
AU3157_half title 6/14/05 10:36 AM Page 1

PERFORMANCE
MODELING

AND ANALYSIS
OF BLUETOOTH

NETWORKS

© 2006 by Taylor & Francis Group, LLC.

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Agent-Based Manufacturing and Control
Systems: New Agile Manufacturing
Solutions for Achieving Peak Performance
Massimo Paolucci and Roberto Sacile
ISBN: 1574443364

Curing the Patch Management Headache
Felicia M. Nicastro
ISBN: 0849328543

Cyber Crime Investigator's Field Guide,
Second Edition
Bruce Middleton
ISBN: 0849327687

Disassembly Modeling for Assembly,
Maintenance, Reuse and Recycling
A. J. D. Lambert and Surendra M. Gupta
ISBN: 1574443348

The Ethical Hack: A Framework for
Business Value Penetration Testing
James S. Tiller
ISBN: 084931609X

Fundamentals of DSL Technology
Philip Golden, Herve Dedieu,
and Krista Jacobsen
ISBN: 0849319137

The HIPAA Program Reference Handbook
Ross Leo
ISBN: 0849322111

Implementing the IT Balanced Scorecard:
Aligning IT with Corporate Strategy
Jessica Keyes
ISBN: 0849326214

Information Security Fundamentals
Thomas R. Peltier, Justin Peltier,
and John A. Blackley
ISBN: 0849319579

Information Security Management
Handbook, Fifth Edition, Volume 2
Harold F. Tipton and Micki Krause
ISBN: 0849332109

Introduction to Management
of Reverse Logistics and Closed
Loop Supply Chain Processes
Donald F. Blumberg
ISBN: 1574443607

Maximizing ROI on Software Development
Vijay Sikka
ISBN: 0849323126

Mobile Computing Handbook
Imad Mahgoub and Mohammad Ilyas
ISBN: 0849319714

MPLS for Metropolitan
Area Networks
Nam-Kee Tan
ISBN: 084932212X

Multimedia Security Handbook
Borko Furht and Darko Kirovski
ISBN: 0849327733

Network Design: Management and
Technical Perspectives, Second Edition
Teresa C. Piliouras
ISBN: 0849316081

Network Security Technologies,
Second Edition
Kwok T. Fung
ISBN: 0849330270

Outsourcing Software Development
Offshore: Making It Work
Tandy Gold
ISBN: 0849319439

Quality Management Systems:
A Handbook for Product
Development Organizations
Vivek Nanda
ISBN: 1574443526

A Practical Guide to Security
Assessments
Sudhanshu Kairab
ISBN: 0849317061

The Real-Time Enterprise
Dimitris N. Chorafas
ISBN: 0849327776

Software Testing and Continuous
Quality Improvement,
Second Edition
William E. Lewis
ISBN: 0849325242

Supply Chain Architecture:
A Blueprint for Networking the Flow
of Material, Information, and Cash
William T. Walker
ISBN: 1574443577

The Windows Serial Port
Programming Handbook
Ying Bai
ISBN: 0849322138

OTHER AUERBACH PUBLICATIONS

© 2006 by Taylor & Francis Group, LLC.

AU3157_title 6/14/05 10:34 AM Page 1

Boca Raton London New York Singapore

PERFORMANCE
MODELING

AND ANALYSIS
OF BLUETOOTH

NETWORKS

POLLING, SCHEDULING,
AND TRAFFIC CONTROL

JELENA MISIC
VOJISLAV B. MISIC

© 2006 by Taylor & Francis Group, LLC.

Published in 2006 by
Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-3157-9 (Hardcover)
International Standard Book Number-13: 978-0-8493-3157-2 (Hardcover)
Library of Congress Card Number 2005045358

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Misic, Jelena.
Performance modeling and analysis of Bluetooth networks : polling, scheduling, and traffic control

/ Jelena Misic, Vojislav B. Misic.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-3157-9 (alk. paper)
1. Bluetooth technology. 2. Network performance (Telecommunication) I. Misic, Vojislav B. II. Title

TJ5103.3.M57 2005
004.6'2—dc22 2005045358

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Publications Web site at
http://www.auerbach-publications.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

AU3157_Discl.fm Page 1 Tuesday, June 14, 2005 10:32 AM

© 2006 by Taylor & Francis Group, LLC.

www.taylorandfrancis.com
www.auerbach-publications.com
www.copyright.com

to Bratislav and Velibor

© 2006 by Taylor & Francis Group, LLC.

Contents

1 Introduction to Bluetooth
1.1 Lower layers of the architecture: RF and baseband
1.2 Higher layers of the architecture: LMP and L2CAP
1.3 Data transport and link types
1.4 Connection state and related modes
1.5 Piconet formation: inquiry and paging

2 Intra-piconet polling schemes
2.1 Bluetooth communications and intra-piconet polling
2.2 Classification of polling schemes
2.3 On segmentation and reassembly policies
2.4 Piconet model and performance indicators

3 Analysis of polling schemes
3.1 Performance of exhaustive service
3.2 Performance of 1-limited service
3.3 E-limited polling
3.4 Access and downlink delay

4 The impact of finite buffers
4.1 Queue length distribution in imbedded Markov points
4.2 Uplink queue length distribution
4.3 Experimental results

5 Admission control
5.1 Admission control based on queue stability
5.2 Admission control based on access delay
5.3 Admission control based on cycle time

6 Performance of TCP traffic
6.1 System model and related work
6.2 TCP window size
6.3 Queueing analysis of the token bucket filter
6.4 The outgoing queue at the baseband level
6.5 Performance assessment

© 2006 by Taylor & Francis Group, LLC.

7 Piconets with synchronous traffic
7.1 Why the built-in SCO links are bad
7.2 pSCO: an improved scheme for synchronous traffic
7.3 Performance of the pSCO scheme

8 Adaptive polling and predefined delay bounds
8.1 Adaptive bandwidth allocation
8.2 Adaptive polling with cycle control: the ACLS scheme
8.3 ACLS performance
8.4 Improving the performance of ACLS

9 Scatternet formation
9.1 Introduction
9.2 BSF in single-hop networks
9.3 BSF in multi-hop networks
9.4 Conclusions

10 Bridge topologies and scheduling
10.1 Bridge topologies
10.2 Approaches to bridge scheduling
10.3 Bridge scheduling in practice
10.4 The queueing model and traffic assumptions

11 Rendezvous-based bridge scheduling
11.1 MS bridge topology
11.2 Packet delays: the MS bridge cas
11.3 Performance of the MS bridge
11.4 SS bridge topology
11.5 Packet delays: the SS bridge case
11.6 Performance of the SS bridge

12 Adaptive bridge scheduling
12.1 Minimization of delays
12.2 Adaptive management: the case of the MS bridge
12.3 Adaptive management: the case of the SS bridge

13 Walk-in bridge scheduling
13.1 Scatternet model
13.2 Service, vacation, and cycle times
13.3 Calculating the packet delays
13.4 Stability considerations
13.5 Scalability

© 2006 by Taylor & Francis Group, LLC.

14 Scatternet with finite buffers
14.1 Scatternet model with finite buffers
14.2 Uplink/downlink queue length distribution in Markov points
14.3 Service, vacation, and cycle times
14.4 Blocking probability and packet delays
14.5 Simulation results

A Probability generating functions and Laplace transforms

References

© 2006 by Taylor & Francis Group, LLC.

List of Figures

1.1 Basic blocks of the Bluetooth core system architecture
1.2 Bluetooth piconet is a group of devices within the radio range that

share the physical radio channel
1.3 TDD master-slave communication in Bluetooth. Gray triangles de-

note data packets, white triangles denote empty (POLL and NULL)
packets

1.4 Generic data transport architecture
1.5 Overview of transport architecture entities and hierarchy
1.6 Connection states and modes
1.7 Pertaining to the operation of the HOLD mode
1.8 Message exchange during the negotiation of the switch to HOLD

mode
1.9 Pertaining to the operation of the SNIFF mode
1.10 Message exchange to negotiate and terminate SNIFF mode

2.1 Bluetooth piconet as a single-server, multiple-input polling system
2.2 BNEP protocol stack, adapted from [Bluetooth SIG, 2001a]
2.3 BNEP Ethernet packet segmentation
2.4 The queueing model of the Bluetooth piconet

3.1 Timing diagram of exhaustive polling
3.2 Pertaining to the concept of server vacation
3.3 Timing diagram of 1-limited polling
3.4 End-to-end delay (in units of T = 625µs) vs. packet burst arrival

rate λ and mean burst size B
3.5 Performance of exhaustive and 1-limited polling schemes
3.6 Timing diagram of E-limited polling
3.7 Probabilities that the slave uplink queue contains 0, 1, or 2 packets

upon return from the vacation as functions of the total piconet load
and variation of load among the slaves

3.8 Mean cycle time C as a function of the total piconet load and varia-
tion of load among the slaves

3.9 Analytical and simulation results for access and end-to-end delay as
functions of burst arrival rate and mean burst size.

3.10 Packet delays as functions of mean burst size and the polling param-
eter M

© 2006 by Taylor & Francis Group, LLC.

3.11 Optimal value of M as the function of mean burst size B

4.1 Queueing model of a single piconet with finite buffers
4.2 Blocking probability at the master buffer as the function of piconet

load ρ
4.3 Performance of the finite slave uplink buffer as the function of pi-

conet load ρ
4.4 Performance of the finite slave uplink buffer as the function of mean

burst size B
4.5 Blocking probability at the master buffer as the function of mean

burst size B
4.6 Performance of finite slave uplink buffer as the function of the polling

parameter M
4.7 Performance of finite master buffer as the function of the polling

parameter M

5.1 Pertaining to the operation of the QS admission control scheme
5.2 Pertaining to the operation of AD admission control scheme
5.3 Pertaining to the operation of CT admission control scheme

6.1 Architectural blocks of the Bluetooth L2CAP layer
6.2 The path of the TCP segment and its acknowledgment.
6.3 Characteristics of TCP window size
6.4 Pertaining to the analysis of the token bucket filter
6.5 TCP performance as the function of the buffer size S, in the piconet

with two slaves
6.6 TCP performance as the function of the polling parameter M , in the

piconet with two slaves
6.7 TCP performance as the function of token rate, in the piconet with

two slaves
6.8 TCP performance as the function of the buffer size S, in the piconet

with seven slaves
6.9 TCP performance as functions of token rate and the polling parame-

ter M , in the piconet with seven slaves

7.1 Timing of SCO communications with different packet types
7.2 Timing of pseudo-SCO links
7.3 Mean access delay for asynchronous traffic in the presence of pSCO

connections as the function of M and B
7.4 Optimal value of M as a function of the mean burst size B
7.5 End-to-end delay for ACL traffic in the presence of pSCO connec-

tions with DH3 packets, as the function of M and B.
7.6 Maximum achievable data rate (in bps) under E-limited service with

M = 2, as a function of polling interval and mean burst size

© 2006 by Taylor & Francis Group, LLC.

8.1 Markov chains that describe adaptive bandwidth allocation
8.2 Delay improvement due to adaptability with respect to E-limited

polling with M = 3
8.3 Pertaining to the choice of reference slave
8.4 Mean end-to-end packet delay as a function of cycle time C and

mean burst size, scenario 1
8.5 Cycle time distribution under E-limited service and ACLS, scenario

1
8.6 Mean end-to-end packet delay in a piconet with asymmetric traffic,

scenario 2
8.7 Performance of the piconet with both asynchronous and synchronous

traffic, scenario 3
8.8 Mean end-to-end packet delay of ACLS with LDQF, scenario 1
8.9 Mean end-to-end delay under ACLS with LDQF for asymmetric traf-

fic, scenario 2
8.10 Delay time distribution for CBR traffic under ACLS with and with-

out LDQF, scenario 3

9.1 A scatternet consisting of four piconets
9.2 Creation of disconnected scatternets in several algorithms .
9.3 The BlueMesh scatternet formation algorithm
9.4 The second iteration of MIS based BSF
9.5 Unit disk graph (U DG), RN G and GG of a set of nodes
9.6 Yao graph degree limitation for p = 7

10.1 The operation of the MS bridge
10.2 The operation of the SS bridge
10.3 Additional synchronization intervals when switching from one pi-

conet to another
10.4 Rendezvous-based bridge scheduling in the scatternet with two pi-

conets linked through a SS bridge
10.5 Walk-in bridge scheduling in the scatternet with two piconets linked

through a SS bridge
10.6 Bridge scheduling in the scatternet with two piconets linked through

an MS bridge
10.7 Portion of the queueing model of a scatternet – one piconet linked to

one bridge
10.8 Portion of the queueing model of a scatternet – a bridge connecting

three piconets

11.1 Delay components in the scatternet with an MS bridge
11.2 MS bridge: delays as functions of mean packet burst length under

constant aggregate packet arrival rate
11.3 MS bridge: mean access delay as a function of burst arrival rate and

time between bridge exchanges T1

© 2006 by Taylor & Francis Group, LLC.

11.4 MS bridge: mean end-to-end delay for non-local traffic as a function
of burst arrival rate and time between bridge exchanges T1

11.5 MS bridge: mean end-to-end delay for non-local traffic as a function
of traffic locality, Pl , and time between bridge exchanges, T1

11.6 MS bridge: ratios of mean delays for exhaustive vs. 1-limited polling
as functions of burst arrival rate and time between bridge exchanges,
T1 – simulation results only

11.7 Components of non-local end-to-end delays in the scatternet with an
SS bridge

11.8 SS bridge: delays as functions of mean packet burst length, under
constant aggregate packet arrival rate

11.9 SS bridge: mean access delay as a function of burst arrival rate,
λu1 = λ, and time between bridge exchanges, T1

11.10SS bridge: mean end-to-end delay for non-local traffic as a function
of burst arrival rate, λu1 = λ, and time between bridge exchanges,
T1

11.11SS bridge: mean end-to-end delay for non-local traffic as a function
of traffic locality, Pl , and time between bridge exchanges, T1

11.12SS bridge: ratio of delays in exhaustive vs. 1-limited polling as a
function of burst arrival rate and time between bridge switches, T1 –
simulation results only

12.1 Minimizing end-to-end delays in the scatternet with an SS bridge
12.2 Loci of T1 values that minimize end-to-end delay in the scatternet

with an MS bridge
12.3 Adaptive minimization of non-local delays – simulation results for

the MS bridge topology under LAMS scheduling
12.4 End-to-end packet delays in the SS bridge topology under fixed T1

scheduling: hand-picked minima
12.5 End-to-end packet delays in the SS bridge topology, as functions of

burst arrival rate and traffic locality, under LASS scheduling
12.6 Large piconet load variations in the SS bridge topology: comparing

LASS with fixed T1 scheduling
12.7 Large bridge load variations in the SS bridge topology: comparing

LASS with fixed T1 scheduling

13.1 Portion of the scatternet under consideration, containing two piconets
joined with a single bridge

13.2 Pertaining to the bridge synchronization upon joining the piconet
with a total of six slaves, and bridge is slave no. 1

13.3 Simple scatternet with three piconets
13.4 Mean cycle time vs. total piconet load
13.5 Mean bridge residence time vs. total piconet load

© 2006 by Taylor & Francis Group, LLC.

13.6 Probabilities that the slave uplink queue contains no packets upon re-
turn from the vacation vs. total piconet load and load variation among
the slaves

13.7 Mean access delay in piconet 2 for Mb1 = Mb2 = 6, Ms = 3, and
B = 3

13.8 Stability conditions as functions of traffic locality Pl , with Mb = 12.
13.9 Stability conditions as the function of traffic locality Pl and the value

of Mb

13.10Pertaining to the stability of the scatternet under walk-in scheduling.
13.11Pertaining to scalability of walk-in scheduling: topology 1
13.12Pertaining to scalability of walk-in scheduling: topology 2

14.1 Part of the scatternet: two piconets linked through a single bridge
14.2 Pertaining to Bluetooth scatternet operation
14.3 Topology of the scatternet under consideration
14.4 Slave buffer blocking rate with fixed Ms = 5
14.5 Slave buffer blocking rate with fixed K = 1
14.6 Bridge buffer blocking probability with fixed Mb = 12
14.7 Bridge buffer blocking probability at fixed K = 1
14.8 End-to-end delay for local traffic with fixed Ms = 5
14.9 End-to-end delay for non-local traffic with fixed K = 1
14.10Throughput in the example scatternet

© 2006 by Taylor & Francis Group, LLC.

List of Tables

1.1 ACL packet types
1.2 SCO packet types
1.3 Packet types for communication over an eSCO link

2.1 A comparison of non-adaptive piconet polling schemes
2.2 A comparison of adaptive piconet polling schemes

5.1 Slave load and activation sequence in the simulation of the QS ad-
mission scheme

5.2 Slave load and activation sequence in the simulation data of the AD
and CT admission schemes

7.1 Packet types for communication over an ACL link.
7.2 Packet types for communication over an SCO link.
7.3 Packet types and polling intervals for 64kbps pSCO mode connec-

tions

© 2006 by Taylor & Francis Group, LLC.

Preface

Bluetooth is a recent wireless communication technology specifically intended for
short range ad hoc networking. It was initially envisaged as a simple cable re-
placement technology to connect various mobile, portable, and fixed devices such
as PDAs, mobile phones, laptops, and printers, but its use has soon spread to in-
clude various general purpose networking tasks, and a number of Bluetooth-enabled
devices have appeared on the market. In order to facilitate the development and ac-
ceptance of Bluetooth devices, systems, and applications, the development and pro-
motion of Bluetooth technology has been coordinated through the Bluetooth Special
Interest Group (SIG). The Bluetooth SIG was founded in 1999 by Agere Systems,
IBM, Intel, Microsoft, Motorola, Nokia, and Toshiba, and subsequently joined by
other companies. The SIG has issued a series of specifications that describe the op-
eration of Bluetooth devices and networks in detail. Version 1.1 of the specification
has been adopted in 2001 [Bluetooth SIG, 2001b], version 1.2 in 2003 [Bluetooth
SIG, 2003a], and the most recent one, version 2.0, has just been adopted [Bluetooth
SIG, 2004] as we write this book. Furthermore, the IEEE Wireless Personal Area
Network (WPAN) Working Group has adopted the Bluetooth specification, with
slight modifications, as the IEEE standard for medium rate WPANs under the desig-
nation 802.15.1.

Thanks to this wealth of information, the characteristics of Bluetooth communi-
cations and the operation of Bluetooth devices may appear to be well defined and
well understood. Well defined they certainly are, but understood they are to a much
lesser degree. First, detailed performance analysis of Bluetooth networks, as is the
case with other networks, is certainly beyond the scope of relevant specifications.
Second, while the specification goes into great detail to explain some details of Blue-
tooth operation, some of the important issues are mentioned only casually, or not at
all. Most notable among such issues are the intra-piconet polling scheme—the man-
ner in which the piconet master should poll its slaves—and details of the operation of
Bluetooth scatternets, in particular the scheduling of shared devices – bridges. All of
these are vital factors that affect both the design of Bluetooth devices-hardware, soft-
ware, and firmware – but also the design, operation, and performance of Bluetooth
networks. As a result, the developers as well as users are left with a number of open
issues but little guidance about the possible answers and their relative advantages
and disadvantages.

It should come as no surprise, then, that a number of researchers have focused their
attention on the performance analysis of Bluetooth networks and on algorithms that
complement the official Bluetooth specification, striving toward better understanding

© 2006 by Taylor & Francis Group, LLC.

of the operation of Bluetooth networks and, consequently, toward even wider accep-
tance for Bluetooth devices and applications. Performance of Bluetooth networks
has also been the focus of our research since late 2001, and this book presents the
summary of the work that we have done in this area in the last three years.

What the book is about, and what it’s not about

Before we say what this book contains, let us state what it does not contain. The book
is not intended to describe all the details of Bluetooth technology; the specifications
should be used to that effect. The book is also not intended to describe possible
usage scenarios of Bluetooth-enabled devices in various networking environments;
there are several books that deal with those topics. Finally, the book does not deal
with issues related to Bluetooth communications at the physical layer; quite a few
research papers describe the interaction of Bluetooth networks with one another, as
well as with other wireless networks operating in the same frequency band.

In most succinct terms, the goal of this book is twofold: first, to provide insights
into the performance of Bluetooth networks using a dual foundation of rigorous
analytical approach based on queueing theory and discrete event simulation. Sec-
ond, to propose and validate solutions for a number of important issues that are not
prescribed by the official Bluetooth specifications. In this manner, the readers—
developers and researchers alike—can enrich their knowledge about performance
related issues in Bluetooth, and thus be better equipped to solve the problems they
might encounter in the design, deployment, and operation of Bluetooth networks.

The book consists of fourteen chapters. It begins with an introductory treatment of
Bluetooth data communications; while far from being exhaustive—version 2.0 of the
Bluetooth specification has over 1,200 pages!—the information presented in Chap-
ter 1 should equip the readers with basic tenets of Bluetooth data communications
and allow them to easily follow subsequent discussions.

The remainder of the book consists of two parts. The first part is devoted to per-
formance analysis of simple piconets, and it starts with an overview of intra-piconet
polling techniques in Chapter 2. The queueing theoretic analysis of exhaustive, 1-
limited, and E-limited polling is presented in Chapter 3. This analysis assumes that
the device buffers are of infinite size; the impact of finite device buffers on per-
formance is dealt with in Chapter 4. The next two Chapters discuss the issue of
admission control and the performance of TCP traffic in Bluetooth piconets. Fi-
nally, Chapters 7 and 8 discuss the performance of two polling schemes specifically
designed to provide tight delay bounds required by voice and multimedia traffic.

The second part of the book is devoted to Bluetooth scatternets. Chapter 9 presents
an overview of the many scatternet formation algorithms available, while Chapter 10
discusses issues related to scatternet operation and introduces the problem of bridge
scheduling. The next three Chapters present in more detail and analyze the three
different approaches to bridge scheduling: rendezvous-based, adaptive, and walk-in,
respectively. As in the first part, these analyses are based on the assumption that
device buffers are of infinite size. Chapter 14 analyzes the impact of finite device
buffers on the performance of scatternets operating under walk-in bridge scheduling.

© 2006 by Taylor & Francis Group, LLC.

A short Appendix presents the definitions and notation related to probability gen-
erating functions and Laplace-Stieltjes transforms thereof. An extensive bibliogra-
phy is also provided. While we have done our best to make sure that none of the
important contributions are left out, we certainly make no claim as to its exhaustive-
ness.

Acknowledgments

Books like this cannot be written without the help, assistance, and encouragement of
others, and these contributions should be duly acknowledged. But before doing so,
we want to express our indebtedness to each other. Neither of us could, or would,
have written this book alone, and the book is indeed a result of our collaborative work
and complementary expertise. Our collaboration was not as smooth a process as it
may appear, and few decisions have been made without a thorough discussion or, on
occasions, a heated debate. Ideas were constantly proposed, questioned, refined, and
validated; some of them were sound enough to make it through to the final version,
many much less so and hence left out. Yet we have learned through the process, and
the experience thus gained has been invaluable for both of us.

We are deeply indebted to Professor Ivan Stojmenovic and Professor Nejib Za-
guia from University of Ottawa, who have kindly agreed to share their expertise on
scatternet formation algorithms in the form of Chapter 9.

We are also indebted to Mr. Ka Lok Chan for the numerous simulation experiments
on piconets and scatternets, done both before and after his MSc thesis work at the
Hong Kong University of Science and Technology. Throughout our collaboration,
Mr. Chan has always been s source of healthy criticism, and his suggestions and
comments have helped improve many facets of the work presented in this book.

We also thank Mr. Eric W. S. Ko, who has implemented the ACLS scheme and
related simulations as part of his MSc thesis at the Hong Kong University of Science
and Technology, and Mr. G. R. Reddy, who has conducted the simulations of the
scatternet with finite buffers while working on his MSc thesis at the University of
Manitoba.

We wish to express our heartfelt gratitude to Professor Attahiru S. Alfa and Pro-
fessor Terrence Todd, who have found time to read the book and make suggestions
that led to improvements to both the material itself and the presentation thereof.

Those contributions notwithstanding, this book has been devised and written by us
only, and we remain responsible for any errors that you may find in the final version.

Last but not least, we would like to thank Bratislav and Velibor who have had
the patience to endure our absence, logical and (quite often) physical, through many
hours devoted to the work presented in this book.

In Winnipeg, November 2004 Authors

© 2006 by Taylor & Francis Group, LLC.

1

Introduction to Bluetooth

In this Chapter we will describe the basic operation of the Bluetooth core system
and outline the most important characteristics of Bluetooth communications, in par-
ticular those that are relevant to our main goal – performance analysis of Bluetooth
networks. It may be interesting to note that the Bluetooth specification has undergone
a few major updates, the most recent official one being, at the time of this writing,
version 1.2 [Bluetooth SIG, 2003b; Bluetooth SIG, 2003c; Bluetooth SIG, 2003d].
As the material in this Chapter is mostly based on this specification, explicit refer-
ences to it will be omitted, except where necessary to explain the differences from the
earlier version 1.1 [Bluetooth SIG, 2001b]. Still earlier versions of the specification
are not referred to in this book. An updated version of the specification is currently
in the process of being adopted by the Bluetooth SIG [Bluetooth SIG, 2004].

The Bluetooth core system on a host device consists of the blocks shown in
Fig. 1.1; together, they provide services to support connection of different devices
and exchange of application data over short range wireless links. The Host-Controller
Interface, or HCI, is a command interface to the baseband controller and link man-
ager that provides a uniform method of accessing the Bluetooth baseband capabili-
ties.

1.1 Lower layers of the architecture: RF and baseband

The RF unit performs the functions corresponding to the PHY (physical layer) of
the IEEE 802.11 protocol stack [IEEE, 2001]. It operates in the unlicensed ISM
(Industrial, Scientific and Medical) band at 2.4 GHz. A total of 79 RF frequencies are
used in the ISM band. The RF transceiver hops through the available channels in a
pseudo-random fashion, which is known as Frequency Hopping Spread Spectrum, or
FHSS. This technique reduces the interference from and to other systems operating
in the ISM band, possibly including other Bluetooth systems as well.

The physical radio channel is shared by a group of devices that are synchronized
to a common clock and hopping sequence. The device that provides the synchro-
nization reference – the common clock and the hopping sequence – is known as the
master. All other devices are known as slaves. This group of devices, master and its
slaves, is referred to as the piconet, and it is the fundamental communication arrange-
ment in Bluetooth. Due to clock drift, periodic communication between the master

© 2006 by Taylor & Francis Group, LLC.

Baseband layer

Radio layer

Link Manager layer

L2CAP layer

Link Controller

RF unit

Baseband Resource
Manager

Device
Manager

Link Manager

L2CAP
Resource
Manager

Channel
Manager

Host-to-Controller
Interface (HCI)

Synchronous (CBR)
traffic

Asynchronous
traffic

Radio channel

FIGURE 1.1
Basic blocks of the Bluetooth core system architecture.

and the slaves may be necessary to keep the slaves synchronized to the master, even
in the absence of actual data to exchange.

The pseudo-random hopping sequence, which is sometimes referred to as the
physical channel, is algorithmically derived from the device address of the piconet
master. Thanks to the frequency hopping technique, a number of piconets may ex-
ist and operate in the same physical space with minimum interference, as shown in
Fig. 1.2. Note that the black and white circles depict piconet masters and their slaves,
respectively, while lines represent master-slave links.

We note that version 1.2 of the Bluetooth specification relaxes the requirements
on the hopping sequence. In particular, the slave can respond at the same frequency
at which the master has addressed it, and some frequencies may be explicitly ex-
cluded from the sequence in order to reduce interference to and/or from other devices
operating in the vicinity. The modified sequence is known as an adapted channel
[Bluetooth SIG, 2003b].

All communications in the piconet take place under the control of the piconet
master. Downlink transmissions are those sent from the master to a slave, while

© 2006 by Taylor & Francis Group, LLC.

piconet 1

piconet 2

piconet 3

FIGURE 1.2
Bluetooth piconet is a group of devices within the radio range that share the physical
radio channel.

uplink transmissions are those sent in the opposite direction, i.e., from a slave to the
master. The action of the master sending a packet to the slave will be referred to
as polling, since it is analogous to the concept of polling used in queueing theory
[Kleinrock, 1972; Takagi, 1991].

The basic time unit is known as a slot, the duration of which is T = 625µs;
consequently, there are exactly 1600 slots per second. Data is transmitted in pack-
ets that take one, three, or five slots; packets that contain management information
from higher layers, such as Link Manager (LM) layer and Logical Link Control and
Adaptation Protocol (L2CAP) layer, also take one slot each.

If the master needs to poll a slave, but has no actual data or management informa-
tion to send, it will send an empty packet. Such packets are labeled as POLL packets
[Bluetooth SIG, 2003b]. If the slave has been polled by the master and has to re-
spond, but has no data or administrative information to send back to the master, it
will send an empty packet. Such packets are referred to as NULL packets [Bluetooth
SIG, 2003b].

Since the same hopping sequence is used for both transmission and reception of
packets, simultaneous transmission and reception (i.e., duplex operation) is not pos-
sible. Instead, the master and the slaves access the channel in alternate slots. A
downlink packet and the subsequent uplink packet are commonly referred to as a
frame. By default, all master transmissions start in even-numbered slots, whilst all
slave transmissions start in odd-numbered slots. Therefore, the master and the ad-
dressed slave use the same communication channel, albeit not at the same time. This
communication mechanism is known as Time Division Duplex, or TDD for short; it
is schematically shown in Fig. 1.3.

It should be noted that the RF frequency does not change during the transmission
of a single packet, even for three- or five-slot packets. The transmission in the next

© 2006 by Taylor & Francis Group, LLC.

time (in units of T=0.625ms)

master

slave 1

slave 2

slave 3

0 1 2 3 4 5 6 7 8 9 10 11 12

radio
channel

FIGURE 1.3
TDD master-slave communication in Bluetooth. Gray triangles denote data packets,
white triangles denote empty (POLL and NULL) packets.

time slot uses the next frequency from the original hopping sequence (i.e., the two or
four frequencies from the original sequence are simply skipped).

The master should poll each slave at least once in every Tpoll time slots. The
duration of this interval, known as the poll interval, is set by the Link Manager. This
constraint aims to provide a rudimentary Quality of Service capability.

1.2 Higher layers of the architecture: LMP and L2CAP

The Logical Link Control and Adaptation Layer (L2CAP) contains two main archi-
tectural blocks. The Channel Manager is responsible for creating, managing, and
destroying L2CAP channels for the transport of service protocols and application
data streams [Bluetooth SIG, 2003a]. Channel Managers at different communicat-
ing devices create the L2CAP channels, through which the applications executing on
those devices communicate. Furthermore, it collaborates with the local Link Man-
ager to create new logical links if necessary and configure them accordingly.

The L2CAP Resource Manager deals with the ordering of submission of protocol
data units (PDUs) to the baseband, and to monitor the inter-channel scheduling so
as to ensure that QoS commitments are respected. Optionally, it may perform traffic
shaping or policing [Bertsekas and Gallager, 1991] to make sure that the applications
submitting L2CAP service data units (SDUs) conform to the allocated QoS settings.

The Device manager controls the behavior of the Bluetooth device, including op-
erations that are not directly related to data transport. In particular, it is responsible
for participation in the inquiry and paging procedures which are described in Sec-
tion 1.5 below. It may request access to the transport medium when it is necessary to

© 2006 by Taylor & Francis Group, LLC.

L2CAP
channels

logical transports

logical links

physical transports

physical links

L2CAP
layer

Logical
layer

Physical
layer

FIGURE 1.4
Generic data transport architecture, adapted from [Bluetooth SIG, 2003c].

carry out the desired function.
The Link Manager is responsible for creation, modification, and release of logical

links and the associated logical transports, when necessary. Similar to the L2CAP
Channel Manager, it collaborates with the Link Manager at other device (or devices)
in order to create LMP links through which the applications executing on those de-
vices communicate. It is also responsible for monitoring and control of logical link
and transport attributes such as the enabling of encryption, the adapting of transmit
power, or the adjusting of QoS settings.

The Resource Manager in the Baseband layer manages access to the radio medium,
including a scheduler that allocates time on the physical channels to all the entities
that need to access it.

The Link Controller is responsible for the encoding and decoding of Bluetooth
packets according to the parameters of the physical channel, logical transport, and
logical link. It also carries out signalling tasks for the link control protocol, which
includes flow control as well as acknowledgment and retransmission requests.

Finally, the RF block is responsible for transforming data streams to and from the
physical channel, under the control of appropriate entities in the baseband block.

1.3 Data transport and link types

Overall, the Bluetooth data transport architecture follows a layered approach schemat-
ically depicted in Fig. 1.4. In this architecture, L2CAP channels provide logical
connections at the L2CAP level between two devices serving a single application
or a higher-layer protocol. Both logical and physical layers are subdivided into the
transport and link sublayers, for reasons of efficiency and legacy compatibility.

Logical links identify independent data transport services to clients of the Blue-
tooth system, while logical transports represent common features shared among

© 2006 by Taylor & Francis Group, LLC.

those links, such as acknowledgment protocol and link identifiers.

Physical link is a baseband level connection between two devices established
through the paging.

Finally, a physical channel is the sequence of RF carrier frequencies shared by two
or more devices. A Bluetooth device can use only one of the channels at any given
time; if concurrent operations over multiple channels is necessary, the device must
use time division multiplexing between the channels.

A number of logical and physical links and transports with different purposes exist,
as shown in the simplified hierarchy depicted in Fig. 1.5. Logical transports can be
used to carry packet-structured user data, control data from the Link Manager layer,
and stream-oriented synchronous data such as voice.

Inquiry scan
channel

Page scan
channel

adaptedbasic

active
physical link

ACL SCO ESCO

Control
(LMP)

User
(L2CAP) StreamLogical

links

Unicast Broadcast

Active Slave
Broadcast

L2CAP
channels

Logical
transports

Physical
links

Physical
channels

Synchronous
(CBR) traffic

Asynchronous traffic

piconet channel

FIGURE 1.5
Overview of transport architecture entities and hierarchy, adapted from [Bluetooth
SIG, 2003c].

A more detailed description of these concepts may be found in the Bluetooth
specifications; where there are differences between versions, our presentation has
followed the more recent one.

In the following, we will describe the most important logical transport types, ACL,

© 2006 by Taylor & Francis Group, LLC.

SCO, and eSCO. For brevity, these will be referred to as ‘links’ despite the subtle
difference between the two concepts, as explained above.

ACL logical link

Once the devices enter the master-slave relationship through the inquiry and paging
procedures (described in more detail in Section 1.5 below), a so-called Asynchronous
Connectionless (ACL) link is established by default between the two. As part of
the paging procedure, the master assigns one of the seven available active member
addresses (AM ADDR) to the slave, which is then referred to as an active slave.

Being an active slave with the ACL transport essentially means being synchro-
nized to the physical channel defined by the piconet master – the slave keeps its
hopping sequence and the phase of its clock synchronized to those of the piconet
master. In this manner, the slave is able to follow the hopping sequence of that par-
ticular piconet, to listen to and receive all transmissions from the master, and to talk
back to the master when polled. Of course, the slave decodes only the transmissions
explicitly addressed to it (i.e., those in which AM ADDR matches the value assigned
to that slave), as well as broadcasts targeting active slaves. All other transmissions
from the master are ignored.

The master, on the other hand, is free to poll the slave at will, or perhaps not poll
it for a prolonged period of time (but shorter than Tpoll). All active slaves listen
to downlink transmissions from the master. The slave may reply with an uplink
transmission of its own if and only if it has been explicitly polled by the master, and
only immediately after being polled by the master.

TABLE 1.1
ACL packet types.

Type Slot(s) Payload FEC Asymmetric data rate
(bytes) (kbps total)

DM1 1 17 2/3 217.6
DH1 1 27 none 341.6
DM3 3 121 2/3 516.2
DH3 3 183 none 692.0
DM5 5 224 2/3 514.1
DH5 5 339 none 780.8

The ACL link may use different types of packets, with different lengths (1, 3, or
5 slots) and different information-carrying capacity. CRC protection allows the re-
ceiver to detect packet damage due to interference and/or noise, and request retrans-
mission if necessary. Some types of packets offer forward error correction (FEC) as
well. The available packet types for ACL traffic are listed in Table 1.1.

© 2006 by Taylor & Francis Group, LLC.

The maximum packet length, expressed in slots of the Bluetooth clock, is a nego-
tiable parameter. Each ACL connection created after page, page scan, role switch, or
unpark operations, initially has the maximum packet length set to one slot by default.
The value of maximum packet length can then be changed through negotiation. This
provision is due to the fact that, according to the specification, Bluetooth devices are
not required to support packets of three- and five-slots [Bluetooth SIG, 2001b], and
this restriction is not likely to be removed for reasons of backward compatibility.

SCO link

Once an ACL link to a slave is in place, the master can establish a Synchronous
Connection-Oriented (SCO) link to that slave. This is accomplished by sending an
appropriate setup message through its Link Manager. SCO links are specifically de-
signed to support synchronous, constant bit rate (CBR) traffic such as voice. They
use different types of packets, known as HV-type packets, the characteristics of
which are listed in Table 1.2; the packet type to be used is determined at the time
the SCO link is established. HV-type packets are not protected with a CRC, and
there can be no retransmission in case a packet is damaged. (Note that, in voice
communications, packet loss is generally preferred to packet delays.)

TABLE 1.2
SCO packet types.

Type Payload Speech duration FEC SCO interval
(bytes) (ms) (slots)

HV1 10 1.25 1/3 (repetition) 2
HV2 20 2.5 2/3 (polynomial) 4
HV3 30 3.75 none 6

In order to satisfy the bandwidth constraints for the transmission of one 64kbps
voice channel, a strict timing scheme has to be observed. This means that consecutive
time slots are reserved for the SCO link, with even-numbered slots assigned to the
master, and the odd-numbered slots to the slave. However, either participant may
choose to skip the transmission in its assigned slot if there is no actual data to send;
and the slave can send data even if the master has skipped its slot, which differs from
the strict TDD protocol that must be followed in ACL links. However, the master
may send single-slot ACL packets of the DM1 type in its reserved slot, but this packet
must be addressed to the slave with the SCO link for which the slot is reserved. In
this case, the slave is allowed to respond with a single-slot ACL packet, rather than
the HV-type packet normally used in this slot.

More than one SCO link may be established between the master and any given
slave. At any given time, at most three SCO links with packets of appropriate type
can be active in the piconet, for reasons that should be obvious.

© 2006 by Taylor & Francis Group, LLC.

eSCO link

From version 1.2 of the Bluetooth specification on, another type of logical transport
suitable for the transmission of stream-oriented, isochronous (CBR) traffic has been
introduced: the extended SCO (eSCO) logical transport. It uses special packet types
listed in Table 1.3. Those packets carry larger payloads than their SCO counterparts,
which allows them to support higher data rates with longer polling intervals.

TABLE 1.3
Packet types for communication over an eSCO link.

Type Slot(s) Payload CRC FEC Data rate
(bytes) (kbps)

EV1 1 1-30 yes none 96
EV3 3 1-120 yes 2/3 192
EV4 3 1-180 yes none 288

Polling of slaves with eSCO links differs somewhat from that of the slaves with
ordinary SCO links, since limited retransmission is allowed within a specified re-
transmission window. The performance of eSCO links is beyond the scope of this
book; more details may be found in the official specification [Bluetooth SIG, 2003a].

1.4 Connection state and related modes

While in the connection state, the slave is active in the piconet and retains its ac-
tive mode address within the piconet, known as AM ADDR [Bluetooth SIG, 2003a].
However, the slave need not listen to master transmissions all the time; it may choose
to switch to one of the so-called modes in which it may detach itself from the piconet
for prolonged periods without having to surrender its piconet address; these modes
are known as HOLD and SNIFF. The slave may also switch to a parked state, in
which it releases its active mode address; this switch may be initiated by either the
master or the slave itself. Broadcast as well as unicast messages can target active or
parked slaves only, as appropriate. The connection states and modes are schemati-
cally shown in Fig. 1.6.

An active slave may temporarily detach itself from the piconet through entering
the so-called HOLD mode, the operation of which is shown in Fig. 1.7. In this
mode, the master will not poll the slave for a specified time interval, referred to as
the holdTO, or hold timeout. The inactivity period due to the HOLD mode affects
only ACL links established between the master and the slave; SCO and/or eSCO
links, if any, remain operational even when the slave is in the HOLD mode. During

© 2006 by Taylor & Francis Group, LLC.

CONNECTION
state

ACTIVE state

SNIFF
mode

HOLD
mode

PARK
state

FIGURE 1.6
Connection states and modes.

the HOLD mode, the slave can engage in other activities such as scanning, paging,
or joining another piconet. The slave can also enter a low power mode in order to
conserve energy.

The actual duration of the HOLD mode is negotiated between the master and
the slave; the negotiation process can be initiated by either the master or the slave
itself. The initiating party proposes the switch to the HOLD mode as well as the hold
timeout; the responding party may accept it, or respond with a counterproposal of its
own. The messages exchanged during the negotiation are schematically depicted in
Fig. 1.8.

piconet
master

timeHOLD interval Thold

present in the
piconet free to do something else

slave H

negotiation of
HOLD

talks to other slaves,
but not H

talks to H and
other slaves

talks to H and other
slaves

again present in the
piconet

FIGURE 1.7
Pertaining to the operation of the HOLD mode.

Another mode which can be entered from the active connection state is the SNIFF
mode, the operation of which is shown in Fig. 1.9. In this mode, the slave is absent
from the piconet for a specified time, during which the master will not poll it. The
slave periodically joins the piconet in order to listen to master transmissions. If no
transmission is initiated, or even detected, during the predefined window, the slave
again detaches itself from the piconet for another interval of absence. During this

© 2006 by Taylor & Francis Group, LLC.

initiating LM

LMP_hold_req

LMP_accepted
(LMP_not_accepted)

LM

LMP_hold_req

LMP_hold_req

FIGURE 1.8
Message exchange during the negotiation of the switch to HOLD mode.

time interval, the slave can engage in other activities, similar to the HOLD mode
described above. Again, the inactivity due to SNIFF mode affects only ACL link or
links that may be set between the master and the slave in question, but not the SCO
or eSCO ones, if any.

As is the case with the HOLD mode, the SNIFF mode and its parameters are nego-
tiated between the master and the slave. The negotiation process can be initiated by
either party; the initiating Link Manager (LM) proposes the SNIFF mode and its pa-
rameters to the corresponding LM of the other participant, as shown in Fig. 1.10(a).
Once the switch and the parameters are accepted, the slave can start alternating be-
tween active and SNIFF mode.

piconet
master

slave S

time

SNIFF anchor point

SNIFF interval Tsniff

present in the
piconet free to do something else

SNIFF window
Nsniff attempt

talks to other slaves,
but not S

present in the
piconet

talks to S and
other slaves

talks to S and
other slaves

FIGURE 1.9
Pertaining to the operation of the SNIFF mode.

Unlike the HOLD mode, which is a one-off event, the SNIFF mode lasts until one
of the participants explicitly requests its termination, as shown in Fig. 1.10(b).

© 2006 by Taylor & Francis Group, LLC.

LMP_sniff_req

LMP_accepted
(LMP_not_accepted)

LMP_sniff_req

LMP_sniff_req

initiating LM LM

(a) Negotiating the SNIFF mode.

LMP_accepted

LMP_unsniff_req

initiating LM LM

(b) Terminating the SNIFF mode.

FIGURE 1.10
Message exchange to negotiate and terminate SNIFF mode.

Connection loss and supervision timer

A connection may break down for different reasons, including power failure, user
movement, or severe interference. In order to detect the loss of connection, the
traffic on each link must be monitored on both the master and the slave side. This
is accomplished through the so-called supervision timer, Tsupervision , which is reset
to zero every time a valid packet is received on the associated physical link. If the
timer reaches the supervisionTO timeout, the value of which is negotiated by the
Link Manager, the link is considered to be lost, and the associated active piconet
member address may be reassigned to another device. The value of the supervision
timeout should be longer than negotiated HOLD and SNIFF periods. The same link
supervision timer is used for all logical transports carried over the same physical
link.

1.5 Piconet formation: inquiry and paging

We end this introduction to Bluetooth communication by briefly presenting the two
procedures, inquiry and paging, through which piconets and scatternets are formed.
In the first step, some Bluetooth devices enter the inquiry mode with the goal of
making their presence known to other devices that have chosen to enter the inquiry
scan mode. The choice of mode is performed randomly, in order to maximize the
possibility of discovery and subsequent connection; but it may also be deterministic,
if the device has specific reasons to become the master (or the slave) in the piconet
formed afterward.

The inquiry procedure follows a special protocol: the device performing inquiry

© 2006 by Taylor & Francis Group, LLC.

repeatedly sends the inquiry message (also known as the ID packet with a specific
inquiry access code (IAC), using a slower frequency hopping pattern through a sub-
set of available RF frequencies. This code may be the general code (GIAC), in which
case any device may respond to it, or a dedicated one (DIAC), in which case only
the devices that possess the specific capability that corresponds to the used access
code may respond. There is a number of possible IAC codes but their meaning is
currently unassigned, except for the GIAC which all devices must recognize. Be-
tween individual inquiry messages, the inquiring device listens for inquiry response
messages.

The device performing inquiry scan listens at the frequencies from the same set,
but at an even slower hopping rate. This increases the probability that the transmis-
sion from an inquiring device will be detected. Once an inquiring device has been
detected, the scanning device responds with the FHS packet containing its device
address and other parameters. The FHS packets are sent after a random delay, so
as to reduce the probability of collisions of two or more inquiry response messages
from different devices in the vicinity.

The inquiring device continues to send inquiry messages (and record responses)
until it decides it has received a sufficient number of responses, when a time-out has
been reached, or when instructed to cancel the inquiry procedure by the host.

In the second step, the devices formerly performing inquiry may decide to enter
the page mode, while the devices formerly performing inquiry scan may decide to
enter the page scan mode. In the page mode, the paging device attempts to connect to
a specific device by repeatedly transmitting the page message (ID packet) containing
the slave device access code. This is done using a number of different RF frequencies
at the hopping rate of 3200 hops/s, as the Bluetooth clocks of the two devices are
not synchronized yet.

The device that has responded to an inquiry may decide to enter the page scan
mode, in which it listens to paging massages from the device that has performed
the inquiry. Once a page message with the correct device access code is received, a
page response (another ID packet) may be sent. The master then may send a FHS
message containing its device address and other parameters, to which the scanning
device responds with another ID packet. This exchange is needed in order to allow
the page scanning device to adjust its clock and hopping sequence to those of the
paging device. Following the successful paging, the devices enter the connection
state described above. Thereafter the paging device acts as the master of a piconet
while the scanning device acts as the slave in that piconet, and regular communica-
tion between the two may take place.

Due to the increased workload during the inquiry and paging procedures, devices
are allowed to temporarily suspend other activities through the use of HOLD, SNIFF,
or low power mode. This does not apply to SCO transmissions, which must be sent
or listened to even during the inquiry and paging procedures.

A device may connect to several piconets in turn, thus enabling a scatternet to be
formed. Unfortunately, Bluetooth specifications provide little guidance in this re-
spect, and many algorithms for scatternet formation have been proposed. A detailed
overview of most important among those algorithms is given in Chapter 9.

© 2006 by Taylor & Francis Group, LLC.

The device may disconnect from the piconet explicitly, or by simply failing to
respond to the transmissions of the other device (master or slave) within the timeout
defined by the supervision timer, Tsupervision . If the device happened to be the master
of the piconet, the piconet effectively ceases to exist, and the remaining slaves will
have to connect to another piconet. (This may not be necessary in cases where the
slave has already been connected to another piconet as a bridge.)

Under certain circumstances, the piconet master and one of its slaves may negoti-
ate the so-called role switch, in which the slave takes up the role of the master. As
the result, a new piconet is created using the physical channel defined by the new
master’s clock. However, other slaves and their existing links, if any, are not auto-
matically transferred to the new piconet, and other commitments or modes are not
preserved either. Renegotiation of those commitments is a time-consuming process,
the duration of which is comparable to that of the process through which those com-
mitments were initially established. On account of this, the role switch has found
virtually no use in practice.

Beginning with version 2.0 of the specification [Bluetooth SIG, 2004], the data
rate of Bluetooth networks can be increased through the Enhanced Data Rate (EDR)
mode. This mode may be enabled independently on each logical transport, and for
certain types of logical transports only. Once enabled, the EDR mode uses slightly
different packet headers and different modulation in the packet payload, allowing
data rates of up to 2.6Mbps to be achieved. However, all other aspects of network
operation, including piconet formation, polling, TDD, and packet length, are not
affected. Our analyses thus apply to both the standard and the EDR modes, the
only difference being the maximum achievable data rate; consequently, we do not
consider the operation of the EDR mode in this book.

This concludes our brief introduction to Bluetooth communication technology; more
detailed descriptions of the concepts mentioned here, as well as many others that are
not of immediate concern to our analysis, may be found in the Bluetooth specification
[Bluetooth SIG, 2003a].

In subsequent discussions we will assume that the piconet or scatternet has already
been formed through inquiry and paging, and focus our attention on the performance
of data communications within that take place therein.

© 2006 by Taylor & Francis Group, LLC.

2

Intra-piconet polling schemes

We begin by reviewing the basic tenets of data communication in Bluetooth piconets.
As will be seen, the Bluetooth networks operate in a rather different manner from
other wireless networks. Therefore, the known performance analysis results from
other wireless networks cannot be directly applied in the Bluetooth environment,
and in-depth analyses of the performance are necessary. To that end, we will also
review and roughly classify existing algorithms for intra-piconet polling.

2.1 Bluetooth communications and intra-piconet polling

Bluetooth devices must form networks before the actual communication can start
[Bluetooth SIG, 2001b]. The simplest form is a piconet: a small, centralized network
with up to eight active nodes or devices. One of the nodes is designated as the master,
while the others are slaves. The TDD communication mechanism, outlined in the
previous Chapter, requires all communications in the piconet to be routed through
the master. The operation of the piconet, therefore, resembles the traditional polling
system: the queueing system in which the server cyclically services a number of
input queues. The piconet master would, then, correspond to the server, while the
slaves would correspond to input devices, as shown in Fig. 2.1.

piconet master
(server)

input queues
(slaves)

FIGURE 2.1
Bluetooth piconet as a single-server, multiple-input polling system.

© 2006 by Taylor & Francis Group, LLC.

The master polls the slave by sending a data packet or an empty packet when no
data packets are available. The slave responds by sending a data packet or an empty
packet. In Bluetooth parlance, empty packets are designated as POLL packets in
the downlink, and NULL packets in the uplink direction [Bluetooth SIG, 2003a].
As the process of polling the slaves is actually embedded in the data transmission
mechanism, we will use the term ‘polling’ for every downlink transmission from the
master to a slave.

Since packets must wait at the slave and/or at the master before they can be de-
livered to their destinations, they will experience queueing delays. Therefore, the
performance of the data traffic will be mostly dependent on the choice of the polling
scheme used by the master to poll the active slaves in the piconet. As usual, the main
performance indicator we shall use is the end-to-end packet delay, with lower delays
corresponding to better performance.

The polling scheme in a multiple-input, single-server system [Kleinrock, 1972;
Takagi, 1991] defines the answers to the following questions: how long to stay with
the current queue (i.e., when to move on to some other queue), what to do when
the current queue is empty (i.e., stay with the current queue or move on to another
one), and which queue is to be serviced next when the server decides to move on
from the current one. At first, the correspondence may seem easy to establish, with
the server corresponding to the piconet master and the input queues corresponding
to the uplink queues at individual slaves. But one must keep in mind that the input
queue is actually two queues, the downlink and the uplink queue (which are serviced
in immediate succession) and that the action of polling the slave and obtaining its
response takes time, even when there are no data packets to send in either direction.

The polling scheme is obviously the main determinant of performance of Blue-
tooth piconets. (It is also one of the main determinants of performance of Bluetooth
scatternets, as will be seen later.) Note that the terms “polling” and “scheduling”
are used as synonyms by many authors. However, in this book we will use the term
“polling” exclusively for intra-piconet communication, while the term “scheduling”
will be reserved for inter-piconet communication.

The current Bluetooth specification does not require or prescribe, or indeed even
propose any specific polling scheme [Bluetooth SIG, 2001b]. This may not seem to
be too big a problem, since optimal polling schemes for a number of similar single-
server, multiple-input queueing system are well known for multiple-input, single
server systems [Levy, Sidi and Boxma, 1990; Liu, Nain and Towsley, 1992]. How-
ever, the communication mechanisms used in Bluetooth are rather specific, because

• All communications are bidirectional (i.e., there cannot exist a downlink packet
without an uplink packet, or vice versa), which means that there are actually
two multiple-input single-server queues to consider.

• The master polls the slaves using regular packets, possibly without data pay-
load (i.e., all polls and responses thereto take at least one slot each).

• All slave-slave communications have to be routed through the master (i.e.,
there can be no direct slave-to-slave communication).

© 2006 by Taylor & Francis Group, LLC.

• The master does not know the status of queues at the slaves, because there
are no provisions for exchange of such information in the Bluetooth packet
structure. In fact, the master can request such information from a slave, but
the request and response both take time, and the status of other slaves’ queues
can change. Therefore, it’s impossible for the master to know the status of all
the uplink queues at any given time.

As a consequence, the existing results cannot be applied, and the performance of
different polling schemes has to be re-assessed, taking the aforementioned character-
istics of the Bluetooth communication mechanisms. It should come as no surprise,
then, that a number of polling schemes have been proposed and analyzed [Capone,
Kapoor and Gerla, 2001; Das, Ghose, Razdan, Saran and Shorey, 2001; Johansson,
Körner and Johansson, 1999; Kalia, Bansal and Shorey, 1999]. Many of the pro-
posed schemes are simply variations of the well-known 1-limited and exhaustive
service polling, but several improved adaptive schemes have been described as well.

The polling scheme has, however, at least two other requirements to satisfy. One
of those is fairly general and holds in all networks, while the other is specific to Blue-
tooth and other wireless technologies. The first is fairness: the piconet master should
try to maintain fairness among the slaves, so that all slaves in the piconet receive
equal attention in some shorter or longer time frame. Of course, their traffic load
should be taken into account, if known. The second one is computational simplicity:
Bluetooth devices are, by default, low power devices, and the polling scheme should
be sufficiently simple in terms of computational and memory requirements. As will
be seen, some of the schemes require considerable computational overhead and are
thus unsuitable for power-limited devices.

2.2 Classification of polling schemes

In the discussion that follows, we present a rough classification of piconet polling
schemes based on three important characteristics. First, the polling scheme deter-
mines the number of frames exchanged during a single visit to the slave. This num-
ber may be set beforehand to a fixed value, or it may be dynamically adjusted on the
basis of current and historical traffic information.

Second, different slaves may receive different portions of the bandwidth; again,
the allocation may be done beforehand, or it may be dynamically adapted to varying
traffic conditions. The latter approach is probably preferable in Bluetooth piconets,
which are ad hoc networks formed by mobile users, and the traffic may exhibit con-
siderable variability. In fact, due to users’ mobility, even the topology of the piconet
may change on short notice. However, the fairness of polling may be more difficult
to maintain under dynamic bandwidth allocation.

Finally, the sequence in which slaves are visited may be set beforehand, or it may
change from one piconet cycle to another according to a specified algorithm that

© 2006 by Taylor & Francis Group, LLC.

takes current and/or historical traffic information into account. In either case, slaves
that had no traffic in the previous cycle(s) may be skipped for one or more cycles,
but the polling scheme should ensure that the fairness is maintained.

Traditional polling schemes

The simplest polling schemes use a fixed ordering of the slaves and fixed bandwidth
allocation per slave. The only variable parameter left, then, is the duration of master’s
visit to each slave.

Under 1-limited service polling, the master visits each slave for exactly one frame,
and then moves on to the next slave. Data packets are sent if there are any, otherwise
empty packets (POLL or NULL) are sent. The piconet cycle lasts for exactly 2(m −
1) packets. The scheme is sometimes referred to as (Pure) Round Robin [Capone
et al., 2001] or simply limited service.

Under exhaustive service polling, the master stays with the slave as long as there
are packets to exchange in either downlink or uplink direction. The absence of pack-
ets is detected by a POLL-NULL frame, which is a signal for the master to move on
to the next slave. Note that the duration of the piconet cycle is not limited; a slave
will be polled by the master as long as any of them has packets in the corresponding
queue, or queues. Therefore, this scheme cannot guarantee fairness.

Under the E-limited service polling, the master stays with a slave until there are no
more packets to exchange, or for a fixed number M of frames (M > 1), whichever
comes first. (We will refer to M as the polling parameter.) Packets that arrive during
the master’s visit are allowed to enter the uplink queue at the slave, and may even
be serviced – provided the total limit of M frames per master’s visit is not exceeded
[Takagi, 1991]. This scheme is also referred to as Limited Round Robin [Capone
et al., 2001; Lee, Kapoor and Gerla, 2002]. In this case, the piconet cycle can last at
most 2M(m − 1) packets.

In fact, 1-limited and exhaustive service polling may be considered as special cases
of E-limited service, where the limit M equals 1 and ∞, respectively. In all three
cases, the sequence of slaves is fixed and does not change.

In traditional polling systems, exhaustive service has been shown to perform better
than either 1-limited or E-limited service [Levy et al., 1990]. As Bluetooth piconet
is not a traditional polling system, this result does not hold. Several authors have
found that 1-limited performs better than exhaustive service under high load [Capone
et al., 2001; Mišić and Mišić, 2003b]. Furthermore, E-limited service has been found
to offer better performance than either limited or exhaustive service, and the value
of M may be chosen to achieve minimum delays for given traffic burstiness [Mišić,
Chan and Mišić, 2004]. A detailed analysis of all three polling schemes is presented
in Chapter 3.

Dynamic reordering of slaves

In fact, traditional polling systems have been shown to achieve best results – i.e., the
shortest delays – when the server follows the so-called Stochastically Largest Queue

© 2006 by Taylor & Francis Group, LLC.

(SLQ) policy [Liu et al., 1992]. The server should always service the queue (i.e.,
master-slave channel) which has the highest sum of master and slave queues. For
obvious reasons, the lengths of all queues must be known to the server at all times.

The application of this policy in Bluetooth piconet would require the piconet mas-
ter to know the current status of the uplink queues of all of its slaves at all times.
However, the Bluetooth packet structure has no provisions for simple exchange of
relevant information: packet headers do not have any fields to carry this information,
nor are there any spare bits to be used to that effect [Bluetooth SIG, 2001b; Bluetooth
SIG, 2003a; Bluetooth SIG, 2004]. Therefore, if the information on queue status is
to be exchanged between the master of a piconet and its slaves, it will have to be
done at the expense of actual packet payload. Such exchange will take at least two
cycles per slave, during which the state of other slave queues may change. Conse-
quently, the piconet master cannot know the status of all slave uplink queues at any
given time.

The information which is readily accessible to the master are the lengths of the
downlink queues, and the next slave to be polled may be chosen as the slave for which
the corresponding downlink queue is the longest. This policy will be referred to as
LDQF (Longest Downlink Queue First). Note that slave selection (and, effectively,
reordering) may be done for each poll or once in each piconet cycle. In the latter
case, polling of individual slaves may follow the 1-limited, exhaustive, or E-limited
scheme.

One problem with dynamic reordering is that fairness among the slaves cannot be
guaranteed if reordering is done for every poll. When reordering is done on a per
cycle basis, fairness may still be difficult to maintain under the exhaustive scheme,
as two slaves that talk to each other can virtually monopolize the piconet and starve
all the others.

The Exhaustive Pseudo-cyclic Master (EPM) queue length scheme, proposed in

TABLE 2.1
A comparison of non-adaptive piconet polling schemes.

Polling scheme
Property 1-limited Exhaustive E-limited EPM

Slave reordering no no no yes
Slave skipping no no no yes
Burst-preserving no yes depends on

M
no

Efficiency at low to high medium to medium to
low loads medium high high
Efficiency at high high high high
high loads
Short-term fairness yes no yes no
Long-term fairness yes no yes no

© 2006 by Taylor & Francis Group, LLC.

[Capone et al., 2001], uses dynamic reordering coupled with 1-limited polling. At
the beginning of each cycle, the slaves are reordered according to the decreasing
length of downlink queues. Each slave is then polled once per piconet cycle.

Main properties of the non-adaptive polling schemes described above are summa-
rized in Table 2.1.

Adaptive polling

The third parameter that characterizes the polling scheme is the duration of the visit
to each slave. This duration may be fixed or adjustable according to the current or
historical traffic information. The adjustment can be done by rewarding slaves that
have more traffic, or by penalizing slaves that have less traffic. In the former case,
the master is allowed to stay longer, and thus exchange more frames, with the slave
that has some data to send and/or receive. In the latter case, the slave that had less
traffic or no traffic at all, or the slave which is expected to have no traffic, will simply
be ignored for a certain number of piconet cycles.

The former approach is exploited in the Limited and Weighted Round Robin
(LWRR) [Capone et al., 2001], which tries to increase efficiency by reducing the
rate of visits to inactive slaves. Initially, each slave is assigned a weight equal to the
so-called maximum priority, MP. Each slave is polled in E-limited fashion with up
to M frames. Whenever there is a data exchange between the slave and the master,
the weight of the slave is increased to the value of MP. On the other hand, when a
POLL-NULL sequence occurs, the weight for that particular slave is reduced by one.
If the slave weight drops to one (which is the lowest value), the slave has to wait a
maximum of MP −1 cycles to be polled again.

A variation of this scheme, labeled Pseudo-Random Cyclic Limited slot-Weighted
Round Robin [Lee et al., 2002], uses both slave reordering and poll rate reduction.
The sequence in which slaves will be polled is determined in a pseudo-random fash-
ion at the beginning of every cycle, and less active slaves are not polled for a certain
number of slots (not cycles). In addition, the maximum number of frames that may
be exchanged during a single visit to any slave is limited.

Poll rate reduction is also utilized in the Fair Exhaustive Polling (FEP) scheme
[Johansson et al., 1999], where a pool of ‘active’ slaves is maintained by the master.
Slaves are polled with one frame per visit, as in 1-limited service. When an empty
(POLL-NULL) frame occurs, that slave will be dropped from the pool and will not
be polled for some time. The ‘inactive’ slave may be restored to the pool when the
master downlink queue that corresponds to that slave contains a packet, or when the
entire pool is reset to its original state. The pool is reset when the last slave in the
pool is to be dropped, or after a predefined time-out. In this manner, the slaves that
have more traffic will receive a proportionally larger share of the bandwidth as long
as they have traffic to send or receive.

The Adaptive Cycle-Limited Service scheme [Mišić, Mišić and Ko, 2004] strives
to keep the duration of the piconet cycle as close to a predefined value as possible.
Bandwidth is allocated dynamically, partly on the basis of historical data (i.e., the
amount of traffic in the previous piconet cycle), and partly on the basis of current

© 2006 by Taylor & Francis Group, LLC.

traffic (i.e., whether they have some data to exchange or not). However, each of
the m slaves is guaranteed a fair share of the available bandwidth over the period
of m − 1 piconet cycles, plus a certain minimum bandwidth in each piconet cycle.
This scheme appears well-suited for piconets in which some of the slaves have tight
bandwidth and latency constraints, as is often the case with multimedia traffic.

Recently, Lapeyrie and Turletti [2003] have proposed the Fair Predictive poller
with QoS support, or FPQ. FPQ strives to minimize the number of POLL/NULL
packets in the presence of upstream and downstream traffic. It also tries to main-
tain fairness while respecting the predefined delay bounds, labeled Maximum Delay
(MD) request in the original paper. Since it is not possible to achieve maximum effi-
ciency while maintaining fairness, the algorithm uses a variable parameter α to adjust
the tradeoff between the two. Also, it may be difficult to achieve the maximum effi-
ciency while respecting the required delay bounds. In the extreme case where every
slave has a maximum delay request, the FPQ turns into a simple exhaustive service
scheme.

The authors of FPQ observe that low delay values can be achieved if all the base-
band packets resulting from an IP packet are transmitted without interleaving with
packets from other slaves’ packet streams. To that end, they assign priorities to up-
link and downlink baseband packets, and thus prevent interleaving of IP packets as
much as possible. However, the FPQ approach is unable to prevent interleaving of
IP packets (or other PDUs generated in higher layers of the protocol stack) in case
of their simultaneous arrivals at multiple slaves.

Finally, the computational complexity of the FPQ scheme is much higher than
for the other schemes, due to the need for the Analyzer module to calculate the

TABLE 2.2
A comparison of adaptive piconet polling schemes.

Polling scheme
Property LWRR FEP ACLS FPQ

Slave reordering no no no yes
Slave skipping no no no yes
Burst-preserving no yes depends on M no
Short-term fairness yes no yes no
Long-term fairness yes no yes adjustable
Efficiency at low to high medium to medium to
low loads medium high high
Efficiency at high high high high
high loads
Predefined none none optional cycle adjustable
delay bounds control
Computational low low low high
complexity

© 2006 by Taylor & Francis Group, LLC.

probability of packet arrivals in slave queues, as well as for the Selector module
which calculates priorities of baseband packets.

Table 2.2 summarizes the features of adaptive polling schemes described above.

2.3 On segmentation and reassembly policies

Most, if not all, of the polling schemes described above focus on the optimization of
performance of Bluetooth baseband traffic. However, other considerations, in partic-
ular, the segmentation and reassembly algorithm, may also affect the performance of
the chosen polling scheme.

Namely, the traffic to be transported over Bluetooth links is generated and con-
sumed by the applications running on Bluetooth (and other) devices. This traffic will
be formatted as a stream of packets (or protocol data units, PDUs) conforming to the
rules of the protocol used by the application. In most practical cases, that protocol
will belong to the ubiquitous TCP/IP family [Kurose and Ross, 2005].

As is customary in such cases, packets sent from the higher layers will have to
be repackaged or segmented into Bluetooth packets, with appropriate administrative
information added to the Bluetooth packet headers. At the receiving device, the
complementary reassembly operation will take place.

As the packets used in the TCP/IP family of protocols are generally longer than the
Bluetooth ones, each TCP packet will be segmented and transmitted as the payload
of a number of Bluetooth packets. An example of such a segmentation approach is
the Bluetooth Network Encapsulation Protocol, or BNEP [Bluetooth SIG, 2001a],
which we will briefly present in the following.

The BNEP protocol is designed to transmit Ethernet traffic through Bluetooth net-
works; Fig. 2.2 shows the corresponding protocol stack. Ethernet packets are seg-
mented into a number of Bluetooth baseband packets for transmission, and reassem-
bled at the destination, as shown in Fig. 2.3. Note that each TCP message generated
will require a total of 59 bytes in appropriate headers throughout the protocol stack.

In BNEP, multi-hop traffic, including traffic between the slaves in the same pi-
conet, is handled by Bluetooth masters and/or bridges acting as store-and-forward
switches – i.e., entire Ethernet packets have to be stored in the device before being
repackaged (if necessary) and forwarded to the next stop along the route. Routing in
this case is done in the upper layers, possibly in the IP layer, transparently to Blue-
tooth. (It should be noted that this is a forced, rather than deliberate choice, as the
Bluetooth does not define any routing capabilities [Bluetooth SIG, 2003a], and all
routing functions must be provided by higher layers of the protocol stack.)

Neither BNEP nor indeed the Bluetooth specification itself do prescribe the ac-
tual segmentation algorithm, i.e., which exact Bluetooth baseband packets should
be used. As single slot ACL packets have substantially lower data carrying capac-
ity than their longer counterparts, as shown in Table 1.1, the throughput should be

© 2006 by Taylor & Francis Group, LLC.

TCP/IP

Ethernet

BNEP

Bluetooth L2CAP

Bluetooth LMP

Bluetooth Baseband Layer

Bluetooth Radio Layer

Networking Applications

FIGURE 2.2
BNEP protocol stack, adapted from [Bluetooth SIG, 2001a].

Ethernet header (14) Ethernet payload (0-1500)

Ethernet payload (0-1500)BNEP header (1+)L2CAP header (4)

Baseband packet 1 (17-339) Baseband packet n (17-339)

FIGURE 2.3
BNEP Ethernet packet segmentation (field sizes expressed in bytes), adapted from
[Bluetooth SIG, 2001a].

higher if more of the longer, three- and five-slot packets are used.
However, noise and interference levels should be taken into account as well. The

Bluetooth frequency hopping sequence has been shown to be fairly efficient, and a
rather large number of Bluetooth piconets may coexist within the same radio range
before the effects of interference become noticeable [Zürbes, 2000]. Still, packets
can be damaged by noise and interference, and longer packets are more susceptible
to damage, in which case frequent retransmissions will occur. (As Bluetooth devices
operate as store-and-forward switches, packet loss and the need for retransmission
might not be identified until the actual reassembly is attempted.) In noisy environ-
ments, shorter three-slot packets might be preferred over the longer, five-slot ones,
despite their smaller payload, and DM-type packets might be preferred over DH-type
packets, due to their higher resilience to noise provided by the FEC protection (see
Table 1.1).

© 2006 by Taylor & Francis Group, LLC.

Algorithms for segmentation and reassembly have been proposed by several au-
thors. Some of them try to optimize the packaging, choosing the baseband packet
sizes depending on the data arrival rates at the corresponding queue [Kalia et al.,
1999; Kalia, Bansal and Shorey, 2000]. Such algorithms are, however, likely to result
in lower efficiency and longer transmission delays due to the excessive use of shorter
packets. Some have investigated the effect of different FEC and ARQ schemes at the
baseband level, using a two-state Markov channel model for the Bluetooth RF link
[Das et al., 2001], while others have tried to adaptively choose the best packet type
depending on the condition of the channel [Kim, Lim, Kim and Ma, 2001]. Note that
schemes with complex computations may not be well suited for Bluetooth devices
which are operating on battery power and have limited computational capabilities.

In our queueing theoretic analysis, we will assume that the packets of one, three,
and five slots are generated with uniform probability, as explained in the next Section.

2.4 Piconet model and performance indicators

In our subsequent analyses, we model the operation of the Bluetooth piconet with
the queueing model shown in Fig. 2.4. Each slave will maintain (operate) a queue
wherein the packets to be sent out are stored. The master, on the other hand, operates
several such queues, one for each active slave in the piconet. Note that, unlike the
traditional polling system of Fig. 2.1, the master, in fact, jointly services two queues,
due to the TDD communication mechanism utilized in Bluetooth. It will first ser-
vice its own downlink queue that corresponds to the slave being polled, immediately
followed by the uplink queue at that slave; this approach to polling is commonly
referred to as a bidirectional polling system.

Note that, depending on the hardware architecture, the downlink queues may be
implemented as separate physical queues, as shown in the diagram, or as a single
queue from which packets can be serviced in the order of their destinations. How-
ever, the queueing model with separate downlink queues provides a convenient mod-
eling framework that facilitates performance analysis of Bluetooth networks.

Our analysis will follow the theory of M [x]/G/1 queueing systems with vaca-
tions. Where necessary, the descriptors for uplink and downlink queues will be dis-
tinguished through subscripts u and d, respectively. For example, the burst arrival
rate for the uplink channel queue of slave i will be denoted with λi .

In order to obtain closed form solutions for the queue length probability distribu-
tions, we assume that device buffers have infinite size. This means that all packets
received from the upper layers of the protocol stack will eventually be transmitted.
This assumption is, of course, unrealistic, but it does simplify the analysis and allows
different polling schemes to be compared. (The case where device buffers are finite
will be addressed in Chapter 4.)

The main performance indicators for the piconet are two delay variables: access

© 2006 by Taylor & Francis Group, LLC.

downlink queues (one per slave)

uplink queues
at the slaves

piconet master

slave 1 slave m -1

FIGURE 2.4
The queueing model of the Bluetooth piconet.

delay Wai for slave i , the time a data packet has to wait in the uplink queue of the
source device before it is serviced, and end-to-end delay Wi je, the time from the
moment a packet enters the uplink queue at the source device i , to the time it arrives
at its destination device j .

Each slave’s application generates packets which are further segmented into a
number of baseband packets [Bluetooth SIG, 2001a]. Application packet arrivals
to the uplink queue of slave i follow a Poisson distribution with the arrival rate λiu ,
which has been shown to be a satisfactory approximation for the traffic of many In-
ternet applications [Paxson and Floyd, 1995]. If the application packets themselves
arrive in bursts, the probability generating function (PGF) of the burst size of ap-
plication packets should be integrated into the corresponding PGF for the baseband
burst size.

The length of the burst of baseband packets is geometrically distributed with the
mean value of B; other distributions can be easily accommodated in our model,
provided that the corresponding PGF is known. Assuming that all slaves use the
same segmentation/reassembly mechanism (which is reasonable, as this mechanism
is commonly implemented in firmware), the burst length distribution will be the same
for all slaves. We assume that the traffic goes from slaves to other slaves only, which
simplifies our calculations without undue loss of generality. (Any traffic generated or
received by the master can be easily modeled by increasing the packet arrival rates in
the downlink queues without any other changes to the analytical model.) All packets
within the given burst will have the same destination node, and the distribution of
destinations is assumed to be uniform. In that case, the packet burst arrival rate to the

downlink queue would be λ jd =
∑
i �= j

λiu

m − 2
. In more complex cases, the resulting

© 2006 by Taylor & Francis Group, LLC.

downlink arrival rates may be calculated from the matrix of probabilities for slave-
to-slave communication, without changing the model itself. Under 1-limited and
E-limited polling, the downlink burst size will be changed and therefore packet burst
arrival rate will be changed. This will be discussed in sections which model these
techniques.

The probability distribution of length of the packet burst may be described with

the PGF of Gb(z) =
∞∑

k=0

bk zk , where bk is the probability that the burst will contain

exactly k packets; the mean value of the burst length is B = G ′
b(1). The equivalent

Laplace-Stieltjes transform (LST) of the probability distribution may be obtained
by substituting the variable z with e−s [Takagi, 1991]; for example, the LST of the

packet burst length PDF is G∗
b(s) =

∞∑
k=0

bke−ks .

The probabilities of packets being one, three, and five slots long are p1, p3, and
p5 = 1 − p1 − p3, respectively. The corresponding probability generating function
(PGF) is G p(z) = p1z+ p3z3+ p5z5. First and second moments of the packet length

distribution are equal to L = G ′
p(1) and L2 = G ′′

p(1)+ G ′
p(1), respectively, and its

LST is G∗
p(s) = p1e−s + p3e−3s + p5e−5s .

We assume that piconet members have index numbers. Piconet master has number
1 while other slaves have numbers from 2 to m. Let Si denote the time to service a
single channel i which depends on the polling scheme used. The Probability Gen-
erating Function (PGF) for the channel service time will be denoted as Si (z) and its
Laplace-Stieltjes Transform (LST) will be denoted as S∗

i (s). Also, let us denote the
piconet cycle time as C , its probability density function (pdf) as c(x), and its PGF
and LST as C(z) and C∗(s), respectively.

With the queueing model thus set up, we are ready to undertake detailed perfor-
mance analysis of Bluetooth piconets.

© 2006 by Taylor & Francis Group, LLC.

3

Analysis of polling schemes

This chapter describes analytical modeling of the Bluetooth bidirectional polling
system in a single piconet with one master device and m − 1 slave devices, as shown
in Fig. 2.4. We first consider the simpler cases of exhaustive and 1-limited polling,
and then move on to analyze the E-limited polling, which may be considered to be
a generalization of the first two schemes. Neither of these requires that the piconet
master knows the status of the slaves’ queues, and therefore does not incur additional
signaling overhead between the master and the slaves.

3.1 Performance of exhaustive service

Under exhaustive polling, a number of frames (packet sent in downlink, followed by
another in uplink) may be exchanged between the master and a single slave during
a single visit to that slave. The timing diagram of packet exchanges in this case is
shown in Fig. 3.1 (note that packet lengths are not taken into account). The exchange
ends when both queues are empty, i.e., when the slave responds with a NULL packet
to a POLL packet sent by the master [Bluetooth SIG, 2001b]. The actual number of
frames is equal to the number of packets in the downlink or the corresponding uplink
queue, whichever is larger, plus one for the POLL-NULL sequence. The channel
service time for the exhaustive polling is the time required to empty both channel
queues for one particular slave.

The PGF Si (z) of the channel time can be found if we first find the mass proba-
bilities of k packet arrivals in the i-th slave’s and master’s queue during the piconet
cycle time.

The probability of l packet burst arrivals to the uplink queue of the i-th slave
during the piconet cycle time is equal to

bl,iu =
∫ ∞

0

(λiu x)l

l!
e−λiu x c(x)dx (3.1)

The probability that k data packets are sent from the slave i to the master may be
obtained as

ak,iu =
∞∑

l=0

1

k!

dk

dzk (Gb(z))
l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu x c(x)dx (3.2)

© 2006 by Taylor & Francis Group, LLC.

polling
slave 1

piconet
cycle

POLL

POLL

POLL

polling
slave 2

polling
slave m-1

NULL

NULL

NULL

master slave 1 slave 2 slave m-1

FIGURE 3.1
Timing diagram of exhaustive polling.

By definition, the LST of piconet cycle time is equal to

C∗(s) =
∫ ∞

0
e−sx c(x)dx (3.3)

By exchanging the order of summation and integration, we obtain the mass proba-
bility for k arrivals to the i-th slave’s queue during the piconet cycle time as

ak,iu = 1

k!

dk

dzk
C∗ (λiu − λiuGb(z))|z=0 (3.4)

We also note that C∗(λiu −λiuGb(z)) denotes the PGF for the number of data packet
arrivals in the slave uplink queue during the piconet cycle time. By the same token,
the equivalent conditional probability that k data packets are sent from the master to
the slave is

ak,id = 1

k!

dk

dzk
C∗(λid − λid Gb(z))|z=0 (3.5)

By combining these elements together, the PGF for the i-th channel service time
becomes

Si (z) =
∞∑

k=0

ak,iuak,id G p(z)
2k z2

+
∞∑
j=1

∞∑
k=0

(
ak,iuak+ j,id + ak+ j,iuak,id

)
G p(z)

2k+ j z(j+2)
(3.6)

© 2006 by Taylor & Francis Group, LLC.

Finally, the PGF for the piconet cycle time becomes

C(z) =
m∏

i=2

Si (z) (3.7)

Let us view the PGF for the piconet cycle time as the polynomial C(z) =
∞∑

i=0

ri z
i

and its LST as C∗(s)
∞∑

i=0

ri e
−si , where ri represents the mass probability that piconet

cycle has the duration of i Bluetooth time slots. In order to solve (3.7), we have to
truncate the C(z) to the polynomial of degree imax . This is approximate solution but
it should be sufficient for large imax . Then, we have to set imax equations in the form

ri = 1

i!

di

dzi
C(z)|z=0. Each of the equations will have the term ri on the left side and

the function of all ri mass probabilities on the right side. The resulting system of
equations can be solved using numerical solvers (e.g., Waterloo Maple).

The PGF for the frame time is

Fis(z) =
kmax∑
k=0

ak,iuak,id(G p(z)
2k z2)1/(k+1)

+
jmax∑
j=1

kmax∑
k=0

(
ak,iuak+ j,id + ak+n,iuak,id

) · (G p(z)
2k+ j z j+2)1/(k+ j+1)

(3.8)

where kmax and jmax are determined according to the accuracy required. Then, the
mean frame length will be Fis = F ′

is(1).
In order to find the duration of the piconet cycle time, we will make use of the

concept of vacation. In single server-multiple client systems, when the server finds
an empty client queue, it goes on to service other clients – i.e., it takes a vacation,
which lasts until the next visit to this client [Takagi, 1991]. In a Bluetooth piconet, a
server vacation starts when the master, after having polled a slave, moves on to next
one. From the viewpoint of a particular slave, the master is not available—i.e., takes
a vacation—during the time it services other slaves. The vacation lasts until the next
visit to the slave; if the slave queue is empty at that time, the master will immediately
start a new vacation. The vacation time is, then, the time while the master is busy
servicing other slave queues, as shown in Fig. 3.2. The vacation time for slave i is
denoted as Vi , its PGF is Vi (z) and its LST is denoted as V ∗

i (s).
The duration of the vacation period Vi may be described with the following PGF

Vi (z) =
m∏

j=2
j �=i

S j (z) (3.9)

and its first and second moments are Vi = V ′
i (1) and V 2

i = V ′′
i (1) + V ′

i (1), respec-
tively.

