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Preface to the Second
Edition

This book is intended for the graduate or advanced undergraduate
engineer. The primary motivation for developing the text was to present a
complete tutorial of phase-locked loops with a consistent notation. I believe
this is critical for the practicing engineer who uses the text as a self-study
guide.

Three years after the first printing, I discovered there was a need for a
second edition. I had taught several short courses from the text, and
discovered that today’s engineers needed less time devoted to discrete-time
theory, but wanted more practical information on implementing phase-locked
loops. As a result, I have deleted discussions on topics such as multi-rate
sampling and the Jury test, and replaced them with new content. Included in
the new material are additional loop filters and reduction of reference feed-
through in frequency synthesizers. Indeed, frequency synthesis is itself a
new topic in the text.

Since most hardware phase-locked loops utilize charge pumps, I
developed a new chapter that spotlights charge pumps and its complementary
sequential phase detector. Several students in the short courses were asking
for design examples on delay-locked loops used to synchronize circuits on
CPUs and ASICS. The second printing includes new material for this very
purpose.

Another change was the increased use of Many of the
original graphics have been replaced with graphics generated by MATLAB’s
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or Control System Toolbox. Since MATLAB has emerged as
the leading simulation tool for the communications engineer, the graphics
should be familiar and provide more information such as gain and phase
margins. I have also taken the opportunity to correct typographical errors
and further improve the consistency in notation.

New material has been added on digital dividers. These devices can
easily dominate a frequency synthesizer’s noise floor, but the literature has
not provided many solutions. In this second edition, I added sections
discussing the origin of phase noise in digital dividers and possible solutions.
Also included are some techniques to analytically estimate the phase noise of
a divider before it is even fabricated.

In the past year, many students in the short courses have been asking for
design help on optical phase-locked loops. A new chapter has been added on
this topic. Because many designers will be new to optical communications, I
have included short sections discussing components such as lasers and
photodetectors. Since coherent phase-locked loops are so very difficult to
implement, I have included a section on automatic frequency control to
provide frequency-locking of the lasers instead of phase-locking.

This second edition begins with the early history of phase-locked loops. I
believe that historical knowledge can provide insight to the development and
progress of a field, and phase-locked loops are no exception. Although all-
analog phase-locked loops are becoming atypical, the continuous-time nature
of analog loops allows an easy introduction to phase-locked loop theory.
This foundation then allows us to proceed to the many implementations and
discussions of phase-locked loops.

I wish to thank the readers of the first edition for their many suggestions
and comments. Likewise the short course students have also strengthened
this new edition with their participation and comments. I have tried to
incorporate these suggestions within the intended scope of the text.

Donald R. Stephens

October 2001



1 TheEarlyHistoryofPhase-
Locked Loops

1.1 History

A browse through the phase-locked loop literature of the past is
humbling. Although we often consider phase-locked loops as relatively new
structures, historical literature dates the concept as early as 1919 [2].
Vincent [2] and Appleton [3] experimented and analyzed, respectively, the
practical synchronization of oscillators.

After these initial papers, research and development continued up until
the 1940s. At that time, the initial interest in synchronization was for a) a
local oscillator in FM demodulation and b) the exciter for an atomic particle
accelerator amplifier [4].

The control theory for phase-locked loops was based on the well-
developed theory for feedback amplifiers. Early pioneers in the feedback
analysis included the Bell Labs researchers Bode [5] and Nyquist [6]. Their
techniques for analyzing the stability of feedback structures are still used by
researchers today.

In 1935, Travis published “Automatic Frequency Control”, [7] which
suggested two reasons for controlling the local oscillator of a receiver.
“Oscillator drift, if not corrected by more or less frequency manual
readjustment, is capable of mistuning the signal by many channels in the
course of a few hours run” [7]. His second reason for oscillator control is
more entertaining, “It seems to be quite true that the average listener does not
tune his set well enough to obtain the best quality it is capable of giving,
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partly from negligence, and partly from lack of the necessary skill, in which
case the mechanical design of the set is a possible contributing factor.” [7]

Travis’ design was completely electronic. He did not want to increase the
number of mechanical parts in the receiver. (The manual frequency tuning
required the rotation of a mechanical variable condenser gang.) In his
discussion of the theory of operation, he noted that the operation was similar
to the automatic volume control loops which had been used in receivers for
several years.

There were two primary elements in Travis’ design. The first was the
oscillator itself which was tuned by electrodynamic methods. The second
was the frequency discriminator which developed the error control voltage to
control the oscillator. His first discriminator was a differential rectifier,
similar to the discriminator developed by Foster and Seely in 1939 [8]. This
circuit today is known as the Foster-Seely discriminator.

Foster and Seely presented a number of innovative circuits, but
surprisingly, there was no control theory presented for their frequency
control circuits. R.V. Pound’s description of automatic frequency control for
microwave oscillators was similar [1]. It was mainly concerned with the art
of circuit design. (Of course the circuits were all tube-based during this era.)

In 1939, Vincent Rideout described a servomechanical automatic
frequency control circuit [9]. At this time, the DC stability of amplifiers was
poor, and maintaining a constant control voltage was difficult. As he noted,
a servomechanical tuning was desirable because the electronic control
amplifier did not have to accumulate the error voltage. The control circuit
only had to make differential corrections to the oscillator frequency. His 4
GHz synthesizer used a Foster-Seely discriminator and a two-phase induction
motor to tune a waveguide resonator. Later in 1960, T.J. Rey wrote, “[phase-
locked loops have] developed from a method of motor tuning in which the
oscillation and the reference are combined to generate a field that rotates at
the error frequency.” [19]

During World War II, there were new requirements and expectations for
servomechanisms. To meet this challenge, great advances were made in
control theory during the war years. When MacColl published his text,
Fundamental Theory of Servomechanisms [10] in 1945, control theory was
considered an old art. However, it was at this time that the order of the
differential equations became so high that new analysis techniques were
needed. (Of course these evolved to the Laplace techniques that we use
today.)
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For many years; generally until the 60’s, the early radios did not have
automatic frequency synchronization or Automatic Fine Tune (AFC). To
help consumers tune their radios, visual indicators were provided for some
receivers. Figure 1.1 shows a representation of the tube indicator and the
visual cues provided to the user [11]. The control voltages were much larger
than today’s small signal levels. The discriminator voltage to the General
Electric 6AL7-GT tube shown in Figure 1.1 was 10 Volts.

The applicability of feedback amplifier theory to automatic volume
control circuits was presented by Oliver in 1948 [12]. Oliver’s analysis of
the volume control circuit included the use of Nyquist diagrams and Bode
plots.

Also in 1948, the Collins Radio Company of Cedar Rapids, Iowa,
produced an exciter for commercial FM transmitters that used a quartz
crystal discriminator to stabilize the center frequency [13]. (Collins was
previously the Crosley Broadcasting Corporation of Cincinnati, Ohio.) The
Federal Communications Commission (FCC) required the center frequency
of the FM broadcasters to be within 2000 Hz of their assigned frequency.

In 1952, Ruston developed a simple crystal discriminator for FM local
oscillators [14]. Although variable capacitance diodes now replace the
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reactance tube, his block diagram of the system in Figure 1.2 is similar to
today’s frequency control loops. Without the automatic frequency control,
consumer radios had a frequency stability of about 0.1%. With that era’s
high gain amplifiers the control circuit of Figure 1.2 would yield a
frequency stability of about 0.0004%.

About 1953, phase-locked loop designers began studying the nonlinear
operation of the circuits. Curiously, some of the analysis techniques came
from unrelated fields. The second order differential equation of the phase-

locked loop, was analyzed with a technique

associated with the pull-out torque of synchronous motors [15,16]. This was
the technique used by Rey [19] and Viterbi [21] to generate the phase-plane
portraits of phase-locked loop acquisition.

Color television would not have been possible without the advancement
of phase-locked loop technology. In particular, the color subcarrier at 3.158
MHz required precise phase control to maintain color picture stability in the
NTSC format. Richman [17] was the first to develop equations describing
acquisition time for a first order phase-locked loop. It is a fascinating history
of television, to read the derived requirements of these first phase-locked
loops.

In the early 1950s, a “good” phase-locked loop would adjust the
television’s color within a second. A “fair” phase-locked loop would adjust
the color within 10 seconds. The phase-locked loop in the color subcarrier
circuit was originally to replace a phase control “knob” that the consumer
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would adjust manually as a new station was tuned. Of course, the oscillators
were all tube-based, and the frequency of the loop was tuned with a reactance
tube.

A block diagram of Richman’s Automatic Phase Control (APC) circuit is
shown in Figure 1.3. The passive loop filter in Figure 1.3 presented a
dilemma to the early designers. Five rms degrees of dynamic phase error
was the subjective threshold for consumer acceptance. Static phase error
would produce the wrong hue in the received picture. Dynamic phase error,
however, generated fluctuating horizontal color streaks. In order to keep the
phase jitter at acceptable levels, a 100 Hz loop bandwidth was required. Yet
this noise bandwidth would limit acquisition to 25 seconds for an oscillator
frequency offset of 2.5 kHz [18].

By 1959, analog phase-locked loop theory and design was approaching
maturity. The textbooks and literature at the time still emphasized the analog
to servomechanisms. The wider applicability of phase-locked loops resulted
from the acceptance of the PLL as a lowpass filter for FM inputs and a
highpass filter to the output oscillator. McAleer [21] wrote that there were
three uses for phase-locked loops: 1) In a receiver to increase the power level
and attenuate the noise of a weak FM signal, 2) can be used to reduce the
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jitter or frequency noise of a high-powered oscillator, 3) as a
narrowbandwidth filter.

The history of phase-locked loops becomes difficult to write after 1960
due to an explosive interest and publications in the field. The availability of
phase-locked loop integrated circuits in 1965 [22] facilitated the rapid
introduction of phase-locked loops into consumer products. About 1970,
digital or sampled, phase-locked loops began appearing in the literature and
products. Gupta’s [23] 1975 survey paper provides some of the history of
analog loops and Lindsey and Chie’s [24] 1981 paper provides some insight
to the development of the digital phase-locked loops.

The history of optical phase-locked loops is more recent, since the laser
was not invented until 1960 [25]. The first laser phase-locked loop was
demonstrated four years later [26]. A block diagram is shown in Figure 1.4.

Helium-neon lasers were locked in quadrature using the photomultiplier
(a RCA-7265) to provide error feedback to the piezo mirror in Figure 1.4.



The Early History of Phase-Locked Loops 7

The piezo mirror changes the length of the laser cavity, thus changing the
operating frequency of the laser.

Earlier attempts or experiments had been failures because of acoustical
and mechanical disturbances. The first success was achieved through
placing the lasers on a shock-mounted concrete and cinder block table
enclosed in a concrete vault. Inside this vault, the lasers were able to remain
phase-locked for several hours. Temperature drift eventually caused the
lasers to lose lock [26].
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2
Analog Phase-Locked Loops

2.1 Time Domain Analysis of Phase-Locked Loops

A complete Phase-Locked Loop (PLL) block diagram is shown in
Figure 2.1. The PLL is receiving a signal s(t), with an unknown phase,
Viterbi [18] has described the phase-locked loop as a communications
receiver that adjusts the local oscillator frequency and phase according to its
measured phase error. Although PLLs are found in applications besides
receivers, the PLL in Figure 2.1 is performing as a local oscillator to
coherently demodulate the received signal. (Recall from communication
theory that coherent demodulation provides a 3 dB improvement in signal-to-
noise. In Chapter 11 we will show that the signal-to-noise improvement is 6
dB inside a synchronization loop.)

In Figure 2.1, we assign an amplitude, to the received signal, s(t),

where P is the power in the signal. Initially, the magnitude for the

received signal may seem awkward. Recall however, the power in the signal

Algebraic manipulation yields

the assumed magnitude for the input phasor in Figure 2.1. In some
applications such as frequency synthesizers, the signal into the phase-locked
loop has a fixed signal level and a high Signal-to-Noise Ratio (SNR). More
stressful on loop performance however, are those applications with varying
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signal levels and low SNRs. In our subsequent derivations we will see that
these two parameters affect the performance of the loop.

The phase detector for a PLL measures the phase difference between the
input signal and the PLL’s voltage controlled oscillator. This phase
difference is converted to a voltage in the phase detector, which is then used
to provide feedback control to the local oscillator. Associated with the phase
detector is a gain, which represents the mapping of the phase

error in radians to an output with units, volts/radians. In Figure 2.1, the
phase detector is represented as a mixer with a lowpass filter, which is a
common implementation. An ideal mixer will produce a frequency
difference component and frequency summation component,

where

is the signal's unknown phase

is the PLL’s estimate of the phase,
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In analog phase-locked loops, we are most interested in the baseband

component, that is used to generate an error voltage for

correcting the loop’s oscillator. In most instances, the high frequency

component, will be ignored by the loop filter and

oscillator, but we include a lowpass filter to eliminate this term inside the
phase detector.

Later in the analysis of analog phase-locked loops, we will discuss the
s-domain representation and then represent the lowpass filter inside the phase

detector as However, the other functions in Figure 2.1 are

time-domain functions, and for the initial presentation of the phase-locked
loop, we choose to represent the function in the time domain for consistency.
If the cutoff frequency of the filter is much greater than the carrier frequency,

then the indicated convolution can be approximated by a sifting function,
and then the error voltage is approximately

Figure 2.1 has a filter consisting of a simple gain scalar,
The lowpass filter in Figure 2.1 used to eliminate the mixer sum products
adds additional poles to the loop transfer function, so it cannot be a first
order loop. (When we introduce the s-domain representation, we will make a
formal definition of loop order and type.)

The local oscillator’s output, r(t), may appear troubling at first, because
of the integral inside the sine argument. Historically, analog Voltage
Controlled Oscillators (VCOs) have received a voltage as an input, and
generated a frequency output. However, in Figure 2.1, the error voltage from
the mixer, c(t), (Equation 2-1) represents a phase error rather than a
frequency error.

Recall the phase of a sinusoid is the accumulation, or integral of all
instantaneous frequency components. The phase of the local oscillator can
be written as
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Equation 2-3 shows that the VCO performs an integration with respect to
the phase error. In Figure 2.1, the error voltage, c(t) corresponds to a phase
error, so the VCO in a phase-locked loop effectively integrates c(t), to
produce a phase correction. The transducer gain of the VCO is

radians/Volt.

To generate the phase error, e(t), we have performed a simple lowpass
filter function on the output of a mixer. The mixer’s output prior to the
lowpass filter is

After performing trigonometric reductions,

Notice that the last term of Equation 2-5 represents the phase difference
between the received signal and the local oscillator. For this reason, it is
named a phase detector, rather than frequency detector. Frequency detectors
are sometimes used in control loops (Automatic Frequency Control (AFC)),
but they are more complex than the simple mixer shown in Figure 2.1 [1].

Equation 2-5 implies the error voltage is a sinusoidal function. Because
where k is an integer, the phase detector of

Equation 2-5 is invariant to a radian phase shift. In Chapter 11, we
will discuss phase detectors that are invariant to π or even  phase shifts.
(This presents problems in synchronizing to digital modulation waveforms
such as BPSK or QPSK.)

For our initial study of Figure 2.1, we need to linearize Equation 2-5 so
that we can write a simple control loop equation. To linearize Equation 2-5,
we expand a first-order Taylor series of the sine function around zero,

(The double frequency is discarded
because it is removed by the lowpass filter.) From this we obtain,

After the linearization, we can simplify the loop block diagram to the
more familiar form shown in Figure 2.2.
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A frequency-dependent loop filter is not included in the loop
configuration of Figure 2.2. The loop filter is really a scalar gain term,
This is the only variable to alter the first-order loop’s performance. Because
the phase detector is represented by an arithmetic summer (traditional control
loop representation) [2-3] rather than a multiplier, the magnitude of the
received signal is included within the phase detector.

The output of the phase detector, represents the difference between
the input and the VCO’s estimate of the input, By solving for
this difference, we obtain a mathematical representation of how well
the phase-locked loop is tracking the input.

Substituting Equation 2-7 into Equation 2-8 yields

Integral equations such as Equation 2-9 are difficult to solve, so we use
the differential form of Equation 2-9.
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This is a first-order differential equation. Recall the following theorem
for first-order differential equations [16]:

on interval I

where A denotes any indefinite integral of the function

For Equation 2-10, so substituting

this into Equation 2-11 yields

where c is a constant

For most phase-locked loop applications, the phase input, to the
loop is a combination of three different phase functions.

Case I. where is constant. This corresponds to a
constant phase offset between the input signal’s phase and the initial VCO’s
phase. Of course, the PLL will correct the phase difference to zero by
changing the phase of the VCO.

Since the solution of Equation 2-12 provides

If we let (the loop error at time is equal to the step in
phase) we can solve for the constant c, and obtain

By taking the limit as for Equation 2-14, the steady-state

response is computed as This indicates that the

first order phase-locked loop will completely adjust the VCO’s phase to
compensate for an input phase offset. The steady-state error is zero.
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Case II. This signal input to a phase-locked loop is
equivalent to a constant frequency.

(Recall radian frequency = With this signal,

the input has a constant frequency offset from the initial frequency of the
VCO. In a communications receiver, this would correspond to the receiver’s
local oscillator not being centered at the correct frequency. However, if the
PLL is able, it will reduce the initial frequency difference. For this input,

and the solution of Equation 2-10 is

With at time the initial error, This initial
condition allows us to solve for the constant c, and we obtain

We are interested in the steady-state error, after the loop has attempted
correcting this changing phase input. By taking the limit as for
Equation 2-17, the steady-state response is computed as

The limit, or steady-

state response is computed as

Equation 2-18 indicates that the first-order phase-locked loop will have a
constant error when the input phase is constantly increasing. (Note that our
analysis so far is only for a first-order phase-locked loop that has



18 Chapter 2

If the phase-locked loop has a large DC gain corresponding to
the product then the steady-state phase error may be small
and acceptable. The magnitude of the error may be reduced by increasing
the gain factor or the input signal power, P.

Case III. This signal corresponds to a constant
accelerating phase input. With respect to frequency, the input frequency is a
linear function (frequency ramp), and with respect to phase, it is a parabolic
ramp. This type of input occurs frequently with communications or GPS
receivers [5]. In the communications literature this is termed a Doppler input
because it generally is created by a moving transmitter or receiver [9]. With

we substitute into Equation 2-12,

Since is a function of time, and it is reasonable to assume

As before, it allows us to solve for the constant c. The phase

error can then be written as

Note that with the frequency ramp input, the phase-locked loop has an
increasing phase error, indicated by the second right-hand term of Equation
2-20. This is not necessarily unacceptable, because the requirements of the
phase-locked loop may have an accelerating input for only a short time
duration. In such a situation, the error of Equation 2-20 might not cause loss
of lock or degradation of the phase-locked loop’s system. However, if the
Doppler input lasts for several seconds as with the space shuttle
communications [15], then the error is unacceptable and second-order or
third-order phase-locked loops are required. Regardless, in Equation 2-20,
we can reduce the initial magnitude of the error by increasing the signal
power, or loop gain factor,
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These three signal inputs are important considerations for phase-locked
loop design. We will discuss the second order loop responses later.
Figure 2.3 graphs the error responses, for the three different inputs.

In Equations 2-14, 2-17, and 2-20, the error function is exponentially
affected by the amplitude, of the received signal, s(t). When actually
implementing a PLL, the designer must control the input amplitude.
Otherwise, the varying amplitude value will change the time response of the
system.

This is a particular problem with communication receivers. Often a
limiter is placed ahead of the phase detector or an Automatic Gain Control
(AGC) circuit (or algorithm) is used to control the amplitude [6]. Both
solutions have limitations and can affect the designed PLL performance.

2.2 Frequency Domain Analysis of Phase-Locked Loops

Reconsider the simple phase-locked loop of Figure 2.2. In Case II and
Case III above, we noted that improvements must be made to the loop filter
to accommodate frequency steps and ramps, which are characteristic of
received signals. As an example, suppose we design a filter with impulse

function To obtain a differential equation for the

phase-locked loop’s output, we must perform continuous-time convolutions,
because the different time functions in Figure 2.2 are cascaded in series.
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After performing the convolutions we then must solve a difficult differential
equation to obtain the equivalent of Equation 2-12, although solutions do
exist for a limited number of higher order differential equations [16].

To simplify the analysis of higher order phase-locked loops, we make use
of Transform Theory. For the analog phase-locked loops we will utilize the
Laplace transform and later for the digital phase-locked loops, we will use
the Z-Transform. The transforms are convenient because they eliminate the
troublesome convolutions and the difficult differential equations. For the
analysis of phase-locked loops, there are seven fundamental properties of the
Laplace transform: [2-4]

Equation 2-21 is the forward transform, which defines how to convert a
time-domain function to an s-domain function. The definition is rarely used
in practice, as Laplace transform tables [2-4] (and Appendix A) provide
conversions for all but the most unusual time-domain functions. As we will
see in subsequent analysis, the Laplace transform of a phase-locked loop
usually results in a polynomial equation. Because the equations are in
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convenient polynomial form, roots of the equations can be easily computed.
This reduces the difficulty of obtaining the inverse transform. The inverse
transform is defined in Equation 2-22, but is rarely used, as tables and root
techniques allow the computation of most functions. (In Equation 2-22, the
integral limits assume is within the region of convergence for the Laplace
transform [2].)

The differentiation theorem expressed in Equation 2-23 will be used
frequently to include initial conditions of a phase-locked loop into its transfer
function. If the initial condition is zero, then the last term of Equation 2-23
is zero, and not necessary. The integration theorem, Equation 2-24, is useful
in computing the Laplace transforms of the different types of phase inputs.

The main reason for using Laplace transforms in phase-locked loop
analysis is shown in Equation 2-25. Instead of the difficult convolution of
time-domain functions such as the VCO’s and the loop filter’s h(t),

the Laplace equivalents of 1/s and H(s) can be simply multiplied together.
Polynomial multiplication provides the cascaded response of complex loop
configurations.

Earlier, we found it necessary to find the steady-state response of the
phase-locked loop with a specified signal input. Equation 2-27 allows the
computation of the steady-state response in the Laplace domain. This is
useful, because it allows the steady-state response to be computed without an
inverse transformation to the time-domain. The initial value theorem,
Equation 2-26 provides similar utility in computing the initial condition of a
phase-locked loop.

2.3 Partial Fraction Expansion

Generally in the analysis or design of phase-locked loops, the Laplace
transform tables of [2-4] and Appendix A are sufficient if a partial fraction
expansion of the transfer function is performed. The concept behind partial
fraction expansion is to express the transfer function as a sum of fractions
with a simple pole in each denominator. When this is done, the individual
terms can use simple transforms such as,
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If all of the poles of a transfer function are simple (not repeated), the
transfer function can be written as [4]

With partial fraction expansion, Equation 2-29 can be written as

The coefficients for the individual fractions in Equation 2-30 are obtained
by multiplying the complete transfer function by the denominator’s

and evaluating the resulting expression at To
demonstrate, [4]

The other numerators of Equation 2-30 are obtained through similar
computations. Equation 2-30 is also used to find the coefficients for roots
which appear as conjugate pairs. Example 2.1 shows the partial fraction
expansion of a transfer function with conjugate pairs.

The more difficult partial fraction expansion occurs when the transfer
function of Equation 2-29 contains poles that are repeated. As an example,
consider

The partial expansion of Equation 2-32 is performed as
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Note in Equation 2-33, a single repeated root results in n terms. The
numerators are not obtained through the same expression as the simple poles,
but a different set of computations, [4]

Example 2.1
Using partial fraction expansion, find the inverse Laplace Transform of

From Equations 2-30 and 2-33, the partial fraction expansion of Equation
2-38 is expected to be of the form,

The first numerator, corresponds to the pole at Using Equation
2-31, we compute
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The next two coefficients, and are obtained from Equations 2-
34 and 2-35.

Although the complex pair poles are computed in the same manner as
we have saved them for last because of their complex nature.

Substituting the coefficients into the partial fraction expansion equation,
Equation 2-39,

Because Equation 2-45 is composed completely of simple poles,
transform tables can be used to compute the inverse Laplace transform.

From Appendix A, using the transforms, and

Noting the complex exponentials, this can be simplified,
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The disadvantage of Transform theory is that it hides the subtleties of
time-domain operation and performance. This is particularly true for digital
control loops where a time delay is a fundamental processing element. In
this text we will use Transform theory where it is helpful, but we will always
stress the importance of the time domain representation.

In Figure 2.4, the phase-locked loop of Figure 2.2 has been represented in
the Laplace domain. Instead of representing the various elements and signal
positions in the time-domain, everything has been converted to the s-domain.
It is functionally equivalent to the time-domain phase-locked loop
representation of Figure 2.2.

In Figure 2.4, we have included separate gains and for the VCO
and phase detector. (One VCO might have a response of 100 MHz/Volt, but
another might have 10 Hz/Volt.) Similar to Lindsey and Chie’s analysis of
digital phase-locked loops [7], we have included a gain corresponding to the
input level. Most analog phase detectors are actually multiplicative, and the



26 Chapter 2

output of the phase detector will be a function of the input level. For this
reason, we have assigned as a gain within the loop.

There are many phase detectors that do not have a scalar for the
output. The popular sequential phase detector discussed in Chapter 6 does
not have this scalar. The optical phase detectors presented in Chapter 12
typically include the optical light power within the computation of and
the additional scalar is not used. In most of our presentations, we will
include the scalar, but the reader should be alert for applications where the

power is either included in the phase detector gain, or the is
effectively unity.

In Figure 2.4, we have used the Laplace transform equivalents of

Figure 2.2. In particular, is the transformation for the voltage

controlled oscillator. Similarly, we have used the Laplace transform F(s) for
the loop filter as well.

Due to the advantages of the Laplace transform previously discussed, we
can express the s-domain transfer functions of Figure 2.4. H(s) is the transfer
function most common in the literature. Using the Laplace Transform, the
closed loop transfer function of Figure 2.4 is written as

Note the subscript on The “o” subscript refers to the transfer
function using as the output, not the open loop transfer function which
will be discussed later. To compute Equation 2-48, traditional control loop
analysis with negative feedback is performed,

The forward gain is the gain from the

input to the output, in this case, In Figure 2.4, the forward gain is

computed by inspection as The total loop gain is the gain

from the input to the output, which for is the same as the forward
gain. Some phase-locked loop configurations might have several feedback
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points, in which case an analysis technique such as Mason’s Rule [2-4]
allows the loop transfer function to be readily computed.

Instead of sometimes the error signal, is often of interest.

The magnitude of is an indication of how well the PLL is dynamically

tracking the input signal, In this case,

and the This definition of

may differ with other definitions in the literature. The definition above
includes the gain of the phase detector and the amplitude of the input signal,
exactly what would be measured in a real implementation. Often this is
neglected, and is written without gain terms in the numerator. The

transfer function for as the output is

The reader is cautioned to note the presence of the s-variable in the
numerator of Equation 2-49 and not in Equation 2-48. Dropping this term
presents difficulties when computing the error responses to different inputs.

2.4 First Order Loop Responses

The simple first-order loop of Figure 2.2 has a filter,

Substituting this first-order filter into Equation 2-48 yields

In Equation 2-50, the gain of the phase-locked loop, is

the dominant characteristic of the loop transfer function. For a first-order
PLL, the only variable available to the designer is the loop gain,
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The error transfer function, for the first order loop

is

The error output, is obtained from by

Using Equation 2-52, we can recompute the three signal cases previously
computed for the first order loop. We will compute all of these cases with
the Laplace Transform technique and compare them to the solutions we
obtained from the differential equations.

Case I. where is constant. The Laplace transform of

this input is From Equations 2-51 and 2-52,

The inverse Laplace transform of using Equation 2-22, or
transform tables in Appendix A, yields

This matches our result in Equation 2-14, which we obtained through
direct solution of the differential equation. (Note that we have included the
gain of the phase detector and input amplitude in Equation 2-54.)
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Case II. The Laplace transform of

Again using Equations 2-51 and 2-52, and performing the inverse Laplace
transform of

This agrees with the previous result of Equation 2-17.

Case III. The Laplace transform of

Again using Equations 2-51 and 2-52, and performing the inverse Laplace
transform of

This matches the result of Equation 2-20.

2.5 Definition of Loop Order

Recall the form of the phase-locked loop’s transfer function,

The order of the PLL is defined as

the highest order of s in the denominator of the loop transfer function. For
the first order loop, corresponding to Equation 2-50, the highest order of s is
one. In the next section, we will study second order loops which have a term

in the numerator. As the phase-locked loop’s order is increased, it tends
to compensate for an instantaneous change in the next higher derivative of
the input [12].

The type of the loop refers to the number of perfect integrators in the
loop. A PLL has an implicit perfect integrator with the VCO, so the first
order loop is a first order, type 1, loop. A filter, F(s), with a perfect
integrator would yield a type 2 loop.
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2.6 Second Order Phase-Locked Loops

The first order loop analysis for the three different inputs suggests a
general equation for the loop filter,

The variable n, represents the desired order of the phase-locked loop.
Jaffe and Rechtin [17] investigated the optimum loop filters for phase-locked
loops for different inputs to the phase-locked loop. Their approach is similar
to Weiner filter theory, and for a frequency step input, the optimum filter is
found to have the form of the active lead-lag filter discussed below.

The first order loop failed with an input response so to
provide a matched response to this particular input, we would like a term
corresponding to at. From Equation 2-57, a second order loop requires a
loop filter of the form The Laplace Transform of this
filter is

With the appropriate substitutions, this filter can be rewritten in the form

Three traditional filters for a second order loop are shown in Figure 2.5.
Note the active loop filter is identical to Equation 2-59, where we attempted
to match the filter’s response to the phase input. Any of the filters yields a
second order loop, although the active lead-lag filter provides superior
performance.

The second order control loop is distinguished by the appearance of a
second-degree polynomial in the denominator of Equation 2-48. However,
specifying the denominator does not uniquely determine performance,
because only the active lead-lag filter in Figure 2.5 will produce a type-2
loop. (The other filters do not have perfect integrators.)
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In the first edition, we did not provide the responses for the second order
loops with the passive filters, because we felt most current PLL design was
being performed with the active filters. However, most low-power designs,
especially those with charge pumps are using the passive filters.

We also encountered a modem design where an initial acquisition
transient would generate a bias error that remained in the active filter’s
perfect integrator. Because of the interaction between the carrier and symbol
tracking loops, the carrier loop would adjust out the error so that there was
no opportunity to remove the bias that had accumulated in the symbol
tracking loop’s filter. However, the bias remained and caused the modem to
eventually lose symbol tracking because the timing bias marched the symbol
timing right out of lock.

The solution to this particular problem was the passive lead-lag filter of
Figure 2.5. The imperfect integrators of the passive lowpass and lead-lag can
help in applications just described.
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2.6.1 Lowpass Filter Transfer Equations

Substituting the lowpass filter of Figure 2.5 into Equation 2-48 gives a
second order, type 1 phase-locked loop,

This is rewritten in the form of traditional control loop analysis [2-4] as

The coefficients (loop natural frequency) and (damping factor) in
Equation 2-61 will be discussed in Chapter 3, but note that the loop response
is a function of the input power to the loop. Substituting the loop filter’s

function, into Equation 2-49, and using the variables
defined in Equation 2-61, provides the error response function,

The filter's parameters may be computed from the following relationships.
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2.6.2 Passive Lead-Lag Filter Transfer Functions

Substituting the passive lead-lag filter of Figure 2.5 into Equation 2-48
yields a second order, type 1 phase-locked loop,

To write this transfer function in the normalized servo-mechanism form,
we make the substitutions

Substituting Equation 2-66 into Equation 2-65, we obtain,

Using the definitions of Equation (2-66), we can write the error response
of a loop using the lead-lag passive filter as

The filter’s parameters may be computed from:
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2.6.3 Active Lead-Lag Filter Transfer Functions

Substituting the active lead-lag filter, into Equation 2-48

yields a second order, type 2 loop,

Again, we rewrite the transfer function in the form of traditional control
loop analysis [2-4],

To help in the design of the physical loop filter, the loop filter
coefficients are solved in terms of the servomechanism literature as

The second order active filter of Figure 2.5 is designed by first
determining the necessary values of and Then the relationships

and are used to specify the resistor and capacitor
values.
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Note that there are three components and only two equations. This
allows the independent selection of a convenient value for the capacitor, C,
and then computing the values of and that satisfy the requirements of

and

The error response for the loop with the active filter is computed as

Although Equation 2-75 is similar to Equation 2-67, we caution that the
definitions of the normalized loop parameters are defined

differently!

These two error responses may differ from other literature, because we
have included the gains associated with the phase detector, which is
sometimes not included. Our reasoning is that any laboratory measurement
will include these gains, because the measurement will be at the output of the
phase detector.

The form of in Equation 2-75 is informative. Suppose that

we wanted the denominator of to have a Butterworth response.

The second order Butterworth filter has a prototype transfer function of the
form [8]

This is the normalized form of a Butterworth filter, corresponding to a
cutoff frequency of 1 rad/sec. To design a filter with 3-dB roll-off frequency
of (instead of the prototype’s 1 rad/sec) the substitution is

made to Equation 2-76. This converts the filter to the desired cutoff
frequency. With the substitution, the filter’s transfer function is



36 Chapter 2

Compare (Equation 2-61) or (Equation 2-72) to

the Butterworth filter transfer function in Equation 2-77. If

is exactly a Butterworth filter response. If the

denominator of has the form of a Butterworth filter. The

different parameters of the filters will be discussed in a later chapter, but the

value yields excellent performance, and is used in many PLL
designs.

Equations 2-61, 2-67, and 2-72 suggest the phase-locked loop can be
considered a bandpass filter centered at the nominal frequency of the VCO.
The filtering characteristics of the PLL are the lowpass characteristics of the
loop’s transfer function. This is illustrated by Figure 2.6 which shows the
closed loop responses for different loop damping factors, of the second
order active filter loop.

Note how the closed loop response resembles a traditional lowpass filter.
The peaking of the more responsive loops may sometimes cause
problems in meeting phase noise requirements or spectral containment.
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Using Equation 2-75, we re-compute the three signal cases for the active
filter, second order loop. The responses will be summarized at the end.

Case I. where is constant. The Laplace transform of
this input is From Equations 2-52 and 2-75,

The inverse Laplace transform of using Equation 2-22, or the
transform tables of Appendix A, yields

These results are not too difficult to derive. A partial fraction expansion of
the error response is first performed. After taking the inverse transform of
the two parts, substitutions can be performed to obtain the same form as
Equations 2-79. The Laplace Final Value Theorem, Equation 2-27 can be
used to obtain the limiting condition of Equation 2-79.

Observe the second order loop with the active loop filter has a steady-
state error response of zero for an input phase step.
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Case II. The Laplace transform of is

. The s-domain response to this frequency step input is

Again using Equations 2-52 and 2-75, then performing the inverse
Laplace transform of

The steady state response to the frequency step (phase ramp) is obtained
from the final value theorem and Equation 2-75,

This is the advantage of using the active filter configuration for the loop
filter. Recall the first order loop had a steady-state frequency error for a
frequency step. The other filters of Figure 2.5 will also exhibit a steady-state
error, although they technically form a second-order phase-locked loop.

Case III. The Laplace transform is The

Laplace domain response to this frequency ramp input (constantly increasing
frequency) is
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Again using Equations 2-52 and 2-75; then performing the inverse
Laplace transform of

The steady-state response to the frequency ramp is obtained from the
Final Value Theorem and Equation 2-75,

This is a limitation of the second-order loop. A constantly increasing
frequency input can soon develop a significant error in the loop’s output.
This is particularly true for loops with small The three loop responses
for the active second order loop are shown in Figure 2.7 through 2.12.
Because the damping factor, is an independent design parameter, the
responses are shown for different values of
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Example 2.2
Design a PLL. Compute the necessary filter coefficients for an active

second order filter with the following parameters and specifications:

VCO: Ko = 10 Hz/Volt, Phase Detector: Kd = 1/2 Volt/Radian, Input
Power: 0 dBm (1mW), Natural Frequency (Specified) 3 Hz, Damping Factor
(Specified) 0.707

To obtain the coefficients for our loop filter, we use Equation 2-74,

To obtain the value of we substitute into Equation 2-73,

= 0.0280

It is important to note that our equations for and require all of the
units to be in radians. Usually, PLL specifications are given in units of Hz,
which requires a conversion to radians, as shown in Equations 2-90 and 2-91.
Also note that because the units dBm imply a 50 ohm load
resistance. The loop filter can now be written as

= 0.075015.



44 Chapter 2

Using the closed loop transfer function for the second order active filter,
Equation 2-67, we obtain

The error response is computed using Equation 2-68,

This analog loop will be used for comparison to the digital loops that we
will derive later in the text. For completeness, the error response to a phase
step input is shown in Figure 2.13. From the normalized plot of Figure 2.8,
the peak undershoot should occur at . For this

example, and then Note the

agreement with Figure 2.13, which demonstrates how the graphs of Figures
2.7-2.12 are used in the design and analysis of phase-locked loops.
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2.6.4 Time Response of the Second Order Loop With the Lowpass
Filter

Using we obtained the following time responses for
Equation 2-62.

Case I. where is constant.
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2.6.5 Time Response of the Second Order Loop With the Passive
Lead- Lag Filter

Using we obtained the following time responses for
Equation 2-68.

Case I. where is constant.
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2.7 Third Order Phase-Locked Loops

2.7.1 Reasons for Designing Third Order Loops

Third order phase-locked loops provide the desirable characteristic of
being able to track an accelerating frequency input. In communications this
occurs frequently when the receiver or transmitter is in motion. As an
example, Figure 2.14 shows a satellite antenna on the mast of a ship. As the
ship rolls with waves, the mast experiences a significant position
displacement. The displacement is sufficient to generate a considerable
frequency ramp. (32 Hz/sec is a common specification for UHF SATCOM
receivers.)

An important class of receivers for the Global Positioning System (GPS)
have significant Doppler induced by the satellites moving with respect to the
receiver [5]. The rate of frequency change is dependent upon the satellite’s
relative position to the receiver.

A non-Doppler reason for using 3rd order phase-locked loops is that the
filter can be used to optimize the phase noise performance of the loop. The
3rd order loop has an additional degree of freedom available to the designer
attempting to optimize the phase noise contributions of different sources in
the phase-locked loop. This will be discussed in Chapter 12.

