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Preface

Nonlinear microwave circuits is a field still open to investigation; however, many basic
concepts and design guidelines are already well established. Many researchers and design
engineers have contributed in the past decades to the development of a solid knowledge
that forms the basis of the current powerful capabilities of microwave engineers.

This book is composed of two main parts. In the first part, some fundamental tools
are described: nonlinear circuit analysis, nonlinear measurement, and nonlinear model-
ing techniques. In the second part, basic structure and design guidelines are described
for some basic blocks in microwave systems, that is, power amplifiers, oscillators, fre-
quency multipliers and dividers, and mixers. Stability in nonlinear operating conditions
is also addressed.

A short description of fundamental techniques is needed because of the inherent
differences between linear and nonlinear systems and because of the greater familiarity
of the microwave engineer with the linear tools and concepts. Therefore, an introduction
to some general methods and rules proves useful for a better understanding of the basic
behaviour of nonlinear circuits. The description of design guidelines, on the other hand,
covers some well-established approaches, allowing the microwave engineer to understand
the basic methodology required to perform an effective design.

The book mainly focuses on general concepts and methods, rather than on practical
techniques and specific applications. To this aim, simple examples are given throughout
the book and simplified models and methods are used whenever possible. The expected
result is a better comprehension of basic concepts and of general approaches rather than
a fast track to immediate design capability. The readers will judge for themselves the
success of this approach.

Finally, we acknowledge the help of many colleagues. Dr. Franco Di Paolo has
provided invaluable help in generating simulation results and graphs. Prof. Tom Brazil,
Prof. Aldo Di Carlo, Prof. Angel Mediavilla, and Prof. Andrea Ferrero, Dr. Giuseppe
Ocera and Dr. Carlo Del Vecchio have contributed with relevant material. Prof. Gio-
vanni Ghione and Prof. Fabrizio Bonani have provided important comments and remarks,
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although responsibility for eventual inaccuracies must be ascribed only to the authors. To
all these people goes our warm gratitude.

Authors’ wives and families are also acknowledged for patiently tolerating the
extra work connected with writing a book.

Franco Giannini
Giorgio Leuzzi



1
Nonlinear Analysis Methods

1.1 INTRODUCTION

In this introduction, some well-known basic concepts are recalled, and a simple example is
introduced that will be used in the following paragraphs for the illustration of the different
nonlinear analysis methods.

Electrical and electronic circuits are described by means of voltages and currents.
The equations that fulfil the topological constraints of the network, and that form the
basis for the network analysis, are Kirchhoff’s equations. The equations describe the
constraints on voltages (mesh equations) or currents (nodal equations), expressing the
constraint that the sum of all the voltages in each mesh, or, respectively, that all the
currents entering each node, must sum up to zero. The number of equations is one half
of the total number of the unknown voltages and currents. The system can be solved
when the relation between voltage and current in each element of the network is known
(constitutive relations of the elements). In this way, for example, in the case of nodal
equations, the currents that appear in the equations are expressed as functions of the
voltages that are the actual unknowns of the problem. Let us illustrate this by means of
a simple example (Figure 1.1).

is + ig + iC = 0 Nodal Kirchhoff’s equation (1.1)

is = is(t)

ig = g · v
iC = C · dv

dt

Constitutive relations of the elements (1.2)

where is(t) is a known, generic function of time. Introducing the constitutive relations
into the nodal equation we get

C · dv(t)

dt
+ g · v(t) + is(t) = 0 (1.3)

Since in this case all the constitutive relations (eq. (1.2)) of the elements are linear and
one of them is differential, the system (eq. (1.3)) turns out to be a linear differential

Nonlinear Microwave Circuit Design F. Giannini and G. Leuzzi
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84701-8
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VCg icigis
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Figure 1.1 A simple example circuit

system in the unknown v(t) (in this case a single equation in one unknown). One of
the elements (is(t)) is a known quantity independent of voltage (known term), and the
equation is non-homogeneous. The solution is found by standard solution methods of
linear differential equations:

v(t) = v(t0) · e− g

C
·(t−t0) −

∫ t

t0

e− g

C
·(t−τ )

C
· is(τ ) · dτ (1.4)

More generally, the solution can be written in the time domain as a convolution integral:

v(t) = v(t0) +
∫ t

t0

h(t − τ) · is(τ ) · dτ (1.5)

where h(t) is the impulse response of the system.

The linear differential equation system can be transformed in the Fourier or Laplace
domain. The well-known formulae converting between the time domain and the trans-
formed Fourier domain, or frequency domain, and vice versa, are the Fourier transform
and inverse Fourier transform respectively:

V (ω) = 1√
2π

·
∫ +∞

−∞
v(t) · e−jωt · dt (1.6)

v(t) = 1√
2π

·
∫ +∞

−∞
V (ω) · ejωt · dω (1.7)

By Fourier transforming eq. (1.3), after simple manipulation (Appendix A.1)
we have

V (ω) = H(ω) · Is(ω) (1.8)

where H(ω) and Is(ω) are obtained by Fourier transformation of the time-domain func-
tions h(t) and is(t); H(ω) is the transfer function of the circuit.

We can describe this approach from another point of view: if the current is(t) is
sinusoidal, and we look for the solution in the permanent regime, we can make use of
phasors, that is, complex numbers such that

v(t) = Im[V · ejωt ] (1.9)
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and similarly for the other electrical quantities; the voltage phasor V corresponds to the
V (ω), defined above. Then, by replacing in eq. (1.3) we get

jωC · V + g · V + Is = (g + jωC) · V + Is = Y · V + Is = 0 (1.10)

and the solution is easily found by standard solution methods for linear equations:

V = Is

Y

1

Y (ω)
= H(ω) = 1

g + jωC
(1.11)

Let us now introduce nonlinearities. Nonlinear circuits are electrical networks that
include elements with a nonlinear relation between voltage and current; as an example,
let us consider a nonlinear conductance (Figure 1.2) described by

ig(v) = imax · tgh

(
g · v
imax

)
(1.12)

that is, a conductance saturating to a maximum current value imax (Figure 1.3).

is ic C

+

V

−

ig(V )

Figure 1.2 The example circuit with a nonlinear conductance
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Figure 1.3 The current–voltage characteristic of the nonlinear conductance
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When we introduce this relation in Kirchhoff’s equation, we have a nonlinear
differential equation (in general, a system of nonlinear differential equations)

C · dv(t)

dt
+ imax · tgh

(
g · v(t)

imax

)
+ is(t) = 0 (1.13)

that has no explicit solution. Moreover, contrary to the linear case, transformation into
the Fourier or Laplace domain is not applicable.

Practical solutions to this type of problems fall into two main categories: direct
numerical integration in the time domain, and numerical solution through series expan-
sion; they are described in some detail in the following paragraphs.

1.2 TIME-DOMAIN SOLUTION

In this paragraph, the solution of the nonlinear differential Kirchhoff’s equations by direct
numerical integration in the time domain is described. Advantages and drawbacks are
described, together with some improvements to the basic approach.

1.2.1 General Formulation

The time-domain solution of the nonlinear differential equations system that describes
the circuit (Kirchhoff’s equations) can be performed by means of standard numerical
integration methods. These methods require the discretisation of the time variable, and
likewise the sampling of the known and unknown time-domain voltages and currents at
the discretised time instants.

The time variable, in general a real number in the interval [t0, ∞], is discretised,
that is, considered as a discrete variable:

t = tk k = 1, 2, . . . t ∈ [t0, ∞] (1.14)

All functions of time are evaluated only at this set of values of the time variable.
The differential equation becomes a finite-difference equation, and the knowledge of the
unknown function v(t) is reduced to the knowledge of a discrete set of values:

vk = v(tk) k = 1, 2, . . . t ∈ [t0,∞] (1.15)

Similarly, the known function is(t) is computed only at a discrete set of values:

is,k = is(tk) k = 1, 2, . . . t ∈ [t0, ∞] (1.16)

The obvious advantage of this scheme is that the derivative with respect to time
becomes a finite-difference incremental ratio:

dv(t)

dt
= vk − vk−1

tk − tk−1
(1.17)
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Let us apply the discretisation to our example. Equation (1.13) becomes

C ·
(

vk − vk−1

tk − tk−1

)
+ imax · tgh

(
g · vk

imax

)
+ is,k = 0 k = 1, 2, . . . (1.18)

where we have replaced the derivative with respect to time, defined in the continuous
time, with the incremental ratio, defined in the discrete time. In this formulation, the
discrete derivative is computed between the current point k, where also the rest of the
equation is evaluated, and the previous point k − 1. There is, however, another possibility:

C ·
(

vk − vk−1

tk − tk−1

)
+ imax · tgh

(
g · vk−1

imax

)
+ is,k−1 = 0 k = 1, 2, . . . (1.19)

In the second case, the rest of the equation, including the nonlinear function of
the voltage, is evaluated in the previous point k − 1. In both cases, if an initial value is
known for the problem, that is, if the value v0 = v(t0) is known, then the problem can be
solved iteratively, time instant after time instant, starting from the initial time instant t0at
k = 0. In the case of our example, the initial value is the voltage at which the capacitance
is initially charged.

The two cases of eq. (1.18) and eq. (1.19) differ in complexity and accuracy. In
the case of eq. (1.19), the unknown voltage vk at the current point k appears only in the
finite-difference incremental ratio; the equation can be therefore easily inverted, yielding

vk = vk−1 − (tk − tk−1)

C
· imax · tgh

(
g · vk−1

imax

)
+ is,k−1 k = 1, 2, . . . (1.20)

This approach allows the explicit calculation of the unknown voltage vk at the
current point k, once the solution at the previous point k − 1 is known. The obvious
advantage of this approach is that the calculation of the unknown voltage requires only
the evaluation of an expression at each of the sampling instants tk . A major disadvantage
of this solution, usually termed as ‘explicit’, is that the stability of the solution cannot
be guaranteed. In general, the solution found by any discretised approach is always an
approximation; that is, there will always be a difference between the actual value of the
exact (unknown) solution v(t) at each time instant tk and the values found by this method

v(tk) �= vk v(tk) − vk = �vk k = 1, 2, . . . (1.21)

because of the inherently approximated nature of the discretisation with respect to the
originally continuous system. The error �vk due to an explicit formulation, however, can
increase without limits when we proceed in time, even if we reduce the discretisation step
tk − tk−1, and the solution values can even diverge to infinity. Even if the values do not
diverge, the error can be large and difficult to reduce or control; in fact, it is not guaranteed
that the error goes to zero even if the time discretisation becomes arbitrarily dense and
the time step arbitrarily small. In fact, for simple circuits the explicit solution is usually
adequate, but it is prone to failure for strongly nonlinear circuits. This explicit formulation
is also called ‘forward Euler’ integration algorithm in numerical analysis [1, 2].
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In the case of the formulation of eq. (1.18), the unknown voltage vk appears not
only in the finite-difference incremental ratio but also in the rest of the equation, and in
particular within the nonlinear function. At each time instant, the unknown voltage vk

must be found as a solution of the nonlinear implicit equation:

C ·
(

vk − vk−1

tk − tk−1

)
+ imax · tgh

(
g · vk

imax

)
+ is,k = F(vk) = 0 k = 1, 2, . . . (1.22)

This equation in general must be solved numerically, at each time instant tk.
Any zero-searching numerical algorithm can be applied, as for instance the fixed-point
or Newton–Raphson algorithms. A numerical search requires an initial guess for the
unknown voltage at the time instant tk and hopefully converges toward the exact solution
in a short number of steps; the better the initial guess, the shorter the number of steps
required for a given accuracy. As an example, the explicit solution can be a suitable
initial guess. The iterative algorithm is stopped when the current guess is estimated to
be reasonably close to the exact solution. This approach is also called ‘backward Euler’
integration scheme in numerical analysis [1, 2].

An obvious disadvantage of this approach w.r.t. the explicit one is the much higher
computational burden, and the risk of non-convergence of the iterative zero-searching
algorithm. However, in this case the error �vk can be made arbitrarily small by reducing
the time discretisation step tk − tk−1, at least in principle. Numerical round-off errors due
to finite number representation in the computer is however always present.

The discretisation of the tk can be uniform, that is, with a constant step �t , so that

tk+1 = tk + �t tk = t0 + k · �t k = 1, 2, . . . (1.23)

This approach is not the most efficient. A variable time step is usually adopted with
smaller time steps where the solution varies rapidly in time and larger time steps where
the solution is smoother. The time step is usually adjusted dynamically as the solution
proceeds; in particular, a short time step makes the solution of the nonlinear eq. (1.22)
easier. A simple procedure when the solution of eq. (1.22) becomes too slow or does not
converge at all consists of stopping the zero-searching algorithm, reducing the time step
and restarting the algorithm.

There is an intuitive relation between time step and accuracy of the solution. For
a band-limited signal in permanent regime, an obvious criterion for time discretisation is
given by Nykvist’s sampling theorem. If the time step is larger than the sampling time
required by Nykvist’s theorem, the bandwidth of the solution will be smaller than that
of the actual solution and some information will be lost. The picture is not so simple for
complex signals, but the principle still holds: the finer the time step, the more accurate
the solution. Since higher frequency components are sometimes negligible for practical
applications, a compromise between accuracy and computational burden is usually chosen.
In practical algorithms, more elaborate schemes are implemented, including modified
nodal analysis, advanced integration schemes, sophisticated adaptive time-step schemes
and robust zero-searching algorithms [3–7].
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Figure 1.4 Currents and voltages in the example circuit for two different amplitudes of a sinu-
soidal input current

With the view to illustrate, the time-domain solution of our example circuit is given
for a sinusoidal input current, for the following values of the circuit elements (Figure 1.4):

g = 10 mS C = 500 fF f = 1 GHz (1.24)

A simple implicit integration scheme is used, with a uniform time step of �t =
33.3 ps (30 discretisation points per period). The plots show the input current is ( ),
the voltage v (- - - - ) and the current in the nonlinear resistor ig (-·-·-·), for an input
current of is,max = 100 mA (a) and for a larger input of is,max = 150 mA (b).

As an additional example, the response of the same circuit to a 1 mA input current
step is shown in Figure 1.5, where a uniform time step of �t = 10 ps is used.

Time-domain direct numerical integration is very general. No limitation on the type
or stiffness of the nonlinearity is imposed. Transient as well as steady state behaviour are
computed, making it very suitable, for instance, for oscillator analysis, where the deter-
mination of the onset of the oscillations is required. Instabilities are also well predicted,
provided that the time step is sufficiently fine. Also, digital circuits are easily analysed.

1.2.2 Steady State Analysis

Direct numerical integration is not very efficient when the steady state regime is sought,
especially when large time constant are present in a circuit, like those introduced by
the bias circuitry. In this case, a large number of microwave periods must be analysed
before the reactances in the bias circuitry are charged, starting from an arbitrary initial
state. Since the time step must be chosen small enough in order that the microwave
voltages and currents are sufficiently well sampled, a large number of time steps must be
computed before the steady state is reached. The same is true when the spectrum of the
signal includes components both at very low and at very high frequencies, as in the case
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Figure 1.5 Currents and voltages in the example circuit for a step input current

of two sinusoids with very close frequencies, or of a narrowband modulated carrier. The
time step must be small enough to accurately sample the high-frequency carrier, but the
overall repetition time, that is, the period of the envelope, is comparatively very long.

The case when a long time must be waited for the steady state to be reached can
be coped with by a special arrangement of the time-domain integration, called ‘shooting
method’ [8–11]. It is interesting especially for non-autonomous circuits, when an external
periodic input signal forces the circuit to a periodic behaviour; in fact, in autonomous
circuits like oscillators, the analysis of the transient is also interesting, for the check
of the correct onset of the oscillation and for the detection of spurious oscillations and
instabilities. In the shooting method, the period of the steady state solution must be known
in advance: this is usually not a problem, since it is the period of the input signal. The
time-domain integration is carried over only for one period starting from a first guess of
the initial state, that is, the state at the beginning of a period in steady state conditions,
and then the state at the end of the period is checked. In the case of our example, the
voltage at the initial time t0 is guessed as

v0 = v(t0) (1.25)

and the voltage at the end of the period T is computed after integration over one period:

v(T ) = v(tK) = vK (k = 1, 2, . . . , K) (1.26)

This final voltage is a numerical function of the initial voltage:

v(T ) = f (v0) (1.27)

If the initial voltage is the actual voltage at which the capacitor is charged at the
beginning of a period t = t0 in the periodic steady state regime, that is, if it is the solution
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to our periodic problem, the final voltage after a period must be identical to it:

v(T ) = f (v0) = v0 (1.28)

In case this is not true, the correct value of the initial voltage is searched by
adjustment of the initial guess v0 until the final value v(T ) comes out to be equal to it.
This can be done automatically by a zero-searching algorithm, where the unknown is the
initial voltage v0, and the function to be made equal to zero is

F(v0) = v(T ) − v0 = f (v0) − v0 (1.29)

Each computation of the function F(v0) consists of the time-domain numerical
integration over one period T from the initial value of the voltage v0 to the final value
v(T ) = vK . The zero-searching algorithm will require several iterations, that is, several
integrations over a period; if the number of iterations required by the zero-searching
algorithm to converge to the solution is smaller than the number of periods before the
attainment of the steady state by standard integration from an initial voltage, then the
shooting algorithm is a convenient alternative.

1.2.3 Convolution Methods

The time-domain numerical integration method has in fact two major drawbacks: on the
one hand the number of equations grows with the dimension of the circuit, even when
the largest part of it is linear. On the other hand, all the circuit elements must have a
time-domain constitutive relation in order for the equations to be written in time domain.
It is well known that in many practical cases the linear part of nonlinear microwave
circuits is large and that it is best described in the frequency domain; as an example, con-
sider the matching and bias networks of a microwave amplifier. In particular, distributed
elements are very difficult to represent in the time domain. A solution to these problems
is represented by the ‘convolution method’ [12–17]. By this approach, a linear subcircuit
is modelled by means of frequency-domain data, either measured or simulated; then, the
frequency-domain representation is transformed into time-domain impulse response, to
be used for convolution in the time domain with the rest of the circuit. In fact, this mixed
time-frequency domain approach is somehow dual to the harmonic balance method, to
be described in a later paragraph. In order to better understand the approach, a general
scheme of time-frequency domain transformations for periodic and aperiodic functions is
shown in Appendix A.2.

The basic scheme of the convolution approach is based on the application of
eq. (1.5), with the relevant impulse response, to the linear subcircuit. Let us illustrate this
principle with our test circuit, where a shunt admittance has been added (Figure 1.6).

Equation (1.13) becomes

C · dv(t)

dt
+ imax · tgh

(
g · v(t)

imax

)
+ iy(t) + is(t) = 0 (1.30)
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VCic iyig(V )is

+

−

Y(w)

Figure 1.6 The example nonlinear circuit with an added shunt network

where the current through the shunt admittance is defined in the frequency domain:

Iy(ω) = Y (ω) · V (ω) (1.31)

The time-domain current through the shunt admittance is expressed by means of
the convolution integral (1.5) as

iy(t) = iy(t0) +
∫ t

t0

y(t − τ) · v(τ) · dτ (1.32)

where

y(t) = 1√
2π

·
∫ +∞

−∞
Y (ω) · ejωt · dω (1.33)

The integral in eq. (1.32) is computed numerically; if the impulse response y(t) is
limited in time, this becomes

iy(tk) = iy,k =
M∑

m=0

ym · vk−m (1.34)

Discretisation of eq. (1.30) then yields

C ·
(

vk − vk−1

tk − tk−1

)
+ imax · tgh

(
g · vk

imax

)
+

M∑
m=0

ym · vk−m + is,k = F(vk) = 0 (1.35)

where the unknown vk appears also in the convolution summation with a linear term. This
is a modified form of eq. (1.18) and must be solved numerically with the same procedure.

A first remark on this approach is that the algorithm becomes heavier: on the one
hand, the convolution with past values of the electrical variables must be recomputed at
each time step k, increasing computing time; on the other hand, the values of the electrical
variables must be stored for as many time instants as corresponding to the duration of
the impulse response, increasing data storage requirements.

An additional difficulty is related to the time step. A time-domain solution may use
an adaptive time step for better efficiency of the algorithm; however, the time step of the
discrete convolution in eq. (1.34) is a fixed number. This means that at the time instants
where the convolution must be computed, the quantities to be used in the convolution
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Past
time t

tn

hy (t − t): Equi-spaced

Known samples of v(t )
(v(ti),i e{0,1,--,n}) Interpolated

value

Figure 1.7 Sampling time instants and convolution time instants

are not available. An interpolating algorithm must be used to allow for the convolution
to be computed, introducing an additional computational overhead and additional error
(Figure 1.7).

The assumption of an impulse response limited in time requires some comments.
An impulse response of infinite duration corresponds to an infinite bandwidth of the
frequency-domain admittance. The latter however is usually known only within a limited
frequency band, both in the case of experimental data and in the case of numerical mod-
elling. A truncated frequency-domain admittance produces a non-causal impulse response
when the inverse Fourier transform (eq. (1.33)) is applied (Figure 1.8).

As an alternative, the frequency-domain admittance can be ‘windowed’ by means,
for example, of a low-pass filter, forcing the admittance to (almost) zero just before the
limiting frequency fm; however, this usually produces a severe distortion in phase, so
that the accuracy will be unacceptably affected.

An alternative approach is to consider the impulse response as a discrete function
of time, with finite duration in time. From the scheme in Appendix A.2, the corresponding
spectrum is periodic in the frequency domain. Therefore, the admittance must be extended
periodically in the frequency domain (Figure 1.9).

|Y(f )|

|hy(t )|

f t

−fm +fm

∠ Y(f )
Non-
causal

−1

Figure 1.8 Non-causal impulse response generated by artificially band-limited frequency data
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|Y(f )|

f
−fm +fm

∠ Y(f )

t

Zero-valued
for t < 0

?y(t )

∆t−1

Figure 1.9 Periodical extension of frequency-domain data

In order to satisfy causality, however, the periodic extension must satisfy the
Hilbert transform:

Ŷ (ω) = Ĝ(ω) + jB̂(ω) (1.36a)

Ĝ(ω) = Ĝ(0) + 1

2π
·
∫ +π

−π

B̂(α) · cot

(
ω − α

2

)
· dα

B̂(ω) = − 1

2π
·
∫ +π

−π

Ĝ(α) · cot

(
ω − α

2

)
· dα

(1.36b)

This can be done by suitable procedures [18]. Care must be taken that the frequency-
domain data be available in a band wide enough to make the extension error negligible.
This is true if the spectrum of the voltages and currents in the circuit are narrower than the
frequency ‘window’. In practice, the frequency data must extend to frequencies where the
signal spectrum has a negligible amplitude (Figure 1.10).

Several microwave or general CAD programmes are now commercially available
implementing this scheme, allowing easy inclusion of passive networks described in
the frequency domain; as an example, ultra-wide-band systems using short pulses often
require the evaluation of pulse propagation through the transmit antenna/channel/receive
antenna path, typically described in the frequency domain.

Periodic
extension

Signal
spectrum

|V(f )|

Original system
function |Y(f )|

fm

f(dB)

^
|Y(f )|

Figure 1.10 Approximation in the periodical extension of frequency-domain data
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1.3 SOLUTION THROUGH SERIES EXPANSION

An alternative to direct discretisation of a difficult equation is the assumption of some
hypotheses on the solution, in this case, on the unknown function v(t). A typical hypoth-
esis is that the solution can be expressed as an infinite sum of simple terms, and that
the terms are chosen in such a suitable way that the first ones already include most
of the information on the function. The series is therefore truncated after the first few
terms. When replaced in the original equation, the solution in the form of a series allows
the splitting of the original equation into infinite simpler equations (one per term of the
series). Only a few of the simpler equations are solved however, corresponding to the
first terms of the series.

In the following sections, two types of series expansions will be described: the
Volterra and the Fourier series expansions, which are the only ones currently used.

1.3.1 Volterra Series

In this paragraph, the solution of the nonlinear differential Kirchhoff’s equations by means
of the Volterra series is described. Advantages and drawbacks are illustrated, together with
some examples.

It has been shown above that the solution of our example circuit in the linear case
is (eq. (1.4))

v(t) = v(t0) · e− g

C
·(t−t0) −

∫ t

t0

e− g

C
·(t−τ )

C
· is(τ ) · dτ (1.37)

that can be put in the general form known as the convolution integral (eq. (1.5)):

y(t) = y(t0) +
∫ t

t0

h(t − τ) · x(τ) · dτ (1.38)

Equation (1.38) can be interpreted in the following way: the output signal of a
linear system is the infinite sum (integral) of all contributions due to the input signal
at all the time instants in the past, weighted by a function called impulse response,
representing the effect of the transfer through the system. In fact, the transfer function
represents the ‘memory’ of the system, and normally becomes smaller as the time elapsed
from the time instant of the input contribution to the current time instant becomes larger.
If the system is instantaneous (e.g. a resistance), the impulse response is a delta function
k · δ(t), and the integral becomes a simple product:

y(t) = k · x(t) (1.39)

In this case, the output signal at any given time responds only to the input at that
time and has no memory of past values of the input itself.

As we have seen above, given the linearity of the system, its response can be
transformed in the Laplace or Fourier domain:
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y(t) = 1√
2π

·
∫ +∞

−∞
Y (ω) · ejωt · dω = 1√

2π
·
∫ +∞

−∞
H(ω) · X(ω) · ejωt · dω (1.40)

where

X(ω) = 1√
2π

·
∫ +∞

−∞
x(t) · e−jωt · dt H(ω) = 1√

2π
·
∫ +∞

−∞
h(t) · e−jωt · dt (1.41)

Equation (1.40) can be interpreted in the following way: the output signal of a
linear system is the infinite sum (integral) of all spectral contributions of the input signal,
weighted by a function of frequency called transfer function that represents the effect of
the transfer through the system. We note explicitly that the spectrum occupancy of the
output signal is the same of the spectrum of the input signal, or smaller if the transfer
function suppresses a part of it, as for example in a filter. If the system is instantaneous,
the transfer function is a constant k and does not alter the harmonic content of the
input signal:

Y (ω) = k · X(ω) (1.42)

An extension of this type of formulation to nonlinear circuits has been proposed
by the mathematician Vito Volterra early in last century [19–29], in the form

y(t) =
∫ t

−∞
h1(t − τ1) · x(τ1) · dτ1

+
∫ t

−∞

∫ t

−∞
h2(t − τ1, t − τ2) · x(τ1) · x(τ2) · dτ2 · dτ1 + · · · (1.43)

where the first term is the linear one (first-order term) and the following ones are higher-
order terms that take into account the effect on nonlinearities. The hypothesis in this
case of series expansion is that the nonlinearities are weak and that only a few higher-
order terms will be sufficient to describe their effect. The generalised transfer functions
of nth order hn(t1, . . . , tn) are called nuclei of nth order. In order to compute the nuclei
analytically, it is also required that the nonlinearity be expressed as a power series:

ig(v) = g0 + g1 · v + g2 · v2 + g3 · v3 + · · · (1.44)

a requirement that will be justified below. It is clear that any nonlinearity can be expanded
in power series, but only within a limited voltage and current range.

The Volterra series can be interpreted in the following way: the output signal of
a nonlinear system is composed by an infinite number of terms of increasing order; each
term is the infinite sum (integral) of all contributions due to the input signal multiplied
by itself n times, where n is the order of the term, in any possible combination of time
instants in the past, weighted by a function called nucleus of nth order, representing
the effect of the transfer through the system for that order. The nuclei represent also, in
this case, the ‘memory’ of the system, and they represent the way in which the system
responds to the presence of an input signal at different time instants in the past; since the
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system is nonlinear, its response to the input signal applied at a certain time instant is not
independent of the value of the input signal at a different time instant. All the combinations
must therefore be taken into account through multiple integration. The nuclei become
normally smaller as the time elapsed from the time instants of the input contributions
and the current time instant becomes larger. If the system is instantaneous, the nuclei are
delta functions, and the nth order integral becomes the nth power of the input:

y(t) = k1 · x(t) + k2 · x2(t) + · · · (1.45)

A generalisation of the Fourier transform can be defined for the nonlinear case: if
we define

Hn(ω1, . . . , ωn) = 1√
2π

·
∫ ∞

−∞
. . .

∫ ∞

−∞
hn(τ1, . . . , τn)

× e−j (ω1τ1+···ωnτn) · dτn, · · · , dτ1 (1.46a)

hn(τ1, . . . , τn) = 1√
2π

·
∫ ∞

−∞
. . .

∫ ∞

−∞
Hn(ω1, . . . , ωn)

× ej (ω1τ1+···ωnτn) · dωn, . . . , dω1 (1.46b)

the Volterra series becomes (Appendix A.3)

Y (ω) = · · · +
∫ ∞

−∞
. . .

∫ ∞

−∞
Hn(ω1, . . . , ωn) · X(ω1) · . . . · X(ωn)

× δ(ω − ω1 − · · · − ωn) · dωn, . . . , dω1 + · · · (1.47)

Equation (1.47) can be interpreted in the following way: the output signal of a
nonlinear system is the sum of an (infinite) number of terms of given orders; each term
is the infinite sum (integral) of all spectral contributions of the input signal multiplied by
itself n times, where n is the order of the term, in any possible combination of frequencies,
weighted by a function of frequency called frequency-domain nucleus of nth order, which
represents the effect of the transfer through the system for that order. The frequency of
each spectral contribution to the output signal is the algebraic sum of the frequencies of
the contributing terms of the input signal; in other words, the spectrum of the output signal
will not be zero at a given frequency if there is a combination of the input frequency n

times that equals this frequency. We note explicitly that the spectrum occupancy of the
output signal is now broader than that of the spectrum of the input signal.

Let us clarify these concepts by illustrating the special case of periodic signals. If
the input signal is a periodic function, its spectrum is discrete and the integrals become
summations; in the case of an ideal, complex single tone

x(t) = A · ejω0t X(ω) = A · δ(ω − ω0) (1.48)

the output signal is given by

y(t) = A · H1(ω0) · ejω0t + A2 · H2(ω0, ω0) · ej2ω0t + · · · (1.49a)

Y (ω) = A · H1(ω0) · δ(ω − ω0) + A2 · H2(ω0, ω0) · δ(ω − 2ω0) + · · · (1.49b)
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The second-order term generates a signal component at second-harmonic fre-
quency, and so on for higher-order terms. In the case of a real single tone, that is, a
couple of ideal single tones at opposite frequencies,

x(t) = A · (ejω0t + e−jω0t )

2
= A · cos(ω0t) (1.50a)

X(ω) = A

2
· δ(ω − ω0) + A

2
· δ(ω + ω0) (1.50b)

The output signal is given by

y(t) = y1(t) + y2(t) + y3(t) + · · · (1.51)

y1(t) = A · H1(ω0) · cos(ω0t)

y2(t) = A2

2
· H2(ω0, −ω0) + A2

2
· H2(ω0, ω0) · cos(2ω0t)

y3(t) = 3A3

4
· H3(ω0, ω0,−ω0) · cos(ω0t) + A3

4
· H3(ω0, ω0, ω0) · cos(3ω0t)

Y (ω) = Y1(ω) + Y2(ω) + Y3(ω) + · · ·
Y1(ω) = A

2
· H1(ω0) · δ(ω − ω0) + A

2
· H1(−ω0) · δ(ω + ω0)

Y2(ω) = A2

4
· H2(−ω0, −ω0) · δ(ω + 2ω0) + A2

4
· H2(ω0, ω0) · δ(ω − 2ω0)

+ A2

4
· H2(−ω0, ω0) · δ(ω) + A2

4
· H2(ω0, −ω0) · δ(ω)

Y3(ω) = A3

8
· H3(−ω0, −ω0, −ω0) · δ(ω + 3ω0) + A3

8
· H2(ω0, ω0, ω0) · δ(ω − 3ω0)

+ A3

8
· H2(−ω0,−ω0, ω0) · δ(ω + ω0) + A3

8
· H2(−ω0, ω0,−ω0) · δ(ω + ω0)

+ A3

8
· H2(ω0,−ω0,−ω0) · δ(ω + ω0) + A3

8
· H2(−ω0, ω0, ω0) · δ(ω − ω0)

+ A3

8
· H2(ω0,−ω0, ω0) · δ(ω − ω0) + A3

8
· H2(ω0, ω0, −ω0) · δ(ω − ω0)

The first-order terms generate the linear output signal at input frequency; the second-order
terms generate a zero-frequency signal (rectified signal) and a double-frequency signal
(second harmonic); the third-order terms generate a signal at input frequency (compression
or expansion) and at triple frequency (third harmonic); and so on. The higher-order terms
are the nonlinear contribution to the distortion of the signal and are proportional to the
nth power of the input where n is the order of the term. A graphical representation of
the spectra is depicted in Figure 1.11.
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ff0 2f0 3f0DC

1st order 

2nd order 
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Figure 1.11 Contributions of the terms of the Volterra series to the spectrum of a single-tone
signal

Let us now consider a two-tone input signal, in the form

x(t) = A1 · cos(ω1t) + A2 · cos(ω2t) (1.52)

The output signal is given by

y(t) = y1(t) + y2(t) + y3(t) + · · · (1.53)

y1(t) = A1 · H1(ω1) · cos(ω1t) + A2 · H1(ω2) · cos(ω2t)

y2(t) = A2
1

2
· H2(ω1,−ω1) + A2

2

2
· H2(ω2, −ω2)

+ A2
1

2
· H2(ω1, ω1) · cos(2ω1t) + A1A2

2
· H2(ω1, ω2) · cos((ω1 + ω2)t)

+ A2
2

2
· H2(ω2, ω2) · cos(2ω2t)

y3(t) = 3A3
1

4
· H3(ω1, ω1, −ω1) · cos(ω1t) + 3A3

2

4
· H3(ω2, ω2, −ω2) · cos(ω2t)

+ 3A1A
2
2

4
· H3(ω1, ω2, −ω2) · cos(ω1t) + 3A2

1A2

4
· H3(ω2, ω1, −ω1) · cos(ω2t)

+ 3A2
1A2

4
· H3(ω1, ω1, −ω2) · cos((2ω1 − ω2)t)

+ 3A1A
2
2

4
· H3(ω2, ω2, −ω1) · cos((2ω2 − ω1)t)

+ 3A3
1

4
· H3(ω1, ω1, ω1) · cos(3ω1t) + 3A2

1A2

4
· H3(ω1, ω1, ω2) · cos((2ω1 + ω2)t)

+ 3A1A
2
2

4
· H3(ω1, ω2, ω2) · cos((2ω2 − ω1)t) + A3

2

4
· H3(ω2, ω2, ω2) · cos(3ω2t)
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The first-order terms generate the linear output signals at input frequencies. The
second-order terms generate three components: a zero-frequency signal that is the rectifi-
cation of both input signals; a difference-frequency signal and three second-harmonic or
mixed-harmonic signals. The third-order terms generate four components: two compres-
sion components at input frequencies; two desensitivisation components again at input
frequencies, due to the interaction of the two input signals, that add to compression; two
intermodulation signals at 2ω1 − ω2 and at 2ω2 − ω1 and four third-harmonic or mixed-
harmonic signals. The higher-order terms are proportional to suitable combinations of
powers of the input signals. A graphical representation of the spectrum is depicted in
Figure 1.12.

From the formulae above, it is clear that the output signal is easily computed
when the nuclei are known. In fact, the nuclei are computed by a recursive method
if the nonlinearity is expressed as a power series [23, 29]; in the case of our example
(eq. (1.44))

ig(v) = g0 + g1 · v + g2 · v2 + g3 · v3 + · · · (1.54)

An input ‘probing’ signal in the form of an ideal tone of unit amplitude (eq. (1.48))
is first used:

is(t) = ejω1t (1.55)

The output can formally be written as (see eq. (1.49))

v(t) = H1(ω1) · ejω1t + H2(ω1, ω1) · ej2ω1t + · · · (1.56)

where the nuclei are still unknown. Kirchhoff’s equation (eq. (1.3)) with the nonlinearity
in power-series form (eq. (1.54), limited to second order for brevity) is

C · dv(t)

dt
+ g1 · v(t) + g2 · v2(t) + · · · + is(t) = 0 (1.57)

f

3f
1DC

1st order

2nd order 

3rd order 

2f
1

−
f 2 2f
1

2f
2f 1 f 2

2f
2

−
f 1

f 1
+

f 2

3f
2

2f
1

+
f 2

f 1
+ 

2f
2

Figure 1.12 Contributions of the terms of the Volterra series to the spectrum of a two-tone signal
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When the voltage as in eq. (1.56) is replaced into Kirchhoff’s equation (eq. (1.57)),
we get

C · (jω1 · H1(ω1) · ejω1t + j2ω1 · H2(ω1, ω1) · ej2ω1t + · · ·)
+ g1 · (H1(ω1) · ejω1t + H2(ω1, ω1) · ej2ω1t + · · ·)
+ g2 · (H1(ω1) · ejω1t + H2(ω1, ω1) · ej2ω1t + · · ·)2 + is · ejω1t = 0 (1.58)

Expanding the expressions in the parentheses, we get

C · jω1 · H1(ω1) · ejω1t + C · j2ω1 · H2(ω1, ω2) · ej2ω1t + g1 · H1(ω1) · ejω1t

+ g1 · H2(ω1, ω1) · ej2ω1t + g2 · H 2
1 (ω1) · ej2ω1t + g2 · 2H1(ω1) · H2(ω1, ω1) · ej3ω1t

+ g2 · H 2
2 (ω1, ω1) · ej4ω1t + is · ejω1t = 0 (1.59)

where the first and third rows are the linear terms, and the second row is the nonlinear
term truncated to the second power.

We now try to split eq. (1.59) into several simpler equations. The terms in this
equation depend on time through exponential terms at different frequencies. In order that
their sum be zero for all time instants t , all terms depending on time with the same
frequency must sum up to zero because of the orthogonality of the sinusoidal functions
with respect to time. We can therefore equate the sums of all the terms at the same
frequency to zero:

C · jω1 · H1(ω1) · ejω1t + g1 · H1(ω1) · ejω1t + is · ejω1t = 0 (1.60a)

C · j2ω1 · H2(ω1, ω1) · ej3ω1t + g1 · H2(ω, ω11) · ej2ω1t

+ g2 · H 2
1 (ω1) · ej2ω1t = 0 . . . (1.60b)

where we have limited ourselves to the second-harmonic frequency. From the first equa-
tion (eq. (1.60a)), we immediately have

H1(ω1) = − 1

g1 + jω1C
(1.61)

which is nothing but the solution of the linear part of the circuit.

The second-order nucleus does appear in eq. (1.60b), but not in its general form
H2(ω1, ω2); to get it, we use a two-tone unit-amplitude ideal input of the form

is(t) = ejω1t + ejω2t (1.62)

For this type of input, the output is written as

v(t) = H1(ω1) · ejω1t + H1(ω2) · ejω2t + H2(ω1, ω1) · ej2ω1t

+ H2(ω1, ω2) · ej (ω1+ω2)t + H2(ω2, ω2) · ej2ω2t + · · · (1.63)
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When the voltage in the form of eq. (1.63) is replaced into Kirchhoff’s eq. (1.57)
we get

C · jω1 · H1(ω1) · ejω1t + C · jω2 · H1(ω2) · ejω2t

+ C · j2ω1 · H2(ω1, ω1) · ej2ω1t + C · j (ω1 + ω2) · H2(ω1, ω2) · ej (ω1+ω2)t

+ C · j2ω2 · H2(ω2, ω2) · ej2ω2t + g1 · H1(ω1) · ejω1t + g1 · H1(ω2) · ejω2t

+ g1 · H2(ω1, ω1) · ej2ω1t + g1 · H2(ω1, ω2) · ej (ω1+ω2)t + g1 · H2(ω2, ω2) · ej2ω2t

+ g2 · H 2
1 (ω1) · ej2ω1t + g2 · H 2

1 (ω2) · ej2ω2t + g2 · 2 · H1(ω1) · H1(ω2) · ej (ω1+ω2)t

+ g2 · H 2
2 (ω1, ω1) · ej4ω1t + g2 · H 2

2 (ω1, ω2) · ej2(ω1+ω2)t + g2 · H 2
2 (ω2, ω2) · ej4ω2t

+ g2 · 2 · H2(ω1, ω1) · H2(ω1, ω2) · ej (3ω1+ω2)t

+ g2 · 2 · H2(ω1, ω1) · H2(ω2, ω2) · ej (2ω1+2ω2)t

+ g2 · 2 · H2(ω1, ω2) · H2(ω2, ω2) · ej (ω1+3ω2)t

+ g2 · 2 · H1(ω1) · H2(ω1, ω1) · ej3ω1t + g2 · 2 · H1(ω1) · H2(ω1, ω2) · ej (2ω1+ω2)t

+ g2 · 2 · H1(ω1) · H2(ω2, ω2) · ej (ω1+2ω2)t + g2 · 2 · H1(ω2) · H2(ω1, ω1) · ej (2ω1+ω2)t

+ g2 · 2 · H1(ω2) · H2(ω1, ω2) · ej (ω1+2ω2)t + g2 · 2 · H1(ω2) · H2(ω2, ω2) · ej3ω2t

+ ejω1t + ejω2t = 0 (1.64)

We see that eq. (1.64) can be split into several equations, relative to the dependence
on time. The equations relative to the terms in ejω1t and in ejω2tyield the same result as
in the case of a single tone probing signal (eq. (1.60a)):

H1(ω1) = − 1

g1 + jω1C
H1(ω2) = − 1

g1 + jω2C
(1.65)

The two expressions given above yield equivalent expressions for the first-order
nucleus (eq. (1.61)). The second-order nucleus is explicitly computed from the equation
in ej (ω1+ω2)t :

C · j (ω1 + ω2) · H2(ω1, ω2) · ej (ω1+ω2)t + g1 · H2(ω1, ω2) · ej (ω1+ω2)t

+ g2 · 2 · H1(ω1) · H1(ω2) · ej (ω1+ω2)t = 0 (1.66)

from which we get

H2(ω1, ω2) = 2g2 · H1(ω1) · H1(ω2)

g1 + j (ω1 + ω2)C
(1.67)

The second-order nucleus is an explicit expression that includes only the first-order
nucleus, already found from eq. (1.65) (or equivalently from eq. (1.61)). By substitution
we get

H2(ω1, ω2) = 2g2

(g1 + jω1C) · (g1 + jω2C) · (g1 + j (ω1 + ω2)C)
(1.68)
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It is easy to see that higher-order nuclei are found recursively by the same pro-
cedure. When the nuclei up to the nth order must be computed, a probing signal of n

independent ideal tones must be used, as shown above.

When all the nuclei are known (up to a certain order), the output of the considered
circuit is available as a Volterra series in a general form, that is, the output can be written
in an analytical form for any input signal. The time-domain version of the nuclei is
easily computed by means of eq. (1.46), from which the general time-domain formulation
(eq. 1.43) is expressed.

It is clear from the described procedure that the nonlinearity must be expressed
as a power series in order to compute the nuclei explicitly. In other words, the pow-
ers of exponential terms are immediately and explicitly expressed as exponential terms
and can therefore be grouped by frequency. Other functions of exponential terms, for
example, the hyperbolic tangent as in the example above, cannot be explicitly expressed
as sum of exponentials, and do not allow for the explicit solution of the problem with
the probing method.

As an example, a third-order Volterra-series response of our example circuit to
a sinusoidal input with amplitude is,max = 80 mA is shown in Figure 1.13; the left plot
shows the input current is ( ), the voltage v (- - - - ) and the current in the nonlinear
resistor ig (-·-·-·). The right plot shows the current–voltage characteristic of the nonlinear
resistor as a hyperbolic tangent ( ) and as a third-order polynomial approximation
(- - - - ) for the current and voltage swing in the example.

In Figure 1.14, the same quantities are shown, but for an input current amplitude
of is,max = 100 mA.

Comparison with time-domain analysis (see Figure 1.4) reveals that already for
moderate nonlinearities both Volterra series expansion of the output signal and the power-
series expansion of the current–voltage nonlinear element limit the accuracy of the
method. For increased accuracy, a high number of nuclei is necessary; however, their
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Figure 1.13 Voltages and currents in the example circuit from Volterra analysis (a) and the volt-
age–current characteristic of the nonlinear conductance in the correct and approximated form (b)
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Figure 1.14 Same as in Figure 1.13, but for a larger input signal

calculation becomes impractical for two reasons. First, the ‘probing signal’ calculation
method becomes cumbersome. Second and more important, the high-order nuclei depend
on high-order terms in the power-series expansion of the nonlinear element. These terms
come from the experimental characterisation of the nonlinearity (see Chapters 2 and 3)
and are affected by an increasing degree of inaccuracy. Therefore, practical applica-
tions of the Volterra series must be limited to a small order and consequently to mild
nonlinear problems.

From what has been said, we can conclude that the Volterra series is an easy and
elegant method, suitable for the analysis of mildly nonlinear problems only. Its natural
application is the analysis of intermodulation in linear power amplifiers with two-tone or
multiple-tone input signal; a special development of this technique has been applied to
mixer analysis [30].

1.3.2 Fourier Series

In this paragraph, the solution of the nonlinear differential Kirchhoff’s equations by use
of the Fourier series expansion is described. The harmonic balance technique, belonging
to this category, is especially considered.

It has been shown above (Section 1.3.1) that when the input signal of a nonlinear
system is a sinusoid, the output signal is again a sinusoid together with all harmonics,
plus a rectified component at zero frequency (DC). In fact, this is not always true, because
subharmonic generation or chaotic or quasi-chaotic behaviour is in general possible in
nonlinear circuits [31]. We will not consider this case for the moment (see Chapter 5)
and we will assume that a periodic behaviour is established in the circuit, with the same
period of the input signal. In this case, we are interested in the steady state response
of circuits driven by a sinusoidal (or periodic) input and can therefore assume that the
output signal (v(t) in our example circuit) be expressed as a Fourier series. We now look
at the special form that our nonlinear Kirchhoff’s equation assumes when this assumption
is made.
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Figure 1.15 The example circuit, repeated here for convenience

1.3.2.1 Basic formulation (single tone)

Let us describe first the harmonic balance formulation with single-tone input signal [33–40].
The output signal is first written as a Fourier series, and so is the input periodic signal; for
our example circuit (Figure 1.15):

v(t) =
∞∑

n=−∞
Vn · ejnω0t is(t) = Is ·

(
ejnω0t + e−jnω0t

2

)
= Is · cos(ω0t) (1.69)

In this particular case, we assume that the input current is a simple cosinusoid,
for simplicity. We also assume here that the input signal has zero phase; this is usually
the case, since the input signal acts as a reference for the time scale. The output signal
is completely known once the infinite complex phasors Vn are known: these are the
unknowns of our analysis problem. The Fourier series representing the output signal
(eq. (1.69)) is replaced into the nonlinear Kirchhoff’s equation; then, we try to split the
single ‘difficult’ equation into several ‘simpler’ equations.

By replacing eq. (1.69) into the nonlinear Kirchhoff’s eq. (1.13), we get,

C ·
d

( ∞∑
n=−∞

Vn · ejnω0t

)

dt
+ imax · tgh




g ·
∞∑

n=−∞
Vn · ejnω0t

imax




+ Is ·
(

ejω0t + e−jω0t

2

)
= 0 (1.70)

The unknowns of the equation are the phasors that appear in the Fourier series
expansion of the voltage (eq. (1.69)). We now rewrite eq. (1.70) with all the terms
expressed in the form of Fourier series:

∞∑
n=−∞

jnω0C · Vn · ejnω0t +
∞∑

n=−∞
Ig,n · ejnω0t + Is ·

(
ejω0t + e−jω0t

2

)
= 0 (1.71)

Some terms in eq. 1.71 are immediately and explicitly available: the first term rep-
resenting the currents in the linear capacitor iC and the third term representing the current
source is, that is, the linear elements of the circuit. The Fourier series expansion of the
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current in the nonlinear conductance (ig) on the other hand cannot be computed explicitly
because of the nonlinearity of the element, and is only indicated symbolically so far:

ig(t) = imax · tgh




g ·
∞∑

n=−∞
Vn · ejnω0t

imax


 =

∞∑
n=−∞

Ig,n · ejnω0t (1.72)

The (periodic) current in the nonlinear conductance however can be expressed in
the time domain, and its phasors computed from it by means of a Fourier transform:

ig(t) = imax · tgh




g ·
∞∑

n=−∞
Vn · ejnω0t

imax


 ig(t) ⇒ � ⇒ Ig,n (1.73)

The phasors can now be written into the eq. (1.71) for the solution of the equation
itself. It is clear that in general each phasor Ig,n is a function of all the (still unknown)
voltage phasors Vn.

The terms in eq. (1.71) above have sinusoidal or cosinusoidal time dependence
at different frequencies. In order that their sum be zero for all time instants t , all terms
depending on time with the same frequency must sum up to zero, because of the orthogo-
nality of the sinusoidal functions with respect to time. We can therefore equate to zero the
sum of all the terms at the same frequency, obtaining an infinite set of complex equations:

jnω0C · Vn + Ig,n + Is

2
= 0 n = −∞, . . . , 0, . . . ,∞ (1.74)

where Is is present only for n = −1 and n = 1 (input frequency); however, in the case
that the input signal in periodic but not purely sinusoidal, the phasors of the Fourier
series expansion of the input current will be present also in the equations relative to
other frequencies. The system eq. (1.74) of infinite equations is equivalent to the original
problem under the hypothesis of periodic response of the nonlinear circuit.

As stated above, we assume that the first few harmonics are sufficient to describe
the behaviour of the electrical quantities; in other words, we assume that the output
signal has a limited bandwidth (or a limited number of harmonics). We therefore truncate
the Fourier series expansion after N terms, obtaining a finite number of equations (and
harmonics). In this case, the Fourier transform is computed by evaluating the nonlinear
current at a suitable number of points in time, according to Nykvist’s sampling theorem:

ig,k = ig(tk) = imax · tgh




g ·
N∑

n=−N

Vn · ejnω0tk

imax


 tk = t0 + T

Kmax + 1
· k

k = 0, . . . ,Kmax (1.75)
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The 4N + 1 real numbers that make up the 2N complex plus 1 real current phasors
are then found by a simple discrete Fourier transform (DFT) method (Appendix A.4).

The system is now solved for the 4N + 1 real unknowns, that is, the 2N complex
and 1 real coefficients of the Fourier series expansion (phasors) of the unknown function
v(t):

v(t) =
N∑

n=−N

Vn · ejnω0t (1.76)

System eq. (1.74) becomes

jnω0C · Vn + Ig,n(�V) + Is

2
= 0 n = −N, . . . , N (1.77)

where again Is is present only for n = −1 and n = 1 (input frequency), and

�V = [V−N, V0, . . . , VN ]T (1.78)

Equation (1.77) is the nonlinear complex equation system in the unknown voltage
phasors Vn that yields the solution to our nonlinear circuit. It states that the currents
flowing into the linear and nonlinear part of the circuit must be balanced at each harmonic,
as required by Kirchhoff’s current law in this special formulation; this gives the name
‘harmonic balance’ to this method. The system is solved numerically by an iterative
method, where the values of the voltage phasors are first estimated and then iteratively
corrected until the error is considered to be negligible. The error vector is the left-hand-
side of the equation system (1.77), that is, the sum of the currents at the node at each
harmonic frequency; it should be zero, after Kirchhoff’s current law, but a value below,
for example 1 µA, can often be considered adequate for accurate results.

In fact, there is no general guarantee that a nonlinear system has a unique solution
or that it has a solution at all; however, it is usually true that a harmonic problem in this
form, especially if not too stiff, has at least a solution corresponding to the linear solution
of a linearised problem.

The above formulation is in fact redundant. Since the Fourier coefficients of a
real function are Hermitean, the phasors and equations at negative frequencies are the
complex conjugate of the phasors and equations at positive frequencies: only the phasors
and equations relative to positive or negative frequencies (plus zero frequency, DC) must
therefore be retained.

By exploiting this property and retaining positive frequencies only (plus DC),
voltage and currents are rewritten as

v(t) = Re

[
N∑

n=0

Vn · ejnω0t

]
= V0 + Re

[
N∑

n=1

Vn · ejnω0t

]

= V0 +
N∑

n=1

{V r
n cos(nω0t) − V i

n sin(nω0t)} (1.79a)
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ig(t) = imax · tgh




g ·
∞∑

n=−∞
Vn · ejnω0t

imax


 = Re

[
N∑

n=0

Vg,n · ejnω0t

]
= Ig,0

+ Re

[
N∑

n=1

In · ejnω0t

]
=Ig,0 +

N∑
n=1

{I r
g,n cos(nω0t)−I i

g,n sin(nω0t)} (1.79b)

is(t) = Is · cos(ω0t) (1.79c)

By replacing eq. (1.79) into eq. (1.13), the equation system (1.77) is rewritten as

Ig,0(V ) = 0 n = 0 (1.80a)

−ω0C · V i
1 + I r

g,1(V ) + Is = 0 n = 1 (1.80b)

−ω0C · V r
1 + I i

g,1(V ) = 0 (1.80c)

−nω0C · V i
n + I r

g,n(V ) = 0 2 � n � N (1.80d)

−nω0C · V r
n + I i

g,n(V ) = 0 (1.80e)

We have now only 2N + 1 real equations in the 2N + 1 unknowns (the voltage
phasors): two equations for the input frequency and for each of the harmonic frequencies,
and a real equation for n = 0, since no phase information is needed for a DC signal. In
Appendix A.5, the system for N = 3 is described in detail.

In the case of a real formulation, the Fourier transform assumes the form described
in Appendix A.4. In particular, the inverse transformation is not analytical, with conse-
quences on the numerical treatment of the equation system.

The number of sampling time instants where the nonlinear current is evaluated,
indicated with Kmax + 1 above, requires a comment. A discrete Fourier transform is
exact if the signal to be transformed has a limited band, and if the number of sampling
points is chosen according to Nykvist’s sampling theorem. A basic hypothesis in the
harmonic balance algorithm is also that the unknown signal (a voltage, in our case) can
be represented with a limited number of harmonics, previously indicated by N . In this
ideal case, Kmax = 2N . However, it may be beneficial to use a larger number of points,
and therefore a higher number of harmonics, during the discrete Fourier transform in
order to avoid aliasing; the current harmonics higher than N are then discarded from
successive operations. This procedure can be useful when a stiff current nonlinearity is
present in the circuit; it is called ‘oversampling’, and some commercial CAD packages
allow the user to introduce it.

In Figure 1.16, the solution of our example circuit is given for the following values
of the circuit elements:

g = 10 mS C = 500 fF f = 1 GHz
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Figure 1.16 Currents and voltages in the example circuit for two different amplitudes of a sinu-
soidal input current
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Figure 1.17 Current and voltage spectra in the example circuit for two different amplitudes of a
sinusoidal input current

and with the Fourier series truncated after the fifth harmonic (N = 5). The plots show
input current ( ), output voltage (- - - - ) and current in the nonlinear resistor (-·-·-·),
for an input current of is = 100 mA (a) and for a larger input of is = 150 mA (b).

The results are very similar to those of the direct integration method (see Figure
1.4). In Figure 1.17, the amplitudes of the voltage spectra are shown for the same two
cases: the larger relative amplitude of higher harmonics in the case of larger input current
amplitude is clearly shown. The presence of an odd current nonlinearity with respect to
voltage results in the absence of even harmonics in the spectrum. The amplitudes of spec-
tral lines at negative frequencies are obviously identical to those at positive frequencies.

In Figure 1.18, voltage and currents are shown only at the 2N + 1 = 11 sampling
points in time domain for the case of the larger input current.

The number of points corresponds to the number of real values of the spectrum:
five complex phasors at ω = nω0, n = 1, . . . , 5 (fundamental frequency and the first three
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Figure 1.18 Currents and voltages in the example circuit at the sampling times only, as computed
from Fourier transform
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Figure 1.19 A general nonlinear network as partitioned for the harmonic balance analysis

harmonics) and a real phasor at DC (n = 0). The continuous curves in the previous figures
have been plotted by means of eq. (1.69) and eq. (1.73) once the values of the phasors
are known.

In general terms, a nonlinear circuit is divided into two parts connected by M ports
(Figure 1.19): a part including only linear elements and a part including only nonlinear
ones; the voltages at the connecting ports are expressed by Fourier series expansions:

vm(t) = Re

[
N∑

n=0

Vm,n · ejnω0t

]
= Vm,0 + Re

[
N∑

n=1

Vm,n · ejnω0t

]
= Vm,0

+
N∑

n=1

{V r
m,n cos(nω0t) − V i

m,n sin(nω0t)} m = 1, . . . ,M (1.81)
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The voltages at the connecting ports are the unknowns of Kirchhoff’s node equa-
tions. In our formulation, the unknowns are actually the phasors that appear in their Fourier
series expansion; since the series is truncated, they are M · (2N + 1). In vector form,

�V = [
V1,0 . . VM,0 , V r

1,1 V i
1,1 .. V r

M,1 V i
M,1 , V r

1,N

V i
1,N .. V r

M,N V i
M,N

]T
(1.82)

The linear part of the circuit is replaced by its Norton equivalent; the currents
flowing into it are computed by simple multiplication of the (still unknown) vector of
the voltage phasors by the Norton equivalent admittance matrix, plus the (known) Norton
equivalent current sources due to the input signal (Figure 1.20).

�IL = ↔
Y · �V + �IL,0 (1.83)

where

�I = [
I1,0,L . . IM,0,L , I r

1,1,L I i
1,1,L .. I r

M,1,L I i
M,1,L , I r

1,N,L

I i
1,N,L .. I r

M,N,L I i
M,N,L

]T
(1.84)

When the voltages and currents are ordered as in eqs. (1.82) and (1.84), the admit-
tance matrix, relative to the linear subcircuit, is block-diagonal

↔
Y =




↔
Y L(0) 0 0 0

0
↔
Y L(ω0) 0 0

0 0 .. 0

0 0 0
↔
YL(Nω0)


 (1.85)

where
↔
Y L(ω) =


 y11(ω) . y1M(ω)

. . .

yM1(ω) . yMM(ω)


 (1.86)

is the m × m standard linear admittance matrix of the linear subnetwork at frequency ω.

Linear
subnetwork

Nonlinear
subnetwork

IL
1,1 INL

1,1

INL
2,1IL

2,1

I0,L
1,1 n = 1

m = 1

I0,L
2,1 n = 2

m = 1
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I0,L
N,M n = N

m = M

Figure 1.20 Currents and voltages for the harmonic balance analysis
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Figure 1.21 The example circuit partitioned for the harmonic balance analysis

In the case of our example circuit, the linear part is already a one-port Norton
equivalent network (Figure 1.21).

The currents flowing into the nonlinear part of the circuit are computed as stated
above. The time-domain currents are first computed at each connecting port

im,NL(t) = Gm(�v(t)) m = 1, . . . , M (1.87)

where Gm(v) is the nonlinear current–voltage characteristic of the nonlinear subnetwork
at port m, and the voltage vector is

�v(t) =

 v1(t)

..

vM(t)


 (1.88)

that is, the vector of the time-domain voltages at all ports. The latter is computed from
the voltage phasors by means of an inverse Fourier transform:

�v(t) = �−1( �V ) (1.89)

The phasors of the currents flowing into the nonlinear subnetwork are then com-
puted by means of a Fourier transform:

Im,n,NL = �(im,NL(t)) (1.90)

In an actual harmonic balance algorithm, the time-domain voltages and currents
are sampled at a set of time instant satisfying Nykvist’s theorem, for calculation of the
phasors by means of a DFT. A detailed description is not given here, but it can easily
be deduced by generalisation to an M-port problem from the formulae reported in the
Appendix A.4 for M = 1.

The solving system is now written at each connecting port and for each harmonic:

I r
m,n,L + I r

m,n,NL = 0 (1.90a)

I i
m,n,L + I i

m,n,NL = 0 m = 1, . . . , M n = 0, . . . , N (1.90b)
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The unknowns of the system are the voltages, or more exactly the phasors of the trun-
cated Fourier series expansions of the voltages at the ports connecting the linear and the
nonlinear subnetworks. The values of the phasors are found by an iterative numerical
algorithm, given the nonlinearity of the equations. The real and imaginary parts must
be equated separately because of the non-analyticity of the dependence of currents on
voltages, as stated above.

For the numerical analysis, the nonlinear equation system (1.90) is written as

IL(V ) + INL(V ) = F(V ) = 0 (1.91)

This system is usually solved by means of the zero-searching iterative algorithm
known as Newton–Raphson’s method [1, 2, 41]. A first guess for the value of the voltage
phasors must be given; let us call it

�Vfirst guess = �V (0) (1.92)

Obviously, this will not be the exact solution of eq. (1.91). An improved value
will be found by the recursive formula

V
(k+1) = V

(k) −
(
J

(k)
)−1 · F

(
V

(k)
)

(1.93)

which is the vector form of the well-known Newton–Raphson’s tangent method. The J

matrix is the Jacobian matrix of eq. (1.91), corresponding to the derivative of the scalar
function in a scalar Newton–Raphson’s method:

↔
J ( �V ) = ∂ �F( �V )

∂ �V (1.94)

The Jacobian matrix can be computed analytically, if the nonlinear function is
known in analytical form, or numerically by incremental ratio, if the nonlinearity is avail-
able as a look-up table or if analytical derivation is unpractical. The analytical derivation,
however, has better numerical properties, and it is advisable when available. A more
detailed description of the Jacobian matrix is given in the Appendix A.6. The inver-
sion of the Jacobian matrix is a computationally heavy step of the algorithm; several
approaches have been developed to improve its efficiency [42–44]. The algorithm will
hopefully converge towards the correct solution, and will be stopped when the error
decreases below a limit value. The error is actually the vector of the error currents, real
and imaginary parts, at each node and for each harmonic frequency; convergence will
be assumed to be reached when its norm will be lower than a desired accuracy level in
the currents:

|F (k)| < ε (1.95)

The actual value of ε will normally vary with the current levels in the circuit:
a value below 100 µA will probably be satisfactory in most cases. Alternatively, the
algorithm is stopped when the solution does not vary any more:

|V (k+1) − V
(k)| < δ (1.96)
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Once more, a reasonable value for δ depends on the voltage levels in the circuit,
but a value below 1 mV will probably be adequate in most cases.

Another critical point in the algorithm is the choice of the first guess. A well-
chosen first guess will considerably ease the convergence of the algorithm to the correct
solution. If the circuit is mildly nonlinear, the linear solution, obtained for a low-level
input, will probably be a good first guess. If the circuit is driven into strong nonlinearity,
a continuation method will probably be the best approach. The level of the input signal
is first reduced to a quasi-linear excitation and a mildly nonlinear analysis is performed;
then, the input level is increased stepwise, using the result of the previous step as a first
guess. In most cases the intermediate results will also be of practical interest, as in the
case of a power amplifier driven from small-signal level into compression. Most commer-
cially available CAD programmes automatically enforce this method when convergence
becomes difficult or when it is not reached at all.

The described nodal formulation is based on Kirchhoff’s voltage law: the unknown
is the voltage, and the circuit elements are described as admittances. Alternatively, Kirch-
hoff’s current law can be used, with the current being the unknown, and the circuit
elements described as impedances. While no problem usually arises for the linear ele-
ments, the nonlinear elements are usually voltage-controlled nonlinear conductances (e.g.
a junction, or the output characteristics of a transistor) or capacitances (e.g. junction
capacitances in a diode or in a transistor). This is why the nodal formulation (KVL) is
the standard form. However, any alternative form of Kirchhoff’s equations is allowed as
a basis for the harmonic balance algorithm in the cases in which the nonlinear elements
have a different representation.

Another alternative formulation is obtained when the nonlinear equation (1.13) is
rewritten as

C · dv(t)

dt

∣∣∣∣
t=tk

+ imax · tgh

(
g · v(tk)

imax

)
+ is(tk) = 0 k = 0, 1, . . . , 2N (1.97)

where the unknowns are the time-domain voltage samples at the 2N + 1 sampling instants:

vk = v(tk) k = 0, 1, . . . , 2N (1.98)

In this formulation, eq. (1.13) must be satisfied only at 2N + 1 time instants. The
formulation is similar to that of the time-domain solution (Section 1.2), but in this case
the derivative with respect to time is expressed as

dv(t)

dt

∣∣∣∣
t=tk

= d
N∑

n=−N

Vn · ejnω0t

dt

∣∣∣∣∣∣∣
t=tk

=
N∑

n=−N

jnω0Vn · ejnω0tk (1.99)

according to the assumption of a periodic solution with limited bandwidth. The voltage
phasors are computed from the time-domain voltage samples by means of a DFT:
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vk = v(tk) ⇒ � ⇒ Vn (1.100)

The nonlinear equation system (1.97) is again solved by an iterative numerical
method. This formulation of the nonlinear problem is known as waveform balance, since
in eq. (1.97) the current waveforms of the linear and nonlinear subcircuits must be bal-
anced at a finite set of time instants. In fact, it can easily be seen that the standard harmonic
balance formulation also satisfies eq. (1.13) only at the sampling instants where the DFT
is computed.

There are two other formulations of the kind: in the first, Kirchhoff’s equations are
written in the time domain (eq. (1.97) above), but the unknowns are the voltage phasors;
in the second, Kirchhoff’s equations are written in the frequency domain (eq. (1.77) or
eq. (1.90) above), and the unknowns are the time-domain voltage samples. The four
formulations are actually completely equivalent, at least in principle; one or the other
may be more convenient in some cases, when special problems must be dealt with.

1.3.2.2 Multi-tone analysis

So far, only strictly periodic excitation and steady-state have been considered. In the real
world, however, many important phenomena occur when two or more periodic signals
with different periods excite a nonlinear circuit, as shown in Section 1.3.1 on the Volterra
series. In some cases a single-tone analysis gives enough information to the designer,
but in many other cases a more realistic picture is needed, especially when distortion or
intermodulation is a critical issue. Moreover, the behaviour of circuits like mixers can
by no means be reduced to a simply periodic one. A first step towards a more realistic
picture is the introduction of a more complex Fourier series for the signal, composed of
two tones:

v(t) =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2 · ej (n1ω1+n2ω2)t =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2 · ejωn1 ,n2 t (1.101)

where the two frequencies ω1 and ω2 are the frequencies of the input signal or signals:
for instance, two equal tones at closely spaced frequencies in the case of intermodulation
analysis in a power amplifier; or the local oscillator and the RF signal in the case of a
mixer. The unknowns of the problem are still the phasors of the voltage, but now they
are not relative to the harmonics of a periodic signal: they rather represent a complex
spectrum, as shown in the case of Volterra series analysis. The series in eq. (1.101) must
be truncated so that only important terms are retained: a proper choice increases the
accuracy of the analysis while limiting the numerical effort.

If the two basic frequencies ω1 and ω2 are incommensurate, the signal is said
to be quasi-periodic. On the other hand, when the two basic frequencies ω1 and ω2

are commensurate, they can be considered as the harmonics of a dummy fundamental
frequency ω0, and the problem can formally be taken back to the single-tone case [45].
However, if the two basic frequencies are closely spaced or are very different from one
another, a very large number of harmonics must be included in the analysis. For instance,
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when two input tones at 1 GHz and 1.01 GHz are applied for intermodulation analysis
of an amplifier, at least 300 harmonics of the signal at the dummy 10 MHz fundamental
frequency must be included for third-order analysis of the signal. This redundance can be
reduced by retaining only the meaningful terms in the Fourier series expansion; in this
case, however, the DFT described above experiences the same severe numerical problems
as in the quasi-periodic case, as explained in the following. A special two-tones form of
the harmonic balance algorithm is therefore usually adopted also in these cases.

The formalism for two-tone analysis is easily extended to multi-tone analysis, when
more than two periodic signals at different frequencies are present in the circuit; however,
the computational burden increases quickly, usually limiting the effective analysis capa-
bilities to no more than three tones. For more complex signals, different techniques are
used to extend the algorithm, which are shortly described in the following paragraphs.