© 2006 by Taylor & Francis Group, LLC.

master
servicing
slave 1

piconet
cycle

master
vacation ends,

returns to
slave 1

master
vacation
(services

other
slaves)

master slave 1 slave 2 slave m-1

FIGURE 3.2
Pertaining to the concept of server vacation.

The LST for the access delay probability distribution at slave i is:

W ∗
ai (s) = 1 − V ∗

i (s)

sVi
· 1 − Gb(F∗

is(s))

B (1 − F∗
is(s))

· s(1 − λiu B Fis)

s − λiu + λiuGb(F∗
is(s))

(3.10)

which translates into the mean access delay of the form

Wai = λiu B
2

F2
is + B(2) Fis

2B(1 − λiu B Fis)
+ V 2

i

2Vi
(3.11)

Under exhaustive polling, the entire burst from the uplink slave will be transferred
to the corresponding downlink queue. Therefore, the LST of delay at the master
queue for slave j has the same form as that of access delay – with λiu replaced by
λ jd , of course. Consequently, the mean value of the end-to-end delay between slave
i and slave j is Wi je = Wai + Wd j .

3.2 Performance of 1-limited service

Under 1-limited service, the master exchanges exactly one packet with each slave,
and then moves on to the next one. The corresponding timing diagram is shown

© 2006 by Taylor & Francis Group, LLC.

master slave 1 slave 2 slave m-1

piconet
cycle:
2(m-1)
packets

slave 1:
2 packets
slave 2:

2 packets

slave m-1:
2 packets

FIGURE 3.3
Timing diagram of 1-limited polling.

in Fig. 3.3. Using the notation introduced in the previous Section, if C denotes
the length of the piconet cycle time, the probabilities that the channel queues are
not empty will be Pid = λid B C and Piu = λiu B C for master and slave queues,
respectively. The probability that a data packet is sent from the slave to the master in
a polling cycle is

a1,iu = Piu (3.12)

while the complementary probability that there are no data packets at the slave queue
(which means that a NULL packet will be sent) is

a0,iu = 1 − Piu (3.13)

By the same token, the equivalent conditional probabilities that one empty (POLL)
packet or one data packet is sent from the master to the slave are

a0,id = 1 − Pid

a1,id = Pid
(3.14)

By combining these elements together, the PGF for the channel service time for one
slave becomes

Si (z) = a0,iua0,id z2 + (a1,iua0,id + a0,iua1,id)G p(z)z + a1,iua1,id G p(z)
2 (3.15)

Then the PGF for the piconet cycle time becomes

C(z) =
m∏

i=2

Si (z) (3.16)

© 2006 by Taylor & Francis Group, LLC.

By taking the first derivative of (3.16), we can obtain the mean value of piconet
cycle time C = C ′(1) and, subsequently, its PGF. The second moment of the piconet
cycle time may be obtained as C2 = C ′′(1)+ C ′(1).

The PGF for the duration of the vacation period Vi is

Vi (z) =
m∏

j=2
j �=i

S j (z) (3.17)

We are now able to calculate the LST for distribution of the access delay at the
i-th slave queue as [Takagi, 1991]:

W ∗
ai (s) = 1 − V ∗

i (s)

sVi
· s(1 − λiu B C)

s − λiu + λiuGb(C∗(s))
· 1 − Gb(C∗(s))

B (1 − C∗(s))
(3.18)

where V ∗(s) and C∗(s) denote the LST of the probability distributions of vacation
time and piconet cycle time, respectively. The average access delay at the slave is
then calculated as Wai = −W ∗′

ai (0), or:

Wai = λiu B C2

2(1 − λiu B C)
+ B(2) C

2B(1 − λiu B C)
+ V 2

i

2Vi
(3.19)

where B(2) = E[B(B − 1)] = G ′′
b(1) is the second factorial moment of the burst

length distribution.
Furthermore, the burstiness of the traffic in the downlink queue will differ from the

one in the slave queue because the bursts from different source slaves might become
interleaved in the same downlink queue, which will in turn lead to an equivalent
decrease in burst length. Exact analysis of this phenomenon is fairly involved, so
we will only present an approximate model for the decrease of the burst length.
The probability that two packet bursts from different slaves will not have the same
destination and, hence, will not be interleaved in the same downlink queue, will be
1−1/(m −1)2. Therefore, the equivalent mean burst length at the master (downlink)
queue will be

1

Bm
= 1

B

(
1 − 1

(m − 1)2

)
+ 1 · 1

(m − 1)2
(3.20)

In order to maintain the same server utilization under decreased burst length, the
burst arrival rate has to be scaled so that λidm Bm = λid B.

The queueing delay at the piconet master may be described with an expression
similar to (3.18), except that λid is replaced with λidm , and mean burst length is
replaced with Bm . The LST of the end-to-end delay from slave i to slave j is
W ∗

i je(s) = W ∗
ai (s)W

∗
d j (s) and, consequently, the mean value of the end-to-end delay

is Wi je = Wai + Wd j .

© 2006 by Taylor & Francis Group, LLC.

0.0004
0.0006

0.0008
0.001

0.0012
0.0014

lambda

2
4

6
8

10

B

100

200

300

400

(a) Limited polling.

0.0004
0.0006

0.0008
0.001

0.0012
0.0014

lambda

2
4

6
8

10

B

100

200

300

400

(b) Exhaustive polling.

FIGURE 3.4
End-to-end delay (in units of T = 625µs) vs. packet burst arrival rate λ and mean
burst size B. (From J. Mišić and V. B. Mišić, “Modeling Bluetooth piconet perfor-
mance,” IEEE Comm. Lett. 7(1):18–20, c© 2003 IEEE. Reprinted with permission.)

mean burst size

0.5 3.5 6.5 9.5

0.0

0.3

0.6

0.9

1.2

ratio of access delays
(exhaustive vs. limited)

ratio of end-to-end delays
(exhaustive vs. limited)

(a) Delay ratios vs. mean burst size, λ =
0.0015.

ratio of access delays
(exhaustive vs. limited)

burst arrival rate per slave

0.0 0.001 0.002 0.003

0.0

0.2

0.4

0.6

0.8

1.0

ratio of end-to-end delays
(exhaustive vs. limited)

(b) Delay ratios vs. burst arrival rate, B = 5.

FIGURE 3.5
Performance of exhaustive and 1-limited polling schemes. (From J. Mišić and
V. B. Mišić, “Modeling Bluetooth piconet performance,” IEEE Comm. Lett. 7(1):18–
20, c© 2003 IEEE. Reprinted with permission.)

Performance comparison

We have performed both theoretical analysis as presented in the previous Section,
and simulation using the simulator built using the Artifex object-oriented Petri Net
simulation engine by RSoft-Design, Inc. [RSoft Design, Inc., 2003]. We analyzed
the piconet with a maximum size of m = 8, with geometrically distributed packet
burst size. Mean packet length was L = 3, and p1 = p2 = p3 = 1/3.

Analytical results for end-to-end delays as functions of burst arrival rate (which
was the same for all slaves, λiu = λ) and mean burst size B are shown in Figs. 3.4(a)
and 3.4(b), for 1-limited and exhaustive polling, respectively. Delays are expressed

© 2006 by Taylor & Francis Group, LLC.

in Bluetooth time slots T = 625µs. Burst arrival rates are scaled so as not to exceed
the piconet capacity: for example, the maximum values of λ in Fig. 3.4 correspond
to offered load of ρ = m(λiu + λid)B L = 0.72. Ratios of delays are shown in
Figs. 3.5(a) and 3.5(b), where lines denote analytical solutions and diamonds corre-
spond to simulation results.

As can be seen, exhaustive service clearly performs better in a wide range of traffic
parameters, the difference being in the range of 20 to 25%. In particular, the shape
of Fig. 3.4(b) suggests that exhaustive service is less influenced by bursty traffic than
its 1-limited counterpart. At very high packet arrival rates and/or long burst sizes,
this difference tends to diminish or even disappear. It should be noted that the case
with very high traffic load has little practical value, as the end-to-end delays will be
unacceptably long anyway.

Similar results have been reported by others. For example, Johansson et al. [1999]
have concluded that limited polling offers lower waiting time than the exhaustive
service one, especially under medium to heavy traffic load. On the other hand, Kalia
et al. [1999] and Kalia, Bansal and Shorey [2000] have shown that more sophisticated
polling schemes such as exhaustive service can improve performance compared to
the simple limited service, round robin polling. However, their work relies on the
assumption that the master is aware of the state of slaves’ queues, so that optimum
scheduling decisions can be made; such assumption is not appropriate at the Blue-
tooth MAC level, as explained in Section 2.2. Finally, Capone et al. [2001] have
found that exhaustive polling offers best performance at low to medium loads, while
1-limited polling provides lowest overall delays at high loads.

3.3 E-limited polling

The 1-limited and exhaustive polling schemes, as explained before, may be regarded
as limiting cases of a more general policy known as E-limited polling [Takagi, 1991].
The E-limited polling operates according to the following protocol:

1. The master polls the slave by sending data packets from the corresponding
downlink queue, or empty (POLL) packets if the downlink queue is empty.

2. The slave responds to each downlink packet by sending the data packet from
its uplink queue, or an empty (NULL) packet if the uplink queue is empty.

3. The exchange ends after exactly M frames have been exchanged. The ex-
change may end earlier if both downlink and uplink queues are empty, i.e.,
when the master sends a POLL packet and the slave responds with a NULL
packet.

4. After the end of the exchange, the master moves on to poll the next slave; when
all the slaves have been visited, the sequence is cyclically repeated.

© 2006 by Taylor & Francis Group, LLC.

slave 1: up
to M frames
(2M packets)

piconet cycle:
at most

2 M (m -1)
packets

POLL

POLL

NULL

NULLslave 2: up
to M frames
(2M packets)

slave m-1: up
to M frames
(2M packets)

master slave 1 slave 2 slave m-1

NULL

FIGURE 3.6
Timing diagram of E-limited polling.

The timing diagram of E-limited polling is shown in Fig. 3.6; again, the packet
length is not taken into account. We will now proceed to analyze the performance of
the piconet operating under E-limited polling using the queueing model from Sec-
tion 2.4.

Queue length distributions

Thanks to the symmetry of the piconet with respect to the slaves, it suffices to con-
sider the packet exchange between a single slave, say i , and the master. As before,
we use the concept of master vacation. The number of packets at the uplink queue
of a slave and the corresponding downlink queue at the master can be modeled with
a set of imbedded Markov points [Takagi, 1991]. The Markov points correspond to
vacation termination times – the times immediately before the master sends a first
downlink packet to the slave – and frame service completion times – the times when
the polled slave finishes one uplink packet transmission.

Let qi
ku ,kd

denote the joint probability that a Markov point in the uplink queue of
slave i is a vacation termination time. Let us assume that, at the vacation termination
time, there are ku = 0, 1, 2 . . . packets at the uplink queue of the i-th slave and
kd = 0, 1, 2 . . . packets at the downlink queue corresponding to slave i . Also, let
π

i,(µ)
ku ,kd

denote the joint probability that a Markov point is the µ-th frame transmission
completion time and that there are ku packets in the slave’s i queue at that time,
and kd packets at the master’s queue toward the slave i , where µ = 1 . . M and

© 2006 by Taylor & Francis Group, LLC.

kd , ku = 0, 1, 2,
Let fis(x) and vi (x) stand for the pdf-s (probability density functions) of the frame

transmission time and vacation time, respectively, at the uplink queue of slave i ; their
LST transforms will be F∗

is(s) and V ∗
i (s). We will also make use of the following

probabilities: the probability of ku packet arrivals at the slave i’s uplink queue during
the frame time, which will be denoted with aku ; the probability of kd packet arrivals
at the master’s downlink queue during the frame time, which will be denoted with
akd ; the probability of ku packet arrivals at the slave i’s uplink queue during the
vacation time (i.e., while the master is servicing other slaves), which will be denoted
with fku ; and the probability of kd packet arrivals in the master’s downlink during
the vacation time, which will be denoted with fkd .

Those probabilities may be calculated as

aku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu x fis(x)dx

= 1

ku!

dku

dzku
(F∗

is(λiu − λiuGb(z)))
∣∣
z=0

akd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λid x)l

l!
e−λid x fis(x)dx

= 1

kd !

dkd

dzkd
(F∗

is(λid − λid Gb(z)))
∣∣
z=0

fku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

ku!

dku

dzku
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

fkd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

kd !

dkd

dzkd
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

(3.21)

Note that F∗
is(λiu − λiuGb(z)) and V ∗

i (λiu − λiuGb(z)) denote the PGFs for the
number of packet arrivals in the uplink queue during the frame time and vacation
time, respectively:

AF,u(z) =
∞∑

ku=0

aku zku =
∞∑

ku=0

zk
u

ku!

dku

dzku
F∗

is(λiu − λiuGb(z))
∣∣
z=0

= F∗
is(λiu − λiuGb(z))

AV,u(z) =
∞∑

ku=0

fku zku =
∞∑

ku=0

zku

ku!

dku

dzku
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

= V ∗
i (λiu − λiuGb(z))

(3.22)

Similar expressions hold for the number of arrivals in the downlink queue. The prob-
abilities that the uplink queue of slave i contains ku packets and that the downlink

© 2006 by Taylor & Francis Group, LLC.

queue toward slave i contains kd packets in imbedded Markov points, satisfy the
following equations:

π
i,(1)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

qi
ju , jd aku− ju+1akd− jd+1 +

kd+1∑
jd=1

qi
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

qi
ju ,0aku− ju+1akd

π
i,(µ)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1akd− jd+1 +
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1akd , µ = 2 . . M

qi
ku ,kd

=

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fku fkd +

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

fku− ju fkd− jd

(3.23)

The probability generating functions (PGFs) for the number of packets in the up-
link and the corresponding downlink queue, in the imbedded Markov points, are
defined by

�i,µ(z, w) =
∞∑

ku=0

∞∑
kd=0

π
i,(µ)
ku ,kd

zkuwkd , µ = 1 . . M

Qi (z, w) =
∞∑

ku=0

∞∑
kd=0

qi
ku ,kd

zkuwkd

(3.24)

which may be written as

�i,1(z, w) =
∞∑

ku=0

∞∑
kd=0

zkuwkd

ku+1∑
ju=1

ku+1∑
ju=1

qi
ju , jd aku− ju+1akd− jd+1

+
∞∑

ku=0

∞∑
kd=0

zkuwkd

kd+1∑
jd=1

qi
0, jd

akd− jd+1aku

+
∞∑

ku=0

∞∑
kd=0

zkuwkd

ku+1∑
ju=1

qi
ju ,0aku− ju+1akd

continued on next page . . .

(3.25)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

�i,µ(z, w) =
∞∑

ku=0

∞∑
kd=0

zkuwkd

ku+1∑
ju=1

ku+1∑
ju=1

π
i,(µ−1)
ju , jd

aku− ju+1akd− jd+1

+
∞∑

ku=0

∞∑
kd=0

zkuwkd

kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1aku

+
∞∑

ku=0

∞∑
kd=0

zkuwkd

ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1akd , µ = 2 . . M

Qi (z, w) =
∞∑

ku=0

∞∑
kd=0

zkuwkd

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fku fkd

=
∞∑

ku=0

∞∑
kd=0

zkuwkd

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

fku− ju fkd− jd

(3.25)

After exchanging the order of summation between the pairs (ku, ju) and (kd , jd),
equations (3.24) may be simplified to

�i,1(z, w) = F∗
is(λiu − λiuGb(z))F∗

is(λid − λid Gb(w))

zw
·
(

Qi (z, w)− (1 − w)Qi (z, 0)− (1 − z)Qi (0, w)+ qi
0,0(1 − z − w)

)
�i,µ(z, w) = F∗

is(λiu − λiuGb(z))F∗
is(λid − λid Gb(w))

zw
·
(
�i,µ−1(z, w)− (1 − w)�i,µ−1(z, 0)

−(1 − z)�i,µ−1(0, w)+ π
i,(µ−1)
0,0 (1 − z − w)

)
, µ = 2 . . M

Qi (z, w) = V ∗
i (λiu − λiuGb(z))V

∗
i (λid − λid Gb(w))

·

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�i,M (z, w)

(3.26)
When we substitute z = 0 in (3.26), we can find �i,1(0, w) . . .�i,M (0, w) and

Qi (0, w) as functions of π i,(µ)
0,0 µ = 1 . . .M and qi

0,0. For example, for z = 0 the
system (3.26) becomes

�i,1(0, w) = F∗
is(λiu)F∗

is(λid − λid Gb(w))

w
·
(

Qi (0, w)− qi
0,0

)
�i,µ(0, w) = F∗

is(λiu)F∗
is(λid − λid Gb(w))

w
·
(
�i,µ−1(0, w)− π

i,(µ−1)
0,0

)
,

µ = 2 . . M
continued on next page . . .

(3.27)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

Qi (0, w) = V ∗
i (λiu)V

∗
i (λid − λid Gb(w))

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�i,M (0, w)

(3.27)
From the system (3.27), we find �i,1(0, w) . . .�i,M (0, w) and Qi (0, w). In an

analogous fashion, we can find�i,1(z, 0) . . .�i,M (z, 0) and Qi (z, 0) as functions of
π

i,(µ)
0,0 , µ = 1 . . .M , and qi

0,0. For clarity, we introduce additional substitutions:

Q0(z, w) = (1 − w)Qi (z, 0)+ (1 − z)Qi (0, w)− qi
0,0(1 − z − w)

�µ,0(z, w) = (1 − w)�i,µ(z, 0)
+(1 − z)�i,µ(0, w)π

i,(µ)
0,0 (1 − z − w), µ = 1 . . M

(3.28)

and the system (3.26) becomes

�i,1(z, w) = F∗
is(λiu − λiuGb(z))F∗

is(λid − λid Gb(w))

zw· (Qi (z, w)− Q0(z, w))

�i,µ(z, w) = F∗
is(λiu − λiuGb(z))F∗

is(λid − λid Gb(w))

zw
· (�i,µ−1(z, w)−�µ−1,0(z, w)

)
µ = 2 . . M

Qi (z, w) = V ∗
i (λiu − λiuGb(z))V

∗
i (λid − λid Gb(w))

·

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�i,M (z, w)

(3.29)

The solution of this last system gives the expression for Qi (z, w) in the form

Qi (z, w) = V ∗
i (λiu − λiuGb(z))V

∗
i (λid − λid Gb(w))z

MwM A

B
(3.30)

where

A =
M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 − Q0(z, w)Y
M −

M−1∑
µ=1

Y M−µ�µ,0(z, w)

B = zMwM −V ∗
i (λiu −λiuGb(z))V

∗
i (λid −λid Gb(w))

·F∗
is(λiu − λiuGb(z))

M F∗
is(λid − λid Gb(w))

M

Y = 1

zw
F∗

is(λiu − λiuGb(z))F
∗
is(λid − λid Gb(w))

(3.31)

However, the solution of (3.30) requires two more elements to be calculated:
namely, the LSTs of the frame time and vacation time distributions. Let us find
the LST of the channel service time first; this is the time from the moment when
the master polls the slave for the first time until either an empty frame has been en-
countered, or a total of M data frames have been exchanged. (As usual, this time is

© 2006 by Taylor & Francis Group, LLC.

expressed in time slots T .) This service time can take from one up to M frames. The
LSTs of the length of k-th data frame without the POLL/NULL packet pair is

F∗1(s) =
(

Qi (1, 0)+ Qi (0, 1)− 2qi
0,0

)
Qi (1, 1)

G∗
p(s)e

−s

+ (Qi (1, 1)− Qi (1, 0)− Qi (0, 1)+ qi
0,0)

Qi (1, 1)
G∗

p(s)
2

F∗µ(s) =
(
�i,µ−1(1, 0)+�i,µ−1(0, 1)− 2π i,(µ−1)

0,0

)
�i,µ−1(1, 1)

G∗
p(s)e

−s

+
(
�i,µ−1(1, 1)−�i,µ−1(1, 0)−�i,µ−1(0, 1)+ π

i,(µ−1)
0,0

)
�i,µ−1(1, 1)

G∗
p(s)

2,

µ = 2 . . M
(3.32)

In the last expression, Qi (1, 1) denotes the probability that a given Markov point
corresponds to the end of vacation for slave i . Therefore, the conditional probability

that both the uplink and downlink queue are empty at the end of vacation is
qi

0,0

Qi (1, 1)
.

Next, we observe that the probability that master-to-slave transmission will take k
data frames is

Pf,0 = qi
0,0

Qi (1, 1)

Pf,1 = (Qi (1, 1)− qi
0,0)

Qi (1, 1)
· π

i,(1)
0,0

�i,1(1, 1)

Pf,k = (Qi (1, 1)− qi
0,0)

Qi (1, 1)

k−1∏
µ=1

(�i,µ(1, 1)− π
i,(µ)
0,0)

�i,µ(1, 1)

π
i,(k)
0,0

�i,k(1, 1)
, k = 2 . . M − 1

Pf,M = 1 −
M−1∑
k=0

Pf,k

(3.33)
Then, the LST for the master-slave channel service time is

S∗
i (s) =

M−1∑
k=0

Pf,k

k∏
µ=1

(F∗µ(s))e−2s + Pf,M

M∏
µ=1

F∗µ(s) (3.34)

The uplink and downlink channel service times, S∗
i,u(s) and S∗

i,d(s), respectively,
may be determined in a similar fashion.

Given that piconet has 2 ≤ m ≤ 8 members, one of which is the master, the PGF
for the vacation time observed by the slave i is:

V ∗
i (s) =

m∏
j=2
j �=i

S∗
j (s) (3.35)

© 2006 by Taylor & Francis Group, LLC.

The first and second moments of vacation time are equal to Vi = V ′
i (1) and V 2

i =
V ′′

i (1)+V ′
i (1), respectively. The LST for the cycle time of the piconet, then, becomes

C∗(s) =
m∏

i=2

S∗
i (s) (3.36)

A given frame will contain two data packets when the uplink and downlink queues
are not empty, one data and one empty (POLL or NULL) packet when one of the
queues is empty, or two empty (POLL and NULL) packets when both queues are
empty. Given that the LST of a single-slot packet is e−s , the LST for the frame time
during the exchange between the master and the slave i is

F∗
is(s) = P Qe−2s

+ (Qi (0, 1)+ Qi (1, 0)+ S P − 2P Q)G∗
p(s)e

−2s

+ (1 − Qi (0, 1)− Qi (1, 0)− S P + P Q) (G∗
p(s))

2
(3.37)

where, for simplicity, we have used the notation

P Q =
M∑
µ=1

π
i,(µ)
0,0 + qi

0,0

and

S P =
M∑
µ=1

(
�i,µ(0, 1)+�i,µ(1, 0)

)

Expressions (3.35) and (3.37) should be substituted in (3.30), which then depends
on the packet arrival process for the given slave, as well as on the values π i,(µ)

0,0 and

qi
0,0. The latter two can be found from the marginal PGF Qi (z, 1) (alternatively,

Qi (1, w) could be used instead), by making use of the fact that Qi (z, 1) must be an
analytic function for all |z| ∈ (0, 1). Therefore, its numerator and denominator must
have identical roots. The number of roots of the denominator can be determined by
Rouché’s theorem [Bak and Newman, 1982] and it is equal to M . Obviously, z0 = 1
is one of the roots, while the remaining M − 1 of them can be determined using
Lagrange’s theorem [Whittaker and Watson, 1952]:

z j =
∞∑

n=1

e2π jn
√−1/M

n!
· dn−1

dzn−1

(
V ∗

i (λiu − λiuGb(z))F
∗
is(λiu − λiuGb(z))

)n/M
∣∣∣
z=0

(3.38)
where j = 1 . . M − 1 denotes the index of the root in question. In practice it is
possible to truncate the sum (3.38) to the first few members only. The solutions thus
obtained may contain a small imaginary part which can safely be ignored.

© 2006 by Taylor & Francis Group, LLC.

When the M − 1 roots are substituted in the numerator of (3.30), we obtain a total
of M − 1 equations for the given slave i , with unknowns qi

0,0 and π i,(k)
0,0 :

(
1 −

(
F∗

is(λiu − λiuGb(z j))

z j

)M
)

qi
0,0+

M−1∑
k=1

(
1 −

(
F∗

is(λiu − λiuGb(z j))

z j

)M−k
)
π

i,(k)
0,0 = 0

(3.39)

where k = 1 . . M − 1.

The M-th equation is obtained from the condition Q(1, 1)+
M∑
µ=1

�i,µ(1, 1) = 1, and

it reads:

Mqi
0,0 +

M−1∑
k=1

(M − k)π i,(k)
0,0 = M(1 − λiu Fis B)− λiu BVi

1 − λiu Fis B + λiu BVi
(3.40)

Solving the system

As we see, finding the distribution of the number of packets in the uplink or downlink
queue upon the master’s return from the vacation requires that we know the proba-
bility distribution of the vacation time, and vice versa. In order to break the recursion
we have applied an iterative approach. Let us introduce marginal mass probabilities
of queue lengths as

qi
ju

=
∞∑

jd=0

qi
ju , jd

qi
jd

=
∞∑

ju=0

qi
ju , jd

π
i,(ju)
ju =

∞∑
jd=0

π
i,(ju)
ju, jd

π
i,(µ)
jd =

∞∑
ju=0

π
i,(µ)
ju, jd

(3.41)

The algorithm for solving the system is as follows.

Iteration 0 1. Consider the marginal probability distributions for uplink queues.
Assume that Q0

i (1, 1) = 0.9 and that qi
ju

= π
i,(ju)
ju , ju = 1 . .M −1. The

same process holds for the marginal probability distribution for downlink
queue.

2. Calculate the distribution of service time and vacation time for each
slave.

© 2006 by Taylor & Francis Group, LLC.

3. Solve the system which consists of M − 1 equations of the type (3.39)
and one of the type (3.40) for each queue. (The overall system consists
of 2M(m − 1) equations).

4. Calculate the new values of Qi (z, 1) and find Qi (1, 1). Also, find qi
ju

,
for ju = 0 . . M − 1.

Iterations 1 . . k 1. Calculate the new distributions of the service and vacation
times, using Qi (1, 1) and values qi

ju
and j = 0. .M−1 from the previous

iteration.

2. Solve again the system of equations that consists of 2(m − 1) instances
of the system (3.39) and (3.40).

3. With the solutions, calculate Qi (z, 1) and so on.

We have found that good accuracy can be obtained even with a small number of
iterations, typically two to three. However, the calculations are rather complex, and
solving the entire system of equations may not be the best solution; other ways to
estimate the service times of the slaves should be investigated.

Approximating the service times

From (3.34), two observations can be made regarding the interaction among slaves.
First, in case all slaves have identical packet arrival rates (i.e., the piconet load is

symmetric), the probabilities that the uplink queue will be empty upon returning from

a vacation,
qi

0

Qi (1, 1)
=

∞∑
jd=0

qi
0, jd

/
Qi (1, 1), will be identical. Under asymmetric

loads, one might expect the corresponding probabilities to differ: those of slaves
with higher arrival rates (where more packets arrive in a given time interval) should
be smaller than those of slaves with lower arrival rates.

However, this is not quite the case, because of the feedback effect – the values of
qi

0/Qi (1, 1) depend on the arrival rates of all the other slaves through their service
times. For example, consider one of the slaves and its packet burst arrival rate. If the
other slaves have smaller arrival rates, their service times will be smaller, which will
make the vacation time for the target slave small. This will, so to speak, increase the
value of qi

0/Qi (1, 1) for the target slave beyond its ‘expected’ value. On the other
hand, if the other slaves have larger burst arrival rates, they will also have larger
service times, and the vacation time for the target slave will be larger, leading to the
decrease in their qi

0/Qi (1, 1). In fact, for a piconet with two or more slaves (m ≥ 3),
the values of qi

0/Qi (1, 1) for different slaves (i = 2 . . m) are approximately equal
to each other, even though the corresponding packet burst arrival rates in the uplink
direction may be different.

The second observation, which is in part a consequence of the first one, is re-
lated to the dependency of qi

0/Qi (1, 1) on the number of slaves in the piconet. This
probability depends on the vacation time observed by the target slave, which in turn
depends on the number of transmitted packets and, indirectly, on the arrival rates of

© 2006 by Taylor & Francis Group, LLC.

the surrounding slaves, rather than their number (which will contribute only to the
number of POLL/NULL packets). Therefore, the probability qi

0/Qi (1, 1) for any
slave i will mostly depend on the total load of the piconet, rather than on the packet
arrival rates of this individual slave, or its peers.

By extension, the probability qi
0/Qi (1, 1) mostly depends on the sum of uplink

burst arrival rates, rather than the number of slaves and their individual loads. Since
the total load on the uplink is the same as one in the downlink, we may also conclude
that these observations hold in the downlink direction as well. Similar observations
can be made for the other probabilities, i.e., qi

1/Qi (1, 1) . . qi
M−1/Qi (1, 1), which

are nearly independent of the load differences among the slaves, and qi
1/Qi (1, 1)

qi
0/Qi (1, 1).

The property described above has been verified using our Artifex-based simulator;
the results of the simulation are shown in Fig. 3.7. The variable slave load is achieved
by assigning different (uplink) packet arrival rates to individual slaves. Let λmean

stand for the arithmetic mean of all slaves’ uplink packet arrival rates. Then, the
load variation of 0 corresponds to symmetric load (all arrival rates are equal, λiu =
λmean), while the load variation of 0.5 corresponds to uniformly distributed arrival
rates in the range (0.5λmean, 1.5λmean).

Furthermore, since all the slaves affect each other through their vacation times,
it follows that, for m > 3, the average cycle time depends on the sum of arrival
rates of all the slaves and not on the individual arrival rates of the slaves, provided
that differences in arrival rates are not high, say, within 80% of each other, which
includes most cases of practical importance.

This property may be verified by observing the dependency of piconet cycle time
on the total piconet load, number of slaves, and variation of load among the slaves,
obtained by simulations, which is shown in Fig. 3.8.

In order to arrive at more tractable forms of uplink channel service time, the fol-
lowing approximation was found to give a good match for the case of symmetric
traffic:

S(s)i ≈ M L

(
1 − qi

0

Qi (1, 1)

)
+ qi

0

Qi (1, 1)

− L

(
1 − qi

0

Qi (1, 1)
− ρM

tot

)
(G∗

p(λiu))
2(M−1)

(3.42)

where ρtot = 2L B
m∑

i=2

λiu denotes the total piconet load. In case of asymmetric

traffic, the approximation has to include an additional correction factor, i.e.,

S(a)i ≈ S(s)i

√√√√√(m − 2)λiu/

m∑
j=2
j �=i

λ ju (3.43)

Analogous expressions may be written for the downlink service times.

© 2006 by Taylor & Francis Group, LLC.

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load variation

q0 of Target Slave for 3−Limited Polling with 3 active slaves (B=3)

Piconet load

(a) qi
0/Qi (1, 1) for m = 4 (3 active slaves).

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load variation

q0 of Target Slave for 3−Limited Polling with 7 active slaves (B=3)

Piconet load

(b) qi
0/Qi (1, 1) for m = 8 (7 active slaves).

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Load variation

q1 of Target Slave for 3−Limited Polling with 3 active slaves (B=3)

Piconet load

(c) qi
0/Qi (1, 1) for m = 4 (3 active slaves).

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Load variation

q1 of Target Slave for 3−Limited Polling with 7 active slaves (B=3)

Piconet load

(d) qi
0/Qi (1, 1) for m = 8 (7 active slaves).

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Load variation

q2 of Target Slave for 3−Limited Polling with 3 active slaves (B=3)

Piconet load

(e) qi
0/Qi (1, 1) for m = 4 (3 active slaves).

0.4
0.5

0.6
0.7 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Load variation

q2 of Target Slave for 3−Limited Polling with 7 active slaves (B=3)

Piconet load

(f) qi
0/Qi (1, 1) for m = 8 (7 active slaves).

FIGURE 3.7
Probabilities that the slave uplink queue contains 0, 1, or 2 packets upon return from
the vacation as functions of the total piconet load and variation of load among the
slaves; in all cases, M = 3, B = 3. (From J. Mišić, K. L. Chan, and V. B. Mišić,
“Admission control in Bluetooth piconets,” IEEE Trans. Veh. Tech. 53(3):890–911,
c© 2004 IEEE. Reprinted with permission.)

© 2006 by Taylor & Francis Group, LLC.

0.4

0.6
0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

5

10

15

20

25

30

35

40

Lambda varying percentage

Cycle Time for 3−Limited Polling with 3 active slaves (B=3)

Piconet load

(a) Mean cycle time for m = 4 (3 active slaves).

0.2
0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

10

20

30

40

50

60

70

80

Lambda varying percentage

Cycle Time for 3−Limited Polling with 7 active slaves (B=3)

Piconet load

(b) Mean cycle time for m = 8 (7 active slaves).

FIGURE 3.8
Mean cycle time C as a function of the total piconet load and variation of load
among the slaves; in all cases, M = 3 and B = 3. (From J. Mišić, K. L. Chan,
and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans. Veh. Tech.
53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

Both approximations were found to give results within 10 to 15% of the values
obtained by simulation.

3.4 Access and downlink delay

Since the PGF for the burst length distribution is geometric, Gb(z) = z

B + z − zB
,

we will introduce the substitution s = λiu − λiu z/(B + z − zB) in the expression
(3.30). By using the decomposition principle [Takagi, 1991], the LST for the packet
access delay at the slave uplink queue becomes:

W ∗
ai (s) = s(1 − λiu Fis B)

s − λiu + λiuGb(F∗
is(s))

· 1 − Gb(F∗
is(s))

B(1 − F∗
is(s))

·1 − V ∗
i (s)

sVi
·

Qi

(
1 − s

λiu B − s B + s
, 1

)
Qi (1, 1)V ∗

i (s)

(3.44)

The first term in this expression corresponds to the time needed to service the first
packet in the burst in the M [x]/G/1 system. The second term corresponds to the time
needed to service the given target packet in the burst. The third term corresponds to
the time needed to service packets which arrive during the vacation, but before the

© 2006 by Taylor & Francis Group, LLC.

target burst. Finally, the last term corresponds to time needed to service packets
which were already in the uplink queue when the vacation has started.

Mean value of the access delay is obtained as Wai = −W ∗′
ai (0), which amounts to

Wai = λiu B(F2
is)

(1 − λiu Fis B)
+ B(2)2

2B(1 − λiu Fis B)
+ V 2

i

2Vi
− Vi + Q

′
i (1, 1)

λiu B Qi (1, 1)
(3.45)

where V 2
i = V ∗′′

i (0). Both analytical and simulation results for the access delay are
shown in Fig. 3.9. Two properties of the mean access delay may be deduced from
the last expression:

• Under constant offered load ρi = λiu Fis B, and under fixed value of M , the
access delay will increase with the mean burst size B. This increase is due
to the increase of the second factorial moment of the burst (second term) and
the increased number of packets in the uplink queue at the beginning of the
vacation (last term).

• Under constant offered load and fixed mean burst size B, the mean access
delay decreases when the value of M increases. This is due to the decreased
number of packets in the uplink queue at the beginning of vacation (fourth and
fifth terms in the last expression).

Simulation results confirm these observations, as can be seen from Fig. 3.10(a).
The downlink delay is calculated in a similar way. The downlink queue that cor-

responds to the given slave is actually fed by packets from all other uplink queues,
and the exact analysis of its operation is rather involved. Instead, we use a simplified
approach in which the downlink queues operate independently of the uplink queues,
but their traffic parameters differ from those of the uplink queues.

First, the downlink burst size is smaller than that in the uplink, because the down-
link queue may contain interleaved slices of packet bursts from different slaves. We
will model this effect by modifying the parameter of the geometric distribution used
to model the uplink queue. Let the uplink burst size be determined by the PGF:

Gb(z) = zpb

1 − z + zpb
(3.46)

where pb is the parameter of the geometric distribution; the mean burst size in the
uplink queue is B = 1/pb. In the downlink direction, the pb parameter will not
change if the source slave is the only one which transmits (data packets) in a partic-
ular cycle, or if the source slave is the only one that sends packets to the given target
slave. In all other cases, the burst will be interleaved with the other burst(s) with
the same destination, and the average burst size will change to Siu/L , where Siu is
the mean service period of all uplink queues which send the traffic toward the given
slave.

The probability that the source slave i is the only one to transmit in the current
cycle, and the transmission is targeted toward the slave j (where i, j = 2 . . m and
i �= j), is:

© 2006 by Taylor & Francis Group, LLC.

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

50

100

150

200

250

300

350

S
lo

ts

λ*B

Access Delay under different burst size

B=1 − Measured Access Delay
B=1 Calculated Access Delay
B=2 − Measured Access Delay
B=2 Calculated Access Delay
B=3 − Measured Access Delay
B=3 Calculated Access Delay
B=4 − Measured Access Delay
B=4 Calculated Access Delay
B=5 − Measured Access Delay
B=5 Calculated Access Delay

(a) Mean access delay.

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

400

500

600

λ*B

S
lo

ts

End−to−End Delay under different burst size

B=1 − Measured End−to−End Delay
B=1 Calculated End−to−End Delay
B=2 − Measured End−to−End Delay
B=2 Calculated End−to−End Delay
B=3 − Measured End−to−End Delay
B=3 Calculated End−to−End Delay
B=4 − Measured End−to−End Delay
B=4 Calculated End−to−End Delay
B=5 − Measured End−to−End Delay
B=5 Calculated End−to−End Delay

(b) Mean end-to-end delay.

FIGURE 3.9
Analytical and simulation results for access and end-to-end delay as functions of
burst arrival rate and mean burst size, for M = 3. (From J. Mišić, K. L. Chan,
and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans. Veh. Tech.
53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

© 2006 by Taylor & Francis Group, LLC.

5 10 15 − − Infinity
5

10

1550

100

150

200

250

300

350

400

450

500

Mean Burst Size

Access Delay, λ*B=0.015

M

(a) Mean access delay.

5 10 15 − − Infinity
5

10

15
100

200

300

400

500

600

700

Mean Burst Size

End−to−End Delay, λ*B=0.015

M

(b) Mean end-to-end delay.

FIGURE 3.10
Packet delays as functions of mean burst size and the polling parameter M . (From
J. Mišić, K. L. Chan, and V. B. Mišić, “Admission control in Bluetooth piconets,”
IEEE Trans. Veh. Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

© 2006 by Taylor & Francis Group, LLC.

Pc =
m∑

i=2
i �= j

m∏
k=2

k �=i, j

qk
0

Qk(1, 1)

(1 − qi
0)

Qi (1, 1)
(3.47)

The probability that slave i is the only one which transmits to the slave j among
two or three active slaves in the same cycle is:

Pd =
(

1 − 1

m − 3
− 1

(m − 4)2

)⌈
B
M

⌉
(3.48)

Then, the parameter of the downlink burst length distribution is given by

pb, j,d = 1

B
Pc + (1 − Pc) ·

(
1

B
Pd + L

Su
(1 − Pd)

)
(3.49)

where Su =
m∑

i=2
i �= j

Siuλiu
/ m∑

i=2
i �= j

λiu .

If the traffic is symmetric, the offered load in the downlink direction must be
the same as its uplink counterpart, hence the downlink packet arrival rate has to be
adjusted to

λ jd =
m∑

i=2
i �= j

λiu

m − 2
B pb, j,d (3.50)

where λiu denotes the uplink packet burst arrival rate.
The PGF for the distribution of downlink burst size then becomes

Gb, j,d(z) = zpb, j,d

1 − z + zpb, j,d
(3.51)

and the average burst size is B j,d = 1/pb, j,d .
After this discussion we note that the packet burst is going to be almost preserved

in the downlink, provided that scheduling parameter M is equal or larger than the
mean burst size.

In order to derive LST for the downlink delay we will introduce the substitution
u = λid − λidw/(Bi,d +w −wBi,d). The LST for the downlink delay toward slave
i then becomes

W ∗
di (u) = u(1 − λid Fis Bi,d)

u − λid + λid Gb,i,d(F∗
is(u))

· 1 − Gb,i,d(F∗
is(u))

Bi,d(1 − F∗
is(u))

·1 − V ∗
i (u)

uVi
·

Qi

(
1, 1 − u

λi,d Bi,d − u Bi,d + u

)
Qi (1, 1)V ∗

i (u)

(3.52)

© 2006 by Taylor & Francis Group, LLC.

and the mean downlink delay is

Wdi = λid Bi,d Fis

(1 − λid Fis Bi,d)
+ B(2)i,d Fis

2Bi,d(1 − 2λid Fis Bi,d)

+ V 2
i

2Vi
− Vi + Q

′
i (1, 1)

λid Bi,d Qi (1, 1)

(3.53)

The LST for end-to-end delay is equal to W ∗
i je(s, u) = W ∗

ai (s)W
∗
d j (d). Mean end-

to-end delay is Wi je = Wai + Wd j . The dependency of end-to-end delay for the
piconet with seven identical ACL slaves (m = 8) as a function of mean burst size
and burst arrival rate is shown in Fig. 3.9.

Upon close inspection, the downlink delay can be seen to behave in a different
way from the access delay when the value of M is varied. Namely, the mean burst
size in the downlink direction is limited by the interleaving of burst slices under
moderate and high burst arrival rates. Therefore, under moderate arrival burst rates,
the effective downlink burst size is close to the value of M , and the downlink delay
changes in the same direction as does M .

Therefore, when the value of M is varied, the access and downlink delays change
in opposing directions, and the end-to-end delay (which is equal to their sum) should
exhibit a minimum under relatively small values of M , as shown in Fig. 3.10(b) for
the symmetric load case. The location of this minimum can be found by solving the
equation

∂Wai

∂M
+ ∂Wd j

∂M
= 0 (3.54)

which can be accomplished numerically. The resulting dependency of the optimum
value of M as the function of B, in case the aggregate packet arrival rate per slave
has a fixed value of λB = 0.015, is shown in Fig. 3.11.

Roughly speaking, the end-to-end delay is minimized when the value of M is
tuned slightly below the value of mean burst size B, and the minimum delay is below
the value obtained with exhaustive scheduling. As the minimum is fairly broad, the
choice of M is not too critical; values of M = 3 to 5 should give satisfactory results
for a wide range of values of B.

Note that the E-limited service guarantees that each slave will be polled at least
once and at most M times within the piconet cycle that cannot exceed 10(m − 1)M
time slots of the Bluetooth clock (T = 625µs). In this manner, fairness to all slaves
is maintained.

As can be seen, both analytical and simulation results show that the E-limited
scheme outperforms other two techniques with respect to the end-to-end delay. Sec-
ond, the E-limited scheme provides fairness by default, since the limit on the number
of frames exchanged with any single slave prevents any slave from monopolizing the
network. Third, this scheme is efficient since it does not waste bandwidth, save for a
single POLL/NULL frame for each poll of the slave with no traffic in either direction
– but this inefficiency is present in all other polling schemes.

© 2006 by Taylor & Francis Group, LLC.

Optimal value of M

2

4

6

8

10

M

2 4 6 8 10 12 14
mean burst size

FIGURE 3.11
Optimal value of M as the function of mean burst size B. (From J. Mišić, K. L. Chan,
and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans. Veh. Tech.
53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

We have also shown that end-to-end packet delays may be minimized if the value
of M (the number of packets to be exchanged in a single visit to a slave) is close to
the mean size of the packet bursts coming from the slaves. As these minima are fairly
broad, values of M which are close to the optimum can still lead to near-minimum
delay values.

© 2006 by Taylor & Francis Group, LLC.

4

The impact of finite buffers

Our analysis so far has assumed that both the uplink and downlink queues (or, in
other words, the transmit and receive buffers at the baseband level) are of infinite
size. This assumption is quite reasonable for stationary devices powered from the
AC supply such as printers, desktop computers, and network access points. However,
it is not likely to hold for battery-powered mobile devices where chip space is at a
premium and, consequently, buffers are made as small as possible. In this chapter, we
relax this assumption and analyze the performance of E-limited polling in Bluetooth
piconets under bursty traffic and finite buffers.

The impact of finite buffer size at the baseband level on performance is analyzed
under the assumption of the so-called total rejection policy [Takagi, 1991]. Namely,
the application packets that arrive are segmented into a number of packets that form
a packet burst at the baseband level. The baseband packets are arriving in bursts
determined by the application. The buffers used to implement the uplink queues
have finite size, dictated by the available chip real estate and other design constraints.
The incoming packets will be allowed to enter the corresponding buffer only if the
entire burst can fit in the buffer; otherwise, the whole burst will be rejected. This is
known as the total rejection policy; other policies that utilize partial rejection only
are possible but we don’t consider them here.

The blocking probability (i.e., the probability that the packet burst will be rejected
because of insufficient free space in the corresponding buffer) will be critically de-
pendent on the device buffer size and packet burst arrival rate. Rejected packets will
have to be retransmitted under the control of the suitable transport layer protocol,
such as TCP; other schemes to deal with packet loss are also possible. Either way,
the mean delay and the network throughput – in other words, the performance of the
piconet traffic – will be affected.

The problem of packet blocking can be viewed from a practical point of view:
namely, how to select the size of hardware buffers so that the packet blocking proba-
bility does not exceed a predefined threshold. This is, in fact, the problem considered
in this Chapter, where we investigate the impact of buffer size on the performance of
Bluetooth piconets expressed in terms of packet blocking probability, access delay,
and end to end packet delay.

The Chapter is organized as follows. The basic queueing theoretic model of the pi-
conet is described in Section 4.1, where the probability distributions of queue length
sizes in imbedded Markov points are calculated. The probability distribution of
queue length in arbitrary time is calculated in Section 4.2, where the burst block-
ing probability and relevant packet delay distributions are calculated. Section 4.3

© 2006 by Taylor & Francis Group, LLC.

explains what these probabilities mean in practice, and outlines the dependencies of
blocking probabilities and packet delays on the queue size.

4.1 Queue length distribution in imbedded Markov points

Consider an isolated piconet with the master and m − 1 active ACL slaves. The
operation of the piconet may be described with a queueing model in which each
slave maintains an uplink queue, while the master maintains a number of downlink
queues, one per each active slave. Unlike the model used for the analysis in the
previous chapter, we assume that the buffers used to implement those queues have
finite size, as shown in Fig. 4.1.

at most
Kd packets
per queue

at most
Ku packets

downlink queues (one per slave)

uplink queues
at the slaves

piconet master

slave 1 slave m -1

FIGURE 4.1
Queueing model of a single piconet with finite buffers.

Buffer sizes in the network are fixed: the uplink buffer at each slave can take up
to Ku packets, while each of the downlink buffers at the master can take up to Kd

packets. Other assumptions regarding the traffic are the same as in Chapter 3: i.e.,
the applications executing on slave devices generate packets which are segmented
into a number of baseband packets. Application packet arrivals to the uplink queue
of slave i follow a Poisson distribution with the arrival rate λiu .

Assuming that all slaves use the same segmentation/reassembly mechanism (which
is reasonable, as this mechanism is commonly implemented in firmware), the burst

© 2006 by Taylor & Francis Group, LLC.

length distribution will be the same for all slaves. We assume that the traffic goes
from slaves to other slaves only, which simplifies our calculations without undue loss
of generality. (Any traffic generated or received by the master can be easily modeled
by increasing the packet arrival rates in the downlink queues.) All packets within the
given burst will have the same destination node, and the distribution of destinations is
assumed to be uniform. In more complex cases, the resulting downlink arrival rates
may be calculated from the matrix of probabilities for slave-to-slave communication,
without changing the model itself.

The PGF of the burst length probability distribution is

Gbu(z) = zpb

1 − z + zpb
(4.1)

where pb is the parameter of the geometric distribution; the mean burst size in the
uplink queue is B = G ′

bu(1) = 1/pb. On the downlink, the burst size will be affected
by the polling parameter M . This calculation is presented in Chapter 3. One could
also expect that burst size may be affected by the finite buffer size. However, we
assume that the packet burst will be accepted only if there is sufficient space in the
buffer to hold the entire burst, i.e., all the packets from it.

If the traffic is symmetric, the offered load in the downlink direction must be
the same as its uplink counterpart, hence the downlink packet arrival rate has to be
adjusted to

λ j,d =
m∑

i=2
i �= j

λiu

m − 2
B pb,d (4.2)

where pb,d is the parameter of the geometric probability distribution of the downlink
burst size, as calculated in Chapter 3, and λiu is the uplink packet burst arrival rate.
The PGF for the distribution of downlink burst size is

Gbd(z) = zpb,d

1 − z + zpb,d
(4.3)

and the average burst size is B j,d = 1/pb,d .
The number of packets at the uplink queue of a slave and the corresponding down-

link queue at the master can be modeled with a set of imbedded Markov points
[Takagi, 1991]. The Markov points correspond to vacation termination times – the
times immediately before the master sends a first downlink packet to the slave, and
frame service completion times – the times when the polled slave finishes one uplink
packet transmission.

Thanks to the symmetry of the piconet with respect to the slaves, it suffices to
consider the packet exchange between a single slave, say i , and the master. Let qi

ku ,kd
denote the joint probability that a Markov point in the uplink queue of slave i is a
vacation termination time, and that there are ku = 0, 1, 2 . . . Ku packets at the uplink
queue of slave i and kd = 0, 1, 2 . . . Kd packets at the corresponding downlink queue
at the master at that time. Also, let π i,(µ)

ku ,kd
denote the joint probability that a Markov

point is the µ-th frame transmission completion time and that there are ku packets in

© 2006 by Taylor & Francis Group, LLC.

the slave’s i queue at that time, and kd packets at the master’s queue toward the slave
i , where µ = 1 . . M denotes the index of Markov point and ku = 0, 1, 2, . . . Ku ,
kd = 0, 1, 2, . . . Kd .

Let fis(x) and vi (x) stand for the pdf-s (probability density functions) of the frame
transmission time and vacation time, respectively, at the uplink queue of slave i ; their
LST transforms will be F∗

is(s) and V ∗
i (s). We will also make use of the following

probabilities:

• the probability of ku packet arrivals at the slave i’s uplink queue during the
frame time, denoted with aku ,

• the probability of kd packet arrivals at the master’s downlink queue during the
frame time, denoted with akd ,

• the probability of ku packet arrivals at the slave i’s uplink queue during the
vacation time (i.e., while the master is servicing other slaves), denoted with
fku ,

• and the probability of kd packet arrivals in the master’s downlink during the
vacation time, denoted with fkd .

These probabilities can be calculated as

aku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu x fis(x)dx

= 1

ku!

dku

dzku
(F∗

is(λiu − λiuGb(z)))
∣∣
z=0

akd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λid x)l

l!
e−λid x fis(x)dx

= 1

kd !

dkd

dzkd
(F∗

is(λid − λid Gb(z)))
∣∣
z=0

fku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

ku!

dku

dzku
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

fkd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

kd !

dkd

dzkd
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

(4.4)

Note that F∗
is(λiu − λiuGb(z)) and V ∗

i (λiu − λiuGb(z)) denote the PGFs for the
number of packet arrivals in the uplink queue during the frame time and vacation
time, respectively:

© 2006 by Taylor & Francis Group, LLC.

AF,u(z) =
∞∑

ku=0

aku zku =
∞∑

ku=0

zk
u

ku!

dku

dzku
F∗

is(λiu − λiuGb(z))
∣∣
z=0

= F∗
is(λiu − λiuGb(z))

AV,u(z) =
∞∑

ku=0

fku zku =
∞∑

ku=0

zku

ku!

dku

dzku
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

= V ∗
i (λiu − λiuGb(z))

(4.5)

Similar expressions hold for the number of arrivals in the downlink queue. The
probabilities that the uplink queue of slave i contains ku packets and that the corre-
sponding downlink queue contains kd packets in imbedded Markov points satisfy the
following equations:

π
i,(1)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

qi
ju , jd aku− ju+1akd− jd+1 +

kd+1∑
jd=1

qi
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

qi
ju ,0aku− ju+1akd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2

π
i,(1)
Ku−1,kd

=
Ku∑

ju=1

kd+1∑
jd=1

qi
ju , jd

 ∞∑

ku=Ku− ju

aku

 akd− jd+1

+
kd+1∑
jd=1

qi
0, jd

akd− jd+1

∞∑
ku=Ku

aku +
ku+1∑
ju=1

qi
ju ,0akd

∞∑
ku=Ku− ju

aku ,

0 ≤ kd ≤ Kd − 2

π
i,(1)
ku ,Kd−1 =

ku+1∑
ju=1

Kd∑
jd=1

qi
ju , jd aku− ju+1

∞∑
kd=Kd− jd

akd +
Kd∑

jd=1

qi
0, jd

aku

∞∑
kd=Kd− jd

akd

+
ku+1∑
ju=1

qi
0, jd

aku− ju+1

∞∑
kd=Kd

akd ,

0 ≤ ku ≤ Ku − 2

π
i,(µ)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1akd− jd+1 +
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1akd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2, µ = 2 . . M
continued on next page . . .

(4.6)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

π
i,(µ)
Ku−1,kd

=
Ku∑

ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

 ∞∑

ku=Ku− ju

aku− ju+1

 akd− jd+1

+
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1

∞∑
ku=Ku

aku

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

akd

∞∑
ku=Ku− ju

aku− ju+1,

0 ≤ kd ≤ Kd − 2, µ = 2 . . M

π
i,(µ)
ku ,Kd−1 =

ku+1∑
ju=1

Kd∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1

∞∑
kd=Kd− jd

akd− jd+1

+
Kd∑

jd=1

π
i,(µ−1)
0, jd

aku

∞∑
kd=Kd− jd

akd +
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1

∞∑
kd=Kd

akd ,

0 ≤ ku ≤ Ku − 2, µ = 2 . . M

qi
ku ,kd

=
(

M−1∑
m=1

π
i,(µ)
0,0 + qi

0,0

)
fku fkd +

ku∑
ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fku− ju fkd− jd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2

qi
Ku−1,kd

=

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fkd

∞∑
ku=Ku

fku

+
ku∑

ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fkd− jd

∞∑
ku=Ku− ju

fku

0 ≤ kd ≤ Kd − 2

qi
ku ,Kd−1 =

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fku

∞∑
kd=Kd

fkd

+
ku∑

ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fku− ju

∞∑
kd=Kd− jd

fkd ,

0 ≤ ku ≤ Ku − 2

(4.6)

As always, the sum of all probabilities must be equal to 1, hence

Ku∑
ku=0

Kd∑
kd=0

qi
ku ,kd

+
M∑
µ=1

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

= 1 (4.7)

Analogous equations should also be set for (Ku, Kd) cases (a total of M+1), but they
are not shown here. This system of equations leads to the probability distribution of

© 2006 by Taylor & Francis Group, LLC.

uplink and downlink queue lengths the distribution of queue length in Markov points
is obtained. However, before solving it, the probability distributions of the frame
time and vacation time have to be found as functions of queue length distributions.

The frame time can be determined by taking into account all possible combina-
tions of uplink and downlink queue lengths. A frame will contain NULL/POLL
packets only if both queues are empty, it will contain one empty packet and one data
packet if one of the queues is empty and the other is non-empty and it will contain
two data packets if both queues are non-empty. Therefore, the LST for the frame
duration is

F∗
is(s) =

qi

0,0 +
M∑
µ=1

π
i,(µ)
0,0

 e−2s

+

Ku−1∑

ku=1

(qi
ku ,0 +

M∑
µ=1

π
i,(µ)
ku ,0

)+
Kd−1∑
kd=1

(qi
0,kd

+
M∑
µ=1

π
i,(µ)
0,kd

)

G∗

p(s)e
−s

+
Ku−1∑
ku=1

Kd−1∑
kd=1

qi

ku ,kd
+

M∑
µ=1

π
i,(µ)
ku ,kd

 (G∗

p(s))
2

(4.8)
The probability distribution of the vacation time for a particular slave can be found

as a sum of channel service times for other slaves. Channel service time is defined
as time elapsed from the moment when master polls the slave for the first time in
the piconet cycle until either the empty frame has been encountered or a total of
M data frames have been exchanged. Therefore, we need to find the LST of the
channel service time for slave i expressed in time slots T . Let us consider frames
for µ = 1 . . M consecutively and find the LST of their durations. The LST for the
duration of µ-th frame is

F∗1(s) =

Ku−1∑
ku=1

qi
ku ,0 +

Kd−1∑
kd=1

qi
0,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

G∗
p(s)e

−s +

Ku−1∑
ku=1

Kd−1∑
kd=1

qi
ku ,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

(G∗
p(s))

2

F∗µ(s) =

Ku−1∑
ku=1

π
i,(µ)
ku ,0

+
Kd−1∑
kd=1

π
i,(µ)
0,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

G∗
p(s)e

−s +

Ku−1∑
ku=1

Kd−1∑
kd=1

π
i,(µ)
ku ,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

G∗
p(s)

2,

µ = 2 . . M

(4.9)

Now we have to determine the probabilities Pf,k (where k = 0 . . M) that the
channel service time will take exactly k data frames:

© 2006 by Taylor & Francis Group, LLC.

Pf,0 = qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

Pf,1 =

1 − qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

π
i,(1)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(1)
ku ,kd

Pf,k =

1 − qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

·
k−1∏
µ=1

1 − π
i,(µ)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

· π
i,(k)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(k)
ku ,kd

,

k = 2 . . M − 1

Pf,M = 1 −
M−1∑
k=0

Pf,k

(4.10)

Then, the LST for the channel service time is

S∗
i (i) =

M−1∑
k=0

Pf,k

k∏
µ=1

(F∗µ(s))e−2s + Pf,M

M∏
µ=1

F∗µ(s) (4.11)

and, assuming that the slaves have indices i = 1 . . m − 1, the LST of the vacation
time for slave i is

V ∗
i (s) =

m−1∏
j=1
j �=i

S∗
j (4.12)

When (4.8) and (4.12) are substituted in the system (4.6), the system can be solved
for unknown mass probabilities of joint uplink-downlink queue length probability
distribution.

Let us denote the probability that vacation starts after the uplink transmission as

hi =
M−1∑
µ=1

π
i,(µ)
0,0 +

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(M)
ku ,kd

. The probability that the vacation will start after

© 2006 by Taylor & Francis Group, LLC.

an arbitrary Markov point is qi
0,0 + hi , while the average time interval between two

consecutive Markov points at slave i is

ηi = (qi
0,0 + hi)Vi + (1 − qi

0,0 − hi)Fis (4.13)

4.2 Uplink queue length distribution

By using the probability distribution of the uplink queue length at Markov points,
we will derive the probability distribution of the uplink queue length at arbitrary
time between two Markov points. We can also derive the PDF of the remaining
vacation time (if the previous Markov point was the start of vacation) or the PDF of
the remaining frame service time (if the previous Markov point was the start of the
packet service). Let us introduce the following variables:

• the pdf of the vacation time, vi (x), and its PDF, Vi (x),

• uplink and downlink queue length at arbitrary time, Lq,i ,

• elapsed vacation time, V ,i ,

• remaining vacation time, as V+,i ,

• the number of packet arrivals (results of packet burst arrivals) in the slave
uplink queue during the elapsed vacation time, Au(V), and the corresponding
number of arrivals in the downlink queue, Ad(V),

• the pdf of the frame service time, fis(x), and its PDF, Fis(x),

• elapsed frame service time, X ,i ,

• remaining frame service time, as X+,i ,

• the number of packet arrivals (as results of packet burst arrivals) in the slave
uplink queue during the elapsed frame service time, Au(X), and the corre-
sponding number of arrivals in the downlink queue, Ad(X).

We will use results from the renewal theory [Kleinrock, 1972; Takagi, 1991] which
determine the pdf’s of elapsed frame service time and vacation time. In the case of

frame service time, the pdf of the elapsed vacation time is
1 − Vi (x)

Vi
, and the pdf of

the remaining vacation time is
vi (x)

1 − Vi (x)
.

For the time between the start of the vacation and end of vacation, we define the
joint probability of the uplink/downlink queue lengths and remaining vacation time
as

© 2006 by Taylor & Francis Group, LLC.

�∗
ku ,kd ,i

(s) =
∫ ∞

0
e−syP[Lq,i = (ku, kd), y < V+,i < y + dy],

0 ≤ ku ≤ Ku, 0 ≤ kd ≤ Kd

(4.14)

where P[x] denotes the probability of event x .

For the time between the start and end of the frame service for phase 1 ≤ µ ≤ M ,
we define the joint probability of the uplink/downlink queue lengths and remaining
frame service time as

�∗
ku ,kd ,µ,i

(s) =
∫ ∞

0
e−syP[Lq,i = (ku, kd), y < X+,i < y + dy],

1 ≤ ku ≤ Ku, 1 ≤ kd ≤ Kd , 1 ≤ µ ≤ M
(4.15)

Using the probabilities of the uplink queue state in the previous Markov point, we
obtain

�∗
ku ,kd ,i

(s) = Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

 E[e−sV+,i,u |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

E[e−sV+,i,u |Au(V ,i) = ku − ju, Ad(V ,i) = kd − jd]

·P[Au(V ,i) = ku − ju] · P[Ad(V ,i) = kd − jd],
0 ≤ ku ≤ Ku − 1, 0 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,i

(s) =
Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

∞∑
ku=Ku− ju

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd − jd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd − jd],
0 ≤ kd ≤ Kd − 1

continued on next page . . .
(4.16)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page
�∗

ku ,Kd ,i
(s) =

Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

kd=Kd

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

∞∑
kd=Kd− jd

E[e−sV+,i |Au(V ,i) = ku − ju, Ad(V ,i) = kd]

·P[Au(V ,i) = ku − ju]P[Ad(V ,i) = kd],
0 ≤ ku ≤ Ku − 1

�∗
ku ,kd ,1,i

(s) =
Fis

ηi

ku∑
ju=1

kd∑
jd=1

qi
ju , jd E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd − jd]

·P[Au(X ,i)=ku − ju]P[Ad(X ,i)=kd − jd]
1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,1,i

(s) =
Fis

ηi

Ku∑
ju=1

kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

E[e−s X+,i |Au(X ,i)=ku, Ad(X ,i)=kd − jd]

·P[Au(X ,i) = ku]P[Ad(X ,i) = kd − jd],
1 ≤ kd ≤ Kd − 1

�∗
ku ,Kd ,1,i

(s) =
Fis

ηi

ku∑
ju=1

Kd∑
jd=1

qi
ju , jd

∞∑
kd=Kd− jd

E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd]
1 ≤ ku ≤ Ku − 1

�∗
ku ,kd ,µ,i

(s) =
Fis

ηi

ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

E[e−s X+,i |Au(X ,i)=ku − ju, Ad(X ,i)=kd − jd]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd − jd],
1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ M

�∗
Ku ,kd ,µ,i

(s) =
Fis

ηi

Ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

E[e−s X+,i |Au(X ,i) = ku, Ad(X ,i) = kd − jd]

·P[Au(X ,i) = ku]P[Ad(X ,i) = kd − jd],
2 ≤ µ ≤ M, 1 ≤ kd ≤ Kd − 1

continued on next page . . .
(4.16)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page
�∗

ku ,Kd ,µ,i
(s) =

Fis

ηi

ku∑
ju=1

Kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
kd=Kd− jd

E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd],
2 ≤ µ ≤ M, 1 ≤ ku ≤ Kd

(4.16)
For brevity, we have not shown the additional M + 1 equations that should also be
set for (Ku, Kd) cases.

The system (4.16) can be simplified as follows. We have initially assumed that
the uplink and downlink burst sizes should be the same when the values of Ms and
Mb are larger than B. We will relax that assumption and calculate them separately,
using the notation Gbu (z) and Gbd (z) for the PGFs for burst sizes in the uplink and
downlink, respectively.

φ∗
ku ,kd

(s) = E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]
·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

=
∞∑

lu=0

1

ku!

dku

dzku
u

(
Gbu (zu)

)lu
∣∣∣
zu=0

·
∞∑

ld=0

1

kd !

dkd

dzkd
d

(
Gbd (zd)

)ld
∣∣∣
zd=0

·
∫ ∞

0

(λiu x)lu

lu!
e−λiu x (λid x)ld

ld !
e−λid x 1 − Vi (x)

Vi
dx

·
∫ ∞

0
e−sy vi (x + y)

1 − Vi (x)
dy

(4.17)

If we introduce the substitution u = x + y and change the order and limits of inte-
gration of variables x and u, we obtain

φ∗
ku ,kd

(s) = 1

Vi ku!kd !

dku

dzku
u

dkd

dzkd
d(

V ∗
i (−λiuGbu(zu)+ λiu − λid Gbd(zd)+ λid)− V ∗

i (s)

λiuGbu(zu)+ λid Gbd(zd)− λiu − λid + s

)∣∣∣∣
zu=0,zd=0

(4.18)
In an analogous fashion, starting from

ψ∗
ku ,kd

(s) = E[e−s X+,i |Au(X ,i) = ku, Ad(X ,i) = kd]
·P[Au(X ,i) = ku]P[Ad(X ,i) = kd]

(4.19)

© 2006 by Taylor & Francis Group, LLC.

we obtain

ψ∗
ku ,kd

(s) = 1

Fisku!kd !
· dku

dzku
u

dkd

dzkd
d(

F∗
is(−λiuGbu(zu)+ λiu − λid Gbd(zd)+ λid)− F∗

is(s)

λiuGbu(zu)+ λid Gbd(zd)− λiu − λid + s

)∣∣∣∣
zu=0,zd=0

(4.20)

Then the system (4.16) can be transformed to

�∗
ku ,kd ,i

(s) = Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

φ∗

ku ,kd
(s)

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

φ∗
ku− ju ,kd− jd ,

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,i

(s) = Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

φ∗
ku ,kd

(s)

+ Vi

ηi

Ku∑
ju=0

kd∑
jd=0

π
i,(M)
0,0

∞∑
ku=Ku− ju

φ∗
ku ,kd− jd (s), 1 ≤ kd ≤ Kd − 1

�∗
Ku ,Kd ,i

(s) = Vi

ηi

qi

0,0 +
M−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

∞∑
kd=Kd

φ∗
ku ,kd

(s)

+ Vi

ηi

Ku∑
ju=0

Kd∑
jd=0

π
i,(M)
0,0

∞∑
ku=Ku− ju

∞∑
kd=Kd− jd

φ∗
ku ,kd

(s)

�∗
ku ,kd ,1,i

(s) = Fis

ηi

ku∑
ju=1

kd∑
jd=1

qi
ju , jdψ

∗
ku− ju ,kd− jd (s),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,1,i

(s) = Fis

ηi

Ku∑
ju=1

kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

ψ∗
ku ,kd− jd (s), 1 ≤ kd ≤ Kd − 1

�∗
Ku ,Kd ,1,i

(s) = Fis

ηi

Ku∑
ju=1

Kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

∞∑
kd=Kd− jd

ψ∗
ku ,kd

(s)

�∗
ku ,kd ,m,i

(s) = Fis

ηi

ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

ψ∗
ku− ju ,kd− jd (s),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ M
continued on next page . . .

(4.21)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

�∗
Ku ,kd ,µ,i

(s) = Fis

ηi

Ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

ψ∗
ku ,kd− jd (s),

1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ M

�∗
Ku ,Kd ,µ,i

(s) = Fis

ηi

Ku∑
ju=1

Kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

∞∑
kd=Kd− ju

ψ∗
ku ,kd

(s), 2 ≤ µ ≤ M

(4.21)
Equations for �∗

ku ,Kd ,i
(s)), �∗

ku ,Kd ,1,i
(s), and �∗

ku ,Kd ,µ,i
(s)) are analogous to the

second, fifth, and eighth of the equations above, respectively.
The joint distribution of the uplink and downlink queue size toward the slave at

arbitrary time is

P[Lq,i = (0, 0)] = �∗
0,0,i (0)

P[Lq,i = (0, kd)] = �∗
0,kd ,i (0)+

M∑
µ=1

�∗
0,kd ,µ,i (0), 1 ≤ kd ≤ Kd

P[Lq,i = (ku, 0)] = �∗
ku ,0,i (0)+

M∑
µ=1

�∗
ku ,0µ,i (0), 1 ≤ ku ≤ Ku

P[Lq,i = (ku, kd)] = �∗
ku ,kd ,i (0)+

M∑
µ=1

�∗
ku ,kd ,µ,i (0),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

P[Lq,i = (Ku, kd)] = �∗
Ku ,kd ,i (0)+

M∑
µ=1

�∗
Ku ,kd ,µ,i (0), 1 ≤ kd ≤ Kd

P[Lq,i = (ku, Kd)] = �∗
ku ,Kd ,i (0)+

M∑
µ=1

�∗
ku ,Kd ,µ,i (0), 1 ≤ ku ≤ Ku

(4.22)

We can now calculate the burst blocking probability, under total rejection policy, in
the uplink queue of slave i at arbitrary times. (Note that the corresponding blocking
probability can be calculated for the downlink queues at the master as well.) To
that end, let us denote the mass probability of burst size being equal to l packets as

gl = 1

l!

dl

dzl
Gbu(z)|z=0. Then we obtain

PB,i,u =
Ku∑

ku=0

Kd∑
kd=0

P[Lq,i = (ku, kd)]P[burst > Ku − ku]

=
Ku∑

ku=0

Kd∑
kd=0

P[Lq,i = (ku, kd)]
∞∑

l=Ku−ku

gl

(4.23)

© 2006 by Taylor & Francis Group, LLC.

The joint queue length distributions contain information about remaining ser-
vice/vacation time. This enables us to determine the LST for the access delay for the
first packet in the burst. Let us denote the blocking probability for the first packet of

the burst in the uplink queue as Pg
B,i,u =

Kd∑
kd=0

�∗

Ku ,kd ,u(0)+
M∑
µ=1

�∗
Ku ,kd ,µ,i (0)

.

Then the access delay of the first packet in the burst becomes

W ∗
g,ai (s) = 1

1 − Pg
B,i,u

 Kd∑

kd=0

Ku−1∑
ku=0

�∗
ku ,kd ,i (s)F

∗
is(s)

ku V ∗
i (s)

�k/M

+
Kd∑

kd=0

Ku−1∑
ku=1

M∑
µ=1

�∗
ku ,kd ,µ,i (s)F

∗
is(s)

(ku−1)V ∗
i (s)

�(ku+µ−1)/M

(4.24)

The mean access delay for the first packet in the burst is determined as

Wg,ai = − d

ds
W ∗

g,ai (s)
∣∣∣
s=0

= 1

λ2
iu(1 − Pg

B,i,u)ηi

Kd∑
kd=0

Ku−1∑
ku=1

ku

 M∑
µ=1

π
i,(µ)
ku ,kd

+ Ku

λiu

Pg
B,i,u

1 − Pg
B,i,u

− Fis

(4.25)
In order to calculate the delay of the arbitrary packet in the burst, we need the

distribution of the distance of the arbitrary packet from the first packet in the burst.
The probability that there are k packets before the arbitrary packet in the burst is

g−
k = 1

B

∞∑
j=k+1

g j . Then, the LST for the delay of the arbitrary packet in the accepted

burst becomes

W ∗
ai (s) =

Kd∑
kd=0

Ku−1∑
ku=0

�∗
ku ,kd ,i (s)

Ku−ku∑
j=1

g j

j−1∑
w=1

g−
w F∗

is(s)
(ku+w)V ∗

i (s)
�(ku+w)/M

1 − PB,i,u

+

Kd∑
kd=0

Ku−1∑
ku=1

M∑
µ=1

�∗
ku ,kd ,µ,i (s)

Ku−ku∑
j=1

g j

j−1∑
w=1

g−
w F∗

is(s)
(ku−1)V ∗

i (s)
�(ku+µ+w−1)/M

1 − PB,i,u
(4.26)

4.3 Experimental results

In order to validate the results of the queueing theoretic analysis, we have modified
our Bluetooth piconet simulator by introducing buffers with variable (and adjustable)

© 2006 by Taylor & Francis Group, LLC.

size. The uplink buffers at each slave had the same size. The size of the master
queue has been obtained for all downlink queues taken together, as this was the more
realistic scenario. All buffers were operated under the total rejection policy, i.e.,
all packets from a packet burst were rejected if the available buffer space could not
accommodate the entire burst.

A series of experiments has been conducted to measure the blocking probability
and packet delays (both access delay and end-to-end delay) in the piconet. We have
used the E-limited polling scheme described in Chapter 3, with the parameter M set
as specified below.

The first experiment deals with the blocking probability at the master queue under
varying offered load ρ; the slave buffer size has been fixed at 10KBytes. The results
are shown in Fig. 4.2; values of blocking probability less than 10−5 are not shown
for clarity. As can be seen, the blocking probability increases with offered load and
decreases with the buffer size. Master buffer size of a few kilobytes or more can
guarantee the blocking probability less than 10−4 at loads up to ρ = 0.5, which is
probably more than will be encountered in practice. Since packet losses are small,
there was no significant difference in packet delays.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000 10000

ρ = 0.21

ρ = 0.42

ρ = 0.63

master buffer size (bytes)

FIGURE 4.2
Blocking probability at the master buffer as the function of piconet load ρ.

The situation is slightly different at the slave uplink queues, as can be seen from
Fig. 4.3. In this case, the master buffer size was fixed at 10KBytes. Again, larger
buffers lead to lower blocking probability, but for smaller buffers the offered load
does not affect this probability too much. At the same time, the packet delays are
lower, but the reason for this decrease is actually the decrease in the number of
packets that are allowed to get through, rather than a performance improvement.

The next experiment investigates the effect of packet burstiness, as expressed by
varying the mean burst size while keeping the overall packet arrival rate constant.
The performance under varying slave uplink buffer size is shown in Fig. 4.4(a); in
all cases, the polling parameter has been fixed at M = 3, while the offered load was
kept at ρ = 0.42. As can be seen, more bursty traffic corresponds to higher blocking

© 2006 by Taylor & Francis Group, LLC.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000 10000

slave buffer size (bytes)

ρ = 0.21
ρ = 0.42

ρ = 0.63

ρ = 0.042

(a) Blocking probability at the slave buffer.

0

25

50

75

100

125

150

0 2000 4000 6000 8000 10000

slave buffer size (bytes)

ρ = 0.21

ρ = 0.42

ρ = 0.63

ρ = 0.042

(b) Access delay.

0

25

50

75

100

125

150

175

200

0 2000 4000 6000 8000 10000

slave buffer size (bytes)

ρ = 0.21

ρ = 0.42

ρ = 0.63

ρ = 0.042

(c) End-to-end packet delay.

FIGURE 4.3
Performance of the finite slave uplink buffer as the function of piconet load ρ.

probability, but also to lower packet delays. The explanation of this phenomenon is
similar to the previous one: for packet bursts with sizes up to the polling parameter,
B ≤ M , the master is able to grab the entire burst from the slave, and therefore the
delays are not much affected. At the same time, the blocking probability is small
even for small uplink buffers, as the burst is quickly transferred to the master.

When the mean burst size is higher, the master cannot transfer the entire burst
during a single visit to the slave. As the consequence, the probability that the burst
will not fit in the uplink buffer increases. For very bursty traffic and small buffer
sizes, the blocking probability may well exceed 0.1, which makes the piconet hardly
usable for data traffic. (As explained above, a reliable transport protocol such as TCP
will probably take care of packet losses, but at the expense of enormous increase in
packet delays.)

The behavior is slightly different at the master, as can be seen from Fig. 4.5. In
this case, the blocking probability at small buffer sizes – although high – does not
change much for bursts of five or more packets. This may be explained by the fact
that large bursts arrive infrequently, and the master is still able to handle them with
(relative) ease. The difference in packet delays was small and it’s not shown.

© 2006 by Taylor & Francis Group, LLC.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000 10000 12000

slave buffer size (bytes)

B = 9B = 7B = 5mean burst
length B = 3

(a) Blocking probability at the slave buffer.

0

25

50

75

100

125

150

0 2000 4000 6000 8000 10000

slave buffer size (bytes)

B = 9

B = 7

B = 5

B = 1

mean burst length B = 3

(b) Access delay.

0

25

50

75

100

125

150

175

200

0 2000 4000 6000 8000 10000
slave buffer size (bytes)

B = 9

B = 7

B = 5

B = 1

mean burst length B = 3

(c) End-to-end packet delay.

FIGURE 4.4
Performance of the finite slave uplink buffer as the function of mean burst size B.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000 10000 12000

master buffer size (bytes)

mean burst
length B = 3

B = 9

B = 7B = 5

FIGURE 4.5
Blocking probability at the master buffer as the function of mean burst size B.

We have also measured the performance of the piconet under varying polling pa-
rameter M and varying buffer sizes. Blocking probability and end-to-end packet
delays with limited slave buffer size are shown in Fig. 4.6. As can be seen, the

© 2006 by Taylor & Francis Group, LLC.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000

slave buffer size (bytes)

polling parameter
M = 1

M = 3
M = 5

M = 7

M = 9

(a) Blocking probability at the slave buffer.

0

25

50

75

100

125

150

0 2000 4000 6000 8000

slave buffer size (bytes)

polling parameter
M = 1

M = 3
M = 5

M = 7

M = 9

(b) Access delay.

0

25

50

75

100

125

150

175

200

0 1000 2000 3000 4000 5000 6000 7000 8000

slave buffer size (bytes)

polling parameter
M = 1M = 3

M = 5

M = 7

M = 9

(c) End-to-end packet delay.

FIGURE 4.6
Performance of finite slave uplink buffer as the function of the polling parameter M .

increase in M leads to a decrease in blocking probability at the slave, as does the
increase in slave uplink buffer size – but this becomes more pronounced only for
higher values of M . At the same time, the end-to-end packet delay is consistently
decreasing with M , while the access delay decreases slightly, the largest jump being
the one that corresponds to the increase of M from 1 to 3. (This is consistent with
earlier results in [Mišić and Mišić, 2003b].)

In case of finite buffer size at the master, Fig. 4.7 shows the blocking probability
and the end-to-end packet delays for values of M from 1 to 9. The behavior is quite
similar to that at the slave uplink queue.

In all cases, the buffer sizes of a few Kbytes – say, 6 to 10 – are sufficient to ensure
that the resulting blocking probability at the device, be it master or slave, will remain
lower than 10−5 under typical values of piconet load.

© 2006 by Taylor & Francis Group, LLC.

0.00001

0.0001

0.001

0.01

0.1

1

0 2000 4000 6000 8000

master buffer size (bytes)

polling parameter
M = 1

M = 3

M = 5

M = 7

M = 9

(a) Blocking probability at the master buffer.

0

25

50

75

100

125

150

175

200

0 2000 4000 6000 8000

master buffer size (bytes)

polling parameter
M = 1

M = 3

M = 5
M = 7

M = 9

(b) End-to-end packet delay.

FIGURE 4.7
Performance of finite master buffer as the function of the polling parameter M .

© 2006 by Taylor & Francis Group, LLC.

5

Admission control

If the performance of Bluetooth networks is to remain within acceptable limits, the
piconet master must carefully manage all aspects of piconet operation. Earlier chap-
ters have discussed a number of polling algorithms and the choice of their param-
eters, which may be considered to belong to ‘tactical’ and ‘operational’ levels of
management, respectively. However, management also involves decisions that have
to be made at the time the piconet is formed: whether to invite (and subsequently
admit) another device or not, and what would be the impact of this admission on the
performance of the piconet. This chapter is devoted to issues of admission control in
Bluetooth piconets, and it shows that a range of algorithms can be utilized to exer-
cise such control in order to maintain the performance indicators within predefined
bounds. As shown in Chapter 3, the critical performance indicators mainly depend
on the total piconet load, rather than on the traffic load of individual slaves. This ob-
servation will be used as the foundation upon which three algorithms for admission
control are designed.

The simplest algorithm is based on queue stability or, in case the buffer size is lim-
ited, the blocking probability. Either way, its low computational complexity makes
it suitable for battery power-limited master nodes. The second algorithm estimates
the access delay of the slave upon admission using the estimated first and second
moments of the vacation times, and makes the admission decision on the basis of
predefined access delay bounds. The third algorithm is based on predefined cycle
time bounds, which makes it suitable for applications that generate Constant-Bit
Rate data flows.

Either of these admission control schemes could easily be incorporated in the for-
mation algorithms for both piconets and scatternets. In the inquiry phase, the piconet
master may use a particular IAC code [Bluetooth SIG, 2003a] to advertise its use of
the chosen admission policy. The slaves responding to the inquiry would provide
information about their anticipated packet arrival rate and, possibly, about the mean
burst sizes. Alternatively, if the segmentation and reassembly process is done by the
same systems software layer, such as BNEP [Bluetooth SIG, 2001a], all devices may
be assumed to generate packet bursts with the same mean size, and this information
need not be supplied. The master can then decide to page, and subsequently admit,
only those slaves for which the appropriate admission criterion will be satisfied, and
thus enable the piconet to operate within the desired limits of quality of service.

