEST
	1.9 CASE STUDIES
	1.9.1 The Effectiveness of Fault Simulation
	1.9.2 Evaluating Test Decisions

	1.10 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 2 Simulation
	2.1 INTRODUCTION
	2.2 BACKGROUND
	2.3 THE SIMULATION HIERARCHY
	2.4 THE LOGIC SYMBOLS
	2.5 SEQUENTIAL CIRCUIT BEHAVIOR
	2.6 THE COMPILED SIMULATOR
	2.6.1 Ternary Simulation
	2.6.2 Sequential Circuit Simulation
	2.6.3 Timing Considerations
	2.6.4 Hazards
	2.6.5 Hazard Detection

	2.7 EVENT- DRIVEN SIMULATION
	2.7.1 Zero- Delay Simulation
	2.7.2 Unit- Delay Simulation
	2.7.3 Nominal- Delay Simulation

	2.8 MULTIPLE- VALUED SIMULATION
	2.9 IMPLEMENTING THE NOMINAL- DELAY SIMULATOR
	2.9.1 The Scheduler
	2.9.2 The Descriptor Cell
	2.9.3 Evaluation Techniques
	2.9.4 Race Detection in Nominal- Delay Simulation
	2.9.5 Min ¨C Max Timing

	2.10 SWITCH- LEVEL SIMULATION
	2.11 BINARY DECISION DIAGRAMS
	2.11.1 Introduction
	2.11.2 The Reduce Operation
	2.11.3 The Apply Operation

	2.12 CYCLE SIMULATION
	2.13 TIMING VERIFICATION
	2.13.1 Path Enumeration
	2.13.2 Block- Oriented Analysis

	2.14 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 3 Fault Simulation
	3.1 INTRODUCTION
	3.2 APPROACHES TO TESTING
	3.3 ANALYSIS OF A FAULTED CIRCUIT
	3.3.1 Analysis at the Component Level
	3.3.2 Gate- Level Symbols
	3.3.3 Analysis at the Gate Level

	3.4 THE STUCK- AT FAULT MODEL
	3.4.1 The AND Gate Fault Model
	3.4.2 The OR Gate Fault Model
	3.4.3 The Inverter Fault Model
	3.4.4 The Tri- State Fault Model
	3.4.5 Fault Equivalence and Dominance

	3.5 THE FAULT SIMULATOR: AN OVERVIEW
	3.6 PARALLEL FAULT PROCESSING
	3.6.1 Parallel Fault Simulation
	3.6.2 Performance Enhancements
	3.6.3 Parallel Pattern Single Fault Propagation

	3.7 CONCURRENT FAULT SIMULATION
	3.7.1 An Example of Concurrent Simulation
	3.7.2 The Concurrent Fault Simulation Algorithm
	3.7.3 Concurrent Fault Simulation: Further Considerations

	3.8 DELAY FAULT SIMULATION
	3.9 DIFFERENTIAL FAULT SIMULATION
	3.10 DEDUCTIVE FAULT SIMULATION
	3.11 STATISTICAL FAULT ANALYSIS
	3.12 FAULT SIMULATION PERFORMANCE
	3.13 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 4 Automatic Test Pattern Generation
	4.1 INTRODUCTION
	4.2 THE SENSITIZED PATH
	4.2.1 The Sensitized Path: An Example
	4.2.2 Analysis of the Sensitized Path Method

	4.3 THE D- ALGORITHM
	4.3.1 The D- Algorithm: An Analysis
	4.3.2 The Primitive D- Cubes of Failure
	4.3.3 Propagation D- Cubes
	4.3.4 Justification and Implication
	4.3.5 The D- Intersection

	4.4 TESTDETECT
	4.5 THE SUBSCRIPTED D- ALGORITHM
	4.6 PODEM
	4.7 FAN
	4.8 SOCRATES
	4.9 THE CRITICAL PATH
	4.10 CRITICAL PATH TRACING
	4.11 BOOLEAN DIFFERENCES
	4.12 BOOLEAN SATISFIABILITY
	4.13 USING BDDs FOR ATPG
	4.13.1 The BDD XOR Operation
	4.13.2 Faulting the BDD Graph

	4.14 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 5 Sequential Logic Test
	5.1 INTRODUCTION
	5.2 TEST PROBLEMS CAUSED BY SEQUENTIAL LOGIC
	5.2.1 The Effects of Memory
	5.2.2 Timing Considerations

	5.3 SEQUENTIAL TEST METHODS
	5.3.1 Seshu¡¯s Heuristics
	5.3.2 The Iterative Test Generator
	5.3.3 The 9- Value ITG
	5.3.4 The Critical Path
	5.3.5 Extended Backtrace
	5.3.6 Sequential Path Sensitization