The harmonic balance method requires some adjustments for two-tone analysis.
First of all, a suitable truncation of the Fourier series must be defined [11]. The expan-
sion of a single-tone signal is truncated so that the neglected harmonics have negligible
amplitude. The same principle holds for a multi-tone analysis. The frequency spectrum
includes all the frequencies that are combinations of the two basic frequencies, or more
than two for multi-tone analysis:

ωn1,n2 = n1ω1 + n2ω2 (1.102)

The sum of the absolute values of the two indices n = |n1| + |n2| is the order of
the harmonic component.

Not all the lines of the spectrum, however, have significant amplitude. It is a
reasonable assumption that the amplitude of a spectral component decreases as its order
increases. However, the picture can vary for different cases. A typical example is given
in Figure 1.12, where two equal-amplitude signals at closely spaced frequencies are fed
to a power amplifier, generating distortion. A partially different situation occurs when a
mixer is considered. Typically, the local oscillator has a much higher amplitude than the
input signal (e.g. at RF) or the output signal (e.g. at IF), and the situation is rather as in
Figure 1.22.

A first example of truncation of the expansion is the so-called box truncation
scheme: all the combinations of the two indices n1 and n2 are retained for values of the
indices less than N1 and N2 respectively. This truncation can be illustrated graphically
as shown in Figure 1.23.

Since real signals have Hermitean spectral coefficients, only half of them are
actually needed. This is obtained, for instance, by retaining only the terms whose indices
satisfy the following conditions:

n1 ≥ 0; n2 ≥ 0 if n1 = 0 (1.103)

The resulting reduced spectrum is shown in Figure 1.24.

In this case the terms with maximum order are those with n1 = N1, n2 = ±N2

and nmax = N1 + N2. The number of terms retained in the Fourier series expansion for a
real signal is 2 · N1 · N2 + N1 + N2 + 1.
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f

IF
RF

LO

Figure 1.22 Typical spectrum of the electrical quantities in a mixer

n2

n1

Figure 1.23 Box truncation scheme for two-tone Fourier series expansion

n2

n1

Figure 1.24 Reduced box truncation scheme for real signals

An example of the spectrum resulting from a box truncation scheme with N1 = 3
and N2 = 2 is shown in Figure 1.25, where frequency f1 is much larger than frequency
f2; both the complete (light) and reduced (dark) spectra are depicted.

The choice of a box truncation is very simple, but not necessarily the most effective
one. As said above, a reasonable assumption is that the amplitude of a spectral component
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decays with its order. A reasonable truncation scheme therefore drops all terms with
n > nmax, retaining all those with n ≤ nmax. This is called diamond truncation scheme,
as apparent from Figure 1.26; the scheme for real signals is also indicated.

The number of terms retained in the Fourier series expansion is approximately
one half that of the box truncation scheme. An example of the spectrum resulting from
a diamond truncation scheme with N1 = N2 = 3 is shown in Figure 1.27.

A further variation of the truncation scheme is illustrated in Figure 1.28.

This scheme allows an independent choice of the number of harmonics of the two
input tones, and of the maximum number of intermodulation products as in the diamond
truncation scheme. An example of the spectrum resulting from a mixed truncation scheme
is shown in Figure 1.29.

The general structure of the harmonic balance algorithm, as described above, still
holds. The main modification is related to the Fourier transform that becomes severely
inaccurate unless special schemes are used. The main difficulty is related to the choice
of the sampling time instants. In principle, a number of time instants equal to the num-
ber of variables to be determined (the coefficients in the Fourier series expansion in
eq. (1.101)) always allows for a Fourier transformation from time to frequency domain,
by inversion of a suitable matrix similar to that described in the Appendix A.4. How-
ever, the matrix becomes very ill-conditioned unless the sampling time instants are

n2

n1

n2

n1

Figure 1.26 Diamond truncation scheme for general (a) and real signals (b), and N1 = N2
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−f2 f2
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3f2 f1+2f2

f1−f2 f1+f2
f1−2f2

f1

2f1−f2 2f1+f2

2f1
3f1

−f1

Figure 1.27 Spectrum relative to the diamond truncation scheme with N1 = N2 = 3
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n2

n1

n2

n1

Figure 1.28 Mixed truncation scheme general (a) and real signals (b)
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−f2 f2
2f2 f1−f2 f1+f2

f1
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3f1

Figure 1.29 Spectrum relative to the mixed truncation scheme

properly chosen. Several schemes have been proposed for overcoming the problem: over-
sampling and orthonormalisation [46–50], multi-dimensional Fourier transform [51–52],
frequency remapping [37, 53, 54], and others [55, 56]. They are described in some detail
in the following text.

The multi-dimensional Fourier transform is actually defined for a function
v(t1, t2, . . .) of several variables, each with its own periodicity; we limit the number
of variables to only two in our case for simplicity of notation.

v(t1, t2) =
∞∑

n1=−∞

∞∑
n2=−∞

V n1,n2 · ej (n1ω1t1+n2ω2t2) (1.104)

Each variable is sampled over its own periodicity, in analogy with what has been
described above: in this way, a two-dimensional grid of samples is obtained. If the
signal has a limited frequency spectrum, and if the number of samples satisfies Nykvist’s
theorem, we can compute the two-dimensional grid of coefficients in the two-dimensional
Fourier series expansion (eq. (1.101)); the details are given in the Appendix A.7. The
samples are taken at the sampling time instants,

tk1 = T1

2N1 + 1
· k1, k1 = −N1, . . . , N1, tk2 = T2

2N2 + 1
· k2, k2 = −N2, . . . , N2

(1.105)
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summing up to a number of samples:

Ntot = (2N1 + 1)(2N2 + 1) (1.106)

Once the phasors are computed, the original two-tone voltage is readily obtained as

v(t) = v(t, t) (1.107)

as can be seen from eq. (1.104). This transform is widely used in commercial simulators.

As stated above, the main problem in a multi-tone harmonic balance analysis
lies in the difficult choice of the sampling time instants for Fourier transformation. An
improper choice will lead to a severely ill-conditioned DFT matrix. An effective and
simple strategy consists of the random selection of a number of sampling time instants
two or three times in excess of the minimum required by Nykvist’s theorem. The system of
equations relating the sampled values and the coefficients of the Fourier series expansion
(see Appendix A.8) therefore becomes rectangular, having more equations than unknowns,
and the unknown coefficients are overdetermined. Among all equations, only the ‘best’
ones are retained to form a square system suitable for inversion; the other equations,
in excess of the minimum number and the corresponding time samples, are discarded.
The ‘best’ equations are selected on the basis of their orthogonality, in order to have a
well-conditioned system of equations. A standard orthonormalisation scheme is described
in the Appendix A.8.

In Figure 1.30, the solution of our example circuit is given for the following values
of the circuit elements:

g = 10 mS C = 500 fF f1 = 1 GHz f2 = 1.05 GHz

with a box truncation scheme with nmax = 5; the waveforms are oversampled by a factor
6. The plots show input current ( ), output voltage (-·-·-·) and current in the nonlinear
resistor (- - - - ), for an input current of is,1 = is,2 = 100 mA.

In Figure 1.31, the spectra of voltages and currents in the example circuit are given.

In order to clarify the oversampling principle, the current waveform is shown in
Figure 1.32; the samples taken at uniform times are shown as black circles, the randomly
taken samples are shown as black crosses, while the selected samples after orthonormal-
isation are shown as grey circles dotted.

For comparison, voltages and currents in the same circuit are shown in Figure 1.33
as computed with a time-domain analysis with uniform step; two pseudoperiods have been
computed, and are shown in the figure.

It has been stated above that the analysis of a system driven by two (or more)
tones with commensurate frequencies can be approached by a single-tone analysis by
choosing the minimum common divider of the frequencies as the fundamental frequency
of the analysis. As said, this may lead to an impractically high numbers of harmonics
to be included in the analysis. An alternative approach to reduce the number of harmon-
ics within an equivalent single-tone analysis, not limited to incommensurate frequencies,
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Figure 1.30 Voltages and currents in the example circuit for a two-tone input signal
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two-tone input signal
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Figure 1.32 Nonlinear current waveform with uniform samples, oversampling, and optimum sam-
ples after orthonormalisation
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Figure 1.33 Voltages and currents in the example circuit for a two-tone input signal and a
time-domain analysis
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requires the remapping of the multi-tone frequencies. It can be seen (Section 1.3.1) that
a resistive nonlinear element generates a spectrum that includes the sum and differ-
ence frequencies of the input ones; this is true independently of the actual values of
the frequencies. We can therefore replace the two input frequencies by another couple of
(commensurate) input frequencies such that their harmonics and intermodulation products
occupy the harmonics of a single fundamental frequency, provided that the correspon-
dence with the original ones is univocal, and that the resulting spectrum is dense. Since
the new remapped fundamental frequencies are arbitrary, they can be integer numbers for
convenience.

Let us illustrate this with an example. Suppose that two input tones at 100 MHz and
2 GHz are fed to a nonlinear circuit, and that we want to adopt a box truncation scheme
with N1 = 3 and N2 = 5; a typical application could be an up-converting mixer from
100 MHz to, for example, 2.1 GHz. The maximum order of the intermodulation products
is nmax = N1 + N2 = 8. Two suitable remapped basis frequencies can be chosen as

f ′
1 = 1 Hz and f ′

2 = nmax − 1 = 7 Hz

The remapped spectrum is obtained in the same way as the original from the two
remapped fundamental frequencies:

f ′ = n1 · f ′
1 + n2 · f ′

2 (1.108)

This relation establishes a univocal correspondence and produces a dense spectrum,
as shown in Table 1.1; the correspondence is also depicted in Figure 1.34. It is also appar-
ent that all the spectral lines are the harmonics of the remapped fundamental frequency
f ′

2. The analysis can now be performed by means of a standard single-tone algorithm, as
described earlier, with a fundamental frequency f0 = f ′

1 = 1 Hz and a maximum number
of harmonics Nmax = 38 to be included in the analysis.

Similar schemes can be found for different truncation methods [53], even though
not always a dense remapped spectrum is obtained.

Table 1.1 The remapped frequencies

f ′ (Hz) n1 n2 f (MHz) f ′ n1 n2 f f ′ n1 n2 f f ′ n1 n2 f

0 0 0 0 11 −3 2 3700 22 1 3 6100 33 −2 5 9800
1 1 0 100 12 −2 2 3800 23 2 3 6200 34 −1 5 9900
2 2 0 200 13 −1 2 3900 24 3 3 6300 35 0 5 10000
3 3 0 300 14 0 2 4000 25 −3 4 7700 36 1 5 10100
4 −3 1 1700 15 1 2 4100 26 −2 4 7800 37 2 5 10200
5 −2 1 1800 16 2 2 4200 27 −1 4 7900 38 3 5 10300
6 −1 1 1900 17 3 2 4300 28 0 4 8000
7 0 1 2000 18 −3 3 5700 29 1 4 8100
8 1 1 2100 19 −2 3 5800 30 2 4 8200
9 2 1 2200 20 −1 3 5900 31 3 4 8300

10 3 1 2300 21 0 3 6000 32 −3 5 9700
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Figure 1.34 The original and remapped frequency spectrum

1.3.2.3 Envelope analysis

Harmonic balance algorithms so far described are quite general and flexible. However,
there are a few types of signals that are very difficult or nearly impossible to treat with
them: in particular, periodic or quasi-periodic signals with slowly varying amplitude,
as in phase-lock loops during locking, or in variable-gain amplifiers, or in narrowband
multi-carrier communications systems; or signals that cannot be easily represented by
sine-wave-based representations as digitally modulated signals; all these cannot be easily
handled by what has been seen so far. A harmonic balance–based approach has been
developed for these cases, which treats the slowly varying amplitude (or envelope) of the
fast carrier signals separately from the carrier themselves [57–61].

We shortly outline in the following the algorithm for a single carrier modulated
by a slowly varying ‘envelope’ signal for our test circuit; extension to a multi-carrier
signal in a general nonlinear circuit is straightforward. For this signal, the expressions in
eq. (1.69) are replaced by

v(t) =
∞∑

n=−∞
Vn(t) · ejnω0t is(t) = Is(t) · cos(ω0t) (1.109)

where the phasors Vn(t) and Is(t) are assumed to vary slowly with respect to the period

of the carrier T0 = 2π

ω0
. Kirchhoff’s nodal equation (1.70) becomes

C ·
d

( ∞∑
n=−∞

Vn(t) · ejnω0t

)

dt
+ imax · tgh




g ·
∞∑

n=−∞
Vn(t) · ejnω0t

imax




+ Is(t) ·
(

ejω0t + e−jω0t

2

)
= 0 (1.110)
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In analogy with eq. (1.109), we can rewrite eq. (1.72) as

ig(t) = imax · tgh




g ·
∞∑

n=−∞
Vn(t) · ejnω0t

imax


 =

∞∑
n=−∞

Ig,n(t) · ejnω0t (1.111)

Consequently, eq. (1.110) becomes

C ·
d

( ∞∑
n=−∞

Vn(t) · ejnω0t

)

dt
+

∞∑
n=−∞

Ig,n(t) · ejnω0t + Is(t) ·
(

ejω0t + e−jω0t

2

)
= 0

(1.112)

By part differentiation of the first term, eq. (1.112) becomes

∞∑
n=−∞

C
dVn(t)

dt
· ejnω0t +

∞∑
n=−∞

jnω0C · Vn(t) · ejnω0t +
∞∑

n=−∞
Ig,n(t) · ejnω0t

+ Is(t) ·
(

ejω0t + e−jω0t

2

)
= 0 (1.113)

By separating the harmonics in a way similar to what has been done for eq. (1.74),
eq. (1.113) becomes a system of equations:

C · dVn(t)

dt
+ jnω0C · Vn(t) + Ig,n(t) + Is

2
(t) = 0 n = −∞, . . . , 0, . . . , ∞ (1.114)

In vector notation,

C · d�V(t)

dt
+ j	C · �V(t) +�Ig,n(t) +�Is(t) = 0 (1.115)

This is a nonlinear differential equation system in the unknown vector of the
voltage phasors �V(t), which is a function of time. The system can be solved by direct
time integration, for example, by the backward Euler implicit formulation:

C · �V(tk) − �V(tk−1)

tk − tk−1
+ j	C · �V(tk) +�Ig,n(tk) +�Is(tk) = 0 k = 0, 1, . . . (1.116)

As has been said in Section 1.2, at each time step tk a system of nonlinear equations
must be solved, which actually is a harmonic balance system of equations. The analysis
is therefore transformed in a succession of harmonic balance problems.

We can now attempt an intuitive explanation of this formalism. Since the envelope
of the signal, and therefore the phasors of the carrier frequency, vary slowly with respect
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to the carrier, we can assume that value of the phasors is almost constant over several
periods of the carrier. We can therefore sample them at some time t1, and keep these
values constant for a time interval up to some other time instant t2, such that

t2 − t1 � T0 (1.117)

Equation (1.110) can therefore be rewritten as

C ·
d

( ∞∑
n=−∞

Vn(tk) · ejnω0t

)

dt
+ imax · tgh




g ·
∞∑

n=−∞
Vn(tk) · ejnω0t

imax




+ Is(tk) ·
(

ejω0t + e−jω0t

2

)
= 0 k = 1, 2, . . . (1.118)

This equation is equivalent to a harmonic balance (Kirchhoff’s) equation for a
single-tone excitation, for each time interval during which the envelope is assumed to
be constant. However, even if the envelope varies slowly with respect to the carrier, this
is not true with respect to the reactances of the circuit. They keep memory of its past
behaviour, and affect the envelope behaviour as described by the differential equation
(1.115). A pictorial representation of the method is shown in Figure 1.35.

1.3.2.4 Additional remarks

The harmonic balance method has several advantageous features that have determined
its success: the linear parts of the circuit are reduced to an equivalent network that is

t1

t2

t3

t4
Modulation Carrier

V(t) × exp(j2pf0t)

Figure 1.35 Waveforms in an envelope harmonic balance analysis
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evaluated in the frequency domain. This allows the reduction of usually large passive
subnetworks to a minimum number of connecting nodes, or ports, and the reduction of
numerical complexity. Moreover, the evaluation in frequency domain is very practical
for most linear microwave components, both lumped and distributed. On the other hand,
the voltage–current characteristics of the nonlinear elements can be represented by any
function, even numerically by means of look-up tables with interpolation, provided that
it is continuous; however, the numerical solution of the system has better properties if
the first derivative is also continuous.

There are, however, also drawbacks. First of all, it is not possible to detect insta-
bilities of the circuit at frequencies not correlated to the excitation frequency, at least
with this simple formulation. This is a natural consequence of the assumption of periodic
voltages with the same period of excitation. On the other hand, if the circuit is unstable
at any harmonic frequency of the excitation, the iterative numerical algorithm does not
converge. However, the opposite is not true: the algorithm can fail to converge for other
reasons. With harmonic balance analysis, the study of the stability of the circuit must be
performed with special methods, which will be dealt with in Chapter 5.

Another drawback is the difficulty to represent a frequency dispersive behaviour
of the nonlinear device; this is a natural consequence of the time-domain analysis of the
nonlinear subnetwork. Special representations of the active device can however help with
this problem.

An obvious limitation of the method is that only periodic, steady state circuits can
be analysed. In fact, transients such as, for example, the step response can be analysed
by periodic repetition of the step [62] (Figure 1.36).

The repetition time must be longer than the transient phenomena, and the duty cycle
must be such that the DC component is close to the actual one. However, the number
of harmonics required for an accurate analysis of a step makes this method unpractical
in many cases. Moreover, care must be taken in order to define a correct DC value for
the excitation.

1.3.2.5 Describing function

A simplified version of the harmonic balance algorithm has been developed and used in
the past, and it has been long neglected for CAD applications [63]. Basically, referring
to eq. (1.69), the higher harmonics of the voltage are neglected, and the latter is assumed

V

t

Figure 1.36 Periodic repetition of a step excitation for analysis with the harmonic balance method
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to be a single-frequency signal:

v(t) ∼= V · cos(ω0t + ϕv) is(t) = Is · cos(ω0t) (1.119)

Obviously, this is an approximation. Accordingly, eq. (1.71) becomes

ω0C · V · sin(ω0t + ϕv) + Ig · cos(ω0t + ϕg) + Is · cos(ω0t) = 0 (1.120)

where the current in the nonlinear element is computed through the time domain

ig(t) = imax · tgh

(
g · V · cos(ω0t + ϕv)

imax

)
∼= Ig · cos(ω0t + ϕg) (1.121)

and the phasor of the current is still computed by means of a Fourier transform, as in a
standard harmonic balance algorithm:

ig(t) ⇒ � ⇒ Ig (1.122)

but only the first term is retained now. In fact, the current in the nonlinear element is com-
puted with all harmonics as a nonlinear response to the applied sinusoidal voltage; only its
fundamental-frequency sinusoidal component is retained for solving (balancing) Kirch-
hoff’s equation (eq. (1.120)). In electrical terms, the nonlinear conductance is considered
as a linear equivalent large-signal conductance for a fundamental-frequency sinusoidal
signal. The unknown voltage is found by solving eq. (1.120). By repeating the analysis
for increasing amplitudes of the input current, the relation between output voltage and
input current is numerically found; when voltage and current are expressed as phasors,
the relation relates complex numbers and can be written as

V = DF (Is) (1.123)

The complex function DF is the describing function. In practice, it is of practical
importance when the linear part of the circuit behaves as a narrowband filtering structure
that filters out the harmonics generated inside the nonlinear element. It is the simulation
equivalent of the popular AM/AM, AM/PM experimental characterisation of narrowband
amplifiers or nonlinear systems in general. The practical application of this approach
extends to the case of slowly modulated sinusoidal signal in a narrowband circuit: a
formulation very similar to the envelope analysis can be set up for the describing function
also, with big savings in terms of computation time.

1.3.2.6 Spectral balance

Yet another different approach is obtained if the nonlinear element has a polynomial
current–voltage characteristic (eq. (1.44)) [64, 65]:

ig(v) = g0 + g1 · v + g2 · v2 + g3 · v3 + · · · (1.124)
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In this case, the nonlinear Kirchhoff’s equation (eq. (1.13)) reads as in eq. (1.57):

C · dv(t)

dt
+ g1 · v(t) + g2 · v2(t) + · · · + is(t) = 0 (1.125)

The voltage is once more expanded in Fourier series, then replaced into eq. (1.125):

C ·
d

( ∞∑
n=−∞

Vn · ejnω0t

)

dt
+ g1 ·

∞∑
n=−∞

Vn · ejnω0t + g2 ·
( ∞∑

n=−∞
Vn · ejnω0t

)2

+ · · · + Is ·
(

ejω0t + e−jω0t

2

)
= 0 (1.126)

The system must be brought to the form of eq. (1.71):

∞∑
n=−∞

jnω0C · Vn · ejnω0t +
∞∑

n=−∞
Ig,n · ejnω0t + Is ·

(
ejω0t + e−jω0t

2

)
= 0 (1.127)

20
15
10
5
0

−5
−10
−15
−20
−25
−30
−35
−40
−45
−50
−55
−60
−65
−70
−75
−80
−85
−90
−95

−100

Pav

xxxx
(a)

Pav

20
15
10
5
0

−5
−10
−15
−20
−25
−30
−35
−40
−45
−50
−55
−60
−65
−70
−75
−80
−85
−90
−95

−100

Pout

xxxx
(b)

Pout

Figure 1.37 Spectral regrowth of a modulated signal computed by a multi-tone spectral bal-
ance algorithm
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In this case, however, the phasors of the nonlinear current Ig,n are analytically
computed from the powers of the voltage Fourier series (see the ‘probing method’ for the
Volterra series), without any Fourier transform. In fact, the current phasor computation
requires a good deal of formalism, but it can be easily handled by suitable numerical
arrangements. The rest of the procedure is similar to the standard harmonic balance
method, and the nonlinear equation system is formally identical to eq. (1.77) or eq. (1.90).
The method is called spectral balance because only manipulations of spectra are involved,
and no time-domain waveforms are computed [66–70].

The method is very efficient especially for multi-tone input signal, up to several
tens of input tones. By way of illustration, the spectral regrowth of a pseudorandom
modulated signal is shown in Figure 1.37. Both the input and the output to the nonlinear
system are shown, as computed by a multi-tone spectral balance algorithm.

1.4 THE CONVERSION MATRIX

In this paragraph, a linearised representation of a nonlinear circuit in large-signal opera-
tions is described for small-signal applications at non-harmonic frequencies. This method
is also called the large-signal/small- signal analysis.

So far, one or more large signals have been applied to a nonlinear circuit. The
case when one signal is large and another is small has important applications, and will
be described in the following. Typically, the large signal drives the nonlinear element(s)
into nonlinear operations and must be treated numerically as seen above; the small signal
applies a small perturbation to the nonlinear operating regime, which can be linearised
if its amplitude is small enough. In fact, this is also the case of standard small-signal
S-parameters or any other equivalent small-signal parameters: the large signal is the
bias voltages at zero frequency (DC), and the small signal is any signal with a generic
spectrum. The large-signal operating point, that is, the DC quiescent point, is found by
means of nonlinear analysis, typically the graphical load-line method, or a numerical
iterative method as in direct time-domain analysis; the device is linearised around it by
means of small perturbations, which in a standard experimental set-up is sinusoidal (vector
network analyser with bias Ts). In the case of the conversion matrix, the large signal is
periodic and the operating regime is not a DC quiescent point but a time-varying periodic
state, and the effect of the perturbation must be computed with some care [71–74].

Let us illustrate this case with our example circuit. The circuit is driven into
nonlinear, periodic regime by a large sinusoidal signal, in our case a large-amplitude
current generator. Voltage and currents have already been found with several methods;
they can be expressed as Fourier series expansions of the form

vLS(t) =
∞∑

n=−∞
VLS,n · ejnωLSt (1.128)

iC,LS(t) = C · dvLS(t)

dt
=

∞∑
n=−∞

jnωLSC · VLS,n · ejnωLSt (1.129)
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ig,LS(t) = imax · tgh

(
g · vLS(t)

imax

)
= imax · tgh




g ·
∞∑

n=−∞
VLS,n · ejnωLSt

imax




=
∞∑

n=−∞
Ig,LS,n · ejnωLSt (1.130)

where the subscript LS has been added to identify the large-signal quantities.

Let us now add a small input current iss(t) (Figure 1.38).

The voltage will be perturbed by a small component vss(t):

v(t) = vLS(t) + vss(t) (1.131)

The currents in the capacitance and in the nonlinear resistor will also be perturbed
by small components; in the case of the linear elements (in this case the capacitance), it
is immediately found by the superposition principle:

iC(t) = iC,LS(t) + iC,ss(t) = C · dvLS(t)

dt
+ C · dvss(t)

dt
(1.132)

The small perturbation component of the current in the nonlinear elements (in this
case the nonlinear resistor) is computed by linearisation around the steady state:

ig(t) = ig,LS(t) + ig,ss(t) ∼= ig,LS(t) + dig(v)

dv

∣∣∣∣
v=vLS(t)

· vss(t) + · · · (1.133)

From an electrical point of view, the linearised perturbation can be seen as a small
deviation from the ‘bias’ point (iLS, vLS) along the nonlinear I/V characteristic of the
resistor (Figure 1.39).

If the perturbation is small enough, the I/V curve can be replaced by its tangent in
the ‘bias’ point v = vLS, whose slope is the dynamic conductance. The small perturbation
current is therefore expressed as the perturbation voltage times the dynamic conductance:

ig,ss(t) ∼= dig(v)

dv

∣∣∣∣
v=vLS(t)

· vss(t) = gss(v)|v=vLS(t) · vss(t) = gss(t) · vss(t) (1.134)

ig(v)iLS

C

V

+

−

iciss

Figure 1.38 The example circuit for the calculation of the conversion matrix
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Figure 1.39 Definition of the dynamic conductance

Since the ‘bias’ point is time varying, the small-signal dynamic conductance also
varies with time. For our example circuit (Figure 1.40),

gss(v) = dig(v)

dt
= g ·

(
1 − tgh2

(
g · v
imax

))
(1.135)

Since the large-signal voltage is known and periodic, the behaviour of the dynamic
conductance in the time domain is known and periodic:

gss(t) = gss(vLS(t)) = g ·


1 − tgh2




g ·
∞∑

n=−∞
VLS,n · ejnωLSt

imax





 =

∞∑
m=−∞

Gss,m · ejmωLSt

(1.136)

In the above formula, the dynamic conductance has been expanded in Fourier
series with respect to time, where the coefficients Gss,m are computed by means of a
Fourier transform.

The small perturbation currents must fulfil Kirchhoff’s current law,

iss(t) + iC,ss(t) + ig,ss(t) = 0 (1.137)

for all time instants; in our case,

iss(t) + C · dvss(t)

dt
+ g(t) · vss(t) = 0 (1.138)
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Figure 1.40 Dynamic conductance as a function of large-signal voltage

where iss(t) is the known excitation and vss(t) is the unknown voltage. The equation is lin-
ear with time-varying coefficients (the dynamic conductance of the nonlinear resistance);
it corresponds to a small-signal equivalent circuit as in Figure 1.41.

So far nothing has been said on the time dependence or spectrum of the small input
current. Since the circuit equation is linear, the solution can be obtained in the spectral
domain by Fourier transform as the superposition of sinusoidal spectral components,
as for any linear system (see Section 1.1 and Appendix A.1). However, the time-varying
coefficients give a different turn to the circuit analysis. Let us show this with an example.

Let us assume a sinusoidal input current:

iss(t) = Iss · cos(ωsst) (1.139)

The small-signal voltage will have a component with the same frequency, which
we will identify by the subscript (0):

vss,0(t) = Vss,0 · ejωsst + Vss,−0 · e−jωsst (1.140)

+

iss(t ) g(t ) C

−

V

Figure 1.41 Small-signal time-variant equivalent circuit of the example circuit
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The current in the capacitor will also have a component with the same frequency:

iC,ss,0(t) = C · dvss,0(t)

dt
= jωssC · Vss,0 · ejωsst − jωssC · Vss,−0 · e−jωsst (1.141)

The current in the nonlinear resistor will be

ig,ss(t)=gss(t) · vss,0(t)=
∞∑

m=−∞
(Gss,m · Vss,0 · ej (mωLS+ωss)t + Gss,m · Vss,−0 · ej (mωLS−ωss)t )

(1.142)

Therefore, a small sinusoidal voltage at the input frequency ωss generates a whole
set of new frequency components by interaction with a periodically varying conductance.
If the spectrum of the (time-varying) conductance is composed by the fundamental fre-
quency ωLS with all its harmonics, the spectrum of the small current will be composed
by the same spectral components shifted upwards and downwards by the small voltage
frequency ωss (Figure 1.42).

The expression for the current is complicated and redundant: as is well known,
for a real signal, the phasors at a negative frequency are the complex conjugate of the
phasors at the corresponding positive frequency. In our case, we can rewrite the previous
expression as

ig,ss(t) =
0∑

m=−∞
Gss,m · Vss,0 · ej (mωLS+ωss)t +

∞∑
m=1

Gss,m · Vss,0 · ej (mωLS+ωss)t

+
−1∑

m=−∞
Gss,m · Vss,−0 · ej (mωLS−ωss)t +

∞∑
m=0

Gss,m · Vss,−0 · ej (mωLS−ωss)t (1.143)

from which it is clear that the first and fourth terms are complex conjugate, and so are
the second and third. To make this point clearer, the previous figure is repeated with the
four terms marked in different shadings (Figure 1.43).

The first and third terms represent the lower sideband of the signal, while the sec-
ond and fourth represent the upper sideband. In order to have a compact representation,

f

−3fLS−fss −3fLS+fss 3fLS−fss 3fLS+fss

−2fLS−fss −2fLS+fss 2fLS−fss 2fLS+fss

−fLS−fss

−fss fss

−fLS+fss fLS−fss fLS+fss

Figure 1.42 Spectrum of the current in the time-variant dynamic conductance



54 NONLINEAR ANALYSIS METHODS
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Figure 1.43 Spectrum of the current in the time-variant dynamic conductance with the four terms
in eq. (1.143) marked in different shadings

we will omit the third and fourth terms, retaining only the first and second ones. The
signal written in this simplified way is not physical, but it contains all the information
necessary for the reconstruction of the real signal. From now on, we will use this repre-
sentation for voltages and currents within this section without any specification. We will
therefore rewrite

iss(t) = Iss · ejωsst (1.144)

vss,0(t) = Vss,0 · ejωsst (1.145)

and so on.

The complete spectrum of the small perturbation voltage has to include the same
spectral components as the current generated in the nonlinear elements, since the current
will flow through the linear part of the circuit generating a voltage with the same spectrum.
Its Fourier series expansion with the convention above is

vss(t) =
∞∑

m=−∞
Vss,m · ej (mωLS+ωss)t (1.146)

With this new formalism, Kirchhoff’s equation for the small perturbation reads
as follows:

∞∑
n=−∞

Iss,n · ej (nωLS+ωss)t +
∞∑

n=−∞
j (ωLS + ωss) · C · Vss,n · ej (nωLS+ωss)t

+
∞∑

m=−∞
Gss,m · ejmωLSt ·

∞∑
n=−∞

Vss,n · ej (nωLS+ωss)t (1.147)

This time-domain equation can be split into infinite equations, each one balancing
the current at a different frequency nωLS + ωss, as seen in the previous paragraph. The
generic equation becomes

Iss,n · ej (nωLS+ωss)t + j (ωLS + ωss) · C · Vss,n · ej (nωLS+ωss)t

+
∞∑

m=−∞
Gss,n−m · Vss,m · ej (nωLS+ωss)t (1.148)
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This expression can be put in matrix form by truncating the series expansions.
Voltages and currents become vectors

�Iss =




Iss,N

·
Iss,0

·
Iss,−N


 �Vss =




Vss,N

·
Vss,0

·
Vss,−N


 (1.149)

the linear capacitance becomes a diagonal matrix

↔
C =




j (NωLS + ωss)C · 0 · 0
· · · · ·
0 · jωssC · 0
· · · · ·
0 · 0 · j (−NωLS + ωss)C


 (1.150)

and the nonlinear resistance becomes a matrix in the form

↔
G =




Gss,0 · Gss,N · Gss,2N

· · · · ·
Gss,−N · Gss,0 · Gss,N

· · · · ·
Gss,−2N · Gss,−N · Gss,0


 (1.151)

The system of KCL equations for the small perturbation becomes

�Iss + �C · �Vss + �G · �Vss = 0 (1.152)

The matrix
↔
G, or its generalised expression in case of a complex nonlinear network,

is the conversion matrix. As seen before, a nonlinear element driven by a large signal at
a frequency ωLS acts as a time-periodic linear conductance that converts the frequency of
a signal to many different frequencies, shifted upwards and downwards by the harmonics
of the large signal. In other words, the output frequencies are the sum and difference
of the input frequency with the harmonic frequencies of the large signal. The complete
spectrum of voltages and currents is as in Figure 1.44.

f
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−fss fss
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Figure 1.44 Complete spectrum of currents and voltages in the circuit
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In the case that no large periodic signal is driving the nonlinear element into
nonlinear regime, the conversion matrix becomes diagonal, and the diagonal elements
are the small-signal conductance at the bias point Gss,0. The circuit becomes a standard
small-signal circuit.

The conversion matrix is very convenient in the case of the small amplitude of the
input signal to be frequency converted. When the amplitude of the input signal increases,
a Volterra series analysis can be implemented by extending the series expansion of the
current in the nonlinear elements (eq. (1.133)) to second-, third- and possibly higher-
order terms [30]. In this way, the dynamic range of the conversion is found and the
intermodulation distortion is also predicted. This approach extends the Volterra series
formalism from time-independent to time-dependent nonlinear circuits.
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2
Nonlinear Measurements

2.1 INTRODUCTION

This introduction describes the main applications of nonlinear measurement methods, to
be described more in detail in the following paragraphs.

Nonlinear components and circuits are measured for three main purposes: for
the characterisation of the nonlinear device and inclusion of its nonlinear model in an
analysis algorithm as described in Chapter 1; for a direct, experimental evaluation of the
performances of the device or circuit on the measurement bench, in order to identify the
optimum operating conditions; or for the verification of the actual performances of the
fabricated circuit to be compared with the designed or expected ones.

The same measurement equipment or set-up can serve more than one of the three
different purposes; this chapter is therefore divided by measurement type. For each of
them, the different applications will be described. The particular application of nonlinear
device modelling will be described in greater detail in the next chapter; it is not only the
most critical bottleneck in nonlinear CAD, but also a somewhat tricky exercise.

Three main nonlinear measurement types are described hereafter: the load/source
pull, the vector nonlinear network analysis and the pulsed measurements. The first two
types involve large-signal RF and DC quantities, while the third one involves large-signal
quasi-DC quantities and optionally also small-signal quantities. In fact, the boundary
between load/source pull and nonlinear vector network analysis can vanish, and the same
set-up can be made to perform both functions. In general, a great deal of work is going
on in the field, and things are moving fast, as the awareness of the importance of detailed
and reliable nonlinear data gains ground. In this chapter, we will therefore try to describe
the basic principles more than the most advanced results or set-up.

As a general description, it will be enough to say here that load/source pull is
mainly devoted to the experimental identification of the optimum performances of a
device or circuit under nonlinear regime and of the corresponding operating conditions.
Nonlinear network vector analysis mainly aims at the direct measurement or optimisation
of a nonlinear circuit, or at the identification of a nonlinear model; pulsed measurements
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usually serve the purpose of gathering data for the extraction of a correct and accurate
nonlinear device model.

A general remark can be made here: nonlinear measurements, as opposed to linear
ones, cannot exploit the superposition principle. This implies that any representation in the
form of an equivalent linear matrix is meaningless: no Thévenin (or Norton) equivalent
representation as the impedance (or admittance) matrix is allowed. As a consequence, data
measured in a 50 � environment cannot be extrapolated to different loading conditions.
Another consequence is that nonlinear measurements are dependent on the amplitude
of voltages and currents. The amount of measurements and measurement data is con-
sequently much higher than that in the linear case. The amount and complexity of the
measuring hardware is also correspondingly greater than that in the linear case, making
the total cost of both equipment and human resources quite high.

2.2 LOAD/SOURCE PULL

In this paragraph, the main schemes for load/source pulling are reviewed. The required
equipment and the performances of each approach are described and compared. Examples
of measured data are also given.

The object of load/source-pull measurements is the experimental determination
of the performances of a device in large-signal operations and the identification of the
conditions that yield the optimum or desired results. Typical performances of interest for
power amplifiers are not only large-signal input and output match, output power, power
gain, efficiency and distortion (see Section 4.1) but also conversion gain and conversion
efficiency for mixers and frequency multipliers or frequency pulling for oscillators. The
performances are evaluated as functions of input and output loads, bias point and input
power for power amplifiers and of local oscillator power for mixers. Sometimes the
temperature also is a controlled parameter. In fact, the most important parameters, and
the ones that give the name to the technique, are the input and output loads: load pulling
means varying the output load, that is, the load at the output side of the device under test
(DUT), and source pulling means varying the input load, that is, the load at the source
side. The loads must be controlled, so that their value is known as accurately as possible
while making a measurement. By no means is this an easy job, and several solutions
are available.

A first classification of the load/source-pulling techniques indicates whether the
measured quantities are measured with scalar or vectorial techniques. Scalar load/source
pulling requires only power meters and/or a spectrum analyser, while vectorial load/source
pulling requires also a network vector analyser (VNA). In fact, a VNA is also required
in a scalar source/load pull for the preliminary (linear) characterisation of the loads, but
not during the measurement itself, as described in the following. Calibration techniques
are also obviously different in the two cases. The scalar solution is usually cheaper and
easier to implement, while the vectorial is more accurate and complete.

Another classification of the techniques indicates whether the loads at the input
and output sides are implemented by means of passive or active arrangements; in any
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Figure 2.1 A typical set-up for scalar, passive load pull

of the two cases, the loads can be controlled either at fundamental frequency only or at
harmonic frequencies also. All combinations are briefly described in the following text.

A typical set-up for scalar, passive, fundamental-frequency load/source pull is
shown in Figure 2.1 [1, 2].

The signal from the source is amplified, then sampled by means of a directional
coupler and fed to the input of the DUT through a tuner; the sampled signal is measured
by the power sensor of a power meter. The input tuner acts as an adjustable matching
network, whose output reflection coefficient �S can be set to any desired value within a
certain region of the Smith Chart, provided that the other port of the tuner is matched.
This �S is actually the source impedance for the DUT, impedance that is ‘pulled’ by
adjusting the tuner. Similarly, at the output, the load-reflection coefficient for the DUT
�L is set by another tuner, after which the signal is fed to another power sensor. In
fact, the source/load-pull set-up replicates a power amplifier, where the signal source
with the amplifier and the isolator act as a matched input large-signal source, the tuners
act as adjustable matching networks, the bias Ts act as bias networks and the output
power sensor acts as a matched output load; the directional coupler is inserted only for
measurement purposes. Provided that the attenuation and the impedances of the tuners are
accurately known, input and output power at the DUT for the given loading conditions
are evaluated from the power sensors; power gain and efficiency are also immediately
computed if the DC power from the power supply is evaluated. The tuners are therefore
the centrepieces of the set-up; they must be reliable, repeatable and flexible enough to
ensure accurate data.

Passive tuners can be mechanical or electronic. Mechanical tuners are made of a
piece of rectangular waveguide with a longitudinal slot in which one or two slugs are
inserted (see Figure 2.2).

The position along the slot and the depth of insertion of the slug(s) in the slot
control the phase and the amplitude of the reflection coefficient respectively. In manual
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Figure 2.2 A mechanical tuner

tuners, the insertion of each slug is controlled by a micrometric screw, mounted on a
slide for position control. In automatic tuners, the same is done by means of step motors,
controlled by a computer. The tuners are preliminarily characterised in terms of two-port
S-parameter by means of a VNA, for a great number of positions of the slugs, in order
that the impedance covers the region of the Smith Chart to be investigated; the data is
stored for further processing. An example of the loads presented by a tuner is shown in
Figure 2.3.

During the measurement, the slugs are set to the same positions as they are during
the pre-characterisation. The repeatability of the tuner is therefore of primary importance
for the accuracy of the measurements.

Electronic tuners include PIN diodes that can be switched on or off by an external
control, providing a similar set of loads as in Figure 2.3.

The advantage of mechanical tuners consists essentially in their superior power
handling. Repeatability is a matter of accurate design for any of the two solutions. Robust
and accurate mechanical structure and fabrication ensure high repeatability and reliability
of a mechanical tuner; on the other hand, a suitable design of the circuitry ensures stability
with respect to power level and temperature to an electronic tuner. Costs, both in terms
of initial investment and in terms of measurement time, are usually comparable.

The calibration of the set-up requires a vectorial linear two-port characterisation
of the tuners in a large number of slug positions, large enough to cover the region of
the Smith Chart to be investigated. In fact, all parts in the set-up (except the DUT, of
course) must be characterised beforehand in terms of two-port S-parameters (directional
coupler, bias Ts) or reflection coefficient (input source block, output power sensor), in
order that the impedances and power levels at the DUT be properly evaluated. The
power level is calibrated by an absolute power measurement with the DUT replaced by
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Figure 2.3 Loads synthesised by a mechanical tuner

a through connection. A standard cascaded-networks de-embedding technique is used for
the impedance and power level calculation [3–6].

The output power is evaluated for each output load at a specified input power
condition: for instance, all data points can be measured for the same input power. Alter-
natively, the input power can be individually adjusted for each load in such a way that
for each data point the transistor works at the same gain compression level (e.g. 1-dB
gain compression). The data points on the Smith Chart that yield the same output power
level are connected by a constant output power contour; usually, the load yielding the
maximum output power is shown individually, and the power contours corresponding to
decreasing levels in 1-dB steps are also shown. The contours are usually traced auto-
matically by means of interpolation routines. The contours are almost circles for low
compression levels, when nonlinearities are weak; they become more and more distorted
as the nonlinear effects increase with the compression level.

Intermodulation is evaluated in very much the same way by replacing the sinu-
soidal, single-tone input source with a two-tone input source [7, 8]. The output power
sensor is also replaced by a spectrum analyser for the evaluation of the third-order spectral
line power with respect to the fundamental-frequency spectral line power. The input-signal
power amplifier must be very linear in order to prevent its distortion from being amplified
by the transistor and getting added to that of the transistor itself. In fact, the cost of the
power amplifier becomes a significant portion of the total cost because of the linearity
requirements.
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Figure 2.5 Load-pull data with interpolated contours: power-added efficiency at 1-dB gain com-
pression (a) and C/I3 at 1-dB gain compression (b)

As an example of the capabilities of the set-up, output power and power gain data
at 1-dB gain compression are shown in Figure 2.4, while power-added efficiency and
C/I3 data at 1-dB gain compression are shown in Figure 2.5.

A few variations on this general scheme are possible. First of all, another direc-
tional coupler can be added before the input tuner, but reversed in direction, in order to
monitor the reflected wave at input also: in this way, the large-signal input match can be
adjusted by suitably setting the input tuner. An alternative to tuner pre-characterisation
is given by the insertion of a switch between each tuner and the corresponding bias
T, in order to measure the tuner impedance directly on the site; however, the switch
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repeatability affects the accuracy of the measurement. Moreover, a VNA must be avail-
able during the measurements, and the input signal must be switched off when the input
reflection coefficient is measured (see Figure 2.6); the measurement time also increases.
Alternatively, directional couplers are inserted between the tuners and the DUT for online
impedance evaluation [9].

The approach just described does not account for harmonic frequency loading,
both at the input and at the output of the DUT. In fact, the impedance value at har-
monic frequencies affects the performances of the DUT especially for strongly nonlinear
operations, as for instance in high compression [10]. Of course, the harmonic impedance
presented by a passive tuner can be accurately measured, but cannot be controlled, unless
a special arrangement is made. For instance, two tuners can be series-connected, in
order that enough degrees of freedom are available for simultaneous control of first- and
second-harmonic impedance. However, losses and characterisation time increase substan-
tially. Harmonic tuners including a resonant structure are available, that partially limit
the drawbacks of the solution. A more radical solution consists of two multiplexers at
either end of the DUT block and of as many tuners as the harmonics to be controlled
(Figure 2.7)

Also, in this case, the additional losses introduced by the multiplexer limit the
performance of the system.

The main consequence of the losses associated with passive tuners is that the reflec-
tion coefficient cannot reach the edge of the Smith Chart. Typical maximum values for
the reflection coefficient amplitude are 0.9 at low microwave frequencies and down to 0.8



68 NONLINEAR MEASUREMENTS

Power meter

Power sensor

Source Isolator

Directional
coupler

Power sensor

Tuner @ f0 Tuner @ f0

Tuner @ 2f0 Tuner @ 2f0
Γs(f ) Γs(f )Multi

plexer
Multi

plexer

Bias supply

Bias T Bias T

DUT

50 Ω 50 ΩΓ

Γ

Γ

Γ
Amplifier

Figure 2.7 A typical set-up for scalar, passive source/load pull with individual control of the
harmonic impedances

or even 0.75 in the higher microwave frequency range. This is a real problem, especially
when characterising high-power transistors, whose optimum input and output impedances
are very low and lie close to the edge of the Smith Chart. A simple solution includes
pre-matching circuits, that is, impedance transformers, between the DUT and the tuners;
this solution allows for a better accuracy within the transformed region. The pre-matching
can also be included in the tuners. Obviously, the pre-matching circuits must be charac-
terised in terms of S-parameters and replaced by different ones whenever the region of
interest changes.

A radical solution to the losses problem is the active-load approach. A possible
scheme is the two-path technique [11]: the signal source is split and fed both to the input
of the DUT and to the output of the DUT after amplification and phase shift (Figure 2.8).

The output reflection coefficient seen by the DUT is the ratio of incident to reflected
wave at its output port:

�L = aL

bL
(2.1)

Now, bL is the wave coming out of the DUT, while aL is the wave injected from
the output path; the amplitude and phase of the latter are easily set by means of the
variable attenuator and phase shifter in the output path. In this way, any ratio can be
synthesised, even greater than one in amplitude, since the amplifier in the output path
overcomes all the losses. The value of the output reflection coefficient is checked on-site
by means of the output directional couplers and a VNA.

The two-path technique is an easy and stable technique for active-load synthesis.
However, when simulating an actual power amplifier, the value of the output load must
be kept constant for increasing input power levels and also for the associated increasing
DUT temperature. This implies that, while bL changes because of the above, aL must
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also be adjusted, in order to keep their ratio constant. The procedure becomes very time
consuming and is not very stable.

In order to overcome the problem, a different active-load configuration is available,
the so-called active-loop technique [12, 13] (Figure 2.9).

The wave bL coming out of the DUT is now sampled, amplified, phase shifted and
re-injected at the output of the DUT. The ratio of this wave aL to the wave coming out of
the DUT bL is fixed once the variable attenuator and the phase shifter in the output loop are
fixed. The main problem associated with this approach is the possible onset of oscillations
within the output loop, especially at frequencies outside the coupling (and decoupling)
band of the directional coupler. A passband loop filter is inserted to prevent the presence
of spurious signal propagation around the loop outside the signal-frequency band.
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Figure 2.9 A typical set-up for active-loop load pull with passive source pull
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Both the active-loop techniques can be extended to cover harmonic frequen-
cies. The two-path approach requires frequency multipliers to generate harmonic sig-
nals [14–17] (Figure 2.10).

The active-loop techniques simply add other loops because the harmonics are
generated by the DUT itself (Figure 2.11) [18, 19].
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Figure 2.11 A typical set-up for active-loop load pull with individual control of harmonic
impedances and passive source pull



THE VECTOR NONLINEAR NETWORK ANALYSER 71

32

34

36

38

40

42

44

Figure 2.12 Second-harmonic load-pull results for power-added efficiency

As an example, measurements of power-added efficiency as a function of second-
harmonic load with interpolated constant-efficiency contours are shown in Figure 2.12.

2.3 THE VECTOR NONLINEAR NETWORK ANALYSER

In this paragraph, the main techniques for nonlinear vector network analysis are reviewed.
The required equipment and the performances of each approach are described and com-
pared. Examples of measured data are also given.

It has been shown above (see Section 1.3.1) that when the input signal of a non-
linear system is a sinusoid, the output signal is a sinusoid with all its harmonics, plus
a rectified component at zero frequency (DC). In fact, this is not always true, because
sub-harmonic components can arise as a result of nonlinear instability; the former case,
however, is the common one. A vector nonlinear network analyser (VNNA) is a mea-
surement set-up that is able to measure periodic large-signal waveforms with all their
harmonics. In order that the measurements be of any interest, loads different from 50 �

must be supplied at all harmonic frequencies; this makes the nonlinear VNA actually
very close to a vectorial source/load pull.

Let us consider a load/source-pull scheme as seen in the previous paragraph; so far,
only scalar measurements have been assumed. Actually, since all incident and reflected
waves are available, vectorial measurements are feasible, and in fact very useful. For
vectorial measurements, a scheme similar to that of a linear VNA is in place [20, 21].
The input signal is switched between input and output, and a four-port harmonic converter
is used as a receiver (Figure 2.13).
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The scheme allows for vector error correction in a similar way as for linear mea-
surements; an additional power measurement is required for absolute power evaluation.
Typically, a combination of short, open, through, line and matched terminations are used
together with a correction algorithm. The combination of vector measurements with har-
monic source/load-pulling schemes allows for nonlinear waveforms to be reconstructed
with high accuracy under strong nonlinear operations. The higher the number of harmon-
ics, the higher the accuracy of the reconstructed waveforms. As an example, the collector
voltage and current waveforms of a power transistor loaded for high-efficiency power
amplification are shown in Figure 2.14.
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Figure 2.14 Current and voltage waveforms in a power transistor with power loads
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An alternative to the linear VNA within a similar type of measurement environment
is the waveform analyser, which is essentially a sampling oscilloscope for high frequen-
cies, with 50 � probes. Synchronisation must be provided by a reference microwave
signal, usually the input signal. Two directional couplers are inserted at each side of
the DUT, and active or passive loads terminate the chain. Therefore, the instrument is
equivalent to a harmonic vector source/load-pulling set-up [19, 22–25]. An example is
shown in Figure 2.15.
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Figure 2.15 A nonlinear vector network analyser based on a fast-sampling oscilloscope
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A VNNA can also be used for the modelling of nonlinear devices under large-signal
operations. For instance, the device behaviour can be represented within a range of input
power and loadings by a black-box equivalent model, whose behaviour is linearised
around a range of large-signal working points [26], and then modelled by means of a
neural network or any similar approximating and interpolating system. The corresponding
experimental set-up is shown in Figure 2.16.

2.4 PULSED MEASUREMENTS

In this paragraph, the currently available techniques for DC and RF pulsed measurements
are described. Examples of measured data are also given.

An active device is characterised for linear applications in a small neighbourhood
of an operating point, corresponding to a given value of quiescent voltages and currents.
The quiescent point determines the state of some ‘slow’ phenomena within the device, that
is, phenomena with long time constant [27–31]; they are mainly the thermal processes,
determining the temperature of the device, and the carrier generation and recombination
processes, determining the trap occupancy within the semiconductor. The time constants
are in the order of seconds to milliseconds for thermal phenomena and down to microsec-
onds for trapping and de-trapping phenomena. A superimposed microwave signal, be it
small or large, does not have the time within a microwave period to affect any of these
phenomena. The microwave properties of the device are however affected by the ‘quies-
cent’ state of the device: by way of example, it is obvious that a high temperature affects
the microwave gain of a device. Therefore, temperature and bias voltages and currents
must be specified when a microwave measurement is performed.

These considerations are obvious for small-signal characterisation; they are less so
for large-signal measurements. Let us illustrate this with a few examples.

Let us consider the output (drain–source) I–V characteristics of a power FET
measured in DC conditions. A high-current characteristic curve will show a negative
slope with respect to drain–source voltage (Figure 2.17); this implies a negative output
(drain–source) conductance. In fact, the decrease in current is due to an increase in the
temperature of the device, which reduces the carrier mobility within the device, which in
turn decreases the current in the channel.

If the output conductance around a high-current bias point is measured with a
small microwave signal, as for instance with a linear VNA, it is always found to be
positive, except for very special cases. This is because the microwave small signal does
not have enough time within its period to warm up or to cool the device; it is therefore
a constant-temperature measurement. The same can be said for trapping or de-trapping
phenomena that do not simply happen during a microwave cycle. The small-signal mea-
surement is therefore an isothermal and ‘isotrap’ measurement.

Let us consider now the same transistor pinched off by a negative DC gate–source
voltage (for instance −3 V), while the DC drain–source voltage is well beyond the knee
voltage (for instance 6 V). The drain current is zero, and the device is cold. When a large
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gate–source voltage step is applied (for instance a 2.5 V pulse), the current flows in the
channel, to be pinched off again when the input pulse goes off (Figure 2.18).

If the pulse is short enough, say below 1µs, the transistor does not warm up, and
no trapping or de-trapping takes place within it. The current is therefore higher than in
the case when the same total gate–source voltage is applied statically, that is, a −0.5 V
DC gate–source voltage in the case of our example.

Let us now consider a transistor biased at two different quiescent points, dissipating
the same power, because Pdiss = Vds,bias 1 · Ids,bias 1 = Vds,bias 2 · Ids,bias 2 is the same; in
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our case, it is Vgs,bias 1 = −0.75 V, Vds,bias 1 = 3 V and Vgs,bias 2 = 0 V, Vds,bias 2 = 1 V.
The temperature is the same at both the bias points, but trap occupancy is probably
different because of the different depths of the depleted regions within the semiconductor.
We can now apply two simultaneous pulses to the gate and drain electrodes, and measure
the current during the short pulses; the temperature and trap states will not change during
the pulses. By varying the amplitude of the pulses, all the output I/V characteristics
are measured from each bias point. Comparison of the two sets of curves (Figure 2.19)
shows that the trap state also plays a role in determining the characteristics and therefore
the performances of the device.

A consequence of what has been seen above is that the output current must be
measured with short pulses, starting from the actual static condition that will be present
during large-signal operations. This means that both DC bias voltages and device tem-
perature must be the same as in large-signal operations. The device temperature does not
depend on bias voltages and currents only, that is, from the DC power dissipated in the
device, since heat removal and external environment temperature can actually differ from
case to case. The instantaneous drain current can therefore be written as follows:

Ids(t) = Ids(Vgs,DC, Vds,DC, T , Vgs(t), Vds(t)) (2.2)

The instantaneous current is a function of the static DC voltages and average
temperature, and of the instantaneous ‘fast’ voltages [31, 32].

Several possibilities are available for pulsed I/V curve measurements. A possible
scheme is shown in Figure 2.20.
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Figure 2.19 Pulsed output I/V curves of a power transistor from two different bias points,
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The set-up is based on two dual bias supplies and on electronic switches. The
gate–source voltage is switched between a static value and a pulsed value by means of
a standard CMOS switch. Since the gate pulse must not provide any current, a standard
CMOS amplifier is fast enough to supply a fast pulse to the gate of the device. The voltage
is sampled by means of a sampling oscilloscope. The drain–source voltage is switched by
means of fast transistors (for example, two complementary HEXFETs with high current
capability) between two bias supplies, a Schottky diode and a load resistance. The voltage
is sampled at both ends of a current-viewing resistor that also prevents oscillations in the
device; drain–source voltage and drain current are sampled by means of other channels
of the digital-sampling oscilloscope. A typical sequence of pulsed voltages and currents
is shown in Figure 2.21.

Another scheme, including temperature control, is shown in Figure 2.22 [31].

It must be remarked that the DC voltages are not always a priori known in large-
signal operations, because of the rectification phenomena that are actually often present.
Operating temperature is not always a priori known either, as remarked above. A com-
plete characterisation of an active device for nonlinear applications must therefore include
measurements in several different static conditions for a complete characterisation even
if the application (e.g. Class-B power amplifier) is known.

Pulsed I/V curves are isothermal and ‘isotrap’, when correctly performed. Their
partial derivatives with respect to gate and drain voltages in the bias point must coincide
with the transconductance and output conductance of the small-signal equivalent circuit
when measured at the same bias point by means of a dynamic small-signal measurement,
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for example linear S-parameters:

∂Ids

∂Vgs

∣∣∣∣
Vds=const

= gm
∂Ids

∂Vds

∣∣∣∣
Vgs=const

= gds (2.3)

Similarly, the integral of transconductance and output conductance around a closed
contour in the Vgs − Vds plane should sum up to zero:

∮
(gm · dVgs(t) + gds · dVds(t)) =

∮
dIds

dV (t)
· dV (t)

dt
· dt =

∮
T

dIds

dt
· dt = 0 (2.4)
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or, for a periodic circuit after a cycle, the current must have the same value as at the
beginning of the cycle (Figure 2.23).

However, the transconductance and the output conductance, as evaluated from
S-parameters, are not the derivatives of the isothermal and ‘isotrap’ I/V characteris-
tic, because they are measured in different static conditions along the closed contour.
In fact, every small-signal S-parameter measurement is made at a specific bias point,
while the closed contour is followed by the dynamic operating point in isothermal and
‘isotrap’ conditions corresponding to the quiescent point of the large-signal operations.
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This has deep implications in the extraction of a large-signal model, as will be described
in Chapter 3.

Similar considerations can be made for capacitances in an active device as partial
derivatives with respect to gate–source and drain–source voltages of the charges stored in
the device itself. Capacitances are usually evaluated from the small-signal S-parameters
measured at many bias points, and therefore suffer from the same limitations as described
for conductances. It is, however, not as straightforward and easy to measure charges
in pulsed conditions as it is for currents. A solution consists of performing pulsed S-
parameters measurement, that is, small-signal dynamic measurements taken in a very short
time during a pulsed step of gate–source and drain–source voltage. The instrumentation
is very complex, requiring the superposition of a sinusoidal test signal on a bias voltage
step during less than a microsecond and the measurement of S-parameters in the same
short time [33].

The conductances and capacitances extracted from pulsed S-parameters measure-
ments prove to be actual partial derivatives of single-valued functions, that is, current
and charge respectively. A very large amount of data must be measured by means of a
costly equipment requiring a corresponding effort for data processing, making the total
cost of this approach very high.
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[22] M. Sipilä, K. Lehtinen, V. Porra, ‘High-frequency periodic time-domain waveform measure-
ment system’, IEEE Trans. Microwave Theory Tech., MTT-36(10), 1397–1405, 1988.

[23] G. Kompa, F. Van Raay, ‘Error-corrected large-signal waveform measurement system com-
bining network analyser and sampling oscilloscope capabilities’, IEEE Trans. Microwave
Theory Tech., MTT-38(4), 358–365, 1990.

[24] M. Demmler, P.J. Tasker, M. Schlechtweg, ‘A vector corrected high power on-wafer mea-
surement system with a frequency range for higher harmonics up to 40 GHz’, Proc. EuMC ,
1994.

[25] J. Verspecht, P. Sebie, A. Barel, L. Martens, ‘Accurate on-wafer measurement of phase and
amplitude of the spectral components of incident and scattered voltage waves at the signal



82 NONLINEAR MEASUREMENTS

ports of a onlinear microwave device’, IEEE MTT-S Int. Symp. Dig., Orlando (FL), 1995,
pp. 1029–1032

[26] J. Verspecht, P. Van Esch, ‘Accurately characterizing of hard nonlinear behavior of microwave
components by the nonlinear network measurement system: introducing the nonlinear scat-
tering functions’, Proc. INNMC’98 , Duisburg (Germany), Oct. 1998, pp. 17–26.

[27] M. Paggi, P.H. Williams, J.M. Borrego, ‘Nonlinear GaAs MESFET modelling using pulsed
gate measurements’, IEEE Trans. Microwave Theory Tech., MTT-36(12), 1593–1597, 1988.
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3
Nonlinear Models

3.1 INTRODUCTION

In this introduction, some general concepts are introduced, together with the main types
of models available both in the literature and in commercial simulators.

We have seen in Chapter 1 that a nonlinear active device is represented by a
nonlinear model for nonlinear circuit analysis. The model must reproduce the electrical
behaviour of the device in large-signal operating conditions for the accurate prediction
of circuit performances. In general, it is pointless to reduce the simulation error below
the reproducibility of the technology, both for the active and for the passive elements. In
fact, the currently available nonlinear analysis algorithms are usually accurate enough to
make the numerical or truncation error small enough for practical purposes. The current
limit to the accuracy of the simulation lies in the limited capability to accurately model
the electrical behaviour of the elements of the circuit. For passive elements, this may
depend on the simplified electromagnetic representation of the single elements or on the
limited capability to take into account the electromagnetic interactions among different
elements within the circuit. For active devices, the picture is more complex. In part, an
oversimplified structure of the model with respect to the actual device may account for a
loss of accuracy. However, another serious shortcoming usually comes from the lack of
suitable measurements.

In general, models for active devices belong to two categories: physical and empir-
ical models. Physical models describe the device in terms of its physical structure and
predict its performances by means of electromagnetic and charge transport equations.
In principle, the behaviour of the device can be predicted a priori, without the need for
actually fabricating the device itself. In practice, some parameters must be adjusted a pos-
teriori, because not everything is known of the actual phenomena taking place inside the
device, and because of the tolerances of the fabrication process. Moreover, the physical
equations are usually simplified in order to keep the numerical burden to a manageable
level; as a consequence, some empirical parameters must do for the missing terms in the
equations. Anyhow, physical models tend to be computationally heavy, and their accu-
racy is usually below acceptable levels for circuit design. Their use lies essentially in the
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possibility to optimise a device before fabrication, at least preliminarily, and in a better
comprehension of the device behaviour and possible causes of misfunctioning. They are
also useful for yield optimisation when their computational cost is low enough.

Empirical models are extracted from data measured on the fabricated device. They
may include some a priori knowledge of the physical structure of the device, or they
may be a powerful and flexible interpolating scheme: in the latter case they are usu-
ally referred to as black-box models, while in the former case they are referred to as
equivalent-circuit models. Empirical models vary greatly in the required amount of mea-
sured data, extraction procedure, operating regime and, of course, accuracy. While they
may differ in computational burden, they are orders of magnitude faster than physical
models, and usually fast enough for interactive nonlinear analysis. When properly defined
and extracted, they are also accurate enough for practical circuit design. What can actu-
ally be burdensome in an empirical model is the amount of measurements required for
its extraction, and usually also the extraction procedure itself. Quite often, the extraction
procedure requires a good deal of skill; it is sometimes wise not to try to extract a general
model valid for all operating regimes, but it is better to limit oneself to the extraction of
a model valid for specific operating regimes or circuit applications.

A separate category is constituted by simple or simplified models. Their structure
is simple enough to avoid the need for the cumbersome analysis algorithms described
in Chapter 1 and to allow for intuitive reasoning. On the other hand, their accuracy
is very limited, but nonetheless sufficient to understand the main design topics. Typical
examples are piecewise-linear or simple polynomial models. Obviously, the simplification
is done in such a way that the main effects due to nonlinearities are preserved, while
minor effects are neglected. A great deal of a priori knowledge of the behaviour of
the device is required, and usually the model is tailored to a specific application (e.g.
power amplifiers).

The three main types of nonlinear models will be described in the following para-
graphs, with the main emphasis being put on empirical models, by far the most commonly
used in nonlinear CAD.

3.2 PHYSICAL MODELS

In this paragraph, the main types of physical models are described. The models are clas-
sified on the basis of their basic equations, and their performances are described.

3.2.1 Introduction

Physical models cover a wide range of active devices and differ very widely for the formu-
lation of the equations they are based upon. The motion equation for the charged particles
(electrons and/or holes) can be the quantistic Schrödinger’s equation, or the semiclassical
Boltzmann’s equation, depending on the scale of the microscopic phenomena. In elec-
tronic devices, the electric field always appears among the causes of the motion of the
particles inside the semiconductor; therefore, Poisson’s equation must also be added since
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it links electric field and charged particles inside the semiconductor. No realistic device
has been so far demonstrated where Poisson’s equation must be replaced by Maxwell’s
equations, although full electromagnetic/transport models have been developed [1].

The equations are written in three dimension for a full description of the effects
of actual devices (3D models). Normally, however, only a section of the device is taken
into account, assuming that the device is uniform in the lateral direction, saving a lot of
computational effort (2D models). In some cases, only the main motion direction of the
charged particles is considered (e.g. from source to drain, or from emitter to collector),
resulting in a one-dimensional model; in this case, the results are even less accurate, but
the computational effort is drastically reduced (1D models). Often, the second direction
is somehow taken into account by means of additional equations, yielding a quasi-two-
dimensional model (quasi-2D models).

The mathematical description strongly depends on the formulation of the model.
Sometimes, the device is described in terms of Schrödinger’s and Poisson’s equations
only. More often, quantistic effects take place only in a limited part of the device, for
example, at a heterojunction or in a resonant superlattice structure; the rest of the device
is well described by semiclassical equations. In other cases, only a semiclassical motion
equation and Poisson’s equation are required for sufficient accuracy. The semiclassi-
cal Boltzmann’s equation is often expanded in moments, by suitable integration in the
momentum space, and then only the first ones are retained. The first moment is the particle
conservation equation or continuity equation; the second is the momentum conservation
equation or current density equation; the third is the energy conservation equation, and
so on.

Once the type of formulation is defined, the main forces driving the motion of
the charged particles must be written into the equations in such a way that only the
meaningful physical effects are retained and the solution remains reasonably simple and
accurate. It is often not easy to describe the forces with sufficient detail and accuracy,
given their mathematically complicated formulation and the uncertainty on parameters
related to fabrication process. A compromise must be sought, sometimes by means of
semi-empirical parameters derived from measurements or practical evidence.

All equations are differential with respect to space and time. In the special case
of steady-state models, the dependence on time is removed, and in very simple models,
the dependence on space can be made to be non-differential; in any case, the equations
require boundary conditions. For Poisson’s equation, in most cases the boundary condi-
tions are given by the applied external voltage. For the transport equation, they must be
a physically meaningful condition: for example, neutrality or equilibrium conditions very
far from the junctions or channel. The solution of the differential equations then usually
requires a numerical solving scheme, and the model is said to be numerical. Solving
schemes can be stochastic or deterministic, that is, incorporating or not incorporating the
statistical properties of the microscopic behaviour of particles in a semiconductor. When
the mathematical formulation is simple enough to allow for an analytical, explicit solu-
tion in terms of external voltages and currents, the model is said to be analytical. Only
very simplified models belong to this category, and their utility lies essentially in their
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simplicity and clearness of description; their accuracy is often below acceptable limits
for practical circuit simulation.

Physical models are normally used to predict the behaviour of the intrinsic part
of an active device; for a realistic evaluation of its performances, it is often necessary to
add parasitic elements as contact resistances, pad capacitances or line inductances; these
can hardly be theoretically predicted, and are usually evaluated by means of empirical or
semi-empirical expressions. The evaluation of the effects due to the layout of the device
is also difficult and has been recently addressed by coupling an electromagnetic analysis
of the connecting parts of the device to the physical study of the intrinsic part. This
approach is probably going to gain importance as the operating frequency increases in
the millimetre-wave region and beyond.

3.2.2 Basic Equations

We write here the basic equations in one dimension for simplicity; Schrödinger time-
dependent equation reads [2]

i
∂ϕ

∂t
= −h̄2 ∂2ϕ

∂x2
+ q(V − V0) (3.1)

where ϕ(x, t) is the probability function or wave function, h = 2π ·h̄ is Planck’s constant,
i is the imaginary unit and V is the electrical potential. The derivative of the wave
function with respect to time corresponds quantistically to the energy of the particle.
The derivative of the wave function with respect to the space variable times Planck’s
constant corresponds to the classical momentum. The equation states that the energy of
the particle equals the sum of the square of the momentum (the kinetic energy) and of the
potential energy. If the potential is time invariant, the time-invariant Schrödinger equation
is obtained as

w = −h̄2 ∂2ϕ

∂x2
+ q(V − V0) (3.2)

where w is the time-invariant energy of the particle, and its solution is a time-invariant
quantistic state, or level, for the electron. A time-dependent solution of Schrödinger’s
equation (3.2) is obtained as a linear superposition of time-invariant solutions or states.