In all cases, we assume that the mean flow rate of each slave must be known
at the time of admission; the same assumption has been adopted by other authors
who discuss admission control in Bluetooth piconets [Ait Yaiz and Heijenk, 2001;

© 2006 by Taylor & Francis Group, LLC.

Lapeyrie and Turletti, 2003]. In practice, intelligent devices can provide the actual or
estimated flow rates of their respective applications, while simpler devices, such as
mice or keyboards, could be admitted using the default rates for that particular type
of device.

The three admission control algorithms are presented in Sections 5.1, 5.2, and 5.3,
respectively.

5.1 Admission control based on queue stability

For traffic which is not delay sensitive, it suffices to check the stability condition of
uplink (and, possibly, downlink) queues upon the admission of new traffic flow. (We
will refer to this algorithm as QS, for Queue Stability.) If the stability conditions are
met for all the queues, the new slave can be admitted to the piconet. If one or more
of the stability conditions are not met, the admission of a new slave will cause one
or more uplink queues to become unstable. The existence of an unstable queue, or
several of them, means that the access delays will increase indefinitely (first in those
queues, and then in others as well) and buffer overflows will occur.

In case of uniform probability of all destinations, the downlink queues are fed in
by the (m − 1)-th part of the sum of all uplink burst arrival rates, and the downlink
traffic will be symmetric. Consequently, if all uplink queues are stable, the downlink
queues will be stable as well. In case the distribution of downlink traffic is not
uniform, the algorithm should check the stability of the downlink queues as well.

The QS algorithm operates as follows. Assume that m − 1 ≤ 6 traffic flows are
already admitted, and a new slave x is about to be admitted to the network. (We
assume that the inquiry phase has been completed, and that the new slave has to
be paged and accepted to the network.) The admission process requires that the
new slave has to specify the uplink burst arrival rate λxu and, optionally, the mean
burst size Bx,u . (We assume that all slaves will have the same uplink burst size
distribution.)

The piconet master, then, has to verify that the admission of data traffic to and from
the new slave will not violate the stability of the uplink queues of the slaves that are
already members of the piconet. This may be accomplished by calculating the new
vacation times, i.e., if the master solves the system of equations from Section 3.3.

However, solving the system, even in a simplified form, can be time- and energy-
consuming. If the piconet master operates under limited power conditions, the same
task may be accomplished in a simpler and faster manner. We assume that the master
is keeping a table that numerically describes the dependency of these probabilities
on the total load in the piconet – essentially, a two-dimensional representation of the
data shown in Fig. 3.7. In cases where power limitations do not exist, an algorithmic
approximation might be used as well.

First, the master calculates the new total offered load, using the packet burst arrival

© 2006 by Taylor & Francis Group, LLC.

TABLE 5.1
Slave load and activation sequence in the simulation of the QS
admission scheme. (From J. Mišić, K. L. Chan, and V. B. Mišić,
“Admission control in Bluetooth piconets,” IEEE Trans. Veh.
Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with
permission.)

Slave number Starts at (s) With load Giving total load ρ

1 0 0.06 0.06
2 0 0.12 0.18
3 300 0.18 0.36
4 600 0.24 0.60
5 900 0.30 0.90
6 1200 0.36 1.26

rates λiu and mean burst sizes Biu .
Second, using the tabular dependency kept in memory, the master obtains the value

for C that corresponds to the new total load. As discussed in Chapter 3, these values
will be nearly equal for all slaves, regardless of their individual packet arrival rates.

In the third step, the master verifies the stability condition for the queues of all
slaves. The stability condition for the uplink queue i is based on the fact that the
average number of packets that arrive in the slave queue during its average cycle
time must be less than M :

λiu BC < M (5.1)

Assuming that the destinations are uniformly distributed among the slaves, the sta-
bility condition for downlink queues does not need to be checked. However, in
cases where the assumption does not hold, the stability of downlink queues has to be
checked using the steps outlined above.

To illustrate the operation of the QS admission scheme, we have modified our
Bluetooth simulator so that new slaves are introduced at predefined times, thus sim-
ulating admission. Each of the slaves starts transmitting data at a predefined time
and contributes a predefined portion of the total load. The number of slaves, their
loads (relative to the rated load of the piconet), total offered load and the time of
their admission, are shown in Table 5.1. Note that the rated load of the piconet is
actually exceeded in the presence of all six slaves. In all measurements, we have
used B = M = 3.

Then, we have calculated the stability conditions and measured the mean access
delay for each uplink queue over a period of 1400s, or slightly more than 23 minutes,
of simulated time. The resulting diagrams of the total offered load and calculated
stability conditions are shown together on Fig. 5.1(a), while Fig. 5.1(b) shows the
measured access delays, averaged over 10s intervals.

As can be seen, the delays increase with each added slave. With two and three
slaves, mean access delay is well below 50T . The admission of the fourth slave

© 2006 by Taylor & Francis Group, LLC.

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

Time(sec)

Queue Stability Factor

Total Offered Load
Slave 1
Slave 2
Slave 3
Slave 4
Slave 5
Slave 6

(a) Offered load and queue stability conditions.

300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

50

100

150

200

250

300

Time(sec)

Access delay

Measured Access delay
Analytically determined Access delay

(b) Mean access delay at the slave uplink queues.

FIGURE 5.1
Pertaining to the operation of the QS admission control scheme. (From J. Mišić,
K. L. Chan, and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans.
Veh. Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

© 2006 by Taylor & Francis Group, LLC.

brings the total load to ρ = 0.6, and the mean delay rises to about 60T . (The noise
spikes are the consequence of bursty traffic.)

However, when the fifth slave is admitted, the stability condition for its uplink
queue will be violated, even though the overall piconet load is still ρ = 0.9. Obvi-
ously, the QS algorithm would have rejected the sixth slave.

In our experiment, however, this slave did get admitted. As a consequence, the
access delay has risen to about 900 to 1000T , well beyond the range shown in
Fig. 5.1(b), and thereafter increases indefinitely – the queues can never be emptied.
Note that 800T is equal to 0.5s, and this is access delay only; end-to-end delays can
be much longer, possibly even twice as long. If the sixth slave is admitted, the stabil-
ity conditions will be violated for five uplink queues, and the piconet will effectively
cease to function.

For increased safety, the stability threshold could be set to a value smaller than 1,
such as 0.9 or even 0.8.

In case of finite buffers, the blocking probability should be checked upon new
flow arrival instead of the stability condition. However, the analysis from [Takagi,
1993a] shows that stability condition and blocking probability are correlated. Since
the stability condition is easier to compute than the estimate of blocking probability,
we believe it is more suitable for use in admission control.

5.2 Admission control based on access delay

In cases where traffic is delay sensitive and access delay is the critical parameter, a
more accurate (but also more complex) admission control scheme may be utilized.
Under this scheme, when the new slave requests to be admitted, the master has to
recalculate mean access delays for all existing slaves and calculate the access delay
for the new slave. (This will also limit the end-to-end delay, which, in general, does
not exceed twice the value of the access delay.) If any of these delays exceeds the
agreed-upon limits, the new slave will not be admitted.

The mean access delay under E-limited polling was calculated in Chapter 3; we
repeat the expression here for convenience:

Wia = λiu B(F2
is)

(1 − λiu Fis B)
+ B(2)2

2B(1 − λiu Fis B)
+ V 2

i

2Vi
− Vi + Q

′
i (1, 1)

λiu B Qi (1, 1)
(5.2)

We use ρiu = λiu B Fis to denote the portion of the uplink load contributed by the
slave i , while the value of Q′

i (1, 1) is obtained as

© 2006 by Taylor & Francis Group, LLC.

Q′
i (1, 1) = Qi (1, 1)(λiu BVi + M)

−
(
ρ2

iu/2 + 2L2(λiu B)2 + 2λiu L B(2) − 3ρiu + 2
)

2((1 − ρiu)+ λiu BVi)

− qi
0,0 M(M − 1)

(
(1 − ρiu)

2 − ρiu
)+�′′

i,0(1, 1)(1 − ρiu)
2

2(M(1 − ρiu)− λiu B Vi)

+
Qi (1, 1)

(
−M(M − 1)+ V 2

i (λiu B)2 + Viλiu B(2) + 4MVi L(λiu B)2
)

2(M(1 − ρiu)− λiu BVi)

+
Qi (1, 1)

(
M(2M − 1)

ρ2
iu
2 + 2M L2(λiu B)2 + Mλiu Fis B(2)

)
2(M(1 − ρiu)− λiu BVi)

(5.3)

where �i,0(z, w) =
M−1∑
µ=1

π
i,(µ)
0,0 zM−µwM−µ.

It may be interesting to note that the denominators of the last three components
actually include the stability conditions utilized in the QS scheme. Therefore, this
scheme is more restrictive than the QS scheme described above.

The operation of the AD admission control scheme will be illustrated with an ex-
ample. Let us assume that the individual slaves are admitted to the piconet according
to the data shown in Table 5.2, and that the access delay threshold is set to 150T .
For reference, we have shown the total offered load and queue stability conditions
in Fig. 5.2(a), while the estimated and measured values of access delay are shown in
Fig. 5.2(b).

TABLE 5.2
Slave load and activation sequence in the simulation data of the
AD and CT admission schemes. (From J. Mišić, K. L. Chan, and
V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE
Trans. Veh. Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with
permission.)

Slave number Starts at (s) With load Giving total load ρ

1 0 0.04 0.04
2 0 0.08 0.12
3 300 0.12 0.24
4 600 0.16 0.40
5 900 0.20 0.50
6 1200 0.24 0.84

© 2006 by Taylor & Francis Group, LLC.

As can be seen, the admission of the fifth slave at t = 900s leads to an increase in
access delay, but its mean values are well below 150T . However, when the sixth slave
is about to be added at t = 1200s, the AD algorithm estimates that the access delay
will rise to about 400T , or 0.25s. As this value exceeds the predefined threshold of
150T , this slave would be rejected. In case it is admitted, the delays indeed increase
well above the threshold. Of course, a threshold set at a sufficiently high value might
have allowed the admission of the sixth slave, while a lower threshold might not have
admitted the fifth, or even the fourth one. Note that the total offered load is below the
rated piconet load, with the maximum of ρ = 0.84; hence, the QS admission criteria
would be satisfied by all six slaves in this case.

We note that the AD admission control scheme requires more information to be
kept by the master than its QS counterpart, even though we retain the fitted dependen-

cies of service and vacation times on the marginal probabilities
∞∑

kd=0

qi
0,kd/Qi (1, 1)

and
∞∑

ku=0

qi
ku,0/Qi (1, 1). First, it requires estimation of the second moment of va-

cation time; this may be accomplished by using the new estimated average vacation
time together with the variance of the previous cycle time. Second, it requires es-
timation of the probabilities that the slave uplink queues are empty after the corre-

sponding service periods, i.e.,
∞∑

kd=0

π
i,(m)
0,kd , m = 1 . . M − 1; these probabilities can

be estimated in the same manner as
∞∑

kd=0

qi
0,kd/Qi (1, 1). For simplicity, the term

�′′
i,0(1, 1)(1 − ρiu)

2 can be neglected, which leads to a slight overestimation of the
access delay. We also assume that both first and second moments of the packet
length distribution and burst length distribution are known to the master; as men-
tioned above, this information may be available if all devices use the same segmen-
tation/reassembly algorithm.

5.3 Admission control based on cycle time

In some cases, the data flow from or to a slave might have a specified bandwidth;
such is the case with audio and video streams, as well as with other types of traffic
commonly referred to as CBR traffic. The Bluetooth specification indeed provides
rudimentary support for CBR traffic at the LMP level [Bluetooth SIG, 2001b]. The
master and an ACL slave may set up the maximum polling interval Tpoll , i.e., the
maximum time between subsequent transmissions. This polling interval is guaran-
teed in the active mode, except when there are collisions with page, page scan, in-
quiry, and inquiry scan. The value of the polling interval may be negotiated between

© 2006 by Taylor & Francis Group, LLC.

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

Time(sec)

Queue Stability Factor

Total Offered Load
Slave 1
Slave 2
Slave 3
Slave 4
Slave 5
Slave 6

(a) Offered load and queue stability conditions.

400 500 600 700 800 900 1000 1100 1200 1300 1400
0

100

200

300

400

500

600

Time(sec)

Access Delay

Slave 2 − Analytically Determinied Access Delay
Slave 2 − Measured Access Delay
Slave 3 − Analytically Determinied Access Delay
Slave 3 − Measured Access Delay
Slave 4 − Analytically Determinied Access Delay
Slave 4 − Measured Access Delay
Slave 5 − Analytically Determinied Access Delay
Slave 5 − Measured Access Delay
Slave 6 − Analytically Determinied Access Delay
Slave 6 − Measured Access Delay

(b) Mean access delay at the slave uplink queues.

FIGURE 5.2
Pertaining to the operation of AD admission control scheme. (From J. Mišić,
K. L. Chan, and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans.
Veh. Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

© 2006 by Taylor & Francis Group, LLC.

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time(Sec)

Measured vs Analytically determined Cycle Time

Measured Cycle Time
Analytically determined Cycle Time

FIGURE 5.3
Pertaining to the operation of CT admission control scheme. (From J. Mišić,
K. L. Chan, and V. B. Mišić, “Admission control in Bluetooth piconets,” IEEE Trans.
Veh. Tech. 53(3):890–911, c© 2004 IEEE. Reprinted with permission.)

the master and the slave, and the constraint is set up only when both participants
accept it.

However, if the bandwidth requirements are known in advance, as is often the case,
it may be advantageous to perform the check and/or negotiation before the slave is
admitted to the piconet, rather than afterward. Fortunately, the AD admission control
scheme may easily be adapted to cater for this case. Instead of targeting the mean
access delay, the master should use Equations (3.42), (3.43), and (13.42) to obtain an
estimate for mean cycle time. Note that, in this case, the variances of service times
are not needed, hence the computational requirements will be somewhat lower than
under the AD admission control scheme. If the estimated mean cycle time exceeds
the limits required by either the new slave, or one or more of the slaves already
admitted to the piconet, the new slave will be rejected.

To illustrate this admission control scheme, let us consider again the example from
Table 5.2. Let us assume that the traffic of the fifth slave is actually CBR traffic with
approximately 112K bps bandwidth. (It might be a video broadcast coming from
the Internet, with the master as the access point to a wired LAN.) Assuming that the
broadcast uses B = 3 packets of DH3 type with 183 bytes each, the maximum cycle
time to achieve the required bandwidth is about 63T . (We assume that the broadcast
is unidirectional, and that the slave responds with single slot packet most of the time.)

Now, consider the estimated and measured values of cycle time, as in Fig. 5.3.

© 2006 by Taylor & Francis Group, LLC.

When the fifth slave requests admission at t = 900s, the piconet master will estimate
the new cycle time. Since it is below the required value of 63T , the fifth slave will get
admitted. As can be seen, the new cycle time is indeed below that value. However,
at t = 1200s, the sixth slave requests to be admitted; the master calculates the new
estimate for the cycle time, which turns out to be about 70T . As this violates the
previous agreement with the fifth slave, the sixth slave will be rejected.

As before, the diagram shows the measured values of mean cycle time if this slave
were admitted after all, averaged over 10s intervals. As can be seen, the average
value of the cycle time is rather close to the previously calculated estimate.

Finally, we note that the analytical approach used in Chapters 3 and 4 actually
gives the probability distribution for service times. Therefore, it is possible to calcu-
late the maximum piconet cycle time that will not be exceeded with a given proba-
bility, rather than just the mean cycle time. However, such calculation is likely to be
prohibitively expensive, and it is questionable whether the increased accuracy would
be worth the effort.

© 2006 by Taylor & Francis Group, LLC.

6

Performance of TCP traffic

Initial use of Bluetooth was simple cable replacement, rather than general network-
ing tasks. However, the number of possible uses has grown to include various net-
working tasks between computers and computer-controlled devices such as PDAs,
mobile phones, smart peripherals, and the like. As a consequence, the majority of
the traffic over Bluetooth networks will belong to different flavors of the ubiquitous
TCP/IP family of protocols. Even though a number of early papers have analyzed the
performance of Bluetooth networks under TCP traffic, they have generally adopted
a somewhat simplistic approach that does not account for interactions between the
TCP congestion control and the L2CAP flow control and baseband polling mech-
anisms. In this case, TCP segments are embedded into IP datagrams and sent to
the L2CAP layer, where they are segmented into Bluetooth packets and placed in
infinite-size buffers; the baseband layer then takes individual packets and sends them
over the radio link. The TCP congestion window and transmission rate will increase
until time-out events occur due to high end-to-end delays. However, these delays
will be caused by very high loads, more or less independently of the polling scheme
utilized at the baseband layer. In this manner, it is hard, or even impossible, to gain
in-depth knowledge of the performance of TCP traffic in Bluetooth networks.

Furthermore, the adoption of version 1.2 of the Bluetooth specification [Bluetooth
SIG, 2003a] has introduced significant changes in the manner in which the Blue-
tooth protocol stack operates. According to version 1.2, each L2CAP channel may
operate in either Basic L2CAP mode (essentially identical to the L2CAP mode sup-
ported by the previous version of the specification [Bluetooth SIG, 2001b]), Flow
Control, or Retransmission mode [Bluetooth SIG, 2003d]. All three modes offer
segmentation, but only the latter two control buffering through protocol data unit
(PDU) sequence numbers, and control the flow rate by limiting the required buffer
space. Additionally, the Retransmission Mode uses a go-back-n repeat mechanism
with an appropriate timer to retransmit missing or damaged PDUs as necessary. The
architectural blocks of the L2CAP layer are schematically shown in Fig. 6.1(a).

It is clear that complex interactions between the TCP congestion control and the
L2CAP flow control and baseband polling mechanisms may be expected in a Blue-
tooth network carrying TCP traffic. The main focus of this chapter is to investigate
those interactions and thus provide insight into the performance of TCP data traffic
in Bluetooth piconets. We present the analytical model for the segment loss proba-
bility, probability distribution of TCP round trip time (including the L2CAP round
trip time) and TCP sending rate. We also discuss the dimensioning of various pa-
rameters of the architecture with regard to the tradeoff between end-to-end delay and

© 2006 by Taylor & Francis Group, LLC.

L2CAP

RF INTERFACE

HCI/BB

FLOW CONTROL (in Flow Control
and Retransmission modes only)
and
RETRANSMISSION CONTROL
(in Retransmission mode only)

ENCAPSULATION AND
SCHEDULING (OF L2CAP PDUs)

service data units (SDUs)

protocol data units (PDUs)

APPLICATIONS

SEGMENTATION/REASSEMBLY

FRAGMENTATION/
RECOMBINATION

(a) Original specification from (Bluetooth SIG,
2003c).

L2CAP

HCI/BB

FLOW CONTROL:
Token Bucket

queue size
S

token
rate tb

queue
size W

output queue
size L

SEGMENTATION/REASSEMBLY

ENCAPSULATION, SCHEDULING

service data units (SDUs)

APPLICATIONS USING TCP/IP

RF INTERFACE

(b) Our test setup of the Flow Control mode.

FIGURE 6.1
Architectural blocks of the Bluetooth L2CAP layer (control paths not shown for
clarity).

© 2006 by Taylor & Francis Group, LLC.

achievable throughput under multiple TCP connections from different slave devices.
The Chapter is organized as follows. Section 6.1 describes the system model and

the basic assumptions about the piconet operation under TCP traffic, and discusses
some recent related work in the area of performance modeling and analysis of TCP
traffic. Section 6.2 discusses the segment loss probability and the probability distri-
bution of the congestion window size, and presents the analytical results. Derivations
of the probability density functions for the TCP segment and acknowledgment de-
lay, as well as the blocking probability through the token bucket filter and the output
queue serviced by the E-limited poller, are presented in Sections 6.3 and 6.4. Fi-
nally, Section 6.5 presents simulation results for the performance of piconet with
slave-to-slave TCP connections.

6.1 System model and related work

We consider a piconet in which the slaves create TCP connections with each other,
so that each TCP connection will traverse two hops in the network. There are no
TCP connections starting or ending at the master. We focus on TCP Reno [Jacobson,
1990b], which is a widely used variant of TCP at the moment of this writing. We
assume that the application layer at slave i (where i = 1 . . m − 1) sends mes-
sages of 1460 bytes at a rate of λi . This message will be sent within a single
TCP segment, provided the TCP congestion window is not full. The TCP seg-
ment will be encapsulated in an IP packet with the appropriate header; this packet
is then passed on to the L2CAP layer. We assume that the segmentation algo-
rithm produces the minimum number of Bluetooth baseband packets [Kalia, Bansal
and Shorey, 2000], i.e., four DH5 packets and one DH3 packet per TCP segment
[Bluetooth SIG, 2003c]. We also assume that each TCP segment will be acknowl-
edged with a single, empty TCP segment carrying only the TCP ACK bit; due to the
size of the TCP header, such acknowledgment requires one three-slot (e.g., DH3)
baseband packet. Therefore, the total throughput per piconet can reach a theoretical
maximum of 0.5 1460·8

(4·5+2·3)·625ms ≈ 360 kbps. As the piconet contains m−1 ≤ 7 slaves

with identical traffic, each slave can achieve a goodput of only about
360

m − 1
kbps.

Our analysis setup implements the L2CAP Flow Control mode through a token
bucket [Bertsekas and Gallager, 1991] with the data queue of size S and a token
queue of size W , wherein tokens arrive at a constant rate of tb. Furthermore, there is
an outgoing queue for baseband data packets of size L , from which the data packets
are serviced by the poller utilizing the chosen intra-piconet polling scheme. Note
that the uplink and downlink queues at the baseband level are still present. This
implementation is shown in Fig. 6.1(b).

Some of the parameters of this architecture, such as the sizes of the queues and the
token rate in the token bucket, may be adjusted in order to achieve delay-throughput

© 2006 by Taylor & Francis Group, LLC.

trade-off for each slave. This scheme can limit the throughput of the slave through
the token rate, while simultaneously limiting the length of the burst of baseband
packets submitted to the network. Depending on the token buffer size and traffic
intensity, overflows of the token buffer can be detected through the TCP loss events
such as three duplicate acknowledgments or time-outs. In the former case, the size of
the congestion window will be halved and TCP will continue working in its Additive
Increase-Multiplicative Decrease (AIMD) phase. In the latter case, the congestion
window will shrink to one, and TCP will enter its slow-start routine.

At the same time, the performance of Bluetooth networks is also affected by the
intra-piconet polling scheme. We will assume that the E-polling scheme is used,
as it has been shown to offer better performance than either limited or exhaustive
service (see Chapter 3). In addition, it provides fairness by default, since the limit
on the number of frames exchanged with any single slave prevents the slaves from
monopolizing the network. It should be noted that the TCP protocol itself provides
mechanisms to regulate fairness among TCP connections originating from one de-
vice, but the throughput that can be achieved in Bluetooth networks is too small to
warrant a detailed analysis in this direction.

The performance of TCP traffic, in particular the steady-state send rate of the bulk-
transfer TCP flows, has recently been assessed as the function of segment loss rate
and round trip time (RTT) [Padhye, Firoiu, Towsley and Kurose, 2000]. The system
is modeled at the ends of rounds that are equal to the round trip times and during
which a number of segments equal to the current size of the congestion window is
sent. The model assumes that both the RTT and loss probability can be obtained by
measurement, and derives average value of congestion window size.

The same basic model, but with improved accuracy with regard to the latency and
steady state transmission rate for TCP Tahoe, Reno, and SACK variants, has been
used in [Sikdar, Kalyanaraman and Vastola, 2003]. The authors have also studied the
impact of correlated segment losses under three TCP versions.

In our approach, we will model the system at the moments of acknowledgement
arrivals and time-out events, instead of at the ends of successive rounds as in both
papers mentioned above. In this manner, we are able to obtain more accurate in-
formation about performance and to derive the TCP congestion window size and
throughput in both non-saturated and saturated operating regimes. In addition, the
blocking probabilities of all the queues along the path are known and each packet
loss can be treated independently.

We note that both of the papers mentioned above assume that RTT is a constant
due to the large number of hops. In the model utilized in this discussion there are two
hops only, and the RTT must be modeled as a random variable which is dependent
on the current congestion window size.

Recently, the Adaptive Increase-Multiplicative Decrease (AIMD) technique was
applied, using the concept similar to the token bucket filter, to control the flow over
the combination of wireless and wireline paths [Cai, Shen and Mark, 2003]. It is
assumed that packets can be lost over the wireless link only, and that all packet
transmission times take exactly one slot. The system is modeled at the ends of the
packet transmission times. This approach is orthogonal to ours, since we assume that

© 2006 by Taylor & Francis Group, LLC.

the wireless channel errors will be handled through Forward Error Correction (FEC)
and focus on finite queue losses at the data-link layer instead.

It should be noted that the performance of TCP/IP traffic in Bluetooth has been the
topic of several research papers. The TCP Vegas variant has been shown to provide
satisfactory performance in the presence of losses in the radio channel [Johansson,
Kihl and Körner, 2000]. The estimation of channel state has been used to guide the
segmentation/reassembly at the L2CAP level, as well as the packet format, so as to
optimize the performance of TCP traffic [Balatti, Marzegalli and Vitello, 2001]. A
similar approach has been proposed in [Chen, Kapoor, Sanadidi and Gerla, 2004],
where the baseband packet size is varied according the channel state information to
enhance TCP performance. The main focus of all these papers is the state of the
wireless channel, rather than the values of TCP parameters and the size of finite
device buffers, which are investigated in detail in this Chapter.

6.2 TCP window size

Under the assumptions outlined in the previous Section, the probability generating
function (PGF) for the burst size of data packets at the baseband layer is Gbd(z) = z5.
The corresponding PGF for the acknowledgment packet burst size is Gba(z) = z.
The PGF for the size distribution of baseband data packets is G pd(z) = 0.8z5+0.2z3,
while the PGF for the size distribution of acknowledgment packets is G pa(z) =
z3. Then, the PGF for the packet size and the mean packet size can be written as
G p(z) = 0.5Gbd(G pd(z)) + 0.5Gba(G pa(z)) and Lad = 0.5G ′

bd(G pd(z))|z=1 +
0.5G ′

ba(G pa(z))|z=1 = 3.8, respectively. (All time variables are expressed in units
of time slots of the Bluetooth clock, T = 625µs.) We will also assume that the
receiver advertised window is larger than the congestion window at all times.

The paths traversed by the TCP segment sent from slave i to slave j and the corre-
sponding acknowledgment sent in the opposite direction, are shown schematically in
Fig. 6.2. A TCP segment or acknowledgment can be lost if any of the buffers along
the path is full (and, consequently, blocks the reception of the packet in question). In
subsequent discussion, we will calculate the probability distributions of token bucket
queue lengths and outgoing buffer queue lengths at arbitrary times, as well as the
corresponding blocking probabilities for TCP segments (PBd , PBd L) and TCP ac-
knowledgments (PBa, PBaL). Segments/acknowledgments are also passing through
the outgoing downlink queue at the master. However, we assume that this queue is
much longer than the corresponding queues at the slaves, so that the blocking proba-
bilities PB Md and PB Ma are much smaller and may safely be ignored in calculations.
Then, the total probability p of losing a TCP segment or its acknowledgment is

p = 1 − (1 − PBd)(1 − PBd L)(1 − PB Md)(1 − PBa)(1 − PBaL)(1 − PB Ma) (6.1)

We will model the length of the TCP window at the moments of acknowledgments

© 2006 by Taylor & Francis Group, LLC.

B
LU

E
T

O
O

T
H

 S
LA

V
E

 i

po
lli

ng
(E

-li
m

ite
d)

ou
tp

ut
 q

ue
ue

 to
sl

av
e

j (
do

w
nl

in
k)

ou
tp

ut
 q

ue
ue

 a
t

sl
av

e
i

(u
pl

in
k)

L2
C

A
P

flo
w

 c
on

tr
ol

(t
ok

en
 b

uc
ke

t)

ou
tp

ut
 q

ue
ue

 a
t

sl
av

e
j (

up
lin

k)

T
C

P
 A

C
K

s
fr

om
 s

la
ve

 j

T
C

P
 b

uf
fe

r

to
ke

n
(A

C
K

)
qu

eu
e

T
C

P
 A

C
K

s
fr

om
 s

la
ve

 j

to
ke

ns

T
C

P
*(

s)
P

bd
D

* tb
,d

(s
)

P
bd

L
D

* L,
d(

s)
P

bM
d

D
* LM

,d
(s

)

P
ba

L
D

* L,
a(

s)
P

bM
a

D
* LM

,a
(s

)

P
ba

D
* tb

,a
(s

)

T
C

P
 s

eg
m

en
ts

fr
om

 h
os

t (
sl

av
e

i)

ho
st

ap
pl

ic
at

io
n

λ i
R

i

R
i(1

-p
)

ou
tp

ut
 q

ue
ue

 to
sl

av
e

i (
do

w
nl

in
k)

B
LU

E
T

O
O

T
H

 S
LA

V
E

 j

B
LU

E
T

O
O

T
H

P
IC

O
N

E
T

 M
A

S
T

E
R

B
LU

E
T

O
O

T
H

P
IC

O
N

E
T

 M
A

S
T

E
R

ho
st

ap
pl

ic
at

io
n

L2
C

A
P

flo
w

 c
on

tr
ol

(t
ok

en
 b

uc
ke

t) to
ke

ns

po
lli

ng
(E

-li
m

ite
d)

po
lli

ng
(E

-li
m

ite
d)

po
lli

ng
(E

-li
m

ite
d)

N
ot

e:
 p

ac
ke

ts
 c

an
 b

e
se

nt
 e

ve
n

w
ith

ou
t a

ck
no

w
le

dg
m

en
t -

 u
p

to
T

C
P

 c
on

ge
st

io
n

w
in

do
w

 s
iz

e

FIGURE 6.2
The path of the TCP segment and its acknowledgment, together with the blocking
probabilities and LSTs of the delays in respective queues.

© 2006 by Taylor & Francis Group, LLC.

arrivals and segment loss events. Since TCP window of size w grows by 1/w after
the successful acknowledgment, it is not possible to model the system using the
probability generating functions, and we have to resort to finding the corresponding
pdf (probability density function) instead. This probability distribution is a hybrid
function represented by the mass probability w1 of window size being 1, and by the
continuous probability density function w(x) for window sizes from 2 to ∞.

We also need to determine the pdf of the congestion window threshold t (x) at
the moments of acknowledgement arrival or packet loss. Let the probability of the
time-out event be denoted with Pto = p(1 − (1 − p)3), and the probability of loss
by three duplicate acknowledgements with Ptd = p(1 − p)3. In order to simplify
the derivation, we assume that window size immediately after the change of the state
is x . If the event that changed the state was a positive acknowledgement, we assume
that the window size before this event was x − 1

x . Then the pdf of congestion window
size can be approximated as w(x − 1

x) ≈ w(x)−w′(x) 1
x . The pdfs can be described

by

w1 = Pto + Ptd

∫ 3

x=2
w(x)dx, w = 1

t (x) = t (x)(1 − p)+ w(2x)p w ≥ 2

w(x) =
(
w(x)− w′(x)1

x

)
(1 − p)

∫ x−1/x

0
t (y)dy

+w(0.5x)(1 − p)
∫ ∞

0.5x
t (y)dy + w(2x)Ptd

(6.2)

where
∫ x−1/x

0
t (y)dy denotes the probability that the congestion window size be-

fore the acknowledgement, x − 1/x , is above the threshold size (i.e., that TCP is
working in the AIMD mode), and the probability that the current size of the conges-
tion window, 0.5x , is lower than the threshold (i.e., that the system is in the slow

start mode) is given by
∫ ∞

0.5x
t (y)dy.

The system (6.2) of integro-differential equations could be solved numerically, but
sufficient accuracy may be obtained through the approximation

w(x) = C1e−0.25px2(1+3p−3p2+p3)/(1−p) (6.3)

where the normalization constant C1 is determined from the condition 1 − w1 =∫ ∞

2
w(x)dx . The pdf of window size for various values of TCP window size and

segment loss probability is shown in Fig. 6.3(a).
The mean TCP window size w and mean threshold size t are calculated as

w = w1 +
∫ ∞

2
xw(x)dx

t =
∫ ∞

1
xw(2x)dx

(6.4)

since t (x) = w(2x). The dependency of mean window size on TCP window size
and segment loss probability p is shown in Fig. 6.3(b).

© 2006 by Taylor & Francis Group, LLC.

TCP window size pdf

10
20

30
40

x
0.002

0.004
0.006

0.008
0.01

p

0

0.02

0.04

0.06

(a) pdf of window size versus window size and
segment loss probability p.

TCP average window size

15

20

25

30

35

0.002 0.004 0.006 0.008 0.01
p

(b) Mean value of window size w versus segment
loss probability p.

FIGURE 6.3
Characteristics of TCP window size.

As will be shown in Sections 6.3 and 6.4, we can find the probability distribution of
delays through all the token bucket filters and the baseband buffers along the path of
the TCP segment and its acknowledgment. The delay is calculated from the moment
when the TCP segment enters the token bucket filter at the source device until the
acknowledgment is received by that same device. This delay is equal to the sum of
delays in all the buffers from Bluetooth protocol stack along the path. We will refer
to this delay as the L2CAP round trip delay, and its probability distribution can be
described through the corresponding Laplace-Stieltjes transform:

D∗
L2C AP (s) = D∗

tb,d(s)D
∗
L ,d(s)D

∗
L M,d(s)D

∗
tb,a(s)D

∗
L ,a(s)D

∗
L M,a(s) (6.5)

We can also calculate the probability distribution of the number of outstanding
(unacknowledged) segments at the moments of segment acknowledgement arrivals.
This number for an arbitrary TCP segment is equal to the number of segment ar-
rivals during the L2CAP round trip time of that segment. The PGF for the number
of segment arrivals during the L2CAP round trip time can be calculated, using the
approach from [Takagi, 1991], as A(z) = D∗

L2C AP (λi − zλi). The probability of k

segment arrivals during the RTT time is equal to ak = dk

dzk
D∗

L2C AP (λi − zλi)|z=0.

Using the PASTA property (Poisson Arrivals See Time Averages), we conclude
that the arriving segment will see the same probability distribution of outstanding
segments as the incoming acknowledgement. Therefore, the probability Pt that the
arriving segment will find a free token and leave the TCP buffer immediately is

Pt =
∞∑

k=1

ak

∫ ∞

k+1
w(x)dx (6.6)

and the probability that the segments will be stored in the TCP buffer is 1− Pt . Then,
the rate at which TCP sends the segments to the token bucket filter, which will be

© 2006 by Taylor & Francis Group, LLC.

referred to as the TCP send rate Ri , has two components. One of these is contributed
by the segments that find acknowledgments waiting in the token queue, and thus can
leave the TCP buffer immediately; another one comes from the segments that have
to wait in the TCP buffer until an acknowledgement (for an earlier segment) arrives.
The expression for TCP send rate, then, becomes Ri = Ptλi + Ri (1 − p)(1 − Pt),
which may be simplified to

Ri = λi
Pt

Pt + p − pPt
(6.7)

As both components of the previous expression can be modeled as Poisson pro-
cesses, the TCP sending process can be modeled as Poisson process as well.

In order to calculate the delay through the TCP buffer, we need to determine the
probability distribution of the number of segments buffered by the TCP due to the
insufficient size of the congestion window. (We assume that the TCP buffer has
infinite capacity.) The probability that k segments are buffered is

qk =
∞∑

i=1

ai+k

∫ i+1

i
w(x)dx + ak+1w1 (6.8)

and the LST for the delay through the TCP buffer is

D∗
T C P (s) =

∞∑
k=0

qke−sk (6.9)

The entire round trip time of the TCP segment, then, becomes

RT T ∗(s) = D∗
T C P (s)D

∗
L2C AP (s) (6.10)

6.3 Queueing analysis of the token bucket filter

Let us now consider the token bucket (TB) filter, the queueing model of which is
shown in Fig. 6.4(a). We assume that the TCP segments arrive at the TCP sending
rate Ri calculated in (6.7), while the TCP acknowledgements arrive at the rate of
Ri (1 − p). The token arrival rate will be denoted as tb, which means that the token
arrival period will be Tb = 1/tb. The queue which holds tokens has length of
W baseband packet tokens. Packets leave the queue at max rate, which is much
larger than the token arrival rate. Using this model, we first derive the probability
distribution function (PDF) of the number of the packets in the token bucket queue
at the moments of token arrival, and then proceed to calculate that same PDF at
arbitrary time.

© 2006 by Taylor & Francis Group, LLC.

up to W
tokens

max_rate

up to S
baseband
packets

packets from TCP
segments, Ri

packets from TCP
acknowledgment,Ri(1-p)

tokens arriving once
every 1/Tb sec

(a) Queueing model of the token bucket with finite capacity, accepting two types
of packets.

0 1 2 W W+1
a2

a0

a2 a2 a2

a0 a0a0

a1
a1a1a1

a0+a1

W+S
a0

a1+a2+...

(b) Token bucket may be represented as a discrete Markov chain.

FIGURE 6.4
Pertaining to the analysis of the token bucket filter.

The probability of ak baseband packet arrivals in the TB queue is equal to the sum
of probabilities of data and acknowledgment packet arrivals:

ak =
k∑

i=1

[∞∑
l=0

1

i!

di

dzi
Gbd(z)

l
∣∣∣
z=0

e−Ri Tb
(Ri Tb)

l

l!

+
∞∑

l=0

1

(k − i)!

dk−i

dzk−i
Gba(z)

l
∣∣∣
z=0

e−Ri Tb
(Ri Tb)

l

l!

]

=
k∑

i=1

[
1

i!

di

dzi
e−Ri Tb(1−Gbd (z))

∣∣∣
z=0

+ 1

(k − i)!

dk−i

dzk−i
e−Ri Tb(1−Gba(z))

∣∣∣
z=0

]
(6.11)

The TB can be modeled as a discrete-time Markov chain, in which the state i
(when 0 ≤ i ≤ W) corresponds to the situation when W−i tokens are available in the
token buffer, but no data packets are present in the data queue. The remaining states
(from W +1 to W +S) correspond to the situation where there are data packets in the
data queue, but the token queue is empty. Since both queues have finite lengths, the
Markov chain, which is shown in Fig. 6.4(b), is finite as well. The balance equations
for this Markov chain are

© 2006 by Taylor & Francis Group, LLC.

π0 = a0π1 + (a0 + a1)π0

πi =
i+1∑
j=0

ai− j+1π j , 0 < i < W + S − 1

πW+S−1 =
S−1∑
j=0

π j

∞∑
k=S− j

ak

(6.12)

The PDF for the queue lengths at the moments of token arrivals can be found by

solving this system with the condition
S−1∑
k=0

πk = 1.

By using the probability distribution of the TB queue length at the moments of
token arrivals, we can derive the joint probability distribution of the TB queue length
and the remaining time before the token arrival. In this manner we are able to derive
the blocking probability which in turn determines the segment loss probability at the
TCP level. We will introduce the following variables:

• The total queue length (including both token queue and data queue), Lq .

• The elapsed token time – from a given token arrival to the arbitrary time before
the arrival of the next token, Tb .

• The remaining token time – from the arbitrary time between two successive
token arrivals till the next token arrival, Tb+.

• The number of packet arrivals (results of burst arrivals) during the elapsed
token time, A(Tb).

• The blocking probability at arbitrary time, PB . Since the burst represents a
TCP segment, we will adopt the total rejection policy for calculating the block-
ing probability, i.e., either the burst (TCP segment) will fit into the baseband
buffer in its entirety, or will be rejected.

• Finally, the probability distribution function Tb(x) of the token inter-arrival
time, and the corresponding probability density function tb(x).

For the time between two successive token arrivals, the joint probability distribu-
tion of the TB queue length and remaining token time is

�∗
k(s) =

∫ ∞

0
e−syP[Lq = k, y < Tb+ < y + dy], 1 ≤ k ≤ W + S (6.13)

where, as in Chapter 4, P[§] denotes the probability of event x .

© 2006 by Taylor & Francis Group, LLC.

By using the TB queue length distribution at the time of arrival of the previous
token, we obtain

�∗
k(s) = Ri (Gbd + Gba)Tb(1 − PB)

·
k∑

j=0

π j E[e−sTb+|A(Tb) = k − j]

· P[A(Tb) = k − j], 1 ≤ k ≤ W + S − 1

�∗
W+S(s) = Ri (Gbd + Gba)Tb(1 − PB)·

W+S−1∑
j=0

π j

∞∑
k=S− j

E[e−sTb+|A(Tb) = k − j]

· P[A(Tb) = k − j]

(6.14)

The expression

ψ∗
k (s) = E[e−sTb+|A(Tb) = k]P[A(Tb) = k]

=
∞∑

l=0

k∑
i=1

(
1

i!

di

dzi
Gbd(z)

l + 1

(k − i)!

dk−i

dzk−i
Gba(z)

l
)∣∣∣∣

z=0

·
∫ ∞

0

(Ri x)l

l!
e−Ri x 1 − Tb(x)

Tb
dx

∫ ∞

0
e−sy tb(x + y)

1 − Tb(x)
dy

(6.15)

may be simplified by introducing the substitution u = x + y and by changing the
order of integration:

ψ∗
k (s) = 1

Tb

∫ ∞

0

∞∑
l=0

k∑
i=1

(
1

i!

di

dzi

(Ri xGbd(z))l

l!

+ 1

(k − i)!

dk−i

dzk−i

(Ri xGba(z))l

l!

)∣∣∣∣
z=0

· e−Ri x dx
∫ ∞

0
e−sy tb(x + y)dy

= 1

Tb

∫ ∞

0

k∑
i=1

(
1

i!

di

dzi
eRi Gbd (z)x + 1

(k − i)!

dk−i

dzk−i
eRi Gba(z)x

)∣∣∣∣
z=0

· ·e(s−Ri)x dx
∫ ∞

x
e−sutb(u)du

continued on next page . . .

(6.16)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

= 1

Tb

∫ ∞

0
e−sutb(u)du

∫ u

0

k∑
i=1

(
1

i!

di

dzi
e(Ri Gbd (z)+s−Ri)x

+ 1

(k − i)!

dk−i

dzk−i
e(Ri Gba(z)+s−Ri)x

)∣∣∣∣∣
z=0

dx

= 1

Tb

∫ ∞

0
e−su

k∑
i=1

(
1

i!

di

dzi

e(Ri Gbd (z)+s−Ri)u − 1

Ri Gbd(z)+ s − Ri

+ 1

(k − i)!

dk−i

dzk−i

e(Ri Gba(z)+s−Ri)u − 1

Ri Gba(z)+ s − Ri

)∣∣∣∣∣
z=0

tb(u)du

= 1

Tb

k∑
i=1

(
1

i!

di

dzi

e(Ri Gbd (z)−Ri)Tb − e−sT b

Ri Gbd(z)+ s − Ri

+ 1

(k − i)!

dk−i

dzk−i

e(Ri G pa(z)−Ri)Tb − e−sTb

Ri G pa(z)+ s − Ri

) ∣∣∣
z=0

(6.16)
Now the system (6.14) can be written as

�∗
k(s) = Ri (Gbd + Gba)Tb(1 − PB)

k∑
j=0

π jψ
∗
k− j (s),

1 ≤ k ≤ W + S − 1

�∗
W+S(s) = Ri (Gbd + Gba)Tb(1 − PB)

W+S−1∑
j=0

π j

∞∑
k=S− j

ψ∗
k− j (s)

(6.17)

The probabilities of having exactly k packets in the TB filter are simply Pk =
P[Lq = k] = �∗

k(0). Also, we note that the probability of the empty queue is equal
to P0 = 1 − Ri (Gbd + Gba)Tb(1 − PB). It should be observed that all queue state
probabilities at arbitrary time are functions of PB ; therefore, we need to express the
blocking probability as the function of the queue state probabilities, and then solve
this equation for PB . The blocking probability under two types of packet bursts in
the TB filter is

PB =
W+S−1∑

k=0

Pk

∞∑
j=W+S−k+1

0.5(gbd, j + gba, j)+ PW+S (6.18)

where gbd, j = 1

j!

d j

dz j
Gbd(z)|z=0 and gba, j = 1

j!

d j

dz j
Gba(z)|z=0 are mass prob-

abilities of the burst size probability distribution for the TCP data segment and the
TCP acknowledgment segment, respectively. Expression (6.18) can be rearranged to

© 2006 by Taylor & Francis Group, LLC.

find the blocking probability PB , which leads to the queue length distribution. After
that, the individual blocking probabilities for each traffic type can be found as

PBd =
W+S−1∑

k=0

Pk

∞∑
j=W+S−k+1

gbd, j + PW+S

PBa =
W+S−1∑

k=0

Pk

∞∑
j=W+S−k+1

gba, j + PW+S

(6.19)

The delay through the token bucket filter should be calculated separately for the
data segments and for the acknowledgments. The queueing delay of the entire TCP
segment is equal to the queueing delay of the first baseband packet from the burst
representing that TCP segment. The LST of the delay for the data segment is given
with

D∗
tb,d(s) =

(
P0 +

W∑
l=1

�∗
k(0)

)
W+S−l∑

k=1

gbd,k +
W+S−1∑

k=W

�∗
k(s)[G

∗
pd]k−1

W+S−k∑
j=1

gbd, j

1 − PBd
(6.20)

The LST for the delay of the acknowledgment, D∗
tb,d(s), can be determined in an

analogous manner.

6.4 The outgoing queue at the baseband level

We will now derive the expressions for the delay and blocking probability for the
other queue (buffer): the outgoing buffer at the baseband level. This buffer has
finite length of L baseband packets, and it is fed by packets that pass through the
token buffer filter. We assume that the TCP segment packets arrive at the rate of
λi,d = Ri (1 − PBd), and that the TCP acknowledgment packets arrive at the rate of
λi,a = Ri (1 − p)(1 − PBa). We again assume that each buffer has the total rejection
policy, i.e., the entire burst is rejected if it cannot fit into the buffer.

The baseband queue is serviced using the E-limited polling scheme from Chap-
ter 3. Let us begin by determining the probability distribution of slave queue lengths
in imbedded Markov points that correspond to vacation termination times and uplink
transmission completion times. Then, we will determine the PDF for the slave queue
length at arbitrary point of time, and use it to derive the access delay and the blocking
probability of the burst.

Outgoing queue length distribution in Markov points

Let qk,i,u denote the joint probability that a Markov point in the uplink queue of
slave i is a vacation termination time and that there are k = 0, 1, 2 . . . packets at the

© 2006 by Taylor & Francis Group, LLC.

outgoing queue of the slave i at that time. Also, let π(µ)k,i,u denote the joint probability
that a Markov point in the uplink queue i is the µ-th uplink transmission completion
time and that there are k packets in the queue, where µ = 1 . . M and k = 0 . . L − 1.
The analogous probabilities for the corresponding downlink queue are denoted with
qk,i,d and π(µ)k,i,d . Note that the model that decouples the uplink and downlink queues,
which was presented in Chapter 4, is more accurate – but it is also computationally
complex. The extension of the model in this Subsection along the lines of Chapter 4
is straightforward, and it is left as an exercise to the reader.

Let gp(x) and vi (x) denote the probability density functions of the packet trans-
mission time and vacation time, respectively, at the uplink queue of slave i ; their
LST transforms will be G∗

p(s) and V ∗
i (s). The LST transform of the probability

distribution function for the length of a frame is G∗
p(s)

2. (Remember that the frame
consists of a downlink packet and the subsequent uplink frame.) Let us also denote
the probability of k packet arrivals at the uplink queue of slave i during the frame
time as ak,i,u , and the probability of k packet arrivals during the vacation time (i.e.,
while master is serving other slaves) as fk,i,u . These probabilities may be calculated
as

ak,i,u =
k∑

i=1

[∞∑
l=0

1

i!

di

dzi (Gbd(z))
l
∣∣∣
z=0

∫ ∞

0

(λi,d x)l

l!
e−λi,d x gp ∗ gp(x)dx

+
∞∑

l=0

1

(k − i)!

dk−i

dzk−i (Gba(z))
l
∣∣∣
z=0

∫ ∞

0

(λi,a x)l

l!
e−λi,a x gp ∗ gp(x)dx

]

=
k∑

i=1

[
1

i!

di

dzi
(G∗

p(λi,d − λi,d Gbd(z)))
2
∣∣∣
z=0

+ 1

(k − i)!

dk−i

dzk−i
(G∗

p(λi,a − λi,aGba(z)))
2
∣∣∣
z=0

]

fk,i,u =
k∑

i=1

[∞∑
l=0

1

i!

di

dzi
le f t. (Gbd(z))

l

∣∣∣∣∣
z=0

∫ ∞

0

(λi,d x)l

l!
e−λi,d xvi (x)dx

+
∞∑

l=0

1

(k − i)!

dk−i

dzk−i (Gba(z))
l
∣∣∣
z=0

∫ ∞

0

(λi,a x)l

l!
e−λi,a xvi (x)dx

]

=
k∑

i=1

[
1

i!

di

dzi
(V ∗

i (λi,d − λi,d Gbd(z)))
2
∣∣∣
z=0

+ 1

(k − i)!

dk−i

dzk−i
(V ∗

i (λi,a − λi,aGba(z)))
2
∣∣∣
z=0

]
(6.21)

where gp ∗ gp(x) denotes the convolution of gp(x) with itself. Note that (G∗
p(λi,d −

λi,d Gbd(z)))2 and G∗
p(λi,a − λi,aGba(z)) denote the PGFs for the number of packet

arrivals in the uplink queue from TCP data segments and acknowledgments, re-
spectively, during the frame time. Also, the terms (V ∗

i (λi,d − λi,d Gbd(z)))2 and

© 2006 by Taylor & Francis Group, LLC.

V ∗
i (λi,a − λi,aGba(z)) denote the corresponding PGFs for the number of packet ar-

rivals in the uplink queue, but during the vacation time.
For the packet departure times when the master polls the slaves, we note that the

buffer occupancy can be between 0 and L−1. The probabilities that the uplink queue
contains k packets in Markov points are given by

π
(1)
k,i,u =

k+1∑
j=1

q j,i,uak− j+1,i,u, 0 ≤ k ≤ L − 2

π
(1)
L−1,i,u =

L∑
j=1

q j,i,u

∞∑
k=L− j

ak,i,u

π
(µ)
k,i,u =

k+1∑
j=1

π
(µ−1)
j,i,u ak− j+1,i,u, 0 ≤ k ≤ L − 2, µ = 2 . . M

π
(µ)
L−1,i,u =

L−1∑
j=1

π
(µ−1)
j,i,u

∞∑
k=L− j

ak,i,u, µ = 2 . . M

qk,i,u =
(

M−1∑
m=1

π
(µ)
0,i,u + q0,i,u

)
fk,i,u +

k∑
j=0

π
(M)
j,i,u fk− j,i,u,

0 ≤ k ≤ L − 1

qK ,i,u =
(

M−1∑
m=1

π
(µ)
0,i,u + q0,i,u

) ∞∑
k=L

fk,i,u +
L−1∑
j=0

π
(M)
j,i,u

∞∑
k=L− j

fk,i,u

(6.22)

Also,
L∑

k=0

qk,i,u +
M∑
µ=1

L−1∑
k=0

π
(µ)
k,i,u = 1.

The distribution of the queue length in Markov points is obtained when the system
of these linear equations is solved for the mass probabilities of queue lengths.

Let us denote the probability that the vacation starts after the uplink transmission

as hi,u =
M−1∑
µ=1

π
(µ)
0,i,u +

L−1∑
k=0

π
(M)
k,i,u . Then, the probability that the vacation will start

after an arbitrary Markov point is q0,i,u +hi,u . The average distance in time between
two consecutive Markov points at slave i is

ηi,u = (q0,i,u + hi,u)Vi + (1 − q0,i,u − hi,u)2Lad (6.23)

Outgoing queue length distribution at arbitrary time

By using the probability distribution of the uplink queue length in Markov points, we
can derive the probability distribution of this queue length at arbitrary time between
two Markov points, together with the PDF of the remaining vacation time (if the
previous Markov point was the start of a vacation) or the PDF of the remaining
frame service time (if the previous Markov point was the start of a packet service).
We will introduce the following variables:

© 2006 by Taylor & Francis Group, LLC.

• The probability density function of the vacation time, vi (x), and its PDF,
Vi (x).

• The queue length at an arbitrary time, Lq,i,u .

• The elapsed vacation time, V ,i .

• The remaining vacation time, V+,i .

• The number of packet arrivals resulting from packet burst arrivals in the elapsed
vacation time, A(V ,i).

• The probability density function of the frame service time, gp ∗ gp(x), and its
PDF, Fs(x) (where ∗ denotes the convolution operator).

• The elapsed frame service time, X ,i .

• The remaining frame service time, X+,i .

• The number of packet arrivals resulting from packet burst arrivals in the elapsed
frame service time, A(X ,i).

For the time between the start and end of vacation, we define the joint probability
of the queue length and the remaining vacation time as

�∗
k,i,u(s) =

∫ ∞

0
e−syP[Lq,i,u = k, y < V+,i < y + dy],

0 ≤ k ≤ L
(6.24)

For the time between the start and end of the frame service, for the frame 1 ≤ µ ≤
M , we define the joint probability of the queue length and remaining frame service
time as

�∗
k,µ,i,u(s) =

∫ ∞

0
e−syP[Lq,i,u = k, y < X+,i < y + dy],

1 ≤ k ≤ L ,≤ µ ≤ M
(6.25)

Using the corresponding probabilities in the previous Markov point, we obtain

�∗
k,i,u(s) = Vi

ηi,u

(
q0,i,u +

M−1∑
m=1

π
(µ)
0,i,u

)
E[e−sV+,i |A(V ,i) = k]P[A(V ,i) = k]

+ Vi

ηi,u

k∑
j=0

π
(M)
j,i,u E[e−sV+,i |A(V ,i) = k − j]P[A(V ,i) = k − j],

0 ≤ k ≤ L − 1
continued on next page . . .

(6.26)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

�∗
L ,i,u(s) = Vi

ηi,u

(
q0,i,u +

M−1∑
m=1

π
(µ)
0,i,u

) ∞∑
k=L

E[e−sV+,i |A(V ,i)=k]P[A(V ,i)=k]

+ Vi

ηi,u

k∑
j=0

π
(M)
j,i,u

∞∑
k=L− j

E[e−sV+,i |A(V ,i) = k]P[A(V ,i) = k]

�∗
k,1,i,u(s) = 2Lad

ηi,u

k∑
j=1

q j,i,u E[e−s X+,i |A(X ,i) = k − j]P[A(X ,i) = k − j],

1 ≤ k ≤ L − 1

�∗
L ,1,i,u(s) = 2Lad

ηi,u

L∑
j=1

q j,i,u

∞∑
k=K− j

E[e−s X+,i |A(X ,i) = k]P[A(X ,i) = k],

1 ≤ k ≤ L − 1

�∗
k,µ,i,u(s) = 2Lad

ηi,u

k∑
j=1

π
(µ)
j,i,u E[e−s X+,i |A(X ,i) = k − j]P[A(X ,i) = k − j],

1 ≤ k ≤ L − 1, 2 ≤ µ ≤ M

�∗
L ,µ,i,u(s) = 2Lad

ηi,u

L∑
j=1

π
(µ)
j,i,u

∞∑
k=K− j

E[e−s X+,i |A(X ,i) = k]P[A(X ,i) = k],

2 ≤ µ ≤ M
(6.26)

Using the expressions

φk(s) = E[e−sV+,i |A(V ,i) = k]P[A(V ,i) = k]

=
k∑

i=1

[
1

Vi i!

di

dzi
|z=0

(V ∗
i (−λi,d Gbd(z)+ λi,d)− V ∗

i (s)

λi,d Gbd(z)+ s + λi,d

)

+ 1

Vi (k − i)!

dk−i

dzk−i
|z=0

(V ∗
i (−λi Gba(z)+ λi,a)− V ∗

i (s)

λi,aGba(z)+ s + λi,a

)]
ψ∗

k (s) = E[e−s X+,i |A(X ,i) = k]P[A(X ,i) = k]

=
k∑

i=1

[
1

2Ladi!

di

dzi
|z=0

(G∗
p(−λi,d Gbd(z)+ λi,d)

2 − G∗
p(s)

2

λi,d Gbd(z)+ s + λi,d

)

+ 1

2Lad(k − i)!

dk−i

dzk−i
|z=0

(G∗
p(−λi,aGba(z)+ λi,a)

2 − G∗
p(s)

2

λi,aGba(z)+ s + λi,a

)]

(6.27)

© 2006 by Taylor & Francis Group, LLC.

the system (6.26) can be transformed to

�∗
k(s) = Vi

ηi,u

(
q0,i,u +

M−1∑
m=1

π
(µ)
0,i,u

)
φ∗

k (s)+ Vi

ηi,u

k∑
j=0

π
(M)
j,i,uφ

∗
k− j (s)

�∗
L ,i,u(s) = Vi

ηi,u

(
q0,i,u +

M−1∑
µ=1

π
(µ)
0,i,u

) ∞∑
k=K

φ∗
k (s)+ Vi

ηi,u

k∑
j=0

π
(M)
j,i,u

∞∑
k=K− j

φ∗
k (s)

�∗
k,1,i,u(s) = 2Lad

ηi,u

k∑
j=1

q j,i,uψ
∗
k (s), 1 ≤ k ≤ L − 1

�∗
L ,1,i,u(s) = 2Lad

ηi,u

L∑
j=1

q j,i,u

∞∑
k=K− j

ψ∗
k (s), 1 ≤ k ≤ L − 1

�∗
k,µ,i,u(s) = 2Lad

ηi,u

k∑
j=1

π
(µ)
j,i,uψ

∗
k− j (s), 1 ≤ k ≤ L − 1, 2 ≤ µ ≤ M

�∗
L ,µ,i,u(s) = 2Lad

ηi,u

L∑
j=1

π
(µ)
j,i,u

∞∑
k=L− j

ψ∗
k (s), 1 ≤ k ≤ L − 1, 2 ≤ µ ≤ M

(6.28)
The distribution of the size of the uplink queue at arbitrary time is given by

P[Lq,i,u = 0] = �∗
0(0)

P[Lq,i,u = k] = �∗
k(0)+

M∑
m=1

�∗
k,m,i,u(0)

P[Lq,i,u = L] = �∗
L(0)+

M∑
µ=1

�∗
L ,µ,i,u(0)

(6.29)

which allows us to calculate the burst blocking probability in the uplink queue at an
arbitrary time. To that end, let us denote the mass probability of the burst size being

exactly l packets as gl = 1

l!

dl

dzl
Gb(z)|z=0. Then, we may write

PB,i,L =
L∑

k=0

P[Lq,i,u = k]P[burst > L − k] (6.30)

and the blocking probabilities for TCP segments and acknowledgments become

PBd L =
L∑

k=0

P[Lq,i,u = k]
∞∑

l=L−k

gbd,l

PBaL =
L∑

k=0

P[Lq,i,u = k]
∞∑

l=L−k

gba,l

(6.31)

© 2006 by Taylor & Francis Group, LLC.

The delay of the entire TCP segment is equal to the delay of the first baseband
packet from that segment:

D∗
L ,d(s) = 1

1 − PBd L

[
K−1∑
k=0

�∗
k,i,u(s)G

∗
pd(s)

2k V ∗
i (s)

�k/M

+
L−1∑
k=1

M∑
µ=1

�∗
k,µ,i,u(s)G

∗
pd(s)

2(k−1)V ∗
i,u(s)

�(k+µ−1)/M

(6.32)
Note that this delay is not equal to the delay for the acknowledgment segment,
D∗

L ,a(s), even though the expressions used to derive them are similar.

6.5 Performance assessment

We first consider a piconet with two slaves only, having two simultaneous but in-
dependent TCP connections: one from slave 1 to slave 2, the other from slave 2 to
slave 1. In the first set of experiments, we have varied the token buffer queue size
S and offered load per connection, while other parameters were fixed. The value of
the polling parameter was M = 5, so that the entire TCP segment can be sent in one
piconet cycle, i.e., during a single visit of the master to the source slave. The token
rate was fixed to tb = 250kbps, the token buffer capacity was W = 3KB, the output
rate of the token bucket queue was set to max rate = 1Mbps, and the outgoing
(uplink) queue size was L = 20.

The values of TCP goodput and RTT obtained by using the ns-2 simulator [ns2,
2003] with Bluehoc extension [Bluehoc, 2003], are shown in Figs. 6.5(a) and 6.5(b),
respectively. The size of token bucket buffer varied from 5 to 25 baseband packets,
while the offered load varied from 80 to 240kbps. We observe that only for the
largest token bucket buffer, at S = 25, does the goodput reach the physical limit (for
the given segment size) of approximately 180kbps per connection. At the same time,
the round trip delay reaches 400ms.

The mean congestion window size and mean slow start threshold are shown in
Figs. 6.5(c) and 6.5(d), respectively, when the buffer size S varies from 5 baseband
packets to 25 and the offered load varies from 80 to 240 kbps. The mean congestion
window size grows with S, which is expected since larger S means lower buffer loss.
Furthermore, the congestion window grows with the segment arrival rate under very
low loads, since there are not enough packets to expand the window size. For mod-
erate and high offered loads, the average window size experiences a sharp decrease
with the offered load. This is consistent with analytical results, since the packet loss
probability is directly proportional to the offered load.

Finally, Figs. 6.5(e) and 6.5(f) show the rate of TCP time-outs and fast retransmis-
sions as functions of offered load and buffer size S.

© 2006 by Taylor & Francis Group, LLC.

80
100

120
140

160
180

200
220

240

5

10

15

20

25
0

50

100

150

200

250

300

350

400

450

ρ
per connection

 (kbps)

RTT
(L=20 M=5 tb=250)

S

m
s

(a) Round-trip time (RTT).

80
100

120
140

160
180

200
220

240

5

10

15

20

25
0

20

40

60

80

100

120

140

160

180

ρ
per connection

 (kbps)

TCP Goodput
(L=20 M=5 tb=250)

S

kb
ps

(b) Goodput.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

10

20

30

40

50

60

70

ρ
per connection

 (kbps)

Average Congestion Window Size
(L=20 M=5 tb=250)

S

of

 M
S

S

(c) Mean size of the congestion window.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

10

20

30

40

ρ
per connection

 (kbps)

Average Slow Start Threshold
(L=20 M=5 tb=250))

S

of

 M
S

S

(d) Mean value of the slow start threshold.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

0.2

0.4

0.6

0.8

ρ
per connection

 (kbps)

Number of timeouts per sec
(L=20 M=5 tb=250)

S

#/
s

(e) Time-out rate.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

0.2

0.4

0.6

ρ
per connection

 (kbps)

Number of fast−retransmission per sec
(L=20 M=5 tb=250)

S

#/
s

(f) Fast retransmission rate.

FIGURE 6.5
TCP performance as the function of the buffer size S, in the piconet with two slaves.

© 2006 by Taylor & Francis Group, LLC.

Together, the dependencies shown in Fig. 6.5 hint that the value of S = 25 leads
to maximum achievable throughput and negligible time-out rate for the offered load
equal to the maximum achievable goodput (180kbps).

The next set of experiments considered TCP performance as a function of the
polling parameter M , with constant values of S = 25 and L = 20. The resulting dia-
grams are shown in Fig. 6.6. We observe that the value of M = 5, which is sufficient
to carry a TCP segment of five baseband packets, gives maximum goodput, mini-
mum time-out rate and maximum fast-retransmission rate, when compared to larger
values of M . Therefore, the minimal value of M which is sufficient to transfer a TCP
segment in one piconet cycle appears also to be optimal with respect to goodput and
other measures of performance.

We have also investigated TCP behavior with varying offered load and varying to-
ken rate; the corresponding diagrams are shown in Fig. 6.7. We observe that increas-
ing the token rate over the maximal achievable goodput per connection can result
only in marginal increase of mean congestion window size and goodput, despite the
fact that the blocking probability at the token bucket filter is decreased. However,
the blocking probability at the outgoing buffer at the baseband will still increase,
and this increase leads to increased time-out rate and increased overall segment loss
probability. Therefore, the token rate should not be set to the value much larger than
the physical throughput limit per slave.

A similar set of experiments has been conducted in a piconet with seven active
slaves. In this case, each slave i , i = 1 . . 7, creates a TCP connection with another
slave j = (i + 1)mod7, giving rise to the total of seven identical TCP connections.
Consequently, the maximum goodput per slave is limited to 360

7 ≈ 50 kbps.
Performance of TCP traffic when the token buffer size varies from 5 to 25 base-

band packets and the offered load varies 50% around the physical goodput limit, is
shown in Fig. 6.8. Again, the value of S = 25 gives the goodput which is close to
the limit under high load, as well as a low time-out rate. The shape of the time-out
rate surface can be explained by the fact that packets do not arrive too frequently
under low offered loads, and time-outs occur before three new packets are generated
to provoke three duplicated acknowledgments.

Finally, Fig. 6.9 shows TCP performance with seven slaves under varying value of
the polling parameter M and the token rate. We observe that this behavior is similar
to that in the case of two slaves, although the optimality of the value M = 5 is much
less pronounced. We again note that good performance is obtained if the token rate
does not exceed about 50% of the maximum physical goodput.

These results show that buffer sizes around 25 baseband packets are sufficient
for achieving maximal goodput. The E-limited polling scheme should be used with
the polling parameter set to be equal (or, at least, close) to the number of baseband
packets in the TCP segment. Token rate should be set to a value about 50% larger
than the portion of the total piconet throughput dedicated to a particular slave.

© 2006 by Taylor & Francis Group, LLC.

80
100

120
140

160
180

200
220

240

5

10

15

20

25
0

100

200

300

400

500

ρ
per connection

 (kbps)

RTT
(S=25 L=20 tb=250)

M

m
s

(a) Round-trip time (RTT).

80
100

120
140

160
180

200
220

240

5

10

15

20

25
0

20

40

60

80

100

120

140

160

180

ρ
per connection

 (kbps)

TCP Goodput
(S=25 L=20 tb=250)

M

kb
ps

(b) Goodput.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

10

20

30

40

50

60

ρ
per connection

 (kbps)

Average Congestion Window Size
(S=25 L=20 tb=250)

M

of

 M
S

S

(c) Mean size of the congestion window.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

10

20

30

40

ρ
per connection

 (kbps)

Average Slow Start Threshold
(S=25 L=20 tb=250))

M

of

 M
S

S

(d) Mean value of the slow start threshold.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

0.05

0.1

0.15

0.2

ρ
per connection

 (kbps)

Number of timeouts per sec
(S=25 L=20 tb=250)

M

#/
s

(e) Time-out rate.

80
100

120
140

160
180

200
220

240

5

10

15

20

25

0

0.2

0.4

0.6

ρ
per connection

 (kbps)

Number of fast−retransmission per sec
(S=25 L=20 tb=250)

M

#/
s

(f) Fast retransmission rate.

FIGURE 6.6
TCP performance as the function of the polling parameter M , in the piconet with two
slaves.

© 2006 by Taylor & Francis Group, LLC.

80
100

120
140

160
180

200
220

240

200

250

300

350
0

100

200

300

400

500

ρ
per connection

 (kbps)

RTT
(S=25 L=20 M=20)

Token Rate (kbps)

m
s

(a) Round-trip time (RTT).

80
100

120
140

160
180

200
220

240

200

250

300

350
0

20

40

60

80

100

120

140

160

ρ
per connection

 (kbps)

TCP Goodput
(S=25 L=20 M=20)

Token Rate (kbps)

kb
ps

(b) Goodput.

80
100

120
140

160
180

200
220

240

200

250

300

350

0

10

20

30

40

50

60

ρ
per connection

 (kbps)

Average Congestion Window Size
(S=25 L=20 M=20)

Token Rate (kbps)

of

 M
S

S

(c) mean size of the congestion window.

80
100

120
140

160
180

200
220

240

200

250

300

350

0

10

20

30

40

ρ
per connection

 (kbps)

Average Slow Start Threshold
(S=25 L=20 M=20))

Token Rate (kbps)

of

 M
S

S

(d) Mean value of the slow start threshold.

80
100

120
140

160
180

200
220

240

200

250

300

350

0

0.1

0.2

0.3

0.4

ρ
per connection

 (kbps)

Number of timeouts per sec
(S=25 L=20 M=20)

Token Rate (kbps)

#/
s

(e) Time-out rate.

80
100

120
140

160
180

200
220

240

200

250

300

350

0

0.1

0.2

0.3

0.4

ρ
per connection

 (kbps)

Number of fast−retransmission per sec
(S=25 L=20 M=20)

Token Rate (kbps)

#/
s

(f) Fast retransmission rate.

FIGURE 6.7
TCP performance as the function of token rate, in the piconet with two slaves.

© 2006 by Taylor & Francis Group, LLC.

25 30 35 40 45 50 55 60 65

5

10

15

20

25
0

200

400

600

800

1000

ρ
per connection

 (kbps)

RTT
(L=20 M=5 tb=70)

S

m
s

(a) Round-trip time (RTT).

25 30 35 40 45 50 55 60 65

5

10

15

20

25
0

10

20

30

40

50

ρ
per connection

 (kbps)

TCP Goodput
(L=20 M=5 tb=70)

S

kb
ps

(b) Goodput.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

5

10

15

20

25

ρ
per connection

 (kbps)

Average Congestion Window Size
(L=20 M=5 tb=70)

S

of

 M
S

S

(c) Mean size of the congestion window.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

10

20

30

40

ρ
per connection

 (kbps)

Average Slow Start Threshold
(L=20 M=5 tb=70))

S

of

 M
S

S

(d) Mean value of the slow start threshold.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

0.1

0.2

0.3

0.4

ρ
per connection

 (kbps)

Number of timeouts per sec
(L=20 M=5 tb=70)

S

#/
s

(e) Time-out rate.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

0.05

0.1

0.15

0.2

ρ
per connection

 (kbps)

Number of fast−retransmission per sec
(L=20 M=5 tb=70)

S

#/
s

(f) Fast retransmission rate.

FIGURE 6.8
TCP performance as the function of the buffer size S, in the piconet with seven
slaves.

© 2006 by Taylor & Francis Group, LLC.

25 30 35 40 45 50 55 60 65

5

10

15

20

25
0

10

20

30

40

50

ρ
per connection

 (kbps)

TCP Goodput
(S=25 L=20 tb=70)

M

kb
ps

(a) Goodput as the function of the polling param-
eter M .

25 30 35 40 45 50 55 60 65

50

100

150
0

10

20

30

40

50

ρ
per connection

 (kbps)

TCP Goodput
(S=25 L=20 M=20)

Token Rate (kbps)

kb
ps

(b) Goodput as the function of token rate.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

5

10

15

20

25

ρ
per connection

 (kbps)

Average Congestion Window Size
(S=25 L=20 tb=70)

M

of

 M
S

S

(c) Mean size of the congestion window as the
function of the polling parameter M .

25
30

35
40

45
50

55
60

65

50

100

150

0

5

10

15

20

25

ρ
per connection

 (kbps)

Average Congestion Window Size
(S=25 L=20 M=20)

Token Rate (kbps)

of

 M
S

S

(d) Mean size of the congestion window as the
function of token rate.

25
30

35
40

45
50

55
60

65

5

10

15

20

25

0

0.1

0.2

0.3

0.4

ρ
per connection

 (kbps)

Number of timeouts per sec
(S=25 L=20 tb=70)

M

#/
s

(e) Time-out rate as the function of the polling
parameter M .

25
30

35
40

45
50

55
60

65

50

100

150

0

0.1

0.2

0.3

0.4

ρ
per connection

 (kbps)

Number of timeouts per sec
(S=25 L=20 M=20)

Token Rate (kbps)

#/
s

(f) Time-out rate as the function of token-rate.

FIGURE 6.9
TCP performance as functions of token rate and the polling parameter M , in the
piconet with seven slaves.

© 2006 by Taylor & Francis Group, LLC.

7

Piconets with synchronous traffic

Voice and media communications are repeatedly singled out as important application
areas for Bluetooth. The official Bluetooth specification provides a special type of
connection – the so-called SCO connection – to carry voice traffic. Yet when such
a connection is established, the performance of asynchronous, data traffic in the pi-
conet is drastically reduced. In this chapter we investigate whether an alternative
solution would enable the piconet to carry both asynchronous and voice traffic with
satisfactory performance. It turns out that a feasible solution, which we will refer to
as pseudo-SCO or pSCO for short, may indeed be implemented using only the facil-
ities already provided in the current Bluetooth specification [Bluetooth SIG, 2001b],
without requiring modifications or extensions of any kind. The performance of asyn-
chronous traffic under the new scheme is much improved over that of the original
SCO scheme, while the bandwidth requirements for voice traffic are still easily sat-
isfied.

The chapter begins with the description of the operation of ordinary SCO links
and their limitations, in Section 7.1. Then, we present the pSCO scheme in Sec-
tion 7.2. Section 7.3 analyzes the performance of the new scheme using the theory
of M [x]/G/1 queues with vacations [Takagi, 1991]. Finally, we present some results
that clearly show the benefits that may be obtained through the pSCO scheme.

7.1 Why the built-in SCO links are bad

As noted in Chapter 1, two types of links may exist between the piconet master and
its slaves. In an ACL link, the master is free to poll or not to poll the slave at will;
the slave may talk back only when addressed by the master, and only immediately
after being addressed by the master. This scheme uses packets of DMx and DHx
types (where x = 1, 3, or 5) with different length and different information-carrying
capacity, listed in Table 7.1. The packet payload is protected with appropriate CRC,
so that the receiver can request retransmission in case the content is damaged due
to interference and/or noise. Furthermore, some types of packets offer forward error
correction (FEC) as well.

The master and an active ACL slave may also establish another type of link: the
Synchronous Connection-Oriented (SCO) link. SCO links are designed to support

© 2006 by Taylor & Francis Group, LLC.

TABLE 7.1
Packet types for communication
over an ACL link.

Type Slot(s) Payload FEC
(bytes)

DM1 1 17 2/3
DH1 1 27 none
DM3 3 121 2/3
DH3 3 183 none
DM5 5 224 2/3
DH5 5 339 none

synchronous, constant bit rate (CBR) traffic such as voice [Bluetooth SIG, 2001b],
and they use special packet types labeled HV1, HV2, and HV3, the characteristics of
which are outlined in Table 7.2 (a more detailed description is given in Chapter 1).
A fourth packet type (DV) combines 10 bytes of voice data with up to 150 bits
of other data; as its behavior is not different from that of the HV type packets, it
will not be considered separately. These packets are not equipped with CRC, and
retransmission of damaged packets is not supported, in line with the observation that
voice communications are much more sensitive to packet delays than to packet loss
[Kurose and Ross, 2005].

TABLE 7.2
Packet types for communication over an SCO link.

Type Slot(s) Payload Speech duration FEC SCO interval
(bytes) (ms) (slots)

HV1 1 10 1.25 1/3 (repetition) 2
HV2 1 20 2.5 2/3 (polynomial) 4
HV3 1 30 3.75 none 6

SCO links are specifically designed to carry voice traffic at the standard, non-
compressed rate of 64kbps. An SCO link can optionally use compression, but this
does not change the timing scheme, nor does it affect the type of packets used. Issues
related to compression are beyond the scope of this text and our analysis will simply
use the value of 64kbps as the required bandwidth for voice transmissions.

In order to provide the 64kbps bandwidth needed for a voice channel, a strict
timing scheme, shown in Fig. 7.1, has to be observed. The SCO link reserves slots in
master-slave communication, and ACL traffic is not allowed to use these slots at all.
Therefore, the bandwidth available to ACL traffic is substantially reduced, or even
eliminated in extreme cases.

© 2006 by Taylor & Francis Group, LLC.

ACL links can use 4 out of every 6 slots

master

SCO slave with
HV3 packets

master

SCO slave with
HV2 packets

ACL links can use 2 out of every 6 slots

time (in units of time slot T=0.625ms)

master

SCO slave with
HV1 packets

0 1 2 3 4 5 6 7 8 9 10 11 12

ACL links can use no time at all

FIGURE 7.1
Timing of SCO communications with different packet types.

Furthermore, the time available to ACL traffic (if any) is partitioned in intervals of
four or two time slots apiece, as can be seen from Fig. 7.1. Consequently, five slot
packets cannot be used at all, while three slot packets can be used if and only if the
other packet in a frame is a single-slot packet. Even this limitation will not suffice in
all cases: if the first frame after the SCO link uses two one slot packets, the second
frame must use one slot packets too. As these limitations are not part of the original
communication protocol, they must somehow be advertised to all the ACL slaves as
soon as an SCO link is established. The Bluetooth specification does allow the master
to limit the number of slots used by a slave by issuing a LMP max slot command
[Bluetooth SIG, 2001b], but the limitations outlined above are more complex and
appropriate extensions would be needed.

Ultimately, the presence of an SCO link in a Bluetooth piconet leads to drastic
reductions in maximum achievable data rates and corresponding increase in end-to-
end packet delays for asynchronous traffic. The queueing delays for asynchronous
traffic will also increase, as the regular service of ACL packets is effectively frozen
during SCO frames. As packet delays for asynchronous traffic are mostly determined
by queueing delays in different devices [Mišić and Mišić, 2003b; Mišić and Mišić,
2003a], the increase in delays and the corresponding decrease of data rates will be
disproportionately high compared to the simple reduction in available bandwidth.

To summarize, the performance of asynchronous traffic in the presence of an SCO

© 2006 by Taylor & Francis Group, LLC.

link is far from satisfactory, and it is worth investigating whether a better alternative
could be found. Such an arrangement should use higher-capacity ACL packets, yet
it should satisfy the strict timing requirements for synchronous traffic. Of course,
a solution that uses the mechanisms already provided by the official specification
would be preferable.

7.2 pSCO: an improved scheme for synchronous traffic

It turns out that such an arrangement is indeed possible, as the Bluetooth Link Man-
ager provides basic Quality of Service (QoS) capabilities [Bluetooth SIG, 2001b].
Namely, the master and an ACL slave may set up the maximum polling interval
Tpoll , i.e., the maximum time between subsequent transmissions. This polling in-
terval is guaranteed in the active mode, except when there are collisions with page,
page scan, inquiry, and inquiry scan. This mechanism may be used as the basis for
the pSCO improved synchronous transmission scheme.

As noted above, the basic requirements to be satisfied in the pSCO mode are the
bandwidth and latency of the synchronous transmission channel. Uncompressed
voice transmission requires the bandwidth of 64kbps. Latency primarily depends
on the directionality of traffic; for bidirectional traffic (i.e., ordinary telephone-like
conversation), the end-to-end (round trip) delays of 100 to 300ms are noticeable but
still acceptable [Partridge, 1994]. Of course, for unidirectional traffic, such as a live
lecture broadcast, delays are not important. The main portion of those end-to-end de-
lays will be the transmission and queueing delays, which may be controlled through
the pSCO scheme. However, the end-to-end delays will also include the time for
packetization, compression, and decompression of voice signal (each of which has to
be performed twice in a two-way conversation), and possibly some time for buffering
in order to compensate for the packet arrival jitter [Kurose and Ross, 2005]. These
additional delay times will not be negligible, the more so because the computational
power of Bluetooth devices may be limited by the (more important) requirements of
low energy consumption. Of course, no hard numbers can be given, but, in general,
we would like to keep the latency as low as possible.

The parameters to be adjusted in order to satisfy those requirements are the type
of packets to be used and the duration of the polling interval Tpoll . The obvious task
sequence would be as follows.

• First, choose the type of packet. Multi-slot ACL packets have larger payloads,
which means they can be sent at longer intervals. Longer polling intervals,
in turn, leave more contiguous time available for asynchronous traffic. How-
ever, noise and interference conditions might dictate the use of FEC-protected
packets (i.e., DM type), which carry somewhat smaller payloads than their DH
counterparts.

© 2006 by Taylor & Francis Group, LLC.

• Then, calculate the polling interval so as to satisfy the bandwidth requirement.
As the polling interval is expressed in Bluetooth time slots T , it should be
rounded to the nearest lower integer value.

• In fact, the polling interval may be increased if we allow multiple packets to be
exchanged at once. For example, if each exchange takes two packets instead
of just one, the polling interval may be doubled. However, polling intervals
that are too long might violate the latency requirement.

The corresponding values for different three- and five-slot ACL packet types, as-
suming single-frame exchanges, are given in Table 7.3. Note that the round trip
transmission delay will be twice the duration of the polling interval plus the addi-
tional delays described above. For simplicity, we will consider only single-frame
pSCO exchanges, although our analysis framework can easily accommodate multi-
frame exchanges as well.