Yet another advantage of the third order filter is in phase-locked
modulators for Continuous Phase Modulation (CPM) waveforms. For
frequency waveforms more complex than REC, [10] the accelerated phase
during a symbol interval will create tracking errors for second order phase-
locked loops.
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2.7.2 Third Order Loop Filters

With the additional degree of freedom in specifying the loop filter for the
third order system, loop filters have a variety of configurations. Often, it is
desirable to specify the closed loop response have the form of a Butterworth
polynomial. Another possibility is the ITAE response [2]. Stability is a
major concern for third order loops and analysis must be made of the
inherent stability and possible degradation due to component tolerances or

quantization. A third order loop with transfer functions of

or is inherently unstable [2].

Gardner [11] suggests a loop filter of the form

This filter will yield a third-order, type 3 loop. The filter’s two poles at
zero, along with the VCO’s pole at zero, provides the loop with three perfect
integrators. An advantage of Equation 2-84 is that it can be synthesized by
cascading two second-order active filters. Substituting Equation 2-101 into
the basic PLL equation of 2-48 yields

Selection of and for a specific design is best accomplished by Root
Locus design (presented in Chapter 3). This permits the closed loop poles to
be placed in a stable position, and the magnitude of the real component will
determine the damping of the closed loop response. The actual pole

positions will be affected by the input signal gain, If the



Analog Phase-Locked Loops 49

instantaneous gains drops too much, then the resulting phase-locked loop is
unstable.

The error response with a third-order, type 3 loop is

Przedpelski [13] suggests a third-order, type-2 filter than can be
synthesized with only a single operation amplifier. The disadvantage is that
it creates a type-2 loop contrasted with the type-3 generated with third-order,
type-3 filter. Przedpelski‘s Laplace transform of the filter is

Substitution into the basic PLL equation provides

The transfer function for the error response of this type-2 loop is

The third order, type-3 and third order, type-2 filters are shown in
Figure 2.15. These are implemented with operational amplifiers and are
found in many actual applications. As noted previously, the third order type-
3 is obtained by cascading two of the active filters used for second order
loops.

Note that opening the connection to results in the active second order
filter. This suggests that a switch can be placed in series with so that
loop acquisition can be obtained with a second order configuration, and then
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switching to a third order configuration after acquisition. Gardner [11]
writes that switching in additional integrators can cause loss of phase-lock.
The author’s personal experience is that this technique can work, although
each application is different.

A different third-order loop response is suggested by Blinchikoff [14]
which has no zeroes in the closed loop response. The filter is

This configuration yields a transfer function with a Butterworth closed
loop response. Although this type of response is sometimes desirable for
classical control applications, it finds limited applicability for phase-locked
loops. The filter has no perfect integrators, and as a consequence, the
resulting third-order loop is type-1. As will be discussed shortly, the cost of
reducing a third-order loop to a type 2 or type 1 is significantly reduced
Doppler tracking capability.
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A filter for a type-3 loop can be composed from hypothesizing the filter
needs a time response of the form The
corresponding loop filter is of the form

This filter is more applicable for digital filter transformations than used in
analog phase-locked loop. Substitution of this loop filter into the basic PLL
equation gives

The transfer function for the error response is

2.7.3 Filtering Reference Pulses

A sequential phase detector is used in most frequency synthesizers. (The
sequential phase detector is discussed in Chapter 9.) Because the outputs
from the phase detector are pulses, there is a significant amount of energy at
the reference frequency applied to the loop filter. The phase-locked loop
designer has to somehow remove these reference pulses or they will appear
as undesired tones on the output of the frequency synthesizer.

Figure 2.16 shows a model of a frequency synthesizer.
The synthesizer will phase-lock its output (the 500 kHz VCO) to the 100 kHz
reference signal. Because the VCO’s output frequency is not the same as the
reference, a divide-by-five is used to apply 100 kHz frequencies to the phase
detector.
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The phase detector in this example is not a mixer, but a sequential phase
detector and charge pump. These two elements will be discussed later in
Chapter 6, but they perform the basic phase detection of the mixers we have
just discussed. The error voltage from the charge pump is applied to an
analog loop filter which then corrects the VCO’s output frequency and phase.

In the model, we have a reference feed-through path that represents
parasitic coupling between the reference generator and the output of the
charge pump. (This can occur because of power supply coupling or other
mechanisms.) The reference feed-through will cause an undesired
modulation of the output signal. Figure 2.17 shows the frequency
synthesizer output without feed-through, whereas Figure 2.18 shows the
synthesizer output with reference feed-through.

A common technique to reduce reference feed-through is the additional
filter shown in Figure 2.19. This filter consists of a additional pole, and
when cascaded with a second-order filter, yields a third-order loop.



Analog Phase-Locked Loops 53

The mathematical form of this loop is a lowpass function shown in
Equation 2-111. (In a hardware implementation, the designer needs to be
concerned with the impedance interactions between the reference rejection
filter and the actual loop filter, but we neglect that in our considerations.)
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As an example, suppose F(s) in Figure 2.16 is an active second order
filter. Substitution of the filters into Equation 2-48 yields

A typical design approach for the reference rejection filter is to design a
second order filter such that the highest pole frequency is a factor of ten
lower than the reference rejection filter’s pole [19].

2.7.4 Third Order Loop Responses

As with the second-order loops, we evaluate the response of the third-
order loops to the different input stimuli. Of the five third-order loops just
discussed, we will analyze only the type-2 and type-3 filters. The responses
for the other loop filters are left as exercises.

Case I. where is constant. The Laplace transform of
this input is

Third Order, Type-3

From Equations 2-52 and 2-102,
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The steady-state time response, obtained from the Final Value Theorem,
is The time response is obtained from the inverse Laplace

Transform of Equation 2-114, but is too lengthy to place in the text.

Third Order, Type-2

As with the type-3 filter, the steady-state time response is
The inverse Laplace transform of Equation 2-115 yields the

time response, but again, the time response is too long to place on the page.

Case II. The Laplace transform of is

Third Order, Type-3

The steady-state time response is
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Third Order, Type-2

The steady-state time response for this type-2 loop is

Case III. The Laplace transform is

Third Order, Type-3

The steady-state time response of this type-3 loop is

Third Order, Type-2

The steady-state time response for this type-2 loop is

Note the steady-state response is a function of the

frequency ramp, which means the loop will not be able to maintain phase
coherence if the input’s frequency ramp is changing with time. In such
conditions, this loop is unsuitable for coherent communications.

In subsequent chapters we will expand the analysis of phase-locked loops
with these basic transfer functions.
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2.1

2.2

2.3

2.4

2.5
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2.7

Problems

Solve

Solve

Solve

Solve

Find the inverse Laplace Transform for

Find the inverse Laplace Transform for

Find the Laplace Transform for
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2.8

2.9

2.10

2.11

2.12

2.13

For a first order phase-locked loop with:

VCO: Phase Detector:
Input Power: Loop Filter

Input Phase

Find how long it takes for the phase-locked loop error voltage to be
less than 20 Volts.

Power supply noise is often a problem for phase-locked loops. For
the PLL of Problem 2.8, what is the error response of the phase-
locked loop to a sinusoidal input of 30 mV at 60 Hz?

Derive the error response functions for the second order phase-
locked loop with the passive loop filter.

For a second order active filter phase-locked loop with:

VCO: Phase Detector:
Input Power: Damping Factor,
Input Phase

Design the loop filter so that the peak error response for a phase step
input occurs at 50 ms. Graph the error response for the designed
loop.

For a second order active filter phase-locked loop with:

VCO: Phase Detector:
Input Power: Damping Factor,

Design the loop filter so that the steady-state error response for a

frequency ramp with

For a second order active filter phase-locked loop with:

VCO: Phase Detector:
Input Power: Damping Factor,
Design the loop filter so that the peak error occurs at 100 ms.
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3
Root Locus and Frequency
Analysis

In Chapter 2, we presented the basic configurations for phase-locked
loops. We would like to present the performance and dynamics of phase-
locked loops next, but at this point, we don’t have enough theory to design
the loops. Recall in Chapter 2, we mentioned terms such as damping factors,
and with the third-order loop, unity gain crossover. So before we can discuss
the true performance of phase-locked loops, we need to build expand the
theoretical foundation.

3.1 Root Locus

In Chapter 2, we developed the transfer functions and

represents the transfer function for the output of the VCO. is
the transfer function relative to the output of the phase detector. These
transfer functions permit us to write the outputs of the phase-locked loop as

Assuming the input is bounded, we are interested in

knowing whether the output, is also bounded. From linear systems
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theory, a linear system is stable if and only if the integral of the absolute
value of the impulse function is finite [1]. In other words,

Recall the for the second order, type-2 loop (the active filter
configuration) is

The poles of a transfer function correspond to the roots of the
denominator’s polynomial equation. In other words, for Equation 3-3, the
solutions for When the denominator has a value of
zero, then the transfer function assumes an infinite value, thus the name
“poles” for these roots. A transfer function’s zero, is the complement to a
pole and is a root of the numerator. For Equation 3-3, these are the solutions
to

The poles for the two terms of Equation 3-3 can be obtained from the

quadratic formula and are Algebraically, we see

that if then the poles will be complex numbers, consisting of a real
and imaginary component. There is a single zero for Equation 3-3, which is

These are depicted graphically in Figure 3.1. The pole locations

are denoted with a “x”, and the zero with a “0”. The angle describes the
damping factor, and will be discussed shortly.

In Figure 3.1, there are two complex roots which mirror each other across
the real axis. The vector length of these roots is called the loop natural
frequency. The real and imaginary components of the roots are determined
by both the natural frequency, and the damping factor, If we had graphed
the poles and zeros for the second order loop with the passive lead-lag filter,
(Equation 2-37), the poles would be the same (“X”), but there would be no
zero.

A partial fraction expansion takes an algebraically complex transform and

places it in the form of After this expansion, we
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can use Laplace Transform tables [2] to obtain the complete time-domain
function. As an example, the partial fraction expansion of Equation 3-3 is

Let’s assume Equation 3-4 can be written as

A simple pole like has a time-domain equivalent of

If the pole (root of has a positive real
component, the exponential will increase with time, causing an unbounded
response. The term indicates the time response will be oscillatory,
with the frequency established by the imaginary component of the pole,
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We will show later that the time response and stability of a phase-locked
loop are opposing values. A phase-locked loop with the damping factor

is much more stable than a loop with Unfortunately, a loop
with can be too sluggish (the loop takes too long to react to an input
change) for some applications, and thus selection of is a compromise
between stability and time response.

The damping factor, also has the graphical interpretation shown in
Figure 3.1. corresponds to the angle of the pole relative to the real axis
(when the damping factor The exact relationship is

As decreases, the angle increases. This places the poles closer to
the right-hand plane. The loop stability margin decreases with a decreasing
damping factor.

A stable system must have a bounded response, so it is necessary for the
real component of the poles to be negative, or to reside in the left-hand side
of the s-plane. If the integral of h(t) is to be finite, we must have the real
arguments of the exponentials as positive numbers. If they are negative,
then h(t) is growing with time, which will not meet the criterion for a stable
system.

In general, when evaluating the stability of a closed loop, we are
interested in the denominator of the transfer function The reader has

probably already noted that and have the same denominator,
which implies that the same stability test is true for both functions.
Specifically, if the roots of the denominator (values of s for which the
polynomial is zero) are in the left-hand s-plane, then the system is stable. If
the roots are in the right-hand plane, then the system is unstable. A root on
the j w axis yields a marginally stable system.

Equation 3-3 was obtained by substituting the loop filter’s transfer
function into Equation 2-27. Returning to this form, we can write the
denominator of Equation 3-3 as
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The term in braces represents the forward gain of the phase-locked loop,
beginning at the input to the phase detector, and ending with the VCO’s
output to the phase detector. Note the gain terms all affect the

polynomial, which consequently changes the roots of the denominator. As

noted previously, in a receiver, is often outside of the control of the
designer or analyst, and can significantly change the response of the phase-
locked loop.

A graphical display of the loop’s sensitivity to gain changes is called a
root locus plot. To generate a root locus plot, we introduce a gain scalar into
Equation 3-7, as shown in Equation 3-8, and compute the pole and zero
locations as the gain scalar, K, is varied.

K represents a scaling of the nominal gain of the phase-locked loop. If
that implies the other gain terms of the loop are smaller than their
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nominal or design values. Figure 3-2 shows the root locus plot of the first
order phase-locked loop, corresponding to Equation 2-27. Regardless of the
value of K, the first order loop is unconditionally stable. The single root of
the denominator is always in the left-hand plane. In Figure 3.2, we have

normalized the forward gain of the loop so that

Likewise, we have normalized the forward gain and filter constants for
Equation 2-37, and plotted the root locus for the second order

loop with a passive filter in Figure 3.3. As shown in this root locus, the
passive second order loop is also unconditionally stable.

Figure 3.4 shows the pole locations for the second order, type-2 phase-
locked loop. At the two poles begin at and then follow the
elliptical trajectory shown. At a specific value of in this example),
the poles both become real, corresponding to Because the
exponentials corresponding to Equation 3.5 have real components, the loop
response will not exhibit any sinusoidal behavior. Instead, the loop will have
a slowly decaying error response.
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3.2 Propagation Delays in PLLs

Figure 3.4 is somewhat misleading, because even though the root locus
shows the second order loop is unconditionally stable, physical
implementations of the loop can be unstable. Generally, this is the result of
time delays in the phase-locked loop implementation. The transform pair for
a time delay,

Although is the mathematically correct expression for a time delay
in a continuous system, many of our analysis tools will fail for such a system
because they are restricted to rational polynomials.

3.2.1 Representing Delays With a Lowpass Filter

A reasonable approximation is to model the time delay with a single pole
Butterworth filter. The approximation is
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If D(s) is placed in cascade with the forward transfer function of the second
order loop, the block diagram of the phase-locked loop appears as shown in
Figure 3.5. We note that Equation 3-9 is only an engineering approximation,
but it allows us to perform analysis whereas otherwise it is an intractable
problem.

3.2.2 Representing Time Delays With Pade’s Approximation

A better approximation for used in control systems is the Pade
approximation. A two-term Pade approximation for the time delay is [10].

If the delay element of Equation 3-10 is included with the second order
loop, the extra pole of D(s) in the forward gain results in a third order loop.
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3.2.3 Complications Due to Time Delays

Figure 3.6 shows the root locus of the same loop as in Figure 3.4, but
with a delay element. The delay element now yields an marginally stable
loop, which explains why otherwise well-designed second order loops can be
unstable in real implementations. (Just a small gain increase causes this loop
to become unstable as the poles migrate to the right-hand plane.)

The root locus plots for the two third-order filters discussed in Chapter 2
are shown in Figures 3.7 and 3.8. The actual appearance of the root locus is
dependent upon the position of the poles and how close they are to each
other.

Unlike the second order loops, the third order loops are not inherently
stable. The poles of the third order loops migrate significantly with the value
of the loop gain. In particular, the third order loop type-3 filter is unstable at
low values of gain. This is indicated by two of the roots at moving
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in the right hand plane before returning to the left hand plane and stability.
For both filters, two of the roots are complex, and the third root has only a
real component.

This possibility of instability with the third order loop is merely a
nuisance for some applications such as modulators or synthesizers where the
input level can be controlled. (Although algorithm or circuit start-up can be
interesting.) For FM demodulators or bit synchronizers it can be disastrous,
and can exhibit instability. As an example, suppose the automatic gain
control does not respond to a drop in signal level. Because the signal level
corresponds to the loop’s gain, the phase-locked loop could become unstable
as illustrated by Figure 3.7.

The design equations for the third order loop need to be deferred a little
while later, until after we examine the frequency response of phase-locked
loops. (We need some results from Bode Analysis in order to formulate the
design equations.)
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There are techniques for generating root locus plots [1]. The simple cases
are easy to describe, but the special cases require lengthy discussion. To
compute the root locus plots of the phase-locked loop, we recommend
consulting Dorf [1], or utilizing a root locus plotting utility such as
Mathematica’s Signals and Systems Pack [3] or MATLAB's Control System
Toolbox [11].

Example 3.1
Plot the root locus for the second order phase-locked loop of

Example 2.2.

If we add the multiplicative factor K, to the open loop gain for the active
filter, second-order PLL, the symbolic representation of the closed loop
transfer function is
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Substituting the various loop components and filter coefficients from
Example 2.2, we obtain

Using the MATLAB’s sisotool, we plot the root locus of Equation 3-12 in
Figure 3.9. For K just greater than zero, the transfer function of
Equation 3-12 has complex poles, and then as the gain is increased to

the poles become real. One pole goes to negative infinity, and the
other pole goes to the zero at

From a systems perspective, we can think of Figure 3.9 representing the

roots of the phase-locked loop as either the signal, changes amplitude,

or the loop coefficients change due to component tolerances. This design is
unconditionally stable (assuming there are no other delays or filtering). It is
counter-intuitive that as the signal level increases, the loop response could
become sluggish due to the poles becoming real.
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3.3 Frequency Analysis

Frequency domain analysis also provides insight to the stability of phase-
locked loops. (The Laplace transform with is actually a frequency
domain analysis.) Although a computer doesn’t particularly care whether it
computes a root locus or Bode analysis, the latter has some advantages.

Laboratory data is typically measured in the frequency domain and if the
design analysis was done in the frequency domain, it aids comparisons
between theoretical and actual performance. Bode analysis also permits
accurate modeling of time delays. Recall with the root locus analysis, the

term produced by the pure time delay presents problems in finding the
roots of the characteristic equation. To work around this problem, we
approximated the delay with a lowpass filter. Bode analysis, however,
allows us to exactly represent the time delay.

The closed loop equation for the phase-locked loop is

A singularity (infinite value) of Equation 3-13 occurs when the

characteristic equation, To satisfy this condition,

These two equations define the stability of the phase-locked loop. Note
that with Equations 3-14 and 3-15, we need only evaluate the open loop gain,

for the stability boundary conditions above. This

implies we can graph the magnitude and phase response of the open loop
gain and determine whether the phase-locked loop is stable. For stability, the
magnitude of the open loop gain should be less than unity when the phase of
the open loop gain is 180°.

Figure 3.10 is a linearized Bode plot of the second order phase-locked
loop from Example 2.2. The open loop gain for this example is



74 Chapter 3

The important radian frequency of Figure 3.10 is at where the
open loop gain is unity. The phase angle at is The
difference between and provides a measure of the loop’s
stability. We define the phase margin as

In Figure 3.10, using Equation 3-17, the phase margin is 65.5°, and
shown as the difference between the actual phase angle at unity gain, and the

axis. A gain margin is the corresponding measure of gain stability
when the phase angle is 180°. Although Figure 3.10 does not have a defined
gain margin, we define it as the actual open loop gain (in dB) when the phase
angle is 180°.
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The general form for the open loop gain is [1]

The numerator has Q real roots, corresponding to the zeros of the transfer
function. The denominator has N perfect integrators, M real roots
corresponding to the real roots and R complex pairs of roots, which are pole
pairs. The significance of the log function in Equation 3-19, is that we can
replace the product terms in Equation 3-18 with summations as [1]

Similarly, we can write the phase response as a sum of the individual
terms of Equation 3-17,

The simplicity of Equations 3-20 and 3-21 allows an easy calculation of
the gain and phase margins for the phase-locked loop. An exact Bode plot
can be generated with computer analysis, but a graphical approximation of
the two equations provides insight to the loop performance.
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Example 3.2
Suppose we have a third order phase-locked loop with Przedpelski ‘s

filter, yielding an open loop gain of

The specific equation for this example is

We write the open loop gain in the form of Equations 3-20 and 3-21.

The graphical approximation to Equations 3-24 and 3-25 are shown in
Figure 3.11. The magnitude of the open loop gain is first plotted at a
frequency such as (Because of the perfect integrators, the gain at 0

Hz is infinite.} From 0 Hz, the loop gain is decreasing by In

this example, there are two perfect integrators, which cause the 40 dB per
decade decrease in gain from 0 Hz. (Decade refers to a factor of 10 in
frequency. 0.1 rad/sec to 1 rad/sec corresponds to 1 decade.) The
factor in the numerator, corresponding to the filter’s zero, has a break
frequency corresponding  to rad/sec.
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The simple zero (as compared to a complex pair) results in a positive gain
of 20 dB/decade, beginning at rad/sec. Because of the summation

indicated in Equation 3-24, the net gain is a  obtained from
summing the gain of the perfect integrators and the filter’s zero.

At the simple pole begins influencing the open loop
gain with a factor of The net gain from this frequency

forward, is then,



78   Chapter 3

The phase response is slightly more difficult, because the zeros and poles
begin affecting the phase much before significantly impacting the gain. A
linearized rule is the simple pole or zero will change the phase by 90 degrees,
beginning at 0.1 × breakpoint frequency and ending at 10 × breakpoint
frequency.

In this example, the two perfect integrators have a phase angle of – 180°
at 0 Hz. The zero corresponding to rad/sec will begin changing the
phase at at rad/sec . The phase change due to the
zero will complete at The non-zero pole of Equation 3-22 will
decrease the phase at beginning at
completing at

In this example, we did not consider a filter with complex poles or zeros.
Typical phase-locked loops will not utilize such filters, but techniques are
available for approximating the Bode plot with these filters [1].

Frequently in phase-locked loop design, we encounter time delays within
the loop components. Often the time delays are associated with discrete-time
components such as sample-and-holds, digital dividers, or sequential phase
detectors which we will discuss in later chapters. In analog loops, there are
still pure time delays due to propagation through filters or amplifiers.

Example 3.3
Consider the phase-locked loop of Figure 3.12. The time delay is

Assuming all of the design parameters from Example 2.2,
compute the gain and phase margins of the phase-locked loop.

We modify Equation 2-60 which expressed the open loop gain of the
Example 2.2’s phase-locked loop to include the time delay element.

We simplify this to the form
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This is similar to Example 3.1, with the exception of the exponential

delay. This exponential factor has a magnitude, The phase

angle can be written as where The Bode
analysis can be performed exactly, or Equations 3-24 and 3-25 can be used
with approximations shown in Example 3.2. Figure 3.13 shows the exact
Bode Plot. The time delay has significantly reduced the phase margin of the
phase-locked loop and it is now The gain margin of 8 dB can be
obtained from Figure 3.13.
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3.4 FM Demodulator

For many phase-locked loops, the concept of signal-to-noise is fictitious,
because there is nowhere to measure the signal-to-noise. As such, it can
become difficult to define the noise bandwidth of the PLL. Figure 3.14
shows a PLL used as an FM demodulator. We assume in Figure 3.14 that the
PLL is tracking the FM signal [4] and the output of the loop constitutes the
analog message.

Since we assume that the PLL is tracking the FM input, this implies that
The FM modulated signal contains information in the derivative of

Neglecting the output amplifier with gain represents

the demodulated output.
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The transfer function for Equation 3-28 includes a factor of s in the

numerator because the demodulator’s output is prior to the representing

the VCO. Because of the Laplace Transform pair, the transfer

function of Equation 3-28 can be considered as a differentiator for the input,
[7]. For FM modulation of the signal m(t),

which we can substitute into

Equation 3-28. This yields
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The final result of Equation 3-29 is from recognizing the form of the
transfer function that was originally developed for the PLL of Figure 2.4.
(See Equation 2-23.) The result for in Equation 3-30 implies that the
input message m(t), can be recovered by the PLL demodulator. The only
requirement is that the message have a bandwidth much less than the
bandwidth of the PLL’s

In Equation 3-30, the output of the demodulator is a function of the
VCO’s tuning gain, [7]. Usually with most hardware VCOs, the tuning
element is a voltage-controlled capacitor which results in a nonlinear tuning
characteristic as a function of frequency. In such a situation, the VCO’s
transducer gain will produce distortion in the output.

The closed loop frequency response for Example 2.2 is shown in
Figure 3.15. (This frequency response is graphed similar to the Bode Plots
previously discussed, but Figure 3.15 is the closed loop response instead of
the open loop response used for Bode analysis.)

Note the “peaking” that occurs in the frequency response just beyond
10 rad/sec. This is typical of a PLL’s closed loop frequency response, and
can present problems when attempting to meet phase noise specifications that
will be discussed in Chapter 12. If the message m(t) has an information
bandwidth less than 10 rad/sec, then the phase-locked loop will perform well
as an FM demodulator.
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The closed loop frequency response of Equation 3-30, represents

how well the VCO is tracking the input When the ratio is unity, there
is zero error in the loop’s output. This shows that we can indeed think of a
PLL as having a signal, so the concept of signal-to-noise for the PLL is valid.

In digital communication, phase-locked loops are often used as
demodulators for Frequency Shift Keying (FSK) or Continuous Phase
Frequency Shift Keying (CPFSK) signals. Instead of allowing discontinuous
phase transitions as in FSK, CPFSK requires all phase transitions to be
continuous. This has the advantage of reducing the out-of-band spectral
power for CPFSK modulation [8].

A transmitted FSK signal can be written as [9]

is the symbol energy

is the symbol period
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is the single - sided frequency deviation

is a specific data sequence

p(t) is a frequency pulse - shape function

As Equation 3-32 shows, a binary FSK signal consists of instantaneous
frequency tones at , depending on whether the binary
data symbol is or Prior to the development of phase-locked loops, the
traditional receiver consisted of two matched filters followed by envelope
detectors [4]. An alternative receiver uses a phase-locked loop that can
quickly acquire the instantaneous frequency, whether it is or

Every seconds it will have to quickly de-acquire (drop lock)
and then re-acquire (phase-lock) the transmitted frequency which indicates
what binary symbol was transmitted.

To demodulate the FSK or CFSK signal, a demodulator using a phase-
locked loop is shown in Figure 3.16. This particular implementation
assumes that the frequency pulse p(t) is a rectangular frequency pulse;
otherwise a correlation against the transmitted pulse shape p(t) is required.
(Pulse shaping is frequently used to reduce out-of-band spectral
components.)

To analyze the FSK demodulator in Figure 3.16, we assume a first order
phase-locked loop that has already acquired the previous transmitted symbol.
Because the first order loop has a steady-state error to a frequency step, the
integrate-and-dump detector will have a steady state voltage applied to it
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from the phase-locked loop. The linearized phase-locked loop in Figure 3.17
has a scalar loop filter gain, , corresponding to the first order loop.

We assume that the FSK binary modulation in Equation 3-31 corresponds
to frequency steps. Note that when successive symbol values do not
change, then the transmitted frequency will not change. In this case, the loop
will not have to acquire a new frequency because it continues to track the
continuously transmitted frequency. As discussed in Chapter 2, the first
order loop will have a steady-state error to the frequency step, resulting in

Equation 3-33 represents an initial condition that must be included in the
transfer function for Figure 3.17. To develop the transfer function, the
differential equation for the loop is first written as

We differentiate this loop equation, to remove the unwieldy integral,
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To solve this differential equation, we will use the Laplace transform, but
the initial conditions must first be included. Recall the Laplace transform

pair, which includes the initial conditions in the

transfer function. Using this transform pair, the first order phase-locked loop
equation is written as

For this analysis, we assume the previously transmitted symbol
corresponded to a frequency step, and the current symbol has a
frequency step. With these assumptions for the previous and current
symbols, and The

initial condition for the input, because
Substituting these into Equation 3-36, we obtain

Simplification yields

To obtain the time response necessary for the integrate and dump section
of the FSK demodulator, it is necessary to perform the inverse Laplace
transform of Equation 3-38. The first term is easily recognized as an
exponential response, but the second term requires partial fraction expansion.
Using the partial fraction expansion techniques of Chapter 2, the loop
equation is rewritten as
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The inverse Laplace Transform of each term in Equation 3-39 can be
computed either by the Laplace inverse equation or the tables in Appendix A.
Using the tables, we obtain

In Equation 3-40, we see that at time

from the previous symbol. For time

. Thus, the integrate and dump detector in

Figure 3.16 is operating with input voltages of

depending upon the data value of the symbol.

Heuristically, we want the loop to acquire as quickly as possible after a
symbol transition, to maximize the signal energy in the detector’s integrator.
Lindsey [9] investigates the noise statistics of this loop.

In Chapter 2, it was shown that for a frequency step input to

a second order phase-locked loop. Yet, the integrate and dump in Figure
3.16 is dependent upon for the symbol decision. One strategy

would be to use a time constant for the filter approximately equal to the
symbol interval. Lindsey [9] states with this filter, the performance of the
second order loop is not too different from the first order loop.

In modern receivers, a maximum likelihood receiver would be the
preferred implementation for a FSK modulation.
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3.5 Noise Bandwidth

The concept of noise bandwidth can be confusing because of the different
definitions of noise bandwidth; single-sided, double-sided, etc. Consider a
signal of the form,

where is the carrier frequency, is the arbitrary phase of the signal,

and n(t) is additive, Gaussian band-limited noise with power spectral density

Figure 3.18 shows the power spectrum of this signal. Observe half the

signal power is at the positive frequency, and the other half at

Figure 3.18 depicts bandlimited noise around the desired signal, s(t).
Such a bandlimited signal is generated when the receiver has an IF bandpass
filter with bandwidth B. Note the traditional power spectral density of
additive Gaussian noise is for both the positive and negative

frequencies.

We compute the total noise power in the received signal (assuming
additive Gaussian noise with as
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The desired signal in Equation 3-41 has carrier frequency, and the
analysis is easier if we express the additive noise as sinusoids with
frequency, The noise n(t) can be expressed as a sum of narrowband
sinusoids, [4]

The two sinusoids, and are conceptual narrowband noise
processes generated by Figure 3.19.

To obtain the power spectral densities of and we first compute

the autocorrelation function of
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The final form of Equation 3-44 results because the double frequency
term is zero. Equation 3-44 can be translated to the frequency domain by
recalling that and then

convolving the phasor with to obtain

From Figure 3.19, is the lowpass filtered version of  or

Where denotes the lowpass filtering operation. Similar analysis can be

performed to obtain Hint: Use the autocorrelation of

rather than attempting to solve directly
from Figure 3.19.

By integrating and over all frequencies, we obtain the

noise variances of the quadrature noise components, The

two quadrature noise components are statistically independent if the IF
bandpass receiver of the filter is symmetrical about the center frequency
This is an important property, because if the filter is skewed, the resulting
noise does not have an autocorrelation,
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Assume the output from the phase detector in Figure 3.16 can be
represented by multiplying the input signal, s(t), with the VCO’s

After substituting the quadrature noise representation, and performing
some trigonometric substitutions we obtain,

The phase detector output in Equation 3-50 has three baseband terms and
three double frequency terms (last three terms). We assume that the double
frequency terms are removed with lowpass filtering and define the new
variable

Under phase-lock conditions, This approximation allows us
to write the linearized phase detector output as

To further our analysis, we label the noise terms as where

In representing we divide by the factor Because this factor

appears in our loop transfer functions, the normalization of

allows us to use the transfer functions directly, even though the noise
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does not have the multiplier The power spectral density of is

obtained by first performing the autocorrelation of Equation 3-53 and then a
subsequent Fourier Transform.

Suppose the loop is tracking such that (This is our usual linear
approximation for the phase detector.) Under these conditions, we can write

Figure 3.20 shows the different noise spectrums of Equation 3-55. We
have placed the traditional Gaussian noise spectrums inside braces. Note
that is centered around DC, and we have folded the upper and lower
sidebands into this bandwidth B, centered about 0 Hz.

We note that the narrowband noise process, without the scaling
factor of 2P, has the same normalized noise power as the original noise
process. The noise power inside the loop is
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The numerator of matches The denominator’s factor of 2P is

because of the normalization to the phase-locked loop’s gain of
embedded within the loop’s transfer function.

The phase-locked loop can be modeled by Equation 3-57. Figure 3.21
shows this linearized noise model for the phase-locked loop.

The power spectral density of the system is

Considering noise only, we compute the noise variance at the output,
of theVCO as



94 Chapter 3

Note that so the phase-locked loop’s output
noise variance is

Observe that H(f) is symmetrical, so we can rewrite with a single-

sided integral (corresponding to a single sided definition) as

The traditional definition of loop bandwidth is one-sided, as shown in
Equation 3-62,

This definition of a phase-locked loop’s bandwidth permits us to express
as a function of the loop bandwidth,

The concept of loop bandwidth also allows us to rewrite the input signal-
to-noise ratio of the phase-locked loop as

Equation 3-64 is the definition of loop signal-to-noise used in this text.
Gardner includes a factor of 0.5, [5]
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The literature is confusing, and the reader is cautioned to check an
author’s definitions when comparing different results in the literature.
is a parametric which is useful in describing the performance of a PLL to
noisy signals, much like is a parametric for the dynamic response. To

avoid confusion, we will specify in our analysis and graphs, rather

than

To obtain the noise bandwidths for the different loop configurations, we
substitute the closed loop transfer function into Equation 3-47 and perform
the integration. Figure 3.22 shows the noise bandwidths for the different
configurations [5].

In Chapter 4, we will study the effects of noise upon phase-locked loop
acquisition and tracking.
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3.6 Third Order Phase-Locked Loop Design

3.6.1 Third Order Type-2 Filter

We delayed the design procedure for third order phase-locked loops until
we presented the frequency domain analysis of the loops. At this time, we
can proceed with some design guidelines for third order loops. Przedpelski
[6] defined a procedure for the third order filter of the form,

(This loop filter configuration was shown in Figure 2.14.) The first
performance parameter to be established is the phase margin, which we
described previously with Bode analysis. (The phase margin corresponds to
the loop stability at the open loop unity gain crossover.) The unity gain
crossover frequency is defined as and the desired phase margin as
With these definitions, the filter parameter can be computed as

It may seem non-intuitive to specify the loop filter through the open
loop’s unity gain frequency. In the applications most appropriate for this
filter, it is a readily computed parameter, dependent upon the phase noise
performance desired from the loop. Once is defined, then we can
obtain

This allows us to specify the third filter parameter,
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Example 3.4
Design a third order PLL, using the third order type-2 loop filter.

Compute the necessary filter coefficients for the loop filter with the
following parameters and specifications:

VCO: Phase Detector: Input
Power: 0 dBm (1mW), Unity Gain Frequency: 30 Hz, Phase Margin: 45°

Following our analysis in Example 2.1, we compute the gain of the VCO,
phase detector, and input signal level,

We substitute the specified phase margin of 45° into Equation 3-67 to
obtain

Substituting the unity gain frequency and into Equation 3-68, we
obtain

The final filter parameter for the third-order loop is obtained by
substitution into Equation 3-69,

The open loop transfer function is computed as
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Figure 3.23 shows the Bode Analysis of the open loop transfer function.
The loop’s unity gain crossover (0 dB) is at 30 Hz, just as specified. From
1 Hz to 30 Hz, the open loop phase is constantly increasing due to the
integrators. By placing the pole corresponding to at we force
the phase to start decreasing at This allows us to meet the
specified 45° phase margin. (This phase margin may be insufficient, because
the time response may have too much of an overshoot.)

The parameter establishes the breakpoint frequency of the
transfer functions’ zero. The positive 90° slope of the zero begins at
Hz and completes at We begin the negative 90° slope of the pole
at and end at The noise bandwidth is obtained by
numerically integrating,



100  Chapter 3

Numeric integration yields Noise The closed loop
magnitude response is shown in Figure 3.24. This frequency response is
important, because it provides insight to the noise performance of the loop.
If the closed loop response exhibits excessive peaking, then the noise
bandwidth will be unnecessarily higher than without the peaking. (Ideally,
we want Figure 3.24 to have flat frequency response until the amplitude roll-
off.) If excessive peaking exists, then the loop should be redesigned with a
larger phase margin.

3.6.2 Third Order Filter Type-3 Filter

Designing a third order phase-locked loop with the third order type-3
filter is slightly different. (The filter was shown in Figure 2.14.) Consider
the open loop transfer function for a third order loop with third order type-3
filter,
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To perform a Bode Analysis of this third order loop, we place Equation 3-
78 in the form of Equations 3-20 and 3-21.

To obtain Equations 3-79 and 3-80, we note that because of the
three perfect integrators in the open loop transfer function, There

are the two repeated zeros corresponding to and no poles other
than the perfect integrators. Of particular interest is Equation 3-80, which
indicates the open loop phase is a function only of the parameter, This
provides our design concept.

The first term of Equation 3-79 provides a constant gain term, which is
graphed as the horizontal line. The filter’s parameter adds additional DC

gain to the other gain parameters, The three poles at the origin

create a 60 dB/decade slope from 0 Hz. The parameter counteracts the
negative slope of the three perfect integrators with a positive 40 dB/decade
slope at After , the frequency roll-off is a negative 20
dB/decade slope. The primary affect of is to change the unity gain
frequency of the open loop transfer function, because the slope due to the
perfect integrators alone would intersect the 0 dB axis at a much lower
frequency than with the double zeros. The bold line in Figure 3.25 shows an
approximate composite of the three different terms in Equation 3-79.

The phase angle of the open loop transfer function is calculated with
Equation 3-80. It has a constant – 270° term due to the three perfect
integrators. Recall that we approximate the + 90° phase shift due to a single
zero beginning at The + 90° phase shift is completed at

The bold line in the phase plot shows the approximate
composite phase response.
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As with the third order type-2 filter, a reasonable phase margin of 45
degrees could be the design guideline for specifying We caution that 45
degrees may be insufficient, and the loop may have excessive peaking in the
closed loop frequency response. This tends the loop toward instability, and
also unnecessarily increases the noise bandwidth. In Example 3.5, which
follows, we found 65 degrees as a better design compromise.

From Equation 3-80, we define from

Solving Equation 3-81 for
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Once we have established a value for , we can solve for

A disadvantage to this design approach is that we cannot directly specify
a noise bandwidth and then obtain and To obtain a desired noise
bandwidth, we suggest setting a reasonable phase margin, and then iterating
the unity gain crossover frequency until the desired noise bandwidth is
obtain. To obtain the noise bandwidth, a numeric integration can be
performed, using the closed loop transfer function and Equation 3-62.

Example 3.5
Design a third order PLL, using the third order type-3 loop filter.

Compute the necessary filter coefficients for the loop filter with the
following parameters and specifications:

VCO:

Input Power: 0 dBm (1mW), Unity Gain Frequency: 30 Hz,
Phase Margin: 65°

In this example, the unity gain frequency is specified, along with the
phase margin. Along with the loop elements, this is sufficient to define the
filter. Following Example 2.1, we calculate the gain of the fixed loop
components,

The phase margin specification of 65° establishes the filter’s
parameter.
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Once the breakpoint of the repeated zeros is established, we can compute
the filter’s DC gain parameter,

The open loop transfer function is obtained by substituting and
into the open loop Equation 3-78,

The closed loop transfer function is obtained from

The noise bandwidth is obtained by

Numeric integration yields Noise Bandwidth = 68.8 Hz.

