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Preface to the Second
Edition

This book is intended for the graduate or advanced undergraduate
engineer. The primary motivation for developing the text was to present a
complete tutorial of phase-locked loops with a consistent notation. I believe
this is critical for the practicing engineer who uses the text as a self-study
guide.

Three years after the first printing, I discovered there was a need for a
second edition. I had taught several short courses from the text, and
discovered that today’s engineers needed less time devoted to discrete-time
theory, but wanted more practical information on implementing phase-locked
loops. As a result, I have deleted discussions on topics such as multi-rate
sampling and the Jury test, and replaced them with new content. Included in
the new material are additional loop filters and reduction of reference feed-
through in frequency synthesizers. Indeed, frequency synthesis is itself a
new topic in the text.

Since most hardware phase-locked loops utilize charge pumps, I
developed a new chapter that spotlights charge pumps and its complementary
sequential phase detector. Several students in the short courses were asking
for design examples on delay-locked loops used to synchronize circuits on
CPUs and ASICS. The second printing includes new material for this very
purpose.

Another change was the increased use of MATLAB™. Many of the
original graphics have been replaced with graphics generated by MATLAB’s
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SIMULINK™ or Control System Toolbox. Since MATLAB has emerged as
the leading simulation tool for the communications engineer, the graphics
should be familiar and provide more information such as gain and phase
margins. I have also taken the opportunity to correct typographical errors
and further improve the consistency in notation.

New material has been added on digital dividers. These devices can
easily dominate a frequency synthesizer’s noise floor, but the literature has
not provided many solutions. In this second edition, I added sections
discussing the origin of phase noise in digital dividers and possible solutions.
Also included are some techniques to analytically estimate the phase noise of
a divider before it is even fabricated.

In the past year, many students in the short courses have been asking for
design help on optical phase-locked loops. A new chapter has been added on
this topic. Because many designers will be new to optical communications, I
have included short sections discussing components such as lasers and
photodetectors. Since coherent phase-locked loops are so very difficult to
implement, I have included a section on automatic frequency control to
provide frequency-locking of the lasers instead of phase-locking.

This second edition begins with the early history of phase-locked loops. 1
believe that historical knowledge can provide insight to the development and
progress of a field, and phase-locked loops are no exception. Although all-
analog phase-locked loops are becoming atypical, the continuous-time nature
of analog loops allows an easy introduction to phase-locked loop theory.
This foundation then allows us to proceed to the many implementations and
discussions of phase-locked loops.

I wish to thank the readers of the first edition for their many suggestions
and comments. Likewise the short course students have also strengthened
this new edition with their participation and comments. [ have tried to
incorporate these suggestions within the intended scope of the text.

Donald R. Stephens
October 2001



1 The Early History of Phase-
Locked Loops

1.1 History

A browse through the phase-locked loop literature of the past is
humbling. Although we often consider phase-locked loops as relatively new
structures, historical literature dates the concept as early as 1919 [2].
Vincent [2] and Appleton [3] experimented and analyzed, respectively, the
practical synchronization of oscillators.

After these initial papers, research and development continued up until
the 1940s. At that time, the initial interest in synchronization was for a) a
local oscillator in FM demodulation and b) the exciter for an atomic particle
accelerator amplifier [4].

The control theory for phase-locked loops was based on the well-
developed theory for feedback amplifiers. Early pioneers in the feedback
analysis included the Bell Labs researchers Bode [5] and Nyquist [6]. Their
techniques for analyzing the stability of feedback structures are still used by
researchers today.

In 1935, Travis published “Automatic Frequency Control”, [7] which
suggested two reasons for controlling the local oscillator of a receiver.
“Oscillator drift, if not corrected by more or less frequency manual
readjustment, is capable of mistuning the signal by many channels in the
course of a few hours run” [7]. His second reason for oscillator control is
more entertaining, “It seems to be quite true that the average listener does not
tune his set well enough to obtain the best quality it is capable of giving,
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partly from negligence, and partly from lack of the necessary skill, in which
case the mechanical design of the set is a possible contributing factor.” [7]

Travis® design was completely electronic. He did not want to increase the
number of mechanical parts in the receiver. (The manual frequency tuning
required the rotation of a mechanical variable condenser gang.) In his
discussion of the theory of operation, he noted that the operation was similar
to the automatic volume control loops which had been used in receivers for
several years.

There were two primary elements in Travis’ design. The first was the
oscillator itself which was tuned by electrodynamic methods. The second
was the frequency discriminator which developed the error control voltage to
control the oscillator. His first discriminator was a differential rectifier,
similar to the discriminator developed by Foster and Seely in 1939 [8]. This
circuit today is known as the Foster-Seely discriminator.

Foster and Seely presented a number of innovative circuits, but
surprisingly, there was no control theory presented for their frequency
control circuits. R.V. Pound’s description of automatic frequency control for
microwave oscillators was similar [1]. It was mainly concerned with the art
of circuit design. (Of course the circuits were all tube-based during this era.)

In 1939, Vincent Rideout described a servomechanical automatic
frequency control circuit [9]. At this time, the DC stability of amplifiers was
poor, and maintaining a constant control voltage was difficult. As he noted,
a servomechanical tuning was desirable because the electronic control
amplifier did not have to accumulate the error voltage. The control circuit
only had to make differential corrections to the oscillator frequency. His 4
GHz synthesizer used a Foster-Seely discriminator and a two-phase induction
motor to tune a waveguide resonator. Later in 1960, T.J. Rey wrote, “[phase-
locked loops have] developed from a method of motor tuning in which the
oscillation and the reference are combined to generate a field that rotates at
the error frequency.” [19]

During World War II, there were new requirements and expectations for
servomechanisms. To meet this challenge, great advances were made in
control theory during the war years. When MacColl published his text,
Fundamental Theory of Servomechanisms [10] in 1945, control theory was
considered an old art. However, it was at this time that the order of the
differential equations became so high that new analysis techniques were
needed. (Of course these evolved to the Laplace techniques that we use
today.)
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For many years; generally until the 60’s, the early radios did not have
automatic frequency synchronization or Automatic Fine Tune (AFC). To
help consumers tune their radios, visual indicators were provided for some
receivers. Figure 1.1 shows a representation of the tube indicator and the
visual cues provided to the user [11]. The control voltages were much larger
than today’s small signal levels. The discriminator voltage to the General
Electric 6AL7-GT tube shown in Figure 1.1 was % 10 Volts.

Visual Indication
to User

250V Off Channel +

On Channel
Off Tune +

On Tune

On Channel
Off Tune -

Off Channel -

0®Ee060

Figure 1.1 Frequency Tuning Indicator in Early Radios [11]

The applicability of feedback amplifier theory to automatic volume
control circuits was presented by Oliver in 1948 [12]. Oliver’s analysis of
the volume control circuit included the use of Nyquist diagrams and Bode
plots.

Also in 1948, the Collins Radio Company of Cedar Rapids, lowa,
produced an exciter for commercial FM transmitters that used a quartz
crystal discriminator to stabilize the center frequency [13]. (Collins was
previously the Crosley Broadcasting Corporation of Cincinnati, Ohio.) The
Federal Communications Commission (FCC) required the center frequency
of the FM broadcasters to be within 2000 Hz of their assigned frequency.

In 1952, Ruston developed a simple crystal discriminator for FM local
oscillators [14]. Although variable capacitance diodes now replace the
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reactance tube, his block diagram of the system in Figure 1.2 is similar to
today’s frequency control loops. Without the automatic frequency control,
consumer radios had a frequency stability of about 0.1%. With that era’s
high gain amplifiers (G=250), the control circuit of Figure 1.2 would yield a
frequency stability of about 0.0004%.

Modulating M
Voltage RF Qutput
p|Reactance Tubel ol ccinator >

(Modulator)

— !

Reactance Tube | g Lowpass | g—[Crystal <.J

Control Filter Discriminator

Figure 1.2 Ruston’s Automatic Frequency Control Loop [14]

About 1953, phase-locked loop designers began studying the nonlinear
operation of the circuits. Curiously, some of the analysis techniques came
from unrelated fields. The second order differential equation of the phase-

2
d Z)+-/1—d¢z—C0s[¢]= -V, was analyzed with a technique
dt drt
associated with the pull-out torque of synchronous motors [15,16]. This was
the technique used by Rey [19] and Viterbi [21] to generate the phase-plane
portraits of phase-locked loop acquisition.

locked loop,

Color television would not have been possible without the advancement
of phase-locked loop technology. In particular, the color subcarrier at 3.158
MHz required precise phase control to maintain color picture stability in the
NTSC format. Richman [17] was the first to develop equations describing
acquisition time for a first order phase-locked loop. It is a fascinating history
of television, to read the derived requirements of these first phase-locked
loops.

In the early 1950s, a “good” phase-locked loop would adjust the
television’s color within a second. A “fair” phase-locked loop would adjust
the color within 10 seconds. The phase-locked loop in the color subcarrier
circuit was originally to replace a phase control “knob” that the consumer
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would adjust manually as a new station was tuned. Of course, the oscillators
were all tube-based, and the frequency of the loop was tuned with a reactance
tube.

A block diagram of Richman’s Automatic Phase Control (APC) circuit is
shown in Figure 13. The passive loop filter in Figure 1.3 presented a
dilemma to the early designers. Five rms degrees of dynamic phase error
was the subjective threshold for consumer acceptance. Static phase error
would produce the wrong hue in the received picture. Dynamic phase error,
however, generated fluctuating horizontal color streaks. In order to keep the
phase jitter at acceptable levels, a 100 Hz loop bandwidth was required. Yet
this noise bandwidth would limit acquisition to 25 seconds for an oscillator
frequency offset of 2.5 kHz [18].

Color-Carrier
Reference Output
———

Color

Synch Burst | Synchronous

——®| Phase ——{Oscillator
Detector

!

Reactance
Tube

Figure 1.3 Automatic Phase Control Circuit [18]

By 1959, analog phase-locked loop theory and design was approaching
maturity. The textbooks and literature at the time still emphasized the analog
to servomechanisms. The wider applicability of phase-locked loops resulted
from the acceptance of the PLL as a lowpass filter for FM inputs and a
highpass filter to the output oscillator. McAleer [21] wrote that there were
three uses for phase-locked loops: 1) In a receiver to increase the power level
and attenuate the noise of a weak FM signal, 2) can be used to reduce the
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jitter or frequency noise of a high-powered oscillator, 3) as a
narrowbandwidth filter.

The history of phase-locked loops becomes difficult to write after 1960
due to an explosive interest and publications in the field. The availability of
phase-locked loop integrated circuits in 1965 [22] facilitated the rapid
introduction of phase-locked loops into consumer products. About 1970,
digital or sampled, phase-locked loops began appearing in the literature and
products. Gupta’s [23] 1975 survey paper provides some of the history of
analog loops and Lindsey and Chie’s [24] 1981 paper provides some insight
to the development of the digital phase-locked loops.

The history of optical phase-locked loops is more recent, since the laser
was not invented until 1960 [25]. The first laser phase-locked loop was
demonstrated four years later [26]. A block diagram is shown in Figure 1.4.

Reference Laser
Audio Piezo
Oscillator  |Mirror |

Piezo —~ — — T 7
[Mirror | + Beam
: Splitter
A==ty |}'\ Port 2
| |

—————— ' Port 1

Photomultiplier

Low-Pass
Filter

£2

Figure 1.4 Laser Phase-Locked Loop [26]

Helium-neon lasers were locked in quadrature using the photomultiplier
(a RCA-7265) to provide error feedback to the piezo mirror in Figure 14.
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The piezo mirror changes the length of the laser cavity, thus changing the
operating frequency of the laser.

Earlier attempts or experiments had been failures because of acoustical
and mechanical disturbances. The first success was achieved through
placing the lasers on a shock-mounted concrete and cinder block table
enclosed in a concrete vault. Inside this vault, the lasers were able to remain
phase-locked for several hours. Temperature drift eventually caused the
lasers to lose lock [26].
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2

Analog Phase-Locked Loops

2.1 Time Domain Analysis of Phase-Locked Loops

A complete Phase-Locked Loop (PLL) block diagram is shown in
Figure 2.1. The PLL is receiving a signal s(t), with an unknown phase, H(t).
Viterbi [18] has described the phase-locked loop as a communications
receiver that adjusts the local oscillator frequency and phase according to its
measured phase error. Although PLLs are found in applications besides
receivers, the PLL in Figure 2.1 is performing as a local oscillator to
coherently demodulate the received signal. (Recall from communication
theory that coherent demodulation provides a 3 dB improvement in signal-to-
noise. In Chapter 11 we will show that the signal-to-noise improvement is 6
dB inside a synchronization loop.)

In Figure 2.1, we assign an amplitude, /2P , to the received signal, s(t),

where P is the power in the signal. Initially, the magnitude /2P for the
received signal may seem awkward. Recall however, the power in the signal
x(t)= Acos(2nf t) is P=A’ / 2. Algebraic manipulation yields A =4/2P ,

the assumed magnitude for the input phasor in Figure 2.1. In some
applications such as frequency synthesizers, the signal into the phase-locked
loop has a fixed signal level and a high Signal-to-Noise Ratio (SNR). More
stressful on loop performance however, are those applications with varying
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signal levels and low SNRs. In our subsequent derivations we will see that
these two parameters affect the performance of the loop.

Phase Detector Filter Gain

: K, Ee(;) X
jv(k)h(z—l)dl _[>:_>_
"""""""""""" vo
) [K, @) <t)

Figure 2.1 Simple Phase-Locked Loop

The phase detector for a PLL measures the phase difference between the
input signal and the PLL’s voltage controlled oscillator. This phase
difference is converted to a voltage in the phase detector, which is then used
to provide feedback control to the local oscillator. Associated with the phase

detector is a gain, K = K ,, which represents the mapping of the phase

det ector
error in radians to an output with units, volts/radians. In Figure 2.1, the

phase detector is represented as a mixer with a lowpass filter, which is a
common implementation. An ideal mixer will produce a frequency
difference component and frequency summation component,

Cosl2nf, 1 +6]x Sinlon f, + 6]
1 1 R 2-1
= ESin[47tf0t +6+ 9]+ Esm[e - 0]

where

@ is the signal's unknown phase

6 is the PLL’s estimate of the phase, &
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In analog phase-locked loops, we are most interested in the baseband
component, %Sin[@—é] that is used to generate an error voltage for
correcting the loop’s oscillator. In most instances, the high frequency
component, %Sin[&n f0t+9+é] will be ignored by the loop filter and

oscillator, but we include a lowpass filter to eliminate this term inside the
phase detector.

