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The Tools

1.1 Introduction, Assumptions, and
Conventions

This chapter is intended to provide the reader with the tools neces-
sary to determine the location, size, and orientation of the image
formed by an optical system. These tools are the basic paraxial equa-
tions which cover the relationships involved. The word “paraxial” is
more or less synonymous with “first-order” and “gaussian”; for our
purposes it means that the equations describe the image-forming
properties of a perfect optical system. You can depend on well-correct-
ed optical systems to closely follow the paraxial laws.

In this book we make use of certain assumptions and conventions
which will simplify matters considerably. Some assumptions will
eliminate a very small minority* of applications from consideration;
this loss will, for most of us, be more than compensated for by a large
gain in simplicity and feasibility.

Conventions and assumptions

1. All surfaces are figures of rotation having a common axis of sym-
metry, which is called the optical axis.

2. All lens elements, objects, and images are immersed in air with
an index of refraction n of unity.

Chapter
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*Primarily, this refers to applications where object space and image space each has a
different index of refraction. The works cited in the bibliography should be consulted in
the event that this or other exceptions to our assumptions are encountered.
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3. In the paraxial region Snell’s law of refraction (n sin I � n′ sin I′)
becomes simply ni � n′i′, where i and i′ are the angles between
the ray and the normal to the surface which separates two media
whose indices of refraction are n and n′.

4. Light rays ordinarily will be assumed to travel from left to right
in an optical medium of positive index. When light travels from
right to left, as, for example, after a single reflection, the medium
is considered to have a negative index.

5. A distance is considered positive if it is measured to the right of a
reference point; it is negative if it is to the left. In Sec. 1.2 and
following, the distance to an object or an image may be measured
from (a) a focal point, (b) a principal point, or (c) a lens surface,
as the reference point.

6. The radius of curvature r of a surface is positive if its center of
curvature lies to the right of the surface, negative if the center is
to the left. The curvature c is the reciprocal of the radius, so that
c � 1/r.

7. Spacings between surfaces are positive if the next (following) sur-
face is to the right. If the next surface is to the left (as after a
reflection), the distance is negative.

8. Heights, object sizes, and image sizes are measured normal to
the optical axis and are positive above the axis, negative below.

9. The term “element” refers to a single lens. A “component” may be
one or more elements, but it is treated as a unit.

10. The paraxial ray slope angles are not angles but are differential
slopes. In the paraxial region the ray “angle” u equals the dis-
tance that the ray rises divided by the distance it travels. (It
looks like a tangent, but it isn’t.)

1.2 The Cardinal (Gauss) Points and Focal
Lengths

When we wish to determine the size and location of an image, a com-
plete optical system can be simply and conveniently represented by
four axial points called the cardinal, or Gauss, points. This is true for
both simple lenses and complex multielement systems. These are the
first and second focal points and the first and second principal points.
The focal point is where the image of an infinitely distant axial object
is formed. The (imaginary) surface at which the lens appears to bend
the rays is called the principal surface. In paraxial optics this surface
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is called the principal plane. The point where the principal plane
crosses the optical axis is called the principal point.

Figure 1.1 illustrates the Gauss points for a converging lens sys-
tem. The light rays coming from a distant object at the left define the
second focal point F2 and the second principal point P2. Rays from an
object point at the right define the “first” points F1 and P1. The focal
length f (or effective focal length efl) of the system is the distance
from the second principal point P2 to the second focal point F2. For a
lens immersed in air (per assumption 2 in Sec. 1.1), this is the same
as the distance from F1 to P1. Note that for a converging lens as
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Figure 1.1 The Gauss, or cardinal, points are the first and second focal
points F1 and F2 and the first and second principal points P1 and P2. The
focal points are where the images of infinitely distant objects are formed.
The distance from the principal point P2 to the focal point F2 is the effective
focal length efl (or simply the focal length f). The distances from the outer
surfaces of the lens to the focal points are called the front focal length ffl
and the back focal length bfl.
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shown in Fig. 1.1, the focal length has a positive sign according to our
sign convention. The power � of the system is the reciprocal of the
focal length f; � � 1/f. Power is expressed in units of reciprocal length,
e.g., in�1 or mm�1; if the unit of length is the meter, then the unit of
power is called the diopter. For a simple lens which converges (or
bends) rays toward the axis, the focal length and power are positive; a
diverging lens has a negative focal length and power.

The back focal length bfl is the distance from the last (or right-hand)
surface of the system to the second focal point F2. The front focal
length ffl is the distance from the first (left) surface to the first focal
point F1. In Fig. 1.1, bfl is a positive distance and ffl is a negative dis-
tance. These points and lengths can be calculated by raytracing as
described in Sec. 1.5, or, for an existing lens, they can be measured.

The locations of the cardinal points for single-lens elements and
mirrors are shown in Fig. 1.2. The left-hand column shows converg-
ing, or positive, focal length elements; the right column shows diverg-
ing, or negative, elements. Notice that the relative locations of the
focal points are different; the second focal point F2 is to the right for
the positive lenses and to the left for the negative. The relative posi-
tions of the principal points are the same for both. The surfaces of a
positive element tend to be convex and for a negative element concave
(exception: a meniscus element, which by definition has one convex
and one concave surface, and may have either positive or negative
power). Note, however, that a concave mirror acts like a positive, con-
verging element, and a convex mirror like a negative element.

1.3 The Image and Magnification Equations

The use of the Gauss or cardinal points allows the location and size of
an image to be determined by very simple equations. There are two
commonly used equations for locating an image: (1) Newton’s equa-
tion, where the object and image locations are specified with refer-
ence to the focal points F1 and F2, and (2) the Gauss equation, where
object and image positions are defined with respect to the principal
points P1 and P2.

Newton’s equation

x′ � (1.1)

where x′ gives the image location as the distance from F2, the second
focal point; f is the focal length; and x is the distance from the first

�f2

�
x
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Figure 1.2 Showing the location of the cardinal, or Gauss, points for lens elements. The
principal points are separated by approximately (n�1)/n times the axial thickness of
the lens. For an equiconvex or equiconcave lens, the principal points are evenly spaced
in the lens. For a planoconvex or planoconcave lens, one principal point is always on
the curved surface. For a meniscus shape, one principal point is always outside the
lens, on the side of the more strongly curved surface. For a mirror, the principal points
are on the surface, and the focal length is half of the radius. Note that F2 is to the right
for the positive lens element and to the left for the negative.
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focal point F1 to the object. Given the object size h we can determine
the image size h′ from

h′ � � (1.2)

The lateral, or transverse, magnification m is simply the ratio of
image height to object height:

m � � � (1.3)

Figure 1.3A shows a positive focal length system forming a real image
(i.e., an image which can be formed on a screen, film, CCD, etc.). Note
that x in Fig. 1.3A is a negative distance and x′ is positive; h is posi-
tive and h′ is negative; the magnification m is thus negative. The
image is inverted.

Figure 1.3B shows a positive lens forming a virtual image, i.e., one
which is found inside or “behind” the optics. The virtual image can be
seen through the lens but cannot be formed on a screen. Here, x is
positive, x′ is negative, and since the magnification is positive the
image is upright.

Figure 1.3C shows a negative focal length system forming a virtual
image; x is negative, x′ is positive, and the magnification is positive.
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Figure 1.3 Three examples showing image location by ray sketching and by calcula-
tion using the cardinal, or Gauss, points. The three rays which are easily sketched
are: (1) a ray from the object point parallel to the axis, which passes through the sec-
ond focal point F2 after passing through the lens; (2) a ray aimed at the first princi-
pal point P1, which appears to emerge from the second principal point P2, making the
same angle to the axis � before and after the lens; and (3) a ray through the first
focal point F1, which emerges from the lens parallel to the axis. The distances (s, s′, x,
and x′) used in Eqs. (1.1) through (1.6) are indicated in the figure also. In (A) a posi-
tive lens forms a real, inverted image.
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Figure 1.3 (Continued) Three examples showing image location by ray sketching and by
calculation using the cardinal, or Gauss, points. The three rays which are easily
sketched are: (1) a ray from the object point parallel to the axis, which passes through
the second focal point F2 after passing through the lens; (2) a ray aimed at the first
principal point P1, which appears to emerge from the second principal point P2, making
the same angle to the axis � before and after the lens; and (3) a ray through the first
focal point F1, which emerges from the lens parallel to the axis. The distances (s, s′, x,
and x′) used in Eqs. (1.1) through (1.6) are indicated in the figure also. In (B) a positive
lens forms an erect, virtual image to the left of the lens. In (C) a negative lens forms an
erect, virtual image.
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The Gauss equation

� � (1.4)

where s′ gives the image location as the distance from P2, the second
principal point; f is the focal length; and s is the distance from the
first principal point P1 to the object. The image size is found from

h′ � (1.5)

and the transverse magnification is

m � � (1.6)

The sketches in Fig. 1.3 show the Gauss conjugates s and s′ as well as
the newtonian distances x and x′. In Fig. 1.3A, s is negative and s′ is
positive. In Fig. 1.3B, s and s′ are both negative. In Fig. 1.3C, both s
and s′ are negative. Note that s � x�f and s′ � x′+f, and if we neglect
the spacing from P1 to P2, the object to image distance is equal to
(s�s′).

Other useful forms of these equations are:

s′ �

s′ � f(1 � m)

s �

f �

Sample calculations

We will calculate the image location and height for the systems
shown in Fig. 1.3, using first the newtonian equations [Eqs. (1.1),
(1.2), (1.3)] and then the Gauss equations [Eqs. (1.4), (1.5), (1.6)].
Fig. 1.3A f � +20, h � +10, x � �25; s � �45

By Eq. (1.1):

x′ � � � �16.0
�400
�
�25

�202

�
�25

ss′
�s � s′

f(1 � m)
�m

sf
�
s � f

s′
�
s

h′
�
h

hs′
�s

1
�s

1
�f

1
�s′
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Eq. (1.3):

m � � � �0.8

h′ � �0.8•10 � �8.0

By Eq. (1.4):

� � � �0.02777 �

s′ � 36

Eq. (1.6):

m � � �0.8

h′ � �0.8•10 � �8.0

Fig. 1.3B f � +20, h � +10, x � +5; s � �15

x′ � � � �80

m � � � +4.0

h′ � 4•10 � +40

� � � �0.01666 �

s′ � �60 m � � +4.0

h′ � 4•10 � +40

Fig. 1.3C f � �20, h � 10, x � �80; s � �60

x′ � � � +5.0

m � � � +0.25

h′ � 0.25•10 � +2.5
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� � � �0.06666 �

s′ � �15 m � � �0.25

h′ � 0.25•10 � �2.5

The image height and magnification equations break down if the
object (or image) is at an infinite distance because the magnification
becomes either zero or infinite. To handle this situation, we must
describe the size of an infinitely distant object (or image) by the angle
up which it subtends. Note that, for a lens in air, an oblique ray aimed
at the first principal point P1 appears to emerge from the second prin-
cipal point P2 with the same slope angle on both sides of the lens.
Then, as shown in Fig. 1.4, the image height is given by

h′ � fup (1.7)

For trigonometric calculations, we must interpret the paraxial ray slope
u as the tangent of the real angle U, and the relationship becomes

H′ � f tan Up (1.8)

The longitudinal magnification M is the magnification of a dimension
along the axis. If the corresponding end points of the object and image
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Figure 1.4 For a lens in air, the nodal points and principal points are the same,
and an oblique ray aimed at the first nodal/principal point appears to emerge
from the second nodal point, making the same angle up with the axis as the inci-
dent ray. If the object is at infinity, its image is at F2, and the image height h′ is
the product of the focal length f and the ray slope (which is up for paraxial calcu-
lations and tan up for finite angle calculations).
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are indicated by the subscripts 1 and 2 as shown in Fig. 1.5, then, by
definition, the longitudinal magnification is

M � (1.9)

The value of M can be found from

M � • � m1•m2 (1.10)

and in the limit for an infinitesimal length, as m1 approaches m2, we
get

M � m2 (1.11)

Sample calculations

Fig. 1.5 f � 20, s1 � �43, s2 � �39, s2�s1 � 4
Exact calculation [Eq. (1.4)]:

� � � 0.02674 �

� � � 0.02435 �

s2′�s1′ � 41.0526�37.3913 � 3.6613

1
�
41.0526

1
�
�39

1
�
20

1
�
s2′

1
�
37.3913

1
�
�43

1
�
20

1
�
s1′

s2′
�
s2

s1′
�
s1

s2′ � s1′
�
s2 � s1
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Figure 1.5 Longitudinal magnification is the magnification along the axis (as contrast-
ed to transverse magnification, measured normal to the axis). It can be regarded as the
magnification of the thickness or depth of an object or, alternately, as the longitudinal
motion of the image relative to that of the object.
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Eq. (1.9):

M � � �0.91533

Note that we can confirm Eq. (1.10):

M � m1•m2 � � �•� �
� (�0.86951)(�1.05263) � �0.91533

To use the approximation M � m2, we can take the middle of the
object as its location and use �41 for s; then 1/s′ � 1/20 � 1/(�41) �
1/39.047619

m � � �0.952381

M � m2 � 0.907029

s2′�s1′ � 0.907029•4 � 3.6281, approximately the same as the exact
value of 3.6613 above.

We can also regard the end points 1 and 2 as different locations for
a single object, so that (s2�s1) and (s2′�s1′) represent the motion of
object and image. Since Eq. (1.11) shows M equal to a squared quanti-
ty, it is apparent that M must be a positive number. The significance
of this is that it shows that object and image must both move in the
same direction.

Figures 1.6 and 1.7 illustrate this effect for a positive lens (Fig. 1.6)
and a negative lens (Fig. 1.7). At the top of each figure the object
(solid arrow) is to the left at an infinite distance from the lens and the
image is at the second focal point (F2). As the object moves to the right
it can be seen that the image (shown as a dashed arrow) also moves to
the right. When the object moves to the first focal point (F1), the
image is then at infinity, which can be considered to be to either the
left or the right, and, as the object moves to the right of F1 the image
moves toward the lens, coming from infinity at the left. Note that in
the lower sketches the object is projected into the lens and can be con-
sidered to be a “virtual object.”

1.4 Simple Ray Sketching

When a lens is immersed in air (as per assumption 2 in Sec. 1.1) what
are called the nodal points coincide with the principal points. The

39.047619
��

�41

41.05
�
�39.0

37.39
�
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�

4
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Figure 1.6 Showing the object and image positions for a positive lens as the object is
moved from minus infinity to positive infinity.
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Figure 1.7 Showing the object and image positions for a nega-
tive lens as the object is moved from minus infinity to positive
infinity.

important characteristic of the nodal points (and thus, for us, the
principal points) is that an oblique ray directed toward the first
nodal/principal point and making an angle � with the optical axis will
emerge (or appear to emerge) from the second nodal/principal point
making exactly the same angle � with the axis. [We made use of this
in Sec. 1.3, Eqs. (1.7) and (1.8), and in Fig. 1.4.]

There are three rays which can be quickly and easily sketched to
determine the image of an off-axis object point. The first ray is drawn
from the off-axis point, parallel to the optical axis. This ray will be
bent (or appear to be bent) at the second principal plane and then
must pass through the second focal point. The second ray is the nodal
point ray described above. The third is a ray directed toward the first
focal point, which is bent at the first principal plane and emerges par-
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allel to the axis. This third ray is simply the reverse direction version
of the ray which defines the first focal and principal points.

The intersection of any two of these rays serves to locate the image of
the object point. If we repeat the exercise for a series of object points
along a straight object line perpendicular to the axis, its image will be
found to be a straight line also perpendicular to the axis. Thus when the
location of one image point has been determined, the image of the entire
object line is known. Three examples of this ray sketching technique are
illustrated in Fig. 1.3. Note also that this technique can be applied, one
lens at a time, to a series of lenses in order to determine the imagery of a
complex system, although the process could become quite tedious for a
complex system.
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If the object plane is tilted, the image tilt can be determined using
the Scheimpflug condition, which is described in Sec. 1.11.

1.5 Paraxial Raytracing (Surface by
Surface)

This section is presented primarily for reference purposes. This material is
not necessary for optical layout work; however, it is included for complete-
ness (and for the benefit of those whose innate curiosity may cause them
to wonder just how focal lengths, cardinal points, etc., are determined).

The focal lengths and the cardinal points can be calculated by trac-
ing ray paths, using the equations of this section. The rays which are
traced are those which we used in defining the cardinal points in Sec.
1.2. Here, we assume that the construction data of the lens system
(radius r, spacing t, and index n) are known and that we desire to
determine either the cardinal points and focal lengths or, alternately,
to determine the image size and location for a given object.

A ray is defined by its slope u and the height y at which it strikes a
surface. Given y and u, the distance l to the point at which the ray
crosses, or intersects, the optical axis is given by

l � (1.12)

If u is the slope of the ray before it is refracted (or reflected) by a sur-
face and u′ is the slope after refraction, then the intersection length
after refraction is

l′ � (1.13)

The intersection of two (or more) rays which originate at an object
point can be used to locate the image of that point. If we realize that
the optical axis is in fact a ray, then a single ray starting at the foot
(or axial intersection) of an object can be used to locate the image,
simply by determining where that ray crosses the axis after passing
through the optical system. Thus l and l′ above can be considered to
be object and image distances, as illustrated in Fig. 1.8.

The raytracing problem is simply this: Given a surface defined by r,
n, and n′, plus y and u to define a ray, find u′ after refraction. The
equation for this is

n′u′ � nu � (1.14a)

n′u′ � nu � (1.14b)
y(n′ � n)
��

c

y(n′ � n)
��

r

�y
�
u′

�y
�
u
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where n and n′ are the indices of refraction for the materials before
and after the surface, r is the radius of the surface, c is the curvature
of the surface and is the reciprocal of r(c � 1/r), u and u′ are the ray
slopes before and after the surface, and y is the height at which the
ray strikes the surface.

The sign convention here is that a ray sloping upward to the right
has a positive slope (as u in Fig. 1.8) and a ray sloping downward (as
u′ in Fig. 1.8) has a negative slope. A radius has a positive sign if its
center of curvature is to the right of the surface (as in Fig. 1.8). A ray
height above the axis is positive (as y in Fig. 1.8). The distances l and
l′ are positive if the ray intersection point is to the right of the surface
(as is l′ in Fig. 1.5) and negative if to the left (as is l in Fig. 1.5).

In passing we can note that the term

� (n′ � n)c

is called the surface power; if r is in meters, the unit of power is the
diopter.

Sample calculation

Fig. 1.8 l � �100; y � 10
Eq. (1.12):

u � � �0.10

n � 1.0 r � +20 n′ � 2.0

Eq. (1.14):

�10
�
�100

n′ � n
�

r
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l l'

r

u u'
y

h'

Index = n

h

Index = n'

Figure 1.8 A ray traced through a single surface, with the dimensions used in the
raytrace calculation labeled for identification.
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n′u′ � 1.0•0.10 � 

� 0.1 � 0.5 � �0.4

u′ � � � �0.2

Eq. (1.13):

l′ � � �50

Looking ahead to Eq. (1.16a), we can also get

m � � � �0.25

To trace a ray through a series of surfaces, we also need an equa-
tion to transfer the ray from one surface to the next. The height of the
ray at the next surface (call it y2) is equal to the height at the current
surface (y1) less the amount the ray drops traveling to the next sur-
face. If the distance measured along the axis to the next surface is t,
the ray will drop (�tu′) and

y2 � y1 � tu1′ (1.15)

To trace the path of a ray through a system of several surfaces, we
simply apply Eqs. (1.14) and (1.15) iteratively throughout the system,
beginning with y1 and u1, until we have the ray height yk at the last
(or kth) surface and the slope uk′ after the last surface. Then Eq.
(1.13) is used to determine the final intersection length lk′. If the axial
intersection points of the ray represent the object and image loca-
tions, then the system magnification can be determined from

m � � (1.16a)

or, since we have assumed that for our systems both object and image
are in air of index n � 1.0,

m � � (1.16b)

If we want to determine the cardinal points of an air-immersed system,
we start a ray parallel to the axis with u1 � 0.0 (as shown in Fig. 1.9)

u1�
uk′

h′
�
h

n1u1�
nk′uk′

h′
�
h

1•0.1
�
2•(�0.2)

nu
�
n′u′

�10
�
�0.2

�0.4
�
2.0

n′u′
�
n′

10(2.0�1.0)
��

20
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20 Chapter One

Surface no. 1 2 3
Radius �50 �50 ∞
Curvature �0.02 �0.02 0.0
Spacing �6.0 �3.0
Index 1.0 �1.5 �1.6 �1.0

y � 10 �9.60 9.4485
nu � 0.0 �0.10 �0.0808 �0.0808
u � 0.0 �0.0666 �0.0505 �0.0808

and with y1 at any convenient value. Then the focal length and back
focal length are given by

f � efl � (1.17)

bfl � (1.18)

The back focal length bf l obviously locates the second focal point F2,
and (bf l�ef l) is the distance from the last surface to the second prin-
cipal point P2. The “first” points P1 and F1 can be determined by
reversing the lens and repeating the process. Note that since the
paraxial equations in general, and these equations in particular, are
linear in y and u, we get exactly the same results for ef l and bf l
regardless of the initial value we select for y1.

Sample calculations

Fig. 1.9 Given the lens data in the following tabulation, find the
ef l and bf l. Use Eqs. (1.14), (1.15), (1.17), and (1.18).

�yk�
uk′

�y1�
uk′

y1 yk

F2

bfl = l'k

efl

u1 = 0

u'k

P2

Figure 1.9 The calculation of the cardinal points is done by tracing the path of a ray
with an initial slope of zero. The second focal point F2 is at the final intersection of this
ray with the axis; the back focal length is �yk/uk′ and the effective focal length is equal
to �y1/uk′.
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efl � � � +123.762376

bfl � � � +116.936881

bfl�efl � �6.825495

If the object at infinity subtends a paraxial angle of 0.1 or a real
angle whose tangent is 0.1, the image size is h′ � up•f � 0.1•123.762
� 12.3762 per Eq. (1.7) or (1.8).

Reversing the lens and repeating the calculation, we get exactly the
same focal length (this makes a good check on our calculation) and
find that the ffl � �124.752475 and that P1 is (ffl�efl) � �0.990099
(to the left) from surface 1.

If we want to determine the imagery of an object 15 mm high which
is located 500 mm to the left of the first surface of this lens, we can
locate the image by tracing a ray from the foot of the object and deter-
mining where the ray crosses the axis after passing through the lens.
We use a ray height y of 10 at surface 1; then u1 � 10/500 � +0.02 and
the raytrace data is

Surface no. 1 2 3
y � 10 9.68 9.5663
nu � �0.020 �0.08 �0.06064 �0.06064
u � �0.020 �0.05333 �0.03790 �0.06064

l3′ � � � �157.755607

m � � � �0.329815

h′ � m•h � �0.3298•15 � �4.947230

Since we calculated the cardinal points and the focal lengths in the
first part of this example, we could also use Eqs. (1.1) and (1.4) to
locate the image, as follows:

This object is 500�0.990099 � 499.009901 � �s to the left of P1
and 500�124.752475 � 375.247525 � �x to the left of F1.

So by Newton [Eq. (1.1)], x′ � �(123.762)2/(�375.247) � +40.818725
from F2, or 40.818 � 116.939 � 157.755607 from surface 3. The mag-
nification [Eq. (1.3)] is m � 123.762/(�375.247) � �0.329815.

0.02
��
�0.06064

u1�
u3′

�9.5663
��
�0.06064

�y3�
u3′

�9.4485
�
�0.0808

�yk′
�
uk′

�10
�
�0.0808

�y1�
uk′
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And by Gauss [Eq. (1.4)], 1/s′ � 1/123.762 � 1/(�499.0099) �
0.006076 or 164.581102 from P2 and 164.581�6.625 � 157.755643
from surface 3. The magnification [Eq. (1.6)] is m � 164.581/
(499.0099) � �0.329815.

This demonstrates that all the equations given above will yield
exactly the same answer.