Figure 3.26 shows the Bode Analysis of the open loop transfer function,

Equation 3-87. The repeated zeros, corresponding to the term in

the loop filter, have a breakpoint of Recall from the

linear phase approximation, the composite phase angle will be increasing at
90°/ decade (remember there are two zeros), beginning at f=0.66 Hz, and
ending at 66.5 Hz.
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Figure 3.26 shows that we have a gain of 18 dB when the phase angle is
180° (f=7 Hz). This is a gain margin of -18 dB. (This implies that if the loop
gain is less than designed, the loop can be unstable, which can be a problem
for phase-locked loops used in applications where the signal level may vary.)
The unity gain crossover (0 dB) occurs at with a phase angle of -
115°, which yields the desired 65° phase margin.

The closed loop frequency response is shown in Figure 3.27. It shows a
moderate amount of frequency peaking around which is generally
acceptable. (Frequency peaking is usually of interest to designers when there
is a difficult phase noise specification. Frequency peaking permits extra
phase noise energy into the loop bandwidth, which can degrade the bit error
rate performance of a receiver.) If not, then increasing the phase margin will
yield less frequency peaking.

A design with 45° phase margin resulted in the magnitude response of
Figure 3.28. Note the excessive frequency peaking, which unnecessarily
increased the noise bandwidth to 91.8 Hz. (Almost a 50% increase.) From
experience, we would also be suspicious of this loop’s stability.
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The root locus of the loop design is shown in Figure 3.29. The position
of the closed loop poles at the design specification is sufficiently in the
left-hand plane that a loss of loop gain due to component tolerances (more
typically, the input signal level) will still allow a stable loop. However, at
low gain levels (as predicted by the negative gain margin in the Bode
Analysis) the loop has poles in the right hand plane, and is unstable.
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In this root locus, note that the position of the poles corresponds to
the poles of the open loop transfer function. As the closed loop
poles correspond to the zeros of the open loop transfer function.
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3.8 Problems

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Compute the root locus for the open loop transfer function,

Compute the root locus for the open loop transfer function,

Compute the root locus for the open loop transfer function,

Compute the root locus for the second order phase-locked loop’s

open loop transfer function, For this

particular design, and
Consider What is the value of k when the roots become
real?

Compute the root locus for the second order phase-locked loop’s

open loop transfer function, For this

particular design, and
Consider What is the value of k when the roots become
real?

Compute the root locus for the third order phase-locked loop using
Gardner’s loop filter. The open loop transfer function is

For this particular design,

and Consider
What is the value of k when the roots become real?

Compute the root locus for the third order phase-locked loop using
Gardner’s loop filter. The open loop transfer function is
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3.8

3.9

3.10

3.11

For this particular design,

and Consider
What is the value of k when the roots become real?

Plot the magnitude and phase graphs for a Bode analysis of a second
order phase-locked loop. The open loop transfer function is

For this particular design,

and Plot magnitude and
phase for What are the gain and phase margins?

Plot the magnitude and phase graphs for a Bode analysis of a second
order phase-locked loop. The open loop transfer function is

For this particular design,

and Plot magnitude and
phase for What are the gain and phase margins?

Plot the magnitude and phase graphs for a Bode analysis of a third
order phase-locked loop. The open loop transfer function is

.         For this particular design,

and Plot magnitude and phase
for What are the gain and phase margins?

Plot the magnitude and phase graphs for a Bode analysis of a third
order phase-locked loop. The open loop transfer function is

.        For this particular design,

 and Plot magnitude and
phase for . What are the gain and phase margins?
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3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

Compute the noise bandwidth of a loop with an open loop transfer

function of

Compute the noise bandwidth of a loop with an open loop transfer

function of

Compute the noise bandwidth of the second order phase-locked loop

with an open loop transfer function of For

this particular design, and

Compute the noise bandwidth of the second order phase-locked loop

with an open loop transfer function of For

this particular design, and

Compute the noise bandwidth of the third order phase-locked loop

with an open loop transfer function of For

this particular design, and

Compute the noise bandwidth of the third order phase-locked loop

with an open loop transfer function of For

this particular design, and

Design a first order loop filter that meets the following requirements:
VCO: Phase Detector:
Input

Design a second order loop filter that meets the following
requirement
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VCO: Phase Detector:
Input
Design the loop and. What is the noise bandwidth?
What are the gain and phase margins for the design. For what gain
value do the roots become real?

3.20 Design a third order loop filter that meets the following
requirements:
VCO: Phase Detector:
Input Damping factor:.
Design the loop for a unity gain frequency of 1400 Hz and a phase
margin of 45°. What value of gain corresponds to a marginally
stable loop? (roots on the jw axis). What is the noise bandwidth?



4
Acquisition and Tracking

In Chapter 2, the basic configurations for phase-locked loops were
presented. In Chapter 3, we reviewed frequency analysis and stability,
which allowed us to introduce design procedures for third order phase-
locked loops. In this chapter, we will be examining the subtleties of
phase-locked loop acquisition and tracking. In Chapters 2 and 3, we
were interested in the linearized performance, but in this chapter, we
want to examine acquisition, which requires consideration of the
nonlinear phase detector.

The reader is cautioned not to be disheartened by the nonlinear
equations presented early in this chapter, as they are only used to derive
some estimating quantities for acquisition. For loop tracking, noise
bandwidth, stability, etc, we will return to the linearized equations of
Chapter 2.

4.1 First Order Acquisition

Figure 4.1 is a modification of the loop architecture that we evaluated in
Chapter 2. The primary difference between Figure 2.2 and Figure 4.1 is the
nonlinear function Sin[...], within the modeled phase detector. The filter has

also been changed to a generic F(s) instead of the fixed gain, , which was

appropriate for a first order loop.
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Note the VCO in Figure 4.1 includes a center frequency, With a zero

volt error input into the VCO the VCO produces the frequency
This permits the downconversion of the input signal without requiring large
signal voltages into the VCO. (A is textbook fiction.)

Our analysis follows that first presented by Viterbi [1]. Assuming a first
order loop, with , we can write the phase error, , as

Trigonometric and calculus operations yield

In physical terms, the derivative of the phase variables, and
is frequency. With this insight, the left-hand side of Equation 4-2 represents
the frequency error of the loop with the loop phase input,

The term, represents a static frequency offset, which we
define as



Acquisition and Tracking 115

The numerous multipliers representing gain and power multipliers in
front of the Sin[.] function of Equation 4-2 can be represented with the single
variable,

With these definitions, Equation 4-2 can be expressed as [1]

Equation 4-5 is graphed in Figure 4.2. The graph is somewhat confusing
at first, because the phase error, is the independent variable, and the

phase error’s derivative, is the dependent variable. In other words, we
are graphing the loop’s frequency error for a specific phase error.

For the loop to be phase-locked, the derivative of the error, (frequency)

must be zero, i.e. Figure 4.2 indicates this condition only occurs
at the points on the abscissa. The intersection with the vertical axis
corresponds to the VCO operating at its nominal frequency,  with an error
voltage,  (This also describes the VCO’s initial condition at time

Figure 4.2 illustrates that the phase-lock acquisition process is dependent

upon the initial value of         As an example, suppose the initial

coordinate pair is at point A on the graph. The phase-locked loop

will follow the indicated trajectory to B, which is a stable null. Figure 4.2
thus graphs how the PLL will converge to a zero error condition, by
following the exact path between point A and point B. Because the first
order loop graphed in Figure 4.2 has a frequency offset, it is impossible to

obtain simultaneously and When the loop is locked, we
have a static phase error denoted by the value of at point B.
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As shown in Figure 4.2, not all of the points on the graph are

stable nulls. Only nulls with a negative slope are stable. For

example, consider point D, which might correspond to a noise spike
instantaneously forcing a loop from its null at point C. For a
displacement, we can write

If noise creates a small phase error, corresponding to we have a

positive at the unstable nulls. As shown in Figure 4.2, this will drive
the loop away from the null.

For those familiar with second order loops, it is somewhat surprising that
a first order loop does not cycle slip in acquiring a signal. Cycle slipping
occurs when the PLL makes a zero-crossing more than twice in the phase
plane portrait of Figure 4.2 without locking. (A more formal definition is
when the phase exceeds In frequency acquisition, a first order loop
behaves in a binary fashion. It either acquires phase without cycle slipping,
or it never does.

Equation 4-2 also shows if the input frequency,

, then there is no solution, implying the

loop cannot acquire the input signal. (The Sin(.) function has a maximum
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value of unity.) From this observation, the frequency pull-in limit for the
first order phase-locked loop is written as

Equation 4-5 can be solved to yield the acquisition time, but a singularity
can prevent a finite solution. Viterbi [1] notes this is physically correct, as
the time to reach steady state is indeed infinite.

The acquisition time for a first order loop is was first explored by
Richman [3] for color television receivers. Tausworth [4] developed an
estimate of the acquisition of the first order loop as

where is the steady state phase error from Equation 2-18 4-8

is the specified deviation from the steady state error

For most engineering design and analysis, Gardner [2] provides the rule-
of-thumb acquisition time for a first order loop as

This equation is only applicable if the offset frequency is less than the
pull-in limit of Equation 4-7. In fact, the first order loop will only acquire if
the condition of Equation 4-7 is true. Figure 4.3 shows a first order loop
attempting to acquire a frequency offset just greater than It appears to
track the input signal for a while, and then suffers a cycle slip where the error
voltage (output of the phase detector) changes sign almost instantaneously.

4.2 Second Order Loop Acquisition

If we were to integrate the error waveform of Figure 4.3, we would obtain
a non-zero value, because the waveform is not symmetric [2]. This
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integrated error voltage could be used to provide a DC offset term to the
VCO, which would subsequently assist acquisition. This integral of the error
waveform is actually used in a second order loop.

Because of the advantages of the active filter for the second order loop,
we will only derive the acquisition equations for this configuration. The
other second order derivations are saved for the problems. Figure 4.4 shows
the block diagram of the second order phase-locked loop during acquisition.
As with the first order loop, we have included the Sin[.] function within the
phase detector. If not for this non-linearity, the phase-locked loop
acquisition would be identical to classical control loop theory, which was the
linearized development in Chapter 2. The filter in Figure 4.4 is the time
domain representation of the active filter’s s-domain transfer function of

(Discussed in Chapter 2.)

The output of the loop filter can be written as

The VCO has a nominal center frequency (output frequency with zero
volts input) of The output of the VCO is
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From the observation that and then using the results
of Equations 4-10 and 4-11, we can write the non-linear equation for

This result for must be differentiated twice in order to remove both
integrals on the right-hand side of Equation 4-12. As we perform this
differentiation, we assume that the input signal  is at most a constant
frequency with static phase offset. In other words, the second derivative of

is zero. Also, the second derivative of is zero, which

eliminates these two terms.
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Equation 4-13 can be rewritten with traditional servomechanism
terminology as [1]

In Equation 4-14, we have made the following substitutions:

Viterbi [1] defines which normalizes the differential
equation for graphing. With this substitution, Equation 4-14 is rewritten as

(Note in Equation 4-17 that the variable t has been replaced with

Division of the coefficient for simplifies Equation 4-17,

and we obtain

Equation 4-18 is a second order non-linear differential equation, and must
solved with numerical techniques. Recall to solve a second order differential
equation such as Equation 4-18, two initial parameters are  necessary  to
specify a particular solution [10]. In Figure 4.5, we graph both and

as functions of for the specific set of initial conditions,
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and In Figure 4.5, both and begin at the specified
initial conditions, and eventually find a stable null with both variables equal
to zero. This phase trajectory corresponds to the normal acquisition of a
phase-locked loop.

Figure 4.6 is a parametric plot with coordinates, (Again,

this plot is for a specific phase acquisition with the specific initial conditions
of Figure 4.5.)

The parametric plot of Figure 4.6 allows insight as to how the phase-
locked loop simultaneously acquires frequency and phase. (Recall
represents the frequency error of the loop.) The trajectory for this particular
graph begins at the coordinate pair,   and

completes at  It is tempting to think the trajectory is

from left-to-right, but in Figure 4.6, it moves from right-to-left.
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Figures 4.5 and 4.6 represent the nonlinear acquisition process for a
specific set of initial conditions. By combining a set of plots similar to
Figure 4.6, we obtain the phase plane plots shown in Figures 4.7-4.8. These
are for two different loop damping factors. For additional phase plane plots,
consult Viterbi [1].

Typically the phase plane plots are not used in detailed design of phase-
locked loops. They are more useful philosophically in understanding the
acquisition process. However, the phase plane plots can provide insight to
the operation of the phase-locked loop with an initial frequency offset.
(Usually, the initial conditions are random variables from acquisition to
acquisition, so almost any phase plane trajectory is possible on any given
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acquisition.) The single phase plane trajectory of Figure 4.6 illustrates that
the instantaneous frequency error may actually increase as the loop decreases
the static phase error.

Gardner and Viterbi [1,2,5] state higher order loops have the same lock-in
range for acquisition without cycle slips. A second order loop can
theoretically acquire any frequency offset if saturation does not occur in the
loop components. Gardner gives the frequency acquisition time of a second
order loop as

Figure 4.9 shows a second order loop acquiring the same frequency offset
as the first order phase-locked loop in Figure 4.3. The loop noise bandwidths
and other parameters are the same with the exception of the second order
loop filter’s integrator. The information contained in the non-symmetric
waveform allows the second order loop to acquire a frequency offset that the
first order cannot.
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As a verification of Equation 4-19, the frequency offset for Figure 4.9
was 12 Hz, with a loop bandwidth of 17 Hz. Equation 4-19 suggests a
frequency acquisition time of 123 ms, which is consistent with Figure 4.19.
The frequency acquisition time is the time that the loop requires to eliminate
the frequency offset. A phase acquisition time is then incurred as the loop
adjusts phase for a phase-locked condition.

Example 4.1
We want to design a PLL with a specification on acquisition time.

Compute the necessary filter coefficients for an active second order filter
with the following parameters and specifications:

VCO: Phase Detector: Input
Power: 20 dBm (1mW), Total Acquisition Time 70 ms ,Damping Factor
(Specified) 0.707

Review the phase step acquisition graphs of the second order phase-
locked loop in Figure 2.6. For this design, we assume that the normalized
time, will provide sufficient phase accuracy to declare phase-
lock. (We want to emphasize this definition is arbitrary. In this case, it
corresponds to the error less than 10%. Depending on the application, it may
be necessary to increase or decrease the accuracy requirement, which then
changes the acquisition time.
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We can write an equation for the total acquisition time based upon this
assumption [8]

This is not sufficient, because we need to express the noise bandwidth in
terms of the natural frequency, Using the noise bandwidth table of
Figure 3.23,we substitute in the noise bandwidth for the active second order
loop into Equation 4-20.

With the appropriate substitutions for the loop gains and damping factor,
we obtain

Solving for , we obtain After obtaining
we can obtain the active filter coefficients in a similar procedure to Example
2.1. Our active filter transfer function is

The simulated performance of the phase-locked loop is shown in Figure
4.10. Because of the long acquisition time, we have only shown the last 4
msec of the simulation. The acquisition time of the simulation matches well
with the designed performance.
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4.3 Acquisition in Noise

In Chapter 3, we defined the noise bandwidths of the different analog
phase-locked loops. These were based upon linear assumption,

At low signal-to-noise ratios, this is a poor

approximation, and we wish to provide some analysis that will better
describe loop performance.

Fundamental to understanding the stochastic process of acquisition with
noise, is the probability density function of the output phase error. Using
Fokker-Planck Techniques, Viterbi derived the probability density function
of the first order loop as [5]

In Equation 4-24, is the signal-to-noise ratio within the PLL.  of
course, is the first-order Bessel function. (Viterbi credits Tikhonov [6] for
the first derivation of Equation 4-24.) From Chapter 3,
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The derivation of the probability density function for the active second
order loop has not been obtained. However, Viterbi shows [5] if

Then the probability density function for the second order loop can be
approximated by Equation 4-24. At large signal-to-noise ratios, the
probability density function approaches a Gaussian density
function, which provides some insight to the operation of the phase-locked
loop in noise. (The approach of Chapter 3, with the white noise and
bandpass filters is thus justified.)

Using Equation 4-24, the variance of the loop’s phase error may be
computed as [5]

For large signal-to-noise ratios, Equation 4-27 can be approximated by

Figure 4.11 shows the theoretical (Equation 4-28) phase error variance of
the first order loop. The linear approximation is also shown. The phase
variance of digital simulations for first order and second order loops are also
graphed in Figure 4.11. We find that Figure 4.11, Equation 4-29 suggests
that the loop performance should be better than it actually is. In order to
develop Equation 4-24, and ultimately, Equation 4-28, the phase error is
defined (This is done to provide statistical stationarity.) At low
signal-to-noise ratios, bursts of cycle slips may be occurring, and is
actually increasing much more than indicated by the
representation.
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Early in phase-locked loop analysis, it was believed there was a signal-
to-noise threshold below which acquisition or tracking could not take place.
Subsequent analysis and experimentation has shown this to be inaccurate, as
well-designed loops can acquire with Most phase detectors
are limited to so we can visualize problems arising in PLLs when the
probability of phase error becomes significant for

By integrating the probability density function in Equation 4-24, we can
compute the probability that the phase error, Figure 4.12 shows

the probabilities at the different signal-to-noise ratios.

These probabilities provide two insights. First, if the loop is under stress
and the static phase error is not zero, (first order with frequency step or
second order with frequency ramp), then the noise performance is going to be
degraded. Second, the loop is going to have significantly reduced output
phase variance for (Coincidentally, the early accepted threshold
for phase-locked loop acquisition and tracking was 6 dB.)
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A cycle slip is when the output phase error rotates through after
initially starting at zero. For a first order loop, the mean time to slip is [5]

Figure 4.13 graphs the normalized mean time to slip for the first order
loop. Note that above a 5 dB signal-to-noise ratio, the time to cycle slip
increases significantly with increasing signal-to-noise ratio. Because the
output variance of  Figure 4.11 is at the low signal to noise ratios,
it does not represent accurately the tracking of the loops.

Assuming an exponential probability density function, the cumulative
probability function can be written as

T is the time to slip, beginning with zero phase error. is the mean-
time-to-failure defined in Equation 4-30.
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Asched and Meyr [9] analyze cycle slips of a second order loop using
state variables. They conclude that the capacitor voltage in the second order
loop filter has a primary affect on whether cycle slips occur in bursts. Higher
values of damping factors produce an exponential distribution such as
Equation 4-31, whereas lower damping factors deviate significantly from an
exponential distribution of time between cycle slips. With an exponential
distribution, the individual cycle slips are independent and thus do not appear

in clusters. For Equation 4-30 can be used to estimate the

time between cycle slips for the second order active loop [2].

Viterbi [1] investigates third order tracking behavior similar to the second
order loop. However, phase-plane techniques shown above are not
applicable because there are three initial conditions corresponding to phase,
frequency, and Doppler. A single three-dimensional plot could be produced
similar to Figure 4.5, but extending it to include multiple initial conditions
would not be practical. Viterbi concludes in moderate levels of Doppler,
there is little difference between the third order and second order
tracking [11].

More recently, Welti, et al. [7] have more recent research on third-order
loop’s mean time to lose lock. Although there are several accompanying
assumptions, they conclude that higher damping factors
significantly improve the mean time to lose lock.
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4.4 Frequency Sweeping

As shown in Equation 4-19, the pull-in for a phase-locked loop can be
very slow if is large relative to the loop bandwidth  Frequency
sweeping can improve the acquisition time, but it can degrade the loop
performance in noise or other conditions, because the loop itself is under
stress with a frequency ramp [13-14].

Gardner [2] suggests a method of injecting a slewing current directly into
the loop filter’s integrator for sweeping the phase-locked loop in acquisition.
A different method is shown in Figure 4.14 [13].

In Figure 4.14, the external sweeping input, i(t), is moving the VCO
through the desired acquisition band. When the signal is acquired, the
sweeping must be terminated and the sweep voltage maintained at

where is the time the lock was obtained. If the sweep
voltage is not terminated, the sweeping circuit will sweep the VCO right out
of phase-lock. If the sweep voltage is not maintained, the VCO will lose lock
immediately, because the sweep voltage has not been added to the loop
filter’s accumulator. Whether the sweep is implemented with the summing
junction into the VCO or a charge injected into the integrator, a method of



132 Chapter 4

determining lock is needed to end the external sweep input. A lock detector
such as the quadrature lock detector presented in Chapter 11 provides a
coherent lock detection.

The maximum sweep rate for the second order active phase-locked loop
is [2]

In Equation 4-32, note the dependence on the signal-to-noise ratio within
the loop. Frazier and Page’s study [14] also shows a difference in maximum
sweep rate in noise for different damping factors, As an example, for
90% acquisition probability, at a a loop with a damping ratio of
0.5 has approximately a 6% higher sweep rate than a loop with a damping
ratio of 0.85. The percentage is higher at as the loops
approach the noise-less case.

4.5 Acquisition Summary

We conclude with a summary of the different acquisition definitions for a
phase-locked loop. As discussed in [12], these definitions specify the
performance of a phase-locked loop in different acquisition conditions. In
general, a relationship for the definitions can be written as

is the frequency range in which the phase-locked loop will lock
within a single cycle slip. As discussed in Equation 4-7, the frequency range
is limited by the DC gain of the phase-locked loop. For the active second
order filter, the lock range is

is defined as the maximum frequency step that can be applied to a

phase-locked loop without it losing lock. (An active filter second order loop
can theoretically always regain lock, but if the frequency step is larger than
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there may be several cycle slips before the loop regains lock.) A

computer simulation approximation exists [2,12],

With such a large frequency step, the second order phase-locked loop
exhibits some large transients that may be unacceptable in some applications.
A more conservative approximation might be [12]

Note this parameter is important in applications that utilize frequency
steps such as frequency-hopping spread spectrum receivers or CPM receivers
utilizing frequency steps. Although in some instances, the phase-locked loop
might rapidly recover, the resulting frequency spectrum could exhibit
objectionable far-out degradation.

is the frequency range in which the phase-locked loop will

eventually pull the VCO into lock. For a second order loop, this is infinite.

is the frequency range over which the phase-locked loop can
maintain phase lock. For the second order loop this is theoretically infinite.

4.6 Summary of Analog Phase-Locked Loop Design
Equations

We conclude this chapter with a summary of the different design
equations. This is intended for the designer, who needs a convenient list of
the pertinent design equations.
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4.8 Problems

4.1 Plot the phase plane trajectory (similar to Figure 4.2) for a first-order
phase-locked loop with The static frequency

offset is

4.2 Derive the nonlinear acquisition equation (Equation 4-12) for the second

order phase-locked loop with a filter of the form,

4.3 Design a first order loop filter that meets the following requirements:
VCO: Phase Detector:
Input error
Frequency Acquisition < 400  µ sec with a 300 Hz frequency offset

4.4 Design a second order loop filter that meets the following requirements:
VCO: Phase Detector:
Input Loop Damping
Total with a frequency offset of 300 Hz. What is
the noise bandwidth of the design?

4.5 Design a second order loop filter that meets the following requirements:
VCO: Phase Detector:
Input , Loop Damping
Total with a frequency offset of 15 Hz. What is
the noise bandwidth of the design?
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5
Digital Transforms

Chapters 2-4 presented the analysis and design techniques for analog
phase-locked loops. In this chapter we will review digital transform
techniques so that we develop a similar analysis for digital phase-locked
loops.

5.1 The Pulse Transform

One of the first digital phase-locked loop configurations was a sampled
version of an analog phase-locked loop [1]. This architecture is still used in
modems and synthesizers. Other applications include receivers for pulsed

signals such as radar transmissions [9]. In Figure 5.1, we have taken a
conventional analog architecture and added a sampler as our first example of
a digital phase-locked loop.

Figure 5.1 is an architecture common in a receiver’s frequency
synthesizer. The primary difference between the configuration above and the
complete analog phase-locked loop in Figure 2.1 is the digital phase detector
which has a sampler and zero-order hold. We have replaced the implicit
VCO transfer function with because the derivations are more general if
we use V(s).   We will discuss the zero-order hold’s transfer function,

in Example 5.1.
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In Figure 5.1, there is a “star” superscript for denoting the signal is
sampled. In the communications literature, we typically assume the “star”
superscript implies a complex conjugate, but the linear control literature uses
this notation for a sampled function. An ideal sampler can be expressed as

where is the time interval between samples

By taking the Laplace transform of Equation 5-1, we obtain the sampled
Laplace transform, sometimes called the pulse transform [2,6,8]

This is awkward and not too useful, so we simplify with the sifting
property of the delta function,

This shows that the pulse transform is an infinite sum of the continuous
transforms, with each weighted by a complex phasor. An additional property



of the impulse transform may be obtained by recognizing that is
multiplied with a periodic sequence in Equation 5-2. We can write the
periodic sequence as a Fourier Series [1],

The Fourier Series coefficients are all identical, and The
periodic sequence is then written as

Substituting Equation 5-5 into Equation 5-2 yields

Combining the exponential terms simplifies the expression

The integral in Equation 5-7 represents the Laplace transform of
and can be rewritten as

Recognizing that the inverse of the sampling period, is the sampling
frequency, we can express the frequency replicas in Equation 5-8 as
multiples of the sampling frequency.
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This is a fundamental result, because it shows the ideal sampler is a
harmonic generator. Each of the replicated frequency spectrums all have the
same amplitude as shown mathematically by the relationship between
and

A flat-top sampler which has finite pulse widths has a roll-off in the
amplitudes of the harmonic replicas [2]. Although real-world samplers all
have finite pulse widths, we will overlook this complicating factor in
subsequent derivations.

Because the ideal sampler replicates the baseband signal at
frequencies the baseband signal can be recovered with a bandpass
rather than lowpass filter. We will use exploit this property for our IF
sampling phase-locked loops to be discussed later.

Equation 5-9 also shows the importance of meeting Nyquist sampling
requirements. Figure 5.2 illustrates a periodic spectrum generated by
sampling a simple baseband signal as indicated with Equation 5-9. The
baseband spectrum is centered at 0 Hz and has a bandwidth of
Equation 5-9 states that this spectrum will also appear centered at
frequencies of as demonstrated in Figure 5.2. If the sampling
frequency, is not high enough, the periodic spectrums will overlap each
other, which is termed aliasing. In terms of Figure 5.2, we can state the
sampling theorem as
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We have one final property of the pulse or sampled Laplace transform to
discuss. Since the summation limits in Equation 5-9 are we can
write the sampled signal that has already been sampled by

Although few systems will have redundant samplers, we will exploit this
result in multi-rate sampling. More succinctly, we can write that the pulse
transform of a pulse transform is unchanged
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Obtaining the pulse transforms with only the identities developed above
can be unwieldy. Fortunately, techniques exist to obtain the pulse transform
from the ordinary Laplace transform, Figure 5.3 provides some
alternative methods of obtaining the sampled Laplace transform [2].

Using Equation 5-13, we compute the intermediate functions,

Substituting these into Equation 5-13, we obtain the pulse transfer
function

Example 5.2

Find the pulse transform of the system in Figure 5.5.
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This time we utilize Equation 5-5. If the transfer function in Figure
5.5 had multiple poles instead of repeated poles, then Equation 5-14 would
have been appropriate. In this example, the pole at -a is repeated twice. We
make the appropriate substitutions in Equation 5-15,

Taking the derivative and simplifying, we obtain the pulse transfer
function

5.2 Z Transform

A common term in Examples 5.1 and 5.2 is This exponential term
is a consequence of sampling the continuous-time signal. An equation with

is unwieldy at best. As an example, Equation 5-19 is not a ratio of
polynomials, which is desirable to perform algebraic simplification. (We
will need polynomial representation later to perform stability and frequency
analysis of the digital transforms.)

A convenient substitution for in Equation With this
substitution, we can express discrete-time transfer functions as a ratio of
polynomials which considerably simplifies our analysis.
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Performing this substitution for in Equation 5-19 yields

In Equation 5-20, we have shown that F(z) can be written as a function of
Z or Even though Equation 5-20 still has the exponential,z or Even though Equation 5-20 still has the exponential,  it
represents a constant determined by the sampling frequency and pole
location. Although F(s) corresponds to standard notation we will show it is
sometimes easier to derive the filters in the Z-domain.

It is not always necessary to compute the Z-Transform by first computing
the sampled Laplace Transform. A direct computation of the Z-Transform is
obtained through

As we analyze phase-locked loops, we will often begin with a continuous
transform F(s) from historical literature and find it easier to compute the Z-
Transform through the sampled Laplace Transform. Kuo [2] lists several
alternative expressions for the Z-Transform, X(z), which are grouped in
Figure 5.6.
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For an alternative solution, we can use Equation 5-26. First, the
intermediate functions must be computed,

Substituting these intermediate expressions of the transformation into
Equation 5-25 gives
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Equations 5-22 and 5-27 are identical, demonstrating that both techniques
are equivalent.

summation in Equation 5-24 to converge [4]. Recall from the Complex
Variables theory [3] that if a power series

converges when , it converges for every z such that By

using the fact that the individual terms in the summation of Equation 5-21 are
bounded, we can show that the region of convergence for the Z-Transform
can be written as [4]

Figure 5.7 depicts the generalized region of convergence for a Z-
Transform. Clearly, there are many special cases. One such case is where
the sampled function x(n) is non-zero for only a finite number of terms. If
the non-zero terms are bounded, then the only possible points of non-
convergence are zero or infinity. There are also right-sided and left-sided
sequences [3] such that the region of convergence will be a disk rather than
an annulus as in Figure 5.7.

From control theory, we know a typical transfer function appears as a
rational fraction with the numerator and denominator polynomials of z or s
(pulse transform). Suppose the transfer function has the form shown in
Equation 5-30.

In Chapter 8, we will analyze the stability of our closed loop systems.
Most of these analysis techniques examine the location of the system’s poles.
Recall a pole is a location of s or z that causes the denominator to vanish. A
pole will force F(z)  to have an infinite value at the pole location (unless
cancelled by a zero).

As a condition for the Z-Transform to exist, it is necessary for the



From the definition of convergence, (Equation5-28) it is clear that there c an
be no poles within the region of convergence. A zero is a value of s or z
(frequency variables) that forces the transfer function to have a value of zero
at that frequency, whether analog or digital frequency.

To obtain the poles or zeroes,, we note they correspond to the roots of the
denominator and numerator polynomials respectively. We can write the
generalized transfer function as a fraction with products of poles and zeros as
shown in Equation 5-31.

Example 5.4

Draw the pole-zero diagram of the transfer function

derived in Example 5.3. Assume

By inspection, we determine that the pole location is The
zero location is also obtained as z=0.
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5.3 Inverse Z-Transform

Without an inverse, the Z-Transform would be of little practical interest.
As discussed earlier, our primary motivation for using the transformation is
to convert complex expressions into polynomials. The inverse Z-Transform
is based upon the Cauchy integral theorem [3] which states

Following the approach of Oppenheim and Schafer [4] we will
demonstrate how Equation 5-32 can be used with the definition of the Z-
transform, Equation 5-21, to obtain the inverse Z-Transform. First, we
multiply both sides of the Z transform’s definition, Equation 5-21 by
Next, we perform a contour integration where the contour of integration
includes the origin and is entirely within the region of the convergence for
the function X(z).
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Because of the required convergence of X(z), the integration and
summation on the right-hand side of Equation 5-33 can be interchanged.
This yields

Now recognize that the right-hand integral of Equation 5-34 is in the form
of the Cauchy Integral Theorem, Equation 5-31. The integral is non-zero
only for or This leaves only one term in the entire
summation, x(k). This allows us to write the inverse Z-transform as

Substituting and exchanging the right and left-hand sides of the
equation yields the traditional form of the inverse Z-transform.

Through this application of the Cauchy Integral Theorem, we see that the
inverse Z-transform can be expressed as a sum of residues,

The residues for multiple poles are computed as

Example 5.5

Find the inverse Z-Transform for
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This is a more complex transformation because of the repeated poles.
Utilizing Equation 5-38,

5.4 Partial Fraction Expansion

Direction application of the residue Equation 5-37 can be difficult, so
typically a table of inverse Z-Transforms is used to obtain the time
sequence, x(n). (Appendix B also provides a table of inverse Z-transforms.)
Typically the transfer function can be separated through partial fraction
expansion to obtain a sum of simpler fractions that can be identitifed in
tables. To perform partial fraction expansion, we express the transfer
function [2]

The In Equation 5-41 are the poles of the transfer function as
discussed earlier. The correspond to the residues at the particular poles,
just as we obtained earlier for the direct computation of the inverse Z-
Transform in equation 5-37. We note that the order of the numerator must be
less than the denominator to perform the partial fraction expansion. If this is
not the case, then the ratio in Equation 5-41 must be synthetically divided to
obtain a “mixed” fraction where the remaining fraction meets this criteria.



A special case of residue computation exists when a pole, is repeated
M times in Equation 5-41. In such a situation we must modify the technique
to [2]

The coefficients which correspond to the partial fractions with
repeated roots are obtained from

Example 5.5

Using partial expansion can require more effort than a direct application
of the residue theorem unless some “tricks” are used. These come with
experience in deriving transformations. Instead of computing the partial
fraction expansion of we compute the partial fraction expansion of

In the problem statement, there are three separate poles, with the pole
at repeated twice. Applying Equation 5-42,

To complete the partial fraction expansion, we must find the unknown
coefficients.
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After finding the coefficients, the transfer function are written in the form
of Equation 5-41,

After all this effort, we’re still not finished. The inverse Z-Transform
must be computed for each individual partial fraction in Equation 5-49. Z-
Transform Tables or Equation 5-34 can be used to obtain the inverse
transforms for each of these partial fractions. Using the Z-Transform Table
in Appendix B,

Note that Equation 5-50 could not have been obtained directly from the
Z-Transform Tables if we had not first obtained the partial fraction
expansion of  F(z)/z.   If we had computed the expansion of  F(z) directly,
(without the z–1) then the individual partial fractions would have been
missing a factor of z in the numerator that corresponds to the entries in the
table.

5.5 Synthetic Division

Examination of the definition of the Z-transform, Equation 5-22, suggests
yet another alternative for obtaining the inverse Z-Transform. We note that
the Z-Transform is a weighted series of coefficients multiplied against the
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input Z sequence. If we could obtain the coefficients of the power series,
then we could obtain the resulting time sequence. Indeed, this is the case,
and we can sometimes use synthetic division to obtain the inverse Z-
Transform [7]. (Usually this is performed by numeric analysis routines.)

Usually, we cannot obtain a closed form expression for the inverse Z-
Transform from synthetic division unless we are clever and can recognize the
closed form expression for the resulting infinite series. However, this
technique is useful for plotting the function for a finite number of time
samples.

Example 5.6

Compute and graph the first 20 time samples represented by the transfer
function,

One method of obtaining the solution could be computing a partial
fraction expansion of Equation 5-51 which would yield the inverse Z-
transform of this transfer function. However for this example we want to
demonstrate the use of synthetic division. Equation 5-52 shows the
process of synthetic division.
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The actual closed-form expression for f(n) is obtained from an inverse Z-
Transform of Equation 5-52 and is expressed as

The first ten samples of Equation 5-52 are graphed in Figure 5.9. The values
of f(n) obtained by synthetic division are the same as those obtained from the
direct inverse Z-Transform

There are some fundamental properties of the Z-transform that are used
frequently in the analysis of phase-locked loops. These are similar to the
properties of the Laplace transform that were presented in Chapter 2.
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5.6 Zero Order Hold

Discrete samples of a continuous signal can be easily produced by a
sampler. Often, our system must provide a continuous output when the input
is a discrete sample. In Figure 5.10, we have a zero-order hold following the
sampler. A continuous-time signal is necessary for the analog filter and
voltage-controlled oscillator. A simple mechanization is the zero order hold
which is expressed as

Figure 5.11 shows the output of a zero order hold for a parabolic input
waveform. This depiction is similar to figures drawn for Riemann
integration where the value of is held constant throughout the integration
rectangle.

Other implementations of sample and holds are possible such as the first
or second-order sample and holds [2,5]. For many applications though, it is
questionable whether more complex sample and holds offer any advantages.
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As an example, at high frequencies the phase lag of a first order hold exceeds
that of a zero order hold, which is undesirable for control loops.

The impulse response of  the zero order hold is written as

Taking the Laplace Transform of Equation 5-59, we obtain [6]

The frequency response of the zero order hold is plotted in Figure 5.12.
As we would expect, there is significant amplitude attenuation as the input
frequency approaches the sampling frequency,

We note that a zero-order sample and hold preceding a transfer function
has transfer function
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5.8

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Problems

Find the pulse transform for

Compute the pulse transform for

Compute the Z-transform for

Compute the inverse Z-transform for

Use partial fraction expansion to obtain the inverse Z-transform for

Compute the modified Z-transform for

Compute the inverse modified Z-transform for

Compute the Z-transform of a system with sample-and-hold prior to
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Charge Pumps, Counters,
and Delay-Locked Loops

In this chapter we discuss some miscellaneous topics, but very important
to phase-locked loop designers. Charge pumps are the perfect match to
sequential phase detectors, converting their differential outputs to a single-
ended output. Aside from this useful function, we shall discuss how they
offer tracking and phase noise advantages over other loop configurations.

The digital counter was originally designed for logic circuits, but was
soon applied to frequency synthesizers. The phase noise performance of
digital counters is discussed in Chapter 12, but in this chapter we discuss
design techniques for reducing phase noise and improving the performance
of digital counters. We also discuss an alternative to the conventional digital
counter.

Our final topic is delay-locked loops. It is often used to describe the
early-late gate synchronizer which we will discuss in Chapter 11. In this
chapter, we discuss the delay-locked loop used by digital designers to align
clock phases.

6.1 Sequential Phase Detectors

In Chapter 2, we discussed the sequential phase detector as a component
of frequency synthesizers. The sequential phase detector is superior to
mixer-type phase detectors in many applications. Multiplying phase
detectors are preferred for data synchronization circuits, but dual detectors
can also be used [1]. The sequential phase detector provides these
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advantages: 1) extended phase detector range, 2) improved frequency
acquisition, 3) insensitive to input signal levels.

A sequential phase detector is shown in Figure 1. This is a relatively
simple implementation, as several improvements can be made to its operation
[3-4]. Figure 6.1 shows a D-flip-flop implementation, but R-S flip-flop
implementations are also popular. Note the "H" designates a logic high input
to the data inputs of the flip-flops.