TABLE 7.3
Packet types and polling intervals for 64kbps pSCO
mode connections. (From J. Mišić, V. B. Mišić, and
K. L. Chan, “Talk and let talk: performance of Bluetooth
piconets with synchronous traffic,” Ad hoc networks,
3(4):451–477, c© 2003 Elsevier B. V.)

Type Slot(s) Payload Polling interval Data rate
(bytes) (slots) (ms) (kbps)

HV3 1 30 6 3.75 64
DM3 3 121 24 15.0 64.5
DH3 3 183 36 22.5 65.1
DM5 5 224 44 27.5 65.2
DH5 5 339 67 41.9 64.8

The packet timing under the pSCO scheme is shown in Fig. 7.2. Although similar
in principle to the SCO timing, the use of multi-slot packets for synchronous traffic
allows less overall time to be spent on synchronous exchanges on the average, and
makes each interval between those exchanges last much longer. Consequently, asyn-
chronous traffic will suffer less disruption than under the original SCO scheme, and
its performance will improve, as will be seen in subsequent discussions.

It should be noted that similar schemes have been proposed elsewhere. Chawla,
Saran and Singh [2001] have investigated the possibility of bandwidth conservation
for voice transmission. To that effect, two schemes have been proposed; in the sec-
ond one, ACL packets are used to transmit voice and other types of synchronous
traffic. However, they provide limited simulation results only, without going into
much detail about the performance of asynchronous traffic in this case.

© 2006 by Taylor & Francis Group, LLC.

master

TSCO

2 LSCO
pSCO slave

ACL links can use
this time

FIGURE 7.2
Timing of pseudo-SCO links.

Also, Famolari and Anjum [2002] have proposed the use of ACL packets for voice
transmission, and then analyzed the effect of different traffic priorities, noise, and
interference, on voice traffic. Again, the results are obtained by simulations only.

Kapoor, Jyh-Ling, Lee and Gerla [2002] have also proposed the use of ACL pack-
ets to carry voice traffic. However, their main focus is the performance of voice
traffic, including the resulting delay distribution, rather than asynchronous traffic.
A similar proposal by Wu and Todd [2004] utilizes different ACL packets and dis-
cusses their performance, in particular with respect to call quality and call blocking
in a noisy environment. An earlier paper [Wu, Todd and Shirani, 2003], based on
the results of [Xue and Todd, 2001], has shown that user mobility can be exploited
to improve the traffic capacity and reduce voice call blocking.

However, none of these papers provide a theoretical analysis of the performance
of ACL traffic in the presence of SCO or pSCO links, nor do they analyze the impact
of different intra-piconet polling schemes. Therefore, the work described here com-
plements, rather than replicates, the results presented in the aforementioned papers.

Finally, we note that an additional type of link has been introduced in version
1.2 of the Bluetooth specification [Bluetooth SIG, 2003a]: the extended SCO, or
eSCO link. The eSCO scheme is rather similar to our pSCO scheme, as it uses
longer polling intervals and packets that carry larger payloads than the original SCO
scheme. As the behavior of the eSCO link is quite similar to that of the pSCO
scheme, the analysis presented below applies to eSCO links as well, provided the
differences in timing are accounted for.

7.3 Performance of the pSCO scheme

We consider a single Bluetooth piconet with m members. In addition to the piconet
master and m − 2 ACL slaves, there is a single slave device with synchronous (SCO
or pSCO) traffic. The master and ACL slaves use downlink and uplink queues, re-
spectively, according to the queueing model of Fig. 2.4. The CBR traffic packets are
generated at regular intervals and sent immediately, therefore the pSCO link does not
need any queues.

© 2006 by Taylor & Francis Group, LLC.

We will assume that all slaves generate ACL traffic with the same arrival rate,
and that the master has no ACL traffic of its own. The pSCO link generates packets
of length Lsco slots on every Tsco time slots. Note that the plain SCO connection
with HV3 packets, as defined by the Bluetooth specification, may be described by
the combination of Lsco = 1 and Tsco = 6. Multi-frame exchanges, as well as
synchronous transmissions with data rates other than 64kbps, are handled by simply
choosing appropriate values for Lsco and Tsco.

We assume that the piconet master is the member with the index 1, the SCO/pSCO
slave has the index 2, while the ACL slaves have indices from 3 to m. We will use
S p

i and St
i to denote channel service time for ACL slave i , i = 3 . . m without and

with the time slots inserted by pSCO connection, respectively. As explained in Chap-
ter 3, this time depends on the chosen polling scheme; we assume that the E-limited
polling scheme is used to poll the plain ACL slaves. The Probability Generating
Function (PGF) for the channel service time will be denoted as S p

i (z) and St
i (z) and

its Laplace-Stieltjes Transform (LST) will be denoted as S p∗
i (s) and St∗

i (s) for the
cases without and with the slots inserted by the pSCO connection. By the same
token, piconet cycle time, i.e., the time needed to visit all the slaves once will be
denoted with C p and Ct . The probability density function (pdf) for the piconet cycle
time in these two cases is denoted as cp(x) and ct (x). The PGF for the piconet cycle
time without and with the pSCO time slots is denoted as C p(z) and Ct (z) while its
LST is denoted as C p∗(s) and Ct∗(s), respectively. As stated in Chapter 3, the vaca-
tion time for the ACL slave i is the time while master serves all the other slaves. The
vacation time for slave i is denoted as V p

i and V t
i , its PGF is V p

i (z) and V t
i (z), and

its LST is denoted as V p∗(s) and V t∗(s) for the cases without and with taking into
account time slots for pSCO traffic.

Performance analysis of the piconet operating with the mix of ACL and pSCO
traffic is similar to the analysis of the piconet with ACL traffic only, discussed earlier
in Chapter 3. However, the frame time, vacation time, and piconet cycle time must be
modeled without and with taking pSCO packets into account; in order to distinguish
between those two cases, we will decorate the corresponding variables with super-
scripts p and t , respectively. As before, the number of packets in the uplink queue
is modeled as a set of imbedded Markov points [Takagi, 1991]. The Markov points
correspond to vacation termination times, i.e., the times when the master starts to
service the given slave, and service completion times, i.e., the times when the slave
finishes one uplink packet transmission.

Thanks to the symmetry of the piconet with respect to the slaves, it suffices to
consider the packet exchange between a single slave, say i , and the master. Let
qi

ku ,kd
denote the joint probability that a Markov point in the uplink queue of slave i

is a vacation termination time, and that there are ku = 0, 1, 2 . . . packets at the slave
i’s uplink queue and kd = 0, 1, 2 . . . packets at the master’s i’s downlink queue at
that time. Also, let π i,(µ)

ku ,kd
denote the joint probability that a Markov point is the

µ-th frame transmission completion time and that there are ku packets in the slave’s
i queue at that time, and kd packets at the master’s queue toward the slave i , where
µ = 1 . . M and kd , ku = 0, 1, 2, . . .

© 2006 by Taylor & Francis Group, LLC.

Let f t
i (x) and vt

i (x) stand for the pdfs (probability density functions) of the total
frame transmission time and vacation time, respectively, including pSCO packets, at
the uplink queue of slave i ; their LST transforms will be (Ft

i)
∗(s) and (V t

i)
∗(s). We

will also make use of the following probabilities:

• the probability of ku packet arrivals at the slave i’s uplink queue during the
frame time, denoted with aku ;

• the probability of kd packet arrivals at the master’s downlink queue during the
frame time, denoted with akd ;

• the probability of ku packet arrivals at the slave i’s uplink queue during the
vacation time, denoted with fku ; and

• the probability of kd packet arrivals in the master’s downlink during the vaca-
tion time, denoted with fkd .

Those probabilities may be calculated as

aku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu x f t

i (x)dx

= 1

ku!

dku

dzku
(Ft∗

i (λiu − λiuGb(z)))
∣∣
z=0

akd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λid x)l

l!
e−λid x f t

i (x)dx

= 1

kd !

dkd

dzkd
(Ft∗

i (λid − λid Gb(z)))
∣∣
z=0

fku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvt

i (x)dx

= 1

ku!

dku

dzku
V t∗

i (λiu − λiuGb(z))
∣∣
z=0

fkd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvt

i (x)dx

= 1

kd !

dkd

dzkd
V t∗

i (λiu − λiuGb(z))
∣∣
z=0

(7.1)

Similar expressions hold for the number of arrivals in the corresponding downlink
queue at the master. The probabilities that the uplink queue of slave i contains ku

packets and that the downlink queue toward slave i contains kd packets in imbedded
Markov points, satisfy the following equations:

© 2006 by Taylor & Francis Group, LLC.

π
i,(1)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

qi
ju , jd aku− ju+1akd− jd+1 +

kd+1∑
jd=1

qi
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

qi
ju ,0aku− ju+1akd

π
i,(µ)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1akd− jd+1 +
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1akd , µ = 2 . . M

qi
ku ,kd

=

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fku fkd +

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

fku− ju fkd− jd

(7.2)

The probability generating functions (PGFs) for the number of packets in the up-
link and the corresponding downlink queue at the imbedded Markov points are de-
fined by

�t
i,µ(z, w) =

∞∑
ku=0

∞∑
kd=0

π
i,(µ)
ku ,kd

zkuwkd , µ = 1 . . M

Qt
i (z, w) =

∞∑
ku=0

∞∑
kd=0

qi
ku ,kd

zkuwkd

(7.3)

which, after the transformation shown in Section 3.3, p. 37, may be written as

�t
i,1(z, w) = Ft∗

i (λiu − λiuGb(z))Ft∗
i (λid − λid Gb(w))

zw
· (Qt

i (z, w)− (1 − w)Qt
i (z, 0)

− (1 − z)Qt
i (0, w)+ qi

0,0(1 − z − w)
)

�t
i,µ(z, w) = Ft∗

i (λiu − λiuGb(z))Ft∗
i (λid − λid Gb(w))

zw
·
(
�t

i,µ−1(z, w)− (1 − w)�t
i,µ−1(z, 0)

−(1 − z)�t
i,µ−1(0, w)+ π

i,(µ−1)
0,0 (1 − z − w)

)
,

µ = 2 . . M
Qt

i (z, w) = V t∗
i (λiu − λiuGb(z))V

t∗
i (λid − λid Gb(w))

·

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�i,M (z, w)

(7.4)

When z = 0 is substituted in the last system, we can find�i,1(0, w) . . .�i,M (0, w)
and Qi (0, w) as functions of π i,(µ)

0,0 µ = 1 . . .M and qi
0,0, and the system (7.4) be-

comes

© 2006 by Taylor & Francis Group, LLC.

�t
i,1(0, w) = Ft∗

i (λiu)Ft∗
i (λid − λid Gb(w))

w
·
(

Qi (0, w)− qi
0,0

)
�t

i,µ(0, w) = F∗
i (λiu)Ft∗

i (λid − λid Gb(w))

w

·
(
�i,µ−1(0, w)− π

i,(µ−1)
0,0

)
,

µ = 2 . . M
Qt

i (0, w) = V t∗
i (λiu)V

t∗
i (λid − λid Gb(w))

·

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�i,M (0, w)

(7.5)

From the system (3.27), we find �i,1(0, w) . . .�i,M (0, w) and Qi (0, w). In an
analogous fashion, we can find�i,1(z, 0) . . .�i,M (z, 0) and Qi (z, 0) as functions of
π

i,(µ)
0,0 , µ = 1 . . .M , and qi

0,0. For clarity, we introduce additional substitutions:

Qt
0(z, w) = (1 − w)Qi (z, 0)+ (1 − z)Qt

i (0, w)− qi
0,0(1 − z − w)

�t
µ,0(z, w) = (1 − w)�t

i,µ(z, 0)+ (1 − z)�t
i,µ(0, w)π

i,(µ)
0,0 (1 − z − w),

µ = 1 . . M

(7.6)

and the system (7.4) becomes

�t
i,1(z, w) = 1

zw
Ft∗

i (λiu − λiuGb(z))F
t∗
i (λid − λid Gb(w))

· (Qt
i (z, w)− Qt

0(z, w)
)

�t
i,µ(z, w) = Ft∗

i (λiu − λiuGb(z))Ft∗
i (λid − λid Gb(w))

zw
·
(
�t

i,µ−1(z, w)−�t
µ−1,0(z, w)

)
µ = 2 . . M

Qt
i (z, w) = V t∗

i (λiu − λiuGb(z))V
t∗
i (λid − λid Gb(w))

·

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 +�t
i,M (z, w)

(7.7)

Finally, by solving the system (7.7), we are able to obtain the expression for
Qt

i (z, w) in the form

Qt
i (z, w) = V t∗

i (λiu − λiuGb(z))V
t∗
i (λid − λid Gb(w))z

MwM A

B
(7.8)

where

A =
M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0 − Qt
0(z, w)Y

M −
M−1∑
µ=1

Y M−µ�t
µ,0(z, w)

B = zMwM − V t∗
i (λiu − λiuGb(z))V

t∗
i (λid −λid Gb(w))

· Ft∗
i (λiu − λiuGb(z))

M Ft∗
i (λid − λid Gb(w))

M

(7.9)

© 2006 by Taylor & Francis Group, LLC.

and

Y = 1

zw
Ft∗

i (λiu − λiuGb(z))F
t∗
i (λid − λid Gb(w)) (7.10)

However, the solution of (7.8) requires two more elements to be calculated: namely,
the LSTs of the total frame time and vacation time distributions (with taking pSCO
packet into account). In order to do that, we must first find pure channel and vaca-
tion times and later extend them with pSCO packets to obtain total duration of these
times. Let us find the LST of the pure channel service time first; this is the time from
the moment when master polls the slave for the first time, until either an empty frame
has been encountered, or a total of M data frames have been exchanged. (As usual,
this time is expressed in time slots T .) This service time can take from one up to M
frames. The LSTs of the length of k-th data frame without the POLL/NULL packet
pair is

F p∗1(s) =
(

Qt
i (1, 0)+ Qt

i (0, 1)− 2qi
0,0

)
Qi (1, 1)

G∗
p(s)e

−s

+ (Qt
i (1, 1)− Qt

i (1, 0)− Qt
i (0, 1)+ qi

0,0)

Qi (1, 1)
G∗

p(s)
2

F p∗µ(s) =
(
�t

i,µ−1(1, 0)+�t
i,µ−1(0, 1)− 2π i,(µ−1)

0,0

)
�t

i,µ−1(1, 1)
G∗

p(s)e
−s

+
(
�t

i,µ−1(1, 1)−�t
i,µ−1(1, 0)−�t

i,µ−1(0, 1)+ π
i,(µ−1)
0,0

)
�t

i,µ−1(1, 1)
G∗

p(s)
2,

µ = 2 . . M
(7.11)

Note that probability that Markov point corresponds to the end of vacation for slave
i is Qi (1, 1). Therefore, the conditional probability that both the uplink and down-

link queue are empty at the end of vacation is
qi

0,0

Qi (1, 1)
. Next, we observe that the

probability that master slave transmission will take k data frames is

Pf,0 = qi
0,0

Qt
i (1, 1)

Pf,1 =
(

Qt
i (1, 1)− qi

0,0

)
Qt

i (1, 1)

π
i,(1)
0,0

�t
i,1(1, 1)

Pf,k =
(

Qt
i (1, 1)− qi

0,0

)
Qt

i (1, 1)

k−1∏
µ=1

(
�t

i,µ(1, 1)− π
i,(µ)
0,0

)
�t

i,µ(1, 1)
· π

i,(k)
0,0

�t
i,k(1, 1)

,

k = 2 . . M − 1

Pf,M = 1 −
M−1∑
k=0

Pf,k

(7.12)

© 2006 by Taylor & Francis Group, LLC.

Then, the LST for the master-slave pure channel service time is

S p∗
i (s) =

M−1∑
k=0

Pf,k

k∏
µ=1

(F p∗µ(s))e−2s + Pf,M

M∏
µ=1

F p∗µ(s) (7.13)

The PGF for the pure vacation time observed by the slave i is

V p∗
i (s) =

m∏
j=3
j �=i

S p∗
j (s) (7.14)

A given frame will contain two data packets when the uplink and downlink queues
are not empty, one data and one empty (POLL or NULL) packet when one of the
queues is empty, or two empty (POLL and NULL) packets when both queues are
empty. Given that the LST of a single-slot packet is e−s , the LST for the pure frame
time during the exchange between the master and the slave i is

F p∗
is (s) =

 M∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 e−2s

+

Qt

i (0, 1)+ Qt
i (1, 0)+ P P − 2

 M∑
µ=1

π
i,(µ)
0,0 + qi

0,0

G∗

p(s)e
−2s

+

1 − Qt

i (0, 1)− Qt
i (1, 0)− P P +

M∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 (G∗

p(s))
2

(7.15)
where

P P =
M∑
µ=1

(
�t

i,µ(0, 1)+�t
i,µ(1, 0)

)
(7.16)

Let us denote the portion of time available for asynchronous traffic with α =
1−2Lsco/Tsco. Let us assume that the LST for the frame duration can be represented

as: F p∗
is (s) =

∞∑
m=0

pme−ms . Then the LST for the total frame time has the form

Ft∗
is (s) =

∞∑
m=0

pme−ms− 2mLsco
Tsco−2Lsco = F p∗

is

(s

α

)
(7.17)

By the same token, the total vacation time for the slave i is

V t∗
i (s) = V t∗

i

(s

α

)
(7.18)

Expressions (7.18) and (7.17) should be substituted in (7.8) which then depends
on the packet arrival process for the given slave, as well as on the values π i,(µ)

0,0 and

© 2006 by Taylor & Francis Group, LLC.

qi
0,0. The latter two can be found from the marginal PGF Qi (z, 1) (alternatively,

Qi (1, w) could be used instead), by making use of the fact that Qi (z, 1) must be
analytic function for all |z| ∈ (0, 1). Therefore, its numerator and denominator must
have identical roots. The number of roots of the denominator can be determined by
Rouché’s theorem [Bak and Newman, 1982] and it is equal to M . Obviously, z0 = 1
is one of the roots, while the remaining M − 1 of them can be determined using
Lagrange’s theorem [Whittaker and Watson, 1952]:

z j =
∞∑

n=1

e2π jn
√−1/M

n!

· dn−1

dzn−1

(
V t∗

i (λiu − λiuGb(z))F
t∗
i (λiu − λiuGb(z))

)n/M
∣∣∣
z=0

(7.19)

where j = 1 . . M − 1 denotes the index of the root in question. In practice, it
is possible to truncate the sum (7.19) to the first few members only. The solutions
thus obtained may contain negligible imaginary part. When the M − 1 roots are
substituted in the numerator of (7.8), we obtain a total of M − 1 equations for the
given slave i , with unknowns qi

0,0 and π i,(k)
0,0 , i.e.,(

1 −
(

Ft∗
is (λiu − λiuGb(z j))

z j

)M
)

qi
0,0+

M−1∑
k=1

(
1 −

(
Ft∗

is (λiu − λiuGb(z j))

z j

)M−k
)
π

i,(k)
0,0 = 0

(7.20)

where k = 1 . . M − 1. The missing M-th equation is obtained from the condition

Q(1, 1)+
M∑
µ=1

�i,µ(1, 1) = 1, and it reads

Mqi
0,0 +

M−1∑
k=1

(M − k)π i,(k)
0,0 = M(1 − λiu Ft

is B)− λiu BV t
i

1 − λiu Ft
is B + λiu BV t

i

(7.21)

Solving the system

As we see, finding the distribution of the number of packets in the uplink or downlink
queue upon the return from the vacation, requires that we know the distribution of
the vacation time, and vice versa. In order to break the recursion, we have applied
iterative approach. Before we explain the process of obtaining solutions, we will
introduce the marginal mass probabilities of queue lengths as

qi
ju

=
∞∑

jd=0

qi
ju , jd , qi

jd
=

∞∑
ju=0

qi
ju , jd ,

π
i,(ju)
ju =

∞∑
jd=0

π
i,(ju)
ju, jd , and π

i,(µ)
jd =

∞∑
ju=0

π
i,(µ)
ju, jd .

(7.22)

© 2006 by Taylor & Francis Group, LLC.

Then, the solutions may be obtained with the following approach:

Iteration 0 1. Consider the marginal probability distributions for uplink queues
(but the same procedure holds for the downlink queue as well).

2. Assume that Qt0
i (1, 1) = 0.9 and that qi

ju
= π

i,(ju)
ju , ju = 1 . . M − 1.

3. Calculate the distribution of service time and vacation time for each
slave.

4. Solve the system which consists of M − 1 equations of the type (3.39)
and one of the type (3.40) for each queue (i.e., the overall system consists
of 2M(m − 1) equations).

5. Calculate the new values of Qt
i (z, 1), and find Qt

i (1, 1). Also find qi
ju

for
ju = 0 . . M − 1.

Iterations 1 . . k 1. Calculate the new distributions of the service and vacation
times, using Qt

i (1, 1) and values qi
ju

and j = 0. .M−1 from the previous
iteration.

2. Solve again the system of equations that consists of 2(m − 1) instances
of the system (3.39) and (3.40).

3. With the solutions calculate Qt
i (z, 1) and so on.

We have found that two to three iterations suffice for good accuracy.

Access delay

Since the PGF for the burst length distribution is geometric, Gb(z) = z

B + z − zB
,

we will introduce the substitution s = λiu − λiu z/(B + z − zB) in the expression
(7.8). By using the decomposition principle [Takagi, 1991], the LST for the packet
access delay at the slave uplink queue becomes

W ∗
ai (s) = s(1 − λiu Ft

is B)

s − λiu + λiuGb(Ft∗
is (s))

· 1 − Gb(Ft∗
is (s))

B(1 − Ft∗
is (s))

·1 − V t∗
i (s)

sV t
i

·
Qt

i

(
1 − s

λiu B − s B + s
, 1

)
Qt

i (1, 1)V t∗
i (s)

(7.23)

Different terms in the last expression correspond to different events. The first term
corresponds to the time needed to serve the first packet in the burst in the M [x]/G/1
system. The second term corresponds to the time needed to serve the target packet in
the burst. The third term corresponds to the time needed to serve packets which arrive
during the vacation but before the target burst. Finally, the fourth term corresponds
to time needed to serve packets which were already in the uplink queue when the

© 2006 by Taylor & Francis Group, LLC.

vacation was started. Then, the mean access delay is obtained as Wai = −W ∗′
ai (0),

which amounts to

Wai = λiu B((Ft
is)

2)

(1 − λiu Ft
is B)

+ B(2)2

2B(1 − λiu Ft
is B)

+ (V
t
i)

2

2V t
i

− V t
i + Qt ′

i (1, 1)

λiu B Qt
i (1, 1)

(7.24)

where (V t
i)

2 = V t∗′′
i (0).

From the last expression, the following observations can be made:

1. Under constant offered load ρ = λFt
is B and fixed M , mean access delay

will increase when the mean burst size B increases. This increase is due to
the increased second factorial moment of the burst size and an increase in the
number of packets in the uplink queue when the vacation is finished, as can be
seen from the second and last term in (7.24), respectively.

2. Under constant offered load and fixed average burst size B, mean access delay
decreases when the value of M increases. This decrease is due to the decreased
number of packets in the uplink queue at the end of vacation, as can be seen
from the fourth and fifth term in (7.24).

These observations are confirmed through the diagram that shows the dependency
of mean access delay on mean burst size B and parameter M , shown in Fig. 7.3. It
may be interesting to note that the dependency shown in it is similar in form to the
one from Fig. 3.10(a), except that the delays are lower, as could have been expected.

Downlink and end-to-end delay

Under E-limited service, the burstiness of the traffic that arrives at the downlink
queues will differ from that in the uplink queue, because of possible interleaving of
bursts from different sources. We will model this effect by modifying the parame-
ter of the geometric distribution for the uplink queue. Let the uplink burst size be
determined by the PGF Gb(z) = zpb/(1 − z + zpb), where pb is the parameter of
the geometric distribution which determines the mean burst size, B = 1/pb. In the
downlink queue, bursts from different sources may get interleaved, and the mean
burst size becomes Siu/L , where Siu is the mean service period of all uplink queues
which have traffic toward the slave i . The probability that the source slave i is the
only one to transmit in the current cycle, and the transmission is targeted toward
slave j (where i, j = 3 . . m and i �= j), is

Pc =
m∑

i=3
i �= j

m∏
k=2

k �=i, j

qk
0

Qk(1, 1)
· (1 − qi

0)

Qi (1, 1)
(7.25)

© 2006 by Taylor & Francis Group, LLC.

5 10 15 − − Infinity
5

10

15

100

200

300

400

500

600

Mean Burst Size

ACL Access Delay with 1 (3 slot) SCO Channel, λ*B=0.015

K

FIGURE 7.3
Mean access delay for asynchronous traffic in the presence of pSCO connections as
the function of M and B, when DH3 packets are used. (From J. Mišić, V. B. Mišić,
and K. L. Chan, “Talk and let talk: performance of Bluetooth piconets with syn-
chronous traffic,” Ad hoc networks, 3(4):451–477, c© 2003 Elsevier B. V.)

The probability that slave i is the only one which transmits to the slave j among
two or three active slaves in the same cycle is

Pd =
(

1 − 1

m − 4
− 1

(m − 5)2

)⌈
B
M

⌉
(7.26)

Then, the parameter of the downlink burst length distribution is given by

pb, j,d = 1

B
Pc + (1 − Pc) ·

(
1

B
Pd + L

Su
(1 − Pd)

)
(7.27)

where Su =
m∑

i=2
i �= j

Siuλiu
/ m∑

i=2
i �= j

λiu . The adjusted downlink packet arrival rate is

λ jd =
m∑

i=2
i �= j

λiu

m − 2
B pb, j,d (7.28)

where λiu denotes the original uplink packet burst arrival rate. The PGF for the
distribution of downlink burst size becomes

Gb, j,d(z) = zpb, j,d

1 − z + zpb, j,d
(7.29)

© 2006 by Taylor & Francis Group, LLC.

and the average burst size is B j,d = 1/pb, j,d . Note that the packet burst is going to
be almost intact in the downlink, provided that the polling parameter M is equal to,
or larger than the mean burst size B.

In order to obtain LST for the downlink delay, we will introduce the substitution
u = λid −λidw/(Bi,d +w−wBi,d) in (7.8). The LST for the delay in the downlink
queue corresponding to slave i is

W ∗
di (u) = u(1 − λid Ft

is Bi,d)

u − λid + λid Gb,i,d(Ft∗
is (u))

· 1 − Gb,i,d(Ft∗
is (u))

Bi,d(1 − Ft∗
is (u))

·1 − V t∗
i (u)

uVi
·

Qt
i

(
1, 1 − u

λi,d Bi,d − u Bi,d + u

)
Qt

i (1, 1)V t∗
i (u)

(7.30)

and the mean downlink delay is

Wdi = λid Bi,d Ft
is

(1 − λid Ft
is Bi,d)

+ B(2)i,d Ft
is

2Bi,d(1 − 2λid Ft
is Bi,d)

+ (V
t
i)

2

2V t
i

− V t
i + Qt ′

i (1, 1)

λid Bi,d Qt
i (1, 1)

(7.31)

The LST for end-to-end delay is equal to W ∗
i je(s, u) = W ∗

ai (s)W
∗
d j (d). Mean

end-to-end delay is Wi je = Wai + Wd j .
As can be seen, the behavior of the downlink delay when the parameter M changes

is different from that of the access delay. This is mainly due to burst interleaving at
moderate and high burst arrival rates. The interleaving effectively limits the mean
burst size to a value close to M . As a consequence, the mean downlink delay will
increase with the polling parameter M until it reaches the mean burst size; further
increase of delays is much slower. The other factor that affects the delay is the
periodic interruption of ACL traffic by the pSCO traffic. The probability that an
ACL packet exchange is interrupted by the pSCO traffic is higher at higher values of
M , and the mean downlink delay increases accordingly.

In order to examine the behavior of the overall end-to-end packet delay, we have
found the minima of its derivative with respect to M :

∂Wai

∂M
+ ∂Wd j

∂M
= 0 (7.32)

The optimal value of M depends on the polling interval of the pSCO connection and
on the type of packets used, but the single most important factor is the mean burst
size. The resulting dependency of optimal M as a function of B is shown in Fig. 7.4.
As can be seen, the optimal value of M is a nearly linear function of B, similar to the
corresponding diagram in Fig. 3.11, obtained in the piconet with ACL traffic only.
The gradient of this dependency is slightly below 1 (i.e., the optimal M is slightly
smaller than B). The optimal value of M will be somewhat lower when DH-type
packets are used, due to the longer polling interval.

© 2006 by Taylor & Francis Group, LLC.

Optimal scheduling policy

Tsco=24,44

Tsco=67,36

2

4

6

8

10

12

M

2 4 6 8 10 12 14
average burst size B

FIGURE 7.4
Optimal value of M as a function of the mean burst size B. (From J. Mišić,
V. B. Mišić, and K. L. Chan, “Talk and let talk: performance of Bluetooth piconets
with synchronous traffic,” Ad hoc networks, 3(4):451–477, c© 2003 Elsevier B. V.)

5 10 15 − − Infinity
5

10

15100

200

300

400

500

600

700

800

Mean Burst Size

ACL End−to−End Delay with 1 SCO (3−Slot) Channel, λ*B=0.015

K

FIGURE 7.5
End-to-end delay for ACL traffic in the presence of pSCO connections with DH3
packets, as the function of M and B. (From J. Mišić, V. B. Mišić, and K. L. Chan,
“Talk and let talk: performance of Bluetooth piconets with synchronous traffic,” Ad
hoc networks, 3(4):451–477, c© 2003 Elsevier B. V.)

© 2006 by Taylor & Francis Group, LLC.

102030405060

Tsco

2
4

6
8

10
B

10000

20000

30000

40000

50000

R

(a) Maximum achievable data rates (analytical solutions).

102030405060

2
4

6
8

10

1.5

2

2.5

3

3.5

4

4.5

x 10
4

B

Max Avg Data Rate(bps) per slave − 2−Limited Scheduling, We<400 slots

Tsco

(b) Maximum achievable data rates (simulation results).

FIGURE 7.6
Maximum achievable data rate (in bps) under E-limited service with M = 2, as a
function of polling interval and mean burst size. (From J. Mišić, V. B. Mišić, and
K. L. Chan, “Talk and let talk: performance of Bluetooth piconets with synchronous
traffic,” Ad hoc networks, 3(4):451–477, c© 2003 Elsevier B. V.)

The net result of such behavior is that the dependency of mean end-to-end delay on
the value of M will exhibit a minimum for a given mean burst size B; the existence
of such minima is confirmed through simulation, as shown in Fig. 7.5. The shape
of this dependency is very similar to that of the end-to-end delay obtained under
pure ACL traffic, Fig. 3.10(b). It seems safe to conclude that the E-limited service
scheduling policy with the value of M close to the mean burst size B offers excellent

© 2006 by Taylor & Francis Group, LLC.

overall performance while being fair to all slaves. This observation could serve as
the foundation for the design of a suitable segmentation and reassembly policy for
Bluetooth piconets.

We have also found the maximum data rates that result in end-to-end packet delays
for asynchronous traffic below 400T ; the resulting diagrams obtained analytically
and through simulation are shown in Fig. 7.6, for M = 2. The far right side of
the diagrams corresponds to the original SCO (where TSC O = 6T), while the left
part corresponds to different pSCO packet types. The use of longer packets (which
can carry larger payloads) for synchronous traffic allows the polling interval to be
longer, which in turn leads to higher throughput for the ACL traffic. The pSCO
scheme clearly achieves significantly higher data rates for asynchronous traffic than
the original SCO scheme, whilst being able to satisfy the timing requirements for the
synchronous traffic.

© 2006 by Taylor & Francis Group, LLC.

8

Adaptive polling and predefined delay bounds

Voice and multimedia communications are repeatedly singled out as important ap-
plication areas for Bluetooth, yet few of the polling schemes proposed so far pro-
vide support for any predefined delay bounds. This observation has motivated us to
consider a lightweight adaptive polling scheme derived from the E-limited scheme
considered in previous chapters.

In this scheme, the number of time slots allocated to each slave depends on its
data traffic, and is dynamically determined in each piconet cycle. The number of
wasted (POLL and NULL) packets is thus minimized, especially in piconets where
slaves have highly asymmetric traffic. Optionally, the scheme introduces cycle length
control, which makes it suitable for piconets with synchronous, multimedia traffic.

This chapter is organized as follows. In Section 8.1, we outline the adaptive band-
width allocation scheme and develop the suitable Markov chain model. We introduce
hard cycle control in Section 8.2, where we describe the ACLS scheme and its al-
gorithms in detail and analyze their performance. We compare the performance of
the new scheme to that of other polling schemes in Section 8.3 and discuss possible
modifications to improve its performance in Section 8.4.

8.1 Adaptive bandwidth allocation

The basic concept of E-limited polling, analyzed in detail in Chapter 3, can be ex-
tended to provide dynamic bandwidth allocation according to the behavior in pre-
vious piconet cycle. To achieve this, different values of the polling parameter M
can be allocated to each slave, according to its traffic in the previous piconet cycle.
Slaves that have finished their packet exchange, which is detected through an empty
(POLL-NULL) frame as is customary in Bluetooth [Bluetooth SIG, 2003c]), will get
less bandwidth (and, consequently, a lower value ML of the polling parameter) in
the next cycle. Slaves that still have undelivered packets for exchange at the time
the master ends its visit will get more bandwidth through a higher value MH of the
polling parameter. This scheme is described with the following pseudocode.

© 2006 by Taylor & Francis Group, LLC.

procedure adaptive E-limited polling
do forever

poll slave i with M = current M(i)
if both uplink and downlink queues are empty
then set M(i) = ML

move on to next slave
else if M(i) packets are exchanged
then set M(i) = MH

move on to next slave
end if
if all slaves have been visited
then move on to first slave
end if

end do

The queueing model for this scheme is very similar to the model of the E-limited
polling scheme given in Chapter 3, except that the value of the polling parameter
will not be fixed. Instead, some slaves will be assigned a lower value, say, ML , of
the polling parameter, while the others will have a higher value, say, MH . Their
respective bandwidth allocation will thus be different.

Let us consider just one slave and disregard for a moment the bandwidth fluctua-
tions due to other slaves. We model the system at the imbedded Markov points which
correspond to the end of the piconet cycle. Any given slave i can be in the state of
low or high bandwidth allocation during any given piconet cycle, depending on their
usage of allocated bandwidth during the previous piconet cycle. Let us first recall
Equation (3.33) from Chapter 3, which states the probabilities that transmission be-
tween master and the slave will take k data frames:

cal P f,0 = qi
0,0

Qi (1, 1)

P f,1 = Qi (1, 1)− qi
0,0

Qi (1, 1)
· π

i,(1)
0,0

�i,1(1, 1)

P f,k = (Qi (1, 1)− qi
0,0)

Qi (1, 1)

k−1∏
µ=1

�i,µ(1, 1)− π
i,(µ)
0,0

�i,µ(1, 1)
· π

i,(k)
0,0

�i,k(1, 1)
,

k = 2 . . M − 1

P f,M = 1 −
M−1∑
k=0

P f,k

(8.1)

This result can be extended to any combination of low and high bandwidth alloca-
tions for current piconet cycle and slave i can have the value of the polling parameter
of either ML or MH . Then, the state transition probabilities for slave i become

© 2006 by Taylor & Francis Group, LLC.

ML,i

MH,i

T
L,

H
,i

T
H

,L
,i

TH,H,i

TL,L,i

(a) Markov chain for
one slave.

ML,1 MH,2MH,1 ML,2

MH,1 MH,2

TH,L,1TL,H,2

TL,H,1TH,L,2

ML,1 ML,2

T
L,

H
,1
T

L,
H

,2 TL,L,1TH,H,2

TH,H,1TH,H,2

TH,H,1TL,L,2

TL,L,1TL,L,2

T L,L
,1
T L,H

,2

T L,L
,1
T H,L

,2

T H,H
,1
T L,H

,2

T H,H
,1
T H,L

,2

T
H,L,1 T

H,H,2

T
L,H,1 T

H,H,2

T
H,L,1 T

L,L,2

T
L,L,1 T

H,L,2 T
H

,L
,1
T

H
,L

,2

(b) Markov chain for two slaves.

FIGURE 8.1
Markov chains that describe adaptive bandwidth allocation.

TL ,L ,i = low state| low state =
ML−1∑
k=0

P f,k

TL ,H,i = high state| low state = 1 − TL ,L ,i

TH,L ,i = low state| high state =
MH −1∑

k=0

P f,k

TH,H,i = high state| high state = 1 − TH,L ,i

(8.2)

For both states, we can determine the joint queue length distributions for the uplink
and downlink queues corresponding to the slave i , Qi (z, w) and �i,k(z, w), where
k = 1 . . ML ,i for the low state and k = 1 . . MH,i for the high state.

In the presence of k slaves in the piconet, the number of states of the Markov chain
is 2k . One state of the chain is described by a k-tuple of states corresponding to each
slave. Components of the transition probabilities between the states are given by
(8.2). For every state of the chain, the slot/frame allocations have to be determined.
The Markov chains for the piconets with one and two slaves are shown in Fig. 8.1.

When the actual bandwidth allocations are found for each slave in each state of the
Markov chain, the joint uplink-downlink probability distributions of queue length for

© 2006 by Taylor & Francis Group, LLC.

each slave, in each state, have to be found. Then, the transition probabilities for the
Markov chain have to be calculated. Finally, we can set the balance equations for
the Markov chain and find all the state probabilities P(ML ,1/MH,1 . . .ML ,i/MH,i

. . . ML ,i/MH,i). The state probabilities are important since the final queue length
probability distribution for the slave i is determined as

QF
i (z, w) =

∑
over all states

P(ML ,1/MH,1 . . .ML ,i/MH,i . . .ML ,i/MH,i)Qi (z, w)

�F
i,µ(z, w) =

∑
over all states

P(ML ,1/MH,1 . . .ML ,i/MH,i . . .ML ,i/MH,i)�i,µ(z, w),

µ = 1 . .max(MH,i)

(8.3)
Note that Qi (z, w) and �i,µ(z, w) should be calculated separately for each state of
the Markov chain, since they correspond to different bandwidth allocations.

Access delay and downlink delay can be calculated in the form given in Chapter 3
with the use of QF

i (z, w) calculated above instead of Qi (z, w).

0.2
0.4

0.6
0.8

offered load
3

4
5

6
7

8
9

M_H

0.84

0.88

0.92

0.96

1

(a) Performance with fixed ML = 3 and varying
MH .

0.2
0.4

0.6
0.8

offered load

0
0.1

0.2
0.3

0.4
0.5

arrival span

0.88

0.92

0.96

1

(b) Performance under asymmetric traffic.

FIGURE 8.2
Delay improvement due to adaptability with respect to E-limited polling with M = 3.

The improvements obtained through adaptive E-limited polling may be seen in
Fig. 8.2. The diagram on the left shows the ratio of end-to-end packet delay obtained
under adaptive E-limited polling with fixed ML = 3 and variable MH , to those
obtained under the original E-limited polling with M = 3 (or ML = MH = 3).
As the upper limit increases, the delays decrease; this decrease is more pronounced
for higher offered loads, where the adaptiveness of the proposed scheme leads to
performance improvements over 10%. The diagram on the right shows the delay
ratio under asymmetric loads, where ML = 3 and MH = 6. The adaptive scheme
performs better than the simple E-limited scheme at higher traffic load, and also when
the asymmetry between the traffic of individual slaves becomes more pronounced.

© 2006 by Taylor & Francis Group, LLC.

8.2 Adaptive polling with cycle control: the ACLS scheme

The reader may recall that the piconet cycle time has been shown to mostly depend
on the total piconet load, i.e., the load of all slaves together, rather than the traffic
load of individual slaves. Still, the variance of the piconet cycle time is high and any
constraints on the cycle time are difficult to impose. However, the adaptive E-polling
scheme described in the previous section can easily be extended to include the limit
on cycle control, which is important for multimedia traffic. The new scheme will be
referred to as Adaptive Cycle-Limited polling Scheme, or ACLS [Mišić, Mišić and
Ko, 2004]; its pseudocode is given below.

procedure new cycle()
int add on, avg slots, reservoir, weighting;
// initialize auxiliary variables
avg slots = C/num slaves;
reservoir = C;
weighting = 0;
// initialize slots array
for (i=0; i < num slaves; i++)
{ if (queues[i] < 2)

slots[i] = MIN SLOTS;
else slots[i] = avg slots;
// update auxiliary variables
reservoir -= slots[i];
weighting += queues[i];

}
if (weighting > 0) // calculate weighted increment
{ add on = reservoir/(2.0*weighting);
for (i=0; i < num slaves; i++)
// refill according to current traffic
{ slots[i] += add on*(queues[i]);
reservoir -= add on*(queues[i]);

}
}
return // end of procedure

The scheme assumes that the duration of the piconet cycle C (in time slots T)
is defined in advance. The time within the cycle is allocated as follows. At the
beginning of each cycle, slaves are categorized according to the state of their uplink
and downlink queues at the end of service in the previous cycle. Slaves where both
uplink and downlink queues were emptied (i.e., all the traffic has been serviced) are
assigned to category 0, slaves that have emptied one of the queues but not the other

© 2006 by Taylor & Francis Group, LLC.

are assigned to category 1, while slaves left with undelivered packets in both uplink
and downlink queues are assigned to category 2.

Each slave is allocated at least MIN SLOTS in each piconet cycle; the remaining
time is allocated according to the category of that particular slave. Slaves that have
some traffic left from the previous cycle will get more time. Note that all slaves will
get some time in each cycle, unlike some other schemes (cf. Chapter 2). The actual
allocation is performed within the procedure new cycle() which is executed at
the end of the current piconet cycle.

The minimum guaranteed time allocation MIN SLOTS which also defines the
lower bound for the piconet cycle time: C > (m − 1)MIN SLOTS. A safe value
to choose is 10T , which corresponds to the maximum duration of a single frame.
(Alternatively, time may be allocated in units of packets or frames.)

Note, however, that the sum of guaranteed allocations does not add up to C time
slots. The remaining part is kept in the reservoir, which is accessible to the
slaves on the basis of their current traffic.

Then, the master polls its slaves using the poll slave() procedure, with slave
number and current value of the reservoir as parameters. Polling starts from the
reference slave, the role of which will be explained below.

procedure poll slave (int i, int reservoir)
int remaining;
int used = 0;
// initialize, start polling
remaining = reservoir + slots[i];
while (remaining >= (used + MIN SLOTS + 10))
{ used += sent(i).len; // poll slave
used += rcvd(i).len; // receive response
if ((sent(i).type == POLL) &&

(rcvd(i).type == NULL)) // no more data left
{ queues[i] = 0;
break; // finish polling the current slave

}
else if ((sent(i).type == POLL) ||

(rcvd(i).type == NULL))
queues[i] = 1; // data left for one direction only

else queues[i] = 2; // data left for both directions
}
// update global variables
reservoir -= used - slots[i];
return // end of procedure

The communication between master and the slave during the single exchange is
performed as follows. First, the current value of the reservoir is added to the
initial time allocation of the slave giving the current time allocation. The master polls
the slave in the usual way. After each packet exchange, the count of remaining

© 2006 by Taylor & Francis Group, LLC.

slots in decremented accordingly, and the corresponding queues information is
updated. The exchange ends when the number of remaining slots is less than
ten – the maximum length of a frame – or when both downlink and uplink queues
are empty, i.e., when the master sends a POLL packet and the slave responds with a
NULL packet. In the latter case, unused slots are returned to reservoir, so as to
allow the remaining slaves to use them for their traffic. The master then moves on to
the next slave.

The role of the reference slave

The reference slave, as noted above, is the slave from which the piconet polling cycle
starts. Any of the slaves could be chosen to be the reference slave, and the master
could simply poll the slaves in fixed order, as shown in Fig. 8.3(a). However, this
would destroy the fairness of bandwidth allocation to individual slaves. Namely, the
first slave to be polled in the cycle may utilize the entire reservoir, if necessary;
the second can use only what’s left after the first slave has finished, and so on. In
fact, every slave but the first one might well end up getting only the guaranteed
MIN SLOTS. Moreover, the worst case cycle time and, consequently, the maximum
polling interval will suffer as well.

1 2 3 4 5 1 2(a)

1 2 3 4 5 5 2(b)

1 2 3 4 5 1 2(c)

regular piconet cycle (all m -1 slaves),
slave 1 is the reference slave

shortened cycle
(m-2 slaves)

1

new cycle, new reference
slave (5)

new shortened cycle,
new reference slave (5)

regular piconet cycle (all m -1 slaves),
slave 1 is the reference slave

new cycle, same
reference slave (1)

FIGURE 8.3
Pertaining to the choice of reference slave. (From J. Mišić, V. B. Mišić, and
E. W. S. Ko, “Fixed cycles and adaptive bandwidth allocation can coexist in Blue-
tooth,” Canad. J. Elect. Comput. Eng. 29(1/2):135–147), c© 2004 CJECE.)

© 2006 by Taylor & Francis Group, LLC.

Fairness can be restored in different ways. The first solution is a deterministic
one: when the cycle ends, the role of the reference slave in the new cycle could be
assigned to the last slave in the current one, as shown in Fig. 8.3(b). The last slave
will thus get two chances to exchange packets with the master, so that any leftover
traffic will be taken care of immediately. In the worst case, when there is no data to
or from this slave, two frames will be wasted instead of one.

This approach may further be simplified by shortening the polling cycle to (m −2)
slaves, as shown in Fig. 8.3 (c). In this case, the new cycle() procedure allocates
bandwidth to the current set of m −2 slaves, with the C parameter suitably modified;
the queues value for the missing slave could be taken from the cycle before the
last. Each slave will thus get equal attention in a super-cycle of m − 1 shorter cycles,
or m − 2 normal piconet cycles.

In the probabilistic approach, the fairness is achieved by choosing the next slave
in the cycle with the equal probability. For example, first slave in the cycle will be
chosen with probability 1/(m − 2), second slave with probability 1/(m − 2) and so
on. However, this approach is computationally more complex than the deterministic
one.

Another probabilistic approach would be to reorder the slave in each piconet cycle
according to the LDQF principle (cf. Chapter 2), which may be accomplished by
modifying the procedure update(). This modification is particularly well suited
to the situation where the piconet master acts as the access point to another network
(e.g., Ethernet, as per BNEP profile [Bluetooth SIG, 2001a]). In such cases, the
downlink traffic may be expected to exceed the uplink one, possibly by an order
of magnitude or more, and overall performance will be mainly determined by the
performance of downlink traffic. Choosing the next slave to be polled on the basis of
the length of the corresponding downlink queue will ensure that the downlink queues
are serviced in the most efficient manner, and thus lead to improved performance.

Adaptive bandwidth allocation

Let us now outline the manner in which the actual bandwidth allocation of the ACLS
scheme could be analyzed, again by modeling the system at imbedded Markov points
that correspond to the end of the piconet cycle. The corresponding Markov chain
(two examples of which are shown in Fig. 8.1) can be used for bandwidth allocation
modeling in the ACLS technique as well, subject to modifications discussed below.

According to the procedure new cycle(), any given slave i can be in the state
of low or high bandwidth allocation during any given piconet cycle, depending on
their usage of allocated bandwidth during the previous piconet cycle:

• The slaves that did not use all of the allocated slots in the previous cycle will
be given low bandwidth of ML ,i frames (corresponding to MIN SLOTS).

• The slaves that have used all of the allocated slots will be given high bandwidth
of MH,i frames (corresponding to C/num slaves slots).

© 2006 by Taylor & Francis Group, LLC.

For both states, we can determine the joint queue length distributions for the uplink
and downlink queues corresponding to the slave i , Qi (z, w) and �i,k(z, w), k =
1 . . ML ,i for low state and k = 1 . . MH,i for the high state. (The index i has been
previously omitted for simplicity.) The transition probabilities between the states are
determined according to the corresponding value of queues[i]:

TL ,L ,i = Pmbox(queues[i] = 0 or 1)| low state
= 1 − P f,ML ,i

TL ,H,i = P f,ML ,i

TH,L ,i = P(queues[i] = 0 or1)| high state
= 1 − P f,MH,i

TH,H,i = P(queues[i] = 2)| high state
= P f,MH,i

(8.4)

In the presence of k slaves in the piconet, the number of states of the Markov chain
is 2k . One state of the chain is described by the k-tuple of states corresponding to
each slave. Components of the transition probabilities between the states are given by
(8.4). For every state of the chain, the slot/frame allocations have to be determined.

We note that actual bandwidth allocations for low and high bandwidth states for
one slave are not equal across the states of the Markov chain. For example, for states
(MH,1,ML ,2) and (MH,1,MH,2), the values for MH,1 may, in general, be different.
To illustrate that point, assume that we have two slaves, and the cycle is defined
as 36 slots (which corresponds to 6 frames, or 12 packets with the mean length
L = 3). Also note that the rotation of the reference slave equally distributes the
remaining bandwidth (reservoir) among the slaves. Now, ML ,2 is 12 slots (for both
queues[2] = 0 or 1), and MH,1 = 24. However, for the state MH,1,MH,2, both
slaves will get 18 slots.

When the actual bandwidth allocations are found for each slave in each state of
the Markov chain, the PGFs Qi (z, w) and �i,µ(z, w) for each slave, in each state,
have to be found. Then, the transition probabilities for the Markov chain have to be
calculated. Finally, we can set the balance equations for the Markov chain and find
all the state probabilities P(ML ,1/MH,1 . . .ML ,i/MH,i . . .ML ,i/MH,i). The state
probabilities are important since the final queue length probability distribution for
the slave i is determined as

QF
i (z, w) =

∑
over all states

P(ML ,1/MH,1 . . .ML ,m−1/MH,m−1)Qi (z, w)

�F
i,µ(z, w) =

∑
over all states

P(ML ,1/MH,1 . . .ML ,m−1/MH,m−1)�i,µ(z, w),

µ = 1 . .max(MH,i)

(8.5)

where summation is performed over all possible states. Note that Qi (z, w) and
�i,m(z, w) should be calculated separately for each state of the Markov chain, since
they correspond to different bandwidth allocations.

© 2006 by Taylor & Francis Group, LLC.

Queue stability and fairness

The piconet operating under the ACLS algorithm is stable if all of its queues are
stable, i.e., if the average number of packet slots C that have arrived during the
piconet cycle (i.e., the total number of slots that belong to all the packets arrived)
will be serviced during that cycle:

2BC L
m∑

i=2

λiu ≤ C (8.6)

In case of slaves with identical load, the stability condition becomes

2(m − 1)λB L ≤ 1 (8.7)

As before, we consider the piconet polling scheme to be fair if the average number
of slots devoted to service a slave per piconet cycle is the same for each slave, given
that they have identical load. This can be proved by considering Equations (8.4) and
Figs. 8.1(a) and 8.1(b). When the arrival rates at all slaves are equal,

TL ,L ,i = TL ,L , j , i, j ∈ 2 . . m − 2, i �= j
TL ,H,i = TL ,H, j , i, j ∈ 2 . . m − 2, i �= j
TH,L ,i = TH,L , j , i, j ∈ 2 . . m − 2, i �= j
TH,H,i = TH,H, j , i, j ∈ 2 . . m − 2, i �= j

(8.8)

In that case, the probability of all slaves being in the low bandwidth allocation
state pL or in the high bandwidth allocation state 1 − pl , respectively, will be the
same. Actual values of these two probabilities will depend on the offered load. This
further means that each slave will have the same average allocated bandwidth, i.e.,
the same average number of allocated slots per piconet cycle.

For slaves with symmetric load, the probabilities that k slaves out of m − 1 are in
low bandwidth allocation state following the binomial distributions are

P(ML ,i ,MH,i)k =
(

m − 1

k

)
pk

L(1 − pL)
(m−1−k) (8.9)

This simplification greatly reduces complexity of calculating the PGFs from (8.5).
Access and downlink delay can be determined using the results for E-limited

scheme in Chapter 3 with the use of QF
i (z, w).

8.3 ACLS performance

In order to evaluate the performance of the ACLS scheme, we have considered three
different scenarios. Scenario 1 considers the piconet with seven ACL slaves with

© 2006 by Taylor & Francis Group, LLC.

symmetric traffic, while scenario 2 considers that same piconet but with asymmet-
ric slave traffic (i.e., variable packet arrival rates). (Note that those two scenarios
are fully supported through the analytical model.) Finally, scenario 3 considers the
piconet with six ACL slaves with symmetric traffic and a slave with synchronous
(CBR) traffic.

In all three scenarios, we have measured the end-to-end delay (from the moment
the packet enters an uplink queue at the source slave, to the moment it is received
by the destination slave) and cycle time (the time to visit all the slaves in the piconet
starting with the current reference slave). Initially, we have applied rotation of the
reference slave, as described in Section 8.2.

For comparison purposes, simulations were performed for the same scenarios, but
with the piconet master polling the slaves using simple E-limited service with the
polling parameter M fixed to the mean burst size B.

Scenario 1: symmetric traffic

Measured values of mean end-to-end delay under ACLS as functions of the mean
burst size B, are shown in Fig. 8.4. The burst arrival rate was made variable so as to
keep the aggregate packet arrival rate constant at Bλ = 0.015, which gives the total
offered load of ρ = 0.63.

Cycle time C Mean burst size B

 50 100 150 200 250 300 350 400 450 500
 2

 4
 6

 8
 10

 12
 14

 0

100

200

300

400

500

600

FIGURE 8.4
Mean end-to-end packet delay as a function of cycle time C and mean burst size,
scenario 1. (From J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adap-
tive bandwidth allocation can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng.
29(1/2):135–147), c© 2004 CJECE.)

As could be expected, ACLS offers similar delay characteristics to E-limited ser-
vice: delays increase with increased traffic burstiness, and there is a broad minimum

© 2006 by Taylor & Francis Group, LLC.

Cycle time (slots)

O
cc

ur
re

nc
e

ra
tio

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 20 40 60 80 100 120 140 160

ACLS
E−limited

(a) Offered load ρ = 0.63.

O
cc

ur
re

nc
e

ra
tio

Cycle time (slots)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 20 40 60 80 100 120 140 160

ACLS
E−limited

(b) Offered load ρ = 0.84.

FIGURE 8.5
Cycle time distribution under E-limited service and ACLS, scenario 1. (From
J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adaptive bandwidth al-
location can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng. 29(1/2):135–147),
c© 2004 CJECE.)

for given mean burst size, as reported in Chapter 3. However, under ACLS the num-
ber of frames that may be exchanged per slave is variable – unlike the E-limited
service where it cannot exceed M .

The distribution of cycle times at different offered loads is shown in Fig. 8.5, with
the results for E-limited polling shown for reference. In both diagrams, the mean
burst size was fixed at B = 3, and M = B for E-limited service, while the ACLS
cycle time has been set to C = 74T .

At lower load, ρ = 0.63, there is a noticeable peak at 14 slots for both schemes,
which is caused by the significant number of cycles without any data packets. The
mean delays for ACLS appear clustered around 60T , whilst those for E-limited do
not exhibit any discernible peak.

Much more interesting, though, are the results obtained at higher load, ρ = 0.84.

© 2006 by Taylor & Francis Group, LLC.

Under E-limited service, the cycle times are spread fairly wide, with mean value of
C = 79.6T and variance V ar(C) = 26.9T . There is a fairly mild peak at about
90T , which can be explained by the fact that the E-limited scheme can serve any
number of frames between 1 and M in a cycle regardless of the queues’ status in
the previous cycle. Under ACLS, the cycle time distribution is noticeably clustered
around the mean value of C = 62.4T with variance of V ar(C) = 11.3T . (Note that
the preset cycle time was 74T .) Also, the maximum cycle time (which obviously
does not occur very frequently) is only 108T under ACLS, while piconet cycles
under E-limited polling can last for as long as 140T . Note that the purpose of the
procedure new cycle in ACLS is to distribute the slots among the slaves such that
their sum is close to C as much as possible.

Therefore, it seems safe to conclude that ACLS is much better equipped to deal
with QoS requirements than the E-limited service, even though their delay charac-
teristics appear comparable.

Scenario 2: asymmetric traffic

The settings in this scenario are similar to those of the previous one, except that
different slaves will have different packet burst arrival rates. For simplicity, we have
assumed that the burst arrival rates are uniformly distributed between (1 − δ)λmean

and (1 + δ)λmean . Fig. 8.6 shows mean end-to-end packet delay as a function of
the average packet burst arrival diagrams λmean and the variability range δ. For all
slaves, mean burst size was kept constant at B = 6, while the ACLS scheme used
C = 137.

As can be seen, the ACLS scheme is able to handle asymmetry extremely well,
especially at higher loads and higher variability δ. This may be attributed to the
fact that ACLS allocates slots in a flexible manner, according to traffic in both the
previous and the current cycle.

Scenario 3: symmetric ACL traffic with some CBR traffic

In this scenario, the piconet contains six ACL slaves with symmetric traffic load
and one ACL slave with synchronous (CBR) traffic. CBR traffic is a synchronous
byte stream generated at a rate of 64kbps, with the piconet master as the destination.
CBR traffic is queued for delivery in a designated accumulator, which is emptied
using DH5 and DH3 packets; if a DH3 or DH5 packet cannot carry its full payload,
the remaining bytes are left in the accumulator until the next cycle. Note that the
number of packets will be variable, because the cycle length may vary. The CBR
slave is always polled at the beginning of the cycle. Mean burst size for asynchronous
traffic was B = 3, and burst arrival rate was λ = 0.0067; the total offered load of the
piconet, taking CBR traffic into account as well, was ρ = 0.72, and the ACLS cycle
time was set to C = 74.

In this setup, we have measured mean end-to-end delay for ACL traffic, shown
in Fig. 8.7(a), and the delay distribution of CBR traffic under the same conditions,
shown in Fig. 8.7(b). (The delay for CBR traffic is defined as the waiting time for

© 2006 by Taylor & Francis Group, LLC.

Arrival rate variation δ Burst arrival rate λB 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

100

200

300

400

500

600

700

800

FIGURE 8.6
Mean end-to-end packet delay in a piconet with asymmetric traffic, scenario 2. (From
J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adaptive bandwidth alloca-
tion can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng. 29(1/2):135–147), c©
2004 CJECE.)

the first byte in the accumulator to be packed and transmitted.) As before, results
obtained using E-limited polling with M = 3 are included as a reference. In terms of
delay, the ACLS scheme outperforms the E-limited one, but the difference between
the two schemes is small. In terms of delay distribution, however, the diagrams
show the major difference between E-limited service and ACLS. Under ACLS, there
is a local maximum at 72T , very close to the preset cycle time; the mean delay is
65.3T , with a variance of 22.8T . Under E-limited service, the mean delay is lower at
59.4T , but the delay variance is much higher at 38.2T . Therefore, we may conclude
that ACLS is much better than E-limited service at maintaining the preset cycle time,
while achieving much smaller delay variance for CBR traffic.

8.4 Improving the performance of ACLS

A promising enhancement for ACLS is to apply slave reordering as per LDQF policy
(cf. Chapter 2). In this Section, we have repeated our simulations for all scenarios
described in the previous Section.

Mean end-to-end delays under Scenario 1 (symmetric ACL traffic only) are shown
in Fig. 8.8; all other settings were kept the same as in the previous experiment, the
results of which were shown in Fig. 8.4. In this case, the use of LDQF results in an
improvement of up to ten percent.

The LDQF scheme improves the delay performance in the asymmetric traffic case

© 2006 by Taylor & Francis Group, LLC.

(scenario 2) as well, as can be seen from the diagram in Fig. 8.9. (This diagram
should be compared to the one in Fig. 8.6.)

Finally, we have measured the mean end-to-end delay for ACL traffic in the sce-
nario 3 (six ACL slaves with symmetric traffic and one CBR slave); the correspond-
ing diagram is shown in Fig. 8.10. Furthermore, mean ACL delays are noticeably
lower than under the original ACLS, as is the case with the delay variation. Both
improvements may be attributed to the simple measure of reordering the slaves ac-
cording to the LDQF policy.

Cycle time C
Mean burst size B

 50 100 150 200 250 300 350 400 450 500
 2

 4
 6

 8
 10

 12
 14

 0

100

200

300

400

500

600

700

(a) Mean end-to-end packet delay for asynchronous traffic.

O
cc

ur
re

nc
e

ra
tio

Delay time (slots)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140

ACLS
E−limited

(b) Delay time distribution for CBR traffic.

FIGURE 8.7
Performance of the piconet with both asynchronous and synchronous traffic, sce-
nario 3. (From J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adap-
tive bandwidth allocation can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng.
29(1/2):135–147), c© 2004 CJECE.)

© 2006 by Taylor & Francis Group, LLC.

Mean burst size BCycle time C

 50 100 150 200 250 300 350 400 450 500
 2

 4
 6

 8
 10

 12
 14

 0

100

200

300

400

500

600

FIGURE 8.8
Mean end-to-end packet delay of ACLS with LDQF, scenario 1. (From J. Mišić,
V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adaptive bandwidth allocation can
coexist in Bluetooth,” Canad. J. Elect. Comput. Eng. 29(1/2):135–147), c© 2004
CJECE.)

Arrival rate vaiation δ Burst arrival rate λB 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

100

200

300

400

500

600

700

800

FIGURE 8.9
Mean end-to-end delay under ACLS with LDQF for asymmetric traffic, scenario 2.
(From J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adaptive bandwidth
allocation can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng. 29(1/2):135–
147), c© 2004 CJECE.)

© 2006 by Taylor & Francis Group, LLC.

Delay time (slots)

O
cc

ur
en

ce
 r

at
io

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90 100 110

Enhanced ACLS
ACLS

FIGURE 8.10
Delay time distribution for CBR traffic under ACLS with and without LDQF, sce-
nario 3. (From J. Mišić, V. B. Mišić, and E. W. S. Ko, “Fixed cycles and adap-
tive bandwidth allocation can coexist in Bluetooth,” Canad. J. Elect. Comput. Eng.
29(1/2):135–147), c© 2004 CJECE.)

© 2006 by Taylor & Francis Group, LLC.

9

Bluetooth scatternet formation in ad hoc
wireless networks

Ivan Stojmenovic and Nejib Zaguia
University of Ottawa, Ontario, Canada

Bluetooth standard allows the creation of piconets, with one node serving as its mas-
ter and up to seven nodes serving as slaves. Additional slaves must be parked, with
significant overhead involved for parking and unparking them. Although the stan-
dard allows for the creation of a collection of connected piconets, called scatternet,
it does not give any particular protocol for it. In a unit disk graph, two nodes can
communicate with each other if and only if the distance between them is at most R,
where R is transmission radius, which is equal for all nodes. Given set of Bluetooth
nodes which are positioned so that their unit disk graph is connected, the Bluetooth
scatternet formation (BSF) problem is to select piconets, and master and slave roles
in each piconet, so that the obtained scatternet is connected, has some desirable prop-
erties and good performance with respect to some metrics. This chapter surveys the
solutions proposed so far in literature for the BSF problem.

9.1 Introduction

Related scheduling problem

When two Bluetooth devices establish communication, one of them assumes the role
of a master node while the other is a slave node. Two nodes in a scatternet can com-
municate by finding a route between them, where each hop is a master-slave pair
of nodes from the same piconet. A node may serve as the master in, at most, one
piconet, and as a slave in an unlimited number of other piconets. However, while
it serves as slave in other piconet, its own piconet (if it has master role in any of
them) will be idle. Obviously there are problems of scheduling transmissions and
the time division for each master and slave node so that the overall operation is
synchronized and delay minimized. The scatternet characteristics will have a direct
impact on performance of scheduling protocols. Miklós, Rácz, Valkó and Johansson
[2000] concluded that piconet switching poses a significant overhead and has a ma-
jor impact on system performance. It is therefore important for the overall scatternet

© 2006 by Taylor & Francis Group, LLC.

performance not only that the scatternet topology is carefully constructed, but also
that the piconet switching is scheduled as efficiently as possible. This chapter is con-
cerned only with the Bluetooth scatternet formation (BSF) problem; the scheduling
problem is non-trivial and is discussed in subsequent chapters of the this book.

Preliminary taxonomy of BSF protocols

We will now describe a classification taxonomy for the most known Bluetooth scat-
ternet formation (BSF) algorithms. The main criteria used to evaluate these protocols
will be on how they achieved the main mission, of providing a connected and a de-
gree limited scatternet topology. Starting from a connected unit disk communication
network and assuming that each node is aware of all its neighbors within a communi-
cation range, the algorithms will be classified into those that guarantee connectivity
and those that do not. Obviously, there is tiny probability that two nodes will never
find each other; therefore, connectivity cannot be guaranteed in that sense even for
a network consisting of two nearby nodes. Thus the assumption is natural, and con-
nectivity is judged subject to established neighbors’ knowledge.

The next classification is based on observing the degree limitation. The protocols
will be divided into those that guarantee degree limitation for each created piconet
(that is, always no more than seven slaves for each master) and those that do not
guarantee degree limitation.

Existing protocols may also be divided into those that work properly and are de-
signed for the single-hop scenarios only, where each device is within communication
range of any other device in the network. In this case, and using the graph terminol-
ogy, the unit disk communication graph is a complete graph. More general protocols
can be applied for single-hop scenarios as well, but they are designed to work prop-
erly for arbitrary type of unit disk graphs, that is, for multi-hop scenarios, where
some nodes are not within transmission range of each other, but are connected via
other nodes in multi-hop fashion. This chapter will primarily classify the existing
protocols into these two categories, and describe them in separate sections.

The protocols can also be divided into those that require that each node learns
about all its neighbors for proper functioning, and those that decide about scatternet
links after learning about some of its neighbors. More classification criteria will be
listed in the sequel.

Device discovery

A closely related problem is neighbor discovery (or device discovery), that is, how
two nodes find each other and establish communication. Almost all proposed so-
lutions assume that Bluetooth technology is used for both neighbor discovery and
data communication in the created scatternets. Most BSF protocols use the follow-
ing device discovery scheme, which is described in [Salonidis, Bhagwat, Tassiulas
and LaMaire, 2001]. Device discovery is performed by each node randomly entering
into an inquiry or inquiry scan mode (with equal probabilities) and randomly select-
ing the time to stay in that mode; this is repeated until a time-out expires (the time-out

© 2006 by Taylor & Francis Group, LLC.

should be carefully selected to enable one hop information with high probability, but
within reasonable time). Inquiry nodes select a repeated pattern of 32 frequencies
(out of a total of 79 available frequencies) and send signal on selected frequency in
a given spot. Inquiry scan nodes also select a frequency at random in each spot and
listen to the transmission at the selected frequency. The discovery (and establish-
ment of master-slave relationship) occurs when both sender and receiver nodes are
at the same frequency. The time-out for overall device discovery protocol (for find-
ing sufficient number of neighbors) is experimentally determined to have the best
value of about 8 seconds. A different ‘recipe’ is proposed in [Ferraguto, Mambrini,
Panconesi and Petrioli, to appear] where each device executes the device discovery
protocol until it is connected with c neighbors (c is between 5 and 7). If the visibility
graph (normally it is the unit disk graph) is connected, then the resulting graph is
experimentally shown to be connected with high probability.

Basagni, Bruno and Petrioli [2003b] have studied the reasons for the Bluetooth
based device discovery being so inefficient. The overall connectivity is established
fairly quickly, but the full awareness of all neighbors is slow. By means of thorough
ns2-based performance evaluations, the authors identified at least two major features
of the Bluetooth specifications that are responsible for this lack of performance. First,
the overly long backoff intervals adds a considerable time to every handshake and,
second, the impossibility of the node in inquiry mode to identify itself in the ID
packet results in handshakes between nodes that have already discovered each other.

Joung and Huang [2004] proposed to modify device discovery protocol by using
node’s ID to decide a pseudo-random sequence, so that scan or inquiry state is de-
cided deterministically. When two nodes discover each other, the smaller ID node
replaces its ID with the ID of the other node. They discussed the time-out duration to
guarantee the connectivity, which depends on diameter, since the node with largest
ID will propagate its ID to all the other nodes in the network.

Bluetooth and Wi-Fi are two widely adopted technologies for wireless communi-
cation between two nodes. They are competing and complementary at the same time,
since Bluetooth is more suitable for short communications and provides direct com-
munication between any two nodes, while Wi-Fi requires access points and generally
is applied on somewhat longer distances. Many equipments use both Bluetooth and
Wi-Fi as two independent applications, which may cause interference when both
are running. Some latest products allow them to be synchronized based on time
slicing technique. Further steps would be to provide software that will further syn-
chronize the two technologies and allow, for instance, that two nodes discover each
other using Wi-Fi technology and then communicate by Bluetooth chips. This de-
vice discovery protocol has been proposed in [Li, Stojmenovic and Wang, 2004].
One of route discovery schemes for on-demand BSF construction in [Liu, Lee and
Saadawi, 2003] also uses single channel communication for broadcasting the destina-
tion search packet. The use of Wi-Fi or another single channel medium access tech-
nology for device discovery is a predicable approach since Bluetooth based neighbor
discovery is proven to be slow, especially when each device is required to discover all
its neighbors before a good scatternet can be created. Therefore neighbor discovery
phase of scatternet formation can be classified as being Bluetooth- or Wi-Fi-based.

© 2006 by Taylor & Francis Group, LLC.

Communication and time requirements

A formation algorithm should not depend on a central component for otherwise it
will contradict the character of ad hoc networks. When Bluetooth is applied to a hy-
brid ad hoc network, that is, a network attached to a fixed infrastructure (e.g. Internet)
the point of attachment may run a centralized algorithm and distribute master-slave
decisions to each node. A single node in ad hoc network may also collect all the
information and run a centralized algorithm. A better approach is to design a for-
mation algorithm in a decentralized and distributed manner. Distributed algorithms
can be further classified into globalized and localized protocols. In a localized pro-
tocol, each node makes formation decisions solely based on the information from its
neighbors (possibly also 2-hop neighbors). Localized protocols are further divided
into local and quasi-local based on maintenance cost. The algorithms should support
mobile devices, and devices entering and leaving the network. When nodes move,
appear or disappear from the network, the scatternet maintenance (or self healing)
protocol is required. If the changes made by a single node have impact only on
piconets associated with 1-hop and 2-hop neighbors then the protocol is local. Oth-
erwise (e.g., when local change sometimes trigger global updates, that is, cause a
‘chain’ effect), the protocol is quasi-local. An implicit solution is to apply localized
schemes that provide local maintenance, as in [Li et al., 2004].

Further division can be made according to message complexity, time complexity
and memory requirements. In general, the protocols along these lines can be classi-
fied as being constant and non-constant size with respect to the number of nodes in
the network. The message complexity is particularly important, since it is directly
related to the energy needs of the algorithm. The QoS requirements of the applica-
tion may also be considered. The topology could be set in such a way that the QoS
requirements of the user applications in the network are met. The scatternet forma-
tion problem appears very difficult even without QoS considerations. Existing work
on creating scatternets that provide QoS guarantees appears either centralized or has
considerable communication overhead. Therefore, QoS provision largely remains
for future studies.

Scatternet design criteria

Fig. 9.1 illustrates a scatternet with four piconets. Master nodes are labeled M1−M4
and the slave nodes have indices that correspond to the piconet numbers (for example
S14 is a slave of piconets 1 and 4). Common slave S23 serves as a bridge to connect
piconets 2 and 3. In order to connect piconets 1 and 2, a (new) piconet 4 is created.
Node M4−S2 is its master, and plays also the role of a bridge node for two piconets,
serving as slave node in piconet 2. Bridges participate in piconets on time division
basis. It is therefore anticipated that scatternet formation protocols should have (at
least) the following goals in mind:

• Minimization of the number of piconets and, therefore, the number of master
nodes;

© 2006 by Taylor & Francis Group, LLC.

piconet 1 piconet 2

piconet 4

piconet 3

M1 M2
M3

M4-S2

S14

S23

FIGURE 9.1
A scatternet consisting of four piconets.

• Minimization of the number of slave roles for each node (a rough division is
into protocols with constant and non-constant maximum number of slave roles
for each node);

• Minimization of the number of master-slave bridge nodes; a rough division is
into those that do not have master-slave bridges (bipartite graphs) and those
that allow master-slave nodes).

There are various metrics that can be used for evaluating scatternets. For ex-
ample, Melodia and Cuomo [2004a] favoured scatternets with maximum capacity,
scatternets with maximum residual capacity or minimum average load, and metrics
associated with path lengths (average path length, average path capacity). Capacity
related metrics may require a priori knowledge of traffic demands. Persson, Mani-
vannan and Singhal [2004] listed the following criteria for constructing scatternets:
complete scatternet connectivity, maximized aggregate bandwidth, minimized av-
erage routing path length, maximized average node availability, minimized bridge
switching overhead, communication group clustering, self healing, multi-hop node
participation, and on-demand scatternet formation. This survey concentrates on traf-
fic independent measures when evaluating the performance of scatternets. Hodge
and Whitaker [2004a] listed the following such measurements: number of piconets,
average number of slaves per piconet, average number of roles per device, average
number of bridges per piconet, average number of bridges between piconets, number
of master-slave bridges, average shortest-path length, bottleneck and average path la-
tency.

© 2006 by Taylor & Francis Group, LLC.

9.2 BSF in single-hop networks

In a single-hop ad hoc network (or a complete unit disk graph), all wireless devices
are in the radio vicinity of each other, e.g., electronic devices in a laboratory, or
laptops in a conference room. In this section, we only focus on designing scatter-
net formation algorithms for single-hop networks. Note that the initial single-hop
network, after creating scatternet, is converted into a multi-hop scatternet.

Centralized BSF protocols for complete graphs

Traffic and capacity based scatternets

Miorandi, Trainito and Zanella [2003] investigated the relationship between the net-
work capacity and topology for Bluetooth scatternets. They started by considering
the intrinsic capacity limits of a scatternet structure, and show that limiting capacity
may be achieved for very local traffic and under specific conditions on the scatter-
net structure. Then, they provided a description of the performance achievable with
two basic scatternet configurations, namely, star and closedloop topologies, and then
showed the role played by interpiconet interference in the choice of efficient config-
urations. Finally, they presented some efficient topologies, based on Platonic solids
structures. A centralized BSF solution for single-hop networks, where the traffic
between any pair of nodes is known a priori, is described by Miorandi and Zanella
[2002].

Super-master election for central decisions

Bhagwat and Rao [2001] described an efficient technique for enumerating all feasi-
ble Bluetooth scatternet topologies as well as several constrained subsets of topolo-
gies. These results are useful in the design of optimization algorithms for Bluetooth
networks.

Salonidis, Bhagwat, Tassiulas and LaMaire [2001] proposed a BSF topology con-
struction algorithm which first collects neighborhood information using an inquiry
procedure, where senders search for receivers on randomly chosen frequencies, and
the detected receivers reply after random backoff delay. In the process one leader
for each connected component is elected. Leader then collects the information about
the whole network, decides the roles for each node, and distributes back the roles.
Since this is a centralized approach, it is not scalable and not localized. Moreover,
[Salonidis, Bhagwat, Tassiulas and LaMaire, 2001] did not elaborate how to assign
the roles and they also assumed that the network could have up to 36 nodes only.

Huang, Chen, Sivakumar, Kashima and Sezaki [2004], argue that Bluetooth char-
acteristics preclude the formation of very big network, and propose a centralized
scatternet formation scheme that is optimized for conference scenarios. Only one
node, the super-master, will do inquiry continuously, while all the other nodes will
be continuously in the inquiry scan mode. The super-master makes decisions about

© 2006 by Taylor & Francis Group, LLC.

the topology on the basis of a load metric instead of hop count metric, and commu-
nicates those decisions to the other nodes. It needs to know the number of nodes in
the network (and enter it at the beginning of the protocol) to create scatternet.

Tree structure is not a desirable scatternet topology since there is exactly one path
between any two nodes, and failure of node on the path will disconnect the network.
Also, root node is likely to be a bottleneck.

Ring topology

Lin, Tseng and Chang [2003] described a ring topology for scatternet formation
in single-hop networks. A ring is created by the master nodes and the slave-slave
bridges. Each master can have further slaves outside the ring. The protocol uses
park mode, and is centralized. Therefore, it is not scalable and the park mode intro-
duces long message delays. Foo and Chua [2002] presented a similar ring structure
consisting of master-slave bridges only, which simplifies the routing and offers larger
fraction of bandwidth to each device. Ring structure for Bluetooth has the simplic-
ity and the easy creation as advantage, but it suffers from a large diameter (i.e., the
maximum number of hops between any two devices) and a large number of piconets.

Distributed BSF protocols for complete graphs

Tree scatternet structure

Law, Mehta and Siu [2001] described an algorithm that creates connected degree
bounded scatternet in single-hop networks. The final structure is a tree-like scatter-
net, which limits efficiency and robustness.

Sun, Chang and Lai [2002] described a self-routing topology for single-hop Blue-
tooth networks. Nodes are organized and maintained in a search tree structure,
with Bluetooth IDs as keys (these keys are also used for routing). It relies on a
sophisticated scatternet merge procedure with significant communication overhead
for creation and maintenance. The procedure generates maximally filled piconets
[Sun et al., 2002].

Tan, Miu, Guttag and Balakrishnan [2001] proposed a method for multi-hop net-
works and which is restricted to single-hop scenarios and where every node is active
in at most two piconets. This method is similar to the one proposed in [Zàruba,
Basagni and Chlamtac, 2001] (described below) for multi-hop networks.

Mimicking known topologies

A single-hop Bluetooth scatternet formation scheme based on 1-factors is described
by Baatz, Bieschke, Frank, Martini, Scholz and Kühl [2002]. However, piconets are
not degree limited in that scheme.

Barrière, Fraigniaud, Narayanan and Opatrny [2003] described a connected degree
limited and distributed scatternet formation solution based on projective geometry
for single-hop networks. They assume that only slave nodes can act as bridges. They
described procedures for adding and deleting nodes from the networks and claimed

© 2006 by Taylor & Francis Group, LLC.

that it uses O(log4nlog4 log n) messages and O(log2nlog2logn) time in local com-
putation, where n is the number of nodes in the network. The degree of the scatternet
can be fixed to any q + 1, where q is a power of a prime number. However, in their
method, every node needs to hold the information of the projective plane and the
master node who has the ‘token’ needs to know the information of the projective
scatternet (which label should be used for the new coming master and which existing
nodes need to be connected to it). Barrière et al. [2003] did not discuss in detail
how to compute the labels for the new master and its slaves, and what will happen
when the number of nodes reaches the number of nodes of a complete projective
scatternets. Also, notice that the method has large overhead for construction and
maintenance.

Daptardar [2004] proposed to use cube structure in two and three dimensions for
creating scatternets in single-hop scenarios. The author [Daptardar, 2004] argues
that the structure provides higher connectivity, lower diameter, less node contention,
multiple paths between any two nodes, in-built routing, easy inter-piconet schedul-
ing, and the ability to reconfigure for dynamic environments.

Song, Li, Wang and Wang [2005] adopted the well-known de Bruijn graph struc-
ture to form the backbone of Bluetooth scatternet, called dBBlue, such that every
master node has at most seven slaves, every slave node is in at most two piconets,
and no node assumes both of the master and slave roles. Their dBBlue structure also
enjoys a nice routing property, i.e., the diameter of the graph is O(log n) and there
exists a path with at most O(log n) hops for every pair of nodes without any routing
table. Moreover, the congestion of every node is at most O((log n)/n), assuming
that a unit of total traffic demand is equally distributed among all pair of nodes. In
the same paper, Song et al. [2005] discuss in detail a vigorous method to locally
update the dBBlue structure when a node joins or leaves the network, using at most
O(log n) communications. In most cases, the cost of updating the scatternet is actu-
ally O(1) since a node can join or leave without affecting the remaining scatternet.
The number of nodes affected when a node joins or leaves the network is always
bounded from above by a constant. To facilitate self-routing and easy updating, the
authors design a scalable MAC assigning mechanism for piconet, which guarantees
the packet delivery during scatternet updating. The dBBlue scatternet can be con-
structed incrementally when the nodes join the network one by one. The proposed
method, therefore, has a number of desirable characteristics.