Later in the analysis of analog phase-locked loops, we will discuss the
s-domain representation and then represent the lowpass filter inside the phase

a . . .
detector as H(s) = . However, the other functions in Figure 2.1 are
a

+5

time-domain functions, and for the initial presentation of the phase-locked
loop, we choose to represent the function in the time domain for consistency.
If the cutoff frequency of the filter is much greater than the carrier frequency,
f., then the indicated convolution can be approximated by a sifting function,
and then the error voltage is approximately

e(t) = y2PK, K, Sin| [c(t)dt -6(r)| 22

Figure 2.1 has a filter consisting of a simple gain scalar, K., =K;.

The lowpass filter in Figure 2.1 used to eliminate the mixer sum products
adds additional poles to the loop transfer function, so it cannot be a first
order loop. (When we introduce the s-domain representation, we will make a
formal definition of loop order and type.)

The local oscillator’s output, 1(t), may appear troubling at first, because
of the integral inside the sine argument. Historically, analog Voltage
Controlled Oscillators (VCOs) have received a voltage as an input, and
generated a frequency output. However, in Figure 2.1, the error voltage from
the mixer, c(t), (Equation 2-1) represents a phase error rather than a
frequency error.

Recall the phase of a sinusoid is the accumulation, or integral of all
instantaneous frequency components. The phase of the local oscillator can
be written as

0(t) =2nj f(7)dr + 6(t =0) 23
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Equation 2-3 shows that the VCO performs an integration with respect to
the phase error. In Figure 2.1, the error voltage, c(t) corresponds to a phase
error, so the VCO in a phase-locked loop effectively integrates c(t), to
produce a phase correction. The transducer gain of the VCO is

K K radians/Volt.

oscillator — **o

To generate the phase error, e(t), we have performed a simple lowpass
filter function on the output of a mixer. The mixer’s output prior to the
lowpass filter is

v(t) = 2sin (21rfct + fc(t)dt)x 2P cos(2nft +6(1)) 2-4

After performing trigonometric reductions,

v(t) = ﬁsin (4nfct + J'c(t)dt + ¢(t))+ \/—ﬁsin("‘c(t)dt - 0(1‘)) 2-5

Notice that the last term of Equation 2-5 represents the phase difference
between the received signal and the local oscillator. For this reason, it is
named a phase detector, rather than frequency detector. Frequency detectors
are sometimes used in control loops (Automatic Frequency Control (AFC)),
but they are more complex than the simple mixer shown in Figure 2.1 [1].

Equation 2-5 implies the error voltage is a sinusoidal function. Because
sin[@] =sin[@+ k 2n], where k is an integer, the phase detector of
Equation 2-5 is invariant to a k 27 radian phase shift. In Chapter 11, we
will discuss phase detectors that are invariant to 7 or even n/ 2 phase shifts.
(This presents problems in synchronizing to digital modulation waveforms
such as BPSK or QPSK.)

For our initial study of Figure 2.1, we need to linearize Equation 2-5 so
that we can write a simple control loop equation. To linearize Equation 2-5,
we expand a first-order Taylor series of the sine function around zero,

Sin[x]= sin[O]+ (x—O)sin'[O]= x. (The double frequency is discarded
because it is removed by the lowpass filter.) From this we obtain,

e(r) = 2P ([ c(t)dt - 6(1) 26

After the linearization, we can simplify the loop block diagram to the
more familiar form shown in Figure 2.2.
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A frequency-dependent loop filter is not included in the loop
configuration of Figure 2.2. The loop filter is really a scalar gain term, K.

This is the only variable to alter the first-order loop’s performance. Because
the phase detector is represented by an arithmetic summer (traditional control
loop representation) [2-3] rather than a multiplier, the magnitude -JZ_P of the
received signal is included within the phase detector.

Phase Detector

P P kg ——{ K

c(t)

]:c(t)dt < Ko

Voltage Controlled Oscillator (VCO)

Figure 2.2 Linearized Phase-Locked Loop

The output of the phase detector, 8,(¢),represents the difference between
the input 6,(¢), and the VCO’s estimate of the input, &,(z). By solving for
this difference, 6,(z), we obtain a mathematical representation of how well
the phase-locked loop is tracking the input.

c()=K, 6.(1) 2-7

6.()=y2PK,(6,0)- K, [ ct)ar ) 2.8
Substituting Equation 2-7 into Equation 2-8 yields
6.()=y2PK,(60)- K,[ K, 6.0)dr ) 2:9

Integral equations such as Equation 2-9 are difficult to solve, so we use
the differential form of Equation 2-9.
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0, () +2P K,K,K,6,(t) =y2P K, 6, (1) 2-10

This is a first-order differential equation. Recall the following theorem
for first-order differential equations [16]:

it f'+af=g onintervall

ef= e"‘(jgeA )+ ce™* for some constant ¢ 511

where A denotes any indefinite integral of the function o
For Equation 2-10, A(?)= ja(t)dt =J2PK,K,K, 1, so substituting

this into Equation 2-11 yields

He ) = e—ﬁx,,x,x,,rJ‘{eﬁxdx,xatez(t)}lt + ce-,/EFK,,K,K,,:

where ¢ is a constant

2-12

For most phase-locked loop applications, the phase input, 8(¢), to the
loop is a combination of three different phase functions.

Case 1. O(t)=A0, where A@ is constant. This corresponds to a

constant phase offset between the input signal’s phase and the initial VCO’s
phase. Of course, the PLL will correct the phase difference to zero by
changing the phase of the VCO.

Since 8'(t) = 0, the solution of Equation 2-12 provides

6.(t)= ce PP KKKt 2-13

If we let error(0)=A 8, (the loop error at time t=0is equal to the step in
phase) we can solve for the constant ¢, and obtain

0, (1)=Age VPP KeKi Ko 2-14

By taking the limit as #—> oo, for Equation 2-14, the steady-state
response is computed as limjt{AHe_‘[ﬁK“K‘ Kot }= 0. This indicates that the

oo

first order phase-locked loop will completely adjust the VCO’s phase to
compensate for an input phase offset. The steady-state error is zero.
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Case II. 8(t) =27 f, ¢t This signal input to a phase-locked loop is
equivalent to a constant frequency.

d
(Recall radian frequency = ;;{2n fit}=2mnf,). With this signal,

the input has a constant frequency offset from the initial frequency of the
VCO. In a communications receiver, this would correspond to the receiver’s
local oscillator not being centered at the correct frequency. However, if the
PLL is able, it will reduce the initial frequency difference. For this input,
g’(t) =27 f,, and the solution of Equation 2-10 is

0.(t)= e'ﬁK“K‘K"’J‘{eﬁKJK‘K"’anA }dt+ce'ﬁ"“<f"°' 2-15
Gc(t)=_2an— +ce{2—PK”K'K"' 2-16

J2PK,K K,

With 8(¢) =27 /, ¢, at time t=0, the initial error, 8,(0) = 0. This initial
condition allows us to solve for the constant ¢, and we obtain

2chA zan e_mxdl(fl(nt

_ 217
J2PK,K.K, 2PK,K,K,

0.(t) =

We are interested in the steady-state error, after the loop has attempted
correcting this changing phase input. By taking the limit as ¢ — oo, for
Equation  2-17, the steady-state response is computed as

2nf, B 2nf,
J2PK KK, 2PK KK,

state response is computed as

limit

f—yoo

_2PKgK Kyt L
e o } The limit, or steady-

2
lim 6, () = - o 218
e 2PK,K, K,

Equation 2-18 indicates that the first-order phase-locked loop will have a
constant error when the input phase is constantly increasing. (Note that our
analysis so far is only for a first-order phase-locked loop that has
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F(s)=K,.) If the phase-locked loop has a large DC gain corresponding to
the product 42 PK, K, K, , then the steady-state phase error may be small

and acceptable. The magnitude of the error may be reduced by increasing
the gain factor K, or the input signal power, P.

Case III. 0(t)=21'c j'"At2 This signal corresponds to a constant

accelerating phase input. With respect to frequency, the input frequency is a
linear function (frequency ramp), and with respect to phase, it is a parabolic
ramp. This type of input occurs frequently with communications or GPS
receivers [5]. In the communications literature this is termed a Doppler input
because it generally is created by a moving transmitter or receiver [9]. With

0'(t) =4nf w1, we substitute into Equation 2-12,
0.(t)= e‘ﬁ’(“"'”“'feﬁ"““ “otanf, tde+ ce VPPKKiKot 2-19

Since 9(!) is a function of time, and 8(0) =0, it is reasonable to assume
0.(0)=0. As before, it allows us to solve for the constant c. The phase
error can then be written as

~4nf, . 4nf,t

6.(1)=
(2Pk,x,k,] 2PK,KK, 2o
+ 47TfA n_-mKdKfKat

(V2PK, K, K,

Note that with the frequency ramp input, the phase-locked loop has an
increasing phase error, indicated by the second right-hand term of Equation
2-20. This is not necessarily unacceptable, because the requirements of the
phase-locked loop may have an accelerating input for only a short time
duration. In such a situation, the error of Equation 2-20 might not cause loss
of lock or degradation of the phase-locked loop’s system. However, if the
Doppler input lasts for several seconds as with the space shuttle
communications [15], then the error is unacceptable and second-order or
third-order phase-locked loops are required. Regardless, in Equation 2-20,
we can reduce the initial magnitude of the error by increasing the signal

power, JZP , or loop gain factor, K,K; K, .
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These three signal inputs are important considerations for phase-locked
loop design. We will discuss the second order loop responses later.

Figure 2.3 graphs the error responses, 8, (), for the three different inputs.

In Equations 2-14, 2-17, and 2-20, the error function is exponentially
affected by the amplitude, JZ_P , of the received signal, s(t). When actually
implementing a PLL, the designer must control the input amplitude.
Otherwise, the varying amplitude value will change the time response of the
system.

8t
0 . Frequency Ramp
UJ o
o
o
*
g7

Phase St

5 o /e ep Frequency Step
0

Figure 2.3 First Order Loop Responses for Different Phase Inputs

This is a particular problem with communication receivers. Often a
limiter is placed ahead of the phase detector or an Automatic Gain Control
(AGC) circuit (or algorithm) is used to control the amplitude [6]. Both
solutions have limitations and can affect the designed PLL performance.

2.2 Frequency Domain Analysis of Phase-Locked Loops

Reconsider the simple phase-locked loop of Figure 2.2. In Case II and
Case III above, we noted that improvements must be made to the loop filter
to accommodate frequency steps and ramps, which are characteristic of
received signals. As an example, suppose we design a filter with impulse

function h(t)=25(t)+—1-u(t). To obtain a differential equation for the
a a

phase-locked loop’s output, we must perform continuous-time convolutions,
because the different time functions in Figure 2.2 are cascaded in series.
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After performing the convolutions we then must solve a difficult differential
equation to obtain the equivalent of Equation 2-12, although solutions do
exist for a limited number of higher order differential equations [16].

To simplify the analysis of higher order phase-locked loops, we make use
of Transform Theory. For the analog phase-locked loops we will utilize the
Laplace transform and later for the digital phase-locked loops, we will use
the Z-Transform. The transforms are convenient because they eliminate the
troublesome convolutions and the difficult differential equations. For the
analysis of phase-locked loops, there are seven fundamental properties of the
Laplace transform: [2-4]

F(s)= I f(t)e™ dt Forward Transform 2-21
1 a+t jeo

f@)=— J. F(s)e' ds Inverse Transform 2-22
j2m ;..

d . -

E f@®)e sF(s)- £(0) Differentiation Theorem  2-23

ot "

| f [ fle)dndr,--dt, & m Integration Theorem 224

00 0 s

F(s)G(s) > f(z)* g(t) Convolution Theorem 2-25

Lim{f(t)}= Lim{sF(s)} Initial Value Theorem  2-26

t—0 sy

Lim{f(@)}= Lim{sF(s)} Final Value Theorem 2-27

t—yoo 50

Equation 2-21 is the forward transform, which defines how to convert a
time-domain function to an s-domain function. The definition is rarely used
in practice, as Laplace transform tables [2-4] (and Appendix A) provide
conversions for all but the most unusual time-domain functions. As we will
see in subsequent analysis, the Laplace transform of a phase-locked loop
usually results in a polynomial equation. Because the equations are in
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convenient polynomial form, roots of the equations can be easily computed.
This reduces the difficulty of obtaining the inverse transform. The inverse
transform is defined in Equation 2-22, but is rarely used, as tables and root
techniques allow the computation of most functions. (In Equation 2-22, the
integral limits assume ¢« is within the region of convergence for the Laplace
transform [2].)

The differentiation theorem expressed in Equation 2-23 will be used
frequently to include initial conditions of a phase-locked loop into its transfer
function. If the initial condition is zero, then the last term of Equation 2-23
is zero, and not necessary. The integration theorem, Equation 2-24, is useful
in computing the Laplace transforms of the different types of phase inputs.

The main reason for using Laplace transforms in phase-locked loop
analysis is shown in Equation 2-25. Instead of the difficult convolution of

time-domain functions such as the VCO’s J. c(t)dt and the loop filter’s h(t),

the Laplace equivalents of 1/s and H(s) can be simply multiplied together.
Polynomial multiplication provides the cascaded response of complex loop
configurations.

Earlier, we found it necessary to find the steady-state response of the
phase-locked loop with a specified signal input. Equation 2-27 allows the
computation of the steady-state response in the Laplace domain. This is
useful, because it allows the steady-state response to be computed without an
inverse transformation to the time-domain. The initial value theorem,
Equation 2-26 provides similar utility in computing the initial condition of a
phase-locked loop.

2.3 Partial Fraction Expansion

Generally in the analysis or design of phase-locked loops, the Laplace
transform tables of [2-4] and Appendix A are sufficient if a partial fraction
expansion of the transfer function is performed. The concept behind partial
fraction expansion is to express the transfer function as a sum of fractions
with a simple pole in each denominator. When this is done, the individual
terms can use simple transforms such as,

x
st+a

o ye ! 2-28
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If all of the poles of a transfer function are simple (not repeated), the
transfer function can be written as [4]

N(s) N(s)
F(s)= = 2-29
=0 Tralra) G
With partial fraction expansion, Equation 2-29 can be written as
F(S)= Ksl Ks?. + .. Ksn 2_30

s+a) (s+a,) (s+a,)

The coefficients for the individual fractions in Equation 2-30 are obtained
by multiplying the complete transfer function by the denominator’s

(s+a,,)and evaluating the resulting expression at s=-¢,. To

n

demonstrate, [4]

K, = (s+al)%és—) 2-31

s) s==q,

n

The other numerators of Equation 2-30 are obtained through similar
computations. Equation 2-30 is also used to find the coefficients for roots
which appear as conjugate pairs. Example 2.1 shows the partial fraction
expansion of a transfer function with conjugate pairs.