The reference frequency for the phase-locked loop (synthesizer) is applied
to the “R” input in Figure 1. The VCO’s output is applied to the “V” input.
The phase detector generates two pulse-modulated outputs that a charge
pump converts into a single-ended control voltage for the VCO. (It is also
possible to use a conventional operational amplifier to convert the U and D
phase detector outputs to a single output, but it doesn't provide the other
advantages of a charge pump.)

The fundamental rule for the sequential phase detector of Figure 6.1 is
that the Up and Down outputs can never be high at the same time. To
illustrate this, assume that the inputs and outputs are all high. For this set of
initial conditions, both flip-flops are set with logical high outputs. Their
complementary outputs are both at a logical low. The NOR gate will
immediately reset the flip-flops to logical lows, so the state is
only transitional.

Figure 6.2 shows the trellis diagram for the sequential phase detector.
The state is designated by the current U and D outputs. For example, if the
sequential phase detector has the phase detector is in the middle



state of Figure 6.2. If a positive transition occurs on the V input first,
the phase detector will stay at state However, if the positive
transition occurs on the R input first, then the phase detector will
change to state

This example also illustrates a problem with the standard phase frequency
detector. As noted, when the detector was in state a transition

would keep the outputs in the current state. If a transition was missing
(due to noise) on the R input, then the phase detector would erroneously have
the D output high for at least one additional reference period. This would
have the opportunity to drive the loop out of phase-lock.

Figure 6.3 shows the operation of the phase detector with identical reference
and VCO frequencies. However, the VCO is lagging behind the reference by
180° or  radians. Note that the Down output consists of a 50% duty cycle
square wave to bring the loop into phase-lock. This allows us to determine
the effective gain of this sequential phase detector,
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Since the input transitions occur once per reference or VCO period, the
detector has a range of  radians.   Also, the phase detector is not
sensitive to the duty cycle of the input waveforms. It only requires a positive
edge and a duration sufficient for the digital circuitry.

Figure 6.4 shows the sequential phase detector’s output when the
reference frequency is greater than the VCO frequency. Under this
condition, the phase detector outputs pulses on the (U) output.

Figure 6.5 shows the sequential phase detector’s output when the VCO
frequency is greater than the reference frequency. Under this condition, the
phase detector outputs pulses on the (D) output.
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There are some design considerations for using a sequential phase
detector. If either of the inputs is noisy and extra or missing transitions
occur, then the outputs from the sequential phase detector will be
erroneously controlling the VCO.

Another problem with sequential phase detectors is decreased gain near
phase-lock. In the literature, this is described as a "dead-zone" [4-5]. A
common technique to combat this effect is to produce a minimum (U) and
(D) pulse on every waveform cycle [6]. Often this is implemented by placing
a delay between the inputs and the flip-flops’ reset input as shown in Figure
6.6. When phase-locked the minimum-duration (U) and (D) pulses are
coincident. Other techniques such as precharging can also reduce the dead-
zone of the sequential phase detector [3,9].

The low-frequency analysis of the sequential phase detector follows that
of Soyuer and Meyer in [10]. If the frequencies of the VCO and Reference,
designated as and , respectively, are not equal, we define the ratio
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For Refer back to Figure 6.4 and note the positive

reference transitions t and Because the reference frequency is

higher, there can be at most one VCO transition in the interval
Soyuer and Meyer define the probabilities of one and no VCO transitions in
the interval as [10]

If there is no VCO transition in the interval the Up (U) output
has a logic high level throughout the interval. If the VCO has a single
transition, then the U output is at a logic high until the transition. The
probabilities computed above allow us to express the expected (average)
difference between the Up and Down output as [10]

If the VCO frequency is greater than the reference, a similar derivation yields
[10]

Equations 6-5 and 6-6 represent the average difference voltage between the
U and D sequential phase detector outputs when the input frequencies are not
the same. As the input frequencies approach circuit limits, the duration of
the reset pulse, for the flip-flops in Figures 6.1 and 6.6 begins to affect
the average voltage differences. Assuming comparator times and for
the reference and VCO respectively, the average voltage differences can be
written as [10]
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6.2 Combining Sequential Phase Detectors and Charge
Pumps

Figure 6.7 shows the a sequential phase detector and charge pump
combination in a phase-locked loop. The reference signal is typically a
stable crystal-derived source. This phase/frequency is compared to the
VCO’s signal by the sequential phase detector. The phase detector generates
a pair of pulse-modulated error signals that must be converted into a single
voltage, acceptable as a control voltage by the VCO.

Gardner [7] describes the charge pump as a 3-position electronic switch
that is controlled by the three states of the phase detector: a) up, b) down,
and c) neutral. The loop filter can be driven by either voltage or current, and
the filter itself can either be passive or active. Figure 6.8 shows various
schematic permutations of the charge pump.
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In Figure 6.8a, a positive current is applied for the “UP” position, a
negative current is applied for the “Down” position, and an open circuit is
applied for the “Neutral” position. The Neutral position corresponds to both
sequential phase detector outputs in the logical low position and the others
refer to the high-going pulses on either the Up or Down outputs.

It is the uniqueness of the “Neutral” position that provides much of the
charge pump’s advantage. When the loop is phase-locked, there is very little
phase error, and both of the sequential phase detector’s outputs will be low.
Hence, at phase-lock, the loop filter is connected to an open circuit that does
not generate noise. Recall in an analog mixer phase-locked loop, the phase
error from the mixer might be zero volts, but the loop filter is still connected
to noise sources which will degrade the jitter performance of the phase-
locked loop.

Instead of currents, the electronic switch can supply positive or negative
voltages to the load impedance as shown in Figure 6.8b. However, the
current sources are the favored configuration because voltages stored in the
loop filter’s capacitors result in asymmetrical voltages applied to the load in
Figure 6.8b. Sourcing or sinking currents as in Figure 6.8a eliminates the
asymmetry which can create spurious frequency components at the phase-
locked loop’s output.

A typical charge pump configuration is shown in Figure 6.9. The
sequential phase detector, or Phase Frequency Detector is similar to the
Motorola MCH12140 (also similar to Figure 6.1) [8]. Most low-voltage
implementations require differential signals throughout the circuitry to
reduce susceptibility to power supply noise as shown in Figure 6.9. When
neither the Up or Down phase detector outputs are active, the two current
sources, ICS1 and ICS2 are shunted to an off-chip load [5]. When the phase
detector outputs are modulated (pulsing), there will be a difference in the
current levels and which is sourced to the off-chip load (loop filter).
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6.2.1 Charge Pump Equations

Our analysis follows that of Gardner [7] and Paemel [15].

Charge pump implementations 6.8a and 6.8b use a passive filter for the
load impedance whereas Figures 6.8c and 6.8d have active loop filters.
Regardless of the configuration, when the loop is in the locked condition, the
time period of the pulses applied to the charge pump is [7,15]

where is the input frequency, is the phase error, and “p”  denotes
pump. This agrees with our earlier observations of Figure 6.3 The period of
the output waveform is , and the duty cycle (time duration of the logic
high pulse) is proportional to the phase difference between the reference and
VCO inputs.

The equivalent schematics of Figure 6.8 illustrate the charge pump
delivers either a pump voltage or pump current to the loop filter.

Equation 6-9 is used to compute the average current for the configuration of
Figure 6.8a. The load impedance receives a current  for

seconds. (The sign of the current depends upon which of  the two current

sources in Figure 6.8a is switched.) Thus the average current provided to the
loop filter’s impedance is [7]

This charge pump current creates a control voltage,  across the loop

filter impedance, The control voltage is then used as negative feedback

to adjust the VCO frequency/phase for phase-lock. The control voltage to
the VCO is

The loop transfer function for the VCO is then written as
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where is the transducer gain of the VCO.

Similar to Chapter 2, we can specialize the general charge pump equation
for different loop filters by substituting the loop filter’s impedance for

Since the second-order phase-locked loop is used most often, we will derive
the equations corresponding to the loop filter in Figure 6.10. Recall that the
conventional analog loop with a passive filter such as Figure 6.10 is not able
to track a frequency step without a residual phase error. Surprisingly, we
will show that a second-order charge pump with a passive filter has a steady-
state phase error of zero for an input frequency step.

Substitution of the passive loop filter’s impedance into the output transfer
Equation 6-12 yields the second order phase-locked loop equation.

Recall in Chapters 2 and 3, we cast the loop equations into servo-
mechanism terminology. Traditionally, the second order phase-locked loop
transfer function is written as
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Comparing Equations 6-14 and 6-13, we note that Thus

the loop natural frequency,  is written as

It results in a more compact equation for the loop damping ratio if we
express the resistor-capacitor product as a time constant,

The loop damping ratio, is also obtained by comparing Equations 6-14
and 6-13.

With these definitions, the charge pump’s transfer function can be
expressed in the desired servo-mechanism notation. The charge pump phase-
locked loop with the filter of Figure 6.10 has the exact same dynamic
response as the conventional PLL.

One final observation is the steady state phase error due to a frequency
step. Recall the phase-locked loops error response to a frequency step is

Previously we had derived the output transfer function of the PLL relative
to the VCO in Equation 6-13. To obtain the phase error response, we need
the error response transfer function.   It is calculated with the following
relationship,

Using the Laplace Transform’s Final Value Theorem,
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The final result is zero because the filter of Figure 6.10 has an infinite
impedance at DC. Hence the charge pump achieves zero static error with a
frequency step using only a passive loop filter.

A second-order charge pump has challenges, though as shown in
Figure 6.11. The output of the charge pump filter has large steps that can
exceed the VCO’s tuning capability or merely provide an undesirable ripple
that will cause spurious tones in the VCO output.

A rule-of-thumb is that if the loop bandwidth is less than one-tenth of the
reference frequency, then the ripple is tolerable [7]. Otherwise filtering must
be provided to reduce the ripple.

Besides the ripple which we will attenuate with additional filtering, the
second-order charge pump is also potentially unstable. Recall in Chapter 2
that the analog second-order phase-locked loop was unconditionally stable.
The charge pump phase-locked loop is really a discrete-time system and can
become unstable at high gain levels. Gardner derives the discrete-time
characteristic equation as [7]

where the gain is computed as
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The characteristic equation can be examined with discrete-time analysis
techniques presented in Chapter 8. The roots of the characteristic equation
become real (overdamped loop) at gain values of [7]

Recall from Chapter 3 that real roots generate a loop response of the form
 where is real. There is no overshoot in the error response, but the

loop responds much more slowly than a loop with complex roots.

The loop becomes unstable for [7]

We now return to the ripple shown in Figure 6.11. There are several
difficulties presented by the ripple:
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1) The voltage frequency jumps could be outside the VCO’s tuning
range. This condition is called overload [15]. (A special case is
where the VCO is driven to negative frequency.) Clearly if the
VCO cannot tune to the frequency commanded by the loop filter,
the phase-locked loop operation will be non-linear and probably
not meet design expectations.

2) The spectral purity becomes unacceptable.

Additional loop filtering can be provided to "smooth out" the voltage
jumps commanded by the loop filter. Figure 6.12 shows example filter
configurations to replace the filters of Figures 6.8a and 6.8b.

The loop transfer function for Figure 6.12a can be written as

For the open-loop transfer function, the filter of Figure 6.12a has provided an

additional pole at Substituting this filter into Equation 6-

12 yields the closed loop transfer function for the third-order charge pump.
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The open loop response of Equation 6-25 is a third-order, type-2 loop.
The dynamic response will be similar to a second-order, type-2 loop. As a
third-order loop, it is potentially unstable. However, it can provide
attenuation of the ripple shown in Figure 6.11.

As an analysis aid, Gardner introduces the variable

For the loop is unstable.

Example 6.1

Design a charge pump phase-locked loop with the following parameters:

From the problem statement, we first compute the capacitor value for the
second-order charge pump filter of Figure 6.10. Using Equation 6-15, we
compute

The time constant of the filter is computed next using Equation 6-17,

The resistor value is now be computed from Equation 6-16,

Figure 6.13 shows the root-locus analysis for our design. It appears
similar to the second-order conventional phased-lock loop designs in Chapter
3.
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Next, we convert this to a third-order loop using Equation 6-25. The
overall loop transfer function will be of the form shown in Equation 6-24.
Using the previously computed values, we evaluate the root locus for 
The root locus is shown in Figure 6.14. (We caution that this transformation
has different dynamics and have changed.)
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6.3 Frequency Synthesizers

Digital counters are typically used to provide programmable output
frequencies in synthesizer applications. Indirect synthesizers achieve
selectable output frequencies through dividing the VCO and reference
signals with programmable dividers before applying them to a phase detector
[11]. A direct synthesizer switches offset frequencies into a mixer to achieve
frequency programmability. Figure 6.15 shows a typical indirect synthesizer.

The synthesizer output frequency is computed as

The frequency step size of Figure 6.15’s synthesizer has a limited
quantization. As Equation 6-29 shows, the frequency step size is limited by
the division ratios and reference frequency. As will be discussed in Chapter
13, it is generally desirable to keep the reference frequency as high as
possible and division ratios small to achieve low phase noise.

The dilemma of generating fine frequency steps without a phase noise
penalty is solved through the fractional-N synthesizer. The concept is to
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divide the VCO by for a period of time, and then by the division ratio

on a periodic basis. Figure 6.16 shows an implementation.

In Figure 6.16, the digital divider divides by the division ratio for

cycles of the input frequency, . Then it divides by for cycles.

Every reference cycles, it resets and repeats the sequence. The
output frequency of the fractional-N synthesizer in Figure 6.16 is computed
as

It is convenient if we rewrite the output frequency as [12]
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P represents the integer portion of the divide ratio and frac represents the
fractional component of the division ratio. Note that integer portion is
written using to represent the integer operation.

In Equation 6-30, the proportion of time that the fixed counter is dividing
is multiplied by the appropriate division ratio. Hence, the output frequency
is the average frequency produced by the division ratios. Similar to the
instantaneous adjustment pulses produced by the second-order charge pump,
the fractional-N synthesizer of Figure 6.16 has large ripple on the output of
the loop filter. The ripple is generated because the phase error is building up
as shown in Figure 6.17

The phase error accumulation of Figure 6.17 is predictable and one
technique to eliminate the ripple is to add a time-varying offset voltage or
current into the loop filter. Many instrumentation-grade frequency
synthesizers have corrected the ripple with an approach similar to that shown
in Figure 6.18.
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In Figure 6.18 we have replaced the two counters that previously
controlled the division ratio with an accumulator. The accumulator overflow
resets the accumulator and also selects the divide ratio. Because the
accumulator’s instantaneous value is equivalent to the phase error shown in
Figure 6.17, it can also be used to provide a correction to the output of the
phase detector. There are commercial components that perform all of these
functions in a single device [13].

It has also been observed that the accumulator in Figure 6.18 can be
replaced with a sigma-delta modulator to control the frequency divide ratio
[12,14]. (In fact, the accumulator itself is a first-order sigma-delta modulator
[14].) A delta-sigma factional-N phase-locked loop is shown in Figure 6.19.

A first-order sigma-delta modulator is known to have a high pattern noise
for constant input signals such as the constant divide ratio in Figure 6.19.
Higher-order sigma-delta modulators reduce the pattern noise significantly.
Hence, by substituting a third-order sigma-delta modulator into Figure 6.19,
we should expect much improved phase noise performance.

To understand how the sigma-delta modulator replaces the accumulator,
consider the model of a divide-by  divider shown in Figure 6.20. By
switching from a N to a division ratio, the divider is able to add
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 radians of phase for one period of the input signal. The one-bit phase

adjustment is followed by the divider. The input b(t) is the control
signal on whether to adjust by

The one-bit phase adjustment is coarse, and spectral improvements can
naturally be made if we permit multi-bit phase adjustments. This is the
concept of the sigma-delta fractional-N synthesizer. See [5,16] for detailed
information on the design of sigma-delta modulators for fractional-n
frequency synthesis.
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6.4 Digital Counters

An important component of the frequency synthesizers discussed in
Section 6.3 is the programmable counter. Although common digital dividers
are sometimes used in frequency synthesizers, their phase noise
characteristics are incompatible with system requirements. As a result, many
frequency synthesizers are being developed with special low phase-noise
digital counters.

There are two main categories of digital dividers: a) asynchronous and
b) synchronous. In Figure 6.21a, the asynchronous counter operates by
having each stage of the counter clock the succeeding stage. The advantage
of this architecture is that each stage of the counter can be operated at  the
current of the previous stage since the clock rate for succeeding stages is
reduced by This is an important advantage for low-power designs, but it
comes at the cost of increased jitter. The jitter from one flip-flop is passed to
the following flip-flop and becomes additive.
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The digital divider of Figure 6.21b requires more current and components
since all of the flip-flops are have the same clock. In contrast to the
asynchronous design, the output jitter is not an accumulation of all the
previous flip-flop stages.

Figure 6.22 shows a simple model for modeling the jitter in a flip-flop.
The input clock waveform generally has some distribution amplification or
buffering to all of the clock inputs. Associated with the buffer is thermal
noise, which is modeled as a an additive source. The flip-flop’s transition
mechanism also has thermal noise which is modeled in Figure 6.22.
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The thermal noise exists on the actual waveform used to transition the
flip-flop. This could be a pre-charged gate, Schmitt trigger, etc. Regardless,
the thermal noise on the clock waveform will be converted from amplitude to
phase modulation. This causes jitter, or phase noise on the output of the flip-
flop. Figure 6.23 illustrates the conversion of amplitude noise to timing
jitter. Because the flip-flop’s transition threshold is exceeded early in this
diagram, the output will also change early. This causes phase noise in the
output of digital counters.

In Chapter 13, we describe the noise modeling techniques for the digital
divider and provide equations for estimating the output phase noise of these
components.

6.5 Delay-Locked Loops

Chapter 11 discusses the loops used for synchronization of data signals.
Here we discuss a different application of delay-locked loops.

6.5.1 Introduction to Delay-Locked Loops

The fundamental design concept of the delay-locked loop is that there is
no voltage-controlled oscillator in the loop. Replacing the VCO is a voltage-
controlled delay line that changes the phase of the signal, but not the
frequency. A common application of this phase-locked loop is to
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synchronize clock edges within a digital system Figure 6.24 shows an
application of delay-locked loops[17]. The idea is that ASIC 1 and ASIC 2
are allowed to drive the system bus on opposite edges of the system clock.
Because the system bus is a high-speed interface, it is desirable to
synchronize the output enables such that there is no contention. Bus
contention, or both ASICs driving the system bus at the same time would
result in large current spikes and possibly degrading the long-time reliability
of the components [17].

In Figure 6.24, the time alignment of the clock edges is adjusted by error
feedback from the phase detector to the voltage-controlled delay line. Recall
in a conventional phase-locked loop, the VCO is adjusting frequency, but in
a delay-locked loop, a VCDL adjusts phase. The Laplace transform for the
VCDL is

6.5.2 Voltage Controlled Delay Lines

There are several different approaches to the design of voltage controlled
delay lines [17-20]. Some implementations use switches to select discrete
phase steps, while others have continuously variable phase outputs.

Figure 6.25 shows a current-starved inverter stage [17]. The loop control
voltage is applied to the current source which regulates the resistance of the
inverting transistor. A large control voltage results in minimal delay because
large currents are provided to the signal path’s inverting stage.
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Figure 6.26 shows a different VCDL. This is similar to a delay line
previously used in a DRAM controller  [5,17]. This circuit uses a shunt
transistor to control the resistance in series with the shunt capacitance. A
large control voltage will saturate the shunt transistor, resulting in a minimal
resistance with the capacitor. This condition generates the maximum delay
for the circuit.
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Often the delays of a single circuit are inadequate to adjust the signal by a
complete 360°. To extend the range of VCDL, discrete switches can switch
in fixed delays, or a continuous VCDL can be composed using a cascade of
the delay stages shown Figure 6.25 or Figure 6.26. Such a cascaded phase
adjustment is shown in Figure 6.27. (This is very similar to a ring oscillator
where the required 180° phase shift is divided among the different stages.)

6.5.3 Phase Detectors for Delay-Locked Loops

Several different phase detectors for delay-locked loops are discussed in
the literature [17-20]. A very simple phase detector is the edge-triggered D-
flip-flop to generate pulses interpolated by a charge pump. Figure 6.28
shows such a phase detector.
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Other phase detectors are possible [18-20]. In Figure 6.28, if the
reference clock occurs prior to the clock we are attempting to lock, then the
data input will be at a logic zero [17]. When the clock occurs, the flip-flop
will have a logic zero on the "Q" output, and a logic "high" on the "Locked
Clock Slow" output. Conversely if the locked clock transition occurs first,
then the "Locked Clock Fast" output will have a logic "high". A charge
pump can be used in cascade with this phase detector to convert the
differential outputs into a single-ended VCDL drive.

The phase detector of Figure 6.28 provides only a binary indication of
whether the locked clock is fast or slow. It does not provide an error signal
proportional to the phase error as with a conventional phase-locked loop. As
a result, the resulting loop is called a bang-bang control loop.

The residential heating/air conditioning system is a bang-bang control
loop because the thermostat will turn the air conditioner either off or on. A
deadband region where no temperature adjustments are made prevents
constant cycling of the air conditioner.

A disadvantage of this loop is the oscillations in output error or "chatter"
– continual small adjustments. The "chatter" can be reduced by increasing
the deadband – error region over which no adjustments are made, but this
increases the peak-to-peak output error.

Example 6.2 DLL Design Example
Instead of a bang-bang control loop, design a delay-locked loop using a

sequential (phase-frequency) detector with a charge pump.
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Design a first order loop that

allows the loop to correct a phase step in 2 ms.

Note that since the VCDL, is really a phase adjustor expressed directly in
radians rather than frequency, the Laplace Transform for the VCDL is simply

there is no denominator of ’s’ as in a conventional phase-locked loop.

We can modify the charge pump Equation 6-12 to

For this example, the charge pump filter is a series resistor and capacitor.
The load impedance for the charge pump is written as

Substituting Equation 6-37 into 6-36 provides the loop response.

The time response is computed as

Performing the inverse Laplace Transform on Equation 6-38,

A reasonable criteria for computing the phase-lock time is to compute the
time required for Equation 6-40 to reach 90% of the steady-state value.
Equivalently we can solve
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Solving Equation 6-40, we obtain

Equation 6-42 suggests that the capacitor value C is the easiest variable to
solve. (The variable R appears inside the Log() function.) Hence we select a
resistor value substitute the other parameters (including t) into
Equation 6-42 and obtain The loop’s time response is shown
in Figure 6.29.

Note that the phase step The loop has settled to

within 2 ms, achieving the design requirement.
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7
Digital Transformations of
Analog PLLs

To begin our study of the digital phase-locked loop, we will begin by
translating the analog loop equations of Chapters 2 and 3 to the discrete-time
domain. A reader may question this approach, so we quote Oppenheim and
Schafer’s explanation of translating analog filters to the digital domain [1].

1. The art of analog filter design is highly advanced and, since useful
results can be achieved, it is advantageous to utilize the design procedures
already developed for analog filters.

2. Many useful analog design methods have relatively simple closed-
form design formulas. Therefore, digital filter design methods based on
such analog design formulas are rather simple to implement.

3. In many applications it is of interest to use a digital filter to
simulate the performance of an analog linear time-invariant filter.

We believe the same statements are valid for converting analog phase-locked
loop designs to the digital domain.
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7.1 Analog Loop Transformations

We will show how the analog configurations of Chapter 2 can be
transformed directly into corresponding discrete versions. There are
different transformations possible, the most noteworthy being the backward
difference and bilinear transformations. The time-domain equations will be
emphasized similar to our development of the analog loops.

7.1.1. Backward Difference Transformations

Figure 7.1 reviews the block diagram of an analog phase-locked loop.

The presence of the VCO’s transfer function of in the analog

phase-locked loop yields a time-domain solution in the form of a differential
equation. We repeat here the differential equation for the first-order analog
phase-locked loop.

error(t) represents the phase error of the loop, and is the input
signal.
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As a first step in converting Equation 7-1 to a discrete-time form, we
replace the continuous time variable, t, with the discrete representation with
nT, and approximate the derivative

From elementary calculus, Equation 7-2 is the definition of a derivative in
the limit as the distance, between the two points vanishes. For this
application it implies that the loop’s error function, error(t), is relatively
smooth and the sampling instants are not too far apart. We will also
approximate with a similar expression. Note that we are working
directly with the time samples of the signals present inside the loop.

With the sampled equivalent of Equation 7-1, and substituting in
Equation 7-2, we obtain

Note the notation of which we adopt to reduce
the physical size of the equations. Some algebraic simplification provides

Equation 7-4 is a time-domain representation of a first order digital loop
which was obtained from approximating the derivative in the differential
equation for an analog phase-locked loop. By inspection of Equation 7-4, we
can draw the block diagram equivalent of the digital phase-locked loop. The
baseband digital loop equivalent of Figure 2.2 is shown in Figure 7.2. We
will draw the counterpart to Figure 2.1 after some discussion.

The symbol in Figure 7.2 is the customary signal processing symbol
for a one-sample time delay. (Some control systems literature use the symbol
T for the time delay element.) Note the blocks in Figure 7.1 are not
both facing in the same direction. Only the on the right-hand side is
feeding back into the loop, which is the implementation of an integrator. The
first order loop of Figure 7.2 thus has only one integrator.
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With the introduction of the symbol Z, it is appropriate to perform the Z-
transform of Equation 7-4.

As with the analog phase-locked loop, we compute the transfer function

We simplify to remove the terms,

To develop our architecture of Figure 7.1, we derived a difference
equation, Equation 7-2. This result of this technique is called a backward
difference [1,2,5]. The continuous-time transfer function of Equation 7-1 is
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Note the similarity between Equation 7-7 and Equation 7-8. In general,
the backward difference equivalent of a s-domain transfer function is
obtained by the substitution

In retrospect, we should have suspected this from the digital loop
representation of Figure 7.2. Recall the first order analog loop has a single
integrator, which is the VCO function. In Figure 7.2, the last summation
function represents an integrator. The relationship of Equation 7-9 allows us
to rapidly develop a digital phase-locked loop by merely performing
substitution of variables.

Equation 7-9 is based upon the backward difference approximation of a
derivative (Equation 7-2). From calculus, we know it is a good
approximation only if the function error(t) changes very slowly over the
interval Heuristically, the mapping from should become

distorted as the sampling rate decreases because the approximation of the
derivative becomes worse as the data samples become farther apart.
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Figure 7.3 shows the mapping from s to z with the backward difference
equation. Unfortunately, the backward difference mapping does not use all
of the z-plane’s unit circle. We note that all of the left-hand s-plane is
mapped into the small circle in the right-half of the unit circle. Although we
have some distortion in the mapping, any stable analog transfer function is
mapped to a stable discrete-time function.

7.1.2. Bilinear Transformations

Once again returning to calculus theorems, we observe that the function
error(t) can be represented exactly by the integral in Equation 7-10.

We can approximate the integral in Equation 7-10 with a trapezoidal
approximation [3]. This approximation allows us to approximate the
function, error(t) with the linear form of Equation 7-10. The interval of time
between samples is denoted

Equation 7-1 is rewritten to isolate the error'(n) on the left-hand side.

We substitute Equation 7-12 into the braces of Equation 7-11 which gives
a new difference equation based upon the trapezoidal approximation of an
integral.
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Rearranging some terms, we isolate the derivative of the input on the right
hand side of Equation 7-13.

We recognize the term is similar to the trapezoidal
approximation of an integral (Equation 7-11). We express the term

in the form of Equation 7-11.

Equation 7-15 represents the right hand side of Equation 7-14, and is
substituted to complete the difference equation. The resulting equation is
now free of integrals and derivatives.

Now we take the Z-Transform of Equation 7-16,

Equation 7-17 is rearranged to provide a transfer function of the form



202 Chapter 7

We leave as an exercise for the reader to show that Equation 7-18 can be
represented by Figure 7.2 with some minor scalar changes. More interesting
however, is the conversion between the continuous-time function Equation 7-
8 and the discrete time form of Equation 7-18. We find that in general, the
trapezoidal rule yields a transfer function of the form

This is also known as the bilinear transformation, or in the Control
Systems literature, as Tustin’s Rule [5]. Recall the bilinear transfer function
of Equation 7-18 was obtained by first generating a sampled version of the
continuous time equation and then approximating the integrals in the
differential equation with a trapezoidal approximation.

The bilinear transformation has a different mapping from the analog domain
to the discrete-time and is shown in Figure 7.4. The primary advantage of
the bilinear transform is that it maps the entire left-hand plane of the S-plane
into the unit circle. This is the best we could hope for, because all of the
stable unit circle is utilized. Any stable transform in the continuous domain
is mapped to a stable Z-transform.

Of special interest is the non-linear mapping of frequency from the
continuous-time transfer function to the discrete time transfer function.
Visually we see that an infinite area in the S-plane is mapped to a finite unit
circle in the Z-plane. The bilinear mapping in Equation 7-19 is
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If we let and substitute into Equation 7-20, we
obtain the relationship between continuous frequency and discrete frequency.

Trigonometric identities and algebraic simplification yields [7-8]

Recall that for . Thus in Equation 7-22, as long as

the product of , then there is approximately linear frequency
mapping between the s-plane and the z-plane. When this condition is not
true, it implies the loop frequency is approaching the sampling frequency,
and the consequence is nonlinear mapping. Heuristically this is reasonable,
because as the time between samples increases, the trapezoidal
approximation of the integral degrades.

The nonlinear mapping implies that the frequency breakpoints of filters
will be different between the analog H(s) and the digital H(z). Sometimes
the analog filter’s transfer function is “pre-warped” [5] to obtain the desired
digital frequency breakpoint. In other words, if we want the digital loop to
have a cutoff frequency of then we slightly change the cutoff frequency,

, of the analog filter. To pre-warp the analog system, we use the bilinear

transformation with a mapping constant, C.

In Equation 7-23, we have replaced the term with the mapping

constant C, defined as
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is analog frequency (radians/sec)
where

is digital frequency (radians/sec)

By substituting the appropriate frequencies and sampling period, we can
obtain the constant required for the specified frequency cutoff. The
appearance of two frequency variables may appear troubling at first.
However, when we discuss discrete loop filters, we will show how the analog
prototype filters are usually specified with . Equation 7-24 then
provides a convenient method for rapidly obtaining a specified discrete
frequency from an analog prototype.

Example 7.1
We want to design a first order digital loop with a noise bandwidth of

10 Hz. Our sampling frequency is 50 Hz, the VCO and phase detector gains
are unity. Assume 0 dBm input power. Design the digital loop.

From Figure 3.23, we know that . Solving for our

analog gain, K, we obtain K= 126.49. The analog transfer function is derived
from Equation 7-8. Substituting Equation 7-23 into Equation 7-8, we obtain

We are going to make the approximation that the loop cutoff frequency is
related to the noise bandwidth by the relation [4] (true for a first-order
Butterworth filter)



Digital Transformations of  Analog Phase-Locked Loops 205

Equation 7-26 allows us to obtain the cutoff frequency of our loop as
. Now using Equation 7-24, we solve for the pre-warping

constant, C, obtaining . We note that if we had used the true
trapezoidal substitution of Equation 7-20, we would have obtained
which indicates that our frequency warping is minimal with the loop filter’s
frequency and sampling rate. Substituting into Equation 7-25
provides our digital phase-locked loop’s transfer function.

Using the backward difference equation, Equation 7-9, and the first order
loop of Equation 7-8 gives a different transfer function.

We are interested in whether our digital loop response is similar to the
analog loops we have previously analyzed. Suppose that the input is a step

function which corresponds to , The response is

which we compute for the bilinear transformation of
Equation 7-27 as

The inverse Z-Transform of the step response is

Although we will discuss loop performance later, we plot the step
response of this first order loop using the time-domain representation of
Equation 7-30 in Figure 7.5. As a reference, the corresponding analog loop
response is plotted along with the digital loop response. The analog response
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was obtained by performing the inverse Laplace transform of the response of
the analog system with a step of phase input.

In this example, we approximated the noise bandwidth of the loop. In
Chapter 8 we will show how to obtain the actual noise bandwidth of a digital
loop through contour integration of the closed loop transfer function.

Example 7.2

Recall the second order analog phase-locked loop of Example 2-1. The
loop specifications are:

Natural Frequency (Specified) 3 Hz, Damping Factor (Specified) 0.707
Sampling Frequency (Specified) 50 Hz

Design the digital loop using the bilinear transformation of the active
filter loop’s second order transform. Plot the error response of the digital
loop to an input step in phase.

The second order loop’s transform is repeated below for convenience.
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We will compute the bilinear transform of Equation 7-31, but we caution
that this is not the error response. It represents the transfer function of

not , which is required for computing the error response. We

perform the bilinear transformation of Equation 7-31 with
Equation 7-23.

We choose to let , which corresponds to the true bilinear
transformation. Substituting in the specific design parameters yields

To plot the error response, recall that . We multiply

with the step transform, , to obtain

The inverse Z-Transform of Equation 7-34 is shown in Equation 7-35 and
plotted in Figure 7.6. The digital loop obtained through the bilinear
transformation is compared against the analog loop designed in Example 2.1.
The continuous time loop is shown as a continuous line and the digital loop
is shown with discrete “lollipops”.

It is interesting to compare the second order digital loop to the analog
prototype. The step response of the corresponding analog transfer function is
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shown in Figure 7.6. For a loop with , we note from Figure 2.8, that

the peak undershoot occurs at . In Figure 7.6, note that the peak

undershoot occurs just prior to which corresponds to . (The

time between samples is , obtained from the sampling frequency of 50

Hz.)

From the digital loop response, we compute . This compares
favorably to the original analog design. Visually, the two different loops
appear very similar. In this situation, the digital loop can be modeled by the
analog equations of Chapter 2. However, these are benign conditions with a
high sampling rate. Instead of approximating the performance with analog
loop equations, we encourage using the digital analysis presented later in this
text to more accurately predict the performance of the digital loops.

As with Example 7.1, we can obtain a backward difference
transformation of the second order analog phase-locked loop. Although we
leave the actual development for the problems, we provide the corresponding
transfer functions
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7.2 All Digital Loops With Block Elements

We have just developed transfer functions for phase-locked loops using the
backward difference and bilinear transformations. Sometimes the resulting
transfer functions can be implemented in a system, but often we need
individual components. As an example, recall the mixer in our first
configuration of Figure 2.1. The mixer is necessary to remove the frequency
difference between the local oscillator and the input signal. In the
linearization of Figure 2.2, we replaced the mixer with a summation element.
As we discussed, this is appropriate for analysis, but it doesn’t provide the
insight as to how we can actually build a digital phase-locked loop. Figure
7.7 shows an analog loop with block components that we must convert to a
digital form.

In Chapter 4, we showed how the delays incurred by a simple sample-and-
hold can alter the performance and stability of the phase-locked loop.
Therefore, it is important that we be able to analyze the actual loop that we
construct. Of course, when we use the verb construct, it is implicit that the
construction can merely be lines of computer code, or actual physical
hardware.
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7.2.1 Phase Detector

There are many different configurations for phase detectors. We will
discuss particular configurations in Chapter 8 and data synchronizers in
Chapter 11. For our preliminary analysis in this chapter, we merely consider
the phase detector multiplies the input and reference signals. The input has
the form

The VCO has an output of the form

The product of the input and VCO is

Note the phase detector output of Equation 7-40 includes the actual error
term, , as well as a double frequency term. If the double frequency
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term, , is within the loop bandwidth, then a lowpass filter is necessary
to eliminate interference for loop operation.

7.3 Loop Filter Transformations

The quotation from Oppenheim and Schafer [1] at the beginning of this
chapter should be repeated here. There are many, many, different digital
filter configurations possible. Decades of research and analysis for analog
phase-locked loops have provided a legacy of analog filters that are
optimized for phase-locked loops. Our approach is to perform
transformations of the analog filters.

7.3.1. First Order Loop Filters

The first order loop filters are simply gain stages. Like their analog
counterparts, there is no frequency selectivity to the digital first order filters.
(There is also no delay.) Consequently, we represent these filters as a scalar
gain,

7.3.2. Second Order Loop Filters

Because the active second-order loop filter is superior to the passive
implementation, we will analyze it only. The passive loop filter analysis is
left for the problems. (Note there are some applications which can benefit
from the “leaky integrator” form of the passive loop filter.)

From Chapter 2, the second order active loop filter has the form

(An operational amplifier implementation will yield a minus sign in front
of Equation 7-41, which must be accounted for in an actual digital loop.)
The backward difference transformation of this filter is derived from
Equations 7-41 and 7-9.
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Using Equation 7-19, we compute the bilinear transformation of the filter
as

This form of the filter uses the variable , instead of This form
permits filter construction by inspection, which we will demonstrate in
Example 7.3. The latter form is typically used for the complete transfer
function of the phase-locked loop.

It is difficult to directly compare the two filter implementations of
Equations 7-42 and 7-43. There are four variables in the two equations, and
each transformation has a unique variable. As Oppenheim and Schafer note
[1], a high sampling rate is required for an accurate approximation of the
analog filter with the backward difference transformation.

The bilinear transformation of the filter can be expressed directly in terms
of the loop parameters as

Where is the loop bandwidth defined in Chapter 4, and is the
sampling rate for the digital phase-locked loop.

7.3.3 Impulse Invariance Design

An alternative to the bilinear transformation of an analog filter is impulse
invariance design. Figure 7.8 shows the concept. We compute the impulse
response of the prototype analog filter and then design the digital filter to
match that response.
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If is the analog loop filter’s S-Transform, we obtain the impulse
response from the inverse Laplace transform,

The desired digital filter transfer function is [3]

Example 7.3
Compute the digital loop filter using the impulse invariance design of

We compute the impulse response of the analog prototype as

We apply the Z-Transform to Equation 7-47,
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7.3.4 Step Invariance Design

Rather than matching the filter’s impulse response, we can match the step
response. The concept is similar to the impulse invariance design. The
digital filter is computed as [3]

Example 7.4

Compute the digital loop filter using the step invariance design of

First we compute the intermediate argument,

The Z-Transform of Equation 7-50 is computed as

The digital filter design is completed with

Suppose we let . The step response
of the analog and digital filters is graphed in Figure 7.9.
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7.4. VCOs

The VCO in the digital loop is more appropriately called an NCO
(Numerically Controlled Oscillator) when it has discrete inputs and outputs.
The fundamental element within the VCO in Figure 7.7 is the integrator.