Boltzmann’s semiclassical equation reads [3]

dF

dt
= ∂k

∂t

∂F

∂k
+ ∂x

∂t

∂F

∂x
+ ∂F

∂t
(3.3)

where F(x, k, t) is the time-dependent distribution function of the particle in the real
space (x) and momentum space (k). The derivative of the momentum k with respect to
time is the externally applied force, while the derivative of the space variable x with
respect to time is the velocity of the particle; the derivative of the distribution function
with respect to the momentum k is the effective mass of the particle. The equation states
that the particle changes its momentum or position if an externally applied force is present,
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because of its inertial motion, or if the system is time-variant

(
∂F

∂t

)
. By multiplication

by the powers of the momentum k0, k1, k2, and so on and integration with respect to
k, that is, by saturation of the momentum space, the moments of Boltzmann’s equation
are obtained. By integration over the momentum space, the distribution function reduces
to the particle density in the real space only. In the case of electrons, the zeroth-order
moment is

dn

dt
= −v · ∂n

∂x
+

(
∂n

∂t

)
coll.

(3.4)

where n is the electron density and v is the electron velocity; this is the particle conser-
vation equation or continuity equation. The last term is the recombination term due to
collisions (with holes). The velocity is obtained from the first-order moment that reads

d(n · v)

dt
= n · qE

meff
− ∂(n · v2)

∂x
− 2

3
·
∂

(
n · w
meff

− n · v2

2

)
∂x

−
(

∂(n · v)

∂t

)
coll.

(3.5)

where qE is the external (Coulomb) force applied to the electron, meff is the effective
mass of the electron, w is the electron energy and the last term is the contribution of
collisions; this is the momentum conservation equation or the current density equation.
This equation states that the momentum of a particle changes if there is an external
force, if there are diffusion or inertial phenomena or because of collisions. The energy is
obtained by the second-order moment that reads

d(n · w)

dt
= n · qE · v − ∂(n · (w + kBT ) · v + n · Q)

∂x
−

(
∂(n · w)

∂t

)
coll.

(3.6)

where kB is Boltzmann’s constant, Q is the heat flux and the last term is the contribution
of collisions. The equation states that the energy of a particle changes if there is an
external power, if there are diffusion or inertial phenomena or because of collisions.
The heat flux is obtained by the third-order moment; however, it is usually neglected or
approximated. In this way, the expansion is truncated; the higher-order moments could
nevertheless be obtained in a similar way.

Poisson’s equation in one dimension is

∂E

∂x
= −ρ

ε
(3.7)

where E is the electric field, ρ is the charge density and ε is the dielectric constant.

It is worth remarking that Boltzmann’s equation takes into account the statistical
characteristics of particle motion in the semiconductor through the collision terms; on the
other hand, Schrödinger’s equation does not account for statistical information. Thus, the
quantum equivalent of the Boltzmann’s equation is not directly the Schrödinger equation
but the Liouville equation for the density matrix. In many cases, however, statistical
information can be easily coupled to Schrödinger equation, and this will be sufficient for
a correct description of the system [2].
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3.2.3 Numerical Models

When the equations together with their boundary conditions cannot be solved explicitly,
and no analytical solution is available, a numerical solving scheme must be implemented.
The solving schemes belong to two main categories: deterministic and stochastic. In the
first approach, the charged particles in the semiconductor are approximated by a single-
particle gas, where the motion of each particle is driven by deterministic forces that are
the same for each particle in the gas; all particles in the gas are identical. In some cases,
the charged particles are approximated by two gases, one for high-energy and one for
low-energy particles. The equations are solved once by exact calculations (in numerical
sense), and the macroscopic quantities of interest are computed for the whole gas. In the
second approach, the forces and events that determine the motion of a particle retain their
statistical nature so that the trajectory of each particle is different from that of any other
in the gas. In this second approach, at the basis of the so-called Monte Carlo models,
macroscopic quantities like current or gas temperature are computed as an average of the
behaviour of the population of the gas; a large number of particles must be simulated in
order to get statistically meaningful results.

We first describe deterministic models. The models are classified by the type of
equations (quantistic, semiclassical, mixed; Poisson’s or Maxwell’s equation); if semi-
classical, by the number and type of included moments of Boltzmann’s equation (hydro-
dynamic, energy-balance, drift-diffusion, etc.); by the number of dimensions (3D, 2D,
quasi-2D, 1D); by the dependence on time (steady-state, time-dependent); and by the
regime of validity (small-signal, large-signal, noise). The detailed description of the
physical effects included in the different formulations, with the related accuracy, is
beyond the scope of this book; therefore, not all possible combinations are described
in the following but only some examples that are particularly meaningful for a circuit
designer.

Let us now describe the semiclassical models. The first three moments of Boltz-
mann’s equation are relative to the conservation of the number of particles, the conser-
vation of their momentum and the conservation of their energy; each equation includes
derivatives with respect to time and space. If the time or space scale of the microscopic
events is much smaller than that of the characteristic times or distances of the device, the
importance of the corresponding terms is very small, and they can be neglected. In this
way, simpler expressions are derived. Moreover, phenomena related to the energy of the
particles are sometimes neglected, allowing the suppression of the energy conservation
equation; phenomena like the velocity overshoot cannot be included in this case, but an
additional simplification is obtained.

The equations are discretised in the space domain and in the time domain, if time
dependence is included, so that the system of partial differential equations is replaced by
a finite-difference equation system [4]. The system is usually solved in the time domain,
with similar schemes as those described for nonlinear circuits (Section 1.2). The choice
of the space step in one or more dimensions (the mesh) and of the time step is criti-
cal, and many schemes have been devised for automatic adjustment ensuring numerical
convergence. Recently, a Fourier series approach has also been proposed, making use of
harmonic balance or waveform balance techniques [5], that has demonstrated computation
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speed advantages especially for intermodulation prediction, while being obviously limited
to steady-state analysis.

Models including the first three moments are usually referred to as hydrodynamic
models. Several dynamic, 2D formulations have been proposed in the literature, most
of them very powerful [6–11]; hot electrons effects, velocity overshoot, penetration into
the substrate, channel dynamics and other effects are predicted quite accurately. Unfor-
tunately, these models tend to have critical numerical convergence properties, and not
always are a solution of the equations obtained. Typical applications are the analysis
of MESFETs, HEMTs and HBTs on GaAs-based material. A typical result for electron
temperature distribution in the section of a high electron mobility transistor (HEMT) is
shown in Figure 3.1.

If the energy conservation equation is neglected, many of the stiffest numerical
convergence problems are removed; however, phenomena related to the heating of carriers
in the semiconductor cannot be accounted for [12–15]. For example, velocity overshoot
phenomena in a short channel of an FET or in a very short base of a heterojunction bipolar
transistor (HBT) are not accounted for, somehow restricting the accuracy especially for
very high-frequency devices. However, the relative simplicity of the equations and the
reliability of use make this model very popular, especially for commercial software.
Several commercial companies actually offer flexible and powerful simulation tools.

As a comparison between the hydrodynamic and the drift-diffusion approaches, in
Figure 3.2, the drain current of an HEMT is plotted as a function of gate–source voltage
for a constant drain–source voltage.
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Figure 3.1 Electron temperature distribution in the section of an HEMT, computed with a 2D
drift-diffusion model
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Several quasi-2D hydrodynamic models have been developed for both MESFETs
and HEMTs. The control of channel depletion (for MESFETs) or electron density at the
heterojunction (for HEMTs) is computed in the vertical dimension by the solution of
Poisson’s equation (for MESFETs) by an approximation of a self-consistent solution of
Schrödinger’s and Poisson’s equations (for HEMTs); the charge transport in the source-
to-drain direction is analysed by means of a semiclassical approach (eqs. (3.4)–(3.7))
with various degrees of approximations. The channel control and the charge transport are
then coupled in a self-consistent solution. The quasi-2D approach combines a reduced
computational burden with a reasonably complete set of equations and an often-acceptable
accuracy. Several formulations have been proposed for small-signal [16, 17], large-signal
[18–23] and noise applications [16].

Stochastic models are often referred to as Monte Carlo models. In this approach,
the physics of the semiconducting material are easily taken into account in a very detailed
way: for instance, an accurate description of the band structure, or detailed models of
the scattering phenomena, can be included in the equations. The model typically includes
Boltzmann’s equation coupled to Poisson’s equation [24–27]. An example of detailed
physical data obtained by a Monte Carlo approach is shown in Figure 3.3: the evolution
of charges within the section of an HEMT at the startup of breakdown.

Physical models are traditionally used for device optimisation; however, many
applications within circuit solvers have been proposed. The first applications made use of
algorithms based on Kirchhoff’s equations [11, 22, 23, 28, 29]. A goal of this approach
consists of an evaluation of the effects of fabrication tolerances on circuit performances
towards a statistical analysis and design for yield maximisation [29]. However, analytical
models (see below) are better used for this application, given the large computational effort
required by this approach. Recently, the physical models have been included in electro-
magnetic field solvers, in order to better evaluate the effect of the environment on the
performances of the device, especially at very high frequencies [30–33]. As an example,



PHYSICAL MODELS 91

3

3 3 D

D

D

5 D 3

3

D

D

O

3

3

3

3

3

t = 10 ps t = 50 ps t = 100 ps

t = 200 ps t = 300 ps

0

Impact ionization

switched on at t = 0 ps 1.5 × 1017cm−31.00.5

t = 400 ps
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a dynamic, large-signal quasi-2D model of an HEMT coupled to an FDTD numerical
electromagnetic field solver for the prediction of the effects of layout at millimetre-wave
frequencies is shown in Figure 3.4 [33]: the active region is divided into several individ-
ual quasi-2D devices, then coupled to the electromagnetic field by means of equivalent
nonlinear controlled current sources.

A different approach for the exploitation of physical models has also been pro-
posed. The model is used for the generation of data, from which an equivalent circuit is
extracted; the latter is actually used for the circuit analysis. Many examples have been
demonstrated: a 2D energy-balance model [34], a standard 2D drift-diffusion model [29]
and a 2D drift-diffusion model Fourier-transformed for efficient small-signal frequency-
domain application [35], a quasi-2D static model [19, 20], have been used as measurement

DGS Js Jd

2DEG

x

z

(a) (b)

Input

x

y

100 Ω load
H plane

0 Wg

Drain

Source
Elementary devices

JgdJgs

Figure 3.4 Cross section and top view of an HEMT showing the intrinsic and extrinsic regions
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data simulators for the successive extraction of an equivalent-circuit model of GaAs MES-
FETs. This approach has a great potential for providing a better insight into the physical
meaningfulness of the elements of the equivalent circuit.

3.2.4 Analytical Models

The transport equations can be solved analytically if some simplifications are made. A
well-known approach includes the first two moments of Boltzmann’s equation (continuity
and current equations, eqs. (3.4) and (3.5)), and Poisson’s equation (eq. (3.7)), in one
dimension and in steady state; a simplified expression for energy is adopted, and its
derivatives with respect to space are neglected. For electrons we have (see Appendix A.9)

dn

dt
= 0 = ∂jn

∂x
− (n − n0)

τn
(3.8)

jn = qDn · ∂n

∂x
+ qµn · E (3.9)

∂E

∂x
= −q · (n − n0)

ε
(3.10)

where jn is the electron current density, τn is the generation/recombination time constant
for electrons, Dn is the diffusion constant, µn is the electron mobility, n0 is the equilibrium
density of electrons, E is the electric field and ε is the dielectric constant.

A very simple analytical solution of these equations for the bipolar junction tran-
sistor (BJT) is the Ebers–Moll model [36]. The physical data describing the material are
the mobility, the diffusion constants, the generation/recombination time constants and the
dielectric constant; the data describing the structure of the device are the junction area,
the emitter, base and collector width and the doping densities. The boundary conditions
are the voltages applied at the external terminals and the junction law at the emitter/base
and base/collector junctions. An empirical parameter is the ideality factor of the two
junctions. After analytical integration, the global parameters of the device are found: the
reverse saturation currents and the transport factors αe and αc. The model then reads

Ic = αe · I0e · (e
Vbe

ne·VT − 1) + I0c · (e
Vbc

nc·VT − 1)

Ie = αc · I0c · (e
Vbc

nc·VT − 1) + I0e · (e
Vbe

ne·VT − 1) (3.11)

The Ebers–Moll model is a particularly simple one that does not take into account
many important effects in a microwave device, as for instance the transients or the inertial
(ballistic) phenomena. It has been mentioned here essentially for illustration purposes.

We remark that the Ebers–Moll model is seen here as a physical model; however,
if its parameters are extracted from measurements, it can be seen as an empirical model.
In particular, since a simple equivalent circuit can represent eq. (3.10), it can be seen as
an equivalent-circuit empirical model (Figure 3.5).
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Figure 3.5 The equivalent circuit of the Ebers–Moll model

A more complex example is the analytical model for the metal semiconductor
field-effect transistor (MESFET) with gradual-channel approximation [29, 37–45]. The
basic equations are again the first two moments of Boltzmann’s equation, that is, the
continuity and current equations, and Poisson’s equation (eqs. (3.8)–(3.10)), in steady-
state conditions or including transient behaviour. The electron motion is assumed to be
unidirectional from source to drain; the forcing term in the current equation is only the
electric field–induced drift. The transport equations are therefore solved in one dimension;
moreover, the physical quantities in the channel are assumed to vary slowly along the
propagation direction of the charged particles. The channel can be assumed to be either
totally depleted, that is, with zero electron density, or having constant electron density
equal to the doping concentration; sometimes, a transition region between depleted and
conductive regions is introduced. Poisson’s equation is usually solved in two dimen-
sions. In some models, however, the solutions in the vertical and horizontal directions
are decoupled: the depleted region is evaluated by integrating from the gate down to the
conducting region of the channel in the vertical direction; the conducting channel is the
residual channel depth. The material data are the dielectric constant, the doping concentra-
tion and the electron velocity as a function of the electric field in the semiconductor. For
low fields, the mobility is a constant, while for high fields the particle velocity becomes
saturated and the incremental mobility is zero; in the intermediate region, the curve has a
negative slope corresponding to negative differential resistance. A velocity-field plot for
electrons in bulk GaAs at room temperature is shown in Figure 3.6 for several doping
concentrations, as resulting from analytical approximation.

The geometrical data are the length, depth and width of the channel, and the
gate–source and gate–drain spacings. The channel is divided in more than one region with
simplified equivalent geometry, as shown in Figure 3.7; the transport equations are solved
in each region and then piecewise-connected. The boundary conditions for Poisson’s
equation are the voltage values at the source, gate and drain electrodes and the neutrality
condition at the source and drain ends of the channel for the transport equations. The solu-
tion is usually only semi-analytical, since a numerical solution of the resulting current and
charge (or capacitance) equations is required for most models. However, no discretisation
of either space or time is required, and the numerical effort is extremely limited. Some-
times a simpler, explicit model can be extracted, with acceptable loss of accuracy [41].

The gate current is computed as the displacement current through the depleted
capacitive region below the gate. It is expressed as the derivative with respect to time of
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the charge stored in the depletion region [29, 42, 45]; this is obtained by integration of the
field or by means of analytical formulae derived by the simple approximated geometry
as shown in Figure 3.7.

Similar to the MESFET, the HEMT also has been given analytical solutions to
the Poisson-transport equations [46–49]. In this case, the vertical control of the channel
is modelled through the dependence on gate-channel voltage of the equivalent sheet-
carrier density of the two-dimensional electron gas at the heterointerface (Figure 3.8).
Several simple formulae have been given from simple linear approximations [46, 47],
usually valid only in the low-field conduction region, to more sophisticated ones, valid
also in the saturated velocity region [48, 49]. Derivation of the current–voltage and
charge–voltage characteristics follow the same guidelines of the MESFET; conduction in
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the parasitic MESFET is also usually included. Recently, analytical models of MESFET
and HEMT devices based on GaN have been developed, aimed at device optimisation
for low intermodulation distortion applications [50, 51].

The analytical models are very simple and fast, but their accuracy is limited; as
already mentioned, their most useful feature is the possibility to predict and possibly
optimise the yield of a circuit, once the fabrication tolerances of the physical parameters
and their statistical properties are known. In fact, an analytical model can also be treated
as an equivalent-circuit model, where the parameters are not directly the values of the
elements, but rather the physical parameters in the analytical formulation, which must
therefore be intended as equivalent parameters [29, 52]. Fit-to-measured data proves to
be almost as good as in the case of the equivalent circuit, but it is usually more stable, and
the extracted values show better correlation to the technological process. Nonetheless, the
accuracy is sometimes not sufficient for an accurate circuit design.

3.3 EQUIVALENT-CIRCUIT MODELS

In this paragraph, the basic characteristics of the main types of equivalent-circuit models
are described, with special emphasis on the requirements for physical consistency in large-
signal regime. An example of extraction procedure is also given.

3.3.1 Introduction

Empirical models are the solution of choice for practical and accurate CAD of non-
linear circuits. The effort required by long measurements and sometimes troublesome
extraction procedures pays off in terms of flexibility and accuracy for computer-aided
design applications.

Equivalent-circuit models are the most successful empirical models for CAD appli-
cations so far. The active device is modelled within the simulation programme by means
of an electrical circuit, whose elements usually are lumped, with frequency-independent
but voltage-dependent values. The distributed-element equivalent circuits have not been
successful for nonlinear design so far for two main reasons: first, distributed nonlinear
elements are not easily dealt with by nonlinear CAD algorithms; second, active devices



96 NONLINEAR MODELS

are usually fabricated in such a way that distributed effects within the intrinsic device
are negligible in the operating frequency band. Of course, distributed access elements
are not a problem, at least for frequency- or mixed-domain analysis methods; nonethe-
less, they are usually replaced by lumped elements without a significant loss of accuracy,
given the small dimensions of the devices. Frequency-dependent nonlinear elements pose
problems to nonlinear analysis algorithms, unless a purely frequency-domain approach
is adopted; if this is the case, then these models turn out to be quite general and prac-
tical. However, no commercial CAD programmes are so far available in the frequency
domain.

All equivalent-circuit models are made of two subnetworks: an extrinsic, linear one
corresponding to parasitic access elements like contact resistances, pad capacitances or
line or wire inductances and an intrinsic, nonlinear one corresponding to the inner device.
The topology of both parts should be a priori known before the extraction, although it
can be adjusted during the extraction if the measurements suggest it.

Black-box models in principle require no a priori knowledge of the physical struc-
ture of the device; however, many of them require either the preliminary extraction of
the extrinsic elements or some hypothesis on the behaviour of the inner device. We will
call these models quasi-black-box models, reserving the traditional ‘black-box’ term only
to purely behavioural models.

Before discussing nonlinear models, a brief recapitulation of linear models is pre-
sented in the following for a better understanding. Then, the procedures and constraints
for the extension from a linear to a nonlinear model are described. Finally, some nonlinear
models are introduced, together with an example of extraction procedure.

3.3.2 Linear Models

For linear analysis, a frequency-dependent model is acceptable, since each frequency com-
ponent of a signal is independent of the others in the frequency domain (see Section 1.1);
therefore, any general frequency-dependent complex four-parameter equivalent represen-
tation of a two-port device can be used. In practice, at microwave and millimetre-wave
frequencies the scattering parameters are commonly used. As an example, a Y -matrix equiv-
alent network with four complex frequency-dependent admittance parameters is shown in
Figure 3.9.

If the device is reciprocal, the network has only three complex parameters, as
shown in Figure 3.10.

If the reactive behaviour of the device is capacitive, an equivalent-circuit repre-
sentation of this network is shown in Figure 3.11, where the admittance parameters are
written as

Y11 = gi(ω) + jωCi(ω)

Y12 = gmr(ω) + jωCmr(ω)

Y21 = gmf(ω) + jωCmf(ω)

Y22 = go(ω) + jωCo(ω)

(3.12)
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Y11(w).V1(w)

Y12(w).V2(w)

Y22(w).V2(w)

Y21(w).V1(w)

Figure 3.9 An admittance-parameters equivalent network

−Y12(w) = −Y21(w)

Y11(w) + Y12(w)

Y12(w) + Y22(w)

Figure 3.10 A reciprocal equivalent-pi network

gi(w) gmr(w) Ci(w) Cmr(w) Cmf(w) Co(w) gmf(w) go(w)

Figure 3.11 An equivalent-circuit representation of the admittance-parameter network for a resis-
tive–capacitive device
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The real parts of the admittance parameters are conductances and transconduc-
tances; the imaginary parts are capacitances and transcapacitances.

This circuit is easily rewritten in terms of conduction and displacement currents,
instead of resistances and capacitances (Figure 3.12) where conduction currents are writ-
ten as

Ic1 = Ic1(V1, V2) = gi · V1 + gmr · V2

Ic2 = Ic1(V1, V2) = gmf · V1 + go · V2
(3.13)

because of the linearity of the device. Similarly, the displacement currents are written as

Iq1 = dQ1(V1, V2)

dt
= d

dt
· (Ci · V1 + Cmr · V2) = Ci · dV1

dt
+ Cmr · dV2

dt

Iq2 = dQ2(V1, V2)

dt
= d

dt
· (Cmf · V1 + Co · V2) = Cmf · dV1

dt
+ Co · dV2

dt

(3.14)

where the input and output charges have been introduced. The correspondence between
the integral description in terms of currents and charges and the differential small-signal
circuit in terms of conductances and capacitances is defined by

gi = ∂Ic1

∂V1
gmr = ∂Ic1

∂V2
gmf = ∂Ic2

∂V1
go = ∂Ic2

∂V2

Ci = ∂Q1

∂V1
Cmr = ∂Q1

∂V2
Cmf = ∂Q2

∂V1
Co = ∂Q2

∂V2

(3.15)

If the device is reciprocal, we have

gmr = gmf Cmr = Cmf (3.16)

or
∂Ic1

∂V2
= ∂Ic2

∂V1

∂Q1

∂V2
= ∂Q2

∂V1
(3.17)

and the equivalent circuit becomes (Figure 3.13).

Ic1 Iq1 Iq2 Ic2

Figure 3.12 A current-charge equivalent network
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gi(w) − gm(w) Ci(w) − Cm(w) Co(w) − Cm(w) go(w) − gm(w)

gm(w)

Cm(w)

Figure 3.13 A reciprocal resistive–capacitive equivalent circuit

In fact, conduction currents are non-reciprocal in all active devices of interest.

Sometimes it is possible or desirable that the conduction currents also be expressed
in terms of the charges inside the device. If this is the case, the conduction currents are
expressed as

Ic1 = Ic1(V1, V2) = ki · Q1(V1, V2) + kmr · Q2(V1, V2)

Ic2 = Ic1(V1, V2) = kmf · Q1(V1, V2) + ko · Q2(V1, V2)
(3.18)

while the displacement currents have the same expression as above. This is called a
charge-control model. For example, the conduction current in a forward-biased pn junction
can be written as the diffusion charge divided by the recombination time [36]:

i = Qn

τn
+ Qp

τp
(3.19)

Since the diffusion charge is expressed as

Qn = A · qn0 · Ln ·
(

e
V

ηVT − 1

)
Qp = A · qp0 · Lp ·

(
e

V
ηVT − 1

)
(3.20)

this is equivalent to the usual expression for the conduction current:

i =
A · qn0 · Ln ·

(
e

V
ηVT − 1

)
τn

+
A · qp0 · Lp ·

(
e

V
ηVT − 1

)
τp

= i0 ·
(

e
V

ηVT − 1

)
(3.21)

The number of parameters of the model is obviously the same.

If the device is such that the eight equivalent-circuit parameters are frequency-
independent, then the device is quasi-static, because the currents and charges at a given
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time instant depend on voltages present at the ports of the device at the same time
instant. In other words, the device responds instantaneously to the input signal. Naturally,
the equivalent circuit is not necessarily an admittance network, but it can be any equiv-
alent representation; for instance, a T network corresponding to an impedance-matrix
representation or a hybrid network. For example, the Giacoletto model for the bipolar
transistor is a quasi-static admittance-matrix network if we neglect the base resistance
rbb′ and the base-collector resistance rb′c, as shown in Figure 3.14.

Since the reactances in the network are reciprocal, the circuit can be redrawn as
in Figure 3.15.

If the device is non-quasi-static, either frequency-dependent elements or time-
delayed responses must be present in a circuit. For example, if the base resistance rbb′

is not neglected in the Giacoletto equivalent circuit, the current in the collector–emitter
current source is controlled by the voltage Vb′e delayed with respect to the external base-
emitter voltage Vbe because of the low-pass behaviour of the input mesh; the charges in
the two junctions are also proportional to the delayed voltage Vb′e. The circuit becomes
non-quasi-static (Figure 3.16).

Another example is a simple quasi-static equivalent circuit of a field-effect tran-
sistor shown in Figure 3.17.

rbe (Cbe + Cbc) Cbc Cbc gm ro

Figure 3.14 A quasi-static, simplified Giacoletto equivalent network for a bipolar transistor with
non-reciprocal capacitances

rbe Cbe

Cbc

gm ro

Figure 3.15 A quasi-static, simplified Giacoletto equivalent network for a bipolar transistor
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rb′e
Cb′e

Cb′crbb′

gm • Vb′e ro

Figure 3.16 The non-quasi-static Giacoletto equivalent network for a bipolar transistor

Cgs Cds

Cgd

rds

gm • Vgs

Figure 3.17 A quasi-static equivalent network for a field-effect transistor

The circuit becomes non-quasi-static if one or more modifications are made: for
example, a delay RC circuit is introduced in the input mesh, and the drain–source current
source is controlled by the voltage across the gate–source capacitance or by a voltage
delayed by a constant value τ . All of these modifications are introduced in Figure 3.18.

In the frequency domain, the drain–source current source can be written as

I (ω) = gm · ejωτ · Vi(ω) (3.22)

Cgs

ri

Cds

Cgd

rds
gm • Vi(t − t)

Vi

+

−

Figure 3.18 A non-quasi-static equivalent network for a field-effect transistor
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Figure 3.19 A complete equivalent circuit for a field-effect transistor

More equivalent-circuit elements are usually added to the equivalent circuit in order
to accurately represent the actual behaviour of the device with only frequency-independent
elements. For example, parasitic effects such as contact resistances, pad capacitances or
line inductances are modelled by separate elements; a complete equivalent circuit may
look like that shown in Figure 3.19.

3.3.3 From Linear to Nonlinear

In this paragraph, the extension of linear equivalent circuits to nonlinear regime is descri-
bed. Some concepts from Section 2.4 are repeated for the sake of clarity.

Whatever type of linear model is concerned, there is an apparently simple path from
a linear to a nonlinear representation. It has been assumed above for a linear model that
the conduction currents and the charges are linear with respect to voltages; for simplicity,
let us take a linear one-port device with conduction and displacement current components
as a working example (Figure 3.20).

I = Ic + Iq (3.23a)

Ic(V ) = g · V (3.23b)

Q(V ) = C · V Iq = dQ(V )

dt
= C · dV

dt
(3.23c)

In actual devices, the linearity relations hold only for small perturbations around
a quiescent point or bias point (Figure 3.21) [53]:

V = V0 + v(t) (3.24)

Ic(V ) = Ic(V0) + dIc

dV

∣∣∣∣
V =V0

(V − V0) + · · · = Ic0 + g · v(t) + · · · (3.25a)



EQUIVALENT-CIRCUIT MODELS 103

V

I

+

−

Figure 3.20 A one-port element

V0

I0 + I (t )

+

−

v(t)

Figure 3.21 A one-port nonlinear element with a combined DC and RF excitation

Q(V ) = Q(V0) + dQ

dV

∣∣∣∣
V =V0

(V − V0) + · · · = Q0 + C · v(t) + · · · (3.25b)

Iq(V ) = dQ(V )

dt
= C · dv(t)

dt
+ · · · (3.25c)

where the Taylor series is truncated after the first-order term; this corresponds to a simple
equivalent network for the small perturbation (Figure 3.22).
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g
C

Figure 3.22 A one-port resistive–capacitive element

The conductance and the capacitance can be evaluated at a given bias point from
an incremental (small-signal) measurement, for example an admittance measurement:

V (ω) = �(v(t)) I (ω) = �(i(t)) Y (ω) = I (ω)

V (ω)
= g + jωC (3.26)

where the symbol � denotes a Fourier transform. If the device is quasi-static, the con-
ductance and the capacitance are constant with frequency. For actual devices, extraction
procedures for more realistic but similar equivalent circuits are available, and will be
described in Section 3.3.4 below.

If we now want to extract a nonlinear model of our one-port device from the
linear small-signal model just defined, we can try to repeat the measurements at many
bias points, that is, in this example for many values of the bias voltage V0. The linearised
conductance and capacitance are evaluated at each bias point, and their dependence on
the applied bias voltage is found.

g(V0) C(V0) (3.27)

In principle, we have found the nonlinear dependence of the values of the elements
on the applied voltage. We can now compute the dependence on applied voltage of the
integral parameters, that is, current and charge, by simple integration:

I (V0) =
∫ V0

0
g(β) · dβ Q(V0) =

∫ V0

0
C(β) · dβ (3.28)

For the conduction current, there is also an alternative possibility: a direct DC
measurement; this is obviously not possible for the charge.

In a nonlinear circuit, however, the large-signal voltage applied to the nonlinear
element is not a DC quantity as above, but a fast signal sweeping a large voltage range
in a very short time, that is, in the period of the microwave signal: a value ranging from
a nanosecond to tens of picoseconds. In a semiconductor device, there are phenomena
that require some time to build up, and that affect the conduction phenomena or charge
behaviour in the device itself [54–62]. One of these phenomena is the temperature rise
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or fall because of the power dissipated in the device by the bias voltage and current
and by the electrical signal; another one is the trapping or detrapping of the carriers in
the semiconducting material (see Section 2.4). Both the phenomena have characteristic
time constants typically above a hundred nanoseconds. In static conditions, these effects
have plenty of time to build up, changing the characteristics of conduction phenomena or
charge state, while in fast (microwave) large-signal operations the short time during which
the voltage is applied does not allow them to take place, and they respond only to the
average, quiescent point voltages. This is a well-known phenomenon; a typical example
is the hysteresis in the measurement of swept I /V characteristics, when the measurement
is fast enough not to allow heating or trapping in the device during the way on but not
fast enough to prevent heating or trapping during the way back (Figure 3.23).

This behaviour of the current curves at low frequencies is usually called the low-
frequency dispersion of the characteristics.

Let us resume the situation of the three possible measurements for our one-port
device and for the conduction current only. In the first one, the conduction current is
measured in static conditions, that is, by applying a DC voltage and measuring the DC
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Figure 3.23 (a) Slow swept measurement of the I /V output characteristics of an MESFET show-
ing the DC behaviour of the device; (b) medium-speed swept measurement showing hysteresis;
(c) fast swept measurement showing no hysteresis
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A

V
+
−

I

Figure 3.24 A DC current–voltage measurement scheme

I

V

Figure 3.25 A DC I /V curve for a diode

current at many points along the curve (Figure 3.24). We get a curve where every point
has a different temperature and traps state (Figure 3.25).

In the second one, a fast swept measurement is performed, that is, the voltage is
swept and the current is measured all along the I /V curve with a period shorter than the
time constants of slow phenomena; typically, below 100 ns, which is an affordable speed
(Figure 3.26).

In this figure, the current is computed as

I (t) = Vsense,1(t) − Vsense,2(t)

Rsense
(3.29)

where the sense voltages are measured, for instance, by a sampling oscilloscope, and

Vsweep(t) = Vsweep · sin(ωt) (3.30)
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V0
+
−

Rsense

Vsweep(t)

Vsense,1 Vsense,2

Figure 3.26 A fast current–voltage measurement scheme

with a sufficiently high ω (e.g. above 10 MHz), and an amplitude of Vsweep large enough
for covering the whole curve.

In fact, many measurements of this type can be performed by starting the voltage
sweep each time from a different bias point. A different curve is obtained for each bias
point V0, since the temperature and traps state of the device depends on the quiescent
point only (Figure 3.27).

In fact, the same curves can be measured by pulsing the voltage from the bias
point for a short time to all points of the corresponding curve, one after the other, and
measuring the current during the pulses. A typical set-up and a sequence of pulsed voltages
and currents in the case of an FET are shown in Section 2.4, Figures 3.20 and 3.21. This
arrangement is in fact the most common; this is why fast, isothermal and ‘isotrap’ current
measurements are also called pulsed measurements.

0.04

0

I d
(A

)

Vbe (V)

1.2 1.4

Figure 3.27 A DC I /V curve with several fast I /V curves from different bias points for a diode
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In the third one, the device is biased at many points along the curve; at each
point, the differential (small-signal) conductance is measured by a microwave admit-
tance measurement. In practice, small-signal S-parameter measurements are performed,
and the reflection coefficients are converted to admittances. The small-signal conduc-
tance corresponds to the tangent of the fast measurement performed from that bias point
(Figure 3.28).

This is easily seen by considering the measurement set-up for large-signal fast
measurements, and comparing it to a standard vector network analyser. Once the small-
signal conductance is evaluated for all bias points, the current curve is computed by
integration with respect to voltage.

Let us now discuss the three measurements. The DC curve must be used for the
simulation of slow or constant phenomena, as the DC bias or rectified voltages and
currents, the low-frequency second-order intermodulation signal in multi-tone systems or
the down-converted phase-noise in oscillators, when their frequency is very low (below
approximately 100 KHz). The pulsed curves must be used for the simulation of microwave
large signals; in this case, the curve must be measured from the same quiescent point as
that of the large-signal operation. This is however, in general, not predictable, since it
includes rectified terms (see Chapter 1); the model must then include the curves measured
from all quiescent points and must be able to adjust to the actual quiescent point obtained
in the analysis.

The curve obtained by the integration of the small-signal measurements, finally,
is not physically correct and should never be used. Unfortunately, this is a popular
method to extract nonlinear models, because it is also the most practical and traditional
from the point of view of both instrumentation and extraction procedure. A complete
measurement set-up for DC, small-signal and pulsed S-parameter measurement has been
demonstrated [63], allowing consistent modelling; however, it is not usually available to
modellers and designers.

0.04

1.2

Vbe (V)

1.4

I d
 (

A
)

0

Figure 3.28 A DC I /V curve with the differential (incremental) conductances at several bias
points
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If the measurements in Figure 3.27 are available, then the I /V characteristics have
the following general form, equivalent to eq. (2.2) in Chapter 2:

i(t) = i(vDC, T , v(t)) (3.31)

where the dependence on the instantaneous voltage, on the DC voltage and on temperature
is a consequence of the described phenomena. The DC curve is obviously a particular
case of the above formulation, obtained when the instantaneous voltage coincides with
the DC voltage:

iDC(t) = i(vDC, T , vDC) (3.32)

A procedure for the correction of small-signal data in order to account for tem-
perature and trap effect has been proposed, under certain hypotheses, allowing the use of
small-signal parameters for consistent large-signal modelling [64–67]. Let us assume that
we are working in isothermal conditions and that the current for a given instantaneous
voltage v(t) when the DC voltage vDC is equal to the current obtained from the DC curve
for a slightly different voltage (Figure 3.29):

i(t) = iDC (u(t)) = iDC(v(t) − �v) (3.33)

The correction can be written as a fraction of the difference between the static and
actual voltage value:

�v = α · (v(t) − vDC) (3.34)

If the same instantaneous voltage is reached from a different bias point, a similar
expression holds (Figure 3.30):

i′(t) = iDC(u′(t)) = iDC(v(t) − �v′) (3.35)

∆v

v(t ) u(t )

iDC

i

i (t )

vDC v

Figure 3.29 The current in large-signal conditions obtained from the DC curve at an offset voltage
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∆

′

(t ) u(t )

i (t )

i

i ′(t )

DC

∆

Figure 3.30 The current in large-signal conditions from two different bias points

The correction can be expressed in a similar way as

�v′ = α′ · (v(t) − v′
DC) (3.36)

If the constant α = α′ is the same in both cases, that is, if the correction is the
same fraction of the distance of the actual instantaneous voltage from the bias point, then
it is easily evaluated from a single fast (pulsed) measurement with v(t) �= vDC and from
the DC curve; however, it is also evaluated from a single small-signal measurement at
vDC

∼= v(t) and from the DC curve. It is easy to see that, for a v(t) very close to vDC,
that is, for a small incremental instantaneous signal (Figure 3.30)

gss = di

dv

∣∣∣∣
ss

∼= i(t) − iDC

v(t) − vDC
= 1

(1 − α)
· i(t) − iDC

(u(t) − vDC)
∼= 1

1 − α
· di

dv

∣∣∣∣
DC

= gDC

1 − α
(3.37)

where gss is the small-signal incremental conductance, tangent to the pulsed curve (see
above), and gDC is the tangent to the DC curve. The parameter α is immediately evaluated.
It is reasonable however that the parameter α is a function of the instantaneous voltage
v; therefore, the evaluation must be repeated for all voltages along the I /V curve.

The above assumption can be given a physical interpretation in the case of an FET:
the charge due to free carriers in the channel responds to the instantaneous voltage, while
the trapped charge responds to the static DC voltage because of the long trapping and
detrapping times. Therefore, if the instantaneous voltage is different from the DC one, the
effective DC potential corresponding to the same amount of free charge in the channel is
in between the two values. It is also a reasonable assumption that this effect be linear.
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Physically different effects can be treated in the same way if they have a linear
effect on the current. For instance, mobility is inversely proportional to temperature;
therefore, a change in temperature (e.g. increase in ambient temperature) for a fixed DC
voltage can be reduced to a change in voltage proportional to the difference in temperature
(Figure 3.31):

iDC(vDC, T ′) = iDC(uDC, T ) = iDC(vDC + �v, T ) (3.38)

�v = β · (T ′ − T ) (3.39)

Let us allow the device to increase its temperature as a consequence of increased
dissipated power within the device itself, for example, as a consequence of increa-
sed applied DC voltage (Figure 3.32). We can write

iDC(v′
DC, T ′) = iDC(uDC, T ) = iDC(v′

DC + �v, T ) (3.40)

�v = β · (T ′ − T ) = β · Rth · (iDC(v′
DC, T ′) · v′

DC − iDC(vDC, T ) · vDC) (3.41)

Again, a single isothermal measurement and a DC I /V curve are enough to identify
the parameter β.

An alternative procedure can be described as follows [53, 68–75]. Let DC mea-
surements of the I /V curve and also the differential conductance measurements, be
performed the measured data are

iDC(v) and gss(v) (3.42)

iDC(T ′)

i

T ′

T

iDC(T )

∆

DC uDC

Figure 3.31 The DC I /V curve for two different temperatures
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i ′DC(T ′)

i T ′

T

iDC(T )

∆

DC ′DC u ′DC

Figure 3.32 The DC I /V curve for two different temperatures and applied DC voltages

that do not fulfil the condition

iDC(v0) +
∫ v=v1

v=v0

gss(y) · dy = iDC(v1) (3.43)

for any pair of voltages (v0, v1), because of the problems mentioned. The DC curve is
now fitted by any fitting function f that depends on a number of parameters pi: a set of
values for the parameters pDC,i is determined as a consequence of the fitting procedure:

iDC(v) = f (pDC,i , v) = fDC(v) (3.44)

Then, the difference between the measured small-signal conductance and the deri-
vative of the DC curve is computed for all voltages and fitted to the derivative of another
fitting function:

gDC(v) = ∂iDC(v)

∂v
= ∂fDC(v)

∂v
gdiff(v) = gss(v) − gDC(v) (3.45)

gdiff(v) = ∂fdiff(v)

∂v
(3.46)

Then, when a large-signal voltage v(t) = vDC + vRF(t) is applied, the current is
computed as

i(t) = fDC(v(t)) + fdiff(vRF(t)) (3.47)
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Alternatively, the small-signal conductance is fitted to the derivative of a fitting function:

gss(v) = ∂fRF(v)

∂v
(3.48)

Then, when a large-signal voltage v(t) = vDC + vRF(t) is applied, the current is
computed as (Figure 3.33):

i(t) = fRF(v(t)) + fDC(vDC) − fRF(vDC) (3.49)

The expression in eq. (3.47) can be implemented as an equivalent circuit (Figure
3.34), where the capacitor CRF is large enough to allow all signals above the frequency
where dispersion is present.

So far for the conduction current; when the displacement current contribution is
considered, things are more complex. First of all, the DC measurements are not possible.
Second, the fast measurements require that complex data (amplitude and phase) be mea-
sured in a short time. In fact, this requires pulsed S-parameter measurements: during a
short bias pulse, a microwave small-signal excitation is fed to the device and the scattering

iDC( (t ))

fDC(  )

fRF(  )

iRF(  (t ))

iRF( DC)

iDC

i

DC (t )

Figure 3.33 The DC I /V curve, the small-signal conductances and the curve derived from inte-
gration of the latter
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iDC

iRF

CR

Figure 3.34 The equivalent circuit of a two-terminal device with low-frequency dispersion

parameters are evaluated. However, this technique involves expensive instrumentation that
is not always available (see Section 2.4). Moreover, the extraction procedure becomes
very burdensome. Therefore, this technique is so far limited to special cases, as for
instance very high power transistors used for pulsed operations. On the other hand, the
reactive part of an active device is less sensitive to low-frequency dispersion effects,
and the consequences on the performances of a device are less pronounced. The loss of
accuracy caused by the imperfect model is therefore limited.

We now rewrite the above considerations for a two-port device [53]. The currents
in a linear device are

I1 = Ic1 + Iq1

I2 = Ic2 + Iq2
(3.50)

Ic1(V1, V2) = g11 · V1 + g12 · V2

Ic2(V1, V2) = g21 · V1 + g22 · V2
(3.51)

Q1(V1, V2) = C11 · V1 + C12 · V2

Q2(V1, V2) = C21 · V1 + C22 · V2

Iq1(V1, V2) = dQ1(V1, V2)

dt

= C11 · dV1

dt
+ C12 · dV2

dt

Iq2(V1, V2) = dQ2(V1, V2)

dt

= C21 · dV1

dt
+ C22 · dV2

dt

(3.52)

The small-signal incremental expressions in the neighbourhood of a bias point are

V1 = V10 + v1(t)

V2 = V20 + v2(t) (3.53)
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Ic1(V1, V2) = Ic1(V10, V20) + dIc1

dV1

∣∣∣∣V1 = V10

V2 = V20

(V1 − V10) + dIc1

dV2

∣∣∣∣V1 = V10

V2 = V20

(V2 − V20)

+ · · · = Ic10 + g11 · v1(t) + g12 · v2(t) + · · ·
Ic2(V1, V2) = Ic2(V10, V20) + dIc2

dV1

∣∣∣∣V1 = V10

V2 = V20

(V1 − V10) + dIc2

dV2

∣∣∣∣V1 = V10

V2 = V20

(V2 − V20)

+ · · · = Ic20 + g21 · v1(t) + g22 · v2(t) + · · · (3.54)

Q1(V1, V2) = Q1(V10, V20) + dQ1

dV1

∣∣∣∣V1 = V10

V2 = V20

(V1 − V10) + dQ1

dV2

∣∣∣∣V1 = V10

V2 = V20

(V2 − V20)

+ · · · = Q10 + C11 · v1(t) + C12 · v2(t) + · · ·
Q2(V1, V2) = Q2(V10, V20) + dQ2

dV1

∣∣∣∣V1 = V10

V2 = V20

(V1 − V10) + dQ2

dV2

∣∣∣∣V1 = V10

V2 = V20

(V2 − V20)

+ · · · = Q20 + C21 · v1(t) + C22 · v2(t) + · · · (3.55)

Iq1(V1, V2) = dQ1(V1, V2)

dt
= C11 · dv1(t)

dt
+ C12 · dv2(t)

dt
+ · · ·

Iq2(V1, V2) = dQ2(V1, V2)

dt
= C21 · dv1(t)

dt
+ C22 · dv2(t)

dt
+ · · · (3.56)

where the bi-dimensional Taylor series is truncated after the first-order terms. A sim-
ple equivalent network can be introduced in this case too (Figure 3.35), where the
g11, C11, g22, C22 terms are conductances and capacitances and the g12, C12, g21, C21 terms
are transconductances and transcapacitances. They can be evaluated at any given bias
point from an incremental (small-signal) measurement, as for the one-port device.

If the reactive part of the device is reciprocal, the circuit is simplified (C12 = C21)

(Figure 3.36).

g11

g12 g21

g22C11 C22

C12 C21

Figure 3.35 An equivalent circuit of the model as in eqs. (3.53)–(3.56)
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g11 g12 g21 g22C11 − C12

C22 − C12

−C12

Figure 3.36 An equivalent circuit of the model as in eqs. (3.37)–(3.40) with reciprocal capa-
citances

g11 g21 g22C11 − C12 C22 − C12

− C12

Figure 3.37 An equivalent circuit with reciprocal capacitances and unilateral transconductances

Often, the conduction currents are unilateral in actual devices (g12 = 0); the equiv-
alent circuit then becomes (Figure 3.37).

For an FET, the quasi-static equivalent circuit is shown in Figure 3.38, where

g21 = gm g22 = gds (3.57a)

Cgs = C11 + C12 Cgd = −C12 Cds = C22 + C12 (3.57b)

A non-quasi-static symmetric equivalent circuit of an FET is shown in Figure 3.39,
where the capacitive region of the device is included within the dashed line.

The reciprocity of the reactive part of the device can be derived from an indepen-
dent principle [71]. We first define the reactive energy stored in the capacitive region of
the device:

E(V1, V2) = Q1(V1, V2) · V1 + Q2(V1, V2) · V2 (3.58)
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gm gdsCdsCgs

Cgd

Figure 3.38 A quasi-static equivalent circuit of an FET

Cgs

Cgd

Cds, i

Rgd

Ri

gm
gds

Figure 3.39 A non-quasi-static symmetric equivalent circuit of the intrinsic FET

The reactive energy is also conserved after one cycle, because there is no dissipa-
tion within a purely reactive region. Therefore, the energy is a single-valued function of
voltages. Its first-order derivatives are

Q1(V1, V2) = ∂E(V1, V2)

∂V1
Q2(V1, V2) = ∂E(V1, V2)

∂V2
(3.59)

The second-order partial derivatives of the single-valued energy function E must
fulfil the following relations:

C11(V1, V2) = ∂Q1(V1, V2)

∂V1
= ∂2E(V1, V2)

∂V 2
1

C12(V1, V2) = ∂Q1(V1, V2)

∂V2
= ∂2E(V1, V2)

∂V1∂V2
= ∂Q2(V1, V2)

∂V1
= C21(V1, V2) (3.60)

C22(V1, V2) = ∂Q2(V1, V2)

∂V2
= ∂2E(V1, V2)

∂V 2
2

and the capacitive part of the device then is reciprocal.
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A nonlinear model of the two-port device can be extracted from the linear small-
signal model by using the small-signal measurements at many bias points, that is, for
many values of the bias voltages Vgs,0 and Vds,0. The linearised conductances and capaci-
tances are evaluated at each bias point, and their dependence on the applied bias voltages
is found:

gm(Vgs,0, Vds,0)

gds(Vgs,0, Vds,0)

Cgs(Vgs,0, Vds,0)

Cgd(Vgs,0, Vds,0)

Cds(Vgs,0, Vds,0)

(3.61)

We can now compute the dependence on applied voltages of the integral parame-
ters, that is, currents and charges, by integration; however, this time the integration must
be performed along a line in the V1/V2 plane:

Ids(Vgs, Vds) =
∫ Vgs,Vds

0
(gm(β1, β2) · dβ1 + gds(β1, β2) · dβ2) (3.62a)

Qg(Vgs, Vds) =
∫ Vgs,Vds

0
([Cgs(β1, β2) + Cgd(β1, β2)] · dβ1 − Cgd(β1, β2) · dβ2)

Qd(Vgs, Vds) =
∫ Vgs,Vds

0
(−Cgd(β1, β2) · dβ1 + [Cds(β1, β2) + Cgd(β1β2)] · dβ2)

(3.62b)

The results of these integrations are independent of the integration path only if
the conductances on the one hand and the capacitances on the other hand are the partial
derivatives of single-valued functions:

gm = ∂Ids(Vgs, Vds)

∂Vgs
gds = ∂Ids(Vgs, Vds)

∂Vds
(3.63a)

Cgs = ∂Qg(Vgs, Vds)

dVgs
+ ∂Qg(Vgs, Vds)

∂Vds
Cds = ∂Qd(Vgs, Vds)

dVgs
+ ∂Qd(Vgs, Vds)

∂Vds

Cgd = −dQg(Vgs, Vds)

dVds
= −dQd(Vgs, Vds)

dVgs
(3.63b)

In other terms, a line integral along a closed curve on the V1/V2 plane must
sum up to zero; from an electrical point of view, this corresponds to the charges and
currents coming back to the initial value after one period in periodic large-signal regime
(Section 2.4) [53] (Figure 3.40):∮ (

gm · dVgs(t) + gds · dVds(t)
) =

∮
dIds

dV (t)
· dV (t)

dt
· dt

=
∮

T

dIds

dt
· dt =0 (3.64a)

∮ (
[Cgs + Cgd] · dVgs(t) − Cgd · dVds(t)

) =
∮

dQg

dV (t)
· dV (t)

dt
· dt

=
∮

T

dQg

dt
· dt =0
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Vds(t3), Vgs(t3)

Vds(t2), Vgs(t2)

Vds(t1), Vgs(t1)

Vds

Vgs

Vds, DC, Vgs, DC

Figure 3.40 Microwave load curve in the Vgs − Vds plane

∮ (−Cgd · dVgs(t) + [Cgs + Cgd] · dVds(t)
) =

∮
dQd

dV (t)
· dV (t)

dt
· dt

=
∮

T

dQd

dt
· dt =0 (3.64b)

However, if the device exhibits low-frequency dispersion, the measured small-
signal conductances and capacitances do not fulfil the above conditions: they are valid for
isothermal and ‘isotrap’ contours in the V1/V2 plane, while the small-signal measurements
are affected by changes in temperature and trap state in different positions in the plane
due to different bias voltages. Once more, only DC and fast or pulsed data should be
used, unless an identification procedure similar to that described above is carried out.

From what has been said above, it is apparent that a good nonlinear model
must account for frequency dispersion of the output I /V characteristics. DC data for
the I /V characteristics is easily available; high-frequency data is available from pulsed
measurement or corrected extraction from S-parameters, as described above. A suitable
arrangement for the equivalent circuit is shown in Figure 3.41 [72, 75].

If a smoother transition from DC to RF frequency is desired, low-pass and high-
pass filters with transition frequency in the MHz range must be replaced in the DC and
RF branches respectively.

For the sake of illustration of the charge expressions above, a particular, simple
expression for the charges is described, that is, the case of a two-port device, for example
an FET, with Cgs function of Vgs only, Cgd function of (Vgs – Vds) only and constant
Cds. This is the case of an FET where the gate–source and gate–drain capacitances are
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Figure 3.41 An equivalent circuit of an FET including dispersion effects

modelled as the depletion capacitances of the gate–source and gate–drain diodes, and
the drain–source capacitance as a constant parasitic, that is, the substrate capacitance.
This circuit automatically fulfils the nonlinear constraints just described. Let the diode
capacitances have an expression of the type

Cgs(Vgs) = Cg0√
1 − Vgs

Vbi

Cgd(Vgd) = Cd0√
1 − Vgd

Vbi

(3.65)

where
Vgd = Vgs − Vds (3.66)

From eq. (3.63b), we have

∂Qg

∂Vgs
= Cgs + Cgd

∂Qg

∂Vds
= ∂Qd

∂Vgs
= Cgd

∂Qd

∂Vds
= Cds + Cgd (3.67)

By integration, the charge expressions are found to be

Qg(Vgs, Vds) =
∫ (

Cgs(Vgs, Vds) + Cgd(Vgs, Vds)
) · dVgs

= −2Vbi · Cg0 ·
√

1 − Vgs

Vbi
− 2Vbi · Cd0 ·

√
1 − Vgd

Vbi
(3.68a)

Qd(Vgs, Vds) =
∫ (

Cgd(Vgs, Vds) + Cds(Vgs, Vds)
) · dVds

= 2Vbi · Cd0 ·
√

1 − Vgd

Vbi
+ Cds · Vds (3.68b)

In the following paragraph, a typical multi-bias extraction of a linear equivalent
circuit that does not take into account the above considerations explicitly is described;
therefore, it is rigorously valid only if the data are pulsed S-parameters measurements.
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3.3.4 Extraction of an Equivalent Circuit from Multi-bias Small-signal
Measurements

The behaviour of a real device is distributed by nature; therefore, a good equivalent
circuit can at best be an approximation. In general, the higher the number of elements in
the equivalent circuit, the better is the approximation; however, the number of elements
should be kept as low as possible, both for practical model extraction and for physical
meaningfulness of the circuit elements. On the one hand, the evaluation of the element
values should be as easy and straightforward as possible, and this is seriously hampered
by an excessive number of elements in the circuit. On the other hand, the behaviour of
the elements must satisfy the physical constraints (see previous paragraph) that are best
fulfilled by elements with a clear correspondence to actual physical effects inside the
device. Moreover, when physically meaningful, the equivalent circuit gives interesting
information on the structure of the device, both as a feedback to technology and for a
qualitative evaluation of the device performances by the designer.

As an example, the correspondence between a simple equivalent circuit of an
MESFET and its physical structure is shown in Figure 3.42.

Several similar topologies are available for most active devices at microwave and
millimetre-wave frequencies, like MESFETs, HEMTs, MOSFETs, BJTs and HBTs. In

Gate

Source

Drain

Source

Rg Rd

Ri
Rds

Rs

Ls

Cdstgm

Cgd

CgsLg
Ld

(b)

(a)

Source Gate Drain

Figure 3.42 The physical structure of an MESFET with the equivalent-circuit elements
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general, they fit the wide-band small-signal (linear) parameters of the device for a given
bias point; when this changes, the values of the intrinsic elements change too, while
parasitics are unchanged. If this is true and the fit to wide-band small-signal parameters
is still good, the equivalent circuit is a valid candidate for nonlinear applications. Then,
the dependence of the values of the intrinsic elements on the applied voltages is modelled
by some fitting functions, with the limitations described in the previous paragraph; if this
is true, the model is a good nonlinear model.

Let us illustrate this procedure with an example. The circuit in Figure 3.43 is an
equivalent circuit suitable for fitting MESFETs and HEMTs in a wide-frequency band.
As an example, the measured S-parameters from 0.1 GHz to 40.1 GHz are shown in
Figure 3.44, together with the S-parameters computed from the equivalent circuit, in a
range of bias points (Vds = 2.5 V, Vgs = −1.8 ÷ 0.5 V).

In Figure 3.45, the values of the intrinsic elements are plotted as a function of
the gate–source voltage Vgs and of the drain–source voltage Vds, together with a fitting
function, in this case a neural network model [76].

The topology of the equivalent circuit together with the fitting functions identifies
a large-signal equivalent-circuit model.

Let us now describe how the values of the elements of the equivalent circuit
are extracted from small-signal data for a practical device. Two main approaches are
available: a wide-band fit of the equivalent circuit to the small-signal measured data by
means of numerical optimisation routines and the selective identification of groups of
parameters by analytical means at special bias points.

A wide-band fit of the equivalent circuit to small-signal data is performed by
means of any commercial CAD package. The optimisation variables are the values of

Cpgd

Cpds

Cpd

Cpgs

Cpg

Cgd

Cgs
Ci

Vi Vi gm e−jwt

Lg Ld

Ls

Intrinsic

Rgd RdRg

Ri Rds Cds

Rs

Figure 3.43 The equivalent circuit of an FET
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Figure 3.44 Measured and modelled S-parameters at many bias points (Vds = 2.5 V, Vgs =
−1.8 ÷ 0.5 V)

the elements of the equivalent circuit at a given bias point; the optimisation routine
varies them until the S-parameters of the equivalent circuit are as close as possible to the
measured ones, in the whole frequency band of interest. Alternatively, Y -parameters or
any other linear equivalent parameters can be fitted. The optimisation can be performed
for each bias point separately or for all the data from all bias points of interest at once [29].
In the former case, the risk is that the optimised values of the parasitic elements vary from
bias point to bias point, contrary to the assumption: this is an indication of bad topology
or bad optimisation. In the latter case, the parasitics are forced to have the same values
at all bias points; however, the numerical burden greatly increases. In both the cases, the
optimisation algorithm risks to get trapped in local minima, never reaching the absolute
minimum. The goal function is usually not very sensitive to some elements, whose values
are therefore rather uncertain. This can be a problem for some applications: for example,
the gate resistance in an FET is difficult to extract from normal, operating-point S-
parameters, but its value is meaningful for the evaluation of the noise performances
of the device. If this is the case, it is wise to adopt the global fitting procedure, also
including special bias point as in the ‘two-tier’ procedure (see below). On the other hand,
this approach has a remarkable advantage: it is very easy to change or adjust the topology
of the equivalent circuit and have a fast feedback on its fitting accuracy. In addition, it
is not restricted or dedicated to any topology or device, and there is no need to develop
dedicated software.
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The alternative approach, that is, the selective identification of the elements of
the equivalent circuit, is based on the bias-independence of the parasitics. A ‘two-tier’
extraction procedure is performed: parasitics are first evaluated at special, suitable bias
conditions, and their values are not changed afterwards; then, the intrinsic elements are
evaluated at each normal, operating bias point within the region of interest. This approach
has a clear advantage: the values of the elements are extracted by means of simple, ana-
lytical formulae without any optimisation. Usually, a better understanding of the structure
of the equivalent circuit is also gained.

A great variety of bias conditions has been proposed for parasitics evaluation [77–
87], but almost all require some measurements on a ‘cold’ device, that is, zero drain or
collector voltage. This condition greatly simplifies the behaviour of the inner device,
and parasitics are better evaluated. Basically, the measured small-signal parameters of
the ‘cold’ device are equated to the corresponding analytic expressions of the small-
signal parameters of the model; the equations are then explicitly solved for the values
of the elements. Measurements at a single frequency can be used for the evaluation of
the parameters, but averaging over frequency in a suitable band allows for reduction
of random measurement errors. In general, diversity in frequency is a useful tool for
improving the meaningfulness of the extraction.

A two-port S-parameter measurement at a ‘cold’ bias condition provides three
complex equations, yielding six real values; if the parasitic elements are more than six,
more than one ‘cold’ bias condition must be used. Moreover, not all equations yield
reliable results, and it is usually better to have redundant data.

Let us illustrate the procedure by an example concerning an FET [83, 87]; the
procedure described hereafter is by no means the only possible one and not necessarily
the best: it is only one of the many proposed so far. In fact, it often turns out that a spe-
cific device may require modifications of the procedure, because of minor but important
differences in the structure of the device; however, the approach is usually similar.

Three ‘cold’ bias conditions are used in this example: depleted channel, that is,
pinched-off FET (Vds = 0, Vgs < Vpo), open channel (Vds = 0, Vpo < Vgs < Vbi) and gate-
channel junction in weak forward conduction (Vds = 0, Vbi < Vgs). The intrinsic device
behaves very differently in the three conditions in such a way that different parasitic
elements are relevant in each bias condition. Somehow, this is similar to what is required
from different calibration standards; in fact, in this case also, access elements of a device
under investigation (in this case the intrinsic device) must be identified and removed. The
equivalent circuits of the device in the three ‘cold’ conditions are shown in Figure 3.46.

In the case of pinched-off device, the measured S-parameters are converted to
admittance Y -parameters, which are easier to express analytically for the equivalent cir-
cuit. If we limit ourselves to a suitably low-frequency range, the inductances can be
neglected, and the simplified equations read as follows:

Im(Y11)po = ω(Cpg + Cpgs + Cgs + Cpgd + Cgd) (3.69a)

Im(Y12)po = ω(Cpgd + Cgd) (3.69b)

Im(Y22)po = ω(Cin + Cds + Cpds + Cpd + Cpgd + Cgd) (3.69c)
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Figure 3.46 The equivalent circuits of a ‘cold’ FET: pinch-off (a), open channel (b) and weak
forward conduction of the gate junction (c)

We consider only the imaginary part of the parameters for the extraction, since the
real parts are not always found to give reliable results in this bias condition. When plotted
against frequency, the measured parameters exhibit a linear behaviour at low frequencies,
confirming the negligible effect of inductances in that frequency range; in Figure 3.47,
the imaginary part of the Y11 parameter versus frequency is shown for Vgs = −2 V.
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Figure 3.46 (continued )
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Figure 3.47 The imaginary part of the Y11 parameter for a pinched-off FET and the fitted capac-
itive susceptance

The slope of the measured curve in the low-frequency range yields the values of
the capacitances. If the measurement is repeated for decreasing gate–source voltages,
the channel is more and more depleted; the values of the intrinsic capacitances tend to
zero, and a plot of the extracted capacitance value versus gate–source voltage Vgs can be
extrapolated to Vgs = −∞ to eliminate their contribution (Figure 3.48).
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Figure 3.48 Extrapolation of the extracted capacitance to Vgs = −∞

In this way, the parasitic capacitances are found. In fact, the model shown in
Figure 3.43 has five parasitic capacitances, while we have used only three measurements.
The additional informations required for complete identification are usually obtained
from measurement of transistors of the same type but with different gate periphery.
This approach allows not only a more reliable extraction, but also the availability of a
scalable model. However, in the case that the gate–source and drain–source parasitic
capacitances Cpgs and Cpds are negligible, the measurements are sufficient.

When pinched off, the intrinsic device behaves as a high impedance. Now, the dif-
ferent condition of weak forward-biased gate-channel junction is considered: the intrinsic
device behaves as a low impedance. It is neither necessary nor advisable to bias the
junction in full conduction in order to avoid junction degradation: a small gate current Ig

is sufficient to open a conductive path from the gate to the channel. The expressions of
the impedance Z-parameters of the equivalent circuit read as follows:

Re(Z12)wfb = Rs + Rch

2
− R2

ch

12nVT
· Ig (3.70a)

Im(Z12)wfb = ω

(
Ls + K1 + K2

Ig

)
(3.70b)

Re(Z22)wfb = Rs + Rd + Rch (3.70c)

Im(Z22)wfb = ω(Ls + Ld + K3) (3.70d)
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where Ig is the gate current, and K1, K2 and K3 are functions of resistances and capac-
itances [87, 88]; their expressions are given in Appendix A.2. As in the previous case,
not all equations have been considered: the Z11 parameter does not usually yield reliable
results. Plotting the measured data versus frequency, a suitable frequency range is iden-
tified for the extraction of the parameter; for example, the real part of the Z12 parameter
is better evaluated at relatively high frequency (Figure 3.49).

The extracted value depends on the value of the gate current Ig: the corresponding
term can be eliminated by repeating the measurement for several current values and
extrapolating to Ig → 0 (Figure 3.50).

From this bias condition, the source and drain inductances are found, and two
equations in the three unknown resistances Rs, Rd and Rchannel are found.

The third ‘cold’ bias condition is somehow in between the other two: the channel is
open, and controlled by the gate–source voltage. The equations relative to the impedance
Z-parameters are

Re(Z11)oc =

C2
g

(
Rg + Rs + γRch

3

)
+ C2

p (Rs + Rd + γRch)

+2CgCp

(
Rs + Rch

2

)
(Cg + Cpg + Cp)2

(3.71a)

Im(Z11)oc = − 1

ω(Cg + Cp + Cpg)
+ ω(Lg + K4Ls + K5) (3.71b)
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Figure 3.49 The real part of the Z12 parameter for a pinched-off cold FET and the fitted resistance
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Re(Z22)oc = Rs + Rd + γRch (3.71c)

γ =
(

1 −
√

Vb − Vgs

Vb − Vp

)−1

(3.71d)

where all capacitances except the gate-channel capacitance Cg are known, and K4 and
K5 are functions of the resistances and capacitance [87, 88]; their expressions are given
in Appendix A.2. Once more, a plot of the measured data versus frequency indicates the
best frequency range for the extraction. For example, the real part of the Z11 parameter is
shown in Figure 3.51, suggesting a moderate- to high-frequency range for the evaluation.

The extracted value depends on the value of the gate–source voltage via a linear
dependence on the γ parameter (Figure 3.52): the extrapolated value to γ → 0 and the
slope versus γ yield two equations.

Similarly, three other equations are given by the other parameters. In all, five
equations in eight unknowns Rg, Rs, Rd, Rchannel, Lg, Ls, Ld, and Cg are obtained. Together
with the weak forward-biased junction condition, we have now eight equations in as many
unknowns: the system is easily solved, and the parasitics are extracted. Their values will
not be changed by successive steps of the extraction.

Now the intrinsic, bias-dependent elements must be evaluated at normal oper-
ating points. At each bias point, the S-parameters are measured and then de-embedded
from the already evaluated parasitics. This is accomplished by successive transformations
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to Z- and Y -matrices, from which series and shunt parasitic elements respectively are
subtracted [83] (Figure 3.53); the de-embedded data correspond to the equivalent circuit
shown in Figure 3.54.

The analytical expressions of the admittance Y -parameters of this intrinsic equiv-
alent network read

Y11 = ω2(RgdC
2
gd + RiC

2
gs) + iω(Cgd + Cgs)

Y12 = ω2[RiCiCgs − RgdCgd(Cgd + Ci)] − iωCgd

Y21 = gm − iω[Cgd + gm(τ + RiCgs)]

Y22 = gds + i(Ci + Cgd − gmRiCi) (3.72)
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Z11 − jwLg Z12

Z21 Z22 − jwLd
[Z ]measured [Y ]

[Y ]
Z11 − Ls Z12 − Ls

Z21 − Ls Z22 − Ls

Y11 − jw(Cpg + Cpgd)

Z21 − jwCpgd
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Z22 + jw(Cpd − Cpgd)
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Z21 − Rs

Z12 − Rs
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Figure 3.53 Procedure for the de-embedding of the parasitic elements from measured S-para-
meters
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Figure 3.54 Equivalent circuit of the intrinsic FET
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and must be equated to the de-embedded measured data. By analytically solving for the
intrinsic elements,

Cgs
∼= Im(Y11 + Y12)

ω

Cgd
∼= − Im(Y12)

ω

Cin
∼= Im(Y12 + Y22)

ω

Rgd
∼= 1

ω2
· Cin · Re(Y11) − Cgs · Re(Y12)

Cin · C2
gd − Cgs · Cgd · (Cgd + Cin)

gm =
√

(Re(Y21 − Y12))2 + (Im(Y21 − Y12))2

τ =
a tanh

(
−Re(Y21 − Y12)

Im(Y21 − Y12)

)
ω

Ri
∼= Re(Y11) − Rgdω

2C2
gd

ω2C2
gs

Rds
∼= 1

Re(Y22)
(3.73)

The values of the intrinsic elements are found by averaging the above expressions
over frequency in a low-to-medium frequency band. After evaluation, the measured and
de-embedded intrinsic Y -parameters can be plotted versus frequency and compared to
the extracted equivalent-circuit data for verification of the extraction. As an example, the
real and imaginary parts of the Y21 parameter are shown in Figure 3.55 for the operating
point Vgs = −0.6 V, Vds = 5 V.

Alternatively, the extracted values of the elements are plotted versus frequency; as
an example, the transconductance gm and the transit time τ are plotted versus frequency
in Figure 3.56.

From the plotted data, it is apparent that the elements of the intrinsic equivalent
circuit are constant with frequency, fulfilling the basic hypothesis and confirming the
validity of the topology and extraction procedure of the equivalent circuit for this device.

The extraction of the intrinsic elements is now repeated for all operating points of
interest, and a table with the extracted values is available for nonlinear model construction,
as explained in the previous paragraph.

3.3.5 Nonlinear Models

A nonlinear model consists of the topology of the equivalent circuit together with specific
fitting functions for the extracted values of the equivalent-circuit elements. A large variety
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Figure 3.55 Real (a) and imaginary parts (b) of the measured and extracted Y21 of the intrinsic
FET for Vgs = −0.6 V, Vds = 5 V

of models are available in the literature for practically all microwave devices, and many
of them are implemented in commercial CAD programmes. Some of them are described
in this paragraph for ease of use by the design engineer.