The more difficult partial fraction expansion occurs when the transfer
function of Equation 2-29 contains poles that are repeated. As an example,
consider

o M) _
F(s) Gra) 2-32

The partial expansion of Equation 2-32 is performed as

K Ko
(s+a) (s+a) (s+a)

K

2, n,o

F(s)z

2-33
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Note in Equation 2-33, a single repeated root results in n terms. The
numerators are not obtained through the same expression as the simple poles,
but a different set of computations, [4]

K, ={s+a) F(s)}_, )34
K,, = —is{(s +a) F(sq 2-35
prs = : {s+ayF (s)‘ 2-36

2 1ds? .

Example 2.1

Using partial fraction expansion, find the inverse Laplace Transform of

_3_ 102
s+9s° s* +10°

F(s)=

2-38

From Equations 2-30 and 2-33, the partial fraction expansion of Equation
2-38 is expected to be of the form,

K K K . K
F(s)— 2y 0l 02, 0 g
+9 s s s+j10 s—j10

+510

2-39

The first numerator, K_, corresponds to the pole at s=-9. Using Equation
2-31, we compute

- 2-40
s+9s% 57 +10° 543

? 100
- {(s+9) £ U } _ 100
9
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The next two coefficients, K,; and K, are obtained from Equations 2-
34 and 2-35.

9 3 102
K . =1s* - =3 2-41
02 {s s+9s’ s2+102}5=0

K, = ——L_ {sz °0_3_10 - 2-42
YQ-NdsT U s+9s5' s +10%)| 3

Although the complex pair poles are computed in the same manner as
K_,, we have saved them for last because of their complex nature.

. 9 3 10 10 27 . 243
K—j10={(s+]10) } =T A 5N
s=—-;10

POA : = 2-43
§+9s” s+ j10s-j10 362 3620
1 1 24
K, 0= {(s—le) ’ i2 0 0 } =—27 +j—3 2-44
s+9s" s+j10s=-j10) _ 362 " 3620

Substituting the coefficients into the partial fraction expansion equation,
Equation 2-39,

100 1 27 243 27 v 243
F(s)=-343 3,3 . 362 "3620 362 3620 545
s+9 s s s+j10 s—j10

Because Equation 2-45 is composed completely of simple poles,
transform tables can be used to compute the inverse Laplace transform.
1 1
From Appendix A, using the transforms, =< u(f), — &1, and
s s
1

-at

e ,
sS+a
100 ,, 1 (27 ,243) _jtos (27 _243) ey
H=——e == +314| = - j—— H=—tj—e
=53¢ 3 362 7 3620)°¢ 362 7 3620
2.46

Noting the complex exponentials, this can be simplified,
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100 _ 27(1 10¢]1 -9 Sin[10¢
f(t)=Le 9'~l+3t+ (10 Cosf107] - 9 Sinf101))
543 3 1810

2-47

The disadvantage of Transform theory is that it hides the subtleties of
time-domain operation and performance. This is particularly true for digital
control loops where a time delay is a fundamental processing element. In
this text we will use Transform theory where it is helpful, but we will always
stress the importance of the time domain representation.

In Figure 2.4, the phase-locked loop of Figure 2.2 has been represented in
the Laplace domain. Instead of representing the various elements and signal
positions in the time-domain, everything has been converted to the s-domain.
It is functionally equivalent to the time-domain phase-locked loop
representation of Figure 2.2.

——»

Voltage Controlled Osciilator (VCO)

Figure 2.4 Block Diagram of Typical Phase-Locked Loop

In Figure 2.4, we have included separate gains K, and K, for the VCO
and phase detector. (One VCO might have a response of 100 MHz/Volt, but
another might have 10 Hz/Volt.) Similar to Lindsey and Chie’s analysis of
digital phase-locked loops [7], we have included a gain corresponding to the
input level. Most analog phase detectors are actually multiplicative, and the
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output of the phase detector will be a function of the input level. For this
reason, we have /2 P assigned as a gain within the loop.

There are many phase detectors that do not have a /2 P scalar for the

output. The popular sequential phase detector discussed in Chapter 6 does
not have this scalar. The optical phase detectors presented in Chapter 12

typically include the optical light power within the computation of K, and

the additional scalar is not used. In most of our presentations, we will
include the scalar, but the reader should be alert for applications where the

power is either included in the phase detector gain, or the /2P is
effectively unity.

In Figure 2.4, we have used the Laplace transform equivalents of
Figure 2.2. Inparticular, f( )dt <> 1/s is the transformation for the voltage

controlled oscillator. Similarly, we have used the Laplace transform F(s) for
the loop filter as well.

Due to the advantages of the Laplace transform previously discussed, we
can express the s-domain transfer functions of Figure 2.4. H(s) is the transfer
function most common in the literature. Using the Laplace Transform, the
closed loop transfer function of Figure 2.4 is written as

0,66)_ 7 P, () >

H"(S)Ee,»(S)_H 2 PK,K,F(s)

Note the subscript on H,(s). The “0” subscript refers to the transfer
functionusing 8, (s) as the output, not the open loop transfer function which

will be discussed later. To compute Equation 2-48, traditional control loop
analysis with negative feedback is performed,

Forward Gain . ,
H (s)= [2-4]. The forward gain is the gain from the

1+ Total Loop Gain
input to the output, in this case, 8, (s). In Figure 2.4, the forward gain is
2PK_ K, F(s)

computed by inspection as . The total loop gain is the gain
s

from the input to the output, which for H,(s),is the same as the forward
gain. Some phase-locked loop configurations might have several feedback
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points, in which case an analysis technique such as Mason’s Rule [2-4]
allows the loop transfer function to be readily computed.

Instead of 8, (s), sometimes the error signal, @, (s), is often of interest.
The magnitude of €,(s) is an indication of how well the PLL is dynamically

tracking the input signal, 6,(s). In this case, Forward Gain = /2PK_,

, 2PK,K,F(s) .
and the Total Loop Gain = . This definition of H, (s)
s

may differ with other definitions in the literature. The definition above
includes the gain of the phase detector and the amplitude of the input signal,
exactly what would be measured in a real implementation. Often this is
neglected, and H, (s) is written without gain terms in the numerator. The

transfer function for €,(s) as the output is

H,(s)= 0.(s)____J2PKus 2-49

6.(s) s+2PK,K,F(s)

The reader is cautioned to note the presence of the s-variable in the
numerator of Equation 2-49 and not in Equation 2-48. Dropping this term
presents difficulties when computing the error responses to different inputs.

2.4 First Order Loop Responses

The simple first-order loop of Figure 2.2 has a filter, f (t) =F (s) =K,.
Substituting this first-order filter into Equation 2-48 yields

J2PK K K,
H (s)= 2-50
s+2PK KK,

In Equation 2-50, the gain of the phase-locked loop, /2PK, K, K ,,is

the dominant characteristic of the loop transfer function. For a first-order
PLL, the only variable available to the designer is the loop gain,
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2PK,K,K,. The error transfer function, H,(s) for the first order loop

18

H ( ) 2PK,;s 551
e SI= -
s+2PK, KK,
The error output, 6,(s), is obtained from H, (s) by
6.(s)=0,(s)H,(s) 2-52

Using Equation 2-52, we can recompute the three signal cases previously
computed for the first order loop. We will compute all of these cases with
the Laplace Transform technique and compare them to the solutions we
obtained from the differential equations.

Case I. 8(t) = A6, where A@ is constant. The Laplace transform of

AO
this input is 8,(s) =——. From Equations 2-51 and 2-52,
A

J2PK s
8,(s) =22 : 2-53
s s+42PK K,K.

The inverse Laplace transform of 6,(s), using Equation 2-22, or
transform tables in Appendix A, yields

0,(t)=J2PK, MG VR KK (1) 2-54

This matches our result in Equation 2-14, which we obtained through
direct solution of the differential equation. (Note that we have included the
gain of the phase detector and input amplitude in Equation 2-54.)
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Case I1. 0(t) =2mf,1 The Laplace transform of 8(?) is 6,(s) =—2 f
5’

Again using Equations 2-51 and 2-52, and performing the inverse Laplace
transform of @,(s),

Qe(t)—‘-' \2PK,2nf, {l_e—‘/ﬁkokdl(lr}l(t> 9.55
2PK,K,K,

This agrees with the previous result of Equation 2-17.

. 27
Case II1. 0(t)= 27 ft* The Laplace transform of 8(¢) is 2 3f
s

Again using Equations 2-51 and 2-52, and performing the inverse Laplace
transform of &,(s),

2PK 2400 L e gk, e PRl
( PK,K,K, )

2-56
This matches the result of Equation 2-20.

2.5 Definition of Loop Order

Recall the form of the phase-locked loop’s transfer function,
2PK K, F
Ho(s)se"(s): K. F(s)
6.(s) s+ 2PK,K,F(s)
the highest order of s in the denominator of the loop transfer function. For

the first order loop, corresponding to Equation 2-50, the highest order of s is
one. In the next section, we will study second order loops which have a term
s® in the numerator. As the phase-locked loop’s order is increased, it tends
to compensate for an instantaneous change in the next higher derivative of
the input [12].

. The order of the PLL is defined as

The type of the loop refers to the number of perfect integrators in the
loop. A PLL has an implicit perfect integrator with the VCO, so the first
order loop is a first order, type 1, loop. A filter, F(s), with a perfect
integrator would yield a type 2 loop.
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2.6 Second Order Phase-Locked Loops

The first order loop analysis for the three different inputs suggests a
general equation for the loop filter,

-1

f@)=c6@)+c +cyt +-+c, 1" 2.57

The variable n, represents the desired order of the phase-locked loop.
Jaffe and Rechtin [17] investigated the optimum loop filters for phase-locked
loops for different inputs to the phase-locked loop. Their approach is similar
to Weiner filter theory, and for a frequency step input, the optimum filter is
found to have the form of the active lead-lag filter discussed below.

The first order loop failed with an input response @(t) =at, so to
provide a matched response to this particular input, we would like a term
corresponding to at. From Equation 2-57, a second order loop requires a
loop filter of the form f(¢)=c,8(t)+c,. The Laplace Transform of this
filter is

F(s)=c, +£‘L _G7GS 2-58
s s

With the appropriate substitutions, this filter can be rewritten in the form

F(s)= 2028 2-59
7,8

Three traditional filters for a second order loop are shown in Figure 2.5.
Note the active loop filter is identical to Equation 2-59, where we attempted
to match the filter’s response to the phase input. Any of the filters yields a
second order loop, although the active lead-lag filter provides superior
performance.

The second order control loop is distinguished by the appearance of a
second-degree polynomial in the denominator of Equation 2-48. However,
specifying the denominator does not uniquely determine performance,
because only the active lead-lag filter in Figure 2.5 will produce a type-2
loop. (The other filters do not have perfect integrators.)
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Lowpass Filter Passive Lead-Lag Filter

R R
x(t) ! v x(t) ! y(t)
1 1+7,8
| F(s)= I )
c 1+7,5 . Fs) 1+7,s
2
$ Tl_RlC le(R1+R2)C
@ c 7,=R,C
Active Lead-Lag Filter
Rz C
Ry F(s)= M
X(t) (t) 7.8
y 7,=RC
7,=R,C

Figure 2.5 Analog Loop Filters [11]

In the first edition, we did not provide the responses for the second order
loops with the passive filters, because we felt most current PLL design was
being performed with the active filters. However, most low-power designs,
especially those with charge pumps are using the passive filters.

We also encountered a modem design where an initial acquisition
transient would generate a bias error that remained in the active filter’s
perfect integrator. Because of the interaction between the carrier and symbol
tracking loops, the carrier loop would adjust out the error so that there was
no opportunity to remove the bias that had accumulated in the symbol
tracking loop’s filter. However, the bias remained and caused the modem to
eventually lose symbol tracking because the timing bias marched the symbol
timing right out of lock.

The solution to this particular problem was the passive lead-lag filter of
Figure 2.5. The imperfect integrators of the passive lowpass and lead-lag can
help in applications just described.
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2.6.1 Lowpass Filter Transfer Equations

Substituting the lowpass filter of Figure 2.5 into Equation 2-48 gives a
second order, type 1 phase-locked loop,

J2PK K,
1+z'l B 2PK K,

2PK K, 1 s’7, +5+.J2PK K,
I+7,s

H 0,Lowpass (S) - 2-60

This is rewritten in the form of traditional control loop analysis [2-4] as

2
w

H L\s)= 2 2-61
O,L()wpam( ) sz +2;Wn s+ W:

2PK K
Where ‘,v'l = —__D_d é‘ :_I_L
T, 2t w

n

The coefficients w, (loop natural frequency) and ¢ (damping factor) in

Equation 2-61 will be discussed in Chapter 3, but note that the loop response
is a function of the input power to the loop. Substituting the loop filter’s

function, F (s)= (‘z‘1 s+1)_1, into Equation 2-49, and using the variables
defined in Equation 2-61, provides the error response function,

(s)= \/—_K(s+2Cws)

sP+2f w s+ w’

H

2-62

¢,Lowpass

The filter's parameters may be computed from the following relationships.
=2PK, K, ¢) 263
w,=\2PK,K,[{ 2-64
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2.6.2 Passive Lead-Lag Filter Transfer Functions

Substituting the passive lead-lag filter of Figure 2.5 into Equation 2-48
yields a second order, type 1 phase-locked loop,

He ) s\2PK,K,7,+,2PK,K,
Pt + s+ 2PK K, 7, )+ 2 PK, K,

To write this transfer function in the normalized servo-mechanism form,
we make the substitutions

2-65

w, ={\2PK,K, [z, , §:1+‘/ﬁK"K"TZ 2-66
2J2PK K, 7,

Substituting Equation 2-66 into Equation 2-65, we obtain,

T,0 s+0!