Suppose that we are integrating phase with our NCO, such that every
sample we are going to increment the phase accumulator by the value of
error(t). A simple algorithm for this NCO could be represented by

Note the accumulator value is maintained separately from the
transcendental Cos[.] function. Depending on the application, the Cos[.]
function is generated from a lookup table, dedicated hardware, or a floating
point CPU. Because we are using the Cos[ ] function, we want to limit our
input to the range or To accomplish this, we use the Mod
function which we define for the range space as

If

Then
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An important consideration of the NCO equation is the gain of the NCO.

The NCO in Equation 7-53 has a gain of . This implies that the

sample frequency, , has a direct impact on the gain of the loop.
(Designers often forget this scalar and are surprised when their PLL is
unstable because they have excessive gain in the loop.)

Note , so the nonlinear Mod[.] function is really for
implementation convenience, rather than disturbing the mathematical form of
accumulator(n). Thus, we can take the Z-Transform of Equation 7-53 and
ignore the nonlinear affects of Equation 7-54. Performing the
transformation, and placing it in the form of a transfer function gives

This integration method is termed Backward Euler by Jeruchim [2]. It is
absolutely stable . If we use a previous value for error(n) in Equation 7-53,
we have

The Forward Euler integrator represented by Equations 7-56 and 7-57 is
not absolutely stable [2]. Intuitively this makes sense, because Equation 7-56
introduces a time delay in our function’s response. From our study of analog
loops, we know that time delays can change a stable transfer function into
one that is unstable. Unfortunately, this is the most common form of the
integrator because of the required processing delay to produce error(n).

Note the first loop configuration in Figure 7.10. This is really not
possible, because in order to generate , the loop must have already

computed , which obviously depends on . In order to solve this

dilemma, a delay is inserted in right-hand phase-locked loop. The error
voltage, , can now be computed because the feedback is
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which is not dependent upon . However, the inclusion of the delay
with the integrator of Equation 7-55 is the same effect as using the Forward
Euler integrator. The delay can be modeled as a term for the loop filter,
but the result is the same for the loop’s forward gain.

There are many different integrators available in the literature, and a
common integrator is represented by

Note the similarity to our bilinear transformation development of
Equation 7-11. As might be expected, this is called a trapezoidal integrator
because it performs a trapezoidal approximation to the function’s integral.
Like the Backward Euler, it is absolutely stable [2].

Modulator/Demodulators (Modems) often require the generation of
complex sinusoids where . The

basic idea is to compute the coordinates of samples on the unit circle as
shown in Figure 7.11. The value of z on the unit circle represents the

complex value of . Most implementations utilize a combination of
arithmetic and table lookup instead of recursion. A combination of table
look-up and interpolation can significantly reduce the size of the required
table [7].
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7.5. Complete Digital PLL Equations

Although it is primarily useful only for analysis and not design, a
complete digital phase-locked loop equation can be generated. Equation
7-60 is the closed loop transfer function for a second-order loop with a
bilinear transformation of the active second order filter. The NCO has an
implicit delay, corresponding to Equation 7-57.

A similar equation can be computed for the first order phase-locked loop.
Similar to Equation 7-60, this equation represents the transformation of a
prototype analog loop to the digital domain. The noise bandwidth, , is the
prototype’s analog noise bandwidth, and not the resulting digital noise
bandwidth. The latter must be computed with the residue technique.
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A common error in developing the transformations of the analog loops
(such as Equation 7-60 or 7-61) is to improperly equate the NCO’s implicit
gain of as the gain which is used in the analog bandwidth equations.

However, is not in the analog prototype, so as an example for the first

order loop, , and not

Example 7.5
Recall the analog phase-locked loop of Example 2-1 and the digital

transformation of Example 7-2. The loop specifications are: Natural
Frequency (Specified) 3 Hz, Damping Factor (Specified) 0.707
Sampling Frequency (Specified) 50 Hz. Design the digital loop using the
block elements discussed above. Provide a block diagram of the resulting
loop. Plot the error response of the digital loop to an input step in phase.

7.5.1 Filter

The design technique will be to assume that the phase detector and NCO
have unity gains. We begin with Equation 2-73, which gives us the
parameters for the loop filter.

Substituting in the design parameters of the loop into Equation 7-62,
allows us to find the analog filter parameter,     .
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After finding the filter parameter , the filter’s other parameter, must
be determined. Using the definition of the damping factor, , in Equation

2-74, is obtained through

These two filter parameters, along with the constant C, define the second
order filter in Equation 7-42. For this example, we choose the true bilinear
transformation with instead of pre-warping the breakpoint

frequency. From the problem definition, the sample time,             .

Substituting all the parameters into Equation 7-44 provides

Note we express Equation 7-65 as a function of . This permits us to
write the difference equation by inspection.

The equivalent block diagram for the filter is shown in Figure 7.12. This
filter’s topology is called a Direct 1 Form [3]. It has two different delay
elements which may or may not be cost effective for a particular
implementation. An advantage of this configuration is the previous value of
y(n-l), which represents the integrator’s previous value is readily available.
Specialized techniques such as limiting or truncation can easily be performed
on the integrator’s contents. These might be performed to limit a phase-
locked loop’s acquisition range, to keep the modem or receiver from
attempting to acquire a signal out-of-band.

An alternative realization of the filter is obtained by writing [3]
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Where N(z) and D(z) are the numerator and denominator of the
transfer function, respectively. We define an intermediate transfer function,
W(z) as

X(z) is the input to the filter and D(z) is the denominator of the filter’s
transfer function previously defined in Equation 7-67. The filter’s output is
written using the intermediate transfer function as

Specifically, for the phase-locked loop filter’s transfer function,

The output of the filter can be written as
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The time domain representation is

Using Equations 7-73 and 7-71, we construct the Direct Form 2
representation of the filter which is shown in Figure 7.13. Note the simpler
architecture and the single time delay. The disadvantage of this
configuration is that the accumulator value, w(n–1), does not directly
represent the previous output. In some applications this may be
inappropriate, and a Direct Form 1 realization is superior for that application.

7.5.2. NCO

The NCO will be represented by . As was discussed

previously, an NCO has an implicit gain of the update rate, or . Recall

the loop filter was designed with the assumption that the gains of the NCO
and phase detector were unity. To compensate, we multiply the input of the
NCO with the inverse of this implicit gain. Figure 7.14 shows the block
diagram of the NCO. Note this is a linearized representation that permits
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linear analysis of the loop. The actual implementation (with the appropriate
gain correction) would use Equations 7-53 and 7-54.

Because we have a finite processing time to compute the NCO’s output, we
need to model the input delay of the backward Euler integrator. (We cannot
compute y(n) when it is dependent upon .) From Equation 7-
57, the NCO transfer function is

7.5.3. Phase Detector

The purpose of our block diagram is to obtain an overall transfer function
that permits analysis. The actual implementation of the phase detector is a
multiplier, mixing the input and the output of the NCO together. (We
caution the reader to account for the gain of the phase detector when deriving
the loop filter coefficients.) For the linearized representation, however, the
phase detector will be a simple adder with unity gain.

7.5.4. Complete Loop Representations

The complete transfer function for the phase-locked loop may be obtained
from the block elements previously defined. The forward gain of the loop is
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Recall the closed loop gain of our system is

. Substituting in Equation 7-75, and

manipulating the algebra yields

The complete block diagram of our loop is shown in Figure 7.15. We have
selected the direct form 1 representation of the loop filter. As noted
previously, this allows better monitoring and control of the loop. Again, we
want to stress the NCO and phase detector have been linearized. To actually
implement the loop, the nonlinear numeric functions would be replace those
shown in Figure 7.15.



Digital Transformations of Analog Phase-Locked Loops 225

7.5.5. Response to Phase Step Input

A good metric for time domain performance is the response of the loop to
a phase step. To determine the step response, we must first derive the error
response function, . Substituting in Equation 7-76, we

obtain

To compare the step response of this block-constructed loop with the
previous transformation design in Example 7-2, we compute the error

response to a step input. We compute

The inverse Z-transform of Equation 7-78 gives the time domain response to
the phase step input.

The time domain response is plotted in Figure 7.16. As a reference, the
analog loop we designed earlier in Example 2.1 is shown as a continuous
line. The response of the digital phase-locked loop is shown as discrete
“lollipops” corresponding to the sample values. Note how well the digital
loop matches the analog design. Comparing Figures 7.16 and 7.5 (bilinear
transformation of the second order loop) shows a difference between the two
implementations. This is primarily due to the delay produced by the
backward Euler integrator.
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7.7. Problems

7.1 Compute the backward difference form of a first-order Butterworth

filter, . Draw a block diagram of the filter, using

multipliers, adders, and delays. Graph the magnitude response for
the digital filter with . What is the region of

stability for the filter?

7.2 Compute the backward difference form of a second-order filter,

Draw a block diagram of the filter. Graph

the magnitude response for the digital filter with         .

What is the region of stability for the filter?

7.3 Compute the bilinear transformation of a first-order Butterworth

filter, . Draw a block diagram of the filter, using

multipliers, adders, and delays. Graph the magnitude response for
the digital filter with . What is the region of

stability for the filter?

7.4 Compute the bilinear transformation of a second-order Butterworth

filter, . Draw a block diagram of the filter,

using multipliers, adders, and delays. Graph the magnitude response
for the digital filter with . What is the region of

stability for the filter?

7.5 FIR filters are used frequently in digital signal processing. They
offer linear phase which is highly desirable in processing
communication signals. Let the loop filter for the phase-locked loop

of Figure 7.15 be

Compute the transfer function for the phase-locked loop. Compute
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the step impulse response for the phase-locked loop. Compute the
response to a ramp in phase.

7.6 FIR filters are used frequently in digital signal processing. Let the
loop filter for the phase-locked loop of Figure 7.17 be

Compute the transfer function for the phase-locked loop. Compute
the step impulse response for the phase-locked loop. Compute the
response to a ramp in phase.

7.7 Suppose the sampling rate for an NCO is 100 Hz. We want to
produce 10 Hz with an accuracy of 1.0 Hz. How many table
coefficients are required for the NCO? Produce an output sequence
using the table and perform an FFT of the output.

7.8 Suppose the sampling rate for an NCO is 60 Hz. We want to
produce 5 Hz with an accuracy of 0.5 Hz. How many table
coefficients are required for the NCO? Produce an output sequence
using the table and perform an FFT of the output.



8
Stability and Frequency
Response of Digital Loops

In this chapter, we want to develop stability and frequency analysis tools
for digital phase-locked loops similar to those developed for analog loops in
Chapter 3. As with the analog loops, we will show the root locus is
invaluable in determining stability.

8.1. Stability

In Figure 8.1, we have a system function labeled a phase-locked loop,
although for the purposes of this discussion it could be any digital system
with the system impulse function, h(n).

The output, c(n), for Figure 8.1 is obtained by the convolution theorem,
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For Bounded Input-Bounded Output (BIBO) stability, the system of
Figure 8.1 must have a bounded impulse function [1]

This is similar to the requirement for continuous systems,

[8] . If the condition of Equation 8-2 is true, then the output, c(n), of Figure
8.1 is bounded. As an example, suppose we have a closed loop transfer
function of the form,

A partial fraction expansion of Equation 8-3 yields

Hint: When performing a partial fraction expansion of an equation
similar to Equation 8-3, it is best to divide out a “z” first, and then perform
the partial fraction expansion on the quotient. After obtaining the partial
fraction, then multiply it by z to obtain a form with a z in the numerators as
in Equation 8-4. This places the intermediate results of the transformation
into the form most often found in Z-Transform tables.

Using Z-Transform table, Appendix B, (or direct derivation) for Equation
8-4, we obtain

Equation 8-5 is bounded if . This suggests that we can

determine the stability of a system by examining the position of all the poles
in the closed loop transfer function. If all the poles are contained within the
unit circle as shown in Figure 8.2, then the system is stable. (This
corresponds to the terms .)
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8.1.1. Root Locus

Similar to the continuous systems of Chapter 3, the root locus plot can be
used for evaluating the stability and sensitivity of the digital phase-locked
loop. The concept is the same. We compose our open loop transfer function,

, and multiply by a gain constant, K. Then we find the roots of the

characteristic equation (also the denominator of the closed loop transfer
function) and plot them as a function of gain. The next example will
illustrate the technique.

Example 8.1 Computation of Root Locus
In Example 7.3, we computed the forward gain of a second order, active

filter digital phase-locked loop as

Compute the root locus of this phase-locked loop.
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We rewrite the gain as

The characteristic equation has the form, l + ForwardGain(z).

Recalling that , we note that the characteristic

equation is simply the denominator of the closed loop transfer function.
Although we could compute the characteristic equation by inspection, we
proceed to calculate the closed loop transfer function substituting into
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To compute the root locus, we compute the roots of the denominator
(l + ForwardGain(z) = 0), and plot them as a function of the gain term, K.

As discussed in Chapter 3, the roots of the closed loop function at
are the poles of the open loop transfer function. At , the roots of the
closed loop function are the zeros of the open loop transfer function. This is
shown in the root locus plot of Figure 8.3.

At , the two poles are the same as the poles of the open loop function,
Equation 8-7. (A double pole at .) At , one pole is moving toward
the only open loop zero of The other pole is moving toward the
real axis. Recall that poles on the negative real axis create oscillatory
responses, even if they are inside the unit circle. Inside the unit circle, the
negative root is exponentially weighted by the time index n, and it will be
exponentially damped. However, the initial oscillation may be objectionable
in some applications.

As Kuo [2] notes, the best method of determining stability of a digital
loop is to directly compute the roots of the characteristic equation if the
coefficients are known. Recall for the analog loops, we found that the Bode
plot provided stability information as well as an indication of the stability.

In constructing a Bode plot for an analog loop, we have several
approximations that permit the rapid construction of a Bode plot. Most of
these approximations are based upon the log-frequency relationships of the
analog transfer functions. Unfortunately, these approximations are not
directly applicable to sampled data systems. The first problem is the
sampled data systems have an inherent wrap around the Nyquist sampling
frequency. The second complication is the frequency warping because the Z-
Transform is mapping the entire j ω analog frequency axis into the unit
circle.

There is a w-transformation [3] that allows the simple analog techniques
to construct the Bode Plot for sampled data systems. However, with the
availability of computer-aided analysis, the utility of such a transformation is
questionable. Instead, the simple gain-phase plot of the open loop transfer
function can provide relative and absolute stability measures. While this plot
does not permit the easy construction of the Bode Plot, it provides the
traditional gain and phase margins of control system analysis.

As with the s-domain plots, the gain margin is measured at the -180°
phase crossing and the phase margin is measured at the unity gain frequency.
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The reader is cautioned that this method requires special consideration when
the forward gain function has poles outside the unit circle. In such cases,
consult Kuo [2] for utilization of the Nyquist criteria with the gain-phase
plot. Since the method is similar to the analog technique, we will
demonstrate with an example.

Example 8.2 Gain-Phase Plot Example

Using the gain-phase plot method, compute the gain and phase margins of
the digital phase-locked loop of Example 7.3.
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The forward gain of the loop is

This forward loop does not have a pole outside the unit circle, so the
computation is straight-forward. We make the substitution into
the forward gain equation and graph the amplitude and phase. The unity gain
crossover is approximately 4.7 Hz and the phase at f=4.7 Hz is 130.6°. The
phase margin is computed as

The interpretation of a Gain-Phase plot becomes more difficult if there is
a pole outside the unit circle in the forward gain transfer function. (Recall
we can have a stable loop if the forward gain function has a pole outside the
unit circle, but if the closed loop function has a pole outside the unit circle,
then it is unstable.)

8.2. Noise Bandwidth of Digital Phase-Locked Loops

In Chapter 4, we presented the phase variance of an analog phase-locked
loop with Equation 4-28. A fundamental parameter for Equation 4-28 is the

noise bandwidth (recall the signal to noise ratio, ). In order to

predict the performance of digital phase-locked loops, we need equivalent
equations for the noise bandwidth and output noise power.

To not introduce further confusion, we carefully define the noise and
corresponding bandwidths. Figure 8.5 shows a phase-locked loop with a
bandpass filter preceding the input. A sinusoidal input is assumed which

corresponds to the power spectral frequency terms, and

shown in Figure 8.5. The bandpass filter has a bandwidth

defined as . This input bandwidth, , is graphically defined and we

specifically avoid calling it single or double-sided to avoid additional
confusion in the literature.
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As we know from our study of the analog phase-locked loops, white noise
is represented with a constant power spectral density of

With infinite bandwidth, it is impossible to

define a sampling frequency, sufficient to meet the Nyquist sampling
requirements. Because of this, we consider bandwidth limited noise, which
corresponds to any real system. (Parasitic capacitances, nonlinear effects,
etc, all impose a finite bandwidth limit on a real system.) The total noise
power into the phase-locked loop is with the total signal power of P.
The input signal-to-noise ratio into the loop is then

The phase-locked loop itself has a loop filter which will further reduce
the noise, assuming the sampling frequency is above the Nyquist frequency.
This also explains why digital phase-locked loop signal-to-noise ratios are
dependent upon the input filter's bandwidth.

When the continuous bandlimited noise process n(t), is sampled, discrete
noise samples n(k) are obtained. The covariance and autocorrelation of the
noise samples are identical because we assume a zero mean. The covariance
is written as the statistical expectation

Because the white noise has zero mean, the Z-Transform of
Equation 8-10 exists, and is defined as power spectrum of the sampled white
noise sequence, n(k).



Stability and Frequency Response of Digital Loops 237

The total power in the white noise process, , is obtained from the

relationship, [1]

We can write Equation 8-12 in an equivalent form for the contour ,

substituting

In this text, the phase-locked loops have been defined with a closed loop
transfer function . Recall that the output power spectrum of a linear

time-invariant system is . We can substitute this

relationship into Equation 8-13 to obtain the output noise power of the
phase-locked loop as

Figure 8.6 shows a noise model of the digital phase-locked loop. In our
closed representation, we include the scalar , which represents the
input signal level. This is useful for remembering the input signal level
directly affects the loop performance, but the sampled white Gaussian noise

samples do not have this factor of . We could re-derive our closed
loop equations without the gain factor, or alternatively, we can consider that
the power spectrum of the noise applied to the loop is
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where is the effective input noise spectrum to the loop, and

is the actual noise spectrum.

This allows us to write the noise variance out of the NCO as [5]

Again, we can evaluate along the contour and substitute

to obtain the equivalent form,

Actually, Equation 8-17 is more physically accurate from a perspective of
spectral power density. is the Z-Transform of the covariance,

, whereas is power spectral

density. We make the definition that the total noise power out of the loop,
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Equation 8-18 defines as a single-sided loop bandwidth, and makes it
equivalent to the definition of noise power for the analog loop,
Equation 3-64.

Lindsey and Chie [5] define the one-sided loop bandwidth , of the
loop to be

Equation 8-19 is only a ratio, it does not provide an absolute noise
bandwidth, . In Equation 8-19, the variable represents the bandwidth

of the IF filter in front of the digital phase-locked loop. (See Figure 8.5) The
scalar, 2, as a multiplier for , in Equation 8-19 may be confusing at first,
but note the contour integral is the equivalent of integrating over both
positive and negative frequencies. Because is single-sided, we need the
factor of 2 in Equation 8-19.

Brute-force computation of Equation 8-19 is tedious, so typically we
utilize residues or table lookups. However, caution needs to be exercised in
the computation, because only poles within the region of stability should be
considered. The contour of integration in Equation 8-25 is important [1],
because the integration must be performed in the stable region. Direct
substitution of the integrand into tables does not account for this
consideration, and incorrect values can be obtained without considering the
region of stability. We will demonstrate this in Example 8.6.

Beginning with Equation 8-19, we can make substitutions to obtain the
output noise variance of the digital phase-locked loop.
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Example 8.3 Computation of Noise Bandwidth

Given a second order phase-locked loop with

, compute the noise bandwidth. An analog

1.0 Hz filter design was converted with a bilinear transform and a sampling
rate of 30 Hz.

Substituting the given into Equation 8-25 we compute the loop
bandwidth integral as

As mentioned previously, direct substitution of the integrand into
Z-Transform tables or improper use of residues can lead to an incorrect
answer. Figure 8.7 shows the pole-zero plot of the integrand.

Note in Figure 8.7 that two poles are outside the unit circle. We want to
choose a contour inside the region of stability and still include the other two
poles. The unit circle is chosen in this case.
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Representing the integrand of Equation 8-21 by I(z), we express the
integrand as products of the form

. Most of the and terms

will be zero, although we expressed it as the general form.

To obtain the integrand as a product of rational fractions, it is easiest to
write the functions and as individual products.

We begin with the problem statement’s and find the roots of the

denominator to write the fraction as
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Each of the two poles can be separated easily in Equation 8-22, which
allows us to compute the integral by residues quickly. We find the roots of
the function and write it as

The complete integrand is then written as

Equation 8-24 is consistent with the pole-zero diagram of Figure 8.7. By
inspection, we see that the poles corresponding to are outside
the unit circle. This indicates that we only need to compute the residues of
I[z] for the poles of

The integral of Equation 8-21 is completed as
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Because Equation 8-27 is a ratio, it is interesting to obtain an absolute
number which we can compare to analog loops. Suppose the input

bandwidth is , which just meets the Nyquist sampling frequency. To

convert the fraction in Equation 8-27 to an absolute bandwidth, we multiply
by the sampling frequency to obtain

The loop bandwidth for the analog design was 1 Hz, so the digital design
matches well at this sampling rate.

8.3. Sampling Rate Effect Upon Loop Bandwidth

From our study of the Z-Transform in Chapter 5, we would expect the
loop performance to be effected by the sampling rate. Heuristically, as the
sampling rate increases, the loop becomes much more like an analog loop.
Figure 8.8 shows the normalized loop bandwidth of a second order phase-
locked loop as a function of the normalized sampling rate. Jeruchin, et.al.
suggests a sampling rate of 4 to 16 times the simulation bandwidth [6].
Figure 8.8 shows that for sampling rates less than 7 times the loop
bandwidth, the resulting digital loop has excessive noise bandwidth.

To obtain Figure 8.8, we designed an analog phase-locked loop with a
bandwidth of 3.5 Hz. We applied Equation 8-25 to all of the designs at the
different sampling rates and graphed them after normalization.
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8.5. Problems

8.1 Compute the Root Locus plot for a first order phase-locked loop with a

transfer function of . Plot the Root Locus for

8.2 Compute the Root Locus plot for a first order phase-locked loop with a

transfer function of . Plot the Root Locus for

8.3 The open loop transfer function for the phase-locked loop is

. Plot the root locus for

8.4 Let the open loop transfer function for the phase-locked loop be

Plot the root locus for the root locus from gains of to

8.5 Consider the sampling frequency to be 160 Hz. Let the open loop
transfer function for the phase-locked loop be

. Compute the gain phase plot for

0<f<80 Hz. What are the gain and phase margins?

8.6 Let the open loop transfer function for the phase-locked loop be

. Consider the sampling frequency

to be 313 Hz. Compute the gain phase plot for 0<f<140 Hz. What are
the gain and phase margins?
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8.7 A digital loop was designed from an analog loop with a 100 Hz loop
bandwidth. The sampling frequency is 1200 Hz. The closed loop

transfer function is . Compute

the digital loop bandwidth using residues.

8.8 A digital loop was designed from an analog loop with a 33 Hz loop
bandwidth. The sampling frequency is 126 Hz. The closed loop

transfer function is . Compute

the digital loop bandwidth using residues.

8.9 Using Equation 7-53, compute the noise bandwidths of a 250 Hz
phase-locked loop, at sampling rates of 600 Hz, 800 Hz, and
2400 Hz.

8.10 Using Equation 7-53, compute the noise bandwidths of a 411 Hz
phase- locked loop, at sampling rates of 1000 Hz, 2000 Hz,
and 4000 Hz.



9 All-DigitalPhase-Locked
Loops

In this chapter, we are going to extend our survey to loops that have do
not have analog prototypes. Lindsey and Chie [1] performed a 1981 survey
of digital PLLs that is recommended to the reader desiring additional
architectures.

9.1. Non-Uniform Sampling

For all-digital phase-locked loops, there are alternatives to the sine and
cosine based NCO as presented in Chapter 7. By utilizing sampling theory, it
is possible to construct a phase-locked loop with a numerically controlled
clock. Before discussing the architecture of a digital clock, we want to show
the advantages of the concept. Figure 9.1 shows a phase-locked loop with a
digital clock. Our derivation follows that of Chie in [2], which is similar to
Weinberg and Liu [8]. (See also McCain, [3]).

In Figure 9.1, the sampler takes a sample of the bandpass signal at time
. The time interval between samples is expressed as

The digital clock has a nominal clock period, T* , which is adjusted by the

control input, , according to the equation
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The control input, , to the digital clock in Figure 9.1 has an implicit

delay. (It is physically impossible to have a discrete input dependent upon
that input.) This is similar to the delay included for the NCO in Chapter 7.
How the digital clock actually implements Equation 9-2 is deferred for later
discussion in this chapter.

In order to generate the control voltage to the digital clock, a processor
[3] is symbolically included in Figure 9.1. The processor, P[z], develops the
error term, necessary to adjust the digital clock. The processor can

be nonlinear or linear and is dependent upon the application. As an example,
a data-aided data tracking loop for a modem has a processor to compute the
correlation of the data and the most likely received waveform. In some
applications, it is simply an implicit quantizer. For convenience, we write
the output of the processor as

Equations 9-1 and 9-2 allow us to develop the following recursive
relationship for the clock sample times,



All Digital Phase-Locked Loops 249

Let the sampled analog signal be written as

Substituting the recursive expression for into Equation 9-5 yields

For reasons that will be apparent shortly, we define the nominal period of
the digital clock as

In Equation 9-7, we select a convenient integer, N, for the specific
implementation. Substitution of the nominal period into the equation for the
output of the sampler, Equation 9-6, yields

Note that the sampled signal represented by Equation 9-8 is now
baseband instead of bandpass. The carrier frequency, , has been removed
from the signal to be processed by the phase-locked loop. If the sum of the

error signals is equal to the incoming phase , then the PLL

loop has synchronized to the input carrier frequency, . For this reason, the

loop configuration of Figure 9.1 is often called a carrier synchronizer.
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The IF sampling technique of the digital clock allows direct down
conversion of the input signal without requiring an actual mixer or sine-
cosine NCO. Of course, the design is constrained by the requirement to
select the nominal clock period. (This becomes difficult in some modems
that provide bit rates adjustable in 1 Hz increments.)

Examination of Equation 9-8 suggests that the phase error between the
input and the sampled output can be defined as

Note in equation 9-9, represents the phase error, it is not the

equivalent of of the analog and transformed analog loops! (Recall in

these loops, was the output phase to the phase detector or mixer, not the

phase detector error.) The phase error estimate, , is an accumulation of
the control voltages to the digital clock. We can obtain a recursive equation
for the phase error by expressing the phase error at times and k, and then
subtracting the last equation from the first.

To proceed further, we must define the filter F(z), and the processed
output , from the processor in Figure 9.1. (This will define .) The

digital filter for phase-locked loops has the general form

Where is the filter coefficient of the mth filter stage. N is the number of

filter stages. The quantity (N-l) also determines the highest order of
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integrator in the filter. (Recall the order for the complete phase-locked loop
= N). The block diagram for first and second order filters are shown in
Figure 9.2.

9.1.1. Second Order Digital Phase-Locked Loop Equations

From Figure 9.2, it is apparent that higher order filters can be synthesized
from Equation 9-11 and cascading elements. We note that the second order
filter above can be made equivalent to the bilinear transform of the active
second order filter. The equivalence is

Where

and

Equation 9-12 is not the only design method for specifying the digital
filter, F(z). Later, we will show how the impulse response of the closed loop
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transfer function can be made into a sampled version of the traditional active
second order loop.

Although the proof comes later, a digital phase-locked loop with
can track an input of the form

Earlier, the phase error, , had been defined as

. From Equation 9-8, this is the phase argument

of a sine function, and allows the input to be written as

Similar to the linearized analysis of the analog phase-locked loops in
Chapter 2, we approximate when . This is
certainly true when the loop is accurately tracking the input. Acquisition
analysis needs to include the nonlinearity, which we will consider later.

To further simplify the analysis, we assume the processor is linear, with a
gain, . The processor also filters the noise samples such that the output

noise is represented by . (This is similar to modem design where we are
concerned only with representing the information accurately.) [4]

The linear assumption for phase error, , and the linear
processor of Equation 9-14, allows the recursive Equation 9-10 to be
rewritten
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We have represented the filtering action of the loop filter in Figure 9.1 by
the convolution of f(k) with the signal-plus-noise term of

.The digital filter’s impulse function is represented

by f(k) in Equation 9-15. The cumbersome convolution is removed by taking
the Z-Transform of Equation 9-15.

Simplification of Equation 9-16 yields

Recall that represents the phase error, and not the loop output.

Typically phase-locked loop transfer functions are defined to provide the
loop output, and not the error term. We work around this by defining the
closed loop output transfer function, as

is the equivalent of the closed loop transfer function for the
analog phase-locked loops. This permits Equation 9-17 to be written as

As with the analog phase-locked loops, the transfer function for the error
response, . This is consistent because substitution in

Equation 9-19 for zero noise has .

To proceed further with Equation 9-18, we must specify F(z). The first
order filter has , and the second order filter has
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. We can substitute the second order filter’s equation

into Equation 9-18, and set for a first order loop equation.

We can convert the closed loop transfer function of Equation 9-20 into
the transfer function for the error response by the relationship,

This is simplified with normalized parameters as

The normalized closed loop transfer function is

With the normalized error transfer function of Equation 9-22, the difference
equation of Equation 9-15 with no noise can be written as

with initial conditions of if the phase-locked loop
starts at time with zero initial states.

By defining the normalized parameters of the digital phase-locked loop
with
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then the closed loop transfer function, , has the equivalent impulse

transfer function of the analog loop, , with the

normalized natural frequency, , and damping ratio [3]. Substitution of
Equation 9-25 into the normalized transfer function, Equation 9-23, yields

The corresponding transfer function for the error response is

Equations 9-26 and 9-27 are formidable because of the transcendental
functions, but the phase-locked loop transfer function is usually analyzed in
the form of Equation 9-22. To provide the design coefficients for the desired
performance from the specified loop natural frequency, , and damping
ratio, , we provide the following [3]



9.1.2. First Order Loop Equations

For those interested, substituting into Equation 9-20 yields the
closed loop transfer function for the first order digital loop. Simplification
after the substitution provides

9.2. Noise Analysis of the Second Order Loop

Before discussing the second order loop responses to various inputs as in
Chapter 2, we want to consider the noise performance. As with the noise-
less derivation, we return to Equation 9-19.

Recall the definition of noise variance for the digital phase-locked loops,

Equation 8-22, . This result is

directly applicable to this all-digital phase-locked loop. The one-sided noise
bandwidth is also defined as

where is the power spectral density of the noise. Substitution of the

error response transfer function (Equation 9-22) into the noise bandwidth
ratio equation, Equation 9-31 yields

256 Chapter 9
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The noise bandwidth ratio of Equation 9-32 can be expressed with the
natural loop frequency, and damping ratio, parameters as

Consequently the techniques developed in Chapter 8 are directly
applicable to computing the noise bandwidth of these digital phase-locked
loops. (Recall the approach is use residues and compute only those that are
within the unit circle.)

Example 9.1
Design a digital sampling phase-locked loop with the following

parameters:

Loop Sampling Frequency = 100 Hz, Carrier Frequency = 200 Hz,
Processing and

(See 2-81 for computing . Must include the 50 ohm resistor.)

We begin with Equation 9-33, because we need to determine the required
. This is a nonlinear equation and can be found by iterating Equation

9-33 with successive “guesses”. Alternatively, a numerical analysis tool can
provide the solution. Using such a tool (Mathematica), we find

We would expect the digital loop to approach the behavior of the analog
loop, since the closed loop gain Equation 9-21 was specified to have the
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equivalent analog impulse response. Recall from Chapter 3,

for a second order loop. Substituting into the problem statement,

we obtain Placing the noise bandwidth ratio into the expression

for , yields a loop natural frequency, , which is a close

agreement to our analog design.

Noting that the processing gain, , is unity, Equations 9-28 allow

and to obtained by substitution.

The complete error response transfer function is

The block diagram of the phase-locked loop design can now be
constructed. Figure 9.3 shows the phase-locked loop with the digital filter
coefficients computed in Equations 9-34 and 9-35. We show the frequency

input to the digital clock.

As discussed previously, if the sampling frequency is an integer multiple
of the carrier frequency, then the phase-locked loop demodulates the carrier
on the incoming signal without requiring a downconversion mixer. Again
though, this requires the loop’s sampling frequency to be an integer multiple
of the analog IF signal’s frequency.
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The stability of the loop is verified with a pole-zero plot of the error
response function in Figure 9.4. As shown in the figure, the poles are close
to the unit circle, although the loop is stable. This suggests that a root locus
should be computed to determine the stability sensitivity to gain and
coefficient quantization.

Because the phase-locked loop was designed to approximate the analog
phase-locked loop response, it is of interest to graph the step response. First,
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the inverse Z-Transform of the loop’s error step response,

is computed.

The error step response is graphed in Figure 9.5. Recall from the study of
second order analog loops, we expect the peak undershoot to occur at

. The peak undershoot of Figure 9.5 is approximately n=47. This

permits to be computed as

This normalized value for the peak overshoot shows the digital loop’s time
response is a reasonable approximation to the performance of the analog
loop.
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9.3. Noise Bandwidth of First Order Loops

As before, we find the noise bandwidth from the relationship,

for the first order loop is obtained

from Equation 9-29. Then the contour integral is computed by using the
residue theorem. The integral is represented as

From the residue theorem, we compute the integral as

The step between Equation 9-40 and 9-41 is made assuming that the
integration is along the closed contour . In order for to be

stable, its pole must be within the unit circle. That implies that the pole for
is outside the unit circle. Recall the residue theorem states that

we only consider poles within the unit circle, so we disregard the pole for
in the computation of Equation 9-41. Completing the algebra of

Equation 9-41, we obtain the noise bandwidth of the first order loop.

Example 9.2

Design a first order digital sampling phase-locked loop with the following
parameters:
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Loop Sampling Frequency = 100 Hz, Carrier Frequency = 200 Hz,
Processing

(See 2-81 for computing . Must include the 50 ohm resistor.)

Substituting in the problem statement parameters into Equation 9-42, we
obtain

Substituting the gain of Equation 9-43, and the problem statement parameters
into the first order Equations 9-29 and 9-30, yields

By inspection, this first order loop is unconditionally stable. (The single
pole is at , inside the unit circle.) The inverse Z-Transform of the
error response, Equation 9-45, is

For comparison, we plot the error response of the first order loop in Figure
9.6. Note that the first order loop does not exhibit the overshoot like the
second order loop of Figure 9.5.
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9.4. Components of Digital Phase-Locked Loops

So far in this chapter, we have shown the advantages and theory of the
phase-locked loop with the non-uniform sampling. After this analysis, we
can begin the discussion of how to actually construct such a phase-locked
loop. Figure 9.7 shows a block diagram of a digital clock derived from a
simple preset counter.

The most important idea of Figure 9.7 is the digital filter is generating a
digital word (multiple bits) to the comparator. The timer counts down from
the counter’s preset register contents (represented by the digital value of M)
until it is preset by the comparator. The comparator is continually comparing
the digital word represented by the counter’s state and the digital error word
from the filter.

The master clock has a clock period of . Suppose that the error word,

, is less than M. Then the next clock period is
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If we select the master clock period and preset value such that
, and define , then our digital clock period

has the equation

This is identical to Equation 9-2, which was used to demonstrate the
implicit downconversion of Figure 9.1. Next, we return to Equation 9-10,

and define our phase estimate, , as

We use Equation 9-10 to discover the relationship
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By taking the Z-Transform of the final result of Equation 9-50, we obtain

With some algebraic operations on Equation 9-51, we can obtain the
transfer function of the digital clock.

Equation 9-51 is the same as the sine-cosine NCO of Equation 7-47,
although we have a completely different architecture. This NCO has the
same backward Euler integrator configuration. (Recall because of the delay,
this NCO is conditionally stable [7].)

An alternative configuration often used in processor-based phase-locked
loops is shown in Figure 9.8. This architecture uses a timer with a preset to
implement a digital clock.

The fundamental idea of Figure 9.8 is that the digital filter is providing a
digital word (multiple bits) to the preset register. The timer counts down
from the register contents until it reaches zero, and the terminal count pulse
is generated. The terminal count pulse then causes the next preset register
contents to be loaded into the counter and it begins counting down on the
next clock pulse from the crystal oscillator. When the digital clock generates
the terminal count from the countdown timer, the terminal count is used as a
timing pulse, usually to cause a sample and hold to sample the analog input.
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Mathematically we represent this NCO having a clock period, T*, as

where

We can define the control word, P, as containing a nominal integer (offset
frequency) and an error term as

Substitution of Equation 9-54 into 9-53 yields the exact same digital
clock equation as the digital clock of Figure 9.7

9.5. Phase Detectors

In Chapter 7, we considered a multiplying phase detector (which we
linearized for analysis), that is appropriate for phase-locked loops at lower
sampling frequencies. In higher speed applications, we often find a phase



All Digital Phase-Locked Loops 267

detector based on a zero-crossing detector. The zero-crossing detector
generates a pulse that is begun by the zero-crossing detector and terminated
at the zero-crossing of the reference. Figure 9.9 shows the block diagram for
such a phase detector.

In Figure 9.9, the Schmidtt Trigger is a zero-crossing detector with
hysteresis, with the transfer characteristic illustrated in Figure 9.10.

In Figure 9.10, once the input to the Schmidtt Trigger has exceeded 1.2
volts and the output pulse has been generated, then the input must go below
0.8 volts before another output pulse can be generated. This helps to prevent
noise from creating excessive jitter on the output. It also constrains the
component to generate pulses only on positive zero-crossings.

A timing diagram for the zero-crossing phase detector is shown in Figure
9.11. The pulse begins on the rising edge of the VCO’s input and ends on
the rising edge of the reference signal. In this particular example, the two
signals have different frequencies, which explains why the phase detector
output does not have a constant width.
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Figure 9.11 shows that the output of the phase detector in Figure 9.9 is
pulse duration-modulated. When the two signals are aligned exactly in phase
and frequency, then the output of the phase detector will be zero. A phase
plane analysis of the phase detector will show this is not a stable null,
because if noise causes it to shift just slightly, then a complete cycle slip will
result.