A simple function for fitting the I /V output characteristics is defined in [89]:

Id(Vgs, Vds) = (A0 + A1 · V1 + A2 · V 2
1 + A3 · V 3

1 ) · tanh(α · Vds) (3.74)
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Figure 3.56 Measured and extracted transconductance gm (a) and delay time τ (b) of the intrinsic
FET for Vgs = −0.6 V, Vds = 5 V
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where

V1 = Vgs(t − τ) · (1 + β · (Vd0 − Vd)) (3.75)

The drain current is modelled as a third-order polynomial in the delayed gate–
source voltage, with an additional term that accounts for the shift in pinch-off voltage for
high drain voltages. The current is set to zero when eq. (3.74) becomes negative. While
accurate enough for quasi-linear operations in a region not too far from a Class-A bias
point, this model does not fit sufficiently well for the pinch-off behaviour and the knee
of the I /V characteristics of the device.

A more flexible model has been developed on the basis of the one proposed in [90].

Ids = Idss ·
(

1 − Vgi

Vpo + γVds

)E+Ke·Vgi

·
(

1 + Ss · Vds

Idss

)
· tgh

[
Sl · Vds

Idss
·
(

1

1 − KgVgi

)]
(3.76a)

where

Vgi = Vgs(t − τ) (3.76b)

The nine parameters (Idss, Vpo, γ, E,Ke, Ss, Sl,Kg, τ ) allow a good fitting in all parts of
the characteristic. The function is again set to zero when eq. (3.76a) becomes negative.

A fitting function developed for HEMT, with very good properties, has been pro-
posed in [91]:

Ids = Ipk · (1 + tanh ψ) · (1 + λ · Vds) tanh(α · Vds) (3.77)

where Ipk is the current where the transconductance has the maximum (peak) value and
ψ is a polynomial function of Vgs centred around the value corresponding to maximum
transconductance:

ψ = P1(Vgs − Vpk) + P2(Vgs − Vpk)
2 + · · · (3.78)

and

Vpk = Vpk0 + γ · Vds (3.79)

accounts for a shift with drain voltage of the value corresponding to peak transconduc-
tance. This model is very flexible, and reproduces with good accuracy also the derivatives
of the drain current with respect to the gate voltage.

Special attention must be paid to the model when intermodulation distortion or mix-
ing performances must be analysed. It is clear from Section 1.3.1 that the intermodulation
depends very much on the derivatives of the drain current with respect to the controlling
voltages. Therefore, models that have a better capability to model the derivatives of the
drain current, especially with respect to the gate voltage, have been developed [92–101].
A typical behaviour of the drain current and the first two derivatives with respect to
the gate voltage in the saturation region (Vds = 2 V) for an HEMT device is shown in
Figure 3.57.
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Figure 3.57 Typical drain current with its first two derivatives versus gate voltage for an HEMT
device

A function for fitting the drain current and its derivatives has been proposed
in [94] as

Ids = (A0 · x + A1 · sin x + A2 · sin 2x + A3 · sin 3x) · tanh(α · Vds) (3.80)

where

x = π ·
(

Vgs − Vpo

Vbi − Vpo

)
(3.81)

and A0, A1.A2, A3, α, Vpo, Vbi are the model parameters. Similar functions with accurate
modelling of the derivatives with respect to the gate voltage [92, 93, 97, 99, 100] or
both gate and drain voltages [95, 98, 101] have been proposed. Some models are valid
in the saturation region of the FET [92–94, 97, 99–101], while others are especially
intended for the application to the analysis of low-intermodulation, resistive FET mixers
(see Chapter 7) [95]. A symmetric model valid in both regions and also in the inverse
saturated region has also been proposed [98]. The drain current is expressed as a function
of gate–source and gate–drain voltages for symmetry:

Ids = g[f1(U
+
gd, U

+
gs) · f2(Vgs − Vgd) − f1(U

−
gs, U

−
gd) · f2(Vgd − Vgs)] (3.82)

where

f1(x, y) = (1 + a · x) · [1 − tanh(e−b·(y+c))
]

f2(z) = 1 − tanh(e−d·z) (3.83)
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and

[
U+

gd

U+
gs

]
=

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]
·
[

Vgs

Vgs

] [
U−

gd

U−
gs

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

]
·
[

Vgd

Vgs

]
(3.84)

and a, b, c, d, ϕ are the model parameters.

However, when higher-order derivatives of the drain current must be modelled, it is
not trivial to get accurate data. Differentiation of DC or RF I /V data can, in principle, be
attempted, but the accuracy is poor. A simple but effective approach consists of accurately
fitting the first-order derivatives of the drain current, that is, the small-signal transconduc-
tance and output conductance gm and gds as functions of the gate–source and drain–source
voltages [75, 91, 98]. If the small-signal equivalent circuit has been accurately extracted,
the model can actually predict intermodulation distortion with good accuracy. A more
sophisticated approach requires the measurement of the harmonics of a low-frequency
(in the MHz range) single-tone excitation with standard terminations [92–95] or with
different output loads for increased accuracy [99–101].

A different approach is adopted in [96, 102–104]. The dependence of the drain
current on the two controlling voltages (e.g. gate–source and gate–drain voltages for an
FET) is locally expressed in the neighbourhood of the bias point as a bi-dimensional
Taylor expansion up to the third order:

Ids = gmVgs + gdsVds+
+gm2V

2
gs + gmdVgsVds + gd2V

2
ds+

+gm3V
3

gs + gm2dV
2

gsVds + gmd2VgsV
2

ds + gd3V
3

ds+
+ · · ·

(3.85)

Clearly, the coefficients of the expansion are functions of the bias point. The values
of the coefficients are found by intermodulation measurements with low-frequency (in the
100-MHz range) two-tone test voltages: one sinusoidal voltage at the first test frequency
is applied to the gate (or base) of the transistor, and a second sinusoidal signal at a second,
very close test frequency is applied to the drain (or collector), as in Figure 3.58.

The amplitudes of the test signals are small enough for a Volterra series representa-
tion of the intermodulation phenomena to be valid. By selectively shorting some harmonic
and intermodulation frequencies at the ports of the device and by expressing the spectral
powers for the extraction as functions of the Taylor series expansion, it is possible to
use the power of the intermodulation signals coming out of the device at intermodulation
frequencies for the selective and successive identification of all the coefficients of the
Taylor series expansions. This is obtained by inversion of the Volterra series expressions
for the intermodulation terms that include the coefficients; the technique is similar to
the nonlinear current method (see Section 1.3.1). Since the measurements are absolute
values (powers), some care is required for the identification of the sign of the coefficients.
The instrumentation required for the measurements is very limited: the characterisation
frequency (in the 100-MHz range) is high enough to avoid low-frequency dispersion, but
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Figure 3.58 The measurement set-up for evaluation of the coefficients of the Taylor series expan-
sion of the drain current

low enough to allow for a very cheap and simple measurement set-up and to make the
contribution of capacitive nonlinearities negligible.

Once the local data are extracted, their bias dependence can be modelled by means
of neural networks in order to be able to predict intermodulation distortion for any bias
point within the measured region [105]. A typical application has been the identification of
the so-called ‘sweet spots’ of a transistor, that is, the bias points where the intermodulation
contributions from the various nonlinearities inside an active device cancel, so that a
very low distortion is obtained from the device for a significant input power range.
Another application has been the analysis of resistive mixers that are typically used for
low-intermodulation applications: in this case, the extracted data have been fitted by an
empirical function [104]. The procedure has also been extended to capacitances [103].

3.3.6 Packages

Packaged transistors are often used for high-power applications. Usually, suppliers suggest
the optimum bias and loading and also the layout of a circuit for the most common
applications. However, the availability of a nonlinear model is often useful, when special
non-standard applications are envisaged, in terms of frequency band or input signal or
bias point. In this case, a model of the package must be evaluated prior to the extraction
of the transistor model.

The package is a distributed network; however, it can often be approximated with
a lumped or semi-lumped equivalent circuit. The topology of the circuit depends on the
specific package, but a typical structure is shown in Figures 3.59 and 3.60 in which
pre-matching structures are also present.

In-package pre-matching is often used when large transistors, or even several large
transistors in parallel, are packaged for high-power applications. Such an arrangement
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(a)
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Figure 3.59 A typical package for a high-power transistor
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Figure 3.60 A detailed picture of the bonding arrangement for a bipolar transistor within the
package
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obviously makes the modelling procedure practically impossible, unless the package is
accurately modelled.

Sometimes, the model of the package is available from the supplier; however, this
is not the typical case. Contrariwise, it is very advisable that at least some knowledge of
the structure and dimensions of the package be gained from the supplier for a sufficiently
reliable modelling. If this is the case, the definition and extraction of a segmented model
can be attempted, as shown in the Figure 3.61.

The single sections of the package can be modelled by means of electrical lumped
or distributed elements, as shown in Figure 3.62. The extraction of the values of the
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Figure 3.61 A possible structure of the equivalent network of the package
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Figure 3.62 The equivalent circuit of the segmented package structure as in Figure 3.61
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elements can be performed by means of full-wave electromagnetic simulators or approx-
imated with suitable equivalent expressions. It is normally useful to measure an empty
package and fit the extracted model of the package to the measurements for final trimming
of the element values.

3.4 BLACK-BOX MODELS

In this paragraph, the main black-box approaches are described: an example of technology-
independent model for time-domain or harmonic balance analysis, a model for nonlinear
frequency-domain analysis (spectral balance) and behavioural models, mostly based on a
describing-function approach.

3.4.1 Table-based Models

Several approaches have been proposed for the construction of a nonlinear model based
on measured data only without any assumption on the structure of the device [106–113].
They allow the automatic construction of the model, avoiding troublesome extraction
procedures and inaccuracies due to topology approximation of equivalent circuits (see
Section 3.3). Many of them have been developed for use in conjunction with harmonic
balance analysis algorithms; in the following, the mathematical formulation is justified
as in [108, 112], showing that this approach is a generalisation of eq. (3.47).

The mathematical formulation can be demonstrated by means of a Volterra series
representation of a nonlinear device (Section 1.3.1), and by remarking that the ‘memory’
of past inputs on the nonlinear behaviour of a semiconductor device is usually limited
to a very short time compared to a microwave period. Assuming a voltage-controlled
current nonlinearity, the standard Volterra series expansion can be rewritten as

i(t) = FDC(v(t)) +
∑

n

∫
. . .

∫
gn(v(t), τ1, . . . τn) · e(τ1, t) . . . e(τn, t)dτn . . . dτ1

(3.86)

where FDC(v) is the DC I /V characteristic of the device,

e(v(t), τ ) = v(τ) − v(t) (3.87)

is the difference between the input at the current time instant and its past values, and

gn(v(t), τ1, . . . τn) =
∞∑

n=k

v(n−k)(t) ·
(

n

k

)∫
. . .

∫
hn(t − τ1, . . . t − τn)dτn . . . dτ1

(3.88)

are dynamic nonlinear impulse responses that account for the response of the nonlinear
current to the difference between the current value of the input voltage and its past values.
In practice, the first term in the right-hand side of eq. (3.86) gives the nonlinear response
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of the device to the input voltage, as if it had kept constant at the current value for
an infinite time in the past. The second term accounts for the memory effects within
the device due to the time evolution of the input voltage in the past; these effects are
nonlinear, and require a Volterra-like formulation including higher-order nonlinear terms.
Unlike the classical Volterra series formulation, the first term in eq. (3.86) accounts for
the largest part of the nonlinear response due to ‘instantaneous’ nonlinearities, while the
additional terms account only for the deviations due to memory. From another point of
view, eq. (3.86) is equivalent to a Volterra series expansion in the neighbourhood of a
bias point, which in this case is dynamic (the voltage v(t)). If the memory of the device is
short enough, that is, if the dynamic impulse responses decay to zero in a time sufficiently
shorter that the microwave period, the first-order response dominates the term, and it is
the only one to be retained:

i(t) = FDC(v(t)) +
∫ t

t−τm

g1(v(t), t − τ ) · (v(τ ) − v(t)) · dτ (3.89)

The convolution integral in eq. (3.89) accounts for the effect of time-varying input, lin-
earised in the neighbourhood of the instantaneous voltage v(t). Fourier transformation of
eq. (3.89) yields [108]

�[g1(v, t)] = Ŷ (v, ω) = Y (v, ω) − ∂FDC

∂v
(3.90)

where Y (v, ω) are the standard admittance parameters measured at a bias point v and
∂FDC

∂v
is the conductance computed from the DC characteristics of the device. The for-

mulation is a generalisation of the eq. (3.47), where only the drain conduction current had
been considered. The convolution integral in eq. (3.88) is easily included in a harmonic
balance algorithm [112]. The result is a table-based model, where integration of measured
data along the load line is performed during large-signal analysis.

3.4.2 Quasi-static Model Identified from Time-domain Data

Under the assumption that the device is quasi-static, a direct extraction procedure can be
performed on the basis of time-domain large-signal data, as obtained from a time-domain
large-signal measurement set-up (see Section 2.3). Let us consider a two-port nonlinear
element; a quasi-static representation is as shown in Figure 3.63.

The voltages and currents at the ports of the device are

i1(t) = igs(vgs(t), vds(t)) + Cgs(vgs(t), vds(t)) · dvgs(t)

dt

+ Cgd(vgs(t), vds(t)) · dvds(t)

dt
(3.90a)

i2(t) = ids(vgs(t), vds(t)) + Cdg(vgs(t), vds(t)) · dvgs(t)

dt

+ Cds(vgs(t), vds(t)) · dvds(t)

dt
(3.90b)
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qg(vgs, vds)igs(vgs, vds) qd(vgs, vds) ids(vgs, vds)

Figure 3.63 The quasi-static model of a two-port active device

where the capacitances and transcapacitances have been defined above (Section 3.3).
When a large-signal excitation is applied, the port currents, voltages and voltage deriva-
tives are measured in the time domain. The values of the elements of the model are directly
evaluated for a pair of port voltages vgs, vds when three independent measurements are
available for each port for the same voltage pair but different time derivatives [114–117].
The model is identified for all voltage pairs scanned by the waveform measurement, that
is, for all the voltage pairs assumed by the voltage waveforms during their time-domain
evolution. The time-domain identification can be associated with the de-embedding of
parasitic elements in order to make the quasi-static assumption more realistic.

3.4.3 Frequency-domain Models

Nonlinear black-box models can be constructed in the frequency domain; they find their
natural application within nonlinear analysis algorithms of the spectral balance type
(Chapter 1) [118, 119]. The basic principle requires the definition of the current in a
nonlinear element as an extension of the quasi-static formula:

i(t) = ig(v(t)) + dq(1)(v(t))

dt
+ d2q(2)(v(t))

dt2
+ d3q(3)(v(t))

dt3
+ · · · (3.91)

The equivalent circuit is as shown in Figure 3.64.

Let us assume that the static current and the generalised charges do not depend
explicitly on time and on voltage derivatives, but only on voltage. If a small signal is

ig(v) q(1)(v) q(2)(v) q(3)(v)

Figure 3.64 A frequency-domain black-box equivalent circuit
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superimposed to a static large voltage

v(t) = V0 + ṽ(t) i(t) = I0 + ĩ(t) (3.92)

then the current in the element can be written as

I0 + ĩ(t) = ig(V0) + dig(v)

dv

∣∣∣∣
v=V0

· ṽ(t) + dq(1)(v)

dv

∣∣∣∣
v=V0

· dṽ(t)

dt
+ dq(2)(v)

dv

∣∣∣∣
v=V0

· d2ṽ(t)

dt2
+ dq(3)(v)

dv

∣∣∣∣
v=V0

· d3ṽ(t)

dt3
+ · · · (3.93)

In the frequency domain

Ĩ (ω) = g(V0) · Ṽ (ω) + C(1)(V0) · jω · Ṽ (ω) + C(2)(V0) · (jω)2 · Ṽ (ω)

+ C(3)(V0) · (jω)3 · Ṽ (ω) + · · · (3.94)

The ratio between small-signal current and voltage, that is, the small-signal admittance is

Y (V0, ω) = g(V0) + jω · C(1)(V0) − ω2 · C(2)(V0) − jω3 · C(3)(V0) + · · · (3.95)

therefore, the frequency dependence of the small-signal admittance at a given bias point
is represented by a polynomial in the frequency itself, allowing a much better fit to exper-
imental data than the usual quasi-static formulation. Since the model is implemented in
a frequency-domain algorithm, the dependence on higher-order time derivatives does not
introduce any additional difficulty. Moreover, any frequency dependence of the parameters
of the model is possible, including very low-frequency or very high-frequency dispersion.
The large-signal model is constructed by integration of the small-signal conductance and
generalised charges, as seen above:

ig(v) = ig(v0) +
∫ v

v0

g(β) · dβ q(1)(v) = q(1)(v0) +
∫ v

v0

C(1)(β) · dβ

q(2)(v) = q(2)(v0) +
∫ v

v0

C(2)(β) · dβ q(3)(v) = q(3)(v0) +
∫ v

v0

C(3)(β) · dβ

(3.96)

In order to be used within a frequency-domain spectral balance algorithm, the
dependence of the nonlinear current and charge functions on voltage must be modelled
as a polynomial function of the controlling voltage itself (see Chapter 1). In practice,
polynomials of the Chebyshef type provide a good fit up to a high order [118].

Even if, in principle, the model can fit any frequency dependence of the measured
data, in practice it is convenient to de-embed passive, parasitic elements in order to
reduce the number of higher-order generalised charges. Quite naturally, the model is
easily generalised to an n-port network.
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3.4.4 Behavioural Models

Behavioural models are based on the assumption that no information on the internal
structure of the device is known. The behaviour of the device or subsystem is measured,
and then it is approximated by means of suitable fitting functions, usually of the class of
artificial neural networks (ANN). This assumption seriously limits the predictive proper-
ties of the model, which are valid only in a neighbourhood of the measuring conditions.
However, in some cases this neighbourhood includes very interesting situations in which
big savings in terms of simulation times are obtained.

Let us show this with an example. For a narrowband amplifier or subsystem, the
describing-function approach has been described in Chapter 1. The same approach is
experimentally very easy to implement, by simply performing source/load-pull measure-
ments with vector capabilities, for a sufficient number of input amplitudes from small
signal to saturation (see Chapter 2). In particular, if the device or subsystem is matched,
the input and output loads can be simply set to 50 �; otherwise, they must be set to the
optimum input and output loads for the device or subsystem. The amplitude and phase
of the output signal are measured for each value of the amplitude of the input signal,
and the results are usually plotted as AM/AM, AM/PM plots [120]. This approach is
easily generalised: if some harmonics are non-negligible, as for instance in the case of
a frequency multiplier, more than one describing function is defined, one per harmonic,
and a multiharmonic measuring set-up must be available. If the model must reproduce
the dependence of the output of a device or subsystem not only on a signal at the input
port at fundamental frequency but also on signals at other ports (output port, bias ports,
local oscillator ports) and other harmonics, the describing functions become functions
of the amplitudes and phases of all the input signals except the phase of an arbitrarily
selected signal that acts as a reference for the system. It can also happen that the loads
are not fixed and can vary in a neighbourhood of the optimum ones, as they usually do
in practice because, for example, of fabrication tolerances; in this case, the values of the
loads are treated as additional input variables, and actual source/load-pull measurements
must be performed in order to get the data [76, 121, 122]. Once the data are obtained, a
set of multi-variable fitting functions are trained to the data and implemented in a CAD
tool for circuit or system simulation.

So far, the model only reproduces the measurements and acts as a compact descrip-
tion of the experimental data. For example, in the case of complex system simulation,
it may be convenient to simulate a single subcircuit by means of a standard nonlinear
analysis algorithm, and then train a model to the results of the analysis. The behavioural
model will be much faster and reasonably accurate and allows the simultaneous analysis
of several nonlinear subcircuits within a large system with a reasonable computational
effort. However, in some cases the extrapolation properties of this type of model are
also very useful. Let us assume that a system is narrowband and that the input signal is
composed of tens or hundreds of closely spaced spectral lines. This is a common case
for modern multi-carrier communications systems and corresponds to a carrier-modulated
narrowband around its carrier frequency. The total signal can be considered as a centre-
frequency carrier signal modulated by a slowly varying envelope signal (see Chapter 1).
If the modulating envelope is slow enough with respect to the carrier, it can be assumed
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that the describing function still reproduces with sufficient accuracy the behaviour of
the carrier as it slowly changes with time [121]. With an extension of this approach,
the frequency-conversion properties of a nonlinear circuit are also modelled, and the
behaviour of a narrowband-modulated signal is predicted.

A different extension of the describing-function approach consists of the lineari-
sation of the function around the large-signal dynamic state of a device or circuit [122].
The large-signal incident and reflected waves are first measured in the large-signal state
of interest and then perturbed by a small incremental wave (see Chapter 2). The perturbed
wave is written as the unperturbed wave plus a perturbation that is linear with respect to
the perturbing wave:

bk,i = b
(0)

k,i +
∑
j=1,2

∑
l=1,N

(
Gk,i,l,j · Re[al,j ] + Hk,i,l,j · Im[al,j ]

)
k = 1, . . . N, i = 1, 2; l = 1, . . . N, j = 1, 2 (3.97)

where b
(0)
k,j is the unperturbed wave at port i and harmonic frequency k, bk,j is the per-

turbed wave at the same port and harmonic frequency and al,j is the small perturbing
wave at port j and harmonic frequency l. The complex coefficients Gk,i,l,j and Hk,i,l,j

are called the nonlinear scattering functions; they are a generalisation of the scatter-
ing parameters to the case of a time-variant bias voltage (see Chapter 8). The relation is
linear but not analytic [122], as already seen for the Jacobian of a harmonic balance algo-
rithm, from which the functions can also be easily computed [123] (see Chapter 1). In
Figure 3.65, an example is shown of drain current and voltage around a large-signal state

14

12

10

8

6

4

2

0

−2

−4

−6
0 10 20 30 40 50

t (ns)

V
ds

(V
)

I d
sZ

0(
V

)

Figure 3.65 Perturbed drain current and voltage around a large-signal state
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Figure 3.66 Perturbed drain current and voltage around a large-signal state

for a high-efficiency power amplifier perturbed by several small fifth-harmonic waves in
the time domain.

In the complex plane of the waves a and b, the waves are represented by vectors;
the perturbed waves are therefore represented as constant vectors (the unperturbed wave)
to which small perturbing vectors (waves) are added. For better accuracy of the measure-
ment, many perturbing waves a with the same amplitude but different phases are used,
describing thus a circle around the unperturbed wave a(0). The perturbed wave vector b

correspondingly describes an ellipse around the unperturbed vector b(0), because of the
non-analytic nature of eq. (3.97) (Figure 3.66).

The nonlinear scattering parameters find application, for example, when the sta-
bility of the large-signal state must be verified or ensured or when the condition of
large-signal match is required.

3.5 SIMPLIFIED MODELS

In this paragraph, simplified models are described together with some hints on their main
applications.

So far, accuracy has been one of the main desirable features of the described
models. In this paragraph, we will describe models that are intentionally not very accurate
but that allow for substantial advantages from other points of view. In fact, an accurate
model requires an equally accurate nonlinear analysis algorithm, even considering that
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the limiting factor of the simulation accuracy for the current state of nonlinear CAD
is the model itself. However, an accurate analysis algorithm is a numerical algorithm
that in itself does not allow a proper insight into the behaviour of the device or circuit.
The data are fed into the computer and the results come out. Of course, optimisation is
very useful for improving the performances of a circuit; however, numerical problems
sometimes do not allow the optimisation algorithm to find the optimum values. Moreover,
the definition of a single optimisation goal does not allow for flexibility in the design
trade-offs: it is not clear what is gained on one hand if something is lost on the other hand.
More importantly, the main mechanisms responsible for good or bad performances of the
circuit are not clear, unless a detailed and time-consuming analysis of many simulations
is performed by a skilled designer.

A simpler approach consists of the use of a simplified model, including only the
main nonlinear characteristics of the active device, and requiring a simplified analysis
algorithm. In this way, another advantage of this approach is the much simpler model
extraction procedure that can sometimes be performed from data sheets only without
actually buying and measuring the device. Obviously, the final design of the circuit will
normally be performed by means of a complete model and CAD tool, but a general
insight into the performance of a device or circuit will be gained in a short time.

Simple models have been used for a long time for power amplifier design [124–
129]. The equivalent circuit can be, for instance, as in Figure 3.67 for the case of an FET
where the only nonlinearity is the voltage-controlled drain–source current source. The
linear elements are extracted from small-signal parameters at the selected bias point or
as an average value over a suitable range of bias voltages. Moreover, the nonlinearity is
modelled by a piecewise-linear function, as in Figure 3.68.

In this case, the transconductance is constant with respect to the gate–source
voltage Vgs within the linear region, and zero outside, unless the operating point reaches
the ohmic or breakdown regions. The analysis becomes piecewise-linear as well, and the
voltage and current waveforms are computed analytically. For instance, in the case of the
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Figure 3.67 Simplified nonlinear equivalent circuit of an FET
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Figure 3.68 Piecewise-linear representation of the drain current and transconductance

current source being considered as a pure transconductance and the input signal being a
sinusoid, the drain current is a truncated sinusoid (Figure 3.69).

A simple Fourier analysis yields analytical expressions for the phasors of the
harmonics (Figure 3.70).

The output voltage waveform is found by multiplication of the current phasors
times the harmonic impedances and time-domain reconstruction. At least for the simplest
cases, no iterative analysis is required and explicit expressions are given for voltages
and currents.

Piecewise-linear simplified models have been successfully applied to the study and
design of nonlinear circuits as power amplifiers, mixers and frequency multipliers; their
application will be illustrated in detail in the relevant chapters.
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Figure 3.69 Drain current in a simplified piecewise-linear model
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Figure 3.70 Harmonic components of the drain current as a function of the circulation angle as
in Figure 3.69
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[47] T.J. Drummond, H. Morkoç, K. Lee, M. Shur, ‘Model for modulation doped field-effect
transistor’, IEEE Electron Devices Lett., EDL-3, 338–341, 1982.

[48] A. Shey, W.H. Ku, ‘An analytical current-voltage characteristics model for high electron
mobility transistor based on nonlinear charge control formulation’, IEEE Trans. Electron
Devices, 36(10), 2299–2305, 1989.

[49] D.-H. Huang, H.C. Lin, ‘Nonlinear charge-control DC and transmission line models for
GaAs MODFETs’, Int. MTT-S Symp. Dig., 1989, pp. 147–150.

[50] S.S. Islam, A.F.M. Anwar, ‘Nonlinear analysis of GaN MESFETs with Volterra series using
large-signal models including trapping effects’, IEEE Trans. Microwave Theory Tech., MTT-
50(11), 2474–2479, 2002.

[51] T. Li, R.P. Joshi, R.D. Del Rosario, ‘Requirements for low intermodulation distortion in
GaN-AlxGa1−xN high electron mobility transistors: a model assessment’, IEEE Trans. Elec-
tron Devices, ED-49(9), 1511–1518, 2002.

[52] M.Y. Frankel, D. Pavlidis, ‘An analysis of the large-signal characteristics of AlGaAs7GaAs
heterojunction bipolar transistor’, IEEE Trans. Microwave Theory Tech., MTT-40(3), 465–
474, 1992.

[53] C. Rauscher, H.A. Willing, ‘Simulation of nonlinear microwave FET performance using a
quasistatic model’, IEEE Trans. Microwave Theory Tech., MTT-27(10), 834–840, 1979.
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4
Power Amplifiers

4.1 INTRODUCTION

In this introduction, the basic concepts and the design quantities of interest are introduced
together with their definitions.

Power amplifiers are nonlinear circuits whose main goal is the amplification of a
large signal at a given frequency, or rather, in a given frequency band. The signal usually
must be amplified to a given power level, and the power gain can also be specified.
However, the specification that is at the origin of the nonlinear behaviour of a power
amplifier is the request of limited power consumption; contrariwise, an arbitrarily large
transistor could be used, working in its linear region for the given signal but consuming
a correspondingly large DC power for voltage and current biasing. Therefore, the tran-
sistor and the bias source must be large enough to limit the distortion produced by the
nonlinearities but not larger than that.

The quantities that characterise a power amplifier are defined in the following. The
output power is the power delivered to the load in the specified frequency band:

Pout = Pout(f ) fL ≤ f ≤ fU (4.1)

The input power is the available power in the same frequency band:

Pin = Pin,av(f ) fL ≤ f ≤ fU (4.2)

The power gain is the ratio between these two quantities:

G(f ) = Pout(f )

Pin(f )
fL ≤ f ≤ fU (4.3)

The amplifier being nonlinear, the gain depends on the power level of the signal.
If the active device is biased in its linear region, for very small signals the amplifier

Nonlinear Microwave Circuit Design F. Giannini and G. Leuzzi
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84701-8
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behaves linearly and the power gain reduces to the linear gain:

lim
Pin→0

G = lim
Pin→0

(
Pout

Pin

)
= GL (4.4)

For increasing signal amplitude, the output current and voltage tend to be limited by the
nonlinearities of the active device and the output power saturates:

lim
Pin→∞ Pout = Psat (4.5)

Correspondingly, the gain tends to zero:

lim
Pin→∞ G = lim

Pin→∞

(
Pout

Pin

)
= 0 (4.6)

Given the very wide dynamic range of the signal in practical cases, these quanti-
ties are usually expressed in a logarithmic scale. The arbitrary power level of 1 mW is
commonly used as reference level, and all power levels are expressed in dB with respect
to 1 mW or dBm; the conversion formulae between a power level in watt and the same
power level in dBm are

PdBm = 10 · log10

(
PW

10−3

)
= 10 · log10(1000 · PW) (4.7)

PW = 10−3 · 10
PdBm

10 = 10
PdBm

10

1000
(4.8)

The gain is also expressed in logarithmic scale as

GdB = 10 · log10(G) = 10 · log10

(
Pout,W

Pin,W

)
= 10 · log10(Pout,W) − 10 · log10(Pin,W) = Pout,dBm − Pin,dBm (4.9)

The power performances of a power amplifier are usually represented graphically
on a plot where the x-axis is the input power expressed in dBm and the y-axis is the
output power in dBm as well (logarithmic scale).

If the active device is biased in its linear region, for very low power levels the
amplifier behaves linearly and the slope of the plot is unitary:

Pout,dBm = 10 · log10(1000 · GL · Pin) = 10 · log10(GL) + 10 · log10(1000 · Pin)

= Pin,dBm + GL,dB (4.10)

The linear gain of the amplifier is easily found from the plot as the difference
between the output power in dBm and the input power in dBm at any point on the plot
in the linear region. For instance, the linear gain can be found as the value of the output
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Figure 4.1 The Pin/Pout plot for a power amplifier

power in dBm when the input power is 0 dBm if this point lies in the linear region of
the plot; in Figure 4.1, the linear gain value is found to be 15 dB.

In the case of an amplifier behaving as in Figure 4.1, the power level is expressed
in a more physically meaningful way, referring to the performances of the amplifier. From
the plot in Figure 4.2, it is easily seen that the gain decreases for increasing input power
level, as already mentioned; the gain is usually shown on the same plot for quantitative
evaluation. If suitable, the logarithmic scale used for the output power, interpreted as
dBm, can be used also for the gain, interpreted as dB.

The gain decreases from its maximum value in the linear region down to 0 or −∞
in logarithmic scale; this behaviour is referred to as gain compression. The power level
can be expressed with reference to the corresponding gain compression. For instance, the
power level where the gain is 1 dB less than its maximum value is commonly referred to
as the 1-dB gain compression power level. The corresponding powers are as in Figure 4.3.

The corresponding power levels are similarly determined for any gain compression
level. This terminology defines a power level with reference to the behaviour of the
amplifier and results in a meaningful indication of the amount of distortion the amplifier
is expected to introduce.

Another important quantity for the design of a power amplifier, as mentioned
above, is the DC power delivered by the power supply. Amplifiers are usually biased at
constant voltage, and the DC power is usually computed as the constant voltage times
the average DC current:

PDC = Vbias supply · 1

T

∫ T

0
Ibias supply(t) · dt (4.11)
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Figure 4.3 Power and gain plot and compression level

The average DC current, in general, is the bias current plus a rectified component
when the amplifier is driven into significantly nonlinear operations.

The DC power is partly converted into the output signal and partly into harmonic
or spurious frequencies, and the rest is dissipated inside the amplifier (Figure 4.4), where
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Figure 4.4 Power budget in a power amplifier

the frequency f0 stands for the frequency band of interest. The power balance is

PDC + Pin(f0) = Pout(f0) + Pout(f �= f0) + Pdiss (4.12)

A quality factor for DC power consumption is the efficiency. A physically mean-
ingful general expression is computed as the useful output power divided by the total
input power:

η = Pout

Pin,tot
= Pout(f0)

Pin(f0) + PDC
(4.13)

If the gain is large and components at harmonic and spurious frequencies are
limited, then this is the drain or collector efficiency:

η ∼= Pout

PDC
(4.14)

The most widely adopted definition of efficiency is the so-called ‘power-added
efficiency’, that is, the ratio between the RF power ‘added’ by the amplifier and the DC
power required for this addition:

ηadd = Pout − Pin

PDC
= Pout

PDC

(
1 − 1

G

)
(4.15)

This is not a physically correct definition since it is not a ratio between power
out and power in; it even becomes negative if the gain is lower than unity. However,
the weight of the input power is higher than that in the correct formula, and this is the
reason for its success. The input power usually comes from a preceding driver amplifier
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stage, where in turn it is obtained by means of the conversion of DC to RF power with
an efficiency not better than that of the power amplifier. This figure of merit, therefore,
stresses the advantage of a high gain for the requirements of high output power from the
preceding stages.

For a Class-A amplifier with high gain, the efficiency has a linear dependence on
input power for small to medium input power levels. This is easily seen from the formula
above: the DC power is approximately constant since no rectification takes place until
nonlinear effects appear, and the average current from the bias supply is the bias current:

PDC = Vbias supply · Ibias supply
∼= Vbias · Ibias (4.16)

The output power is proportional to the input power as long as the amplifier
behaves approximately linearly:

Pout = G · Pin
∼= GL · Pin (4.17)

therefore,

η ∼= GL · Pin

PDC
∝ Pin (4.18)

When the input power increases, the gain begins to decrease (gain compression);
the drain or collector efficiency tends to saturate to a maximum:

lim
Pin→∞ η ∼= Pout,sat

PDC
= const. (4.19)

The power-added efficiency reaches a maximum, then starts decreasing because of
the decreasing gain:

lim
Pin→∞ ηadd = lim

G→0

Pout,sat

PDC

(
1 − 1

G

)
= −∞ (4.20)

Efficiency is usually expressed as a percentage:

η% = η · 100 (4.21)

and as such it is shown in the same plot as output power and gain on a linear scale;
usually, its scale is shown on the right y-axis because of the different range with respect
to output power and power gain (Figure 4.5).

The dependence of efficiency on input power as shown in the figure is exponential
in the low- and medium-power region because the x-axis is logarithmic while the y-axis
is linear:

η = G

PDC
· Pin · 100 = G

PDC
· 10

10·log10(1000·Pin)

10

1000
· 100 = G

10 · PDC
· 10

Pin,dBm

10 (4.22)
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Figure 4.5 Output power, power gain and power-added efficiency

The efficiency of an amplifier is limited by the saturation of the output power
because of nonlinear voltage- and current-limiting phenomena. Before, the nonlinear
behaviour was so strong as to cause output power saturation; however, the distortion can
be so high as to degrade the quality of the signal beyond acceptable levels. Therefore,
distortion must be defined and evaluated, and usually is one of the design specifications
of a power amplifier.

For a single-tone signal, a meaningful figure of merit of distortion is the harmonic
content of the output signal. It is expressed as

HD2 = Pout(2f0)

Pout(f0)
HD3 = Pout(3f0)

Pout(f0)
(4.23)

or correspondingly in logarithmic scale:

HD2,dBc = 10 · log10

(
Pout(2f0)

Pout(f0)

)
HD3,dBc = 10 · log10

(
Pout(3f0)

Pout(f0)

)
(4.24)

These logarithmic expressions are said to be in dBc or decibel over carrier power.
Obviously, the harmonic distortion depends on the operating power level; a clear effect
is the distortion of the sinusoidal waveform of the output signal (Figure 4.6).

As a global figure of merit, the total harmonic distortion is also defined:

THD =

∑
n≥2

Pout(nf0)

Pout(f0)
THDdBc = 10 · log10




∑
n≥2

Pout(nf0)

Pout(f0)


 (4.25a)
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Figure 4.6 Output voltage and current waveforms for increasing input power

An alternative expression for second-order, third-order or arbitrary-order harmonic
distortion is the following. It is clear from Volterra series formulations (Section 1.3.2) that
for small amplitudes of a periodic signal the second-harmonic component has a quadratic
dependence on input power; the third harmonic has a cubic dependence, and so on for
higher-order harmonics. In a logarithmic plot as that used so far, the slope of the power
of a harmonic component of arbitrary order is the order of the harmonic itself:

Pout(nf0) ∝ P n
out(f0) ⇒ Pout,dBm(nf0) ∝ n · Pout,dBm(f0) (4.25b)

This is true as far as the Volterra series approach holds, that is, for mildly nonlinear
behaviour. If the slope of the plots of the harmonic powers are extrapolated, they intercept
the prolongation of the fundamental-frequency component power plot at the so-called nth
order intercept points (Figure 4.7).

The intercept points are a measure of the power level that can be obtained with a
given margin of the fundamental power to harmonic power. They are a compact figure
of merit for an amplifier, while the harmonic distortion must be given at all operating
power levels of interest.

Normal signals, however, are not single tone, but they are modulated; therefore
they occupy a frequency band. If the signal is narrowband, it can be seen either as a
carrier modulated by a relatively slow envelope or as an array of closely spaced spectral
lines within the frequency band of the total signal. We have seen above (Section 1.3.2)
that two tones at different frequencies produce intermodulation tones of all orders at
frequencies different from those of the two signals. The most meaningful ones are the
third-order intermodulation tones because they appear at frequencies near the fundamental
frequency of the signal, and therefore within the band of a practical signal, where they
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Figure 4.8 Spectrum of a two-tone signal at the output of a power amplifier, showing intermod-
ulation lines

interfere with adjacent signal lines; this is true also for all even-order intermodulation
terms, but for weak nonlinearities the lowest-order term tends to dominate. A simple way
to evaluate third-order intermodulation, though still rather unrealistic, is the measure of
the intermodulation generated by two closely spaced tones in the power amplifier. The
frequency spectrum is as in Figure 4.8 the distortion is evaluated as

IMD3 = Pout(2f2 − f1)

Pout(f2)
= Pout(2f1 − f2)

Pout(f1)
(4.26)

The two expressions given above are identical for narrowband signals; they differ
somehow if the two tones are not very close to one another. Seen from a different point of
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view, if the system is not frequency-independent within the signal frequency band, the two
expressions differ. For practical purposes, however, given the approximations and errors
involved in both simulation and measurement of these quantities, the two formulations
can be considered as equivalent. The corresponding expressions in logarithmic scale are

IMD3,dBc = 10 · log10

(
Pout(2 · f2 − f1)

Pout(f2)

)
= 10 · log10

(
Pout(2 · f1 − f2)

Pout(f1)

)
(4.27)

Also, third-order intermodulation distortion can be expressed as intercept point
since its dependence on input power is cubic, at least at low power level (Section 1.3.2).
The intercept point is shown in Figure 4.9.

The situation in which only two tones are present within the signal band is less
unrealistic than the one with a single-tone signal but is still very far from being practical.
However, designers usually manage to understand the relation between this simple figure
of merit and the behaviour under more complicated and realistic conditions. In case
a better evaluation of the distortion properties of the power amplifier is needed, more
realistic figures are given.

It is worth noting that gain compression and distortion, while apparently not
directly connected, share the same origin. If we look at Volterra series expressions, we
see that gain compression has its origin in the third-order nucleus and so does the third-
order intermodulation. If the two tones are closely spaced and the nuclei are not very
frequency-sensitive, the two terms are similar. When the gain compression is specified,
therefore, distortion usually assumes predictable values; this is not absolutely true but true
enough for practical design purposes, at least when distortion is not a very critical issue.

4.2 CLASSES OF OPERATION

In this paragraph, the classes of operation of power amplifiers are introduced.
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Power amplifiers are usually classified by the class of operation. This is a tra-
ditional scheme, but not always illuminating; on the contrary, it may be misleading.
Class-A operation means that the bias current is such that the transistor is not pinched
off or cut off by the input signal anytime in the signal period, at least for moderate
power levels. Class-B operation means that the transistor is pinched off or cut off for
one half of the signal period. Class-AB is an intermediate situation, that is, the bias cur-
rent is smaller than that of Class-A operations, but not zero; this implies that for small
power levels, a Class-AB amplifier behaves as a Class-A circuit and that the fraction
of the period when the device is off depends on the power level. Class-C means that
the transistor is pinched off or cut off for more than one half of the signal period. In
all these cases nothing is said about the load and, in particular, about the loading at
the harmonic frequencies; the voltage and current waveforms are not specified either,
even if they are usually assumed to be truncated sinusoids. On the other hand, Class-F
operation traditionally means that the output of the transistor is loaded by a suitable load
at fundamental frequency, by short circuits at even harmonics and by open circuits at
odd harmonics, whatever be the bias current and the pinching-off or cutting-off time of
the transistor; this ideally produces a square-wave voltage waveform for a sufficiently
high power level. In fact, the transistor itself is supposed to work either at zero voltage
(ohmic region or saturation) or at zero current (pinch-off or cut-off region), that is, either
as a short circuit or as an open circuit, drastically reducing the power dissipated inside
the device. This is similar for Class-E operations, where the transistor is supposed to
work as a switch, loaded by a suitable RLC network, ensuring optimum voltage and
current waveforms during switching. In Classes G and FG, a suitable combination of the
loads at even and odd harmonics both at input and at output of the transistor ensures a
favourable output voltage and current wave shaping for high power and efficiency; once
more, the transistor can be biased in a whole range of operating points between Class-A
and Class-B.

In order to clarify the situation, the two aspects of bias point and harmonic load-
ing will be clearly distinguished in the following. In particular, all classes of operations
referring to specific loads at harmonic frequencies will be treated by means of a unified
theory (harmonic manipulation approach); for each of them the suitable bias condi-
tions will be identified and described. All this description will be carried out by means
of simplified transconductance models for the transistor, and by means of piecewise-
linear analysis method for performance evaluation of the circuit. This approach is rather
exhaustive as far as the main design goals for the amplifier are high output power
and efficiency.

The case when a low distortion is the main design goal will be treated separately.
This is because special arrangements must be adopted when the distortion level must be
really low. Very few means are available to the designer so far for getting low distortion
in the design of a power amplifier stage; much more is available for the correction of
the distortion by means of external arrangements (predistortion linearisation, feedforward
linearisation, etc.).

Stability of the amplifier will not be treated in this chapter, but a general stability
theory under nonlinear operations is described in Chapter 8.
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4.3 SIMPLIFIED CLASS-A FUNDAMENTAL-FREQUENCY
DESIGN FOR HIGH EFFICIENCY

In this paragraph, a fundamental-frequency Class-A design of a power amplifier is descri-
bed, as an introduction to more sophisticated approaches involving harmonic frequencies.

4.3.1 The Methodology

Class-A amplifiers are supposed to have not only low efficiency but also low distortion.
The transistor is biased in the middle of its linear region and the load curve stays within
this region until the power level becomes high and gain compression begins. This is due
to the effect of the strong voltage- and current-limiting nonlinearities; in an FET, these
are the ohmic region or the forward conduction of the gate-channel junction and the
pinch-off or breakdown regions. For a bipolar transistor, these are the saturation and the
cut-off or breakdown regions (Figure 4.10).

In principle, very little harmonics and distortion are generated until the strong
nonlinearities of the transistor are reached by the load curve. The design of this amplifier
can therefore be treated by a quasi-linear approach. A very simple but effective approach
had been proposed some time ago [1] and was extended and improved by later works [2,
3]; it is proposed here for the clarity of the approach.

The device is modelled by a very simple equivalent circuit with a single nonlin-
earity, that is, the drain–source or collector–emitter-controlled current source; parasitics
and feedback elements are also neglected (see Chapter 3). In the case of an FET, the
equivalent circuit is shown in Figure 4.11.

In the case of a bipolar transistor, the input mesh changes from a series RC to a
shunt RC network. The current source is modelled as a piecewise-linear element, as in
Figure 4.12.

0
0

0.6

Vds (V)

I d
s 

(A
)

14

Figure 4.10 The limiting nonlinearities in the output characteristics of a transistor
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Figure 4.11 Equivalent circuit of an FET for simplified analysis
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Figure 4.12 Piecewise-linear output characteristics for simplified analysis

Assumption is made that the transconductance be constant within the linear region
of the device. The device is also conjugately matched at the input port (either gate or
base) by the input matching network for maximum power transfer into the device.

The output matching network as seen by the output of the active device is repre-
sented for this analysis by a shunt RL network (see Figure 4.13).

The inductance resonates the drain–source or collector–emitter capacitance of the
device at the fundamental frequency of operation; the resistance is the load where the
active power supplied by the active device will be dissipated. The value of the resistance
must be such that the design specifications are met. In practice, this is not the actual load:
in a practical circuit, an external 50 � resistance is transformed by the output matching
network into the optimum shunt RL, as required by the active device.

The performances of the active device will now be studied at the port of the
nonlinear current source. In other words, the parasitic capacitance is included in the
external circuitry for this study; it will be restored as an internal element afterwards
(Figure 4.14).
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Figure 4.13 Output mesh of the power amplifier for simplified analysis
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Figure 4.14 Load seen by the nonlinear current source for simplified analysis

If the capacitance and inductance resonate at the frequency of operation, the load
seen by the current source is purely resistive; then, the load curve on the I /V plane is
a straight line. Since the current source within its linear region is modelled as a pure
transconductance, the minimum and maximum output current reached at the extremes
of the line depend only on the amplitude of the input voltage signal, that is, on the
input power level. The slope of the line, or correspondingly the minimum and maximum
voltages reached at the extremes of the load line for a given input power, depend on the
value of the resistance RL seen by the current source. In other words, if the amplitude of
the input signal is small enough not to reach the current-limiting nonlinearities, the output
current waveform is dictated by the input voltage waveform; for a given input voltage,
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the output voltage waveform is equal to the output current waveform times the load
resistance, provided that the resistance is small enough not to cause the output voltage to
reach the voltage-limiting nonlinearities. Together, output current and voltage waveforms
determine the extension and slope of the load line within the linear region.

Conversely, for any given load resistance and bias point, the input voltage ampli-
tude will determine the extension of the load line, that is, the maximum and minimum
values of the output current and voltage. For increasing input power levels, a level is
reached when the load line touches a current- or voltage-limiting nonlinearity, depending
on the bias point and slope of the load line (Figure 4.15). Any further increase in input
power beyond this point will cause either the current or the voltage waveform to be
clipped and distortion to appear. We will assume this limit level where the amplitude of
the load line reaches the nonlinear limits of the linear region as the operating power level
of the amplifier.

At this limit level, the output power is easily computed as one half the prod-
uct of the sinusoidal voltage amplitude times the sinusoidal current amplitude. If the
power is voltage-limited (case (a) in Figure 4.15), the output power at the beginning of
compression is (Figure 4.16)

Pout,a = 1

2
· �Vds

2
· �Id

2
∼= 1

8
· (Vbd − Vk) · (Vbd − Vk)

RL,a
= (Vbd − Vk)

2

8 · RL,a
= V 2

max

8 · RL,a
(4.28)

where the maximum voltage swing has been approximated by

Vmax = Vbd − Vk (4.29)

If the power is current-limited (case (b) in Figure 4.15), the output power at the
beginning of compression is (Figure 4.17)

Pout,b = 1

2
· �Vds

2
· �Id

2
∼= 1

8
· (Imax · RL,b) · Imax = I 2

max · RL,b

8
(4.30)

Id
Imax

(a)

Vds = Vk

(b)

Vds = Vbd

Id,0

Vds,0

Vds

Figure 4.15 Load lines in the case of voltage-limited (a) or current-limited (b) output power
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Figure 4.16 Voltage and current amplitudes in the case of voltage-limited output power

Id

Imax

Vds

Vds = Vk

(b)

Vds = Vbd

Id,0

Vds,0

∆Id = Imax

∆Vds < Vmax

Figure 4.17 Voltage and current amplitudes in the case of current-limited output power

In both the cases, the output power is not the maximum that could be delivered by
the active device because either voltage or current swing is not maximum. The maximum
output power is obtained by using a load line that maximises both the voltage and current:

RL,opt = Vmax

Imax
(4.31)

Pout,max = 1

2
· �Vds

2
· �Id

2
∼= 1

8
· (Imax · RL,opt) · Imax

= 1

8
· Vmax

Vmax

RL,opt
= 1

8
· Imax · Vmax (4.32)
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and by a bias point such that

Id,0 = Imax

2
Vds,0

∼= Vk + Vbd − Vk

2
= Vk + Vmax

2
(4.33)

This situation is illustrated in Figure 4.18.

It is clear from Figures 4.16, 4.17 and 4.18 that

RL,b < RL,opt < RL,a (4.34)

and also
Pout,b < Pout,max > Pout,a (4.35)

So far, we have computed the maximum output power delivered to a resistive load
by the current source, and we also have determined the corresponding optimum resistive
load; we have also computed the power corresponding to other resistances, assuming
that the amplifier operates at the beginning of compression, that is, at the limit operating
input power level where the current and voltage waveforms begin to be distorted. We
now compute the output power delivered to the load resistance if the reactances are not
resonated, that is, if the load seen by the current source is not purely resistive. Let us
assume a load curve as in Figure 4.19.

This load curve corresponds to a load resistance as in the case of voltage-limited
output power (case (a), dotted line in Figure 4.19) with an added shunt susceptance. The

Id

Vds

Id = Imax

∆Id = Imax

Vds,o = Vk + (Vbd − Vk)/2

∆Vds = Vmax

Id,0 = Imax/2

Vds = Vk
Vds = Vbd

Figure 4.18 Load line ensuring maximum output voltage and current amplitudes
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Figure 4.19 Load curve for a complex load in the case of voltage-limited output power

current is the same as before, with an extra susceptive component:

Id = Id,res + jId,susc = Vmax ·
(

1

RL,a
+ jωBL,a

)
(4.36)

It is clear that only the resistive component contributes to the active power, which
is therefore identical to the case when the load is purely resistive (case (a)):

Pout,a′ = 1

8
· Vmax

RL,a
· Vmax = Pout,a (4.37)

Similarly, let us assume a load curve as in Figure 4.20.

Id

Vds

Id = Imax

Vds = Vh
Vds = Vbd

∆Vds,res

(b′)
(b)

∆Vds,tot 

∆Id = Imax

Figure 4.20 Load curve for a complex load in the case of current-limited output power
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This load curve corresponds to a load resistance as in the case of current-limited
output power (case (b), dotted line in Figure 4.20) with an added series reactance. The
voltage is the same as before, with an extra reactive component:

Vds = Vds,res + jVds,react = Imax · (RL,b + jωXL,b) (4.38)

It is clear that only the resistive component contributes to the active power, which
is therefore identical to the case when the load is purely resistive (case (b)):

Pout,b′ = 1

8
· Imax · (Imax · RL,b) = Pout,b (4.39)

We can now plot the loads described so far on the Smith Chart and tag them with
their corresponding output power. We start with the optimum resistance corresponding to
the maximum output power (Figure 4.21).

Then, we compute and plot the two resistances that correspond to an output power
1 dB lower than the maximum one; one will be higher (case (a)) and the other will be
lower (case (b)) than the optimum one:

(P
(1)
out,a)dBm = (Pout,max)dBm − 1 R

(1)
L,a = V 2

max

8 · P (1)
out,a

(4.40)

(P
(1)

out,b)dBm = (Pout,max)dBm − 1 R
(1)

L,b = 8 · P (1)

out,b

I 2
max

(4.41)

Now, the complex loads as defined above are plotted on the Smith Chart (Figure
4.23). We start from the resistances of cases (a) and (b) and add a shunt susceptance and a

RL,opt Pout,max

Figure 4.21 Resistive load corresponding to maximum output power
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P(1)
out,b

R(1)
L,b

R(1)
L,a

P(1)
out,a

Figure 4.22 Resistive loads corresponding to voltage-limited (a) and current-limited (b) output
power

R(1)
L,b

R(1)
L,a

P (1)
out,b

P (1)
out,a

RL,opt Pout,max

Figure 4.23 Closed constant-power contour

series reactance respectively; this causes the loads to move along the constant-conductance
and constant-resistance circles respectively. The closed contour in Figure 4.23 is obtained
by stopping at the intersections of the two circles.

Now the procedure can be repeated for output powers decreasing by 1-dB steps
(Figure 4.24).
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Pout,max

−1 dBm

−2 dBm

−3 dBm

−4 dBm

Figure 4.24 Closed constant-power contours for decreasing values of the output power

Id

Vds

IL = IMax

Vds= Vh
Vds = Vbd

∆Id = Imax

∆Vds = Vmax

(b)

(a)

Figure 4.25 Load curve corresponding to the intersection of constant-resistance and constant-
conductance curves for a given constant-power contour on the Smith Chart (Figure 4.22)

The points where the constant-conductance and constant-resistance circles intersect
correspond to a susceptive or reactive load such that the load curve is as in Figure 4.25.

In this case, the current- and voltage-limiting nonlinearities are reached simulta-
neously. The power delivered to the load is the same for both the shunt susceptance and
for the series reactance case.

The resulting closed curves on the Smith Chart are the equivalent to load-pull
contours, with the assumptions of simple piecewise-linear transconductance model as
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described earlier. The load computed so far is, however, the one seen by the inter-
nal current source of the transistor that includes the parasitic output capacitance (see
Figure 4.14). The load that must be actually presented to the output of the transistor by
the output matching network is easily computed by removing the capacitance. In the
example above, let us assume that we have computed a resistive optimum load RL,opt and
that a parasitic capacitance Cds is present. The actual load to be synthesised is

(YL,opt)ext = 1

RL,opt
− jωCds (4.42)

On the Smith Chart, this optimum admittance lies on the same constant-conduc-
tance curve as RL,opt, shifted into the inductive half-plane by the amount of the susceptance
corresponding to the parasitic capacitance (Figure 4.26).

Correspondingly, all points of the constant-power curves are moved along constant-
conductance circles. The load-pull-like contours look as in Figure 4.27.

4.3.2 An Example of Application

An example is now given of a design for a power-matched amplifier for 4.5–5.5-GHz
frequency band. A full nonlinear model and a commercial CAD software (HP-MDS)
have been used. The device is a medium-power MESFET by GMMT (UK) and the
corresponding model is a modified Materka one derived from pulsed-DC and multi-
bias S-parameter measurements. The topology of the model and the DC characteristics
are shown in Figure 4.28. The bias voltages are VDD = 5 V and VGG = −0.5 V (i.e. a
Class-A condition).

YL,opt

Pout, max

Figure 4.26 Load for maximum output power at the output of the transistor
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−1 dBm

−2 dBm

−3 dBm

−4 dBm
Pout, max

Figure 4.27 Constant-power contours at the output of the transistor

From the analysis of the device performances, that is, maximum voltage and current
swing, the optimum load is assumed to be Ropt, while from the small-signal model the
value for Cds can be obtained. Assuming an Ropt = 21.9 � and Cds = 0.31 pF and treating
the drain capacitance as an external element, the matching network has to transform the
50 � termination down to the optimum 21.9 � and absorb the drain capacitance and
bondwire inductance.

In Figure 4.29, the networks used to synthesise the load-pull contours are depicted.

A possible circuit that performs the job using lumped elements is shown in
Figure 4.30.

Note the advantage of keeping the drain capacitance and the bondwire induc-
tance as an external element; the optimum load is resistive and therefore constant with
frequency, so that the power match can be tracked using a single set of contours.

Finally, the input network is synthesised in order to fulfil the input conjugate match
condition. In Figure 4.31, the power amplifier synthesised is depicted.
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Figure 4.28 Equivalent model of power device considered (a) and DC characteristics (b)

In Figure 4.32, the S-parameters of the power amplifier (a) and its power perfor-
mance (b) for three different input drive levels are depicted. As it can be noted, there is
quite a good agreement between the Cripps theory and the full nonlinear simulation.

4.4 MULTI-HARMONIC DESIGN FOR HIGH POWER
AND EFFICIENCY

In this paragraph, a multi-harmonic manipulation approach is described for the design of
high-power, high-efficiency power amplifiers. The approach allows direct synthesis of the
input and output load, although by means of piecewise-linear model and calculations.

4.4.1 Introduction

It is well established that a high efficiency can be obtained by a proper selection of bias
point, say the drain or collector voltage and current DC levels, and a proper termination
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Figure 4.29 Parallel RLC circuit required to create the left side of the power contour (HP-MDS)

for all the relevant harmonics of the RF drain or collector current. This second aspect,
which is obviously related to high-frequency applications, when only few harmonics can
be handled, most of them being short-circuited by the device parasitics, corresponds,
from a different point of view, to the best-known approach devoted to assure, at lower
frequencies, a proper output voltage and/or current waveform shaping. It is easy to see,
in fact, that the output voltage waveform has to have the maximum instantaneous value
occurring at low (zero) output current level, while the maximum instantaneous value for
the output current must correspond to very low voltages in order to minimise the overall
dissipated power inside the active device.

For these reasons, starting from the pioneering work of Snider in 1967 [4], describ-
ing how it was possible in principle to improve the collector efficiency up to 100%
while assuring a corresponding improvement also for the output power and the power
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gain, many ‘harmonic-terminating strategies’ have been proposed in the literature and
presented as a natural evolution of classical and well-known A, AB, B and C biasing
classes. Some of these new strategies, as the Class-F, and more recently, the inverse
Class-F approaches [4–10] or the more unusual harmonic reaction amplifiers [11–13],
focus on the output network terminations only in order to utilise the harmonic content
generated by the current waveform clipping due to pinch-off and overdrive. Alternatively,
different approaches based on device switching-mode operation, where the device itself
is not considered at all since it is only an ideal switch, originated different operating
classes, as Class-D (or S) [8] and Class-E [14–18], and demonstrated to be extremely
effective in terms of output power and efficiency in the low-operating frequency range
(up to a few GHz).

In recent years, demanding applications at ever higher operating frequencies have
been forcing many designers to a critical review of most of the basic assumptions



MULTI-HARMONIC DESIGN FOR HIGH POWER AND EFFICIENCY 185

�

P
O

T
N

U
M

=1

R
= 

50
.0

 O
H

JX
= 

0.
0 

O
H

PA
C

 =

V
in

P
H

A
S

E
IA

C
=

P
= 

P
in

 d
B

m
P

ha
se

 I 
= 

0.
0

F
un

d
= 

1

C
M

P
17

3

C
C

M
P

17
0

C

A
G

R
O

U
N

D
A

G
R

O
U

N
D

A
G

R
O

U
N

D

A
G

R
O

U
N

D

A
G

R
O

U
N

D

A
G

R
O

U
N

D

A
G

R
O

U
N

D

C
M

P
17

2

L
C

M
P

17
4

L

C
M

P
15

9

C

C
M

P
15

0

L

L = 1 nH

C
M

P
15

1

L

C
M

P
36

V
D

C
C

M
P

37

V
D

C

L=
0.

56
 n

H
L=

0.
8 

nH
C

=1
00

 p
F

C=6.45 pF

C=2.24 pF

V
D

C
= 

−0
.5

 V

V
D

C
= 

5 
V

C
M

P
1

M
O

S
F

O
T

L=1 uH

C
M

P
12

C

C
M

P
18

C

C
M

P
14

9

C

C
M

P
19

3 
L

V
ou

t

C
=1

00
 p

F

C=1.2 pF

C=0.55 pF

C
=0

.6
9 

nH
L=

1.
3 

nH

CMP141

PORT_SPAR

C
M

P
11

C

++

P
O

R
T

N
U

M
=2

R
=5

0.
0 

O
H

T
X

=0
.0

 O
H

− +

−+

− +

D

S
G

CMP131

PLS

F
ig

ur
e

4.
31

Pa
ra

lle
l

R
L

C
ci

rc
ui

t
re

qu
ir

ed
to

cr
ea

te
th

e
le

ft
si

de
of

th
e

po
w

er
co

nt
ou

r
(H

P-
M

D
S)



186 POWER AMPLIFIERS

(a)

4.0 GHz
4.0 GHz

4.0 GHz

Freq
Freq
Freq

6.0 GHz A
6.0 GHz B
6.0 GHz C

10
.0

−2
0.

0
−2

0.
0

dB
(S

21
)

dB
(S

22
)

dB
(S

11
)

20
.0

C
0.

0B
0.

0A

Band
A1

B1

C1

A1

D1

C1

(b)

Band
26 dBm

6 dBm

P
ou

t

Pin = 10 dBm

Pin = 5 dBm

Pin =0 dBm

Freq4 GHz 6 GHz

Pout vs Frequency

Figure 4.32 S-parameter (a) and power performance for three different input drive levels (b)

underlying the above-mentioned strategies. Design approaches based on device switching-
mode operation, for instance, while maintaining the transition time at acceptable levels,
demonstrated to lose a major part of their effectiveness when used to design high-
efficiency microwave or millimetre-wave power amplifiers (PAs). In fact, it is easy to
understand that it is practically impossible to perform the requested wave shaping for the
output waveforms because of the difficulty in controlling more than a couple of voltage
or current harmonic components, say the second and the third one, thus overcoming the
inherent output shorting capacitive behaviour of the active device itself.

On the other hand, other aspects like the influence of input harmonic terminations
on the output device performances have to be examined. With the exception of Class-F,
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for which particular driving waveforms have been suggested [19], or the inverse Class-F,
where a possible solution is to drive the device with a proper rectangular voltage waveform
instead of overdriving it with a sinusoidal signal while biasing the device itself at the
pinch-off, most of the amplifiers can be assumed to be driven by a pure sinusoid at a
chosen fundamental frequency, whose harmonics are carefully short-circuited at the input
port. This choice represents a true limitation, as it was already demonstrated in [20–25]
where the use of second-harmonic terminating control schemes, both at input and output
ports, are fruitfully employed in order to significantly improve the overall transistor
performances. At the same time, the lack of understanding of the real role of the harmonic
control was the cause of some misinterpretation of the experimental performances of such
power amplifiers. In open literature, in fact, such second-harmonic approaches (mainly
experimental and with lack of physical insight) often resulted in confusing contributions,
reporting even contradictory results and conclusions.

For these reasons, a different approach was proposed in the last years starting
from some physical consideration on the possible mechanisms to be used in order to
improve the power amplifier performances in general and the power efficiency in partic-
ular, putting into evidence the possible expected improvement when moving toward the
highest frequency range. More precisely, a comprehensive theory of a multi-harmonic
manipulation design strategy was underlined, moving from a weighting procedure for the
second- and third-order harmonic output voltage components and giving a methodology
in order to assure the proper phase and amplitude ratio between them and the fundamental
one, operating at both the input and output port of the amplifier. As a result, an effective
improvement of microwave PA performances is demonstrated in terms of large-signal
gain, output power and power-added efficiency (PAE).

Measurements performed on sample PAs, designed using the proposed technique
to operate at 5 GHz and realised in hybrid form or to operate at 20 GHz and realised
in monolithic form, will be presented and discussed in the following sections. In both
the cases, the results, compared with those of companion amplifiers designed under the
usual tuned load approach, clearly demonstrate both the feasibility and effectiveness of
the proposed methodology.

4.4.2 Basic Assumptions

Every active device that can be fruitfully used at high frequency as an amplifying
element exhibits major power limitations, leading to the well-known output power sat-
uration mechanism. In the devices based on field-effect mechanism, like the FET for
instance, such physical constraints reside in the gate-source junction forward conduction
and channel pinch-off (determining the maximum current swing) together with triode
region and gate-drain junction breakdown (fixing the maximum voltage swing) (see
Figure 4.10).

A careful technological optimisation of doping profiles and gate recess, for instance,
can alleviate the effects of the above physical limitations, but a further power performance
improvement has necessarily to be based on smart design methodologies that, in turn, may
be approached from two different starting points, both leading to optimum performances.
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On the one hand, since device efficiency is strongly dependent on the amount of
power dissipated in the device itself, a possible strategy consists in its minimisation that
could be obtained by a proper shaping of voltage and current waveforms. Because of
the fact that Pdiss depends on the ‘product’ of the two waveforms, in fact, the shaping
aims at avoiding or minimising the possibly overlapping regions. Moreover, the requested
waveform shaping can be realised by a proper output network design strategy, that is,
properly and differently loading the harmonic content of the output current, as in the
Class-F or Class inverse–F approaches [4–10], or by a careful design of the output
network, both in lumped or in distributed form, while using the active device as a pure
switch, as in Class-E design [14–18, 26].

On the other hand, quite a different approach may be attempted by trying to
maximise the fundamental output voltage (or current) components, implying therefore
higher output power and efficiency while maintaining the DC power supplied to the
amplifier at the same level. This aim can be obtained, for instance, by loading the active
device with a purely resistive fundamental load, that is, resonating the reactive part of
the output impedance [1] while using the harmonic content of the current (or voltage) in
order to flatten the voltage (or current) waveform, while approaching the device physical
limitations that result in a potentially higher fundamental-frequency component and while
allowing the overall output voltage to respect the above-mentioned limitations (as it will
be clarified in the next paragraphs).

From a physical point of view, the two briefly underlined strategies are not so
different as it can be easily derived from power balance considerations. In fact, starting
from the following relation

Pin + PDC = Pdiss + Pout (4.43)

it is easy to reach the same conclusions, following one of the two roadmaps: for a given
power supplied to the active device (both from the DC bias supply PDC and from the
RF input Pin), design methodology devoted to increase the device output power or to
decrease the dissipated power in the active device itself seem to be equivalent, leading to

the improvement of the device efficiency

(
η = Pout

Pdiss

)
while stressing the role of one of

the two relevant terms through a proper ‘waveform engineering’ approach, which results
in a careful selection of harmonic terminations.

In order to infer some useful design criteria for the input and output networks,
it is helpful to make some simple considerations about the active devices, FETs for
instance, used for microwave applications. As seen above, they can be effectively treated
as voltage-controlled current sources [2, 3], at least while operating in their active region.
As a consequence, the resulting output current waveform is considered to be imposed by
the controlling input voltage and, at least to a first approximation, does not depend on
the chosen output terminating impedances that actually contribute only to the shaping of
output voltage waveform. Under these assumptions and assuming steady-state conditions
with a fundamental frequency f , time-domain drain current and voltage can be expressed
by their Fourier series expansions
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iD(t) = I0 +
∞∑

n=1

In · cos(nωt + ξn) (4.44)

vDS(t) = VDD −
∞∑

n=1

Vn · cos(nωt + ψn) (4.45)

where
ω = 2πf ,
ξn is the phase of the current nth harmonic component In,
ψn is the phase of the voltage nth harmonic component Vn,

the current and voltage harmonic components being related through the load on the
transistor’s output port ZL,n (i.e. the impedances across drain-to-source device terminals
at harmonic frequencies nf ):

ZL,n = Vn

In

· ej (ψn−ξn) = ZL,n · ejφn (4.46)

From Figure 4.33, the supplied DC power and dissipated power on the active
device are

Pdc = VDD · I0 (4.47)

Pdiss = 1

T

∫ T

0
vDS(t) · iD(t)dt = Pdc − Pout,f −

∞∑
n=2

Pout,nf (4.48)

where
Pout,nf = 1

2VnIn cos(φn) n = 1, 2, . . . (4.49)

represents the active power delivered from the device to the output matching network
at fundamental (Pout,f ) and harmonics (Pout,nf ). It is to be noted that in most normal
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Figure 4.33 Simplified single-stage PA scheme
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applications, fundamental output power alone is considered to be allowed to reach the
output load RL, filtering out harmonic components, thus leading to the following definition
for drain efficiency η, which does not take into account the RF contribution Pin:

η = Pout,f

Pdc
= Pout,f

Pdiss + Pout,f +
∞∑

n=2

Pout,nf

(4.50)

In this expression, Pdiss and Pout,nf take into account the output network charac-
teristics: if the latter is a lossless ideal low-pass filter, then Pout,nf = 0 for n > 1, while
Pdiss already accounts for the power reflected by the filter towards the device; otherwise,
if the output network is a frequency multiplexer, that is, if it can be seen as a one-input
multi-output ports, each tuned at a different harmonic, then Pout,nf for n > 1 is the power
delivered on the relevant terminations at these harmonic frequencies.