	5.4 SEQUENTIAL LOGIC TEST COMPLEXITY
	5.4.1 Acyclic Sequential Circuits
	5.4.2 The Balanced Acyclic Circuit
	5.4.3 The General Sequential Circuit

	5.5 EXPERIMENTS WITH SEQUENTIAL MACHINES
	5.6 A THEORETICAL LIMIT ON SEQUENTIAL TESTABILITY
	5.7 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 6 Automatic Test Equipment
	6.1 INTRODUCTION
	6.2 BASIC TESTER ARCHITECTURES
	6.2.1 The Static Tester
	6.2.2 The Dynamic Tester

	6.3 THE STANDARD TEST INTERFACE LANGUAGE
	6.4 USING THE TESTER
	6.5 THE ELECTRON BEAM PROBE
	6.6 MANUFACTURING TEST
	6.7 DEVELOPING A BOARD TEST STRATEGY
	6.8 THE IN- CIRCUIT TESTER
	6.9 THE PCB TESTER
	6.9.1 Emulating the Tester
	6.9.2 The Reference Tester
	6.9.3 Diagnostic Tools

	6.10 THE TEST PLAN
	6.11 VISUAL INSPECTION
	6.12 TEST COST
	6.13 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 7 Developing a Test Strategy
	7.1 INTRODUCTION
	7.2 THE TEST TRIAD
	7.3 OVERVIEW OF THE DESIGN AND TEST PROCESS
	7.4 A TESTBENCH
	7.4.1 The Circuit Description
	7.4.2 The Test Stimulus Description

	7.5 FAULT MODELING
	7.5.1 Checkpoint Faults
	7.5.2 Delay Faults
	7.5.3 Redundant Faults
	7.5.4 Bridging Faults
	7.5.5 Manufacturing Faults

	7.6 TECHNOLOGY- RELATED FAULTS
	7.6.1 MOS
	7.6.2 CMOS
	7.6.3 Fault Coverage Results in Equivalent Circuits

	7.7 THE FAULT SIMULATOR
	7.7.1 Random Patterns
	7.7.2 Seed Vectors
	7.7.3 Fault Sampling
	7.7.4 Fault- List Partitioning
	7.7.5 Distributed Fault Simulation
	7.7.6 Iterative Fault Simulation
	7.7.7 Incremental Fault Simulation
	7.7.8 Circuit Initialization
	7.7.9 Fault Coverage Profiles
	7.7.10 Fault Dictionaries
	7.7.11 Fault Dropping

	7.8 BEHAVIORAL FAULT MODELING
	7.8.1 Behavioral MUX
	7.8.2 Algorithmic Test Development
	7.8.3 Behavioral Fault Simulation
	7.8.4 Toggle Coverage
	7.8.5 Code Coverage

	7.9 THE TEST PATTERN GENERATOR
	7.9.1 Trapped Faults
	7.9.2 SOFTG
	7.9.3 The Imply Operation
	7.9.4 Comprehension Versus Resolution
	7.9.5 Probable Detected Faults
	7.9.6 Test Pattern Compaction
	7.9.7 Test Counting

	7.10 MISCELLANEOUS CONSIDERATIONS
	7.10.1 The ATPG/ Fault Simulator Link
	7.10.2 ATPG User Controls
	7.10.3 Fault- List Management

	7.11 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 8 Design- For- Testability
	8.1 INTRODUCTION
	8.2 AD HOC DESIGN- FOR- TESTABILITY RULES
	8.2.1 Some Testability Problems
	8.2.2 Some Ad Hoc Solutions

	8.3 CONTROLLABILITY/ OBSERVABILITY ANALYSIS
	8.3.1 SCOAP
	8.3.2 Other Testability Measures
	8.3.3 Test Measure Effectiveness
	8.3.4 Using the Test Pattern Generator

	8.4 THE SCAN PATH
	8.4.1 Overview
	8.4.2 Types of Scan- Flops
	8.4.3 Level- Sensitive Scan Design
	8.4.4 Scan Compliance
	8.4.5 Scan- Testing Circuits with Memory
	8.4.6 Implementing Scan Path

	8.5 THE PARTIAL SCAN PATH
	8.6 SCAN SOLUTIONS FOR PCBs
	8.6.1 The NAND Tree
	8.6.2 The 1149.1 Boundary Scan

	8.7 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 9 Built- In Self- Test
	9.1 INTRODUCTION
	9.2 BENEFITS OF BIST
	9.3 THE BASIC SELF- TEST PARADIGM
	9.3.1 A Mathematical Basis for Self- Test
	9.3.2 Implementing the LFSR
	9.3.3 The Multiple Input Signature Register (MISR)
	9.3.4 The BILBO