A better loop configuration results if a DC voltage representing 1/2 of
the pulse amplitude is subtracted from the output. This results in a
symmetrical phase detector characteristic, and a zero-seeking loop will yield
a phase difference between the reference and input signals.

There are other circuit variations of Figure 9.9, such as Figure 9.12,
which reduces the severe quantization error of the zero crossing phase
detector. The clock for the phase detector of Figure 9.12 is operating at a
much higher frequency than either the reference or input signals. This allows
the synchronous counter to count up to a digital word, N, before being reset.
The numeric size (integer) of N represents the phase error.

A similar phase detector uses a sample-and-hold to produce an analog
voltage instead of the digital error word shown in Figure 9.12. A capacitor is
charged with current controlled by an analog switch. The input signal
initiates a charge and the reference signal terminates it [9]. This type of
phase detector produces a sawtooth for a phase error transfer function.
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9.5.1. Sequential Phase Detector

A popular phase detector for hardware implementations is called the lead-
lag sequential phase detector [5,9]. In connection with charge pumps, it was
discussed in Chapter 6.

9.5.2. Hilbert Transform Phase Detector

A popular phase detector for software-based phase detectors is shown in
Figure 9.13 [9]. Fundamental to the implementation is the complex sinusoid
(Sine and Cosine) generated by the NCO. [11]

9.5.3. Timing Phase Detector

A popular phase detector for timing synchronization is the early-late gate
phase detector shown in Figure 9.14. This particular phase detector is often
used in spread spectrum code tracking loops and in modems to synchronize
the symbol timing. It is called an early-late gate because one path of the loop
is advanced with respect to the main signal. The later path is delayed with
respect to the main signal. For a modem, the main signal would correspond
to the optimum symbol sampling time.

In Figure 9.14, a complete tracking loop is shown, because of the need to
generate two reference waveforms. One waveform is ahead (early) of the
other, which is late. The two waveforms are each a fraction of the clock
period apart. Conceptually, the idea is that the loop will center the incoming
waveform exactly apart from either reference waveform. The phase
detector then has a discriminator output shown in Figure 9.15 for
(Note this means one reference waveform is delayed by 1/2 clock period and

the other waveform is time advanced by 1/2 clock period.)
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The input to the loop filter is the actual output from the phase detector
and represented in Figure 9.15. Besides generating the early and late
reference waveform, the timing generator also generates the desired signal,

, which is time-aligned with the input signal. The early-late
tracking loop will be discussed in greater detail in Chapter 11.
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9.7. Problems

9.1 The digital loop has a transfer function of

Plot the recursive relationship for , assuming a first order phase-

locked loop with the following parameters:

and . Plot for

, with a) , b) , and c)

9.2 The digital loop has a transfer function of

Plot the recursive relationship for , assuming a first order phase-

locked loop with the following parameters: ,

and . Plot for

, with a) , b) , and c)

9.3 Design a second-order carrier synchronizer loop (Figure 9.1) with
, carrier frequency = 125 Hz, loop sampling

frequency of 3 KHz, damping factor = 0.707, input power =



274 Chapter 9

, and processing gain = 1.0. Sketch the loop’s block
diagram.

9.4 Design a second-order carrier synchronizer loop (Figure 9.1) with
, carrier frequency = 35 Hz, loop sampling

frequency = 200 Hz, damping factor = 0.707, input power =
, and processing gain = 1.0. Sketch the loop’s block

diagram.

9.5 Design a first-order carrier synchronizer loop (Figure 9.1) with
, carrier frequency = 180 Hz, loop sampling

frequency = 10 KHz, damping factor = 0.707, input power =
, and processing gain = 1.0. Sketch the loop’s block

diagram. Sketch the loop’s block diagram.

9.6 Design a first-order carrier synchronizer loop (Figure 9.1) with
, carrier frequency = 3.7 Hz, loop sampling

frequency = 60 Hz, damping factor = 0.707, input power =
, and processing gain = 1.0. Sketch the loop’s block

diagram.

9.7 Sketch out an algorithm to implement the sequential phase detector
in software.

9.8 Sketch a multiplicative phase detector’s transfer characteristic for a
square wave reference input with an asymmetrical signal input.
Consider the signal having a waveform that has only a 10% logic
high with 90% logic low.Sketch the multiplicative phase detector’s
transfer characteristic with the following two input signals: a)

b)

9.9 Sketch out an algorithm to implement the Hilbert Transform phase
detector in software.
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Digital PLL Responses and
Acquisition

In this chapter, we will evaluate the digital phase-locked loops for phase
inputs similar to the analysis of analog phase-locked loops in Chapter 4.
This analysis will be on linearized transfer functions, and applies to the
complete digital loops of Chapter 9 as well as the analog/digital phase-locked
loops of Chapter 8.

After the linear analysis, we will examine the nonlinear response of the
complete digital phase-locked loops. This provides information about
acquisition, probability of acquisition, and probability of cycle slip. The
phase noise of digital phase-locked loops is also of concern, and we perform
an analysis of the phase error variance.

10.1. Linearized Input Responses

Using the linearized transfer functions of and

, the error response, of the digital phase-locked

loop to the inputs, and , is
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In Equation 10-1, recall the divisor of for N(z) compensates for

the input signal’s amplitude being included within and . In

subsequent analysis in this section, we assume noiseless operation,
, for the different inputs.

Figure 10.1 tabulates the different phase step, frequency step, and
frequency ramp inputs for a digital phase-locked loop. A phase step input

has a forcing function of , where is the step size.

A frequency step has a forcing function of , where is the

constant offset frequency. A frequency ramp, also called a jerk [11],
(because it often results from a mobile platform acceleration) is

where is the frequency ramp in radians. Also included

in Figure 10.1 are the inputs of sinusoidal phase and frequency modulation.
The phase-modulated input has the form where represents

the modulating frequency and represents the maximum phase step.

Frequency modulation has the form , where the term
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represents the instantaneous frequency deviation. represents the
modulation frequency.

10.1.1. First Order Loop Responses

The error response function for a first order digital phase-locked loop is

The error response transfer function for an analog/digital phase-locked
loop would not have the term in , but would have additional
multiplicative scalars for the phase detector and NCO/VCO gains. In the Z-
domain, the error response to a phase step is

The corresponding time domain response is obtained with an inverse Z-
Transform,

Figure 10.2 summarizes the response of a first order digital phase-locked
loop to the inputs of Figure 10.1 These are tabulated for the error response,

, and not the closed loop response, , found in some references.

Note for the analog/digital loops of Chapter 7, the constant is

where is the phase detector gain, is the NCO’s gain constant,

and is the scalar gain of the loop filter.

Figures 10.3 and 10.4 show the first order error responses to phase and
frequency steps, respectively. The constant for the first order loop
establishes the bandwidth of the loop, and so it is not surprising in both
Figures 10.3 and 10.4 that the higher value of results in faster response.

Besides providing the faster input response, a higher value of also results
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in a smaller residual error due to a frequency step, as shown in Figure 10.3.
This comes at the cost of higher noise sensitivity, because the first order loop
has only one degree of freedom available to the designer. A second order
loop can simultaneously provide minimum frequency step error and low
noise bandwidth.
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10.1.2. Second Order Loop Responses

The second order phase-locked loop has an error response transfer
function of [4]

Similar to analysis for the first order transfer function, the loop error
responses may be obtained for the inputs of Figure 10.1. Recall from

Chapter 9, and
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for the all-digital loop. Consideration must be made for the three subsets of

the loop damping factor, . The term, is real, zero, or imaginary,

if is , respectively. This can present transformation
difficulties if not handled properly. Figures 10.5 -10.8 summarize the loop
responses for the second order loop.
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Figure 10.8 shows the second order step responses. The loop responses
are actually discrete “lollipops” as in Figure 10.4, but it becomes difficult to
plot multiple discrete responses on the same graph. For this reason, we plot
Figures 10.8 - 10.9 with continuous lines, although it is understood that only
discrete signal points exist at integer values of n.
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The response of the second order loop to the phase and frequency
modulation can be obtained by evaluating Equation 10-6 with the phase and
frequency modulation waveforms shown in Figure 10.1. Typically, we are
more interested in the frequency response of these waveforms instead of the
time domain response. By substituting into the expression for the
error response, , we obtain
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10.2. Nonlinear Analysis

The nonlinear operation of a second order digital phase-locked loop is
difficult to analyze, requiring two dimensional Markov processes and four
dimensional Fourier series [2]. Fortunately, the analysis of a first order loop
is much easier, and it allows insight to the operation of higher order loops.
Figure 10.11 shows a block diagram of the first order loop.

The block diagram of Figure 10.11 includes an implicit sine function.
The down-sampled signal represents the sine of the differences between the
signal phase and the phase-locked loop’s output phase, and this is
represented by the nonlinear sine function in Figure 10.11. (See Equation 9-
8.) Following the approach of McCain [4], Figure 10.11 includes a gain
for the processor which is common in modem applications.

At first glance, it is appealing to use the general transfer functions

and to analyze the loop, but these are linearized representations of the

loop and do not include the nonlinear sine function. Instead, we return to the
fundamental time domain equations of the phase-locked loop. Our approach
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follows that of Chie [2] and Weinberg [3] which considers the non-uniform
sampling phase-locked loops of Chapter 9. The approach however, is
extensible to digital phase-locked loops which utilize a mixer to remove the
carrier and offset frequencies.

The sampled input to the phase-locked loop is of the form

To proceed further, we must specify the input, , or its discrete

equivalent, . Weinberg [3] considers both phase and frequency step

inputs for . However in this text, we will consider only the frequency step

because it is the most stressful input that the first order loop can track. For
such an input, . Note that we use

the term, , to represent the step frequency input. This is not the same as

the sampling frequency, , for a digital PLL or filter. Substituting this
into Equation 10-9 yields
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In Chapter 9, the non-uniform sampling time, , for the loop was derived

as . Similar to the previous development, the nominal

sampling interval, T
*
, is selected such that .This selection

removes the carrier and offset frequencies from the actual input signal,
leaving only

The argument of the sine function in Equation 10-11 represents the phase

error, . This allows the loop’s sampled input

to be written as . Repeating the differencing

operations of Chapter 9 and using this representation of , we subtract

from to obtain

The error term, , is obtained after signal processing by the processor

and digital loop filter in Figure 10.3 In other words, is obtained after
successive operations of the processor and loop filter on the sampled and
down-converted . For the first order loop, the filter is the scalar ,

which allows to be expressed as

Substitution of the phase error represented by Equation 10-13 into
Equation 10-12 allows the complete nonlinear time domain representation of
the first order phase-locked loop to be written as
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However, for the selected input, . This allows the

term in Equation 10-11 to be simplified to . This term

represents the phase offset of the first order loop when tracking a frequency
step. (Note that the first order frequency step response in Figure 10.4 does
not have a steady state of zero.) The complete time domain equation for the
loop is

This is further simplified with Chie’s notation [2],

where

Example 10.1
Derive the discrete time equations for an analog digital phase-locked

loop.

Figure 10.12 shows a representative block diagram of a first order analog
digital phase-locked loop. An analog signal is received by the phase-locked
loop, with representing the phase information to be tracked by the loop.
The input signal is sampled with a first order sampler, and then demodulated
by the mixer (multiplier), providing phase-only information to the loop. In a
sense, this is more representative of a task required of a second order loop,
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because a first order loop could be significantly stressed by the carrier offset
frequency, . However, if the first order loop’s NCO has an offset

frequency equivalent to the carrier, then the resulting loop performance will
be as if the carrier was not present.

By making some assumptions about the elements of Figure 10.12, we can
draw the simplified model shown in Figure 10.13. For example, we assume
the phase detector and NCO frequency offset remove the carrier’s offset
frequency, , and any double frequency terms resulting from the

multiplication is lowpass filtered so that it does not enter the loop. The
nonlinearity of the phase detector is represented by the element in
Figure 10.13.

As with the analog loops of Chapter 2, the amplitude of the received
signal, is moved into the feedback loop. This requires us to modify

the noise component, , to account for this additional loop gain. and

are the scalar gains for the phase detector and NCO, respectively. The

first order loop gain is represented by .
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In Chapter 2, we represented the output of the VCO as , but we have
changed the symbol representation in Figure 10.13 because of the subscript,
k, used to denote the time sample. The output of the NCO is , which is

used to obtain the phase difference, . This can be written as

From Equation 10-18, we can also write

The NCO output, , can be computed by cascading the gains and

transfer functions following the input loop summing element.

This can be rewritten to obtain

Substituting Equation 10-21 into Equation 10-19, and using Chie’s
notation [2],
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where

10.3. Phase Plane Analysis

Equation 10-16 can be used to visualize the acquisition process if we

rewrite it as Suppose that the loop

is operating with no noise, and the frequency offset, Under
these conditions, a simple graph can be composed of the phase acquisition
process [15]. Starting at some initial phase, , the phase error on the next

sampling interval, is computed by recursively applying Equation 10-13.

As an example, let The first few recursions of

Equation 10-16 are

Figure 10.14 shows this example of phase acquisition, with the resulting
phase error for every time step. Note that the phase error is monotonically
decreasing for every time step of the digital phase-locked loop.
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Figure 10.15 shows the example acquisition trajectory, beginning with the
initial phase error of and converging to the steady state phase

error of (Recall that is a function of described by

Equation 10-16. If the offset frequency, fs , is not zero, then )

Figure 10.15 is a phase plane trajectory similar to Figure 4.2. Figure 10.15
differs from Figure 10.14 because the phase error is graphed as coordinates

that represent the acquisition trajectory for the loop.
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Examination of Equation 10-16 shows that the first order loop cannot
track a signal if the offset frequency, , is greater than . In

steady state, , and the maximum value for is unity. The
maximum offset frequency for the first order loop can then be written as

10.4. Phase Error Variance

The variance, of the phase error is important in many phase-locked

loop applications. By taking the expected value of Equation 10-16, we
obtain

Taking the limit of Equation 10-26 as , we have a steady state
phase error, (which is a function of the offset frequency, ). Since the

, Equation 10-20 becomes

As was discussed previously, the term represents the first order

loop’s stress due to the frequency step. Following the approach of Chie [2],
we square Equation 10-16, take the limits as , and perform
expectations as done for Equation 10-26, to obtain

When the loop is tracking (otherwise the phase error variance is
meaningless), the phase error is near can be approximated by a

Taylor Series about the steady state phase error, Substitution of

and Equation 10-20 into Equation 10-28, yields
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With and the linear approximation for the phase
variance is identical to the analog phase-locked loop,

where the linearized signal-to-noise in the loop is defined as

In other words, the phase error variance is approximately the inverse of
the loop’s signal-to-noise ratio. The first order approximation is not nearly
as accurate as the second order approximation derived by Chie [2], which
approximates . (Weinberg [3] uses

which also results in a reasonable approximation.)
Because of the second order nature, there are two possible roots,

The most rigorous phase error variance analysis uses the Chapman

Kolmogorov equation, which allows

a probability density function to be a function of other probability density
functions [4]. For the first order loop, the Chapman Kolmogorov equation
can be written as [2,3]
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where is the transition probability density function. is

the conditional probability density function of u given . Note the
recursive nature of this probability density function. In order to have the
probability density function at time k+1, we need to have the density
function at time k to include within the integral of Equation 10-21. The
variable in Equation 10-27, which presents difficulties.
Instead, we consider the variable mod , as we did for the first and
second order approximations.

Following the development of Weinberg [3], the transition probability
density function, , has a Gaussian distribution. The mean value and

variance of are

Because the two moments are sufficient to specify the Gaussian
probability density functions, we can write by inspection

Equation 10-35 can be used to provide the modulo phase error, , by
the infinite sum,

The final probability density function is written as an integral equation,
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Equation 10-37 can be solved through numerical techniques. As
discussed in [2-3], one method is to solve the recursive equation

where the and are selected uniformly on the interval . The

recursive algorithm is to begin with , for each bin in the interval

. Using Equation 10-38, the transition probability can be computed

for each conditional . All N values are then computed to be used
recursively for the k+2 values. The recursion stops when the change from

and pk is less than some small epsilon, . The infinite sum in

Equation 10-36 is troublesome, but it converges quickly. Weinberg [3] notes
that summations for provide accurate representations of the
infinite summation.

Figure 10.16 shows the different phase error approximations for
Equations 10-30, 10-32, and 10-38 for the first order digital phase-locked
loop. For signal-to-noise ratios less than 8 dB, the linear approximation has
significant error. However, the second order approximation, Equation 10-32,
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is adequate for signal-to-noise ratios down to almost 4 dB. The second order
approximation is shown only to 3 dB for this particular graph because
Equation 10-32 develops an imaginary component for lower signal-to-noise
ratios. The signal-to-noise ratio of the loop was defined in Equation 10-31.

Because of the accuracy, the Chapman Kolmogorov is of most interest.
Figure 10.17 shows the phase error variance of the first order loop with
different values of K1. The recursive Chapman Kolmogorov Equation 10-38

was used exclusively to compute the values of Figure 10.17.

10.5. Probability of Acquisition

Weinberg [4] defines the threshold for the first order loop as the signal-
to-noise ratio at which the linear approximation, Equation 10-30 has
excessive error. From Figure 10.16, the threshold is in the vicinity of

. This is not the signal-to-noise required for initial acquisition of
the signal. Charles and Lindsey explored this for analog phase-locked loops
[10].

To analyze the probability of acquisition for a first order loop, we again
use the Chapman Kolmogorov expression for the phase error variance,
Equation 10-37. However, we note that if the loop’s error,
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where is the steady state tracking error ( might be something other
than zero), then the acquisition process is complete [2-3].

In particular we define the Chapman Kolmogorov equation for
acquisition as

This is equivalent to the first passage time problem [5]. Effectively we
have placed a well in the probability density function as shown in Figure
10.18. Once the condition occurs, is trapped and cannot

escape.

The probability of acquisition at time is [2]

An initial uniform distribution can be assumed for
This allows Equation 10-40 to be initialized with
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By inspection, the initial probability of

acquisition is . Equation 10-34 can be solved numerically,

similar to the method used for Equation 10-38. A numeric solution for
Equation 10-40 is graphed in Figure 10.19. Note the stress placed by a non-
zero offset frequency, , on a first order loop affects the probability of

acquisition.

The expected number of states to acquisition is

10.6. Probability of Cycle Slip

In modem applications, the mean time to cycle slip is of extreme
importance. Whenever the phase-locked loop loses lock in a modem, it can
mean that hundreds of bits of data will be lost before the modem can regain
synchronization. The probability of cycle slip is computed in a method
similar to the probability of acquisition. We assume the phase-locked loop is
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tracking the signal, such that . When a cycle slip occurs,
the instantaneous phase jumps by . The probability of such an event can
be computed from the transition probability function previously described.

In order to capture the cycle slip event, we place absorbing wells in the
probability density function so that once a cycle slip event occurs, the
phase cannot return to the normal operating range. In other words, we
define the probability density function as [4]

The probability that k cycles are required for cycle slip is

Pr{k cycles for cycle slip}

Figure 10.20 shows the cumulative probability of cycle slip obtained from
numerically evaluating Equation 10-43. It should be noted that this
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numerical evaluation requires a fine granularity of phase steps to obtain
accurate results. The mean time to cycle slip is obtained by taking the
expected value of the probability of cycle slip [4]

10.7. Nonlinear Analysis of Second Order Loops

The second order phase-locked loop has a loop filter of the form

. The general time domain representation is

The first three terms on the right-hand side of Equation 10-45 are
interesting, If is a constant, then these three terms

cancel each other out, which is the expected response for a second order
phase-locked loop. For the frequency step input, Equation 10-45 becomes
[2]

where
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Equation 10-46 is non-Markovian, but an auxiliary variable can be
introduced to obtain a two-dimensional Markov process [3]. Once that is
accomplished, analysis similar to the first order loop can produce expressions
for probability of acquisition, mean time to acquisition, etc.. Unfortunately
the expressions are unwieldy and not particularly insightful. As with the first
order phase-locked loop, the linear approximation for the phase variance
phase error is

where

The loop bandwidth from the linear approximation is [2]

Example 10.2
In Example 7.3, we designed a second order phase-locked loop with

and . The complete block diagram
is duplicated in Figure 10.21 for convenience. Compute the discrete time
nonlinear equations for the loop and perform a simulation to estimate the
phase error variance.

Figure 10.21 includes the implicit Sin[.] function which results from the
mixer at the front of the phase-locked loop in Example 7.3. The effective
noise source is shown as an additive process into the loop with nk . Because

the loop filter includes the gain, , of the input signal, the additive noise

term must be compensated as . To ease the development of nonlinear

difference equations, the block diagram is simplified with Figure 10.22.
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To begin the development of the difference equations, the term in the
numerator of the transfer function is critical. As discussed previously, the
digital loop cannot have an input dependent upon the output during the same
sampling instant. The presence of this term allows us to write by
inspection,

Simplifying Equation 10-51, we obtain the desired difference equation,
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Equation 10-52 can now be programmed or entered into a spreadsheet.
Before presenting the phase error variance plot, we digress to discuss the
generation of the noise samples,     .

Almost any Gaussian noise generator requires a uniform random number
generator to produce random variables that are then processed to obtain the
Gaussian density function. A relatively simple uniform generator that has
been tested for multiple moments is the Whichman-Hill algorithm [7]. Many
random number generators have good correlation qualities between ,

but can exhibit large correlations between other samples such as [8].

For this reason, it is important to understand the quality of the uniform
random number generator before using it as an input to a Gaussian number
generator.

The 32-bit version of the Whichman-Hill algorithm is

The algorithm begins with arbitrary seed values for
Using the appropriate modulus function for the programming language, (for
C, Mod is simply the % operator), and floating point modulation function (in
C, FMod is modf), a uniform random generator is obtained. The Whichman-
Hill algorithm generates a random number uniformly distributed between 0.0
and 1.0.

To generate random numbers with a Gaussian distribution, the Box-
Muller algorithm is suggested [9].

In Equation 10-54, and are two uniform random
numbers such as could be obtained from the Whichman-Hill algorithm. The
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uncorrelated pair of Gaussian numbers generated by Equation 10-54 have a
mean of zero and a variance of 1.0. Scaling and translation can provide the
desired statistics [5].

The phase-locked loop from Example 7.3 was designed with a specific
signal level input. To vary the signal-to-noise in the simulation, the variance
of the noise samples will be varied. From Example 7.3, the closed loop
transfer function for this phase-locked loop is

From Chapter 8, the loop bandwidth is calculated as

Applying the residue theorem, we

obtain

10.8. Acquisition for Non-Uniform Sampling
Phase-Locked Loops

Sarkar and Chattopadhyay [12] performed an analysis on the acquisition
properties of the digital phase-locked loop of Figure 10.23.

This is a second order non-uniform sampling phase-locked loop discussed in
this chapter as well as Chapter 9. Using the notation previously introduced,
the recursive loop equation is [12]

where

SUM
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In Equation 10-56, the cumulative value of the loop filter’s accumulator is
represented by the term, SUM(k). The value of SUM(k) is critical to the
loop’s acquisition response to a frequency step. In some instances, the loop
may not be able to acquire the frequency step with a non-zero initial value of
SUM(k). One implementation strategy is to always zero the accumulator
prior to re-acquisition such as a burst-mode modem [12].

Because the phase-locked loop of Figure 10.23 has a center frequency of
, the loop has lower and upper frequency acquisition ranges relative to

. Although earlier literature had reported [13] that the lower frequency
acquisition range was unbounded, later literature show definite lower and
upper bounds for frequency acquisition [14].

In [12], the authors suggest that a reasonable Frequency Acquisition
Range (FAR) is

where is the frequency step or shift, as introduced earlier.

Equation 10-57 is only valid for no memory in the loop  filter’s
accumulator. The presence of non-zero values can prevent the loop from
acquiring at all.
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10.10. Problems

10.1 For a transformation of a first order loop prototype, the error

response is . Compute the error response to

a phase step.

10.2 For a transformation of a first order loop prototype, the error

response is . Compute the error response to

a frequency step.

10.3 For a transformation of a first order loop prototype, the error

response is . Compute the error response to

a frequency ramp.

10.4 Compute the noise bandwidth for the first order non-uniform
sampling phase-locked loop.

10.5 Compute the noise bandwidth for a second-order non-uniform

sampling phase-locked loop. Consider only the case for            .
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10.6 Plot the phase plane trajectory for a first-order non-uniform sampling
DPLL with :                                                                  .

10.7 Plot the phase plane trajectory for a first-order non-uniform sampling
DPLL with :                                                                        .

10.8 Graph the frequency response of the non-uniform DPLL to phase
modulation

.

with: , and

10.9 Graph the frequency response of the non-uniform DPLL to
frequency modulation with: ,

, and                     .
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11
Synchronizers for Digital
Communications

Synchronization of digital waveforms is an area of active research. For
the latest information, the reader is encouraged to review the latest issues of
IEEE Transactions on Communications. Several references exist that can
provide a larger theoretical foundation than provided in this chapter [1-5].
Today’s demand for wireless services promises to exceed the available
frequency spectrum, necessitating more efficient modulation techniques.
Waveforms such as Continuous Phase Modulation (CPM) or Trellis Coded
Modulation (TCM) provide more efficient spectral usage, but
synchronization is significantly more difficult than traditional Phase Shift
Keying (PSK) or Frequency Shift Keying (FSK).

In this chapter, we will begin with an explanation of the synchronization
problem. Traditional methods of synchronizing BPSK will be presented.
Because of the current research in combined modulation and coding, it is
inevitable that today’s advanced synchronization will soon be inadequate for
the new waveforms. Because of this, our primary emphasis is to develop the
general principles of synchronization so the reader can apply them to new
waveforms as they are developed.

11.1. The Synchronization Problem

Figure 11.1 begins the problem definition with the transmitter sending a
signal, , and the receiver attempting to remove the information
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from the signal after it has passed through the noisy channel. Typically the
receiver and transmitter are not geographically co-located, so there is an
inherent problem in time synchronization. In some instances a nanosecond
of timing ambiguity between timing references t1 and t2 may prevent the
receiver from recovering the transmitted information.

Figure 11.1 assumes some form of digital modulation. It is implied that
the baseband information has been translated to a higher frequency for
transmission through the channel media, whether it is an optical fiber, free-
space transmission, or even coaxial cable. The physical transmission media
will cause a change in the phase of the signal, , (physical distance will also
impose a modulo effect) which the receiver must compensate to
demodulate the transmitted information.

As can be inferred from Figure 11.1, the synchronization of a receiver is a
multi-dimensional problem. A simple modulation format known as Binary
Shift Keying (BPSK) [1,31] is shown in Equation 11-1.

where

, the actual data values

is the modulation (carrier) frequency

is the transmitted phase
is the transmitted timing offset

There may be absolute phase and timing references for a communications
network in which the transmitter itself has synchronization
ambiguities. (The transmitter must synchronize to the network’s epoch.) For
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this reason, we assign the phase and timing offsets and to
Equation 11-1. The basic principle of BPSK is to change the phase of the
modulation frequency by , dependent upon the data. To generate the
data bit value of Equation 11-1, we map the binary values

In order for the receiver to determine the transmitted data bit , the

receiver must solve for the unknown variables, , and . Suppose the

receiver knew exactly the variables and , but had an error of for
the estimate of . In such a situation, the receiver has the signal voltage

reduced by , for a loss of 3 dB in signal power.

The receiver’s local variable estimates are conventionally denoted ,

, and . In many applications, the receiver must solve for other
parameters as well. (In multi-h CPM, the receiver must solve for superbaud
timing[2], or the receiver may need to estimate the channel fading [19].)
The data message from the transmitter may have different packet components
which must identified before the actual data can be recovered. Usually, these
are handled by higher level layers of the Open Systems Interconnection
(OSI) hierarchy [3]. In this section, we shall confine our discussion to the
synchronization needed for the physical layer of the communication model.

Figure 11.2 shows a block diagram of a digital modem. The input data
s(t), is assumed to be baseband analog data that will be sampled by the
modem’s sample-and-hold. The sample-and-hold’s timing is controlled by
the timing loop. The timing loop is often a phase-locked loop as will be
discussed shortly. A dashed line from the actual data detection shows that
sometimes the data decision is used as information for the timing loop, as
well as the carrier recovery loop.

The carrier recovery loop is required to stabilize the input frequency and
phase so that efficient coherent demodulation can be performed on the
resulting data. As with the timing loop, the carrier recovery loop is usually a
phase-locked loop although it may be implemented with nonlinearities to
remove the effect of data upon the loop.

The data detection filter may be a simple integrate-and-dump, or it may
be a sophisticated Viterbi decoder. The Viterbi decoder is preferred for



312 Chapter 11

implementing a maximum likelihood sequence estimator necessary for
advanced waveforms. This block diagram does not show the functionality
necessary for forward error coding. Figure 11.2 shows the physical layer
rather than the link layer which typically incorporates error detection and
correction.

Because of implementation errors, platform movement, or channel
disturbances, the receiver must continually adjust the variables  , , and

.  Because of noise, these estimates are statistical  processes.  The
uncertainty or remaining error in the synchronization variables will cause a
degradation in a receiver's performance. Typically the degradation is
characterized as a reduction in the effective signal-to-noise ratio of the
receiver. Figures 11.3 and 11.4 show the effect of carrier and clock
synchronization jitter upon a BPSK receiver.

A first order phase-locked loop is assumed for both the phase and timing
synchronizers. As discussed in previous chapters, a phase-locked loop has a

noise bandwidth, , and an associated signal-to-noise ratio, ,
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within the loop. The noise within the loop generates jitter on the loop output
which we have previously designated     .

From sample to sample, and will vary according to their respective
statistical properties, , and . The variance of the estimates is a

function of the signal-to-noise within the loop. In Figures 11.3 and 11.4, the

probability of bit error is computed for different values of within the

synchronization loops. corresponds to perfect

synchronization.

To compute Figure 11.3, we assumed a first order phase-locked loop with
a phase error probability density of the form [4]

is the signal - to - noise ratio in the first order phaselocked loop
is the Bessel Function of Order 0



314 Chapter 11

The bit error probability of BPSK with a synchronization phase error,
is [1,4]

where

is the received ratio

is the demodulator’s phase error

To compute the performance curves in Figure 11.3, we compute the
expected value of Equation 11-3, with the probability density function from
Equation 11-2.

To compute the bit error probabilities with timing error, , we again
assume a first order phase-locked loop with the probability density function



Synchronizers for Digital Communications          315

previously defined. However, we assume the random variable
transformation

Performing the transformation of random variables [1] for the probability
density function we obtain

The bit error probability of BPSK with timing error is slightly more
complex than for phase error because of intersymbol interference. If the
adjacent bits are the same value as the current data bit, then there is no error
due to timing. If they are different values, then the signal voltages will
subtract from one another. With a timing error of T/2 and opposite data
bits, the voltage out of an integrate-and-dump detector is zero volts. At this
extreme, the receiver has a bit error probability of 1/2. (It can only make a
random 0 or 1 decision about the transmitted symbol because all information
has been lost.) The intersymbol interference is computed by the
autocorrelation, between adjacent pulses.

p(t) is the baseband pulse shape

T is the symbol interval

With this definition that accounts for intersymbol interference due to
timing error, the bit error probability with a first order timing synchronizer is
obtained by taking the expected value with the transformed probability
density function.
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11.2. BPSK and QPSK Synchronization

So far we have discussed the requirement of the receiver to make
estimates for , , and . We have also shown some receiver

degradation effects of poor estimates. Equation 11-9 expresses the BPSK
modulation in a different form.

Suppose the receiver estimates  , , and without error, which we

denote as , , and . With the exact estimates, the receiver might

demodulate the signal with the architecture shown in Figure 11.5. With
perfect frequency and phase synchronization, the modulated signal is
translated to baseband, where the integrate and dump is synchronized to the
symbol intervals established by the timing parameter,    .

As an excursion from this perfect synchronization, consider when there is

an error in the receiver’s estimate, . (Note that if , then

generally, the phase estimate of cannot be computed.) The output from
the receiver would be
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is the frequency error

T is the symbol timing interval
is the data symbol

If a training sequence of bits with were first transmitted to the
receiver, then the output of the receiver might appear as shown in Figure
11.6a. The structure of the error frequency can be easily determined in
Figure 11.6a. (Another advantage of is that the timing estimate is not
needed, since all of the symbols have same data value.) By removing two of
the unknown parameters, the synchronization problem is simplified. This is
the general idea or concept of a preamble for TDMA networks. Because the
modem must quickly acquire the signal to demodulate a short packet, the
transmitter transmits a preamble which reduces the complexity of
synchronization for the receiver.

The random data sequence in Figure 11.6 does not have an information
structure to permit easy estimation of the frequency error. The comparison
of the two receiver outputs suggests a fundamental strategy of
synchronization: remove or de-couple estimate parameters. A Costas or
squaring loop does exactly that: it removes the dependence upon the data
values. A squaring loop receiver is shown in Figure 11.7.

The concept of the squaring loop is to remove the data modulation with

the nonlinear operator, . As we will discuss shortly, other synchronizer
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architectures substitute alternative nonlinear operators such as the absolute
value,

To analyze the squaring loop of Figure 11.7, let

The output from the nonlinear operator is

Although the squaring operator removes the troublesome data values,
there is a cost for the simplification. The noise term, n(t), has also been
squared. For additive white Gaussian noise, this effectively increases the
noise in loop by 3 dB. Because of the decreased signal-to-noise, the squaring
loop is not always the best choice for a synchronizer that must operate in low
signal-to-noise conditions.

From Figure 11-7, the VCO is assumed to have an output of the form



Synchronizers for Digital Communications 319

To simplify the following analysis, we are going to assume perfect
symbol synchronization with . Under these conditions, the
lowpass output from the phase detector for the phase-locked loop is

In Equation 11-14, we have neglected all of the high order modulation
terms. Most of the remaining terms are not a function of signal only. Many
have a multiplicative noise term. Following the approach of Gardner [6], the
phase detector output is written as a signal term with a corresponding noise
term.

It can be shown [6] that the equivalent phase jitter of the squaring loop is

P is the input signal power

It is important to note that Equation 11-16 specifies the noise variance for
the VCO in Figure 11.7 which is operating at twice the frequency as the
actual data detector. In Chapter 12, we will discuss phase noise of digital
divider [7] which states the output phase noise of a digital divider reduces
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the input phase noise by a factor of . (N is the division ratio of the

divider.) In Figure 11.7, , which allows us to approximate the noise
variance for the data detector as

Recall from Chapter 4 the output variance of the analog phase-locked

loop is , which is the inverse of the first term of Equation

11-17. The only difference in output phase variance to the data detector is

the squaring loss, . At moderate signal-to-noise ratios,

this term approaches unity, which would seem to imply little degradation due
to the squaring loop. However, the phase-locked loop is still operating at
twice the frequency, meaning it must perform acquisition and tracking

according to the statistics of , and not          .

As a general estimate, a simple phase-locked loop will lose lock at
With the squaring loop, there is a nonlinear

operator, , where N=2, that processes the input signal prior to the phase-
locked loop. The squaring loop’s acquisition/tracking threshold is degraded
by approximately , which implies it will lose lock at

approximately 9dB [6]. (We suggest the reader use comparisons of
, instead of which varies in the literature.) A QPSK phase

tracking loop that uses a N=4 nonlinearity, would be degraded by 12 dB.

Another disadvantage of squaring loops is that the output phase has a
ambiguity. Because the squaring loop is operating at  , it cannot
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distinguish between an input phase error of or Because of this, the
output phase to the data detector could be in error by  radians, which for
BPSK would invert the sign of the data. This ambiguity can be solved by
utilizing differential coding [10], or a training sequence/preamble. With a
known input sequence, the demodulator can adjust its output polarity with
the a priori data.

Figures 11.8 and 11.9 show the performance of a digital squaring loop.
At levels, or even , the output phase

error into the phase-locked loop’s filter is very noisy due to the amplitude
noise on the signal. The loop could be locked, but the observer wouldn’t be
able to distinguish discern a difference due to the amplitude noise. With a
digital simulation however, we have replicas of the signal without noise that
we can demodulate with the VCO. Hence, the notation, “Error Detector
With No Amplitude Noise”. (The only noise is caused by the errors in the

phase estimate, .)

A difficult problem in synchronization is determining when the
synchronizer has achieved “lock”. Generally, a mixer with a 90° phase shift
in the local oscillator is used as a phase-lock indicator. Gardner terms this a
quadrature detector [7]. In Figures 11.8 and 11.9, we consider a quadrature
detector with the noiseless input signal. As with the error signal, the output
of a quadrature detector is very noisy at these signal levels without filtering.

These error and lock detector outputs for a squaring loop show a cost for
the simplicity of a squaring loop. As discussed earlier, the synchronization
loop loses 6 dB of S/N performance. In some applications, the input

and accompanying data rate may be sufficient to allow a squaring
loop implementation. In others, a linear implementation may be necessary.
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Fast acquisition and low loop jitter are opposing goals. Frequently
modem designers will utilize “gear-shifting” of the phase-locked loop’s
bandwidth [34]. During initial acquisition of a TDMA frame, the loop
bandwidth may be large to accommodate a larger Doppler offset. After
frame acquisition, the loop bandwidth may be slowly stepped down to
provide the low phase error variance desired for Eb/No performance.

11.2.1 QPSK Detection Degradation Due to Carrier Recovery Jitter

To remove the data modulation from 4-PSK (QPSK) modulation, a 4th

power nonlinearity is required. This is typically described as a quadrupling
loop or an extended Costas Loop. The probability of error for QPSK
demodulation with carrier phase jitter is written as [4]
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Offset QPSK (OQPSK) has two quadrature bit streams as in QPSK, but
the bit intervals are offset by half a bit period. (The advantage of this
complexity is a waveform that is closer to constant-envelope.) Because the I
and Q channels are not permitted to have transitions at the same time, the
maximum phase transition at any one time is . This reduces the
spectrum degradation when transmitted through a bandlimited nonlinear
channel. The BER degradation for OQPSK is the average of the degradation
of BPSK and QPSK, as shown in Equation 11-19 [4].
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The signal-to-noise ratio for the data bit, , and the signal-to-noise ratio
for the phase-locked loop, , were previously defined for Equation 11-4.
Figures 11.10 and 11.11 graph the BER performance for QPSK and OQPSK
modulations, respectively.
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11.3. Lock Detectors

The quadrature lock detector was mentioned briefly in a preceding
paragraph. Figure 11.12 shows the functional block diagram of a
combination phase detector and quadrature detector.