From the expression above, maximum drain efficiency (η = 100%) is obtained if

Pdiss +
∞∑

n=2

Pout,nf = 0 (4.51)

that is, if and only if the following conditions are simultaneously fulfilled:

Pdiss = 1

T

∫ T

0
vDS(t) · iD(t)dt = 0 (4.52)

∞∑
n=2

Pout,nf = 1

2

∞∑
n=2

VnIn cos(φn) = 0 (4.53)

Relevance of condition (4.53) is stressed if squared waveforms are assumed for
both output current and voltage (i.e. the output network is simply resistive at any fre-
quency) (Figure 4.34). In this case, while Pdiss = 0 (no waveform overlapping), maximum
drain efficiency is only 81.1% [27, p. 151] because of power dissipation on output ter-
minations at harmonic frequencies (Pout,nf >0 for odd n).
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Figure 4.34 Squared current and voltage waveforms (a) and corresponding power spreading (b)
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As a preliminary conclusion, condition (4.52) does not suffice to assure maximum
theoretical drain efficiency, as often assumed: output power dissipated at harmonic fre-
quencies must be simultaneously put to zero. Maximum drain efficiency can be therefore
obtained if

• fundamental output power Pout,f is maximised

or

• the sum of Pdiss and Pout,nf (n > 1) is minimised.

However, it is to be noted that many of the previous assumptions are valid to a
first approximation only and are introduced for sake of clarity but can be easily removed
in actual designs, where a full nonlinear model for the active device and a nonlinear
simulator is used, without affecting the validity of the result of the presented theory.

Another very important assumption arises when considering the number of fre-
quency components that can be effectively controlled in an actual design. On the one
hand, in fact, the circuit complexity issue suggests the use of a minimum number of
circuit idlers that are necessary to assure the proper termination to each harmonic. This
is principally due to their physical dimensions that often result in too large a chip area
occupancy and also due to the lack of availability and effectiveness of the components’
models at highest frequencies, which could represent a practical limitation in their large
utilization.

On the other hand, the benefits that can be obtained by controlling a larger number
of harmonic components normally do not justify this increase. A reasonable and satisfac-
tory compromise, as already anticipated, is in controlling the first two voltage harmonics
(namely the second and third components), considering the other higher ones effectively
shorted by the prevailing capacitive behaviour of the active device output. As a further
justification of such an assumption, it is to be noted that the control, up to the fifth har-
monic component, has been implemented only at the low-frequency range [13], resulting
more in higher circuit complexity than in a major efficiency improvement. Therefore, the
control scheme depicted in Figure 4.35 represents more than a simple theoretical solution,
being a practical reasonable compromise among the various issues and constraints.

A further consideration is regarding the maximum output power condition for a
given device, which, in Class-A operation, can be obtained by simultaneously maximizing
voltage and current swings [1], as schematically depicted in Figure 4.36. As it is well
known, in fact, the inherent nonlinear behaviour of the power amplifier, that is, the exis-
tence of hard physical limitations makes the optimum load different from the conjugate
one of the output impedance while maintaining the necessity of resonating the reactive
part of such an impedance.

Such a condition can be easily extended to a Class-AB operation [28], and it can
be shown to be, once again, equivalent to a purely resistive loading of the controlled
source, that is, to resonate, also in this case, the reactive part of the output impedance,
so delivering to the external load only a pure active power.
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In order to examine this aspect, Figure 4.37 shows the extension of the optimum
load concept to the Class-AB bias conditions when the tuned load approach is used.
The VDD value is the same and only the biasing current ID has been changed. The
expected performances, in terms of output power of the Class-AB amplifier, are shown
in Figure 4.38, where the output power, normalised to the one obtainable in Class-A, is
given as a function of the circulation angle θ .

These results, which show in particular the existence of a maximum for the out-
put power for a circulation angle chosen in the range 3.81 to 4.83, are obtainable if the
optimum load is chosen according to the values, once again normalised to Class-A, given
in Figure 4.39. Also in this case, it easy to note that the optimum load reaches equal
values in Class-A and Class-B bias conditions, but assumes different values in the whole
Class-AB, being lower up to 7% when operating in the above indicated range. A proper
choice of the Class-AB load thus allows an improvement in the output power of the
amplifier.
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Finally, since a resistive termination is the optimum load for output power maximi-
sation, the same holds for harmonic frequencies. In fact, complex terminations at harmonic
frequencies generate a phase lag between the fundamental component and harmonic ones,
that is, a different situation from being under a purely in-phase or out-of-phase condition,
leading to an overlapping between current and voltage waveforms, thus increasing the
dissipated power and decreasing the overall efficiency. This effect can be derived from
eq. (4.46) if a complex load Znf o is considered (in [29], the effect of Z2f o has been
analysed and graphically shown).

For these reasons, in order to perform an effective control of the harmonics, while
simplifying the choice of the relevant loads, a proper passive resistive termination is
assured to each harmonic component after resonating the output capacitance with a proper
inductive termination.
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4.4.3 Harmonic Tuning Approach

For low-frequency applications, assuming an infinite number of controllable harmonic
terminations, two possibilities are available to fulfil condition (4.53), that is, making the
active power delivered to the harmonics to vanish while assuming no overlapping between
the current and the voltage waveforms according to condition (4.52).

• Class-F [4] or inverse Class-F [9, 10] strategies, in which VnIn = 0 for n > 1, due to
the fact that the voltage (current) waveform has only odd harmonics, while the current
(voltage) waveform has only even harmonics. It is to be noted that these are idealised
approaches since voltage and current harmonic components, which in a real device are
related by load impedances as in eq. (4.56), are separately considered. In the above
approaches in fact, ideal short- or open-circuit terminations generate voltage (or cur-
rent) components starting from null values of the corresponding current (or voltage)
harmonic components. If more realistic assumptions are adopted, accounting also for
the actual phase relationships between voltage and current harmonic components, both
Class-C and deep Class-AB (near B) operating conditions lead to poor efficiency per-
formances [30]. Nevertheless, the Class-F strategy, for instance, has been successfully
applied in Class-AB [6, 31].

• Class-E strategy, in which φn = π/2 for n > 1, because of the fact that all the harmon-
ics apart the fundamental one have a pure reactive termination, an output capacitance
Cout that includes also the output main parasitics, thus identically nulling the active
power given to them. The active device is operated as a switch and closed-form design
expressions are available [32]. In such conditions, the stage acts more as a DC/RF
converter rather than as an amplifier. In this case, the power gain of the stage is not
controlled and specified during the design phase; it is a specification to be fulfilled by a
separately designed driver circuit using information about the input-port characteristics
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of the output transistor that is to be driven. Moreover, nothing is said about the input
network except that the input voltage waveform has to properly drive the device to
operate as a switch (i.e. deeply pinched off and saturated).

However, if the operating frequency enters the microwave region, both the appro-
aches exhibit a degradation in performances. For instance, actual Class-F amplifiers are
usually designed making use of two or three idlers only to control second and third
output harmonic impedances. As frequency increases (e.g. >20 GHz), the control of
both the second- and third-harmonic output impedances becomes troublesome since the
active device output capacitive behaviour practically short-circuit higher components,
not allowing the desired wave shaping. Moreover, for low-voltage applications, a Class-F
strategy is not the best solution, since different methodologies (based on second-harmonic
output impedance tuning) have demonstrated better performances [25].

On the other hand, the switching-mode operation of the active device, necessary to
implement Class-E strategy, is not feasible in microwave communication systems since
it requires that the power stage operates in saturated conditions, thus often increasing
intermodulation distortion levels.

As a consequence, while designing high-frequency power amplifiers for commu-
nication systems, the number of the voltage harmonics that are effectively controlled is
limited to the second and third ones, while the highest are assumed to be short-circuited.

With such hypotheses the drain efficiency becomes

η = Pout,f

Pdiss + Pout,f + Pout,2f + Pout,3f

(4.54)

with Pout,nf = VnIn = 0 in eq. (4.50), having Vn identically zero (short-circuited) for
n > 3. As a consequence, the device’s physical constraint vDS(t) ≥ 0 must be attained
through the superposition of the few remaining harmonics (namely first, second and third).
Therefore, both an overlapping between drain current and voltage waveforms (Pdiss > 0)
and a lower fundamental voltage component (decreasing Pout,f ) result, thus decreasing
the achievable drain efficiency values (lower than the ideal 100%).

Under the assumptions stated above, several different solutions are proposed in
literature in order to maximise η for high-frequency applications. Most of them are based
on the already mentioned traditional approaches (Class-E [33], Class-F or inverse Class-
F [9, 10]) and assume the same impedance values as in the ideal (i.e. infinite number of
controllable harmonics) case. The result is that Pout,2f and Pout,3f still remain nulled and
an increase on Pdiss, due to the overlapping between the resulting voltage and current
waveforms, is accepted.

Such approaches however exhibit several drawbacks. One of the latter resides in
the necessity to increase the bias voltage VDD in order to prevent negative drain voltage
values, thus increasing the supplied DC power (otherwise, a lower saturated output power
is expected), so further lowering the achievable efficiency.

On the other hand, some improvements in efficiency can be achieved by prop-
erly choosing the harmonic voltage ratios, as it was demonstrated in the high frequency



196 POWER AMPLIFIERS

Class-F approach [6]. In this case, in fact, assuming the third to first harmonic volt-
age ratio (k3 in this paper) higher (namely k3 = −1/6) than in the ideal squared voltage
waveform (corresponding to k3 = −1/3), a slight improvement in the drain efficiency was
achieved. Moreover, it is worth noting that the minimisation of the drain voltage vDS(t)

when iD(t) reaches its maximum value (the so-called ‘maximally flat condition’ in [34])
is not sufficient to minimise Pdiss. In this respect, the theoretical values of Pdiss (nor-
malised to Imax · VDD) as a function of the bias current (normalised to Imax) are reported
in Figure 4.40, assuming the control of first and third harmonic components only with
different voltage ratios k3.

Finally, a further improvement can be obtained by increasing by a factor of 2/
√

3
the load at fundamental frequency [30]. Nevertheless, the proposed approaches (F or
inverse F) usually neglect the relationships between the voltage and current harmonic
components imposed by eq. (4.46), and thus limiting the analysis to ideal (i.e. short- or
open-circuit) terminations. In general, no attempt has been made to classify the various
strategies and to unify them in a systematic way.

Recently, a new approach has been suggested [35]:

• Harmonic Manipulation (HM) based on the fulfilment of the first or second condition
(Section 4.4.2, page 191), allowing non-zero values also for both Pout,2f and Pout,3f if
a higher fundamental output power can be achieved. This methodology, which accepts
the active power supplied to the harmonics to be different from zero, while diminishing
the Pdiss dissipated inside the active device, is clearly losing, in comparison with the
two above-mentioned strategies, when a very high number of harmonics is involved,
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but reveals to be challenging in the case under consideration. At high frequency, in fact,
the practical limitation on the number of the harmonics renders the circuital solutions
devoted to minimise the quantity Pdiss + Pout,2f + Pout,3f as an interesting alternative
to be explored. Moreover, it is to be noted that even if this condition is equivalent
to the one maximising the output power at the fundamental frequency Pout,f , from a
mathematical point of view it is more convenient to utilise the latter that involves a
lower number of variables to handle.

Details of the proposed HM approach will be briefly recalled in the next paragraph.

4.4.4 Mathematical Statements

On the basis of the assumptions in Section 4.4.3, expression (4.45) can be newly rewritten,
utilizing second and third-harmonic components only, as follows:

Vds(t) = Vds,DC − Vds,f o · cos(2πfot) − Vds,2f o · cos(2 · 2πfot) − Vds,3f o · cos(3 · 2πfot)

(4.55)

Normalising to the fundamental-frequency component Vds,f o, the eq. (4.55) becomes

Vds,norm(ϑ) = Vds(ϑ) − Vds,DC

Vds,f o
= − cos(ϑ) − k2 · cos(2 · ϑ) − k3 · cos(3 · ϑ) (4.56)

where

k2 = Vds,2f o

Vds,f o
, k3 = Vds,3f o

Vds,f o
, ϑ = ωot (4.57)

As it is easy to infer, the drain voltage waveform is constrained to swing within
the range dictated by the device physical boundaries, that is, the drain knee voltage Vk,
here assumed as a first approximation to represent a hard limit, and the drain–source
breakdown voltage Vds,br, where the gate-drain junction becomes forward biased. It is
therefore necessary that

Vk ≤ Vds(ϑ) ≤ Vds,br (4.58)

It can be observed that without the contribution of harmonic components the max-
imum drain voltage amplitude in linear conditions is given by

Vds,f o,max = min[Vds,DC − Vk, Vds,br − Vds,DC] (4.59)

As previously mentioned, the goal of such a multi-harmonic manipulation proce-
dure is to obtain an increase in the fundamental-frequency voltage component with respect
to the case when no voltage harmonic component is allowed. This effect can be obtained
by means of a proper shaping of the overall voltage waveform, constrained to swing
between the same physical limitations, that is, through a proper choice and utilization of
the harmonic content.
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Such a statement implies that the target is to obtain Vds,f o ≥ Vds,f o,max, which is
equivalent, for the physical constraints, to the inequalities:

Vds,norm(ϑ, k2, k3) ≥ −1 if Vds,f o,max = Vds,DC − Vk (4.60a)

Vds,norm(ϑ, k2, k3) ≤ −1 if Vds,f o,max = Vds,BR − Vds,DC (4.60b)

For the sake of simplicity, only the case represented by eq. (4.60a) will be dis-
cussed, since it is the most common situation, but an equivalent analysis can be performed
for the case of eq. (4.60b). From a mathematical point of view, the problem of eq. (4.60a)
is equivalent to finding the values of k2 and k3, which allow an increase in fundamental-
frequency voltage component over the not manipulated one while respecting the same
physical limitations.

Such an increase can be quantitatively evaluated by means of a voltage gain func-
tion δ (k2, k3), defined by

δ(k2, k3) ≡ Vds,f o

Vds,f o,max
= −1

minϑ [Vds,norm(ϑ, k2, k3)]
(4.61)

As a consequence, the resulting fundamental-frequency voltage component can be expres-
sed as

Vds,f o|MHM = δ(k2, k3) · Vds,f o,max (4.62)

The selection of optimum design points (i.e. values for k2 and k3 maximising the
fundamental-frequency voltage component) therefore implies the study of the voltage
gain function. The simplest case is related to the analysis of the problem of a harmonic
manipulation based on the use of a single harmonic component. In fact, assuming k3 = 0,
that is, considering the third harmonic to be short-circuited, a particular kind of high-
efficiency amplifier, the Class-G one, can be studied. In this case, by properly generating
and properly terminating the second harmonic of the drain current, very interesting fea-
tures for the power amplifier have been demonstrated and experimentally tested [25, 36,
37]. Similarly, assuming k2 = 0, that is, considering the second harmonic to be short-
circuited, another kind of high-efficiency amplifier, the Class-F one, has been largely
studied, after the first suggestion from Snider [4]. In particular, the crucial role of the
phase relationship between the fundamental and the third harmonic has been put into evi-
dence, so explaining the necessity to bias the Class-F actual amplifier close to the pinch
off (deep Class-AB) but not in Class-B, as theoretically provided, in order to profit the
improvement in the amplifier performances, as forecasted by the theory of Snider [30].

More complex, but manageable following the same roadmap, is the case when
both the second and third-harmonic components are used (k2 �= 0, k3 �= 0, for extension
Class-FG), that is, when both the harmonics have to be generated with a proper phase
relationship with respect to the fundamental one and must be terminated on a proper
resistive load while resonating the output capacitance at the relevant frequencies. The
mathematical treatment is quite long and, unfortunately, the results cannot be expressed
in closed form. The surface of the voltage gain function, δ (k2, k3) in the k2, k3 plane is
given in Figure 4.41 while its contour plot is given in Figure 4.42.
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Figure 4.41 The voltage gain function δ (k2, k3) vs k2 and k3

It is evident that a wrong choice of the harmonics could lower the overall perfor-
mances (δ (k2, k3) < 1), while a proper choice can result in a significant improvement.
A clear maximum, in fact, is visible for the voltage gain function, reaching the optimum
zone for k2 < 0 and k3 > 0: in this case, the fundamental component is in-phase with the
third harmonic and out-of-phase with the second one. It is worthwhile to note, in particu-
lar, that in this case the proper phase relationship between the third and the fundamental
component is opposite to the one stated [30] for obtaining the Class-F behaviour.

Moreover, Figure 4.42 shows that Class-F operation corresponds to points lying
on the negative side of the vertical axis (k3 < 0, k2 = 0), while Class-G corresponds to
points lying on the negative side of the horizontal axis (k2 < 0, k3 = 0). The more classical
tuned load (TL) approach, imposing short-circuit terminations at harmonic frequencies,
is represented by the origin (k2 = k3 = 0).

Basic considerations can be carried out regarding the sign of the k2 and k3 har-
monic coefficients. If Class-F or Class-G operation is considered, a narrow range of k3

and k2 can be fruitfully used for harmonic manipulation corresponding to the regions of
the respective axes in which the voltage gain function is greater than unity. In both the
cases, such condition corresponds to harmonic components out of phase (i.e. with oppo-
site sign) with respect to the fundamental one [30, 36, 37], giving rise to a ‘flattening’
of the resulting drain voltage waveform while it approaches the physical limitation of
the device (as in Figure 4.43(a) for the Class-F case). On the other hand, an in-phase
combination results in a peaking effect on the voltage waveform thus approaching the
physical limitation for a lower fundamental-frequency component and hence decreas-
ing the maximum achievable fundamental-frequency voltage amplitude, as shown on
Figure 4.43(b).
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If the waveform for the Class-G case (Figure 4.44) is considered, a further obser-
vation may be done: a flattening of the voltage waveform can be effectively obtained
when the drain current is at its maximum (Figure 4.44(a), out-of-phase condition), while
a peaking effect occurs in the remaining part of the cycle. On the contrary, the flattening
in the voltage waveform is obtained when the drain current reaches its minimum, while
the peaking occurs at its maximum if the in-phase condition stands (Figure 4.44(b)).
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The contribution of the second harmonic, in fact, while being out-of-phase with
the fundamental one when the drain voltage reaches its minimum (maximum), results to
be in-phase when it reaches its maximum (minimum) value, which in turn results to be
larger.

Limiting the consideration to the out-of-phase condition and looking at the device
output characteristics, it is clear that this effect leads the operating point to potentially
enter the device breakdown region with evident detrimental effects on device reliability
and, at the least, to a lowering of the efficiency.

To account for the peaking effect obtained when using the proper-phased second
harmonic for the manipulation, a voltage overshoot function β (k2, k3) may be introduced,
defined as

β(k2, k3) ≡ maxϑ [Vds,denorm(ϑ)]

maxϑ [Vds,denorm(ϑ)|k2=0,k3=0]
= max

ϑ
[Vds,norm(ϑ)] · δ(k2, k3) (4.63)

As it can be easily inferred, β (k2, k3) directly gives the amount of the overshoot
for a given (k2, k3) combination and must be accounted for in order to avoid unwanted
breakdown occurrence.

The contour plot for the voltage overshoot function is shown in Figure 4.45: the
maximum values for such a function, 2.77 ≤ β (k2, k3) ≤ 3, reside close to the region giv-
ing optimum values for the voltage gain function, stressing its relevance in actual designs.

Finally, another statement can be developed when examining the properties of the
flattening of voltage waveform while approaching the minimum drain voltage as allowed
by the relevant device physical limitation.

Figure 4.46 shows what happens to the voltage waveform for a generic choice of
k2 and k3 in the second quadrant of k2 and k3 plane. As it is easy to see, the minima
are not at the same level, thus resulting in a sub-optimum condition. A better choice is
achievable if an ‘equiripple condition’ is imposed upon the voltage waveform, that is, its
multiple minimum values are imposed to be equal (Figure 4.47).
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In this case, a simple equation linking the k2 and k3 values can be derived:

k3 = k2
2

4 · (k2 + 1)
(4.64)

The use of eq. (4.64) allows an explicit representation for the voltage gain function under
the equiripple condition, given by

δ(k2) = 4 · (1 + k2)

5 · k2
2 + 8 · k2 + 4

(4.65)

The plot of such a function, superimposed on the contour plot for the general voltage
gain function is shown in Figure 4.48.

The maximum value for δ (k2, k3) in the equiripple condition is given by

δ(k2,δ max, k3,δ max) = 1 + √
5

2
≈ 1.62 (4.66)

and it is obtained for the couple k2, k3:

[k2,δ max, k3,δ max] =
[
−1 + 1√

5
,

3 · √5 − 5

10

]
≈ [−0.55, 0.17] (4.67)
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Such a maximum value is coincident with the absolute maximum value obtainable
for the voltage gain function δ (k2, k3). On the other hand, a different approach may be
attempted, trying to flatten as much as possible the voltage waveform (‘maximally flat’
condition) as suggested in [34], that is, imposing to be null both the first and second
derivatives on the waveform itself.

Such a condition is a subset of the equiripple one and the resulting value for the
voltage gain function is given by

δ(k2,maximallyflat, k3,maximallyflat) = 3
2 = 1.5 (4.68)

corresponding to

[k2,maximallyflat, k3,maximallyflat] =
[
−2

5
,

1

15

]
= [−0.4, 0.067] (4.69)

Once again, it means that the maximally flat condition is not the optimum choice
while leading to a sub-optimum design.

This kind of result could be better understood if some physical aspects are put
into the proper evidence. Weighting the harmonics, in order to assure the maximally flat
condition for the drain voltage waveform, in fact, involves into the calculation of the
power dissipated in the transistor Pdiss,

Pdiss = 1

T

∫ T

0
vDS(t) · iD(t)dt (4.70)

only the minimisation of the function to be integrated instead of the integral itself. This
means that other choices, like the one previously indicated, involving the maximisation
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(dashed line)

of the output power and consequently the minimisation of Pdiss, results in an actual
optimum choice.

Finally, for sake of comparison, Figures 4.49 and 4.50 show, as an example, the
drain voltage waveforms synthesised for three different conditions: a first one corre-
sponding to the weighting of the second and third-harmonic contribution according to
the maximum value of δ (k2, k3), another one obtained with harmonics corresponding
to the maximum value of β (k2, k3), and a third waveform synthesised according to the
maximally flat conditions.

4.4.5 Design Statements

The voltage harmonic shaping described in the previous section must now be related to
the actual increase in power performances and to the output networks’ design. To this
goal, let us briefly recall the rationale behind multi-harmonic manipulation.

For a given device with its physical limits, a given maximum linear swing is
allowed for the drain voltage (from eq. (4.59)), whose time-domain waveform is con-
strained to swing between the ohmic and breakdown regions. The intrinsic drain current
is imposed by the drive level of the input waveform, therefore fixing its harmonic com-
ponents. The maximum output power that can be obtained under such linear operating
conditions is simply given by the product of the maximum linear fundamental voltage
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component (Vds,f o,max) times the drain current fundamental component (Id,f o). Their ratio
uniquely determines the load impedance at fundamental frequency (Zf o) to be imposed,
that is, on the basis of the discussion in Section 4.4.2, a purely resistive termination:

RTL,opt = Vds,f o,max

Id,f o
(4.71)

In this case, harmonic terminations can be thought to be set to short-circuit ones,
and the obtained design is the well-known tuned load (TL) strategy.

Starting from such a situation and supposing that the harmonic components of the
drain current are not influenced by their terminations (Section 4.4.2), voltage harmonic
components (second and third) can be added to the fundamental one according to their
weights k2 and k3 computed in Section 4.4.4. The result of such a wave shaping is a
new voltage waveform with the same fundamental component but with a reduced swing.
The fundamental drain voltage component can be now increased by the factor δ (k2, k3)

to reach the device limitations. In this way, for the same drive level and with the same
voltage swing, a higher fundamental-frequency voltage component and therefore higher
output power is obtained.

Applying multi-harmonic manipulation, the fundamental-frequency voltage com-
ponent is increased by the factor δ (k2, k3), as indicated in eq. (4.62), here repeated for
convenience:

Vds,f o|MHM = δ(k2, k3) · Vds,f o,max (4.72)

Therefore, the load to be imposed at fundamental frequency to obtain this goal is

Rf o|MHM = δ(k2, k3) · RTL,opt (4.73)
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Similarly, the harmonic terminations that have to be imposed at second- and third-order
components can be computed by

Rnf o|MHM = δ(k2, k3) · kn · Id,f o

Id,nf o
· RTL,opt n = 2, 3 (4.74)

Fundamental frequency drain current component is, to a first approximation, unaf-
fected by the resulting increase in the respective drain voltage component. Output per-
formances are therefore increased by the same amount, that is,

a) Pout,MHM = Pout,TL · δ(k2, k3)

b) Gout,MHM = Gout,TL · δ(k2, k3)

c) ηd,MHM = ηd,TL · δ(k2, k3)

(4.75)

Equation (4.73) in particular gives the optimum fundamental-frequency termina-
tion, and in its simplicity reveals a potential source of error while performing PA design.

In fact, a widely used procedure to investigate the power performances of a given
device is to measure its load-pull contours. Load-pull systems are nowadays becoming
extremely sophisticated, providing the possibility to perform load-/source-pull measure-
ments not only at fundamental but also at harmonics. The usual procedure, in the case of
harmonic load pull, consists in finding the optimum fundamental-frequency termination
for fixed values of harmonic loads. Once such value is determined, it is held fixed and the
harmonic loads are varied until an optimum value for them is found. On the basis of the
theory outlined in the previous section, such a combination of loads is not the optimum
one since the fundamental-frequency load without (or for a fixed) harmonic tuning is not
the same that can be obtained by properly varying the harmonic loads.

A correct load-pull procedure should vary harmonic load together with the funda-
mental one to find the global optimum combination. [38] On the other hand, eq. (4.73)
may be used in order to find a step-by-step procedure starting from the tuned load case.

4.4.6 Harmonic Generation Mechanisms and Drain Current Waveforms

In this section, the problem of the proper current harmonic generation will be addressed.
In fact, since passive terminations only have to be employed, the properly phased voltage
harmonic components must result from eq. (4.44), that is, starting from the output drain
current harmonic components while choosing suitable terminations. Different approaches
can be explored in order to obtain the proper phase relationships among the drain current
harmonic components, and will be briefly examined in the following.

A first possibility consists in the use of the output clipping phenomena, that is, in
the generation of current harmonic components by means of hard device nonlinearities as
the pinch-off and the input gate-source junction forward conduction. Since this phenomena
is related to the input drive level and to the selected bias point, it implies a proper selection
of the active device operating conditions.

If a simple sinusoidal drive is used as input signal, the resulting drain current
is simply a truncated sinusoid, whose conduction angle (ϑc), defined in Figure 4.51(a),
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Figure 4.51 Ideal output drain current: (a) truncated sinusoid; (b) relevant harmonic content

completely determines the resulting amplitude and phase relationships among current
harmonics and reveals some important properties.

By a simple Fourier transformation, the drain current harmonic components can be
computed as plotted in Figure 4.51(b), where only the first three harmonics are reported
for the sake of brevity. As it is possible to note, for conduction angles ranging from
Class-A to Class-B, the second-harmonic component I2 is always in-phase, while the
third one I3 remains always out-of-phase with respect to the fundamental component I1

(i.e. having the same and opposite sign respectively).

As a consequence, the direct application of the multi-harmonic manipulation pro-
cedure described earlier, that is, with purely resistive harmonic loads, is not allowed at
all. Only a Class-F design is therefore directly applicable [30]. Moreover, it is worth
noting that the choice of a Class-C bias conditions becomes deleterious, resulting in
an uncorrected phase relationship, while for a Class-B bias conditions, as suggested
in [4], only a mathematical solution corresponding to the ‘opening’ of the odd harmonics
seems to be affordable in order to assure the forecasted benefits, their amplitudes being
identically zero.

Moreover, even if a second nonlinear phenomenon (i.e. the input diode forward
conduction (ϑb)) is encountered, the behaviour of the harmonics versus the circulation
angle ϑ seems to be modified only a bit, as shown in Figure 4.52. In fact, only at the high-
est circulation angles and for a heavy diode conduction ϑb, the second-harmonic compo-
nent changes it sign, thus allowing the Class-G [25, 29] operation (trapezoidal waveform).

As a first remark, if simple resistive harmonic terminations appear to be not useful,
complex ones can be experienced, also at the fundamental frequency, partially reducing
the improvement obtained through the multi-harmonic manipulation due to the amount of
reactive power involved at the fundamental frequency itself. In this case, a simple, suitable
design criteria is obtained choosing the harmonic terminations as dictated by the high-
frequency Class-E approach, while paying at least a higher overshot factor β ≈ 3.65 [33].
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A second opportunity consists in using the effect of device input nonlinearities. A
Volterra analysis of the input circuit [36, 39] shows, in fact, that the main contribution to
the harmonic generating mechanism at the device input is given by the nonlinear input
capacitor Cgs, thus confirming the numerical and experimental results in [20, 21].

If reasonable drive levels are considered, without the necessity of entering the
turn-on zone of the input diode, thus improving at least the reliability of the device, the
control voltage Vgs exhibits a major second-harmonic content leading to an asymmet-
rical gate-source voltage waveform, as depicted in Figure 4.53. In order to avoid this
effect, often considered a detrimental one, the input harmonic terminations are frequently
set to short-circuit values [20, 22] or compensated by means of a counteracting non-
linearity [21]. Nevertheless, major improvements of power performances are obtained if
such a second-harmonic input voltage component is used to implement the technique
described beforehand. In fact, the input signal nonlinear distortion implies the generation
of a second-harmonic gate voltage component that is out of phase with respect to the fun-
damental one and therefore usable for the generation of output current components with
the same phase relationship. Moreover, also a third-harmonic component ‘in-phase’ with
the fundamental one is generated, suitable for a Class-FG multi-harmonic manipulation.

Up to now, while nonlinear output clipping phenomena determine a ‘wrong’ phase
relationship among current harmonics, input nonlinearities effectively act in a reverse
direction, generating second- and third-harmonic components with the proper phasing.
These two counteracting effects cooperate in a very complex way in real devices. On
the other hand, it is clear that the input nonlinearities dominate at moderate drive levels,
while output clipping phenomena should prevail for higher levels. Such a behaviour
strongly depends on biasing conditions since the latter fix the drive level at which physical
limitations are incurred: roughly speaking, the closer is the bias point to the Class-A
reference, the higher will be the drive level at which the counteracting output harmonic
generation prevails [40].
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Another aspect that must be considered is related to the amplitudes of the ratios
among the voltage harmonic components, that is, the values of k2 and k3. In fact, even if
the phase relationships are correct, the values of k2 and k3 are related to the drain current
harmonic components and to the harmonic load resistances by eq. (4.74). While the
amplitude of the harmonic components increase with the input drive signal, the harmonic
load resistances are upper limited by the output device resistance value Rds. Such a
behaviour is demonstrated for a typical power stage in Figure 4.54, where the relative
amplitudes of second- and third-harmonic drain voltage components with respect to the
fundamental one (k2, k3) are plotted as a function of the input power for a fixed bias point
and loading (both input and output). As it is easy to note, because of the actual device
and the circuital solution adopted, both the harmonic generation mechanism and the Rds

values are not able to produce the wished voltage harmonics. The obtainable values for
k2 and k3, in fact, result to be lower than the optimum ones.
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The above-mentioned upper limitation for the load terminations of the harmonics
could limit the effectiveness of the proposed methodology. For this reason, an approach
that gives the possibility to fix independently the requested amplitudes of the starting
current harmonics seems to be interesting. Since, as already mentioned, the drain voltage
waveform is built from the drain current harmonic components, resulting from eq. (4.44),
in fact, proper drain current harmonic components could be generated in order to obtain
the proper phase and amplitude relationships. As noted earlier, in order to reach the
latter goal, the input nonlinearities can be fruitfully employed, but this is not the unique
possibility: a pre-shaped waveform may be fed to the input of the power stage containing,
already, the correct phasing between its harmonics.

Even if it is possible to analyse the best input drive waveform for each harmonic
strategy, as it is presented in [19] for a Class-F amplifier design, this methodology could
be practically unfeasible because of its difficult implementation and also because of being
too sensitive to the chosen active device input model. Because of these reasons, more
practical approaches based on the analysis of realistic and easy-to-implement cases alone
can suggest to the designer how to solve the problem of an effective application of the
harmonic manipulation.

For instance, a class of eligible waveform is obviously a rectangular waveform in
general and a square one in particular, the latter being easily obtainable using a Class-
F amplifier [30] as the driver stage. In this case, the analysis may start directly from
the drain current waveforms, that in the following will be assumed as a rectangular
waveform, as a truncated sinusoid (as the reference case before examined) and finally



212 POWER AMPLIFIERS

Table 4.1 Drain current circulation angles
allowing Class-FG approach

Current waveform model Class-FG

Truncated sinusoid Never possible
Quadratic 6.06 < ϑc < 2π

Rectangular 4.18 < ϑc < 2π

as a quadratic waveform, to take into account a more realistic active device pinch off
nonlinear behaviour, as suggested in [41]. Through a Fourier analysis on the three-current
waveforms, the corresponding relevant harmonics are easily derived and the regions
where purely resistive output loading allows an effective harmonic manipulation can be
evidenced, as reported in Table 4.1.

The drain current conduction angle ϑc has to be considered for all the three cases.
It represents the portion of the period when the drain current assumes non-zero values,
corresponding to the duty cycle for the rectangular waveform.

Using a piecewise-linear simplified model for the active device, for the regions of
Table 4.1, the expected improvements in terms of output power and drain efficiency can be
evaluated through eq. (4.75). The theoretical output power (normalised to the performances
of a standard Class-A amplifier design) and the drain efficiency for a tuned load (TL) and
Class-FG amplifiers are depicted in Figure 4.55 and Figure 4.56 respectively, while more
detailed results, including the Class-F and the Class-G solutions, can be found in [28].

It is to be noted that the theoretical purely resistive multi-harmonic manipula-
tion seems to be useful only for a narrow range of the drain current circulation angle
ϑc when limited to the output port only. Moreover, the efficiency improvements could
be not satisfactory: for a high-efficiency design, for instance, it appears to be more
appropriate to choose values of ϑc closer to Class-B bias condition, obtaining higher
efficiency values. As a consequence, the optimum design is a trade-off among all the
above-mentioned parameters.

In summary, many different solutions seem to be available using output and/or
input manipulation in order to obtain significant improvements over the classical tuned
load amplifier solution. Obviously, a combined action, activated both at input and output
ports of the amplifier, could represent the best solution depending on the acceptable
growth in circuit complexity. Moreover, especially for the simplified analysis based on the
three different driving signals listed above, the reported results represent only a first-order
approximation, while the effects of the input and output nonlinearities are not accounted
for. In any case, a more accurate analysis based on a full nonlinear model of an actual
device, including all the sources of nonlinear behaviour, demonstrates the validity of the
main conclusions with only minor modifications, mainly on the ranges listed in Table 4.1.

4.4.7 Sample Realisations and Measured Performances

In order to demonstrate the effectiveness of the proposed harmonic manipulation strategy
for high-efficiency design, two sets of power amplifiers have been designed and realised.
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More precisely, two amplifiers were designed and realised in hybrid form in order to
operate at f0 = 5 GHz (fundamental frequency), namely a tuned load reference stage,
and a Class-FG amplifier utilising second- and third-harmonic voltage tuning. Another
pair of amplifiers, one as a reference stage and one working in Class-G, were designed
and realised in monolithic form to operate at 20 GHz.

For the first set of two amplifiers, the device used has been a medium-power
MESFET by Alenia Marconi Systems with a Class-AB bias condition (Iq = Idss/3 ≈
80 mA; Vq = 5 V) and 1-mm gate periphery. In particular, the bias point was chosen to
be the same for both the amplifiers and precisely for the one that optimised the tuned load
performances. For the sake of comparison, in fact, it was preferred not to choose the bias
conditions that the simulations demonstrated to be the best for the Class-FG amplifier.

The device has been modelled in-house by a full nonlinear model, whose topology
is depicted in Figure 4.57, after a characterisation procedure based on the extraction of
multi-bias S-parameters and on pulsed-DC measurements [42].

For the design of the two amplifiers, the choice of the fundamental-frequency
output termination has been optimised by means of the technique in [43] and an input
matching network has been synthesised to get maximum input power transfer at large-
signal (conjugate large-signal input match) and to generate, if necessary, the drain current
harmonic components with the appropriate phase relationships, thus implementing the
considerations performed in the previous section.

In particular, for the tuned load amplifier design, the input capacitor Cgs whose ter-
minal voltage directly controls the output current source, is nearly short-circuited for the

Rg
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Figure 4.57 Device nonlinear model
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harmonic components at 2f0 and 3f0, while for the Class-FG amplifier, it is properly ter-
minated to allow the multi-harmonic manipulation, that is, to increase the input harmonic
content, as depicted in Figure 4.58. The two solutions have been obtained loading the
input circuit by an almost open (TL approach) or short-circuit (Class-FG approach) exter-
nal terminations at 2f0 and 3f0. Such loads are transformed by the parasitic network in
the proper short- (TL approach) or open-circuit (Class-FG approach) loading across Cgs.
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In the same way, the output matching networks are designed following different
criteria for each amplifier.

For the TL amplifier, the output network actually shorts the harmonic components
of the intrinsic drain current at 2f0 and 3f0, so obtaining an almost-sinusoidal voltage
output waveform. On the contrary, for the Class-FG amplifier, the second and third drain
current harmonics are resistively terminated in order to shape the drain voltage waveform
as described in Section 4.4.4.

With reference to Figure 4.57 and accounting for the consideration in the previous
sections, the values to be synthesised at the intrinsic drain terminals at f0, 2f0 and 3f0

are summarised in Table 4.2 for both the TL and FG amplifiers.

It is to underline that, for the latter case, the proper phase relationship between
the second- and third-harmonic voltage components and the fundamental one has been
obtained by means of both the input and output harmonic terminations. This is because of
the fact that, in this case, an output harmonic manipulation alone is not sufficient, while
the bare input nonlinearities cannot assure the proper drain current phase relationships.
Both the ports have therefore been properly loaded at the relevant frequencies. The Class-
FG design has been performed synthesising a purely resistive load at the fundamental
frequency and two complex ones at the two higher harmonics, so assuring the proper
drain voltage components phase relationships, and has been shown in Figure 4.59.

The values of the optimum terminations at the extrinsic device terminals are sum-
marised in Table 4.3.

In order to synthesise the external loads in Table 4.3, the distributed approach
schematically drawn in Figure 4.60 (TL design) and Figure 4.61 (Class-FG design) has
been followed for the input and output network respectively.

To explain in detail, the TL output network has been realised by means of two stubs
(λ/8 open-circuit stub and λ/6 short-circuit stub) controlling second- and third-harmonic
terminations respectively. The fundamental load has been synthesised by a standard LC
cell. The Class-FG output network is simpler since it is obtained starting with a λ/12 short-
circuit stub controlling third-harmonic component and an LC cell to control fundamental
and second-harmonic impedances. Biasing voltages have been applied through the RF
signal connectors.

Simulated results are reported in Figure 4.62 and Figure 4.63 where the drain
voltage waveforms and the corresponding I /V load curves, computed at -1-dB gain
compression point, are indicated as obtained by a full nonlinear simulator (HP-MDS).
It is to be noted that the use of a second-harmonic component for the Class-FG PA

Table 4.2 Intrinsic drain termination for the realised
tuned load and Class-FG amplifiers

Frequency (GHz) Tuned load Class-FG

5 26.5 + j0.1 49.7 + j3.7
10 2.4 + j0.1 22.7 + j131.1
15 2.2 − j0.1 8.7 + j11.8
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Table 4.3 External input and output impedances for the realised tuned load and Class-FG amplifiers

Frequency Tuned load Class-FG

(GHz) Input Output Input Output

5 14.4 + 25.9j 22.3 + 6.1j 14.5 + 25.8j 32.6 + 20.5j

10 42.9 − 223.4j 1.6 − 4.6j 0.5 + 14.8j 3.4 + 68.1j

15 23.9 − 130.4j 1.3 − 7.2j 2.0 + 26.8j 42.9 − 469.2j
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produces, as expected, a peaking effect on the drain voltage waveform, whose value can
be predicted by eq. (4.63) and must be accounted for in order to avoid device breakdown.

In Figure 4.64, the layouts of the two PAs are reported, as realised in hybrid form
on alumina substrates. Plots of measured output power and power-added efficiency as
functions of the input drive at 5 GHz are shown in Figure 4.65 and Figure 4.66 respec-
tively. As expected, the use of the multi-harmonic manipulation significantly improves
the PA’s performances. In particular, for an input drive level of 18.3 dBm, a maximum
power-added efficiency was obtained for a Class-FG power amplifier, with measured
output power and power-added efficiency levels of 25.6 dBm and 60% respectively,
corresponding to a drain efficiency of 73.7%.
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Figure 4.65 Measured output power

The remarkable improvements in output power and power-added efficiency are
synthesised in Table 4.4, where a measured improvement factor of 1.43 for Class-FG
with respect to TL amplifier is reported. This figure is not far from the theoretically
expected value (1.56).

A final statement has to be discussed in order to clarify an ambiguous problem.
Harmonic tuning strategies are often referred as detrimental approaches if the linearity of
the stage has to be addressed, because of the fact that higher-order harmonics are allowed
to circulate in a nonlinear system, so potentially increasing the effects of the nonlinearities.
Among the others, one of these effects must be considered carefully for its crucial impact
on the power amplifier performances in terms of linearity: the third-order intermodulation
product (IMD), since it is often an in-band signal, is difficult to be filtered out. So, the
question whether a high-efficiency design based on the harmonic manipulation technique
is compatible or not with high linearity performances can be addressed passing through
the evaluation of the role that the input and output harmonic terminations have on the
overall amplifier features including IMD.
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Table 4.4 Performances of tuned load vs Class-FG PA

Pout measured
(dBm)

PAE measured
(%)

PAE expected
(%)

TL 25.0 42 39
FG 25.6 60 61

In earlier published works [44, 45], the remarkable effect of the output termination
at the fundamental frequency on IMD has been clearly demonstrated, while the corre-
sponding input one appeared to be much less crucial. In a similar way, the impact of a
proper second-harmonic injection at the input port on the lowering of IMD levels has
been, mainly experimentally, demonstrated [36, 46].

A more complete analysis on the effect of the various harmonic terminations,
both at the input and output ports, chosen in order to implement different classes of
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high-efficiency power amplifier has been recently reported [47]. Moreover, the crucial
role of the second-harmonic component, generated by the input nonlinearities, has been
put into evidence by means of a Volterra series approach [48]. In particular, a proper
choice of input terminations assures the requested phase relationship among the first three
harmonic components of the input voltage driving signal, which presents the harmonics
reported in Figure 4.67, including the corresponding ones for the TL amplifier, reported
for sake of comparison.

A first qualitative interpretation is possible, taking into consideration the effects
that the multi-harmonic manipulation has on the overall amplifier performances. The
presence of the third harmonic in fact improves significantly the output power and the
power-added efficiency (see Figures 4.65 and 4.66) in comparison with both the tuned
load and the Class-G amplifiers, while worsening the corresponding IMD (35 of the
latter one, but still improving the IMD of the former one (Figure 4.68)). Figure 4.68 in
particular shows the relevant measured results, plotted versus the output back-off (OBO)
for the three amplifiers, obtained by injecting two equal amplitude signals 50 MHz apart,
confirming the above considerations.
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Figure 4.67 Driving voltage first three harmonics vs input power for TL amplifier (shorting
input harmonic terminations) and for FG amplifier(using proper second- and third-harmonic input
terminations)
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Figure 4.69 Layout of the harmonic manipulated amplifier

In conclusion, for the Class-FG approach, the generation of an input second
and third harmonics [47] actually decreases the level of IM distortion, while improv-
ing significantly both Pout (Figure 4.65) and PAE (Figure 4.66), thus suggesting that a
multi-harmonic manipulation strategy may allow an increase in the power amplifier’s
overall performances through a trade off with linearity.

A final consideration regards the presence of a sweet spot, that is, a null IMD
value that is basically unaffected by the multi-harmonic manipulation strategy. It seems
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to depend on the selected bias point that is the same for the two amplifiers, but further
investigations are necessary.

The second set of two amplifiers was realised in monolithic form, utilizing a 0.6-
mm power P-HEMT device from Fujitsu. Also in this realisation, one of the amplifiers,
used as reference one and named Amp B, was designed in order to have the second
harmonic (40 GHz) short-circuited at both the input and the output ports. On the contrary,
the harmonic manipulated version, named Amp A (see Figure 4.69), was designed in order
to have the second harmonic not shorted at the input port and resonated at the output
one [49]. No effort was made to try to control the third harmonic (60 GHz).

The different performances of the two amplifiers are clearly evidenced in Figures
4.70 and 4.71. In particular, the experimental results show that Amp A delivers a power
1.5 dB higher than Amp B, exhibiting at the same time a net increase of power-added effi-
ciency of 10% (Figure 4.64). On the other hand, the frequency behaviour in Figure 4.71
clearly shows the effect of the phase of the second harmonic on power performances,
in the case of second-harmonic manipulation as compared with the tuned load case. In
particular, in the case of Amp A, at 20 GHz, a peak in power and efficiency can be noted.
At the band edges, the efficiency exhibits a strong degradation. Still, the beneficial effect
of the proper-phased second harmonic covers a 1-GHz span (5% bandwidth).

Finally, an IM3 test, shown in Figure 4.72, verified the impact of the use of
such an approach on the linearity performances of the two amplifiers. The results clearly
indicate that no significant differences occurred in the two cases as a function of back-off.
Moreover, recalling the fact that Amp A has 1.5 dB higher power output compression,
this translates to higher linearity for a given input drive level or allows to operate at
lower output back-off, that is, with a higher output power for a fixed level of linearity.
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Figure 4.70 20-GHz single-stage amplifier test results: second-harmonic manipulation vs tuned
load
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5
Oscillators

5.1 INTRODUCTION

In this introduction, a short description of the oscillatory circuits more commonly used in
microwave circuits is given, and a brief recapitulation of the main methods available for
‘unstable’ circuit design is provided.

Oscillators can, in principle, be considered as linear circuits, since an instability
giving rise to an oscillatory behaviour, for instance sinusoidal, is a linear phenomenon.
In fact, most oscillators are designed by means of linear concepts and tools, and their
performances are satisfactory, at least for basic applications. However, many oscillatory
performances have an intrinsically nonlinear nature, and they are becoming increasingly
important in microwave applications. First, the amplitude of the oscillation cannot be
predicted by linear considerations only, and also the frequency of oscillation is often not
accurately predicted; however, simple empirical considerations can yield a reasonable
estimation of the power being produced by the oscillator, and the use of high-Q resonators
can force the frequency to be very close to the desired value. Nonetheless, a fully nonlinear
method can give a better and more accurate evaluation of the actual performances of the
oscillator, ensuring a first-pass design. Still more important, there are phenomena that can
be described only by means of purely nonlinear considerations. The circuits that exploit
such features are becoming increasingly important in microwave systems: for instance,
injection locking of an oscillator, which is fundamental in an oscillator array; phase-
noise reduction for accurate phase modulation/demodulation; subharmonic generation for
phase-locked loops; chaos prediction for chaotic communication or for chaos avoidance.
In this chapter, the linear conditions for stability and oscillation are first recalled; then,
methods for large-signal behaviour prediction are briefly summarised. The most common
and practical fully nonlinear analysis methods that are becoming increasingly important
for accurate oscillator design are then reviewed. Methods for noise evaluation, mostly of
nonlinear nature in oscillators, are also briefly discussed together with the guidelines for
low phase-noise oscillator design. Stability in nonlinear regime for the design of general
microwave circuits free of spurious oscillations of nonlinear origin or for the design of
intentionally unstable nonlinear circuits, as frequency dividers and chaotic oscillators, and
an overview of frequency locking in microwave oscillators are treated in Chapter 8.

Nonlinear Microwave Circuit Design F. Giannini and G. Leuzzi
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84701-8
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5.2 LINEAR STABILITY AND OSCILLATION CONDITIONS

In this paragraph, the stability or instability of linear circuits are described as a prelimi-
nary step for both nonlinear oscillation design and for nonlinear stability determination.

The behaviour of a linear autonomous network, that is, a network without external
signals, is represented by a homogeneous system of linear equations. The standard case in
electronic circuits, however, involves a nonlinear network including solid-state nonlinear
components (diodes, transistors) biased by one or more power supplies establishing an
operating DC point. The operating or quiescent point is usually found by approximate
graphical methods (load line), by approximate nonlinear analysis making use of simple
models for the nonlinear device(s) or by accurate numerical nonlinear network analysis,
usually by means of a CAD program. Once the quiescent point is determined, the cir-
cuit is linearised and linear parameters are evaluated, as for instance the hybrid model,
the Giacoletto model, or whatever equivalent (see Chapter 3), or by black-box data as
scattering parameters, usually found by direct measurement. As long as any RF signal
establishing itself in the circuit remains small, that is, as long as its amplitude does not
exceed the range for which the linearisation holds, this is accurate enough for the anal-
ysis and design of the RF behaviour of the circuit. In this paragraph, this hypothesis is
assumed to hold and purely linear considerations are made.

The unknowns of the homogeneous (Kirchhoff’s) system of equations are voltages,
currents, waves or a mixture of these, depending on the type of equations selected. In all
cases, a trivial or degenerate solution is always possible when all voltages and currents are
zero. This is the solution at all frequencies when the circuit is stable or at all frequencies
except one or more than one when the circuit oscillates. At each of these frequencies, the
determinant of the system of equations is zero and a non-trivial or non-degenerate solution
exists. This or these solutions represent the oscillation(s) in the circuit. Let us assume a
nodal analysis of the circuit (KCL), and therefore an admittance-matrix representation of
the circuit:

�I = ↔
Y · �V = �0 (5.1)

where
↔
Y is an n × n complex matrix and �V , �I and �0 are n × 1 complex vectors of the

unknown voltages, of the node currents and the zero vector respectively, for a circuit
with n nodes. The admittance matrix

↔
Y is a function of the values of the elements of

the circuit, both linear (passive elements and parasitic elements of the active device) and
linearised (intrinsic elements of the active device); it is also a function of the (angular)
frequency ω. The condition for the existence of an oscillation at a generic frequency ω0

therefore is the scalar equation:
det(

↔
Y ) = 0 (5.2)

The left-hand side of the equation can be seen as a function of the frequency,
which is the unknown of eq. (5.2), for fixed values of the elements of the circuit: this is
the case in which an existing circuit is analysed for determination of its stability:

det(
↔
Y ) = F(ω0) = 0 (5.3)
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If the equation has no solution for any frequency ω, then the circuit is stable;
otherwise, if one or more solutions exist, the circuit will oscillate at all the frequencies
solution of the equation. Nothing can be said on the amplitudes of the oscillations or on
the existence of other spurious frequencies generated by their interactions.

Otherwise, the left-hand side of eq. (5.2) can be a function of the value(s) of one
or more circuit elements, while the frequency has a fixed value ω0:

det(
↔
Y ) = G(R, L, C, . . .) = 0 (5.4)

The set of values of the circuit elements that satisfy the equation, if any exists,
is the solution to the problem of the design of an oscillator at a given frequency ω0. In
order for the solution to be satisfactory from a practical point of view, it must be verified
that eq. (5.3) with the designed values of the circuit elements has no solution for any
other frequency ω.

This is complete from a mathematical point of view, but is not practical from the
designer’s point of view. Therefore, simpler approaches are developed. First of all, the
network can be divided into two subnetworks at an arbitrary port (Figure 5.1). The two
subnetworks are represented in a nodal approach by two scalar complex admittances.

Systems (5.1) and (5.2) become scalar equations:

IL + IR = (YL + YR) · V = 0 (5.5)

YL + YR = 0 (5.6)

Equation (5.6) is also known as the Kurokawa oscillation condition [1]. It can
be shown (e.g. [2–4]) that if eq. (5.6) is satisfied, the whole network oscillates, unless
there are unconnected parts of the network. A simple illustration is given here for a
cascaded network with two nodes; the two-port network in the middle typically stands
for a biased active device (a transistor), while the two one-port networks are the input-
and output-matching networks. For the circuit shown in Figure 5.2, eq. (5.1) reads as([

Y11 Y12

Y21 Y22

]
+

[
Ysource 0

0 Yload

])
·
[

V1

V2

]
=

[
0
0

]
(5.7)

and eq. (5.2) reads as

(Y11 + Ysource) · (Y22 + Yload) − Y12Y21 = 0 (5.8)

IL

YL

IR

YRV

+

−

Figure 5.1 A port connecting the two subnetworks of an autonomous linear circuit
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V1 V2
Y2p YloadYsource

Figure 5.2 A cascaded two-node network

Equation (5.8) can be rearranged in two different ways:

Ysource = −Y11 + Y12Y21

Y22 − Yload
= −Yin (5.9)

Yload = −Y22 + Y12Y21

Y11 − Ysource
= −Yout (5.10)

Equations (5.9) and (5.10) correspond to the arrangements shown in Figure 5.3.

Equations (5.9) and (5.10) are equivalent, showing that the oscillation condition
can be imposed equivalently at the input or at the output port of the active two-port
network; we remark that no assumption has been made on the networks.

Let us now come back to eq. (5.6): this complex equation can be split into two
real ones:

Y r
L + Y r

R = 0 (5.11a)

Y
j
L + Y

j
R = 0 (5.11b)

Ysource

Yin

YloadV1 V2Y2p

Ysource

Yout

YloadV1 V2Y2p

(a)

(b)

Figure 5.3 The two-node cascaded network reduced to a one-node network in two different ways
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where Y r and Y j are the real and imaginary parts respectively of the complex admittance
parameter Y = Y r + jY j. System (5.11) can be interpreted in the following way: one of
the two subnetworks must exhibit a negative conductance, whose absolute value must
equal the positive conductance of the other subnetwork; moreover, the two susceptances
must resonate. In practice, the subnetwork including the active device provides the neg-
ative conductance, while the other subnetwork must be designed in order that eq. (5.11)
be satisfied.

Equivalently, if Kirchhoff’s voltage law impedance parameters are used, the circuit
can be represented as in Figure 5.4, and eqs. (5.2) and (5.11) become

det(
↔
Z) = 0 (5.12)

Zr
L + Zr

R = 0 (5.13a)

Z
j
L + Z

j
R = 0 (5.13b)

Similar considerations as above can be repeated by replacing conductance and
susceptance with resistance and reactance respectively.

In microwave circuits, waves and scattering parameters are normally used instead
of voltages, currents and impedance parameters. Equivalently, the network shown in
Figure 5.3 is modified to the network as shown in Figure 5.5, and eqs. (5.1), (5.2), (5.9),
(5.10) and (5.11) become

�b = ↔
� · �a = �a (5.14)

det(
↔
� − ↔

1) = 0 (5.15)

�source =
(

S11 + S12S21

1 − S22�load

)−1

= 1

�in
(5.16)

�load =
(

S22 + S12S21

1 − S11�source

)−1

= 1

�out
(5.17)

ZL

I

ZR

VL

+

−

VR

+

−

Figure 5.4 A series connection of the two subnetworks of an autonomous linear circuit
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Γsource

Γin

Γout

ΓloadS2p

Γsource ΓloadS2p

(a)

(b)

Figure 5.5 The two-node cascaded network reduced to a one-node network, using scattering
parameters

|�L| · |�R| = 1 (5.18a)

� �L + � �R = 0 (5.18b)

System (5.18) is equivalent to what is commonly known as the Barkhausen oscil-
lation condition. Equation (5.18a) implies that the wave reflected by one of the two
subnetworks (the one including the active device, e.g. the right one) must have an ampli-
tude greater than that of the incident wave

|�R| > 1 (5.19)

while the other subnetwork must attenuate the incident wave so that gain and loss of the
two subnetworks compensate:

|�L| = 1

|�R| (5.20)

Equation (5.18b) states that phase delays of the two subnetworks must compensate,
yielding zero total phase delay.

This approach is well known and very simple; however, this is not the situation
the designer actually has to look for. Typically, an oscillator must be designed in such a
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way that a growing instability is present in the circuit, so that the noise always present
in the circuit can increase to a fairly large amplitude at the oscillation frequency only.
Therefore, all signals have a time dependence of the form

v(t) = v0 · e(α+jω)t or a(t) = a0 · e(α+jω)t (5.21)

Admittance, impedance or scattering parameters in eqs. (5.2), (5.3) and (5.14) res-
pectively must be computed as functions of the complex Laplace parameter s = α + jω

instead of the standard (angular) frequency ω. In the analysis case, eq. (5.3) and its
equivalent condition for an impedance or wave representation are

FY(α0 + jω0) = 0 (5.22a)

FZ(α0 + jω0) = 0 (5.22b)

F�(α0 + jω0) = 0 (5.22c)

The circuit is an oscillator if one or more solutions exist for one or more values
of ω0 with also α0 > 0. Conversely, an oscillator must be designed from eq. (5.4), or its
equivalent condition for an impedance or wave representation, so that

GY(R, L,C, . . .) = 0 (5.23a)

GZ(R, L,C, . . .) = 0 (5.23b)

G�(R, L,C, . . .) = 0 (5.23c)

are satisfied for the desired value of the Laplace parameter ω = ω0 and α = α0 > 0.

A practical problem when using eq. (5.22) or eq. (5.23) instead of eq. (5.3) and
eq. (5.4) arises from the fact that CAD programs do not usually compute network param-
eters in the Laplace domain. Equivalent conditions must therefore be available requiring
only standard frequency-domain expressions. Typically, an oscillator includes a resonator
that forces the circuit to oscillate near its resonant frequency, more or less independently of
the amplitude of voltages and currents in the circuits. Therefore, eq. (5.11b) or eq. (5.18b)
mainly involving the frequency-dependent elements can typically be computed in the fre-
quency domain, that is with α = 0, to a good degree of approximation. Contrariwise,
eq. (5.11a) or eq. (5.18a) mainly involving the negative- and positive-resistance terms
typically are sensitive to voltage and current amplitudes in the circuit. From what has
been said above, it seems to be a reasonable assumption that the circuit be designed in
such a way that the total conductance or resistance be negative or that the total reflection
be greater than one:

Y r
L + Y r

R < 0 (5.24a)

Zr
L + Zr

R < 0 (5.24b)

|�L| · |�R| > 1 (5.24c)

While conditions (5.24a) and (5.24b) are correct, condition (5.24c) is not generally
true; a simple example is sufficient to clarify the point. Let us consider a simple parallel
resonant circuit as in Figure 5.6.
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Gs Cs Ls

Γs Γd

Gd

Figure 5.6 A parallel resonant circuit

Kirchhoff’s current law at the only node, written in the form of eq. (5.22a), is

Gs + Gd + sC + 1

sL
= 0 (5.25)

whence

s0 = −Gtot

2C
±

√(
Gtot

2C

)2

− 1

LC
(5.26)

where
Gtot = Gs + Gd (5.27)

For a growing oscillation, we must have

α0 > 0 ⇒ Gtot = Gs + Gd < 0 (5.28)

If the left subcircuit is a biased active device behaving as a negative conductance
and the right subcircuit is a passive network, so that

Gs < 0 Gd > 0 (5.29)

we must have
|Gs| > Gd or −Gs > Gd (5.30)

This condition gives a growing instability, thus confirming the validity of eq. (5.24a).

In particular, if the quality factor (Q) of the circuit is high, that is, if

Gtot � 2

√
C

L
(5.31)

the complex Laplace parameter can be approximated by

s0 = α0 ± jω0
∼= −Gtot

2C
± j

1√
LC

(5.32)
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and the oscillation frequency is

ω0 = 1√
LC

(5.33)

independent of the resistive elements in the circuit.

Let us now check whether eq. (5.24c) is also valid. If condition (5.31) holds,
the reflection coefficients of the left and right subcircuits in Figure 5.6 can be approxi-
mated by

�s
∼= G0 − Gs

G0 + Gs
�d

∼= G0 − Gd

G0 + Gd
(5.34)

where G0 = 1

Z0
= 20 mS. It is by no means true that if eq. (5.30) holds, then eq. (5.24c)

is satisfied. Let us show this by assigning actual values to the resistive elements of the
circuit. For instance, we can take

Gs = −30 mS Gd = 25 mS (5.35)

which gives growing instability since eq. (5.30) is satisfied. For the reflection coefficients,
we have

�s = −5 �d = 1
9 |�s| · |�d| = 5

9 < 1 (5.36)

and eq. (5.24c) is not satisfied. If we take

Gs = −15 mS Gd = 10 mS (5.37)

eq. (5.30) is again satisfied, and the circuit is unstable. For the reflection coefficients,
we have

�s = 7 �d = 1
3 |�s| · |�d| = 7

3 > 1 (5.38)

Equation (5.24c) is now satisfied. It is therefore clear that eq. (5.22b) is not correct.

The above considerations can be repeated for a series resonant circuit as in
Figure 5.7. We get

s0 = −Rtot

2L
±

√(
Rtot

2L

)2

− 1

LC
(5.39)

where
Rtot = Rs + Rd (5.40)

For a growing oscillation, we must have

α0 > 0 ⇒ Rtot = Rs + Rd < 0 (5.41)

If
Rs < 0 Rd > 0 (5.42)
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Rs

Ls
Γs Γd

Rd

Cs

Figure 5.7 A series resonant circuit

we must have
|Rs| > Rd or −Rs > Rd (5.43)

This condition gives a growing instability. In particular, if the Q of the circuit is
high, that is, if

Rtot � 2

√
L

C
(5.44)

the complex Laplace parameter can be approximated by

s0 = α0 ± jω0
∼= −Rtot

2L
± j

1√
LC

(5.45)

and the oscillation frequency is again

ω0 = 1√
LC

(5.46)

independent of the resistive elements in the circuit. Equation (5.34) becomes

�s
∼= Rs − R0

Rs + R0
�d

∼= Rd − R0

Rd + R0
(5.47)

It can be shown that the origin of the ambiguity in the instability criterion for
the amplitudes of the reflection coefficients (5.24c) lies in the range of values that the
circuit conductances or resistances assume with respect to the normalising conductance or
resistance respectively. A practical arrangement for working with reflection coefficients
in the frequency domain with a design criterion similar to eq. (5.24a) or eq. (5.24b) is the
following. The instability criterion is computed at the port where the external resistive
load is connected to the oscillator (Figure 5.8).



LINEAR STABILITY AND OSCILLATION CONDITIONS 239

Oscillator ZL = Z0

Γosc Γload

Figure 5.8 An oscillator partitioned at the output port

In this case, no ambiguity is present. Since the load is real, for stable oscillations
the phase of �osc must be zero and its amplitude must be infinite so that

�osc · �load = 1 (5.48)

This situation corresponds to Zosc = −Z0 = −50 �. For growing instability, the
oscillator can be approximated as a series or parallel resonator in the vicinity of the
resonant frequency ω0 where � �osc(ω0) = 0. In the case that the resonance is a series
one, then

Rosc(ω0) < −50 � ⇒ 1 < �osc(ω0) < ∞ (5.49)

If the resonance is a parallel one, then from eq. (5.34),

Gosc(ω0) < −20 mS ⇒ −∞ < �osc(ω0) < −1 (5.50)

The type of resonance is easily evaluated on the Smith Chart if the reflection
coefficient is plotted as a function of frequency around ω0: in a parallel resonance, the
impedance or admittance of the oscillator changes from inductive below ω0 to capacitive
above ω0; the reverse is true for a series resonance. Therefore, four situations are possible:
two stable ones and two unstable ones giving rise to a growing oscillation. They are
depicted in Figure 5.9 for the sake of illustration.

A more rigorous and general formulation is as follows [5, 6]. Let us come back to
the general equation system in eq. (5.1); its determinant in the Laplace domain has been
introduced in eq. (5.22). For typical oscillators, a solution s0 = α0 + jω0 of eq. (5.22) in
the complex Laplace plane is located in the vicinity of the frequency ω1 where the phase
of the function F(jω) becomes zero (Figures 5.10, 5.11 and 5.12); from an electrical
point of view, this corresponds to resonating the circuit reactances computed in periodic
regime s = jω.

We can therefore write the solution of eq. (5.22) as

s0 = α0 + jω0 = α0 + j (ω1 + δω) (5.51)

where both α0 and δω are small compared to ω1. Expanding in Taylor series F(s + jω)

around s = jω1 we get (see Appendix A.10)

F(s + jω) ∼= F(jω1) − ∂F (jω)

∂ω

∣∣∣∣
ω=ω1

(∂ω − jα0) + · · · = 0 (5.52)
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Figure 5.9 The four resonance types of an oscillator at its output port: parallel unstable, parallel
stable, series unstable and series stable

Equation (5.52) is solved for α0, yielding

α0 = −F(jω1) ·
Im

[
∂F (jω)

∂ω

∣∣∣∣
ω=ω1

]
∣∣∣∣∣ ∂F (jω)

∂ω

∣∣∣∣
ω=ω1

∣∣∣∣∣
2 (5.53)

Four cases are possible, depending on the sign of F(jω1) and Im

[
∂F (jω)

∂ω

∣∣∣∣
ω=ω1

]
;

are listed in Table 5.1.
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s0 = a0 + jw0

a0 a

jw1

jw

dw

Figure 5.10 The zero of the function F(s) = F(α + jω) in the complex Laplace plane

w1 w

w1 w

Im[F( jw)]

Re[F( jw)]

Figure 5.11 A qualitative behaviour of the complex function F(s) = F(α + jω) along the imag-
inary axis of the complex Laplace plane
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w0w1

w0w1

∂w

w

w

Im[F(a0 + jw)]

Re[F(a0 + jw)]

Figure 5.12 A qualitative behaviour of the complex function F(s) = F(α + jω) along the α = α0

line of the complex Laplace plane

Table 5.1 Stability test for an oscillator

F(jω1) Im

[
∂F (jω)

∂ω

∣∣∣∣∣
ω=ω1

]
Stability

Positive Positive Stable
Positive Negative Unstable
Negative Negative Stable
Negative Positive Unstable

From an electrical point of view, the four cases correspond to the series and parallel
resonances described above.

Let us illustrate this result with our example parallel resonant oscillating circuit
in Figure 5.6. The determinant of Kirchhoff’s equation system in our case becomes
(eq. (5.25)):

F(s) = Gs + Gd + sC + 1

sL
= Gtot + sC + 1

sL
= 0 (5.54)

The determinant computed for s = jω is

F(jω) = Gtot + jωC + 1

jωL
= Gtot + j

(
ωC − 1

ωL

)
(5.55)
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Its imaginary part becomes zero for

ω1 = 1√
LC

(5.56)

From the above,

∂F

∂ω
= − 2αω

(α2 − ω2)2 + 4α2 ω2
· 1

L
+ j

(
C − α2 − ω2

(α2 − ω2)2 + 4α2 ω2
· 1

L

)
(5.57)

∂F

∂ω

∣∣∣∣
s=jω1

= j

(
C + 1

ω2
1

· 1

L

)
= j2C (5.58)

Therefore,

α0 = −Gtot

2C
(5.59)

Referring to Table 5.1, we have

Im

[
∂F (jω)

∂ω

∣∣∣∣
ω=ω1

]
= 2C > 0 (5.60)

always; therefore, if Gtot > 0, then F(jω1) > 0, and the circuit is stable. Otherwise, when
Gtot < 0, then F(jω1) < 0, and the circuit is unstable, as found earlier. The real part of
the Laplace constant is also evaluated from eq. (5.53), with the same result as above.

5.3 FROM LINEAR TO NONLINEAR: QUASI-LARGE-SIGNAL
OSCILLATION AND STABILITY CONDITIONS

In this paragraph, the linear stability and oscillation conditions so far described are
modified to take into account the nonlinearity, that is, the dependence of the oscillator
parameters on the amplitude of the signal.