A note about paraxial. The reader may be aware that the paraxial equa-
tions that we are using are actually differential expressions and thus
are rigorously valid only for infinitesimal angles and ray heights. The
paraxial region has been well described as a “thin, threadlike region
about the optical axis.” Yet in our raytracing we are using real, finite
ray heights and slopes (angles). The paraxial equations actually repre-
sent the relationships or ratios of the various quantities as they
approach zero as a limit. These ratios and the (limiting) axial intersec-
tion lengths are perfectly exact. However, the ray heights and angles of
a paraxial raytrace are not the same values that one would obtain from
an exact, trigonometric raytrace of the same starting ray using Snell’s
law. So in one sense the paraxial raytrace is perfectly exact, justifying a
precision to as many decimal places as are useful, while in another
sense it is also correct to refer to “the paraxial approximation.”

1.6 The Thin Lens Concept

A thin lens is simply one whose axial thickness is zero. Obviously no
real lens has a zero thickness. The thin lens is a concept which is an
extremely useful tool in optical system layout, and we make extensive
use of it in this book. When a lens or optical system has a zero thick-
ness, the object and image calculations can be greatly simplified. In
dealing with a thick lens we must be concerned with the location of
the principal points. But if the lens has a zero thickness, the two prin-
cipal points are coincident and are located where the lens is located.
Thus by using the thin lens concept in our system layout work, we
need only consider the location and power of the component. We can
represent a lens of any degree of complexity as a thin lens. What in
the final system may be a singlet, doublet, triplet, or a complex lens of
10 or 15 elements may be treated as a thin lens, when our concern is
to determine the size, orientation, and location of the image.

The drawbacks to using the thin lens concept are that a thin lens is
not a real lens, that its utility is limited to the paraxial region, and
that we must ultimately convert the thin lens system into real lenses
with radii, thicknesses, and materials. However, for the layout of opti-
cal systems, the thin lens concept is of unsurpassed utility. The
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replacement of thin lenses with thick lenses is actually quite easy.
The complete description of a thin lens system consists of just a set of
lens powers and the spacings between the lenses. The corresponding
thick lens system must have the same component powers (or focal
lengths) and the components must be spaced apart by the same spac-
ings, but the thick lens spacings must be measured from the principal
points of the lenses. For example, if we have a two-component system
with a thin lens spacing of 100 mm, then our thick lens system must
have two components whose spacing is also 100 mm, but the 100 mm
is measured from the second principal point (P2) of the first compo-
nent to the first principal point (P1) of the second component. The
result is a real system which has exactly the same image size, orien-
tation, and location as the thin lens system.

1.7 Thin Lens Raytracing

Because of the words “thin lens” in the title of this section, a reread-
ing of Sec. 1.6 may be needed to remind us that we can also use the
raytracing of this section for thick, complex components, provided
that we use ray heights at, and spacings from, their principal planes.
However, our primary concern here is to provide a very simple ray-
tracing scheme for us to use in optical system layout work, and to this
end we deal primarily with the “thin lens” concept.

The raytracing equations that we use are very simple and easy to
remember. To trace a ray through a lens we use

u′ � u � y� (1.19)

where u′ is the ray slope after passing through the lens, u is the ray
slope before the lens, y is the height at which the ray strikes the lens
(or appears to strike the principal planes), and � is the power of the
lens, equal to the reciprocal of the focal length. To transfer the ray to
the next lens of a system, we use

yj � 1 � yj � duj′ (1.20)

where yj+1 is the ray height at the next [(j+1)th] lens, yj is the ray
height at the current (jth) lens, d is the distance or space between the
lenses, and uj′ is the ray slope after passing through the jth element.

Note that when these equations are used for thick components, the
ray heights are at the principal planes (that is, they indicate where
the ray in air, if extended, would intersect the principal plane), the
ray height at the first principal plane is identical to that at the second
principal plane, and the spacing d in Eq. (1.20) is measured from the
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second principal plane of the jth component to the first principal
plane of the (j+1)th component.

Sample calculation

Given three lenses with powers of � 0.01, �0.022, and � 0.022, with
spacings of 15.0 between them as shown in Fig. 1.10, we want to find
the ef land ef l of the combination. We start by tracing the focal length
defining ray with a slope u1 of zero, with a convenient ray height y1 of
10, and applying first Eq. (1.19), then Eq. (1.20), then Eq. (1.19), etc.

Lens no. 1 2 3
Power � 0.010 �0.022 � 0.022
Spacing 15 15
y � 10.0 8.5 9.805
u � 0.00 �0.10 �0.087 �0.12871

Then we can get the focal length from Eq. (1.17):

f � ef l �

� � �77.694
�10.0

��
�0.12871

�y1�
uk′
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d =15 d =15

φ = +.01 φ = --.022 φ =+.022

y1 = 10 yk = 9.805

u1=0
u'k = --.12871

Figure 1.10 The thin lens system used in the sample calculation, with initial and
final ray data for the focal length calculation.
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and we can get the back focal length from Eq. (1.18) [or from Eq.
(1.13)]:

bf l �

� � +76.179

Sample calculation

If an infinitely distant object subtends an angle of 0.15 from the sys-
tem of our previous example, we find the image height from Eq. (1.7):

h′ � fup � 77.694•0.15 � 11.654

Sample calculation

If our system has a finite object 500 mm away and 15 mm high, one of
the methods we can use to determine the image size and location is to
trace a ray from the foot of the object. If we use a ray which strikes
the first lens at a height y1 of 10.0, it will have a slope in object space
of u1 � 10/500 � +0.02 and our raytrace data is tabulated as follows:

Lens no. 1 2 3
Power � 0.01 �0.022 � 0.022
Spacing 500 15 15
y � 10.0 8.80 10.504
u � � 0.02 �0.08 � 0.1136 �0.117488

From this data we determine the image position

lk′ �

� � 89.4049

and the magnification and image size

m �

� � �0.170230
0.02

��
�0.117488

u1�
uk′

�10.504
��
�0.117488

�yk�
uk′

�9.805
��
�0.12871

�yk�
uk′
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h′ � mh � �0.170230•15 � �2.55345

Note that negative magnification and the negative image height indi-
cate that the image is inverted.

1.8 The Invariant

An algebraic combination of raytracing quantities which is exactly the
same anywhere in an optical system is called an invariant. The Lagrange
invariant has significant utility in optical system layout. It gives the rela-
tionship between two paraxial rays, which are usually (but not necessari-
ly) an axial ray (from the center of the object through the edge of the lens
aperture) and a chief or principal ray (from the edge of the object through
the center of the lens aperture). The invariant can be written

INV � n(ypu � yup) � n′(ypu′ � yup′) (1.21)

where n is the index, u and y are the slope and ray height of the axial
ray, and up and yp are the slope and height of the principal ray. This
expression can be evaluated for a given pair of rays before or after
any surface or lens of a system, and will have exactly the same value
at any other surface or lens of the system.

If, for example, we evaluate the invariant at the object surface,
then y for the axial ray must be zero (by definition) and yp is the
object height h; the invariant becomes INV � hnu. However, at the
image surface it must equal h′n′u′, and we have

INV � hnu � h′n′u′ (1.22)

which indicates the immutable relationship between image height h
and convergence angle u, and also, confirming Eq. (1.16), our expres-
sion for magnification.

The square of the invariant h2n2u2 is obviously related to the prod-
uct of the object area and the solid angle of the acceptance cone of
rays (or the image area and the cone of illumination). It can also be
applied to the area of the entrance or exit pupil (see Sec. 2.2) and the
solid angle of the field of view. It is thus a measure of the ability of
the optical system to transmit power or information. This illustrates
the concept behind the terms “throughput” and “etendue”; obviously
the square of the invariant is also invariant.

1.9 Paraxial Ray Characteristics

Because the paraxial raytracing equations are simple linear expres-
sions in y and u, any paraxial raytrace may be scaled. That is, all of
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the ray data may be multiplied (or divided) by the same constant, and
the result will be the raytrace data for a new ray. This new ray will
have the same axial intersection locations as the original, but all the
ray slopes and heights will be scaled by the same factor. We could, for
example, take the sample calculation raytrace of Sec. 1.7 and scale it
by a factor of 1.5. The starting ray height would then be 1.5•10.0 �
15.0 and the final ray slope would be 1.5•(�0.07129) � �0.106935.
Note well, however, that the focal length and the back focal length
derived from this new ray data will be exactly the same as those from
the original ray data.

Another interesting aspect of paraxial rays occurs if we consider
the ray data simply as a set of equalities, as, for example, u′ � u�y�,
or y2 � y1+du1′, and realize that when we add equalities, the result is
still an equality. Thus if we add (or subtract) the data of two rays, we
get the data of yet a third ray. This new data is a perfectly valid
description of another ray. Suppose we have traced two rays, 1 and 2.
We can scale these rays by multiplying their data by constants A and
B to get sets of ray data Ay1, Au1 and By2, Bu2. Now we can add the
scaled ray data to create ray 3 as follows:

u3 � Au1 � Bu2 (1.23)

y3 � Ay1 � By2 (1.24)

When we want to create a specific ray 3, we need to know the appro-
priate values of the scaling constants A and B in order to do so. If we
know the data of the third ray at some location in the system where
we also know the data of rays 1 and 2, then the required scaling fac-
tors can be found from

A � (1.25)

B � (1.26)

In practice ray 1 is often the axial ray and ray 2 is the principal ray,
as cited in Sec. 1.8.

1.10 Combinations of Two Components

A great many optical systems consist of just two separated compo-
nents. The following expressions can be used to handle any and all
two-component systems. Note that these equations are valid for thick

u3y2 � y3u2��
u1y2 � y1u2

y3u1 � u3y1��
u1y2 � y1u2
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components as well as “thin lenses.” Also, these expressions are valid
for components of any degree of complexity. For thick lenses the spac-
ings are measured from their principal points. For thin lenses the
spacings are simply the lens-to-lens distances.

Given. The powers (or focal lengths) of the components and their
spacing.

Find. The efl, bfl, and ffl of the combination. See Fig. 1.11.
Power:

�ab � �a � �b � d�a�b (1.27)

efl:

fab � (1.28)

bfl:

B � (1.29)

ffl:

FF � (1.30)
�fab(fb � d)
��

fb

fab(fa � d)
��

fa

fafb��
fa � fb � d
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FF d B

fab

φa φb

F1

P2

F2

Figure 1.11 Two components with the object at infinity, showing the spacing, the sec-
ond principal point, the effective focal length, the back focus distance B, and the front
focus distance FF.
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Given. The efl, d, and B of the combination.

Find. The focal lengths or powers of the components. See Fig. 1.11.

fa � � (1.31)

fb � � (1.32)

Finite conjugate systems. See Fig. 1.12.

Given. The component locations (defined by the object distance s, the
image distance s′, and the spacing d) and the magnification m � h′/h
� u/u′.

Find. The component powers.

�a � (1.33)

�b � (1.34)

Given. The component powers, the object-to-image distance, and the
magnification m � h′/h � u/u′.

d � ms � s′
��

ds′

ms � md � s′
��

msd

1
�
�b

�dB
��
fab � B � d

1
�
�a

dfab�
fab � B
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d s'

φa φb

T

h

h'

(--) s

u u'

Figure 1.12 Two components working at finite conjugate distances, showing the spac-
ing and object and image distances.
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Find. The component locations (i.e., s, s′, and d). Solve this quadratic
for d:

0 � d2 � dT � T(fa � fb) � (1.35)

using x �

Then:

s � (1.36)

s′ � T � s � d (1.37)

Sample calculation

Find the Gauss points of a system whose first lens has a focal length
of 200 mm and whose second lens has a focal length of 100 mm,
where the separation between lenses is 100 mm. See Fig. 1.13.
Power by Eq. (1.27):

�ab � 0.005 � 0.01�100•0.005•0.01 � 0.01 �f � � 100.0�
Focal length by Eq. (1.28):

1
�
�

(m � 1)d � T
��
(m � 1) � md�a

�b � �b�2��� 4�a�c�
��

2a

(m � 1)2fafb��
m
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100

100 50

f = 200 f = 100

P1P2F1 F2

Figure 1.13 Showing the system used for the sample calculation of the
cardinal points of a two component system.
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fab � � 100.0

Back focus by Eq. (1.29):

B � � 50.0

Front focus by Eq. (1.30):

FF � � 0.0

F1 is at the front lens (FF � 0.0).

P1 is at the rear lens, and 100 mm to the right of the front lens.

F2 is 50 mm to the right of the rear lens (B � 50.0).

P2 is 50 mm to the right of the front lens, and 50 mm to the left of
the rear lens.

Sample calculation

Find the component powers necessary to produce an erect image 15
mm high from a distant object which subtends an angle of 0.01. The
system should be 250 mm long from front lens to image. See Fig. 1.14.

For an erect image the focal length must be negative. [Consider
Eqs. (1.7) and (1.8).] Its magnitude [from Eq. (1.7)] is 15.0/0.01 � 150

�100(100 � 100)
��

100

100(200 � 100)
��

200

200•100
��
200 � 100 � 100
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1200

1050 d = 200

250

fab = -150

P2F2F1P1

f=150 f=25

b = 50

Figure 1.14 A widely separated system of two positive components with the second com-
ponent acting as an erecting relay lens. This system forms a real, erect image and has a
negative focal length. Note that the second principal point is to the right of the second
focal point. The combination has a focal length equal to the focal length of the first lens
times the magnification of the relay lens.
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mm. Thus fab � �150. The sum of the space d and back focus B must
be 250 mm. Thus d � 250�B.

Substituting for d,
Eq. 1.31

fa �

Eq. 1.32

fb �

Obviously we are free to select the value of B (or d). Arbitrarily set-
ting B � 50, we get

fa � � �150.0 �a � �0.00666…

fb � � �25.0 �b � �0.040

Additional study project: Calculate the component powers for sever-
al additional values of B. Plot �a, �b, and (|�a|+|�b|) against B to
find the minimum power required to do the job.

Sample calculation

Find the Gauss points for the system in the previous calculation. See
Fig. 1.14.

Since we know the focal length is �150 mm and that B is 50, F2
must be 50 mm to the right of component b. P2 is 150 mm to the right
of F2 because the system focal length is negative; therefore, P2 is 200
mm to the right of the rear component.

Using Eq. (1.30) we find FF � �(�150)(25�200)/25 � �1050, which
indicates that F1 is 1050 mm to the left of component a. This puts P1
at (�1050�150) � �1200, or 1200 mm to the left of the first lens.

Sample calculation

We need a magnification of �2� in a distance of 0.9 m, using two
components which are evenly spaced between object and image.
Determine the necessary component powers. See Fig. 1.15A.

By the “evenly spaced” requirement we mean that s, d, and s′ are
all the same size. Then, by our sign convention, s � �300, d � �300,
and s′ � �300.

�(250 � 50)50
��

�150 � 250

(250 � 50)50
��

�150 � 50

�(250 � B)B
��
�150 � 250

(250 � B)(�150)
��

�150 � B
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By Eq. (1.33):

�a � � �0.00833…

fa � � 120.0

By Eq. (1.34):

�b � � �0.0133…

fb � � 75.0
1

�
�b

300 � 2(�300) �300
���

300•300

1
�
�a

2(�300) �2•300 � 300
���

2(�300)300
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300 300 300

f = 120 f = 75

h h'

(a)

300 300 300

f = 200 φ  = 0

h

h'

(b)

Figure 1.15 Two solutions to the problem of producing a two times magnification in an
object-to-image distance of 900 mm. One solution has a positive magnification (and an
erect image) and the other has a negative magnification (and an inverted image). It is
common to find two different systems which produce images of the same size in the
same place, one producing an erect image, the other an inverted image, if you use plus
and minus magnifications in the equations.
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However, if we use a magnification of �2�, so that the image is
inverted, we get the following. See Fig. 1.15B.

By Eq. (1.33):

�a � � �0.005

fa � � 200.0

By Eq. (1.34):

�b � � 0.00

fb � � ∞

This indicates that if image orientation were not a concern, this par-
ticular task could be handled with just one lens rather than the two
which are needed when the image is required to be erect. This illus-
trates the importance of considering both erect and inverted imagery
if one is not preferred over the other.

Sample calculation

Lay out a Cassegrain mirror system with a focal length of 100, a mir-
ror separation of 25, and an image distance of 30. Use Eqs. (1.31) and
(1.32) with fab � +100, d � 25, and B � 30. See Fig. 1.16.

Note that when we raytrace the Cassegrain system, both the spac-
ing and the index between the mirrors are considered to be negative
(because the secondary mirror is to the left of the primary, and
because light is traveling from right to left). The equivalent air dis-
tance is the spacing divided by the index, so, as explained in Sec. 2.13,
we use �25/�1.0 � +25 for d in Eqs. (1.31) and (1.32).

By Eq. (1.31):

fa � � 35.714

By Eq. (1.32):

fb � � �16.66…
�25•30

��
100�30�25

25•100
��
100 � 30

1
�
�b

300�(�2)(�300) � 300
���

300•300

1
�
�a

�2(�300)�(�2)300 � 300
����

(�2)(�300)300
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Remembering that a mirror radius is twice its focal length, and that
concave mirrors have positive (convergent) focal lengths, the primary
mirror has a focal length of �35.714 and a concave radius of �71.428;
the secondary mirror has a focal length of �16.667 and a convex
radius of �33.333. Note that the raytrace sign of the radius is deter-
mined by the location of its center of curvature, not by whether the
mirror is concave or convex.

1.11 The Scheimpflug Condition

To this point we have assumed that the object is defined by a plane
surface which is normal to the optical axis. However, if the object
plane is tilted with respect to the vertical, then the image plane is
also tilted. The Scheimpflug condition is illustrated in Fig. 1.17A,
which shows the tilted object and image planes intersecting at the
plane of the lens. Or, stated more precisely for a thick lens, the
extended object and image planes intersect their respective principal
planes at the same height.

For small tilt angles in the paraxial region, it is apparent from Fig.
1.17A that the object and image tilt are related by

	′ � 	 � m	 (1.38a)

For finite (real) angles

tan 	′ � tan 	 � m tan 	 (1.38b)
s′
�
s

s′
�
s
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F2

25

30

n = +1.0

n = -1.0

n = +1.0

Figure 1.16 The Cassegrain mirror system, illustrating
the convention of using a positive index of refraction for
light traveling left to right, and a negative index when the
light travels right to left (as after reflecting from the pri-
mary mirror).
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P1 P2

S S'

'

(a)

Projection
lens

Object

Lens (optical) axis

"Projection axis"

Image

(b)

Figure 1.17 (A) The Scheimpflug condition can be used to determine the tilt of the
image surface when the object surface is tilted away from the normal to the optical
axis. The magnification under these conditions will vary across the field, producing
“keystone” distortion. As diagramed here, the magnification of the top of the object is
larger than that of the bottom. (Compare the ratio of image distance to object distance
for the rays from the top and bottom of the object.) (B) Keystoning can be avoided if the
object and image planes are parallel. The figure shows how the “projection axis” can be
tilted upward without producing keystone distortion.
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Note that in general a tilted object or image plane will cause what is
called keystone distortion, because the magnification varies across the
field. This results from the variation of object and image distances
from top to bottom of the field. This distortion is often seen in over-
head projectors when the top mirror is tilted to raise the image pro-
jected on the screen. This is equivalent to tilting the screen. As shown
in Fig. 1.17B, keystone distortion can be prevented by keeping the
plane of the object effectively parallel to the plane of the image. In a
projector this means that the field of view of the projection lens must
be increased on one side of the axis by the amount that the beam is
tilted above the horizontal.

1.12 Reflectors, Prisms, Mirrors, etc.

Our initial assumption in Sec. 1.1 was of axial symmetry about the
optical axis. The axis may be folded by reflection from a plane surface
without losing the benefits of axial symmetry. This is often done to fit
an optical system into a prescribed space or to get around an obstruc-
tion. It is also frequently done to change the orientation of the image,
e.g., to turn it top to bottom and/or reverse it left to right.

The folding of the axis is easily understood through Snell’s law of
reflection, I′ � �I, where I is the angle between the original axis ray
and the normal to the reflecting surface, and I′ is the corresponding
angle after reflection. An example of a reflecting surface “folding” a
system is shown in Fig. 1.18. Often a scale drawing of the entire opti-
cal system is made on tracing paper, and the paper is then folded to
simulate the reflections.
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Lens
M

M'

A

B

A' B'
Figure 1.18 A mirror can be thought of as “folding” the
optical system, just as if the paper were folded along the
line indicating the mirror. The lens image at AB is the
object for the mirror MM′, and the mirror forms an image
at A′B′, which is on the other side of the mirror and an
equal distance behind it.
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The orientation of the image can be determined easily by use of the
simple “bouncing pencil” technique as illustrated in Fig. 1.19. This
technique can be applied to a sequence of reflections to determine the
final orientation of the image; it should be applied to both meridians
as shown in Fig. 1.20.

In most instances a reflecting system can be executed with either
prisms or first-surface mirrors. In a mirror system there is a small
reflection loss at each surface, but the system is light in weight and
does not require a good transmissive material. A prism system usual-
ly reflects by total internal reflection (TIR), which is 100 percent effi-
cient and which occurs when the angle of incidence exceeds the criti-
cal angle Ic � arcsin(n ′/n). This occurs only when light in a
higher-index material is incident on a surface with a lower index on
the other side (e.g., from glass into air). For n′ � 1.0 and n � 1.5, Ic �
42°; for n � 1.7, Ic � 36°. The drawback to a prism system is its
weight and the necessity for a high-quality optical material.

Most prism systems are the equivalent of a thick folded glass block,
as indicated in Fig. 1.21. A glass block (or plane-parallel plate) shifts
the image to the right by (n�1)t/n, or about one-third of its thickness.
It also introduces overcorrected spherical and chromatic aberrations.

As illustrations of image displacement and reorientation, two com-
mon erecting systems are shown in Fig. 1.22. Note that in the Porro 1
system, the first prism inverts the image top to bottom and the sec-
ond prism reverses it left to right. Both systems have four-mirror
equivalents.

Three inversion prisms are shown in Fig. 1.23. These invert the
image in one meridian but not in the other. An inversion prism has
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Figure 1.19 The orientation of the image formed by a mirror system can easily be
determined by simply “bouncing” a pencil (or any object with one well-defined end) off
the mirror as indicated here. In the figure the point of the pencil strikes the mirror
first and bounces off; the blunt end strikes later. The orientation of the pencil indicates
the orientation of the image. This can be done for a sequence of mirrors to determine
the final image orientation. It should be done for both meridians.
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Figure 1.20 The two-meridian orientation change produced by the reflection
from a single mirror.

the property that if it is rotated about the optical axis, the image is
rotated at twice the angular rate. They are often used as derotators in
applications such as panoramic telescopes, where the 360° scan
rotates the image. Note that the addition of a “roof” surface will con-
vert an inversion system to an erecting system, and vice versa.

A pair of reflecting surfaces can be used as a constant deviation sys-
tem, as shown in Fig. 1.24. The angle of deviation in the plane of the
paper is twice the angle between the reflectors, and it does not change
as the angle of incidence is changed. In three dimensions, three mutu-
ally orthogonal reflectors, arranged like the corner of a cube, form a
retrodirector and reflect light back parallel to the direction at which it
entered the device.
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(a)

(b)

Figure 1.21 “Unfolding” a prism system produces what is called a “tunnel
diagram,” which is useful in determining the clearance available for the
passage of rays through the prisms. These sketches also illustrate the
equivalence of the prism to a thick block, or plane-parallel plate, of glass.

1.13 Collected Equations

Imaging equations

Figure 1.3
Eq. (1.1)

x′ �
�f 2

�
x
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Erect image

Inverted image
from objective

Erect

Inverted

Figure 1.22 Two prism systems which are commonly used
to erect the inverted image produced by an ordinary “kep-
lerian” telescope. As can be seen, these prisms invert the
image in both meridians. The upper system is a Porro 1
type which is commonly found in ordinary binoculars. The
lower is a Porro 2; it is a bit more compact and a bit more
expensive. Note that the same image orientation could be
produced with four first-surface mirrors replacing the
reflecting faces of the prisms.
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Silvered

Silvered

Silvered

(b)(a)

(c)

Figure 1.23 The prisms shown here are called inversion prisms. They invert
the image in one meridian but not the other. All inversion prisms share the
property that if rotated about the axis, they rotate the image at twice the
prism’s rate of rotation.