The upper mixer element represents the traditional phase detector,
producing the phase error, . The designation quadrature detector

becomes evident in the bottom mixer element, because it is operated with a
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quadrature (90°) shifted local oscillator, y ( t ) . As discussed earlier, the
output of the quadrature mixer is much too noisy to be used directly at low
S/N levels. A lowpass filter removes enough of the noise such that a
threshold detector can make a reliable lock decision. Obviously, any
filtering in the lowpass filter will add to the acquisition decision time,
because of the filter delay. (Typically the filter is specified in terms of delay,
rather than in bandwidth. Depending on the application, the filter might be
designed for a 90% rise time in 5-10 data symbols.)

Example 11.1
Design a phase-locked loop to perform the phase synchronization for a

BPSK receiver using a squaring loop. Assume the following parameters:
Carrier Frequency - 2 MHz, Bit rate - 4,800 bits /sec, Input power to Phase
Detector - 0 dBm, VCO Tuning Constant 10 KHz/Volt (Centered at 2 MHz),
Phase Detector 1V/radian, Initial Frequency Offset -1 KHz , less than 0.2 dB
degradation at

Using Equation 11-17, we assume the squaring loss,

is negligible. (Recall this is accomplished by

reducing the bandwidth of the arm filters.) With this assumption, the output

phase variance of the squaring loop can be represented by ,
which is the same as the first order phase-locked loop. The bit error
probability for BPSK with phase jitter is specified with Equation 11-4. At
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, the bit error probability of BPSK is . However,
we are permitting 0.2 dB degradation due to the squaring loop, which implies
the effective to the detector is 9.4 dB, yielding a bit error

probability of . (Use Equation 11-3 with .)

Numerically solving Equation 11-4 with the degraded bit error
probability,

for the signal-to-noise ratio, within the phase-locked loop, we obtain
. This is the fundamental parameter, because the signal-to-noise

ratio is defined as . Recall for the digital waveform,

. Substitution yields

With the problem statement parameters and , we obtain the
necessary loop bandwidth for the phase-locked (squaring) loop.

As discussed earlier, the acquisition threshold for a squaring loop is
somewhere around a 9 dB loop signal-to-noise ratio (implementations vary as
well as the definition of threshold). Usually we would want a much smaller
loop bandwidth, but recall the acquisition time of the phase-locked loop is a
function of the loop bandwidth. In this example, we have an initial
frequency offset of 1 KHz, which allows us to use Equation 4-20, (assuming
a second order loop filter)
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Assuming , and substituting the other parameters, we obtain a

total acquisition time, . (Note that the squaring loop

requires for acquisition because the input frequencies are doubled.)
This loop bandwidth thus requires 7.5 bit periods to obtain phase and
frequency synchronization. Actually, this is best case, because in an actual
squaring loop, a lock detector is required, which will required additional time
to make the decision of phase-lock.

With the loop bandwidth and acquisition time established, the design of
the phase-locked loop is identical to the design examples in Chapter 2. The
remaining design details are left for the chapter problems.

11.4. Costas Loops

The Costas loop shown in Figure 11.13 [8] is similar in appearance to the
squaring loop previously analyzed. In performance, it is mathematically
identical to the squaring loop, but offers some reduction in complexity for
BPSK demodulators. The upper arm of the Costas Loop, sometimes called
the I arm, produces the demodulated data symbol.

Without modulation, the quadrature arm is producing an error voltage
similar to a simple phase-locked loop. (Note that without data modulation,
the output of the I arm will be zero.) When phase change occurs,
corresponding to the data modulation, the output of the Q arm will reverse
sign. However, the I arm is demodulating the data symbol, so that it corrects
the sign of the Q arm’s error voltage. This allows the Costas loop to be
invariant to the BPSK modulation. In a sense, the Costas loop is decision-
directed, because a hard decision is made on the present data symbol and that
decision is used to adjust the phase tracking of the carrier.
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The lowpass arm filters are usually selected to minimize the squaring
loss. However, if the filter bandwidth is too small, it produces distortion of
the data symbols and leads to false lock [22,23,24]. A compromise for a one-
pole RC filter seems to be , where Ts is the symbol period [29]. If

timing information is known, the lowpass arm filters in Figure 11.11 can be
replaced with symbol integrate-and-dump detectors.

Shown in dashed lines is the lock detector that can be included with the
Costas loop. See [22,23,24] for further analysis.

Although more complex because of the multiple symbol possibilities, an
extended Costas loop [6,8,20,25] can be used to synchronize QPSK
modulation. Figure 11.14 shows a Costas loop for QPSK. Because of the 4th

power implementation, the QPSK Costas loop has a phase ambiguity of
radians. (Generally this is accommodated by a preamble prior to the actual
data transmission.) As mentioned earlier, the Costas QPSK phase tracking
loop has a N=4 nonlinearity, which degrades the acquisition performance of
a simple PLL by 12 dB.
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The Costas Loop can exhibit a false-lock phenomena [22] where the loop
is locked improperly. The false-locks are attributed to arm filter distortion of
the data (the lowpass filters in Figures 11.13 and 11.14). False lock in a
Costas Loop is most likely to occur when the signal’s carrier frequency and
the loop’s VCO frequency differ by where is the
data symbol rate [22,23].

11.5. Timing Synchronizers

The squaring loop defined in Figure 11.6, or the Costa Loop in
Figure 11.12 do not have any provision for adjusting the symbol timing
estimate, . In a paper by Mueller and Muller [16], they describe
approaches to timing recovery. They categorize three different types of
timing synchronization: a) Threshold Crossings, b) Signal Derivatives,
c) Spectral lines. Since that time, other approaches have been developed.
One such technique is maximum likelihood which will be discussed shortly.

If the waveform has distinct reference levels, the waveform can be
examined on when it crosses a threshold. For example, BPSK transitions
which switch the baseband signal between 1. A zero crossing detector
would provide timing information because the symbol transitions occur at the
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zero crossing. More complex thresholds have to be defined for higher order
PSK modulations.

Gardner [5,26-28] developed a timing error detector for BPSK and QPSK
receivers that is based on threshold crossing. Although some algorithms can
use a single sample per symbol, this algorithm utilizes two samples. The
algorithm is written as [28]

For BPSK operation with prior carrier recovery, the quadrature terms in
Equation 11-24 are zeroed to reduce jitter [28].

An alternative detector utilizes the signal derivative at the sampling
points for the waveform. This can be used to provide control information
such as the Gitlin and Salz phase detector [17]. A technique previously used
extensively with analog modems was a frequency detector with a narrow
band filter to distinguish the symbol frequency. With balanced modulation,
the spectral lines do not appear in the modulator’s spectrum. Placing the
received signal through a nonlinear element can generate the spectral lines
that can be used to control a narrowband phase-locked loop. (This is
exploiting the cyclostationary properties of the waveform.) With advanced
modulation waveforms, the tone amplitude may have insufficient signal-to-
noise ratio for operation at low signal levels [9].

For the BPSK timing synchronizer, we introduce the early-late gate which
is shown in Figure 11.16. Similar to carrier phase synchronization, the
timing synchronizer must compensate for the sign of the transmitted data
symbol. As shown in Figure 11.16, the timing synchronizer is more complex
than the phase synchronizer. An implementation with squaring elements
such as the carrier recovery squaring loop will not produce the correct error
voltages. (Note that a zero-crossing detector can provide timing information
without the increased complexity of the early-late gate synchronizer. This
disadvantage of this synchronizer is poorer signal-to-noise performance.)
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The most appropriate perspective of the early-late gate synchronizer is
that it is approximating the derivative of the sampled waveform with respect
to the unknown timing parameter, . (An actual derivative processor is the
mathematically optimum synchronizer.) A matched filter receiver must
compute the term,

Indeed, in Figure 11.16, the lower block is a matched filter receiver
implementation. Note for BPSK, the transfer function, h(t)=l because the
baseband data is a simple pulse. For other modulation formats, the actual
h(t) would be required in the integrator. In order to synchronize the
modem’s output of Equation 11-24, the receiver must accurately estimate the
timing offset, . The derivative of Equation 11-25 with respect to can be
approximated as
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To maximize the symbol voltage with respect to the timing offset, , the
derivative approximation, Equation 11-26, is placed in a phase-locked loop
which attempts to adjust so that the derivative is zero. This is the concept
of the early-late synchronizer shown in Figure 11.16.

There is a complication, however, because the data values, s(t) of 1
will not provide a consistent error detection. For example, the phase-locked
loop expects that a timing error of +x volts would imply the timing needs to
be advanced. However, if Equation 11-26 is implemented with an implicit
h(t)=l, then the timing error will change polarity due to the data as well as
the timing offset. To correct this ambiguity, the early-late synchronizer of
Figure 11.16 uses the 1 symbol value to multiply the timing offset
derivative. This provides a consistent sign or direction for the phase-locked
loop.

Generally the timing synchronizer has strong nonlinearities in the
VCO/timing generator blocks of Figure 11.16. These nonlinearities can be a
result of timer quantization, interpolators, etc. As a consequence, a
synchronizer loop is more difficult to implement. In most applications
though, the loop bandwidths of the symbol synchronizer loop are much lower
than the carrier phase loop, and this relieves some of the implementation
difficulty.

Figure 11.17 shows the synchronization acquisition of an early-late
synchronizer. This synchronizer utilizes an interpolator for the timing
generator, which will be discussed later in this chapter. When the
synchronizer has acquired, the symbol voltage is the 1 volts, as expected
for BPSK. The data pattern to the synchronizer was 01010101..., which is
desirable for acquiring BPSK because of a symbol changing value on every
epoch. The symbol voltage shows a slight overshoot suggestive of a phase-
locked loop at symbol 10. The control voltage however, is very nonlinear,
which corresponds to the nonlinear timing generator.

The early-late synchronizer of Figure 11.16 is actually a data-aided
synchronization loop. The symbol decision which is generated by the lower

integrator, is aiding the early-late synchronizer by providing the

polarity of the data. As was discussed, this is necessary to generate an
unambiguous error voltage from the derivative’s approximation. The
squaring loop of Figure 11.7 is a non-data-aided synchronization loop. It
uses the nonlinear squaring function instead of relying on a data estimate.
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The non-data-aided loop has a 6 dB degradation in acquisition as was
discussed earlier. The data-aided loop is a conventional phase-locked loop
and does not suffer this degradation. However, the data-aided loop does
require accurate symbol decisions, or the synchronization loop can become
“confused”.

As a general estimate, a data-aided loop requires a symbol error rate,
SER . Note that the symbol error rate is important, rather than the

bit error rate, BER. (For BPSK, they are the same.) Also, the SER is the
physical layer’s error rate before forward error coding. It is the rate at which
incorrect decisions are provided to the differentiator in Figure 11.16 that
determines the synchronizer performance.

To design the phase-locked loop of the synthesizer, it is necessary to
define the phase detector’s gain for the phase-locked loop equations defined
earlier in this text. The phase detector itself is the approximation of the
derivative multiplied by the sign of the symbol. (Other phase detectors can
be designed, but most of these tend to be ad hoc and their performance is
largely unpredictable.)
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Figure 11.18 shows the phase detector characteristic of the early-late
synchronizer. The phase detector is monotonic between the limits of its
operation. (This is extremely important for a synchronizer’s phase detector
because otherwise the synchronization loop becomes locked at a local
minimum.)

The slope of the phase detector can be altered by changing the delay
between the early and late symbols. The integration in Equation 11-25 is
1/2 symbol before and after the actual symbol integration. This can be
varied to modify the phase detector characteristic.

For example, the derivative for the phase detector’s transfer function can

be approximated by which

corresponds to a 1/4 symbol delay. This phase detector is shown in Figure
11.19. It has increased gain, but note that the valid input range is
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11.5.1. Maximum Likelihood Synchronization

The 6 dB acquisition advantage of the simple phase-locked loop over the
squaring loop suggests that communication theory can provide insight into
the optimum synchronizer design. A maximum likelihood architecture
provides significant improvement over ad hoc approaches to synchronization.
Our development follows that of Ziemer and Peterson [10].

Suppose we represent the received signal simply as

p(t) is the transmitted symbol and n(t) is additive white Gaussian noise.
A set of orthogonal basis functions can be found to represent p(t) and n(t),
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Recall the Fourier Series is an example of an orthogonal basis function.
In this derivation, we are not concerned with defining an actual set, because
we will soon discard them. The noise n(t) is not exactly represented by
n´(t). The basis functions were selected to reproduce the information, p(t),
and we will accept distortion in the noise component, n(t).

Because , the individual components of are

independent, Gaussian variables. The joint probability density function can
be written as

Because each of the are independent and Gaussian, the joint
probability can be written as

Because of the exponential properties, the product in Equation 11-32 can
be converted to a summation with the exponent, simplifying to

The log likelihood function is obtained by taking the natural logarithm of
Equation 11-33, which eliminates the exponentiation. Because log() is
monotonic function, maximizing Equation 11-34 is the same as maximizing
Equation 11-33

From Parseval’s Theorem [10], the orthogonal basis functions can be
discarded, leaving,



338 Chapter 11

Note the binomial in the exponent can be expanded into
For a constant envelope waveform such as CPM,

the first two terms are constant, leaving

In an infinite bandwidth channel, BPSK and QPSK can be considered to
be constant envelope, since they are phase-only modulation. However, in a
non-linear, bandlimited channel, their envelope does exhibit time
dependence. The approximation of Equation 11-36 may be invalid in such a
communications channel [35]. Many of the spectrally efficient waveforms
such as Quadrature Amplitude Modulation (QAM) do not meet this criteria
of a constant envelope. (The constant envelope waveforms are highly
desirable in nonlinear channels to avoid spectral regrowth [35-37].)

Equation 11-36 represents a correlation receiver [10,31,35]. As indicated
by the integral, the receiver simply correlates the received signal against
every possible received waveform, p(t), and selects the largest correlation.
(Equivalent to the most likely received waveform.) Aside from the
optimality of the symbol decision, the synchronization properties are very
desirable. We rewrite Equation 11-35, showing the dependence of the
likelihood function on the synchronization parameters, and [11].

In Equation 11-37, the phase and timing offsets are attributed to the local
estimate, p(t), rather than the received signal, y(t). Recall from calculus to
maximize the function with respect to a variable, we take the derivative and
set it equal to zero. So to maximize the log likelihood function with respect
to the timing offset, we take the partial derivative of Equation 11-36 with
respect to and adjust until the partial derivative is zero. This exactly
what the early-late synchronizer of Equation 11-25 performs.
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The same operation can be performed on the log likelihood function to
optimize the estimate of carrier phase, The partial derivative is formed,

Symbolically, this implies that if the received signal is of the form
, then the maximum likelihood phase detector should

be

where

is the estimated phase modulation (data symbol)

is the estimated carrier phase offset

The phase detector of Equation 11-40 can be used with a simple phase-
locked loop instead of the squaring loop configuration of Figure 11.7 to
obtain a 6 dB signal-to-noise advantage in acquisition. The estimated symbol
modulation, is equivalent to the data-aided feedback of the early-late
synchronizer of Figure 11.15.

The implementation details of maximum likelihood synchronizers are
dependent upon the data modulation. If the data modulation includes coding
such as trellis-coded CPM or multi-h CPM, the data symbol estimation can
be obtained by following the correlators with a Viterbi algorithm [10,31].
The Viterbi algorithm can be shown [11] to be an optimum maximum
likelihood estimate for the encoded symbol.

Similar to the false-lock phenomena of Costas loops, decision directed
loops also are subject to false lock [23]. With decision directed or mod-
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remod loops, the false locks are attributed to either the loop delay time or the
modulation frequency. A delay element will cause a false lock at the offset

frequencies , where is the delay time,

provided there is sufficient loop gain [23]. False locks can also occur at

frequency offset of where is a simple fraction and is the

data modulation frequency. This latter false lock phenomena suggests the
capture range of the PLL be limited to avoid some possible false
acquisitions.

An alternative to the BPSK decision-directed maximum likelihood
receiver is to square the input signal first, removing the data modulation [10].
Because this squares the input noise as well as introducing a noise x signal
component, it is suboptimum. It does possess the advantage however, that a
feedback decision is not necessary. The development of the corresponding
maximum likelihood equations is left to the problems.

11.5.2. Joint Carrier and Clock Estimation

Often the carrier phase and timing synchronizers in a modem will be in
conflict, because each is attempting an independent solution. However, the
carrier phase detector can produce an error voltage due to a timing offset,
and the carrier phase loop will attempt to adjust the carrier loop to
compensate for the timing offset. If on the same symbol, the timing loop is
already attempting to compensate for the timing offset, then the two loops
will be competing with each other. To make the problem worse, the timing
loop error detector can sometimes produce an error due to carrier phase error,
and the two synchronization loops are never ever able to achieve the
optimum synchronization.

In practice, modem designers are sometimes able to limit the conflict
between the synchronization loops by having the timing loop bandwidth to
be much less than the carrier phase loop. (A 10:1 ratio is common.) In some
situations this may not be possible, or the modulation may implicitly have
this phase-timing conflict. To limit the synchronizer conflict, it is possible to
jointly estimate the phase and timing offsets with simultaneous equations.
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Our derivation follows that of Meyers and Franks [11]. The log-
likelihood Equation 11-37 can be approximated with a first-order Taylor
series of two variable as [11].

Note the last two terms are essentially the phase detector terms for the
maximum likelihood synchronizer. As with the maximum likelihood
derivation above, we take the partial derivative of the three-term
approximation with the synchronization variables to obtain [11]

In the shorthand notation of Meyers and Franks [11], these
synchronization equations can be written as

In the synchronization equations above, we have set them equal to zero,
because that corresponds to the maximum of the likelihood function,

. The two simultaneous equations can be written in matrix form as
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The modem must solve for a new estimate of and which are
recursively represented by and . (Based on the previous
estimates, we composed new values which adjusted according to the
differences of Equation 11-45.) The actual solution requires the inversion of
the matrix,

The right-most term of Equation 11-47 corresponds to the partial
derivatives of the log likelihood function, which would are required for
synchronization even if we do not attempt a simultaneous solution.
Heuristically, the matrix can be visualized as correcting for the correlation
between symbol timing and carrier phase synchronization. Mathematically,
Equation 11-46 can be solved at every symbol, and provide a new estimate of

and to the respective VCOs. Meyers and Franks [11] note that the matrix
is computed with channel noise and may present some numerical stability
concerns.

They derive a tracking loop implementation that is based upon a
linearized small-jitter estimation of Equation 11-47, [11]

M is a 2 x 2 matrix that accounts for the step size and coupling in the carrier
phase and symbol timing VCOs.

I is the 2 x 2 identity matrix

is the number of symbols used in the estimate

and are zero-mean noise terms for  and

In order to de-couple the dynamics of the timing and carrier phase, it is
desirable to choose the step size and other representation of M so that the
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term, , (J represents the 2 x 2 matrix in Equation 11-48) is

diagonal. It will correct for the correlation of the two estimates, but not
couple the tracking dynamics. A block diagram of Meyers and Franks’
tracking loop implementation is shown in Figure 11.19.

There are some practical problems with the joint estimation tracking loop.
It is difficult to define loop bandwidths for the tracking loop in Figure 11.20.
It is even more difficult to set independent loop bandwidths for the carrier
and clock synchronization loops. (Which is typical requirement of
SATCOM modems.) Also, the performance of Figure 11.20 may be
disappointing. In one application, the author has found that independent
carrier and clock loops out-performed the joint estimation loop. (Probably
because of a local minima problem due to the approximations.)

Figure 11.21 shows the log likelihood surface of a CPM waveform. This
surface is instantaneously dependent upon the data symbol and adjacent
symbols, causing it to be data-dependent. For the surface in Figure 11.21,
there is a well-defined maxima and the synchronization loops should be able
to incrementally adjust the synchronization for optimum performance.
However, some likelihood surfaces have the problem of local minima
[12,18]. With such a likelihood surface, the synchronization variables will
become “trapped” in a local minima. Because the phase-locked loop is a
sequential estimate, seeking to minimize the first partial derivatives of
Equation 11-47, the synchronizers can never escape a local minima in the
multi-dimensional likelihood surface.
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11.6. Interpolators
In some modem applications, the analog-to-digital converter may be

operating independently of the modem, and the modem is required to “piece
together” the appropriate A/D samples to perform symbol processing. Figure
11.22 shows a block diagram where a digital interpolator is used to provide
symbol-referenced samples to the modem’s processor. The modem’s symbol
timing synchronizer provides control to the interpolator, but the A/D and its
implicit sampler is operating asynchronously with respect to the modem.
The digital interpolator in Figure 11.22 can be providing more than one
sample per symbol to the symbol processor. However, all of the samples are
aligned to a symbol interval.

The basic problem in Figure 11.22 is how to obtain a fractional unit delay
so that the symbol processor can perform optimum signal processing. A
general primer on designing fractional unit delay filters is found in [33].

Gardner [14-15] has shown the interpolator can be analyzed as the hybrid
configuration in Figure 11.23. The first A/D is operating asynchronously
and produces digital samples, which are converted back to the

analog domain with a digital-to-analog converter. Following the analog filter
is another A/D which samples the data at a different rate, , which in this

case controlled by the modem. The second stage of Figure 11.22, (D/A -
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Analog Filter - A/D) is not really necessary, because it can be performed
with digital signal processing instead of the separate analog/digital steps
shown.

The output, x(t), from the analog filter in Figure 11.23 is

where h(t) is the analog filter’s impulse response

The interpolants, , can be obtained from the filter’s time response
function,

By defining
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the output of the interpolator can be rewritten as [14]

The term represents a basepoint index, or the samples from the input
A/D that are used by the interpolator to compute the output sample. The
term represents a fractional input sample interval for the filter. The
interpolator Equation 11-52, then represents a method for computing the re-
sampled signal by using data samples from the input A/D, and offsetting the
filter’s impulse response with the fractional    .

The complete interpolator with control loop is shown in Figure 11.24.
Note the loop error detector is generating one error correction per symbol,
yet the digital interpolator may be operating at a much higher sampling rate.
To analyze this loop for stability, it may be necessary to use the multi-rate
sampling techniques developed in Chapter 6.

Gardner [14] developed an elegant control algorithm for the interpolator.
The digital clock’s difference equation is

The control voltage from the loop filter W(m), is nominally

The fractional interval is computed as

The interpolator filter is the most difficult aspect of the design. It is
desirable to have a filter that does not require complex calculation of
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coefficients for every . As the modulation waveforms become more
complex, it is desirable to minimize distortion which would degrade the
modem’s symbol estimation. Schafer and Rabiner published an early paper
on digital interpolation [13], but their interpolation filters generally require
too many computations for each new      .

Erup, et al., have analyzed several filters that require few computations
for a new data sample [15]. From their research, a cubic polynomial filter is
shown in Figure 11.25. This filter works best if it is used as a downsampler,
otherwise the first sample after a symbol transition tends to have
objectionable overshoot. The timing synchronization performance of Figure
11.17 was obtained with the cubic polynomial filter and the interpolator
control algorithms of Equations 11-53 and 11-54.

The performance of digital interpolators in Rician-Fading channels was
studied in [30]. For 0-2nd order interpolators, the BER degradation (dB) is
approximately proportional with the 2nd, 4th, and 7.5th power of . At

sampling rates of the BER degradation is less than 0.1 dB in

AWG noise.
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11.8. Problems

11.1 Graph the autocorrelation term, , for BPSK. (Equation 11-7).
Consider the two cases of a) 11 and b) 10.

11.2 Design a Costas loop to perform the phase synchronization for a BPSK
receiver. Assume the following parameters: Carrier Frequency= 200
MHz, Bit rate = 9,600 bits /sec, Input power to Phase Detector =
W, =10 KHz/Volt, =lV/radian, Initial Frequency Offset =250
Hz, < 0.25 dB degradation at a BER =
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11.3 Design a Costas loop to perform the phase synchronization for a QPSK
receiver. Assume the following parameters: Carrier Frequency= 200
MHz, Bit rate = 9,600 bits /sec, Input power to Phase Detector =
W, =10 KHz/Volt , =1V/radian, Initial Frequency Offset
=1200 Hz, < 0.5 dB degradation at a BER =

11.4 The data input to a phase detector using Gardner’s timing algorithm is
{ 0.309017-j 0.951057 , 1, -0.309017 + j 0.951057, -1, 0.309017 –j
0.951057, 1, 1, 1, -0.309017 + j 0.951057, -1, -1, -1, 0.309017- j
0.951057, 1, -0.309017 + j 0.951057, -1, 0.309017 -j 0.951057, 1, 1, 1,
-0.309017 + j 0.951057 , -1, -1, -1, -1, -1, -1, -1, -1, -1, 0.309017 - j
0.951057}. Graph the output of the detector. (Often the I and Q data
are written in the complex form, I + jQ .)

11.5 Compute the squaring loss for a BPSK Costas loop for

11.6 A receiver is attempting to synchronize to a signal of the form,
Assuming a decision-

directed, maximum likelihood receiver, compute the estimator for    .

11.7 Design a BPSK timing synchronizer assuming the phase detector of
Figure 11.17. The bit rate is 600 bps, and an input

Specify the loop bandwidth such that the implementation loss for the
synchronizer loop is less than 0.25 dB.

11.8 Assume the maximum likelihood detector for s(t) is obtained by taking
the derivative of s(t) with respect to the parameter.

Plot the carrier phase detector's output at time t=0 for
at: a) b) c)
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11.9 Plot the false lock frequency for a BPSK decision-aided carrier
tracking loop operating a 1200 bps and a loop bandwidth of 10 KHz.

11.10 Graph the frequency response for the Cubic Farrow filter (Figure
11.21) for: a) b) and c)
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Optical Phase-Locked Loops

12.1 The Applications of Optical Phase-Locked Loops

The laser was invented in 1960 [1], and since that time, different
modulation techniques have been used to place information on the optical
signal. Early optical transport layers used direct detection [2-3] in which the
optical receiver simply determined whether a pulse was present. As
technology has developed, modulation techniques have developed that allow
much more of the optical fiber’s 20 THz capacity to be used. Wavelength
Division Multiplexing (WDM) [4] is one such technique that multiplexes
multiple optical signals onto a single fiber.

Other techniques are possible such as heterodyne or homodyne detection
of BPSK modulated signals [5]. In most of these advanced optical
modulations, the phase noise of the laser’s signal is critical and can limit
capacity [6]. Many of the high-capacity systems now use optical phase-
locked loops to control the line widths of the modulated (or unmodulated)
laser lights.

In general, the optical phase-locked loop allows

• More optical signals on a single fiber (dense wavelength division
multiplexing).
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• Longer distances between repeaters in a long-haul cable.

• Higher data rates.

A different application of optical phase-locked loops is in optical beam
forming networks for microwave antennas [20]. Precision amplitude and
phase-controlled signals are applied to each individual element of a phase-
array antenna to synthesize the desired antenna pattern. As the number of
elements increases, it becomes physically impossible to provide coaxial
cables to every element in the antenna. Coherent optical signals can be
transmitted over fiber optics to the active antenna elements where they are
converted to microwave signals.

12.2 A Simple Optical Phase-Locked Loop

Figure 12.1 shows a block diagram of a simple optical phase-locked loop.
The reader soon concludes there is little difference between the analog
phase-locked loops previously discussed and optical implementations. There
are some differences as the lasers are typically modulated by a piezoelectric
device, and the phase detector consists of an optical coupler and balanced
photodiodes. These will be discussed shortly.

Assuming we have optical source with phases and as shown in

Figure 5.1, the phase difference between the two sources is expressed as:
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12.3 Photodetectors

The fundamental principle for the operation of photodetectors and lasers
is the change from one energy state to another. Recall Bohr’s frequency
relation [17]

The atomic system is originally at energy state and transitions to

energy state while  emitting a photon of frequency v.  In Equation 12-2,

Js , Planck’s constant, . The converse of Equation 12-2
describes the operation of a photodetector. A photon of the proper frequency
will cause the atomic system to increase its energy state.

Figure 12.2 is a simple review of the p-n junction. We have two semi-
conductor materials such as phosphorus and boron forming a p-n junction.
The phosphorus has an excess of electrons and is termed an n-type material.
The boron has an excess of holes and is termed a p-type material. The n-type
material will donate electrons and the p-type material will accept electrons.

The electrons near the junction will diffuse to the p-type material where
they combine with a p-type hole, resulting in a negative charge for the
accepting atom. This leaves the donor atom as a positive charge. (The
electrons of the n-type material are called the majority carriers.)

At the same time, a p-type hole will likewise migrate across the junction
and combine with an electron on the n-type material side, causing the
acceptor atom to have a negative charge. The accumulation of charges
generates a potential across the junction. This potential will now repels both
the holes and electrons away from the boundary.

When the p-n junction is forward-biased, (positive terminal to the p-type
material and negative terminal to the n-type material), electrons are forced
into the n-type material and holes are forced into the p-type material. The
presence of these additional electrons and holes neutralize the fixed charges
and the junction potential decreases. This allows current to flow across the
interface (junction).

Conversely, when the p-n junction is reverse-biased, (negative terminal to
the p-type material), electrons are extracted from the n-type material and
likewise holes are extracted from the p-type material. This effectively
increases the charge distribution and increases the depletion region which
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also increases the potential across the interface. No current due to the
majority carriers can flow across the junction.

Figure 12.3 shows the operation of a photodetector. The photodetector has
its p-n junction reverse-biased. If a photon with the energy   hv
corresponding to the band-gap energy of the p-n junction strikes the
depletion region, an electron-hole pair is generated. The electron and hole
will drift in opposite directions, creating a current equivalent to an electron
charge, q. Because the p-n junction is reverse-biased, the current is created



Optical Phase-Locked Loops 359

external to the photodetector. The process of the depletion region converting
a photon to an electron-hole pair is called absorption .

A light source emits on average, [28]

Where is the power of the light source. The photons arrive with a
Poisson probability rather than a continuous distribution. Because of this
random arrival, communication designers are interested in the probability of
a specific number of photons arriving within a time interval. The number of
photons is directly proportional to the current produced by the photodetector.
The probability of N photons arriving in interval T is [28]

(As an aside, optical communication designers often specify the
sensitivity of the system in units of photons/bit, just as non-optic modems are
specified in Eb/No. Yamashita and Okoshi [29] provide a table of
photons/bit to achieve a BER for various modulation methods. They
report 10 and 40 photons/bit required for homodyne PSK and ASK,
respectively.)
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The p-n junction may be slow to respond to a photon because many of the
photons strike either the n-type or p-type material directly instead of the
depletion region. These electron-hole pairs must subsequently diffuse to the
depletion region. Higher speed photodetectors are created by placing an
intrinsic layer between the n-type and p-type material at the interface. This
allows more of the photons to directly strike the depletion region directly.

These photodetectors with an intrinsic layer are known as p-i-n detectors
and are typically used for fast detector/receiver systems. Yet another
variation is to sandwich another layer in the interface that effectively
multiplies the number of electron-hole pairs created for every photon
received. These are called avalanche photodetectors. Although they
generate more current than a p-i-n photodetector, they also create more noise
[19]. Typical multiplication ratios are 30-100 [28].

The photodetector previously described has a sensitivity determined by
the absorption coefficient, of the device material. (The absorption length,

, is the thickness required to reduce the incident light intensity by 1/e.)
The absorption length of most detectors is a function of wavelength, so it is
necessary to match the absorption length to a particular wavelength. For
example, Silicon has an absorption length of approximately at the
important GaAs laser wavelength of 850 nm. At the other common laser
wavelength of 1300 nm, Germanium is the material of choice with an
absorption length of approximately

The electron-hole pairs generated during absorption will recombine even
in the absence of an electric field. The carriers generated in the electric field
will be collected as a photocurrent [14]. Assuming that the substrate is the
dominant source of diffusive transport, the photocurrent in the detector is
computed as [14]

where is the fractional light intensity absorbed in the detectors’
junction with depletion width W, R is the reflection coefficient, is the
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minority carrier diffusion length for electrons in the p-substrate, hv is the
photon energy, and is the internal quantum efficiency. The minority

carrier diffusion length is expressed as where is the

minority carrier lifetime and is the diffusion constant.

As an example, assuming 100% absorption and 0% reflectivity, the
detector sensitivity is 0.69 A/W at 850 nm, while at 1550 nm, the detector
sensitivity can be 1.25 A/W [14]. (This is one reason why long-haul
transmission is preferred at the longer laser wavelengths.)

12.4 Mixing With Photodetectors

12.4.1 The Homodyne Advantage

Equation 12-5 showed that the photodetector’s output current is directly
proportional to the incident light power. If two signals are simultaneously
incident upon the photodetector, then the sum and difference signals will be
detected and converted to an electronic current.

To introduce the concept of photo-mixing, consider the block diagram of
Figure 12.4. Our discussion will follow that of Oliver in [16]. There are two
light sources that are reflected, transmitted through the beam splitting
mirror. The reflection and transmission coefficients are assumed to be

and , respectively. Suppose that the phase offsets of the two

lights are such that the instantaneous powers can be written as
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Similar to electronic mixing, the signals incident upon the photodetectors
can be computed as

From Equations 12-5 the currents from the photodetectors are written as

If we assume the sum frequencies of and are either filtered out
optically or beyond the bandwidth of the photodetectors, then the output
current sum signal of Figure 12.4 is computed as
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An actual optical mixer would not use the current sum above, but we
compute it in anticipation of needing it later to compute the signal-to-noise.
Our real term of interest is the difference signal which is computed as

The mean square value of Equation (12-13) is proportional to the actual
signal power.

After the filters with noise bandwidth B, the shot noise is computed as

The ratio of the two previous equations yields the signal-to-noise ratio for
the optically downconverted signal.

The SNR of the downconverted signal is a function of the receiver’s noise
bandwidth B, which we would anticipate. Note however, that it is also a
function of the local oscillator’s input power, . If we assume an unlimited
local oscillator power and take the limit of Equation (12-16), we obtain the
maximum signal-to-noise ratio [17].

The last term, represents the incident optical signal power.

Suppose that we have homodyne conversion, where the frequencies of the
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input and local oscillator are exactly the same, i.e., In this case,

the term in Equation (12-13), As a consequence,
the mean square power of Equation 12-14 increases by a factor of 2. (Recall

For homodyne conversion,

Equation 12-18 demonstrates that optical homodyne detection is better
than heterodyne detection (where the frequencies of the input and local
oscillator are not the same) by 3 dB. This is true where the local laser
intensity noise is negligible. If not, then the sensitivity can be significantly
reduced [39].

This result is different from the phase-locked loops we have discussed
previously where the noise enters with the signal and the additional
conversion gain does not affect the SNR. One insight is that in microwave
signals, the noise is added prior to mixing, whereas the noise is added after
the mixer in optical mixing. See [28] for additional discussion on why
microwave signals do not incur a heterodyne penalty, in contrast to optical
mixing.

12.4.2 The Dual Detector Advantage

Although we did not discuss it earlier, the dual detector configuration of
Figure 12.4 has been empirically observed to provide up to 6 dB of improved
receiver sensitivity [19]. The dual detector, also called a balanced receiver
suppresses the local oscillator intensity noise.

Our approach will be similar to [21]. We convert Figure 12.4 into the
flow graph shown in Figure 12.5. The transmission and reflection
coefficients are exactly the same – we simply show them as phase shifts in
the flow diagram. We assign unknown phases and to the signal and
local oscillator lights, respectively.
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Recall from Equation 12-5 that the induced photocurrent, . Then
the single-ended equations, 12-19 and 12-20, are susceptible to variations in
the incident light power. Specifically the term, , will affect the
photodetector’s output current. When we compute the difference current, we
eliminate the susceptibility to the intensity fluctuations.

There are multiple techniques to implement the dual detector [31]. The
differential amplifier can be used as shown in Figure 12.5. Another
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technique is 0°-180° microwave hybrid driving a conventional single-ended
amplifier. Still another approach is biasing the photodetectors between
opposite polarity voltages and again driving a single-ended amplifier.

A similar analysis can be performed for multiple signals in the channel
[40]. The cross-channel interference currents at the photodetectors can
generate harmful interference and it concluded that single-detector receivers
should not be used for homodyne detection [40].

12.5 Photoreceivers

Receiver sensitivity is determined by the equivalent noise current at the
circuit input. It can be expressed as [11]

where is the photodiode external quantum efficiency, h is Planck's

constant, is the incident light frequency, is the signal-to-noise ratio,
is the receiver's equivalent mean-square noise current, and q is the
electronic charge constant.

The equivalent input noise current is dependent upon both the fabrication
process and the circuit topology [14]. An example MOS transimpedance
amplifier has a noise current of [11]

where k is Boltzmann's constant, T is the device temperature, is the

amplifier's feedback resistor, is a normalized noise-bandwidth integral,

is the bit rate, is the amplifier's transconductance, is the FET's

channel noise factor, is the total input capacitance, is a normalized

noise-bandwidth integral.

Figure 12.6 shows a block diagram of a typical photoreceiver amplifier.
The inductor after the photodiode peaks the bandwidth and signal-to-noise of
the photodetector. Instead of the single photodiode detector shown in Figure
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12.6, the dual-detector balanced optical receiver is preferred for coherent
detection.

Somewhat surprising to electronic PLL designers is the concept of signal-
to-noise ratios in photoelectric mixing. The total noise power spectral
density of an amplifier can be written as [16]

where h is Planck’s constant, v is the incident light frequency, k is
Boltzmann’s constant, and T is the device temperature.

The first term in Equation (12-23) is due to thermal noise (black body
radiation) whereas the second term is from quantum effects. At optical
frequencies, , which causes the thermal noise term to vanish, and

. For an optical signal of power , and passband of bandwidth

B, we can compute the signal-to-noise ratio as [16]
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Commercial opto-electronic integrated circuits (OEIC) are fundamental to
the success of lightwave systems. A key component in OPLLs is a
monolithic photoreceiver incorporating a photodiode and a low noise
preamplifier. The process technology for photoreceivers is advancing
rapidly and a detailed discussion of a component would soon be obsolete.
The reader is referred to papers such as [9-14] for fabrication details.

12.6 Lasers

Equation 12-2 was used for describing how photodetectors convert a
photon into electrical current. A laser operates by pumping the energy of the
atomic system to a higher state, and when the system transitions to the lower
level, a photon corresponding to the particular energy change is released.
Additional photons are released in a positive-feedback manner because as
they strike other atoms, additional photons are released. Hence, the
acronym, Stimulated Emission of Radiation, LASER.