The stability and oscillation conditions given so far are valid only in linear regime.
However, the behaviour of actual oscillating circuits always involves the nonlinear char-
acteristics of the active device. A rigorous study requires the use of full-nonlinear analysis
methods that will be described in Section 5.4. However, many conclusions of the previ-
ous paragraph are extended to the nonlinear regime by means of simple considerations
requiring a general knowledge of the dependence of circuit parameters on the amplitude
of the signal.

First of all, let us extend the stability and oscillation considerations described in
the previous paragraph to a circuit with parameters varying with the amplitude of the
signal. Let us first consider the reflection coefficients (e.g. those shown in Figure 5.5)
dependent on the amplitude of the signal within the oscillator. Intuition and experi-
ence suggest that a growing instability will not grow forever but will saturate at a
certain amplitude, because of the limitations of the active device. Therefore, let us
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assume that the steady-state periodic regime has been attained when the signal within
the oscillator has reached the equilibrium amplitude A0 with oscillation frequency ω0.
Equations (5.11), (5.13) and (5.18) are now rewritten, in complex form, and explicitly
indicate the network parameter dependence on signal amplitude:

Ys + Yd = Ytot(A0, ω0) = 0 (5.61a)

Zs + Zd = Ztot(A0, ω0) = 0 (5.61b)

�s · �d = �tot(A0, ω0) = 1 (5.61c)

We remark that a feedback oscillator can be studied in the same way as a negative-
resistance oscillator by writing

A · β = T (A0, ω0) = 1 (5.62)

It is now interesting to derive a formal stability criterion [1, 4, 7]. Let us apply
a small perturbation δA to the amplitude of the oscillating signal; if the oscillation is
stable, the amplitude will come back to the same value as it was before the perturbation.
Since the perturbation is small, the perturbed admittance in eq. (5.61a) can be expanded
in Taylor series to the first order, and eq. (5.61a) becomes

Ytot(A0, jω0) + ∂Ytot(A, s)

∂A

∣∣∣∣ A = A0

s = jω0

· δA + ∂Ytot(A, s)

∂s

∣∣∣∣ A = A0

s = jω0

· δs + · · · = 0 (5.63)

where s0 = jω0 and δs = δα + jδω. The perturbed complex Laplace parameter becomes

s
′
0 = s0 + δs = δα + j (ω0 + δω) (5.64)

Since Ytot(A0, ω0) = 0, we have

∂Ytot(A, s)

∂A

∣∣∣∣ A = A0

s = jω0

· δA + ∂Ytot(A, s)

∂s

∣∣∣∣ A = A0

s = jω0

· δs ∼= 0 (5.65)

If the real part of the perturbed Laplace parameter is negative, the amplitude of
the perturbation will decrease to zero and the oscillation will come back to the previous
state. Equation (5.65) becomes

∂Ytot(A, s)

∂A

∣∣∣∣ A = A0

s = jω0

· δA − j
∂Ytot(A, s)

∂ω

∣∣∣∣ A = A0

s = jω0

· δs ∼= 0 (5.66)

whence

δs = δα + jδω ∼= −j

∂Ytot

∂A
∂Ytot

∂ω

· δA = −j

∂Ytot

∂A
· ∂Y ∗

tot

∂ω∣∣∣∣∂Ytot

∂ω

∣∣∣∣
2 · δA (5.67)
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where the partial derivatives are computed in the unperturbed oscillation state, that is for
s = jω0, and the star denotes complex conjugation. By dividing eq. (5.67) into real and
imaginary parts we get

δα ∼=
∂Yr

∂ω

∂Yi

∂A
− ∂Yr

∂A

∂Yi

∂ω∣∣∣∣∂Ytot

∂ω

∣∣∣∣
2 · δA (5.68a)

δω ∼= −
∂Yr

∂A

∂Yr

∂ω
+ ∂Yi

∂A

∂Yi

∂ω∣∣∣∣∂Ytot

∂ω

∣∣∣∣
2 · δA (5.68b)

where
∂Ytot

∂ω
= ∂Yr

∂ω
+ j

∂Yi

∂ω

∂Ytot

∂s
= ∂Yr

∂s
+ j

∂Yi

∂s
(5.69)

Therefore, the stability condition is

δα < 0 ⇒ ∂Yr

∂A

∂Yi

∂ω
− ∂Yr

∂ω

∂Yi

∂A
> 0 (5.70)

If eq. (5.70) is satisfied, the oscillation is stable. Similarly,

∂Yr

∂A

∂Yr

∂ω
+ ∂Yi

∂A

∂Yi

∂ω
= 0 ⇒ δω = 0 (5.71)

If the eq. (5.71) is satisfied, the frequency of oscillation is stable and will not change for
a small perturbation of the amplitude of the oscillating signal. The smaller the expression
at the left-hand side of the first of eq. (5.71), the smaller the sensitivity of the oscillation
frequency to an amplitude perturbation.

Equations (5.70) and (5.71) can be equivalently rewritten in terms of the impedance
and reflection coefficient representation of the network, with equivalent results.

We can also rewrite eq. (5.70) in the following form:

0◦
< Arg


 ∂T

∂ω

∣∣∣∣ A = A0

s = jω0


 − Arg


 ∂T

∂A

∣∣∣∣ A = A0

s = jω0


 < 180◦

(5.72)

where the function T is any of the network functions in eq. (5.61) or eq. (5.62). Geo-
metrically, eq. (5.72) can be interpreted as follows: the oscillatory state is stable if the
angle between the derivative of the function T (A, ω) with respect to frequency and the
derivative with respect to amplitude is greater that 0◦ and less than 180◦ in the complex
plane of the function T (A, ω), when taken counterclockwise.
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Gs(A) jBs(A) Gd(w) jBd(w)

Active device Passive embedding network

Figure 5.13 A parallel resonant circuit partitioned into an active and a passive subcircuit

Let us illustrate the rule for a parallel resonant circuit, as partitioned in Figure 5.1,
and repeated in Figure 5.13, where one subcircuit includes the nonlinear amplitude-
dependent active device and the other the linear amplitude-independent passive embedding
network. We can assume that the reactive part of the active device is frequency-
independent when the embedding network has a very strong frequency dependence, so
that the former can be neglected in the narrowband near the resonant frequency; this is
usually the case for single-frequency oscillators that include a high-Q resonator in the
passive network for frequency stabilisation.

The admittances are

Ys(A) = Gs(A) + jBs(A) Yd(ω) = Gd(ω) + jBd(ω) Ytot(A, ω) = Ys(A) + Yd(A)

(5.73)

The oscillation condition requires that

Ytot(A0, ω0) = Ys(A0) + Yd(ω0) = 0 (5.74)

In real and imaginary parts,

Gtot(A0, ω0) = Gs(A0) + Gd(ω0) = 0 Btot(A0, ω0) = Bs(A0) + Bd(ω0) = 0 (5.75)

This formula can be represented graphically on the complex plane of the admittance
(Figure 5.14). Two curves are traced on the plane, the former being the admittance locus
of the device as a function of the amplitude of the signal and the latter being the negated
admittance locus of the embedding network as a function of the frequency [1].

Equation (5.75) tells us that the amplitude and frequency of the oscillation are
found at the intersection of the two curves. The stability condition of eq. (5.70) now
reads as

∂Gs

∂A

∂Bd

∂ω
− ∂Gd

∂ω

∂Bs

∂A
> 0 (5.76)
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jB

A = A0
w = w0

G

Yd(w)

∂Yd(w)
∂w

Ys(A)

ω

a

A

∂Ys(A)
∂A

Figure 5.14 Loci of the device and embedding network admittances

and it can be interpreted graphically that the angle α between the vector of the derivative
of the two curves with respect to the curve variable have a value between 0◦ and 180◦,
with maximum stability when α = 90◦.

The same considerations can be repeated if the two subnetworks are represented
by impedance parameters or reflection coefficients, leading to similar results. The results
for the impedance parameter representation are easily deduced by the use of duality. For
the reflection coefficient, the oscillation condition reads

�d(ω0) = 1

�s(A0)
(5.77)

For the derivation of the stability condition, we can remark that the reflection coef-
ficient is related to admittance and impedance parameters by conformal transformations;
therefore, angles are preserved, and so the requirement that (Figure 5.15)

0◦
< β < 180◦ and β = 90◦ for maximum stability.

This can be obtained by analytical calculations also [8]. We first write the reflection
coefficients as

�s(A) = ρ · ejϑ �d(ω) = η · ejξ (5.78)

The stability condition eq. (5.70) reads as

η · dρ

dA
· dξ

dω
− ρ · dϑ

dA
· dη

dω
> 0 (5.79)
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Figure 5.15 Loci of the device and embedding network reflection coefficients for stability crite-
rion definition

If we define
1

�s(A)
= ζ · ejψ = 1

ρ
· e−jϑ (5.80)

the stability condition becomes

dζ

dA
· dξ

dω
− dη

dω
· dψ

dA
< 0 (5.81)

Let us illustrate again the rule with the oscillator as partitioned in Figure 5.8.
In small-signal linear regime, the circuit has already been shown to present a growing
instability when the reflection coefficient of the oscillator at the output port �osc has a
parallel resonance for ω = ω0 with −∞ < �osc < −1 (Figure 5.9a). This corresponds to
a small-signal negative conductance:

Gosc,ss > −20 mS (5.82)

As the signal grows in amplitude, the negative conductance provided by the oscil-
lator increases (algebraically) as the power amplifying capability of the active device
tends to saturate. A qualitative behaviour of the output conductance of the oscillator as a
function of the signal amplitude is shown in Figure 5.16.

Correspondingly, the curve traced by the reflection coefficient of the oscillator at
the output port as a function of frequency shifts outwards from the centre of the Smith
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Figure 5.16 Qualitative behaviour of the output negative conductance of the oscillator as a func-
tion of the amplitude of the oscillating signal
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Figure 5.17 The reflection coefficient of the oscillator at the output port for increasing sig-
nal amplitude

Chart (Figure 5.17). When the conductance reaches the value Gosc = −20 mS, the curve
passes through the point � = −∞ and oscillation becomes stable with an amplitude A0.
If the reactances of the circuit are approximately independent of the signal amplitude,
that is, if the (passive) resonator has a high quality factor, then the frequency for which
�osc = −∞ is still approximately ω0, as in small-signal conditions. As can be seen in
Figure 5.17, the angle between the derivative of the reflection coefficient with respect to
amplitude and that taken with respect to frequency is not far from 90◦; this ensures a
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growing instability all along the path from small signal to steady-state oscillation, and
satisfies the stability condition for oscillation once the steady state has been reached.

Let us illustrate the rule with the simple parallel resonant circuit in Figure 5.6,
and study it in the time domain [1, 9]; let us also assume that only the total conductance
depends on the amplitude of the voltage, while the capacitance and inductance are con-
stant. This is approximately true for a circuit where the negative resistance is provided
by an active device: in fact, the reactances in the active device are amplitude dependent;
however, if the LC resonator has a high (loaded) quality factor, then the assumption is
reasonably accurate. Kirchhoff’s equation in the time domain reads as

C · dv(t)

dt
+ Gtot(A) · v(t) + 1

L
·
∫

v(t) · dt = 0 (5.83)

The oscillator will reach equilibrium when the amplitude is such that

Gtot(A0) = 0 (5.84)

Let us assume that the nonlinearities are not too stiff and that the oscillating voltage
at equilibrium is almost sinusoidal:

v(t) ∼= A0 · cos(ω0t + ϕ0) ω0 = 1√
LC

(5.85)

Let us now perturb both amplitude and phase of the oscillating signal

v(t) = (A0 + δA(t)) · cos(ω0t + (ϕ0 + δϕ(t))) (5.86)

and see which is the evolution in time of the small perturbations. The derivative and
integral with respect to time of the perturbed voltage, approximated to the first order in
the perturbations, are

dv(t)

dt
= dA(t)

dt

∣∣∣∣
A=A0

· cos(ω0t + ϕ0) − A0 ·
(

ω0 + dϕ

dt

∣∣∣∣
ϕ=ϕ0

)
· sin(ω0t + ϕ0) (5.87)

∫
v(t) · dt = 1

ω2
0

· dA(t)

dt

∣∣∣∣
A=A0

· cos(ω0t + ϕ0) + A0

ω0
· sin(ω0t + ϕ0) − A0

ω2
0

· dϕ

dt

∣∣∣∣
ϕ=ϕ0

· sin(ω0t + ϕ0) (5.88)

We also have

Gtot(A0 + δA(t)) ∼= Gtot(A0) + dGtot

dA

∣∣∣∣
A=A0

· δA(t) = dGtot

dA

∣∣∣∣
A=A0

· δA(t) (5.89)

By replacing in eq. (5.87) and eq. (5.88), and separating the terms with sinus and
cosinus time dependence, we get(

C + 1

ω2
0L

)
· d(δA)

dt
+ dGtot

dA
· δA = 0 (5.90)
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(
−ω0C + 1

ω0L

)
−

(
C + 1

ω2
0L

)
· dϕ

dt
= 0 (5.91)

Since we are considering the oscillation at equilibrium, eq. (5.85) holds, and we get

2C · d(δA)

dt
+ dGtot

dA
· δA = 0 (5.92)

2C · dϕ

dt
= 0 (5.93)

From eq. (5.92),

δA(t) = δA(t0) · e− dGtot
dA

· t
2C (5.94)

The perturbation will vanish exponentially with time, and the amplitude of the oscillation
will come back to the equilibrium value if

dGtot(A)

dA

∣∣∣∣
A=A0

> 0 (5.95)

The oscillation will therefore be stable. The amplitude-dependent total conductance
usually results from the sum of an amplitude-independent passive positive conductance
(the load) and an amplitude-dependent active negative conductance (the biased active
device). Typical conductances are as in Figure 5.16. Therefore, the total conductance
has a positive derivative with respect to the amplitude of the oscillating signal, and the
oscillation is stable. Otherwise, if the negative resistance becomes more negative as the
signal grows, the oscillation is not stable and a small perturbation will grow exponentially
in time until a stable equilibrium point is reached. An example is shown below for an
amplifier with gain expansion.

From eq. (5.93), we see that a perturbation of the phase will not grow or vanish
in time. This is natural in a time-invariant autonomous circuit: the time origin of the
oscillation has no physical meaning, and the circuit will not react to a shift in time of the
oscillating signal.

The result is a particular case of what has been found above. In particular, eq. (5.70)
becomes

∂Yr

∂A
= dGtot

dA

∂Yi

∂ω
= C > 0

∂Yr

∂ω
= dGtot

dω
∼= 0

∂Yi

∂A
= d

dA

(
ωC − 1

ωL

)
∼= 0 (5.96)

∂Yr

∂A

∂Yi

∂ω
− ∂Yr

∂ω

∂Yi

∂A
∼= C · dGtot

dA
> 0 (5.97)

The oscillation is stable. Equation (5.71) becomes

∂Yr

∂A
= dGtot

dA
> 0

∂Yr

∂ω
= dGtot

dω
∼= 0 (5.98)
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∂Yi

∂A
∼= 0

∂Yi

∂ω
= d

dω

(
ωC − 1

ωL

)
= C + 1

ω2L
= 2C > 0 (5.99)

∂Yr

∂A

∂Yr

∂ω
+ ∂Yi

∂A

∂Yi

∂ω
= 0 ⇒ δω = 0 (5.100)

The amplitude and the frequency of the oscillation are stable for small perturbations
of the amplitude of the signal. Let us now plot the admittance on the Smith Chart:

Yi(ω) = ωC − 1

ωL
Yr(A) = −Gs(A) + G0 (5.101)

We get the situation illustrated in Figure 5.17.

5.4 DESIGN METHODS

In this paragraph, design methods making use of simple small- and large-signal concepts
are described for the design of oscillators. Guidelines for high-efficiency design are given,
based on the above considerations.

So far, oscillation and stability conditions have been defined for a designer to
correctly judge whether the circuit will oscillate or not. Now, general guidelines for the
design of oscillating circuits are described. With this goal, let us define some typical
oscillator topologies.

A typical linear design strategy for microwave oscillators [3] is based on a poten-
tially unstable active device at the design frequency of oscillation. In case the device
is stable at that frequency, or if it is desirable to enhance its potential instability at the
design frequency while stabilising it at all other frequencies, a shunt or series-feedback
network (Zf) is added. Then, the load at the input of the active device (Zs) is chosen
so that a negative resistance is seen at the output of the device at the design frequency
(�do, with |�do| > 1); if the input stability circle for the active device including the feed-
back network is drawn, �s must lie in the unstable part of the Smith Chart. Finally, the
external load is connected to the output of the active device (through Zd) in such a way
that the oscillation condition described in the previous paragraph is satisfied at the load
port. Typically, the three networks Zf, Zs and Zd are reactive; Zf or Zs usually include
a high-Q resonator for frequency stability and low phase noise or a voltage-controlled
reactance for frequency control (VCO). Schematic topologies for both shunt and series
cases are shown in Figure 5.18 for a common-source FET device.

This approach reduces the stability analysis of the oscillator to that of a negative-
resistance one-port network connected to an external 50 � load. However, this is not
necessarily the best approach for high-efficiency or low-noise design. Let us rearrange
the circuits in Figure 5.18 as in Figure 5.19, where the external load Z0 has been included
in the impedance Zl, that therefore is no more purely reactive.

More generally, the resistive load can be included in any of the three elements
of the feedback network that assumes a � configuration for the shunt feedback and a T
configuration for the series feedback [5, 7, 10, 11]. For these basic configurations, the
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Figure 5.18 Shunt- and series-feedback oscillator topologies
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Figure 5.19 Shunt- and series-feedback oscillators rearranged
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degrees of freedom of the designer are the four real numbers corresponding to the values
of the two reactances (Zf, and Zs in our case) and to the real and imaginary parts of the
complex load (Zl in our case).

By this arrangement, it is apparent that the active device amplifies the power
entering its input port; then, the feedback network feeds it back again to the input of the
active device for the oscillation to be sustained, while delivering part of the power to the
resistive load included in the network (Figure 5.20). Since only the external resistive load
included in the feedback network dissipates power, while its other elements are reactive,
the power amplified by the active device is delivered to the external load except the
fraction fed back to the input of the active device.

In fact, more complex embedding networks are possible with more degrees of
freedom; however, it is easily seen that only four real numbers are needed for the optimum
oscillation determination. If more parameters are available, they can be used for the
optimisation of other specifications, for example, noise, bandwidth, stability of oscillation,
and so on. Let us demonstrate this point.

In Figure 5.21, the active device with the embedding network (including the exter-
nal load) is shown. Let us assume that the optimum values for voltages and currents at
the input and output ports of the active device have been found. It is still assumed that
the signal is quasi-sinusoidal, and therefore only fundamental-frequency voltages and
currents are taken into account. It is not relevant how the optimum values for input and
output voltages and currents have been found: it can, for instance, be assumed that admit-
tance parameters have been used, measured under large-signal conditions at the design
oscillation frequency. In this case, we can write

Igs = Ya,i · Vgs + Ya,r · Vds

Ids = Ya,f · Vgs + Ya,o · Vds
(5.102)

or in matrix form as
�Ia = ↔

Ya · �Va (5.103)

Pin

Pout

Pf = Pin

a1

a2

b1

b2

Sf

Figure 5.20 The oscillator as an amplifier with a feedback network
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+

+

Figure 5.21 The active device with the embedding passive network

where the subscript a refers to the active device, and the relations hold only for the
specified frequency and amplitude of the signals:

Ya,ij = Ya,ij(Vgs,0, Vds,0, ω0) i, j = 1, 2 (5.104)

A possible choice for the optimum voltages and currents is such that the active
device is simultaneously conjugately matched at input and output ports; in other words,
Igs,0, Vgs,0, Ids,0 and Vds,0 must be such that




Igs,0

Vgs,0
= −(Ya,in)

∗ = −


Ya,11 − Ya,12 · Ya,21

Ya,22 − Ids,0

Vds,0




∗

Ids,0

Vds,0
= −(Ya,out)

∗ = −


Ya,22 − Ya,12 · Ya,21

Ya,11 − Igs,0

Vgs,0




∗ (5.105)

In fact, these relations only determine the ratio between currents and voltages at
input and output ports of the active device; their absolute value, or rather the operating
power, is fixed by other considerations, as for example gain saturation of the active
device. A typical transistor has a gain saturation characteristic as in Figure 5.22.

The input operating power Pin,0 at which the admittance parameters are evaluated
can be chosen as that maximising the added power Pout − Pin [7, 10, 11]; this choice
sets the absolute value of the voltages and currents at the input and output ports of
the transistor at which the admittance parameters are measured and at which the design
is performed.



256 OSCILLATORS

Pout

Pout − Pin

Pin, 0 Pin

Pout

Figure 5.22 Typical gain saturation characteristic of a transistor

For the feedback network,

If,1 = Yf,11 · Vf,1 + Yf,12 · Vf,2

If,2 = Yf,21 · Vf,1 + Yf,22 · Vf,2
(5.106)

or in matrix form:
�If = ↔

Yf · �Vf (5.107)

The oscillation condition at the chosen power level states that

Igs,0 = −If,1

Ids,0 = −If,2
with

Vgs,0 = Vf,1

Vds,0 = Vf,2
(5.108)

Therefore, the feedback network parameters must satisfy

−Igs,0 = Yf,11 · Vgs,0 + Yf,12 · Vds,0

−Ids,0 = Yf,21 · Vgs,0 + Yf,22 · Vds,0
(5.109)

These are four real equations that can be used to set four independent parameters
out of the six (if reciprocal) or eight (if non-reciprocal) real parameters of the feedback
network at the design frequency ω0. Referring to the T or � configurations shown in
Figure 5.23, the usual choice is for two purely reactive elements and a complex element,
including the external resistive load. The values of the elements are easily computed [e.g.
5, 7, 11–15], and the corresponding formulae are shown in Table 5.2 and Table 5.3
(from [11]). If the feedback network has more parameters, additional degrees of freedom
are available to the designer for the accomplishment of additional design specifications.
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Ygd

Yds Ygs

(a)

(b)

Figure 5.23 T and � configurations of the feedback network

Table 5.2 Explicit expressions of the elements of the T feedback network in Figure 5.19

Case Zg Zs Zd

Load in Zd j
Re[Vg · (I ∗

g + I ∗
d )]

Im[I ∗
g · Id]

j
Re[Vg · I ∗

g ]

Im[Ig · I ∗
d ]

Vd

Id
− Zs ·

(
1 + Ig

Id

)

Load in Zs j
Re[Id · (V ∗

d − V ∗
g )]

Im[Ig · I ∗
d ]

Vg − Zg · Ig

Ig + Id
j

Re[Ig · (V ∗
g − V ∗

d )]

Im[Id · I ∗
g ]

Load in Zg
Vg

Ig
− Zs ·

(
1 + Id

Ig

)
j

Re[Vd · I ∗
d ]

Im[Id · I ∗
g ]

j
Re[Vd · (I ∗

d + I ∗
g )]

Im[I ∗
d · Ig]

Table 5.3 Explicit expressions of the elements of the � feedback network in Figure 5.19

Case Ygs Ygd Yds

Load in Yds j
Re[Ig · (V ∗

d − V ∗
g )]

Im[V ∗
g · Vd]

j
Re[Ig · V ∗

g ]

Im[V ∗
g · Vd]

Id

Vd
− Ygd ·

(
Vg

Vd
− 1

)

Load in Ygd j
Re[Vd · (I ∗

d + I ∗
g )]

Im[V ∗
g · Vd]

Ygs · Vg − Ig

Vd − Vg
j

Re[Vg · (I ∗
g + I ∗

d )]

Im[V ∗
d · Vg]

Load in Ygs
Ig

Vg
− Ygd ·

(
Vd

Vg
− 1

)
j

Re[Id · V ∗
d ]

Im[V ∗
d · Vg]

j
Re[Id · (V ∗

g − V ∗
d )]

Im[V ∗
d · Vg]
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Similar considerations can be done if large-signal S-parameters are used instead
of admittance parameters. The corresponding formulae are easily computed [7, 10, 16].

A more advanced approach for high-efficiency oscillator design requires that the
active device be analysed under large-signal drive for high-power and high-efficiency ampli-
fication. Its bias point (not explicitly indicated in the figure), its embedding impedances (�s

and �load) and the optimum power levels Pin and Pout are designed following the criteria
described in Chapter 4. The design can be performed by fundamental-frequency quasi-linear
design criteria or full-nonlinear computer-aided optimisation. For example [11], a nonlin-
ear model can be used to derive simplified explicit expressions for optimum power and
input and output loads under large-signal drive; then, the feedback network is synthesised
as shown above.

If a highly nonlinear design of the power amplifier is performed, harmonic loading
must also be taken into account for optimum waveform shaping [5, 17, 18]. As a conse-
quence, the passive feedback network must provide the designed loading and feedback at
all the harmonics included in the analysis. The same considerations and formulae as for
fundamental frequency can be used for each harmonic independently since the feedback
network is linear. In principle, there is no limitation to the number of harmonics that
can be considered; however, only second and third harmonics are usually included in
the design, as already pointed out when studying power amplifiers. With this approach,
Class-E and Class-F operations have been demonstrated, with efficiencies as high as 67%
at 1.6 GHz with 24 dBm output power [18].

A more numeric approach can however be taken [14, 15]. If an accurate full-
nonlinear model is available for the active device and a nonlinear optimisation procedure
is viable, then the voltage and current phasors at the input and output ports of the active
device at fundamental and harmonic frequencies are numerically optimised. The optimum
combination of current and voltage phasors is found relative to the design goals, which
can be maximum output power, maximum efficiency, input and output match, and so on.
Once the optimum phasors values are determined, the embedding network, usually in the
form of a feedback network, are explicitly or numerically computed, as seen above. This
approach is very general but relies on nonlinear optimisation, which may be prone to
inefficient optimisation (local minima, difficult determination of the objective function to
be minimised), and does not allow for clear trade-off among the achievement of different
specifications by the designer.

There is, however, still an aspect to be taken care of for a correct oscillator design,
that is, whether the onset of the oscillation actually takes place and whether the oscil-
lation grows up until the desired power level is reached for permanent oscillation. The
power amplifier is designed in order to have optimum power performance at the specified
power level; the feedback is also designed so as to ensure that the Barkhausen oscillation
condition is satisfied at that power level:

A(P0) · β = 1 (5.110)

where the gain of the nonlinear active device is dependent on the power level, while the
linear feedback network is independent of it. For the oscillation to start, it is required that a
growing instability be present from the small-signal regime to the steady-state large-signal
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Figure 5.24 Power gain as a function of input power level in typical power amplifiers

regime of eq. (5.110). Therefore, condition (5.72) ensuring growing oscillations must be
verified for all signal amplitudes, that is, for all power levels, from small signal to
steady-state operating power.

From a physical point of view, an oscillation in a feedback amplifier will grow
if the power gain of the active network is greater than the attenuation of the passive
feedback network. Therefore, if the small-signal power gain of the power amplifier is
greater than the large-signal one, then the oscillation will start, and will grow until the
steady-state oscillation amplitude has been reached. This is the typical case of a Class-A
power amplifier, whose gain decreases as long as the amplifier is driven into compres-
sion. However, if a low-current bias point is selected for high efficiency (Class-AB or
B), the gain may actually be smaller in small-signal conditions because of the small
transconductance (for FETs) or current gain (for BJTs) at the low-current operating point
(Figure 5.24) [5, 18]. In the latter case, oscillation will not start at all in small-signal
regime, and the oscillator will not work unless the oscillation is somehow forced with
sufficient amplitude.

The case of Class-B, exhibiting gain expansion, lends itself to the illustration of the
rules for determination of oscillation stability. It can be seen from Figure 5.24 that there
are two equilibrium points where A(P ) · β = 1; however, the derivative with respect to
the amplitude of the signal is positive at the first point, that is therefore unstable: if the
circuit is forced to oscillate at that amplitude, any small perturbation will cause the signal
amplitude to grow until the stable oscillation point is reached.

5.5 NONLINEAR ANALYSIS METHODS FOR OSCILLATORS

In this paragraph, the special formulations that the nonlinear analysis methods described
in Chapter 1 assume for autonomous circuits are described, together with the main prob-
lems connected with their use for circuit analysis and design.

In Chapter 1, several numerical approaches have been briefly described, namely
time-domain direct numerical integration, harmonic and spectral balance, Volterra series
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expansion, descriptive function, and so on. However, these methods require modifica-
tions when applied to autonomous circuits; the main algorithm modifications and their
consequences on applications are described in the following.

5.5.1 The Probe Approach

The two main peculiarities of autonomous circuits with respect to non-autonomous ones
are, on the one hand, the existence of a trivial or degenerate solution for Kirchhoff’s
system of equations, wherein all electrical variables (voltages and currents) are equal to
zero; on the other hand, the value of the frequency is in general not a priori known for
oscillator analysis or must be imposed for oscillator design.

The case of autonomous linear circuits has been described in Section 5.2. For them,
the degenerate solution is avoided by imposing that the determinant of Kirchhoff’s system
of equations be equal to zero; this condition yields the oscillation frequency for oscillator
analysis or can be used to impose it for oscillator design. This is a general approach,
mainly analysis-oriented; for design purposes, the circuit is better divided into two parts
connected by a single port. The same condition that the solution be non-degenerate at
that port yields an easier tool for active circuit design.

In fact, this second approach can be seen from a different point of view. Let us
consider the network in Figure 5.1 in a different way, as shown in Figure 5.25.

Equations (5.5) and (5.6) still read as

Iprobe = IL + IR = (YL + YR) · Vprobe = 0 YL + YR = 0 (5.111)

If the frequency of the probing voltage source Vprobe is swept, the oscillation
frequency is found as the frequency at which the probing current Iprobe becomes zero.

YR

YL

+

−
Vprobe

Iprobe = IL + IR

IL

IR

Figure 5.25 Total admittance calculation for an oscillator divided into two arbitrary shunt sub-
networks
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ZR

ZL VL

VR

Vprobe Iprobe

−

+

+

+

− −

Figure 5.26 Total impedance calculation for an oscillator divided into two arbitrary series sub-
networks

If phasors in frequency domain are used, both real and imaginary parts of the current
phasor must be equal to zero, or alternatively, the amplitude of the current phasor must
be zero. The amplitude of the probing voltage Vprobe is arbitrary since the circuit is linear.
Equivalently, if impedances are used within a Kirchhoff’s voltage law (KVL) formulation,
the circuit in Figure 5.4 can be redrawn as in Figure 5.26.

Equation (5.111) becomes

Vprobe = VL + VR = (ZL + ZR) · Iprobe = 0 ZL + ZR = 0 (5.112)

Again, if the frequency of the probing constant-value current source Iprobe is swept,
the oscillation frequency is found as the frequency at which the probing voltage Vprobe

becomes zero.

In particular, both formulations can be applied to the oscillator partitioned as in
Figure 5.8, as shown in Figure 5.27.

Also, in the case of a nonlinear circuit, the frequency is a priori unknown, and
a degenerate solution with all voltages and currents equal to zero always exists. The
consequences on the various types of nonlinear analysis are not the same: they are briefly
described in the following.

5.5.2 Nonlinear Methods

Time-domain direct numerical integration methods are in principle very suitable for the
analysis of autonomous circuits. If the circuit is unstable, the solution evolves in time
from the initial state (usually zero voltages and currents) to the steady-state oscillatory
regime, showing the actual transient behaviour; the onset of the oscillation can therefore
be checked. It may be necessary to add a wide-band short pulse at the initial time instant of
the analysis in order to simulate the spontaneous noise always present in a circuit, which
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Figure 5.27 Voltage and current probes at the load port for an oscillator

triggers the oscillation. There may be however some numerical problems, especially if
the oscillator is based on a high-Q resonator, and if the frequency must be accurately
determined. The numerical integration scheme discretises the time variable in sufficiently
small steps for the integration to converge (see Chapter 1). If frequency is to be pre-
dicted accurately, the step must be sufficiently smaller than the oscillation period. For the
oscillation frequency estimation, the time-domain solution is usually Fourier-transformed
when it has reached the steady-state oscillation: the time step must therefore be small
enough to avoid aliasing problems in the transform. However, high-Q circuits require
a long time to bring the oscillating reactances to the steady state, and the integration
time can become extremely long. Moreover, the treatment of distributed elements in the
circuit, either by equivalent lumped-element representation or by way of a convolution
approach, can introduce additional inaccuracies; the number of past samples required by
an accurate convolution approach can also substantially increase the memory require-
ments. These problems notwithstanding, the time-domain approach can prove to be very
valuable especially when the onset of the oscillation or the stability of the oscillatory
state must be checked in a direct way.

Harmonic and spectral balance analyses require modifications in order to be of
any use for autonomous circuit analysis. The balance (Kirchhoff’s) system of equations
is written (see Chapter 1) as

IL(V ) + INL(V ) = 0 (5.113)

where the linear currents include Norton equivalent current sources only at ω = 0 (bias
power supply of the active device(s)). Equation (5.113) corresponds to eq. (5.1) of the
linear case and can be used for oscillator analysis, corresponding to eq. (5.3) for the linear
case, or for the synthesis or tuning of the oscillator, corresponding to eq. (5.4) for the
linear case. Both the alternatives are discussed below.



NONLINEAR ANALYSIS METHODS FOR OSCILLATORS 263

In the case of oscillator analysis, there is an additional unknown in the system
with respect to the forced (non-autonomous) case, that is, the frequency that is not a
priori known in the analysis of an oscillator. However, since there is no external source,
the time reference can be chosen arbitrarily: this is usually done by setting to zero the
phase of a frequency component with a (presumably) non-zero amplitude. A standard
choice is the fundamental-frequency voltage component at the output port of the active
device. In this way, the number of unknowns is again equal to the number of equations,
and the system can be numerically solved by means of Newton’s method. The vector of
unknowns therefore becomes
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·
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This approach is very general; however, system (5.114) always has a degenerate
solution for �Vω = �0, as said above. Since no equivalent of condition (5.2) for the linear
case exists for a nonlinear system of equations, the degenerate solution cannot, in prin-
ciple, be eliminated unless additional conditions are added. Two main approaches have
been proposed that are described hereafter.

A first approach [19] consists of dividing the currents in eq. (5.113) by the ampli-
tude of the voltage in the circuit; in case voltages and currents both tend to zero,
eq. (5.113) is not satisfied, because the left-hand side tends to a finite non-zero limit.
The amplitude of the voltage can be defined, for example, as the quadratic sum of the
amplitudes of all voltage phasors in the circuit, so as to avoid the improper choice of a
voltage with zero or negligible amplitude. System (5.113) can thus be rewritten as

IL(V ω) + INL(V ω)√∑
n

|Vn|2
= 0 (5.115)

This approach effectively removes the degenerate solution.

Another approach [20] makes use of a modification of the Kurokawa condition.
For a linear circuit, the oscillation condition at one port for a single frequency ω is

YL(ω) + YR(ω) = Ytot(ω) = 0 (5.116)
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as described above; the degenerate solution is avoided by this formulation. In a nonlinear
circuit with a single port connecting the linear and nonlinear subcircuits, all harmonics
are present at the connecting port, and the condition can be generalised as [21]

YL(nω) + YNL(nω) = Ytot(nω) = 0 n = 1, . . . N (5.117)

where the admittance of the nonlinear subcircuit at the nth harmonic, that is at frequency
nω, is defined as

YNL(nω) = In

Vn

(5.118)

The equation system (5.117) can be extended to a nonlinear circuit with an arbi-
trary number of connecting ports between the linear and nonlinear subcircuits. It can,
in principle, replace the system of eq. (5.113), since its solution is also a solution of
eq. (5.113), but the degenerate solution is not present. However, a harmonic or spectral
balance system usually includes a number of harmonics high enough for the highest ones
to have a very small amplitude so as to minimise the truncation error in the Fourier series
expansion. Thus, the corresponding admittance in eq. (5.118) can suffer from numerical
instability. Moreover, some voltage components Vn could be zero with a non-zero cor-
responding current In, and the formulation of the admittances as in eq. (5.118) would
force eq. (5.117) away from the correct solution. An alternative formulation includes the
generalised Kurokawa condition (5.117) only at the fundamental frequency (n = 1) of a
physically meaningful port, for example the output port of the active device. This con-
dition can replace the equivalent KCL equation at that port and harmonic, leaving the
number of equations and unknowns unchanged; or it can be added to the KCL equations,
yielding an augmented set of equations. In the latter case, a minimisation procedure is
required to find the values of the unknowns that satisfy the equation system [20].

We remark that the complex condition (5.117) for a single frequency can be split
into real and imaginary parts

Re[Y1] = 0 Im[Y1] = 0 (5.119)

and that inclusion of both the conditions is advisable: the real part is usually sensitive
to voltage amplitude and the imaginary part to frequency. Since both voltages and fre-
quency are present in the vector of unknowns, both the equations are needed to avoid the
degenerate solution.

Both approaches remove the degenerate solution; however, convergence of the
solution is still problematic. Practical oscillators usually include elements that are very
sensitive to frequency, such as high-Q resonators; therefore, the harmonic or spectral
balance error can be very large even when the frequency is not very different form the
actual one, and convergence to the actual frequency value can be very slow or impossible.
Moreover, a continuation method such as the source-stepping procedure cannot be applied
(see Chapter 1) because no RF sources are present in an autonomous circuit. Several
procedures have been proposed to overcome the problem.

Different continuation methods include an initial reduction of the number of har-
monics in the Fourier series expansions, which reduces the dimension of the system, and
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therefore eases the numerical solution. Once a solution is found, this is used as an initial
guess for the vector of unknowns in the analysis with the number of harmonics increased
by one. This is repeated until higher harmonics have a negligible amplitude [20]. Another
continuation method starts from a circuit including simplified nonlinearities of the active
device, which must therefore be expressed in parametric form in the nonlinear model.
Again, once a solution is found to this simplified analysis, it is used as an initial guess for
the vector of unknowns in the analysis with more realistic nonlinearities, until the analysis
with the correct model is used. As a limit case, the solution of the small-signal circuit
can be used for first-guess frequency estimation, especially if the oscillator includes a
highly selective resonator; in this case, the conditions described in Section 5.2 must be
satisfied for verification of the onset of oscillations.

Another approach randomly selects a number of values of the frequency and volt-
age components within a ‘reasonable’ range. The sets of values are repeatedly used as
initial guesses for the analysis until one of them leads the algorithm to convergence. A
more deterministic scheme fixes the amplitude of a voltage frequency component, for
example the fundamental-frequency component at the output port of the active device,
at a ‘reasonable’ value. This component acts as a forcing term of the equation system,
which is considerably simpler that the autonomous case. Even an approximate solution
can be useful as an initial guess of the actual oscillator analysis [19].

Let us now come to the case of oscillator synthesis or tuning, corresponding to
eqs. (5.1) and (5.4) for the linear case. Frequency is now fixed to the design value ω = ω0.
The unknowns of system of eq. (5.113) are the voltage harmonics, where the phase of
a reference harmonic is set to zero, as said above, and the values of some elements of
the circuit that determine the frequency of oscillation. If these elements are reduced to a
single tuning parameter, the number of unknowns equals the number of equations, and
the system is numerically solved by means of Newton’s method. The vector of unknowns
now becomes
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(5.120)

where T is the value of the tuning parameter; typically, this is the value of a capacitance
or inductance, or a parameter of a resonator, or the value of a DC control voltage, for
example the reverse bias voltage of a varactor diode.

In the case of more than one tuning parameter, optimisation must be performed in
order to find the set of values of the unknowns that satisfy Kirchhoff’s equation. Still, the
same approaches described for the analysis case must be used for avoiding the degenerate
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solution and for correctly initialising the unknowns for convergence to the non-degenerate
solution [22].

The harmonic balance system of equations thus defined can be solved repeatedly
for several values of the frequency in a given range: a tuning curve is found, giving the
dependence of the oscillation frequency on the value of the tuning parameter. Whenever
the system does not converge, then the requested oscillation frequency cannot be forced
by the tuning parameter only, provided that numerical problems have been avoided. This
approach is suitable for VCO design or optimisation.

It must be pointed out that the calculation of the tuning curve of an oscillator
can be used for oscillator analysis also. In this approach, the frequency is swept within
a suitable range around an initial guess, say ±25%; the initial guess may come from a
linear analysis or be taken as the resonant frequency of a high-Q resonator, when present.
Then, a tuning parameter is chosen, for example, the value of a capacitance or the length
of a line, which can shift the oscillation frequency. For each frequency in the sweep, the
corresponding value of the tuning parameter is found. The free oscillation frequency is
the one corresponding to the original value of the tuning parameter. The advantage of
this approach is that each fixed-frequency analysis does not require the recalculation of
the admittance (or equivalent) matrix of the linear part of the circuit, and it is therefore
quite fast; this is not true if the frequency is an unknown, whose value is changed at each
iteration of the Newton’s algorithm for the solution of the harmonic balance problem.
Moreover, some physical insight is gained on the sensitivity of the circuit to the value of
the tuning parameter, if needed. A qualitative example of the plot is shown in Figure 5.28,
where the tuning parameter is a capacitance with actual value C = Cosc, the initial guess
for the oscillation frequency is ω(0) and the oscillation frequency ωosc corresponds to the
actual value Cosc of the capacitance in the circuit.

The described modifications to the harmonic or spectral balance algorithms for the
analysis of oscillators can be extended to multi-tone autonomous circuits, where some
external sources excite an oscillating circuit, producing a multi-tone spectrum [23]. This
approach is particularly interesting for the analysis of self-oscillating mixers and will be
described in more detail in Chapter 7.

Cosc

wosc

C

w(0) ± 25%

w

Figure 5.28 Tuning curve of the oscillation frequency vs the tuning capacitance
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In the formulation described so far, the harmonic or spectral balance approach has
been applied to the nonlinear equivalent of eq. (5.1), that is, a system of autonomous
equations (5.113), solved as such. From a different point of view, a modification to that
depicted in Figures 5.25 and 5.26 and expressed in eqs. (5.111) and (5.112) for the linear
case, the analysis of an autonomous circuit can be reduced to repeated analyses of an
equivalent non-autonomous circuit forced by a probing voltage or current at a single
port. Frequency and amplitude of the probing signal are swept within a suitable range;
the correct solution is found when the control quantity (the probing current or voltage
respectively) is zero, indicating that the removal of the probing signal does not perturb the
circuit. The scheme is similar to that depicted in Figure 5.27 and is shown in Figure 5.29.

The probing signal (either voltage or current) is applied at one frequency, usually
the fundamental; a filter ‘masks’ the presence of the probe at all other frequency compo-
nents. The probe injects a signal at a probing frequency with a probing amplitude, both a
priori unknown, and a phase arbitrarily set to zero; therefore, it introduces two additional
real variables. The complex equation, requiring that the (complex) control quantity (either
current or voltage) be zero, is added to the system of equations (5.65):

Iprobe(Vprobe, ω) = 0 or Vprobe(Iprobe, ω) = 0 (5.121)

Therefore, the problem is well posed, and can be solved by means of iterative methods
such as Newton’s method. However, this formulation is also prone to convergence to the
degenerate solution wherein the frequency and all phasors amplitudes are equal to zero.
Therefore, a ‘good’ initial guess for the unknown frequency and phasors amplitudes must
be available.

A possible continuation scheme for improving the convergence of the algorithm
starts with the determination of the frequency of oscillation startup by means of a linear

Oscillator

ZL

Icontrol(w)

Vprobe(w)

+

−

Z(w) = 0
Z(nw) = ∝

(a)

Y(w) = 0

Y(nw) = ∝
Vcontrol(w)

+

−

ZL

Iprobe(w)Oscillator

(b)

Figure 5.29 Voltage and current probes at the load port for a nonlinear oscillator
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analysis of the oscillator circuit linearised at the bias point, without the probe. Then,
the probe is introduced, injecting a probing signal with a frequency equal to the lin-
ear approximation and with a small amplitude. This situation corresponds to the initial
oscillation startup, when the oscillation is still growing in time because the power gen-
eration at RF by the negative resistance or conductance of the active device prevails on
the power dissipation on the positive resistance or conductance of the passive elements,
including the load. The control quantity is not zero, as the oscillator delivers power to
the probing generator. Then, the amplitude of the probing signal is stepped up until the
amplitude of the oscillation brings the active device into saturation, reducing thus the
value of the power-generating negative resistance or conductance (see Section 5.3). The
value of the control quantity will approach zero for a given value of the amplitude of
the probing signal; it will not probably be exactly zero because the oscillation frequency
usually shifts in large-signal regime with respect to the small-signal linear calculation.
However, this is a good starting point for the self-consistent simultaneous solution of
eq. (5.113) and (5.121), avoiding the degenerate solution. It must be pointed out that a
quasi-linear determination of the start-up frequency can alternatively be obtained by per-
forming repeated non-autonomous analyses with a small amplitude of the probing signal
and fixed frequency; the frequency value is swept within a suitable range, as said above.
The frequency at which the control quantity has zero imaginary part and negative real
part is a suitable candidate for oscillation startup and a good first guess of the large-signal
oscillation frequency.

This method is easily modified to automatically avoid the degenerate solution in
the same way as described in eq. (5.118) above. Instead of eq. (5.121), the Kurokawa
condition can be written for the probing port:

Yprobe(Vprobe, ω) = Iprobe(Vprobe, ω)

Vprobe
= 0 or Zprobe(Iprobe, ω) = Vprobe(Iprobe, ω)

Iprobe
= 0

(5.122)

Convergence may still be problematic, and suitable procedures for accurate first-
guess determination are still needed for improving convergence; however, as said, con-
vergence to the degenerate solution is avoided.

Similar to the above formulation, the probe approach also lends itself to oscillator
synthesis or tuning. The frequency is now fixed to the design value, and the values of one
or more circuit elements are left free to vary in order that the design requirement be met;
if a single element is chosen as a tuning parameter, the number of equations equals the
number of unknowns. The system of equations is formed by eq. (5.113) and eq. (5.121),
and its solution requires care in order to avoid the degenerate solution. A tuning curve
can be computed if the analysis is repeated for several frequencies in a suitable range;
this approach can also be used for oscillator analysis, as said above.

Volterra series formulation is also a viable approach for oscillator analysis and
tuning; so far, a ‘probing’ approach has been demonstrated that is analogous to that
implemented with harmonic or spectral balance [24]. The basic arrangement is that shown
in Figure 5.29: the circuit is forced by a probing voltage or current at a single port.
Frequency and amplitude of the probing signal are a priori unknown: their correct values,
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corresponding to the fundamental oscillation frequency and voltage or current amplitude
at the probing node or branch of the oscillator, give zero-control current or voltage at
the probing branch or node of the oscillator, indicating that the removal of the probing
signal does not perturb the oscillating circuit. In this formulation, the control current
or voltage is computed by standard application of the Volterra series algorithm to the
one-port nonlinear circuit being probed. Instead of zero-control current or voltage, a zero
admittance or impedance of the one-port circuit at fundamental frequency can be sought;
admittance and impedance are computed by simply dividing the control current or voltage
by the probing voltage or current. The correct amplitude and frequency of the probing
signal are the unknowns of a complex equation; their values can be found by very simple
iterative methods with excellent convergence properties. A more general formulation has
also been proposed [25], relying on the Volterra series expression of a mildly nonlinear
oscillator formulated as a single-loop nonlinear feedback system.

This approach shares the same advantages and drawbacks of the Volterra series
analysis described in Chapter 1: it is limited to weak nonlinearities, but it is very fast
and reliable. Increasing the order of the Volterra series may prove cumbersome, even
though automated methods have been implemented for high-order nuclei calculations
based on general procedures [26]. An application to feedback amplifiers based on the
same principle has also been demonstrated [27].

5.6 NOISE

In this paragraph, the noise characteristics of oscillator are briefly described, together
with some methods for noise prediction.

One of the most important characteristics of an oscillator is the spectral purity of the
oscillating signal; this is affected by noise, which causes the spectral line of the oscillating
signal to widen, causing degradation of the oscillator performances (Figure 5.30). The
noise is generated by the internal noise source of the active device and by resistive
elements within the embedding network. While the latter are easily avoided in a careful
design, the former cannot be avoided, and their effect must be minimised.

Phase noise in an oscillator is so called because it randomly changes the phase of
the oscillating signal and therefore its instantaneous frequency, causing the widening of
the spectral line. Noise perturbs the noiseless oscillatory state with two different mecha-
nisms: for very low frequency noise, that is, for noise components at a small frequency
offset from the (noiseless) oscillation frequency, the small noise generators modulate the
oscillating signal quasi-statically. Formally, the noise sources are added to the noiseless
Kirchhoff’s equation from which the oscillation condition is derived, causing a random
shift of the oscillation frequency, which can be seen as a perturbation of the oscillat-
ing signal. As said, this mechanism affects the spectrum of the oscillator closest to the
oscillation frequency. For noise components at larger frequency offset from the (noise-
less) oscillation frequency, the noise can be seen as an input signal to a nonlinear circuit
under a large periodic excitation, in this case the self-oscillation; it is therefore frequency
converted between all harmonics of the oscillating signal, including the DC component.
This mechanism is the same as that taking place in mixers; however, it is particularly
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Figure 5.30 Widening of the spectral line at the oscillation frequency caused by noise

disturbing because of the strong
1

f
noise component in active devices being up-converted

from very low frequency to near the oscillation frequency. Both mechanisms can be imple-
mented in a nonlinear simulator and are accurately predicted, provided noise sources are
accurately modelled.

Frequency conversion from baseband to near the carrier is essentially a second-
order nonlinear effect (see Section 1.3.1). Therefore, its magnitude depends very much
on the importance of second-order nonlinearities. A qualitative measure of second-order
nonlinearities is the amplitude of the rectification of the oscillating signal, generating an
increase of the DC bias currents and voltages. Therefore, a low-noise oscillator should
exhibit a fairly constant DC bias current with and without oscillation, to within a few
percent of the static unperturbed current. Generation of current and voltage harmonics
has been treated in detail in Chapter 4, and the reader can refer to that approach for a
correct procedure while designing an oscillator as in Section 5.3. It can be noted that,
while third-order (or odd-order in general) nonlinearities are required for the saturation of
the signal in an amplifier, and therefore for the achievement of the steady-state amplitude
of the oscillation, second-order nonlinearities can be avoided by careful design without
affecting the proper performances of the oscillator, especially when emphasis is put on
noise instead of efficiency.

Another parameter related to the noise performances of the oscillator is the oscil-
lation frequency shift with bias voltages. A first qualitative indicator is the frequency
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Figure 5.31 Oscillation frequency shift from operating bias to suppression of oscillation

shift from normal operating bias and the reduced bias causing oscillation extinction [28]
(Figure 5.31).

The larger the shift, the noisier the oscillator. This approach, however, can be used
for accurate, quantitative evaluation of the phase noise in an oscillator. The pushing factor
is defined as the shift in oscillation frequency caused by a change in bias voltage:

K = �fosc

�Vbias
(5.123)

It can be computed from a nonlinear model with a DC analysis, or directly mea-
sured by changing the bias voltage and measuring the oscillation frequency or measured
by insertion of white noise at low frequency from the bias network of the transistor [29].
Once the pushing factor is known, the single-sideband noise is computed as

L(f ) = 20 log

(
K · �Vnoise√

2 · f
)

(5.124)

where f is the offset frequency from the oscillation frequency and �Vnoise is the noise
voltage present at the control node.

The assumption underlying the approach is that the low-frequency noise experi-
ences the same up-conversion mechanisms as DC voltage and current; therefore, if the
spectral characteristics of the low-frequency noise are known, its up-conversion as a side-
band of the spectral line of the oscillating signal can also be computed. In other words,
no low-frequency dispersion is assumed to take place in the active device. This is a lim-
iting assumption, but it is experimentally verified to an acceptable degree of accuracy, at
least for some types of active devices. An example of typical phase noise for a dielectric
resonator oscillator (DRO) oscillator is shown in Figure 5.32.

Another important point is the correct identification of the control node causing
the shift in oscillation frequency. For FET devices, this is usually the gate node; however,
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Figure 5.33 Pushing factor and noise conversion factor as functions of the gate voltage in an FET

experimental evidence suggests that control is not limited to it. It can be seen that for
some values of the gate bias voltage the pushing factor is zero; however, the phase noise
at the same gate bias is reduced but does not vanish (Figure 5.33) [29].

As stated above, the spectral characteristics of the low-frequency noise must
be known in order to predict its up-conversion by the pushing factor. However, low-
frequency noise is dependent on bias current and voltage, but these are modulated by
the large oscillating signal. Therefore, the spectrum of the low-frequency noise changes
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Figure 5.34 Equivalent input low-frequency noise for a transistor under oscillation (1) and at
rest (2)

under the effect of the oscillation [30]. As an example, the measured noise of a BJT under
oscillation and at the operating point in stable conditions is shown in Figure 5.34 [30].

Let us now describe some arrangements for phase noise analysis within nonlinear
analysis methods. The conversion noise is analysed in the same way as in mixers, and
the description of the analysis algorithm is not repeated here. The modulation noise is
treated in more detail in the following.

The experimental behaviour of low-frequency noise and the single-sideband noise
are sketched in Figure 5.35 for a typical case, where the abscissa is the actual frequency
for low-frequency noise and the offset frequency from the oscillation frequency for the
phase noise. Three regions are clearly visible for phase noise: closest to the carrier the
noise has a 30 dB/decade slope; at larger frequency offset, a region with 20 dB/decade
slope is present that becomes a flat noise floor for large offset frequencies.

The 30 dB/decade region is due to modulation of the oscillating signal by the
1

f
noise, which is predominant at very low frequency, and therefore at very small offset

frequencies from the carrier. 10 dB/decade are contributed by the
1

f
dependency of the

baseband noise; 20 dB/decade are contributed by the modulation mechanism. In fact,
the noise power modulates the frequency of the oscillating signal; therefore, phase is

modulated with a
1

ω
law, which becomes

1

ω2
for noise power. After the knee voltage, the

white noise has no frequency dependence, and only the 20 dB/decade of the modulation
mechanism remains. When the conversion noise is predominant, noise modulates the
phase directly and no additional contribution from the conversion mechanism to frequency
dependence is introduced; therefore the noise spectrum is flat.
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Figure 5.35 Single-sideband noise spectrum of a typical microwave oscillator as a function of
the offset frequency

Harmonic balance is currently the most common analysis method for nonlinear
circuits at microwave frequencies; modern algorithms can handle noise in oscillators
quite generally. Conversion noise is usually modelled by means of the conversion matrix,
very much as in mixers; the method will be described in Chapter 7. Conversion noise is
present only in oscillators, and its algorithm within a harmonic balance environment is
briefly described hereafter.

First, the noiseless oscillator is analysed, and the unperturbed solution is found.
The values of the phasors of the electrical unknown quantities are found at fundamental
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frequency and all the harmonics, as described above. Also, frequency is found as an
additional unknown of the problem (eq. (5.114)). The solving system is

�INL( �V ) + ↔
Y · �V + �Io = �0 (5.125)

where, in fact, the vector of unknown voltages is modified as in eq. (5.66), and the
other vectors accordingly. The vector of the excitation currents now includes only the
Norton equivalents of DC bias voltages and/or currents. Once the noiseless solution �V0 is
found, the noise is added as additional Norton equivalent excitation currents at the ports
connecting the linear and nonlinear subcircuits (Figure 5.36).

The eq. (5.125) is perturbed around the noiseless solution:

�INL( �V0) + ∂ �INL( �V )

∂ �V

∣∣∣∣∣ �V = �V0

· δ �V + ↔
Y · ( �V0 + δ �V ) + �Io + �Inoise

= ∂ �INL( �V )

∂ �V

∣∣∣∣∣ �V = �V0

· δ �V + ↔
Y · δ �V + �Inoise = �0 (5.126)

This is a non-autonomous problem that is solved with standard iterative meth-
ods, so that the perturbation phasors and the frequency shift δ �V are found. The noise
sources are in fact modelled as modulated sinusoids at carrier harmonics, with random
pseudo-sinusoidal phase and amplitude modulation laws of frequency ω. This results in
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Figure 5.36 Norton equivalent of the noise currents at the ports connecting linear and nonlinear
subcircuits
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frequency fluctuations with a mean-square value proportional to the available power of
the noise sources. The associated mean-square phase fluctuations are proportional to the
available noise power divided by ω2. Some formulations of the harmonic balance problem
require a special treatment of the derivatives in eq. (5.126) because their value is close to
zero, and the solution method requires their inversion (see Chapter 1) [31], while others
are immune from this problem [32].

Other approaches allow the noise performance evaluation, as for instance by means
of direct time-domain numerical integration [33] or Volterra series expansion [34]; how-
ever, so far the harmonic balance approach has proved to be quite successful. Lately,
an envelope analysis harmonic balance approach has been proposed, with promising
results: the noise is straightforwardly introduced as an (random) envelope-modulating
signal (see Chapter 1) [35]. Also, a general analytical formulation has been proposed that
includes both modulation and conversion mechanisms as particular cases [36]; however,
its perspectives for implementation do not look very promising because of numerical
ill-conditioning of some formulae. A thorough comparison of the different approaches
can be found in [37].
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6
Frequency Multipliers
and Dividers

6.1 INTRODUCTION

This introduction describes the main topics in the design of frequency multipliers, with
special emphasis on active ones.

The generation of high-frequency sinusoidal signals is a key functionality, often
required in microwave and millimetre-wave systems such as, for instance, transmit-
ters/receivers. The performances of microwave solid-state oscillators, however, degrade
with increasing frequency. In order to overcome this problem, high-performance oscilla-
tors operating at a lower frequency are often employed followed by frequency multipliers
with good conversion efficiency and output power. Solid-state frequency multipliers can
be realised both in passive and active configurations, that is, employing passive devices
with reactive or resistive nonlinearities (diodes under reverse or forward bias respectively)
or active devices (MESFET, HEMT, HBT) biased in a strongly nonlinear operating region.
Active multipliers offer the advantage over passive ones of exhibiting conversion gain
rather than losses, eliminating or reducing the need for a high-frequency amplifier after
the multiplier; their bandwidth can also be made to be fairly wide. The availability of
active devices exhibiting a conversion gain well into the millimeter-wave region with
non-negligible bandwidth is actually pushing towards the active solution. Moreover, this
choice has the obvious advantage of allowing functional integration in a single technology
if a monolithic implementation is attempted.

The intrinsic nonlinear nature of frequency conversion requires the use of nonlinear
design methodologies, both on the side of accurate and efficient nonlinear models and
algorithms, and on the side of clear optimum design conditions and procedures. This is
especially true for monolithic solutions, with the aim of reducing unnecessary design time
and increasing the possibility of first-time success of an optimised design.

To this moment however, while the availability and accuracy of general nonlinear
models and analysis algorithms ensures the prediction of the performances of the active
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multiplier with sufficient dependability for practical applications, not everything is clear
from the methodological point of view. In recent years, simplified approaches have shed
some light on the basic mechanisms of harmonic generation; however, more complex
considerations are to be made when full-nonlinear effects are taken into account.

It is to be pointed out that the main design goals for a frequency multiplier are
on the one hand high conversion gain from the input signal at fundamental (oscillator)
frequency to the converted (multiplied) frequency, and on the other hand a low DC
power consumption. The relative importance of these two quantities obviously depends
on the particular application. Bandwidth is also important in the case when a variable-
frequency signal (and therefore a voltage-controlled fundamental oscillator) is required
by the system. Another issue is reliability, which could be impaired by the excitation of
potentially dangerous nonlinearities of the actual device. Stability must also be checked,
as in any high-gain microwave circuit, with the additional complication of strongly non-
linear operations.

In the following, a short description of passive multipliers is first presented. This
issue has been investigated in detail in the past, and many theoretical and experimental
results are available. Then, active multipliers are presented, which are rapidly gaining
popularity in applications but which still lack a comprehensive treatment and a generally
agreed design methodology.

6.2 PASSIVE MULTIPLIERS

Passive multipliers are extensively used for their simplicity. The basic principles and some
examples are shown.

Passive multipliers are popular for the simplicity of their structure, for the reliability
of the nonlinear frequency-multiplying element, usually a diode, and for the very high
maximum frequency of operations. Quite naturally, the frequency multiplication cannot
yield any conversion gain, but only losses; this is partly compensated by the low or zero
DC power consumption. The cascading of an amplification stage can balance the power
budget, but requires two circuits for the complete treatment of the signal. Both the circuits
are reasonably well established now, and a reliable design can be performed; however,
unnecessary complication of the circuitry results, compared to an active implementation.
Only the passive multiplier circuit is described in the following, as the amplifier is a
standard linear, quasi-linear or high-efficiency amplifier at the multiplied frequency.

Passive multipliers can be classified as resistive or capacitive (or reactive, in
general) types. In the first case, the frequency-multiplying mechanism is the strong nonlin-
earity of the conduction current in the diode. In the second case, the frequency-multiplying
mechanism is the nonlinear nature of the reactance of the diode, typically the junction
capacitance. In this latter case, the depletion capacitance in reverse bias is used as non-
linear reactance in order to avoid the conduction current present when the diffusion
capacitance is not negligible. However, especially at high frequency, both mechanisms
are found to contribute to frequency multiplication [1]. A great variety of diode struc-
tures have been developed, especially for very high frequencies, that can reach the THz
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range [2–4]; many structures have a back-to-back arrangement and a symmetric C-V
characteristic, that allow zero-bias operations and efficient frequency tripling [5].

Resistive multipliers [6, 7], in principle, have infinite bandwidth, given the non-
frequency-dependent nature of resistive nonlinearities. However, the associated junction
reactance and the reactive parasitic elements of the diode imply a frequency-dependent
behaviour of the element. Moreover, matching networks will further limit the bandwidth.
Nonetheless, a significant bandwidth can be achieved in practice [8]. On the other hand,
power dissipation is always present in the nonlinear element, which imposes a lower
limit to frequency conversion losses. It can be demonstrated [6, 7, 9, 10] that for the
conversion gain the Manley–Rowe relation holds:

GC ≤ 1

n2

where n is the frequency multiplication factor. Therefore, resistive multipliers are not
suitable when conversion losses are a critical issue, especially for triplers or quadru-
plers. Unfortunately, losses are important especially at high frequency, where frequency
multipliers are most useful.

Resistive multipliers are efficiently used within balanced configurations. Singly
balanced or doubly balanced arrangements have intrinsic fundamental-frequency and
odd-harmonic frequency rejection, and, therefore, reduced need for filtering networks.
Therefore, bandwidths in excess of one octave can be achieved [8], though conversion
loss is quite high (in the order of 10 dB or more).

Reactive multipliers [9–14], in principle, can have zero conversion losses. This
requires proper reactive loading at all frequencies other that the input (fundamental)
frequency and the output (multiplied) frequency; an obvious consequence is that the mul-
tiplier has a narrowband, given the strong frequency dependence of reactive impedances.
Moreover, when operating at high frequencies, it is difficult to exactly control the values
of reactances because of the high influence of parasitics. It is therefore difficult to exactly
tune a reactive multiplier.

As mentioned above, the general structure of a frequency multiplier requires large-
signal matched terminations at fundamental (input) frequency and multiplied (output)
frequency so that most input power reaches the nonlinear device and most output power
is transferred to the load. All other frequencies are usually referred to as idler frequencies;
their loads must be optimised for optimum multiplication and transfer of output power to
the load. In principle, reactive loads at idler frequencies are desirable because they do not
dissipate active power. Their actual value must be determined under large-signal condi-
tions, and in general requires detailed optimisation. However, short-circuits usually yield
stability of operation, and efficient multiplication, because of the high current circulation
in the diode also at idler frequency.

In practice, only the first two or three harmonics will be controlled, resulting in
a conversion loss usually higher than the theoretical minimum. Normal conversion loss
values for a reactive (narrowband) doubler are around 6 to 9 dB, and above 10 dB for a
tripler [10].
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6.3 ACTIVE MULTIPLIERS

The general requirements for an active multiplier are described, together with some gen-
eral design guidelines.

6.3.1 Introduction

Frequency multiplication is performed by generation of upper harmonics of a fundamental-
frequency input signal; this is obtained by excitation of strong nonlinearities within the
semiconductor device. In the case of active devices, these are usually the nonlinearities
in the output current characteristics [15–21]. In particular, current clipping caused by
pinching off the channel is most used because of the high distortion introduced, the low
or zero-bias current dissipation and high reliability of operation; this is roughly equivalent
to Class-B or Class-C operations in an amplifier and similarly yields a conversion gain
in the order of 6 to 9 dB less than the fundamental-frequency gain, at least in princi-
ple [16]. Other strong nonlinearities are less practical: for instance, current clipping by
gate-channel junction forward conduction requires Class-A biasing and therefore high DC
power dissipation, and causes possible gate junction damages; however, gain is higher
than that near pinch-off. Another very strong nonlinearity, that is gate-drain or channel
breakdown, is never used because of reliability problems, in addition to the necessity for
high bias voltage. The effect of nonlinearities other than the transconductance modula-
tion has been investigated [16, 20, 22, 23, 24], leading to the conclusion that a possible
alternative is the modulation of the output conductance (see also Chapter 7). Other non-
linearities, for example, those due to nonlinear gate-source and gate-drain capacitances,
are less effective for harmonic generation, giving a minor contribution to frequency mul-
tiplication. However, the presence of reactive feedback elements within the active device
can not only enhance the harmonic generation but also give rise to instability problems
and must be taken into account for comprehensive and reliable multiplier design.

Terminations presented to the active device belong to two basic types: at the signal
input and output ports, that is, gate/base port at fundamental frequency and drain/collector
port at the desired harmonic frequency; and the other ports, usually limited to the second-
or third-harmonic frequency, while ports at higher frequencies are shorted or opened. For
the first type, conjugate match allows maximum power transfer, and, therefore, most effi-
cient conversion; since the device operates in nonlinear regime, large-signal impedances
(or equivalent) must be used. For the second type, often called idler ports, reactive termi-
nations are a natural choice for minimising power dissipation. Terminations at harmonic
frequencies at the input port are sometimes neglected (i.e. shorted), assuming that the
contribution of nonlinearities in the input mesh is minor; in the following, it is shown
that this is not usually true. Terminations at the output port other than at multiplied fre-
quency, on the other hand, play an important role: in principle, they must be as close
as possible to a short circuit for two basic reasons. First, it is important that the most
effective nonlinearity, that is the transconductance, be fully exploited and, therefore, that
the load line be as vertical as possible in the plane of the output characteristics. Second,
for high output power the output voltage swing must cover the full range between the
knee or saturation voltage and the breakdown voltage, that is, the active region. If other
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frequency components are present, the multiplied frequency component of the output
voltage must be reduced consequently in order that the total voltage does not exceed the
limits of the active region. These simple considerations are essentially confirmed also by
a full-nonlinear analysis.

In the case in which the nonlinearity responsible for the frequency multiplication is
the modulated output conductance, the fundamental-frequency termination must be close
to an open circuit. This is easily understood by remarking that the output conductance
near the knee voltage is modulated by the output voltage (see Chapter 7), and therefore
a large fundamental-frequency voltage swing must be ensured. Similar considerations as
above apply for the other terminations.

The analysis and design of active multipliers is presented in the following, first
by simplified piecewise-linear approaches that allow a first insight into the harmonic
generation principle and give indications on efficient operating regions. By these means,
a first qualitative design can be performed: regions of optimum design are found and
approximate values for the terminating networks are derived. Then, full-nonlinear analysis
is described for inclusion of detailed nonlinear effects that mandate some care in the
nonlinear optimisation of the actual circuit prior to fabrication.

6.3.2 Piecewise-linear Analysis

In this paragraph, a piecewise-linear model and analysis is used to derive the main features
and behaviour of an active frequency multiplier. General guidelines are available that help
the designer in the first phase of the circuit design.

Simplified nonlinear methods are useful especially at an early design stage when
a general understanding of the basic principles and mechanisms must be gained in order
to assess the basic structure of the circuit and the expected performances. They are also
a useful means to evaluate the performances of the active device and are of help in
its selection. Such an approach makes use of a simplified device model and is based
on reasonable assumptions on the frequency multiplication mechanisms. In general, its
results qualitatively agree with a full-nonlinear approach, thus providing a valuable tool
for a quick preliminary analysis and a reasonable starting point for full-nonlinear analysis.