HO,Passive (S) = 2-67

s’+2{w, s+w}

Using the definitions of Equation (2-66), we can write the error response
of a loop using the lead-lag passive filter as

st /K, +sw? /K,

H 8] = 2-68
e,Passzve( ) S2 + 24‘0,, S+a):
The filter’s parameters may be computed from:
1/2P K, K
7, ="1——2%2*< 2-69
a)n
2 2PK, K, -1
. (2P K, K, 270

2PK, K,
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2.6.3 Active Lead-Lag Filter Transfer Functions

7,5+1
Substituting the active lead-lag filter, F(s)=—2——into Equation 2-48
|8
yields a second order, type 2 loop,

2PK0KdTZS+1
( )_ (20 _ 2PK0K(1(Z'2S+1)
O,active -

1" > 2-71
S+ 2PK0KdTZS TIS + ZPKOKd(Tzs'f‘I)
7,8

Again, we rewrite the transfer function in the form of traditional control
loop analysis [2-4],

(s) = 28w, s+w!
o,active )— s2 + zérw" S+ W,f

[ PK K 2PK, K T,w
Wherewn: \/Z_—Tlr;d: \/—ull é‘z 2°"n

R.C ) 5

2-72

To help in the design of the physical loop filter, the loop filter
coefficients are solved in terms of the servomechanism literature as

2PK, K
— 2¢
=% 2-74

n

The second order active filter of Figure 2.5 is designed by first
determining the necessary values of 7, and 7,. Then the relationships
7,=R C and 7, =R,C are used to specify the resistor and capacitor
values.
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Note that there are three components and only two equations. This
allows the independent selection of a convenient value for the capacitor, C,
and then computing the values of R, and R, that satisfy the requirements of
7, and 7,.

The error response for the loop with the active filter is computed as

J2PK,s?
2-75

sP+2{w, s+w’

He,Acnve (S) =

Although Equation 2-75 is similar to Equation 2-67, we caution that the
definitions of the normalized loop ({ ,a),,)parameters are defined
differently!

These two error responses may differ from other literature, because we
have included the gains associated with the phase detector, which is
sometimes not included. Our reasoning is that any laboratory measurement

will include these gains, because the measurement will be at the output of the
phase detector.

The form of H, ,.,. (s) in Equation 2-75 is informative. Suppose that

we wanted the denominator of H, ,.. (s) to have a Butterworth response.

The second order Butterworth filter has a prototype transfer function of the
form [§]

F(p)=(p2+\/5p+1)_1 2-76

This is the normalized form of a Butterworth filter, corresponding to a
cutoff frequency of 1 rad/sec. To design a filter with 3-dB roll-off frequency

of w_, (instead of the prototype’s 1 rad/sec) the substitution p = s/w, is

made to Equation 2-76. This converts the filter to the desired cutoff
frequency. With the substitution, the filter’s transfer function is

s? s B w?
F(s)=| —=+2=2-+1] = n 2-77
() (Wf w, ] s 442w s+ w’
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Compare H,, Lowpass (s) (Equation 2-61) or H  , .., (s) (Equation 2-72) to
the Butterworth filter transfer function in Equation 2-77. If é’ =1/ \/—2—,
H g 1 upass (S) is exactly a Butterworth filter response. If { =1/ \/5 , the
denominator of H, ..., (s) has the form of a Butterworth filter. The

different parameters of the filters will be discussed in a later chapter, but the

value ¢ =1/ V2 yields excellent performance, and is used in many PLL
designs.

Equations 2-61, 2-67, and 2-72 suggest the phase-locked loop can be
considered a bandpass filter centered at the nominal frequency of the VCO.
The filtering characteristics of the PLL are the lowpass characteristics of the
loop’s transfer function. This is illustrated by Figure 2.6 which shows the
closed loop responses for different loop damping factors, ¢ of the second

order active filter loop.

5
S 25 L+ — (=05
& == £ =20
& 0 —{ il -
=<
[o4] &
% & € =1.4147 \\ P
S 75 H )E\ NN
€ \, N
g -0 C =0707TNES 5
S 125 S
N
1 0.2 0.5 0

Normalized Frequency (w/w,,)
Figure 2.6 Closed Loop Responses of the Second-Order Phase-Locked Loops

Note how the closed loop response resembles a traditional lowpass filter.
The peaking of the more responsive loops { <1, may sometimes cause

problems in meeting phase noise requirements or spectral containment.
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Using Equation 2-75, we re-compute the three signal cases for the active
filter, second order loop. The responses will be summarized at the end.

Case I. 8(r) = AG, where Afis constant. The Laplace transform of
this input is 8, (s)= A@/s. From Equations 2-52 and 2-75,

A8 |2PK,s’

s s7+20w s+w

8,(s) 278
The inverse Laplace transform of 8,(s), using Equation 2-22, or the
transform tables of Appendix A, yields

6,(t)=A8Y2PK e £(t) 2-79

z(t) =[cos(w",/1— §2t)—\/Tf—Fsin(wn1/1— fzt) ¢ <1
(

2(t) :(cosh(wﬂ/{f2 —It)— —4‘——sinh(wﬂf§‘2 —lt) ¢>1

These results are not too difficult to derive. A partial fraction expansion of

the error response is first performed. After taking the inverse transform of

the two parts, substitutions can be performed to obtain the same form as

Equations 2-79. The Laplace Final Value Theorem, Equation 2-27 can be

used to obtain the limiting condition of Equation 2-79.
A8 2PK,s’

mi0 =1 I =0 =
{4_1)21{ ()} I;L’Zf d s sP+2fw s+w’

Observe the second order loop with the active loop filter has a steady-
state error response of zero for an input phase step.
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Case II. O(t)=2mf,t The Laplace transform of 6(t) is
6, (s) =2nf, / s* . The s-domain response to this frequency step input is
2 J2PK,s*
6,(s)= 2L ‘ 2-81

st st 28w, s+ w!

Again using Equations 2-52 and 2-75, then performing the inverse
Laplace transform of &,(s),

Be(t)=gnf—Ae'{w"' Sm(w"“l_;zt) , <1 2-82

W 1-¢°

Ge(t)=2—nf-A—e_w"'w t L, ¢=1

n

w,
2-83
: [#2
ge (t): 2an e_{Wn’ Smh(wn { —lt) , ; >1
W, £ -1

The steady state response to the frequency step (phase ramp) is obtained
from the final value theorem and Equation 2-75,

J2PK,s?
{szan Kys }=0 2-84

Lim{6, ()} = Lim

2
t—eoo 5§20

st st+2w s+w

This is the advantage of using the active filter configuration for the loop
filter. Recall the first order loop had a steady-state frequency error for a
frequency step. The other filters of Figure 2.5 will also exhibit a steady-state
error, although they technically form a second-order phase-locked loop.

2nf

Case I11. H(Z) =27 ft* The Laplace transform is 0, (s) =2———. The
s

Laplace domain response to this frequency ramp input (constantly increasing
frequency) is

i 2PK,s’
6.(s)=2 2% _ ad 2-85
s st +20w,s+w,
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Again using Equations 2-52 and 2-75; then performing the inverse
Laplace transform of 6,(s),

0,(t)=2x2nf /w2 —2x2nf/wke ™ z(r) 2-86

2(t)= cos(w",/l—Czt)+T§;2_—sin(wﬂ/1—§2t) <1 2-87

Z(t) = COSh(W,, \[éT—ll)+ £ sinh(w" \/mt) O >1 2-88

The steady-state response to the frequency ramp is obtained from the
Final Value Theorem and Equation 2-75,

Lim{0,()} = Lim

{—yo0 s—0 3

P st 42w, s+w?

' 2PK ,s” onf.2PK
{Szznf ds } ’ f d 4 g9
w

n

This is a limitation of the second-order loop. A constantly increasing
frequency input can soon develop a significant error in the loop’s output.
This is particularly true for loops with small w,. The three loop responses
for the active second order loop are shown in Figure 2.7 through 2.12.
Because the damping factor, ¢, is an independent design parameter, the
responses are shown for different values of & .
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Figure 2.7 Phase Step Response of Second Order Active Filter Loop
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Figure 2.8 Phase Step Response of Second Order Active Filter Loop (Magnified)
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Figure 2.9 Frequency Step Response of Second Order Active Filter Loop
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Figure 2.10 Frequency Step Response of Second Order Active Filter Loop (Magnified)



42 Chapter 2

0.(t)

A |w?

§I=(.5

ey ——
1
038
=10 //
0.6 4_20 /
04 ; v ///
=5.0

02 x //

2 4 6

6,(r)
Aa‘)/w:
| {=¢5 T [
¢ =0707 W — |
) )
§=10é //
0.6 = /
;=2.0‘\/ //
0.4 4 —
{=50 ]
. \%% L —T |
. —
05 1 1.5 2 2.5 3 35

Figure 2.11 Frequency Ramp Response of Second Order Active Filter Loop

Figure 2.12 Frequency Ramp Response of Second Order Active Filter Loop (Magnified)
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Example 2.2

Design a PLL. Compute the necessary filter coefficients for an active
second order filter with the following parameters and specifications:

VCO: K, = 10 Hz/Volt, Phase Detector: Kd = 1/2 Volt/Radian, Input
Power: 0 dBm (1mW), Natural Frequency (Specified) 3 Hz, Damping Factor
(Specified) 0.707

To obtain the coefficients for our loop filter, we use Equation 2-74,

. 28 2x0707
*w o 3x2xm 2-90
=0.075015.

To obtain the value of 7,,we substitute into Equation 2-73,

2PK,K, +2x50x107°10x2x7mx0.5
T, = =

1 2

% (3x2xm)’ 291

=0.0280

It is important to note that our equations for 7;and 7, require all of the
units to be in radians. Usually, PLL specifications are given in units of Hz,
which requires a conversion to radians, as shown in Equations 2-90 and 2-91.

Also note that P =107 x50 because the units dBm imply a 50 ohm load
resistance. The loop filter can now be written as

1+0.075015s
(5= LH 0073083

2-92
0.028 s
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Using the closed loop transfer function for the second order active filter,
Equation 2-67, we obtain

(5)= 2{w,stw, _ 2x0.707%(3x 2x7)xs+ (3x 2x7)’
’ sP+20w,s+w) 57 +2¢0.707x (3x 2x ) xs+ (3x 2x T0)°
_ 26.53s+355.306
s +26.53s +355.306

2-93

The error response is computed using Equation 2-68,

H(s)= 2PK,;s* J2x50x 107 x0.55

T2 42ws w57+ 2x0.707x (3x 2xm)xs+ (3x 2 x 1)’ 294

B 0.158114s*
s? +26.53 5+355.306
This analog loop will be used for comparison to the digital loops that we

will derive later in the text. For completeness, the error response to a phase
step input is shown in Figure 2.13. From the normalized plot of Figure 2.8,

the peak undershoot should occur at @, ¢ =2.2, or 1=2.2[w, . For this

: 2.2
example, w, =3 Hz= 6T radiang ,and then t == =0.117. Note the
n sec 6T

agreement with Figure 2.13, which demonstrates how the graphs of Figures
2.7-2.12 are used in the design and analysis of phase-locked loops.

Yy

o 0.8
(=]
ot
5 0.6
>
§ 0.4
W 0.2
0.1 0.3 0.4 0.5
-0.2
Time (sec)

Figure 2.13 Example 2.1’s Loop Response to a Phase Step
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2.6.4 Time Response of the Second Order Loop With the Lowpass
Filter

Using Mathematica™, we obtained the following time responses for
Equation 2-62.

Casel. 6(t) = AG, where A@ is constant.

~ 2PK,,Ae"f‘”~(§2—1) il
68(t)—{xC0sh(ta)n1/§2 )+§Smhta) }/5 e

CaseIl. 6(t) =2mf,t

0, (t)z_l_(\/rpm""’"if*@ )
, -1
2tw, £ -1 _ze'm"[fﬁjﬁ) ) 2-96

6\/5—2_—1_(821%@ _1)(24‘2 -1K, f,

Case II1. 0(t)= 21tf12

_:wn(ﬁhjﬁ]( 52_1_5)/ [—52_1
J2P2n K, f (- z

6,(t)= E+4/E 1)3 297
ot E | [ 252_1(]

2-88%+4téw,

e 1)
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2.6.5 Time Response of the Second Order Loop With the Passive
Lead- Lag Filter

Using Mathematica™, we obtained the following time responses for
Equation 2-68.

Casel. 6(t) = AG, where A@ is constant.

-t o, wnz}\/fz‘—lCosh(ta)n /;2_1)

Aw, 7 e
1 +(1-ow, z'lf)Sinh(ta),, ,/-fz—l)
6,(t)= - 2-98
K, & -1
CaseIl. 6(t) =27f, ¢
”fA e—ttu,,[.fh/ﬁ)
K A& -1
_[lew,, £2-1 _1](5"71 wn)

Case IIL. 6(r) =27 f1*

0,(z)= 27 f [2§+252_1 1+(—§+,/§2—1)rlwn) 2-100
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2.7 Third Order Phase-Locked Loops

2.7.1 Reasons for Designing Third Order Loops

Third order phase-locked loops provide the desirable characteristic of
being able to track an accelerating frequency input. In communications this
occurs frequently when the receiver or transmitter is in motion. As an
example, Figure 2.14 shows a satellite antenna on the mast of a ship. As the
ship rolls with waves, the mast experiences a significant position
displacement. The displacement is sufficient to generate a considerable
frequency ramp. (32 Hz/sec is a common specification for UHF SATCOM
receivers.)

Satellite Antenna
Movement As m
Ship Rolls

Figure 2.14 Doppler Induced by Ship Rolling at Sea

An important class of receivers for the Global Positioning System (GPS)
have significant Doppler induced by the satellites moving with respect to the
receiver [5]. The rate of frequency change is dependent upon the satellite’s
relative position to the receiver.

A non-Doppler reason for using 3rd order phase-locked loops is that the
filter can be used to optimize the phase noise performance of the loop. The
3rd order loop has an additional degree of freedom available to the designer
attempting to optimize the phase noise contributions of different sources in
the phase-locked loop. This will be discussed in Chapter 12.

Yet another advantage of the third order filter is in phase-locked
modulators for Continuous Phase Modulation (CPM) waveforms. For
frequency waveforms more complex than REC, [10] the accelerated phase
during a symbol interval will create tracking errors for second order phase-
locked loops.
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2.7.2 Third Order Loop Filters

With the additional degree of freedom in specifying the loop filter for the
third order system, loop filters have a variety of configurations. Often, it is
desirable to specify the closed loop response have the form of a Butterworth
polynomial. Another possibility is the ITAE response [2]. Stability is a
major concern for third order loops and analysis must be made of the
inherent stability and possible degradation due to component tolerances or

_ . : . K K
quantization. A third order loop with transfer functions of —

s>’ sz(sT1 +1)’
K(s7,+1)

or 3 is inherently unstable [2].
S

Gardner [11] suggests a loop filter of the form

2
F(s) =M 2-101

(s7,)

This filter will yield a third-order, type 3 loop. The filter’s two poles at
zero, along with the VCO’s pole at zero, provides the loop with three perfect
integrators. An advantage of Equation 2-84 is that it can be synthesized by
cascading two second-order active filters. Substituting Equation 2-101 into
the basic PLL equation of 2-48 yields

2
T
2PK K, —Z(sz + s—2—+i2]
T
H (s)= ‘ 2102

Selection of 7, and 7, for a specific design is best accomplished by Root

Locus design (presented in Chapter 3). This permits the closed loop poles to
be placed in a stable position, and the magnitude of the real component will
determine the damping of the closed loop response. The actual pole

positions will be affected by the input signal gain, /2P. If the
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instantaneous gains drops too much, then the resulting phase-locked loop is
unstable.