	9.4 RANDOM PATTERN EFFECTIVENESS
	9.4.1 Determining Coverage
	9.4.2 Circuit Partitioning
	9.4.3 Weighted Random Patterns
	9.4.4 Aliasing
	9.4.5 Some BIST Results

	9.5 SELF- TEST APPLICATIONS
	9.5.1 Microprocessor- Based Signature Analysis
	9.5.2 Self- Test Using MISR/ Parallel SRSG (STUMPS)
	9.5.3 STUMPS in the ES/ 9000 System
	9.5.4 STUMPS in the S/ 390 Microprocessor
	9.5.5 The Macrolan Chip
	9.5.6 Partial BIST

	9.6 REMOTE TEST
	9.6.1 The Test Controller
	9.6.2 The Desktop Management Interface

	9.7 BLACK- BOX TESTING
	9.7.1 The Ordering Relation
	9.7.2 The Microprocessor Matrix
	9.7.3 Graph Methods

	9.8 FAULT TOLERANCE
	9.8.1 Performance Monitoring
	9.8.2 Self- Checking Circuits
	9.8.3 Burst Error Correction
	9.8.4 Triple Modular Redundancy
	9.8.5 Software Implemented Fault Tolerance

	9.9 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 10 Memory Test
	10.1 INTRODUCTION
	10.2 SEMICONDUCTOR MEMORY ORGANIZATION
	10.3 MEMORY TEST PATTERNS
	10.4 MEMORY FAULTS
	10.5 MEMORY SELF- TEST
	10.5.1 A GALPAT Implementation
	10.5.2 The 9N and 13N Algorithms
	10.5.3 Self- Test for BIST
	10.5.4 Parallel Test for Memories
	10.5.5 Weak Read ¨C Write

	10.6 REPAIRABLE MEMORIES
	10.7 ERROR CORRECTING CODES
	10.7.1 Vector Spaces
	10.7.2 The Hamming Codes
	10.7.3 ECC Implementation
	10.7.4 Reliability Improvements
	10.7.5 Iterated Codes

	10.8 SUMMARY
	PROBLEMS
	REFERENCES

	CHAPTER 11 /DDQ
	11.1 INTRODUCTION
	11.2 BACKGROUND
	11.3 SELECTING VECTORS
	11.3.1 Toggle Count
	11.3.2 The Quietest Method

	11.4 CHOOSING A THRESHOLD
	11.5 MEASURING CURRENT
	11.6 IDDQ VERSUS BURN- IN
	11.7 PROBLEMS WITH LARGE CIRCUITS
	11.8 SUMMARY
	PROBLEMS

	CHAPTER 12 Behavioral Test and Verification
	12.1 INTRODUCTION
	12.2 DESIGN VERIFICATION: AN OVERVIEW
	12.3 SIMULATION
	12.3.1 Performance Enhancements
	12.3.2 HDL Extensions and C++
	12.3.3 Co- design and Co- verification

	12.4 MEASURING SIMULATION THOROUGHNESS
	12.4.1 Coverage Evaluation
	12.4.2 Design Error Modeling

	12.5 RANDOM STIMULUS GENERATION
	12.6 THE BEHAVIORAL ATPG
	12.6.1 Overview
	12.6.2 The RTL Circuit Image
	12.6.3 The Library of Parameterized Modules
	12.6.4 Some Basic Behavioral Processing Algorithms

	12.7 THE SEQUENTIAL CIRCUIT TEST SEARCH SYSTEM (SCIRTSS)
	12.7.1 A State Traversal Problem
	12.7.2 The Petri Net

	12.8 THE TEST DESIGN EXPERT
	12.8.1 An Overview of TDX
	12.8.2 DEPOT
	12.8.3 The Fault Simulator
	12.8.4 Building Goal Trees
	12.8.5 Sequential Conflicts in Goal Trees
	12.8.6 Goal Processing for a Microprocessor
	12.8.7 Bidirectional Goal Search
	12.8.8 Constraint Propagation
	12.8.9 Pitfalls When Building Goal Trees
	12.8.10 MaxGoal Versus MinGoal
	12.8.11 Functional Walk
	12.8.12 Learn Mode
	12.8.13 DFT in TDX

	12.9 DESIGN VERIFICATION
	12.9.1 Formal Verification
	12.9.2 Theorem Proving
	12.9.3 Equivalence Checking
	12.9.4 Model Checking
	12.9.5 Symbolic Simulation

	12.10 SUMMARY
	PROBLEMS

	INDEX