4590

Figure 1.24 Two reflecting surfaces can produce a
constant deviation system, which deviates the
ray through the same angle regardless of the
direction at which the ray enters the system.
Here the mirrors, set at 45° to each other, pro-
duce a deviation of 90°. The deviation angle is
twice the angle between the reflectors.
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Eq. (1.2)

h′ � �

Eq. (1.3)

m � � �

Eq. (1.4)

� �

Eq. (1.5)

h′ �

Eq. (1.6)

m � �

s′ �

s′ � f(1 � m)

s �

f �

Figure 1.4
Eq. (1.7)

h′ � fup

Eq. (1.8)

H′ � f tan Up

ss′
�
s � s′

f(1 � m)
�

m

sf
�
s � f

s′
�
s

h′
�
h

hs′
�
s

1
�
s

1
�
f

1
�
s′

�x′
�

f

f
�
x

h′
�
h

�hx′
�

f

hf
�
x

The Tools 43

The Tools

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



Figure 1.5
Eq. (1.9)

M �

Eq. (1.10)

M � • � m1m2

Eq. (1.11)

M � m2

Paraxial raytracing

Figure 1.8
Eq. (1.12)

l �

Eq. (1.13)

l′ �

Eq. (1.14a)

n′u′ � nu � 

Eq. (1.14b)

n′u′ � nu � y(n′ � n)c

Eq. (1.15)

y2 � y1 � tu1′

Eq. (1.16a)

m � �

Eq. (1.16b)

m � �
u1�
uk′

h′
�
h

n1u1�
nk′uk′

h′
�
h

y(n′ � n)
��

r

�y
�
u′

�y
�
u

s2′
�
s2

s1′
�
s1

s2′ � s1′
�
s2 � s1
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Figure 1.9
Eq. (1.17)

f � efl �

Eq. (1.18)

bfl �

Thin lens raytracing

Figure 1.10
Eq. (1.19)

u′ � u � y�

Eq. (1.20)

yj�1 � yj � duj′

The invariant

Eq. (1.21)

INV � n(ypu � yup) � n′(ypu′ � yup′)

Eq. (1.22)

INV � hnu � h′n′u′

Scaling and combining rays

Eq. (1.23)

u3 � Au1 � Bu2

Eq. (1.24)

y3 � Ay1 � By2

Eq. (1.25)

A �
y3u1 � u3 y1��
u1y2 � y1u2

�yk�
uk′

�y1�
uk′
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Eq. (1.26)

B �

Combination of two components

Figure 1.11
Eq. (1.27)

�ab � �a � �b � d�a�b

Eq. (1.28)

fab �

Eq. (1.29)

B �

Eq. (1.30)

FF �

Eq. (1.31)

fa � �

Eq. (1.32)

fb � �

Figure 1.12
Eq. (1.33)

�a �

Eq. (1.34)

�b �
d � ms � s′
��

ds′

ms � md � s′
��

msd

1
�
�b

�dB
��
fab � B � d

1
�
�a

dfab�
fab � B

�fab(fb � d)
��

fb

fab(fa � d)
��

fa

fa fb��
fa � fb � d

u3 y2 � y3u2��
u1y2 � y1u2
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Eq. (1.35)

0 � d2 � dT � T(fa � fb) � 

Eq. (1.36)

s �

Eq. (1.37)

s′ � T � s � d

Scheimpflug condition

Figure 1.17A
Eq. (1.38a)

	′ � 	 � m	

Eq. (1.38b)

tan 	′ � tan 	 � m tan 	
s′
�
s

s′
�
s

(m � 1)d � T
��
(m � 1) � md�a

(m � 1)2fafb��
m
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2
The Basic

Optical Systems

2.1 Introduction

The optics used for most applications are founded on what might be
called the basic “standard” optical systems. And, in fact, almost all
optical systems are modifications or combinations of these “standard”
or basic systems. The principles of these systems are well understood,
and their primary characteristics and limitations can be expressed by
simple mathematical relationships. This chapter is intended as an
exposition of the concepts and principles of these basic systems. The
reader can utilize these systems as building blocks to synthesize a
customized solution to the requirements of the application at hand.

2.2 Stops and Pupils

We begin with a discussion of an often neglected but vital aspect of
optical systems, the concept of the aperture stop. In every optical sys-
tem there is some feature, usually a diameter, which limits the size or
diameter of the beam of rays which can pass through the system. If
the system consists of just a single simple lens, the aperture stop is
just the clear aperture of the lens. In a typical camera lens the iris
diaphragm is the aperture stop. In a telescope the clear aperture of
the objective lens (or that of the primary mirror) is ordinarily the
aperture stop. Often the aperture stop is referred to simply as “the
stop.”

Figure 2.1 illustrates several examples of aperture stops. Note that
Fig. 2.1C and D shows exactly the same system, except that the objec-
tive lens diameter is larger in Fig. 2.1D. This shifts the beam-limiting
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Stop

Stop

Aperture
stop

(a) (b)

(c)

Aperture
stop

(d)

Figure 2.1 The aperture stop: (A) The aperture stop placed before a single element. (B)
The aperture stop placed behind the lens. (C) An erecting telescope with the aperture
stop located at the objective lens. (D) The same optics as in C, but the objective aper-
ture is larger so that the aperture stop is now at the internal aperture.
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diameter from the objective lens to the internal diaphragm, which
becomes the stop. The stop can be determined by tracing a fan or cone
of rays from the axial object point and determining which feature
most limits the size of the ray bundle.

An effect often produced by the ordinary apertures of optical compo-
nents is called vignetting. This is the partial obstruction of an oblique
beam of light by the diameters of the lenses. Figure 2.1E shows a sim-
ple two-component system with an axial beam indicated by the solid-
line rays and an oblique beam shown by the dashed lines. Notice that
the full axial beam passes through both components, but the upper
rays of the oblique beam are vignetted (i.e., blocked) at the rear lens.
Vignetting usually occurs at the first and/or last elements of an
assembly. Vignetting reduces the image illumination toward the edge
of the field (as does the cosine fourth effect described in Sec. 3.6).

Any image of the aperture stop is called a pupil. This image is
formed by the optical elements of the system. Figure 2.2 shows the
imagery of the stop for the systems of Fig. 2.1. We trace a ray from
the center of the stop; wherever the ray (or its extension) crosses the
axis is the location of a pupil. There are two especially significant
pupils: the entrance pupil and the exit pupil. These are the images of
the aperture stop that one would see looking into the system from the
object and from the image, respectively.

Note that in Fig. 2.2C the internal diaphragm is not located at the
internal pupil; this has been done to more clearly illustrate the
entrance pupil in Fig. 2.2D. In most real systems of this type the
internal diaphragm and the internal pupil are deliberately made coin-
cident, and the objective lens is both the aperture stop and the
entrance pupil.
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}
These rays are vignetted
by the rear lens

(e)
Figure 2.1 (Continued) (E) An illustration of vignetting, which is the obstruction of a
portion of an oblique beam by the aperture(s) of the components.
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Exit
pupil

Aperture stop
and entrance 
pupil

Entrance
pupil

Aperture stop
and exit
pupil

1

2 3

Aperture stop
and entrance 
pupil

1

2 3

Entrance
pupil

Internal
pupil

Exit
pupil

Aperture
stop

Exit
pupil

(a) (b)

(c)

(d)
Figure 2.2 The entrance and exit pupils of the systems of Fig. 2.1. (A) The entrance
pupil and the aperture stop are the same. The exit pupil is the virtual image of the
stop, which one would see looking into the lens from the right. (B) Here, the aperture
stop and the exit pupil are the same, and the entrance pupil is the virtual image of the
stop as seen from object space. (C) Every image of the stop is a pupil, and here there is
an internal pupil as well as an exit pupil. (D) With the internal stop acting as the aper-
ture stop, the entrance pupil is its image and is located to the left of the objective in
object space.
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Sample calculation

Locate the entrance pupil for Fig. 2.2B if the lens focal length is 100
mm and the stop is 20 mm to its right. To calculate this, we must
reverse the system so that the light travels from left to right; this
puts the stop 20 mm to the left, and the object distance s � �20.

Using Eq. (1.4):

� � � � � �0.04

s′ � � �25 mm

With the lens in this reversed position, the image of the stop is 25 mm
to the left, indicating that, in the original orientation (as shown in
Fig. 2.2B), the stop image, and the entrance pupil, is 25 mm to the
right of the lens. This simple example illustrates the importance of
observing the convention (Sec. 1.1, no. 4) under which these equations
are derived: Light rays are assumed to travel from left to right.

Sample calculation

Locate the internal pupil and the exit pupil for the telescope shown in
Fig. 2.2C, assuming that the lens powers are �0.25, �1.0, and �1.0,
and that the spacings are 6.0 and 3.0 in. The aperture stop is at the
first lens and it is 1.0 in in diameter. How large are the pupils? Here
we can utilize Eqs. (1.19) and (1.20) (Sec. 1.7) to trace a chief ray from
the center of the aperture stop. Assuming a ray slope of u1′ � u2 � 0.1
(any value would do), Eq. (1.20) gives the ray height at lens 2 as

y2 � y1 � du2 � 0.0 � 6.0 � 0.1 � 0.6

The ray slope after refraction by lens 2 is

u2′ � u2 � y2�2 � 0.1 � 0.6 � 1.0 � �0.5

The internal pupil is located at

l2′ � � � �1.2

to the right of lens 2. The magnification is found from Eq. (1.16):

m � � � � �0.2
0.1
�
�0.5

u2�
u2′

h′
�
h

�0.6
�
�0.5

�y2�
u2′

1
�
�0.04

1
�
�20

1
�
100

1
�
s

1
�
f

1
�
s′
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Since the aperture stop diameter is 1.0 in, its image has a (pupil)
diameter of

h′ � mh � �0.2 � 1.0 � �0.2 in

Continuing the raytrace, Eq. (1.20) gives the ray height at lens 3 as

y3 � y2 � du2′ � 0.6 � 3(�0.5) � 0.6�1.5 � �0.9

and Eq. (1.19) gives the ray slope after lens 3 as

u3′ � u3�y3�3 � �0.5�(�0.9) � 1.0 � �0.4

Thus the exit pupil has a location and size given by

l3′ � � � 2.25 (eye relief)

m � � � � 0.25

h′ � mh � 0.25 � 1.0 � 0.25 (exit pupil diameter)

The aperture stop is of practical significance on two counts. It is obvious
that if light is to pass through the system it must pass through the stop;
since the pupils are images of the stop, all the light must also pass through
the pupils. Thus the stop and the pupils determine the radiometric and
photometric characteristics of the system. Light must enter the system
through the entrance pupil and must leave through the exit pupil. The
stop also selects which light rays out of all the possible rays from the object
are allowed to reach the image. A properly located aperture stop will pass
those rays which are least aberrated and which will form the best image.
The stop location is an important factor in determining the quality of the
image in the outer portions of the field. The stop position also determines
the lens diameter necessary to pass the oblique rays through the system.

The relative aperture, or f-number, of a lens is a way of describing
its illuminating capabilities. The f-number of a lens (often called its
speed) is simply its effective focal length divided by its entrance pupil
diameter. If the object is at infinity, the f-number defines the angular
size of the illuminating cone at the image and thus, as described in
Chap. 3, the image illumination (and also, as described in Chap. 4,
the resolution capability of the system).

The numerical aperture, or NA, is a more general way of defining
the same characteristics and is not limited to systems with infinitely
distant objects. It is defined as

0.1
�
0.4

u2�
u3′

h′
�
h

�(�0.9)
�

0.4
�y3�
u3′
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NA � n sin u

where n is the index in which the image is immersed (with the image
in air, n � 1.0) and u is the slope of the axial marginal ray. For sys-
tems with infinitely distant objects, f-number and NA are related by

f-number �

NA �

The working f-number is sometimes used to describe systems with
finite object distances; it is the image distance divided by the pupil
diameter and can be found from working f-number � 1/(2NA). Note
also that object side NA and image side NA are related by the magni-
fication, as indicated by Eq. (1.16).

Sample calculation

A simple lens with a 10-in focal length and a 1�in diameter has a
speed of f/10 and a numerical aperture of NA � 0.5/10 � 0.05 if used
with an object at infinity. But at one-to-one magnification (m � �1.0),
s � �20 in and s′ � +20 in. Then the numerical aperture NA � 0.5/20
� 0.025 and the working f-number is f/20.

In a visual optical system the eye must look through the exit pupil
to see the image. The situation is analogous to looking through a hole
in a sheet of opaque material. In order to see the full field of view, the
eye must be located at the exit pupil, as shown in Fig. 2.3. If the eye
is not located at the pupil, only a part of the field may be visible. The
distance from the final optical surface to the exit pupil represents the
clearance distance to the eye. This distance is called the eye relief.
The eye relief must be 9 or 10 mm just to clear the eyelashes; it must
be at least 19 or 20 mm to permit spectacle wearers to place their
eyes at the pupil; it must be much longer for an optical system which
is subject to sudden motion. For example, a riflescope should have at
least 50-mm eye relief for a low-powered (0.22 caliber) rifle, and needs
100- to 150-mm eye relief for a high-powered gun with a large recoil.

Sample calculation

In a previous sample calculation, the eye relief of a 4� telescope was
found to be 2.25 in and the exit pupil diameter was 0.25 in. If lens 3

1
��
2f-number

1
�
2NA
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has a clear aperture of 1.25 in, what is the largest apparent field pos-
sible without any vignetting (the obstruction of an oblique beam)?

If we deduct the exit pupil diameter from the lens aperture and
divide by the eye relief, we find a paraxial apparent field angle of

A′ � � 0.444…

The real (object) field of a 4� telescope can be found from Eqs. (2.1) or
(2.2) below. Thus we get a paraxial real field angle of

A � � � 0.111…

If we consider finite angles (as opposed to the infinitesimal paraxial
slopes), we must use the arctangent of the half field angles [per Eq.
(2.2)] to get

A′ � 2 arctan� � � 2 � 12.52 � 25.05°

A � 2 arctan� � � 2 � 3.18 � 6.36°
0.111
�

2

0.444
�

2

0.444
�

4
A′
�
MP

1.25 � 0.25
��

2.25
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Eye
relief

Exit
pupil

Last surface of
eyepiece

Eye in this location
sees only part of the field

Figure 2.3 In a visual instrument the clearance between the optics and the
exit pupil is called the eye relief. From the diagram it is apparent that if
the eye is not at the exit pupil, only a portion of the field will be visible. To
see the full field of view, the eye must be positioned at the exit pupil.
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A telecentric system is one in which the exit pupil or the entrance
pupil (or both) is located at infinity. Thus the telecentric aperture stop
must be positioned at the focal point of that part of the system which
forms the pupil. Referring ahead to Fig. 2.5A, if one were to locate the
aperture stop of the system at the internal focal point (instead of at
the objective lens as shown), the system would be doubly telecentric,
with both entrance and exit pupils at infinity. The solid-line axial rays
in the figure would then be principal rays and would be parallel to the
axis in both object and image space. The advantage of a telecentric
system is that, if it is used out of focus, the image may be blurred, but
it doesn’t change size (because the “principal” rays are parallel to the
axis). This is a valuable characteristic for measuring systems and for
microlithographic (computer chip fabricating) optical systems.

The field stop limits the size of the object that the system can
image. The field stop is almost always located at an internal image
plane. In a camera the film gate is the field stop. In most visual
instruments (telescopes and microscopes) there is a diaphragm which
sharply defines and limits the field of view; it is located at an internal
image plane. Such a field stop is shown in Figs. 2.5C and 2.7.

The entrance and exit windows of a system are the images of the
field stop in object and image space, respectively. Since they are usu-
ally coincident with the object and image, their significance is ordi-
narily negligible, and these terms are only rarely encountered.

2.3 Afocal Systems: General

An afocal system is one which images an infinitely distant object at
infinity. It is called afocal because it has no focal length (or an infinite
one; either concept can be a nuisance). Telescopes, beam expanders,
power and field changers, as well as telephoto and wide-angle attach-
ments, are examples of afocal systems.

An afocal system can form an (infinitely distant) image which sub-
tends an angle which is larger or smaller than the angle subtended by
the object. The ratio of the angle subtended by the image to that sub-
tended by the object is the angular magnification, or magnifying
power, MP, of the afocal system. If the image is enlarged, as in a tele-
scope, |MP|�1.0; if the image is smaller than the object, |MP|�1.0.
When the image appears erect, MP is positive; a negative MP indi-
cates an inverted image.

The magnification MP, the diameters of the entrance pupil P and
exit pupil P′, and the angular size of the real (object side) field A and
the apparent (image side) field A′ are all related by the following
equation:
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MP � � (2.1)

Equation (2.2) gives this relationship for finite (as opposed to infini-
tesimal/paraxial) field angles:

MP � � (2.2)

All afocal systems must obey these relationships. For example, in a
typical 6� binocular, the exit pupil diameter must be one-sixth of the
entrance pupil diameter, and the apparent (image) field must be six
times the real (object) field. A 6�30 binocular which has a 30-mm-
diameter objective aperture must have a 5-mm exit pupil. If the eye-
piece covers a 48° field of view, then the real field at the object must
be about 48/6 � 8° [or, more exactly, using Eq. (2.2), 8.5°].

Figure 2.4 shows a schematic afocal system. Because the object and
image are at infinity, the rays from an axial object point and those
going to the image point are all parallel to the axis. Although we
define an afocal system as one with both object and image at an infi-
nite distance, an afocal system is also capable of imagery at finite dis-
tances. For example, the entrance and exit pupils are conjugates of
each other,and an examination of Fig. 2.4 indicates that their sizes
are determined by the rays drawn as heavy lines in the figure. Since
the rays (or lines) are parallel, it is apparent that regardless of where
the pupils are located, their size stays the same. The exit pupil may
be regarded as an image of the entrance pupil. The (linear) magnifica-
tion of the pupils is then equal to P′/P, which, per Eq. (2.1), is the recip-
rocal of the angular magnification MP. Thus:

m � � (2.3)
1

�
MP

P′
�
P

P
�
P′

tan(A′/2)
��
tan(A/2)

P
�
P′

A′
�
A
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P

A

A'

Afocal System P'

Figure 2.4 Schematic of an afocal system, showing the entrance and exit pupil diame-
ters P and P′ and the angular half fields A and A′, which are the “real” and “apparent”
field, respectively.
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An afocal system which is used for finite conjugate imagery is thus a
constant magnification system because, regardless of where the object
is positioned, the linear magnification is always the same.

Afocal systems are ordinarily considered as made up of two subsys-
tems: the objective and the eyepiece, the objective being the portion
nearest the object and the eyepiece the part nearest the image. If Fo is
the effective focal length of the objective part and Fe is the efl of the
eyepiece part, then the angular magnification is given by

MP � �� � (2.4)

Although the objective and eyepiece are ordinarily obviously indepen-
dent parts, note that the division between objective and eyepiece may
be completely arbitrary. The dividing line may be placed anywhere
after the first powered surface and before the last; this fact is occa-
sionally a convenience in layout considerations. And, of course, when
an afocal device is reversed, as in looking through a binocular back-
ward, the objective and eyepiece are interchanged, and the magnify-
ing power becomes 1/MP.

2.4 Telescopes and Beam Expanders

Kepler or astronomical telescope. As shown in Fig. 2.5, in the kepler-
ian telescope both the objective and eyepiece have positive focal
lengths. Thus, per Eq. (2.4), the magnification is negative, indicating
that the image is inverted; it is upside down and reversed left to
right. For terrestrial use, as in binoculars, for example, where an
inverted image is quite undesirable, the image is often erected by
either an erector lens or a prism system, as discussed in Sec. 1.12. If
the lenses are “thin,” the length of the system is given by

L � Fo � Fe (2.5)

The exit pupil is real and accessible, and the eye relief (again, for thin
lenses) is

R � (2.6)

Sample calculations

Lay out a 10-in-long, 4� Kepler telescope. Find the eye relief.
Equation (2.4) defines the magnification, Eq. (2.5) the length, and Eq.

(MP � 1)Fe��
MP

Fo�
Fe
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(2.6) the eye relief. We can solve Eqs. (2.4) and (2.5) simultaneously to
get the component powers as follows:

Fo � (2.7)

Fe � (2.8)
L

�
1 � MP

MP � L
�
MP�1
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L

RFeFo

(a)

(b)

Field stop

(c)
Figure 2.5 Kepler-type telescopes produce an inverted image. (A) A schematic sketch of a
simple two- (positive) component telescope with the focal lengths Fo and Fe′ overall length L,
and eye relief R. (B) The newtonian-type telescope has a reflecting objective and a 45° mir-
ror to locate the image out of the incoming beam of light. (C) An ordinary telescope with an
achromatic objective lens and a three-element eyepiece. The field stop at the internal focus
determines the angular field of view. With a Porro prism to erect the image (as shown in Fig.
1.22), this is the optical system commonly found in ordinary binoculars.
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Note that since the Kepler is an inverting telescope we must use MP
� (�4�) as the power, and we get

Fo � � � �8 in

Fe � � � �2 in

Equation (2.6) gives the eye relief as

R � � � 2.5 in

Galilean or Dutch telescope. The galilean telescope (Fig. 2.6) has a
positive objective and a simple (i.e., not compound) negative eyepiece.
The angular magnification is positive and the image is erect. The field
of view of this telescope tends to be small and is limited by the speed
(f-number) of the objective. As a result its telescopic use is limited to
low-power field glasses (of 3� to 4� power) or opera glasses (1.5� to
2.0�); the real field of a high-powered galilean telescope can be so
small as to be useless. Another limitation of the galilean is that, since
there is no internal focal point, a crosshair or reticle cannot be used;
the Kepler or terrestrial forms are used when a reticle is needed.

As with the keplerian scope, the power and length are given by Eqs.
(2.4) and (2.5). Note that the eye relief as indicated by Eq. (2.6) is the

�10
�
�4

(�4 � 1)2
��

�4

10
�
5

10
�
1 � 4

�40
�
�5

�4 � 10
�

�4�1

The Basic Optical Systems 61

R Fe

Fo

Figure 2.6 The galilean telescope, commonly used for field or opera glasses, produces
an erect image. As indicated in the sketch, if the objective were the aperture stop, the
exit pupil would lie inside the system and be inaccessible to the eye. For this reason
the pupil of the eye acts as the aperture stop, and the objective lens diameter deter-
mines the size of field of view (which is usually small).
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image of the objective lens; it assumes that the objective lens is the
aperture stop. For the galilean telescope this equation yields a nega-
tive distance, indicating that the image of the objective is virtual, and
located inside the telescope as shown in Fig. 2.6. The eye obviously
cannot be placed here; the closest it can approach is adjacent to the
eyelens. Thus the objective lens cannot be the aperture stop; the pupil
of the eye itself becomes both the aperture stop and the exit pupil.
The largest possible apparent field is the angle subtended by the
objective diameter from the eyelens; the real field is this angle divid-
ed by the magnifying power MP. Apparent and real fields for the
galilean are

A′ � (2.9)

A � � (2.10)

where (f/#) is the f-number (focal length divided by diameter) of the
objective lens.

Sample calculations

Lay out a 10-in-long 4� galilean telescope. What is the maximum
field if the objective diameter is 1.0 in? Using Eqs. (2.7) and (2.8) from
the previous sample calculation with a power MP � �4�, we get

Fo � � � 13.333…

Fe � � � �3.333…

At a diameter of 1 in, the objective lens f-number is 13.333/1 � 13.333
(or f/13.333) and the maximum paraxial fields are given by Eqs. (2.9)
and (2.10) as

A′ � � 0.1

A � � 0.025

or about 5.7° and 1.4°, respectively.

�3.333
��
10 � 13.333

13.333
��
10 � 13.333

10
�
�3

10
�
1 � 4

40
�
3

4 � 10
�
4 � 1

�Fe�
L(f/#)

Fo��
L(f/#)MP

Fo�
L(f/#)
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Terrestrial or lens-erecting telescope. The inverted image of the kepler-
ian telescope can be erected by using a relay system as shown in Fig.
2.7. The magnification of the telescope can be determined from Eq.
(2.4); one can consider the objective part of the scope to consist of the
objective lens plus the erector, using Eq. (1.28) to determine its focal
length; or one can consider the eyepiece part to consist of the eyelens
plus the erector. Alternately, the magnification is given by

MP � �� �� � (2.11)

where S and S′ are, respectively, the object and image distances for
the erector component and, as shown in Fig. 2.7, the sign of S is nega-
tive per our usual sign convention.