The error response with a third-order, type 3 loop is

J2PK K, s}
H,(s)= == . 2-103
s’t} +J2PK K, (1+s7,)

Przedpelski [13] suggests a third-order, type-2 filter than can be
synthesized with only a single operation amplifier. The disadvantage is that
it creates a type-2 loop contrasted with the type-3 generated with third-order,
type-3 filter. Przedpelski‘s Laplace transform of the filter is

T,5+1

Fis)=—"—= 2-104
(s 7,5(zy5 +1)
Substitution into the basic PLL equation provides
J2PK K, 7,s+42PK K
H, (s)= 242 0 4 2-105

7,8+ 1,57 +42PK K, T,5+2PK K,

The transfer function for the error response of this type-2 loop is

H.(s) J2PK,7,7,5° +2PK, 1,5’ 5106
e s)= -
7,7,5°+7,5* +[2PK K,T,5 +[2PK K,

The third order, type-3 and third order, type-2 filters are shown in
Figure 2.15. These are implemented with operational amplifiers and are
found in many actual applications. As noted previously, the third order type-
3 is obtained by cascading two of the active filters used for second order
loops.

Note that opening the connection to C, results in the active second order
filter. This suggests that a switch can be placed in series with C,,so that
loop acquisition can be obtained with a second order configuration, and then
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switching to a third order configuration after acquisition. Gardner [11]
writes that switching in additional integrators can cause loss of phase-lock.
The author’s personal experience is that this technique can work, although
each application is different.

Third Order, Type-2 Filter

F(\.): T s5+1
j ‘rl.\‘E].w+1}

\=RC,,=R/(C+C,)
R

Third Order, Type-3 Filter

R, C ([ TsH1 )7, 541
AT Ry Ci_ £6) { Ts )T,
T|:R|(:‘l:r4=R C"

3

1,=R,C =1 ,=R,C,

x(t) Ry

y(t)
‘o)

Figure 2.15 Typical Filters for Third-Order Loops

A different third-order loop response is suggested by Blinchikoff [14]
which has no zeroes in the closed loop response. The filter is

F(s)= K, 2-107

=0
s°+a;s+a,

This configuration yields a transfer function with a Butterworth closed
loop response. Although this type of response is sometimes desirable for
classical control applications, it finds limited applicability for phase-locked
loops. The filter has no perfect integrators, and as a consequence, the
resulting third-order loop is type-1. As will be discussed shortly, the cost of
reducing a third-order loop to a type 2 or type 1 is significantly reduced
Doppler tracking capability.
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A filter for a type-3 loop can be composed from hypothesizing the filter
needs a time response of the form f(t)=c,0(t)+c,+c,z. The

corresponding loop filter is of the form

2
C C C,+C, S+cC,8
F(s)=cy+Lt+-2t=2 10 2-108
0 ) S2 S2

This filter is more applicable for digital filter transformations than used in
analog phase-locked loop. Substitution of this loop filter into the basic PLL
equation gives

2PK0Kd(c2 +c1s+cos2)

H =
O(S) st 2PK0Kd(c2 +c1s+c0szj

2-109

The transfer function for the error response is

J2PK,s’
H,s)= 2-110
5P+ 2PKOI('(,(C2 +cls+c0szj

273 Filtering Reference Pulses

A sequential phase detector is used in most frequency synthesizers. (The
sequential phase detector is discussed in Chapter 9.) Because the outputs
from the phase detector are pulses, there is a significant amount of energy at
the reference frequency applied to the loop filter. The phase-locked loop
designer has to somehow remove these reference pulses or they will appear
as undesired tones on the output of the frequency synthesizer.

Figure 2.16 shows a SIMULINK™ model of a frequency synthesizer.
The synthesizer will phase-lock its output (the 500 kHz VCO) to the 100 kHz
reference signal. Because the VCO’s output frequency is not the same as the
reference, a divide-by-five is used to apply 100 kHz frequencies to the phase
detector.
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Figure 2.16 Model of a Frequency Synthesizer With Reference Feed-through

The phase detector in this example is not a mixer, but a sequential phase
detector and charge pump. These two elements will be discussed later in
Chapter 6, but they perform the basic phase detection of the mixers we have
just discussed. The error voltage from the charge pump is applied to an
analog loop filter which then corrects the VCO’s output frequency and phase.

In the model, we have a reference feed-through path that represents
parasitic coupling between the reference generator and the output of the
charge pump. (This can occur because of power supply coupling or other
mechanisms.)  The reference feed-through will cause an undesired
modulation of the output signal. Figure 2.17 shows the frequency
synthesizer output without feed-through, whereas Figure 2.18 shows the
synthesizer output with reference feed-through.

A common technique to reduce reference feed-through is the additional
filter shown in Figure 2.19. This filter consists of a additional pole, and
when cascaded with a second-order filter, yields a third-order loop.
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Figure 2.17 Frequency Synthesizer Spectrum Without Reference Feed-through

Magritude (98]
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Fraquancy (Hz) = 90°

Figure 2.18 Frequency Synthesizer Spectrum With Reference Feed-through

The mathematical form of this loop is a lowpass function shown in
Equation 2-111. (In a hardware implementation, the designer needs to be
concerned with the impedance interactions between the reference rejection
filter and the actual loop filter, but we neglect that in our considerations.)

1

= 2-111
I+7,s

F (s)
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; Reference Rejection
LOOp Filter Filter

F(s)

Figure 2.19 Reference Rejection Filter

As an example, suppose F(s) in Figure 2.16 is an active second order
filter. Substitution of the filters into Equation 2-48 yields

J2PK, K, 7,5+ 2PK K,
H, = 2-112
Yo, s +1, s +2PK,K,T,5+,J2PK K,

N - T,7,4J2PK, s’ +2PK, 1,5’ o113
ot 1,5 +42PK, K, T,5+2PK, K,

A typical design approach for the reference rejection filter is to design a
second order filter such that the highest pole frequency is a factor of ten
lower than the reference rejection filter’s pole [19].

2.74 Third Order Loop Responses

As with the second-order loops, we evaluate the response of the third-
order loops to the different input stimuli. Of the five third-order loops just
discussed, we will analyze only the type-2 and type-3 filters. The responses
for the other loop filters are left as exercises.

Case 1. 6(t) =A60, where A@ is constant. The Laplace transform of
this input is 8,(s)= AG/s.

Third Order, Type-3
From Equations 2-52 and 2-102,
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A8

—J2PK,s*
6,(s)= ] 2-114
22PK K,7,s +2PK K
s> +4/2PK K s + s o d
7, Tl"

The steady-state time response, obtained from the Final Value Theorem,
is Lim {Qe (t)}= 0. The time response is obtained from the inverse Laplace
t—yoo

Transform of Equation 2-114, but is too lengthy to place in the text.

Third Order, Type-2

Af J2PK,1,7,5° +2PK, 1,5
0.(s)= ——

S T,7,8°+7,s"+2PK K,7,5+2PK K,

As with the type-3 filter, the steady-state time response 1is
Lim{é’e (t)}: 0. The inverse Laplace transform of Equation 2-115 yields the
=y

2-115

time response, but again, the time response is too long to place on the page.

Case II. O()=27f,¢ The Laplace transform of 6(t) is
6 (s)=2nf, /s*.

Third Order, Type-3

2

Ys [2PK, s’

6,(s)= § 2-116
, , 2J2PK, K,t,s +2PK,K,
§°+42PK K, s + +

2 2
T, T

The steady-state time response is Lim{@, (t)} =0.
t—yo0
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Third Order, Type-2

6.(s)= 27f 1/2191((,11136 +2PK,1,s* 17
’ s* 1,7,8°+7,5* +J2PK K, 7,5 ++2PK K,

The steady-state time response for this type-2 loop is Lim{@e (t)} =0.
t—re0

: _ 2 n f
CaseIIL. O(t)=2mft* The Laplace transform is 6,(s)=2 5 / .
s
Third Order, Type-3
22 BPK, s
6,(s)= S 2-118
2.J2PK K,7,5 2PK, K
s’ +42 PK,K;s* + 21y e
Tl Tl

The steady-state time response of this type-3 loop is Lim{Be (t)}= 0.
t—ro0

Third Order, Type-2

zznj N2PK, 7,7,5° +2PK 15" 5119
s 11,8 +7,5* +J2PK,K,T,5+2PK K,

The steady-state time response for this type-2 loop is

Limlo, ()} =20

t—o0
(7]

Note the steady-state response is a function of the

frequency ramp, which means the loop will not be able to maintain phase
coherence if the input’s frequency ramp is changing with time. In such
conditions, this loop is unsuitable for coherent communications.

In subsequent chapters we will expand the analysis of phase-locked loops
with these basic transfer functions.
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2.9 Problems

2.1  Solve y'(t) = y(t)—at.
22 Solve y(t)=by(t)-at’.
23 Solve y"(t) =y(t)- a.

24 Solve y"(t) =y (t)—ay(r).

1 1
2.5 Find the inverse Laplace Transform for F(s)= ( )( ) :
s+a/\s+b

+

1 5
2.6 Find the inverse Laplace Transform for F(s)= ( )( )
s+a/\s+b

2.7 Find the Laplace Transform for f(¢)= at’sin(2nf1).
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For a first order phase-locked loop with;

VCO: Ky = 100 Hz/Volt, Phase Detector: Kd = 1/2 Volt/Radian
Input Power: P=0.01 W, Loop Filter K, = 0.1

Input Phase Step = 1.0 Volts

Find how long it takes for the phase-locked loop error voltage to be
less than 20 wVolts.

Power supply noise is often a problem for phase-locked loops. For
the PLL of Problem 2.8, what is the error response of the phase-
locked loop to a sinusoidal input of 30 mV at 60 Hz?

Derive the error response functions for the second order phase-
locked loop with the passive loop filter.

For a second order active filter phase-locked loop with;

VCO: Ko = 100 Hz/Volt, Phase Detector: Kd = 1/2 Volt/Radian
Input Power: P=0.001 W, Damping Factor, { =0.707
Input Phase Step = 1.0 Volts

Design the loop filter so that the peak error response for a phase step
input occurs at 50 ms. Graph the error response for the designed
loop.

For a second order active filter phase-locked loop with;

VCO: Ky = 100 kHz/Volt, Phase Detector: Kd = | Volt/Radian
Input Power: P=0.001 W, Damping Factor, { =0.50

Design the loop filter so that the steady-state error response for a
frequency ramp with f=200Hz is 12°.

For a second order active filter phase-locked loop with;

VCO: Kg = 100 kHz/Volt, Phase Detector: Kd = 0.5 Volt/Radian
Input Power: P=0.01 W, Damping Factor, { =1.0
Design the loop filter so that the peak error occurs at 100 ms.
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3

Root Locus and Frequency
Analysis

In Chapter 2, we presented the basic configurations for phase-locked
loops. We would like to present the performance and dynamics of phase-
locked loops next, but at this point, we don’t have enough theory to design
the loops. Recall in Chapter 2, we mentioned terms such as damping factors,
and with the third-order loop, unity gain crossover. So before we can discuss
the true performance of phase-locked loops, we need to build expand the
theoretical foundation.

3.1 Root Locus

In Chapter 2, we developed the transfer functions H ,,(S) and H, (s)
H (s) represents the transfer function for the output of the VCO. H, (s) is

the transfer function relative to the output of the phase detector. These
transfer functions permit us to write the outputs of the phase-locked loop as

6,(s)=6,(s)H,(s) 3-1

4

Assuming the input 8,(z), is bounded, (IH, (t) <o ) we are interested in

knowing whether the output, 8,(¢), is also bounded. From linear systems
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theory, a linear system is stable if and only if the integral of the absolute
value of the impulse function is finite [1]. In other words,

oo

[In(e) dt <o 32
0
Recall the Hg(s) for the second order, type-2 loop (the active filter

configuration) is
20w, s+w?

3-3
s$+2¢w, s+w’

H,(s)=

The poles of a transfer function correspond to the roots of the
denominator’s polynomial equation. In other words, for Equation 3-3, the

solutions for s +2¢ w, s+ wi =0. When the denominator has a value of
zero, then the transfer function assumes an infinite value, thus the name

“poles” for these roots. A transfer function’s zero, is the complement to a
pole and is a root of the numerator. For Equation 3-3, these are the solutions

to2¢w, s+w. =0.
The poles for the two terms of Equation 3-3 can be obtained from the

quadratic formula and are s=-w,{tw, ,/( 2 —1. Algebraically, we see

that if { <1, then the poles will be complex numbers, consisting of a real
and imaginary component. There is a single zero for Equation 3-3, which is

w
= —2-2;. These are depicted graphically in Figure 3.1. The pole locations
are denoted with a “x”, and the zero with a “0”. The angle ¥ describes the
damping factor, ¢, and will be discussed shortly.

In Figure 3.1, there are two complex roots which mirror each other across
the real axis. The vector length of these roots is w,, called the loop natural
frequency. The real and imaginary components of the roots are determined
by both the natural frequency, and the damping factor, . If we had graphed
the poles and zeros for the second order loop with the passive lead-lag filter,
(Equation 2-37), the poles would be the same (“X”), but there would be no
Zero.

A partial fraction expansion takes an algebraically complex transform and

+

After this expansion, we
st s+

places it in the form of H (s)=
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can use Laplace Transform tables [2] to obtain the complete time-domain
function. As an example, the partial fraction expansion of Equation 3-3 is

w2 — 2w 2wl -1
H (5)= 1 s+wn§—wnm 34

’ 2wn\/—é'2——1 ¢—wf+2wf§2+2wf§\/?—-l
| s+wn§+wn\/ﬁ

jw

o jwn\h e

05§<1

¥

2
©x + - w7

Figure 3.1 Graphical Representation of Symbols in Equation 3-3

Let’s assume Equation 34 can be written as

_ A A ) )
H"(S)_K[s+a+jﬂ+s+a—jﬁ) 35

A
A simple pole like ———— has a time-domain equivalent of
s+a+jp

A e P If the pole (root of s+a+ jB=0) has a positive real
component, the exponential will increase with time, causing an unbounded

response. The term e’ ' indicates the time response will be oscillatory,
with the frequency established by the imaginary component of the pole, /.
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We will show later that the time response and stability of a phase-locked
loop are opposing values. A phase-locked loop with the damping factor
¢ >1 is much more stable than a loop with { <1. Unfortunately, a loop
with ' >1 can be too sluggish (the loop takes too long to react to an input
change) for some applications, and thus selection of { is a compromise
between stability and time response.