Minimal spanning tree based scatternets

Wang, Stojmenovic and Li [2004] addressed the problem of scatternet formation
for single-hop Bluetooth based personal area and ad hoc networks, with minimal
communication overhead. The scatternet formation schemes by Li et al. [2004] (de-
scribed below) are position based and were applied for multi-hop networks. These
schemes are localized and can construct degree limited and connected piconets, with-
out parking any node. They also limit to 7 the number of slave roles in one piconet.
The creation and maintenance require small overhead in addition to maintaining lo-
cation information for one-hop neighbors. In [Wang et al., 2004], the authors apply

© 2006 by Taylor & Francis Group, LLC.

this method to single-hop networks, by showing that position information is then
not needed. Each node can simply select a virtual position, and communicate it
to all neighbors in the neighbor discovery phase. Nodes then act according to the
scheme using such virtual positions instead of real ones [Li et al., 2004]. In ad-
dition, Wang et al. [2004] used Delaunay triangulation instead of partial Delaunay
triangulation proposed in [Li et al., 2004], since each node has all the information
needed. Likewise, Wang et al. [2004] applied minimum spanning tree (MST) as the
planar topology in their schemes. The experiments confirm good functionality of
the created Bluetooth networks in addition to their fast creation and straightforward
maintenance [Wang et al., 2004]. If MST is used as the scatternet topology, some
long edges can be added to provide shorter routes, following the suggestions given
by Stojmenovic [2004b].

Loop scatternet structure

Zhang, Hou and Sha [2003] proposed a BSF scheme for single-hop scenario. The
new loop scatternet structure [Zhang et al., 2003] preserves connectivity and maxi-
mum node degree, and minimizes number of piconets. Additionally, it incurs a much
smaller network diameter and much smaller maximum node contention. The main
idea in [Zhang et al., 2003] is to create smaller scatternet structures, and to make
some changes in master-slave relations whenever two such scatternets merge into
one. The goal is to create a loop rather, than a tree-like structure. The final struc-
ture has a form of a loop, with a number of additional slave nodes attached to loop
masters. In the first phase, piconets are created, with at most six slaves each. In the
second phase, a slave from each piconet is explicitly selected and shared with another
piconet to reduce the diameter. The protocol creates only slave-slave bridges. The
authors did clearly show, theoretically and experimentally, the advantages of their
method.

On-demand scatternet formation and maintenance

Sivakumar, Chen and Huang [2004] proposed a framework for continuously opti-
mizing the network topology in order to produce the best suitable one for current
data streams. The optimization process also takes care of the network maintenance
to accommodate the node mobility. A high level description of a protocol is de-
signed for single-hop networks to follow the framework (however, a precise protocol
description is missing).

© 2006 by Taylor & Francis Group, LLC.

9.3 BSF in multi-hop networks

Centralized algorithms

Ajmone Marsan, Chiasserini, Nucci, Carello and De Giovanni [2002] described a
centralized solution for finding a Bluetooth topology (for multi-hop case) that pro-
vides full network connectivity, fulfills the traffic requirements and the constraints
posed by the system specification, and minimizes the traffic load of the most con-
gested node in the network. The solution is based on a linear optimization formula-
tion, and the formulation leads to an NP-complete problem suited only for small and
stationary networks.

Sreenivas and Ali [2004] described a centralized BSF protocol based on genetic al-
gorithm, which selects random groups of nodes as an initial population. Each group
corresponds to a combination of masters, slaves, and bridge nodes and is represented
by a string. The goal is to minimize the number of piconets created. The protocol is
described on half page without sufficient details on the population coding (master-
slave relations are apparently not coded according to given description), crossover,
mutation, and fitness function used. Genetic algorithm approach to scatternet forma-
tion is also suggested in [Hodge and Whitaker, 2004a].

Mehta and El Zarki [2004] outlined an approach, centered on the Bluetooth tech-
nology, to support a sensor network composed of fixed wireless sensors for health
monitoring of highways, bridges, and other civil infrastructures. They present a
topology formation scheme that not only takes into account the traffic generated by
different sensors but also the associated link strengths and buffer capacities. The
algorithm makes no particular assumptions as to the placement of nodes, nor the as-
sumption that all nodes need to be in radio proximity of each other. The output is a
tree-shaped scatternet rooted at the sensor hub (data logger), that is balanced in terms
of traffic carried on each of the links. The solution is centralized (data logger col-
lects network information and makes all decisions), and is based on a combinatorial
optimization formulation followed by simulated annealing based solution.

Yun, Kim, Kim and Ma [2002] presented an approach that forms master-slave
mesh topology. Their Bluestars approach models the discovery neighborhood as an
inquiry graph I , with 2|I | topology subsets available. The solution requires a costly
determination of the optimal topology subset (presumably in a centralized fashion)
before the scatternet is formed.

Ramachandran, Kapoor, Sarkar and Aggarwal [2000] proposed a BSF algorithm
based on growing a tree from the root, where master node is not always directly
connected to its slave node. They presented a deterministic as well as randomized
algorithm. Both approaches involve a leader election of a super-master, which sub-
sequently forms the actual topology in a centralized manner.

A preliminary account on how to deal with changing network topology has been
presented by Chiasserini, Ajmone Marsan, Baralis and Garza [2003]. They presented
an optimized approach for scatternet formation that attempts to minimize the traffic

© 2006 by Taylor & Francis Group, LLC.

load. The authors assume that traffic patterns and routes are known a priori and
formalize the topology formation as a min-max problem, which finds bottleneck
node and minimizes the traffic load at that node. They also discuss a distributed
approach.

Growing tree based distributed BSF

Zàruba et al. [2001] proposed two protocols for forming connected scatternet. In
both cases, the resulting topology is termed a bluetree. The number of roles each
node can assume is limited to two or three. The first protocol is initiated by a single
node, called the blueroot, which will be the root of the bluetree. A rooted spanning
tree is built as follows. The root will be assigned the role of a master node. Every
one hop neighbor of the root will be its slave. The children of the root will now
be assigned an additional master role and all their neighbors that are not assigned
any roles yet will become slaves of these newly created masters. This procedure is
repeated recursively until all nodes are assigned.

Each node is a slave for only one master, the one that paged it first. Each internal
node of the tree is a master on one piconet, and a slave of another master (its parent
in the initial tree). In order to limit the number of slaves, Zàruba et al. [2001] observe
that if a node in the unit disk graph has more than five neighbors, then at least two
of them must be connected. This observation is used to reconfigure the tree so that
each master node has no more than five slaves. If a master node has more than five
slaves, it selects its two slaves s1 and s2 that are connected and instructs s2 to be
the master of s1, and then disconnects s2 from itself. Such branch reorganization is
carried throughout the network.

Dong and Wu [2003] proposed three modifications to the Bluetree algorithm de-
scribed by Zàruba et al. [2001]. The modifications aim to minimize the overheads
introduced by Bluetooth’s piconet and multi-hop scatternet. Their modified algo-
rithms use the neighbor’s neighbor set and/or neighbor’s location to construct the
Bluetree to efficiently balance two conflicting goals between the number of piconets
and the average shortest path ratio. The modifications are to select as bridge the
slave nodes that has maximal degree, to select closest slave and instruct it to become
master, and to apply the Yao structure similar to the one by Li et al. [2004].

Pagani, Rossi and Tebaldi [2004] proposed an improvement to the Bluetree al-
gorithm of Zàruba et al. [2001], in order to address the issues involved in practical
implementation, and to describe mechanisms to support mobility, joining and leaving
the network by proposing an on-demand BSF algorithm. The main improvement is
to start the scatternet formation when needed, by an initiator node that becomes the
tree root, while other nodes progressively join the tree so that the overall structure is
optimized with respect to the latency in data forwarding and on-demand formation
of scatternet.

Huang, Yang, Bai and Huang [2003] modified the Bluetree scatternet formation
scheme of Zàruba et al. [2001] by limiting the number of children slaves of each
node to 5, and using two more slave roles for up to two siblings. Thus additional
links between nodes on the same level are added in the tree. This creates a structure

© 2006 by Taylor & Francis Group, LLC.

with less critical links for connectivity, but the maintenance is still expensive as in the
Bluetree construction scheme [Zàruba et al., 2001]. Also the scheme by Huang et al.
[2003] is apparently working properly only for single-hop networks, since otherwise
links between nodes on the same level may not exist.

In the second protocol of Zàruba et al. [2001], several roots are initially selected.
As in the first protocol, each of them creates its own scatternet. In the second phase,
subtree scatternets are connected into one scatternet spanning the entire network.
Each node is active in up to three piconets.

Bhatnagar and Kesidis [2002] proposed to run first a leader election process to
first find a root for the whole network, and then to use the proximity information of
this election protocol to create a tree scatternet by merging subtrees.

Pamuk and Karasan [2003] described a Bluetooth scatternet formation scheme
which creates a tree, with nodes selected as masters using a measure based on de-
vice characteristics (that is a measure combining battery type, battery level, and traf-
fic generation rate). Nodes that have better device characteristics are preferred in
master-slave decisions and, therefore, end at levels closer to the root (which is the
node with the best device characteristics). In several existing tree based approaches,
master nodes take the lead in selecting the slaves. This has contributed to a coun-
terexample for connectivity of the final scatternet (see Fig. 9.2). In [Pamuk and
Karasan, 2003], however, each slave node takes the lead and selects one other node
as its master. Each node, however, accepts up to 6 requests from potential slaves.
During the first phase of neighbor discovery process, the selected master is the dis-
covered neighbor that accepted the slave and has best device characteristics among
such neighbors (once accepted master can be replaced in the process if a better one is
discovered later). This phase is run for a certain predefined time. In the next phase,
only roots of created trees participate in completing the scatternet. In case of single-
hop network, roots enter the second phase which runs in the same way as the first
phase (with fewer nodes, since only the roots will participate). This phase runs until
a single root remains. In case of multi-hop networks, each root needs to label all its
descendants (slaves in the corresponding tree). The labels are then exchanged with
all neighbors discovered in the first phase, in order to identify all bridges (nodes with
endpoints having different labels, that is, roots). To connect the two trees, master-
slave relations on the path from the node with label of lower priority (which also
becomes the slave of other node) toward its root are reversed. Scatternet is then con-
nected, since each node may receive at most one additional slave role in the second
phase, keeping the maximum to 7. We observe that the initial maximum can be lower
than 6, allowing the addition of more links and the creation of a mesh rather than a
tree, by using extra slave connections.

Guerin, Sarkar and Vergetis [2002] proposed depth first search (DFS), breadth first
search (BFS), and MST-based scatternet formation schemes for unit disk graphs in
two and three dimensions. They construct a tree where all nodes at each level (the
tree they construct is seen as a bipartite graphs) are either masters or slaves. Their
construction does not guarantee the maximum degree bound unless the structure it-
self provides the bound. For example, MST in two dimensions has a maximum
degree of five, but in three dimensions, some nodes can have degrees up to 13. The

© 2006 by Taylor & Francis Group, LLC.

schemes are not localized.
The communication overhead in growing tree based BSF algorithms [Zàruba et al.,

2001; Ramachandran et al., 2000; Pamuk and Karasan, 2003; Guerin, Sarkar and
Vergetis, 2002; Bhatnagar and Kesidis, 2002; Pagani et al., 2004; Dong and Wu,
2003; Huang et al., 2003] is significant, especially when the appropriate maintenance
procedures are designed and added to the protocol.

Context, on-demand and QoS based distributed BFS

Context based BFS

Siegemund [2002] discusses context based scatternet formation for sensor networks.
Sensor information is included in the formation process, and nodes with the same
context are included in the same piconet. For instance, nodes with the same temper-
ature and noise are assumed to be in the same context and are arranged in the same
piconet to enhance their mutual communication.

Gonzales-Valenzuela, Vuong and Leung [2004] proposed BlueScouts, a mobile
agent-based on-demand scatternet formation protocol. Their protocol runs in a fully
asynchronous fashion, with device discovery being decoupled from actual topology
formation. Agents are spread through the existing links in a controlled fashion and
recursively signal back the state of the last computation’s outcome, leading up to the
further replication of the mobile process or its termination. They conduct a coor-
dinated spatial depth-first search over a logical backbone (excluding leaf nodes) in
an attempt to reconfigure the role of a new device. The proposed ‘programmable’
approach introduces unmatched flexibility by allowing context-aware topology for-
mation.

Scatternet queueing models developed by Kapoor, Sanadidi and Gerla [2003] and
Mišić and Mišić [2003a] were used to compare the delay and throughput charac-
teristics of various topologies. It was found that the best topology is application
dependent.

On-demand scatternet formation

Liu et al. [2003] proposed to combine the scatternet formation with on-demand rout-
ing, thus eliminating unnecessary link and route maintenances. Conventional Blue-
tooth broadcast consists of discovering all neighbors, paging them one by one, and
sending to each node a route request. Neighbors first enter the piconet, then, after the
piconet is created, a route request packet is released to all neighbors. The neighbors
can continue spreading the destination search. The authors proposed two variants.
In one variant, route request is released only after the piconet is fully created. In the
other variant, route request is released to each neighbor immediately after paging it,
without waiting for piconet to be fully created.

In the same paper, Liu et al. [2003] also introduced an extended connectionless
broadcast scheme where master node and its slaves use the same channel for com-
munication; master node send inquiry messages, while neighbors scan the channel
periodically to catch possible inquiry message. It achieves significantly shortened

© 2006 by Taylor & Francis Group, LLC.

route discovery delay. Liu et al. [2003] also propose to synchronize the piconets
along each scatternet route to remove piconet switch overhead and obtain even better
channel utilization. They also present a route-based scatternet scheduling scheme to
enable fair and efficient packet transmissions over scatternet routes. The proposed
method provides high network utilization and extremely stable throughput, being es-
pecially useful in the transmission of large batches of packets and real time data in
wireless environment [Liu et al., 2003]. Zhen, Park and Kim [2003] proposed an
approach called ‘blue-star’ similar to one by Liu et al. [2003]. This approach lowers
the formation delay compared to [Liu et al., 2003] but also needs to perform several
consecutive inquiry operations. Other variants of protocol are proposed in [Choi and
Choi, 2002; Ghosh, Kumar, Wang and Qiao, 2003] where nodes concurrently form
the scatternet (based on a flooding scheme) and route the data traffic.

Kawamoto, Wong and Leung [2003] proposed a two-phase scatternet formation
protocol to support dynamic topology changes while maintaining a high aggregate
throughput. In the first phase, a control scatternet is constructed, which is not de-
gree limited (more precisely, the number of bridge nodes is limited to 6, while pure
slave nodes are parked) to support topology changes and route determination. The
second phase creates a separate on-demand scatternet whenever a node wants to ini-
tiate data communication with another node, similar to the approach found in [Liu
et al., 2003]. The on-demand scatternet is torn down when the data transmissions are
finished. Since all the time slots are dedicated to a single communication session, a
high aggregate throughput is achieved at the expense of a slightly higher connection
setup delay.

QoS based scatternet formation

Augel and Knoor [2004] presented a survey of available BSF solutions and then pro-
posed to consider QoS criteria for constructing scatternets. They argue that allowing
nodes with larger degrees reduces diameter but has a bad influence on throughput
since the piconet capacity has to be shared among more devices. This is correct only
if each node in a piconet receives an equal amount of time for sending the data. How-
ever, some scheduling schemes are based on the actual traffic amount; therefore, the
time allocated to each slave does not need to be the same. Augel and Knoor [2004]
proposed that nodes with a high degree stop paging and instruct neighbor with a low
degree to start paging instead. Each device may try to influence topology depending
on QoS requirements. Their article describes BSF design guidelines for QoS applica-
tions, and does not describe any particular BSF protocol. Threshold based schemes
advocated by Augel and Knoor [2004] may fail to construct scatternet and/or provide
QoS although both may be possible by alternative schemes. One bad link or a node
on a route does not immediately fail the QoS criteria on a longer route.

Pabuwal, Jain and Jain [2003] proposed to switch between several different BSF
algorithms depending on the application requirements. However, no information
about the possible criteria on which this switching can be based is given, which is
needed to have a flexible control of the topology. Instead of switching between var-
ious formations algorithms, it might be better to have one algorithm which controls

© 2006 by Taylor & Francis Group, LLC.

A' B'

FIGURE 9.2
Creation of disconnected scatternets in several algorithms.

the topology in an application-oriented manner using some specific related parame-
ters.

Melodia and Cuomo [2004a], Melodia and Cuomo [2004b] and Cuomo, Melodia
and Akyildiz [2004] provided an integrated approach to address scatternet formation,
scatternet maintenance, and the quality of service support for small and moderate size
personal area networks. They first propose a self healing algorithm producing multi-
hop scatternets (called SHAPER) which produces tree-shaped scatternets. The ini-
tially created tree is converted into a logical tree. The initial physical links in the tree
are maintained as much as possible by inserting other links for each network change.
When a logical link cannot be supported by a chain of physical links, the overall scat-
ternet is reconfigured. Such reconfiguration guarantees the connectivity of the tree.
A procedure that produces a meshed topology (based on combinatorial optimiza-
tion formulation with initial centralized solution) applying a distributed scatternet
optimization algorithm (DSOA) on the network built by SHAPER is then defined.
The main issue in the proposed protocols [Melodia and Cuomo, 2004a; Melodia and
Cuomo, 2004b; Cuomo et al., 2004] is their (lack of) scalability. Therefore, further
research is needed for the challenging problem of providing QoS in Bluetooth based
multi-hop networks.

Clustering based BSF

Basagni and Petrioli [2002] and Petrioli, Basagni and Chlamtac [2003] described
a multihop scatternet formation scheme called BlueStar, based on the clustering
scheme of Lin and Gerla [1997], taking into account several Bluetooth issues which
do not pertain to clustering. Clusterhead (master role) decisions are based on node
weights, rather than node IDs, as in [Lin and Gerla, 1997], that express their suit-
ability to become masters. It follows a variant of the clustering method described in
[Basagni, 1999]. All clusterhead nodes are declared master nodes in a piconet, with
all nodes belonging to their clusters as their slaves. In order to assure connectivity
some of the slaves become masters of additional piconets (following, e.g., [Alzoubi,

© 2006 by Taylor & Francis Group, LLC.

Wan and Frieder, 2002]). However, piconets may have more than seven slaves. This
may result in performance degradation, as slaves need to be parked and unparked in
order for them to communicate with their master. The topology discovery phase is
performed before clustering in order to provide each node with information about
all its neighbors. Each device executes the device discovery protocol for about eight
seconds. Then, if the visibility graph (e.g., a unit disk graph) is connected, then the
resulting network will be connected with high probability. Device discovery is per-
formed according to procedure in [Salonidis, Bhagwat, Tassiulas and LaMaire, 2001]
which we outlined above. A performance evaluation of the clustering-based scatter-
net formation scheme [Basagni and Petrioli, 2002], [Petrioli et al., 2003] is given in
[Basagni, Bruno and Petrioli, 2002b].

Basagni et al. [2003b] described the results of an ns2-based comparative perfor-
mance evaluation among the three major solutions for forming multihop scatternets
[Li et al., 2004], [Petrioli et al., 2003], and [Zàruba et al., 2001]. They found that
device discovery is the most time-consuming operation, independently of the partic-
ular protocol to which it is applied. The comparative performance evaluation showed
that, due to the simplicity of its operations, BlueStars [Petrioli et al., 2003] is by far
the fastest protocol for scatternet formation. However, BlueStars produces scatter-
nets with an unbounded, possibly large number of slaves per piconet, which imposes
the use of potentially inefficient Bluetooth operations.

Ferraguto et al. [to appear] proposed Blue Pleiades for device discovery and BSF
in multi-hop networks. As soon as a node has discovered c neighbors, it proceeds
to the next phases of piconet formation and interconnection. Nodes with less than c
neighbors will, upon time-out expiration, exit the device discovery phase [Ferraguto
et al., to appear]. Their extensive simulations show that c = 6, 7 are excellent
choices that guarantee the connectivity of the topology with high probability. The au-
thors [Ferraguto et al., to appear] combine their new device discovery protocol with
the BlueStar protocol [Basagni and Petrioli, 2002; Petrioli et al., 2003] to obtain a
simple, fast, and effective scatternet formation protocol that overcomes the degree
limitation problem of BlueStar. This protocol is termed Blue Pleiades [Ferraguto
et al., to appear]. In short, clustering based BSF [Basagni and Petrioli, 2002; Petri-
oli et al., 2003] is applied on the topology created after the degree limited neighbor
discovery [Ferraguto et al., to appear].

A greedy centralized multihop algorithm, where a hypothetical central entity knows
the complete topology, has been proposed in [Balai, Kapoor, Nanavati and Ra-
machandran, 2001]. Distributed algorithms have also been proposed in [Balai et al.,
2001], which assume a 2-hop neighborhood information. This is achievable in Blue-
tooth since the identities of the neighboring nodes are known at the end of the device
discovery procedure. The nodes are made to exchange this neighborhood informa-
tion with each of its neighbors so that they have a 2-hop information and a partial
view of the underlying topology. The algorithm [Balai et al., 2001] applies a vari-
ant of a clustering algorithm where the number of nodes in each cluster is limited to
seven, in accordance to Bluetooth restriction. A node with a highest degree among all
its undecided neighbors will become the master node and choose up to seven slaves
among neighboring nodes, giving priority to lower degree nodes. However, there are

© 2006 by Taylor & Francis Group, LLC.

examples where the scatternet is disconnected. This may occur when two cluster-
heads were originally connected, but formed clusters and erased their link without
leaving an alternate connection between their piconets. For example, as illustrated
in Fig. 9.2, assume that the graph contains two connected nodes A and B, each with
its own seven more neighbors. Thus, A and B have degrees eight, and will become
masters of two piconets, containing their own seven neighbors as slaves. However,
the graph will then be disconnected since the link between A and B is not part of a
scatternet.

Wang, Thomas and Haas [2002] and Guerin, Kim and Sarkar [2002] essentially
proposed variants of clustering-based scatternet formation schemes, where the clus-
tering process does not use any ID to decide clusterheads, that is, master nodes.
Instead, the decisions are made at random. Already existing master nodes have the
priority in attracting more slaves, up to the limit. Initial connections are made by
nodes entering a scan or an inquiry scan phases at random. Whenever a node is as-
signed master or slave role, or is unable to join any piconet or attract any neighbor as
its slave in order to create its own piconet, then bridge piconets are added to connect
the scatternet. However, the process does not always lead to a connected structure.
The counterexample is the same that applies to the approach of Balai et al. [2001] (cf.
Fig. 9.2). On the positive side, Wang et al. [2002] proposes two excellent measures
for the performance of scatternets: average shortest-path length and maximum traffic
flow.

Connected out-degree limited scatternets

Petrioli and Basagni [2002] and Petrioli, Basagni and Chlamtac [2004] described
a scheme, called BlueMesh, that guarantees connectivity and limits the number of
slaves in each piconet. Their neat scheme does not require position information,
but instead the local information is extended to a two-hop information, with a two
round device discovery phase for obtaining necessary information. It is a modified
clustering process, where selection of slaves is performed in such a way that, if a
master has more than seven neighbors, it chooses up to seven slaves among them so
that it can reach all the others via the chosen ones. Such coverage is always possible
with up to five slaves [Zàruba et al., 2001]. The scatternet formation proceeds in
iterations. Nodes that participate in a given iteration perform the modified clustering
process. Initially all nodes are undecided. In each iteration, init-nodes (nodes having
the largest weight among their immediate undecided neighbors) create piconets, by
choosing at most seven neighbors as slaves, and deleting remaining edges. The iter-
ation stops when all nodes are decided. All created masters, together with slaves that
are not selected for links with slaves from other piconets, withdraw from the next
iteration. Simulations by the authors show that the created scatternets have a low
average number of roles per node (about two), with an average path length increase
between 20% and 80%. The number of iterations grows slowly with the number of
nodes (it is about 4.5 for networks with 200 nodes). The method may show weak-
nesses on some other metrics, especially about the worst-case number of slave roles
a node can assume. For instance, in case of dense networks (e.g., complete graph),

© 2006 by Taylor & Francis Group, LLC.

11

13

6
10

5

12

2

1

9

7

3

14
15

84

(a) Unconnected Bluetooth nodes with possible links.

11

13

6
10

5

12

2

1

9

7

3

14
15

84

(b) Iteration 1 of the Bluemesh algorithm.

11

13

6
10

5

12

2

1

9

7

3

14
15

84

(c) Iteration 2 of the Bluemesh algorithm.

FIGURE 9.3
The BlueMesh scatternet formation algorithm.

the second largest node in a neighborhood may end up serving as slave to all the
masters in the same neighborhood. Nevertheless, among all methods that do not use
position information, the method [Petrioli and Basagni, 2002; Petrioli et al., 2004]
appears to be currently the best available method for multi-hop networks. An attempt
to improve it further is given in the next subsection (and in [Stojmenovic, 2004a]).

© 2006 by Taylor & Francis Group, LLC.

Scatternet formation according to the BlueMesh algorithm [Petrioli and Basagni,
2002; Petrioli et al., 2004] is illustrated in Fig. 9.3. The initial node structure with
possible links is shown in Fig. 9.3(a). In the first iteration, clustering scheme will
select node 15 as master node, with its seven neighbors as slaves (all but nodes 1 and
2), following as selection criteria and whenever needed the largest ID. Node 13 also
creates a piconet, having the largest ID among its neighbors. Finally, node 10 also
creates a piconet, after its neighbor 12 announces to be ‘defeated’ by node 15 in the
process. Master nodes 15 and 10 select node 12 as gateway, master nodes 15 and 13
select nodes 4 and 8 to connect them, while piconets mastered by 10 and 13 select
nodes 11 and 6 for connection.

The results of the first iteration are shown in Fig. 9.3(b), where the nodes 10, 13,
and 15 (shown in black) are masters of created piconets, while the nodes 3, 5, 7, 9,
and 14 are slaves that are not needed to connect piconets; the nodes 4, 6, 8, 11, and
12 are possible gateways (i.e., bridges). Therefore, nodes 1, 2, 4, 6, 11, and 12 are
selected for the second iteration.

In the second iteration, shown in Fig. 9.3(c), three more piconets, mastered by
‘black’ nodes 8, 11, 12, are created to connect the overall structure. The piconets
and links created in the first iteration are shown in gray for clarity.

Maximal independent set based BSF

An attempt to simplify the BlueMesh procedure was made in [Stojmenovic, 2004a].
It essentially interprets the slave selection as the maximal independent set problem,
and reduces the process to two iterations. In the first iteration, every node creates a
piconet with itself as a master node. In the second iterations, following a clustering
based approach, each node estimates whether or not its piconet is needed for the
overall connectivity. If not, it deletes its piconet.

The maximal independent set M I S(X) of a set of nodes X is a set of nodes Y
from X such that no two nodes from Y are connected (‘independent set’), and Y is
not a proper subset of another set with the same property (‘maximal’). In the first
iteration of M I S based scheme [Stojmenovic, 2004a], each node selects the M I S
of its neighboring nodes as the set of its slaves. Each node A has key(A) which can
be defined in a variety of ways, known to all its neighboring nodes. Let X be a set
of neighbors of a given node S. To find M I S(S), node S chooses a node A from X
with maximal key(A). Note that here the algorithm can use minimal key(A) instead,
which has impact on the performance of the second iteration. Node A is declared a
slave of S, and is eliminated from X , together with all its neighbors. This is repeated
until X becomes empty. If the number of selected slaves is less than seven then, as
in BlueMesh, additional slaves can be selected at random up to the limit.

In the second iteration, the network is not the original unit graph, but the scat-
ternet structure where each node has its own piconet. A clustering based confirma-
tion/elimination scheme is performed. The decisions are made by the masters in S
that have higher ID than any of nodes in any of neighboring piconets (this includes
the slaves of S and masters of piconets where S is a slave). Such node S verifies
whether or not the piconet structure would remain locally connected if its piconet is

© 2006 by Taylor & Francis Group, LLC.

11

13

6
10

5

12

2

1

9

7

3

14
15

84

FIGURE 9.4
The second iteration of MIS based BSF.

to be destroyed. If it still remains connected, its piconet is not needed. The decision
can be communicated to all piconets where S is participating, which enables other
nodes to make their own decision.

For example, in Fig. 9.3(b), the first iteration will create all piconets with all the
indicated edges except the two dashed ones. In Fig. 9.4, nodes 15 and 13 first decide
to keep their piconets; as they are masters but not slaves, they are shown in black.
Node 14 then decides to keep its piconet because of node 1. Node 12 preserves its
piconet because of node 10. Node 11 preserves its piconet to connect node 6. Node
10 also preserves the piconet to connect to piconet 11 via 6. Node 9 keeps its piconet
because of node 2, while node 8 preserves its piconet in order to remain linked to
piconet 13 via node 4. All these nodes are masters as well as slaves, which is why
they are half black. The remaining nodes do not need to preserve their piconets and
remain ordinary slaves.

While the number of slaves of each master is limited and the scatternet is con-
nected, the number of slaves for each node is not limited, and in some cases, e.g.,
in a complete graph, one node can be selected as slave to all other nodes. This is
the same problem encountered with the BlueMesh. The only advantage of the new
algorithm is to reduce the number of iterations to two and therefore obtain a faster
BSF.

Position based connected and degree limited BSF

Stojmenovic [2002] and Li et al. [2004] proposed (and made available in June 2001)
the first BSF schemes that construct degree limited and connected piconets in multi-
hop networks, without parking any node. Moreover, these methods also provide the
limit on the number of slave roles for each node, and (if desirable) planarity which is
important for performance of routing scheme that guarantees delivery [Bose, Morin,
Stojmenovic and Urrutia, 2001]. The BlueMesh scheme [Petrioli and Basagni, 2002;
Petrioli et al., 2004] achieved the same main objectives (connectivity and limitation
of the piconet size), but did limit the number of slave roles and did not construct a

© 2006 by Taylor & Francis Group, LLC.

planar graph. However, [Stojmenovic, 2002; Li et al., 2004] achieved their objec-
tives by using a stronger assumption, position information, and some geometrical
structures.

Position based BSF schemes [Stojmenovic, 2002; Li et al., 2004] require that
nodes first discover their all neighboring devices before the scatternet is established.
This phase (learning the underlying unit disk graph) can be implemented by using ei-
ther a Bluetooth based discovery [Salonidis, Bhagwat, Tassiulas and LaMaire, 2001]
or using a single channel medium access such as IEEE 802.11 (another name for Wi-
Fi), as discussed above. The protocols then continue by limiting the degree of each
node, while preserving the connectivity, and by assigning master and slave roles to
each node. There are several approaches to accomplish this. The basic differences
are in the order of these two tasks, in the order of making decisions within each
task, and in the way master-slave roles are assigned. Deciding master-slave rela-
tions can be done during the degree limitation process, or after the degree limitation
process is finished as a separate phase. The degree limitation (and/or master-slave
decisions) can be done simultaneously or iteratively. In the simultaneous approach,
all nodes, independently and at the same time, decide about the links to preserve
or the master-slave roles, using a scheme that will assure that the final choices are
symmetric (commonly selected links are preserved; master-slave roles decisions are
in agreement). Alternatively, nodes can make degree limitation or master-slave de-
cisions at different times, and decisions already made by neighbors have impact on
decisions to be made by a given node (iterative approach).

One approach is, for instance, after-simultaneous-iterative, where nodes make de-
gree limitations simultaneously (and, in some cases e.g., when LMST or Yao structure
is applied, gather decisions from neighbors to decide which links remain in the final
structure), followed by an iterative procedure for deciding master and slave relations
(e.g., clustering based procedure such as BlueStar [Basagni and Petrioli, 2002; Petri-
oli et al., 2003]). This variant of the originally proposed procedure [Li et al., 2004]
was proposed by Basagni et al. [2003b]. If degree limitation step requires message
exchange, then it may be faster if master-slave roles are also assigned at the same
time. Such during-simultaneous-iterative and during-iterative-iterative procedures
are the ones proposed in [Li et al., 2004], and they are also based on clustering. The
same article [Li et al., 2004] also elaborates on during-iterative-iterative approach.
If the clusterhead decisions are based on node degrees (number of neighbors in the
original unit graph) as the primary key in comparing (that is, nodes with more neigh-
bors have more chance to become master nodes), then another round of information
exchange (similar to the device discovery round) is needed following the first neigh-
bor discovery. In [Stojmenovic, 2002], the during-simultaneous-simultaneous and
during-iterative-simultaneous approaches are described. The major difference is in
the master-slave decision process. It was proposed to use (dominating set member-
ship, node degree, node identifier) as the key for comparing two nodes, and assign
master role to higher key node on any link. This means that nodes that belong to a
dominating set (see [Stojmenovic and Wu, 2004] for the definition and survey of ex-
isting schemes) have priority in becoming the master node on a link. If this primary
key is the same for both nodes, or the key is not used at all, then node degree can

© 2006 by Taylor & Francis Group, LLC.

FIGURE 9.5
Unit disk graph (U DG), RN G and GG of a set of nodes.

be used. If node degrees are the same, or not used at all in comparison, then node
identifiers can be used for making the role assignment. Note that after-simultaneous-
simultaneous, after-iterative-simultaneous, and after-iterative-iterative BSF proto-
cols can also be considered.

Geometric structures for degree limitation

We will now describe several geometric structures that can be used to achieve the
degree limitation in scatternets. The basic solution is to apply minimum spanning
tree (M ST) or a structure that contains it. MST is a subgraph of a given unit disk
graph which contains all the nodes, is connected, and whose sum of edge lengths is
minimized. The average number of neighbors (the average degree) of each node of a
M ST is ≈ 1.99, while the maximum number is 6. However, M ST is not a localized
structure, since its computation requires a global network knowledge at each node.
We therefore need to use other structures.

A localized M ST (L M ST) based topology control algorithm was proposed by Li,
Hou and Sha [2003]. Each node u first collects positions of its one-hop neighbors
N1(u). The node u then computes the minimum spanning tree M ST (N1(u)) of
N1(u). The node u keeps a directed edge uv in L M ST if and only if the edge
uv is also an edge in M ST (N1(v)). If each node already has a 2-hop neighboring
information, then the construction does not involve any message exchange between
neighboring nodes; otherwise each node contacts the neighbors along its L M ST
link candidates, in order to verify the status at other nodes. The average number of
neighbors (average degree) of nodes is ≈ 2.04, while the maximum is still limited
by 6. M ST and L M ST are both planar graphs (a graph is planar is no two edges of
it intersect except possibly at common endpoints).

Relative neighborhood graph (RN G) is introduced by Toussaint [1980], and can
be defined, in the simplest form, as follows. An edge uv is included in RN G if and
only if it is not the longest edge in any triangle uvw. Fig. 9.5 shows an example of
an RN G of a U DG (unit disk graph).

© 2006 by Taylor & Francis Group, LLC.

u

FIGURE 9.6
Yao graph degree limitation for p = 7.

Using this definition, some edges may have very large degrees in several par-
ticular scenarios. To obtain a degree limited structure, the record w(AB)=(—AB—,
min(id(A),id(B)), max(id(A),id(B))) can be used instead for edge comparisons, since
no two edges have the same record. We refer to this structure in the sequel, assum-
ing a random node placement and a very low chance of any two edges being of the
same length. The degree of each node in L M ST and RN G (L M ST is a subset of
RN G) is limited to 6 (for nodes located in a plane). The average degree of a node
in RN G is ≈ 2.4. Note that the construction of L M ST and RN G does not require
that the exact positions of nodes and their neighbors to be known; in fact, only the
corresponding mutual distances are required. In both cases, each node requires the
knowledge of its distances to the neighbors, and the distances between any pair of
neighbors.

The Gabriel graph (GG) is proposed in [Gabriel and Sokal, 1969], and is defined
as follows. GG contains an edge uv if and only if the disk with diameter uv contains
no other node inside it. This criterion can be tested in two ways. For an edge uv to be
included in GG, each common neighbor w of nodes u and v should be located at a
distance of at least |uv|/2 from the midpoint of uv. Alternatively, one can verify the
angles from neighbors to uv. If for a common neighbor w of u and v, � uwv > π/2
then uv is not in GG. It should be observed, as in the case of L M ST and RN G,
that the construction of GG requires only the knowledge of the location of a node
and those of its neighbors. Fig. 9.5 shows an example of a GG. The average degree
of a node of GG is ≈ 3.8. However, there is no worst case limit for the node
degree. Therefore, to assure degree limitation, another geometric structure needs to
be applied, at least at nodes whose degree exceeds the Bluetooth limit of seven. Note
that each node can decide, for each of its links, whether or not it belongs to RN G or
GG without communicating with its neighbors. To construct the L M ST , it needs to
exchange the decisions made with the neighbors, since only links selected by both
endpoints are in the final structure.

© 2006 by Taylor & Francis Group, LLC.

The Yaop graph is proposed by Yao [1982] to construct M ST efficiently in high
dimensions. Any p equally separated rays originated at each node u define p cones.
In each cone, u then chooses the closest node v within the transmission range, if
there is any, and then selects a directed link uv (see Fig. 9.6 for an illustration).
Links which are not selected by u are deleted. Since Yaop contains an M ST as a
subgraph (for p = 6), and that is after deleting all links which are not selected by
its both endpoints, the network connectivity is still preserved. Note that Yaop is not
necessarily planar.

Degree limited structures for BSF and routing in scatternets

There are a number of options to obtain degree limited scatternets. One option is
to apply Y ao7 to U DG constructed after the device discovery phase (note that, in
this option, it is not necessary to complete this phase; it suffices to merely achieve
the overall connectivity). The drawback of this option is that the obtained scatternet
is not planar. The planar structure may be desirable in order to provide the routing
with a guaranteed delivery, since the best existing protocol that achieves that [Bose
et al., 2001] requires planar graph in the recovery mode.

The next option is to use L M ST or RN G, which are planar and guaranteed to be
degree limited (therefore, it is not necessary then to apply the Y ao graph construct).
The drawback of using them is that these structures are quite sparse, and therefore the
greedy routing (forwarding message to a neighbor that is closest to the destination),
will frequently fail, leading to long routes with protocol that guarantees delivery
[Bose et al., 2001].

Further option is to apply GG, followed by Y ao7, applied only on nodes whose
degree exceeds 7. The number of such nodes is small, if any, but they may exist.
This structure is planar, localized, and the densest known that is defined with so little
local knowledge and zero messages (besides device discovery to learn neighbors).
Note that Li et al. [2004] proposed a partial Delaunay triangulation (P DT) as an
alternative locally defined structure which is more dense; however, subsequent mea-
sures show that the difference in density is only about 1% in favor of PDT over GG,
thus we are not covering it in this chapter.

L M ST , RN G, and GG have average degrees ≈ 2.04, ≈ 2.5, and ≈ 3.8, re-
spectively. They all (and the Y ao structure as well) tend to select short edges for
the scatternet structure. Stojmenovic [2004b] observed that, to improve the routing
performance of scatternet, some additional edges may be carefully selected; a note
about it is also made in [Li et al., 2004]. The selection depends on the criterion
being applied in measuring routing performance. If the criterion is to minimize the
hop count then one can add several ‘long’ edges to the scatternet. It is desirable to
spread the added edges in several directions, in order to complement the existing
short edges, which can be done by applying the same angular range division used in
Yao construct and selecting long edges in sectors where no short edge exists among
edges of L M ST , RN G, or GG. This assures a balanced edge structure in all direc-
tions. Addition of randomly selected long edges can also be considered (especially
if distances rather than position information were used to define the structure).

© 2006 by Taylor & Francis Group, LLC.

On the other hand, if power consumption was used as criterion, the additional
edges should have a length close to the ideal one, following the discussion made in
[Stojmenovic and Xu, 2001].

9.4 Conclusions

There are a number of Bluetooth scatternet formation protocols already proposed in
the literature. It can be observed that very few of them satisfy most of the desirable
characteristics. There are relatively few actual implementations and comparisons.
For example, Basagni et al. [2003b] and Basagni, Bruno, Mambrini and Petrioli
[2004] compared BlueTree [Zàruba et al., 2001], BlueStar [Petrioli et al., 2003],
BlueNet [Wang et al., 2002] and the position based approach [Li et al., 2004]. They
concluded that the device discovery is the most time consuming operation. Their
final conclusion is that forming scatternets is still a formidable task, because of the
device discovery and the extra complexity imposed by the Bluetooth technology on
the implementation of distributed algorithms. Similar conclusions were made by
Vergetis, Guerin, Sarkar and Rank [2005a]. The reader can find alternative surveys
on BSF in Basagni, Bruno and Petrioli [2004], Persson et al. [2004], and Whitaker,
Hodge and Chlamtac [2005].

We anticipate that more Bluetooth scatternet formation schemes will be developed
in the near future, and that some modifications to Bluetooth specifications could be
made to find solutions which satisfy a number of desirable properties and make it
suitable for commercial applications in the multi-hop scenarios. An interesting and
a major open problem in the area is to design a BSF algorithms that will guaran-
tee connectivity and degree limitation (for both the master and the slave roles) and
without using the position information.

© 2006 by Taylor & Francis Group, LLC.

10

Bridge topologies and scheduling

Data communications within a Bluetooth scatternet require shared devices or bridges
that join the individual piconets. The bridges share their time between the piconets
they belong to, switching from one to another in a cyclical sequence. Data packets
with destinations in other piconets are queued by the piconet master, and delivered
to the bridge during its residence in the piconet. The manner in which the bridge
operates in the piconets, the actual duration of bridge residence in each piconet, and
the manner in which the switch-over times are arranged, are all determined by the
bridge scheduling algorithm.

In this chapter, we will first describe possible bridge topologies and their oper-
ation, together with some notes on the termination of bridge exchanges and syn-
chronization delays incurred in bridge operation. We will then describe different
approaches to bridge scheduling in Section 10.2, and present some considerations
regarding their practical implementation in Section 10.3. Finally, Section 10.4 will
present the queueing model and the basic assumptions used in subsequent theoretical
analyses.

10.1 Bridge topologies

Let us now describe the possible bridge topologies and their operation in more de-
tail, and discuss some assumptions that enable us to derive analytical measures of
scatternet performance.

As mentioned above, the bridge is a Bluetooth device that shares its time between
two or more piconets. The bridge may act as the master in at most one of the piconets
it belongs to and a slave in all others. This restriction is due to the fact that all com-
munications in a piconet use the frequency hopping sequence (channel) defined by
the piconet master. Two piconets with the same master would have to communicate
using the same hopping sequence, hence they would in fact be the same piconet. The
bridge which is the master in one piconet and the slave in others is referred to as the
Master/Slave (MS) bridge; the bridge which is the slave in all the piconets it belongs
to is referred to as the Slave/Slave (SS) bridge. Note that complex scatternets may
contain bridges of both kinds.

A generic topology of the scatternet with two piconets and an MS bridge is shown

© 2006 by Taylor & Francis Group, LLC.

piconet P2

master/slave
bridge

piconet P1

(a) Topology.

time

bridge exchange

P2 master

local operation in P2

local operation in P1

bridge/
P1 master

(b) Operation timing.

FIGURE 10.1
The operation of the MS bridge.

in Fig. 10.1(a). Scatternet operation may be divided in two phases, local operation
and bridge exchange, which occur in alternation. During local operation, the bridge
acts as the master of piconet P1: it routes the packets to and from its slaves, and
queues the packets for destinations in the other piconet. At the same time and in the
same fashion, the master of P2 services the slaves of its own.

The time when the bridge leaves the piconet P1 and joins the piconet P2 as a
slave, will be referred to as rendezvous. Some time afterwards, the master of P2
will contact (i.e., poll) the bridge in order to initiate the packet exchange. Once
the contact between the two is established, the actual packet exchange may begin.
During the exchange, the packets queued in one piconet are sent to the other piconet,
where they are again queued for subsequent delivery.

After the exchange is terminated, the master of P2 returns to servicing its own
slaves, while the bridge takes up its role as the master of P1 and returns to servicing
the slaves of its own. Note that all communications in the piconet P1 are frozen
during the period of bridge exchange, since the piconet is left without its master.

The operation of the scatternet with an MS bridge is schematically depicted in
Fig. 10.1(b). The time between two successive bridge visits to the piconet P2 (i.e.,
two successive rendezvous) will be denoted as the bridge cycle. This cycle should
be distinguished from the piconet cycle, the time it takes the master to visit all slaves
exactly once.

© 2006 by Taylor & Francis Group, LLC.

slave/slave
bridgepiconet

P1
piconet
P2

P1 master P2 master

(a) Topology.

time

bridge exchange

P2
master

local operation in P2

local operation in P1

P1
master

bridge

bridge exchange

(b) Operation timing.

FIGURE 10.2
The operation of the SS bridge.

The operation of the SS bridge is schematically shown in Fig. 10.2(a). In this
case, the bridge again alternates between the two piconets, but it acts as the slave
in both of them. When the bridge is present in a piconet, the piconet master can
initiate the packet exchange. After finishing the exchange, the master returns to local
operation, while the bridge is free to switch to the other piconet. Local operation
of the piconet lasts until the bridge joins that piconet again. Note that this scenario,
shown schematically in Fig. 10.2(b), is totally symmetric with respect to piconets P1
and P2. As before, each piconet has alternating phases of local operation and bridge
exchange; however, these phases do not occur at the same time in both piconets.

We stress that the Bluetooth specification poses no limits on the number of bridges
in a single piconet, nor does it limit the number of piconets that a single bridge may
choose to join. (On the other hand, neither does it offer much help as to the operation
of the scatternet and the scheduling of the bridges.) Therefore, local operation within
each piconet will include communication with ordinary slaves, but also with other
bridges, if present. However, the total number of active piconet members, be they
slaves or bridges, is limited to seven at any given time [Bluetooth SIG, 2003b].

During the actual exchange, the piconet master may exclusively poll the bridge, or
it may poll the bridge as well as other slaves in its piconet. This decision is entirely up
to the piconet master, due to the fact that it controls and initiates all communications
in the piconet.

© 2006 by Taylor & Francis Group, LLC.

Termination of bridge exchanges

There are several possible criteria that can be used to terminate the bridge exchange.
The simplest one is probably when the master polls the bridge in exhaustive mode,
i.e., for as long as there are packets to be sent to the bridge or received from it. We
will sometimes refer to this mode of operation as the complete exchange. When both
the master and the bridge queues are emptied, a POLL packet from the piconet master
will cause the bridge to reply with a NULL packet. This is the signal for both the
bridge and the master that the exchange is over; the reader should remember that a
POLL packet means that the master has no data to send, while a NULL packet means
that the polled slave (the bridge device, in this case) has no data to send [Bluetooth
SIG, 2003b]. (Note that both POLL and NULL packets still take exactly one time
slot T , even though neither contains any data.) The bridge can then detach from the
piconet while the master can return to service its slaves.

Alternatively, since the bridge and the piconet master do know the number of
packets in their respective queues, they may choose to can exchange this information
before the actual data exchange. The duration of the exchange can then be set to
any desired value. This value may be sufficient to exchange all the queued packets,
or it may be determined according to some other criterion. In the latter case, some
packets may be left in one or the other queue, waiting until the next rendezvous
and next exchange. This approach will be referred to as limited exchange, since it
will effectively limit the number of packets exchanged, or their total duration (in
Bluetooth clock time slots of T = 625µs). Once the specified number of packets are
exchanged, the bridge exchange may stop without any special notification.

The third reason why the exchange may have to be terminated is that the queue
capacity is exhausted. Bluetooth devices are small, mobile, battery-powered devices
where energy consumption is to be minimized, and this leads to the use of small chips
with limited capabilities. This implies that the buffers implementing the queues on
those devices will likely have small capacity, of the order of several kilobytes only.
Long exchanges can easily lead to overflow of such buffers; remember that the master
has to service other slaves and, possibly, bridges in its piconet, while the bridge may
link two or more piconets. The problem of finite buffers may be solved by simple
queue blocking and, consequently, rejection of packets, or by redesigning the master-
bridge negotiation protocol to incorporate the ability to terminate the exchange if
the buffer capacity is reduced below some threshold. The latter approach has been
adopted by Tan and Guttag [2002], where appropriate provisions are built in the
protocol itself. The performance of the former approach is analyzed in detail in
Chapter 14, using the queueing theoretic approach similar to the one used to analyze
the performance of a single piconet with finite buffers, in Chapter 4.

It should be noted that the number of packets waiting to be sent from the piconet
master to the bridge may differ from the corresponding number to be sent in the
opposite direction. If all the queued data packets are to be exchanged, the excess
data packets must be paired with empty packets in the corresponding frames. Since
the bridge acts as the slave during the exchange, POLL or NULL packets may used
for that purpose; this process will be referred to as padding. As a consequence, the

© 2006 by Taylor & Francis Group, LLC.

finish current frame,
switch to P2 clock

rendezvous
with P2

sync to P2 clock,
start listening to P2

clock sync frame sync

piconet
P2

P2: current frame finished,
bridge exchange may start

bridge

piconet
P1

FIGURE 10.3
Additional synchronization intervals when switching from one piconet to another.

total duration of the exchange may exceed the sum of durations of exchanged data
packets.

Synchronization delays

Each switch from one piconet to another incurs some synchronization intervals or
delays in which data communications cannot occur. These delays are related to the
operation of the Bluetooth baseband and physical layers.

First, all transmissions in Bluetooth must be synchronized, in frequency and phase,
with the time slot clock of the master device. When the bridge joins the piconet, it
has to adjust the frequency and phase of its own clock to the frequency and phase
of the clock of the piconet master. The mean value of this synchronization delay
depends on the phase difference of corresponding clocks; it may take any value from
0 to 2T [Baatz, Frank, Kühl, Martini and Scholz, 2001], but its mean value may
easily be calculated to be equal to the Bluetooth time slot T .

Second, each frame must start with the downlink transmission, and this transmis-
sion must take place on an even-numbered slot. When the bridge has synchronized
its clock with that of the master of piconet P2, there may be a frame transmission
already in progress. The actual frame exchange between the piconet master and the
bridge cannot begin until the current frame ends. Since Bluetooth packets may be
one, three, or five packets long, this may take as much as 8T . The mean value of this
synchronization delay depends on the mean packet length.

In case of the SS bridge, both synchronization delays occur every time the bridge
switches from one piconet to another. In the case of the MS bridge, the two syn-
chronization delays occur only when the bridge joins the piconet in which it acts as
a slave. At alternate switches, i.e., when the bridge returns to the piconet in which it

© 2006 by Taylor & Francis Group, LLC.

P1
master

 P2
master

bridge

time

bridge switches piconets at scheduled rendezvous times, exchanges
interrupted if necessary

(a) Fixed schedule of rendezvous points.

P1
master

 P2
master

bridge

bridge switches piconets at negotiated (variable) rendezvous times,
exchanges interrupted if necessary

time

(b) Variable schedule of rendezvous points.

FIGURE 10.4
Rendezvous-based bridge scheduling in the scatternet with two piconets linked
through a SS bridge.

acts as the master, only one of the delays occurs but not other. Namely, upon return-
ing to its own piconet, the bridge has to revert to its own clock. Switching the clock
does incur the clock synchronization delay. However, the frame synchronization de-
lay does not exist – the transmissions are initiated by the master/bridge anyway, and
it can start polling its slaves as soon as it synchronizes to its own clock.

Fortunately, both of these delays (shown in Fig. 10.3) are small compared to other
delays in the scatternet, and may safely be ignored without any noticeable effect on
results.

As in the case of the single piconet, the performance of data traffic in Bluetooth
scatternets is critically dependent on the manner in which the bridge shares its time
between the piconets, and the manner in which the piconet masters communicate
with the bridge during its residence in their respective piconets. Unfortunately,
neither of these is specified in the current version of the Bluetooth specification
[Bluetooth SIG, 2001b]. A detailed overview of alternative approaches to bridge
scheduling and their characteristics follows in the next Section.

© 2006 by Taylor & Francis Group, LLC.

10.2 Approaches to bridge scheduling

Rendezvous-based bridge scheduling

The Bluetooth specification does not prescribe any particular approach to bridge
scheduling. It should come as no surprise, then, that a number of proposals have
been made regarding bridge scheduling, many of which are based on the concept of
rendezvous points.

Rendezvous points, as explained above, are time instants at which the bridge
should be present in the piconet in order to exchange data with its master [Johansson,
Kapoor, Kazantzidis and Gerla, 2002]. Rendezvous-based scheduling assumes that
there exists a sequence or schedule of rendezvous points, which both participants
in the exchange are aware of. The rationale is that both the piconet master and the
bridge should join the scheduled exchanges simultaneously, so as to minimize idle
waiting. Namely, the exchange cannot begin unless both participants are ready; if one
of them attempts to initiate the exchange before the other one is ready, it will have
to wait without being able to send or receive any data. Such waiting will waste time
and, ultimately, bandwidth. This approach is schematically depicted in Fig. 10.4(a).

Given the topology of the scatternet and the traffic requirements of individual de-
vices, some authors have tried to construct a globally optimal schedule of rendezvous
points. Such a schedule can be advantageous when traffic patterns are known in ad-
vance and vary little over time. Johansson, Körner and Tassiulas [2001] have inves-
tigated this approach and found that the construction of an optimal scatternet-wide
schedule is a formidable task – it has been shown to be NP-complete, even under
very favorable conditions. Schedule maintenance is another problem with this ap-
proach, as its complexity is comparable to that of the initial construction, and the
distribution of the updated schedule to all devices will inevitably lead to additional
communication delays.

A different approach, described by Johansson, Alriksson and Jönsson [2001], is
based on a locally maintained rendezvous schedule. In this case, the bridge device
(denoted as participant in multiple piconets, or PMP) divides its time into windows
of pseudorandom length. Each window is then assigned to one of the piconets they
visit, and the masters of those piconets are in turn informed about those windows
with little overhead. The windows are then used to coordinate packet exchanges
between the masters and the bridges, and the use of pseudorandom scheduling avoids
problems of starvation. However, the scheme does not address scalability, and it is
based on a novel operational mode which has not been adopted as part of the official
Bluetooth standard.

A similar scheme, labeled PCSS, has been proposed by Rácz, Miklós, Kubin-
szky and Valkó [2001]. In PCSS, every node randomly chooses a communication
checkpoint (i.e., rendezvous) that is computed on the basis of the masters clock and
the slaves device address. In order to adapt to various traffic conditions, PCSS mea-
sures the link utilization and adjusts the checking period accordingly. In this manner,

© 2006 by Taylor & Francis Group, LLC.

coordination among nodes is achieved with very little overhead. However, the inter-
val between successive rendezvous is increased or decreased by a fixed multiple,
which makes adjustments rather coarse grained. Furthermore, there is no coordina-
tion between links, and the increase in node density will increase the frequency of
scheduling conflicts, leading to missed rendezvous and the corresponding reduction
in efficiency.

The aforementioned approaches do not account for widely varying traffic patterns
and frequent topology changes that are to be expected in Bluetooth networks. Both
of these are highly likely to occur in an ad hoc network formed by devices of widely
varying capabilities operated by mobile users. In such cases, schedule conflicts can
easily occur, forcing devices to miss the scheduled rendezvous, and the overall effi-
ciency of the scatternet will suffer. The problem is even more pronounced in complex
scatternets where a single piconet can have more than one bridge and/or a bridge can
participate in more than two piconets.

It should be noted that rendezvous-based scheduling cannot ensure maximum ef-
ficiency, even if we disregard the problems of constructing a global schedule without
conflicts. First, some mismatch regarding the beginning of the exchange must be
tolerated, due to the synchronization delays described above. Second, the actual
duration of the master-bridge packet exchanges may not always match the interval
between two successive rendezvous points, because of traffic randomness. If the
exchange ends too early, the bridge may be left with nothing to do until the next
pending appointment. (The piconet master is not affected, as it can always poll its
local slaves during such intervals.) On the other hand, an exchange that lasts too
long may interfere with the next pending appointment of either piconet master or
the bridge. A pending rendezvous cannot be deferred, since it is considered to be
at higher priority than the current exchange. In such cases, the exchange will be
interrupted and the remaining packets will have to wait until the next visit of that
particular bridge to that particular piconet.

Adaptive rendezvous-based scheduling

In order to alleviate these problems, a number of authors have suggested the use of
a schedule that adapts to varying traffic conditions. In this case, rendezvous points
are determined one by one, according to local traffic conditions, through negotiation
between the piconet master(s) and the bridge(s). This approach is schematically
depicted in Fig. 10.4(b).

Baatz, Frank, Kühl, Martini and Scholz [2002] proposed a loose pre-calculated
schedule which utilizes a local credit-based scheme to adjust the level of service of-
fered to each device to its actual traffic. The scheme is inspired by the leaky bucket
filter [Bertsekas and Gallager, 1991] and the Deficit Round Robin fair scheduler
[Shreedhar and Varghese, 1996], but it uses the SNIFF mode which may cause scal-
ability problems.

Zhang and Cao [2002] described a scatternet-wide adaptive approach in which
piconet masters and bridges keep their own appointment schedules, referred to as
switch-tables. The switch-tables are updated according to the traffic load observed

© 2006 by Taylor & Francis Group, LLC.

at each node; nodes with both asynchronous and synchronous traffic are accounted
for. The switch-tables are coordinated between nodes so as to ensure conflict-free
operation; however, the speed of convergence is not high, and the communication
overhead is comparatively costly. The scheme is deliberately limited to piconets that
have at most two bridges, as well as to bridges of the SS type only, which further
limits its applicability in larger scatternets.

Mišić and Mišić [2003c] have described a simple adaptive algorithm in which the
rendezvous times are calculated according to current and future traffic to and from
the bridge; the algorithm, denoted as LAMS, targets MS bridges only. A similar ap-
proach has been taken by the LCS algorithm of Tan and Guttag [2002], in which each
device keeps a list of its outstanding appointments, and each appointment includes
the start time (i.e., rendezvous) and the finish time of the future meeting. There is
only one outstanding appointment for each link the device participates in (i.e., one
per piconet in the case of bridge, and one per bridge in the case of piconet mas-
ter). The details of the next appointment are negotiated at the end of the previous
exchange, taking into account the current and (estimated) future traffic load of both
participating devices as well as of their other links. The piconet master actually com-
putes and proposes several possible rendezvous times and durations, from which the
bridge selects one that suits it the best. In this manner, the schedule is constructed
and maintained locally, on a per-piconet and per-bridge basis, and it is guaranteed to
be conflict-free.

A simple adaptive approach for the SS bridge connecting two piconets, known
as LASS, has been proposed in Mišić and Mišić [2003c]; this algorithm strives to
minimize the end-to-end packet delays by adjusting the time for next rendezvous
according to the estimated traffic in the next exchange. This algorithm, however, is
not scalable to larger scatternets.

Scheduling without rendezvous: the walk-in approach

The main problem with rendezvous-based bridge scheduling, the construction and
maintenance of the schedule of rendezvous points, may be avoided if the bridge (or
bridges) could operate without such a schedule. It turns out that such an approach,
which will be referred to as walk-in bridge scheduling, is indeed feasible [Mišić,
Mišić and Chan, 2005b]. Under walk-in scheduling, the bridges may switch between
piconets at will, without any prior arrangement. The piconet masters will poll their
slaves as determined by the chosen intra-piconet polling scheme, which includes the
bridge as well as other slaves. The master will, therefore, poll the bridge in each pi-
conet cycle, and the exchange will start only if the bridge is found to be present. The
operation of the scatternet under this scheduling scheme is schematically depicted in
Fig. 10.5; again, for simplicity we show only two piconets connected through an SS
bridge.

The main advantage of the walk-in scheme lies in the absence of rendezvous
points, which means that any given piconet can accommodate several bridge devices
simultaneously, and any given bridge may visit several piconets in sequence. The
walk-in bridge scheduling can thus be applied with ease to scatternets of arbitrary

© 2006 by Taylor & Francis Group, LLC.

P1
master

 P2
master

bridge

piconet master tries to contact bridge and start exchange

time

piconet master tries to contact bridge and start exchange

(a) Complete exchange mode.

P1
master

 P2
master

bridge

piconet master tries to contact bridge and start exchange

time

piconet master tries to contact bridge and start exchange

(b) Limited exchange mode.

FIGURE 10.5
Walk-in bridge scheduling in the scatternet with two piconets linked through a SS
bridge.

size, and there is no performance penalty due to the construction and subsequent
maintenance of the schedule of rendezvous points. Neither of these features can be
achieved with rendezvous-based scheduling.

There are certain inefficiencies as well. First, slots will be wasted whenever the
master attempts to contact the bridge which is absent; however, the overhead of an
unsuccessful poll is just 2T [Bluetooth SIG, 2003b], which is small compared to
other delays in the scatternet.

Second, the bridge is polled like an ordinary slave, which means it will not be
polled immediately after joining the piconet, but later on. The exact delay will de-
pend on the chosen intra-piconet polling scheme; it will take, one half of the piconet
cycle time. Note that rendezvous-based scheduling is not totally efficient either – the
bridge may wait idle after an exchange ends, rather than before it starts, as in the
case of walk-in scheduling; and a few slots must be wasted in negotiating the next
rendezvous. Therefore, the inefficiencies are not significant when compared to the
rendezvous-based scheduling.

© 2006 by Taylor & Francis Group, LLC.

 P2
master

bridge/P1
master

time

bridge switches to piconet P2 at scheduled (fixed or
variable) rendezvous times

exchange lasts until completed

(a) Rendezvous-based scheduling.

 P2
master

time

piconet master tries to contact bridge and start exchange

bridge/P1
master

(b) Walk-in bridge scheduling in complete exchange mode.

FIGURE 10.6
Bridge scheduling in the scatternet with two piconets linked through an MS bridge.

The walk-in approach solves the question of how should the exchange start, but
does not specify how or when it should end. The simplest solution is to let the
master and the bridge exchange all the queued packets, since there are no pending
rendezvous to honor. This mode, which is schematically depicted in Fig. 10.5(a), is
known as the complete exchange mode. Note that the complete exchange may take
one or more piconet cycles, depending on the traffic profile and delay requirements.
It should be noted that, in this case, the walk-in scheduling behaves in the same
manner as the adaptive schemes described above, with the added bonus that there are
no rendezvous points to fix, no schedule of such points to construct and maintain,
and no administrative overhead associated with those activities.

The non-local traffic will actually benefit from the walk-in scheduling, while bridge
exchanges that last too long may harm the local traffic. If cases where this is undesir-
able and we want to favor local traffic over non-local one, the bridge may be operated
in another mode, known as the limited exchange mode. In this case, the duration of
the bridge residence in any given piconet is limited, which means the bridge will
leave the piconet even though there may still be packets to exchange. This arrange-
ment is shown in Fig. 10.5(b). The limit on the duration of bridge exchanges may
also be necessary to prevent buffer overflows, as explained above.

We note that the limit on bridge residence time may be expressed in absolute time
units, such as seconds or Bluetooth clock time slots T . Alternatively, the limit may
be expressed as the maximum duration of the exchange Txm . In either case, the

© 2006 by Taylor & Francis Group, LLC.

limit on the duration of the exchange may be coupled with the maximum number of
exchanges to be executed (or, alternatively, the maximum number of piconet cycles)
within a single bridge visit to the piconet.

Even though the timing diagrams of Fig. 10.5, which depict different approaches
to bridge scheduling, are drawn for the bridge that operates in the SS mode, all
three bridge scheduling modes and their variants can easily be applied in scatternets
with MS bridges as well. Fig. 10.6 depicts the operation of the MS bridge under
rendezvous-based and walk-in scheduling.

10.3 Bridge scheduling in practice

It remains to see in which manner the bridge scheduling may be implemented in
practice. Parking the bridge device to allow it to visit their piconets is too long and
inefficient, and the bridge will lose its device address in the process. For compatibil-
ity reasons, implementing a proprietary mechanism is out of the question. Therefore,
we can choose between the two modes provided by the specification: SNIFF and
HOLD (both of these were described in more detail in Chapter 1).

Indeed some proposals have used the SNIFF mode for bridge scheduling. How-
ever, the SNIFF mode is negotiated to last for an indefinite number of SNIFF periods,
and it has to be explicitly terminated before the new one is negotiated. Furthermore,
the SNIFF mode has a predefined window in which the master-bridge exchange must
start, otherwise, both participants have to wait an extra SNIFF interval. Both con-
straints limit the usability of the SNIFF mode to rendezvous-based scheduling with a
fixed schedule. The use of the SNIFF mode for dynamic approaches such as adaptive
or walk-in scheduling is likely to incur high overhead due to the need to set up and
terminate the SNIFF mode too frequently.

A much better solution is to use the Bluetooth HOLD mode [Bluetooth SIG,
2003b], which allows the master and the slave to negotiate their next rendezvous
at the end of the current one; all three bridge scheduling modes can be implemented
in this manner.

Under walk-in scheduling, the bridge may come and go without an associated
schedule, and even the use of HOLD mode is not necessary, strictly speaking. At
the same time, the bridge should take care to visit each of its piconets often enough.
Namely, if the bridge is absent from the piconet for a prolonged period, there is a risk
that the supervision timeout will be reached. (The concept of supervision timeout is
explained in Section 1.4.) In this case, the master might be forced to conclude that
the bridge device has left the piconet for good. Furthermore, the link to the bridge
may have an associated poll interval value set for the purpose of QoS support. Both
constraints affect the choice of the time interval between bridge visits.

© 2006 by Taylor & Francis Group, LLC.

master downlink queues
(one per slave)

slaves' uplink
queues

slave 1 slave m-2bridge

outgoing queue
towards the bridge

bridge queue
towards (this)

master

piconet master

FIGURE 10.7
Portion of the queueing model of a scatternet – one piconet linked to one bridge.

10.4 The queueing model and traffic assumptions

Scatternet performance of both scatternet topologies may be analyzed using a queue-
ing model, similar to the one that has been previously used to model the operation
of a single piconet. In this model, each slave maintains an uplink queue, whereas
the piconet master maintains one downlink queue per each slave in its piconet. At
the same time, the master that communicates with bridge devices must maintain a
separate output queue for each bridge. These queues hold packets with destinations
in the other piconets until they are sent through the appropriate bridge. The portion
of the scatternet model containing one piconet and a bridge is schematically shown
in Fig. 10.7.

The bridge device maintains similar queues, one for each piconet in which it acts
as a slave. Fig. 10.8 shows the queues in a bridge that connects three piconets.

For simplicity, we will initially consider simple scatternets with two piconets and
a single bridge that links them, and evaluate their performance under all the three
bridge scheduling approaches. These analyses for rendezvous-based, adaptive, and
walk-in scheduling are presented in Chapters 11, 12, and 13, respectively. More
complex scatternets will be analyzed in Chapters 13 and 14, respectively.

Our traffic model for the scatternet is similar to the one described in Section 2.4,
and subsequently used to analyze the performance of simple piconets. We will as-
sume that only ordinary slaves generate and receive any traffic, while the piconet
masters and the bridge just route packets between their corresponding source and
destination devices. This assumption is similar to the one we have previously used

© 2006 by Taylor & Francis Group, LLC.

to piconet
1

to piconet
2

to
piconet 3

bridge

FIGURE 10.8
Portion of the queueing model of a scatternet – a bridge connecting three piconets.

in our analysis of piconet performance; it simplifies the analysis without restricting
its generality. In fact, the case where piconet master(s) and/or bridge generate or con-
sume packets may easily be accommodated by changing the corresponding packet
arrival rates.

Slaves generate packets in bursts or batches, which correspond to application
packets that are segmented into a number of Bluetooth baseband packets; more de-
tailed discussion on segmentation and reassembly can be found in Section 2.3.

Packet burst arrivals follow a Poisson distribution with the arrival rate λu1 for all
slaves in piconet 1 and λu2 for all slaves in piconet 2, while the length of the bursts is
geometrically distributed with mean value of B. (Modeling using single packets with
Poisson arrivals has been shown to be inaccurate for real life data traffic [Paxson and
Floyd, 1995].) The use of these distributions is actually a first approximation, since
the exact characteristics of Bluetooth data traffic are unknown at this time. However,
our analysis framework can easily accommodate any other distribution, provided its
first and second moments are known.

Packets last one, three, or five time slots with probabilities p1, p3 and p5 =
1 − p1 − p3, respectively [Bluetooth SIG, 2001b]. The corresponding probability
generating function (PGF) is G p(z) = p1z + p3z3 + p5z5, and the first and second

moments of the packet length distribution are L = G ′
p(1) and L2 = G ′′

p(1)+G ′
p(1),

respectively.
The length of the burst follows the probability distribution that may be described

with a probability generating function (PGF) Gb(z) = ∑∞
k=0 bk zk , where bk is the

probability that the burst will contain exactly k packets [Grimmett and Stirzaker,
1992]. We will also need the mean value of the burst length B = G ′

b(1), while its

second factorial moment is defined as B(2) = E[B(B−1)] = G ′′
b(1). It is reasonable

to assume that all slaves will use the same segmentation/reassembly mechanism, and
consequently all packet bursts will have the same burst length and packet length

© 2006 by Taylor & Francis Group, LLC.

distributions. The PGF for the duration of packet burst in time slots is then denoted
as R(z) = Gb(G p(z)) with the mean value R = B L .

Traffic locality is the probability Pl that both the source and the destination of the
packet burst are in the same piconet. (Of course, all packets within a single burst
have the same destination.) The value of Pl is the same for all slaves. All packet-
generating slaves within a piconet exhibit the same value for traffic locality Pl , i.e.,
the probability that both the source and destination of the burst will be in the same
piconet. The probability that packet burst will be forwarded through the bridge is
1 − Pl . For the packet bursts generated for the destinations which are in the same
piconet, all the destinations are equally probable. Also, for the non-local traffic all
destinations in the neighboring piconet are equally probable.

As data packets are queued at each intermediate node before being sent further on,
the performance of the scatternet will be mainly determined by queueing delays in
each of those queues. Three delay variables will be used as our main performance
indicators. First is the access delay Wai (i = 1, 2), the time a data packet has to
wait in the uplink queue of the source device before it is serviced. This parameter
is important for both local and non-local traffic, as all packets, regardless of their
destination, must wait in the corresponding uplink queue at the originating device.
The other two are end-to-end delays from the moment the packet enters the uplink
queue at the source, to the time it arrives at its destination device. We distinguish
between end-to-end delay for local traffic, Wii (i = 1, 2), and the one for non-local
traffic, Wi j (i, j = 1, 2; i �= j), as packets with non-local destinations have to pass
through the bridge.

We finish our introductory presentation by noting that the Bluetooth specification
does not define a protocol for forwarding or routing data from one piconet to another
[Bluetooth SIG, 2003b]. In fact, because addressing schemes used in Bluetooth have
only local significance, a bridging function cannot exist at all at the Bluetooth link
layer. Instead, it has to be handled by the higher layers of the protocol stack, which
is likely to incur additional cost in terms of performance. Still, the analysis of differ-
ent bridge scheduling algorithms should provide important insights into their perfor-
mance. It will give us the theoretical lower limits of bridge performance, thus provid-
ing a convenient benchmark against which the performance of actual networks may
be assessed. A number of routing algorithms specifically targeting Bluetooth net-
works has been proposed [Albrecht, Frank, Martini, Schetelig, Vilavaara and Wen-
zel, 1999; Alzoubi et al., 2002; Bhagwat and Segall, 1999; Bose et al., 2001; Kapoor
and Gerla, 2003; Lin et al., 2003; Prabhu and Chockalingam, 2002; Raman, Bhag-
wat and Seshan, 2001; Song, Li, Wang and Wang, 2003; Song et al., 2005; Stojmen-
ovic, 2004b; Stojmenovic and Xu, 2001; Sun et al., 2002], but their detailed analysis
is beyond the scope of this book.

© 2006 by Taylor & Francis Group, LLC.

11

Rendezvous-based bridge scheduling

We begin now our analysis of different bridge scheduling approaches and their im-
pact on the performance of Bluetooth scatternets. In this chapter, we will analyze the
performance of rendezvous-based bridge scheduling in a simple scatternet with two
Bluetooth piconets linked through a bridge device. Both the Master/Slave (MS) and
Slave/Slave (SS) topologies are discussed. In both cases, the piconet master polls its
ordinary slaves according to the exhaustive and 1-limited service policy.

Our analysis is based on the theory of M [x]/G/1 queues with vacations [Bertsekas
and Gallager, 1991; Takagi, 1988; Takagi, 1991]. We first derive the probability dis-
tribution for bridge cycle time, under the assumption that this distribution is indepen-
dent of the intra-piconet polling scheme. Next, we derive the probability distribution
for piconet cycle time conditioned on the duration of bridge cycle time, under ex-
haustive and 1-limited intra-piconet scheduling policies. We investigate the impact
of scatternet and traffic parameters on the mean values of access and end-to-end
packet delays; in the latter case, we consider local (i.e., intra-piconet) and non-local
(inter-piconet) traffic separately.

The chapter is structured as follows. Section 11.1 presents the queueing theoretic
analysis of the scatternet with an MS bridge, followed by an analogous analysis of
the scatternet with an SS bridge in Section 11.4. Analytical results are shown and
summarized in Section 11.6.

11.1 MS bridge topology

Let m1 and m2 denote the numbers of members in piconets P1 and P2, respectively,
and let the master of P1 act also as the bridge toward piconet P2. As before, we
assume that only ordinary slaves generate and receive data packets; therefore, the
number of packet-generating slaves will be m1 − 1 and m1 − 2 for piconets P1
and P2, respectively. The burst arrival rates for inter-piconet traffic will be λb12 =
(m1 − 1)λu1(1 − Pl) and λb21 = (m2 − 2)λu2(1 − Pl), for traffic flows from P1 to
P2 and vice versa, respectively.

According to Fig. 10.1(b), the bridge cycle time for the MS bridge under ren-
dezvous bridge scheduling is Tcyc = T1 + Tr . In this case, the bridge residence
time in its own piconet, T1, has a fixed value, while the bridge exchange time Tr is a

© 2006 by Taylor & Francis Group, LLC.

random variable. The PGF for the bridge cycle time has the form

Tcyc(z) = zT1 Tr (z) (11.1)

where Tr (z) is the PGF for the duration of the bridge exchange time.
We will first find the probability distributions for the bridge cycle time, followed

by the piconet cycle time.

Bridge cycle time

We assume that the probability distribution of bridge cycle time is independent of
intra-piconet scheduling scheme and therefore the same derivation holds for any
intra-piconet scheduling policy. The duration of the exchange between the bridge
and the master of P2 can be calculated by summing up the durations of the transmis-
sion of the data packets that were queued when the exchange started. The packets
that arrive during the current exchange will be queued until the start of the next
exchange [Bluetooth SIG, 2001b]; therefore, this service discipline is gated policy
[Takagi, 1991].

The probability of exactly l data packet bursts arriving to the outgoing queue of
the bridge (i.e., in the direction from P1 to P2) during the bridge cycle of i slots, is

bl,12 =
∞∑

i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!
(11.2)

where P(Tcyc=i) denotes the probability that the bridge cycle time lasts i slots. Then,
the PGF for the number of packet burst arrivals to the bridge queue during the bridge
cycle time is

B12(y) =
∞∑

l=0

bl,12 yl =
∞∑

l=0

yl
∞∑

i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!

=
∞∑

i=0

P(Tcyc=i)e
−λb12(1−y)i

= T ∗
cyc(λb12 − yλb12)

(11.3)

where T ∗
cyc(s)=

∞∑
i=0

P(Tcyc=i)e
−si denotes the moment generating function [Grimmett

and Stirzaker, 1992] or discrete-time LST transform of the bridge cycle time. (In the
discussions that follow, we will use the term LST transform.) The LST transform of
the bridge cycle time can also be represented as

T ∗
cyc(s) =

∞∑
i=0

P(Tcyc=i)

∞∑
n=0

(−si)n

n!
=

∞∑
n=0

(−s)n

n!

∞∑
i=0

P(Tcyc=i)i
n

=
∞∑

n=0

(−s)n

n!
T (n)cyc

(11.4)

© 2006 by Taylor & Francis Group, LLC.

where T (n)cyc denotes the n-th moment of the bridge cycle time:

T (n)cyc = (−1)n
dn

dsn
T ∗

cyc(s)|s=0

Since the packet bursts are of random size described with the PGF Gb(y), the PGF
for the number of packet arrivals during the bridge cycle time is

A12(y) = B12(Gb(y)) = T ∗
cyc (λb12 − λb12Gb(y)) (11.5)

Then, the probability that exactly k data packets will be sent from the bridge to the
master of P2 is

ak,12 = 1

k!

dk

dyk
A12(0)

=
∞∑

l=0

1

k!

dk

dyk
(Gb(y))

l

∣∣∣∣∣
y=0

∞∑
i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!

= 1

k!

dk

dyk

(∞∑
i=0

P(Tcyc=i)e
−λb12i(1−Gb(y))

)∣∣∣∣∣
y=0

= 1

k!

dk

dyk
T ∗

cyc(λb12 − λb12Gb(y))

∣∣∣∣
y=0

(11.6)

We note that the value ak,12 actually consists of the linear combination of the first
k moments of the bridge cycle time distribution and the probability of no packet
arrivals during the bridge cycle time, which is equal to T ∗

cyc(λb12). By expanding
(11.6), we obtain:

ak,12 = T ∗
cyc(λb12)

k∑
n1=1

d(n1)

dyn1
Gb(0)

k−n1∑
n2=0

d(n2)

dyn2
Gb(0) · · ·

k−n1−n2...−nk−1∑
nk=0

d(nk)

dynk
Gb(0)

·
(

k

max(n, n1)

)
λn

b12(−1)nT (n)cyc

(11.7)

where n =
k∑

i=1

⌈ni

k

⌉
, and we have assumed that

d(0)

dy0
Gb(0) = 1.

By the same token the probability of exchanging k data packets in the opposite
direction (i.e., from the master of P2 to the bridge) during one bridge cycle, is

ak,21 = 1

k!

dk

dyk
T ∗

cyc (λb21 − λb21Gb(y))|y=0 (11.8)

The number of packets queued at the bridge may not be equal to the number of
packets queued at the master of P2; hence, empty (POLL or NULL) packets must be
inserted to balance out the difference. This procedure will be referred to as padding.
Also, the exchange ends with an empty frame, i.e., a POLL packet followed by a

© 2006 by Taylor & Francis Group, LLC.

NULL packet. Therefore, the PGF for the length of the exchange time between the
bridge and the master of piconet P2 can be written in the form

Tr (z) =
∞∑

k=0

ak,12ak,21G p(z)
2k z2

+
∞∑
j=1

∞∑
k=0

(ak,12ak+ j,21 + ak+ j,12ak,21) · G p(z)
2k+ j z j+2

(11.9)

The first term denotes the probability that both packet queues (the outgoing queue at
the master and the corresponding outgoing queue at the bridge) have equal number of
packets. The second term corresponds to the case when these queues have different
lengths, in which case empty packets must be inserted in some frames in order to
service all of the data packets. Finally, the term z2 stands for the empty frame that
terminates the exchange. By replacing z with e−s , we are able to obtain the following
equation related to the bridge cycle time

T ∗
cyc(s) = e−T1s T ∗

r (s) (11.10)

On the left hand side of (11.10), we have the LST transform of the bridge cycle
time; on the right hand side, we have a function of its moments. Therefore, an
approximate expression for T ∗

cyc(s) can be found by finding its first k moments by
differentiating (11.10) with respect to s. For finding those k moments, together with
T ∗

cyc(λb12) and T ∗
cyc(λb21), we need k + 2 equations. Two of these can be obtained

by substituting s = λb12 and s = λb21 in (11.10), while the remaining k equations
are obtained from (11.10), through differentiation with respect to s, and truncation
of moments of order higher than k. Once the moments are found, we can determine
the coefficients ak,12 and ak,21, which means that PGFs Tr (z) and Tcyc(z) can be
determined with the required accuracy.

Due to the presence of empty packets, the actual frame length will not be equal to
twice the data packet length given by the PGF G p(z)2. The PGF for the frame length
during the bridge exchange may be obtained from (11.9) as

Fb(z) =
∞∑

k=0

ak,12ak,21

(
G p(z)

2k z2
)1/(k+1)

+
∞∑
j=1

∞∑
k=0

(ak,12ak+ j,21 + ak+ j,12ak,21) ·
(

G p(z)
2k+ j z j+2

)1/(k+ j+1)

(11.11)
and the mean frame length for bridge-master exchange may be obtained as Fb =
F ′

b(1).

Piconet cycle time

In order to determine the probability distribution of the access delay, we need the
mean duration of piconet service cycle, i.e., the time interval for a piconet master

© 2006 by Taylor & Francis Group, LLC.

to service all of its slaves once. Due to the complexity of calculations, we will
assume symmetric slaves with equal traffic loading. As noted above, one channel
may be modeled as a pair of queues, for which the burst arrival rates will be λu1 =
λu2 = λ for the slave (uplink) queue, and λd1 = λPl + λb21/(m1 − 1) for the
corresponding downlink queue at the master. Due to the symmetry of the scatternet
under rendezvous-based scheduling, we will consider one piconet, say, P1, only.