A simplified model of the active device (in this case a field-effect transistor) is
shown in Figure 6.1, where the only nonlinearity is the output current source. In general,
many elements contribute to the generation of upper harmonics, as for example, gate-
source and gate-drain capacitances. However, the main harmonic-generating effect is
usually provided by output current nonlinearities [16, 18, 19, 21]. For an accurate analysis,
a detailed description of the output current dependence on the controlling voltages should
be used; however, the main effects are retained, while at the same time allowing a simple
analytical treatment when the current is described by a simple piecewise-linear model.
An example is shown in Figure 6.2, where the constant transconductance in the region
between pinch-off and forward gate-junction conduction is also evidenced.

This model allows a very easy design if the assumption is made that the load
line does not reach the ohmic and breakdown regions, that is, if the operating voltage is
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Figure 6.1 A simplified model for a field-effect transistor
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Figure 6.2 A piecewise-linear constant-transconductance model for the output characteristics

always higher than the knee voltage and smaller than the breakdown voltage. This can be
ensured by proper drain voltage biasing and by suitable choice of the output load. Then,
the output current depends on the gate voltage only. Therefore, the current waveform is
known when the gate bias voltage and signal amplitude are known; it has the shape of a
truncated sinusoid, as shown in Figure 6.3.

The harmonic content of the current waveform of Figure 6.3 is easily and ana-
lytically computed, allowing the direct determination of the optimum gate bias and gate
signal amplitude for maximum amplitude of the desired harmonic. Then, the optimum
output bias and load is consequently determined. As said above, all output harmonics
must be shorted except the desired output harmonic; this assumption allows the direct
determination of the optimum output load: it is the resistance that maximises the voltage
swing within the hard nonlinear limits imposed by breakdown (upper limit) and knee
voltage (lower limit).
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Figure 6.3 Input voltage and output current waveform for a simplified piecewise-linear model

For the sake of clarity, we will first describe multiplier operations when the output
current is clipped only by the pinch-off of the channel (Class C–A); then, the case of
a symmetric clipping by pinch-off and forward gate-junction conduction is described for
frequency tripling (Class-A); and finally, the general case of asymmetric upper and lower
clipping will be described. For all the cases, analytic formulae are given.

In the former case, and under the mentioned hypotheses, the current has the
explicit expression

Id(t) = Imax

1 − cos
(α

2

) ·
[
cos(ωt) − cos

(α

2

)]
if |ωt | ≤ α

2

Id(t) = 0 otherwise

(6.1)

where the maximum amplitude is normalised to the maximum channel current. The wave-
form and the conduction angle α are shown in Figure 6.4.
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Figure 6.4 Output current waveform in the case of clipping due to pinch-off only

The amplitude of the DC component and of the first three current harmonics of
the output current are explicitly given by the following formulae [25]:

Id,0 = Imax

2π
·

2 sin
(α

2

)
− α · cos

(α

2

)
1 − cos

(α

2

)
Id,1 = Imax

2π
· α − sin(α)

1 − cos
(α

2

)

Id,2 = Imax

6π
·

3 sin
(α

2

)
− sin

(
3α

2

)

1 − cos
(α

2

)
Id,3 = Imax

6π
· sin(α) · [1 − cos(α)]

1 − cos
(α

2

)

(6.2)

or, approximately, for α ≤ π [19]

Id,0
∼= Imax · 2α

π2

Id,n
∼= Imax · 4α

π2
·

∣∣∣∣∣∣∣∣∣
cos(nα)

1 −
(

2nα

π

)2

∣∣∣∣∣∣∣∣∣
n ≥ 1

(6.3)
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Figure 6.5 Normalised amplitudes of the output current harmonics vs current conduction angle α

The normalised amplitudes of the DC and first three current harmonics as a function
of the conduction angle α are also shown in Figure 6.5.

Clearly, for the best conversion gain, a Class-C bias must be selected. For instance,
for optimum doubler operations, an operating angle of approximately 126◦ must be
selected that yields a second-harmonic current amplitude about one-fourth (0.27) of the
maximum output current. For a frequency tripler, an operating angle of approximately
75◦ must be selected for a third-harmonic current amplitude equal to about one-sixth
(0.185) of the maximum output current.

For maximum output power, it is desirable that the peak output current value be
equal to the maximum channel current Imax; in this case, the conduction angle is related to
the gate bias voltage VGG and to the sinusoidal input signal amplitude V̂gs by (Figure 6.6)

VGG =
Vbi · cos

(α

2

)
+ Vpo

1 + cos
(α

2

) V̂gs = Vbi − Vpo

1 + cos
(α

2

) (6.4)

The optimum output load at third harmonic must be such that the output voltage
swing Vds,n be as large as possible but not so large as to cause gate-drain breakdown or
to drive the operating point into the ohmic region:

RL,n = Vds,n

Id,n

= Vbreakdown − Vknee

2 · Id,n

(6.5)
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Figure 6.6 The input voltage waveform for maximum output current

This is true provided all other output voltage harmonics are shorted; otherwise,
the total output voltage swing would be greater, and the load should be reduced, with
consequent reduction of the output power. In Figure 6.7, the load curves for a doubler
(a) and a tripler (b) with the optimum circulation angle α are shown; the corresponding
waveforms are shown in Figure 6.8.

This approach describes in a simple and straightforward way the behaviour of
a Class-C-like frequency multiplier and gives significant indications on optimum bias,
operating power and loading. As already mentioned, Class-C biasing avoids reliability
concerns caused by gate-junction forward conduction and leads to very low DC power
consumption. However, gain is not high because the transistor is off for a large part of
the period; moreover, output voltage and power are limited by gate-drain breakdown.

Similar results are obtained if a slightly more realistic behaviour of the transcon-
ductance is assumed. For instance, a quartic function can be assumed instead of a linear
dependence for the output current above pinch-off, in order to account for a non-stepwise
transconductance:

Id(t) = Imax ·
[

1 −
(

2 ωt

α

)2
]2

if |ωt | <
α

2

Id(t) = 0 otherwise

(6.6)

The relative waveform is shown in Figure 6.9; the amplitudes of the DC component
and of the first three harmonics is given by [25]

Id,0 = Imax · 4α

15π

Id,1 = 16Imax

π ·
(α

2

)4 ·
[
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(α
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and its dependence on the circulation angle is shown in Figure 6.10. The behaviour is
qualitatively very similar, indicating a weak dependence on the details of the waveform.

The described approach has been described for a very simplified model; however,
the qualitative results are valid for more realistic devices as well. As an example, let
us consider the Angelov model for an HEMT (see Chapter 3); the output characteristics
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Figure 6.8 Output current and voltage waveforms for a doubler (a) and a tripler (b)

are shown in Figure 6.11 (a), and the drain current and the transconductance versus
gate voltage for Vds = 2 V are also plotted in the same figure (b), with the bell-shaped
transconductance clearly depicted. For the analysis, an arbitrary but reasonable value of
pinch-off voltage Vpo = −1 V has been defined, and the maximum current is arbitrarily
selected as the current corresponding to maximum transconductance Ipk (see Figure 6.11)
for a constant Vds = 2 V. The DC and the first three relative harmonic amplitudes are
plotted in Figure 6.12: a clear agreement with the idealised cases of piecewise-linear
characteristics is obtained.

The case of frequency triplers based on symmetric clipping in Class-A operations
is now described [26, 27]; the input voltage and output current waveforms are shown in
Figure 6.13.
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Figure 6.11 Output characteristics of an HEMT, as modelled by means of the Angelov model
(a) and current and transconductance vs gate voltage for Vds = 2 V (b)

In this case, the output current approaches a square wave for high amplitudes of
the input signal because of the symmetric clipping by channel pinch-off (at zero current)
and by forward conduction of the gate junction (at maximum current). It is well known
that a square wave has only odd-harmonic content, whose amplitude ideally is

Id,n = 2

nπ
(−1)n · Imax n odd

Id,n = 0 n even
(6.8)

In this case, the optimum load for maximum output power is

RL,3 = Vds,3

Id,3
= 3π · (Vbreakdown − Vknee)

2Imax
(6.9)

For a tripler, the normalised amplitude of the third-harmonic current can have a
maximum normalised amplitude of approximately 2.1. All harmonics at outputs other than
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the third must be shorted, as in the previous case; however, even-order current harmonics
are low (ideally zero) because of the symmetry of the clipping, and the relevant loads
do not affect the behaviour of the circuit very much. In practice, the current is not an
ideal square wave, and the relative amplitudes of the current harmonic can be computed
(Figure 6.14).

For full overdrive, the maximum theoretical DC-to-third harmonic conversion effi-
ciency is approximately 2.2. All harmonics at outputs other than the third must be shorted,
as in the previous case; however, even-order current harmonics are low because of the
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symmetry of the clipping, and the relevant loads do not affect the behaviour of the circuit
very much. The harmonics of the input signal must not necessarily be short-circuited, as
long as the input is significantly overdriven.

A relatively larger current and output power is obtained in this case with respect
to the Class-C case at the expense of a more critical reliability and a higher DC power
consumption. However, devices with lower breakdown can be used, and higher conversion
gain is usually available owing to Class-A biasing.

The general case of non-symmetric clipping is now described by the use of a
similar approach [28]. In this case, input voltage and output current waveforms are as in
Figure 6.3. The coefficients of the harmonic currents are

Id,1 = − 2

π
·

cos
(α

2

)
cos
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)
[
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By varying the gate bias voltage and the amplitude of the gate input voltage, all
possible combinations of upper and lower current clipping are obtained. The results are
conveniently presented as contour plots of constant second- or third-harmonic current
amplitude, as shown in Figure 6.15. The plot is symmetric with respect to the bisector
α = β; the points on this line represent square waves with duty cycle from 0 (α =
β = 0) to 1 (α = β = 2π). The point midway on this line for α = β = π is a symmetric
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Figure 6.15 Contour plots of the second-harmonic current amplitude as a function of current
circulation angles
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square wave (duty cycle equal to 1) that has no second-harmonic component. The plot is
antisymmetric with respect to the line α + β = 2π , which represents symmetric clipping
from a Class-A bias point, with no second-harmonic component. It is easily seen that
the plot in Figure 6.5 is obtained for β = 0. An interesting result is that a region with a
second-harmonic component higher than 0.3 is found for asymmetric clipping around a
square waveform with duty cycle equal to 1/4 (or symmetrically, equal to 3/4); for this

value, the second-harmonic component is equal to
1

π
= 0.318.

So far, only the nonlinear element in the equivalent circuit in Figure 6.1 has been
considered, that is, the piecewise-linear controlled current source. The input signal has
been applied directly to the control electrode (gate, in our case), and its bias level and
amplitude have been optimised in order to provide optimum current waveforms, with
the highest content of the desired harmonic. Terminations and output power have been
considered at the terminals of the controlled current source as well. The rest of the
equivalent circuit, that is the linear elements, have been neglected so far. However,
the other elements of the equivalent circuit of the active device play a strong role in the
determination of the optimum loads and performances, both at idler and at input/output
ports; they can also determine situations where instabilities occur. This is easily seen even
by a simplified analysis including the complete equivalent circuit of the active device as
shown in Figure 6.1, with a piecewise-linear output current source.

The general structure of a frequency multiplier is shown in Figure 6.16, where
the input and output matching networks can provide independent terminations at each
harmonic frequency, at least in principle. Practical filtering structures can in fact provide
a wide range of impedances with a relatively simple physical layout [20].

The active device is modelled by means of the simplified equivalent circuit shown
in Figure 6.1. The signal reaching the internal gate port is easily computed by linear
analysis; the harmonic content of the drain current is computed by means of the explicit
expressions listed above. While not strictly necessary, it is also assumed that the output
current is driven only by the fundamental frequency of the input gate voltage, for sim-
plification of the analysis; this implies that the effect of higher harmonics at the terminal
controlling the current source is neglected.

The frequency doubler is biased at the pinch-off gate voltage for Class-AB or
Class-C operations. The input port at fundamental frequency is conjugately matched for

�

zS = 50 Ω
zL= 50 Ω

VIN

Input
matching
network

Output
matching
network

Bias T Bias T

VGG VDD

FET

Figure 6.16 The general structure of a frequency multiplier
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maximum power transfer into the device and so is the output port at second-harmonic
frequency. The terminations at the output port at fundamental frequency and at the input
port at second-harmonic frequency (idler ports) are now investigated; given the assump-
tion above, their effects can be studied independent of each other. We assume reactive
terminations at both idler ports for minimum dissipated power into the terminations and
for input–output isolation. Also, reactive terminations reflect the signal at idler ports
back into the active device; this contribution can generate destructive or constructive
interference [29, 30], and can be exploited for increasing the conversion gain.

First, the phase of the reactive termination at the output port at fundamental fre-
quency is swept; the conversion gain is plotted in Figure 6.17.

In particular, a region where the doubler becomes unstable is apparent [17, 31–33].
This range of values corresponds to the unstable region of the Smith Chart of the
fundamental-frequency output termination for a potentially unstable transistor (k < 1); for
its evaluation, the linear equivalent circuit must be computed with an averaged transcon-
ductance, as from the expressions above [17, 20, 32, 33]. This behaviour is caused by the
internal feedback provided by the gate-source capacitance and the source resistance and
inductance, which induces a positive feedback for a range of values of the terminations
as in any linear circuit. This mechanism has nothing to do with the harmonic-generating
waveform shaping since it is due to fundamental-harmonic linear behaviour of the active
device. If the active device is unconditionally stable, the unstable area is not present;
however, this is hardly likely to happen, since the active device must have enough linear
gain at the second-harmonic frequency for providing conversion gain, and therefore it is
usually potentially unstable at fundamental frequency.

Clearly, any conversion gain can be designed by choosing the output load sufficiently
close to the unstable region. However, as in any linear amplifier, this is by no means a wise
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G
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Figure 6.17 Conversion gain as a function of the phase of the reactive termination at output port
at fundamental frequency using the simplified model of the active device
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choice for practical circuit design. A suitable stability margin must therefore be selected
in order to ensure stability and also for bandwidth considerations [17, 20, 32, 33].

The phase of the reactive termination at the input port at second-harmonic fre-
quency is now swept. The conversion gain is shown in Figure 6.18. A less dramatic
variation of the conversion gain is apparent [17, 30, 32].

In fact, the weaker dependence of the conversion gain on the phase of the termi-
nation, and the absence of unstable regions, depends on the low gain of the active device
at second-harmonic frequency. This in turn is due not only to the higher value of the
frequency with respect to the fundamental frequency but also to the nonlinear conditions
of operation, where the transconductance is modulated by the fundamental-frequency
large signal, reducing the incremental gain at second-harmonic frequency. Nonetheless,
the possibility of an instability also at the higher frequency cannot be ruled out [33].

The effect of the termination at the input port at second-harmonic frequency can
also be seen as providing a constructive or destructive interference [29, 30]; when the
conversion gain is maximum, the conductive part of the equivalent output admittance at
second-harmonic frequency (signal output port) is minimum, ensuring maximum available
output power [32–34].

The curve in Figure 6.18 is fairly independent of the termination at fundamental
frequency: when the value of the latter is varied, the curve is shifted upwards or down-
wards, corresponding to a higher or lower effective transconductance and conversion
efficiency [17, 33].

The qualitative results obtained with the simplified model not only yield a compre-
hension of the basic mechanisms in a frequency multiplier but also allow a preliminary
design to be performed. An accurate design, however, requires a full-nonlinear simulation,
as presented in the next paragraph.

6.3.3 Full-nonlinear Analysis

Full-nonlinear analysis, based on the harmonic balance algorithm and on accurate mod-
els, is presented in this paragraph, leading to a comprehensive methodology for multi-
plier design.
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Figure 6.18 Conversion gain as a function of the phase of the reactive termination at input port
at second-harmonic frequency using the simplified model of the active device
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Frequency multipliers, and especially doublers, have been extensively studied by
means of full-nonlinear analysis algorithms and models [15, 17, 20, 21, 30, 32–39], and
also by means of advanced measurement set-up [40] and extensive fabrication of test
circuits [30]. The results are in general agreement with what has been described in the
preceding paragraph, with a better quantitative agreement to measurements. Moreover,
other nonlinearities can be studied, in addition to the pure transconductance, provided that
a complete and accurate nonlinear model is used, as described in Section 6.3.1 above.

The general structure of a single-device active frequency doubler can be repre-
sented as in Figure 6.16. As said before, the active device is biased in a strongly nonlinear
region in order to have an output signal very rich in harmonics, including the desired
multiple of the input (fundamental) frequency. The internal drain–source terminals are
also shown in the figure, where the current waveform behaves approximately as described
in the previous paragraph. We can assume that a pinch-off bias (Class-AB or Class-C)
is used.

The active device is modelled by means of a fully nonlinear equivalent circuit
model, as shown in Figure 6.19. The matching networks terminated by the external 50 −
� loads are represented by the frequency-dependent terminations Zs(nω) and ZL(nω)

: the determination of their optimum values is the main goal of the design procedure.
We assume that they are reactive at idler ports, and complex loads at signal input and
output ports. The input and output matching networks act as impedance transformers at
the desired frequencies or frequency bands.

The analysis is limited to fundamental and second-harmonic frequencies, since they
determine the basic properties and performances of the doubler. It may also happen that

Veq

ZS,nw Lg Rg

Cpg

Cgs
Cgd

Cpd
Cds

Igs,i

Ids,i

Igd,i

Ri

Rs
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Rd Ld
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+

−
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Figure 6.19 A full-nonlinear model of the active device with the embedding impedances
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the second harmonic is so high in frequency that the third one is out of the technological
control of the designer. Higher frequencies are therefore considered to be short-circuited
in this analysis, both at the input and at the output of the multiplying device.

Given the nonlinear nature of the circuit, all results depend on the power level of
the signal; however, it turns out that the results do not change much, at least qualitatively,
for different power levels within a reasonable range.

In order to better understand the internal mechanisms of the frequency doubler,
we consider the nonlinear active device as a frequency-converting network, as shown in
Figure 6.20. The electrical ports at the left-hand side of the active device correspond to
the gate physical port at fundamental and second-harmonic frequency respectively, and,
similarly, the right-hand-side electrical ports correspond to the drain physical port at the
same frequencies. A wave impinging the network at any port will cause a wave to come
out of all ports; therefore, in general, all four loads (�S,1, �S,2, �L,1 and �L,2) affect the
frequency conversion and also the stability of the frequency-converting circuit. In the
following, the waves and the behaviour of the four-port frequency-converting network
are defined as in Section 3.4.3, as the nonlinear scattering functions.

First, the conjugate matching of the signal input and output ports, that is, the
gate port at fundamental frequency and the drain port at second-harmonic frequency,
are verified to be an optimum condition by nonlinear analysis [41], or large-signal vector
measurement (see Chapter 2). As an example, the conversion gain for a frequency doubler
is shown in Figure 6.21 as a function of the output termination (amplitude and phase),
and in Figure 6.22 as a function of the input termination (amplitude and phase). The
maxima of the surfaces, indicating maximum output power, correspond to the condition
of conjugate match at the two ports. In these analyses, when the load at a port is changed,
the matching at the other port is readjusted, in order to have consistent results. While not
being a theoretical proof, these results seem to confirm what the intuition suggests by
extrapolation of linear concepts.

Active
device

f0

2f0

ΓIN,1

ΓOUT,2

ΓL,1

ΓS,1

ΓS,2 ΓL,2

PIN,1

Figure 6.20 The active device represented as a frequency-converting network
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The terminations at the idler ports are now investigated by keeping one of them
fixed at a typical value and scanning the other one within the whole Smith Chart; for com-
pleteness, complex values of the terminations are also considered. The input termination at
fundamental frequency (signal input port) and the output termination at second-harmonic
frequency (signal output port) are readjusted for conjugate matching at each step. The
plot of the conversion gain versus the termination at input (gate) port at second harmonic
has a maximum near the edge of the Smith Chart (Figure 6.23).

This result confirms that a reactive load yields the best conversion performance
and gives a quantitative estimation of the optimum value. From the point of view of the
frequency-converting network in Figure 6.20, the maximum conversion gain is obtained
when the output admittance of the network at the signal output port has its minimum
value (Figure 6.24), as already mentioned above.

In this case, no instability problems are detected; this is due to the limited gain of
the transistor at second-harmonic frequency, as mentioned above.

As an illustration of the effect of the second-harmonic input termination, the voltage
and current waveforms at the intrinsic gate terminal and at the intrinsic drain terminal of
the active device (see Figure 6.19) are shown in Figure 6.25 ((a) and (b), respectively)
for a high-gain value of the second-harmonic input termination, and in Figure 6.26 for a
low-gain value of the termination [42].

In the case of high-gain termination, there is a substantial second-harmonic content
in the gate voltage and current, which induces a second-harmonic content in the drain
current and voltage via linear amplification. In the case of low-gain termination, the
second harmonic is shorted at the gate, and therefore there is no second-harmonic linear
transfer to the drain via the transconductance.
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Figure 6.23 Conversion gain as a function of the termination at the gate port at second-harmonic
frequency (idler port at input)
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Figure 6.25 Voltage and current waveforms at the intrinsic gate terminal (a) and at the intrinsic
drain terminal (b) for a value of the second-harmonic input termination corresponding to a high
conversion gain

The fundamental-frequency output termination �L,1 (idler port at output) is now
scanned within the whole Smith Chart for completeness; at each step, the terminations at
the signal input and output ports are readjusted for large-signal conjugate matching, and
also the idler termination at input port is set at each step to the optimum value as described
above. A region for the termination is found where the conversion gain increases, until
the harmonic balance analysis does not converge any more (Figure 6.27).
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As an illustration of the effect of the fundamental-frequency output termination,
the voltage and current waveforms at the intrinsic gate terminal and at the intrinsic drain
terminal of the active device (see Figure 6.19) are shown in Figure 6.28 ((a) and (b),
respectively) for a high-gain value of the fundamental-frequency output termination (at
the left of the instability region in Figure 6.27), and in Figure 6.29 for a low-gain value
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of the termination (at the right of the instability region in Figure 6.27) [42]. In the case of
high-gain termination, the drain current waveform is clipped by the pinch-off, generating
a strong second-harmonic component; the fundamental-frequency output voltage is almost
shorted, and the second-harmonic output voltage component is quite large. The amplitude
of the input gate voltage must be large, in order to drive the almost-shorted output with a
substantial current. In the case of low-gain termination, the fundamental-frequency output
termination is close to an open circuit, causing an early saturation of the output voltage.
Therefore, the gate voltage swing is very small, and so is the output current swing. No
clipping and very little second-harmonic content is present in the drain current waveform,
and consequently also in the drain voltage. In both cases, terminations have been selected
in order to have no second-harmonic content in the gate signal, for the sake of illustration
of the harmonic generation in the output by means of the current-clipping mechanism.

It can be seen from Figure 6.27 that the conversion gain first decreases when
approaching the instability region from the ‘right’, and then rises again toward instabil-
ity [17, 32]; a decrease of the conversion gain is also seen from the simplified model
(Section 6.3.2, Figure 6.17), where no successive increase is present when approach-
ing the instability region. A possible explanation is deduced from the waveforms in
Figures 6.28 and 6.29. When approaching the instability region from the ‘left’, that is
from the short circuit, the circuit tends to oscillate at second harmonic; when coming
from the ‘right’, that is from the open circuit, the oscillation starts as a fundamental-
frequency oscillation, with very low second-harmonic content, that generates a second-
harmonic signal when the voltage amplitude becomes large. The simplified model, with
the piecewise-linear transconductance model of the controlled current source, cannot
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account for distortion because of a large voltage amplitude, and, therefore, the rise of the
second-harmonic component does not show up in the analysis.

From what has been said, it is clear that stability may be a concern in the design
of a frequency doubler. As a first approach, small-signal stability circles at either fre-
quencies are a useful indication of potentially dangerous terminations [20, 33]. However,
a more convenient formal approach can be done by means of the nonlinear scattering
functions (see Chapter 3) [43], which relate small incremental perturbations of the large-
signal waves by means of a linear matrix, in a similar way as the scattering parameters
relate small perturbations of a large DC bias signal (Chapter 2). The need for the use
of incremental parameters from a large-signal regime is based on the fact that a device
under compression does not have the same gain properties as in small-signal conditions
(Figure 6.30(a)), and that frequency conversion within the device creates paths for the
signal that could induce a positive feedback across different frequencies (Figure 6.30(b)).
It can be seen that critical situations can take place even when the linear parameters
indicate a stable design [44].

So far, only frequency doublers have been considered with full-nonlinear analysis.
For higher-order frequency multipliers (triplers, etc.), similar considerations can be made,
leading to a similar design approach [26, 27, 45–47].

6.3.4 Other Circuit Considerations

As seen above, the harmonic-generating element in an active doubler is mainly the con-
trolled current source; this is a resistive nonlinearity that has an infinite bandwidth, in
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Figure 6.30 Signal paths within the circuit including a frequency-converting active device

Lowpass and
matching at w0

Terminations
at nw0, n > 1

Bandpass and
matching at 2w0

Terminations
at nw0,

n = 1, n > 2

Zo

In(w0)

Figure 6.31 General structure of an active single-ended frequency multiplier

principle. The actual bandwidth that can be obtained is limited by the reactances of the
transistor and by the limited capability of external networks to synthesise the required
loads for good frequency doubling. When properly designed, rather wide bandwidths can
be obtained. The general structure of a frequency multiplier is shown in Figure 6.31.

The input network provides large-signal matching at fundamental frequency and
terminates the harmonics with reactive terminations that ensure optimum conversion gain
and isolation from the output. Similarly, the output network ensures large-signal match-
ing at second-harmonic frequency and terminates the fundamental frequency and the
higher-order harmonics with reactive terminations, in order to reject the fundamental
and higher-order harmonics, and ensure isolation from the input. Bandwidths in the order
of 40% can be obtained at the expense of conversion gain [20, 48, 49].



308 FREQUENCY MULTIPLIERS AND DIVIDERS

Signal at w0

Signal at 2w0

Z0
0°

0°

0°

180°
Doubler

Doubler

Figure 6.32 A balanced frequency doubler

A frequency doubler can take advantage from a balanced configuration [31, 50–58].
Two identical single-ended doublers are driven out of phase by a 180◦ coupler, and their
outputs are combined in-phase, for example, by a simple T-junction (Figure 6.32).

The fundamental-frequency signal and all the odd-order harmonics are 180◦ out-of-
phase at the output, and therefore cancel; the second-harmonic signal and all even-order
harmonics are in-phase at the output, and combine. Such an arrangement, therefore,
ensures intrinsic isolation between input and output without the need for filters. Con-
version gain is the same as for the single-ended doubler, and the output power is 3 dB
higher, provided that a correspondingly higher input power is supplied; no matching
improvement is obtained.

6.4 FREQUENCY DIVIDERS – THE REGENERATIVE
(PASSIVE) APPROACH

In this paragraph, the operating principle of regenerative frequency dividers are described,
together with a stability analysis.

Frequency dividers can be classified into two main types: regenerative dividers,
where the power is converted from the fundamental-frequency input signal to the frac-
tional-frequency signal by a passive nonlinear device, and oscillating dividers, where an
oscillator at the fractional frequency is phase locked by the input signal at fundamental
frequency, corresponding to a harmonic frequency of the oscillator. The latter type is
treated in Chapter 8 together with other injection-locked circuits, while the former type
is described hereafter.

The general structure of a regenerative frequency divider is shown in Figure 6.33
in which a frequency divider-by-two is shown [59–61]. The input pumping signal is fed
to a nonlinear device, usually a reverse-biased diode, where frequency conversion takes
place. An input filter prevents the frequency-converted signal to bounce back towards the
signal source, while an output filter prevents the input signal to reach the load. The filters
also provide matching in order to allow maximum power transfer from input to output.

The diode can be analysed by means of the conversion matrix, as described in
Chapter 8; however, a reduced formulation will be used here for the case of a fre-
quency halver [61] for better clarity. The circuit can be seen as two linear subnetworks
connected by a frequency-converting nonlinear element. At fundamental and subharmonic
(fractional) frequencies, the circuit is as in Figure 6.34.
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The pumping signal provides a large sinusoidal voltage at ω0 in the form

vd,LO(t) = VLO · sin(ω0t) (6.12)

for which we assume zero phase and zero DC bias. The capacitance of the diode can be
expanded in Fourier series, assuming a simple expression for the junction capacitance:

C(t) = Cj0√
1 − VLO · sin(ω0t)

vbi

∼= Cj0

(
1 + VLO

2vbi
· sin(ω0t) + 3

16

(
VLO

vbi

)2

· (1 − cos(2 ω0t)) + . . .

)
(6.13)

If a small signal at fractional frequency
ω0

2
is present in the circuit,

vss(t) = vss · sin
(ω0

2
t
)

(6.14)

the small-signal current in the diode is

id(t) =
d

(
C(t) · vss · sin

(ω0

2
t
))

dt

∼=

d




Cj0·

(
1+

3

16

(
VLO

vbi

)2
)

·vss·sin

(ω0

2
t

)

+Cj0 · VLO

2vbi
· vss · sin(ω0t) · sin

(ω0

2
t
)

+ . . .




dt
(6.15)

Equation (6.15) gives rise to a conversion-matrix-like expression. The component
at fractional frequency of the small-signal current is

id(t) ∼= ω0

2
· Cj0 ·

(
1 + 3

16

(
VLO

vbi

)2
)

· vss · cos
(ω0

2
t
)

− ω0

2
· Cj0 · VLO

4vbi
· vss · sin

(ω0

2
t
)

(6.16)

The first term is capacitive:

Cd = Cj0 ·
(

1 + 3

16

(
VLO

vbi

)2
)

(6.17)

while the second is real and out-of-phase with respect to the voltage; therefore, it is a
negative conductance:

Gd
∼= −ω0

2
Cj0 · VLO

4vbi
(6.18)
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Figure 6.36 Balanced frequency divider-by-two

The equivalent circuit at fractional frequency
ω0

2
corresponding to the circuit in

Figure 6.34(b) is therefore as in Figure 6.35.

The circuit must resonate at
ω0

2
, that is, the inductance must resonate the diode

capacitance. Moreover, in order for the subharmonic signal to be self-sustained in the
circuit, the load admittance must dissipate less power than the equivalent diode negative
resistance generates, converting it from the pump signal. As seen in Chapter 5, it must be

Gd < −Gload or |Gd| > Gload (6.19)

If this is true, the subharmonic signal grows until the negative conductance starts
decreasing for the effect of higher-order terms in eq. (6.14), and an equilibrium is reached.

The frequency divider-by-two can be arranged in a balanced configuration using
a balun [62] (Figure 6.36) for intrinsic isolation between input and output. The filters
as in Figure 6.33 can now be omitted, or at least greatly simplified, and the circuit can
therefore have a much larger bandwidth.
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7
Mixers

7.1 INTRODUCTION

In this introduction, the basic principles of mixing circuits are introduced.

Mixers are based on an intrinsically nonlinear operation, that is, multiplication of a
reference signal from the local oscillator by the input signal, with consequent amplitude
multiplication and frequency shifting. However, if the reference signal from the local
oscillator is constant in both amplitude and frequency, and the input signal is small enough
not to generate higher-order products other than multiplication, the result is a linear
frequency shifting of the input signal. The multiplication can be seen in different ways:
for instance, introducing a switch in series to the input signal we get (Figures 7.1 and 7.2):

s(t) = 1

2
+

∑
n

Sn · sin(ωLO · t) vin(t) = Vin · sin(ωint) (7.1)

vout(t) = vin(t) · s(t) = vin(t)

2

+ Vin

∑
n

Sn

2
(cos((ωLO − ωin) · t) − cos((ωLO + ωin) · t)) (7.2)

The spectrum of the output voltage vout is as in Figure 7.3 (for comparison, see Figure 1.42
in Section 1.4).

The wanted frequency component is extracted by means of a filter. However,
the switch is usually realised by means of a nonlinear device, for example a diode, com-
manded by a large series voltage source at the local oscillator frequency, as in Figure 7.4.

This implies that the spectrum of the output voltage is rather as in Figure 7.5, in
which large components appear at the local oscillator frequency and at all its harmonics
(see Figure 1.44 in Section 1.4, and derivation therein).

It is much more difficult in this case to suppress the large, unwanted frequency
components by means of a filter. This is the reason why special arrangements are so

Nonlinear Microwave Circuit Design F. Giannini and G. Leuzzi
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Figure 7.1 The mixer as a switch

s(t)

TLO

t

Figure 7.2 The switching function
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Figure 7.3 The spectrum of the output voltage of an ideal mixer

vLO(t)

vin(t ) s(t )

vout(t )

Figure 7.4 A more realistic arrangement for a mixer

popular, where some components are suppressed (or rather, attenuated) exploiting the
symmetry properties of balanced mixer. These will be considered in some detail in the
following (Section 7.2.2).

As shown in Section 1.4, the input signal is simply multiplied by a switch function
s(t) only if the switch function is not affected by the input signal itself. This is no more
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true when the input signal becomes large, and distortion and intermodulation arise; this is
also the factor determining the upper limit of the dynamic range of the mixer. We will see
this case in more detail in the following (Section 7.4). At low levels, noise determines the
lower limit of the dynamic range. For a correct evaluation of the noise level in a mixer,
the nonlinear behaviour must be taken into account: this will be done in more detail in
Section 7.5.

7.2 MIXER CONFIGURATIONS

In this paragraph, the main types of mixers that differ for the type of mixing nonlinearity
and for the symmetry of the configuration are described.

7.2.1 Passive and Active Mixers

Mixers have traditionally relied on diodes as the nonlinear mixing element. In this case,
the typical configuration is shown in Figure 7.6.

The input signal is the RF, while the output signal is the IF in the case of a
downconverter; vice versa in the case of an upconverter. The input network provides
the optimum terminations to the LO and IN signals and filters the OUT signal generated
by the nonlinearity in the diode, in order to ensure minimum conversion losses and
maximum isolation between the input and output ports. It must also provide isolation
between the LO and the IN ports in order to avoid interference. More dangerously,
the large LO signal could saturate the output of the IN amplifier stage, when present.
Similarly, the output network provides optimum loading for the OUT signal and stops the
IN and LO signals. The practical design and realisation of the filtering structures can be
problematic, especially when the frequency of an unwanted large signal (typically the LO
fundamental or low-harmonic frequency) lies very close to the input or output frequency
that requires a good match. As we will see in the following, a balanced structure can
suppress, or rather attenuate, an unwanted spectral line, easing the design of the filtering
and matching networks.

In the case of the diode, the main nonlinearity is the I /V exponential charac-
teristic, which presents a differential resistance ranging from nearly open circuit when

LO + IN OUTLO + IN
filter and match

OUT filter
and match

Figure 7.6 The general structure of a diode mixer
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reverse biased to a very low value when forward biased. The junction capacitance has
a much smaller variation range and its contribution to mixing is much less important; it
can be considered constant, and neglected for approximate analysis. A large LO signal
drives the diode into forward and reverse bias for the largest part of the signal period,
making the diode work very much as the ideal switch in Figure 7.4. A small forward bias
current, bringing the diode at the edge of forward conduction, allows the LO signal to
effectively switch it between almost short circuit (forward conduction) and almost open
circuit (reverse bias) even for low amplitudes of the LO signal itself, thus enhancing the
mixer performances; however, the need for a path for the bias current may complicate
the layout and degrade the performances.

Active mixers make use of three-terminal devices such as MESFETs, HEMTs,
HBTs or BJTs as nonlinear mixing elements, providing also some gain or at least reduced
losses. Different nonlinearities are exploited depending on which terminal the large LO
signal is fed to; however, the predominant nonlinear element is always the drain or
collector current source, while capacitances provide a minor contribution. The output I /V
characteristics of an FET are shown in Figure 7.7 in which the load curves corresponding
to different modes of operation are indicated. The parameters modulated by the LO signal
are the transconductance and the output conductance, that is, the derivatives of the I /V
curves with respect to gate and drain voltage respectively:

gm = ∂Id

∂Vgs

∣∣∣∣
Vds=const.

gd = ∂Id

∂Vds

∣∣∣∣
Vgs=const.

(7.3)

The load line 1 in Figure 7.7 corresponds to a gate mixer, where the main nonlin-
earity is the transconductance, modulated by the LO signal applied to the gate, with the
drain voltage fairly constant. The input signal is applied to the gate as well, while the
output signal is taken at the drain port, as shown in Figure 7.8.
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Figure 7.7 Load lines on the output I /V characteristics of an FET corresponding to different
operation modes
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Figure 7.8 The general structure of a gate mixer

The LO signal modulates the transconductance, and therefore the gain of the
common-source amplifier for the IN signal, from zero below pinch off to the maxi-
mum value along the load line. The behaviour is very much like that of a switch with
gain. In Figure 7.7, the load line has a constant Vds voltage path, implying a short-circuit
drain termination at the LO fundamental frequency and harmonics; this is discussed in
some detail below, together with the terminations at the IN and OUT frequencies.

This configuration does not provide any intrinsic isolation between LO and IN
signals and has a very bad isolation between LO and OUT ports since the already large
LO signal is further amplified by the FET into the OUT port. The IN signal is also
amplified by the FET, but its amplitude is relatively smaller and is more easily filtered
out at the OUT port. The LO and IN ports are isolated from the OUT signal because of the
low reverse gain of the FET. This configuration is likely to provide a conversion gain if
properly terminated; however, it is also prone to instability if the gain is exceedingly large.

The load line 2 in Figure 7.7 corresponds to a drain mixer, where the main nonlin-
earities are the transconductance and the output conductance, modulated by an LO signal
applied to the drain, with the gate voltage fairly constant. The input signal is applied to
the gate, while the output signal is taken at the drain port, as shown in Figure 7.9.

The LO signal modulates the transconductance and the output conductance of the
FET, and therefore the gain of the common-source amplifier for the IN signal, while
switching between the saturated and ohmic regions of the characteristics. The behaviour
is again like that of a switch with gain. In Figure 7.7, the load line has a constant Vgs

voltage path, implying a short-circuit gate termination at the LO fundamental frequency
and harmonics.

This configuration does not provide any intrinsic isolation between LO and OUT
signals and has a bad isolation between IN and both OUT and LO ports since the IN
signal is amplified by the FET. The IN port is isolated from the LO and OUT signals
because of the low reverse gain of the FET. It is likely to provide a conversion gain if
properly terminated; however, it is also prone to instability if the gain is large.
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Figure 7.9 The general structure of a drain mixer
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Figure 7.10 The general structure of a source mixer

The load line 3 in Figure 7.7 corresponds to a source mixer, where the main
nonlinearities are the transconductance and the output conductance, modulated by an LO
signal applied to the source, with the gate and drain voltages fairly constant. The input
signal is applied to the gate, while the output signal is taken at the drain port, as shown
in Figure 7.10.

The LO signal modulates the transconductance and the output conductance of the
FET and therefore the gain of the amplifier for the IN signal. The behaviour is again
like that of a switch with gain. In Figure 7.7, the load line has a constant Vgd voltage
path, implying short-circuit gate and drain termination at the LO fundamental frequency
and harmonics.

This configuration does not provide any intrinsic isolation between LO and OUT
signals and has a bad isolation between IN and both OUT and LO ports. The IN port is
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Figure 7.11 The general structure of a resistive (channel) mixer

isolated from both the LO and the OUT signal because of the low reverse gain of the
FET. It is likely to provide a conversion gain if properly terminated.

The load line 4 in Figure 7.7 corresponds to what could be called a channel mixer
since the main nonlinearity is the channel conductance, modulated by an LO signal applied
to the gate, with zero-drain bias. It is known as resistive mixer because the FET has no
drain bias (cold FET), and therefore has no gain. The input signal is applied to the drain,
while the output signal is taken at the drain or source port, as shown in Figure 7.11.

The LO signal modulates the channel (output) conductance of the FET, making
the FET behave as a time-variant resistance when seen from the drain port. In Figure 7.7,
the load line has a constant Vds voltage path, implying short-circuit drain termination at
the LO fundamental frequency and harmonics.

This configuration provides a moderate isolation between LO and both IN and OUT
signals: on the one hand, the FET does not have any gain, but on the other hand, the gate-
channel capacitance is high at zero-drain voltage, providing non-negligible coupling. No
intrinsic isolation is provided between IN and OUT ports. No gain is provided because of
the cold FET; however, very linear conversion is ensured by the superior linearity of the
output conductance in the ohmic region compared to the linearity of transconductance
and output conductance in the regions of operations described above. Therefore, this
configuration is especially valuable for low-intermodulation applications.

7.2.2 Symmetry

As already mentioned above, symmetric or antisymmetric pairing of identical basic mixers
provides an effective means to suppress or, more realistically, attenuate some unwanted
frequency components in the spectra of the input and output signals. The suppression
is especially needed for the large local oscillator signal, which could saturate or seri-
ously reduce the performances of an amplifier stage, but it is important for components
with smaller amplitude also. Intermodulation within external systems of these unwanted



MIXER CONFIGURATIONS 323

components with the wanted signals can produce spurious signals interfering with the
normal behaviour of the systems themselves. Filters alone could not provide the neces-
sary attenuation because of fabrication tolerances or limited quality factors, because of
narrow transition bands between the passband and the suppressed band or because of the
unpractically large size of the required filtering network.

Several different arrangements are available to the designer; the basic ones are
described in the following in a qualitative way [1]. The basic principle requires that two
identical nonlinear elements are each fed with the superposition of the same LO and
IN signals, but with different phases; the output signals are then summed up in the load.
Each nonlinearity generates spectral lines as in Figure 7.5, some of which are in-phase and
therefore are summed up in the load, some others are out-of-phase and therefore cancel in
the load; the phase of each line depends on the order of the line itself. In order to generate
identical signals with different phases, couplers are used. The most common ones are the
hybrid coupler providing (ideally) identical amplitude and 90◦ phase difference between
the output ports when the signal is fed by either of the input ports, and the delta/sigma
coupler providing (ideally) identical amplitude and phase at the two output ports when
the signal is fed from the sigma port, and identical amplitude and 180◦ phase difference
between the two output ports when the signal is fed from the delta port (see Figure 7.12).

Let us illustrate the point by means of a simplified representation, preserving the
symmetry properties of nonlinearities and couplers and neglecting the amplitudes of the
spectral lines. Let us consider only the resistive part of the response of the nonlinear
mixing device (a diode, in this example) and expand the current in power series of the
input voltage (Section 1.3.1). The amplitudes of the coefficients of the power series are
arbitrarily set to 1, and only their sign is retained, in order to keep track of the phase of

0°

0°

(a)

90°

90°

0°

0°

(b)

180°

0°

Σ

∆

Figure 7.12 Schematic representation of the hybrid coupler (a) and of the delta/sigma coupler (b)
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each term; this will be done for all amplitudes in the following. For the two diodes in
Figure 7.13 (a) and (b), the currents are therefore expressed as in eqs. (7.4a) and (7.4b)
respectively:

i = v + v2 + v3 + · · · (7.4a)

i = −v + v2 − v3 + · · · (7.4b)

Let us now illustrate an arrangement with a pair of diodes in anti-parallel config-
uration at the output ports of a delta/sigma coupler as in Figure 7.14, with their currents
entering the output node.

The voltages at diodes (a) and (b) are

va = vLO + vIN (7.5a)

vb = −vLO + vIN (7.5b)

The corresponding currents are

ia = (vLO + vIN) + (vLO + vIN)2 + (vLO + vIN)3 + · · · (7.6a)

ib = −(−vLO + vIN) + (−vLO + vIN)2 − (−vLO + vIN)3 + · · · (7.6b)

Expanding the binomials and subtracting the two currents we get the output current:

ia = (vLO + vIN) + (v2
LO + vLOvIN + v2

IN)

+ (v3
LO + v2

LOvIN + vLOv2
IN + v3

IN) + · · · (7.7a)

IV

−

+

(a)

IV

−

+

(b)

Figure 7.13 Voltage and current in the diodes
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Figure 7.14 A singly balanced mixer with LO rejection at the output
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ib = (vLO − vIN) + (v2
LO − vLOvIN + v2

IN)

+ (v3
LO − v2

LOvIN + vLOv2
IN − v3

IN) + · · · (7.7b)

iOUT = ia − ib = vIN + vLOvIN + v2
LOvIN + v3

IN + · · · (7.8)

Some terms are out-of-phase and cancel; some others are in-phase and combine in the
output load. Remembering the considerations in Section 1.3.1, we see that the first and
fourth terms are components at the input frequency and at its third-harmonic frequency;
the latter can be neglected, given the small amplitude of the input signal. The second
term is the mixed signal (see Introduction above), and provides the two sidebands of the
local oscillator signal. The third term is the mixing of the input signal with the second
harmonic of the local oscillator and with its rectified DC term. The former product can
be used for subharmonic mixing, in the case that a local oscillator at a sufficiently high
frequency be not available; it must otherwise be rejected by the output filter. The second
product is an additional term at the input frequency. Then, there are higher-order terms
that can be neglected to a first approximation. The local oscillator with its harmonics is
cancelled by the symmetry of the configuration; the other unwanted terms can be rejected
by filtering, with much greater ease than in a single-diode mixer. The situation is shown
in Figure 7.15 for an upconverting mixer, where the combined and cancelled terms are
shown as solid and dotted bars respectively.

The singly balanced mixer in Figure 7.14 therefore has intrinsic isolation between
the local oscillator port and the output port; it also has an isolation between input port
and local oscillator port. No isolation is provided between input and output ports.

The cancellation of the LO oscillator at the output has an intuitive explanation.
Referring to Figure 7.16 and recalling the symmetry of the arrangement, it is apparent
that the LO current closes its path without entering the output branch (a) during the first

DC

fin

fLO−fin fLO+fin
2fLO−fin 2fLO+fin

fLO

2fLO

f

Figure 7.15 Combined (solid) and cancelled spectral lines (dotted) for the singly balanced mixer
in Figure 7.14
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Figure 7.16 The paths for LO (a) and in currents (b)
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Figure 7.17 A singly balanced mixer with IN rejection at the output

half-period; it is blocked by the diodes during the second half-period. The input current
on the other hand enters the output branch in order to close the path, through the upper
arm of the coupler during the first half-period, and through the lower arm of the coupler
during the second half-period.

Let us now interchange the input and local oscillator ports, as in Figure 7.17. It is
easy to see that the output current is

iOUT = ia − ib = vLO + vLOvIN + vLOv2
IN + v3

LO + · · · (7.9)

The first and fourth terms are components at the local oscillator frequency and at its
third-harmonic frequency. The second term is the mixed signal (see Introduction above)
and provides the two sidebands of the local oscillator signal. The third term is the mixing
of the second harmonic of the input signal and of its rectified DC term with the local
oscillator. The former product can be neglected given the small amplitude of the input
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fLO
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f

Figure 7.18 Combined (solid) and cancelled spectral lines (dotted) for the singly balanced mixer
in Figure 7.17

signal; the latter product is an additional term at the frequency of the local oscillator.
Then, there are higher-order terms that can be neglected to a first approximation. The
input signal is cancelled by the symmetry of the configuration, while the local oscillator is
still present. The situation is shown in Figure 7.18, in which the combined and cancelled
terms are shown as solid and dotted bars respectively.

The singly balanced mixer in Figure 7.16 therefore has intrinsic isolation between
the input port and the output port; it also has isolation between input port and local
oscillator port. No isolation is provided between local oscillator and output ports.

By similar derivation, it can be seen that a hybrid coupler with anti-parallel single-
diode mixers provides isolation between input and output ports only if the single-diode
mixers are well matched; interchanging the input and local oscillator ports has no effect,
given the symmetry of the coupler; and the output spectrum is as shown in Figure 7.19.

A peculiar and useful characteristic of the singly balanced mixers described above
is the rejection of the AM noise from the local oscillator. This is easily seen by letting
vIN = 0 and replacing vLO → vLO + vnoise in eq. (7.5). It is easily seen that the noise is
rejected at the output.

A subharmonically pumped mixer is a circuit that exploits the second harmonic
of the local oscillator for mixing with the input signal. A simple balanced configuration
that does not require a coupler is shown in Figure 7.20.

By carrying out the derivation as above, with the local oscillator signal and input
signal fed in-phase to the two anti-parallel diodes, the output spectrum is as shown in
Figure 7.21.

The peculiar features of this arrangement are the very simple circuit scheme with-
out couplers; the low conversion losses (in case of diodes) due to the suppression of
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Figure 7.19 Combined (solid) and cancelled spectral lines (dotted) for a singly balanced mixer
with a hybrid coupler
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Figure 7.20 A subharmonically pumped mixer with an anti-parallel pair of single-diode mixers
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Figure 7.21 Combined (solid) and cancelled spectral lines (dotted) for the subharmonically
pumped mixer in Figure 7.20
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fundamental-frequency mixing products; and the large separation between input, local
oscillator and output frequencies, which eases the suppression of unwanted components
by filtering.

Other balanced schemes, in particular doubly balanced mixers, can be analysed by
similar means and are widely treated in the literature (e.g. [1]).

7.3 MIXER DESIGN

In this paragraph, the optimum loading conditions for the local oscillator and for the small
signals at the converted frequencies are described on the basis of large-signal considera-
tions as in Section 7.2.1 and on the small-signal linear time-variant frequency-converting
representation (the conversion matrix).

A mixer fulfils the conditions described in Section 1.4: a large signal (the local
oscillator) pumps the nonlinear elements into large-signal regime, generating a number
of harmonics and modulating its differential admittance. When a small input signal is
superimposed, a whole spectrum of converted signals is generated as sidebands of the
harmonics of the local oscillator. If the input signal is small, the conversion is linear, and
the mixer can be seen as a linear frequency-converting n-port network, where the number
of ports equals the number of physical ports (e.g. for a single-diode mixer, only one port)
times the number of non-negligible harmonics of the local oscillator. The spectrum of
the small signal is shown in Figure 7.22 and the small-signal equivalent network of the
mixer is represented in Figure 7.23, corresponding to the admittance representation in
eq. (1.152) in Chapter 1, repeated here for convenience, in a general form [2–7]:

�I + �Y · �V = 0 (7.10)

where

�I =




IN

·
I0

·
I−N


 �V =




VN

·
V0

·
V−N


 (7.11)

and the subscript indicates the frequency as shown in Figure 7.22.

For mixer design, the nonlinear pumping must first be applied, and the behaviour of
the nonlinear element determined by means of a large-signal analysis or measurement; a
few possible arrangements have been described above in Section 7.2.1. Once this is done,
the conversion matrix is computed and the optimum values for the embedding admittances
at the port frequencies must be determined. In fact, two ports are the actual input and
output ports of the mixer: in the case of an upconverting mixer as in Figure 7.22, the
input frequency is fin = f0 and the output frequency is fout = −f−1. We remember that
in Chapter 1, the use of negative frequencies for the lower sidebands has been introduced
for the sake of simplification in the notation. It must be remembered also that the phasors
with negative index are the conjugate of the ordinary phasors since they correspond to
negative frequencies; the relevant impedances must be conjugated accordingly.
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Figure 7.23 The small-signal linear equivalent network of a mixer

In principle, the embedding admittance at all converted frequencies contribute to
the conversion gain of the mixer, as in any linear n-port network; in practice, only a
few ports other than the input and output ones can provide an improvement to the per-
formances of the circuit, among which the image frequency fimage = f1 [1] is especially
important. Therefore, as a first approximation, all ports other than input and output can
be terminated with matched loads, or short circuits, without unacceptably degrading the
conversion performances of the mixer. Therefore, we can reduce the n-port network to a
two-port network by means of standard reduction techniques [1, 8] and treat the latter as
a standard two-port network. We can therefore define a stability factor, stability circles
and a maximum available gain or maximum stable gain [7–11]. Diode mixers invariably
show unconditional stability, while active mixers can be unstable.

Let us come back to the preliminary large-signal analysis or tuning when the mixer
is driven only by the local oscillator. First of all, it is worth remarking that the embedding
admittances at the converted frequencies can be unknown during the large-signal analysis
or tuning of the mixer under local oscillator pumping since only the harmonic frequencies
of the local oscillator affect the large-signal steady state of the mixer. The embedding
admittances are designed during the successive step, the proper termination of the linear
network. At least in principle a linear parameter such as, for example, the maximum
available gain of the linear reduced two-port frequency-converting network can be used as
a quality factor during large-signal tuning. In practice, more empirical considerations are
preferred. The load line as shown in Figure 7.7 must modulate the nonlinear parameters
for the selected configuration in such a way as to ensure not only maximum conversion but
also stability. Therefore, a nearly switching behaviour of the FET must be ensured, with
the load line extending across regions with highly different behaviour. From a numerical
point of view, the fundamental-frequency component of the modulated parameter (e.g.
transconductance) must be maximised for maximum conversion gain. On the other hand,
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stability must be ensured: in particular, case 1 for a FET (gate mixing) seems to be the
most problematic configuration. Short circuits at the drain termination at LO fundamental
frequency and harmonics seems to be the best compromise in terms of conversion gain
and stability [1, 9, 12, 13]; it also improves the isolation between the local oscillator and
the output. As a general rule, the LO port must be conjugately matched for best use of
the LO power.

As mentioned, the large-signal analysis is properly performed by means of non-
linear analysis algorithms (see Chapter 1). In the case that a specific mixer configuration
and a specific device have been selected, it is possible to perform approximated analysis
that yields quite accurate results with significantly reduced numerical effort, or even with
analytical expressions. For instance, explicit formulae have been derived for HEMT gate
mixers, assuming that only the gate–source capacitance, the transconductance and the
output conductance are nonlinear [14]. Similarly, analytic formulae have been derived
for an MESFET drain mixer under the assumption that only transconductance and output
conductance behave nonlinearly [15]. Resistive ‘channel’ mixers also have been analysed
by assuming a simple nonlinear circuit for an FET, where the only nonlinearity is the
channel resistance [16].

Once the large-signal analysis is performed, the small-signal equivalent circuit is
available for conversion optimisation. The typical strategy for the spurious terms consists
of shorting the unwanted terminations, for example, output load at input signal frequency
and vice versa. This approach tends to improve isolation between unwanted ports, to
improve stability and to minimise noise generation. The input and output ports at the
corresponding frequencies are conjugately matched for the input and output match and
for maximum power transfer from the input to the output and maximum conversion gain.
This can be practically achieved by making use of simple expressions derived from the
equivalent circuit of the active device [1].

7.4 NONLINEAR ANALYSIS

In this paragraph, the nonlinear techniques for the analysis of mixers are described; in
particular, an extension of the Volterra series is described for the prediction of intermod-
ulation distortion.

In principle, mixers can be analysed by any nonlinear method that can manage two
tones as input signals, one of which is very large (the local oscillator) and the other is very
small (the input signal). Therefore, time-domain direct integration or harmonic/spectral
balance methods are suitable algorithms, since they can handle very strong nonlinearities
and two-tone analysis. Volterra series, as has been described in Chapter 1, is not suitable,
because it is limited to mild nonlinear problems. However, there are numerical problems
with the above-mentioned methods when they are applied to the analysis of a mixer. In
practice, the numerical noise generated by truncations and approximations in the nonlin-
ear analysis of a large signal (the LO) is comparable to the small input and output signals.
A better approach consists of separating the two analyses: first, the large local oscilla-
tor signal is analysed by means of any of the methods seen, for example, in Chapter 1,
for a single-tone input. Then, the small input signal is added as a small perturbation.
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Figure 7.24 The example circuit for the calculation of the conversion matrix

This approach has been described in detail in Chapter 1 and is known as the conver-
sion matrix approach, or sometimes it is referred to as large-signal/small-signal analysis.
Within this approach, the input signal causes a perturbation of the large-signal trajectory
determined by the large signal (the local oscillator). The perturbation is assumed to be so
small that its effect can be linearised; for instance, in our example circuit (Figure 7.24)
the current in the nonlinear conductance can be expressed as (eq. (1.133) and eq. (1.134),
combined here for convenience)

ig(t) = ig,LS(t) + ig,ss(t) ∼= ig,LS(t) + dig(v)

dv

∣∣∣∣
v=vLS(t)

· vss(t) + · · ·
= ig,LS(t) + gss(t) · vss(t) + · · · (7.12)

By this approach, the frequency-conversion properties of the circuit are easily predicted;
they are generated by the periodic time-dependence of the linearised conductance. The
resulting spectrum is depicted in Figure 1.44 in Chapter 1. The circuit behaves as a
linear time-dependent circuit, in which the small-signal incremental parameters (as e.g.
the nonlinear conductance in Figure 7.24) are dependent on a time-variant bias voltage.
However, eq. (7.12) holds only for small amplitudes of the input signal, where the circuit
is linear with respect to the small input signal; therefore, it cannot predict phenomena
such as distortion in the frequency conversion when the input signal has a moderately
large amplitude or intermodulation between two moderately large input signals. These
phenomena are due to the fact that the higher-order terms of the Taylor series in (7.12)
cannot be neglected any more when the input signal is not so small. These phenomena
are important because they limit the dynamic range of a mixer as a linear frequency-
converting circuit, as much as they limit the dynamic range of a linear amplifier biased
at a static operating point. In the case of a two-tone input signal, the spectrum of the
output signal becomes as shown in Figure 7.25, in which only the portion of the spectrum
around the fundamental component of the local oscillator is shown.

For the prediction of these nonlinear phenomena, the series expansion as in (7.12) is
no more sufficient, and additional terms must be included [17–23]. The equation becomes

ig(t) = ig,LS(t) + ig,ss(t) ∼= ig,LS(t) + dig(v)

dv

∣∣∣∣
v=vLS(t)

· vss(t)

+ 1

2

d2ig(v)

dv2

∣∣∣∣
v=vLS(t)

· v2
ss(t) + 1

6

d3ig(v)

dv3

∣∣∣∣
v=vLS(t)

· v3
ss(t) + · · ·

= ig,LS(t) + g1(t) · vss(t) + g2(t) · v2
ss(t) + g3(t) · v3

ss(t) + · · · (7.13)
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Figure 7.26 Graphical illustration of the first two coefficients in eq. (7.13)

Equation (7.13) is equivalent to eq. (1.44); however, in this case, the coefficients of
the Taylor series expansion are dependent on time since the dynamic operating point
varies with the instantaneous value of the local oscillator waveform. The first and second
derivatives of the nonlinear current with respect to the voltage are shown in Figure 7.26
at a generic operating point, for the sake of illustration.

In the case of our example circuit, they have the following expressions:

g1(v) = dig(v)

dv
= g ·

(
1 − tgh2

(
g · v
imax

))

g2(v) = d2ig(v)

dv2
= 2g2

imax
· tgh

(
g · v
imax

)
·
(

tgh2

(
g · v
imax

)
− 1

)
(7.14)

When driven by a large-signal periodic waveform, the conductances are expressed as

g1(t) = g1(vLS(t)) =
∞∑

m=−∞
G1,m · ejmωLSt g2(t) = g2(vLS(t)) =

∞∑
m=−∞

G2,m · ejmωLSt

(7.15)

and give rise to frequency conversion. Therefore, the output signal can still be expressed
as a Volterra series, but now the nuclei are time-dependent; frequency conversion takes
place for the higher-order components of the spectrum also.

Kirchhoff’s equation for the small perturbation signal reads as (see eq. (1.138))

iss(t) + C · dvss(t)

dt
+ g1(t) · vss(t) + g2(t) · v2

ss(t) + · · · = 0 (7.16)
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Figure 7.27 Contribution of the different orders to the spectrum of the output signal

The small-signal voltage can therefore be expanded in Volterra series as (see eq. (1.53))

vss(t) = vss,1(t) + vss,2(t) + · · · (7.17)

The contributions of the orders of the series are shown in Figure 7.27 for the upper
sideband of the fundamental-frequency component of the local oscillator.

By replacing eq. (7.17) in (7.16) in orders and keeping only the first-order terms,
we get

iss(t) + C · dvss,1(t)

dt
+ g1(t) · vss,1(t) = 0 (7.18)

where
iss(t) = I (1) · sin(ω1t) + I (2) · sin(ω2 t) (7.19)

is the two-tone excitation. The first-order nucleus is simply the conversion matrix; the
first-order voltages are expressed as

v
(1)

ss,1(t) =
∞∑

m=−∞
V

(1)

ss,1,m ej (mωLS+ω1)t

v
(2)

ss,1(t) =
∞∑

m=−∞
V

(2)

ss,1,m ej (mωLS+ω2)t (7.20)

where the superscript refers to the frequency of the input tone. The first-order Kirchhoff’s
equation can be written in the frequency domain as

�Iss,1 + �C · �Vss,1 + �G1 · �Vss,1 = 0 �Iss,2 + �C · �Vss,2 + �G1 · �Vss,2 = 0 (7.21)

where the vectors of voltage and current phasors and the conversion matrices are defined
as in Section 1.4. The equation splits into two independent equations because of the
linearity of the first order, by definition.
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Once the first-order Kirchhoff’s equation has been solved and the first-order terms
have been found, the second-order Kirchhoff’s equation can be written as

C · dvss,2(t)

dt
+ g1(t) · vss,2(t) + g2(t) · v2

ss,1(t) = 0 (7.22)

The spectrum of the second-order terms (see Figure 7.26) is deduced from the known term:

v2
ss,1(t) = (v

(1)

ss,1(t) + v
(2)

ss,1(t))
2 (7.23)

where the first-order terms are expressed as in eq. (7.20). The second-order Kirchhoff’s
equation can be written in the frequency domain as

�C · �Vss,2 + �G1 · �Vss,2 + ⇀

G2 · �V2
ss,1 = 0 (7.24)

where the vectors of voltage phasors and the second-order conversion matrix are defined
as for the first-order terms. The second-order voltage phasors are found from the linear
system of equations (7.24). Recursively, all higher-order terms are found, similar to the
standard Volterra series analysis, and the weak nonlinear behaviour of the mixer with
respect to the two-tone input signal is found. Therefore, the compression, distortion and
intermodulation effects of the mixer are found, and the dynamic range is determined.

7.5 NOISE

In this paragraph, the noise behaviour of mixers is described with reference to its nonlinear
origin and characteristics.

As a first approach, noise can be considered as a small signal, whose spectral
statistical properties are known. The behaviour of a mixer with respect to external noise
is then, to a first approximation, the same as with respect to any small deterministic
signal present at its ports. We remark that a mixer can be seen from the point of view
of an external small signal as a linear frequency-converting n-port network, where each
port corresponds to a physical port at a sideband frequency (Figure 7.23). Therefore, the
noise present at the output port due to external sources is the superposition of the input
noise at all ports, each multiplied by the relevant conversion loss (Figure 7.28). If the
external noise sources are uncorrelated, as for instance in the case that they are due to
a lossy external linear circuit, the converted contributions are uncorrelated and add in
power [24].

However, to this noise of external origin, all circuits add noise generated by the
internal elements of the circuits themselves; this added noise is the origin of the noise
figure being greater than 1. If the frequency components of the noise of internal origin
at the various mixer ports are uncorrelated, then the noise is treated as the uncorre-
lated external noise. However, this assumption is true only for some of the internal
noise sources.

Noise in semiconductor devices has different physical origins that account for the
different behaviours that are encountered; for instance, shot noise and thermal noise are
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Figure 7.28 Frequency conversion of the external noise by the mixer

essentially white, while
1

f
noise has the dependence on frequency, as its name implies.

1

f
noise is rarely of importance in mixers, unless at very low frequency of operation.

Thermal noise is independent of the bias state of the device and behaves very much as
in a linear resistive device. Shot noise, on the other hand, depends on the current level
within the device; its mean-square current can be written as

i
2
shot = 2qI · B (7.25)

where q is the electron charge, I is the current through the device and B is the bandwidth.
If the device is biased at a static operating point, the spectrum of the shot noise is white,
and its components at different frequencies are uncorrelated.

However, if the active device is driven by a large-signal periodic current, as in a
mixer pumped by the local oscillator signal, then the shot noise components generated at
different frequencies are correlated since the noise-generating phenomenon is modulated
at the local oscillator frequency. The correlation coefficients between the components at
two different ports m and n are the harmonics of the local oscillator current [5, 6, 25–30]:

Cm,n = 2qIm−n · B (7.26)

The relation (7.26) is intuitively justified as being equivalent to a conversion-matrix term
that connects two frequency components at different ports.

Once generated internally with a degree of correlation due to current modulation,
the noise signal is frequency-converted as much as the external noise. However, when
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superimposing at the output port the converted contributions from the various ports, their
original correlation must be accounted for, and they do not simply add in power.

In case other noise-generating mechanisms are present in the device, they can
simply be superimposed, provided the generating mechanisms are uncorrelated; otherwise,
they must be included in the formulation [31].

This fundamentally nonlinear internal noise correlation is such that the noise prop-
erties of a mixer cannot be represented by a simple resistive model; in particular, noise
level is increased with respect to a statically biased semiconductor device. Given the for-
mulation above, prediction of correct noise levels are easily obtained once the large-signal
local oscillator is known, and the conversion matrix is computed. Obviously, the physical
mechanisms at the origin of the noise, which determine the correlation properties of the
internal noise at the mixer ports, must be known. This is by no means a trivial problem;
however, many noise sources are known well enough for effective noise prediction within
nonlinear analysis methods such as, for example, harmonic balance.
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8
Stability and Injection-locked
Circuits

8.1 INTRODUCTION

In this introduction, the main circuits in which an externally forced signal and an autono-
mous oscillatory signal coexist are described.

So far, circuits in which either an externally forced signal or an autonomous,
internally generated oscillatory signal is present have been described. The former group
includes power amplifiers, frequency doublers and mixers; for these circuits, the fre-
quency of operation is determined by the external excitation, and the primary job of
the designer is to ensure good match and high gain for the incident signal. The latter
group includes oscillators, and the primary job of the designer is to ensure the existence
of the signal and the stability of its frequency and amplitude. In this chapter, circuits
in which an externally forced signal coexists with an internally generated, oscillatory
signal, whose existence and properties must be ensured by proper design, are described.
The circuits described in this chapter are injection-locked oscillators, non-regenerative
frequency dividers and multipliers and self-oscillating mixers. A typical feature of these
circuits is that the oscillation takes place in a circuit in nonlinear regime, requiring an
extension of the oscillation and stability criteria described for basically linear circuits in
the Chapter 5. This is done preliminarily in this chapter, with a short description of the
onset of instabilities in nonlinear circuits. The relevant stability criterion can be used for
determining whether a nonlinear steady state is stable or if it is an unstable solution of
the Kirchhoff’s equations, only numerically existent but never reached by the circuit.

8.2 LOCAL STABILITY OF NONLINEAR CIRCUITS
IN LARGE-SIGNAL REGIME

In this paragraph, the stability criterion for nonlinear circuits in large-signal regime is
introduced, together with the main numerical techniques for its evaluation.

Nonlinear Microwave Circuit Design F. Giannini and G. Leuzzi
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84701-8
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In Chapter 5, the criterion for stability or oscillation has been given for linear
circuits. In fact, linear electronic circuit always include nonlinear elements, nonlinearly
biased by a large DC source in a suitable operating region and linearised around the static
bias point. A basic assumption for linear dynamic operations is that the alternate signals
superimposed to the static bias be small enough for the dynamic operating point to keep
within a region around the static bias point where linearisation holds. If this is the case,
the nonlinear element (the active device) can be replaced by a linearised equivalent, for
example, a small-signal equivalent circuit. Since the bias point is static, or time-invariant,
the linearised representation is time-invariant as well and is studied by means of the usual
techniques for linear circuits. In the case of oscillators, the stability properties of a small
alternate signal perturbing the steady state are studied in order to suppress or allow the
onset of oscillations.