Note that one can regard the focal length of the objective part to be
the focal length of the objective lens multiplied by the magnification
of the erector, or Fo(S′/S). This yields a negative value for the focal
length of the combination, despite the fact that it forms a real image.
This concept of magnifying the focal length of a lens by the magnifica-
tion of a relay lens is often a useful one.

The dashed ray passing through the center of the objective in Fig.
2.7 is a principal or chief ray. (This assumes that the objective is the
aperture stop.) A pupil is located wherever the principal ray crosses
the axis. In the terrestrial telescope we have the usual exit pupil and,
in addition, an internal pupil. It is common, very beneficial, and usu-
ally essential to place an aperture at this location. Such an aperture,
acting as a glare stop, serves to block the passage of any light which is
reflected or scattered from the walls of the telescope. If this stray
light is not blocked, the image contrast may be severely degraded. In
general it is a good idea to place a stop at every pupil and at every
image plane in order to minimize the effects of stray light.

Sample calculations

Lay out a 4� terrestrial telescope, 10 in long, with an objective focal
length Fo � 4 in. We have L�Fo � 10 in�4 in � 6 in for the erector-eye-
lens combination; this includes the working distance (S in Fig. 2.7) and
the space between the erector and eyelens. With an objective focal
length of 4 in, the combined focal length of erector and eyelens must
equal �1 in in order to yield MP � +4�. We can use Eqs. (1.31) and
(1.32), letting the eyelens be component a and the erector be compo-
nent b. Then B (S in Fig. 2.7) is the distance from the erector to the
focus of the objective and d is the space; thus B+d � 6 in, or d � 6�B.

S′
�
S

Fo�
Fe
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From Eq. (1.31):

fa �

and Eq. (1.32):

fb �

�

It is apparent that we can choose any reasonable value for the work-
ing distance B. If we set B � 1.5 in, we get for the eyelens

fa � � � �1.8 in

and

fb � � �0.9643 for the erector

We can use B as a free variable to control the eye relief if we wish.
The initial choice of the objective lens focal length will affect the com-
ponent powers. A few numerical trials can be used to determine how
the choice of B and Fo affects the eye relief and the component pow-
ers. Note also that a field lens (as described in Sec. 2.7) can be used to
control the eye relief of a telescope (or the exit pupil position for an
optical system in general).

Beam expanders. Any afocal system can be utilized as a beam
expander. Typically, a laser beam is directed into the “eyepiece end” of
the device and the beam diameter is increased by a factor equal to the
angular magnification MP � �Fo/Fe of the afocal system. This not
only expands the beam diameter but it also reduces the beam diver-
gence angle by the same factor. Note that the divergence reduction
applies either to the beam spread considered as a geometric field
angle or to the beam spread due to diffraction. (See Sec. 4.2.) Either
the keplerian or galilean form may be used; however, the galilean has
certain advantageous features. Because it is comprised of a positive
objective and a negative eyepiece, their aberrations have a tendency
to cancel each other, whereas in the Kepler arrangement the aberra-
tions of objective and eyepiece tend to add because both components

(6�1.5)1.5
��

7

�4.5
�
�2.5

(6�1.5)(�1)
��

�1�1.5

6�B
�

7

�(6 � B)B
���
�1 � B �(6 � B)

(6�B)(9�1)
��

�1�B
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are positive. For galilean beam expanders of low or moderate power a
well-corrected system can be made of just two (properly shaped) sim-
ple elements. In addition, because it has no internal focal point, the
galilean can be used to expand a high-powered laser beam without
fear that atmospheric breakdown will occur at the focus. The Kepler
does have the feature that a spatial filter (pinhole) can be placed at
the internal focus to strip off any unwanted higher-order diffraction
artifacts from the beam.

2.5 Afocal Attachments: Power and Field
Changers

As shown in Fig. 2.8, an afocal device may be placed before another
optical system to change its effective focal length. The resulting focal
length for the combination Fc is simply the product of the afocal mag-
nification MP and the focal length of the original system Fp. Thus

Fc � MP•Fp (2.12)

From the figure, it can be seen that, depending on its orientation, the
afocal attachment can produce a combined focal length Fc which is
longer or shorter than the focal length of the prime lens Fp. When
used as an attachment to a camera lens, the systems of Fig. 2.8 are
usually referred to as telephoto or wide-angle attachments. Note that,
with a galilean afocal camera attachment, the iris of the camera lens
is the aperture stop of the system. Occasionally a binocular (which is
a keplerian telescope) is used as a telephoto attachment. The real exit
pupil of the binocular may cause problems because, for this arrange-
ment to work well, the exit pupil of the binocular and the entrance
pupil of the camera lens must be coincident. If they are not coinci-
dent, the field of view may be limited because of vignetting. With a
binocular as the afocal, it is usually best to use a camera with a fast
lens set at full aperture, so that the exit pupil of the binocular deter-
mines the f-number of the combination. Consider a 50-mm f/2 camera
lens used with a 6�30 binocular. The combined focal length is 6�50
� 300 mm, and the 30 mm diameter of the binocular objective limits
the speed of the combination to f/10.

An afocal is sometimes used as a “front end” for another system
when a large collection aperture is required to “funnel” light into a
smaller following system. One must not forget that the field angle is
increased by the same magnification factor (MP) as that by which the
beam diameter is reduced. This is another manifestation of the opti-
cal invariant.
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An afocal can be used before or after another afocal system. The
resulting magnifying power is simply the product of the two magnifi-
cations. Thus the added afocal can be regarded as a power changer. It
will also change the field of view by the inverse of its magnifying
power. A 2� afocal attachment added to a 4� telescope with a 10°
FOV (field of view) will produce an 8� scope with a 5° FOV. If the
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Afocal
Attachment Basic

System

Fc

Fp

Afocal
Attachment Basic

System

Fp
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Figure 2.8 An afocal attachment can be placed in front of another system to change its
focal length, power, or field. Shown here is a galilean afocal which, in the upper sketch,
increases the focal length by a factor equal to its magnification and, when reversed,
shortens the focal length by the same factor.
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attachment is reversed, the result is a 2� scope with a 20° FOV. Thus
the afocal is both a power changer and a field changer.

If there is a space in a system where the light is collimated, an afo-
cal may be inserted within the system. “Collimated” means that the
image is at infinity, so that the light rays from a point in the object
are parallel. The afocal may be inserted and removed to vary the
power and field, or it may be rotated end for end about a central axial
pivot point so that the power and field are changed by a factor of MP
or 1/MP.

2.6 Bravais System

The Bravais system, shown in Fig. 2.9, can be regarded as the finite
conjugate version of an afocal system. The object and image of the
Bravais are in the same location, but the size of the image is changed
by the linear magnification of the Bravais. In Fig. 2.9 the (virtual)
object for the Bravais system is the image formed by the optical sys-
tem to the left of the figure. The component powers for a Bravais can
be found using Eqs. (1.33) and (1.34), setting T equal to zero, so that
T � d�s′�s � 0. Then the component powers are
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d

s

u
u' h

h(  )u
u'

(a) (b)

s'

Figure 2.9 A Bravais system does not change the location of an image but does change
its size. The Bravais is usually placed between a lens and its image as shown here but
could also be placed between the lens and the object.
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�a � (2.13)

�b � (2.14)

K � (2.15)

Note that, for the system shown in Fig. 2.9, the magnification m
(equal to u/u′) is positive and greater than 1. A positive magnification
of less than 1, with the component powers in reverse order from that
shown in the figure, is quite possible, but this is a somewhat more dif-
ficult system.

Sample calculations

Lay out a 2� Bravais system, 2 in long (i.e., 2 in from lens a to the
image). Find the component powers.

With reference to Fig. 2.9, s must be 2 in, and, since d+s′ � s, we
get d � 2 �s′ or s′ � 2 �d. If we assume that d � 1 in and thus s′ � 1
in, K from Eq. (2.15) � 1/2 � 0.5, and Eqs. (2.13) and (2.14) yield

�a � •1 � �0.25 and fa � �4.0

�b � � �2.0 and fb � �0.5

Since we are free to choose any reasonable value for d, we can try d �
1.25 and s′ � 0.75. Then K � 1.25/2 � 0.625 and

�a � •1.25 � �0.15

�b � � �2.1333

Or if d � 0.75 and s′ � 1.25, then K � 0.75/2 � 0.375 and

�a � •0.75 � �0.41666
(2�1)(1�0.375)
��

2

1�2
��
1.25(1�0.625)

(2�1)(1�0.625)
��

2

1�2
��
1(1�0.5)

(2 � 1)(1 � 0.5)
��

2

d
�
s

1 � m
��
d(1 � K)

(m � 1)(1 � K)
��

md
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�b � •(1�0.375) � �2.1333

Thus d can be used as a free variable to control the powers of the
components. Now, lay out a Bravais with a power of 0.5� and a 2-in
length. Again assuming d � 1 in, K � 0.5 and

�a � � �0.5

�b � � +1.0

2.7 Field Lenses; Relay Lenses; Periscopes

In Fig. 2.10A we show a simple telescope. In order to cover the field of
view indicated by the dashed rays, the eyelens would require a very
large diameter. In Fig. 2.10B a field lens located at the internal image
plane converges the light rays at the edge of the field toward the axis so

1�0.5
��
1(1�0.5)

(0.5�1)(1�0.5)
��

0.5•1

1�2
�
0.75
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Objective Image plane Eye lens Exit
pupil

Eye
relief

ueuo

(a)

Exit
pupil

E.R.

(b)

Field lens

Figure 2.10 A field lens, located near an image, can redirect the rays at the edge of the
field so that they will pass through a small eyelens. The dashed rays in the upper
sketch miss the eyelens; in the lower sketch the field lens converges these rays toward
the axis so that they go through the eyelens. As indicated, this shortens the eye relief.
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that they will pass through a smaller eyelens. Note that this shortens
the eye relief; a short eye relief and a small-diameter eyelens go hand in
hand. One can lengthen the eye relief with a negative (diverging) field
lens; this requires a large eyelens diameter. If A′ is the apparent field
angle and R is the eye relief, the required diameter of the eyelens (for
zero vignetting) is equal to the exit pupil diameter plus A′•R. Note that
by placing the field lens exactly on the internal image location, the size of
the image and the power of the telescope are unchanged. [Using Eq.
(1.28), if we set d � fa, we find that fab � fa.] In actual practice, field lens-
es are usually located away from the image plane, because otherwise any
flaws, scratches, dirt, etc., on the lens would be seen, nicely in focus and
magnified by the eyelens. Shifting the field lens away from the focus will
cause only a small change in image size and system power.

Sample calculations

In Sec. 2.4 we calculated the component powers and eye relief for a
10-in-long, 4� Kepler telescope as Fo � �8 in, Fe � �2 in, and a 2.5-
in eye relief. If the objective diameter is 1 in and the eyelens diameter
is 0.8 in, what power field lens is needed to allow a real field of 1 in
diameter (about 7.2°)? What is the eye relief with this field lens?

Assuming that the field lens is located at the internal image, it
must bend (converge) the ray from the bottom of the objective (y �
�0.5 in) to the top of the field lens (y � �0.5 in) so that the ray passes
through the top of the eyelens (y � �0.4 in). This ray climbs 1 in in
traveling 8 in from the objective to the focus; its slope is u � �1.0/8.0
� �0.125. After refraction by the field lens, it must drop from the top
of the field lens (y � �0.5 in) to the top of the eyelens (y � 0.4 in) in a
distance of 2.0 in ( � Fe); its slope is u′ � �0.1/2.0 � �0.05.

We can find the necessary field lens power from Eq. (1.19):

u′ � u � y�

�0.05 � �0.125 � 0.5�

� � � �0.35

f � � 2.857 in

To find the eye relief, we trace the principal ray from the center of the
objective with a slope of up � 0.5/8 � +0.0625, and determine its axial

1
�
0.35

�0.05 � 0.125
��

�0.5
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intercept after it passes through the field and eye lenses. The ray-
trace is tabulated below.

� �0.125 �0.35 �0.5
d 8.0 �2.0
y �0.0 �0.5 �0.275
u 0.0625 �0.1125 �0.25

and the eye relief lk′ � �yk/uk′ � �0.275/(�0.25) � �1.10 in.

Sample calculations

If the field lens in the preceding is placed 0.25 in to the right of the
internal image (so that its surfaces are out of focus), what clear aper-
ture and power will be required for the field lens? What eye relief will
result?

Using the same ray from the bottom of the objective to the top of
the 1-in-diameter field, the additional travel distance of 0.25 in at a
slope of �0.125 will increase the ray height at the field lens by
0.25•0.125 � 0.03125 to y � 0.53125. The slope to make this ray
strike the eyelens at y � 0.4 is then (0.4�0.53125)/(2.0�0.25) �
�0.075. Again, using Eq. (1.19),

u′ � u � y� � �0.075 � 0.125�0.53125�

� � � �0.376471

f � 2.656247 in

The raytrace to determine the eye relief is tabulated below.

� �0.125 �0.376471 �0.50
d �8.25 �1.75
y �0.0 �0.515625 �0.285294
u �0.0625 �0.131618 �0.274265

and the eye relief is lk′ � �0.285294/(�0.274265) � 1.040213. But
note that if we move the field lens away from the focus point, it will
throw the telescope out of focus. We can choose to maintain either the
telescope power or its length. If we wish to maintain the 10-in length,
we will have to change the eyepiece focal length. The focal length and
back focus of the combined objective and field lens are found from
Eqs. (1.28) and (1.29):

�0.075�0.125
��

�0.53125
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fab � � � 8.831170

B � � � �0.275974

Thus, to make the focal points of objective and eyelens coincide, the
eyelens focal length must equal 1.75 � 0.275974 � 2.025974 in. Again
raytracing to determine the power and eye relief, we get

� �0.125 �0.376471 �0.493590
d �8.25 �1.75
y �0.0 �0.515625 �0.285294
u �0.0625 �0.0625 �0.131618 �0.272436

The eye relief is l′ � �y/u′ � �0.285294/(�0.272436) � 1.047196,
very little changed. But the telescope power, per Eq. (2.1), has
increased to MP � (A′/A) � �0.272436/0.0625 � �4.359. If we wish to
maintain the power at MP � �4�, the eyepiece focal length must be
8.831/4 � 2.207792, and the telescope length becomes

L � 8 � 0.25�0.275974 � 2.207792 � 10.181818

If we needed exactly 4� power and 10-in length, we could use one of
the techniques described in Chap. 5 to find a simultaneous solution.

A relay lens is simply a lens which relays an image from one point
to another. For example, the erector lens in Fig. 2.7 is also a relay
lens.

A periscope is typically a train of alternating relay and field lenses
which are arranged to transmit an image through a long narrow
space. Usually the desired field of view is larger than can be passed
through the available space. Figure 2.11 shows a schematic periscope.
The layout which produces the minimum number of components and
the (desirable) minimum amount of power for a given length and
diameter can be found as follows: The initial objective focal length is
chosen so that the image of the desired field of view 2	 just fills the
available diameter D2; thus 2•	•Fo � D2, or Fo � D2/2	. The distance
S1 to the first relay lens is chosen so that the cone of light from the
objective just fills the available diameter for the relay; thus (D1/Fo) �
(D3/S1), or S1 � D3•Fo/D1. The power of the field lens B is chosen to
focus the image of lens A in lens C. Relay lens C images field lens B
on field lens D so that the image fills the aperture of D; thus (D2/S1) �

8.831(8�8.25)
��

8
fab(fa � d)
��

fa

8•2.656
��
8 � 2.656�8.25

fafb��
fa � fb � d
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(D4/S2). The distance to relay lens E is again chosen to fill the aper-
ture of E; thus (D3/S2) � (D5/S3) and field lens D images lens C on lens
E. This process can be continued as necessary, to the final eyepiece or
camera focal plane. It should be obvious that, if all the diameters are
equal (D1 � D2 � D3 � D4 � etc.), the relay lenses (C, E, etc.) will
work at unit magnification (m � �1), as will the field lenses (D, F,
etc.), and the focal lengths of lenses C, D, E , F, etc., will be identical.

Sample calculations

A periscope is to have a maximum clear diameter of 4 in for the optics
and it is to cover a (paraxial) field of view of 
0.1. Assume the objec-
tive diameter is 2 in and all other optics are 4 in diameter. Lay out a
system with minimum component power.

The maximum image distance for the objective is equal to the maxi-
mum optics diameter divided by the full field angle, or 4 in/(2•0.1) �
20 in. (Note that this applies whether the object is at infinity or some
finite distance, and it produces the lowest possible power objective.)
The objective image side NA is then equal to its semidiameter divided
by the image distance, or 1/20 � 0.05, corresponding to a “working”
speed of f/10. In order to fill the 4 in diameter of the first relay lens,
its distance from the objective focus is 4 in�f/# � 40 in, and the focal
length of the first field lens is determined from Eq. (1.4):

� � � � �

� 0.075 f � 13.333…

The relay lens will work at unit magnification, and its conjugate dis-
tances are s � �40 and s′ � �40. Its focal length per Eq. (1.4) is thus
20 in. The second field lens also works at unit magnification and 40-
in conjugate distances. Its focal length is 20 in, as are the focal
lengths of all subsequent field and relay lenses. There will be images
located at distances from the objective of 20, 100, 180, 260 in, etc.
Since the relay stages are all of unit magnification, the complete sys-
tem will have a focal length equal to that of the objective lens, or 
(
)20 in. The optics to be used at and after the final image will
depend on the desired final image size and whether the device is to be
a telescope, a camera, or another type of instrument.

1
�
f

1
�
�20

1
�
f

1
�
40

1
�
s

1
�
f

1
�
s′
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2.8 Magnifiers and Microscopes

The magnification of a microscope or a magnifier is, like that of a tele-
scope, defined as the ratio of the angle subtended by the image to the
angle subtended by the object. The difficulty here is that we are con-
cerned with an object at a finite distance, and the angle which the
object subtends will vary with that distance. The answer to this
dilemma is that the object is considered to be viewed at a convention-
al distance of 10 in, chosen as the “nearest distance of distinct vision.”
This convention is obviously a compromise, since the eyes of a young
person can focus to a distance of a few inches, whereas an older indi-
vidual may be unable to focus closer than several feet.

If the object to be examined is placed at the focal point of the micro-
scope/magnifier, the image is seen at infinity, and the magnification is
simply

MP � � (2.16)

This expression is valid for either a simple magnifying glass or a com-
pound microscope, where F is the effective focal length of the micro-
scope/magnifier. If, as shown in Fig. 2.12, the object is between the
lens and the first focal point, then the magnification depends not only
on the focal length F, but also on the image distance S′, as well as the
distance from the magnifier to the eye R, as follows:

250 mm
�

F
10 in
�

F

76 Chapter Two

S'

F

S R

ObjectImage F1

Figure 2.12 The optics of a magnifier or simple microscope, showing the object distance
S, the image distance S′, and the eye distance R. The object is located at, or within, the
first focal point F1, and the image is virtual and located far enough from the eye that it
can be comfortably viewed; this image distance is usually quite large.
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MP � (2.17)

Equation (2.16) is used to determine the stated power of magnifiers,
eyepieces, and microscopes, whereas Eq. (2.17) is useful for determin-
ing the magnification of devices such as slide viewers. It should be
apparent that if the definition of magnification were changed to use
the angle subtended by the object from a distance D instead of 10 in,
we would simply substitute D for 10 in in the above equations.

Sample calculations

Lay out a 4� tabletop slide viewer which is to be used at a distance of
20 in from the eye, and which is to provide an image that is �0.67
diopters from the eye. A distance of �0.67 diopters is a distance of
(1/�0.67) � �1.5 m ≈ �60 in. With reference to Fig. 2.12, R � 20 in
and S′ � �40 in. Using Eq. (2.17),

MP �

4� � �

240F � 10F � 400

F � � 1.7391 in

To locate the slide position, we use Eq. (1.4):

� �

� �

S � �1.66666 in

For a slide diagonal of 1.6 in, how large must the lens diameter be? The
magnified image is 4�1.6 � 6.4 in, and at an image distance of 40 in it
subtends an angle of 6.4/40 � 0.16. At the eye distance of 20 in this angle
requires a lens diagonal of 20�0.16 � 3.2 in. This is a large diameter for a
single lens element with a focal length of only 1.74 in (as a quick sketch

1
�
1.7391

1
�
S

1
�
�40

1
�
F

1
�
S

1
�
S′

400
�
230

10(F � 40)
��

60F
10[F � (�40)]
��
F[20 � (�40)]

10(F �S′)
��
F(R �S′)

10 in(F �S′)
��

F(R �S′)
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will show; see Sec. 5.5 for sketch techniques). At this point our alterna-
tives are: (1) change the initial specifications so that the lens focal length
is longer and its required diagonal is smaller; (2) use more than one ele-
ment for the lens; (3) make the lens smaller than 3.2 in and force users to
shift their heads to see the full slide; or some combination of these.

In the compound microscope, shown in Fig. 2.13, the objective lens
forms a magnified image of the object, which is viewed through the
eyepiece. The magnification is the product of the objective magnifica-
tion (S′/S) and the eyepiece magnification (10 in/Fe), or

MP � • (2.18)

The microscope magnification can also be determined by calculating the
effective focal length of the combination of the objective and eyepiece,
using Eq. (1.27) or (1.28). This gives the focal length for the microscope Fm:

Fm �

�

� (2.19)

and a magnification of

MP � � (2.20)

which yields exactly the same result as does Eq. (2.18).

10 in(Fo � S′)
��

FeFo

10 in
�

Fm

FeFo�
Fe � S′

FeFo��
Fe � Fo � Fe � S′

FeFo��
Fe � Fo � d

10
�
Fe

S′
�
S
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Figure 2.13 The compound microscope consists of an objective lens which forms an
enlarged image of the object, and an eyepiece which further magnifies the image and
allows the eye to view it comfortably.
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Sample calculations

We wish to view an object 40 in away at a magnification of 5�. The
optical instrument can be 10 in long. A 5� magnifier/microscope has a
focal length of 10/MP � 2 in, but since MP may be plus or minus, so
may the focal length. If the object is placed at the focal point of the
microscope (so that the image presented to the eye is at infinity for
comfortable viewing), the back focus must be B � 40 in. The compo-
nent powers will be minimized if the space between components is the
maximum allowed, or d � 10 in. Using Eqs. (1.31) and (1.32) and fab �
�2 in, we get
Eq. (1.31)

fa �

� � � �0.5263

Eq. (1.32)

fb �

� � � �8.333

This is the galilean version, with a negative eyelens and a positive
objective; the image is erect; there is no internal focus. If we use MP
� �5�, fab � �2.0 in, and we get

fa � � � �0.4762

fb � � � �7.692

This arrangement corresponds to the conventional compound micro-
scope with an inverted image and an internal focus. The internal
image allows the use of a reticle or crosshair.

The optics of a HUD (or head-up display) and those of an HMD (or
head/helmet-mounted display) are basically magnifiers. Typically a
HUD projects collimated information from a CRT (cathode ray tube),
an LCD (liquid crystal display), or an image intensifier into the eye.

�400
�
�52

�10•40
��
�2 �40�10

�20
�
�42

10(�2)
�
�2 �40

�400
�
�48

�10•40
��
2 � 40�10

�dB
��
fa � B � d

20
�
�38

10•2
�
2�40

dfab�
fab � B
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The object is placed at or near the focal point of the optics so that the
image produced is at infinity or a large distance. Depending on the
application, the infinitely distant image may be reflected from a 45°
tilted semireflecting “combiner” mirror, through which the user can
also see directly. A military aircraft HUD may provide weapon or air-
craft status information and also provide an aiming point for the
weapon system. Because the user’s eye is usually located a significant
distance from the lens system, the field of view of a HUD is limited by
the aperture of the optics. The system must also be large enough to
accommodate a certain amount of motion of the eye without
vignetting (obscuring) the image. In an HMD the eye is usually much
closer to the optics and the function is more like that of an ordinary
magnifier. Some HMDs have optical systems which incorporate relay
optics and are thus analogous to the compound microscope. This is
usually done in order to make the center of gravity of the total HMD
assembly roughly coincident with that of the head. A concave mirror,
either fully or semireflecting is sometimes used as the
collimating/magnifier in conjunction with a 45° semireflecting com-
biner mirror. In some applications, such as an HMD for surgery or
virtual reality, there is no see-through capability and the view of the
outside world, if required, is seen by looking beneath the HMD optics.