In the local operation phase, a number of frames may be exchanged between the
master and a single slave during a single visit to that slave. Those packets have
been queued in the corresponding uplink and/or downlink queues during the previous
piconet cycle. (As in the case of bridge exchanges, the number of packets in one
direction may be different from the number of packets in the opposite one, and empty
packets may have to be added to balance out the difference; furthermore, an empty
packet will signalize that both queues are empty.) However, the previous piconet
cycle may have been interrupted by the bridge exchange, and the number of queued
packets depends on the probability distribution of the length of the bridge exchange,
as well as on the probability distribution of the bridge cycle time.

To model the impact of bridge exchanges on the operation of the piconet, let us
start by assuming that the bridge exchange has a fixed duration and derive the con-
ditional probability distribution for the piconet cycle time. This result will be used,
then, to derive the unconditional probability distribution of the piconet cycle time.

Let us consider the piconet cycle in P1, in the presence of bridge exchanges which
occur after every T1 slots of local operation and last n slots (which, in turn, means
that the bridge cycle time lasts for n + T1 slots). Let Ct

1|n denote the total number
of slots in a piconet cycle, and let Ct

1(z)|n denote its PGF. (At this moment, the
notation of piconet cycle time is generic, i.e., it is not specifically tied to any intra-
piconet scheduling policy.) Part of the piconet cycle will be used for the bridge
exchange(s); therefore, let the “pure piconet cycle” C p

1 |n denote the number of slots
spent exclusively on communication with ordinary slaves between the beginning of
the visit to the slave j (where j = 1 . . m1 − 1) and the end of the visit to the slave

(j + m1 − 1)mod m1. We will denote its conditional PGF as C p
1 (z)|n =

∞∑
i=0

r (n)i zi

(where (n) should be considered as a superscript, rather than as power).
Also, let S p

1 |n denote the ‘pure’ single channel service time, i.e., the time to empty
both uplink and downlink queues for one particular slave channel without counting
the slots used for the bridge exchange(s), conditioned upon the bridge exchange
time being equal to n slots. The corresponding conditional PGF will be denoted
as S p

1 (z)|n.

Let the pure piconet cycle last i slots with the probability r (n)i . Now consider a
super-cycle that consists of T1i time slots; during this super-cycle, all combinations
of relative positions of beginnings of piconet cycle and local operation (i.e., master
residence) times will be repeated k times, where k = 1 . . (T1i)/ lcm(T1, i) and
lcm(T1, i) is the least common multiple for the current value of piconet cycle i and
the master residence time in piconet P1, T1. Obviously, the super-cycle will contain
n p = T1 piconet cycles (without interruptions) and nb = i master residence times.

© 2006 by Taylor & Francis Group, LLC.

Then, the piconet cycle can be interrupted either
⌈

i
T1

⌉
times or

⌊
i

T1

⌋
times (the two

values will be the same if i
T1

is an integer). The probabilities of these two events are

ppi,� i
T1

� =
nb − n p

⌊
nb
n p

⌋
n p

= 1 − ppi,� i
T1

 (11.12)

The PGF for the number of bridge exchanges within one piconet cycle may, then, be
expressed as

I (z) =
∞∑

i=0

r (n)i

(
pp

i,
⌊

i
T1

⌋z

⌊
i

T1

⌋
+ pp

i,
⌈

i
T1

⌉z

⌈
i

T1

⌉)
(11.13)

while the PGF for the number of slots inserted in the piconet cycle due to the bridge
exchange has the form I (zn). Then, the PGF for the total length of the piconet cycle
in the presence of bridge exchanges that occur at every T1 slots of “pure” piconet
operation and last for n slots, is

Ct
1(z)|n =

∞∑
i=0

r (n)i

(
pp

i,
⌊

i
T1

⌋z
i+n

⌊
i

T1

⌋
+ pp

i,
⌈

i
T1

⌉z
i+n

⌈
i

T1

⌉)
(11.14)

Exhaustive polling

In order to determine C p
1 (z)|n, we have to find the pure channel service time. The

probability that k data packets are sent from the slave to the master in piconet P1
without taking into account the packets from the bridge exchange, may be obtained
as

ak,u1|n = 1

k!

dk

dyk
Ct∗

1 (λu1 − λu1Gb(y))|y=0 |n (11.15)

where Ct∗
1 (λu1−λu1Gb(y))|n denotes the PGF for the number of data packet arrivals

in the slave uplink queue during the total piconet cycle time. By the same token, the
equivalent conditional probability that k data packets are sent from the master to the
slave in piconet P1 is

ak,d1|n = 1

k!

dk

dyk
Ct∗

1 (λd1 − λd1Gb(y))|y=0 |n (11.16)

By combining these elements together, the conditional PGF for the pure channel
service time becomes

S p
1 (z)|n =

∞∑
k=0

(ak,u1|n)(ak,d1|n)G p(z)
2k z2

+
∞∑
j=1

∞∑
k=0

(
(ak,u1|n)(ak+ j,d1|n)+ (ak+ j,u1|n)(ak,d1|n)

)
G p(z)

2k+ j z(j+2)

(11.17)

© 2006 by Taylor & Francis Group, LLC.

Finally, the conditional PGF for the pure piconet cycle time becomes

C p
1 (z)|n = (S p

1 (z)|n)m1−1 (11.18)

In order to solve the last equation we have to truncate the C p
1 (z)|n to imax members

r (n)i . This is an approximate solution – but it should be sufficient for large imax . Then,

we have to set imax equations in the form r (n)i = 1
i!

di

dzi C p
1 (0)|n. In each equation (say,

the i-th), we will have the term r (n)i on the left side and the function of all r (n)i mass
probabilities on the right side. The resulting system of equations can be solved using
numerical solvers (e.g., Waterloo Maple).

When the PGF for the pure piconet cycle time is known, the PGF for the total
piconet cycle time can be found from (11.14). Then, the unconditional PGF for the
total piconet cycle time can be obtained by using the mass probabilities for the bridge

exchange distribution from the PGF Tr (z) =
∞∑

n=0

pnzn , which is actually derived in

the form given by (11.9). This unconditional PGF of the total piconet cycle time can
be approximated with

Ct
1(z) =

nmax∑
n=0

pnCt
1(z)|n (11.19)

where nmax is some sufficiently large value that depends on the value of T1 and the
intensity of inter-piconet traffic.

The PGF for the frame length for the regular slave-master exchange will be

Fs(z) =
nmax∑
n=0

pn Fs(z)|n (11.20)

which differs from G p(z)2, due to the presence of empty slots to balance the un-
matched data packets. The values pn are mass probabilities that bridge exchange
lasts n time slots. The conditional PGF for the frame time is:

Fs(z)|n =
kmax∑
k=0

(ak,u1|n)(ak,d1|n)(G p(z)
2k z2)1/(k+1)

+
jmax∑
j=1

kmax∑
k=0

(
(ak,u1|n)(ak+ j,d1|n)+ (ak+n,u1|n)(ak,d1|n)

)

· (G p(z)
2k+ j z j+2)1/(k+ j+1)

(11.21)

where kmax and jmax are determined according to the accuracy required. The mean
frame length will be Fs = F ′

s(1).
From the viewpoint of a particular slave, the master is not available—i.e., takes a

vacation—during the time it services other slaves. The vacation lasts until the next

© 2006 by Taylor & Francis Group, LLC.

visit to the slave; if the slave queue is empty at that time, the master will immedi-
ately start a new vacation. The vacation time is, then, the time while the master is
busy servicing other slave queues. The duration of the vacation period V1 may be
described with the following PGF

V1(z) =
nmax∑
n=0

pn(S
t
1(z)|n)m1−2 (11.22)

and its first and second moments are V1 = V ′
1(1) and V 2

1 = V ′′
1 (1)+ V ′

1(1), respec-
tively.

1-limited polling

In order to determine C p
1 (z)|n, we have to find the pure channel service time. The

probability that zero data packets (i.e., a single NULL packet) are sent from the slave
to the master, without taking into account the packets from the bridge exchange, may
be obtained as

a0,u1|n = 1 − λu1 B Ct
1|n (11.23)

The probability that one data packet is sent from the slave to the master in a polling
cycle is then:

a1,u1|n = λu1 B Ct
1|n (11.24)

By the same token, the equivalent conditional probabilities that one POLL packet
or one data packet is sent from the master to the slave are respectively equal to:

a0,d1|n = 1 − λd1 B Ct
1|n

a1,d1|n = λd1 B Ct
1|n

(11.25)

By combining these elements together, the conditional PGF for the pure channel
service time becomes

S p
1 (z)|n = (a0,u1|n)(a0,d1|n)z2

+ (
(a1,u1|n)(a0,d1|n)+ (a0,u1|n)(a1,d1|n)

)
G p(z)z

+(a1,u1|n)(a1,d1|n)G p(z)
2

(11.26)

Finally, the conditional PGF for the pure piconet cycle time becomes

C p
1 (z)|n = (S p

1 (z)|n)m1−1 (11.27)

and we can solve it in the similar way to the one indicated for the exhaustive service.
When the PGF for the pure piconet cycle time is known, the PGF for the total

piconet cycle time can be found from (11.14). Then, the unconditional PGF for the
total piconet cycle time can be obtained by using the mass probabilities for the bridge

exchange distribution from the PGF Tr (z) =
∞∑

n=0

pnzn , which is actually derived in

© 2006 by Taylor & Francis Group, LLC.

the form given by (11.9). This unconditional PGF of the total piconet cycle time can
be approximated with

Ct
1(z) =

nmax∑
n=0

pnCt
1(z)|n (11.28)

where nmax is some sufficiently large value that depends on the value of T1 and the
intensity of inter-piconet traffic.

The PGF for the frame length for the regular slave-master exchange in the case of
1-limited service is the same as the channel time:

Fs(z) = S p
1 (z) (11.29)

The duration of the vacation period V1 experienced by the slave has the same PGF
of the same form as (11.22).

11.2 Packet delays: the MS bridge case

We are now ready to calculate access delay and end-to-end delay for local and non-
local traffic for two piconets interconnected by the MS bridge. Delay components
for both kinds of delay are shown in Figure 11.1.

Exhaustive polling

By substituting e−s in place of z in the previously derived PGFs, we obtain the LSTs
for individual components of the access delay. The LST for the access delay at the
slave in a Bluetooth piconet is obtained from the analysis of exhaustive FCFS system
with vacations and batch arrivals [Takagi, 1991, Chapter 2, Equation 3.20], and it has
the form

W ∗
a1(s) = 1 − V ∗

1 (s)

sV1
· 1 − Gb(F∗

s (s))

B (1 − F∗
s (s))

· s(1 − λu1 B Fs)

s − λu1 + λu1Gb(F∗
s (s))

(11.30)

The mean access delay is obtained as

Wa1 = −(W ∗
a1)

′(0)

= λu1 B F2
s

2(1 − λu1 B Fs)
+ B(2) Fs

2B(1 − λu1 B Fs)
+ V 2

1

2V1

(11.31)

where F2
s = F ′

s(1)+ F ′′s(1) denotes the second moment of the frame length distri-
bution during ordinary master-slave exchange.

Note that the burstiness of the traffic is essentially preserved under exhaustive
service scheduling, because the entire burst from the slave is transferred without

© 2006 by Taylor & Francis Group, LLC.

source
slave piconet masterdestination

slave

packet sent to the master, enters
the appropriate downlink queue

packet sent to the
destination slave

packet enters the
uplink queue

packet sent to the
higher layers

access delay
Wa

downlink delay
Wm

(a) Local traffic.

source slave in
P1

P1 master/
bridge

packet sent to P1
master, enters the

outgoing queue

packet enters
the uplink queue

access delay
Wa1

downlink delay
Wm2

P2 master destination
slave in P2

packet sent to the
destination slave packet sent to

the higher layers

packet sent to P2
master, enters the

downlink queue

bridge delay
Wb12

(b) Non-local traffic.

FIGURE 11.1
Delay components in the scatternet with an MS bridge.

interruption to the corresponding downlink queue. Occasionally, a burst might be
interrupted due to the bridge exchange, but even in this case the transfer could be re-
sumed after the exchange, and such burst will actually reappear in the corresponding
downlink queue. Therefore, the queueing delay at the master is equal to the access
delay at the slave, W ∗

m1(s) = W ∗
a1(s), which may be obtained from (11.30).

© 2006 by Taylor & Francis Group, LLC.

The calculation of the end-to-end delay is slightly more involved, as two distinct
cases may be observed. If both the source and destination nodes of a packet are in
the same piconet, the total delay is the sum of two components, the access delay at
the slave and the queueing delay at the master. The LST of this delay is W ∗

11(s) =
W ∗

a1(s)W
∗
m1(s), and the mean value of the end-to-end delay for local traffic is equal

to
W11 = Wa1 + Wm1 (11.32)

An analogous expression holds for piconet P2.
Packets may also go from the source in one piconet to the destination in the other

one. Such packets will have to pass through the bridge, which incurs an additional
queueing delay. Since the packets in the bridge are served exhaustively, the corre-
sponding LST for the bridge queueing delay (for packets going from P1 to P2) under
rendezvous-based bridge scheduling is:

W ∗
b12(s) = 1 − T ∗

1 (s)

sT1
· s(1 − λb12 B Fb)

s − λb12 + λb12Gb(F∗
b (s))

· 1 − Gb(F∗
b (s))

B(1 − F∗
b (s))

(11.33)

where T ∗
1 (s) = T1/s is the LST of the vacation time taken after serving the bridge’s

and master’s queue toward the bridge.
The mean bridge queueing delay for packets going from P1 to P2 under rendezvous-

based scheduling is

Wb12 = λb12 B F2
b

2(1 − λb12 B Fb)
+ B(2) Fb

2B(1 − λb12 B Fb)
+ T 2

1

2T1
(11.34)

where F2
b = G ′′

f b(1)+ G ′
f b(1) denotes the second moment of frame length distribu-

tion during bridge master exchange. Also, since T1 is constant, the third component
of the previous expression is only T1/2.

By the same token, packets going in the opposite direction (i.e., from P2 to P1)
will experience the queueing delay similar to (11.33).

Overall, the mean queueing end-to-end delay time will be

W12 = Wa1 + Wb12 + Wm2

W21 = Wa2 + Wb21 + Wm1
(11.35)

for packets going from P1 to P2 and from P2 to P1, respectively.

1-limited polling

When the PGFs for the piconet cycle time, frame time, and vacation time are known,
we may calculate the LST for distribution of the waiting time (access delay) at the
slave queue [Takagi, 1991]:

W ∗
a1(s) = 1 − V ∗

1 (s)

sV1
· s(1 − λu1 B Ct

1)

s − λu1 + λu1Gb(Ct∗
1 (s))

· 1 − Gb(Ct∗
1 (s))

B (1 − Ct∗
1 (s))

(11.36)

© 2006 by Taylor & Francis Group, LLC.

where V ∗
1 (s) and Ct∗

1 (s) denote the LST of the vacation time and cycle time probabil-
ity distributions, respectively. The average access delay at the slave is then calculated
as Wa1 = −(W ∗

a1)
′(0), and its value is:

Wa1 = λu1 B (Ct
1)

2

2(1 − λu1 B Ct
1)

+ B(2) Ct
1

2B(1 − λu1 B Ct
1)

+ V 2
1

2V1
(11.37)

where B(2) = E[B(B − 1)] = G ′′
b(1) denotes the second factorial moment of the

packet burst length distribution.
Analogous expressions may be obtained for piconet P2, except that the number of

packet-generating slaves should be set to m2 − 2.
It may be interesting to analyze the behavior of the mean access delay when the

aggregate packet arrival rate is kept constant, λu1 B = const, while the mean burst
size B is variable. First, the mean value of exchange time, Tr , is proportional to
λu1 B rather than on either of these separately. Therefore, it will be constant when
the aggregate packet arrival rate is constant, even though the mean burst size changes.
Second, the mean piconet cycle time Ct

1 is also dependent on the product of λu1 and
B, and therefore constant as well. Consequently, the mean vacation time is also
constant.

Having found this, let us take a closer look at the three terms in (11.37). Since we
have assumed a geometric distribution of packet burst length, the second factorial
moment is B(2) = G ′′

b(1) = 2B(B − 1), therefore B(2)/B = 2(B − 1).

With that in mind, C
′′t
1 (z)may be expressed as a linear combination of products of

components which contain zeroth, first and second derivatives of PGFs for channel
time and bridge exchange time. When z = 1, all components will be linear functions
of packet arrival rate, e.g., k1 + k2λu1 B (where k1 and k2 are constants), except for
the second derivative T ′′

r (1), which contains the second derivative G ′′
b(1) and has the

form k3 + k4λu1 B
2
. Since λu1 B = const, this means that T ′′

r (1) is a linear function

of B. Overall, C2t
1 will be a linear function of B.

By the same token, the second moment of vacation time V 2
1 can be shown to have

the form K5 + K6λu1 B
2
, and is therefore a linear function of B.

In summary, the numerators of all three fractions from (11.37) are linear functions
of B, and the denominators of all three depend on the packet arrival rate λu1 B which
is constant. Therefore, we may conclude that the mean access delay time Wa1 is a
linear function of mean burst size B – or, in plain words, the burstier the traffic, the
longer the access delay.

The calculation of end-to-end delay for 1-limited intra-piconet scheduling is simi-
lar to the case of exhaustive scheduling given in 11.2 but is slightly more complicated
due to the change of the burst size caused by the scheduling policy. The burstiness
of the traffic in the downlink (master) queue will differ from that of the traffic in the
slave (uplink) queue because the bursts from different source slaves with the same
destination will become interleaved in the same downlink queue, which will in turn
lead to an equivalent decrease in burst length. Exact analysis of this phenomenon

© 2006 by Taylor & Francis Group, LLC.

is fairly involved, and we will only present an approximate model for the decrease
of the burst length B = 1/pB , where pB is the parameter of geometric distribution
[Grimmett and Stirzaker, 1992]. Since two slaves in a piconet, say, P1, have the
same local destination with the probability P2

l /(m1 − 2)2, the probability that the
two bursts will not overlap in time (and, consequently, that they will not be inter-
laced in the same downlink queue) will be 1 − P2

l /(m1 − 2)2. Therefore, given the
parameter pB of the geometric distribution of burst length at the source slave, the
equivalent parameter pBm of the packet burst at the master (downlink) queue will be

pBm = pB

(
1 − P2

l

(m1 − 2)2

)
+ 1 · P2

l

(m1 − 2)2
(11.38)

The new equivalent mean burst length will be Bm = 1/pBm . In order to maintain
the same server utilization under decreased burst length, the burst arrival rate has to
be scaled so that λd1m Bm = λd1 B.

The mean queueing delays in master downlink queues in piconets P1 and P2,
respectively, are equal to

Wm1 = λd1m Bm X2
c1

2(1 − λd1m Bm Ct
1)

+ B(2)m Ct
1

2Bm(1 − λd1m Bm Ct
1)

+ V 2
1

2V1

Wm2 = λd2m Bm (Ct
2)

2

2(1 − λd2m Bm Ct
2)

+ B(2)m Ct
2

2Bm(1 − λd2m Bm Ct
2)

+ V 2
2

2V2

(11.39)

Mean values of the end-to-end delay for local traffic, bridge delay, and end-to-end
delay for non-local traffic are the same as calculated in Section 11.2.

Stability considerations

Stability of scatternet operation means that all the relevant queues are stable, i.e.,
that the mean rate of servicing the packets in each queue is larger than the mean
packet arrival rate. This applies to uplink queues at each slave, downlink queues at
the master, and the bridge and master outgoing queues alike.

Stability conditions for the slave uplink queues can be derived as follows. Let us
assume that the number of serviced packets per slave in one piconet cycle is limited
to M , in which case the mean number of packet arrivals in the uplink queue during
the same interval must be less than M . If we consider uplink slave’s queue and
downlink master’s queue in parallel and let M → ∞, we get:

(λu1 + λd1)BL(m1 − 2)
∞∑

n=0

pn

(
1 + n

n + T1

)
< 1 (11.40)

This stability criterion is tighter than the one given by the equations for the access
delay,

λu1 B Fs < 1
λd1 B Fs < 1

(11.41)

© 2006 by Taylor & Francis Group, LLC.

access delay

non-local end-to-end delay

local end-to-end delay

0

200

400

600

800

1000

2 4 6 8 10 12 14 16
B

(a) Limited service scheduling.

access delay

local end-to-end delay

non-local end-to-end delay

100

200

300

400

500

600

700

2 4 6 8 10 12 14 16
B

(b) Exhaustive service scheduling.

FIGURE 11.2
MS bridge: delays as functions of mean packet burst length under constant aggregate
packet arrival rate. (From J. Mišić and V. B. Mišić, “Bridges of Bluetooth county:
topologies, scheduling, and performance,” IEEE J. Select. Areas Commun. – Wireless
Series 21(2):240–258, c©2004 IEEE. Reprinted with permission.)

which does not take into account the increase of the vacation time caused by the
increase in packet burst arrival rates.

Under rendezvous-based scheduling, the stability condition for the bridge is

λb12 B Fb < 1 (11.42)

A similar set of conditions should hold in P2. Note that Fs and Fb depend on the
symmetry of the uplink and downlink packet burst arrival rates; their maximum value
is 2L . The last stability condition can be rewritten as (m1 − 1)λu1(1 − Pl)B Fb < 1.
Therefore, under low intensity of inter-piconet traffic the stability of slave queues
and master downlink queues will be more critical than the stability of bridge queue
and master queue toward the bridge. Under high intensity of inter-piconet traffic, the
opposite holds.

11.3 Performance of the MS bridge

In order to assess the impact of various scatternet and traffic parameters on perfor-
mance indicators such as access delay and end-to-end-delay, we have plotted analyt-
ical solutions for access and end-to-end delays. For all measurements, both piconets
were assumed to have six packet-generating slaves (m1 = 7,m2 = 8), mean packet
length was L = 3 with p1 = p3 = p5 = 1/3, and traffic locality was Pl = 0.9.

Analytical results were subsequently verified with a Bluetooth piconet simulator,
built using the object-oriented Petri Net-based simulation engine Artifex by RSoft-
Design, Inc. [RSoft Design, Inc., 2003], running on a Linux platform. The simulator

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

200

300

400

500

(a) 1-limited polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

100

200

300

(b) Exhaustive polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

140

T1

200
300
400
500
600

(c) 1-limited polling, simulation results.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

100

200

300

400

(d) Exhaustive polling, simulation results.

FIGURE 11.3
MS bridge: mean access delay as a function of burst arrival rate and time between
bridge exchanges T1. (From J. Mišić and V. B. Mišić, “Bridges of Bluetooth county:
topologies, scheduling, and performance,” IEEE J. Select. Areas Commun. – Wireless
Series 21(2):240–258, c©2004 IEEE. Reprinted with permission.)

operates at a MAC level, and it contains separate classes for slave devices with bursty
packet generator, piconet masters (one of which contains the bridge logic), and a
top-level scatternet class that integrates all other classes and provides measurement
capabilities. In order to eliminate possible transient effects at system start-up, all
measurements were taken after an initial warm-up delay needed to bring the system
to a steady state. Since the simulation results correspond quite well to those obtained
analytically, they will be presented and discussed together.

The impact of traffic burstiness is depicted by the diagrams in Fig. 11.2, where
different delay variables are plotted as functions of the mean length of the burst,
while keeping the uplink packet arrival rate per all slaves constant and equal to λB =
0.015. Continuous lines denote analytical solutions, while the diamonds show results
obtained by simulation. The following observations may be made:

• As predicted, an increase in mean burst length corresponds to a nearly lin-
ear increase in all delay variables. In other words, the delays are almost linear

© 2006 by Taylor & Francis Group, LLC.

functions of traffic burstiness, and smaller delays could be achieved by keeping
the burst length as small as possible, which may be accomplished through ap-
propriate segmentation mechanisms. Packet segmentation is another topic cur-
rently missing from the Bluetooth specification [Bluetooth SIG, 2001b] and,
as such, it presents an interesting research topic; some preliminary results are
reported in [Kalia et al., 1999; Kalia, Bansal and Shorey, 2000].

• The end-to-end delay for non-local traffic is higher than the corresponding
delay for local traffic, as could be expected – non-local traffic has to pass one
extra hop. The difference, however, does increase somewhat with the increase
in mean burst length.

• Delays can reach rather high values: for values of mean burst length of 15
and above, end-to-end delays can reach values in the range of thousands of
Bluetooth time slot intervals T (remember that T = 0.625µs).

• All three delay variables are smaller by about 30% when exhaustive service
scheduling is used.

Fig. 11.3 shows the dependency of mean access delay on burst arrival rate and
time interval between bridge exchanges, for mean burst length of B = 10. The
corresponding results for mean end-to-end delay for non-local traffic are shown in
Fig. 11.4. Again, the correlation between analytical and simulation results is quite
good, both in shape and in absolute values. Also, there appears to be a broad but not
very pronounced minimum in the end-to-end delay for non-local traffic. Finally, it
should be noted that mean end-to-end delay for non-local (i.e., inter-piconet) traffic
can reach values in the range of seconds; similar results have been obtained for
file transmissions in the single piconet case [Capone et al., 2001]. Although such
long delays might seem unacceptable for individual packets, they may still be quite
manageable in the context of file transmissions.

Mean non-local end-to-end delays are shown from a slightly different perspec-
tive in Fig. 11.5: i.e., as a function of traffic locality Pl and time between bridge
exchanges T1. Both analytical solutions (upper row) and simulation results (bottom
row) show that the dependency is similar in shape to the previous one. This similarity
should come as no surprise, as the decrease of the probability of local destinations
actually leads to an increase of the number of packets that have to be routed through
the bridge. This increase in turn leads to longer bridge exchanges and less time for
servicing local slaves, hence the longer delays. Again, the exhaustive polling per-
forms better than its 1-limited counterpart.

The relative advantage of exhaustive over 1-limited polling may be illustrated
through the ratios of end-to-end delays for local and non-local traffic, as shown in
Fig. 11.6. (Ratios of access delays has been omitted for brevity, and because they
are less interesting anyway.) As can be seen, exhaustive service has about 15 to 20%
advantage for a wide range of values of independent parameters. Limited service
offers comparable or smaller delays only at very small values of T1 and high values
of λ – which are not very likely in practice. Non-local end-to-end delay is always
better under exhaustive polling.

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100

T1

400

600

800

1000

(a) 1-limited polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

200

400

600

800

(b) Exhaustive polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

140

T1

400

600

800

1000

1200

(c) 1-limited polling, simulation results.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

200

400

600

800

1000

(d) Exhaustive polling, simulation results.

FIGURE 11.4
MS bridge: mean end-to-end delay for non-local traffic as a function of burst ar-
rival rate and time between bridge exchanges T1. (From J. Mišić and V. B. Mišić,
“Bridges of Bluetooth county: topologies, scheduling, and performance,” IEEE J.
Select. Areas Commun. – Wireless Series 21(2):240–258, c©2004 IEEE. Reprinted
with permission.)

11.4 SS bridge topology

As this topology is symmetrical with respect to the piconets it contains, it suffices to
consider the packet exchange between the bridge and one of piconet masters only.
Under rendezvous-based scheduling, the bridge residence time in each piconet is
fixed, and there is no guarantee that both the bridge queue and the outgoing queue
of the corresponding piconet master will be completely empty at the end of the ex-
change. The bridge cycle time is equal to T1 + T2, and the PGF for the bridge cycle
time in this case is

Tcyc(z) = zT1+T2 (11.43)

We start by finding the probability distributions for the bridge exchange time and
piconet cycle time. To facilitate the derivation, we will first assume that the bridge

© 2006 by Taylor & Francis Group, LLC.

20
40

60
80

100
120

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

800

1000

1200

1400

(a) 1-limited polling, analytical solutions.

20
40

60
80

100

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

400
600
800

1000
1200
1400

(b) Exhaustive polling, analytical solutions.

20
40

60
80

100
120

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

800

1000

1200

(c) 1-limited polling, simulation results.

20
40

60
80

100
120

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

400

600

800

1000

(d) Exhaustive polling, simulation results.

FIGURE 11.5
MS bridge: mean end-to-end delay for non-local traffic as a function of traffic lo-
cality, Pl , and time between bridge exchanges, T1. (From J. Mišić and V. B. Mišić,
“Bridges of Bluetooth county: topologies, scheduling, and performance,” IEEE J.
Select. Areas Commun. – Wireless Series 21(2):240–258, c©2004 IEEE. Reprinted
with permission.)

exchange is limited to T1 (T2) time slots, then evaluate its impact on the piconet cycle
time, and finally derive the probability distribution for the piconet cycle time.

Bridge exchange time

We assume that the PDF of the bridge exchange time is independent of the intra-
piconet polling scheme. This problem is similar to the problem of M/G/1 queue with
vacations and gated time-limited service, which has been considered in [Leung and
Eisenberg, 1989]. However, the results presented there cannot be directly used be-
cause of the coupling of bridge and master queues, and the existence of POLL/NULL
packets. Instead, we have to proceed step by step, from packet bursts through packets
to slots.

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

0.8
0.85

0.9
0.95

1

(a) Ratio of local end-to-end delays.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

0.7
0.75

0.8
0.85

0.9

(b) Ratio of non-local end-to-end delays.

FIGURE 11.6
MS bridge: ratios of mean delays for exhaustive vs. 1-limited polling as functions of
burst arrival rate and time between bridge exchanges, T1 – simulation results only.
(From J. Mišić and V. B. Mišić, “Bridges of Bluetooth county: topologies, schedul-
ing, and performance,” IEEE J. Select. Areas Commun. – Wireless Series 21(2):240–
258, c©2004 IEEE. Reprinted with permission.)

The probability that exactly l data packet bursts will be sent from P1 to P2 is

bl,12 =
∞∑

i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!
(11.44)

where P(Tcyc=i) denotes the probability that the bridge cycle time is equal to k slots.
The PGF for the number of packet burst arrivals to the bridge queue during the bridge
cycle time is

B12(y) =
∞∑

l=0

bl,12 yl =
∞∑

l=0

yl
∞∑

i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!

=
∞∑

i=0

P(Tcyc=i)e
−λb12(1−y)i

= T ∗
cyc(λb12 − yλb12)

(11.45)

where T ∗
cyc(s) =

∞∑
i=0

P(Tcyc=i)e
−si denotes the moment generating function [Grimmett

and Stirzaker, 1992] or discrete-time LST transform of the bridge cycle time.
Since the packet bursts are of random size described with the PGF Gb(y), the PGF

for the number of packet arrivals during the bridge cycle time is

A12(y) = B12(Gb(y)) = T ∗
cyc (λb12 − λb12Gb(y)) (11.46)

The probability that exactly k data packets will be sent from the bridge to the
master of P2 is

© 2006 by Taylor & Francis Group, LLC.

ak,12 = 1

k!

dk

dyk
A12(0)

=
∞∑

l=0

1

k!

dk

dyk
(Gb(y))

l
|y=0

∞∑
i=0

P(Tcyc=i)e
−λb12i (λb12i)l

l!

= 1

k!

dk

dyk

(∞∑
i=0

P(Tcyc=i)e
−λb12i(1−Gb(y))

)
|y=0

= 1

k!

dk

dyk
T ∗

cyc(λb12 − λb12Gb(y))|y=0

(11.47)

We note that the value ak,12 is a linear combination of the first k moments of the
bridge cycle time distribution and the probability of no packet arrivals during the
bridge cycle, which is equal to T ∗

cyc(λb12). Expanding the expression (11.47), we
obtain

ak,12 = T ∗
cyc(λb12)

(
k

max(n, n1)

)
λn

b12(−1)nT (n)cyc

·
k∑

n1=1

d(n1)

dyn1
Gb(0)

k−n1∑
n2=0

d(n2)

dyn2
Gb(0) · · ·

k−n1−n2...−nk−1∑
nk=0

d(nk)

dynk
Gb(0)

(11.48)

where n =
k∑

i=1

⌈ni

k

⌉
, and the k-th moment of the bridge cycle time distribution is

defined as

T (k)cyc =
∞∑

n=0

P(Tcyc=n)n
k = (−1)k

dk

dsk
T ∗

cyc(s)

∣∣∣∣
s=0

(11.49)

For completeness, we also assume that d(0)

dy0 Gb(0) = 1 in (11.48).
By the same token, the probability of sending k data packets from the master of

P2 to the bridge in a single bridge cycle is

ak,21 = 1

k!

dk

dyk
T ∗

cyc (λb21 − λb21Gb(y))

∣∣∣∣
y=0

(11.50)

As before, whenever the numbers of exchanged data packets in two directions
differ, POLL or NULL packets must be inserted, and the bridge exchange terminates
with an empty frame. The PGF for the total number of slots that have been generated
during the bridge cycle is

Tr (z) =
∞∑

k=0

ak,12ak,21G p(z)
2k z2

+
∞∑
j=1

∞∑
k=0

(ak,12ak+ j,21 + ak+ j,12ak,21) · G p(z)
2k+ j z j+2

(11.51)

© 2006 by Taylor & Francis Group, LLC.

The first term in (11.51) denotes the probability that both packet queues (the outgo-
ing queue at the master and the corresponding outgoing queue at the bridge) have
the same number of packets. The second term corresponds to the case where these
queues have different lengths, in which case empty packets must be inserted in some
frames in order to service all of the data packets. The term z2 in (11.51) stands for
the POLL/NULL frame that terminates the exchange. Therefore, the probability that

the exchange takes exactly i slots is ci = 1

i!

di

dzi
Tr (0).

Now, the exchange may be terminated because of the pending rendezvous before
all the queued packets are actually exchanged. The ‘leftover’ packets will have to
be serviced in the next exchange, together with the ‘fresh’ ones that have arrived
during the bridge residence in the other piconet. The probability qi of having a total
of i slots worth of queued packets at the beginning of an exchange (the ‘unfinished
exchange work’) is

qi =
T1−1∑
j=0

q j ci +
T1+i∑
j=T1

q j ci− j+T1 (11.52)

By multiplying both sides with zi and summing over i , we obtain

Q(z) =
∞∑

i=0

qi z
i =

∞∑
i=0

zi
T1−1∑
j=0

q j ci +
∞∑

i=0

zi
T1+i∑
j=T1

q j ci− j+T1 (11.53)

By manipulating the order of summation, we obtain

Q(z) =
zT1 Tr (z)

T1−1∑
j=0

q j (1 − z j)

zT1 − Tr (z)
(11.54)

In order to find q j , j = 0 . . T1 − 1, we follow the approach outlined by Takagi
[1991] for solving G-limited systems. Namely, since Q(z) has to be analytic func-
tion of |z| ∈ (0, 1), the denominator and numerator must have identical roots. By
Rouché’s theorem [Bak and Newman, 1982], the denominator of Q(z) has exactly
T1 zeros. One of the zeros is z0 = 1, and the remaining T1 − 1 can be determined by
applying Lagrange’s theorem [Whittaker and Watson, 1952]:

zm =
∞∑

n=1

e2πmn
√−1/T1

n!

dn−1

dzn−1

(
Tr (z)

n/T1
)

|z=0 (11.55)

for m = 1, 2, . .T1 − 1. Having found these zeros, we can set a total of T1 − 1
equations by substituting the values for zm in the numerator of Q(z):

zT1
m

T1−1∑
j=0

q j (1 − z j
m)Tr (zm) = 0 (11.56)

© 2006 by Taylor & Francis Group, LLC.

The last equation is obtained from the condition Q(1) = 1 which follows from
applying l’Hôpital’s rule to Q(z). In practice, the summation in (11.55) can go only
up to some finite value of n, and the small imaginary parts can be neglected in the
solutions.

Once we know the probability distribution of unfinished bridge exchange work
at the beginning of the bridge exchange, the PGF for the duration of the bridge ex-
change becomes

Trl(z) =
T1∑

n=0

pnzn =
T1−1∑
i=0

qi z
i +

∞∑
i=T1

qi z
T1 (11.57)

The PGF for length of the frame is

Fb(z) =
∞∑

k=0

ak,12ak,21

(
G p(z)

2k z2
)1/(k+1)

+
∞∑
j=1

∞∑
k=0

(ak,12ak+ j,21 + ak+ j,12ak,21) ·
(

G p(z)
2k+ j z j+2

)1/(k+ j+1)
(11.58)

As before, the frame length is not equal to twice the data packet size because of the
need to use empty packets to balance the difference in the numbers of data packets,
as well as because of the terminating empty frame.

In order to determine the probability distribution for the delay from the moment
the packet arrives to master queue toward the bridge, to the moment when it leaves
the queue, we will use the principle of stochastic decomposition property. This prin-
ciple states (in the case of work conserving disciplines) that the amount of work at
an arbitrary time epoch in the M/G/1 vacation model, is distributed as the sum of the
amount of work at an arbitrary epoch in an M/G/1 queue without vacations, and the
amount of work at an arbitrary epoch during a vacation. Therefore, the LST for the
packet delay at the bridge queue may be expressed as

W ∗
m1b(s) = s(1 − λb12 Fb B)

s − λb12 + λb12Gb(F∗
b (s)

· 1 − Gb(F∗
b (s))

B(1 − F∗
b (s))

·1 − V ∗
T (s)

sVT
·

Q

(
1 − s

λb12 B − s B + s

)
V ∗

T (s)

(11.59)

where V ∗
T (s) = T ∗

cyc(s)

T ∗
rl(s)

. The first term in this expression corresponds to the time

needed to serve the first packet in the burst in the M [x]/G/1 system. The second
term corresponds to the time needed to serve the given target packet in the burst.
The third term corresponds to the time needed to serve packets which arrive during
the vacation, but before the target burst. Finally, the last term corresponds to time
needed to serve packets which were already in the uplink queue when the vacation
has started.

© 2006 by Taylor & Francis Group, LLC.

Mean delay in the master queue toward the bridge is Wm1b = −W ∗′
m1b(0), which

amounts to

Wmb1 = λb12 B(F2
b)

(1 − λb12 Fb B)
+ B(2)Fb

2B(1 − λb12 Fb B)

+ V 2
T

2VT
− VT + Q′(1)

λb12 B Q(1)

(11.60)

where V 2
T = V ∗′′

T (0).
The delay in the bridge queue toward P2 is equal to the delay in the master queue

toward the bridge – but in piconet P1: W ∗
m1b(s) = W ∗

a1b(s).

Piconet cycle time

In order to determine the mean access delay, we need the mean duration of piconet
service cycle, the time interval for the piconet master to service all of its slaves once.
Again, due to the symmetry of the topology, it suffices to consider just one master-
slave channel in one piconet, modeled as the pair of queues with burst arrival rates
of λu1 = λ and λd1 = λPl + λb21/(m1 − 1) for the uplink and downlink queue,
respectively.

In this section we will use the approach similar to the one used for MS bridge in
Section 11.1. Let the PGF of the pure number of slots in the piconet cycle in P1,

conditioned on the bridge exchanges of length n, be C p
1 (z)|n =

∞∑
i=0

r (n)i zi . The PGF

of the total piconet time (which includes bridge exchanges) will be denoted as Ct
1(z)

and derived later. Also, let S p
1 |n denote the single channel service time (i.e., the time

to empty both uplink and downlink queues for one particular slave channel without
counting the exchange slots with the bridge), conditioned with the bridge exchange
time equal to n slots; the corresponding conditional PGF will be denoted as S p

1 (z)|n.
We should note that, within one bridge cycle of length T1+T2, the local time which

the master devotes to its ordinary slaves is Tl = T1 + T2 − n. Let us assume that a
pure piconet cycle lasts for i slots with probability r (n)i . Now, consider a super-cycle
that consists of Tli time slots. During this super-cycle, all combinations of relative
positions of beginnings of the piconet cycle and the beginnings of the master’s local
operation will be repeated k times, where k = 1 . . (Tli)/ lcm(Tl , i) and lcm(Tl , i) is
the least common multiple for the current value of piconet cycle i and the duration
of master’s local operation time Tl . Obviously, the super-cycle will contain n p = Tl

piconet cycles without bridge interruptions, as well as nb = i intervals of master’s
local operation.

The piconet cycle can be interrupted either
⌈

i
Tl

⌉
times or

⌊
i
Tl

⌋
times; those two

values will be the same if i
Tl

is an integer. The probability that the piconet cycle

will be interrupted
⌈

i
Tl

⌉
times is pp

i,
⌈

i
Tl

⌉ =
nb − n p

⌊
nb
n p

⌋
n p

. By the same token,

© 2006 by Taylor & Francis Group, LLC.

the probability that the piconet cycle will be interrupted
⌊

i
Tl

⌋
times is pp

i,
⌊

i
Tl

⌋ =

1 −
nb − n p

⌊
nb
n p

⌋
n p

.

Then, the PGF for the total length of the piconet cycle in the presence of bridge
exchanges, which occur after every Tl slots of local operation and last for n slots, is

Ct
1(z)|n =

∞∑
i=0

r (n)i

(
pp

i,
⌊

i
Tl

⌋z
i+n

⌊
i

Tl

⌋
+ pp

i,
⌈

i
Tl

⌉z
i+n

⌈
i

Tl

⌉)
(11.61)

Exhaustive polling

Let us now determine C p
1 (z)|n. The probability that exactly k packets are exchanged

between the slave and the master (without taking into account the packets from the
bridge exchange), may be obtained as

ak,u1|n = 1

k!

dk

dyk
Ct∗

1 (λu1 − λu1Gb(y))|y=0|n (11.62)

where Ct∗
1 (λu1 − λu1Gb(y))|n denotes the PGF for the number of packet arrivals

in the slave uplink queue during the total piconet cycle time. By the same token,
the conditional probability that k packets are exchanged between the master and the
slave are

ak,d1|n = 1

k!

dk

dyk
Ct∗

1 (λd1 − λd1Gb(y))|y=0|n (11.63)

By combining all these elements together, the conditional PGF for the channel
service time becomes

S p
1 (z)|n =

∞∑
k=0

(ak,u1|n)(ak,d1|n)G p(z)
2k z2

+
∞∑
j=1

∞∑
k=0

(
(ak,u1|n)(ak+ j,d1|n)+ (ak+ j,u1|n)(ak,d1|n)

)
G p(z)

2k+ j z(j+2)

(11.64)
Finally, the conditional PGF of the piconet cycle time becomes

C p
1 (z)|n = (S p

1 (z)|n)m1−2 (11.65)

In order to solve it, we will have to truncate the C p
1 (z)|n to imax members r (n)i ; this

is an approximate solution, but it should provide satisfactory results for large imax .

Then, we have to set imax equations in the form rn
i = 1

i!

di

dzi
C p

1 (z)|n|z = 0. In

each equation i , on the left side we will have r (n)i and on the right side we will have

function of all r (n)i mass probabilities.

© 2006 by Taylor & Francis Group, LLC.

When the PGF for the pure piconet cycle is known, the PGF for the total piconet
cycle can be found using (11.61). The unconditional PGF for the total piconet cy-
cle time can be obtained by using the mass probabilities for the bridge exchange

distribution from the PGF Tr (z) =
∞∑

n=0

pnzn , which is actually derived in the form

given in (11.51). This unconditional PGF of the total piconet cycle time can then be
approximated with

Ct
1(z) =

nmax∑
n=0

pnCt
1(z)|n (11.66)

where nmax is a sufficiently large value which depends on the intensity of inter-
piconet traffic.

The PGF for the frame length in the regular master-slave exchange will be

Fs(z) =
T1∑

n=0

pn Fs(z)|n (11.67)

where pn are mass probabilities that the bridge exchange lasts n time slots, and

Fs(z)|n =
kmax∑
k=0

(ak,u1|n)(ak,d1|n)(G p(z)
2k z2)1/(k+1)

+
jmax∑
j=1

kmax∑
k=0

(
(ak,u1|n)(ak+ j,d1|n)+ (ak+n,u1|n)(ak,d1|n)

)

· (G p(z)
2k+ j z j+2)1/(k+ j+1)

(11.68)

where kmax and jmax are determined according to the accuracy required. The mean
frame length will be Fs = F ′

s(1).
As in the case of the MS bridge, the vacation time is the time while the master is

busy servicing other slave queues. The duration of the vacation period V1 may be
described with the following PGF

V1(z) =
T1∑
n

pn(S
t
1(z)|n)m1−2 (11.69)

and its first and second moments are V1 = V ′
1(1) and V 2

1 = V ′′
1 (1)+ V ′

1(1), respec-
tively.

1-limited polling

For the case of 1-limited intra-piconet polling we also have to determine C p
1 (z)|n.

The probabilities that only NULL packet, or only one data packet is exchanged be-
tween the slave and the master (without taking into account the packets from the

© 2006 by Taylor & Francis Group, LLC.

bridge exchange), may be obtained as

a0,u1|n = 1 − λu1 B Ct
1|n

a1,u1|n = λu1 B Ct
1|n

(11.70)

By the same token, the conditional probabilities that only POLL packet or data
packet is exchanged between the master and the slave respectively are:

a0,d1|n = 1 − λd1 B Ct
1|n

a1,d1|n = λd1 B Ct
1|n

(11.71)

By combining these elements together, the conditional PGF for the pure channel
service time becomes

S p
1 (z)|n = (a0,u1|n)(a0,d1|n)z2

+((a1,u1|n)(a0,d1|n)+ (a0,u1|n)(a1,d1|n))G p(z)z
+(a1,u1|n)(a1,d1|n)G p(z)

2
(11.72)

Finally, the conditional PGF for the pure piconet cycle time becomes

C p
1 (z)|n = (S p

1 (z)|n)m1−1 (11.73)

and we can solve it in the similar way to the one indicated for the exhaustive service.
When the PGF for the pure piconet cycle time is known, the PGF for the total

piconet cycle time can be found from (11.14). Then, the unconditional PGF for the
total piconet cycle time can be obtained by using the mass probabilities for the bridge

exchange distribution from the PGF Tr (z) =
∞∑

n=0

pnzn , which is actually derived in

the form given by (11.9). This unconditional PGF of the total piconet cycle time can
be approximated with

Ct
1(z) =

nmax∑
n=0

pnCt
1(z)|n (11.74)

where nmax is some sufficiently large value that depends on the value of T1 and the
intensity of inter-piconet traffic.

The PGF for the frame length for the regular slave-master exchange in the case of
1-limited service is the same as the channel time i.e.:

Fs(z) = S p
1 (z) (11.75)

The duration of the vacation period V1 experienced by the slave has the same PGF
as given in expr. (11.69).

© 2006 by Taylor & Francis Group, LLC.

source slave in
P1 P1 master bridge

packet sent to the
master, enters the

outgoing queue

packet sent to the
bridge

packet enters
the uplink queue

access delay
Wa1

downlink delay
Wm2

P2 master destination
slave in P2

packet sent to the
destination slave packet sent to

the higher layers

packet sent to the
master, enters the
downlink queue

master-bridge
delay Wm1b

bridge delay
Wa1b

FIGURE 11.7
Components of non-local end-to-end delays in the scatternet with an SS bridge.

11.5 Packet delays: the SS bridge case

In this section we will calculate access delay and end-to-end delay for local and
non-local traffic for two piconets interconnected by the SS bridge.

In case of exhaustive intra-piconet polling, we can obtain the corresponding LST
for the access delay in piconet P1 as

W ∗
a1(s) = 1 − V ∗

1 (s)

sV1
· 1 − Gb(F∗

s (s))

B (1 − F∗
s (s))

· s(1 − λu1 B Fs)

s − λu1 + λu1Gb(F∗
s (s))

(11.76)

Mean access delay can now be obtained as Wa1 = −(W ∗
a1)

′(0), which evaluates
to

Wa1 = λu1 B F2
s

2(1 − λu1 B Fs)
+ B(2) Fs

2B(1 − λu1 B Fs)
+ V 2

1

2V1
(11.77)

The LST for the delay at the master has the same form as for the access delay,
W ∗

a1(s) = W ∗
m1(s). The LSTs for both access and master delay in the piconet P2 can

be calculated from the expressions similar to (11.76).
As before, local and non-local end-to-end delays have to be considered separately.

The local traffic will experience two delays only, the access delay and the queueing

© 2006 by Taylor & Francis Group, LLC.

delay in the downlink queue: W11 = Wa1+Wm1 and W22 = Wa2+Wm2, for piconets
P1 and P2, respectively. These components were shown in Fig. 11.1(a).

Non-local traffic will have as much as four hops to make and four delays to expe-
rience: access delay, delay in the master bridging queue, delay in the bridge queue
toward the master of the other piconet, and finally the delay in that master’s downlink
queue; these components are shown in Fig. 11.7. The first and last component are
the same as in the case of local traffic. The LST of the distribution of the waiting
time at the bridge queue of P1 master is given by (11.59), and the LST for the delay
in the bridge queue W ∗

a1b(s) = W ∗
m1b(s). Then, the overall LST of the probability

distribution of end-to-end queueing delay for non-local traffic going from P1 to P2
may be written as W ∗

12(s) = W ∗
a1(s)W

∗
m1b(s)W

∗
a1b(s)W

∗
m2(s), and its mean value is

W12 = Wa1 + Wm1b + Wa1b + Wm2 (11.78)

Analogous expressions for the packets flowing in the opposite direction may be
obtained with ease, due to the inherent symmetry of the scatternet.

In case of 1-limited intra-piconet polling, the LST for the access delay at the slave
queue is

W ∗
a1(s) = 1 − V ∗

1 (s)

sV1
· s(1 − λu1 B Ct

1)

s − λu1 + λu1Gb(Ct∗
1 (s))

· 1 − Gb(Ct∗
1 (s))

B (1 − Ct∗
1 (s))

(11.79)

where V ∗
1 (s) and Ct∗

1 (s) denote the LST of the vacation time and total cycle time
probability distributions, respectively. The average access delay at the slave is then
calculated as Wa1 = −W ∗′

a1(0), and its value is:

Wa1 = λu1 B (Ct
1)

2

2(1 − λu1 B Ct
1)

+ B(2) Ct
1

2B(1 − λu1 B Ct
1)

+ V 2
1

2V1
(11.80)

The delay in the downlink queue at the master can be calculated by taking into
account the change in burstiness because of burst interleaving in downlink queues,
as explained in Sec. 11.2 and its LST is:

W ∗
m1(s) = 1 − V ∗

1 (s)

sV1
· s(1 − λd1 Bm Ct

1)

s − λd1 + λd1Gbm(Ct∗
1 (s))

· 1 − Gbm(Ct∗
1 (s))

Bm (1 − Ct∗
1 (s))

(11.81)

The mean end-to-end delay for local traffic will be the sum of access and master
delay.

As mentioned above, non-local traffic will have as much as four hops to make and
four delays to experience, as shown in Fig. 11.7. The first and the last component
have already been calculated. The LST for the waiting time at the bridge queue
of P1 master is given by (11.59), and the LST for the delay in the bridge queue
W ∗

a1b(s) = W ∗
m1b(s).

The overall LST for the distribution of end-to-end delay of non-local traffic going
from P1 to P2 has the form given in (11.78). Analogous expressions for the packets

© 2006 by Taylor & Francis Group, LLC.

flowing in the opposite direction may be obtained with ease, due to the inherent
symmetry of the scatternet. Both mean access delay and mean end-to-end delay may
be shown to be linear functions of the mean burst length when the packet arrival rate
(i.e., burst arrival rate times mean burst length) is kept constant.

Stability considerations

The stability conditions for the slave uplink queues can be derived as follows. If
the number of serviced packets per slave in one piconet cycle is limited to M , the
average number of packet arrivals in the slave’s queue during the piconet cycle time
must be less than M . Considering the uplink and downlink queue in parallel and
letting M → ∞, we get

(λu1 + λd1)B(m1 − 2)

(
1 + Trl

Tcyc

)
L < 1 (11.82)

Bridge stability is determined from the condition that the mean duration of the
bridge exchange must be shorter than the bridge residence time in the piconet, Tr <

T1.
Note that the different bridge cycle times will lead to different values of Fs and

Fb, and the actual stability limits for the SS bridge topology will differ from those
for the MS bridge topology. However, the upper bound for both Fs and Fb is still
2L , which is sufficient to derive the limits on the total burst packet arrival rate at the
bridge.

11.6 Performance of the SS bridge

As before, we have plotted the analytical solutions for different delay variables, and
verified those solutions through simulation. The following parameter values were
used, unless otherwise specified: each piconet had six active slaves, i.e., m1 = m2 =
8; burst arrival rate per slave, if fixed, was λu1 = λ = 0.0015; mean packet length
was L = 3, with p1 = p2 = p3 = 1/3; traffic locality was Pl = 0.9; and times
between bridge exchanges, if fixed, were T1 = T2 = 100T , where T = 0.625µs is
the time slot of the Bluetooth clock.

In order to assess the impact of traffic burstiness, we have calculated and plotted
the delay times as functions of mean burst size B, as shown in Fig. 11.8. In both
diagrams, analytical solutions are shown as continuous lines, while diamonds stand
for results obtained through simulation. As predicted, the delays are nearly linear
functions of mean burst size for both polling schemes, but delays are significantly
lower when exhaustive polling is used.

The dependency of mean access delay on burst arrival rate λu1 and time between
bridge exchanges T1 (we assume that T2 = T1) is shown in Fig. 11.9. Exhaustive

© 2006 by Taylor & Francis Group, LLC.

for local traffic
end-to-end delay

non-local end-to-end delay

access delay

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16
B

(a) 1-limited polling.

non-local end-to-end delay

access delay

local end-to-end delay
200

400

600

800

2 4 6 8 10 12 14 16
B

(b) Exhaustive polling.

FIGURE 11.8
SS bridge: delays as functions of mean packet burst length, under constant aggregate
packet arrival rate. (From J. Mišić and V. B. Mišić, “Bridges of Bluetooth county:
topologies, scheduling, and performance,” IEEE J. Select. Areas Commun. – Wireless
Series 21(2):240–258, c©2004 IEEE. Reprinted with permission.)

polling can be seen to offer a distinct advantage over the 1-limited polling, even
though the shapes of the delay dependency as burst arrival rate and time T1 change
are quite similar. Note that very small values of T1 lead to an increase in delay
times. Again, the agreement between analytical solutions and simulation results is
very good.

The next set of diagrams (Fig. 11.10) show the dependency of mean non-local
end-to-end delay on burst arrival rate λu1 and time between bridge exchanges T1 (we
assume that T2 = T1). We do not show the local end-to-end delay, since it would
provide little extra information except for the fact that it is lower than the its non-local
counterpart by about T1+T2. As before, both polling schemes exhibit similar results;
as before, exhaustive polling offers a distinct advantage over 1-limited polling; and
as before, the agreement between analytical solutions and simulation results is very
good.

Note that the end-to-end delay for non-local traffic increases with T1, the time be-
tween bridge exchanges, especially at lower burst arrival rates, unlike its MS bridge
counterpart where the rate of increase is barely noticeable. This is due to the fact that
bridge exchanges (or, rather, the time instants in which they start) are spaced exactly
T1 apart, hence the non-local end-to-end delay virtually contains 2T1 as an additive
component.

Fig. 11.11 shows the dependency of mean non-local end-to-end delay on traffic
locality Pl and time between bridge exchanges T1. As in the case of the scatternet
with a MS bridge, this dependency is similar in shape to the previous one (end-to-end
delay vs. burst arrival rate and time between bridge exchanges). Again, exhaustive
polling performs noticeably better than 1-limited polling.

Finally, Fig. 11.12 shows the ratios of end-to-end delay times under exhaustive
polling to those obtained under 1-limited polling, using simulation results. As can

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

200

300

400

(a) 1-limited polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

100
150
200
250

(b) Exhaustive polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

200
250
300
350
400
450

(c) 1-limited polling, simulation results.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

100

150

200

250

(d) Exhaustive polling, simulation results.

FIGURE 11.9
SS bridge: mean access delay as a function of burst arrival rate, λu1 = λ, and time
between bridge exchanges, T1. (From J. Mišić and V. B. Mišić, “Bridges of Bluetooth
county: topologies, scheduling, and performance,” IEEE J. Select. Areas Commun.
– Wireless Series 21(2):240–258, c©2004 IEEE. Reprinted with permission.)

be seen, the exhaustive polling scheme outperforms 1-limited polling one by about
10 to 20% in terms of access delay, and about 13 to 17% in terms of end-to-end delay
for non-local traffic, in the entire range of values of λu1 = λ and T1 displayed on the
diagram.

The results of our analysis may be summarized as follows.
First, performance of Bluetooth networks, expressed in terms of mean access de-

lay and mean end-to-end delay, shows monotonic behavior with respect to different
traffic parameters such as packet or burst arrival rate, traffic locality, and mean burst
length. The dependence is by no means linear, though, and sharp increases of delay
times may be experienced when one or more of the following conditions happen:
high burst arrival rates, low probability of local traffic, and short intervals between
bridge exchanges. Such behaviour could have been expected because the delays in
the network are actually queueing delays.

Regardless of the topology and/or scheduling policy, delays are not too sensitive
on the time interval between bridge exchanges. There is a caveat, though: this time

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

500
600
700
800
900

(a) 1-limited polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

300
400
500
600
700

(b) Exhaustive polling, analytical solutions.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

400
500
600
700
800
900

(c) 1-limited polling, simulation results.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

300
400
500
600
700
800

(d) Exhaustive polling, simulation results.

FIGURE 11.10
SS bridge: mean end-to-end delay for non-local traffic as a function of burst ar-
rival rate, λu1 = λ, and time between bridge exchanges, T1. (From J. Mišić and
V. B. Mišić, “Bridges of Bluetooth county: topologies, scheduling, and perfor-
mance,” IEEE J. Select. Areas Commun. – Wireless Series 21(2):240–258, c©2004
IEEE. Reprinted with permission.)

interval should not be too small, otherwise there is not enough time to exchange any
meaningful number of packets. Satisfactory results should be obtained with values
in the range over 40 to 60T . In general, the access delay and local end-to-end delay
slowly decrease when T1 increases, while the non-local end-to-end delay increases
at a slightly higher rate than the other two. (This rate is higher in the topology with
an SS bridge, for reasons explained in Sec. 11.6, but it tends to flatten out at higher
burst arrival rates.) Still, the gradients are quite low and the exact value of T1 does not
seem to be critical for scatternet performance, although this issue probably deserves
more attention in future research.

Second, with regard to scatternet topology, we may conclude that:

• Mean access delay is lower in the scatternet topology with an SS bridge, due
to the fact that both piconet masters can spend more time servicing the slaves
in their respective piconets. The same holds for mean end-to-end delay for
local (i.e., intra-piconet) traffic.

© 2006 by Taylor & Francis Group, LLC.

20
40

60
80

100

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

800
1000
1200
1400
1600

(a) Limited service, analytical solutions.

20
40

60
80

100

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

400
600
800

1000
1200
1400

(b) Exhaustive service, analytical solutions.

20
40

60
80

100
120

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

600
800

1000
1200
1400

(c) Limited service, simulation results.

20
40

60
80

100
120

T1

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Pl

400
600
800

1000
1200

(d) Exhaustive service, simulation results.

FIGURE 11.11
SS bridge: mean end-to-end delay for non-local traffic as a function of traffic local-
ity, Pl , and time between bridge exchanges, T1. (From J. Mišić and V. B. Mišić,
“Bridges of Bluetooth county: topologies, scheduling, and performance,” IEEE J.
Select. Areas Commun. – Wireless Series 21(2):240–258, c©2004 IEEE. Reprinted
with permission.)

• On the other hand, mean end-to-end delay for non-local traffic is lower in the
scatternet topology with an MS bridge, due to the lower number of hops that
the packets have to pass: three, compared to four in the case of the topology
with an SS bridge.

• The scatternet with an MS bridge is more sensitive to the combination of high
packet burst arrival rate or low traffic locality, and too short time interval be-
tween bridge exchanges. Here ’more sensitive’ should be taken to mean that
the relative increase in delays is higher, or more significant, in the region where
these conditions apply. Again, these are extreme conditions that are not likely
to be encountered in practice.

• The performance difference between the two topologies is not high, however,
and considerations other than delay performance might be given priority when
deciding on the topology of a scatternet.

© 2006 by Taylor & Francis Group, LLC.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

0.78
0.8

0.82
0.84
0.86
0.88

(a) Ratio of mean access delays.

0.0008
0.001

0.0012
0.0014

0.0016

lambda

20
40

60
80

100
120

T1

0.82

0.83

0.84

0.85

(b) Ratio of end-to-end delays for non-local traffic.

FIGURE 11.12
SS bridge: ratio of delays in exhaustive vs. 1-limited polling as a function of burst
arrival rate and time between bridge switches, T1 – simulation results only. (From
J. Mišić and V. B. Mišić, “Bridges of Bluetooth county: topologies, scheduling,
and performance,” IEEE J. Select. Areas Commun. – Wireless Series 21(2):240–258,
c©2004 IEEE. Reprinted with permission.)

Overall, the exhaustive polling scheme has been found to regularly outperform
1-limited polling, sometimes by as much as 30%, under a wide range of parameter
values (burst arrival rate, time interval between bridge exchanges, and traffic local-
ity). The difference gets smaller as burst arrival rate increases; at very high burst
arrival rates 1-limited polling actually performs better than exhaustive polling. The
actual mechanism of this behavior may be explained as follows. Under low loads,
1-limited polling will essentially ‘waste’ slots – i.e., there will be many empty POLL-
NULL exchanges, or exchanges with a single data packet only and a POLL or NULL
packet in the other direction. At the same time, exhaustive polling will ‘pull out’ all
(or almost all) packets when a packet burst arrives. As the consequence, exhaustive
service offers noticeably lower access delays as well as somewhat lower end-to-end
delays. Under high loads, the proportion of ‘wasted’ slots decreases, and the per-
formance of 1-limited polling improves relative to exhaustive polling. Exhaustive
polling will still provide lower access delays, but the end-to-end delays will increase
over those obtained with 1-limited polling. It should be noted that exhaustive polling
does not guarantee fairness, unlike its 1-limited counterpart.

© 2006 by Taylor & Francis Group, LLC.

12

Adaptive bridge scheduling

Inter-piconet scheduling in a Bluetooth scatternet may be performed in an adaptive
manner, so as to minimize end-to-end packet delays. In this chapter, we analyze the
impact of different values of scatternet parameters on end-to-end delays and then in-
vestigate the possibility of minimization of the aforementioned delays. We show that
such minimization is possible for scatternets with both Slave/Slave and Master/Slave
bridges, and that it should be based on inter-piconet traffic. We also describe two
simple algorithms that enable small scatternets to achieve near minimum delays in a
wide range of traffic parameter values.

Using the previously derived expressions for end-to-end packet delays, in Sec-
tion 12.1 we investigate whether those delays may be minimized through appropri-
ate choice of some of scatternet parameters. Then, in Sections 12.2 and 12.3, we
present two simple algorithms for adaptive inter-piconet scheduling in scatternets
with an MS and SS bridge, respectively. The algorithms are referred to as Load
Adaptive Master/slave Scheduling (LAMS) and Load Adaptive Slave/slave Schedul-
ing (LASS) both of which dynamically adjust the time between bridge exchanges in
order to minimize those delays and achieve near-optimal performance.

12.1 Minimization of delays

In Chapter 11 we have derived the expressions for end-to-end packet delays in simple
scatternets with two piconets and a single bridge. Let us now investigate whether it
would be possible to choose the values of different traffic and scatternet parameters
so as to minimize one or the other end-to-end delay (or, preferably, both).

First, we note that the number of adjustable parameters is rather small. Some of
them, such as packet burst arrival rate, burst length distribution, or traffic locality, are
determined by the applications that communicate using Bluetooth, which is beyond
control (at the MAC level). Others, such as mean burst length and packet length dis-
tribution, might be more amenable to control through appropriate segmentation and
reassembly policies. These policies are handled at the higher layers of the Bluetooth
protocol stack, and probably cannot be changed too frequently, let alone dynamically.
Finally, the size of the scatternet may be controlled indirectly, through the scatternet
formation algorithm(s). Once the scatternet is formed, the time to restructure it is

© 2006 by Taylor & Francis Group, LLC.

long (sometimes even prohibitively long), and higher transmission delays might, in
fact, be acceptable – although only as a lesser evil.

This leaves us with residence time T1, or residence times T1 and T2 for the case
of the SS bridge, as the only scatternet parameter that can be changed as often as
necessary. Our objective is, then, to investigate (a) whether it is possible to modify
the value of T1 in order to reduce end-to-end packet delays, and (b) which of the
delays we should strive to minimize – local or non-local, or maybe a combination of
the two.

The answer to the first question is affirmative: the minimum of the local end-
to-end delay may be found from ∂W11/∂T1 = 0, while keeping λ, B, and Pl as
parameters. Let us consider the scatternet with an SS bridge on account of its sym-
metry, and assume that T2 = T1. The loci of the solution of the resulting equation,
together with the resulting delays, are shown in the left column of Fig. 12.1. Note
that the orientation of λ and Pl axes in Figs. 12.1(a) and 12.1(e) have been changed
for clarity.

If, on the other hand, we want to minimize the non-local end-to-end delay, we
should solve the equation ∂W12/∂T1 = 0. The corresponding loci for T1/T2 and the
resulting delays are shown in the right column of Fig. 12.1.

We note that similar results may be obtained for the MS bridge as well.
Two important observations can be made. First, values of T1 in the low range

of 10 to 40T generally minimize non-local delay, while values in the range of 50
to 400T lead to minimal local delays. The explanation is simple: local delay will
be smaller if the local operation in the piconet goes on uninterrupted for as long as
possible. In other words, local delay is minimized if bridge exchanges are performed
as infrequently as possible. However, this causes very high delays for non-local
traffic. Therefore, by minimizing the delay for local traffic we actually penalize non-
local traffic – thus defeating the purpose with which the scatternet was formed in the
first place.

On the other hand, shortening the time interval between bridge exchanges means
that data packets with destinations in the other piconet are able to get through very
quickly, thus reducing non-local delays. Frequent bridge exchanges do affect the
performance of local traffic, as the piconet master has to stop servicing its own slaves.
Yet the deterioration of delays is small, typically less than 10%, which should be
perfectly acceptable in most cases.

The other important observation is that the optimum value for T1/T2 is not con-
stant, but instead depends on packet arrival rate and traffic locality – in other words,
the traffic load both within the piconets and through the bridge. No single value for
T1/T2 can be found that works well in the entire range of burst arrival rates and traffic
locality. This is the case even if some other performance measure, e.g., a weighted
sum of mean local and non-local delays, were used as the basis for minimization
[Mišić and Mišić, 2003c].

Similar conclusions may be made for the case of the MS bridge, except that there
is only one bridge residence time (or, rather, the bridge absence time) to adjust.
The resulting loci of T1 that minimize the local and non-local delay are shown in
Fig. 12.2; they do resemble the corresponding values obtained with the SS bridge, in

© 2006 by Taylor & Francis Group, LLC.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

100

200

300

400

(a) Loci of T1 values that minimize end-to-end de-
lay for local traffic.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

10

20

30

40

(b) Loci of T1 values that minimize end-to-end de-
lay for non-local traffic.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

100

200

300

400

(c) Minimum end-to-end delay for local traffic.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

100

200

300

400

500

(d) End-to-end delay for local traffic when non-
local delay is minimized.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

400

600

800

(e) End-to-end delay for non-local traffic when lo-
cal delay is minimized.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.001
0.0015

0.002
0.0025

0.003

lambda

100
200
300
400
500
600

(f) Minimum end-to-end delay for non-local traf-
fic.

FIGURE 12.1
Minimizing end-to-end delays in the scatternet with an SS bridge. (From V. B. Mišić
and J. Mišić, “Adaptive inter-piconet scheduling in small scatternets,” ACM MC2R
– Mobile Computing and Communications Review 7(2):45–58, c© 2003 ACM.
Reprinted with permission.)

qualitative terms at least. As with the SS bridge, no single value of T1 works well
in the entire range of usable packet burst arrival rate and traffic locality, local delays
are minimized when bridge exchanges are performed as infrequently as possible,

© 2006 by Taylor & Francis Group, LLC.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.003
0.0075

0.01
0.0125

0.015

lambda

200

400

600

(a) Loci of T1 values that minimize the delay for
local traffic.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl

0.005
0.0075

0.01
0.0125

0.015

lambda

20

40

60

(b) Loci of T1 values that minimize the delay for
non-local traffic.

FIGURE 12.2
Loci of T1 values that minimize end-to-end delay in the scatternet with an MS bridge.

and shorter time intervals between exchanges lead to improved delays for non-local
traffic at the expense of a slight increase in the corresponding delays for local traffic.

12.2 Adaptive management: the case of the MS bridge

Let us now consider the possibility of dynamic adjustment of the time between bridge
exchanges to the current traffic conditions in order to minimize packet delays, begin-
ning with the MS bridge as the simpler of the two. One or the other of the diagrams
from Fig. 12.2 should serve as a starting point, from which a suitable approximation
function giving the desired dependency of T1 on the current traffic information can
be found. Since the traffic is random, some form of smoothing the current traffic
information should be utilized.

One such algorithm, referred to as LAMS (Load Adaptive Master/slave Schedul-
ing), has been described in [Mišić and Mišić, 2003c], and it operates as follows. In
local operation, both piconet masters keep track of the instantaneous local traffic in
their respective piconets; in addition, the bridge keeps track of its outgoing traffic.

When rendezvous comes, the bridge switches to the other piconet and the ex-
change begins. During the exchange, the bridge records the volume of incoming
traffic.

When the exchange ends, the master of P2 informs the bridge of its local traffic.
The bridge estimates the current traffic intensity and locality, finds the corresponding
averages, and calculates the time to the next rendezvous using a suitable approxima-
tion function. The bridge and the master negotiate the HOLD mode using the cal-
culated time interval as the hold timeout. The bridge then leaves the piconet P2 and
returns to local operation, as does the master of P2.

This algorithm may be described with the pseudocode below.

© 2006 by Taylor & Francis Group, LLC.

// both piconets operate locally
bridge adds local packets to N1
bridge adds non-local packets to Nout

master adds its local packets to N2
// rendezvous time reached
// switch to exchange; record exchange data
add slots of incoming packets to Nin

. . .
// no more data, exchange ends
// master of P2 sends N1 to the bridge
// estimate current traffic intensity, locality
r = (N2 + N2 + Nout + Nin)/T1
p = (N1 + N2)/(N1 + Nin + N2 + Nout)

ρ′ = αr + (1 − α)ρ

π ′ = αp + (1 − α)π

// approximate time to next rendezvous
T1 = a + b(ρ2 − 1)/π
// request HOLD with hold time T1
// master of P2 acknowledges HOLD
// bridge switches back to local operation
reset slot counters

In the algorithm, the current traffic intensity, denoted with r , is obtained as the
total number of data packets received during the local operation phase. The current
traffic locality (denoted with p in order to distinguish it from Pl which is a long term
mean value), measures the portion of the total traffic that passes through the bridge.
Alternatively, data packet slots may be used, rather than simply packets, for a better
approximation of time intervals in question.

In order to reduce the effects of traffic randomness, the algorithm uses Simple
Exponential Smoothing [Delurgio, 1998] in which the average value ρ of traffic in-
tensity r is obtained as ρ′ = αr + (1 − α)ρ, where ρ′ is the new value of ρ, and α is
the smoothing constant. The average traffic locality π is obtained (and periodically
updated) in the same manner.

The dependency between the desired value of T1 and the values of ρ′ and π ′
has been obtained by approximating the loci from Fig. 12.2. The chosen function,
T1 = a + b(ρ2 − 1)/π , is sufficiently simple so that even battery-limited devices
should have no problem in evaluating it.

The performance of the LAMS algorithm has been verified through simulation;
the corresponding diagrams are shown in Fig. 12.3. Approximation parameters were
α = 0.1 (the averaging does not need to remember too far back in the past), a = 12T
(this is also the minimum value for T1, which is consistent with the upper bounds for
synchronization delays outlined in Sec. 10.1), and b = 24T (empirically obtained).
The delays are quite close to the optimal values in a wide range of values of burst
arrival rate λ, traffic locality Pl , and mean burst length B.

© 2006 by Taylor & Francis Group, LLC.

0.6

0.7

0.8

0.9

Pl
0.0005

0.001
0.0015

0.002
0.0025

0.003

lambda

100

200

300

400

500

(a) End-to-end delay for local traffic.

0.0005
0.001

0.0015
0.002

0.0025
0.003

lambda
2

4
6

8
10

12

B

100

200

300

400

(b) End-to-end delay for local traffic.

0.6

0.7

0.8

0.9

Pl
0.0005

0.001
0.0015

0.002
0.0025

0.003

lambda

100
200
300
400
500

(c) End-to-end delay for non-local traffic.

0.0005
0.001

0.0015
0.002

0.0025
0.003

lambda
2

4
6

8
10

12

B

100

200
300

400

(d) End-to-end delay for non-local traffic.

FIGURE 12.3
Adaptive minimization of non-local delays – simulation results for the MS bridge
topology under LAMS scheduling. On the left, B = 5, Pl parameter; on the right,
Pl = 0.9, B is the parameter. (From V. B. Mišić and J. Mišić, “Adaptive inter-piconet
scheduling in small scatternets,” ACM MC2R – Mobile Computing and Communica-
tions Review 7(2):45–58, c© 2003 ACM. Reprinted with permission.)

It may be interesting to note that mean non-local delays are almost the same as
their non-local counterparts, which means that the algorithm provides equal treat-
ment for local and non-local traffic.

The algorithm could be somewhat simplified if the participants were to skip the
exchange of information about the total number of slots for local traffic. Either par-
ticipant in the exchange would then calculate the next rendezvous on the basis of its
local traffic, plus both the incoming and outgoing traffic; the missing information on
local traffic in the other piconet would have to be estimated through some suitable
algorithm. In this manner, the communication at the end of the exchange would be
somewhat simplified. However, the savings of two or four slots per bridge cycle that
would be obtained in this manner, are too small to justify the reduced accuracy. This
is even more important in case there is wide asymmetry between the traffic in the
two piconets.

© 2006 by Taylor & Francis Group, LLC.

12.3 Adaptive management: the case of the SS bridge

In the case of the SS bridge, however, the approach outlined above does not work
well. There are two reasons for that, both of which are dictated by the scatternet
topology.

First, in the MS bridge case, the bridge can collect traffic data from its own piconet,
and the other master can simply send its data when the exchange ends. In this way,
the information available to the bridge at the end of the exchange is always accurate;
the error is caused by the estimation algorithm alone. In the SS bridge case, when the
exchange with one piconet ends, the next exchange takes place in the other piconet.
However, the decision on next rendezvous—which limits the duration of that next
exchange—is made using the traffic estimate obtained from the current exchange.
In other words, not only that we make an estimate – but we make it on the basis of
insufficient information. In theory, the bridge might switch to the other piconet to
get the traffic data, come back to make the appointment, and then switch again for
the actual exchange. But switching from one piconet to another incurs additional
synchronization delays, as shown in Chapter 10 and should not be done more often
than is really necessary.

Second, in the MS bridge topology, the bridge is the master in one of the pi-
conets, and usually can afford to wait until all queued packets are actually exchanged.
However, in the SS bridge topology, the rendezvous appointment made between the
bridge and one piconet master limits the exchange time with the other piconet. Since
the traffic, both intra- and inter-piconet, is bursty, some of the exchanges will end
before the rendezvous time, whereas others may take longer. In the latter case, some
packets may still be waiting to be exchanged when the rendezvous time comes.

When this happens, the exchange might be allowed to proceed beyond the pending
rendezvous, until all the queued packets are exchanged – but this solution is less than
desirable from the performance standpoint. Namely, at the designated rendezvous
time, the master of the other piconet will try to poll the bridge. The polling will
continue until the bridge responds – and all packets queued at that master and its
slaves will have to wait.

A better solution is to terminate the exchange per force, in which case some pack-
ets will be left to wait until the next exchange with that same piconet. Such packets
will cause excessive delays, since they have to wait for at least T1 to be forwarded to
their destination. These delays will, of course, be reduced by minimizing the number
of such packets, which may be accomplished by minimizing the number of exchange
cycles that have to be force terminated.

The dependency of minimum end-to-end delays on packet burst arrival rate and
traffic locality under such conditions is shown in Fig. 12.4. The values were obtained
by running a series of simulation runs, each with a different value of T1 (which was
kept fixed during a single run), and hand-picking the value of T1 that resulted in
minimum end-to-end delay for non-local traffic. As can be seen, the delays are very
close to the analytically obtained minima in Figs. 12.1(d) and 12.1(f).

© 2006 by Taylor & Francis Group, LLC.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl
0.001

0.0015
0.002

0.0025
0.003

lambda

100
200
300
400
500

(a) Local delay variation.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl
0.001

0.0015
0.002

0.0025
0.003

lambda

100
200
300
400
500
600

(b) Non-local delay variation.

FIGURE 12.4
End-to-end packet delays in the SS bridge topology under fixed T1 scheduling: hand-
picked minima. (From V. B. Mišić and J. Mišić, “Adaptive inter-piconet scheduling
in small scatternets,” ACM MC2R – Mobile Computing and Communications Review
7(2):45–58, c© 2003 ACM. Reprinted with permission.)

This observation, then, forms the basis for an adaptive bridge management al-
gorithm for the SS bridge topology, which uses the manner in which the exchange
terminates as a simple sensor variable. If all the queued packets have been exchanged
before the next rendezvous, the allocated exchange time is able to handle the instan-
taneous volume of inter-piconet traffic and can be shortened. If the rendezvous time
is reached and some packets are still waiting to be exchanged, the time allocated for
exchange was too short and should be lengthened. As the next exchange takes place
in the other piconet, the adjustment of the time interval should apply to the next ex-
change with the current piconet, i.e., the exchange after the immediately succeeding
one. Therefore, the decision must be based on the outcome of two last exchanges,
not just one, and we need four increment values (i.e., δxy) instead of just two. In our
simulations, we found that the best results are obtained with δ00 = −2, δ01 = 0,
δ10 = 1, and δ11 = 3.

The pseudocode of the algorithm, referred to as LASS (Load Adaptive Slave/slave
Scheduling), is outlined below.

when rendezvous time reached or exchange complete
then if rendezvous time reached

then if f = 1 then δ = δ11 else δ = δ10, f ′ = 1
else // exchange complete

if f = 1 then δ = δ01 else δ = δ00, f ′ = 0
end if
T ′

1(T
′
2) = T1(T2)+ 2δ

if T ′
1(T2) < Tmin then T ′

1(T
′
2) = Tmin

// request HOLD with hold time T ′
1

// current master acknowledges HOLD
// switch to other piconet

end if

© 2006 by Taylor & Francis Group, LLC.

As in the case of LAMS, there should be a lower limit Tmin for T1/T2: the effi-
ciency drops sharply when T1/T2 approaches the sum of mean clock and frame syn-
chronization times; the initial value we have used for simulations was Tmin = 12T .
No similar upper bound is necessary, because even after repeated bursts a period with
no bridge traffic will eventually occur, and LASS is able to reduce T1 quickly.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl
0.001

0.0015
0.002

0.0025
0.003

lambda

100
200
300
400
500

(a) End-to-end for local traffic.

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Pl
0.001

0.0015
0.002

0.0025
0.003

lambda

100
200
300
400
500
600

(b) End-to-end for non-local traffic.

FIGURE 12.5
End-to-end packet delays in the SS bridge topology, as functions of burst arrival rate
and traffic locality, under LASS scheduling. (From V. B. Mišić and J. Mišić, “Adap-
tive inter-piconet scheduling in small scatternets,” ACM MC2R – Mobile Computing
and Communications Review 7(2):45–58, c© 2003 ACM. Reprinted with permis-
sion.)

Fig. 12.5 shows the end-to-end delays for local and non-local traffic, respectively,
as functions of packet burst arrival rate λ and traffic locality Pl . The mean delays are
virtually equal to the hand-selected minima presented in Fig. 12.4 – but the adaptive
algorithm requires no manual tuning in a wide range of traffic parameters. Further-
more, the delays obtained under LASS scheduling are very close to the analytically
obtained minima from the right column of Fig. 12.1.

Finally, to demonstrate the reaction speed of the LASS algorithm, we have also
varied the traffic load in the range 1:2 by varying the packet burst arrival rate for
half of the slaves in each piconet. End-to-end delays for local and non-local traffic,
averaged over an interval of 2.5s, are shown in Figs. 12.6(a) and 12.6(b), respec-
tively. In all diagrams, dotted lines denote the number of packets generated during
the averaging interval at that time, gray lines denote the average delays obtained for
fixed T1 = 50T , and solid black lines denote the average delays obtained with the
LASS algorithm. Delays generally follow the instantaneous load, which is rather
bursty. The local delay obtained with the LASS algorithm is indeed above the one
obtained for a fixed T1, but the difference is rather small. However, LASS provides
substantially lower delay for non-local traffic in a wide range of piconet loads.