The damping factor, £, also has the graphical interpretation shown in
Figure 3.1. ¥ corresponds to the angle of the pole relative to the real axis
(when the damping factor { <1.0).The exact relationship is

y=cos'({), ¢<1 3-6

As { decreases, the angle i increases. This places the poles closer to
the right-hand plane. The loop stability margin decreases with a decreasing
damping factor.

A stable system must have a bounded response, so it is necessary for the
real component of the poles to be negative, or to reside in the left-hand side
of the s-plane. If the integral of h(t) is to be finite, we must have the real
arguments of the exponentials as positive numbers. If they are negative,
then h(t) is growing with time, which will not meet the criterion for a stable
system.

In general, when evaluating the stability of a closed loop, we are
interested in the denominator of the transfer function H, (s) The reader has

probably already noted that H (s) and H, (s) have the same denominator,
which implies that the same stability test is true for both functions.
Specifically, if the roots of the denominator (values of s for which the
polynomial is zero) are in the left-hand s-plane, then the system is stable. If
the roots are in the right-hand plane, then the system is unstable. A root on
the j w axis yields a marginally stable system.

Equation 3-3 was obtained by substituting the loop filter’s transfer
function into Equation 2-27. Returning to this form, we can write the
denominator of Equation 3-3 as

K 21)1<O1r(dM 3-7
A
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The term in braces represents the forward gain of the phase-locked loop,
beginning at the input to the phase detector, and ending with the VCO’s

output to the phase detector. Note the gain terms /2 P K K, all affect the
polynomial, which consequently changes the roots of the denominator. As
noted previously, in a receiver, /2P is often outside of the control of the
designer or analyst, and can significantly change the response of the phase-
locked loop.

A graphical display of the loop’s sensitivity to gain changes is called a
root locus plot. To generate a root locus plot, we introduce a gain scalar into
Equation 3-7, as shown in Equation 3-8, and compute the pole and zero
locations as the gain scalar, K, is varied.

1+ K{1/2PK” K{f@} 3-8
p

0.8r 4
06F .

0.4F 1
K=0

%02- / / -
E )

F
1]

-2 -1.5 -1 -0.5 0 0.5 1
Real Axis
Figure 3.2 Root Locus Plot for First Order Phase-Locked Loop

K represents a scaling of the nominal gain of the phase-locked loop. If
K<1, that implies the other gain terms of the loop are smaller than their
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nominal or design values. Figure 3-2 shows the root locus plot of the first
order phase-locked loop, corresponding to Equation 2-27. Regardless of the
value of K, the first order loop is unconditionally stable. The single root of
the denominator is always in the left-hand plane. In Figure 3.2, we have

normalized the forward gain of the loop so that 2PK, K,K,=1.

Likewise, we have normalized the forward gain and filter constants for
Equation 2-37, H .m0 (s) and plotted the root locus for the second order

loop with a passive filter in Figure 3.3. As shown in this root locus, the
passive second order loop is also unconditionally stable.

1.5F 8

05- Hed Bl i K=0

————————————

Imag Axis
W
N

0.5+ il
.1[—

-1.5F

35 1 05 o 05
Real Axis

Figure 3.3 Root Locus for Second Order Loop With Passive Filter

Figure 3.4 shows the pole locations for the second order, type-2 phase-
locked loop. At K=0, the two poles begin at s=0, and then follow the
elliptical trajectory shown. At a specific value of K (K=3.4 in this example),
the poles both become real, corresponding to ¢ >1. Because the
exponentials corresponding to Equation 3.5 have real components, the loop
response will not exhibit any sinusoidal behavior. Instead, the loop will have
a slowly decaying error response.
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3.2 Propagation Delays in PLLs

Figure 3.4 is somewhat misleading, because even though the root locus
shows the second order loop is unconditionally stable, physical
implementations of the loop can be unstable. Generally, this is the result of
time delays in the phase-locked loop implementation. The transform pair for

a time delay, 1, is x(t =1, ) €*" X(s).

Although €™ is the mathematically correct expression for a time delay
in a continuous system, many of our analysis tools will fail for such a system
because they are restricted to rational polynomials.

Imag Axis
[=]
[

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10
Real Axis

Figure 3.4 Root Locus for Second Order Loop With Active Filter

3.2.1 Representing Delays With a Lowpass Filter

A reasonable approximation is to model the time delay with a single pole
Butterworth filter. The approximation is
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c 2.3
where ¢ =— 3.9
s+c t,

D(s) =

If D(s) is placed in cascade with the forward transfer function of the second
order loop, the block diagram of the phase-locked loop appears as shown in
Figure 3.5. We note that Equation 3-9 is only an engineering approximation,
but it allows us to perform analysis whereas otherwise it is an intractable
problem.

Phase
Loop
— Detector __ Filter

g 2P 0.(5)
D—v—vl>—> F(s)

Delay
Element

I
I
I
- st
< el —
|
—r

Figure 3.5 Phase-Locked Loop With Delay Element

322 Representing Time Delays With Pade’s Approximation

A better approximation for e * used in control systems is the Pade
approximation. A two-term Pade approximation for the time delay is [10].

_1-7,5/2
1+7,5s/2

—s5Ty

3-10

If the delay element of Equation 3-10 is included with the second order
loop, the extra pole of D(s) in the forward gain results in a third order loop.
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3.2.3 Complications Due to Time Delays

Figure 3.6 shows the root locus of the same loop as in Figure 3.4, but
with a delay element. The delay element now yields an marginally stable
loop, which explains why otherwise well-designed second order loops can be
unstable in real implementations. (Just a small gain increase causes this loop
to become unstable as the poles migrate to the right-hand plane.)

The root locus plots for the two third-order filters discussed in Chapter 2
are shown in Figures 3.7 and 3.8. The actual appearance of the root locus is
dependent upon the position of the poles and how close they are to each
other.
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Figure 3.6 Second Order Root Locus With Time Delay

Unlike the second order loops, the third order loops are not inherently
stable. The poles of the third order loops migrate significantly with the value
of the loop gain. In particular, the third order loop type-3 filter is unstable at
low values of gain. This is indicated by two of the roots at s={0,0}, moving
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in the right hand plane before returning to the left hand plane and stability.
For both filters, two of the roots are complex, and the third root has only a
real component.

This possibility of instability with the third order loop is merely a
nuisance for some applications such as modulators or synthesizers where the
input level can be controlled. (Although algorithm or circuit start-up can be
interesting.) For FM demodulators or bit synchronizers it can be disastrous,
and can exhibit instability. As an example, suppose the automatic gain
control does not respond to a drop in signal level. Because the signal level
corresponds to the loop’s gain, the phase-locked loop could become unstable
as illustrated by Figure 3.7.

\

K=0
» 100} *omcia
E / . _ffb\‘

E.100F B _—7’7--"" / .
K=0
200¢ K=1 .

-200 -150 -100 -50 0
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Figure 3.7 Root Locus of Third Order Loop Type-2 Filter

The design equations for the third order loop need to be deferred a little
while later, until after we examine the frequency response of phase-locked
loops. (We need some results from Bode Analysis in order to formulate the
design equations.)
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There are techniques for generating root locus plots [1]. The simple cases
are easy to describe, but the special cases require lengthy discussion. To
compute the root locus plots of the phase-locked loop, we recommend
consulting Dorf [1], or utilizing a root locus plotting utility such as
Mathematica’s Signals and Systems Pack [3] or MATLAB's Control System
Toolbox [11].

40r

201 K=0

Imag Axis
o
i
A
/
1

-20F \

-60F 1
Kﬁ“““ﬂ—__\_____

-150 -100 -50 0
Real Axis

Figure 3.8 Root Locus of Third Order Loop Type-3 Filter
e e st e e e R e

Example 3.1

Plot the root locus for the second order phase-locked loop of
Example 2.2.

If we add the multiplicative factor K, to the open loop gain for the active
filter, second-order PLL, the symbolic representation of the closed loop
transfer function is

~ 2PKK, K, (1+71,5)
7,52 +2PKK, K (1+7,s)

H (s)

o
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Substituting the various loop components and filter coefficients from
Example 2.2, we obtain

3-12

H (5)= 9.93459K (1+0.0755)
° 0.0285> +9.93459K (1+0.0755)

Using the MATLAB?’s sisotool, we plot the root locus of Equation 3-12 in
Figure 39. For K just greater than zero, the transfer function of
Equation 3-12 has complex poles, and then as the gain is increased to
K=2.01, the poles become real. One pole goes to negative infinity, and the
other pole goes to the zero at s = -13.3.

From a systems perspective, we can think of Figure 3.9 representing the
roots of the phase-locked loop as either the signal, 1/21’ changes amplitude,

or the loop coefficients change due to component tolerances. This design is
unconditionally stable (assuming there are no other delays or filtering). It is
counter-intuitive that as the signal level increases, the loop response could
become sluggish due to the poles becoming real.

Root Locus

151

K=1

w
T

Imag Axis

45 40 35 30 =25 =20 45 40 5 0
Real Axis

Figure 3.9 Root Locus of Example 3.1
fer e R S A s R
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3.3 Frequency Analysis

Frequency domain analysis also provides insight to the stability of phase-
locked loops. (The Laplace transform with § = jw, is actually a frequency
domain analysis.) Although a computer doesn’t particularly care whether it
computes a root locus or Bode analysis, the latter has some advantages.

Laboratory data is typically measured in the frequency domain and if the
design analysis was done in the frequency domain, it aids comparisons
between theoretical and actual performance. Bode analysis also permits
accurate modeling of time delays. Recall with the root locus analysis, the
e "¢ term produced by the pure time delay presents problems in finding the
roots of the characteristic equation. To work around this problem, we
approximated the delay with a lowpass filter. Bode analysis, however,
allows us to exactly represent the time delay.

The closed loop equation for the phase-locked loop is

b (s)= 2PK, K, F(s)/s

= 3-13
1+2PK K, F(s)/s

A singularity (infinite value) of Equation 3-13 occurs when the
characteristic equation, 1++2PK K, F (s)/ 5 =0. To satisfy this condition,

W2PK, K, F(s)/s =1 3-14

Arg 2Pk, K, F(s)/s|=180° 3.15

These two equations define the stability of the phase-locked loop. Note
that with Equations 3-14 and 3-15, we need only evaluate the open loop gain,

2PK K,F (s)/ s for the stability boundary conditions above. This
implies we can graph the magnitude and phase response of the open loop
gain and determine whether the phase-locked loop is stable. For stability, the
magnitude of the open loop gain should be less than unity when the phase of
the open loop gain is 180°.

Figure 3.10 is a linearized Bode plot of the second order phase-locked
loop from Example 2.2. The open loop gain for this example is
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F(s) _ 99400755 +1 316
0.028 s

2PK K,

The important radian frequency of Figure 3.10 is at w = 29.3, where the
open loop gain is unity. The phase angle at w=29.3 is 8 = —114.5°. The
difference between —114.5° and —180° provides a measure of the loop’s
stability. We define the phase margin as

Phase Margin = 180°- Arg[,/z PK K, (,j W)]| ity i 3-17
Jw

Open-Loop Bode Diagram

Magnitude (dB)
N
o

/

G.M.: Inf } ; : _\\““h-—____h
Freq: NaN : —
Stable loop o

-20 L cilredd
-90 P.M.: 65.5 deg : :
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-1805 - — Fuc |
10 10 10

Frequency (rad/sec)

Figure 3.10 Bode Plot

In Figure 3.10, using Equation 3-17, the phase margin is 65.5°, and
shown as the difference between the actual phase angle at unity gain, and the
—180°axis. A gain margin is the corresponding measure of gain stability
when the phase angle is 180°. Although Figure 3.10 does not have a defined
gain margin, we define it as the actual open loop gain (in dB) when the phase

angle is 180°.
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Gain Margin = -20Log[ 2PK K F(JW):I w=180°phaseang,e( B) 3-18
Jw
The general form for the open loop gain is [1]
)
K, []+ jwr,)
G(jw)= =t - 3-19
M R
(jw)NH(l + jwT,, )H 1+— 2 Jw— (l]
el k=1 Wor Wk

The numerator has Q real roots, corresponding to the zeros of the transfer
function. The denominator has N perfect integrators, M real roots
corresponding to the real roots and R complex pairs of roots, which are pole
pairs. The significance of the log function in Equation 3-19, is that we can
replace the product terms in Equation 3-18 with summations as [1]

20Log [G( jw)] = 20Log[]K b |]+ 2?:1 20Log |1 + jwz',.l -20N Log [| jw|]

2, w 2 3-20
—2 20Log |1+ jwz, |—2k 20Log [l+2% jw- {—J
Wi Wai
Similarly, we can write the phase response as a sum of the individual
terms of Equation 3-17,

o(w)= X, tan " [wr ]-N-90°~ 3" tan”[w, ]

|— kW"kW_] 3-21
-y, ngz

"

—W

The simplicity of Equations 3-20 and 3-21 allows an easy calculation of
the gain and phase margins for the phase-locked loop. An exact Bode plot
can be generated with computer analysis, but a graphical approximation of
the two equations provides insight to the loop performance.
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Example 3.2

Suppose we have a third order phase-locked loop with Przedpelski ‘s
filter, yielding an open loop gain of

J—KK nstl 322
(T3s+1)

The specific equation for this example is

Is+1
G(s)=+2P K, K, 0055 ]) 3-23

We write the open loop gain in the form of Equations 3-20 and 3-21.

\[Z_PKO Ka'

1

—40Log||jw|]-20Log |1+ jwr,|

20Log|G(jw) = 20Log +20Log L+ jwr,|

3-24

¢(w)=tan"'[wr, | -180° - tan~'[wr, ] 3-25

The graphical approximation to Equations 3-24 and 3-25 are shown in
Figure 3.11. The magnitude of the open loop gain is first plotted at a

frequency such as w=0.1. (Because of the perfect integrators, the gain at 0

20e N dB
Hz is infinite.} From 0 Hz, the loop gain is decreasing by —0———— In
decade

this example, there are two perfect integrators, which cause the 40 dB per
decade decrease in gain from 0 Hz. (Decade refers to a factor of 10 in
frequency. 0.1 rad/sec to 1 rad/sec corresponds to 1 decade.) The 7,s+1
factor in the numerator, corresponding to the filter’s zero, has a break
frequency corresponding to 7, =1 rad/sec.
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Figure 3.11 Linearized approximation to Exact Bode Analysis
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The simple zero (as compared to a complex pair) results in a positive gain
of 20 dB/decade, beginning at 7, =1 rad/sec. Because of the summation

indicated in Equation 3-24, the net gain is a —20 dB/decade , obtained from

summing the gain of the perfect integrators and the filter’s zero.