2.9 Telephoto and Retrofocus
Arrangements

A schematic telephoto arrangement is shown in Fig. 2.14. It consists
of a positive component separated from a negative component. The
focal length, back focus, etc., relationships are defined by the equa-
tions of Sec. 1.10. As can be seen from the figure, the advantage of the
telephoto arrangement is that its focal length is longer than its over-
all length. One can get a long focal length lens in a short, compact
package. The telephoto ratio is the length L divided by the effective
focal length F, and a lens is classed as a true telephoto if this ratio is
less than 1. In reflecting systems, the Cassegrain configuration, as
shown in Fig. 1.16, is the mirror equivalent of a telephoto.

A schematic retrofocus or reversed telephoto system is shown in Fig.
2.15. It consists of a negative component followed by a positive compo-
nent. The advantage of this arrangement is that the back focus dis-
tance is long compared to the focal length. This is useful if a long
working distance is needed in order to accommodate a mirror, prism,
or beam splitter in the space between the optics and the image.
Occasionally the retrofocus is executed by placing a negative compo-
nent at the first focal point of a positive lens; this increases the back
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focus or working distance without changing the focal length of the
original positive lens. The mirror equivalent of the retrofocus is
shown in Fig. 2.23B. A “fisheye” lens covers an extremely wide field
by utilizing one or more large, strong meniscus negative elements.
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Figure 2.14 A telephoto lens consists of a positive component followed by a negative
component. The combination has a focal length F which is longer than its overall
length L and is used where a long focal length in a compact package is desired. The
telephoto ratio is L/F; a ratio of less than 1 is considered the defining characteristic of
a telephoto.
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Figure 2.15 A reversed telephoto or retrofocus lens has a negative component
followed by a positive component. It provides a long working distance B for a
short focal length and is used where it is necessary to put a beam splitter or
the like between the lens and its image.

The Basic Optical Systems

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



2.10 Collimators

A collimator is simply a device which produces an image at infinity.
This is done by placing the object at the focal point of the optical sys-
tem. The collimator is a common laboratory device, useful when a sys-
tem designed to be used with a very distant object is tested. A colli-
mated beam of light is one in which a small source is imaged at
infinity. A common misconception is that all the light rays in a colli-
mated beam are parallel to each other and that the beam does not
expand. This is of course incorrect; the beam does spread, and the
angle by which it spreads is equal to the size of the source divided by
the effective focal length of the collimating lens. The rays from a sin-
gle geometric point in the object are indeed parallel, but bear in mind
that a true geometric point has dimensions of zero by zero, and an
area of zero emits no energy. Even a perfect laser source beam will
spread because of diffraction. A laboratory collimator is typically a
well-corrected lens, such as an achromatic doublet, an apochromatic
triplet, or a parabolic mirror, with an illuminated target placed at its
focus. A collimated beam is often used in applications where a mini-
mum beam spread is desired.

2.11 Anamorphic Systems

An anamorphic system is one which has a different magnification or
focal length in each of the prime meridians. This is usually accom-
plished with lens elements whose surfaces are cylindrical (or toric).
Figure 2.16 shows a system consisting of two cylindrical elements with
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Figure 2.16 An anamorphic system has a different focal length or magnification in each
of the prime meridians. Here the two cylindrically surfaced components produce a sys-
tem with a magnification of about 0.5� vertically and about 2.0� horizontally, so that
the image of the square object at the left is a rectangle at the right (with a 4:1 aspect
ratio).
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their power axes at right angles to each other. The first element focus-
es the rays of a horizontal fan (shown dashed) to produce a magnified
image of the square object; for rays in a vertical (meridional) fan this
first element behaves as a plane-parallel plate and does not deviate
these rays. The second element will focus the meridional rays, produc-
ing an image smaller than the object; the horizontal section of this ele-
ment is plane-parallel. The image of the square object is a rectangle.
Because the power of a cylinder varies as the square of the cosine of
the angle that a ray fan makes to the power meridian of the lens, it
turns out that if the anamorphic system is in focus in both prime
meridians, it is in focus in all meridians. This means that a sharp (if
anamorphically distorted) image can be produced by such a system.

Sample calculations

The output of a laser beam is 20 mm high and 2 mm wide. Image it as
a 2-mm square at a distance of 2 ft. We simply handle the imagery in
each meridian separately. The 2-mm width must be imaged at unit
magnification. The cylinder lens (with a vertical cylinder axis) must
be located midway between object and image so that s′ � �s � 12 in.
Equation (1.4) can be solved for the necessary focal length of 6 in. In
the vertical meridian we need a magnification of �2/20 � �0.1. The
object and image distances must be in a ratio of 10 to 1, and they
must add up to 24 in (2 ft). Thus s � �10s ′ and s ′�s � 24.
Substituting, we get s′+10s′ � 24, so that s′ � 24/11 � 2.1818 in and s
� �10s′ � 21.8181 in. Again using Eq. (1.4), we get a focal length for
the second cylinder lens (with horizontal cylinder axis) of 1.9835 in.

Probably the most widely used anamorphic device is that used to
produce wide-screen motion pictures. As shown in Fig. 2.17, a cylin-
drical afocal attachment in the form of a reversed (0.5�) galilean tele-
scope is placed in front of the camera lens with its cylinder axes verti-
cal. The combined camera lens and anamorphic attachment has a
focal length equal to that of the camera lens for rays in the vertical
meridian, but equal to half that focal length for rays in the horizontal
meridian. The result is that the picture on the film is compressed hori-
zontally by a factor of 2, enabling a wide horizontal field to be imaged
on standard 35-mm film in a standard camera. When the film is pro-
jected in the theater, a similar attachment is placed before the projec-
tion lens, the projected image is restored to its original proportions,
and a wide-screen picture results.

A difficulty with such a camera lens is that it has a different focal
length in each meridian; the required movement of a lens to focus on
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nearby subjects is four times greater in one meridian than in the
other. (Newton’s equation, Eq. (1.1), x′ � �f 2/x, gives the required
lens motion as x′.) The obvious way to handle this is to focus the
prime lens independently in the vertical meridian (where the attach-
ment has zero power) and then focus the anamorphic attachment in
the horizontal meridian by changing the space between its positive
and negative components. The difficulty with this is that the spacing
adjustment also changes the magnification of the anamorphic attach-
ment so that, for example, faces appear fatter in closeups than in
actuality. This is not a popular solution among the members of the
acting profession. A more acceptable solution is to add a pair of weak
spherical elements, one positive and one negative, in front of the
anamorph as shown in Fig. 2.18. The element powers are chosen such
that when they are closely spaced the combination has zero power,
but when the spacing is increased they have positive power. This
arrangement can focus the camera by “collimating” the object (i.e.,
presenting to the anamorphic system an image of the object which is
located at infinity) without changing the anamorphic ratio.

A Bravais system, as discussed in Sec. 2.5, can be executed with
cylindrical surfaces and used behind a camera lens as an anamorphic
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M fp

fp

Cylindrical optics Spherical prime lens

Figure 2.17 An anamorphic system can be produced by combining ordinary spherical-
surfaced optics with an anamorphic attachment. Here an afocal anamorphic attach-
ment produces a lens whose focal length in the meridian of the upper sketch is one half
of that in the lower. This arrangement is used in wide-screen movies to get a wide-
aspect-ratio picture using a standard camera and film.
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attachment. The advantage to this arrangement is that the Bravais
attachment may be much smaller than the galilean, and this smaller
size is significant when the prime lens is a long-focal-length, large-
diameter lens. Note that, since the Bravais increases the image size
and the reversed galilean reduces the size, the cylinder axes of the
Bravais must be horizontal rather than vertical to produce the same
anamorphic effect. Also, the system may be focused by moving just
the prime lens; this avoids the problem mentioned in the preceding
paragraph.

As shown in Fig. 2.19, an ordinary refracting prism is an afocal
anamorphic system. The parallel rays of the incoming and emerging
ray bundles indicate that the device is afocal with object and image at
infinity. The different widths of the ray bundles indicate that there is
an angular magnification in the meridian shown in the figure. In the
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Afocal lens
pair

Anamorphic system
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of anamorphic
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Figure 2.18 This shows a focusing device which is useful for problem systems such as
anamorphic lenses and zoom lenses, where the shift to focus the lens is different for
each meridian, or changes with the zoom setting. The pair of weak elements has zero
power when closely spaced, but positive power when separated. They “collimate” the
object, so that the anamorph or zoom lens is always presented with an image of the
object at infinity, and no focus shift of the main lens is necessary.
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other meridian, the prism appears as a plane-parallel plate and has
no angular magnification. Both the angular deviation of the beam and
the anamorphic angular magnification vary as the angle of incidence
on the prism is changed. As shown in the lower sketch, a pair of
prisms can be arranged as shown so that their deviations and disper-
sions cancel and their anamorphic effects multiply. If the prisms are
achromatized, this device can be used in the same way that the
galilean projection anamorph described above is used, although its
aberrations limit it to smaller angular fields. A suitably synchronized
rotation of both prisms will allow the anamorphic ratio to be varied.

An LED (light-emitting diode) has an emission characteristic which
is awkward to collimate, in that its beam spreads out more widely in
one meridian than in the other, typically by a factor of about 3. It also
has astigmatism, in that the beam appears to originate and spread
out from two longitudinally separated points. A collimator for such an
LED is shown in Fig. 2.20. The elliptical beam spread is made circu-
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Figure 2.19 A refracting prism is an afocal anamorphic device (except at mini-
mum deviation) as indicated by the parallel input and output rays. The ratio of
the ray separations indicates the angular magnification in the meridian of the
page; this ratio is a function of the angle at which the rays enter the prism. The
lower sketch shows two prisms arranged so that their deviations cancel each
other but their anamorphic effects multiply.
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lar by a simple prismatic anamorph (which need not be achromatized
for this application), and the astigmatism is corrected by a weak
cylindrical surface, producing a well-collimated circular beam.

2.12 Zoom and Varifocal Systems

Both zoom and varifocal systems are characterized by the ability to
change focal length by longitudinally sliding one or more components
with respect to the balance of the system. The “zoom” system implies
a fixed focal plane, as in a video or movie camera lens. The “varifocal”
has a variable focal length; the location of the focal point may vary.
For example, some still camera or projection lenses require refocusing
when the focal length is changed.

The simplest way to change focal length is to change the spacing
between two components. The equations of Sec. 1.10, specifically Eqs.
(1.27) to (1.30), can be used to determine the focal length change pro-
duced by respacing a two-component system. Most two-component
zooms consist of one positive and one negative component. Both are
moved to simultaneously change the focal length and maintain the
focus. If the negative component leads, the system resembles the
reverse telephoto (or retrofocus) described in Sec. 2.8, Fig. 2.15. This
arrangement yields a short focal length and a long working distance,
plus the capability for a wide field of view. The reverse, with a posi-
tive component followed by a negative component, resembles the tele-
photo (see Fig. 2.14) and provides a long focal length in a short pack-
age. It is obviously also possible to make a zoom with two positive
components, but if any significant field of view is to be covered, off-
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Figure 2.20 A laser diode collimator consisting of a spherical collimating lens, a weak
cylindrical lens to correct the astigmatism of the LED, and a prism anamorph to con-
vert the elliptical output beam of the LED to a circular beam.
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axis image quality considerations strongly favor systems with both
positive and negative components.

Figure 2.21 shows the motion of the components for both types.
Here we have arbitrarily assumed that the component focal lengths
are �1.0 and �1.25. Note that the range of the retrofocus type is
much greater because the telephoto type runs out of back focus.

A three-component zoom is also a common arrangement and often
consists of a negative component sliding between two positive compo-
nents, one of which may be moved to maintain focus. The added 
flexibility provided by three components allows a wide variety of
arrangements, including afocal or telescope systems. Several three-
component zoom schematics are shown in Fig. 2.22. Some modern
zoom camera lens designs have three or more moving components;
this is done to allow the image quality to be consistently good over a
large zoom range.

Note that the zoom lens has a focusing problem similar to that of
an anamorphic system, as described in the preceding section. The
lens motion required to focus on a close object will vary as the square
of the focal length. One solution is the same as that sketched in Fig.
2.18. In practice, most zoom lenses have multielement components
and can be focused by changing the spacing between the elements
within a component (usually the front component).

Another complication of zoom lenses is that, unless the aperture
stop (or iris diaphram) is located after the sliding components (i.e.,
between the last moving element and the image), the relative aper-
ture (f-number or numerical aperture), and hence the image illumina-
tion, will vary when the lens is zoomed. In the newer autofocus and
autoexposure cameras, the automatic adjustment of focus and expo-
sure makes these considerations far less important.

2.13 Mirror Systems

It should be apparent that the equations in Chap. 1 and the systems
in the preceding sections apply to and can be executed using mirrors.
We have previously noted that (1) the focal length of a mirror is one-
half of its radius, (2) a concave mirror has positive power, and (3) the
principal points are at the mirror surface. But when raytracing mir-
rors, there is a bit of complexity. For surface-to-surface raytracing
[Sec. 1.5; Eqs. (1.14) and (1.15)] the spacing is negative if a following
surface is to the left, and the index is negative when the ray travels
from right to left (i.e., as after a reflection). However, for component-
by-component raytracing [Sec. 1.7; Eqs. (1.19) and (1.20)], we use the
“air-equivalent distance,” which is simply the distance divided by the
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d = 0.0    f = 5.0

d = 0.2    f = 2.78

d = 0.4    f = 1.92

d = 0.6    f = 1.47

d = 0.8    f = 1.19

d = 1.0    f = 1.0 

(a)

Figure 2.21 Schematic of two two-component zoom systems, showing the motions
necessary to change the focal length and maintain the image focus. The compo-
nent focal lengths are �1.0 and �1.25. (A) With the positive lens in front, the
useful zoom range is limited by the lack of back focus.
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d = 0.0    f = 5.0

d = 2.2    f = 0.51

d = 0.2    f = 2.78

d = 0.4   f = 1.92

d = 0.6   f = 1.47

d = 0.8   f = 1.19

d = 1.0   f = 1.0

d = 1.2   f = 0.86

d = 1.4   f = 0.76

d = 1.6   f = 0.68

d = 1.8   f = 0.61

d = 2.0   f = 0.56

(b)

Figure 2.21 (Continued) (B) The reversed arrangement allows
both a greater zoom range and a good back focus clearance dis-
tance.

The Basic Optical Systems

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



The Basic Optical Systems 91

(a)

(b)

Figure 2.22 Three-component zoom systems. (A) A negative component moving
between two positive components to change the focal length is a very common
arrangement. Either of the positive components may be moved to compensate for the
focus shift introduced by moving the inner lens. (B) A moving positive lens can also
produce a zoom. 

index. Thus, when both are negative, we take the spacing as positive.
This is the case for most two-mirror systems. This rule applies not
only to component-by-component raytracing but also to the equations
for combinations of two components [Sec. 1.10, Eqs. (1.27) through
(1.37)] when applied to mirror systems.
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With that formality out of the way, we can discuss a number of popu-
lar two-mirror systems. Remembering to use a positive sign for d (per
the paragraph above), and using the same notation as in Eqs. (1.27) to
(1.37), we have the following equations for two-mirror systems:

fab � (2.21)

B � (2.22)

where ra and rb are the mirror radii, d is the spacing, B is the back
focus, and fab is the focal length of the combination. Note that we use
the usual sign convention for the mirror radii; i.e., r is positive if the
center of curvature is to the right of the surface.

To determine the mirror radii, given the combined focal length, the
back focus, and the spacing, we can use

ca � � (2.23)

cb � � (2.24)

where c is the surface curvature, equal to 1/r.
Several of the commonly encountered two-mirror arrangements are

diagramed in Fig. 2.23. Figure 2.23A is called a Cassegrain and is the
mirror equivalent of the telephoto arrangement, where a long focal
length is produced in a compact package. The Cassegrain is perhaps
the most widely used of all the two-mirror systems. Figure 2.23B
shows what is called a Schwarzschild; it is the mirror analog of the

B � d � fab��
2dB

1
�
rb

B � fab�
2dfab

1
�
ra

fab(ra � 2d)
��

ra

rarb��
2(ra � rb � 2d)
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(c)

Figure 2.22 (Continued) (C) This is an afocal zoom which can be used as an
attachment to make a zoom projection lens from an ordinary fixed-focus lens. It
goes out of focus, but in use it can be refocused after the picture size is adjust-
ed.
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(b)

Figure 2.23 Three common arrangements for two-mirror systems: (A) The Cassegrain
objective with a concave primary mirror and a convex secondary is a compact system
with a long focal length, in a sort of telephoto configuration. The most commonly used
arrangement. (B) The Schwarzschild system has a convex primary and a concave sec-
ondary, producing a long working distance and a short focal length (at the expense of a
secondary mirror diameter which is several times the beam diameter). Often found in
short-focal-length microscope objectives for ultraviolet and infrared work.
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retrofocus, since it has a long working distance compared to its focal
length. It is often used as an infrared or ultraviolet microscope objec-
tive. The gregorian arrangement (Fig. 2.23C) is the mirror equivalent
of a positive component forming an image which is then relayed and
magnified by a relay lens. The focal length fab of the gregorian is nega-
tive, since P2 is to the right of F2. Mirror systems have the advantage
that a mirror has no chromatic aberration and that they do not require
high-quality optical materials to transmit the wavelengths of interest.

Note that in all of these systems, the central part of the beam is
obscured by one of the mirrors, and the other mirror has a central
hole for the beam to pass through. The Cassegrain and the gregorian
are usually executed with aspheric surfaces on both mirrors (to cor-
rect aberrations). For the Schwarzschild, the aspherics are not neces-
sary; it can be made from two spheres. As indicated in Chap. 4, the
central obscuration of the beam has the diffraction effect of signifi-
cantly reducing the image contrast.

Afocal mirror systems are shown in Fig. 2.24. A common arrange-
ment is to use “confocal” paraboloid mirrors as shown in Figs. 2.24A
and B. These are of course the mirror equivalents of the galilean and
keplerian telescopes, respectively. Some mirror systems use an off-
axis aperture stop in order to avoid obscuring the center of the beam.
Figure 2.24C and D shows this arrangement for confocal paraboloids,
and Fig. 2.24E shows what is often mistakenly called an “off-axis
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Figure 2.23 (Continued) (C) The gregorian arrangement uses a concave secondary mir-
ror to relay the image through a hole in the primary and erect the image. Rarely used.
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Axis
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(b)
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(c)

Axis

(d)

Figure 2.24 (A), (B), (C), and (D) are “confocal” systems and also afocal systems. (A)
and (B) are the mirror analogs of the galilean and Kepler telescopes, respectively.
(C) and (D) are the same except that the apertures are decentered in order to avoid
an obscuration in the center of the beam. These four are often made with parabolic
surfaces to achieve a system without spherical, coma, or astigmatism. 
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parabola” (the aperture is off-axis, not the paraboloid) used as a colli-
mator.

2.14 Collected Equations

Afocal systems

Figure 2.4
Eq. (2.1)

MP � �

Eq. (2.2)

MP � �

Eq. (2.3)

m � �

Eq. (2.4)

MP � �� �

Keplerian telescopes

Figure 2.5
Eq. (2.5)

L � Fo � Fe

Fo�
Fe

1
�
MP

P′
�
P

P
�
P′

tan(A′/2)
��
tan(A/2)

P
�
P′

A′
�
A
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Axis

(e)
Figure 2.24 (Continued) (E) is an “off-axis” paraboloid used as a collimator. Note
that the mirror is used on-axis; the aperture is what is off-axis.
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Eq. (2.6)

R �

Eq. (2.7)

Fo �

Eq. (2.8)

Fe �

Galilean telescope

Figure 2.6
Eq. (2.9)

A′ �

Eq. (2.10)

A � �

Terrestrial telescope

Figure 2.7
Eq. (2.11)

MP � �� �� �

Afocal attachments

Figure 2.8
Eq. (2.12)

Fc � MP•Fp

Bravais system

Figure 2.9
Eq. (2.13)

�a �
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�
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�
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�
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Eq. (2.14)

�b �

Eq. (2.15)

K �

Magnifiers

Figure 2.12
Eq. (2.16)

MP � �

Eq. (2.17)

MP �

Compound microscopes

Figure 2.13
Eq. (2.18)

MP � •

Eq. (2.19)
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Eq. (2.20)

MP �

Mirror systems

Figure 2.23
Eq. (2.21)
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��
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�
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�
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d
�
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��
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Eq. (2.22)

B �

Eq. (2.23)

ca � �

Eq. (2.24)
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�
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3
Condensers,
Illuminators,

Photometry, Etc.

3.1 Interchangeability of Sources and
Detectors

This chapter is written as a discussion of illuminating systems, based
on the concept that we want to efficiently produce some level of uni-
form illumination from a given source. In almost every case, however,
one can substitute a detector for the source and reverse the direction
of the light, and the result is an analogous “radiometer” system of
comparable efficiency. After Sec. 3.2 it is left to the reader to make
this substitution.

3.2 Koehler Illumination System

The usual requirement for an illuminating system is to produce a uni-
form illumination from a nonuniform light source, such as a lamp fil-
ament or an arc. Koehler illumination is the classical way of achiev-
ing this. As shown in Fig. 3.1, a condenser images the source in the
pupil of the projection lens. The projection lens images the region of
the condenser on the area to be illuminated. The illumination pro-
duced is the same as if a magnified source, located at the projection
lens, were directly illuminating the target area. For a given projection
lens diameter, the maximum illumination is produced when the lens
pupil is filled by the image of the source. As indicated in Fig. 3.1, a
simple spherical reflector centered on the source will image the
source back on itself, increasing the average brightness of the source
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and thus increasing the illumination on the target area. Condenser
elements often have a molded aspheric surface; this can reduce or
eliminate the spherical aberration, and also allows a higher-powered
element for a given diameter.

To obtain high photometric efficiency, we might prefer the smallest
possible source, so as to use the least power, generate the least heat,
etc. The size of the smallest source whose image can fill the pupil of
the projection lens is given by

L ≥ (3.1)

where L is the linear source dimension, D is the diameter of the pro-
jection lens aperture, � is the half-field projection angle, and n is the
index in which the source is immersed (almost always n � 1.0, for
air). Reaching this limit requires that the condenser collect a full
hemisphere of light from the source. This is quite difficult to achieve,
and a value for L perhaps twice as large as given by Eq. (3.1) is more
typical of an actual source size. (Incidentally, this limit applies to all
optical systems, not just those analogous to the Koehler type.)

In radiometer usage the system is reversed; the illuminated area
becomes the radiation source and the lamp becomes the detector. The
system produces uniform illumination on the surface of the detector,
and Eq. (3.1) indicates the smallest possible detector which will uti-

D�
�
n
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L

D

Reflector

Source

Condenser
Slide

Projection lens

S'S

Figure 3.1 The Koehler illumination system is used in a projection condenser to pro-
duce even illumination from a nonuniform source. The condenser images the source in
the pupil of the projection lens, and the projection lens images the slide, which is close
to the condenser, on the screen. The screen illumination is then the same as if it were
illuminated by an enlarged source placed at the projection lens. A spherical reflector
with its center of curvature at the source images the source back on itself, filling in
any gaps in the source and thereby increasing its average brightness.
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lize the full aperture and field of the system. Note that for several
classes of detector, e.g., lead sulfide, the limiting signal-to-noise ratio
is inversely proportional to the size of the detector, i.e., the square
root of the area, and a small detector is preferred for this reason. A
Koehler system is often advantageous in a detector application
because it will uniformly illuminate the surface of the detector; this
alleviates the many problems which can arise because of a nonuni-
form response across the detector surface.