Besides Equation 12-2, another important relation for a laser is the
Boltzmann ratio,

and are the numbers of atoms at atomic energy states and      ,

respectively. k is Boltzmann’s constant, , and T is the

temperature of the material in °K .

The energy gap, corresponds to the photon energy, , from
Equation 12-2. If the energy gap is much greater than kT, then at thermal

equilibrium, there are very few atoms at energy level . The selection of
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materials and physical construction of the laser is required to invert this ratio,
, such that amplification of photons is possible. (In actuality, lasers

use several energy levels – see [22].)

The early lasers utilized a semiconductor rod with polished mirrors on
each end. One of the mirrors was 20-30% transmissive, and allowed the
laser light to be emitted. The material (at first, ruby) was pumped to a higher
energy level by flashtubes wrapped around the laser rod. The resonating
cavity for the laser was adjusted with piezo mirrors as discussed in Chapter 1
and depicted in Figure 1.4.

The basic laser design for optical communications is the Fabry-Perot.
Similar to the p-i-n diode, it consists of three layers as shown in Figure 12.7.

In Figure 12.7, the outer layers are special semiconductors such as
InGaAs and InP, with a center or active layer of InGaAsP [23].   When
current is flowed between the outer layers, light is emitted in the active layer.
Light will propagate along the inner layer until it reflects against the mirror
and passes through the center layer again. Because the laser is an inverted
population state, the photons will strike other atoms, releasing even more
photons. One of the end mirrors is semi-transmissive and allows some of the
laser light out of the diode, while reflecting the majority of the light back into
the active layer.

The Fabry-Perot laser is considered to be a single wavelength laser, but
there is actually quite a spread in the optical frequency output. For this
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reason, distributed feedback lasers are a preferred modification of the Fabry-
Perot laser.

Figure 12.8 shows the modification to the Fabry-Perot laser. A
corrugated layer is placed above the laser’s active layer. By selecting the
refractive index of the corrugate layer and spacing for a particular
wavelength, it is the only optical frequency that will be reflected back into
the active channel. The other optical frequencies will pass through the
corrugated layer and not stimulate the emission of additional photons.

Because the output frequency is determined by the refractive index and
physical fabrication, the distributed feedback laser is much less sensitive to
temperature variations. The laser of [24] was measured to have a
temperature sensitivity of 0.05nm/°C. To place this in perspective for
electronic phase-locked loop designers, at the nominal 650 nm operating
wavelength, this is about 35.5 GHz/°C. (A Fabry-Perot laser has about 3×
greater temperature sensitivity.)

For optical phase-locked loops, the ring laser offers a much reduced
temperature dependency. The ring laser of [7] has a temperature sensitivity
50 times less than a typical distributed feedback laser. Figure 12.9 shows the
configuration of a semiconductor ring laser.
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The semiconductor laser amplifiers in Figure 12.9 are very similar to a
laser itself – the fundamental difference is the absence of resonating cavity.
(Actually that isn't quite true. One type of amplifier called the traveling
wave amplifier does have a cavity, but the mirror transmits most of the light
rather than reflecting it as in a laser.) With the applied current, the atomic
systems have a inverted population (Equation 12-25) that will cause the
release of additional photons when a photon enters the amplifier.

The optical bandpass filter is used to perform coarse tuning adjustments
of the laser's output frequency. The piezo-mirror and the current into the
upper laser amplifier provide the fine tuning adjustment.

12.7 Optical Phase-Locked Loops

12.7.1 Homodyne Loops

The homodyne loop is the most conceptually simple optical phase-locked
loop. (However because of the temperature sensitivity discussed in Section
12.4, a homodyne loop is very difficult to implement.) In Figure 12.10, the
OPLL generates negative feedback currents or voltages to adjust the local
laser to exactly the same frequency as the input laser. This block diagram is
similar to those presented earlier for electronic phase-locked loops except  for
the loop delay element.



372 Chapter 12

In Figure 12.10, we have designated specific transfer functions for the
local laser and photodetector. The local laser can have a modulation transfer
function similar to a lowpass filter, or surprisingly, a bandpass response.

In our example, we will assume that the photodetector’s transfer function
is a simple scaler, but like the electronic phase-locked loops, it will be a
linear approximation of the actual sinusoidal characteristic.

Although we discussed modeling of time delays for conventional phase-
locked loops (See 3.2 Propagation Delays in PLLs), most of our analysis and
examples neglected such a delay. Due to the higher frequencies and
band widths of OPLLs, however, the loop propagation delay becomes
important and must be considered. Several papers in the literature are
concerned principally with the integration and fabrication of the various loop
components in order to reduce the loop propagation delay. In the literature, a
value such as 5 ns is typical [15].

In our analysis, we assume that the input and local laser outputs can be
represented as

We let the error detected by the photodetector be represented as
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From Figure 12.8 and Equations (26-28), we can express the loop’s transfer
function as

If we substitute and , the loop transfer

function appears very similar to our previous developments.

The condition for unconditional stability can be solved as [30]

In Equation 12-31, PV represents the Principal Value of the function.

For the common case of

Example 12.1 OPLL
Design an optical phase-locked loop with a laser (VCO) tuning gain of

520 KHz/V, and a modulation bandwidth of 500 KHz. The received
signal power is , and the local oscillator power is 1 mW. The
responsivity of the detectors is 0.7 A/W. Design for a loop natural frequency
of 9 kHz, with a damping factor of 0.707.
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Design the passive lead-lag filter for this homodyne system. We desire a

filter of the form, . Our solution follows that of [25].

The total phase detector gain is computed as

To compute the passive loop filter, we modify Equation 2-66. Recall the
scalar was included for multiplicative-type phase detectors or where

the power was not implicitly included in the phase detector’s gain. In this
example, we included the optical incident power in the computation of
Equation 12-33.

The first loop filter coefficient is obtained from a modification of
Equation 2-66,
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The second loop filter coefficient is obtained from a similar modification
to Equation 2-66,

Figure 12.11 shows the root locus and Bode analysis of our design. It has
over 65 degrees of phase margin, which should provide good performance. It
is relatively insensitive to loop delay, as values of 40 ns contribute little
change to the analysis shown in Figure 12.11.
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12.7.2 Heterodyne Loops

The large laser temperature sensitivities make homodyne loops extremely
challenging. Heterodyne architectures allow the use of Automatic Frequency
Control (AFC) loops which are less sensitive to the laser frequency drift.
Figure 12.12 shows one configuration of heterodyne optical loops. The
received optical signal has some form of digital data modulation such as
ASK, BPSK, FSK, etc.

The local laser and received signal are not tuned to the same frequency as
in a homodyne loop. In a heterodyne loop, the lasers are tuned to provide a
difference frequency when mixed together. The photodetector/receiver is a
wide bandwidth device, because the Intermediate Frequency (IF) frequency
is typically several GHz. In general, the IF center frequency and bandwidth
must be at least double the data modulation’s bit rate [26].

Figure 12.12 is identical in principle to the modulation-remodulation
(mod-remod) loops discussed in Chapter 11. Recall the carrier and symbol
synchronization loops required the data modulation to be removed so that
conventional phase-locked loops could adjust the synchronization error to
zero. The same concept applies to the optical heterodyne loop. A squaring
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or Costas circuit is used to remove the instantaneous phase modulation
imposed by BPSK [38].

It is certainly possible to implement a heterodyne loop such as
Figure 12.12 with a phase-locked loop despite the large increase in
complexity. The frequency discriminator would be replaced with a phase
detector. The analysis of such a loop would follow that shown earlier for the
homodyne loop. In the analysis that follows, we assume the heterodyne loop
is concerned only with Automatic Frequency Control (AFC), and the loop is
adjusting the local laser’s frequency to maintain a constant frequency
separation with the incoming signal.

A frequency discriminator is used instead of a phase detector for
frequency controlled loops [35-37]. The frequency discriminator can have
several different topologies. Although the IF frequency is several GHz,
traditional filter-type discriminators have been developed for optical
communications [27]. Designed for a specific center frequency, , the

discriminator generates an output referenced to the center frequency of the
discriminator.

Figure 12.13 shows an example frequency discriminator characteristic.
At the discriminator’s center frequency, the output voltage is zero.  The
monotonic segment between input frequencies is used

control the laser. The scalar accounts for the gain of the specific
discriminator, and v represents the maximum input frequency offset for a
monotonic output. The output voltage of the discriminator can be written as
[35]
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To simplify our analysis, assume that we have a local laser controlled by
the frequency discriminator as shown in Figure 12.14. The laser’s output
frequency is referenced to the discriminator’s center frequency, . If the

local laser’s frequency is different than the discriminator’s , then an error

voltage e(t) is generated. The error voltage is processed by the loop filter
before applying it to the laser’s control input.

The laser’s control equation is written as

By substituting in the frequency discriminator’s characteristic, we obtain
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As with phase-locked loops, the simplest filter is a constant gain, . If

we include the laser’s tuning constant, , we can write the laser’s output

frequency for the gain-only loop filter as

It can be shown for this simple loop that stable frequency control is
available only over the range [35]

In general, the dynamic loop transfer function of the loop in Figure 12.12
is written as

where represents the actual discriminator function. The 3-dB

bandwidth of Equation 12-44 is defined as the closed-loop bandwidth.

This simple analysis does not consider the noise transformed by the
frequency discriminator. Our more detailed analysis is similar to that of
Bononi, et.al., [32]. Refer to Figure 12.15 for the position of the various
signals to be computed.
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Similar to the homodyne loop analysis, we model the signal and local
oscillator laser signals respectively as

In the equations above, and represent the optical powers of the two

signals. Likewise, the phase of these optical signals is represented by
(t) and (t). The local oscillator signal, r(t), is represented with the

additional time-varying control phase, (t). As with the first phase-locked

loops we examined in Chapter 2, the control signal adjusts the local laser’s

phase. Recall that

Assuming the dual-detector mixer discussed previously, the IF signal to
the frequency discriminator can be written as [32]



Optical Phase-Locked Loops 381

The amplitude A, is a function of the photodetector’s response and the
input power of the two signals (see Equation 12-30). Clearly the IF
frequency is the difference, The double frequency mixing

terms are either filtered or out-of-band. The difference between  the
instantaneous phases of the two optical signals is represented as

The last term of Equation 12-47; n(t), represents the

shot noise generated by the photodetectors.

When the dual detector’s output is applied to the frequency discriminator,
we obtain,

As before, represents the frequency discriminator's transducer gain,

and N(t) is the transformed shot noise n(t). Note the discriminator’s
output is not a directly dependent upon the input power from the
photodetector.

The discriminator has performed an amplitude-to-frequency trans-
formation of the shot noise. The derivative in Equation 12-45 represents the

phase noise of the two optical sources. (Recall We

assume that the discriminator’s characteristic is centered at frequency

Bononi et al. represent the phase noise in the frequency domain as

From Figure 12.13, we define the closed loop frequency error as [32]

When the AFC loop is in track, the nominal output frequency will be    ,
the center frequency of the discriminator, plus a frequency  error term due to
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the phase noise (t) and the transformed shot noise, N(t). We can write

the discriminator output as

Because the discriminator’s voltage is filtered with the function g(t)

prior to being applied to the laser as control voltage c(t), the frequency error
can also be written as

Equation 12-52 represents the closed loop control equation. Computing
the power spectral density of both sides provides [32]

Assuming that the loop filter G( f ) is a lowpass filter, the first term of
Equation 12-53 is a highpass function. Hence, the high frequency
components of the phase noise appear in the frequency error. The second
component however, is a lowpass function. Thus only the low frequency
components of the transformed shot noise appear in the frequency error.

12.8 Injection Locking

Adler [33] first described the injection locking of a vacuum tube
oscillator. The concept of injection locking is fairly simple. An oscillator
depends upon some nonlinear mechanism to control its oscillation frequency
and the introduction of another signal into the oscillator causes the nonlinear
mechanism to shift the operating frequency. (After all, if the oscillator were
linear, the introduction of another signal within the oscillator would yield
two independent and undisturbed signals at the output.)

An application of injection locking is shown in Figure 12.16. Instead of
using a phase-locked loop to generate a local oscillator for homodyne
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detection of the optical modulation, an injection-locked laser generates the
necessary reference signal. There are tradeoffs however. The injection-
locked laser requires a substantial amount of optical power that is inserted
directly (usually some form of focusing is required) into the local laser. This
power is no longer available for data detection, in contrast to a homodyne
phase-locked loop where the same photodetectors are used for data detection
and phase-locking.

A block diagram of an injection-locked system is shown in Figure 12.17.
We split part of the incoming optical power and inject it into a pump laser as
shown in the graphic. The input light source is first optically isolated so that
reflections do not produce reciprocal coupling. The injection locked laser’s
cavity length is precisely controlled by adjusting the piezo mirror. (The
laser’s output frequency is a function of the cavity length, hence the piezo
mirror adjusts the lasing frequency.)

There are three fundamental equations for injection locking a
semiconductor laser [34].
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P is the total photon number, G is the optical laser gain, is the photon

lifetime, L represents the locked oscillator’s cavity length, is the group

index, c is the velocity of light, accounts for the coupling of amplitude
and phase in the laser’s electric field, is the phase difference
between the input laser and the injection-locked laser. N is the carrier
number, is the input frequency, is the pre-injection resonant
frequency of the laser cavity, I is the injection current, q is the electron
charge, and finally is spontaneous electron lifetime [34].

The three injection-locking equations must have a simultaneous solution
of P, N , in order for injection-locking to take place. (This is similar to
the simultaneous solution of frequency and phase in the Foker-Plank
equations of Chapter 4.) If we denote the difference between two laser
frequencies as , then injection locking bandwidth can be computed as
[34]

When the input laser’s frequency is above the locking range, the free-running
frequency is modulated by the input frequency. As the input frequency is
brought closer into the locking region, the output power will increase until it
reaches a maximum when the laser is locked. At input frequencies below the
locking region, the operation is unstable and multiple output frequencies may
exist [34].
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13
Phase Noise Analysis

13.1 Introduction to Phase Noise

A frequency synthesizer or signal source is expected to provide a pure
spectral signal. There should be no unwanted amplitude or frequency/phase
modulation in the output spectrum. As we will discuss shortly, undesired
phase modulation on the local oscillator in communications receivers, can
reduce the channel selectivity and degrade the bit error rate of the receiver.
It can also degrade the performance of coherent radars [14].

A simplified digital synthesizer is shown in Figure 13.1. In
instrumentation-grade synthesizers, the crystal reference oscillator typically
provides a reference frequency of 10 MHz or 5 MHz. The voltage-
controlled oscillator generally operates at a much higher frequency than the
crystal reference. For example, a microwave synthesizer would have a VCO
operating at frequencies above 9 GHz. Similar to all of the phase-locked
loop discussions in this text, the VCO’s output frequency is controlled by an
error signal from the loop filter.

In Figure 13.1, the VCO's output frequency is divided by a ratio N in the
digital counter. This can be a fixed integer N, or it can be changed to tune
the VCO to different frequencies. As in all the PLLs, the phase detector
generates an error voltage corresponding to the phase difference between the
digital counter output and the reference oscillator (generally a stable crystal
oscillator). Often the reference oscillator is thermally and physically isolated
from the environment. Even in moderate mobile environments, platform-
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induced vibration of the reference oscillator can produce undesired spectral
modulation.

Neglecting amplitude noise, a sinusoidal signal source can be
mathematically modeled as

In Equation 13-1, is a random process representing the random phase
shifts in the signal source. The instantaneous frequency for the sinusoidal
source of Equation 13-1 is defined as

For a quality signal source, the desired frequency should be much greater
than the random frequency, or, Recall the Fourier Transform

pair, This can be used to derive a relationship between

and Since and if the power spectrum

exists, we can use the Fourier Transform’s differentiation theorem to obtain
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This can be used as a figure of merit for the oscillator. As Equation 13-4
indicates, there is a simple relationship between spectrums, and
(It also suggests a scheme for measuring

The laboratory instrument most commonly used to examine signal
sources is the spectrum analyzer. It measures the spectrum of the complete
signal, v(t). Assuming f(t) and (previously defined in Equation 13-2)
have Gaussian distributions, and is also stationary, the two-sided RF
spectrum for v(t) may be written as [1],

where and represents n-1 convolutions of with itself,

frequency translated to the carrier frequency. Besides the difficult
convolution operations, Rutman notes that must be known for all
frequencies, although estimates can be made for a only finite set [1].

Fortunately for researchers in the field, an approximation exists, based
upon the narrowband FM approximation. Because of the sinusoidal
waveform, Equation 13-1 may be written as [2]

Assuming is small, (<< 1  radian), the exponential phasor may
be approximated with a truncated power series. Performing this
approximation, we obtain [2]

By taking the Fourier transform of Equation 13-7, the approximate RF
spectrum is obtained [1],
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The National Institute of Standards and Technology (NIST) has defined
Single-Sideband Phase Noise Referenced to Carrier, as the normalized
power in a single sideband of the RF spectrum within a 1 Hz bandwidth.
Mathematically it is expressed as

A graphical depiction of Equation 13-9 is shown in Figure 13.2. Note
that a continuous wave signal source such as the frequency synthesizer in
Figure 13.1 does not a produce a discrete spectral line, but a defined spectral
“smear”. (In order to see the spectral broadening, it is necessary to reduce
the measurement bandwidth and frequency span.) Some observers describe
the close-in phase noise of a signal source similar to a “Christmas Tree”.
Figure 13.2 is a typical measurement of a signal on a spectrum analyzer with
narrow bandwidths.
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In a strict sense, defines the spectral purity of the signal. However,
using Equations 13-8 and 13-9, for the sinusoidal source may be
expressed as

13.2 Phase Noise in Phase-Locked Loops

As seen in Equation 13-10, there is a relationship between the phase
modulation term and the spectral purity The latter is the industry
accepted format for phase-noise measurements. Equation 13-10 is note-
worthy because most phase-noise measurements are instead of

Because the VCO changes an error voltage to frequency modulation,
amplitude modulated (AM) noise present in the loop after the phase detector
will undergo a conversion to phase modulation (PM). This can occur at any
point in the phase-locked loop.

At the input to a digital counter in a frequency synthesizer, AM noise is
also converted to phase modulation. This causes the output transitions of the
digital counter to have time jitter (phase modulation). This phase modulation
is transferred through the phase detector and subsequently appears on the
output waveform of the VCO. A model of phase noise sources for a
frequency synthesizer is shown in Figure 13.3 [13,15,19].

In Figure 13.3, several additive phase noise sources have been included in
the block diagram. Beginning at the crystal reference, the reference oscillator
for the frequency synthesizer has a phase noise, , associated with its
output, which will be discussed in greater detail. If the phase-locked loop is
implemented in hardware, the loop filter usually has an amplifier that
generates amplitude noise which will subsequently be converted to phase
modulation, The VCO itself generates phase instabilities which are

represented by the term, . Finally, the divider used by the frequency
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synthesizer, also exhibits jitter which is modeled as phase noise by the term,

Recall the output power spectrum of a linear system is expressed as

where

is the input power spectrum

is the linear system’s transfer function

By computing the forward gain from the additive noise sources to the
output and dividing by (1 + closed loop gain), the output power spectrum for
Figure 13.3 can be obtained using Equation 13-12 [3].
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Because of the relationship between variance and the power spectrum, the
output noise variance of the frequency synthesizer can be computed as

We can gain more insight into the phase noise of the frequency

synthesizer if we replace the term, by . Although the

synthesizer’s output frequency does not include the division factor, N,
represents the gain of the closed loop. It is the complete gain

that determines the loop bandwidth. With this substitution,
Equation 13-12 becomes

Observation of Equation 13-14 shows that the power spectrums are
multiplied by the square of the counter’s division ratio, N. Note that the
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counter and crystal reference are the only significant contributors within the
bandwidth of the phase-locked loop. At offset frequencies greater than the
PLL bandwidth, the phase noise of the synthesizer is approximately that of
the VCO.

Example 13.1

For this example, assume that the phase noise contributions due to the
divider and loop filter in Figure 13.3 are negligible. With the tabulated phase
noise spectrums of the VCO and crystal reference below, compute the
composite phase-locked loop performance. Assume the second order, type-2,
phase-locked loop has a loop bandwidth of 1000 Hz, with a damping factor of
0.707. Analysis of Equation 13-14 shows that the VCO’s gain constant is a
direct contributor to the VCO’s phase noise contribution. For this example,

let

The specification of a loop bandwidth of 1 KHz implies that

Recall . Assuming and using

the specifications of  radians/Volt, the loop filter is
computed as

The open loop transfer function is
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The composite synthesizer phase noise characteristic is plotted in Figure
13.5, using Equation 13-14. (The divider and loop filter noise are assigned as
zero.) Along with the composite performance, the individual components for
the VCO and crystal reference are also plotted. For this example, the loop
bandwidth was chosen arbitrarily, and does not represent the best choice for
minimizing the phase noise of the synthesizer.

This example does show that inside the loop bandwidth however, the
multiplication factor of has tremendous consequences for microwave
synthesizers. In Figure 13.5, the crystal’s reference phase noise is increased
by 20 Log( 100 ) = 40 dB.

13.3 Phase Noise of Oscillators

Equation 13-4 indicates the phase noise of an oscillator can be measured
by either or An oscillator’s phase noise is a complex

interaction of variables, ranging from its atomic composition to the physical
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environment of the oscillator. Fortunately, a piecewise polynomial
representation of an oscillator’s phase noise exists and is shown in
Equation 13-17 [1].

Traditionally the polynomial representation of oscillator phase noise is
characterized for instead of and this explains the somewhat

unwieldy subscripts and exponents. Not all oscillators will have
constants . In other words, the oscillator might have only
one, two, three, etc, non-zero polynomial components. Figure 13.6 shows
the power-law model for spectral densities [1].

Equation 13-17 indicates that an oscillator’s phase noise consists of
several additive components. As modeled, they can be represented by
physical mechanisms which are listed in Figure 13-6. Random walk
frequency noise [4] is due to the oscillator’s physical environment
(temperature, vibration, shocks, etc.). This phase noise contribution can be
significant for a moving platform, and presents design difficulties since
laboratory measurements are necessary when the synthesizer is under
vibration. Usually great attention is directed to the mounting of the
synthesizer’s crystal oscillator in these environments.

White frequency noise originates from additive white thermal noise
sources inside the oscillator’s feedback loop [1]. Flicker phase noise
generally is produced by amplifiers [1], and the white phase noise is caused
by additive white noise sources outside the oscillator’s feedback loop.

Figure 13.7 is a graphical representation of the different oscillator phase
noise contributors. noise is a particular problem for designers. The
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power in a frequency decade is constant, even though the frequency span is
increasing [20]. For example, the power contained in the frequency span
{0.1,1} is the same as {l,10}. The  source of 1/ f  noise in semiconductors
continues to be debated [21,22].

In his 1966 paper, Leeson describes a heuristic phase noise model for a
feedback oscillator [5]. Figure 13.8 shows Leeson’s model for the feedback
oscillator. The oscillator is composed of a noisy amplifier and a resonator in
the feedback loop. The amplifier has a noise figure, F, and the resonator has
a loaded quality factor,

The phase noise of the oscillator can be written as [6]
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where

It is not always possible to model the oscillator with this model. Razavi
[16] also notes that a two integrator oscillator “does indeed oscillate”
although the definition of Q is not applicable for this oscillator.

The power supply is critical for an oscillator, since power supply noise
can enter the feedback loop at many different points. Often linear voltage
regulators are used to filter the power supply voltage into the oscillator.
However, some linear voltage regulators can add significant phase noise to
the oscillator and the designer needs to empirically determine the phase noise
contribution of the power supply.

Another caution concerns the control input of the oscillator. Typically
low-noise operational amplifiers are used to provide the drive voltage or
current. Often the control input is quite capacitive, such as a varactor diode.
Some operational amplifiers have difficulty driving capacitive loads over
large voltage swings, and this can also degrade the spurious/phase noise
performance of the oscillator. Because the VCO changes an error voltage to
frequency, amplitude modulated (AM) noise present in the loop after the
phase detector will undergo a conversion to phase modulation (PM).

13.4 Phase Noise of Dividers

At the input to the digital divider, AM noise also undergoes an AM-to-PM
conversion. This causes the output transitions of the digital counter to have
time jitter (phase modulation). This phase modulation is transferred through
the phase detector and subsequently appears on the output waveform of the
VCO.

To analyze a digital counter, Blachman and Mayerhofer [7] observed the
divide-by-N counter could be analyzed by differentiating the waveform, and
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then computing the power spectrum of the resulting waveform. The digital
waveform and it’s derivative are shown in Figure 13.9.

Recall the power spectrum relationship between a signal and its
derivative,

Using Equation 13-20, it is possible to obtain the power spectrum of the
waveform from its derivative. Blachman and Mayerhofer’s power spectrum
for the digital divider is [7]

In general, the digital divider reduces the input phase noise by the factor



402 Chapter 13

In Equation 13-22, N is the division ratio, is the input phase noise

to the divider, and is the divider’s output phase noise. Equation 13-
22 is not completely represent the divider’s phase noise, because a digital
divider has a minimum noise floor, as shown with the phase noise plot of
TTL flipflop in Figure 13.10. This noise floor is often the dominant phase
noise contributor to a frequency synthesizer.

A simple representation of a digital divider’s input clock is shown in
Figure 13.11. The input clock has a finite rise time and is corrupted with
internal and external noise. The counter will switch its output when the
threshold is exceeded, and Figure 13.11 demonstrates how the clock period is
modulated by additive noise. (The additive noise can originate from a
number of different sources.) As with the VCO, amplitude noise is
converted to phase modulation.
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By modeling the digital divider, the equivalent amplitude noise can be
determined. Figure 13.12 shows an example analysis of a digital divider
schematic. The idea is to compute the equivalent amplitude noise that can
modulate the output transition point as in Figure 13.11.
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After the noise has been modeled, the phase noise can be estimated by
Equation 13-23 below [8].

where is the divider’s input rise time, is the timing jitter variance, is

the period of the input pulse, and

13.5 Consequences of Phase Noise

A heuristic explanation of phase noise degradation in a receiver can be
shown by the graphical representation of the receiver’s demodulation process
in Figure 13.13. The local oscillator without phase noise is able to
demodulate the input signal without distortion. However, the local oscillator
with phase noise introduces signal distortion. This describes how a receiver’s
selectivity (ability to demodulate a single signal in a crowded electromagnetic
spectrum) is degraded by phase noise. Yet, degradation of receiver
selectivity is not the only degradation caused by phase noise.

In a coherent receiver, a noisy phase reference will introduce
implementation losses as discussed in Chapter 11. Recall the
degradation for a phase error in a BPSK receiver is
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We can approximate the effect of phase noise in a receiver by modifying
such that

In Equation 13-24, note that the variance of the carrier loop is the
summation of the inverse signal-to-noise ratio of the loop, plus the variance
of integrated phase noise. For the phase noise only, Figure 13.13 shows the
BER of BPSK.

Higher order modulation techniques such as CPM and m-ary PSK are much
more susceptible to phase noise than BPSK. Intuitively this would be
reasonable, since those modulations have a much smaller signal space than
BPSK.
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13.6 Phase Noise Measurements

There are several different methods of measuring phase noise and each
has its own individual merits. The required instrumentation and expected
phase noise of the test devices also provide additional selection criteria.
Although the following list is not exhaustive, it discusses some of the
techniques suitable for the phase-noise measurements of frequency
synthesizers.

1. Direct spectrum measurement. The output of the Device Under Test
(DUT) is observed directly with a spectrum analyzer. It is a simple
RF spectrum measurement, but is limited by the dynamic range and
phase-noise characteristics of the spectrum analyzer. With present
microwave spectrum analyzers, this limits sensitivity to about –90
dBc.

2.   Time-domain measurements. The duality of frequency and time
permits an interval timer to measure the time jitter of the source.
This is typically limited for low frequency offsets from the carrier
because of the difficulty in gating high frequency waveforms. Often
the counter is used measure a related parameter, the Allan variance
[17,18].
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3. Golden-source measurements. The device under test is demodulated
with a comparable frequency source having phase-noise
characteristics much better than the DUT itself. The down- converted
signal is then measured on a low-frequency spectrum analyzer. In
some measurement systems the reference is phase-locked to the DUT
and the output of the phase-locked loop is used as the demodulated
phase noise. The primary difficulty is obtaining low phase-noise
references.

4. Frequency Discriminator. This technique is very versatile and
requires little instrumentation. The output power of the DUT is
divided between a delay-line and the local oscillator input of a double
balanced mixer. The output of the delay line drives the RF input of
the mixer and the demodulated (baseband) phase noise appears at the
mixer’s IF output. Although it removes the requirement for a golden
source, it is severely limited in sensitivity by the delay line
characteristics.

The sensitivity of a delay line is shown in Equation 13-25 [11]. This
sensitivity exhibits a sinusoidal response, with peaks and nulls as a function
of the offset frequency. Generally, industry practice is to limit measurements
to offset frequencies much less than where is the time delay of the
delay line [11]. The constant is limited by the same mixer output levels
available for the phase detector method.

where

is the differential output voltage

is the phase detector gain

is the time delay of the discriminator

is the offset from the carrier frequency.
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5. Two source measurements. This is similar to the golden-source
measurement, but instead of a nearly ideal reference, two identical

devices are demodulated with a mixer. Assuming roughly equal
phase noise from each device, the measured phase noise is
3-dB greater than the individual device. This technique can be
improved by using more than two devices, and measuring the output
phase noise in different combinations.
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13.8 Problems

13.1 If the measured of an oscillator is

calculate

13.2 Obtain V(t) using a second-order approximation of Equation 13-6.
What is the approximate RF spectrum?

13.3 With the tabulated phase noise spectrums of the VCO and crystal
reference below, compute the composite phase-locked loop
performance. Assume the second order, type-2, phase-locked loop
has a loop bandwidth of 100 Hz, with a damping factor of 0.707. For

this problem, let and N=78.

13.4 With the tabulated phase noise spectrums of the VCO , crystal
reference, and divider below, compute the composite phase-locked
loop performance. Assume the second order, type-2, phase-locked
loop has a loop bandwidth of 10000 Hz, with a damping factor of

0.707. For this problem, let and N=1000.
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13.5 Derive a phase noise degradation equation for QPSK similar to
Equation 11-4 and 13-23.
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acquisition, 116, 119, 133, 253,
275, 291, 331, 335

acquisition probability, 296, 297,
298

acquisition threshold, 329
acquisition time, 118, 124, 125,

126, 330
Active Lead-Lag Filter, 33
arm filter, 328, 331
automatic frequency control

(AFC), 14
automatic gain control (AGC), 19
backward difference

transformation, 196, 199, 200,
210

backward Euler, 217, 227
bang-bang control, 190
bilinear transformation, 197, 201,

203, 204, 213
binary phase shift keying (BPSK),

14, 310, 312, 317, 318, 323,
331, 333, 335, 408

binary shift keying (BPSK), 326
bit error probability, 314, 316, 329

Blachman, 404
Bode analysis, 73, 75, 76, 80, 83,

97, 99, 101, 103, 105, 106
Bode plot, 235
bounded input-bounded output

(BIBO), 231
Box-Muller, 303
Butterworth, 35, 51, 68, 206
carrier recovery loop, 313
Cauchy integral theorem, 151, 152
Chapman Kolmogoroff, 293, 296
characteristic equation, 232, 233
charge pump, 167, 170, 191
charge pump equations, 170
Chie, 25, 240, 248, 284
continuous phase modulation

(CPM), 48, 310, 312, 342
contour integration, 207
Costas loop, 319, 324, 330, 331,

332
cubic Farrow, 351
cycle slip, 117, 124, 130, 133, 275
cycle slip probability, 298, 299
cyclostationary, 333
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damping factor, 32, 40, 62, 64,
131, 133, 280

damping ratio. See damping factor
data detection, 313
data detector, 322
deadband, 190
dead-zone, 166
delay-locked loop, 186
difference equation, 302
differential equation, 121
digital clock, 249, 250, 264, 265
digital counter, 184, 393
digital divider, 399, 404, 405, 406
Doppler, 18, 48, 131
dual-modulus, 184
early-late gate loop, 271, 333,

334, 336,341
early-late phase detector, 272
electronic switch, 168, 169
error response, 259, 277, 278
false-lock, 342
Filtering Reference Pulses, 52
first passage time, 297
flat-top sampler, 143
flip-flop, 184
FM demodulator, 81
FM Demodulator, 82
Fokker-Planck, 127
forward error coding (FEC), 313
fractional-N, 180, 182, 183
frequency acquisition time, 125
frequency modulation (FM), 70,

279, 283,  395
frequency ramp, 18, 29, 39, 42,

43, 57, 132, 276, 278, 281, 282
frequency shift keying (FSK), 85,

84, 310
frequency step, 16, 28, 38, 41, 42,

56, 87, 133, 276, 278, 280, 281,
287, 292, 300, 305

frequency sweeping, 133
frequency synthesizer, 52, 179,

180,  393,  394,  397
frequency synthesizers, 11
frequency warping, 206
gain margin, 79, 235
gain margin, definition of, 75
Gardner, 49, 95, 118, 124, 132,

168, 323, 332, 348, 350
global positioning system (GPS),

18, 48
Hilbert transform phase detector,

270,  271
ideal sampler, 142
Impulse Invariance, 214
indirect synthesizer, 179
integrate and dump, 88
interpolant, 349
interpolator, 347, 349, 350
intersymbol interference, 317
inverse Z-transform, 153
inverse Z-Transform, 151, 152
ITAE, 48
Jeruchim, 217
jitter, 185
joint estimation, 343, 346
Kuo,  235
Laplace transform, 73
Laplace Transform

differentiation theorem, 21
final value theorem, 37
fundamental properties, 19
initial value theorem, 21
integration theorem, 21
partial fraction expansion, 21,

23
sampled, 143, 147

lead-lag passive filter, 33
lead-lag phase detector. See

sequential phase detector
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Leeson, 403
Lindsey, 25, 88, 89, 240, 248
local minima, 347
lock detector, 133, 323, 327
lock range, 133
loop natural frequency, 32
lowpass filter, 32
Lowpass Filter Time Response,

45
Markov process, 284, 301
maximum likelihood, 338, 344
maximum sweep rate, 133
MCH12140, 169, 193
mean time to slip, 130, 131
mod-remod loop, 342
multirate sampling, 144
natural frequency, 62, 126, 256
neutral position, 168
noise bandwidth, 89, 96, 97, 100,

104, 126, 127, 207, 220, 237,
242, 257, 261, 279, 314

nonlinear analysis, 284
non-uniform sampling, 248, 285,

304
numerically controlled oscillator

(NCO), 216, 224, 239, 248,
251, 265, 266, 287

Nyquist, 143
Nyquist criteria, 235
Nyquist sampling, 235
offset QPSK (OQPSK), 325
open systems interconnection

(OSI), 312
Oppenheim, 151, 196, 213
overload, 176
Parseval’s theorem, 340
partial fraction, 63, 88, 231
passive lead-lag filter, 31
Passive Lead-Lag Filter Time

Response, 46

passive loop filter, 172
peak undershoot, 209
phase acquisition time, 125
phase detector, 12, 14, 15, 92,

129, 140, 189, 212, 267, 269,
277, 321, 337, 338, 342

phase error, 14, 128, 129, 197,
251, 254, 291, 292

phase jitter, 321
phase margin, 79, 81, 97, 98, 100,

102, 104,106, 107, 235, 236
phase margin, definition of, 74
phase modulation (PM), 278, 283,

404
phase noise, 275, 396, 397, 399,

400, 401, 404, 406, 407, 408
phase noise measurements, 409
phase plane, 117, 123, 124, 268,

290
phase shift keying (PSK), 310
phase step, 16, 28, 37, 55, 226,

276, 278, 280, 281
phase step response, 40, 41
phase trajectory, 121
phase-locked loop

active filter, 34
analog loop filter, 31
closed loop frequency response,

84
closed loop responses, 36
closed loop transfer function,

26
digital, 140
first order, 66, 114, 115, 116,

119, 135, 206, 213, 252, 255,
257, 262, 277, 284, 287, 296

forward gain, 65
frequency analysis, 73
frequency domain analysis, 19
loop responses, 19, 27
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noise model, 94, 239, 240
nonlinear, 115, 120
order, 29
pull-in limit, 118
second order, 29, 30, 67, 68, 70,

72, 119, 123,125, 131, 133,
136,178, 208,   213,    252,   255,
257, 259,  280, 282, 284, 300

third order, 47, 51, 70, 76, 97,
101, 104, 131, 176, 179

time domain analysis, 11
type, 29

pole, definition of, 62
preamble, 319
precharging, 166
processing delays, 218
Przedpelski, 50, 76, 97
pull-in, 132
pulse transform, 141, 145
pump current, 171
pump voltage, 171
quadrature detector, 327
quadrature lock detector, 133
quadrature noise representation,

90, 91
quadrature phase shift keying

(QPSK), 14, 318, 324, 326, 331
radar, 393
reference feed-through, 53
reference frequency, 179
Reference Rejection Filter, 55
region of convergence, 149, 150
Riemann integration, 158
ripple, 174, 181
root locus, 49, 61, 65, 66, 71, 72,

73, 107,108,232, 233,234
SA7016, 194
sampling rate Effect, 244
Schmidtt trigger, 267
sequential phase detector, 269

Sequential Phase Detector, 162
Sequential Phase Detectors, 161
servo-mechanism form, 33
sigma-delta, 184
sigma-delta modulator, 182
signal-to-noise threshold, 128
spectral containment, 37
squaring loop, 319, 320, 324, 325,

332
stability, 64, 231, 235, 241
Step Invariance, 215
step response, 261
synchronization, 311, 316, 318,

323, 330
third order, 97
Tikhonov, 127
time delay, 69, 74, 79, 80, 227
time response, 64
timing ambiguity, 311
timing loop, 312
timing phase detector, 270
timing synchronizer, 332
training sequence, 319
trapezoidal approximation, 201
trapezoidal integrator, 219
trellis coded modulation (TCM),

310
UHF SATCOM, 47
Viterbi, 11, 115, 118, 121, 123,

124, 128,131

voltage controlled oscillator
(VCO), 13

voltage-controlled delay line
(VCDL), 187, 188

Whichman-Hill, 303
zero order hold, 157, 158, 159
zero, definition of, 62
zero-crossing, 267
Z-transform, 146, 147, 148
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convolution theorem, 157
initial value theorem, 157
partial fraction expansion, 153,

154
synthetic division, 155
time delay theorem, 157