Similar behavior can be observed from Fig. 12.7, which shows large variations of
bridge load in the range 1:5, obtained by varying the locality probability for some of

© 2006 by Taylor & Francis Group, LLC.

0

100

200

300

400

500

600

700

800

900

1000

0 30 60 90 120 150 180

time (sec)

(a) Local delay under varying piconet load.

0

100

200

300

400

500

600

700

800

900

1000

0 30 60 90 120 150 180

time (sec)

(b) Non-local delay under varying piconet
load.

FIGURE 12.6
Large piconet load variations in the SS bridge topology: comparing LASS with fixed
T1 scheduling. (From V. B. Mišić and J. Mišić, “Adaptive inter-piconet scheduling
in small scatternets,” ACM MC2R – Mobile Computing and Communications Review
7(2):45–58, c© 2003 ACM. Reprinted with permission.)

0

100

200

300

400

500

600

700

0 30 60 90 120 150 180

time (sec)

(a) Local delay.

0

100

200

300

400

500

600

700

0 30 60 90 120 150 180

time (sec)

(b) Non-local delay.

FIGURE 12.7
Large bridge load variations in the SS bridge topology: comparing LASS with fixed
T1 scheduling.

the slaves in the piconet, while total piconet load and packet burst arrival rate were
kept constant. The dotted lines denote the number of packets generated during that
period of time, gray lines denote the average delays obtained for fixed T1 = 50T ,
and solid black lines denote the average delays obtained with the LASS algorithm.

Despite their excellent performance, the LASS algorithm and, to a lesser extent,
the LAMS algorithm as well, suffer from a major drawback. Namely, they are both
tailor made to the scatternet consisting of two piconets linked with a single bridge,
and they cannot easily be scaled to more complex topologies. (These include scat-
ternets with more than two piconets, but also scatternets in which a piconet may
contain two or more bridges.) All the problems related to schedule clashes, which
were mentioned in Chapter 10, will be present. The conclusion is that rendezvous
based scheduling does not scale up well, and other solutions should be found.

© 2006 by Taylor & Francis Group, LLC.

13

Walk-in bridge scheduling

In this Chapter we discuss the third bridge scheduling mode, called walk-in bridge
scheduling and present the analytical model and its performance evaluation. As we
have shown in Chapter 10, the walk-in bridge scheduling mode operates without any
schedule of rendezvous points, which makes it very attractive in practice. We also
compare the performance and stability of the two operating modes, complete and
limited exchange. In the complete exchange mode, the bridge may stay in each pi-
conet for as long as there are more packets to exchange. This stay may take one or
more piconet cycles. In the limited exchange mode, the bridge stays in each piconet
for K ≥ 0 piconet cycles (or K +1 exchanges) only and then leaves, even if there are
still packets waiting to be delivered. Note that in the limiting case when K → ∞,
the limited exchange policy converges to the complete exchange one. Our analy-
sis shows that the limited exchange mode performs better and has a wider stability
region than the complete exchange mode. Simulations show that this scheduling
approach offers good performance and excellent scalability as well.

The chapter is organized as follows. After describing our scheduling scheme and
the associated queueing model in Section 13.1, we derive the probability distribu-
tions for packet service, vacation, and piconet cycle times in Section 13.2. Section
13.2 contains some observations related to service times and Section 13.3 contains
derivations of delay components within the scatternet. Stability of the slave, master,
and bridge queues is analyzed in Section 13.4, first analytically and then by simula-
tions. Our final set of experiments in Section 13.5 demonstrates the scalability of the
walk-in scheduling.

13.1 Scatternet model

Let us consider a scatternet with arbitrary topology in which a piconet may contain
one or more bridges, and a bridge may link two or more scatternets, as shown in
Fig. 13.1. The operation of the scatternet may be described with a queueing model
shown in Fig. 10.7. For the time being, all queues are assumed to be of infinite size;
the impact of finite buffer sizes will be discussed in Chapter 14. The traffic model
has been described in Chapter 10. Let us focus on just two of the piconets, N and
X , and the single bridge that links them. (This will not limit the generality of our

© 2006 by Taylor & Francis Group, LLC.

piconet Npiconet X

bridge N-X

FIGURE 13.1
Portion of the scatternet under consideration, containing two piconets joined with a
single bridge.

analysis, and it may easily be extended to more complex topologies.) The piconets
have mn and mx members, respectively, which includes one master each and bn (bx)
bridges. The bridge that links the piconets spends the time Tn (Tx) in piconet N (X);
these times will be referred to as bridge residence times, and they are expressed in
Bluetooth time slots T = 625µs.

We assume that both piconet masters poll their slaves in a round robin fashion
using E-limited polling. Up to Ms data packets are exchanged during a single visit
to a slave; we assume that all piconet masters use the same value for Ms , which may
be chosen according to the criteria from Chapter 3.

The bridge switches between its piconets in a round robin fashion, without a pre-
defined schedule. When present, the bridge is polled just like any other slave, except
that the first packet to be sent to the bridge is always an empty POLL. The absence of
a response to the initial POLL packet means that the bridge is not present, in which
case the master simply moves on to the next slave. If the bridge is present, it responds
with a NULL; the master then starts the exchange with actual data packets.

The bridge exchange lasts for Mb packets, or less if both queues are emptied.
(Again, we assume that all piconet masters use the same value for Mb, but separate
values for each piconet, or even each bridge, may be readily accommodated by our
model.) The last condition may be explicitly signalized with a POLL-NULL frame,
which complies with common Bluetooth practice. Thus, bridge exchanges last at
most Mb + 2 frames, but the first and last frames always take only two slots each.
This does result in wasted slots, as the first and last frame carry no data, but the
impact on performance is minimal, as will be shown in subsequent analysis. Note
that slots may be similarly wasted in virtually all other schemes, and some schemes
even allow gaps between adjacent exchanges [Tan and Guttag, 2002].

© 2006 by Taylor & Francis Group, LLC.

Under the complete exchange policy, the bridge stays in the piconet for as many
cycles as is necessary to allow all queued packets to be exchanged at once. Under
the limited exchange policy, the bridge stays in the piconet for a limited time only;
this time may be expressed in Bluetooth time slots or in piconet cycles. Since we are
interested in queue stability and, ultimately, scatternet performance, we will assume
that all the masters and all the bridges are aware of the actual policy used, including
the time limit for exchanges, if any.

Piconet model

If the bridge burst arrival rates are known, each piconet can be analyzed in isolation
using the analytical model for E-limited polling from Chapter 3. However, the results
obtained there cannot simply be reused, since the packet burst arrival rate and the
value of the polling parameter for an ordinary slave differ from those for the bridge.
Therefore, we have to determine:

1. The joint probability distributions of the uplink/downlink queue lengths, frame
service time, and channel service times for an ordinary slave (say, slave i);

2. The probability distribution of the channel service time for the bridge; and

3. The corresponding vacation times for ordinary slaves and the cycle time.

We note that there is a recursive relationship between those values since the prob-
ability distributions of the queue lengths depend on the vacation times, and vacation
times depend on the channel service times (i.e., the probability distributions of the
queue lengths of other piconet members). According to earlier analysis, an ordinary
slave i is described with a total of Ms − 1 equations with unknowns qi

0,0 and π i,(µ)
0,0 ,

where k = 1 . . Ms − 1, as follows:(
1 −

(
F∗

is(λiu − λiuGb(z j))

z j

)Ms
)

qi
0,0+

Ms−1∑
k=1

(
1 −

(
F∗

is(λiu − λiuGb(z j))

z j

)Ms−k
)
π

i,(k)
0,0 = 0

(13.1)

where

z j =
∞∑

n=1

e2π jn
√−1/Ms

n!

· dn−1

dzn−1

(
V ∗

i (λiu − λiuGb(z))F
∗
is(λiu − λiuGb(z))

)n/Ms
∣∣∣
z=0

(13.2)

and F∗
is(s) represents the LST of the frame duration. This LST has already been

calculated in Chapter 3, Equation (3.37), to be

© 2006 by Taylor & Francis Group, LLC.

F∗
is(s) = P Q · e−2s

+
(

Qi (0, 1)+ Qi (1, 0)+ S P − 2 · P Q · G∗
p(s)

)
e−2s

+ (1 − Qi (0, 1)− Qi (1, 0)− S P + P Q) (G∗
p(s))

2

(13.3)

where

P Q =
Ms∑
µ=1

π
i,(µ)
0,0 + qi

0,0

and

S P =
M∑
µ=1

(
�i,µ(0, 1)+�i,µ(1, 0)

)

The last, Ms-th equation is obtained from the condition Q(1, 1)+
Ms∑
µ=1

�i,µ(1, 1) =
1, and it reads:

Msqi
0,0 +

Ms−1∑
k=1

(Ms − k)π i,(k)
0,0 = Ms(1 − λiu Fis B)− λiu BVi

1 − λiu Fis B + λiu BVi
(13.4)

where V ∗
i (s) represents the LST of the slave’s i vacation time Bridge, when present

in the piconet, is described with a similar system of equations with appropriate packet
burst arrival rate and polling parameter Mb.

Since the PGF V ∗
i (λiu − λiuGb(z)) depends on the joint uplink/downlink queue

length probability distributions at Markov imbedded points for all piconet mem-
bers other than target slave i , each slave should be described with a separate set
of equations similar to (13.1) and (13.4). Therefore, the target queue length distri-
butions at embedded Markov points depend on the probability distributions of all
Markov points at all the uplink and downlink queues. The exact expression for
V ∗

i (λiu − λiuGb(z)) will be derived in the Section 13.2. However, initial deriva-
tion of the probability distribution of the number of packets in the slave i’s uplink
(downlink) queue after the vacation and after the uplink transmissions may be simpli-
fied if we assume that the PGF for the number of packet arrivals during the vacation
period, V ∗

i (λiu − λiuGb(z)), depends only on values of qi
0,0, and π i,(µ)

0,0 µ = 1..Ms ,
but not on the other members of Qi (z, w) and �i,µ(z), µ = 1 . . Ms .

It is also possible to truncate the sum for calculation of z j to the first few members
only (actually, this number should be close to Ms for reasonable accuracy to be
maintained). The solutions thus obtained may contain negligible imaginary part.

These simplifications allow us to describe the piconet N within the scatternet with
mn −bn −1 slaves with arbitrary arrival rates with 2Ms(mn −bn −1)+2Mbbn equa-
tions. When the system is solved, the PGFs�i,µ(z, w)/�i,µ(1, 1), µ = 1..Ms and
Qi (z, w)/Qi (1, 1) can be determined. Again, a relatively simple solution may be

© 2006 by Taylor & Francis Group, LLC.

obtained under the assumption that the vacation time does not depend recursively on
the Qi (z, w) (distributions of the number of packets upon the return from the vaca-
tion). Unfortunately, this assumption is not quite correct, and the system will have to
be solved in an iterative manner; a detailed discussion can be found in Chapter 3.

One such system of equations is needed for each piconet in the scatternet.

13.2 Service, vacation, and cycle times

We are now able to determine the service times for the uplink and downlink queues
for ordinary slave and the bridges, as well as the vacation time for the pair of queues
corresponding to one slave or bridge.

The LST for the duration of channel service time for the ordinary slave with NULL
packets included, expressed in slots, has been derived in Chapter 3 to be

S∗
i (s) =

Ms−1∑
k=0

Pf,k

k∏
µ=1

(F∗µ(s))e−2s + Pf,Ms

Ms∏
µ=1

F∗µ(s) (13.5)

where

Pf,0 = qi
0,0

Qi (1, 1)

Pf,1 = Qi (1, 1)− qi
0,0

Qi (1, 1)
· π

i,(1)
0,0

�i,1(1, 1)

Pf,k = Qi (1, 1)− qi
0,0

Qi (1, 1)
·

k−1∏
µ=1

�i,µ(1, 1)− π
i,(µ)
0,0

�i,µ(1, 1)
· π

i,(k)
0,0

�i,k(1, 1)
,

k = 2 . . Ms − 1

Pf,Ms = 1 −
Ms−1∑
k=0

Pf,k

F∗1(s) = Qi (1, 0)+ Qi (0, 1)− 2qi
0,0

Qi (1, 1)
G∗

p(s)e
−s

+ Qi (1, 1)− Qi (1, 0)− Qi (0, 1)+ qi
0,0

Qi (1, 1)
G∗

p(s)
2

F∗µ(s) = �i,µ−1(1, 0)+�i,µ−1(0, 1)− 2π i,(µ−1)
0,0

�i,µ−1(1, 1)
G∗

p(s)e
−s

+ �i,µ−1(1, 1)−�i,µ−1(1, 0)−�i,µ−1(0, 1)+ π
i,(µ−1)
0,0

�i,µ−1(1, 1)
G∗

p(s)
2,

µ = 2 . . Ms

(13.6)

© 2006 by Taylor & Francis Group, LLC.

Mean value of the service time is equal to Si = −S∗′
i (0).

In the presence of bn bridges in the piconet N , and assuming that bridges have
equal traffic load, the downlink bridge arrival rate toward the piconet x is

λbn,x = (1 − Pl)

bn

mn∑
i=2
�= j

λiu (13.7)

where the master is the piconet member with the index 0, and the bridge has the
index j .

Consider again the bridge between piconets N and X , shown in Fig. 13.1, where
the residence times for the bridge are Tn and Tx , respectively, and the corresponding
PGFs are Tn(z) and Tx (z). When the bridge switches into a piconet, its master will
not be aware of it until its first attempt to poll the bridge. The time between joining
the piconet and first poll by the master may be described with the PGFs Tsyn,n,x (z)
and Tsyn,x,n(z). These synchronization times may be derived as follows.

Under walk-in bridge scheduling, the piconet cycle time affects the bridge cycle
time in piconet N and vice versa, and the latter cannot be determined independently
of the former. Therefore, we must start by finding the PGF for the piconet cycle time
in N without bridge interruptions, using an equation similar to (11.18). Note that for
zero length bridge transfers, Ct

n(z)|0 = C p
n (z)|0. The only difference from (11.18)

would be the multiplication with z2 in order to model the polling of bridge while it
is absent from the piconet: C p

n (s)|0 = (S p
n (z)|0)mn−2z2. Then, we need to find the

probability distribution of the bridge synchronization time in N , which is the interval
from the time slot in which the bridge switches to the piconet N until the first time
slot in which the master polls the bridge.

Under walk-in scheduling, the master will poll all of the slaves, including the
bridge, in every cycle. If the bridge is absent, the master will spend two slots
(POLL packet, followed by a one-slot silence) and continue with polling other slaves
[Bluetooth SIG, 2001b], as shown in Fig. 13.2 (a). For convenience, we have as-
sumed that the piconet cycle starts by polling the bridge.

The bridge may join piconet N (i.e., synchronize its clock to the clock of N)
at any time; the position of this time instant will be uniformly distributed over the
span of the piconet cycle of N – which has started by polling the bridge that was
not present at the time. The time interval from the moment in which the bridge has
joined the piconet, to the moment in which the master polls the bridge, is the bridge
synchronization time, as shown in Fig. 13.2 (b).

The probability distribution for the bridge synchronization time, Tsyn2,x,n , may
be derived by using the results of the theory of continuous-time and discrete-time
renewal processes [Kleinrock, 1972; Cooper, 1990]. Tsyn,x,n is equal to the backward
recurrence time in the discrete-time renewal process, where the interval between
two successive renewal points is given by the piconet cycle time when the bridge is
absent, C p

n |0. The probability that the piconet cycle time when the bridge is absent

lasts exactly j time slots is given by r (0)j = 1

j!

d j

dz j
C p

n (0)|0. Now, the probability

© 2006 by Taylor & Francis Group, LLC.

2 3 4 5 6 2 3(a)

piconet cycle with bridge absent

(b)

piconet cycle in which the bridge joins the piconet

3 4 5 6 6

bridge has to wait for master's
visit

B(1)

bridge joins
the piconet

master polls the bridge, receives the
response and starts packet exchange

master polls the bridge -
receives no response and goes on to next slave

time

time

65

26

master polls the bridge - receives no
response and goes on to next slave

FIGURE 13.2
Pertaining to the bridge synchronization upon joining the piconet with a total of six
slaves, and bridge is slave no. 1. (From J. Mišić, V. B. Mišić, and K. L. Chan, “Per-
formance of Bluetooth bridge scheduling algorithms,” Computer Communications
27(12):1143-1151, c© 2004 Elsevier B.V.)

that the piconet cycle in which the bridge joins piconet N will last exactly j time
slots is

j

C p
n |0

1

j!

d j

dz j
C p

n (0)|0 = jr (0)j

C p
n |0

, j = 1, 2, . . . (13.8)

The probability that the bridge joins this piconet cycle exactly k slots before it will
be polled by the master is

1

j

jr (0)j

C p
n |0

= r (0)j

C p
n |0

, k = 0 . . j − 1 (13.9)

Then, the probability that the bridge joins the piconet cycle of arbitrary length
(described with the PGF C p

n (z)|0), exactly k slots before it will be polled by the
master, is

Prob[Tsyn,x,n = k] =
∞∑

j=k+1

r (0)j

C p
n |0

(13.10)

© 2006 by Taylor & Francis Group, LLC.

The PGF for the synchronization time is

Tsyn,x,n(z) =
∞∑

k=0

zkProb[Tsyn,x,n = k] =
∞∑

k=0

zk
∞∑

j=k+1

r (n)j

C p
n |0

= 1

C p
n |0

∞∑
j=1

r (0)j

j−1∑
k=0

zk = 1

C p
n |0(1 − z)

∞∑
j=1

r (0)j (1 − z j)

= 1 − C p
n (z)|0

C p
n |0(1 − z)

(13.11)

Mean synchronization time may be shown to be equal to one half of the mean cycle
time of the piconet when the bridge is absent. Note that this result holds for both MS
and SS bridges: after all, in both cases the bridge will be only a slave in piconet N .

The moments of the bridge cycle time distribution may be obtained from the equa-
tion Tcyc,n(z) = zT1 Tr (z)Tsyn,x,n(z). This equation is similar to (11.10) which holds
in the case of rendezvous bridge scheduling, but with the addition of Tsyn,x,n(z).
However, Tsyn,x,n(z) depends only on the traffic parameters in N and does not intro-
duce any new variables. Therefore, once the PGF for the bridge cycle is known, we
can determine the complete expressions for Ct

n(z) and Ct
X (z).

The packets are sent from the master’s outgoing queue toward the bridge much in
the same manner as they are sent from the ‘normal’ downlink queues toward corre-
sponding ordinary slaves. Hence, we may describe uplink/downlink queue for one
slave with Equations (13.1) and (13.4), but using Mb in place of Ms ; actually, we will
use Mbx in piconet X and Mbn in piconet N . Note that the master-bridge link will
experience longer vacation times than the ordinary slave-master links, due to bridge
absence from the piconet. However, this analogy helps us estimate the outgoing
service time without having to solve the entire system.

As noted above, there are two different policies for the bridge management under
E-limited intra-piconet polling. Let us now investigate the performance of these
approaches in more detail.

Complete exchange policy

As a matter of convenience, let us assume that the bridge carries more traffic from
piconet N to piconet X than in the opposite direction. Consider the time interval
between two successive bridge departures from piconet N which we will refer to as
the bridge cycle. The PGF for the bridge cycle has the form:

Tcyc(z) = Tsyn,n,x (z)Tx (z)Tsyn,x,n(z)Tn(z) (13.12)

The LST for the bridge cycle T ∗
cyc(s) can be obtained by substituting variable z with

e−s . During the bridge cycle, the outgoing queue of the piconet N master was filled
at the rate λbn,x . Similarly to the approach taken in Chapters 3 and 11, we obtain the
PGF for the number of packet arrivals in the bridge queue during the bridge cycle as

Nn,x (z) = T ∗
cyc(λbn,x − λbn,x Gb(z)) (13.13)

© 2006 by Taylor & Francis Group, LLC.

The PGF for the number of bridge cycles needed to empty this queue (i.e., deliver
all of its packets to the bridge) is

Nsn
n,x (z) =

⌈
Nn,x (z

1
Mbn)

⌉
(13.14)

where �. . .� denote that every exponent in the PGF should be rounded to the next
larger integer. Then the PGF for the corresponding number of slots is

Ncn
n,x (z) = Nsn

n,x (C
+
n (z)) (13.15)

where C+
n (z) denotes the PGF for the duration of the cycle time in piconet N with

the bridge present. Mean number of slots needed to empty the master’s outgoing
queue is

Ncn
n,x =

⌈
λbn,x BTcyc

Mbn

⌉
C+

n − C−
n (13.16)

where C−
n denotes the mean cycle time in piconet N when the bridge is not present.

The last expression may be approximated with:

Ncn
n,x = λbn,x BTcyc

Mbn
Cn (13.17)

where Cn denotes the mean cycle time averaged over a long time (i.e., many cycles
with and without the bridge present).

After switching to piconet X , the bridge has to deliver all queued packets to the
master. Note that the bridge queue cannot be refilled as long as the bridge is with
piconet X . However, the bridge uplink service time may be calculated in a different
way. The PGF for the number of service periods in piconet X needed to empty the
bridge is similar to one given by (13.14). The PGF for the equivalent number of slots
is

Ncx
n,x (z) = Nsx

n,x (C
+
x (z)) (13.18)

where C+
x (z) denotes the PGF for the duration of the cycle time in piconet X when

bridge is present in the piconet. The mean number of slots may be approximated
with

Ncx
n,x = λbn,x B(Tn + Tx + Tsyn,n,x + Tsyn,x,n)

Mbx
Cx (13.19)

In this case, the bridge residence times are described with

Ncn
n,x (z) = Tn(z)

Ncx
n,x (z) = Tx (z)

(13.20)

and the respective equalities hold for mean values as well. The residence time in
piconet N may easily be obtained as

Tn =
(Tsyn,n,x + Tsyn,x,n)

Mbx

λbn,x BCx

Mbn

λbn,x BCn

Mbx

λbn,x BCx
− Mbn

λbn,x BCn
− Mbx

λbn,x BCx

(13.21)

© 2006 by Taylor & Francis Group, LLC.

It is easy to show that Tx = Tn

(
Cx
Mbx

)
/
(

Cn
Mbn

)
.

Under the complete exchange policy, the master’s outgoing queue in piconet N
will be emptied at a rate of Mbn packets per cycle, and possibly refilled by packets
picked up from the slaves between two visits to the bridge. The exchange lasts
until there are no more packets to exchange (which is detected via a POLL-NULL
sequence), and the bridge then leaves the piconet. As long as the bridge is absent, it
takes only two time slots (i.e., one POLL packet and one empty slot) for the master
to detect this absence. The probability that the bridge will be present in the piconet
N when the master polls it (hit probability) is

Hn =
⌈

Tn/Cn
⌉

(Tn + Tx + Tsyn,n,x + Tsyn,x,n)/Cn
≈ λbn,x B Cn

Mbn
(13.22)

Previously calculated PGFs of bridge residence times, bridge synchronization times
and hit probability directly lead to the calculation of the vacation time for the bridge
when we consider it as a piconet member; we will calculate it in Section 13.2. How-
ever, the PGF for the bridge downlink service time which assumes that bridge will
exchange Mbn packets in every cycle (except, possibly, the last one) can be approxi-
mated with

Sbn,x,d(z) = Hn(G p(z))
Mbn + (1 − Hn) z + z (13.23)

Mean bridge service time for the complete exchange is

Sbn,x,d = λbn,x B Cn

(
L − 1

Mbn

)
+ 2 (13.24)

Finally, the PGF of uplink service time in piconet X is

Sbn,x,u(z) = Hx · (G p(z))
Mbx + (1 − Hx) z + z (13.25)

As noted above, we assume that λbn,x ≥ λbx,n , hence the service time in the direc-
tion with the smaller bridge traffic is

Sbx,n,d(z) = Hn
Nx,n

Nn,x
(G p(z))

Mbx +
(

1 − Hn
Nx,n

Nn,x

)
z + z (13.26)

and the corresponding mean bridge service time is

Sbx,n,d = λbx,n B Cn Mbx

(
L − 1

Mbx

)
+ 2 (13.27)

Limited exchange policy

Let us assume that the bridge residence time limit is expressed in the number of
exchanges with the master. In other words, let the bridge stay in piconet N for at
most K +1 (where K = 0, 1, 2 . . .) exchanges of up to Mbn packets with the master,

© 2006 by Taylor & Francis Group, LLC.

interleaved with K piconet cycles. Of course, the bridge may leave earlier if there
are no more packets to exchange. (Note that when K → ∞, the bridge will stay in
the piconet for as many exchange cycles as is necessary to empty both master and
bridge queues – which actually corresponds to the complete exchange policy.) Under
this policy, the PGF for the maximum bridge residence time in piconet N is

T max
n (z) = (G p(z))

2Mbn (Cn(z))
K (13.28)

By the same token, the maximum bridge residence time in piconet x is

T max
x (z) = (G p(z))

2Mbx (Cx (z))
K (13.29)

Let us consider the time interval between two successive departures of the bridge
from piconet N , i.e., the bridge cycle. The PGF for the maximum bridge cycle is

T max
cyc (z) = Tsyn,n,x (z)T

max
x (z)Tsyn,x,n(z)T

max
n (z) (13.30)

The number of packets that have entered the master’s outgoing queue in that time
period has the PGF:

Nn,x (z) = T ∗max
cyc (λbn,x − λbn,x Gb(z)) (13.31)

The master’s outgoing queue in piconet N behaves much in the same manner as
under the complete exchange policy, except that the duration of bridge residence is
limited and we do not wait for this queue to clear up. We will focus on the case of
K = 0 since it promises lowest delays for inter-piconet traffic. The probability that
the bridge will be present in the piconet when the master attempts to poll it, is

Hn = Tn

Tn + Tx + Tsyn,n,x + Tsyn,x,n
(13.32)

The PGF for the bridge downlink service time may be roughly approximated by

Sbn,x,d(z) = Hn(G p(z))
Nn,x + (1 − Hn) z + z (13.33)

with the mean value of

Sbn,x,d = λbn,x B Cn L − Hn + 2. (13.34)

The PGF for the uplink service period of the bridge while present in the piconet X
is similar to (13.33), but with Hx and Cx as parameters. Again, previous discussions
referred to the bridge direction with the larger bridge traffic; the PGF for the service
time in the direction with the smaller traffic is

Sbx,n,d(z) = Hn(G p(z))
Nx,n + (1 − Hn) z + z (13.35)

with the mean value of

Sbx,n,d = λbx,n B Cn L − Hn + 2. (13.36)

© 2006 by Taylor & Francis Group, LLC.

Piconet cycle time

The LST of service time for the pair of uplink and downlink queues that correspond
to the ordinary slave i is S∗

i (s), which is given by (13.5). The approximate LST for
service time for the bridge (slave j) is

S∗
bj (s) = Sb∗ j

n,x,d(s)Sb∗ j
n,x,u(s) (13.37)

Given that piconet N has 8 ≥ mn ≥ 2 members, one of which is the master and
bn of which are bridges, the PGF for the vacation time observed by an ordinary slave
is

V ∗
i (s) =

mn∏
j=2
j �=i

S∗
j (s) (13.38)

The vacation time for the bridge in piconet N under complete exchange policy cor-
responds to the ordinary vacation time for E-limited service when bridge is present
in the network while it corresponds to the bridge absence time otherwise. The PGF
for this vacation time is

V ∗
i (s) = Hn

mn∏
j=2
j �=i

S∗
j (s)+ (1 − Hn)T

∗
syn,n,x (s)T

∗
x (s)T

∗
syn,x,n(s) (13.39)

For limited exchange policy with K = 0, it has the form

V ∗
i (s) = T ∗

syn,n,x (s)T
∗
x (s)T

∗
syn,x,n(s) (13.40)

When the vacation time for the bridge is known, Equations (13.1) and (13.4) can
be set, and the exact service time Sb j

n,x , for bridge j between piconets N and X , can
be calculated using Equation (13.5).

The cycle time of the piconet N with the bridge present, then becomes

C∗+
n (s) =

mn∏
i=2

S∗
i (s) (13.41)

and its mean value will be:

Cn =
mn∑
i=2
i �= j

Si +
bn+1∑
j=2

Sb j
n,x (13.42)

By taking into account the approximate mean bridge service times from (13.24)
and (13.27), the cycle time for the case of complete exchange becomes

C+
n =

mn∑
i=2
i �= j

Si + 2bn

1 − B

(
L − 1

Mbn

) bn+1∑
j=2

(
λbn,x j

+ λbx j ,n

) (13.43)

© 2006 by Taylor & Francis Group, LLC.

The mean cycle time for the limited exchange has a similar form.

As the distribution of the number of packets in uplink and downlink queues are
calculated via vacation times and vice versa, there is a recursion here, and the system
of equations may be solved iteratively as in Chapter 3.

Observations related to the service times

We note that (13.5) and (13.43) still depend on parameters
∞∑

kd=0

qi
ku,kd/Qi (1, 1) and

∞∑
ku=0

qi
ku,kd/Qi (1, 1), where ku, kd = 0 . . Ms − 1. Notice, however, that there is in-

teraction between the slaves in one piconet: the service time for slave i will depend
on the service times of all other slaves, since burst arrivals are accumulated in the
uplink queue of slave i while other slaves are being serviced (i.e., during the vaca-
tion). If the service times for other slaves are smaller, the service time for slave i will
also be smaller since less packets will be accumulated in the buffer, and vice versa.
Of course, the service time for the bridge indirectly depends on the service times
for slave through the piconet cycle time. Due to this coupling among the slaves, the
mean cycle time actually depends on the sum of arrival rates in all the slaves, rather
than on their individual arrival rates, provided that differences in arrival rates are not
high (say, within 80% of each other). A similar observation has been made for a
single piconet in Chapter 3, page 43.

piconet 1, m1 members
(m1-2 slaves)

piconet 1, m2 members
(m2-3 slaves)

piconet 1, m3 members
(m3-2 slaves)

FIGURE 13.3
Simple scatternet with three piconets.

Consider a simple array of three piconets as shown in Fig. 13.3, and observe the
dependency of piconet cycle time in ‘end’ piconets (i.e., piconets 1 and 20 on the
total piconet load, variation of load among the slaves, and locality probability, which

© 2006 by Taylor & Francis Group, LLC.

0.015
0.02

0.025
0.03

0.035 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

15

20

25

30

Lambda varying percentage

P1 Cycle Time (B=3,p
l
=0.60)

λ
tot

2

(a) Mean cycle time for piconet 1 when Pl = 0.6
in P1 and P3, asymmetric slave load.

0.01
0.015

0.02
0.025

0.03
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

20

25

30

35

40

45

50

55

60

Lambda varying percentage

P2 Cycle Time (B=3,p
l
=0.60)

λ
tot

2

(b) Mean cycle time for piconet 2 when Pl = 0.6
in P1 and P3, asymmetric slave load.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

15

20

25

30

35

40

45

50

p
l

P1 Cycle Time (B=3)

λ
tot

2

(c) Mean cycle time for piconet 1 as a function of
Pl , symmetric slave load.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

20

30

40

50

60

70

80

p
l

P2 Cycle Time (B=3)

λ
tot

2

(d) Mean cycle time for piconet 2 as a function of
Pl , symmetric slave load.

FIGURE 13.4
Mean cycle time vs. total piconet load.

is shown in Fig. 13.4 (obtained with Ms = 3, Mb1 = Mb2 = 9, and B = 3 in all
cases). The variable slave load was achieved by assigning different (uplink) packet
arrival rates to individual slaves. Let λ stand for the arithmetic mean of all slaves’
uplink packet arrival rates. Then, the load variation of 0 corresponds to symmetric
load (all arrival rates are equal, λi = λ), while the load variation of 0.5 corresponds
to uniformly distributed arrival rates in the range (0.5λ, 1.5λ).

The total arrival rate in the ‘middle’ piconet 2 is calculated as

λtot = λ(m1 + m3 − 4)(1 − Pl)+ λ(m2 − 3)

where λ denotes mean packet burst arrival rate per ordinary slave in the whole scat-
ternet. As we see, the cycle time is not sensitive to the slave heterogeneity, but is

© 2006 by Taylor & Francis Group, LLC.

0.015
0.02

0.025
0.03

0.035 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

15

20

25

Lambda varying percentage

Bridge Residence Time in P1 (B=3,p
l
=0.60)

λ
tot

2

(a) Mean bridge residence time for piconet 1
when Pl = 0.6 in P1 and P3, asymmetric slave
load.

0.01
0.015

0.02
0.025

0.03
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

15

20

25

30

35

40

45

50

Lambda varying percentage

Bridge Residence Time in P2 (B=3,p
l
=0.60)

λ
tot

2

(b) Mean bridge residence time for piconet 2
when Pl = 0.6 in P1 and P3, asymmetric slave
load.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

10

15

20

25

30

35

40

45

50

p
l

Bridge Residence Time in P1 (B=3)

λ
tot

2

(c) Mean bridge residence time for piconet 1 as
a function of Pl , symmetric slave load.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

10

20

30

40

50

60

70

80

p
l

Bridge Residence Time in P2 (B=3)

λ
tot

2

(d) Mean bridge residence time for piconet 2 as
a function of Pl , symmetric slave load.

FIGURE 13.5
Mean bridge residence time vs. total piconet load.

sensitive to the amount of bridge traffic; this dependency becomes more pronounced
at higher total load.

Bridge residence time, shown in Fig. 13.5, exhibits similar behavior.
Similar observation holds for the marginal probability that the slave’s queue is

empty upon the return from the vacation qi
0/Qi (1, 1) =

∞∑
jd=0

qi
0, jd/Qi (1, 1). (The

corresponding dependencies are shown in Fig. 13.6.) Due to the coupling among
the uplink queues of the slaves and bridges, the values of qi

0/Qi (1, 1) at both slaves
and bridges are insensitive to the variability of arrival rates among the slaves. This
phenomenon has been explained in Chapter 3, in the context of simple piconets op-
erating under E-limited scheduling.

By extension, the value of the probability qi
0/Qi (1, 1) primarily depends on the

© 2006 by Taylor & Francis Group, LLC.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p
l

P2 Slave q0 (B=3)

λ
tot

2

(a) qi
0/Qi (1, 1) for the slave in piconet 2 when

λtot and Pl are varying.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
l

P2 Bridge q0 (B=3)

λ
tot

2

(b) qi
0/Qi (1, 1) for the bridge in piconet 2 when

λtot and Pl are varying.

FIGURE 13.6
Probabilities that the slave uplink queue contains no packets upon return from the
vacation vs. total piconet load and load variation among the slaves.

sum of uplink burst arrival rates, rather than the number of slaves and their indi-
vidual loads. Similar observations can be made for the other probabilities, i.e.,
qi

1/Qi (1, 1). . qi
Ms−1/Qi (1, 1), which are nearly independent of the load differences

among the slaves, and qi
1/Qi (1, 1)
 qi

0/Qi (1, 1).

13.3 Calculating the packet delays

Since the burst length distribution is geometric, i.e., Gb(z) = z

B + z − zB
, we will

introduce the substitution s = λiu−λiu z/(B+z−zB) in the expression for Qi (z, w).
By using the decomposition principle [Takagi, 1991], the LST for the packet access
delay at the slave uplink queue becomes:

W ∗
ai (s) = s(1 − λiu Fis B)

s − λiu + λiuGb(F∗
is(s))

· 1 − Gb(F∗
is(s))

B(1 − F∗
is(s))

·1 − V ∗
i (s)

sVi
·

Qi

(
1 − s

λiu B − s B + s
, 1

)
Qi (1, 1)V ∗

i (s)

(13.44)

The first term in this expression corresponds to the time needed to serve the first
packet in the burst in the M [x]/G/1 system. The second term corresponds to the
time needed to serve the given target packet in the burst. The third term corresponds

© 2006 by Taylor & Francis Group, LLC.

to the time needed to serve packets which arrive during the vacation, but before the
target burst. Finally, the last term corresponds to time needed to serve packets which
were already in the uplink queue when the vacation had started.

Mean value of the access delay is obtained as Wai = −W ∗′
ai (0), which amounts to

Wai = λiu B(F2
is)

(1 − λiu Fis B)
+ B(2)2

2B(1 − λiu Fis B)

+ V 2
i

2Vi
− Vi + Q

′
i (1, 1)

λiu B Qi (1, 1)

(13.45)

where V 2
i = V ∗′′

i (0).
Two properties of the mean access delay may be deduced from the last expression:

1. Under constant offered load ρi = 2λiu L B, and under fixed value of Ms , the
access delay will increase with the mean burst size B. This increase is due
to the increase of the second factorial moment of the burst (second term) and
the increased number of packets in the uplink queue at the beginning of the
vacation (last term).

2. Under constant offered load and fixed mean burst size B, the mean access
delay decreases when the value of M increases. This is due to the decreased
number of packets in the uplink queue at the beginning of vacation (fourth and
fifth terms in last expression).

Simulation results confirm these observations, as can be seen from Fig. 13.7.

0.01
0.02

0.03
0.04 0.5 0.55 0.6 0.65 0.7 0.75 0.8

40

60

80

100

120

140

p
l

P2 Access Delay (B=3)

λ
tot

2

(a) Access delay in piconet 2 when Pl = 0.6 with
asymmetric slaves.

0.01
0.015

0.02
0.025

0.03
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

30

40

50

60

70

80

90

100

110

120

Lambda varying percentage

P2 Access Delay (B=3,p
l
=0.60)

λ
tot

2

(b) Access delay in piconet 2 when Pl and total
arrival rate are varying.

FIGURE 13.7
Mean access delay in piconet 2 for Mb1 = Mb2 = 6, Ms = 3, and B = 3.

© 2006 by Taylor & Francis Group, LLC.

The calculation of downlink service and vacation time, and subsequently of the
downlink queueing delay, proceeds along a similar path as that for the corresponding
variables in the uplink, except that the modified values of λid and the PGF Gb,i,d(z)
should be taken into account. The complete calculation of modified burst size distri-
bution and downlink packet burst arrival rate is similar to the one given in Chapter 3;
the important conclusion is that the original burst size is almost preserved if the
polling parameter Ms is equal or larger than the average burst size. Let us introduce
the substitution u = λid − λidw/(B +w−wB) in the expression for Qi (z, w). The
LST for the downlink delay then becomes

W ∗
di (u) = u(1 − λid Fis B)

u − λid + λid Gb,i,d(F∗
is(u))

· 1 − Gb,i,d(F∗
is(u))

B(1 − F∗
is(u))

·1 − V ∗
i (u)

uVi
·

Qi

(
1, 1 − u

λi,d B − u B + u

)
Qi (1, 1)V ∗

i (u)

(13.46)

and the mean downlink delay is

Wdi = λid Bi,d L2

(1 − λid Fis Bi,d)
+ B(2)i,d Fis

2Bi,d(1 − 2λid Fis Bi,d)

+ V 2
i

2Vi
− Vi + Q

′
i (1, 1)

λid Bi,d Qi (1, 1)

(13.47)

The downlink bridge delay in piconet n has the same form as the downlink delay
toward the destination slave.

W b∗
n,x,d(s) = s(1 − 2λbn,x L Bd)

s − λbn,x + λbn,x Gb,d,i

(
(G∗

p(s))
2
) ·

1 − Gb,d,i

(
(G∗

p(s))
2
)

Bd

(
1 −

(
G∗

p(s))
2
))

·1 − V b∗
n,x (s)

sV bn,x
·

Qi

(
1, 1 − s

λbn,x Bi,d − s Bi,d + s

)

Qi (1, 1)V b∗
n,x (s)

(13.48)
where V b∗

n,x (s) denotes the vacation time observed by the bridge.
The probability distribution of uplink delays in piconet x can be estimated by

observing that a burst of length given with PGF Nn,x (z) from 13.31, arrives at the
beginning of the bridge residence time. After the arrival of the burst, the bridge will
be polled in the E-limited mode, i.e., Mbn packets will be transmitted in one piconet
cycle. Therefore, the LST for the uplink bridge’s delay will be:

W b∗
n,x,u(s) = 1 − Nn,x (C∗

x (
s

Mbx
))

Nn,x (1 − C∗
x (

s
Mbx

))
(13.49)

© 2006 by Taylor & Francis Group, LLC.

13.4 Stability considerations

The mechanism of scatternet operation affects the probability distribution of service
times for each device, and therefore affects the stability of all the queues. Scatternet
stability has two aspects: first, the queues involved in the bridge exchange must be
stable; second, the uplink and downlink queues that correspond to ordinary slaves
must be stable. As might have been expected, both aspects of stability are critically
dependent on the bridge management policy.

Bridge stability condition means that the mean number of packets to arrive in the
master’s outgoing queue must be less than the mean number of packets delivered to
the bridge. From the denominator of (13.21), we obtain the condition

Mbn

λbn,x B Cn

Mbx

λbn,x B Cx
− Mb

λbn,x B Cn
− Mbx

λbn,x B Cx
> 0 (13.50)

Since the mean cycle time is a monotonically increasing function of the total load,
and λbn,x is the fraction of the total load, the upper bound for bridge packet arrival
rate is attained when the cycle time reaches its maximum:

Mbn Mbx − Mbλbn,x B Cmax
x − Mbxλbn,x B Cmax

n > 0 (13.51)

where the maximum value of mean cycle time Cmax
n may be determined from (13.43):

Cmax
n = min

(
2(mn − bn − 1)Ms L + 2bn Mb L

)
,

2(mn − bn − 1)Ms + 2bn

1 − B

(
L − 1

Mb

) bn+1∑
j=2

(
λbn,x j

+ λbx j ,n

)

(13.52)

The value for Cmax
x may be determined in similar way.

By solving (13.51) for λbn,x , we may obtain the limit on maximum total load in

the piconet since λbn,x = (1 − Pl)

mn∑
i=2
i �= j

λiu where λiu denotes uplink arrival rate for

slave i in piconet n. By solving for λiu , the maximum total load for stable operation
of bridge can be determined.

© 2006 by Taylor & Francis Group, LLC.

On the other hand, the slave uplink queue will be stable if the average number
of packets that arrive during the average cycle time may be serviced in that time,
λiu B Cmax

n < Ms , from which a different λiu may be found.
Both stability conditions must hold simultaneously, which means that the stable

region is always determined by the stricter condition of the two. Of course, all pi-
conets must be stable for the scatternet to be stable.

In the case of limited exchange policy, the bridge residence time is limited to K +1
exchange cycles interleaved with K piconet cycles:

λbn,x B
(
Tsyn,n,x + Tsyn,x,n + K Cn + K Cx + 2L Mb + 2L Mb

)
< (K + 1)Mb

(13.53)
and the bridge stability condition becomes

mn∑
i=2
i �= j

λiu <

bn

(1 − Pl)B
(K + 1)Mb(

Tsyn,n,x + Tsyn,x,n + K Cmax
n + K Cmax

x + 2L Mb + 2L Mb
) (13.54)

As before, the slave stability condition dictates that

λiu B Cmax
n < Ms (13.55)

and the stability of the piconet is determined by the stricter condition of the two.

stability limits

slave uplink queue stability

limited exchange, K=0

complete exchange

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8
Pl

FIGURE 13.8
Stability conditions as functions of traffic locality Pl , with Mb = 12. (From
V. B. Mišić, J. Mišić, and K. L. Chan, “Walk-in bridge scheduling in Bluetooth scat-
ternets,” Cluster Computing 8(2/3):197–210, c© 2005 Springer Science + Business
Media, Inc. With kind permission of Springer Science and Business Media.)

© 2006 by Taylor & Francis Group, LLC.

The maximum allowable packet burst arrival rates for the scatternet with two
piconets, for a fixed Mb = 12, are shown in Fig. 13.8. The nearly horizontal
curve denotes the slave stability condition, which does not depend on the value of
K . The family of faster rising curves represent the bridge stability conditions for
K = 0, 1, 2, 3 and K → ∞ (which corresponds to complete exchange policy).
The stable region is below the curve for uplink queue stability and the curve for the
chosen value of K .

As can be seen, the highest allowable packet burst arrival rate is obtained for K =
0, when the bridge stays in each piconet for a single exchange cycle only.

Note also that the limited exchange policy outperforms the complete exchange
one whenever inter-piconet traffic is a significant portion of the total traffic. For
scatternets with predominantly local traffic, Pl is close to one, and slave stability
limit—which does not depend on the bridge management policy—takes precedence.

stability for complete exchange

0.20.40.60.8
Pl

4681012 Mbn

0.005

0.01

0.015

0.02

(a) Complete exchange policy.

stability for limited exchange, K=0

0.20.40.60.8
Pl

4681012 Mbn

0.005

0.01

0.015

0.02

0.025

(b) Limited exchange policy with K = 0.

FIGURE 13.9
Stability conditions as the function of traffic locality Pl and the value of Mb. (From
V. B. Mišić, J. Mišić, and K. L. Chan, “Walk-in bridge scheduling in Bluetooth scat-
ternets,” Cluster Computing 8(2/3):197–210, c© 2005 Springer Science + Business
Media, Inc. With kind permission of Springer Science and Business Media.)

In Fig. 13.9, maximum allowable burst arrival rates are shown as functions of
traffic locality and the number of packets to be exchanged in a single visit, Mb, for
B = 3. The slightly slanted surfaces correspond to the slave stability limit, while
the curved surfaces correspond to the bridge stability limits; the stable region is the
space below one and the other. Again, the slave stability limits the traffic in cases
where local traffic is dominant; for higher portion of non-local traffic, bridge stability
becomes a more restrictive factor. The limited exchange policy offers a slightly wider
stability region than the complete exchange one.

These results were confirmed through delay measurements in the scatternet topol-
ogy of Fig. 13.3. The scatternet had three piconets operating under limited exchange

© 2006 by Taylor & Francis Group, LLC.

5

10

15

20

0.2

0.4

0.6

0.8

500

1000

1500

2000

2500

Mb

Inter−piconet Traffic End−to−End delay (λ=0.004)

p
l

(a) End-to-end delay for inter-piconet traffic,
under constant packet burst arrival rate.

6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x 10
−3

p
l

Mb

λ
max

(b) Maximum packet burst arrival rate, λmax ,
that does not lead to instability.

6
8

10
12

14
16

18
20 0.2

0.3

0.4

0.5

0.6

0.7

0.8

200

400

600

800

p
l

Intra−piconet Traffic End−to−End delay (lambda
max

)

Mb

(c) End-to-end packet delays for intra-piconet
traffic, at λmax .

6
8

10
12

14
16

18
20 0.2

0.3

0.4

0.5

0.6

0.7

0.8

200

400

600

800

1000

p
l

Inter−piconet Traffic End−to−End delay (λ
max

)

Mb

(d) End-to-end packet delays for inter-piconet
traffic, at λmax .

6
8

10
12

14
16

18
20 0.2

0.3

0.4

0.5

0.6

0.7

0.8

100

150

200

250

300

350

p
l

Intra−piconet Traffic End−to−End delay (0.9λ
max

)

Mb

(e) End-to-end packet delays for intra-piconet
traffic, at 0.9λmax .

6
8

10
12

14
16

18
20 0.2

0.3

0.4

0.5

0.6

0.7

0.8

200

300

400

500

p
l

Inter−piconet Traffic End−to−End delay (0.9λ
max

)

Mb

(f) End-to-end packet delays for inter-piconet
traffic, at 0.9λmax .

FIGURE 13.10
Pertaining to the stability of the scatternet under walk-in scheduling. (From
V. B. Mišić, J. Mišić, and K. L. Chan, “Walk-in bridge scheduling in Bluetooth scat-
ternets,” Cluster Computing 8(2/3):197–210, c© 2005 Springer Science + Business
Media, Inc. With kind permission of Springer Science and Business Media.)

© 2006 by Taylor & Francis Group, LLC.

policy with K = 0, B = 3, and Ms = 3.
First, Fig. 13.10(a) shows the end-to-end packet delays for inter-piconet traffic

under constant packet burst arrival rate of λ = 0.004 per Bluetooth time slot; this
value exceeds the stability limit for some combinations of traffic locality Pl and Mb.
As can be seen, the delays rise steeply when the stability condition is exceeded.
Second, Fig. 13.10(b) shows the maximum packet burst arrival rates that do not lead
to instability (detected through excessive end-to-end packet delays), which closely
corresponds to the stability region of Fig. 13.9(b).

End-to-end packet delays for intra- and inter-piconet traffic at the edge of the sta-
bility region are shown in Figs. 13.10(c) and 13.10(d), respectively. The delays for
inter-piconet traffic are slightly higher, due to the increased number of hops that such
traffic has to pass through – four, as opposed to only two for intra-piconet traffic.
Note that absolute delays can reach values of 800T = 0.5s and above. However, if
the arrival rates are reduced to 90% of the maximum values, the delays drop sharply,
as shown in Figs. 13.10(e) and 13.10(f).

In general, the simulation results vividly confirm the validity of analytical conclu-
sions presented above.

13.5 Scalability

In order to assess the scalability of the walk-in scheduling approach, we have mea-
sured intra- and inter-piconet delays under variable scatternet topology, using limited
exchange policy with K = 0. In all cases, local traffic has exactly two hops to go
– from the source slave to the master, and from the master to the destination slave.
Non-local traffic is always targeted toward the adjacent piconet(s), so that it has
exactly four hops to go. This choice simplifies routing, which is yet undefined in
Bluetooth specification [Bluetooth SIG, 2001b], and makes comparisons easier. The
packet burst arrival rate was fixed at λ = 0.0045 per Bluetooth time slot per slave.
Traffic locality values were Pl = 0.6 in piconets with one bridge only, and Pl = 0.2
in piconets with two and three bridges.

Topology 1 is similar to a linear chain in which each piconet (except for the first
and the last) has two bridges, and each bridge connects two piconets, as shown
in Fig. 13.11(a). Each piconet has five ordinary slaves. Measured values of the
throughput for intra- and inter-piconet traffic, as well as their sum, are shown in
Fig. 13.11(b), while the mean packet delays in piconets 1 through 9 are shown in
Fig. 13.11(c).

As can be seen, the delays in piconets 1 and 2 are essentially independent of the
total number of piconets. Since piconet 1 has only one bridge and only one adjacent
piconet, whereas piconet 2 has two of each, the total load in piconet 1 is smaller, and
its delays are lower.

© 2006 by Taylor & Francis Group, LLC.

P4P1 P2 P3 P5 P12

added one at a time

(a) Scatternet topology.

3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Piconets

T
hr

ou
gh

pu
t (

kb
ps

)

Scatternet Throughput

Intra Piconet Traffic Throughput
Inter Piconet Traffic Throughput
Total Throughput

(b) Scatternet throughput.

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 1

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 2

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 3

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 4

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 5

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 6

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 7

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 8

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 9

(c) Mean packet delays in piconets 1 through 9: circles denote local delays, triangles denote inter-piconet
delays.

FIGURE 13.11
Pertaining to scalability of walk-in scheduling: topology 1. (From V. B. Mišić,
J. Mišić, and K. L. Chan, “Walk-in bridge scheduling in Bluetooth scatternets,”
Cluster Computing 8(2/3):197–210, c© 2005 Springer Science + Business Media,
Inc. With kind permission of Springer Science and Business Media.)

© 2006 by Taylor & Francis Group, LLC.

From the diagrams of delays in piconets 3 to 9, a repetitive pattern may be ob-
served. Each of these piconets first appears at the edge of the scatternet, and initially
contains one bridge only; the load in such a piconet is equal to that of piconet 1,
ρ1 = 0.567, and so are the delays. In the next step, another piconet is added, to-
gether with another bridge, and the edge piconet becomes a ‘middle’ one. Its total
load rises to the level of piconet 2, ρ2 = 0.729, and so do the delays. As more
piconets are added, the loads and delays in the ‘middle’ piconets remain essentially
the same.

The overall throughput is a linear function of the number of piconets, and so are
its local and non-local components.

Topology 2 is a modified chain shown in Fig. 13.12(a). It has four piconets ini-
tially, with two new piconets added at a time, as shown in the diagram. In this case,
each piconet has four ordinary slaves. Some piconets (1, 3, 5, . . .) have a single
bridge in every configuration, piconet 2 has three bridges in every configuration,
while the others (4, 6, . . .) have one bridge at first, and three bridges thereafter.
The total throughput, together with its local and non-local components, is shown in
Fig. 13.12(b); again, all of these are linear functions of the number of piconets.

Mean packet delays are shown in Fig. 13.12(c), from which a repetitive pattern
may again be observed. The load in piconets 1, 3, and 4 is small at first, ρ1 = 0.41,
since each of them has a single bridge only. Piconet 2 has three bridges and much
higher load of ρ2a = 0.71; consequently, its delays are noticeably higher. When
piconets 5 and 6 are added, their load is again small, ρ1 = 0.41, while the piconet 4
is augmented with two more bridges, and its load rises to ρ2b = 0.67; the delays rise.
At the same time, some of the traffic that went from piconet 4 to piconet 2 is diverted
toward piconets 5 and 6. Hence, the total load of piconet 2 is reduced to ρ2b = 0.67,
and its delays decrease.

As part of the load of piconet 2 comes from/to piconet 3, the reduced delays in
piconet 3 will affect the inter-piconet delays in piconet 2: these decrease as well.

Adding piconets 7 and 8 produces similar effects in piconets 6, and (indirectly) in
piconets 4 and 5 as well. However, piconet 2 still has three bridges; therefore, its
load does not change, and neither do its delays.

From these experiments, two important conclusions may be drawn. First, the total
throughput is a linear function of the number of piconets and it is virtually unaffected
by the bridge scheduling algorithm. Note that the relative difference in throughput
between Figs. 13.11(b) and 13.12(b) is caused by the fact that piconets of topology
1 have five packet-generating slaves each, while those of topology 2 have only four
each.

Second, both local and non-local delays in the scatternet primarily depend on the
total load of the piconet itself, and—to some extent—on the number of bridges and
the bridge load. (Note that the load is affected by the exact position of the piconet
in the scatternet topology.) However, delays do not depend in any noticeable way on
the total number of piconets in the scatternet.

Therefore, we may conclude that the walk-in bridge scheduling provides both
excellent performance and scalability, without requiring a schedule of rendezvous
points like the other approaches.

© 2006 by Taylor & Francis Group, LLC.

P6P1 P2

P3

P5

P12P4

P7

P8

added in step 1

added in step 2

(a) Scatternet topology.

4 5 6 7 8 9 10 11 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Piconets

T
hr

ou
gh

pu
t (

kb
ps

)

Scatternet Throughput

Intra Piconet Traffic Throughput
Inter Piconet Traffic Throughput
Total Throughput

(b) Scatternet throughput.

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 1

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 2

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 3

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 4

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 5

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 6

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 7

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 8

4 6 8 10 12
0

200

400

600

800

S
lo

ts

Piconet 9

(c) Mean packet delays in piconets 1 through 9: circles denote local delays, triangles denote inter-piconet
delays.

FIGURE 13.12
Pertaining to scalability of walk-in scheduling: topology 2. (From V. B. Mišić,
J. Mišić, and K. L. Chan, “Walk-in bridge scheduling in Bluetooth scatternets,”
Cluster Computing 8(2/3):197–210, c© 2005 Springer Science + Business Media,
Inc. With kind permission of Springer Science and Business Media.)

© 2006 by Taylor & Francis Group, LLC.

14

Scatternet with finite buffers

Performance analyses of scatternets operating under different bridge scheduling al-
gorithms have been done under the assumption that buffers with infinite capacity
are available to implement different queues in Bluetooth devices. While useful as
the first approximation, this assumption is simply unrealistic. Namely, not only that
buffers will be finite, but most of them will in fact be rather small in size, in particular
those on mobile and/or battery-operated devices.

This chapter presents the performance analysis of the scatternet operating under
walk-in bridge scheduling to scatternets where all devices have finite buffers, and
where all piconets operate under E-limited polling. After describing our schedul-
ing scheme and the associated queueing model for the joint uplink/downlink queue
length at vacation termination time and packet departure times in Section 14.1, we
derive the probability distributions for the packet service times (for ordinary slaves,
piconet masters, and bridges), vacation times, and piconet cycle times in Section 14.3.
Section 14.4 presents the derivation of blocking probabilities and components of
end-to-end packet delays within the scatternet. The queueing theoretic analysis is
confirmed through simulations, the results of which are presented in Section 14.5.
We also present some important conclusions regarding the choice of scheduling pa-
rameters and buffer sizes for large scatternets.

14.1 Scatternet model with finite buffers

Let us consider an arbitrary topology scatternet in which a piconet may contain one
or more bridges, and a bridge may link two or more scatternets. Our analysis will
focus on just two of the piconets, N and X , and the single bridge that links them,
as shown in Fig. 14.1. (This will not limit the generality of our analysis, and it
may easily be extended to more complex topologies.) The piconets have mn and mx

members, respectively, which includes one master each and bn (bx) bridges. The
bridge that links the piconets spends the time Tn (Tx) in piconet N (X); these times
will be referred to as bridge residence times, and they are expressed in Bluetooth
time slots T = 625µs.

The operation of each of the piconets in the scatternet may be described with a
queueing model shown in Fig. 14.2. The main difference from the queueing model

© 2006 by Taylor & Francis Group, LLC.

piconet N
piconet X

bridge N-X

FIGURE 14.1
Part of the scatternet: two piconets linked through a single bridge.

described in Chapter 10 and subsequently used as the foundation for analysis in
Chapters 11 to 13, lies in the fact that the bridges have finite sizes: Ku , Kd , and Kb,
for slaves, master, and bridge queues, respectively.

slave 2bridge (slave 1)

downlink queues (one per slave)

piconet
master

slave m -1

at most
Kd packets

at most
Ku packets

at most
Ku packets

at most
Kb packets

FIGURE 14.2
Pertaining to Bluetooth scatternet operation

We assume that both piconet masters poll their slaves using E-limited polling. Up
to Ms data packets are exchanged between the master and an ordinary slave during a
single master’s visit to a slave. We assume that all piconet masters use the same value
for Ms . All devices are assumed to use the same segmentation/reassembly protocol;
therefore, the mean burst size has the same value for all devices. In this case, the
value of Ms ≈ B can preserve the bursts from uplink to downlink queues, and lead
to minimal end-to-end packet delays, as shown in Chapter 3.

© 2006 by Taylor & Francis Group, LLC.

According to the walk-in bridge scheduling approach, the bridge switches between
the piconets in a round robin fashion without a predefined schedule. When present,
the bridge is polled just like any other slave, except that the first packet to be sent to
the bridge is always an empty POLL. The absence of a response to the initial POLL
packet means that the bridge is not present, in which case the master simply moves
on to the next slave. If the bridge is present, it responds with a NULL; the master
then starts the exchange with actual data packets.

The exchange lasts for Mb packets, or less if both queues are emptied. Both pi-
conet masters use the same value for Mb, but separate values for each piconet, or
even each bridge, may be readily accommodated by our model. If the emptying of
both queues is explicitly signalized with a POLL/NULL frame, as is common in
Bluetooth, the bridge exchanges last at most Mb + 2 frames, with the first and last
frames taking only two slots each.

Under the complete exchange policy, the bridge stays in the piconet for as many
cycles as is necessary to allow all queued packets to be exchanged at once. Under
the limited exchange policy, the bridge stays in the piconet for a limited time only;
this time is expressed in piconet cycles. In the analysis that follows, we will consider
the performance of both policies.

If the bridge burst arrival rates are known, each piconet can be analyzed separately
using the analytical model for E-limited polling given in Chapter 4. (Of course, the
different values for the polling parameter Mb and packet burst arrival rate have to
be taken into account.) Therefore, we have to determine the joint probability distri-
butions of the uplink/downlink queue lengths at the moments of uplink packet de-
parture. This in turn requires the solution of the Markov chain containing imbedded
Markov points that correspond to the vacation termination times and uplink packet
departure times. There are Ms + 1 imbedded Markov points for an ordinary slave,
and Mb + 1 such points for the bridge – when it is present in the piconet. The result-
ing probability distribution of the uplink/downlink queue length in Markov points
for slave i is represented with qi

ku ,kd
(where ku = 0, 1 . . Ku , kd = 0, 1 . . Kd), while

π
i,(µ)
ku ,kd

(where µ = 1 . . Ms) denote queue lengths at the return from vacation and
queue length after uplink packet departures, respectively. The total number of equa-
tions that describe the uplink and downlink queue probability distribution in Markov
points for a single slave is, therefore, (Ku + 1)(Kd + 1)(Ms + 1).

Using these distributions, we can determine the other distributions that are of in-
terest, i.e., the probability distributions of frame service time and channel service
times for ordinary slave i (fortunately these times depend only on the queue length
probability distributions in Markov points), channel service time for bridges, the
corresponding vacation times for ordinary slave and the cycle time, and probability
distribution of the queue length at arbitrary time which is needed to calculate the
blocking probability and access delay.

As in the case of infinite buffers, there is a recursive relationship between those
values since the probability distributions of the queue lengths depend on the vacation
times. Vacation times in turn depend on the channel service times and, by extension,
on the probability distributions of the queue lengths of other piconet members.

© 2006 by Taylor & Francis Group, LLC.

14.2 Uplink/downlink queue length distribution in Markov points

Given that bridge arrival rates are known, and vacation times for individual slaves
can be found, each slave can be described with the set of equations which model
slave’s uplink/downlink queue length at the return from the vacation and after each
uplink transmission.

Let fis(x) and vi (x) stand for the pdfs of the frame transmission time and vacation
time, respectively, at the uplink queue of slave i ; the corresponding LST transforms
will be F∗

is(s) and V ∗
i (s), respectively. We will also make use of the following prob-

abilities:

• The probability of ku packet arrivals at the slave i’s uplink queue during the
frame time, denoted with aku ;

• The probability of kd packet arrivals at the master’s downlink queue during the
frame time, denoted with akd ;

• The probability of ku packet arrivals at the slave i’s uplink queue during the
vacation time (i.e., while the master is servicing other slaves), denoted with
fku ;

• The probability of kd packet arrivals in the master’s downlink during the vaca-
tion time, denoted with fkd .

These probabilities can be calculated as

aku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu x fis(x)dx

= 1

ku!

dku

dzku

(
F∗

is(λiu − λiuGb(z))
)∣∣

z=0

akd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λid x)l

l!
e−λid x fis(x)dx

= 1

kd !

dkd

dzkd

(
F∗

is(λid − λid Gb(z))
)∣∣

z=0

fku =
∞∑

l=0

1

ku!

dku

dzku
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

ku!

dku

dzku
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

fkd =
∞∑

l=0

1

kd !

dkd

dzkd
(Gb(z))

l
∣∣∣
z=0

∫ ∞

0

(λiu x)l

l!
e−λiu xvi (x)dx

= 1

kd !

dkd

dzkd
V ∗

i (λiu − λiuGb(z))
∣∣
z=0

(14.1)

© 2006 by Taylor & Francis Group, LLC.

Similar expressions hold for the number of arrivals in the downlink queue. The
probabilities that the uplink queue of the (ordinary) slave i contains ku packets and
that the downlink queue toward that slave contains kd packets in imbedded Markov
points, satisfy the following equations:

π
i,(1)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

qi
ju , jd aku− ju+1akd− jd+1 +

kd+1∑
jd=1

qi
0, jd

akd− jd+1aku

+
ku+1∑
ju=1

qi
ju ,0aku− ju+1akd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2

π
i,(1)
Ku−1,kd

=
Ku∑

ju=1

kd+1∑
jd=1

qi
ju , jd

 ∞∑

ku=Ku− ju

aku

 akd− jd+1

+
kd+1∑
jd=1

qi
0, jd

akd− jd+1

∞∑
ku=Ku

aku +
ku+1∑
ju=1

qi
ju ,0akd

∞∑
ku=Ku− ju

aku ,

0 ≤ kd ≤ Kd − 2

π
i,(1)
ku ,Kd−1 =

ku+1∑
ju=1

Kd∑
jd=1

qi
ju , jd aku− ju+1

∞∑
kd=Kd− jd

akd

+
Kd∑

jd=1

qi
0, jd

aku

∞∑
kd=Kd− jd

akd +
ku+1∑
ju=1

qi
0, jd

aku− ju+1

∞∑
kd=Kd

akd ,

0 ≤ ku ≤ Ku − 2

π
i,(µ)
ku ,kd

=
ku+1∑
ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1akd− jd+1

+
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1aku +
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1akd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2, µ = 2 . . Ms

π
i,(µ)
Ku−1,kd

=
Ku∑

ju=1

kd+1∑
jd=1

π
i,(µ−1)
ju , jd

 ∞∑

ku=Ku− ju

aku− ju+1

 akd− jd+1

+
kd+1∑
jd=1

π
i,(µ−1)
0, jd

akd− jd+1

∞∑
ku=Ku

aku

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

akd

∞∑
ku=Ku− ju

aku− ju+1,

0 ≤ kd ≤ Kd − 2, µ = 2 . . Ms

continued on next page . . .

(14.2)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

π
i,(µ)
ku ,Kd−1 =

ku+1∑
ju=1

Kd∑
jd=1

π
i,(µ−1)
ju , jd

aku− ju+1

∞∑
kd=Kd− jd

akd− jd+1

+
Kd∑

jd=1

π
i,(µ−1)
0, jd

aku

∞∑
kd=Kd− jd

akd

+
ku+1∑
ju=1

π
i,(µ−1)
ju ,0

aku− ju+1

∞∑
kd=Kd

akd ,

0 ≤ ku ≤ Ku − 2, µ = 2 . . Ms

qi
ku ,kd

=
(

M−1∑
m=1

π
i,(µ)
0,0 + qi

0,0

)
fku fkd +

ku∑
ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fku− ju fkd− jd ,

0 ≤ ku ≤ Ku − 2, 0 ≤ kd ≤ Kd − 2

qi
Ku−1,kd

=

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fkd

∞∑
ku=Ku

fku

+
ku∑

ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fkd− jd

∞∑
ku=Ku− ju

fku

0 ≤ kd ≤ Kd − 2

qi
ku ,Kd−1 =

M−1∑
µ=1

π
i,(µ)
0,0 + qi

0,0

 fku

∞∑
kd=Kd

fkd

+
ku∑

ju=0

kd∑
jd=0

π
i,(µ)
ju , jd

fku− ju

∞∑
kd=Kd− jd

fkd ,

0 ≤ ku ≤ Ku − 2

(14.2)

As always, the sum of all probabilities must be equal to 1, hence

Ku∑
ku=0

Kd∑
kd=0

qi
ku ,kd

+
Ms∑
µ=1

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

= 1 (14.3)

Additional Ms + 1 more equations should also be set for (Ku, Kd) cases (this is left
as an exercise to the reader). Solving this system of equations gives the probability
distribution of uplink and downlink queue lengths in Markov points. As mentioned
above, the corresponding probability distributions for bridge queue lengths, when the
bridge is present in the piconet, require the system with Mb +1 Markov points. How-
ever, before solving it, the probability distributions of the service time and vacation
time have to be found as functions of queue length distributions.

© 2006 by Taylor & Francis Group, LLC.

14.3 Service, vacation, and cycle times

The channel service time is defined as time for a single visit to the given slave, from
the first poll packet of the master until either a total of Ms (or Mb) frames have
been exchanged or an empty frame has been encountered. The LST for the channel
service time, including empty packets, may be found using the expression derived in
Chapter 4 as

S∗
i (s) =

Ms−1∑
k=0

Pf,k

k∏
µ=1

(F∗µ(s))e−2s + Pf,Ms

Ms∏
µ=1

F∗µ(s) (14.4)

where Pf,k denote the probabilities that the channel service time will take exactly k
data frames:

Pf,0 = qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

Pf,1 =

1 − qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

π
i,(1)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(1)
ku ,kd

Pf,k =

1 − qi
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

·
k−1∏
µ=1

1 − π
i,(µ)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

· π
i,(k)
0,0

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(k)
ku ,kd

,

k = 2 . . Ms − 1

Pf,Ms = 1 −
Ms−1∑
k=0

Pf,k

(14.5)

© 2006 by Taylor & Francis Group, LLC.

The LST for the duration of µ− th frame (µ = 1 . . Ms) is

F∗1(s) =

Ku−1∑
ku=1

qi
ku ,0 +

Kd−1∑
kd=1

qi
0,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

G∗
p(s)e

−s +

Ku−1∑
ku=1

Kd−1∑
kd=1

qi
ku ,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

qi
ku ,kd

(G∗
p(s))

2

F∗µ(s) =

Ku−1∑
ku=1

π
i,(µ)
ku ,0

+
Kd−1∑
kd=1

π
i,(µ)
0,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

G∗
p(s)e

−s +

Ku−1∑
ku=1

Kd−1∑
kd=1

π
i,(µ)
ku ,kd

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(µ)
ku ,kd

G∗
p(s)

2,

µ = 2 . . Ms

(14.6)
Mean value of the service time is equal to Si = −S∗′

i (0).

Service times for the bridge

In the presence of bn bridges in the piconet N , and assuming that bridges carry equal
traffic, the downlink bridge arrival rate toward the piconet x is

λbn,x = (1 − Pl)

bn

mn∑
i=2
i �= j

λiu (14.7)

where the bridge is the piconet member with the index j .
Let us consider just one bridge, e.g., the one between piconets N and X shown

in Fig. 14.1. If the residence times for the bridge are Tn and Tx , respectively, the
corresponding PGFs will be Tn(z) and Tx (z). As shown in Chapter 13, upon joining
a piconet, the bridge will have to wait for some time before the master polls it. These
synchronization times, described with the PGFs Tsyn,n,x (z) and Tsyn,x,n(z), may be
derived from the results of theory of continuous-time and discrete-time renewal pro-
cesses [Kleinrock, 1972; Cooper, 1990]. Here we just repeat the main result obtained
in Chapter 13, page 239, i.e., that the PGF of synchronization time Tsyn,x,n is

Tsyn,x,n(z) =
∞∑

k=0

zkP[Tsyn,x,n = k] = 1 − C−
n (z)

C−
n (1 − z)

(14.8)

where P(x) denotes the probability of event x , and C−
n (z) denotes the PGF of the

duration of piconet cycle time when the bridge is absent. Mean synchronization time
is equal to one half of the mean cycle time of the piconet when the bridge is absent.

The master’s outgoing queue toward the bridge operates in the same manner as
the other downlink queues servicing ordinary slaves. Hence, we may describe the

© 2006 by Taylor & Francis Group, LLC.

uplink/downlink queue for the bridge in Markov points with a system of equa-
tions similar to that for an ordinary slave, but using Mb in place of Ms . A total
of (Mb + 1)(Kb + 1)2 equations are needed to fully describe the behavior of the up-
link/downlink queue of a bridge. Note, however, that the bridge link will experience
larger vacation times than the slave links, due to bridge absences.

We have seen in Chapter 10 and, subsequently, in Chapter 13, that bridge ex-
changes can be operated under two different policies, referred to as complete and
limited exchange. Let us first investigate the performance of the limited exchange
policy. As a matter of convenience, let us assume that the bridge carries more traf-
fic from piconet N to piconet X than in the opposite direction. Let us consider the
bridge cycle – i.e., the time interval between two successive bridge departures from
piconet N – which has the PGF of the form

Tcyc(z) = Tsyn,n,x (z)Tx (z)Tsyn,x,n(z)Tn(z) (14.9)

During the bridge cycle, the outgoing queue of the piconet N master was refilled at
the rate λbn,x .

The probability that the bridge will be present in the piconet when the master
attempts to poll it, is

Hn = Tn

Tn + Tx + Tsyn,n,x + Tsyn,x,n
(14.10)

Given that the piconet N has 8 ≥ mn ≥ 2 members (including the master and bn

bridges), the LST for the vacation time observed by an ordinary slave is

V ∗
i (s) =

mn∏
j=2
j �=i

S∗
j (s) (14.11)

where S∗
i (s) denotes the LST of the service time for the uplink/downlink queue pair

that corresponds to slave i , calculated in (14.4).
The vacation time for the bridge in piconet N corresponds to the ordinary vacation

time under E-limited polling, when the bridge is present in the piconet, and to the
bridge absence time otherwise; the corresponding LST is

V ∗
i (s) = Hn

mn∏
j=2
j �=i

S∗
j (s)+ (1 − Hn)T

∗
syn,n,x (s)T

∗
x (s)T

∗
syn,x,n(s) (14.12)

When the vacation time for the bridge is known, equations for queue length in imbed-
ded Markov points can be set for the bridge, together with other bridges and ordinary
slaves, and the LST for the service time Sb∗ j

n,x (s) for the bridge j can be calculated
from (14.4).

The cycle time of the piconet N with the bridge present can be described with

C∗+
n (s) =

mn∏
i=2

S∗
i (s) (14.13)

© 2006 by Taylor & Francis Group, LLC.

Knowing the LSTs for the bridge service time and piconet cycle time, we can calcu-
late the bridge residence time in piconet N in the case of limited exchange

T ∗
n (s) = Sb∗ j

n,x (s)(C
∗+
n (s))K (14.14)

where K = 0, 1, 2 The probability that the bridge is present in the piconet may
be obtained by substituting mean bridge residence times in both piconets and the
corresponding mean synchronization times into (14.10).

Under the complete exchange policy, we begin by determining the number of
packet arrivals to the bridge queue during the bridge cycle as

Nn,x (z) = T ∗
cyc(λbn,x − λbn,x Gb(z)) (14.15)

The PGF for the number of bridge exchanges cycles needed to empty this queue
(i.e., deliver those packets to the bridge) is

Nsn
n,x (z) =

⌈
Nn,x (z

1
Mb)

⌉
(14.16)

where �. . .� denote that every exponent in the PGF should be rounded to the next
larger integer. Then the PGF for the corresponding number of slots, i.e., for the
bridge residence time in piconet N is

Tn(z) = Nsn
n,x (C

+
n (z)) (14.17)

where C+
n (z) denotes the PGF for the duration of the cycle time in piconet N when

the bridge is present.

14.4 Blocking probability and packet delays

In order to calculate the buffer blocking probabilities at slaves and bridges, we have
to find probability distribution of uplink/downlink queue length at arbitrary time.
This analysis is based on the prior derivation of uplink/downlink queue length dis-
tribution at Markov points. Let us first note that LST for the frame duration time for
the ordinary slave has the form

F∗
is(s) =

qi

0,0 +
Ms∑
µ=1

π
i,(µ)
0,0

 e−2s

+

Ku−1∑

ku=1

(qi
ku ,0 +

Ms∑
µ=1

π
i,(µ)
ku ,0

)+
Kd−1∑
kd=1

(qi
0,kd

+
Ms∑
µ=1

π
i,(µ)
0,kd

)

G∗

p(s)e
−s

+
Ku−1∑
ku=1

Kd−1∑
kd=1

qi

ku ,kd
+

Ms∑
µ=1

π
i,(µ)
ku ,kd

 (G∗

p(s))
2

(14.18)

© 2006 by Taylor & Francis Group, LLC.

Also, let us denote the probability that a vacation starts after the uplink transmission

as hi =
M−1∑
µ=1

π
i,(µ)
0,0 +

Ku−1∑
ku=0

Kd−1∑
kd=0

π
i,(M)
ku ,kd

. The probability that a vacation will start

after an arbitrary Markov point is qi
0,0 + hi . Then, the average time interval between

two consecutive Markov points at slave i is

ηi = (qi
0,0 + hi)Vi + (1 − qi

0,0 − hi)Fis (14.19)

By using the probability distribution of the uplink queue length in Markov points,
we will derive the probability distribution of the uplink queue length at arbitrary time
between two Markov points, together with the PDF of the remaining vacation time
(if the previous Markov point was the start of vacation), or the PDF of the remaining
frame service time (if the previous Markov point was the start of the packet service).
We will introduce the following variables:

• The pdf of the vacation time vi (x), and its PDF Vi (x),

• Uplink and downlink queue length at arbitrary time Lq,i ,

• Elapsed vacation time V ,i ,

• Remaining vacation time as V+,i ,

• The number of packet arrivals (results of packet burst arrivals) in the slave’s
uplink queue during the elapsed vacation time as Au(V), and corresponding
number of arrivals in the downlink queue as Ad(V),

• The pdf of the frame service time fis(x) and its PDF Fis(x),

• Elapsed frame service time as X ,i ,

• Remaining frame service time as X+,i , and

• The number of packet arrivals (results of packet burst arrivals) in the slave’s
uplink queue during the elapsed frame service time as Au(X), and corre-
sponding number of arrivals in the downlink queue as Ad(X).

According to the results from the renewal theory [Kleinrock, 1972; Takagi, 1991],

in the case of frame service time, the pdf of the elapsed vacation time is
1 − Vi (x)

Vi

and pdf of the remaining vacation time is
vi (x)

1 − Vi (x)
.

For the time between the start of the vacation and end of vacation we define the
joint probability of the uplink/downlink queue lengths and remaining vacation time
as:

�∗
ku ,kd ,i

(s) =
∫ ∞

0
e−syP[Lq,i = (ku, kd), y < V+,i < y + dy],

0 ≤ ku ≤ Ku, 0 ≤ kd ≤ Kd

(14.20)

© 2006 by Taylor & Francis Group, LLC.

For the time between the start and end of the frame service for phase 1 ≤ µ ≤
Ms we define joint probability of the uplink/downlink queue lengths and remaining
frame service time as:

�∗
ku ,kd ,µ,i

(s) =
∫ ∞

0
e−syP[Lq,i = (ku, kd), y < X+,i < y + dy],

1 ≤ ku ≤ Ku, 1 ≤ kd ≤ Kd , 1 ≤ µ ≤ Ms

(14.21)

Then, by using the probabilities of the uplink queue state in the previous Markov
point, we obtain

�∗
ku ,kd ,i

(s) =
Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

 E[e−sV+,i,u |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(Ms)
ju , jd

E[e−sV+,i,u |Au(V ,i) = ku − ju, Ad(V ,i) = kd − jd]

·P[Au(V ,i) = ku − ju]P[Ad(V ,i) = kd − jd],
0 ≤ ku ≤ Ku − 1, 0 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,i

(s) =
Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

ku∑
ju=0

∞∑
ku=Ku− ju

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd − jd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd − jd]
0 ≤ kd ≤ Kd − 1

�∗
ku ,Kd ,i

(s) =
Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

kd=Kd

E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]

·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(M)
ju , jd

∞∑
kd=Kd− jd

E[e−sV+,i |Au(V ,i) = ku − ju, Ad(V ,i) = kd]

·P[Au(V ,i) = ku − ju]P[Ad(V ,i) = kd],
0 ≤ ku ≤ Ku − 1

continued on next page . . .
(14.22)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page
�∗

ku ,kd ,1,i
(s) =

Fis

ηi

ku∑
ju=1

kd∑
jd=1

qi
ju , jd E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd − jd],

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd − jd]
1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,1,i

(s) =
Fis

ηi

Ku∑
ju=1

kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

E[e−s X+,i |Au(X ,i) = ku, Ad(X ,i) = kd − jd],

·P[Au(X ,i) = ku]P[Ad(X ,i) = kd − jd]
1 ≤ kd ≤ Kd − 1

�∗
ku ,Kd ,1,i

(s) =
Fis

ηi

ku∑
ju=1

Kd∑
jd=1

qi
ju , jd

∞∑
kd=Kd− jd

E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd],
1 ≤ ku ≤ Ku − 1

�∗
ku ,kd ,µ,i

(s) =
Fis

ηi

ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd − jd]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd − jd],
1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ Ms

�∗
Ku ,kd ,µ,i

(s) =
Fis

ηi

Ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

E[e−s X+,i |Au(X ,i) = ku, Ad(X ,i) = kd − jd ,]

·P[Au(X ,i) = ku]P[Ad(X ,i) = kd − jd],
2 ≤ µ ≤ Ms, 1 ≤ kd ≤ Kd − 1

�∗
ku ,Kd ,µ,i

(s) =
Fis

ηi

ku∑
ju=1

Kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
kd=Kd− jd

E[e−s X+,i |Au(X ,i) = ku − ju, Ad(X ,i) = kd ,]

·P[Au(X ,i) = ku − ju]P[Ad(X ,i) = kd],
2 ≤ µ ≤ Ms, 1 ≤ ku ≤ Kd

(14.22)
In an analogous fashion, additional Ms +1 equations should also be set for (Ku, Kd)

cases, but we omit them for brevity.
Equations (14.22) can be simplified as follows. For clarity, let us distinguish be-

tween the PGFs for uplink and downlink burst sizes as Gbu (z) and Gbd (z), respec-
tively, even though we have initially assumed that they will be the same, provided
Ms and Mb are larger than B.