Sample calculations

A 35-mm slide projector has a 5-in focal length, f/3.5 projection lens.
The slide diagonal is 1.7 in. What is the smallest filament which will
fill the pupil through every point in the slide?

The projection lens pupil diameter is D � 5 in/3.5 � 1.429 in and
the half-field angle is � � 1⁄2•1.7 in/5 in � 0.17. Thus the minimum
filament size is

L � � � 0.243 in

Something closer to 1⁄2 in would be a more realistic dimension.

Sample calculations

If the condenser in the previous calculation is located 1 in from the
slide and the lamp filament is 0.5 in square, what is the (thin lens)
focal length of the condenser, and what condenser diameter is
required to fill the projection lens through the corners of the slide?
With a 5-in focal length and a 1-in slide-to-condenser distance, S′ in
Fig. 3.1 is 6 in. The required condenser magnification is the lens pupil
diameter divided by the source size, or m � (�)1.429/0.5 � �2.857,
and by Eq. (1.6) S � S′/m � 6 in/(�2.857) � �2.1 in. Then the focal
length is found using Eq. (1.4):

� �

� 0.1667 � 0.4762 � 0.6429

f � 1.5556 in

The minimum condenser diameter is defined by the ray (dashed in
Fig. 3.1) from the bottom of the projection lens to the top (corner) of
the slide. The ray slope is 1⁄2(pupil � slide)/(focal length) � 1⁄2(1.429 �

1
�
f

1
�
�2.1

1
�
f

1
�
6

1.429 � 0.17
��

1.0
D�
�
n
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1.7)/5 � 0.3129. Projecting this ray to the plane of the condenser, the
ray height on the condenser � (half the slide diagonal)+(ray
slope)�(slide to condenser distance) � 0.85 � 0.3129�1.0 � 1.163 in
and the required condenser diameter is 2.326 in. Note that the con-
denser could be made rectangular, in which case 2.326 in would be its
diagonal.

Note that in these discussions we have tacitly assumed that the
maximum illumination and a pupil filled with light were desired. As
pointed out in Chap. 4, there are applications in which the pupil is
deliberately not filled with light, or where the light is deliberately
decentered in the pupil. This is based on diffraction considerations
and is done to enhance the imagery.

3.3 Critical Illumination

What is usually called “critical illumination” is simply the illumina-
tion produced by focusing a source directly on the area to be illumi-
nated. Unless the source is uniformly bright, uniform illumination
cannot be obtained efficiently. An example of this type of illumination
is the arc motion picture projector sketched in Fig. 3.2. A small arc
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Magnified
image of arc

Film gate

Projection
lens

Ellipsoid
reflector

Arc

Figure 3.2 An example of critical illumination, where the source is imaged directly on
the surface to be illuminated. An ellipsoidal reflector forms an image of a very nonuni-
form arc on the film of a movie projector. Because of the coma flare in the image and
the multiple viewpoints from which the mirror “sees” the arc, the image is blurred out
enough to produce acceptably uniform illumination. This system works only because
the numerical aperture is large; with a small NA an image of the source will be project-
ed on the screen. Ordinarily, critical illumination requires a uniformly bright source.
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located at one focus of the ellipsoidal reflector is imaged (without
spherical aberration) at the other focus of the ellipse. Although the
arc brightness is very nonuniform, the illumination at the film gate is
acceptably uniform. This is because the ellipsoid has a large amount
of coma which smears out the image, plus the fact that each incre-
mental area of the mirror “sees” and images the arc from a different
viewpoint. All the different and differently oriented images combine
to smooth out the light. The success of this illumination smoothing
depends on the system having a large numerical aperture (i.e., a fast,
small f-number, projection lens) so that these images are effectively
blurred out. Note that the longer path from the source to the edge of
the mirror means that the edge of the beam is less intense than the
center. This is a common problem when conic reflectors are used to
collect a very large solid angle of light.

3.4 Illumination Smoothing Devices

The light pipe, or integrator bar, is a simple device which can be used
to produce a uniformly illuminated area. As shown in Fig. 3.3, when a
nonuniform source is imaged on one end of the bar, the other end is
illuminated by the checkerboard array of images which have been
reflected from the walls. The number of reflected images is deter-
mined by the convergence angle of the light from the condenser and
the length of the pipe. The light pipe cross section may be square, rec-
tangular, or round. The pipe may be a solid bar or a hollow mirror
array. If the pipe is tapered, the illuminated area can be larger or
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Figure 3.3 A light pipe can produce very uniform illumination from a nonuniform
source. As shown here, the reflecting walls of the pipe form multiple images of the
source. This array of images illuminates the output end of the pipe quite evenly, just as
a similar array of real sources would.
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smaller than the input end. Note that a tapered pipe changes the
beam spread angle so that the spread angle at each end is approxi-
mately inversely proportional to the size of the pipe end faces.

Projectors which use arc lamps such as mercury, xenon, or the
newer metal halide arcs often collect as much of the light as possible
from the lamp by using a very deep aspheric reflector such as an
ellipsoid or paraboloid. Because of the variation of lamp-to-mirror dis-
tance over the reflector surface, the outer parts of the beam are less
intense than the inner parts of the beam (this is coma). In addition,
the center part of the beam is obstructed by the arc envelope. Figure
3.4 shows a beam homogenizer array which can be used to smooth out
the illumination. The light from the arc is collimated (imaged at infin-
ity) by a deep paraboloid reflector. Each lens of the first array forms
an image of the arc in the corresponding lens of the second array. The
lens of the second array images the lens of the first array at infinity.
Note that this combination behaves like the condenser and projection
lens of a Koehler illumination system. All of these images are then
focused on the film gate by the first condenser, where the combined
images produce quite uniform illumination. The second condenser
images the first condenser in the projection lens pupil. Again, the sec-
ond condenser is working like a Koehler system condenser, imaging
the nonuniform brightness first condenser into the projection lens.

3.5 Liquid Crystal Display (LCD) and Digital
Micromirror Device (DMD) Projectors

A liquid crystal display (LCD) panel is often used in the projection of
computer graphics. Two characteristics of the LCD must be taken into
account in designing the illumination system. The first is that the
contrast of the display is best when the illumination at the panel is
collimated and its direction is approximately normal to the panel.
(The optimum may actually be a few degrees from the normal in a
specific direction.) A common way of accommodating this characteris-
tic is shown in Fig. 3.5, where the light source is collimated (either by
a refractive condenser as shown, or by a reflective system) and a con-
vergent field lens is placed between the LCD and the projector lens to
image the light source in the pupil of the projection lens. As shown,
the field lens is often a fresnel lens, because the fresnel does not
introduce any Petzval field curvature, as would an ordinary lens. To
avoid having the fresnel grooves appear in the projected image, they
are made quite fine and the fresnel is located well away from the
plane of the LCD. This is acceptable because the system resolution,
limited by the LCD pixel size, is well below the diffraction limit.
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The second LCD characteristic affecting performance is the so-
called aperture ratio of the LCD. This is the ratio of the transmitting
area of the panel to the total area. This is always less than unity
because, as shown in Fig. 3.6, the circuitry and transistors mask part
of the area. For a three-color LCD, because each color (RGB) pixel
occupies only one-third of the transmitting area, there is another loss
factor (of three). An array of microlenses can converge the light (which
would otherwise fall on the masked area) so that the light is con-
densed enough to pass through the transmitting area. Of course, this
increases the convergence/divergence of the light beam so that a larg-
er projection lens aperture is needed to pass the light. A second layer
of microlenses on the output side of the LCD can be used to reduce
the divergence.

It has been proposed to improve the three-color aperture ratio by
directing the illuminating light in a different direction for each color,
so that one large microlens can be used for each set of three pixels,
and each color is obliquely directed to the appropriate color pixel.
This can be accomplished by inserting tilted dichroic mirrors in the
illuminating beam to produce a separate oblique beam for each color.
Another approach has been to use diffractive microlenses so designed
that each of three layers of diffractive microlenses is efficient only for
one of the three colors; each lens covers the area of three color pixels
but affects only its own color light to direct and focus it onto the prop-
er color pixel. There are questions of bandwidth and diffraction effi-
ciency which affect the viability of this scheme.
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Lamp Collimating
condenser

LCD Fresnel
field lens

Projection
lens

Figure 3.5 To achieve high contrast, a liquid crystal display (LCD) panel should be illu-
minated with collimated light. A fresnel lens, placed between the LCD and the projec-
tion lens, can be used as a condenser to focus the light into the pupil of the lens. The
fresnel is used, despite its inefficiency and ring structure, because it does not cause the
field curvature that an ordinary lens would introduce.
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Masked area

Micro lens
array

Figure 3.6 The transmission of an LCD panel is partially obstruct-
ed by the masks and electronic structure defining each pixel. The
transmission efficiency can be improved by the use of microlenses,
one per pixel, which condense the illuminating beam so that it can
pass through the restricted aperture of the pixel.
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A different approach than the LCD projector involves the use of
what is called a digital micromirror device, or DMD. This is an array
of pixel-sized mirrors, each flexibly mounted. The mirrors can be indi-
vidually tilted (along their diagonal) so that the reflected light is
caused to pass through or to miss the entrance pupil of the projection
lens, thus producing a picture. The illumination for such a system
must be oblique and is often critical illumination, usually modified in
order to get even illumination on the screen. Color is produced by a
rotating filter wheel; the gray scale is produced by extremely rapid
oscillation of the mirrors to vary the on-off ratio.

3.6 Photometry, Radiometry,
Illumination, Etc.

In order to simplify and compress this subject we treat radiometry
with something less than great rigor in this section. For the vast
majority of applications the effect of our simplifications will be negli-
gible. But, for theoretical or extremely exacting work, the reader
should refer to texts dealing with the subject in greater detail.

The brightness (� radiance or luminance) of a source is measured
in watts (or lumens) output per solid angle per unit area, where the
area is measured in a plane normal to the direction of view. The
brightness of a perfect diffuser or of a self-luminous object is constant
regardless of the direction of view. This is expressed as Lambert’s law,
which says that the intensity (in watts or lumens per solid angle) of a
small area in the surface varies as

I(�) � Io cos � (3.2)

where I(�) is the intensity in the direction �, Io is the intensity in a
direction normal to the surface, and � is the angle between the nor-
mal and the direction of view as schematically shown in Fig. 3.7A.

The relation between the total power emitted into a hemisphere
and the brightness of the diffuse emitting surface is

B � (3.3)

where B is the surface brightness and P is the power emitted per unit
area from the surface.

In any optical system, brightness is conserved. That is, if we
neglect transmission losses, the brightness of an image is the same as
that of the object, or

Bi � t•Bo (3.4)

P
�
�
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Incremental area
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I(   )

(a)
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Figure 3.7 (A) According to Lambert’s law, the intensity (power emitted per
solid angle) of a small area in a diffuse surface varies with the cosine of �.
(B) The illumination (incident power per unit area) produced on a surface
is a function of the solid angle subtended by the illumination source, or
subtended by the exit pupil of the imaging optics, as seen from the illumi-
nated point. 

Stated in another way, the brightness of an image cannot exceed the
brightness of the object.

The illumination or irradiance (in watts or lumens per unit area)
produced on a surface is given by

E � t•B•�•cos � (3.5)

where t is the transmission factor, B is the source brightness, � is the
angle at which the light is incident on the surface, and � is either (1)
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the solid angle subtended by the source as seen from the surface or
(2) the solid angle of the illuminating cone forming the image.

Note that the equivalence of 1 and 2 indicates that the exit pupil of
an optical system takes on the brightness of the source when viewed
from the image. For modest angles, the solid angle of the illuminating
cone can be found from

� � �•NA2 (3.6)

where NA is the numerical aperture, and NA � n•sin u, where u is
the half angle of the illuminating cone as illustrated in Fig. 3.7B, or
NA � 1/(2•f-number).

The cosine fourth effect is a good approximation to the way that
illumination varies across the image plane of most optical systems.
When we consider how the solid angle subtended by the exit pupil of
a lens [� in Eq. (3.5)] varies across the flat image plane of a lens as
shown in Fig. 3.7C, we find that

�(�) � �(O)•cos3� (3.7)

and substituting into Eq. (3.5), we get

E(�) � E(O)•cos4� (3.8)
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Figure 3.7 (C) The illumination in the image on a plane varies as the
fourth power of the cosine of the angle of obliquity.

Condensers, Illuminators, Photometry, Etc.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



where �(O) and E(O) are the solid angle and the illumination, respec-
tively, at the axial image point, and �(�) and E(�) are the solid angle
and illumination at an angular displacement of � from the axis. Note
that this reduction in the illumination is in addition to that caused by
vignetting (Sec. 2.1).

The preceding relationships allow the calculation of any illumina-
tion project. The units which are commonly used in photometry are
summarized below.

Intensity

candle (candela) � one lumen per steradian emitted from a point
source (one-sixtieth of the intensity of one
square centimeter of a blackbody at 2042 K)

Illumination

footcandle � one lumen per square foot incident on a surface

phot � one lumen per square centimeter

lux (meter candle) � one lumen per square meter

Brightness (luminance)

stilb* � one candle per square centimeter

� one lumen per steradian per square centimeter

lambert* � (1/�) candles per square centimeter

foot-lambert* � (1/�) candles per square foot

Sample calculations

How many lumens will a 35-mm slide projector produce? Assume a
slide aperture 24 by 36 mm, a 5-inch (127-mm) focal length, f/3.5 pro-
jection lens, and a lamp with an average filament brightness of 1000
candles per cm2. A two-element condenser with uncoated surfaces will
have reflection losses of about (1�0.964) � 15 percent, so let’s assume
a condenser transmission of about 85 percent. A three-element projec-
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*Note that the area in the brightness units is measured in a plane normal to the
direction of view, not in the plane of the surface. This, combined with Lambert’s law,
indicates that a diffuse emitter has a constant brightness in all directions.
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tion lens, if quarter-wave low reflection coated, should transmit about
0.9936 � 96 percent, so we have a system transmission factor of
0.85•0.96 � 0.81.

The pupil of the projection lens has a diameter of 5/3.5 � 1.429 in �
36.3 mm, and an area of 1034 mm2 or 10.34 cm2. If we fill the pupil
with the filament image, the pupil brightness will be 0.81•1000 � 810
candles per cm2, and the pupil (if considered as a “small” source) will
have an intensity of 810•10.34 � 8376 candles, or 8376 lumens per
steradian.

If the 35-mm slide is projected to infinity (or to a “long” distance),
the solid angle subtended by the image will be the slide area divided
by the square of the projection lens focal length, or 24•36/1272 �
0.0536 steradians. Thus the flux in the image will be 8376•0.0536 �
449 lumens.

Another approach might assume that the slide is to be projected to
an image size of 4 by 6 ft. This is a magnification of (4•12•25.4)/24 �
�50.8�, and using the equations of Sec. 1.3, the image distance nec-
essary to produce this magnification with a 5 in focal length lens is s′
� f(1�m) � 127(1 � 50.8) � 6579 mm (or about 21 ft 7 in). Thus the
lens pupil will subtend (from the screen) a solid angle given by its
area divided by the square of this distance, or 1034/65792 � 2.39•10�5

steradians. Using the pupil brightness of 810 candles per cm2 (or 810
lumens per ster per cm2), Eq. (3.5) gives us a screen illumination of

E � tB� cos � � 810•2.39•10�5•1.0 � 0.0194 lumens per cm2

At 929 cm2 per ft2, this is 18 lumens per square foot, or 18 footcandles
illumination.

The area of the screen image is 4�6 � 24 ft2, so that the lumen out-
put is 24�18 � 432 lumens. The small difference between this value
and the 449 lumens calculated above results from the different
assumptions regarding the projection distance.

Sample calculations

In the preceding system, how large must the lamp filament be in
order to fill the pupil of the projection lens from every point in the 35-
mm slide? The minimum size is given by Eq. (3.1) as

L ≥

where D is the projection lens diameter (D � 36.3 mm), � is the half-
field projection angle, and n is the index in which the filament is

D�
�
n
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immersed (n � 1.0). The projection angle is the slide diagonal (43.2
mm) divided by the projection lens focal length (or its object distance),
and the half angle � � 21.6/127 � 0.17, and we get

L ≥ � 6.2 mm

A reasonable, easily attained value might be about twice this mini-
mum, or about 12 mm.

Sample calculations

With no slide in the projector, what will the screen brightness be?
Assume that the screen is diffuse, with a 90 percent reflectance.

For a diffuse screen, the brightness can be easily calculated in foot-
lamberts, by multiplying the illumination in footcandles by the
reflectance, to get 18•0.9 � 16.2 foot-lamberts. Another approach uses
the screen illumination of 0.0194 lumen per cm2 times the 0.9
reflectance to get a total reflected flux of 0.9•0.0194 � 0.0175 lumen
per cm2. Dividing by � [per Eq. (3.3)], we get the screen brightness of

B � � � 0.0056 lumen per ster per cm2

� 0.0056 candle per cm2

� 0.0056 stilb

This assumes a diffuse or lambertian surface screen. Many projection
screens use nonlambertian surfaces to increase the apparent bright-
ness. The screen gain is the factor by which the brightness is
increased over that of a perfect diffuser. Thus a screen with a gain of
2.5 would produce a brightness of 2.5•0.0056 � 0.014 stilb.

0.0175
�

�

P
�
�

36.3•0.17
��

1.0
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4
System Limits:

Performance and
Configuration

4.1 Introduction

It is the intent of this chapter to briefly outline some limits to which
all optical systems must conform. These are: (1) limits of performance
or resolution, (2) limits on throughput, and (3) limits on the relation-
ships between beam angles and sizes. In the initial stages of system
layout it is essential that these limits be known and harmonized with
what is expected of the optical system. Occasionally this first step
simply proves that “it can’t be done.” But even a negative result like
this can be worthwhile if it avoids a waste of time spent on the physi-
cally impossible.

4.2 The Diffraction Limit

The image of a point source, formed by a perfect optical system with a
uniformly transmitting circular aperture, is a diffraction pattern
which consists of a circular central bright patch, called the Airy disk,
surrounded by alternating dark and light concentric rings. The Airy
disk contains 84 percent of the energy in the image. The first dark
ring has a diameter given by

D � (4.1)

where � is the wavelength and NA is the numerical aperture of the
imaging cone of light (NA � n•sin u). The peak illumination in the

1.22�
�

NA
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first bright ring is only 1.7 percent of the peak illumination in the
Airy disk, and the illumination level in the other rings falls off quite
rapidly. Figures 4.1 and 4.2 describe the diffraction pattern.

Point resolution is the ability to distinguish the images of two adja-
cent, closely spaced points. Obviously the diffraction blur affects this
ability.

The Rayleigh criterion assumes that two points can be clearly
resolved if they are separated by the radius of the first dark ring of
the diffraction pattern, or

Rayleigh separation � (4.2)
0.61�
�

NA
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Figure 4.1 The diffraction pattern: the image of a point formed by a perfect lens with
a circular aperture. The pattern consists of a bright central circular patch, called the
Airy disk, surrounded by concentric rings of rapidly diminishing intensity.
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The Sparrow criterion postulates a limit of about a 20 percent
smaller separation, or

Sparrow separation � (4.3)

The Dawes criterion is an empirical one, derived from observations
with the human eye as the sensor; it is only about 2 percent larger
than the Sparrow criterion.

The resolution limit at the image is related to the resolution at the
object by the magnification of the optical system. Since the magnifica-
tion is equal to u/u′ or sin u/sin u′, one can determine the resolution
limit at the object simply by using the object-side NA in Eq. (4.2) or
(4.3). If the object is at infinity, the resolution must be expressed angu-
larly, and the separation corresponding to the Rayleigh criterion is

Rayleigh angular separation � (4.4)

where P is the diameter of the entrance pupil of the system. A com-
monly used version of Eq. (4.4) assumes a wavelength of 0.55 �m (the

1.22�
�

P

0.50�
�

NA
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Figure 4.2 Tabulation of the characteristics of the diffraction pattern. Z is the radial
dimension of the ring. Note that most (84 percent) of the energy is in the central
patch, contained within the first dark ring, and the peak illumination in the first
bright ring is only 1.7 percent of illumination at the center of the Airy disk.
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peak of the human visual response), that P is in inches, and that the
angular resolution is in seconds of arc.

Rayleigh angular separation � (4.5)

For the Sparrow criterion, the constant in Eq. (4.5) becomes 4.5; for
Dawes it is 4.6.

Line resolution is the ability to separate or recognize the elements
of a pattern of alternating high and low brightness parallel lines. An
optical system is a low-pass filter, in that it cannot transmit informa-
tion at a spatial frequency higher than the cutoff frequency, given (in
cycles per unit length) by

vo � � (4.6)

This frequency corresponds to a line spacing equal to the Sparrow cri-
terion in Eq. (4.3). It is an absolute cutoff, with zero contrast between
the light and dark lines in the image. At a frequency corresponding to
the Rayleigh criterion, the perfect lens image pattern has about 10
percent modulation [defined by Eq. (4.8) below]. In collimated space,
i.e., with the object or image at infinity, the frequency is defined in
cycles per radian, and the cutoff frequency is

Angular vo � (4.7)

where P is the diameter of the entrance or exit pupil.
The modulation transfer function (MTF) describes the way that the

optical system transfers contrast or modulation from object to image,
as a function of spatial frequency. The modulation is defined as

M � (4.8)

where max and min are, respectively, the maximum and minimum
values of brightness (in the object) or illumination (in the image), and
the object is a pattern of parallel lines whose brightness varies
according to a sine function. The modulation transfer factor for a spe-
cific frequency is the ratio of the modulation in the image to that in
the object, or

MTF � (4.9)

For a perfect optical system the modulation transfer function is given by

Mi�
Mo

max � min
��
max � min

P
�
�

1
��
�•f-number

2NA
�

�

5.5
�
P
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MTF(v) � (��cos � sin �) (4.10)

and � is defined as

� � arccos� � (4.11)

where v is the spatial frequency, � is the wavelength, and NA � n sin
u is the numerical aperture. Note that the term within parentheses in
Eq. (4.11), being a cosine, cannot exceed unity; this then is the source
of Eq. (4.6) for the cutoff frequency vo.

Figure 4.3 shows the MTF plotted against spatial frequency (which
has been normalized to unity for the cutoff frequency) for a perfect
optical system (curve A), as well as for a perfect system defocused by
various amounts. Note that curve B results from an amount of defocus
which produces a wavefront deformation, or OPD, equal to a quarter
wavelength (�/4). This is the Rayleigh limit for a tolerable amount of
aberration, yielding an image which is “sensibly perfect.” An optical
system with this amount (OPD � �/4) of wavefront aberration is often
described as diffraction limited (although it obviously is not).

When the pupil of the optical system is not uniformly illuminated
(as assumed above) the diffraction pattern will differ from that
described in Figs. 4.1 and 4.2. For example, if the wavefront intensity
varies as a gaussian or exponential (as in a laser beam), the diffrac-
tion pattern is also a gaussian distribution.

The center of the pupil transmits the low spatial frequency infor-
mation and the outer portions transmit the high spatial frequency
information. In some optical systems where a high image modulation
is required for the low spatial frequencies and a low modulation is
acceptable for the high frequencies (as in microlithography) the illu-
mination (condenser) system is designed so that only the center of the
pupil is filled with light. Called semicoherent illumination, this pro-
duces very high contrast images at low frequencies (at the expense of
the high). Decentering the illuminated portion of the pupil can
emphasize the contrast of features which have a strongly directional
characteristic.

4.3 Image Sensor Limits

Any sensor has a performance limit. The eye, film, an image tube, a
CCD, etc., all have performance or resolution limits imposed by their
structure and operating characteristics. These limits can be described
in detail by MTF, or by what is even more useful, a threshold curve.