At 7,=100 rad/sec, the simple pole begins influencing the open loop

gain with a factor of —20 dB/decade. The net gain from this frequency

forward, is then, —40 dB/decade .
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The phase response is slightly more difficult, because the zeros and poles
begin affecting the phase much before significantly impacting the gain. A
linearized rule is the simple pole or zero will change the phase by 90 degrees,
beginning at 0.1 x breakpoint frequency and ending at 10 x breakpoint
frequency.

In this example, the two perfect integrators have a phase angle of —180°
at 0 Hz. The zero corresponding to 7, =1 rad/sec will begin changing the
phase at +45°/decade at w =0.1 rad/sec . The phase change due to the
zero will complete at w=10 rad/sec. The non-zero pole of Equation 3-22 will
decrease the phase at —45°/decade, beginning at w =10 rad/sec ,
completing at w =1000 rad/sec .

In this example, we did not consider a filter with complex poles or zeros.
Typical phase-locked loops will not utilize such filters, but techniques are
available for approximating the Bode plot with these filters [1].

Frequently in phase-locked loop design, we encounter time delays within
the loop components. Often the time delays are associated with discrete-time
components such as sample-and-holds, digital dividers, or sequential phase
detectors which we will discuss in later chapters. In analog loops, there are
still pure time delays due to propagation through filters or amplifiers.

Example 3.3

Consider the phase-locked loop of Figure 3.12. The time delay is
t, =20ms. Assuming all of the design parameters from Example 2.2,

compute the gain and phase margins of the phase-locked loop.

We modify Equation 2-60 which expressed the open loop gain of the
Example 2.2’s phase-locked loop to include the time delay element.

J2<107 %50 ( 2710rad { Y5V Y 0.0755 +1) o)
HOL(S)=

1 sV xsec 1 0.028s

3-26
We simplify this to the form
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Ho, () 20942075 L fmar)

—e 3-27
0.028s

Phase Loop
— Detector _ Filter

F(s)

| 1
| S

— e e ——— wd

d

Figure 3.12 Phase-Locked loop With Pure Time Delay

This is similar to Example 3.1, with the exception of the exponential
‘e's(zo"m_;) =1. The phase

delay. This exponential factor has a magnitude,

angle can be written as @(w)=-wt,, where ¢, =20ms. The Bode
analysis can be performed exactly, or Equations 3-24 and 3-25 can be used
with approximations shown in Example 3.2. Figure 3.13 shows the exact
Bode Plot. The time delay has significantly reduced the phase margin of the
phase-locked loop and it is now = 30°. The gain margin of 8§ dB can be
obtained from Figure 3.13.
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Figure 3.13 Second Order Loop With Time Delay

3.4 FM Demodulator

For many phase-locked loops, the concept of signal-to-noise is fictitious,
because there is nowhere to measure the signal-to-noise. As such, it can
become difficult to define the noise bandwidth of the PLL. Figure 3.14
shows a PLL used as an FM demodulator. We assume in Figure 3.14 that the

PLL is tracking the FM signal [4] and the output of the loop constitutes the
analog message.

Since we assume that the PLL is tracking the FM input, this implies that
6, = 6.. The FM modulated signal contains information in the derivative of

6.
6,, or 7 Neglecting the output amplifier with gain G, 8, (s) represents
the demodulated output.
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Gm(s)_ sy2PK , F(s) 308
6.(s) s+ 2PK,K,F(s)

st = Jz_pco{zn fte2nf, m(a)da}

Phase

Detector Loop
r - - = = — Filter

Kd
e

1 6,,(9)
S I Demodulated Output

Figure 3.14 Phase-Locked Loop Used as FM Demodulator

The transfer function for Equation 3-28 includes a factor of s in the

o K .
numerator because the demodulator’s output is prior to the —#2 representing
s

d
the VCO. Because of the Laplace Transform pair, s <—)-zi;, the transfer

function of Equation 3-28 can be considered as a differentiator for the input,
0, (t) [7]. For FM  modulation of the signal m(t),

do.(t
m(t) = _Tit(;) & M(s)=s56(s) which we can substitute into

Equation 3-28. This yields
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6 (s)=M (s) _s42PK,F(s) 3-29
s s+42PK, K, F(s)

0,(s)= M(s)—l-{é@ 3-30

o

The final result of Equation 3-29 is from recognizing the form of the
transfer function that was originally developed for the PLL of Figure 2.4.
(See Equation 2-23.) The result for 8, (s)in Equation 3-30 implies that the
input message m(t), can be recovered by the PLL demodulator. The only
requirement is that the message have a bandwidth much less than the

bandwidth of the PLL’s H,(s).

In Equation 3-30, the output of the demodulator is a function of the
VCO’s tuning gain, K, [7]. Usually with most hardware VCOs, the tuning

element is a voltage-controlled capacitor which results in a nonlinear tuning
characteristic as a function of frequency. In such a situation, the VCO’s K

o

transducer gain will produce distortion in the output.

The closed loop frequency response H o(s) for Example 2.2 is shown in

Figure 3.15. (This frequency response is graphed similar to the Bode Plots
previously discussed, but Figure 3.15 is the closed loop response instead of
the open loop response used for Bode analysis.)

Note the “peaking” that occurs in the frequency response just beyond
10 rad/sec. This is typical of a PLL’s closed loop frequency response, and
can present problems when attempting to meet phase noise specifications that
will be discussed in Chapter 12. If the message m(t) has an information
bandwidth less than 10 rad/sec, then the phase-locked loop will perform well
as an FM demodulator.
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1 10. 100. 1000.

Frequency (rad/sec)
Figure 3.15 Closed Loop Frequency Response for Example 2.2

The closed loop frequency response H, (s) of Equation 3-30, represents
how well the VCO is tracking the input 6,(s). When the ratio is unity, there

is zero error in the loop’s output. This shows that we can indeed think of a
PLL as having a signal, so the concept of signal-to-noise for the PLL is valid.

In digital communication, phase-locked loops are often used as
demodulators for Frequency Shift Keying (FSK) or Continuous Phase
Frequency Shift Keying (CPFSK) signals. Instead of allowing discontinuous
phase transitions as in FSK, CPFSK requires all phase transitions to be
continuous. This has the advantage of reducing the out-of-band spectral
power for CPFSK modulation [8].

A transmitted FSK signal can be written as [9]
— 2E -
st o) = ’T*Cos[Zn f, t+o(ta)+ o, | 3-31

¢(e;) = 2nA f iakp(t—kTs) 3-32

k=—co

E_ is the symbol energy
T, is the symbol period
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Af isthe single - sided frequency deviation
a=(.,a,a,0,a,a,) is a specific data sequence

p(t) is a frequency pulse - shape function

As Equation 3-32 shows, a binary FSK signal consists of instantaneous
frequency tones at f, +Af or f,—Af, depending on whether the binary
data symbol is +1 or -1. Prior to the development of phase-locked loops, the
traditional receiver consisted of two matched filters followed by envelope
detectors [4]. An alternative receiver uses a phase-locked loop that can
quickly acquire the instantaneous frequency, whether it is f,+Af or
fo—Af. Every T, seconds it will have to quickly de-acquire (drop lock)
and then re-acquire (phase-lock) the transmitted frequency which indicates
what binary symbol was transmitted.

To demodulate the FSK or CFSK signal, a demodulator using a phase-
locked loop is shown in Figure 3.16. This particular implementation
assumes that the frequency pulse p(t) is a rectangular frequency pulse;
otherwise a correlation against the transmitted pulse shape p(t) is required.
(Pulse shaping is frequently used to reduce out-of-band spectral
components. )

—_— e = —— e — e e — ——— — —y

Phase | Data

Detect Loop integrate and Dump Detector |

_. Detector __ Filter ) a0 Symbol |
. (o)l o - a,(t

o [T S0 i —

1 I -0T1 T, — -1 |

I

Figure 3.16 Phase-Locked Loop Demodulator for FSK [9]

To analyze the FSK demodulator in Figure 3.16, we assume a first order
phase-locked loop that has already acquired the previous transmitted symbol.
Because the first order loop has a steady-state error to a frequency step, the
integrate-and-dump detector will have a steady state voltage applied to it
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from the phase-locked loop. The linearized phase-locked loop in Figure 3.17
has a scalar loop filter gain, K,, corresponding to the first order loop.

We assume that the FSK binary modulation in Equation 3-31 corresponds
to XA/ frequency steps. Note that when successive symbol values do not
change, then the transmitted frequency will not change. In this case, the loop
will not have to acquire a new frequency because it continues to track the
continuously transmitted frequency. As discussed in Chapter 2, the first
order loop will have a steady-state error to the frequency step, resulting in

0.(1) =T8S 333

steady state - 2P K d K f K 0

Phase Detector Filter
r—=-=-=-=-=-==-= [ ( Gain Only)
- o
o t
3 N3 Ke 17— < X0
' 8.(t) '
O -
r—I—— - —= |
vco || [(at [e— K, te—
' |

Figure 3.17 Linearized First Order Phase-Locked Loop for the FSK Demodulator

Equation 3-33 represents an initial condition that must be included in the
transfer function for Figure 3.17. To develop the transfer function, the
differential equation for the loop is first written as

0,(:)=06,()-2PK K K, [6,()ar 3-34

We differentiate this loop equation, to remove the unwieldy integral,

Be,(t)+ﬁKd K, nge(t)=0i,(t) 3-35
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To solve this differential equation, we will use the Laplace transform, but
the initial conditions must first be included. Recall the Laplace transform

d
pair, 7 f@) sF(s)— £(0), which includes the initial conditions in the

transfer function. Using this transform pair, the first order phase-locked loop
equation is written as

s6,(s)-6,(t=0)+J2PK,K K ,0,(s) = 56,(s)- 6,(¢ =0) 3-36

For this analysis, we assume the previously transmitted symbol
corresponded to a +A f frequency step, and the current symbol hasa —Af
frequency step. With these assumptions for the previous and current

symbols, 8, (t =0)=2nAf/2PK K K, and 6,(s)=—2nAf/s*. The
initial condition for the input, 8,(f=0)=0 because 8,(t)=-27Af¢.
Substituting these into Equation 3-36, we obtain

50, (s)- 2nAf +4/2PK,K K 0, (s)= s—2n2Af -0 3-37
2PK,K K, 5
Simplification yields
2nA 2PK,K K -
o f/N2PK.K K, | 2nAf .

s+2PK,K,K,  sls+J2PK,K K,)

To obtain the time response necessary for the integrate and dump section
of the FSK demodulator, it is necessary to perform the inverse Laplace
transform of Equation 3-38. The first term is easily recognized as an
exponential response, but the second term requires partial fraction expansion.
Using the partial fraction expansion techniques of Chapter 2, the loop
equation is rewritten as
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A f 2nAf A f
w/ZPK K. K 2PK K.K 2PK K,K
ee(s d* f Yo _ d**f™o + d*™f**o 339
s+2PK,K K, s s+42PK K K,

The inverse Laplace Transform of each term in Equation 3-39 can be
computed either by the Laplace inverse equation or the tables in Appendix A.
Using the tables, we obtain

_ —2nAf 2nA f 2K K Kt
0,(t)= + e
v2PK,K,K, +2PK,K K,
3-40
B 2nA f e—ﬁEKdK/K,,r
2PK,K K,

In Equation 3-40, we see that at time t=0,
6,(t)=2nAf / J2PK K s K, from the previous symbol. For time t=es,

6,(t)=-2nAf / J2PK,K K, . Thus, the integrate and dump detector in

Figure 3.16 is operating with input voltages of +27A f / 1/2PK KK, ,
depending upon the data value of the symbol.

Heuristically, we want the loop to acquire as quickly as possible after a
symbol transition, to maximize the signal energy in the detector’s integrator.
Lindsey [9] investigates the noise statistics of this loop.

In Chapter 2, it was shown that 8, (t) =0 for a frequency step input to

steady state
a second order phase-locked loop. Yet, the integrate and dump in Figure
3.16 is dependent upon @,(¢) #0 for the symbol decision. One strategy

steady state
would be to use a time constant for the filter approximately equal to the
symbol interval. Lindsey [9] states with this filter, the performance of the
second order loop is not too different from the first order loop.

In modern receivers, a maximum likelihood receiver would be the
preferred implementation for a FSK modulation.
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3.5 Noise Bandwidth

The concept of noise bandwidth can be confusing because of the different
definitions of noise bandwidth; single-sided, double-sided, etc. Consider a
signal of the form,
r(t)=2Pcos[2nf.1 +6]+nt) 3-41

where £, is the carrier frequency, 8, is the arbitrary phase of the signal,
and n(¢)is additive, Gaussian band-limited noise with power spectral density

N
—2“. Figure 3.18 shows the power spectrum of this signal. Observe half the

signal power is at the positive frequency, /., and the other halfat —f,.

Is, ()

>
(SEL-Y
L

NLZ

Figure 3.18 Power Spectrum of Received Signal

Figure 3.18 depicts bandlimited noise around the desired signal, s(t).
Such a bandlimited signal is generated when the receiver has an IF bandpass
filter with bandwidth B. Note the traditional power spectral density of

additive Gaussian noise is N, /2, for both the positive and negative
frequencies.

We compute the total noise power in the received signal (assuming
additive Gaussian noise with S, (f)=N,/2) as

o= ]:Sn(f)df=N0B 342
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The desired signal in Equation 3-41 has carrier frequency, f,, and the

analysis is easier if we express the additive noise as sinusoids with
frequency, f.. The noise n(t) can be expressed as a sum of narrowband

sinusoids, [4]

n(t) = n,(t)cos[2nf,t + 6]~ n, (¢ sin[2nf.1 +6) 343

The two sinusoids, n.(t), and n,(t), are conceptual narrowband noise
processes generated by Figure 3.19.