© 2006 by Taylor & Francis Group, LLC.

φ∗
ku ,kd

(s) = E[e−sV+,i |Au(V ,i) = ku, Ad(V ,i) = kd]
·P[Au(V ,i) = ku]P[Ad(V ,i) = kd]

=
∞∑

lu=0

1

ku!

dku

dzku
u

(
Gbu (zu)

)lu
∣∣∣
zu=0

∞∑
ld=0

1

kd !

dkd

dzkd
d

(
Gbd (zd)

)ld
∣∣∣
zd=0

·
∫ ∞

0

(λiu x)lu

lu!
e−λiu x (λid x)ld

ld !
e−λid x 1 − Vi (x)

Vi
dx∫ ∞

0
e−sy vi (x + y)

1 − Vi (x)
dy

ψ∗
ku ,kd

(s) = E[e−s X+,i |Au(X ,i) = ku, Ad(X ,i) = kd]
·P[Au(X ,i) = ku]P[Ad(X ,i) = kd]

=
∞∑

lu=0

1

ku!

dku

dzku
u

(Gbu(zu))
lu
∣∣∣
zu=0

∞∑
ld=0

1

kd !

dkd

dzkd
d

(Gbd(zd))
ld
∣∣∣
zd=0

·
∫ ∞

0

(λiu x)lu

lu!
e−λiu x (λid x)ld

ld !
e−λid x 1 − Fis(x)

Fis
dx

·
∫ ∞

0
e−sy fs(x + y)

1 − Fis(x)
(14.23)

By introducing the substitution u = x + y, and by changing the order and limits of
integration of variables x and u, we obtain

φ∗
ku ,kd

(s) = 1

Vi ku!kd !

· dku

dzku
u

dkd

dzkd
d

V ∗
i (−λiuGbu(zu)+ λiu − λid Gbd(zd)+ λid)− V ∗

i (s)

λiuGbu(zu)+ λid Gbd(zd)− λiu − λid + s

∣∣∣∣
zu=0,zd=0

ψ∗
ku ,kd

(s) = 1

Fisku!kd !

· dku

dzku
u

dkd

dzkd
d

F∗
is(−λiuGbu(zu)+ λiu − λid Gbd(zd)+ λid)− F∗

is(s)

λiuGbu(zu)+ λid Gbd(zd)− λiu − λid + s

∣∣∣∣
zu=0,zd=0

(14.24)
Then, the system (14.22) can be transformed to

�∗
ku ,kd ,i

(s) = Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

φ∗

ku ,kd
(s)

+ Vi

ηi

ku∑
ju=0

kd∑
jd=0

π
i,(Ms)
ju , jd

φ∗
ku− ju ,kd− jd

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1
continued on next page . . .

(14.25)

© 2006 by Taylor & Francis Group, LLC.

. . . continued from previous page

�∗
Ku ,kd ,i

(s) = Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

φ∗
ku ,kd

(s)

+ Vi

ηi

Ku∑
ju=0

kd∑
jd=0

π
i,(Ms)
0,0

∞∑
ku=Ku− ju

φ∗
ku ,kd− jd (s),

1 ≤ kd ≤ Kd − 1
Note: a similar expression holds for �∗

ku ,Kd
(s).

�∗
Ku ,Kd ,i

(s) = Vi

ηi

qi

0,0 +
Ms−1∑
µ=1

π
i,(µ)
0,0

 ∞∑

ku=Ku

∞∑
kd=Kd

φ∗
ku ,kd

(s)

+ Vi

ηi

Ku∑
ju=0

Kd∑
jd=0

π
i,(M)
0,0

∞∑
ku=Ku− ju

∞∑
kd=Kd− jd

φ∗
ku ,kd

(s)

�∗
ku ,kd ,1,i

(s) = Fis

ηi

ku∑
ju=1

kd∑
jd=1

qi
ju , jdψ

∗
ku− ju ,kd− jd (s),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

�∗
Ku ,kd ,1,i

(s) = Fis

ηi

Ku∑
ju=1

kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

ψ∗
ku ,kd− jd (s),

1 ≤ kd ≤ Kd − 1
Note: a similar expression holds for �∗

ku ,Kd ,1,i
(s).

�∗
Ku ,Kd ,1,i

(s) = Fis

ηi

Ku∑
ju=1

Kd∑
jd=1

qi
ju , jd

∞∑
ku=Ku− ju

∞∑
kd=Kd− jd

ψ∗
ku ,kd

(s)

�∗
ku ,kd ,µ,i

(s) = Fis

ηi

ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

ψ∗
ku− ju ,kd− jd (s),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ M

�∗
Ku ,kd ,µ,i

(s) = Fis

ηi

Ku∑
ju=1

kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

ψ∗
ku ,kd− jd (s),

1 ≤ kd ≤ Kd − 1, 2 ≤ µ ≤ Ms

Note: a similar expression holds for �∗
ku ,Kd ,µ,i

(s).

�∗
Ku ,Kd ,µ,i

(s) = Fis

ηi

Ku∑
ju=1

Kd∑
jd=1

π
i,(µ)
ju , jd

∞∑
ku=Ku− ju

∞∑
kd=Kd− ju

ψ∗
ku ,kd

(s),

2 ≤ µ ≤ Ms

(14.25)

The joint distribution of the uplink/downlink queue size for a single slave at arbi-
trary time is given by

© 2006 by Taylor & Francis Group, LLC.

P[Lq,i = (0, 0)] = �∗
0,0,i (0)

P[Lq,i = (0, kd)] = �∗
0,kd ,i (0)+

Ms∑
µ=1

�∗
0,kd ,µ,i (0), 1 ≤ kd ≤ Kd

P[Lq,i = (ku, 0)] = �∗
ku ,0,i (0)+

Ms∑
µ=1

�∗
ku ,0µ,i (0), 1 ≤ ku ≤ Ku

P[Lq,i = (ku, kd)] = �∗
ku ,kd ,i (0)+

Ms∑
µ=1

�∗
ku ,kd ,µ,i (0),

1 ≤ ku ≤ Ku − 1, 1 ≤ kd ≤ Kd − 1

P[Lq,i = (Ku, kd)] = �∗
Ku ,kd ,i (0)+

Ms∑
µ=1

�∗
Ku ,kd ,µ,i (0), 1 ≤ kd ≤ Kd

P[Lq,i = (ku, Kd)] = �∗
ku ,Kd ,i (0)+

Ms∑
µ=1

�∗
ku ,Kd ,µ,i (0), 1 ≤ ku ≤ Ku

(14.26)

Then, we can calculate the burst blocking probability in the uplink queue of the
slave i under the total rejection policy. Total rejection, in this context, means that the
entire packet burst will be rejected if the available buffer space is insufficient to hold
all the packets in the burst.

PB,i,u =
Ku∑

ku=0

Kd∑
kd=0

P[Lq,i = (ku, kd)]P[burst > Ku − ku]

=
Ku∑

ku=0

Kd∑
kd=0

P[Lq,i = (ku, kd)]
∞∑

l=Ku−ku

gl

(14.27)

where gl = 1

l!

dl

dzl
Gbu(z)|z=0 denotes the mass probability of burst size being equal

to l packets.

Finally we are able to determine the LST for the access delay for the first packet in
the burst since joint queue length distributions contain information about remaining
service/vacation time. Let us denote blocking probability for the first packet of the

burst in slave’s uplink queue as Pg
B,i,u =

Kd∑
kd=0

�∗

Ku ,kd ,u(0)+
Ms∑
µ=1

�∗
Ku ,kd ,µ,i (0)

.

Then the access delay of the first packet in the burst becomes

© 2006 by Taylor & Francis Group, LLC.

W ∗
g,ai (s) =

Kd∑
kd=0

Ku−1∑

ku=0

�∗
ku ,kd ,i (s)F

∗
is(s)

ku V ∗
i (s)

�k/Ms

1 − Pg
B,i,u

+

Kd∑
kd=0

Ku−1∑

ku=1

Ms∑
µ=1

�∗
ku ,kd ,µ,i (s)F

∗
is(s)

(ku−1)V ∗
i (s)

�(ku+µ−1)/Ms

1 − Pg
B,i,u

(14.28)

The mean access delay for the first packet in the burst is determined as

Wg,ai = − d

ds
W ∗

g,ai (s)|s=0

=

Kd∑
kd=0

Ku−1∑
ku=1

ku

 Ms∑
µ=1

π
i,(µ)
ku ,kd

+ Ku

λiu

Pg
B,i,u

1 − Pg
B,i,u

− Fis

λ2
iu(1 − Pg

B,i,u)ηi

(14.29)

In order to calculate the delay of an arbitrary packet in the burst, we need the
distribution of the distance of that arbitrary packet from the first packet in the burst.
The probability that there are exactly k packets before an arbitrary packet in the

burst is g−
k = 1

B

∞∑
j=k+1

g j . Then, the LST for the delay of the arbitrary packet in the

accepted burst becomes

W ∗
ai (s) =

Kd∑
kd=0

Ku−1∑
ku=0

�∗
ku ,kd ,i (s)

Ku−ku∑
j=1

g j

j−1∑
w=1

g−
w F∗

is(s)
(ku+w)V ∗

i (s)
�(ku+w)/Ms

1 − PB,i,u

+

Kd∑
kd=0

Ku−1∑
ku=1

Ms∑
µ=1

�∗
ku ,kd ,µ,i (s)

Ku−ku∑
j=1

g j

j−1∑
w=1

g−
w F∗

is(s)
(ku−1)V ∗

i (s)
�(ku+µ+w−1)/Ms

1 − PB,i,u
(14.30)

LST for the downlink delay can be calculated in a similar manner. The delay
through the bridge can be also calculated in analogous way with use of polling pa-
rameter Mb.

© 2006 by Taylor & Francis Group, LLC.

14.5 Simulation results

In order to verify the analytical results presented above, we have modified our Blue-
tooth scatternet simulator to include finite buffers. The scatternet had six piconets
operating under E-limited polling, and connected as shown in Fig. 14.3. The bridges
use the walk-in scheduling with the limited exchange policy. Each slave generates
traffic which targets other slaves in the same piconet with the probability of Pl , and
slaves in any other piconet with the probability (1 − Pl)/5. In case of nonadjacent
piconets, the inter-piconet traffic is routed through the shortest path. When two such
paths exist (e.g., traffic from piconet P1 to piconet P6 may go through P2 or P4),
traffic is split evenly between those paths.

As can be observed, the ‘exterior’ piconets P1, P3, and P5 will behave in an iden-
tical manner, thanks to the symmetry of the topology, as is the case with the ‘interior’
piconets P2, P4, and P6; the difference is highlighted by shading.

piconet P1
bridge
B12

P2

P3

P4

P5

P6

B32

B14

B54

B56B36

B26 B46
B24

FIGURE 14.3
Topology of the scatternet under consideration.

Default parameter values are as follows: mean burst size B = 3 with five slot
packets used throughout the simulation, poling parameter values Ms = 3 and Mb =
15, device buffer sizes Kd = 100 and Kb = 40 (both expressed in baseband packets),
and traffic locality Pl = 0.6.

© 2006 by Taylor & Francis Group, LLC.

Blocking probabilities and access delays at slaves

The first set of simulation results shows slave buffer blocking probabilities for exte-
rior and interior piconets, respectively. In both cases, the size of slave buffers was
varied between 10 and 30 baseband packets, and the packet burst arrival rate was
varied between 0.001 and 0.006 (burst arrivals per Bluetooth slot). The bridges were
present in each piconet for K cycles, or K + 1 exchanges. Note that K = 0 means
that the bridge will be present only until its exchange is over and then leave, while
K > 1 means that bridge will be polled K + 1 times and spend K − 1 full piconet
cycles before leaving. The polling parameter for the bridges was fixed at Mb = 15.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

Drop

(a) Exterior piconet, K = 0.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

2

4

6

8

Drop

(b) Interior piconet, K = 0.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

Drop

(c) Exterior piconet, K = 1.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

2

4

6

8

Drop

(d) Interior piconet, K = 1.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

Drop

(e) Exterior piconet, K = 2.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0
2
4
6
8

Drop

(f) Interior piconet, K = 2.

FIGURE 14.4
Slave buffer blocking rate with fixed Ms = 5.

© 2006 by Taylor & Francis Group, LLC.

The diagrams in Fig. 14.4 show the blocking probability, expressed in percents,
for two different piconets, one in the exterior group and another in the interior group,
respectively. They were obtained by fixing the polling parameter for the slaves to
Ms = 5, and varying the number of cycles between K = 0 and 2. As can be
seen, higher values of K do lead to a slight reduction in the blocking probability,
although the effects are rather minuscule. Note, however, that the interior piconet
has experienced more than twice the blocking probability of the exterior one. This
is due to the longer cycle and vacation times caused by higher load – the interior
piconets have four bridges each, while the exterior ones have only two bridges each.

The diagrams in Fig. 14.5 show the effects of varying Ms between 2 and 8 while

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

4

Drop

(a) Exterior piconet, Ms = 2.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

4

8

12

Drop

(b) Interior piconet, Ms = 2.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

Drop

(c) Exterior piconet, Ms = 5.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

2

4

6

8

Drop

(d) Interior piconet, Ms = 5.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

1

2

3

Drop

(e) Exterior piconet, Ms = 8.

10
15

20
25

30

Slave buffer size

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

2

4

6

Drop

(f) Interior piconet, Ms = 8.

FIGURE 14.5
Slave buffer blocking rate with fixed K = 1.

© 2006 by Taylor & Francis Group, LLC.

keeping a fixed K = 1. Higher values of the bridge polling parameter do lead to a
reduction in blocking probabilities, as could be expected from our earlier discussions.
This effect, however, is more pronounced in interior piconets, again on account of
their higher traffic load; increasing the number of packets to be exchanged with the
bridge helps reduce this load and, indirectly, the blocking probability as well.

Blocking probabilities at the bridges

The second set of experiments investigates the bridge blocking probability under
varying K and Ms . In this case, we have also varied the bridge buffer size from
Kb = 10 to 20 baseband packets, as well as the locality probability from Pl = 0.2

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

0.4

0.8

1.2

1.6

Drop

(a) Bridge from P1 to P2, K = 0.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

0.2

0.4

0.6

0.8

Drop

(b) Bridge from P2 to P1, K = 0.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
1
2
3
4
5

Drop

(c) Bridge from P1 to P2, K = 1.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
0.5

1
1.5

2
2.5

Drop

(d) Bridge from P2 to P1, K = 1.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
1
2
3
4
5

Drop

(e) Bridge from P1 to P2, K = 2.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

1

2

3

Drop

(f) Bridge from P2 to P1, K = 2.

FIGURE 14.6
Bridge buffer blocking probability with fixed Mb = 12.

© 2006 by Taylor & Francis Group, LLC.

to 0.8. We have considered both bridge buffers in the bridge B12 from Fig. 14.3 as
representatives of bridges in an exterior and interior piconet, respectively.

The diagrams in Fig. 14.6 show the blocking probability for different values of
K , with fixed Mb = 12. As could be expected, the blocking probabilities are lower
in the piconet with lower load; in this case, this is the piconet P1 where the buffer
from P1 to P2 ‘resides.’ At the same time, the increase in K means that the bridge
spends more time in the piconet (in fact, K piconet cycles as well as K +1 exchanges
with the master). This increases the number of packets sent to the bridge and, conse-
quently, leads to increased probability that the bridge buffer will be full and unable
to accept more packets. As before, this effect is more pronounced in the piconet
with the longer cycle time – piconet P2, in this case, where the buffer from P2 to P1
‘resides.’

The diagrams in Fig. 14.7 show the dependency of blocking probability for differ-
ent values of Mb, with fixed K = 1. As could be expected, the blocking probability
decreases with Mb. Namely, larger number of packets per exchange means that the
bridge queue will empty faster, and the probability that both the bridge queue and
the outgoing queue at the master will empty increases. This event, as the reader may
recall, will cause the bridge to terminate its residence and switch to another piconet.

It may be noted that the bridge blocking probability is lower in the bridge that
‘resides’ in the interior piconet P2, despite its higher total load and longer piconet
cycle time. However, there are four bridges in that piconet, as opposed to only two
in the exterior piconet P1, and the traffic per bridge is lower. Consequently, the
blocking probability will be lower, too.

End-to-end packet delays

The next set of simulation results illustrate intra-piconet and inter-piconet end-to-end
delays. The slave buffer size was fixed to Ku = 30 while the traffic locality Pl was
varied in the range Pl = 0.4 . . 0.9. The packet burst arrival rate λiu was varied in
the range 0.001 . . 0.006 bursts per Bluetooth time slot. The polling parameters were
fixed at Ms = 5 for ordinary slaves, and at Mb = 15 for the bridges.

End-to-end delays for local (intra-piconet) traffic are shown in Fig. 14.8 for values
of K = 0, 1, and 2. The delays were averaged over all exterior and interior piconets,
respectively. The interior piconet can be seen to exhibit much higher intra-piconet
delays, which is to be expected since the traffic load of those piconets is higher, as
is the case with the piconet cycle time. Although higher values of K correspond to
higher intra-piconet delays (which is due to the increased residence times spent by
the bridges in their respective piconets), the difference is not significant.

End-to-end delays for non-local (inter-piconet) traffic are shown in Fig. 14.9, for
a fixed value of K = 1 and variable value of Ms . In cases where multiple paths from
the source to the destination exist, delays were averaged over all the paths where both
the source and destination are in exterior and interior piconets; the resulting delays
are shown in the left and right column diagrams, respectively.

As before, the slave buffer size was fixed at Ku = 30, the master buffer was fixed
at Kd = 100, and the bridge buffer had the length of Kb = 40 baseband packets. The

© 2006 by Taylor & Francis Group, LLC.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

2

4

6

8

Drop

(a) Bridge from P1 to P2, Mb = 9.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
1
2
3
4
5

Drop

(b) Bridge from P2 to P1, Mb = 9.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
1
2
3
4
5

Drop

(c) Bridge from P1 to P2, Mb = 12.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
0.5

1
1.5

2
2.5

Drop

(d) Bridge from P2 to P1, Mb = 12.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

1

2

3

Drop

(e) Bridge from P1 to P2, Mb = 15.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0

0.4

0.8

1.2

Drop

(f) Bridge from P2 to P1, Mb = 1.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
0.5

1
1.5

2
2.5

Drop

(g) Bridge from P1 to P2, Mb = 18.

10
12

14
16

18
20

Bridge buffer size

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Pl

0
0.2
0.4
0.6
0.8

1

Drop

(h) Bridge from P2 to P1, Mb = 18.

FIGURE 14.7
Bridge buffer blocking probability at fixed K = 1.

© 2006 by Taylor & Francis Group, LLC.

traffic locality Pl was varied in the range 0.4 . . 0.9, and the packet burst arrival rate
λiu was varied in the range 0.001..0.006 bursts per Bluetooth time slot. The polling
parameter for the bridges was Mb = 15.

As in the case of local delays, exterior piconet exhibit much lower delays than the
interior ones, due to their smaller aggregate traffic load. However, the increase of the
polling parameter for the slaves leads to increase in the delays; this change is much
more pronounced in the exterior piconets. This effect can be explained as follows.
For small values of Ms , the piconet cycle is short and the number of packets to be
transmitted when the bridge is present is also small. Therefore, the bridge is likely
to be able to exchange all the data in the first exchange and leave the piconet, even
though K = 1 and it may stay for two exchanges if necessary. When Ms increases,

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

100
150
200
250

Delay

(a) Exterior piconets, K = 0.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0
1000
2000
3000
4000
5000
6000

Delay

(b) Interior piconets, K = 0.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

100
150
200
250
300

Delay

(c) Exterior piconets, K = 1.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0
1000
2000
3000
4000
5000
6000

Delay

(d) Interior piconets, K = 1.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

100
150
200
250
300

Delay

(e) Exterior piconets, K = 2.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

0

2000

4000

6000

Delay

(f) Interior piconets, K = 2.

FIGURE 14.8
End-to-end delay for local traffic with fixed Ms = 5.

© 2006 by Taylor & Francis Group, LLC.

more packets are picked up by the master for both local and non-local destinations,
and the piconet cycle lengthens. The bridge will have more packets to exchange,
and it may not succeed in doing so in only two exchanges; as a consequence, the
queueing delays in the bridge will be long and the overall end-to-end packet delays
will also increase.

Throughput

Our final set of measurements shows the throughput through the piconets. The slave
polling parameter value was varied in the range of Ms = 3 . . 15, while the corre-
sponding bridge polling parameter was kept constant at Mb = 15. The packet burst

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

400

800

1200

Delay

(a) Exterior piconets, Ms = 2.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

2000

4000

6000

Delay

(b) Interior piconets, Ms = 2.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

400

800

1200

1600

Delay

(c) Exterior piconets, Ms = 5.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

1000
2000
3000
4000
5000

Delay

(d) Interior piconets, Ms = 5.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

500
1000
1500
2000
2500

Delay

(e) Exterior piconets, Ms = 8.

0.4
0.5

0.6
0.7

0.8
0.9

Pl

0.001
0.002

0.003
0.004

0.005
0.006

Arrival rate

1000
2000
3000
4000
5000
6000

Delay

(f) Interior piconets, Ms = 8.

FIGURE 14.9
End-to-end delay for non-local traffic with fixed K = 1.

© 2006 by Taylor & Francis Group, LLC.

arrival rate per slave was varied in the range of λiu = 0.001 . . 0.01 packet burst
arrivals per Bluetooth time slot, and traffic locality was fixed at Pl = 0.6. The bridge
residence parameter values were K = 0, 1, and 2. Buffer sizes were kept at values
Ku = 30, Kd = 100, Kb = 40.

As can be seen from Fig. 14.10, the throughput for interior piconets is higher
when compared to the exterior ones, which is again due to their higher traffic load.
Note that exterior piconets carry their own traffic only, whilst the interior ones do
perform the routing as well. For example, the interior piconet P2 has three slaves
and approximately the same self-generated traffic load as piconets P1 and P3 – but

 Throughput for Piconet 1, BRT=1
0.009, 0.01

0.008
0.007

0.006

0.005

0.004

0.003

0.002

0.00150000

100000

150000

200000

250000

300000

350000

Bits/Sec

4 6 8 10 12 14
Ms

(a) External piconet (P1), K = 0.

 Throughput for Piconet 2, BRT=1
0.008,0.009, 0.01

0.007
0.006

0.005

0.004

0.003

0.002

0.001
100000

200000

300000

400000

500000

600000

Bits/Sec

4 6 8 10 12 14
Ms

(b) Internal piconet (P1), K = 0.

 Throughput for Piconet 1, BRT=2
0.008,0.009, 0.01

0.007

0.006

0.005

0.004

0.003

0.002

0.00150000

100000

150000

200000

250000

300000

350000

Bits/Sec

4 6 8 10 12 14
Ms

(c) External piconet (P1), K = 1.

 Throughput for Piconet 2, BRT=2
0.008,0.009, 0.01

0.007

0.006

0.005

0.003

0.004

0.002

0.001
100000

200000

300000

400000

500000

600000

Bits/Sec

4 6 8 10 12 14
Ms

(d) Internal piconet (P1), K = 1.

 Throughput for Piconet 1, BRT=3

0.008
0.009, 0.01

0.007

0.006

0.005

0.004

0.003

0.002

0.00150000

100000

150000

200000

250000

300000

350000

Bits/Sec

4 6 8 10 12 14
Ms

(e) External piconet (P1), K = 2.

 Throughput for Piconet 2, BRT=3

0.001

0.004

0.005

0.007

0.008,0.009, 0.01

0.002

0.006

0.003

100000

200000

300000

400000

500000

Bits/Sec

4 6 8 10 12 14
Ms

(f) Internal piconet (P1), K = 2.

FIGURE 14.10
Throughput in the example scatternet.

© 2006 by Taylor & Francis Group, LLC.

it also carries the traffic between piconets P1 and P3 as well as half of the traffic
between piconets P1 and P4.

As can be seen from the diagrams, the effects of packet burst arrival rate, the
slave polling parameter Ms , and the bridge residence time (through the value of K)
on the throughput are interdependent. When Ms is small, the number of packets
accumulated for the bridge in one piconet cycle is small, and they are likely to be
delivered to the bridge within a single exchange. Therefore, the bridge cycle will be
short, and the value of K does not matter much.

At higher values of Ms and higher packet burst arrival rates, there will be many
packets to exchange and the bridge will be forced to stay longer. This will increase
the duration of the bridge cycle, but also the losses at the slave and bridge buffers.
In fact, the decrease in throughput at high arrival rates and large Ms are caused by
packet losses due to the blocking at the slaves and bridges. (The similar effect has
been observed in single piconets, cf. Chapter 4.)

We note that the maximum throughput in interior piconets is around 600Kbps,
which is about one-third less than the theoretical maximum with five slot packets.
This difference seems reasonable in view of the losses due to packet waste when the
bridge is absent from the piconet and when there are no packets to exchange with a
slave or a bridge, and packet blocking due to buffers filled up to capacity.

© 2006 by Taylor & Francis Group, LLC.

A

Probability generating functions and Laplace
transforms

In this section we will briefly introduce the definitions and notation related to prob-
ability generating functions and their Laplace-Stieltjes transforms. For a more de-
tailed introduction, the reader should consult one of the numerous texts on prob-
ability and queueing theory [Grimmett and Stirzaker, 1992; Kleinrock, 1972; Tak-
agi, 1991; Wilf, 1994].

Random variables can be classified into discrete and continuous types. Discrete
random variables take values from a countable set, while continuous random vari-
ables take values from a continuous range.

The probability distribution of a discrete random variable is determined by the
probabilities pk that the variable will take value k. Probabilities pk are sometimes
called mass probabilities.

The probability distribution function (PDF) of a random variable C is the function
C(x), defined as probability that the value of the random variable is less than some
number x :

C(x)
def= P[C ≤ x] (A.1)

The PDF of a discrete variable is a jump function.
The probability density function (pdf) for a continuous random variable C is de-

fined as

c(x)
def= dC(x)

dx
(A.2)

We also note that

C(x) =
∫ x

−∞
c(y)dy (A.3)

and ∫ ∞

−∞
c(x)dx = 1 (A.4)

The probability generating function (PGF) of a discrete random variable G p is
defined as

G p(z)
def= E[zC] =

∞∑
k=0

pk zk (A.5)

i.e., it is a z-transform of the sequence of mass probabilities pk . The PGF has the
property that G p(1) = 1. First and second moments of the probability distribution

© 2006 by Taylor & Francis Group, LLC.

are given with

G p = G ′
p(1) (A.6)

G2
p = G ′′

p(1)+ G ′
p(1) (A.7)

The Laplace-Stieltjes transform (LST) of the probability density function (pdf) of
the random variable C is defined as

C∗(s) def= E[e−sC]

=
∫ ∞

0
e−sx c(x)dx

(A.8)

where s is a complex variable.
Moments of the random variable C can be further obtained as:

Ci =
∫ ∞

0
xi c(x)dx

= (−1)i
di C∗(s)

dsi

∣∣∣∣
s=0

, for i = 1, 2, . . .
(A.9)

© 2006 by Taylor & Francis Group, LLC.

References

Abhyankar, S., Toshiwal, R., de Morais Cordeiro, C. and Agrawal, D. [2003], On the
application of traffic engineering over Bluetooth ad hoc networks, in ‘Proceed-
ings of the 6th international workshop on Modeling analysis and simulation of
wireless and mobile systems’, ACM Press, pp. 116–123.

Ait Yaiz, R. and Heijenk, G. [2001], Polling best effort traffic in Bluetooth, in ‘Pro-
ceedings 4th International Symposium on Wireless Personal Multimedia Com-
munications (WPMC’01)’, Aalborg, Denmark.

Ait Yaiz, R. and Heijenk, G. [2003], Providing delay guarantees in Bluetooth, in
‘Proceedings 23rd International Conference on Distributed Computing Sys-
tems Workshops, 2003’, Providence, RI, pp. 722–728.

Ajmone Marsan, M., Chiasserini, C. F., Nucci, A., Carello, G. and De Giovanni, L.
[2002], Optimizing the topology of Bluetooth wireless personal area networks,
in ‘Proceedings Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies IEEE INFOCOM 2002’, Vol. 2, New York,
pp. 572–579.

Albrecht, M., Frank, M., Martini, P., Schetelig, M., Vilavaara, A. and Wenzel, A.
[1999], IP services over Bluetooth: leading the way to a new mobility, in ‘Pro-
ceedings of the 23rd Annual Conference on Local Computer Networks LCN
’99’, Lowell, MA, pp. 2–11.

Allman, M., Paxson, V. and Stevens, W. [1999], TCP congestion control, draft Inter-
net standard RFC 2581, IETF.

Alzoubi, K. M., Wan, P.-J. and Frieder, O. [2002], Message-optimal connected-
dominating-set construction for routing in mobile ad hoc networks, in ‘Pro-
ceedings of the Third ACM Intl Symp. Mobile Ad Hoc Networking and Com-
puting (MobiHoc02)’, Lausanne, Switzerland, pp. 157–164.

Augel, M. and Knoor, R. [2004], Bluetooth scatternet formation, state of the art and a
new approach, in ‘Proceedings of the International Conference on Architecture
of Computing Systems’, Augsburg, Germany, pp. 260–272.

Avancha, S., Korolev, V., Joshi, A. and Finin, T. [2001], Transport protocols in wire-
less networks, in ‘Proceedings Tenth International Conference on Computer
Communications and Networks’, Scottsdale, AZ, pp. 310–317.

© 2006 by Taylor & Francis Group, LLC.

Baatz, S., Bieschke, S., Frank, M., Martini, P., Scholz, C. and Kühl, C. [2002], Build-
ing efficient Bluetooth scatternet topologies from 1-factors, in ‘Proc. IASTED
Wireless and Optical Communications’, Banff, Canada.

Baatz, S., Frank, M., Göpffarth, R., Kassatkine, D., Martini, P., Schetelig, M. and
Vilavaara, A. [2000], Handoff support for mobility with IP over Bluetooth,
in ‘Proceedings 25th Annual IEEE Conference on Local Computer Networks.
LCN 2000’, Tampa, FL.

Baatz, S., Frank, M., Kühl, C., Martini, P. and Scholz, C. [2001], Adaptive scatternet
support for Bluetooth using sniff mode, in ‘Proceedings of the 26th Annual
Conference on Local Computer Networks LCN 2001’, Tampa, FL.

Baatz, S., Frank, M., Kühl, C., Martini, P. and Scholz, C. [2002], Bluetooth scatter-
nets: An enhanced adaptive scheduling scheme, in ‘Proceedings Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Soci-
eties IEEE INFOCOM 2002’, New York, pp. 782–790.

Bahl, P., Adya, A., Padhye, J. and Walman, A. [2004], ‘Reconsidering wireless sys-
tems with multiple radios’, SIGCOMM Comput. Commun. Rev. 34(5), 39–46.

Bak, J. and Newman, D. J. [1982], Complex Analysis, Springer-Verlag, New York,
NY.

Bakker, D. M. and McMichael Gilster, D. [2002], Bluetooth End-To-End, Hungry
Minds, Inc., New York, NY.

Balai, K., Kapoor, S., Nanavati, A. and Ramachandran, L. [2001], Scatternet forma-
tion algorithms in the Bluetooth network, in ‘Manuscript’.

Balatti, E., Marzegalli, L. and Vitello, M. [2001], Increasing TCP/IP performance
over home wireless networks (Bluetooth), in ‘Proc. OPNETWORK confer-
ence’.

Barrière, L., Fraigniaud, P., Narayanan, L. and Opatrny, J. [2003], Dynamic con-
struction of Bluetooth scatternets of fixed degree and low diameter, in ‘Pro-
ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms’, Society for Industrial and Applied Mathematics, pp. 781–790.

Basagni, S. [1999], Distributed clustering for ad hoc networks, in ‘Proc. Int. Symp.
Parallel Architectures, Algorithms and Networks ISPAN’, Fremantle, Aus-
tralia, pp. 310–315.

Basagni, S., Bruno, R., Mambrini, G. and Petrioli, C. [2004], ‘Comparative perfor-
mance evaluation of scatternet formation protocols for networks of Bluetooth
devices’, ACM/Baltzer Wireless Networks (WINET) 10(2), 197–213.

Basagni, S., Bruno, R. and Petrioli, C. [2002a], Device discovery in Bluetooth net-
works: a scatternet perspective, in ‘Proc. IFIP-TC6 Networking Conf., Net-
working 2002, LNCS 2345’, Italy, pp. 1087–1092.

© 2006 by Taylor & Francis Group, LLC.

Basagni, S., Bruno, R. and Petrioli, C. [2002b], Performance evaluation of a new
scatternet formation protocol for multi-hop Bluetooth networks, in ‘Proc. IEEE
Wireless Personal Multimedia Comm. WPMC’, pp. 208–212.

Basagni, S., Bruno, R. and Petrioli, C. [2003a], Bluetooth scatternet formation in
Bluetooth networks, in S. Basagni, M. Conti, S. Giordano and I. Stojmenovic,
Eds, ‘Ad Hoc Networking’, IEEE Press, New York, NY.

Basagni, S., Bruno, R. and Petrioli, C. [2003b], A performance comparison of scat-
ternet formation protocols for networks of Bluetooth devices, in ‘Proc. IEEE
PerCom’, pp. 341–350.

Basagni, S., Bruno, R. and Petrioli, C. [2004], Scatternet formation in Bluetooth net-
works, in S. Basagni, M. Conti, S. Giordano and I. Stojmenovic, Eds, ‘Mobile
Ad Hoc Networking’, John Wiley & Sons.

Basagni, S. and Petrioli, C. [2002], A scatternet formation protocol for ad hoc
networks of Bluetooth devices, in ‘Proc. IEEE Vehicular Technology Conf.’,
pp. 341–350.

Bertsekas, D. P. and Gallager, R. [1991], Data Networks, 2nd ed, Prentice-Hall,
Englewood Cliffs, NJ.

Bhagwat, P., Korpeoglu, I., Bisdikian, C., Naghshineh, M. and Tripathi, S. K. [1999],
BlueSky: a cordless networking solution for palmtop computers, in ‘Proceed-
ings of the fifth annual ACM/IEEE international conference on Mobile com-
puting and networking’, Seattle, WA, pp. 69–76.

Bhagwat, P. and Rao, S. P. [2001], ‘On the characterization of Bluetooth scatternet
topologies’, available from http://www.winlab.rutgers.edu/˜ pravin .

Bhagwat, P. and Segall, A. [1999], A routing vector method (RVM) for rout-
ing in Bluetooth scatternets, in ‘Proceedings Sixth IEEE International Work-
shop on Mobile Multimedia Communications (MOMUC’99)’, San Diego, CA,
pp. 375–379.

Bhatnagar, V. and Kesidis, G. [2002], Bluetooth scatternet formation using proximity
information of an election protocol, in ‘Joint 2nd IEEE Int. Conf. on Network-
ing and IEEe Int. Conf. Wireless LANs and Home Networks,’, Atlanta, GA.

Bluehoc [2003], The Bluehoc Open-Source Bluetooth Simulator, ver-
sion 3.0, Software and documentation available from http://www-
124.ibm.com/developerworks/opensource/bluehoc/.

Bluetooth SIG [2001a], Bluetooth Network Encapsulation Protocol (BNEP) Speci-
fication, Technical report, Revision 0.95a.

Bluetooth SIG [2001b], Specification of the Bluetooth System, Version 1.1.

Bluetooth SIG [2003a], Specification of the Bluetooth System, Version 1.2.

© 2006 by Taylor & Francis Group, LLC.

www.winlab.rutgers.edu
www.124.ibm.com
www.124.ibm.com

Bluetooth SIG [2003b], Specification of the Bluetooth System – Architecture & Ter-
minology Overview, Vol. 1, Version 1.2.

Bluetooth SIG [2003c], Specification of the Bluetooth System – Core System Package
[Controller volume], Vol. 2, Version 1.2.

Bluetooth SIG [2003d], Specification of the Bluetooth System – Core System Package
[Host volume], Vol. 3, Version 1.2.

Bluetooth SIG [2004], Core Specification of the Bluetooth System, Version 2.0 +
EDR.

Bose, P., Morin, P., Stojmenovic, I. and Urrutia, J. [2001], ‘Routing with guaran-
teed delivery in ad hoc wireless networks’, ACM/Kluwer Wireless Networks,
7(6), 609–616.

Braden, R. T. [1989], Requirements for Internet hosts – communication layers, In-
ternet standard RFC 1122, IETF.

Bruno, R., Conti, M. and Gregori, E. [2001], Wireless access to internet via Blue-
tooth: performance evaluation of the EDC scheduling algorithm, in ‘Proceed-
ings of the first workshop on Wireless Mobile Internet’, Rome, Italy, pp. 43–
49.

Bruno, R., Conti, M. and Gregori, E. [2002], ‘Bluetooth: architecture, protocols, and
scheduling algorithms’, Cluster Computing 5(2), 117–131.

Cai, L., Shen, X. and Mark, J. W. [2003], Delay analysis for AIMD flows in wire-
less/IP networks, in ‘Proceedings Globecom’03’, Vol. 6, San Francisco, CA,
pp. 3221–3225.

Capone, A., Kapoor, R. and Gerla, M. [2001], Efficient polling schemes for Blue-
tooth picocells, in ‘Proceedings of IEEE International Conference on Commu-
nications ICC 2001’, Vol. 7, Helsinki, Finland, pp. 1990–1994.

Cassioli, D., Detti, A., Loreti, P., Mazzenga, F. and Vatalaro, F. [2002], The Blue-
tooth technology: state of the art and networking aspects, in ‘Proceedings
Networking 2002 – Second International IFIP-TC6 Networking Conference’,
Vol. 2345 of Lecture Notes in Computer Science, Springer-Verlag, Pisa, Italy,
pp. 479–490.

Chan, K. L., Mišić, V. B. and Mišić, J. [2004], Efficient polling schemes for bluetooth
picocells revisited, in ‘Proceedings XXXVIIth Annual Hawaii International
Conference on System Sciences HICSS-37 (CD-ROM), Minitrack on Wireless
Personal Area Networks’, Big Island, Hawaii.

Chan, W.-C., Chen, J.-L., Lin, P.-T. and Yen, K.-C. [2004], ‘Quality-of-service in
IP services over Bluetooth ad-hoc networks’, ACM/Kluwer Journal on Special
Topics in Mobile Networking and Applications (MONET) 8(6), 699–709.

© 2006 by Taylor & Francis Group, LLC.

Chawla, S., Saran, H. and Singh, M. [2001], QoS based scheduling for incorporat-
ing variable rate coded voice in Bluetooth, in ‘Proceedings of IEEE Interna-
tional Conference on Communications ICC 2001’, Vol. 4, Helsinki, Finland,
pp. 1232–1237.

Chen, L.-J., Kapoor, R., Sanadidi, M. and Gerla, M. [2004], Enhancing Bluetooth
TCP throughput via link layer packet adaptation, in ‘Proceedings of IEEE In-
ternational Conference on Communications ICC 2004’, Vol. 7, pp. 4012–4016.

Chiang, C.-C. and Gerla, M. [1997], Routing and multicast in multihop, mobile
wireless networks, in ‘Proceedings 1997 IEEE 6th International Conference
on Universal Personal Communications’, Vol. 2, San Diego, CA, pp. 546–551.

Chiasserini, C. F., Ajmone Marsan, M., Baralis, E. and Garza, P. [2003], Towards
feasible topology formation algorithms for Bluetooth-based WPANs, in ‘Pro-
ceedings XXXVIth Annual Hawaii International Conference on System Sci-
ences (CD/ROM)’, Computer Society Press, Big Island, HI.

Choi, C. and Choi, H. [2002], Dsr based bluetooth scatternet, in ‘Proceedings ITC-
CSCC’.

Cooper, R. B. [1990], Introduction to queing theory, 2nd ed, North-Holland, New
York, NY.

Crovella, M. E. and Bestavros, A. [1997], ‘Self-similarity in world wide web traf-
fic: evidence and possible causes’, ACM/IEEE Transactions on Networking
5(6), 835–846.

Călinescu, G., Mandoiu, I., Peng-Wan, J. and Zelikovsky, A. [2001], Selecting for-
warding neighbors in wireless ad hoc networks, in ‘Proc. 5th International
Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications’, Rome, Italy, pp. 34–43.

Cuomo, F., Melodia, T. and Akyildiz, I. [2004], ‘Distributed self-healing and variable
topology optimization algorithms for qos provisioning in scatternets’, IEEE
Journal on Special Areas in Communications – Wireless Series 22(7), 1220–
1236.

Daptardar, A. [2004], Meshes and cubes: Distributed scatternet formations for Blue-
tooth personal area networks, in ‘Master of Science thesis’, Washington State
Univ., School of EECS.

Das, A., Ghose, A., Razdan, A., Saran, H. and Shorey, R. [2001], Enhancing per-
formance of asynchronous data traffic over the Bluetooth wireless ad-hoc net-
work, in ‘Proceedings Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies IEEE INFOCOM 2001’, Vol. 1, Anchor-
age, AK, pp. 591–600.

de Morais Cordeiro, C., Abhyankar, S., Toshiwal, R. and Agrawal, D. P. [2004],
‘BlueStar: enabling efficient integration between Bluetooth WPANs and IEEE

© 2006 by Taylor & Francis Group, LLC.

802.11 WLANs’, ACM/Kluwer Journal on Special Topics in Mobile Network-
ing and Applications (MONET) 9(4), 409–422.

de Morais Cordeiro, C., Sadok, D. and Agrawal, D. P. [2001], Piconet interference
modeling and performance evaluation of Bluetooth MAC protocol, in ‘Pro-
ceedings Global Telecommunications Conference 2001 GLOBECOM ’01’,
Vol. 5, San Antonio, TX, pp. 2870–2874.

Delurgio, S. [1998], Forecasting – Principles, and Application, McGraw-Hill/Irwin,
New York.

Dong, Y. and Wu, J. [2003], Three bluetree formations for constructing efficient
scatternets in Bluetooth, in ‘Proc. of the 7th Joint Conference on Information
Sciences’, pp. 385–388.

Famolari, D. and Anjum, F. [2002], Improving simultaneous voice and data perfor-
mance in Bluetooth systems, in ‘Proc. Global Telecommunications Conference
GlobeCom’02’, Vol. 2, Taipei, Taiwan, pp. 1810–1814.

Fantacci, R. and Zoppi, L. [2000], ‘Performance evaluation of polling systems
for wireless local communication networks’, IEEE Transactions on Vehicular
Technology 49(6), 2148–2157.

Ferraguto, F., Mambrini, G., Panconesi, A. and Petrioli, C. [to appear], ‘Blue
pleiades, a new solution for device discovery and scatternet formation in mul-
tihop Bluetooth networks’, ACM/Baltzer Wireless Networks (WINET) .

Foo, C. and Chua, K. [2002], Bluerings Bluetooth scatternets with ring structures,
in ‘IASTED Wireless and optical Communications’.

Francia, G. A., Kilaru, A., Phuong, L. and Vashi, M. [2004], An empirical study
of bluetooth performance, in ‘MSCCC ’04: Proceedings of the 2nd annual
conference on Mid-south college computing’, Little Rock, AK, pp. 81–93.

Gabriel, K. R. and Sokal, R. R. [1969], ‘A new statistical approach to geographic
variation analysis’, Systematic Zoology 18, 259–278.

Garg, S., Kalia, M. and Shorey, R. [2000], MAC scheduling policies for power op-
timization in Bluetooth: a master driven TDD wireless system, in ‘Proceed-
ings VTC2000-Spring IEEE 51st Vehicular Technology Conference’, Vol. 1,
Tokyo, Japan, pp. 196–200.

Ghosh, J., Kumar, V., Wang, X. and Qiao, C. [2003], BTspin – single phase dis-
tributed Bluetooth scatternet formation, tech. report TR 2004-06, Dept. Comp.
Sci. & Eng., Univ. of Buffalo, Buffalo, NY.

Golmie, N. [2004], ‘Bluetooth dynamic scheduling and interference mitigation’,
ACM/Kluwer Journal on Special Topics in Mobile Networking and Applica-
tions (MONET) 9(1), 21–31.

© 2006 by Taylor & Francis Group, LLC.

Golmie, N., Chevrollier, N. and ElBakkouri, I. [2001], Interference aware Bluetooth
packet scheduling, in ‘Proc. Global Telecommunications Conference Globe-
Com’01’, Vol. 5, San Antonio, TX, pp. 2857–2863.

Golmie, N., Van Dyck, R. E. and Soltanian, A. [2001], Interference of Bluetooth and
IEEE 802.11: simulation modeling and performance evaluation, in ‘Proceed-
ings 4th ACM international workshop on Modeling, analysis and simulation
of wireless and mobile systems’, Rome, Italy, pp. 11–18.

Gonzales-Valenzuela, S., Vuong, S. and Leung, V. [2004], Bluescouts: A scatternet
formation protocol based on mobile agents, in ‘4th Workshop on Applications
and Services in Wireless Networks’, Boston, MA, pp. 293–303.

Grimmett, G. R. and Stirzaker, D. R. [1992], Probability and Random Processes,
2nd ed, Oxford University Press, Oxford, UK.

Guerin, R., Kim, E. and Sarkar, S. [2002], Bluetooth technology key challenges
and initial research, in ‘Proc. SCS Comm. Networks and Distributed Systems
Modeling and Simulation CNDS’, pp. 157–163.

Guerin, R., Sarkar, S. and Vergetis, E. [2002], Forming connected topologies in Blue-
tooth ad hoc networks.

Hahne, E. L. [1991], ‘Round-roin scheduling for max-min fairness in data net-
works’, IEEE Journal on Special Areas in Communications – Wireless Series
9(7), 1024–1039.

Hightower, J. and Borriello, G. [2001], ‘Location systems for ubiquitous computing’,
IEEE Computer 34(8), 57–66.

Hodge, L. and Whitaker, R. [2004a], What are characteristics of optimal Bluetooth
scatternets, in ‘Mobiquitous’, Boston, MA.

Hodge, L. and Whitaker, R. [2004b], What are the characteristics of optimal Blue-
tooth scatternets?, in ‘Proc. First Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services MOBIQUITOUS 2004’,
pp. 124–125.

Huang, L., Chen, H., Sivakumar, T., Kashima, T. and Sezaki, K. [2004], Impact
of topology on Bluetooth, in ‘International Conference of Embedded and
Ubiquiotus Computing (EUC2004)’, Aizu, Japan.

Huang, T., Yang, S., Bai, S. and Huang, C. [2003], Hierarchically grown bluetrees
an effective topology for Bluetooth scatternets,, in ‘Int. Symp. Par. & Distr.
Proc. & Applications ISPA’, AIZU-Wakamatsu, Japan.

IEEE [2001], IEEE standard for local and metropolitan area networks, IEEE Std
802-2001, Piscataway, NY.

IEEE [2002], Wireless PAN medium access control MAC and physical layer PHY
specification, IEEE standard 802.15, New York, NY.

© 2006 by Taylor & Francis Group, LLC.

Jacobson, V. [1988], ‘Congestion avoidance and control’, ACM Computer Commu-
nication Review 18(4), 314–329.

Jacobson, V. [1990a], Berkeley TCP evolution from 4.3-tahoe to 4.3-reno, in ‘Pro-
ceedings of the Eighteenth Internet Engineering Task Force’, Vancouver, BC.

Jacobson, V. [1990b], ‘Modified TCP congestion avoidance algo-
rithm’, note posted on end2end-interest mailing list, available at
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

Jayanna, D. and Zàruba, G. V. [2005], A dynamic and distributed scatternet forma-
tion protocol for real-life Bluetooth scatternets, in ‘Proc. of the 38th Annual
Hawaii International Conference on System Sciences HICSS’05 (CD-ROM)’,
Big Island, HI.

Johansson, N., Alriksson, F. and Jönsson, U. [2001], JUMP mode – a dynamic
window-based scheduling framework for Bluetooth scatternets, in ‘Proceed-
ings 2001 ACM International Symposium on Mobile ad hoc networking &
computing’, Long Beach, CA, pp. 204–211.

Johansson, N., Kihl, M. and Körner, U. [2000], TCP/IP over the Bluetooth wireless
ad-hoc network, in ‘NETWORKING 2000 Broadband Communications, High
Performance Networking, and Performance of Communication Networks’,
Springer-Verlag, pp. 799–810.

Johansson, N., Körner, U. and Johansson, P. [1999], Performance evaluation of
scheduling algorithms for Bluetooth, in ‘Proceedings of BC’99 IFIP TC 6
Fifth International Conference on Broadband Communications’, Hong Kong,
pp. 139–150.

Johansson, N., Körner, U. and Tassiulas, L. [2001], A distributed scheduling algo-
rithm for a Bluetooth scatternet, in ‘Proceedings of the International Teletraffic
Congress – ITC-17’, Salvador de Bahia, Brazil, pp. 61–72.

Johansson, P., Kapoor, R., Kazantzidis, M. and Gerla, M. [2002], Rendezvous
scheduling in Bluetooth scatternets, in ‘Proceedings of IEEE International
Conference on Communications ICC 2002’, New York, pp. 318–324.

Joung, Y.-J. and Huang, G.-D. [2004], A simple and fast algorithm for Bluetooth
network formation, in ‘manuscript’.

Kail, E., Németh, G. and Turányi, Z. R. [2001], Throughput of ideality routed wire-
less ad hoc networks, in ‘Proceedings 2001 ACM International Symposium on
Mobile ad hoc networking & computing’, Long Beach, CA, pp. 271–274.

Kalia, M., Bansal, D. and Shorey, R. [1999], MAC scheduling and SAR policies for
Bluetooth: A master driven TDD pico-cellular wireless system, in ‘Proceed-
ings Sixth IEEE International Workshop on Mobile Multimedia Communica-
tions (MOMUC’99)’, San Diego, CA, pp. 384–388.

© 2006 by Taylor & Francis Group, LLC.

Kalia, M., Bansal, D. and Shorey, R. [2000], Data scheduling and SAR for Blue-
tooth MAC, in ‘Proceedings VTC2000-Spring IEEE 51st Vehicular Technol-
ogy Conference’, Vol. 2, Tokyo, Japan, pp. 716–720.

Kalia, M., Garg, S. and Shorey, R. [2000], Scatternet structure and inter-piconet com-
munication in the Bluetooth system, in ‘IEEE National Conference on Com-
munications’, New Delhi, India.

Kapoor, R. and Gerla, M. [2003], A zone routing protocol for Bluetooth scatter-
nets, in ‘Proceedings Wireless Communications and Networking Conference
WCNC 2003’, Vol. 3, New Orleans, LA, pp. 1459–1464.

Kapoor, R., Jyh-Ling, C., Lee, Y.-Z. and Gerla, M. [2002], Bluetooth: carrying voice
over ACL links, in ‘Proc. 4th International Workshop on Mobile and Wireless
Communications Network’, Los Angeles, CA, pp. 379–383.

Kapoor, R., Sanadidi, M. and Gerla, M. [2003], An analysis of Bluetooth scatternet
topologies, in ‘Proceedings of IEEE International Conference on Communica-
tions ICC 2003’, Vol. 1, Anchorage, AK, pp. 266–270.

Kawamoto, Y., Wong, V. and Leung, V. C. M. [2003], A two-phase scatternet forma-
tion protocol for Bluetooth wireless personal area networks, in ‘Proceedings
Wireless Communications and Networking Conference WCNC 2003’, Vol. 3,
New Orleans, LA, pp. 1453–1458.

Kazantzidis, M. and Gerla, M. [2002], On the impact of inter-piconet scheduling in
Bluetooth scatternets, in ‘The 3rd International Conference on Internet Com-
puting IC 2002’, Las Vegas, NV.

Kazantzidis, M., Zanella, A. and Gerla, M. [2002], End-to-end adaptive multimedia
over Bluetooth scatternets, in ‘Eurocomm 2002’, Brussels, Belgium.

Kim, J., Lim, Y., Kim, Y. and Ma, J. S. [2001], An adaptive segmentation scheme
for the Bluetooth-based wireless channel, in ‘Proceedings Tenth International
Conference on Computer Communications and Networks’, Scottsdale, AZ,
pp. 440–445.

Kleinrock, L. J. [1972], Queuing Systems, Vol. I: Theory, John Wiley & Sons, New
York.

Kumar, A., Ramachandran, L. and Shorey, R. [2001], ‘Performance of network for-
mation and scheduling algorithms in the Bluetooth wireless ad-hoc network’,
Journal of High Speed Networks 10, 59–76.

Kurose, J. F. and Ross, K. W. [2005], Computer Networking: A Top-Down Approach
Featuring The Internet, 3rd ed, Addison-Wesley Longman, Boston, MA.

Lai, W. K. and Tan, D. H. [2003a], ‘A novel scatternet scheme with IPv6 compat-
ibility’, ACM/Kluwer Journal on Special Topics in Mobile Networking and
Applications (MONET) 8(6), 675–685.

© 2006 by Taylor & Francis Group, LLC.

Lai, W. K. and Tan, D. H. [2003b], ‘A novel scatternet scheme with IPv6 compat-
ibility’, ACM/Kluwer Journal on Special Topics in Mobile Networking and
Applications (MONET) 8(6), 675–685.

Lapeyrie, J.-B. and Turletti, T. [2002], Adding QoS support for Bluetooth piconet,
Rapport de recherche n◦ 4514, INRIA, Sophia-Antipolis, France.

Lapeyrie, J.-B. and Turletti, T. [2003], FPQ: a fair and efficient polling algorithm
with QoS support for Bluetooth piconet, in ‘Proceedings Twenty-Second An-
nual Joint Conference of the IEEE Computer and Communications Societies
IEEE INFOCOM 2003’, Vol. 2, New York, NY, pp. 1322–1332.

Law, C., Mehta, A. K. and Siu, K.-Y. [2001], Performance of a new Bluetooth scatter-
net formation protocol, in ‘Proceedings 2001 ACM International Symposium
on Mobile ad hoc networking & computing’, Long Beach, CA, pp. 183–192.

Law, C. and Siu, K.-Y. [2001], A Bluetooth scatternet formation algorithm, in ‘Pro-
ceedings Global Telecommunications Conference 2001 GLOBECOM ’01’,
Vol. 5, San Antonio, TX, pp. 2864–2869.

Lee, T.-J., Jang, K., Kang, H. and Park, J. [2001], Model and performance evaluation
of a piconet for point-to-multipoint communications in Bluetooth, in ‘Proceed-
ings IEEE VTS 53rd Vehicular Technology Conference, Spring 2001’, Vol. 2,
Rhodes, Greece, pp. 1144–1148.

Lee, Y.-Z., Kapoor, R. and Gerla, M. [2002], An efficient and fair polling scheme for
Bluetooth, in ‘Proceedings MILCOM 2002’, Vol. 2, pp. 1062–1068.

Leung, K. K. and Eisenberg, M. [1989], A single-server queue with vacations and
gated time-limited service, in ‘Proceedings of the Eighth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies INFOCOM ’89’,
Vol. 3, Ottawa, ON, pp. 897–906.

Leung, K. K. and Eisenberg, M. [1990a], ‘A single-server queue with vaca-
tions and gated time-limited service’, IEEE Transactions on Communications
38(9), 1454–1462.

Leung, K. K. and Eisenberg, M. [1990b], A single-server queue with vacations and
non-gated time-limited service, in ‘Ninth Annual Joint Conference of the IEEE
Computer and Communication Societies INFOCOM ’90’, San Francisco, CA,
pp. 277–283.

Levy, H., Sidi, M. and Boxma, O. J. [1990], ‘Dominance relations in polling sys-
tems’, Queueing Systems Theory and Applications 6(2), 155–171.

Li, N., Hou, J. and Sha, L. [2003], Design and analysis of an mst-based topology
control algorithm, in ‘Proc. INFOCOM’, San Francisco.

Li, X., Stojmenovic, I. and Wang, Y. [2004], ‘Partial Delaunay triangulation and
degree limited localized Bluetooth scatternet formation’, IEEE Transactions
on Parallel and Disributed Systems 15(4), 350–361.

© 2006 by Taylor & Francis Group, LLC.

Lin, C. R. and Gerla, M. [1997], ‘Adaptive clustering for mobile wireless networks’,
15(7), 1265–1275.

Lin, C. R. and Wu, J.-W. [2002], Enhancing the channel utilization of asyn-
chronous data traffic over the Bluetooth wireless ad-hoc network, in ‘Proc.
Global Telecommunications Conference GlobeCom’02’, Vol. 1, Taipei, Tai-
wan, pp. 212–216.

Lin, T., Tseng, Y. and Chang, K. [2003], ‘A new bluering scatternet topology for
Bluetooth with its formation, routing, and maintenance protocols’, 3, 517–537.

Liu, Y., Lee, M. and Saadawi, T. [2003], ‘Adaptive clustering for mobile wireless
networks’, 21(2), 229–239.

Liu, Z., Nain, P. and Towsley, D. [1992], ‘On optimal polling policies’, Queueing
Systems Theory and Applications 11(1–2), 59–83.

Ludwig, R., Rathonyi, B., Konrad, A., Oden, K. and Joseph, A. [1999], Multi-layer
tracing of TCP over a reliable wireless link, in ‘Proceedings of the 1999 ACM
SIGMETRICS’, pp. 144–154.

Malpani, N., Welch, J. L. and Vaidya, N. [2000], Leader election algorithms for
mobile ad hoc networks, in ‘Proc. 4th International Workshop on Discrete Al-
gorithms and Methods for Mobile Computing and Communications’, Boston,
MA, pp. 96–103.

Manfield, D. R. [1985], ‘Analysis of a priority polling system for two-way traffic’,
IEEE Transactions on Communications 33(9), 1001–1006.

Mazzenga, F., Cassioli, D., Loreti, P. and Vatalaro, F. [2002], Evaluation of packet
loss probability in Bluetooth networks, in ‘Proceedings 2002 IEEE Interna-
tional Conference on Communications ICC 2002’, Vol. 1, New York, NY,
pp. 313–317.

McDermott-Wells, P. [2004], ‘Bluetooth scatternet models’, IEEE Potentials
23(5), 36–39.

Mehta, V. and El Zarki, M. [2004], ‘A Bluetooth based sensor network for civil
infrastructure health monitoring’, ACM/Baltzer Wireless Networks (WINET)
10(4), 401–412.

Melodia, T. and Cuomo, F. [2004a], ‘Ad hoc networking with Bluetooth: key metrics
and distributed protocols for scatternet formation’, 2(2), 189–202.

Melodia, T. and Cuomo, F. [2004b], ‘Locally optimal scatternet topologies for Blue-
tooth ad hoc networks’, pp. 116–129.

Miklós, G., Rácz, A., Valkó, A. and Johansson, P. [2000], Performance aspects of
Bluetooth scatternet formation, in ‘Proceedings 2000 ACM International Sym-
posium on Mobile ad hoc networking & computing’, pp. 193–203.

© 2006 by Taylor & Francis Group, LLC.

Miller, B. A. and Chatschik, B. [2000], Bluetooth Revealed: The Insider’s Guide
to an Open Specification for Global Wireless Communications, Prentice-Hall,
Upper Saddle River, NJ.

Miorandi, D. A. and Zanella, A. [2002], On the optimal topology of Bluetooth pi-
conets: roles swapping algorithms, in ‘Proc. Mediterranean Conf. on Ad Hoc
Networks’, Sardinia, Italy.

Miorandi, D., Caimi, C. and Zanella, A. [2003], Performance characterization of a
Bluetooth piconet with multi-slot packets, in ‘Proceedings WiOpt’03’, Sophia-
Antipolis, France.

Miorandi, D., Trainito, A. and Zanella, A. [2003], On efficient topologies for Blue-
tooth scatternets, in ‘8th IFIP TC6 PWC, LNCS 2775’, pp. 726–740.

Miorandi, D., Zanella, A. and Pierobon, G. [2004], ‘Performance evaluation of Blue-
tooth polling schemes: an analytical approach’, ACM/Kluwer Journal on Spe-
cial Topics in Mobile Networking and Applications (MONET) 9(1), 63–72.

Mišić, J., Chan, K. L. and Mišić, V. B. [2004], ‘Admission control in Bluetooth
piconets’, IEEE Transactions on Vehicular Technology 53(3), 890–911.

Mišić, J. and Mišić, V. B. [2003a], ‘Bridges of Bluetooth county: topologies,
scheduling, and performance’, IEEE Journal on Special Areas in Communi-
cations – Wireless Series 21(2), 240–258.

Mišić, J. and Mišić, V. B. [2003b], ‘Modeling Bluetooth piconet performance’, IEEE
Communication Letters 7(1), 18–20.

Mišić, J., Mišić, V. B. and Chan, K. L. [2005a], ‘Talk and let talk: performance
of Bluetooth piconets with synchronous traffic’, Elsevier Ad hoc networks
3(4), 451–477.

Mišić, J., Mišić, V. B. and Ko, E. W. S. [2004], ‘Fixed cycles and adaptive band-
width allocation can coexist in Bluetooth’, Canadian Journal of Electrical and
Computer Engineering 29(1/2), 135–147.

Mišić, V. B. and Mišić, J. [2003c], ‘Adaptive inter-piconet scheduling in small
scatternets’, ACM MC2R – Mobile Computing and Communications Review
7(2), 45–58.

Mišić, V. B., Mišić, J. and Chan, K. L. [2004], ‘Performance of adaptive inter-piconet
scheduling in a scatternet with a slave/slave bridge’, Wiley Wireless Communi-
cations and Mobile Computing Journal 4(1), 85–98.

Mišić, V. B., Mišić, J. and Chan, K. L. [2005b], ‘Walk-in scheduling in Bluetooth
scatternets’, Cluster Computing 8(2/3), 197–210.

Mogul, J. C. and Deering, S. E. [1990], Path MTU discovery, draft Internet standard
RFC 1191, IETF.

Muller, N. J. [2001], Bluetooth Demystified, McGraw-Hill, Boston, MA.

© 2006 by Taylor & Francis Group, LLC.

ns2 [2003], The Network Simulator ns-2, Software and documentation available from
http://www.isi.edu/nsnam/ns/.

Pabuwal, N., Jain, N. and Jain, B. [2003], An architectural framework to deploy
scatternet based applications over Bluetooth, in ‘IEEE Transactions on Com-
munications’.

Padhye, J., Firoiu, V., Towsley, D. F. and Kurose, J. F. [2000], ‘Modeling TCP Reno
performance: A simple model and its empirical validation’, ACM/IEEE Trans-
actions on Networking 8(2), 133–145.

Pagani, E., Rossi, G. and Tebaldi, S. [2004], An on-demand Bluetooth scatternet for-
mation algorithm, in ‘WONS, LNCS 2928’, Madona di Campiglio, pp. 3336–
3340.

Pamuk, K. and Karasan, E. [2003], Sf-devil: Distributed Bluetooth scatternet forma-
tion algorithm based on device and link characteristics, in ‘IEEE Int. Symp.
Computers and Comm. ISCC’, Bodrum, Turkey, pp. 646–651.

Partridge, C. [1994], Gigabit Networking, Addison-Wesley, Boston, MA.

Pasolini, G. [2003], Bluetooth piconets coexistence: analytical investigation on the
optimal operating conditions, in ‘Proceedings of IEEE International Confer-
ence on Communications ICC 2003’, Vol. 1, Anchorage, AK, pp. 198–202.

Pasolini, G. [2004], ‘Analytical investigation on the coexistence of Bluetooth pi-
conets’, IEEE Communication Letters 8(3), 144–146.

Paxson, V. and Floyd, S. [1995], ‘Wide area traffic: the failure of Poisson modeling’,
ACM/IEEE Transactions on Networking 3(3), 226–244.

Perkins, C. E., Ed. [2001], Ad Hoc Networking, Addison-Wesley, Boston, MA.

Persson, K., Manivannan, D. and Singhal, M. [2004], ‘Bluetooth scatternets: criteria,
models and classification’, Ad Hoc Networks .

Peterson, B. S., Baldwin, R. O. and Raines, R. A. [2004], ‘Inquiry packet interference
in Bluetooth scatternets’, ACM MC2R – Mobile Computing and Communica-
tions Review 8(2), 66–75.

Petrioli, C. and Basagni, S. [2002], Degree-constrained multi-hop scatternet forma-
tion for Bluetooth networks, in ‘Proc. Global Telecommunications Conference
GlobeCom’02’, Taipei, Taiwan.

Petrioli, C., Basagni, S. and Chlamtac, I. [2003], ‘Configuring bluestars: Multi-
hop scatternet formation for Bluetooth networks’, IEEE Trans. Computers
52(6), 779–790.

Petrioli, C., Basagni, S. and Chlamtac, I. [2004], ‘Bluemesh: degree-constrained
multi-hop scatternet formation for Bluetooth networks’, ACM/Kluwer Journal
on Special Topics in Mobile Networking and Applications (MONET) 9(1), 33–
47.

© 2006 by Taylor & Francis Group, LLC.

www.isi.edu

Prabhu, B. J. and Chockalingam, A. [2002], A routing protocol and energy efficient
techniques in Bluetooth scatternets, in ‘Proceedings of IEEE International
Conference on Communications ICC 2002’, Vol. 5, New York, pp. 3336–3340.

Rácz, A., Miklós, G., Kubinszky, F. and Valkó, A. [2001], A pseudo random coor-
dinated scheduling algorithm for Bluetooth scatternets, in ‘Proceedings 2001
ACM International Symposium on Mobile ad hoc networking & computing’,
Long Beach, CA, pp. 193–203.

Ramachandran, L., Kapoor, M., Sarkar, A. and Aggarwal, A. [2000], Clustering al-
gorithms for wireless ad hoc networks, in ‘Proc. 4th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communica-
tions’, Boston, MA, pp. 54–63.

Raman, B., Bhagwat, P. and Seshan, S. [2001], Arguments for cross-layer optimiza-
tions in Bluetooth scatternets, in ‘Proceedings 2001 Symposium on Applica-
tions and the Internet SAINT 2001’, San Diego, CA, pp. 176–184.

RSoft Design, Inc. [2003], Artifex v.4.4.2, San Jose, CA.

Salonidis, T., Bhagwat, P. and Tassiulas, L. [2001], Proximity awareness and fast
connection establishment in Bluetooth, Tech. report TR-2001-10, University
of Maryland, College Park, MD.

Salonidis, T., Bhagwat, P., Tassiulas, L. and LaMaire, R. [2001], Distributed topol-
ogy construction of Bluetooth personal area networks, in ‘Proceedings Twen-
tieth Annual Joint Conference of the IEEE Computer and Communications
Societies IEEE INFOCOM 2001’, Vol. 3, Anchorage, AK, pp. 1577–1586.

Sangvornverphan, V. and Erke, T. [2001], Traffic scheduling in Bluetooth network, in
‘Proceedings Ninth IEEE International Conference on Networks ICON 2001’,
Bangkok, Thailand, pp. 355–359.

Seth, A. and Kashyap, A. [2002], Capacity of Bluetooth scatternets, Tech. report,
Indian Institute of Technology, Kanpur, India.

Shorey, R. and Miller, B. A. [2000], The Bluetooth technology: merits and limita-
tions, in ‘Proc. of IEEE International Conference on Personal Wireless Com-
munications’, Hyderabad, India, pp. 80–84.

Shreedhar, M. and Varghese, G. [1996], ‘Efficient fair queueing using deficit round-
robin’, ACM/IEEE Transactions on Networking 4(3), 375–385.

Siegemund, F. [2002], Kontextbasierte Bluetooth-scatternetz-formierung in ubiq-
uitaren systemen, in ‘First German Workshop on Mobile Ad hoc Networks’.

Siegemund, F. and Rohs, M. [2003], ‘Rendezvous layer protocols for Bluetooth-
enabled smart devices’, Personal Ubiquitous Computing 7(2), 91–101.

Sikdar, B., Kalyanaraman, S. and Vastola, K. S. [2003], ‘Analytical models for
the latency and steady-state throughput of TCP Tahoe, Reno, and SACK’,
ACM/IEEE Transactions on Networking 11(6), 959–971.

© 2006 by Taylor & Francis Group, LLC.

Sivakumar, T., Chen, H. and Huang, L. [2004], Adaptive network formation protocol
for Bluetooth scatternet, in ‘The First IEEE and IFIP Int. Conf. on Wireless and
Optical Communications Networks (WOCN 2004)’, Muscat, Oman.

Snow, C. and Primak, S. [2002], Performance evaluation of TCP/IP in Bluetooth
based systems, in ‘IEEE 55th Vehicular Technology Conference VTC Spring
2002’, Vol. 1, Birmingham, AL, pp. 429–433.

Son, L. T., Schiøler, H. and Madsen, O. B. [2001], Predictive scheduling approach
in inter-piconet communications, in ‘Proc. of the 4th international symposium
on Wireless personal multimedia communications’, Aalborg, Denmark.

Song, W., Li, X.-Y., Wang, Y. and Wang, W. [2005], ‘dBBlue: Low diameter and
self-routing Bluetooth scatternet’, Journal on Parallel and Distributed Com-
puting 65(2), 178–190.

Song, W.-Z., Li, X.-Y., Wang, Y. and Wang, W. [2003], dBBlue: low diameter and
self-routing Bluetooth scatternet, in ‘Proceedings of the 2003 joint workshop
on Foundations of mobile computing’, ACM Press, pp. 22–31.

Sreenivas, H. and Ali, H. [2004], An evolutionary Bluetooth scatternet formation
protocol, in ‘Proceedings of the 37th Hawaii Int. Conf.on System Sciences’,
Hawaii.

Stojmenovic, I. [2002], Dominating set based Bluetooth scatternet formation with
localized maintenance, in ‘CD Proc. IEEE Int. Parallel and Distributed Pro-
cessing Symposium and Workshops’, Fort Lauderdale.

Stojmenovic, I. [2004a], Degree limited Bluetooth scatternet formation based on
maximal independent sets, in preparation.

Stojmenovic, I. [2004b], Routing in Bluetooth with geometric structures enhanced
with long links, in preparation.

Stojmenovic, I. and Wu, J. [2004], Broadcasting and activity scheduling in ad hoc
networks, in S. Basagni, M. Conti, S. Giordano and I. Stojmenovic, Eds, ‘Mo-
bile Ad Hoc Networking’, IEEE/Wiley, pp. 205–229.

Stojmenovic, I. and Xu, L. [2001], ‘Power aware localized routing in wireless net-
works’, IEEE Transactions on Parallel and Distributed Systems 12(11), 1122–
1133.

Sun, M.-T., Chang, C.-K. and Lai, T.-H. [2002], A self-routing topology for Blue-
tooth scatternets, in ‘Proc. Int. Symp. on Parallel Architectures, Algorithms
and Networks I-SPAN’, Manila, Philippines, pp. 13–18.

Takács, L. [1962 (reprinted 1982)], Introduction to the Theory of Queues, Oxford
University Press, New York, NY.

Takagi, H. [1986], Analysis of Polling Systems, The MIT Press, Cambridge, MA.

© 2006 by Taylor & Francis Group, LLC.

Takagi, H. [1987], ‘Analysis and application of a multiqueue cyclic service system
with feedback’, IEEE Transactions on Communications 35(2), 248–250.

Takagi, H. [1988], ‘Queuing analysis of polling models’, ACM Computing Surveys
20(1), 5–28.

Takagi, H. [1991], Queueing Analysis, Vol. 1: Vacation and Priority Systems, North-
Holland, Amsterdam, The Netherlands.

Takagi, H. [1993a], Queueing Analysis, Vol. 2: Finite Systems, North-Holland, Am-
sterdam, The Netherlands.

Takagi, H. [1993b], Queueing Analysis, Vol. 3: Discrete-Time Systems, North-
Holland, Amsterdam, The Netherlands.

Tan, G. and Guttag, J. [2002], A locally coordinated scatternet scheduling algorithm,
in ‘Proceedings of the 26th Annual Conference on Local Computer Networks
LCN 2002’, Tampa, FL, pp. 293–303.

Tan, G., Miu, A., Guttag, J. and Balakrishnan, H. [2001], Forming scatternets from
Bluetooth personal area networks, Technical Report MIT-LCS-TR-826, MIT,
Cambridge, MA.

Toussaint, G. [1980], ‘The relative neighborhood graph of a finite planar set’, Pattern
Recognition 12(4), 261–268.

Vergetis, E., Guerin, R., Sarkar, S. and Rank, J. [2005a], ‘Can Bluetooth succeed as
a large-scale ad hoc networking technology?’, IEEE Journal on Special Areas
in Communications – Wireless Series 23(3), 644–656.

Vergetis, E., Guerin, R., Sarkar, S. and Rank, J. [2005b], ‘Can Bluetooth succeed as
a large-scale ad hoc networking technology?’, IEEE Journal on Special Areas
in Communications – Wireless Series 23(3), 644–656.

Wang, Y., Stojmenovic, I. and Li, X.-Y. [2004], Bluetooth scatternet formation for
single-hop ad hoc networks based on virtual positions, in ‘IEEE Symposium
on Computers and Communications’, Alexandria, Egypt, pp. 7–14.

Wang, Z., Thomas, R. J. and Haas, Z. [2002], Bluenet – a new scatternet formation
scheme, in ‘Proceedings of the 35th Annual Hawaii International Conference
on System Sciences’, Big Island, HI.

Whitaker, R., Hodge, L. and Chlamtac, I. [2005], ‘Bluetooth scatternet formation: a
survey’, Ad Hoc Networks 3(4), 403–450.

Whittaker, E. T. and Watson, G. N. [1952], A Course of Modern Analysis, Cambridge
University Press, Cambridge, UK.

Wilf, H. S. [1994], Generatingfunctionology, 2nd ed, Academic Press.

Wu, J. and Li, H. [1999], On calculating connected dominating set for efficient rout-
ing in ad hoc wireless networks, in ‘Proceedings 3rd International Workshop

© 2006 by Taylor & Francis Group, LLC.

on Discrete Algorithms and Methods for Mobile Computing and Communica-
tions’, Seattle, WA, pp. 7–14.

Wu, Y. and Todd, T. [2004], Link sharing in high capacity Bluetooth voice access
networks, in ‘Proc. Wireless Communications and Networking Conference’,
Vol. 1, Atlanta, GA, pp. 21–25.

Wu, Y., Todd, T. D. and Shirani, S. [2003], ‘SCO link sharing in Bluetooth voice
access networks’, Journal on Parallel and Distributed Computing 63(1), 45–
57.

Xue, J. and Todd, T. [2001], Basestation collaboration in Bluetooth voice networks,
in ‘Proc. 26th Annual IEEE Conference on Local Computer Networks LCN
2001’, pp. 533–538.

Yao, A. [1982], ‘On constructing minimum spanning trees in k-dimensional spaces
and related problems’, SIAM J. Computing 11, 721–736.

Yun, J., Kim, J., Kim, Y. and Ma, J. [2002], A three-phase ad hoc network formation
protocol for Bluetooth systems, in ‘Proc. 5th Int. Symp. Wireless Personal
Multimedia Communications WPMC’, Hawaii.

Zàruba, G. V., Basagni, S. and Chlamtac, I. [2001], Bluetrees – scatternet formation
to enable Bluetooth-based ad hoc networks, in ‘Proceedings of IEEE Interna-
tional Conference on Communications ICC 2001’, Vol. 1, Helsinki, Finland,
pp. 273–277.

Zhang, H. and Hou, J. C. [2002], A scheduling algorithm for transporting variable
rate coded voice in Bluetooth networks, in ‘Proceedings of the 5th ACM inter-
national workshop on Wireless mobile multimedia’, ACM Press, pp. 25–32.

Zhang, H., Hou, J. C. and Sha, L. [2003], A Bluetooth loop scatternet formation algo-
rithm, in ‘Proceedings of IEEE International Conference on Communications
ICC 2003’, Anchorage, AK, pp. 1174–1180.

Zhang, W. and Cao, G. [2002], A flexible scatternet-wide scheduling algorithm for
Bluetooth networks, in ‘Proc. 21st IEEE International Performance, Comput-
ing, and Communications Conference IPCCC 2002’, Phoenix, AZ.

Zhang, W., Zhu, H. and Cao, G. [2001], On improving the performance of Blue-
tooth networks through dynamic role management, Tech. report CSE-01-018,
Pennsylvania State University, University Park, PA.

Zhang, W., Zhu, H. and Cao, G. [2002], Improving Bluetooth network performance
through a time-slot leasing approach, in ‘Proceedings of IEEE Wireless Com-
munications and Networks Conference WCNC 2002’, Vol. 2, Orlando, FL,
pp. 592–596.

Zhen, B., Park, J. and Kim, Y. [2003], Scatternet formation of Bluetooth ad hoc
networks, in ‘36th Hawaii Int. Conference on System Sciences’, pp. 312–319.

© 2006 by Taylor & Francis Group, LLC.

Zürbes, S. [2000], Considerations on link and system throughput of Bluetooth net-
works, in ‘Proceedings of the 11th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications PIMRC 2000’, Vol. 2, London,
UK, pp. 1315–1319.

© 2006 by Taylor & Francis Group, LLC.

	au3157_fm.pdf
	PERFORMANCE MODELING AND ANALYSIS OF BLUETOOTH NETWORKS
	Dedication
	Contents
	List of Figures
	List of Tables
	Preface

	AU3157.pdf
	Contents
	PERFORMANCE MODELING AND ANALYSIS OF BLUETOOTH NETWORKS
	Chapter 1 Introduction to Bluetooth
	1.1 Lower layers of the architecture: RF and baseband
	1.2 Higher layers of the architecture: LMP and L2CAP
	1.3 Data transport and link types
	1.4 Connection state and related modes
	1.5 Piconet formation: inquiry and paging

	Chapter 2 Intra-piconet polling schemes
	2.1 Bluetooth communications and intra-piconet polling
	2.2 Classification of polling schemes
	2.3 On segmentation and reassembly policies
	2.4 Piconet model and performance indicators

	Chapter 3 Analysis of polling schemes
	3.1 Performance of exhaustive service
	3.2 Performance of 1-limited service
	3.3 E-limited polling
	3.4 Access and downlink delay

	Chapter 4 The impact of finite buffers
	4.1 Queue length distribution in imbedded Markov points
	4.2 Uplink queue length distribution
	4.3 Experimental results

	Chapter 5 Admission control
	5.1 Admission control based on queue stability
	5.2 Admission control based on access delay
	5.3 Admission control based on cycle time

	Chapter 6 Performance of TCP traffic
	6.1 System model and related work
	6.2 TCP window size
	6.3 Queueing analysis of the token bucket filter
	6.4 The outgoing queue at the baseband level
	6.5 Performance assessment

	Chapter 7 Piconets with synchronous traffic
	7.1 Why the built-in SCO links are bad
	7.2 pSCO: an improved scheme for synchronous traffic
	7.3 Performance of the pSCO scheme

	Chapter 8 Adaptive polling and predefined delay bounds
	8.1 Adaptive bandwidth allocation
	8.2 Adaptive polling with cycle control: the ACLS scheme
	8.3 ACLS performance
	8.4 Improving the performance of ACLS

	Chapter 9 Bluetooth scatternet formation in ad hoc wireless networks
	9.1 Introduction
	9.2 BSF in single-hop networks
	9.3 BSF in multi-hop networks
	9.4 Conclusions

	Chapter 10 Bridge topologies and scheduling
	10.1 Bridge topologies
	10.2 Approaches to bridge scheduling
	10.3 Bridge scheduling in practice
	10.4 The queueing model and traffic assumptions

	Chapter 11 Rendezvous-based bridge scheduling
	11.1 MS bridge topology
	11.2 Packet delays: the MS bridge case
	11.3 Performance of the MS bridge
	11.4 SS bridge topology
	11.5 Packet delays: the SS bridge case
	11.6 Performance of the SS bridge

	Chapter 12 Adaptive bridge scheduling
	12.1 Minimization of delays
	12.2 Adaptive management: the case of the MS bridge
	12.3 Adaptive management: the case of the SS bridge

	Chapter 13 Walk-in bridge scheduling
	13.1 Scatternet model
	13.2 Service, vacation, and cycle times
	13.3 Calculating the packet delays
	13.4 Stability considerations
	13.5 Scalability

	Chapter 14 Scatternet with finite buffers
	14.1 Scatternet model with finite buffers
	14.2 Uplink/downlink queue length distribution in Markov points
	14.3 Service, vacation, and cycle times
	14.4 Blocking probability and packet delays
	14.5 Simulation results

	Appendix: Probability generating functions and Laplace transforms
	References