� v
�
2NA

2
�
�
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This curve describes, as a function of spatial frequency, the minimum
image modulation necessary to produce a response (i.e., to recognize a
line pattern in the image). A plot of the threshold modulation against
frequency is often called an AIM curve (for aerial image modulation).
When plotted on the same graph as in Fig. 4.5, the intersection of the
image modulation (MTF) curve and the sensor AIM curve indicates

122 Chapter Four

Figure 4.3 The modulation transfer function (MTF) of a perfect lens for various
amounts of defocusing. The image contrast indicated by curve A cannot be exceeded
for an ordinary lens. Curve B indicates the MTF for a system with a wavefront defor-
mation (OPD) equal to a quarter of the wavelength of light, corresponding to what is
called the “Rayleigh criterion.” A system with this level of performance is often (inac-
curately) called “diffraction limited.”
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the limiting resolution frequency. Note that the AIM curve may vary
with conditions such as the illumination level or exposure. Figure 4.4
shows a “contrast” threshold curve for the human eye at a particular
level of target brightness. As one might expect, the finer the detail,
the higher the contrast required to resolve it. This curve moves down
with higher target brightness and up with lower.

Often a single number “resolution” is useful, despite the fact that,
as Fig. 4.5 shows, resolution is but a single value attempting to repre-
sent what is a rather complex relationship. Thus one minute of arc is,
for better or worse, often used as the performance limit for the eye,
one over twice the pixel spacing is used for a CCD or the like, and
measured resolution values are available for various types of film.

4.4 Diffraction Limit vs. Sensor Limit

It is important to be sure that the performance limits due to diffraction,
and those imposed by the sensor of your system have a relationship
that produces the kind of results which are best for your application. As
an example, let’s consider a visual telescope with a 1-in-diameter objec-
tive lens (and entrance pupil). The Rayleigh resolution limit according
to Eq. (4.5) is 5.5 seconds of arc in object space. If our telescope has a
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Figure 4.4 The object contrast necessary for the human eye to resolve a pattern of
alternating bright and dark bars of equal width. Note that this curve shifts
upward for lower light levels and drops at higher levels. For this plot the bright
bars had a brightness of 23 foot-lamberts.
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magnification of 11	, this 5.5 seconds is magnified and presented to
the eye as 11	5.5 � 60 seconds � 1 minute of arc, which we presume to
be the resolution limit of the observer’s eye. Now if we increase the
magnification of the telescope, the image will be made larger, but,
because of the diffraction at the objective lens, there will be no more
information in the image than there was at 11	 magnification. The
increased magnification is called empty magnification for this reason.
However, the added magnification is not totally useless, because (with-
in limits) the larger image makes it easier for the observer to recognize
a target and to point the telescope accurately. Consider a surveyor’s
transit with an objective diameter of 1 in, or 11⁄4 in, which may have a
power of 25	 or 30	, about twice the level at which empty magnifica-
tion sets in. This extra power aids the surveyor in making accurate
angle measurements. Many scopes have a significant amount of so-
called empty magnification, and often a good case can be made to
exceed the limits of Eqs. (4.12) and (4.13) (below) by a factor of several.

Now let’s consider a riflescope. Here again, the objective diameter is
often to the order of 1 in, but the magnification is usually low, in the
range of 2	 to perhaps 5	. There is obviously detail in the image
which the eye cannot see because of the small size of the detail. The
scope power is kept low in order to provide a large exit pupil and wide
field, so that hunters can quickly bring the rifle to their shoulders
and center their eyes in the exit pupil of the scope. The extra detail in
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Figure 4.5 When the MTF curve of the optics and the AIM curve (the
minimum detectable modulation) of the sensor are plotted together, the
intersection indicates the maximum spatial frequency at which the line
pattern can be detected. This is usually called the resolution of the sys-
tem.
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the image provides, as a bonus, a crispness to the image which aids in
the rapid recognition of objects in the field of view (a valuable bonus
in light of the potential lethality of a mistaken discharge of the rifle).

We can express the “empty magnification” threshold for visual tele-
scopes and afocal systems as follows:

MP(max) � 11•P (4.12)

where P is the entrance pupil diameter in inches, MP(max) is the
magnification at which empty magnification begins, and we assume a
visual resolution of 1 minute of arc. A similar limit for microscopes is

MP(max) � 218•NA (4.13)

where NA is the numerical aperture (NA � n sin u) of the microscope
objective. It is not uncommon for these “limits” to be exceeded by fac-
tors of several, and it has been suggested that under certain condi-
tions, a magnification of 5 to even 10 times that indicated in Eqs.
(4.12) and (4.13) may be optimum for some tasks.

4.5 The Optical Invariant

The invariant, given in Sec. 1.8 as INV � n(ypu�yup) can also be writ-
ten as

INV � n(y1u2 � y2u1) (4.14)

where y1, y2, u1, and u2 are the paraxial ray heights and ray slopes of
any two “different” rays (i.e., rays which have different axial intersec-
tion points and are therefore not scaled versions of each other). INV
has the same value everywhere in the optical system. Two applica-
tions of the invariant are particularly useful. One was discussed in
Sec. 1.8, where Eq. (1.22), which evaluated the invariant for axial and
principal rays at the object and image planes, showed that

m � � (4.15)

which means that, in air, the slope of the axial ray at the object must
equal the ray slope at the image times the system magnification.

Similarly, if the invariant is evaluated at the entrance and exit
pupils of a system (where the principal ray height yp is zero), we get
INV � nyup � n′y′up′, where y and y′ are the axial ray heights at the
entrance and exit pupils and up and up′ are the half-field angles. This
leads to our expression for the angular magnification of an afocal,

nu
�
n′u′

h′
�
h
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MP � � (4.16)

This means that, if you use an afocal device to reduce the beam diam-
eter, the field of view (or beam divergence) will be increased in pro-
portion to the beam diameter reduction.

4.6 Source and Detector Size Limits

There is a limit on the smallness of a source for an illumination sys-
tem and on the smallness of a detector in a radiometric application.
That limit was expressed by Eq. (3.1) as

L ≥

where L is the minimum size of either the source or detector, D is the
diameter of the projection lens of an illuminator or the diameter of
the radiometer objective, 
 is the half-field angle that the device cov-
ers, and n is the index of refraction of the medium in which the source
or detector is immersed. This value of L is the smallest possible if the
full aperture D and the full field 2•
 are to be utilized. L is minimal
if the axial ray at the source or detector has a slope of 90° and sin u �
1.0. This is exceptionally difficult to achieve, and a value of L which is
about twice as large as this limit is often encountered in practice.

4.7 Depth of Focus

The basic idea behind the concept of depth of focus is that there is
some limit on the smallness of the detail in the image that the system
can record, and that the system may be defocused by an amount
which causes a blur of that size without a degradation in the recorded
image quality. In photography the size of the darkened silver grains
in the emulsion presents just such a limit. Pixel size is often used as a
basis for the limit in other applications. If we make the assumptions
that the optical system is perfect and that diffraction effects are negli-
gible, the blur created by defocusing is given by

B � (4.17a)

or by

B � 2•�•NA (4.17b)

�
��
f-number

D•

�

n

n′up′
�
nup

y
�
y′
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where B is the diameter of the blur, � is the distance that the image is
out of focus, f-number is the relative aperture, and NA is the numeri-
cal aperture (NA � n sin u). Thus, if B represents the diameter of the
tolerable blur, the depth of focus is

� � �B•(f-number) (4.17c)

or

� � (4.17d)

The depth of field is the distance that the object must be away from
the nominal position of focus to create the same size blur. Note that
the depth of field is related to the depth of focus by the longitudinal
magnification. The close focus distance is

Dnear � (4.18)

and the far distance is

Dfar � (4.19)

where D is the nominal focus distance (since D is measured to the left
of the lens, it is normally a negative number by our sign convention),
f is the system focal length, and A is the system aperture (pupil)
diameter.

The hyperfocal distance is the closest distance at which the system
may be focused and still have an object at infinity “in focus”:

Dhyp � (4.20)

The depth of field then extends to half the hyperfocal distance.
Note well that the assumption of a perfect image without aberra-

tions and without diffraction is an incorrect one. Nonetheless, these
equations are a reasonable enough model of the situation that they
are widely used in photography and other applications.

The Rayleigh limit for defocusing is based on the quarter-wave cri-
terion for wavefront deformation, as mentioned in Sec. 4.2 and illus-
trated in Fig. 4.3. The amount of defocusing which will produce a
quarter wave (�/4) of wavefront deformation is

� � (4.21a)
��

��
2•n•sin2u

�f•A
�

B

fD(A � B)
��
fA � DB

fD(A � B)
��
fA � DB

�B
�
2•NA
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or

� � �2�•(f-number)2 (4.21b)

Note that this is a completely different criterion than that described
above for the photographic depth of focus.
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5
How to

Lay Out a System

5.1 The Process

In this chapter we are concerned with the actual process of determin-
ing the component powers and spacings to produce a system which
will satisfy the requirements of whatever application is at hand. Our
solution will consist of a set of component powers (�a, �b, �c, etc.) and
a set of spacings (Da, Db, etc.). It may also include aperture or field
stops and the diameters of the components and stops. This is a “thin
lens” solution, and it is a (necessary) preliminary to the lens design
process.

The process outlined here is intended to be quite general and
broadly applicable. As such, the outline surely will suffer from overin-
clusiveness, and it will probably be more extensive than any single
project will require. My apologies for this, but I hope it will serve the
reader as a checklist or perhaps even as a source of ideas.

The process can be broken down into four steps:

1. Define

2. Restate

3. Solve

4. Optimize

A discussion of each step follows:

1. Define. The process should always begin with the system defini-
tion, i.e., a listing of the required system characteristics and the tasks
which the system is to perform. Appropriate items might include:

Chapter
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Physical size (length, diameter)

Spatial limits (clearances, windows, bends)

Image size

Focal length

Magnification

Image orientation

Image location

Field(s) of view

Aperture (pupil) size

Numerical aperture or f-number

Wavelength and bandpass

Radiometric requirements (illumination, brightness)

Illumination uniformity (vignetting)

Resolution or performance

Characteristics of the sensor

Obviously, many of these items are redundant and many will not be
applicable to a particular problem. However, it is always wise to make
a list of clearly defined and agreed upon system requirements at the
initiation of any project; such a list can also serve as a useful record if
the project direction is changed in midstream.

2. Restate. Having defined the system, the list is reduced to those
requirements which are determined by the first-order characteristics
of the system, such as image size, image location, and image orienta-
tion. The various limits discussed in Chap. 4 should be taken into
consideration at this point in order to be certain that the defined sys-
tem is in the domain of the possible (or better still, the practical). It is
often useful for the first-order system requirements to be stated in
terms of the effect that the system has on the path of certain rays.
Often these rays are the axial marginal ray (from the foot of the
object through the margin of the aperture stop) and the principal ray
(from the edge of the field through the center of the stop).

3. Solve. The next step is to determine, or solve for, the set of powers
and spaces. Often a system will consist of just two components. In this
case the equations of Sec. 1.10 can provide the answer without any fur-
ther ado. In many cases the system will be similar to one of the basic
systems described in Chap. 2, or it may be made up of some combina-
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tion of these systems. In these cases the solution effort may be minimal.
Occasionally, however, the requirements are such that these standard
approaches don’t provide the full answer, and a novel approach is neces-
sary. Three useful ways to attack this situation are discussed in Sec. 5.2.

4. Optimize. The final stage is to select the optimum configuration
(if there is more than one candidate arrangement) and/or to optimize
the system. Often one configuration will be better suited to the over-
all situation for some reason. Note that here we do not mean optimize
in the sense of correcting or balancing aberrations as is done in the
lens design process. But we do want the first-order layout which will
be the best in terms of its potential as a finished lens design. In this
direction the considerations are quite simple: the weaker the power of
a component, the better. A low-power component has less aberration,
costs less, and is less sensitive to fabrication and assembly errors
such as misalignment. An easy approach is to try to minimize the
sum of the component powers (or really, the sum of their absolute
powers). There are many other ways to weight the component powers.
If the necessary diameters have been determined, the product of
power and diameter is a rough measure of the cost, complexity,
weight, etc., of the component which may result from the lens design
process. The “work” done in bending a ray (which is simply the prod-
uct y�) is another measure of difficulty; an even distribution of “work”
among the various components is often desirable. Note that, in gener-
al, a longer system will tend to have weaker components; thus, if you
have the space, you get a better system by using it fully.

5.2 The Algebraic Approach

This is the most elegant, useful, and laborious way to approach the
problem of solving for a layout which satisfies our requirements.
Those who detest algebra would be well advised to avoid this.
However, it does, by its nature, provide all possible solutions, where-
as the numerical and computer techniques outlined in the next two
sections usually find only the solution nearest to the form envisaged
by the system designer. For example, the algebra may lead to a solu-
tion equation which includes a square root, indicating that there are
two solutions, one of which may turn out to be an unexpected and
delightful surprise. The drawback to the algebraic approach is, to be
blunt, the algebra. The probability of error is quite high; for many of
us the probability of an error will significantly exceed unity. For this
reason, one should repeat the algebra until the identical result is
independently obtained at least twice.

How to Lay Out a System 131

How to Lay Out a System

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



Basically the method involves tracing paraxial rays symbolically, that
is, using symbols instead of numbers for the values of the powers and
spacings of the system. The rays to be traced are those which define the
first-order characteristics required of the system. For example, in an
afocal or telescopic system one would trace a ray entering the system
with a slope of zero (ua � 0.0) and an arbitrarily chosen ray height (ya).
Then to make the system afocal, we would solve the equation for the
final ray slope uk′ so that it had a value of zero. Using the same symbol-
ic raytrace, we would solve the equation for the final ray height yk to
make its value equal to the initial ray height divided by the desired
magnification of the telescope (yk � ya/MP). If the telescope had a
requirement for an eye relief (exit pupil distance), the ray to be traced
would be the principal ray, passing through the center of the aperture
stop. If the stop were at the first component, the starting ray data would
be ya � 0.0, with the slope ua chosen to match the half-field of the sys-
tem. Then the eye relief is the intersection length of this ray after the
last lens, or l′k � �yk/uk′. Requirements for system length or component
locations can be expressed as equations in the form of Da+Db+etc. �
desired sum. Diameter requirements or limitations can be expressed as
the sum of the absolute values of the (vignetted) axial ray height plus
the principal ray height, i.e., (|V•y|+|yp|), where V is the vignetting
factor. All of the first-order properties, as well as the spatial and length
requirements, can be expressed as equations. A simultaneous solution
then yields the system layout.

For a system of any complexity and with a number of requirements
and constraints, this is obviously not a trivial task. It is entirely pos-
sible that you can wind up with a set of equations which is beyond
your ability to solve. In this case your time has not been entirely
wasted; the equations can become a convenient basis for a numerical
approach to the solution.

In order to ease the pain of working through the symbolic raytrace,
we provide the following equations. These are the completely general
equations for the heights and slopes of a ray with the starting data of
ya and ua. Equations are given for the ray after it has passed through
one, two, three, and four components. (Four should be enough for any-
body!) Note that, because of the “scaleability” of paraxial rays, either
ya or ua may be set equal to 1, provided the other is adjusted to main-
tain the necessary axial intersection distance for the ray (la �
�ya/ua). This will greatly simplify the expressions. As an extreme
example of simplification, note that, for the axial ray from an object
at infinity, we may set ua � 0.0 and ya � 1.0.

The equations are for a system of components with powers �a, �b,
�c, �d which are spaced apart by distances of Da, Db, Dc, where, for
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example, Da is the distance from component a to component b, Db is
the distance from b to c, etc.

Given. ua and ya

For one component (see Fig. 5.1a)

ub � ua′ � ua � ya�a (5.1)
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Figure 5.1 Schematic reference sketch for symbolic raytracing Eqs. (5.1) through (5.7).
(A) Single component, Eq. (5.1). (B) Two components, Eqs. (5.2) and (5.3). (C) Three
components, Eqs. (5.4) and (5.5). (D) Four components, Eqs. (5.6) and (5.7).
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For two components (see Fig. 5.1b)

yb � ya � ubDa

� uaDa � ya(1 � �aDa) (5.2)

uc � ub′ � ub � yb�b

� ua(1 � �bDa) � ya(�a � �b � �a�bDa) (5.3)

For three components (see Fig. 5.1c)

yc � yb � ucDb

� ua(Da � Db � �bDaDb)

� ya[(1 � �aDa)(1��bDb) � �aDb] (5.4)

ud � uc′ � uc � yc�c

� ua[(1 � �bDa) � �c(Da � Db � �bDaDb)]

� ya[�a � �b � �c � �aDa(�b � �c)

� �cDb(�a � �b) � �a�b�cDaDb] (5.5)

For four components (see Fig. 5.1d)

yd � yc � udDc

� ua[Da � Db � Dc � �bDa(Db � Dc)

� �cDc(Da � Db � �bDaDb)]

� ya{[(1 � �aDa)(1 � �bDb) � �aDb

� Dc[�a � �b � �c � �a�b�cDaDb

� �aDa(�b � �c) � �cDb(�a � �b)]} (5.6)

ue � ud′ � ud � yd�d

� ua{(1 � �bDa)��c(Da+Db � �bDaDb)

� �d[Da � Db � Dc � �bDa(Db � Dc)

� �cDc(Da � Db � �bDaDb)]}
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� ya{�a � �b � �c � �aDa(�b � �c)

� �cDb(�a � �b) � �a�b�cDaDb

� �d(1 � �aDa)(1 � �bDb) � �a�dDb

� �dDc[�a � �b � �c � �a�b�cDaDb

� �aDa(�b � �c) � �cDb(�a � �b)]} (5.7)

5.3 The Numerical Solution Method

This approach might be called “cut and try, with differential adjust-
ment.” It is beloved by those who detest algebra. It works well provid-
ed that the type of system needed is reasonably well understood by
the person doing the layout. And it is probably the most popular and
widely used approach to optical system design. In essence one more or
less arbitrarily selects one or two parameters (i.e., powers and/or
spaces) and then adjusts the balance of the system to satisfy one or
two of the system requirements. One parameter is then selected as a
free variable. It is changed by a small increment, and the balance of
the system is again adjusted. The change in an uncontrolled (but
required) system characteristic is noted, and a differential solution
for the free variable is made.

Sample calculations

As an excruciatingly trivial and simple example, let’s lay out a kepler-
ian telescope with a magnification of �4� and an overall length of 10
in. The system is sketched in Fig. 5.2. Of course, it doesn’t take an
Einstein to figure out the correct answer: fa � �8 in and fb � �2 in.
But let’s demonstrate the “cut, try, and adjust” process. We can, 
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Figure 5.2 Schematic keplerian telescope.
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with reference to Fig. 5.2, start by choosing fa, then determine fb to
satisfy either the length or magnification requirement; let’s go with
magnification. Starting with a (deliberately bad) guess of fa � +5 in, fb
must equal �fa/(�4) � +1.25 in to get a magnification of �4�. This
gives us a length of fa+fb � 6.25 in. Next we choose fa � 6 in and
determine that fb must be 1.5 in, giving us a length of 7.5 in. The
length has changed �1.25 in for a �1-in change in fa, so
(�L/�fa)≈1.25/1.0 � 1.25. We need a 10-in length, 2.5 in longer than
our second trial; the solution is to increase fa by 2.5/1.25 � 2 in to a
value of fa � �8 in. Then fb will be �2 in and the length will be 10 in,
as required. Of course, all this is already worked out in Chap. 2 as
Eqs. (2.4) and (2.5).

Sample calculations

In order to make this exercise a bit more interesting, let’s make our
telescope a lens-erecting type, again 10-in long, with a magnification
of �4�, and let’s also require an eye relief of 4 in. This type of scope
is sketched in Fig. 5.3. Again we play the same sort of game, arbitrar-
ily selecting a focal length for the objective fa � +4 in, and also a focal
length for the eyelens fc � +1 in. This pair has a magnification of �4/1
� �4�, so we need a magnification of m � �1.0� from the erector to
get a power of �4� for the total scope. The objective and eyelens focal
lengths add up to a distance of fa+fc � 4 � 1 � 5, leaving a space of
10�5 � 5 in for the erector, which at m � �1.0 must have s � �2.5 in
and s′ � +2.5 in. Equation (1.4) can be solved for the erector focal
length fb � +1.25 in. Now we can trace a principal ray through the
center of the objective lens, using Eqs. (1.19) and (1.20) [or perhaps
Eqs. (5.4) and (5.5)]. We find that this ray intersects the axis at 2.05
in from the eyelens; our eye relief is short by (4�2.05) � 1.95 in.

Next we try fa � +4 (again) and fc � +1.25 (�fc � +0.25, or ��c �
�0.2). This pair has a power of MP � �4/1.25 � �3.2 and uses up a
length of 4 � 1.25 � 5.25 in, leaving 4.75 in for the erector to produce
a magnification of 4/(�3.2) � �1.25�. Using the relationships m �
s′/s � �1.25 and s�s′ � 4.75, we find that s � �2.111… and s′ �
+2.63888…, and again Eq. (1.4) gives us the erector focal length as fb
� 1.172840 in. Tracing the principal ray with Eqs. (1.19) and (1.20),
we now calculate an eye relief of 2.565789; an increase of 0.515789 in
the eye relief (ER) has been produced by an increase of eyelens focal
length of 0.25 in.

So we have �ER/�fc≈+0.515/+0.25 � +2.063154 (or �ER/��c≈
�2.578943). Since we need an increase in the eye relief of
(4.0�2.565784) � +1.434211 from our next try, we want a change in
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the eyelens focal length of �1.434/+2.063 � +0.695155 to fc �
1.945155. [Alternately, we could take a power change of �
1.434/(�2.578943) � �0.556123 to get �c � +0.243876 and fc �
+4.100437. There is a significant difference between the result we
obtain using power compared to that using focal length. This is due to
the nonlinearity of the relationships involved. Ordinarily using power
works out better, but in this case your author’s a priori knowledge
indicates that the focal length result is the better one, so we will go
with that.] Again, fa/fc � 4 in/1.945 in � 2.056391�; this leads to an
erector magnification of �4/2.056 � �1.945155� in a distance of
(10�4�1.945) � 4.054845 in. The erector conjugates are s �
�1.376785 in and s′ � +2.678060 in, and fb � +0.909310 in. The prin-
cipal raytrace indicates an eye relief of lc′ � +4.334309 in. We’re get-
ting closer.

Our last change in fc was � 0.695155 in, and it produced a change
in ER of �1.768525 in; thus we get �ER/�fc≈2.544073. To change the
ER by �0.334 in, we need a change in fc of �0.334/2.544 � �0.131407
in, for a new fc of �1.813748 in. This process can be carried on until
the eye relief is close enough to the desired 4-in value. (The exact
solution is fa � 4.0 in, fb � +0.9529 in, fc � 1.8298 in.) Note that when
the final value to be determined (the eye relief in this case) is one
where an exact value is not required, the process can be terminated as
soon as a reasonably close result is obtained.

In the above calculations we arbitrarily chose the focal length of the
objective lens as fa � +4.0 in. This is obviously an unused variable
parameter, and we could, if desirable, use it to control an additional
characteristic of the system. Thus we could repeat the above process
for several additional values of fa and choose from among the solu-
tions the one that best suited our application. In this case we could,
as indicated at the end of Sec. 5.1, select a solution on the basis of
minimizing the component power sum.

5.4 First-Order Layout by Computer Code

An “automatic lens design” program can quickly and efficiently carry
out the same process as outlined above. Every optical software pro-
gram worth its salt can be set up with first-order targets in its merit
function. What we are suggesting here is that the merit function be
set up with only first-order targets, without any aberration or perfor-
mance targets. These first-order targets would consist of the ray
heights and ray slopes of the (paraxial) axial marginal ray and the
heights and slopes of the (paraxial) principal ray. These targets can
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be chosen so as to control focal length, magnification, image sizes and
locations, pupil size and location, beam diameter and slope, lens
diameters, or almost anything you can think of. Many programs have
some of these targets explicitly predefined. In addition to laying out
zoom and multiconfiguration systems, a program’s “multiconfigura-
tion” (or “zoom”) feature can be used to specify data for more than the
two specific rays cited above (by using different aperture and field
sizes and different stop positions for the alternate configurations).

In addition to the optimization routine, most programs have simple
paraxial “solves” available. These will solve for a radius to produce a
desired ray slope for either the axial or principal ray. They will also
solve for a spacing to produce a desired ray height at the next surface,
again for either the axial or principal ray. In the same vein, one can
specify that two radii or two spaces must be equal or must differ by
some amount. These program features are exact solutions of the
paraxial raytrace equations, carried out without recourse to the opti-
mization part of the program.