Low Pass Filter
——— - 1.(f)
B B
2 2
2cof2nfr+ 6]
n)
-2sinf2n £ £+ 6]
Low Pass Filter
—» —— 1,()
_B 0 B
2 2

Figure 3.19 Representation of the Quadrature Noise Processes [4]

To obtain the power spectral densities of n, (t) and n, (t) , we first compute
the autocorrelation function of z,(¢) = 2n(t)Cos[27 f, t] (41
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R, (z)= E{(2n(t)Cos[2z f.1])(2n(t +7)Cosl2z £, (t +7)])}
= 2E{n(t)n(r + 1)} Cos[2x £, 7]

+2E{n(t)n(t + 7)) Coslan f, t+ 27 f, 7]
=2R, (t)Cos[27 f.7]

3-44

The final form of Equation 3-44 results because the double frequency
term is zero. Equation 3-44 can be translated to the frequency domain by

recalling that  Cos[27f. 7] S(f-£.)2+6(f+ £, )/2 and then
convolving the phasor with S, (f ) to obtain

Sa(£)=28,(f)x(8(f - f.)/2+6(f + £.)/2)
=S, (f+ £ )58, (F- 1)
From Figure 3.19, S,.(f) is the lowpass filtered version of S A ), or

3-45

S (F)=L S, (f+ £ S, (f - £} 346

Where L, denotes the lowpass filtering operation. Similar analysis can be
performed to obtain S, ( f ) Hint: Use the autocorrelation of

2,(t)=-2n(t)Sin[27r £, t], rather than attempting to solve S . (f) directly
from Figure 3.19.

S, (f)=L,{S,(f + £ 1S, (f - £} 347

By integrating S, (f) and S, (f) over all frequencies, we obtain the

. . . 2 2 2
noise variances of the quadrature noise components, &, =0, =0,. The
(2 s

two quadrature noise components are statistically independent if the IF
bandpass receiver of the filter is symmetrical about the center frequency f,.
This is an important property, because if the filter is skewed, the resulting
noise does not have an autocorrelation, R, (7)=0,VY 7 [5].
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Assume the output from the phase detector in Figure 3.16 can be
represented by multiplying the input signal, s(f), with the VCO’s v, (z),

6,(1) = s(t)xv, (1) 348

8,(r)=1{2Pcoson .1 + 6]+ nt)jx 2sin[2n f.1 + 9] 3-49

After substituting the quadrature noise representation, and performing
some trigonometric substitutions we obtain,

0,(t) = /2Psin[p - 0]+ n_(c)sin[p - 6] n, (t)cos[p - 6]
+4/2Psin[4nf.t + ¢+ 08 +n_(tsin[dnf.t + ¢+ 6] 3-50
+n,(t)cosldnf.t + ¢ +6]

The phase detector output in Equation 3-50 has three baseband terms and
three double frequency terms (last three terms). We assume that the double
frequency terms are removed with lowpass filtering and define the new
variable ¢ = ¢— 0.

0, (t) = 2Psin[¢)] +n, (t)sin[(o] ~n, (t)cos[(p] 3-51

Under phase-lock conditions, sin[w] = ¢ . This approximation allows us
to write the linearized phase detector output as

8,(t)=2P@ +n, (t)sin[p] - n, (r)cos[p] 3-52

To further our analysis, we label the noise terms as n'(t) , where

()= "Wsinlp]- " e oslo] 353

NN

In representing n’(t), we divide by the factor 2P . Because this factor

/2P appears in our loop transfer functions, H(f ), the normalization of
n’(t) allows us to use the transfer functions directly, even though the noise
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does not have the multiplier 4/2P . The power spectral density of n'(t) is

obtained by first performing the autocorrelation of Equation 3-53 and then a
subsequent Fourier Transform.

$,(£)= 5505, ()sin*lol+5,,(r)Cos*lol] 354

Suppose the loop is tracking such that ¢ — 0. (This is our usual linear
approximation for the phase detector.) Under these conditions, we can write

1
S Af)=—S
n (f) 2P ns (f) 3.55

=LAS,(f+ £ 1S, (fF- £ )}

Figure 3.20 shows the different noise spectrums of Equation 3-55. We
have placed the traditional Gaussian noise spectrums inside braces. Note
that S,,,(f) is centered around DC, and we have folded the upper and lower

sidebands into this bandwidth B, centered about 0 Hz.
N
s.0) {2}

A _/ r'y

0 {3

|
|
[
L s
- f 2 3 £
A - s

Figure 3.20 Noise Spectrums of Phase-Locked Loop (Traditional Gaussian noise densities
in braces)

We note that the narrowband noise process, n’(t) without the scaling
factor of 2P, has the same normalized noise power as the original noise
process. The noise power inside the loop is
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N,B

S, (f)df = 3-56

N,u,‘—bl\ﬂh

The numerator of 0':, matches 0: . The denominator’s factor of 2P is

because of the normalization to the phase-locked loop’s gain of +/2P
embedded within the loop’s transfer function.

The phase-locked loop can be modeled by Equation 3-57. Figure 3.21
shows this linearized noise model for the phase-locked loop.

6,(t)=2Pp+n(t) 3-57

The power spectral density of the system is

8o, (F)=58,, (F1H(FY 3.58

Considering noise only, we compute the noise variance at the output,
6,(z), of theVCO as

df 3-59

n'(t)

() H(f) — 6,0)

Figure 3.21 Equivalent Noise Model of Phase-Locked Loop



94  Chapter 3

Note that S, ( f ) =S, ( f ) = N, /2P, so the phase-locked loop’s output

noise variance 1is

2 _No T 2
ol =2k __[[H(f) df 3-60

néy,

Observe that H(f) is symmetrical, so we can rewrite 0'"29 with a single-

sided integral (corresponding to a single sided definition) as

. 2N, G 2
o = p {[H(f] df 3-61

The traditional definition of loop bandwidth is one-sided, as shown in
Equation 3-62,

B, =[|H(fY df 3-62

This definition of a phase-locked loop’s bandwidth permits us to express
0'"29 as a function of the loop bandwidth,

]

o’ —gﬂ“B

= 3-63
% 2p t

The concept of loop bandwidth also allows us to rewrite the input signal-
to-noise ratio of the phase-locked loop as

SNR, = (text definition of loop signal - to - noise) 3-64

oL

Equation 3-64 is the definition of loop signal-to-noise used in this text.
Gardner includes a factor of 0.5, [5]
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(Gardner’s definition of loop signal - to - noise) 3-65

MR =N B
L

Q
The literature is confusing, and the reader is cautioned to check an
author’s definitions when comparing different results in the literature. SNR,
is a parametric which is useful in describing the performance of a PLL to
noisy signals, much like w, 1s a parametric for the dynamic response. To

avoid confusion, we will specify P/N, B, in our analysis and graphs, rather
than SNR, .

To obtain the noise bandwidths for the different loop configurations, we
substitute the closed loop transfer function into Equation 3-47 and perform

the integration. Figure 3.22 shows the noise bandwidths for the different
configurations [5].

In Chapter 4, we will study the effects of noise upon phase-locked loop
acquisition and tracking.
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Description

First Order H(s) 2PK,K,K;

S)=
s+y2PK,K,K,

First Order Noise 2PK K. K
B = otrdM f

Bandwidth (Hz) L
4
Second Order Lowpass w?
Filter H(s) Hy 1 pupass (5) = = . 2
’ s +28w, s+w,
Second Order Lowpass 4

Filter Noise Bandwidth B, = @n 1 - 1
(Hz) 1647 | -2y +4 2r+4

where v =} &£? (62 —l),/?. =w? (252 —1)

Second Order Passive T, w: s+ w:

Lead-Lag Filter H(s) H 0,Passive (S ) = 12 ; 0. S+
n n

N 2
Second Order Passive B = K o K 4@0 K d 1'2)

Lead-Lag Filter Noise L
Bandwidth (Hz) 4(Ko K, 77, +7,)
Second Order Active H ( ) 28w, s+ W:
Lead-Lag Filter H Active \S ) =
ead-Lag Filter H(s) 0. Active 2+ ZCW" o+ Wf
Second Order Active w 1
Lead-Lag Filter Noise B, = 2” 4 +71_
Bandwidth (Hz) 4
Third Order Loop SPK K 7; 2aslal
Type'3 c 12 2 2
Transfer Function Hosa(s)= 2 21
s’+2PK K, —zz(sz +s—+—2J
T L T
Third Order Loop B, =
Type-3 2,2 242 5
Noise Bandwidth 3K, K NPt’7," + 242K, K, P,

- 2\/51',4 +8K, Koﬁrlzr;

Figure 3.22 Noise Bandwidths for Different PLL Configurations
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3.6 Third Order Phase-Locked Loop Design

3.6.1 Third Order Type-2 Filter

We delayed the design procedure for third order phase-locked loops until
we presented the frequency domain analysis of the loops. At this time, we
can proceed with some design guidelines for third order loops. Przedpelski
[6] defined a procedure for the third order filter of the form,

F(S) = _Tzi_ 3-66
7, s(z;5 +1)

(This loop filter configuration was shown in Figure 2.14.) The first
performance parameter to be established is the phase margin, which we
described previously with Bode analysis. (The phase margin corresponds to
the loop stability at the open loop unity gain crossover.) The unity gain
crossover frequency is defined as f,, and the desired phase margin as @.

With these definitions, the filter parameter 7, can be computed as

g = eclg] - Tar]g] 3-67
2T f,

It may seem non-intuitive to specify the loop filter through the open
loop’s unity gain frequency. In the applications most appropriate for this
filter, it is a readily computed parameter, dependent upon the phase noise
performance desired from the loop. Once 7; is defined, then we can

obtain 7,,

7, =(4n? f27,)" 3-68

This allows us to specify the third filter parameter, 7,,

3-69

w=2Rf,

2Pk .k, {—jwr2 —1}

T, =
oW jwr, +1
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Example 3.4

Design a third order PLL, using the third order type-2 loop filter.
Compute the necessary filter coefficients for the loop filter with the
following parameters and specifications:

VCO: Ko = 10 Hz/Volt, Phase Detector: Kd = 1/2 Volt/Radian, Input
Power: 0 dBm (1mW), Unity Gain Frequency: 30 Hz, Phase Margin: 45°

Following our analysis in Example 2.1, we compute the gain of the VCO,
phase detector, and input signal level,

42 ><1x10‘3x50(2n10 rad %V 370

2PK,K, =
1 V xsec rad

We substitute the specified phase margin of 45° into Equation 3-67 to
obtain 7,

= Sec[45°]- Tan[90°]

=0.002198 3-71
’ 271(30)
Substituting the unity gain frequency and 7, into Equation 3-68, we
obtain
2,2, Y!
7, =[4n’ f27,)" =0.01281 372

The final filter parameter for the third-order loop is obtained by
substitution into Equation 3-69,

_|V2Pk K, {—jwz'z—l}

T, =
! I 2 Jwry +1

» weang, = 0.0006750 3-73

The open loop transfer function is computed as
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9.935(1+1.281x10s)

H, (s)= . — 3-74
9.935+0.12745 +6.750x10 75> +1.483x10™"s

50

g o

8

% -50

=

-100 i

-120 P.M.: 45 deg : i
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£

10' 107 10° 10*
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Figure 3.23 Bode Analysis of Example 3.4

Figure 3.23 shows the Bode Analysis of the open loop transfer function.
The loop’s unity gain crossover (0 dB) is at 30 Hz, just as specified. From
1 Hz to 30 Hz, the open loop phase is constantly increasing due to the
integrators. By placing the pole corresponding to 7, at f= 72.4 Hz, we force
the phase to start decreasing at f= 30 Hz. This allows us to meet the
specified 45° phase margin. (This phase margin may be insufficient, because
the time response may have too much of an overshoot.)

The parameter 7, establishes the breakpoint frequency (f=12.4 Hz) of the
transfer functions’ zero. The positive 90° slope of the zero begins at f=1.24
Hz and completes at f=124 Hz. We begin the negative 90° slope of the pole

at f=7.24 Hz, and end at f=724 Hz. The noise bandwidth is obtained by
numerically integrating,
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Noise Bandwidth = [|H(f)’df 375
0
+_4 22,2
st (7 = KOATE)
K*-8f°Kn'r +16f "n"7, +4f°K°n°,
~-32f*Knt*r 7,7, +64f°nlrlT]
and K =,/2PK K, 3-71

Numeric integration yields Noise Bandwidth =80.4Hz. The closed loop

magnitude response is shown in Figure 3.24. This frequency response is
important, because it provides insight to the noise performance of the loop.
If the closed loop response exhibits excessive peaking, then the noise
bandwidth will be unnecessarily higher than without the peaking. (Ideally,
we want Figure 3.24 to have flat frequency response until the amplitude roll-
off.) If excessive peaking exists, then the loop should be redesigned with a
larger phase margin.

Magnitude Response

0.8 \x
0.6
N
0.4
N~~.

0.2

0 £

10. 20. 50. 100. 200. 500. 1000.

Figure 3.24 Closed Loop Magnitude Response
3.6.2 Third Order Filter Type-3 Filter

Designing a third order phase-locked loop with the third order type-3
filter is slightly different. (The filter was shown in Figure 2.14.) Consider
the open loop transfer function for a third order loop with third order type-3
filter,
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2PK, K, (s7, +1)
Ho,(s)= s d (s(szz' )2)
1

3-78

To perform a Bode Analysis of this third order loop, we place Equation 3-
78 in the form of Equations 3-20 and 3-21.

20Log|H, (jw) = 20Log|2PK, K, [} |

3-79
+40Log|i + jwr,| - 60Log| jw]

ZH,(jw)=2tan"'[wr, ]-270° 3-80

To obtain Equations 3-79 and 3-80, we note that N=3, because of the
three perfect integrators in the open loop transfer function, HOL( j w). There
are the two repeated zeros corresponding to (s 7, + 1), and no poles other
than the perfect integrators. Of particular interest is Equation 3-80, which
indicates the open loop phase is a function only of the parameter, 7,. This
provides our design concept.

The first term of Equation 3-79 provides a constant gain term, which is
graphed as the horizontal line. The filter’s 7, parameter adds additional DC
gain to the other gain parameters, \/?).—P_ K _ K ,.The three poles at the origin
create a 60 dB/decade slope from 0 Hz. The parameter 7, counteracts the
negative slope of the three perfect integrators with a positive 40 dB/decade
slope at w=1/7,. After w=1/7,, the frequency roll-off is a negative 20
dB/decade slope. The primary affect of 7, is to change the unity gain
frequency of the open loop transfer function, because the slope due to the
perfect integrators alone would intersect the 0 dB axis at a much lower

frequency than with the double zeros. The bold line in Figure 3.25 shows an
approximate composite of the three different terms in Equation 3-79.

The phase angle of the open loop transfer function is calculated with

Equation 3-80. It has a constant —270° term due to the three perfect
integrators. Recall that we approximate the + 90° phase shift due to a single

zero beginning at w=0.1/7,.  The + 90° phase shift is completed at
w=10.0 / 7, . The bold line in the phase plot shows the approximat