Nonlinear circuits or elements operating under large-signal regime can be con-
sidered as driven by time-variant large sources that include both the static bias sources
and the large alternate signal source such that the operating point is dynamically driven
through regions wherein the behaviour of the active element cannot be linearised. In
other words, the alternate signal superimposed to the static bias point is so large that the
dynamic load curve of the active device extends to regions where the device behaves
nonlinearly. Therefore, the alternate signal cannot be seen as a small, linear perturbation
of a static bias point; rather, the sum of the bias source and alternate signal must be
considered simultaneously as a single large source nonlinearly driving the active device.
This is the steady-state regime whose stability we want to investigate by studying the
properties of a small perturbation to this steady state. Linearisation around the dynamic
operating point is still possible but yields a time-variant linearised representation; there-
fore, small perturbations of the nonlinear regime is expected to have a different behaviour
from perturbations in a linear(ised) time-invariant circuit.

The case of a small alternate signal superimposed to a large steady-state periodic
signal has already been described in Section 1.4 and applied in the Chapter 7, where the
small signal includes the input signal and all the frequency-converted signals. In the case
of a mixer, the small-signal circuit is a linear(ised) incremental forced circuit, as said
above. In the case of nonlinear stability analysis, the small signal is a perturbation of the
steady state, whose stability is thus investigated; the small signal therefore has no external
excitation, and the linearised incremental network is in fact an autonomous circuit at the
sideband frequencies, whose self-oscillations must be investigated. The conversion-matrix
formalism is still used, but the small-signal time-variant problem is now autonomous.

Linear periodic time-variant systems have been studied by Floquet two centuries
ago by means of an analytical approach [1, 2]. We will now see how its results are
equivalent to those of a conversion-matrix approach. Let us study a linear second-order
differential equation with periodic coefficients in the form

x ′′(t) + a(t) · x ′(t) + b(t) · x(t) = 0 (8.1)

where a(t) and b(t) are periodic:

a(t + T ) = a(t) b(t + T ) = b(t) (8.2)
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Floquet states that the solution has the form

x(t) = X1 · p1(t) · eµ1·t + X2 · p2(t) · eµ2·t (8.3)

where
p1(t + T ) = p1(t) p2(t + T ) = p2(t) (8.4)

are periodic functions with the same periodicity of the coefficients, and where the Floquet
coefficients µ1 and µ2 are

µ1 = v1 + j
2π · k

T
k1 = ±1, ±2, . . . µ2 = v2 + j

2π · k
T

k2 = ±1, ±2, . . . (8.5)

where ν1 and ν2 are complex numbers. The multiple values of the Floquet coefficients
correspond in fact to the same behaviour of the solution. The Floquet coefficients as
well as the coefficients X1 and X2 are found from the boundary conditions for the
specific problem.

Let us apply this result to a series resonant RLC circuit in which the resistance and
the capacitance are nonlinear, driven by a periodic local oscillator signal with frequency

ω0 = 2π

T
. Let also assume that the periodic steady state has been found by any nonlinear

analysis method. Linearisation around the periodic steady state yields a linear time-variant
circuit as in Figure 8.1 (see Section 1.4),

where Ractive(t) and C(t) are known periodic functions:

Ractive(t + T ) = Ractive(t) C(t + T ) = C(t) (8.6)

because of the periodicity of the local oscillator. Kirchhoff’s voltage law equation reads as

R(t) = Rpassive + Ractive(t) i(t) = C(t) · dvc(t)

dt

L · di(t)

dt
+ R(t) · i(t) + vc(t) = 0 (8.7)

C(t)

Ractive(t )

Rpassive

L

Figure 8.1 A time-variant linearised RLC series resonant circuit
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d2vc(t)

dt2
+ R(t)

L
· dvc(t)

dt
+ vc(t)

LC(t)
= 0 (8.8)

The general solution is

vc(t) = V1 · vp1(t) · eµ1t + V2 · vp2(t) · eµ2t (8.9)

where
vp1(t + T ) = vp1(t) vp2(t + T ) = vp2(t) (8.10)

while V1 and V2 are constants depending on the boundary conditions.

It is easily seen that eq. (8.8) reduces to the usual equation of an RLC circuit if
the resistance and the capacitance are constant.

The periodic functions vp1(t) and vp2(t) can be expanded in Fourier series as

vp1(t) =
∑

n

V1,n · ejnω0t vp2(t) =
∑

n

V2,n · ejnω0t (8.11)

and so also the linearised resistance and capacitance:

R(t) = Rpassive +
∑

n

Ractive,n · ejnω0t C(t) =
∑

n

Cn · ejnω0t (8.12)

or more conveniently,

R(t)

L
=

∑
n

An · ejnω0t
1

L · C(t)
=

∑
n

Bn · ejnω0t (8.13)

Replacing the above expressions in Kirchhoff’s equation and truncating the series expan-
sions, we get

d2

(∑
n

Vn · e(µ+jnω0t)

)

dt2
+

∑
m

Am · ejmω0t ·
d

(∑
n

Vn · e(µ+jnω0t)

)

dt

+
∑
m

Bm · ejmω0t ·
∑

n

Vn · e(µ+jnω0t) = 0 (8.14)

where Am and Bm are known coefficients, and Vn and µ are unknown. This is in fact
the conversion-matrix formalism (see Section 1.4). By balancing each harmonic term
separately, we get a homogeneous system of equations in the coefficients Vn, whose
determinant must be zero for a non-trivial solution. This last condition yields the value
of the Floquet coefficients µ. In matrix form,
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(µ + jNω)2 . . . . . . . . . 0
. . . . . . . . . . . . . . .

. . . . . . µ2 . . . . . .

. . . . . . . . . . . . . . .

0 . . . . . . . . . (µ − jNω)2


 ·




VN

. . .

V0

. . .

V−N




+




A0 . . . AN . . . A2N

. . . . . . . . . . . . . . .

A−N . . . A0 . . . AN

. . . . . . . . . . . . . . .

A−2N . . . A−N . . . A0


 ·




(µ + jNω) . . . . . . . . . 0
. . . . . . . . . . . . . . .

. . . . . . µ . . . . . .

. . . . . . . . . . . . . . .

0 . . . . . . . . . (µ − jNω)




·




VN

. . .

V0

. . .

V−N


 +




B0 . . . BN . . . B2N

. . . . . . . . . . . . . . .

B−N . . . B0 . . . BN

. . . . . . . . . . . . . . .

B−2N . . . B−N . . . B0


 ·




VN

. . .

V0

. . .

V−N


 =




0
. . .

0
. . .

0


 (8.15)

In compact notation,
↔
D(µ) · �V = 0 (8.16)

whence
det(

↔
D(µ)) = 0 (8.17)

As mentioned, the solution of eq. (8.17) yields the Floquet coefficients corresponding to
the non-trivial solution. In general,

µi = αi + jβi (8.18)

where i denotes the ith solution of eq. (8.17). If at least one of the Floquet coefficients
has positive real part

αi > 0 (8.19)

then the periodic steady state is unstable; otherwise, all solutions decay to zero for t → ∞,
and the periodic steady state is stable.

It is apparent that the Floquet coefficients have the role of the Laplace parameter
s = α + jω and that the evolution of a small perturbation to a periodic regime can be
studied in the Laplace domain by means of the conversion matrix. Stating it differently,
when a small perturbation of the form

v(t) = v0 · est (8.20)

is applied to the periodic large-signal steady state, the perturbation is frequency-converted
to all the sidebands of the periodic large signal, generating components at the (complex)
frequencies jnω0 ± s, with n = 0, . . . N . Since no forcing term is present other than
the small perturbation, its free evolution is ruled by the autonomous equation system
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Z1(s) Z2(s)

Z1( jw0 − s) Z2( jw0 − s)

Z2( jNw0 + s)Z1( jNw0 + s)

Nonlinear device

Figure 8.2 The multi-frequency network for the stability analysis of the periodic large-signal
steady state of a nonlinear circuit including a two-port nonlinear active device

(8.15) or (8.16), which describes the behaviour of the time-variant, frequency-converting
linear(ised) multi-port network as in Figure 8.2, where the two-port active device is the
frequency-converting element.

If we rewrite system (8.15) or (8.16) as a function of Laplace parameter s, the
network is stable or unstable depending on the sign of the real part of the solutions s0 to
the equation

det(
↔
D(s)) = 0 (8.21)

As in a linear time-invariant oscillator, the stability criterion must be checked in
order to find out whether the perturbation to the periodic large-signal steady state will
stimulate the onset of oscillations or will decay exponentially to zero for t → ∞. If the
stability criterion for the network is satisfied, then the perturbation will decay to zero and
the large-signal periodic steady state is stable; otherwise, a growing instability with com-
plex frequency s0 = α0 + jω0 with α0 > 0 will establish itself in the circuit. The stability
criterion is similar to the one described in Chapter 5 in linear conditions; only a multi-
frequency network is involved, because of the time-dependence of the linear network.

The general stability criterion derived above, stating that a large-signal periodic
regime is stable if the determinant of the conversion matrix has no zeroes with positive
real part, can be verified by means of Nykvist’s criterion [3]. The determinant (8.21) is
computed for s = jω, and the function f (ω) = det(

↔
D(jω)) as ω goes from ω = −∞ to

ω = +∞ is plotted on the complex plane. The number of clockwise encirclements of the
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Figure 8.3 Contour in the plane of Laplace parameter (a) for the application of Nykvist’s crite-
rion (b)

origin of the complex plane gives the number of zeroes of the determinant with positive
real part (Figure 8.3).

It is not actually necessary to compute the determinant in an infinite frequency
range. First of all, it can be seen that for real signals,

f (ω) = f ∗(−ω) (8.22)

This condition ensures that the function f (ω) is symmetrical with respect to the
real axis of the complex plane and that only positive frequencies must be computed.
Moreover, given the periodicity of the large-signal steady state and assuming an infinite
number of terms in the series expansion, the curve is periodic in the frequency ω and

must be computed only from ω = 0 to ω = ω0

2
[3]. This can be intuitively explained

by considering that an instability at a frequency in the range between two harmonics of
the periodic large signal will be frequency-converted to all other sidebands, causing an
encirclement of the origin in each frequency range between two neighbouring harmonics.
In order to correctly compute the number of encirclements of the origin, it is necessary
to multiply the determinant by the exponential term

e
jπ

pmax·ω
ω0 (8.23)

where pmax is the maximum order of derivatives with respect to time within the charac-
teristic equations of the circuit elements (usually, pmax = 1). The exponential term has a
zero for s → ∞, removing the pole of the determinant [3].

Nykvist’s plot also gives an estimation of the frequency of the unstable per-
turbation. At the frequency ω1 where the determinant has zero imaginary part (see
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Figure 8.3), the phase condition of Barkhausen’s criterion is satisfied; its real part is
negative, indicating the onset of an instability. Therefore, ω1 is probably not far from
the steady-state oscillation frequency of the perturbation (see Section 5.2). It must be
remembered, however, that the nonlinear nature of the circuit does not allow any reli-
able prediction of the final state of the circuit when the perturbation grows up towards
equilibrium.

Nykvist’s criterion is very general and elegant and is suitable for implementa-
tion within general-purpose harmonic balance CAD programs. However the choice of
the maximum order of the conversion matrix is somehow critical and can give rise to
uncertainties in the stability determination. Moreover, it is an analysis-oriented method
that does not provide any hint for stable or unstable circuit design. However, when used
within a complete study of the parametric solutions of a nonlinear circuit, it turns out to
be extremely powerful and versatile.

It must be remarked here that the stability criterion based on the conversion matrix
is meaningful only when coupled to a harmonic or spectral balance algorithm. In the
case that a time-domain algorithm is used, the solution is always stable, since the algo-
rithm simulates the real-world behaviour of the circuit, even though with unavoidable
approximations. This point is further elaborated below in Section 8.3.

Nykvist’s criterion is equivalent to the criterion described in Section 5.2. In partic-
ular, it is equivalent to eq. (6.2), and following discussion, generalised to a time-variant
linear network. A design-oriented approach is now described [4]. Let us assume that an
instability must be designed at a given frequency ωosc; the embedding impedances of the
active device at the sideband frequencies nω0 ± ωosc must be chosen in such a way that
an oscillation or instability condition is fulfilled at any port of the linearised time-variant
frequency-converting network shown in Figure 8.2. We remark that changing the embed-
ding impedances at the sideband frequencies in principle does not affect the conversion
matrix that is determined only by the large-signal periodic steady-state regime, with har-
monic content at ω = nω0 only. For instance, if all but two embedding impedances are
kept fixed, the conversion matrix can be reduced to a two-port (frequency-converting)
network by standard conversion-matrix reduction methods [5]; let us select two ports at
different frequencies for the design (Figure 8.4).

The resulting network, including a two-port active device, can now be designed as
a linear oscillator at any of the two frequencies if the stability factor is less than 1. If this
is the case, the input and output stability circles can be drawn and the input and output

Z1(s) Z2( jw0 − s)Nonlinear device

Figure 8.4 The multi-frequency network in Figure 8.2 reduced to a frequency-converting two-
port network
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loads at the relevant frequencies can be chosen so to satisfy Barkhausen’s criterion or
the instability criterion as defined in Section 5.2. If the stability factor is greater than 1,
then the large-signal state must be modified, for example, by increasing the amplitude of
the large-signal source, or the bias point, or the loads at harmonic frequencies, in order
to enhance the mixing properties of the active device in large-signal regime.

If the design is performed at two ports at different frequencies, the potential stability
of the reduced network may be caused by the frequency-converting (out of diagonal) terms
in the conversion matrix, which connect the input and the output of the network; if this is
the case, the potential instability vanishes for decreasing amplitude of the large periodic
signal at ω0, since no frequency conversion takes place for a small amplitude of the local
oscillator. The instability appears only for a sufficiently large amplitude of the periodic
large signal.

In the opposite case that instability must be avoided, the loads of the two-port
network must be chosen so that the circuit is stable for all perturbation frequencies
0 < ωosc < ∞, very much as in linear amplifiers. This approach is quite general, but

requires a modified formulation in the case that ωosc = ω0

2
, because of the coincidence

of upper and lower sidebands [6].

8.3 NONLINEAR ANALYSIS, STABILITY AND BIFURCATIONS

8.3.1 Stability and Bifurcations

In this paragraph, the parametric analysis of nonlinear circuits is introduced, which allows
the detection of bifurcations and the determination of the stable and unstable regions of
operations of the circuit.

In the previous paragraph, a criterion for the determination of the stability of a
nonlinear regime has been described. The reason why this criterion has been introduced
lies in the capability of the harmonic or spectral balance algorithm to yield a solution,
even if the solution itself is not stable. A basic assumption of harmonic balance algorithms
(see Section 1.3.2) is that the signal must be expanded in Fourier series, with one or more
fundamental frequencies. If the actual solution includes any additional real or complex
basic frequency, but this is not included in the expansion, the algorithm does not detect
it. The solution, if any, is only mathematical, being physically unstable. A time-domain
analysis on the other hand will not yield any unstable solution, always preferring the
stable one. Therefore, harmonic balance analysis always requires a stability verification,
typically of the Nykvist type. However, the possibility to find unstable solutions allows
the designer to get a complete picture of the behaviour of the circuit.

A particularly illuminating approach requires the tracking of a solution as a function
of a parameter of the circuit. In many cases, the value of a bias voltage or of an element
of the circuit may determine the behaviour of the circuit, whether stable or not. By
changing the value and checking the stability properties of the solution, the operating
regions of the circuit are found. It is particularly important to detect the values of the
parameter at which a stable solution becomes unstable, or vice versa. These particular
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values are called bifurcations because two solutions are found after the bifurcation, one
of which is usually unstable.

As an example, let us consider again the shunt oscillator in Figure 5.6 in Chapter 5,
which is repeated here in Figure 8.5. Let us consider the behaviour of the solution as a
function of the parameter Gtot = Gs + Gd, that is, of the total conductance; we will first
consider the linear solution.

Kirchhoff’s equation for the circuit is

1

L
·
∫

v(t) · t + G · v(t) + C · dv(t)

dt
= 0 (8.24)

The equation always has the trivial solution vDC(t) = 0; it also has the non-trivial solution:

vosc(t) = v1 · e(α+jω)·t + v2 · e(α−jω)·t α = −Gtot

2C

ω =
√(

Gtot

2C

)2

− 1

LC
if Gtot < 2 ·

√
C

L
(8.25a)

vosc(t) = v1 · e−α1·t + v2 · e−α2·tα1 = −Gtot

2C
+

√(
Gtot

2C

)2

− 1

LC

α2 = −Gtot

2C
−

√(
Gtot

2C

)2

− 1

LC
if Gtot > 2 ·

√
C

L
(8.25b)

It easy to see that for Gtot < 0 an oscillatory solution growing in time is present; in this
case, the DC solution is not stable, which is only mathematically possible. For positive
values of the total conductance Gtot, a damped oscillatory solution or two exponentially
decaying solutions are present in the circuit, indicating the stability of the DC solution.
The values of the total conductance for which the nature of the solutions changes is

the origin (Gtot = 0); an additional change takes place for Gtot = 2 ·
√

C

L
, but no stable

solution is involved in the change, which is not observable in steady-state conditions.
The root locus can be plotted as in Figure 8.6.

Gs
GdCs Ls

v(t)

+

−

Figure 8.5 A parallel resonant circuit
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Figure 8.6 Root locus for the parallel resonant circuit in Figure 8.5

Correspondingly, the value of an electrical quantity in the circuit may be plotted as
a function of the parameter; for instance, let us assume that the amplitude of the oscillation
saturates to a finite value because of the nonlinearities of the circuit, so far neglected for
stability analysis. Therefore, a plot of the amplitude of the oscillating voltage in the
parallel resonant circuit after the oscillations have reached the equilibrium amplitude (see
Section 5.3) looks as shown in Figure 8.7.

For Gtot > 0, eq. (8.24) has only one solution, which is the stable DC solution
with vosc(t) = 0. For Gtot < 0, eq. (8.24) has two solutions, of which the DC one with
vosc(t) = 0 is only mathematical because it is unstable, while the other with vosc(t) > 0
is stable. The point Gtot = 0 is a bifurcation point. In this case, the generation of a
new branch is caused by the sign change of the real part of the complex roots of the
perturbation equation (8.24), or in other words by the onset of an autonomous oscillation;
this is called a Hopf bifurcation. Other types of bifurcation are described below.

The circuit in Figure 8.5 becomes closer to real life if we consider it as the
linearisation of a circuit including an active device, exhibiting a negative differential
(small-signal) conductance in a given bias point range. By changing the bias, the total
conductance may change sign and quench the oscillations. Therefore, the parameter that
controls the bifurcation may be the bias voltage of the active device, for example, a
tunnel diode.

Another example of control parameter is the gate bias voltage of an FET oscillator
as described in Section 5.4, and shown in Figure 8.8.

The condition for the onset of the oscillation is

A(Pin = 0) · β > 1 (8.26)
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vosc > 0

vosc = 0 vosc = 0

vosc
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Figure 8.7 Amplitude of the oscillating voltage in the parallel resonant circuit in Figure 8.5

Pf = b − PoutPout = A − Pin

Pin = Pf

bA

Figure 8.8 An oscillator based on an amplifier and a feedback network

If condition (8.26) is satisfied, the amplitude of the oscillation grows until the oscillation
condition at equilibrium is fulfilled.

A(P0) · β = 1 (8.27)

The equilibrium is reached because the transistor has a gain compression for increas-
ing operating power (see Section 5.3). The small-signal gain of the amplifier is usually
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controlled by the gate bias voltage, which therefore determines whether the condition
for the onset of the oscillations is fulfilled or not, and the equilibrium operating power
changes accordingly (Figure 8.9). The bifurcation diagram for the gate bias voltage is
shown in Figure 8.10. The gate bias voltage has the same qualitative behaviour as shown
in Figure 8.7.

Let us now treat the case in which the amplifier is biased near Class-B and the
transistor has a transconductance increase for increasing gate bias voltage; the amplifier
therefore exhibits a gain expansion at low input power, then a gain compression for
higher input power when the limiting nonlinearities (forward gate junction conduction,
breakdown, etc.) come into play (Figure 8.11).

This case lends itself to illustrating a different type of bifurcation; in the following,
reference is made to Figures 8.11 and 8.12. Let us start the analysis with a gate bias

A

A

1
b

Vgs = −3.5 V

Vgs = −3 V

Vgs = −2.5 V

Vgs = −2 V
Vgs = −1.5 V B

C

D

P1 P2 P3 Pin

Figure 8.9 Power gain of an amplifier as a function of input power for different bias gate voltages,
compared to the inverse of the attenuation of the feedback network

A
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Pin,0

−3.5 V −3 V −2.5 V −2 V −1.5 V Vgs

P3

P2

P1

Figure 8.10 Bifurcation diagram for a feedback oscillator with the gate bias voltage as a control
parameter; letters refer to points in Figure 8.9
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Figure 8.11 Power gain of an amplifier with gain expansion as a function of input power for
different bias gate voltages, compared to the inverse of the attenuation of the feedback network
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Figure 8.12 Bifurcation diagram for a feedback oscillator with the gate bias voltage as a control
parameter when the amplifier has gain expansion; letters refer to points in Figure 8.11

voltage Vgs = −3.5 V; no oscillations are present in the circuit, which remains in the
DC state. Then, let us increase the gate bias voltage; the small-signal condition for the
onset of oscillation (8.26) is fulfilled for Vgs = −2 V, corresponding to point A, where
also the equilibrium condition (8.27) is fulfilled. However, this equilibrium point is not
stable, as described in Section 5.3. After a transient, the other equilibrium point E, which
is reached is stable. If the gate bias voltage is further increased, the oscillation amplitude
increases reaching point F and beyond.

Let us now come back towards decreasing gate bias voltages while the circuit
is still oscillating. From point F, point E is first reached when Vgs = −2 V. Then, a
further decrease of the gate bias voltage does not quench the oscillation, since a stable
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equilibrium exists, that is, point D for Vgs = −2.5 V. The circuit oscillates even though
the small-signal start-up condition is not fulfilled, since the oscillation had started at
higher gate bias voltages. Continuing along the path for decreasing leads the circuit to
point C for Vgs = −3 V, where the oscillation is stopped. The path from point C to point
A through point B is only mathematical, since point B and all other points along the path
are unstable equilibrium points. The oscillator then exhibits hysteresis in its behaviour
when the gate bias voltage is swept from pinch-off towards open channel and vice versa.

The bifurcation point C is called a turning-point or direct-type bifurcation; the
bifurcation point A at which an unstable branch departs is a subcritical Hopf bifurcation,
while the Hopf bifurcation described above (see point A in Figure 8.10) that gives rise to
a stable oscillation is called supercritical. At the turning point C, coming from the point
D and continuing towards point B, a real Laplace parameter, solution of the stability
equation (8.21) becomes positive, causing the amplitude of the oscillating solution to
grow in time, reaching the stable branch with larger oscillation amplitude near point
D again.

Bifurcations may be encountered also when a parameter is changed in a periodic
large-signal steady state. A method for the determination of the stability of a periodic
steady state has been described in the previous paragraph, and a procedure for the design
of an instability has also been introduced; both are based on the conversion matrix. When
a parameter of the circuit changes in such a way that the circuit starts oscillating at a
frequency different from that of the large signal, a secondary Hopf bifurcation takes
place, either supercritical or subcritical. If the frequency of the instability is one half
that of the periodic steady state, the bifurcation is called a flip or indirect or period-
doubling bifurcation; this is normally encountered in regenerative frequency dividers (see
Section 6.4). A typical bifurcation diagram is shown in Figure 8.13, where the amplitude
of both the fundamental frequency and subharmonic frequency of order two are plotted
versus the input power of the frequency divider at fundamental frequency ω0. When

the input power is PI, the conditions for a subharmonic of order two with ω = ω0

2
to exist are fulfilled, and the two signals coexist within the circuit; the amplitude of the
output signal at fundamental frequency decreases because of the simultaneous presence of
another signal at one-half this frequency. If the subharmonic is not detected, the unstable
solution with only the fundamental-frequency signal is found; this is only a mathematical
solution, as said before. Similar plots are found for secondary Hopf bifurcations, where
the second branch represents a signal with a frequency different from the period-doubling
subharmonic. Turning points or direct-type bifurcations are also found in periodic regimes,
with similar characteristics as seen above for the stability of DC regimes. Other types of
bifurcations can be encountered in a nonlinear system [7], which are not described here,
as they are less common to be found in practical circuits.

It is not unusual that successive bifurcations are encountered along the branches of
a bifurcation diagram. This mechanism usually leads to chaotic behaviour of the circuit
for higher values of the controlling parameter. A chaotic system is not a system with
random solutions, strictly speaking: it is a system where two solutions starting from two
initial points lying very close to one another diverge from one another. It is possible to
identify the characteristics of a nonlinear system that leads to chaotic behaviour [8, 9];
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Figure 8.13 Bifurcation diagram vs input power for a regenerative frequency divider; the unstable
branch is the dotted line, while the stable branches are the dashed lines

however, this is not the object of this description, as chaotic systems have not so far
found any established application in electronic systems.

Other examples of bifurcations are described below, in Section 8.4.

8.3.2 Nonlinear Algorithms for Stability Analysis

In this paragraph, the nonlinear algorithms for the analysis of nonlinear circuits with
autonomous oscillations and external excitation are described.

Circuits where an oscillation coexists with a forced periodic state are, in principle,
quite naturally analysed by means of time-domain algorithms. No special modification is
required in the formulation of the algorithm with respect to the analysis of autonomous
circuits; however, the considerations made both for the case of two-tone analysis and for
the case of oscillator analysis hold.

It is worth repeating, however, that the time-domain analysis always yields a sta-
ble solution, that is, the solution actually present in the circuit; moreover, the transient
behaviour is correctly found. This is important, especially in the cases in which the state
actually reached by the circuit is uncertain because of the presence of possible instabilities.

Harmonic or spectral balance is another viable method for this case. Formally, the
electrical quantities are expressed as in the case of a two-tone analysis (see Chapter 1),
with the first frequency being that of the external signal source ωext and the second being
that of the oscillating signal ωosc; in this case, the second basis frequency is unknown and
must be added to the vector of the unknowns of the problem; however, the phase of the
oscillation is undetermined and can be set to zero (see Chapter 5). Therefore, the number
of unknowns is again equal to the number of equations, and the system can be solved by
a numerical procedure. The problem always has a trivial solution, where the amplitudes
of all phasors relative to the second basis frequency ωosc and of the intermodulation
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frequencies nextωext + noscωosc are zero, corresponding to absence of oscillation. This
solution can be real or can be unstable and only mathematical. With the aid of the same
procedures as those described for oscillator analysis, the trivial solution can be avoided.
For example, a port of the circuit where non-zero amplitude of the signal is expected
to appear at the oscillation frequency is selected. Then, Kirchhoff’s equation at that port
and frequency can be replaced by the Kurokawa condition:

Y (ωosc) = I (ωosc)

V (ωosc)
= 0 (8.28)

Alternatively, Kirchhoff’s equations at all nodes and frequencies can be rewritten as

IL(V nosc) + INL(V nosc)√∑
n

|Vnosc |2
= 0 (8.29)

Both the approaches remove the trivial solution, being in fact extensions of the previously
described methods.

An alternative point of view that is an extension of that illustrated in Figure 5.23
in Section 5.5 is now described [10]. A probing voltage or current at frequency ω is intro-
duced at a single port of the nonlinear circuit driven by the large signal at frequency ω0

(Figure 8.14). The nonlinear circuit is analysed by means of a non-autonomous, two-tone
harmonic or spectral balance algorithm. Frequency and amplitude of the probing signal
are swept within a suitable range; an oscillation is detected when the control quantity (the
probing current or voltage respectively) is zero, indicating that an autonomous oscillating
signal is present in the circuit and that the removal of the probing signal does not perturb
the circuit.
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Figure 8.14 Voltage and current probes for instability detection
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A filter ‘masks’ the presence of the probe at all other frequency components;
we remark that harmonics of the probing frequency ω can be present, since a two-
tone harmonic or spectral balance analysis is performed, and arbitrary amplitude of the
probing tone is accounted for. As seen in the case of oscillators, both probing amplitude
and frequency are a priori unknown; they are found from the real and imaginary parts
of either of the following complex equations:

Iprobe(Vprobe, ω) = 0 or Vprobe(Iprobe, ω) = 0 (8.30)

Quite naturally, the same problems in identifying a suitable starting point for easing
the convergence of the analysis are present in this case also.

Volterra analysis could be used for this type of analysis; however, the authors are
not aware of such an algorithm being proposed so far.

The methods described have been extensively used for the analysis of two-tone
mixed autonomous/non-autonomous circuits, and in particular, they have been used for the
determination of the bifurcation diagram of the circuits. To achieve this goal, continuation
methods are applied, in order to ‘follow’ the solution of the circuit as a parameter is
varied and to detect the qualitative changes in its behaviour at bifurcation points [11–13].
As stated above in Section 8.3.2, the harmonic balance method can also find unstable
solutions and is therefore ideal for a complete study of the behaviour of a circuit; however,
the stability of branches or solutions must be verified. In general, this is straightforwardly
done by application of Nykvist’s stability criterion as described above.

The analysis along a branch of the bifurcation diagram requires, in principle, simply
the repeated application of the methods described above, as the value of the parameter is
varied. However, problems arise both at turning points and at Hopf bifurcations. Referring
to Figure 8.12, the diagram is, in principle, computed by selecting the gate bias voltage
Vgs as a parameter, and the input power to the FET as one of the problem unknowns
that identifies the branch. However, near the turning point C, the curve becomes multi-
valued, and numerical problems arise. When the turning point is approached, therefore,
it is advantageous to switch the role of the two axes in the plot, use the amplitude of a
given frequency component at a given port (e.g. the fundamental-frequency component at
the gate port, related to the input power) as a parameter and set the gate bias voltage as a
problem unknown. This requires a modification of the analysis algorithm, as sketched in
Section 5.5. The analysis then gets through the turning point, and the whole branch can be
followed. The approaching of the turning-point bifurcation can be detected by inspection

or automatically by monitoring the quantity
dPout

dVgs
, and setting a maximum value for it.

At the turning point, the derivative becomes infinite. The two quantities can be switched
back to the original role when the derivative becomes reasonably small again.

Another problem arises when a Hopf of a flip bifurcation is encountered along a
branch. Referring to Figure 8.13 for a frequency divider-by-two, the diagram is plotted by
starting from a low input power, where the solution is quasi-linear and no subharmonic
is present; the solution is a Fourier expansion on the basis frequency ω0. When the
input power PI is reached by stepping the input power, a second branch appears on the
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diagram, representing a frequency-dividing solution, with power at frequency ω0 and also

at frequency
ω0

2
; however, the previous type of solution is also present as a continuation

of the branch, but becomes unstable. Therefore, if the bifurcation is not detected on
the way, the stable branch is overlooked and a non-physical result is found. A natural
approach consists of monitoring the stability of the solution at the stepping values of the
parameter by checking Nykvist’s plot. After PI, the solution becomes unstable, indicating
that a bifurcation is present at a lower power (Figure 8.15).

The bifurcation can be accurately located, and the frequency of the new fre-
quency component approximately determined, by repeating Nykvist’s analysis in smaller
steps around PI, until a sufficient approximation is obtained. Then, the stable branch is

followed by an analysis with a basis frequency ω = ω0

2
, which includes the frequency-

divided component.

The bifurcation can be directly located in a way similar to what has been described
above, once the frequency of the new branch is known from a Nykvist’s plot. For a flip-

type bifurcation, an analysis based on the frequency ω = ω0

2
is performed, where the

amplitude of the frequency-divided component is set to a very small value and therefore
is no more an unknown, while the amplitude of the fundamental-frequency component at
the bifurcation, which is related to the input power PI at ω0, is unknown. In this way, the
bifurcation is located with a single analysis. If the bifurcation is a Hopf-type one, where
the frequency of the autonomous oscillation is not exactly known but only approximately
determined from Nykvist’s plot (Figure 8.15), the autonomous frequency is included in
the vector of the unknowns, while the phase of the relevant phasor is arbitrarily set to a
fixed value, for example, zero. The input power at the bifurcation and the autonomous
frequency are therefore simultaneously determined. Obviously, a good starting point must
be used for all these analyses, given the critical behaviour of the circuits.

8.4 INJECTION LOCKING

In this paragraph, some circuits using injection locking of self-oscillating signals for oscil-
lation synchronisation or for frequency multiplication or division are described.

Injection locking is a nonlinear mechanism that synchronises a free oscillation in a
circuit to an externally injected signal. In a linear circuit, signals at different frequencies
are independent and coexist in the same circuit without interaction. In a nonlinear circuit,
that is, in all practical active circuits, an injected signal interacts with the nonlinear active
device, locking the free oscillation frequency to that of the external signal, provided that
some conditions are fulfilled. In case the conditions are not fulfilled, either the two signals
coexist in the circuit or the injected one suppresses the free oscillations that disappear
altogether. In the following, the basic conditions for injection locking are given, and
an overview of the typical behaviour of an injected oscillator will be given, with some
applications.

Let us consider a generic oscillating circuit similar to that in Figure 5.13 of
Chapter 5, with an added injected signal (Figure 8.16) [14–17]. Let us assume that
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Figure 8.15 Nykvist’s plots before (stable solution) and after (unstable solution) the bifurca-
tion point

eq. (5.60a) holds.
Ys + Yd = Ytot(A0, ω0) = 0 (8.31)

The network oscillates at frequency ω0 with an amplitude A0 when no signal is injected,
that is, it is a free-running oscillator. If the frequency of the injected signal is close to that
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Figure 8.16 An oscillating circuit with an injected signal

of the free-running oscillator, and therefore we assume that the amplitude and frequency
of the oscillation will be perturbed to a small extent:

A ∼= A0 + �A s ∼= �α + j (ω0 + �ω) (8.32)

we can expand the total admittance in Taylor series as in eq. (5.62):

Ytot(A, s) ∼= Ytot(A0, jω0) + ∂Ytot(A, s)

∂A

∣∣∣∣ A=A0

s=jω0

· �A + ∂Ytot(A, s)

∂s

∣∣∣∣ A=A0

s=jω0

· �s + . . .

(8.33)

Remembering eq. (8.31), Kirchhoff’s equation now reads as

Iinj +
(

∂Ytot

∂A
· �A + ∂Ytot

∂ω
· �ω

)
· (A0 + �A) = 0 (8.34)

where we have assumed steady state, where Iinj is a complex phasor and where the
derivatives are computed at the free-running amplitude and frequency. Neglecting higher-
order terms,

Iinj +
(

∂Ytot

∂A
· �A + ∂Ytot

∂ω
· �ω

)
· A0 = 0 (8.35)

from which (see Appendix A.11) we can compute the maximum locking range:

|�ω|max = |Iinj|
A0

·

∣∣∣∣∣∣∣
∂Y

∂A
∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

∣∣∣∣∣∣∣ (8.36)

This formula tells us some interesting information on the attitude of a circuit
to be locked and on the locking range. First of all, the locking range is proportional
to the amplitude of the injected signal, as intuition suggests. Then, it is apparent that
the denominator of eq. (8.36) is the same as in eq. (5.69). This term is related to the
stability of the free-running oscillator: the larger the amplitude of this term the more
stable the free-running oscillator; also, the narrower is its locking range, as intuition
suggests as well.



362 STABILITY AND INJECTION-LOCKED CIRCUITS

Similarly (see Appendix A.11), we can compute the maximum variation of the
amplitude of the oscillation in injection-locked operations:

|�A|max = |Iinj|
A0

·

∣∣∣∣∣∣∣
∂Y

∂ω
∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

∣∣∣∣∣∣∣ (8.37)

From this expression, we see that the amplitude of the locked oscillation is proportional
to the relative amplitude of the locking signal; the sensitivity is inversely proportional
to the stability of the free-running oscillation, again as intuition suggests. Therefore,
with a suitable choice of the parameters, the injection-locked oscillator can behave as
an amplifier.

As an example, let us consider a simple parallel resonant circuit with an injected
signal (Figure 8.17).

The locking range is (eq. (5.96))

|�ω|max
∼= |Iinj|

A0
·
∣∣∣∣∂Gs

∂A

∣∣∣∣ · 1

C ·
∣∣∣∣∂Gs

∂A

∣∣∣∣
= |Iinj|

A0
· 1

C
(8.38)

If we normalise the locking range to the free-running oscillation frequency, we get

|�ω|max

ω0

∼= |Iinj|
A0

· 1

ω0C
(8.39)

The larger the tank the narrower the locking range. If we plot the relative amplitude of
the locking signal as a function of the normalised locking range, we get a plot as in
Figure 8.18 (in logarithmic scale), which is typical of the locking phenomenon.

From eq. (8.37), we compute the dependence of the amplitude on the input signal:

|�A|max
∼= |Iinj|

A0
· C · 1

C ·
∣∣∣∣∂Gs

∂A

∣∣∣∣
= |Iinj|

A0
· 1∣∣∣∣∂Gs

∂A

∣∣∣∣
(8.40)

Gs Cs GdLs

v(t)
iinj(t )

+

−

Figure 8.17 A parallel resonant circuit with an injected signal
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Figure 8.18 Relative amplitude of the locking signal as a function of the normalised locking
range (in logarithmic scale)

where the derivative of the conductance of the active device with respect to the amplitude
of the oscillation can be evaluated from the plot in Figure 5.16. This equation tells us that
the smaller the sensitivity of the negative conductance to the amplitude of the applied
signal the larger the sensitivity of the oscillation to the amplitude of the locking signal.

In fact, the plot in Figure 8.18 deserves a more detailed description. First of all,
it must be remarked that eq. (8.37) is valid for small variations of the amplitude and
frequency of oscillation with respect to the free-running values. Therefore, for large
values of the input signal, the calculations do not hold any more, and different phenomena
arise. Then, we consider the behaviour of the circuit in different regions of the plot in
Figure 8.19.

As stated above, for small amplitudes of the input signal the curve as in Figure 8.18
determines the boundary between locked operations and free-running oscillations super-
imposed to the input signal. This last operating mode has, in fact, a spectrum similar
to that of a mixer, since both the free-running frequency and the input signal frequency
coexist within the (nonlinear) circuit; however, the local oscillator frequency is generated
within the circuit itself, as a free-running oscillation, and no external local oscillator is
required. This circuit is usually called self-oscillating mixer. Within the locking range,
the oscillator behaves, in fact, as an amplifier if the parameters are suitably chosen; as
such, it is used for amplification or signal generation, especially at high frequency where
a powerful but noisy oscillating device (e.g. an IMPATT diode) is frequency locked by a
cleaner but smaller signal.

If the input signal is very large, however, it saturates the nonlinear device, and no
free-running or injection-locked oscillation takes place. The instability is suppressed by
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Figure 8.19 Operating regions of an injection-locked oscillator/self-oscillating mixer

the large applied signal, and the circuit behaves as a single-tone nonlinear system. This
is true at all frequencies, provided that the input signal is large enough.

It must be said that the picture described so far is somewhat oversimplified. In fact,
transitions between the regions can show complicated behaviours, involving bifurcations
of different types [7], as those described above in Section 8.3.1; however, the general
behaviour is as described.

It is clear from what has been said that self-oscillating mixers and injection-locked
oscillators must be designed in different ways. The design of self-oscillating mixers must
be such as to minimise the influence of the input signal on the frequency of the free-
running oscillation, in order not to affect the converted frequency. This is obtained by
increasing the quality factor of the resonator; as an illustration, the locking range of a
simple parallel resonant circuit is shown in Figure 8.20. The free-running frequency is
1 GHz in both cases, but the capacitance is 10 pF in the case of the larger locking range
and C = 100 pF for the narrower locking range. In a practical application, the oscillation
frequency is stabilised by means of a DRO; a possible scheme including a series feedback
(see Chapter 5) is shown in Figure 8.21.

The transistor should be biased near Class-B in order that the input signal drives
the transistor itself in nonlinear behaviour, for efficient mixing. If suitably designed, such
a circuit can exhibit conversion gain, at the expenses of the bias supply, and minimise
the circuitry with respect to traditional mixers with external local oscillator. However,
frequency stability is somehow more problematic, as it is affected by pulling from the
input signal, even if stabilisation by means of a dielectric resonator does a lot to reduce
the problem.
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Figure 8.20 Relative amplitude of the locking signal as a function of the normalised locking
range (in logarithmic scale) for two different quality factors of the resonator
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Figure 8.21 A series-feedback scheme for a self-oscillating mixer based on a DRO

An interesting extension of the concepts described allows the design of a special
type of frequency multipliers and dividers that is based on the injection locking by
means of harmonics of the input signal and free-running oscillation. In particular, a
non-regenerative frequency divider is obtained by locking the second harmonic of the
free-running oscillator by means of the fundamental frequency of the input signal [18].
The general scheme looks somewhat similar to that of regenerative frequency dividers
(Figure 8.22).

However, the circuit oscillates at, or more precisely near,
ω0

2
when the input signal

is not present or is very small. When the amplitude and frequency of the input signal are
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Figure 8.23 Operating regions of a non-regenerative frequency divider-by-two/self-oscillating
subharmonic mixer

such that the second harmonic of the free-running oscillator is locked by the input signal,
perfect division-by-two is performed by the circuit. The relevant operating regions are
shown in Figure 8.23.

If the frequency of the input signal is close to the second harmonic of the free-
running oscillation and the amplitude is rather large, the circuit behaves as a regenerative
frequency divider rather than as an injection-locked oscillator. The nonlinearity of the
active device acts as in regenerative frequency dividers (see Section 6.4). For even higher
amplitudes of the input signal and/or greater frequency difference, the free-running oscil-
lation is suppressed, and the circuit has a single-tone behaviour at ω0. If the amplitude
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of the input signal is small or moderate but its frequency lies outside of the locking
range, the circuit behaves as a self-oscillating subharmonic mixer (see Chapter 7). In this
case, the free-running oscillation frequency must be stabilised, for example, by means
of a dielectric resonator, in order to avoid frequency pulling by the injected signal. A
qualitative scheme is shown in Figure 8.24 for a series-feedback free-running oscillator.

Similar considerations are made for non-regenerative injection-locked frequency
multipliers: in this case, the second harmonic of the input signal locks the free-running
oscillation. A qualitative picture of the operating regions is given in Figure 8.25.

An interesting feature of the injection-locking frequency multiplier is the combina-
tion of output power supplied by the (presumably) noisy oscillator and frequency control

Bandpass and
matching at win

Bandpass and
matching at 2w0±win

ZfIn(win)

Zo

Zs

DR

Figure 8.24 A qualitative scheme of a self-oscillating subharmonic mixer
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Figure 8.25 Operating regions for a non-regenerative frequency multiplier-by-two/self-oscillating
harmonic mixer
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Figure 8.26 A frequency multiplier-by-two based on a free-running oscillator at 2 ω
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Figure 8.27 A qualitative scheme of a self-oscillating harmonic mixer

by means of a cleaner locking signal at lower frequency. A qualitative scheme is shown
in Figure 8.26.

Similarly, a self-oscillating harmonic mixer has a qualitative scheme as in Figure
8.27.
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[12] V. Iglesias, A. Suárez, J.L. Garcia, ‘New technique for the determination through commercial
software of the stable-operation parameter ranges in nonlinear microwave circuits’, IEEE
Microwave Guided Wave Lett., 8(12), 424–426, 1998.
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Appendix

A.1 TRANSFORMATION IN THE FOURIER DOMAIN
OF THE LINEAR DIFFERENTIAL EQUATION

C · dv(t)

dt
+ g · v(t) + is(t) = 0 (A.1)

By Fourier transforming the equation, we get

C ·
∫ ∞

−∞
dv(t)

dt
· e−jωt · dt + g ·

∫ ∞

−∞
v(t) · e−jωt · dt +

∫ ∞

−∞
is(t) · e−jωt · dt =

= C · jω ·
∫ ∞

−∞
v(t) · e−jωt · dt + g ·

∫ ∞

−∞
v(t) · e−jωt · dt +

∫ ∞

−∞
is(t) · e−jωt · dt =

= jωC · V (ω) + g · V (ω) + Is(ω) = Y (ω) · V (ω) + Is(ω) = 0
(A.2)
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A.2 TIME-FREQUENCY TRANSFORMATIONS

Time domain
Real-valued
‘signals’ or

‘impulse responses’

Continuous Discrete

Periodic Non-
periodic

Inverse
Fourier series  

Fourier series 

Discrete Fourier
transform (DFT)  

Fourier transform 

Properties of signals and systems
in the time domain and frequency domain

ff fftttt

Continuous Discrete

Periodic Periodic PeriodicNon-
periodic

Non-
periodic

Non-
periodic

Frequency domain
Complex-valued, Hermitean

‘spectra’ or
‘transfer functions’

A.3 GENERALISED FOURIER TRANSFORMATION
FOR THE VOLTERRA SERIES EXPANSION

∫ ∞

−∞
y(t) · e−jωt · dt = · · · +

∫ ∞

−∞

∫ t

−∞

∫ t

−∞
h2(t − τ1, t − τ2) · x(τ1)

· x(τ2) · dτ2 · dτ1 · e−jωt · dt + · · ·
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= · · · +
∫ ∞

−∞

∫ t

−∞

∫ t

−∞
h2(t − τ1, t − τ2) · x(τ1) · x(τ2) · e−jω1(t−τ1)

· e−jω2(t−τ2) · e−jω1τ1 · e−jω2τ2 · ejω1t · ejω2t · dτ2 · dτ1 · e−jωt · dt + · · ·
= · · · +

∫ t

−∞

∫ t

−∞
h2(t − τ1, t − τ2) · e−j (ω1(t−τ1)+ω2(t−τ2)) · x(τ1)

· e−jω1τ1 · x(τ2) · e−jω2τ2 · dτ2 · dτ1 ·
∫ ∞

−∞
e−j (ω−ω1−ω2)t · dt + · · ·

=
∫

. . .

∫
Hn(ω1, . . . , ωn) · X(ω1) . . . , X(ωn)

· δ(ω − ω1 − . . . ωn) · dωn . . . dω1 = Y (ω) (A.3)

A.4 DISCRETE FOURIER TRANSFORM AND INVERSE
DISCRETE FOURIER TRANSFORM FOR PERIODIC
SIGNALS

A periodic signal with period T can be expanded in Fourier series:

x(t) =
∞∑

n=−∞
Xn · ejnω0t (A.4)

where the angular frequency ω0 is

ω0 = 2π

T
= 2π · f0 (A.5)

The coefficients of the Fourier series expansion are expressed as

Xn = 1

T

∫ T

0
x(t) · ejnω0tdt (A.6)

If the signal has a bandwidth limited to a maximum frequency fmax = N · f0 = N

2π
· ω0,

the series can be truncated as

x(t) =
N∑

n=−N

Xn · ejnω0t (A.7)

and by using Nykvist’s sampling theorem, the coefficients are computed as

Xn = 1

T

N∑
k=−N

x(tk) · ejnω0tk with tk = T

2N + 1
· k, k = −N, . . . , N (A.8)
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By replacing we get

Xn = 1

T

N∑
k=−N

x(tk) · ej2π
n·k

2N+1 (A.9)

In matrix form,

�x = ↔
F · �X �X = 1

T

↔
F

−1 · �x (A.10)

where

�X =




XN

·
X0

·
X−N


 ↔

F =




ejNω0t−N · ejNω0t0 · ejNω0tN

· · · · ·
1 · 1 · 1
· · · · ·

e−jNω0t−N · e−jNω0t0 · e−jNω0tN




=




e−j2π
N ·N

2N+1 . 1 . ej2π
N ·N

2N+1

· · · · ·
1 · 1 · 1
· · · · ·

ej2π
N ·N

2N+1 · 1 · e−j2π
N ·N

2N+1




�x =




x(t−N)

·
x(t0)

x(tN )


 (A.11)

If the signal is real, the coefficients at negative frequencies are the complex con-
jugate of the coefficients at positive frequencies:

X−n = X∗
n (A.12)

Only positive-frequency or negative-frequency coefficient plus the coefficient at zero
frequency are needed to completely describe the signal. The series can therefore be
written as

x(t) = X0 +
∞∑

n=1

Xn · ejnω0t +
−1∑

n=−∞
Xn · e−jnω0t = X0 +

∞∑
n=1

(Xn · ejnω0t + X∗
n · e−jnω0t )

= X0 + Re

{ ∞∑
n=1

Xn · ejnω0t

}
(A.13)

Using only real numbers, the series becomes

x(t) =
N∑

n=0

(Xr
n · cos(nω0t) − Xi

n · sin(nω0t))

= X0 +
N∑

n=1

(Xr
n · cos(nω0t) − Xi

n · sin(nω0t)) (A.14)
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since the zero-frequency coefficient X0 is real. The values of the signal x(t) at the

Nykvist’s time instants tm = T

2N + 1
· m with m = 0, . . . , 2N are written as

�x = �R · �X �X = 1

T

↔
R

−1 · �x (A.15)

where

�x =




t0
·
·
tN
·
·

t2N




↔
R =




1 cos(ω0t0) − sin(ω0t0) · · cos(Nω0t0) − sin(Nω0t0)

· · · · · · ·
· · · · · · ·
1 cos(ω0tN ) − sin(ω0tN ) · · cos(Nω0tN ) − sin(Nω0tN )

· · · · · · ·
· · · · · · ·
1 cos(ω0t2N) − sin(ω0t2N) · · cos(Nω0t2N) − sin(Nω0t2N)




�X =




X0

Xr
1

Xi
1

·
·

Xr
N

Xi
N




(A.16)

When replacing the expression for the time instants tm, the matrix
↔
R becomes

↔
R =




1 1 0 · · 1 0
· · · · · · ·
· · · · · · ·
1 cos

(
2π

2N + 1
· N

)
− sin

(
2π

2N + 1
· N

)
· · cos

(
2Nπ

2N + 1
· N

)
− sin

(
2Nπ

2N + 1
· N

)
· · · · · · ·
· · · · · · ·
1 cos

(
2π

2N + 1
· 2N

)
− sin

(
2π

2N + 1
· 2N

)
· · cos

(
2Nπ

2N + 1
· 2N

)
− sin

(
2Nπ

2N + 1
· 2N

)




(A.17)

It must be remarked that the time samples are a linear but not an analytic function of
the Fourier coefficients Xn, given the presence of conjugated terms. This requires a real
number representation and treatment of the harmonic balance system of equations. This
loss of analyticity corresponds to special features of the electrical behaviour of the circuit,
as shown in Chapters 1 and 3.

A.5 THE HARMONIC BALANCE SYSTEM OF EQUATIONS FOR
THE EXAMPLE CIRCUIT WITH N = 3

For our example circuit, the harmonic balance (Kirchhoff’s) system of equations in the
nodal formulation is described in detail for the sake of clarity. First, it can be seen that
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the nonlinear conductance ig(v) has a linear behaviour for small voltages with a nonlinear
distortion at high voltages. The two parts can be separated, and eq. (1.12) in Chapter 1
is rewritten as

ig(v) = imax · tgh

(
g · v
imax

)
= g · v + {imax · tgh

(
g · v

imax

)
− g · v} = g · v + ig,NL(v)

(A.18)

The system of equations (1.80) therefore reads, for N = 3 as

g · V0 + Ig,0 = 0

g · V r
1 − ω0C · V i

1 + I r
g,NL,1 + Is = 0

g · V i
1 − ω0C · V r

1 + I i
g,NL,1 = 0

g · V r
2 − 2ω0C · V i

2 + I r
g,2 = 0 (A.19)

g · V i
2 − 2ω0C · V r

2 + I r
g,2 = 0

g · V r
3 − 3ω0C · V i

3 + I r
g,3 = 0

g · V i
3 − 3ω0C · V r

3 + I r
g,3 = 0

or, in matrix form as
↔
Y · �V + �Ig,NL + �Is = 0 (A.20)

where

�V =




V0

V r
1

V i
1

V r
2

V i
2

V r
3

V i
3




↔
Y =




g 0 0 0 0 0 0

0 g −ω0C 0 0 0 0

0 −ω0C g 0 0 0 0

0 0 0 g −2ω0C 0 0

0 0 0 −2ω0C g 0 0

0 0 0 0 0 g −3ω0c

0 0 0 0 0 −3ω0C g




�Ig,NL =




Ig,NL,0

I r
g,NL,1

I i
g,NL,1

I r
g,NL,2

I i
g,NL,2

I r
g,NL,3

I i
g,NL,3




�Is =




0

Is

0

0

0

0

0




(A.21)
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It is apparent that the admittance matrix is block-diagonal, since the linear part does not
convert the frequency. The nonlinear current �Ig,NL is obtained by means of a discrete
Fourier transform from

�Ig,NL = 1

T

↔
R

−1 · �i (A.22a)

with

↔
R =




1 1 0 1 0 1 0
1 0.6235 −0.7818 −0.2225 −0.9749 −0.9010 −0.4339
1 −0.2225 −0.9749 −0.9010 0.4339 0.6235 0.7818
1 −0.9010 −0.4339 0.6235 0.7818 −0.2225 −0.9749
1 −0.9010 0.4339 0.6235 −0.7818 −0.2225 0.9749
1 −0.2225 0.9749 −0.9010 −0.4339 0.6235 −0.7818
1 0.6235 0.7818 −0.2225 0.9749 −0.9101 0.4339




�i =




imax · tgh

(
g · v(t0)

imax

)
− g · v(t0)

imax · tgh

(
g · v(t1)

imax

)
− g · v(t1)

imax · tgh

(
g · v(t2)

imax

)
− g · v(t2)

imax · tgh

(
g · v(t3)

imax

)
− g · v(t3)

imax · tgh

(
g · v(t4)

imax

)
− g · v(t4)

imax · tgh

(
g · v(t5)

imax

)
− g · v(t5)

imax · tgh

(
g · v(t6)

imax

)
− g · v(t6)




(A.22b)

The time samples are computed from the phasors by means of an inverse discrete Fourier
transform from

�v = ↔
R · �V (A.23)

where

�v =




v(t0)

v(t1)

v(t2)

v(t3)

v(t4)

v(t5)

v(t6)




(A.24)
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Therefore, the harmonic balance system of equations (A.20) can be written in the follow-
ing form:

↔
Y · �V + �Ig,NL + �Is = �F( �V ) = 0 (A.25)

This is a nonlinear system of equations that is solved iteratively, usually by means of
a Newton–Raphson algorithm, starting from a suitable initial guess �V (0). The analytic
Jacobian is obtained as described in next paragraph (eq. (A.30)). In particular,

G(v) = imax · tgh

(
g · v

imax

)
− g · v

G
′
(v) = ∂G(v)

∂v
= g ·


 1

cosh2

(
g · v
imax

) − 1


 (A.26)

whence

↔
G(�v)= g

·




1

cosh2

(
g · v(t0)

imax

) − 1 0 0 0 0 0 0

0
1

cosh2

(
g · v(t1)

imax

) − 1 0 0 0 0 0

0 0
1

cosh2

(
g · v(t2)

imax

) − 1 0 0 0 0

0 0 0
1

cosh2

(
g · v(t3)

imax

) − 1 0 0 0

0 0 0 0
1

cosh2

(
g · v(t5)

imax

) − 1 0 0

0 0 0 0 0
1

cosh2

(
g · v(t6)

imax

) − 1 0

0 0 0 0 0 0
1

cosh2

(
g · v(t7)

imax

) − 1




(A.27)

A.6 THE JACOBIAN MATRIX

The Jacobian matrix of the harmonic balance problem is the derivative of the equation
system with respect to the unknowns:

↔
J ( �V ) = ∂ �F( �V )

∂ �V (A.28)
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The function has the form

�F( �V ) = �IL + �INL = ↔
Y · �V + �IL,0 + �INL (A.29)

Its derivative, therefore, is

↔
J ( �V ) = ∂ �F( �V )

∂ �V = ↔
Y + ∂ �INL( �V )

∂ �V (A.30)

The derivative of the vector of the phasors of the nonlinear currents is best computed ana-
lytically if the derivative of the currents as functions of the voltages is explicitly available:

�iNL(t) = �G(�v(t))
∂�iNL(t)

∂ �v(t)
= ∂ �G(�v(t))

∂ �v(t)
= ↔

G
′
(�v(t)) (A.31)

In a practical harmonic balance algorithm, time-domain voltages and current are sampled
at a suitable set of time instants, satisfying Nykvist’s sampling theorem, and conversion
from time domain to frequency domain is performed by means of a real-valued discrete
Fourier transform and its inverse (see above). Therefore, the phasors of the nonlinear
currents are computed as shown below:

�v(t) = ↔
R · �V ∂�iNL(t)

∂ �v(t)
= ∂ �G(�v(t))

∂ �v(t)
= ↔

G
′
(�v(t))

∂ �INL( �V )

∂ �V = 1

T
· �R−1 · ∂�iNL(t)

∂ �v(t)
(A.32)

from which
∂ �INL( �V )

∂ �V = 1

T
· �R−1 · ↔

G
′
(

↔
R · �V ) (A.33)

The matrix
↔
G

′
(�v(t)) = ∂ �G(�v(t))

∂ �v(t)
is actually a block-diagonal matrix, where the diagonals

are the derivative of the function computed at the sampling time instants.

A.7 MULTI-DIMENSIONAL DISCRETE FOURIER TRANSFORM
AND INVERSE DISCRETE FOURIER TRANSFORM FOR
QUASI-PERIODIC SIGNALS

A quasi-periodic signal with two basic frequencies can be expressed as

v(t) =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2 · ej (n1ω1+n2ω2)t =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2 · ejωn1 ,n2 t (A.34)

For transformation purposes, it can be seen as a particular case of the function of two
time variables:

v(t1, t2) =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2 · ej (n1ω1t1+n2ω2t2) (A.35)
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when t1 = t2 = t . By analogy with the case of the mono-dimensional Fourier series, the
coefficients are expressed as

Vn1,n2 = 1

T1T2

N1∑
k1=−N1

N2∑
k2=−N2

v(tk1 , tk2) · ej (n1ω1tk1 +n2ω2tk2 ) (A.36)

with

tk1 = T1

2N1 + 1
· k1, k1 = −N1, . . . , N1, tk2 = T2

2N2 + 1
· k2, k2 = −N2, . . . , N2

(A.37)

By replacing, we get

Vn1,n2 = 1

T1T2

N1∑
k1=−N1

N2∑
k2=−N2

v(tk1 , tk2) · e
j2π

(
n1·k1

2N1+1 + n2·k2
2N2+1

)
(A.38)

As in the case of the mono-dimensional Fourier transform, a real signal is more effectively
represented by a real-number series; the detailed expressions are easily derived in analogy
with the single-tone case.

A.8 OVERSAMPLED DISCRETE FOURIER TRANSFORM
AND INVERSE DISCRETE FOURIER TRANSFORM
FOR QUASI-PERIODIC SIGNALS

Let us come back to the real-numbered expression of a periodic signal as stated above:

x(t) =
N∑

n=0

(Xr
n · cos(nω0t) − Xi

n · sin(nω0t))

= X0 +
N∑

n=1

(Xr
n · cos(nω0t) − Xi

n · sin(nω0t)) (A.39)

In the case of a multi-tone signal (only two tones in this example), the expression becomes

x(t) =
N1∑

n1=0

N2∑
n2=0

(Xr
n1,n2

· cos((n1ω1 + n2ω2)t) − Xi
n · sin((n1ω1 + n2ω2)t)) (A.40)

We can again write the transformation formula from coefficients of the two-tone Fourier
series expansion and time samples (discrete Fourier transform) as

�x = ↔
R · �X (A.41)
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where

�x =




t0
·
·
·
·
·

tNmax




↔
R =




1 cos(ω1t0) − sin(ω1t0) · · cos((N1ω1 + N2ω2)t0) − sin((N1ω1 + N2ω2)t0)

· · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 cos(ω1tNmax ) − sin(ω1tNmax ) · · cos((N1ω1 + N2ω2)tNmax ) − sin((N1ω1 + N2ω2)tNmax )




�X =




X0,0

Xr
1,0

Xi
1,0

·
·

Xr
N1,N2

Xi
N1,N2




(A.42)

If Nmax = N0
max = N1 · N2 + N1 + N2 + 1, the equation system is square and it can be

inverted (discrete Fourier transform):

�X = 1

T

↔
R

−1 · �x (A.43)

However, problems usually arise because of the ill-conditioning of the matrix
↔
R. A good

choice of the sampling time instants t0 . . . tNmax ensures the well-conditioning of the matrix.
A simple choice is done by the random selection of a number of time instants in excess
of the minimum number:

Nmax = m · N0
max with m = 2 ÷ 3 (A.44)

An overdetermined system results, with a rectangular matrix
↔
R. The rows of the matrix

are first orthogonalised by means of a standard Grahm–Schmidt algorithm; then, the
largest N0

maxrows are retained, while the others are discarded. The matrix
↔
R is now

square and can be inverted for discrete Fourier transformation. If the starting number
of samples is high enough and randomly selected, the matrix is usually well condi-
tioned.
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A.9 DERIVATION OF SIMPLIFIED TRANSPORT EQUATIONS

An analytical solution of Poisson’s and transport equations is available if the latter are
simplified. In particular, eq. (3.9) is deduced from eq. (3.5) by suitable assumptions. We
rewrite eq. (3.5) as

d(n · v)

dt
= n · qE

meff
− ∂(n · v2)

∂x
− 2

3
·
∂

(
n · w
meff

− n · v2

2

)
∂x

−
(

∂(n · v)

∂t

)
coll.

(A.45)

In steady state, the derivative of the velocity n · v with respect to time is zero. Then, we
assume that the derivatives with respect to space of both potential and kinetic energy can
be neglected, and express the collision term by means of a relaxation time, in analogy
with the charge recombination time. Eq.(A.45) becomes

0 = n · qE

meff
− 2

3
· w

meff

∂n

∂x
− n · v

τv
(A.46)

Introducing the current density j = n · v, the mobility µ = τv

meff
and the diffusion constant

D = 3

2
· w · τv

meff
, and rearranging eq. (A.46) we have

j = n · q · µ · E − D · ∂n

∂x
(A.47)

Equation (A.47) is eq. (3.9). If for the energy we assume the simple expression

w = 3
2 · kBT (A.48)

then we have Einstein’s relation for the diffusion constant:

D = kBT

µ
(A.49)

A.10 DETERMINATION OF THE STABILITY OF A LINEAR
NETWORK

Let a linear network with an admittance representation Y (s) have a zero of its determinant
at the complex Laplace parameter s0:

det(
↔
Y (s0)) = F(s0) = F(α0 + jω0) = 0 (A.50)

The network is unstable if
α0 > 0 (A.51)



APPENDIX 383

Let us now assume that s0 lies in the vicinity of the frequency ω1 where the phase of the
function F(jω) becomes zero, that is, where the circuit reactances computed in periodic
regime s = jω resonate (see Chapter 5). We can write

s0 = α0 + jω0 = α0 + j (ω1 + δω) (A.52)

where α0 and ∂ω are small. We can expand the determinant in Taylor series truncated at
the first order in the vicinity of s = jω1:

F(s) = F(jω1) + ∂F

∂s

∣∣∣∣
s=jω1

· ds + · · ·

= F(jω1) + ∂F

∂α

∣∣∣∣
s=jω1

· dα + ∂F

∂ω

∣∣∣∣
s=jω1

· dω + · · · (A.53)

If the complex function F(s) = Fr(α + jω) + jFi(α + jω) is analytical, the Cauchy–
Riemann condition states that

∂Fr

∂α
= ∂Fi

∂ω

∂Fr

∂ω
= −∂Fi

∂α
(A.54)

Therefore, we can write

F(s) = F(jω1) +
(

∂Fr

∂α
+ j

∂Fi

∂α

)
· dα +

(
∂Fr

∂ω
+ j

∂Fi

∂ω

)
· dω + · · · (A.55)

Since we want to compute the determinant only for s = jω, we use the Cauchy–Riemann
condition to get

F(s) = F(jω1) +
(

∂Fi

∂ω
− j

∂Fr

∂ω

)
· dα +

(
∂Fr

∂ω
+ j

∂Fi

∂ω

)
· dω + · · · =

= F(jω1) − j

(
∂Fr

∂ω
+ j

∂Fi

∂ω

)
· dα +

(
∂Fr

∂ω
+ j

∂Fi

∂ω

)
· dω + · · · =

= F(jω1) + ∂F

∂ω
· (dω − jdα) + · · ·

(A.56)

where all derivatives are computed at s = jω1. For s = s0 = α0 + jω0 = α0 +
j (ω1 + δω), the determinant F(s) is zero; therefore,

F(jω1) + ∂F

∂ω
· (δω − jα0) ∼= 0 (A.57)

We now write this equation separately for the real and imaginary part, in order to solve
for α0. Remembering that the phase, and therefore the imaginary part, of the determinant
is zero for s = jω1, we get

F(jω1) + ∂Fr

∂ω
· δω + ∂Fi

∂ω
· α0 = 0

∂Fi

∂ω
· δω − ∂Fr

∂ω
· α0 = 0

(A.58)
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From the second equation,

δω =
∂Fr

∂ω
∂Fi

∂ω

· α0 (A.59)

Replacing this in the first equation, we get

F(jω1) +




(
∂Fr

∂ω

)2

∂Fi

∂ω

+ ∂Fi

∂ω


 · α0 = F(jω1) +

((
∂Fr

∂ω

)2

+
(

∂Fi

∂ω

)2
)

∂Fi

∂ω

· α0 = 0

(A.60)

whence, expliciting the real part of the Laplace parameter we have

α0 = −F(jω1) ·
�

[
∂F (jω)

∂ω

∣∣∣∣
ω=ω1

]
∣∣∣∣∣ ∂F (jω)

∂ω

∣∣∣∣
ω=ω1

∣∣∣∣∣
2 (A.61)

A.11 DETERMINATION OF THE LOCKING RANGE OF AN
INJECTION-LOCKED OSCILLATOR

The equation determining the locking range is (eq. (8.35))

Iinj +
(

∂Ytot

∂A
· �A + ∂Ytot

∂ω
· �ω

)
· A0 = 0 (A.62)

Separating the real and imaginary parts, we get

Iinj,r +
(

∂Yr

∂A
· �A + ∂Yr

∂ω
· �ω

)
· A0 = 0 (A.63a)

Iinj,i +
(

∂Yi

∂A
· �A + ∂Yi

∂ω
· �ω

)
· A0 = 0 (A.63b)

Multiplying eq. (A.63a) by
∂Yi

∂A
and eq. (A.63b) by

∂Yr

∂A
we get

Iinj,r · ∂Yi

∂A
+

(
∂Yr

∂A

∂Yi

∂A
· �A + ∂Yr

∂ω

∂Yi

∂A
· �ω

)
· A0 = 0 (A.64a)

Iinj,i · ∂Yr

∂A
+

(
∂Yr

∂A

∂Yi

∂A
· �A + ∂Yi

∂ω

∂Yr

∂A
· �ω

)
· A0 = 0 (A.64b)
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Subtracting the two equations we get

Iinj,r · ∂Yi

∂A
− Iinj,i · ∂Yr

∂A
+

((
∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

)
· �ω

)
· A0 = 0 (A.65)

If we set

Iinj = Iinj,r + jIinj,i = |Iinj| · (cos ϕ + j sin ϕ) (A.66a)

∂Y

∂A
= ∂Yr

∂A
+ j

∂Yi

∂A
=

∣∣∣∣∂Y

∂A

∣∣∣∣ · (cos ϑ + j sin ϑ) (A.66b)

then eq. (A.65) is rewritten as

|Iinj|
A0

∣∣∣∣∂Y

∂A

∣∣∣∣ (cos ϕ · sin ϑ − sin ϕ · cos ϑ) =
((

∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

)
· �ω

)
(A.67)

or |Iinj|
A0

·
∣∣∣∣∂Y

∂A

∣∣∣∣ · cos(ϕ − ϑ) =
((

∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

)
· �ω

)
(A.68)

The maximum locking range then is

|�ω|max = |Iinj|
A0

·

∣∣∣∣∣∣∣
∂Y

∂A
∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

∣∣∣∣∣∣∣ (A.69)

Similarly, from eq. (A.64) we get

|�A|max = |Iinj|
A0

·

∣∣∣∣∣∣∣
∂Y

∂ω
∂Yr

∂ω
· ∂Yi

∂A
− ∂Yi

∂ω
· ∂Yr

∂A

∣∣∣∣∣∣∣ (A.70)
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