The optical system can be defined as a system of thin lens compo-
nents, or if desired, thicknesses can usually be introduced without
difficulty. The key is that only one surface of each component is used
as a variable. In a thin lens system, each component is represented as
a planoconvex or planoconcave element of zero thickness. The curva-
ture of the curved surface is the variable, and the other surface is
fixed. The airspaces between the elements are also variables.

The program optimization routine works in the same way as the
numerical process outlined above. It is given a starting system, a set
of targets, and a set of variables. It makes a small change in each
variable (one at a time) and calculates the change produced in each
target value, creating a matrix of the partial derivatives of the targets
with respect to the variables. It assumes that the relationships
involved are linear and makes a damped least squares (DLS) solu-
tion. It iterates this process until a solution is arrived at, or until no
further progress is made toward a solution.

Note well that we are targeting only the first-order properties of the
system. We deliberately omit any target which is related to image
quality. This is, in general, a wise move even in the initial stages of a
lens design process. The reason for this is that, if one targets aberra-
tions before the first-order properties are close to their proper values,
the software may find a “local optimum” which has high image quali-
ty but is far from satisfying the first-order requirements unless the
merit function is heavily weighted in favor of the first-order targets.

If the design problem is underconstrained, that is, if there are more
variable parameters than targets, the program will find the solution
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nearest to the starting system; it is designed to go for the solution
with the minimum change. It is apparent that some “feel” for the type
of system that is under consideration is a big help in choosing a start-
ing form. One can buy some “feel” quite easily by trying several differ-
ent starting systems and studying the results.

If you ask the program to solve an overconstrained problem (where
there are more targets than variables), the odds are that you won’t
get an exact solution for all the targets. The DLS solution will mini-
mize the sum of the squares of the errors (the differences between the
target values in the merit function and the actual values of its solu-
tion). You can make some adjustments by juggling the weighting of
the targets in the merit function to better control the important tar-
gets (at the expense of the others).

Many software programs have both “minimized” and “constrained”
targets in the merit function. The program attempts to make the
“constrained” targets go to the exact value specified, as opposed to
minimizing the rms value of the errors for the “minimized” targets. If
one were to do the lens-erecting telescope of the second example in
Sec. 5.3 on a computer, the values for length, magnification, afocality,
and eye relief might be set up as constraint targets and the sum of
the component powers as a minimize variable.

5.5 A Quick Rough Sketch

When the power and space layout has been completed, a rough
sketch, drawn to scale, is a worthwhile investment of your time. The
components can be drawn as single lens elements to start, either as
planoconvex or as equiconvex shapes (or planoconcave or equicon-
cave). The process is simple because the radius of a planoconvex or
planoconcave lens is equal to the focal length multiplied by (n�1).
Thus for a glass lens with an index of 1.5, the radius is just half the
focal length. If the index is higher, the radius is longer; for an index of
2.0, the radius equals the focal length, and for germanium (at an
index of 4.0), the radius is three times the focal length. For an
equiconvex, we neglect the thickness and simply use a value of
2(n�1)(EFL) for the radius. This works out to the radius equal to the
focal length for an index of 1.5, equal to twice the focal length for an
index of 2.0, and six times the focal length for germanium.

An achromatic doublet can easily be drawn in a planoconvex (or
planoconcave) shape. The positive element (of the planoconvex dou-
blet) is drawn as an equiconvex lens with radii the same as the radius
of the planoconvex singlet cited above, e.g., half of the doublet focal
length for glass elements. This is a crude approximation, but it suf-
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fices for our purposes. Several examples of these sketches are shown
in Fig. 5.4.

The components should be drawn at the diameters necessary to
pass the rays of the system. A paraxial raytrace [using Eqs. (1.19) and
(1.20)] of the axial marginal ray and of the principal ray will yield y
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n = 1.5

Plano-convex Equi-convex Achromat

n = 2.0

Focal length

Focal length

n = 4.0

Focal length

Figure 5.4 Sample quick sketches of singlets and doublets for several values of the
index of refraction. All lenses are drawn to the same focal length and diameter for
easy comparison. For the planoconvex lenses (both singlets and doublets) the sur-
face radius equals the focal length times (n�1). For the equiconvex form the sur-
face radius is equal to the focal length times 2(n�1).
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and yp for each component. Then the diameter necessary to pass the
axial bundle is simply equal to 2y. The diameter needed to pass the
oblique bundle is equal to 2(yp � V•y), where V is the vignetting factor
for the oblique bundle. The largest of these diameters is the one to
use. The rays (axial and vignetted oblique) should be drawn into the
system sketch in order to get a better picture of the way the system
functions and also to avoid impossibilities. Section 1.9, and specifical-
ly Eqs. (1.23) through (1.26), can be used to generate the oblique bun-
dle ray data from the data of the axial and principal rays.

If the lenses look too fat to you, the odds are that later on the lens
designer will have to split them up in order to get a good-quality
image. You can get a feel for what the system may look like by split-
ting them yourself; simply draw the lenses with radii increased by a
factor equal to the number of elements you split them into. If you
need to split a lens in two in order to make it look reasonable, double
the radii of your initial sketch. If you need to split it into three, triple
the radii, etc. What you will wind up with is a crude, simple represen-
tation of what the system might look like. The following paragraphs
and the next chapter can help you to decide what sort of a lens design
(i.e., singlet, doublet, anastigmat, etc.) will be needed for each compo-
nent.

For each component, calculate the relative aperture (f-number) in
two ways, one by dividing its focal length by the diameter determined
two paragraphs above and the other by using the diameter indicated
by the axial marginal ray. The latter is an indication of the speed (f-
number) at which it must form a decent image; the former indicates
the diameter at which it must be constructed.

Similarly, we need to estimate the angular field that the component
will have to cover. Again, we can get two values. The first is simply
the angle that a ray from the edge of the object (the object for the com-
ponent, not the object for the entire system) through the center of the
component makes with the axis; this field angle has to do with the
construction, vignetting, etc. Note that this is not the slope of the
principal ray, because the principal ray may not go through the center
of the component. The second field of view is determined by dividing
the smaller of the object or image heights (for the component) by the
component focal length.

As an example, consider the erector (component b) of the lens-erect-
ing telescope discussed in Sec. 5.3, and shown in Fig. 5.3. Here the
objective lens (component a) forms an image of the field, which is
then reimaged by the erector. The (first) half-field of view is the
height of the image formed by the objective, divided by the object dis-
tance s for the relay. The other (second) half-field is the same image
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height divided by the component focal length fb. When the object is at
infinity, both field values are the same, but for a system with finite
conjugate distances, as is the case for this erector lens, the second
field will be larger than the first. This is the field angle to use in
deciding what type of lens design form is apt to be able to cover your
system’s field of view. The reason for this is that the basic field curva-
ture of a lens, called the Petzval curvature, is determined by the
image size, rather than the field angle, and the second field angle
described above gives a measure of this relationship which is closer to
what most people describe as the “coverage” angle of a lens system.

These field angles and f-numbers can be used to get a preliminary
idea of what sort of optics will be needed to make your system work,
perhaps by referring to Fig. 6.13.

5.6 Chromatic Aberration and Achromatism

While the intent of this book is to discuss the first-order, or paraxial,
aspects of optical system layout, and not to get into the lens design
aspects of aberration correction, the chromatic aberrations are really
first-order properties in that they can be described in first-order
terms. Thus we briefly treat the subject at this point.

The chromatic aberration contribution of a single thin element to
the final image of a system can be expressed as follows:

Transverse axial chromatic contribution:

TAchA � (5.8)

Lateral color contribution:

TchA � (5.9)

where y is the axial marginal ray height, yp is the principal ray height, �
is the element power, V is the Abbe v-number of the material, and uk′ is
the slope of the axial marginal ray in the image space. The sum of the
contributions from all the elements is the amount of the aberration in
the final image. The longitudinal axial chromatic is TAchA/uk′; this is the
distance from the long-wavelength focus to the short-wavelength focus.
The lateral color (TchA) is the difference between the image height for
short-wavelength and that for long-wavelength light. Lateral color is
sometimes expressed as chromatic difference of magnification (CDM),
which is TchA/h, where h is the image height. The Abbe v-number, or
reciprocal relative dispersion, is (nd�1)/(nF�nC) for visible light; for other

yyp�
�
Vuk′

y2�
�
Vuk′
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spectral regions the v-value uses the index for middle, short, and long
wavelengths instead of the index for the d, F, and C lines. Note that mir-
ror elements do not have chromatic aberration.

The entire optical system can be achromatized by arranging it so
that the sum of all the element contributions, as given by Eqs. (5.8)
and (5.9), add up to zero.

A component can be achromatized as a thin achromatic doublet
with the element powers of

�a � (5.10)

�b � (5.11)

where �a and �b are the element powers and 	 is the power of the
doublet. If element a has a v-value of 60 and element b has a v-value
of 30 (these are fairly typical values for a glass doublet), it’s apparent
that the power of element a will be twice that of the doublet, and that
element b will have a negative power equal to that of the doublet. The
total amount of element power in an achromatic doublet is thus about
triple the power of the doublet.

5.7 Athermalization

For most optical systems the chief effect of a temperature change is apt to
be a change in the location of the image; in other words, the system goes
out of focus. There are three major factors which affect this problem:

1. The thermal expansion of the lens material causes the radii and
thickness of each element to increase as the temperature rises; this
causes the focal length of an element to increase with temperature.
The expansion coefficient for optical plastics is several times that of
optical glass.

2. The index of refraction of the lens material changes with tem-
perature. For most (but not all) optical glasses the index rises with
temperature, causing the focal length to become shorter. Optical plas-
tics, however, not only have index coefficients which are much larger
than that of glasses, but the coefficients are negative, thus guarantee-
ing an increase in focal length with rising temperature.

3. The structure of the lens mount expands with temperature,
changing not only the size of the airspaces between elements but also
the lens-to-sensor (film, CCD, or whatever) distance.

	Vb�
Vb � Va

	Va�
Va � Vb
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The change in power of a thin element with temperature is given by

� �� � 
� (5.12)

where �n/�t is the differential of index with temperature and 
 is the
thermal expansion coefficient for the lens material. For a thin doublet
we can write

� �aTa � �bTb (5.13)

where 	 is the doublet power, and

T � � 
 (5.14)

Athermalization consists of balancing all of these factors so that the
temperature effects cancel each other out. For example, we can solve
Eq. (5.13) for the element powers to make a doublet with whatever
thermal focus shift that we require

�a � (5.15)

�b � 	 � �a (5.16)

If the thermal focus shift equals the thermal change in the lens-to-
sensor distance, then the system is athermalized.

5.8 Sample System Layout

As an example of the layout process, we use an infrared system which
requires an external cold stop and also passive thermal compensa-
tion. The specifications are listed below:

“First-order” specifications:

1. Focal length: 150 mm

2. Overall length: 260 mm

3. Back focal length: ≥23 mm (minimum clearance)

4. Cold stop location: 17 mm from detector array

5. Packaging: one mirror fold required

“Other” specifications:

�	/�t � 	Tb��
Ta � Tb

�n/�t
�
(n � 1)

�	
�
�t

�n/�t
�
(n � 1)

��
�
��
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6. Thermal compensation: passive

7. Aperture diameter: 31 mm

8. Vignetting: none

9. Field of view: 3.0° (�1.5°)

10. Wavelength: 4.8 � 0.3 �m

11. Image quality: 50 percent within 50 �m in central 1.5;°50 per-
cent within 75 �m in outer field

12. Distortion: ≤2 percent

The requirement for an external cold stop (4) means that the exit pupil
of the system must coincide with the cold stop, which is a refrigerated
aperture that prevents the infrared-sensitive detector from “seeing” any
of the warm, infrared-emitting “structure” of the system. In order to get
an external pupil, the system must have at least two separated compo-
nents, with the second acting as a relay lens. The focal length of a sys-
tem of this type will be negative (as discussed in Sec. 2.4, where the com-
bined focal length of the objective and erector of the terrestrial telescope
was noted to have a negative focal length). Figure 2.7 also shows a pupil
at the “glare stop” external to the objective-erector combination.

Five first-order requirements are listed above, and, in a two-compo-
nent system, we have only two powers and a spacing as variable para-
meters with which to satisfy these specifications. We approach this
optimistically, electing to control the three characteristics which have
definite specifications, namely, the focal length, the length, and the cold
stop position. Our optimism resides in the hope that when we have
these three in hand, the other two (which are the minimal clearance
distance and enough space somewhere for a mirror fold) will fall into
place. Should this turn out to be overoptimistic, we have to resort to
compounding the components, that is, making a component out of two
separated subcomponents in the form of a telephoto or retrofocus (Sec.
2.9). Obviously, this is the same as using more than two components.

Going back to Chap. 1, Sec. 1.10, which dealt with systems of two
separated components, Eqs. (1.27) and (1.29) give us expressions for
the focal length and back focus of a two-component system. Thus,
with reference to Fig. 5.5, we have for the focal length

� �a � �b � D�a�b (5.17)

and for the back focus

B � (1 � D�a)EFL � L � D (5.18)

1
�
EFL
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Our cold stop must be located at the image of the objective aperture
which is formed by component b. The object distance from b is (�D)
and Eq. (1.4) can be solved for the pupil distance to get

S � B � 17 � (5.19)

Thus we have three equations in three unknowns, and a simultane-
ous solution would give us the values of �a, �b, and D necessary to
satisfy the requirements for the focal length EFL � �150 mm, the
system length (L � D � B) � 260 mm, and the cold stop (pupil) posi-
tion (B�S) � 17.

But we already have a simultaneous solution of Eqs. (5.17) and (5.18)
in the form of Eqs. (1.31) and (1.32), which are easily converted to

�a � (5.20)

�b � (5.21)

where L � B � D and F � EFL. If we determine �b from Eq. (5.21),
we can then determine the stop position from Eq. (5.19).

Using L � 260 and F � �150 per the specification list, and realiz-
ing that B � L�D � 260�D, we choose D as our free variable. We

L � F
�

DB

F � B
�

DF

D
�
D�b � 1
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L

D B

S Cold
stop

17

>23

260

(b)

(a)

Figure 5.5 Schematic of the optical system for the sample layout of Sec. 5.8. In longer-
wavelength infrared systems the detector must not “see” the structure of the device,
because even at ordinary temperatures a significant amount of infrared radiation is
emitted and can affect the performance. The cold stop is a refrigerated aperture stop
which shields the detector.
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select a few reasonable values for D, evaluate Eqs. (5.21) and (5.19),
and tabulate the results as follows.

D � 230 B � 260�D � 30 �b � 0.0594203 S � 18.16 B�S � 11.84
� 220 B � 260�D � 40 �b � 0.0465909 S � 23.78 B�S � 16.22
� 210 B � 260�D � 50 �b � 0.0390476 S � 29.17 B�S � 20.83

Interpolating between D � 220 and D � 210, we get

D � 218.3 B � 41.7 �b � 0.0450396 S � 24.72 B�S � 16.98

which gives us a value of 16.98 mm for the pupil/cold stop to detector
distance, in good agreement with the 17 mm required by specification
4, and finally we get �a � +0.0058543 from Eq. (5.20).

Tracing the axial and principal rays through the system gives us
the component diameters required for the specified zero vignetting as
2(|y|+|yp|). For component a, specification 7 sets the clear aperture
at 31 mm, and the raytrace yields 20 mm as the necessary clear aper-
ture for component b. These seem reasonable for the component pow-
ers we have arrived at.

Silicon is a reasonable material for a system in the specified wave-
length region. It has an index of n � 3.427 and a v-value of 1511 over
our spectral bandpass (specification 10). Using Eq. (5.8) we can calcu-
late the image blur due to chromatic aberration as

�TAchA � � 0.014 mm

Given the 50-�m-diameter blur specified for 50 percent of the energy
in the image (in specification 11), we arrive at a preliminary conclu-
sion that we may not need to achromatize the system.

However, we are not so lucky with regard to the thermal change in
focus. Using silicon, with n � 3.427, 
 � 2.62e�06, and �n/�t �
159e�06, we calculate T for Eq. (5.12) as 6.289e�05. Thus the power
of an element when the temperature is raised by 100°C is given by

�100 � �(1 � 100T) � 1.00629�

If the mounting structure of the system is aluminum with a CTE of 

� 0.000024, we have as the parameters for the nominal system, and
for the system at �t � +100°C:

�y2�
�
Vu′k
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Using the 100° powers and spacing, and calculating the back focus
from Eqs. (5.17) and (5.18), we get B100 � 40.0858, indicating a ther-
mal focus shift of (40.0858�41.8006) � �1.715 mm away from the
detector, which is at a distance of 41.8006 mm. Our system, with an
aperture of 31 mm and a focal length of 150 mm, has an f-number of
150/31 or f/4.8, so the blur resulting from the thermal defocus is
1.715/4.8 � 0.35 mm, many times larger than the 50-�m size indicat-
ed in specification 11.

As indicated in Eq. (5.13), we can athermalize a component by com-
bining two materials with different T numbers, much as we achroma-
tize by combining materials with different v-values. Ideally, we would
like to find a pair of materials where such a doublet would be both
achromatized and athermalized. Some materials suitable for our
spectral region are tabulated below.

Silicon T � 6.29e � 05 V � 1511 1/V � 6.62e � 04
Germanium T � 13.22e � 05 V � 673 14.86e � 04
Amtir T � 2.93e � 05 V � 642 15.04e � 04
Zinc selenide T � 3.03e � 05 V � 342 28.42e � 04
Zinc sulfide T � 3.57e � 05 V � 915 11.15e � 04

When T is plotted vs. 1/V, as in Fig. 5.6, a line drawn between the
points for two materials and extended to the T-axis will indicate the
equivalent T-value of an achromatic doublet made from the two mate-
rials. The dashed line in the figure indicates that silicon and germani-
um make an interesting pair. Since the chromatic aberration of the
silicon-only system calculated above seemed acceptable, we can con-
sider the possibility of athermalizing the entire system by adding a
single negative germanium element, rather than achromatizing and
athermalizing both of the components separately. Component a is the
bigger contributor to our problems, so we should probably add the
germanium element there.

An algebraic solution is possible, but proceeding numerically, we
elect to add a germanium element of power �c to the first component
and adjust �a to maintain the total power of the first component at
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Nominal At �t � �100°C

�a �0.0058543 �1.00629 � �0.0058911
D 218.3 �1.00240 � 218.82392
�b �0.0450396 �1.00629 � �0.0453229
B (the space) 41.7 �1.00240 � 41.8006
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the original value of �0.0058453. We make a number of trials using
values for �c of �0.005, �0.010, etc., and find that a value of �c �
�0.011599 (combined with �a � +0.017453, to maintain the first com-
ponent power at �0.0058453) gives us a system with zero thermal
focus shift, and a chromatic aberration blur of only 0.008 mm, which
is an improvement over the uncorrected value of 0.014 mm which we
previously calculated.

The final (lens-designed) configuration is shown in Fig. 5.7.
Component b, the relay, was split into three elements by the lens
designer. This was necessary to achieve the specified image quality
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Figure 5.6 A plot of T � [(�n/�t)/(n�1)�
] vs. 1/V for the materials of a system can
be used to assess the combined requirement for achromatism and athermalism. A
line drawn between the points representing two materials and extended to the T
axis indicates the thermal power change �	/�t � T	 for an achromat made of the
two materials. If extended to the 1/V axis, the intersection can indicate the chro-
matic aberration of an athermal doublet.
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and (especially) to correct the distortion and the pupil aberration. The
50 percent blur spot was less than 27 �m over the entire field, and
the distortion was less than 1.5 percent, easily meeting the specifica-
tions and leaving ample room for fabrication tolerances.
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Figure 5.7 The final lens-designed optics of the sample layout exercise of Sec. 5.8. The
objective is a doublet of silicon and germanium which athermalizes the system and par-
tially corrects the chromatic aberration. The relay component was split into three ele-
ments of silicon in order to control the distortion and the aberrations of the pupil. The
plano elements are the Dewar window and a filter.
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6
Getting the Most

Out of “Stock” Lenses

6.1 Introduction

This chapter is intended as a guide and an aid to the use of “catalog”
or “stock” lenses, that is, lenses that can be bought from one of the
many suppliers to the trade (or perhaps lenses of unknown origin
which you may find in the back of a desk drawer or in a dusty cabinet
in your lab). The ideas behind this topic are that (1) there is often a
“best” way to utilize a lens for a particular application, (2) various
types of lenses have different capabilities as to their coverage and
speed, and (3) there are a number of simple ways to measure and test
lenses which do not necessarily require a lot of costly equipment.

6.2 Stock Lenses

The benefits of utilizing stock lenses (as opposed to having optics cus-
tom-made) are obvious to most of us. Cost is probably the first advan-
tage that comes to mind. Although stock optics are priced at retail,
with the substantial mark-up that this implies, this is significantly
offset by the fact that stock optics are made in larger quantities than
when one or two sets are made to order. The second big advantage is
time. The optics are, almost by definition, usually in stock and avail-
able for immediate delivery.

Of course, there are drawbacks. The most obvious is that the stock
lens has not been specifically designed for the application for which
you are using it and cannot be expected to represent the ultimate in
performance. Despite this, many systems assembled from stock lenses
have turned out to be entirely satisfactory for their intended applica-
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tions. Many stock lens systems have also been at best only crude pro-
totypes and eventually have had to be replaced by custom designed
and fabricated optics. This is not to imply that the latter were with-
out value; much can be learned from a proof of concept or a rough pro-
totype. Our aim here is to make our stock lens system as good as the
available stock lenses will allow.

Another drawback with catalog optics is the need to select the
optics from a limited list of available diameters and focal lengths,
although, if one has an extensive set of suppliers’ catalogs, this may
be less of a problem than it would appear at first glance.

Many vendors now include the nominal prescriptions for their
optics in their catalogs, and many optical software providers include
these prescriptions in their data base. When this data is available,
the performance of the stock lens system can be evaluated (using the
software) without having to make a mock-up. Unfortunately, however,
many lenses are sold without construction data. In some cases (par-
ticularly for more complex lenses such as anastigmats, microscope
optics, and camera lenses) construction data are regarded as propri-
etary, and the prescriptions aren’t released even to large-volume
OEM customers. In other cases the vendor simply may not know the
prescription data; this is usually the case where the optics are sal-
vage, scrap, or overruns.

An often overlooked problem with “stock” optics is the very real pos-
sibility of a limited supply. This is obviously to be expected in the case
of salvaged or overrun lenses, where the total supply is often limited
to stock on hand. Since vendors occasionally share the same invento-
ry on a cooperative basis, it is wise to be sure that you’re not counting
the same lot of lenses twice when you check on the available quantity
of the optics you plan to use. Another possibility is that the vendor
may decide to drop your lens from the line or even retire from the
business. If you go into production on an instrument which incorpo-
rates stock lenses, it’s nightmare time when you discover that there
aren’t any more.

An inexpensive insurance policy against this problem is to squirrel
away a few sets of optics, so that when the ax falls you still have a
reasonable chance of survival. A skilled optical engineer with good
laboratory equipment can measure the radii, thickness, spacings, and
index of a sample lens. Even if the measurements are not too accu-
rate, an optical design program can optimize or touch up the mea-
sured data to suit your purposes. Then you can have some more fabri-
cated. Even if the vendor publishes the construction data of a lens, it’s
still wise to hold on to a couple of samples; the published data may or
may not be accurate.
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In the case of salvage optics, you have probably ordered from a cata-
log listing of diameter and focal length. You should be aware of a cou-
ple of factors. The listings are probably based on measurements made
on a sample lens, and the listing probably gives the focal length and
diameter to the nearest millimeter. There may be more than one lens
in the vendor’s stock which fits the diameter and focal length descrip-
tion to this accuracy. The next time you order the same catalog item
you may get a different lens, and this lens may perform differently.

6.3 Some Simple Measurements

This section is written for the benefit of the reader who does not have
access to the usual optical measurement and laboratory equipment. A
lens bench with collimator and a measuring microscope are essential for
really accurate measurements of the imaging (i.e., gaussian) properties
of a lens. However, there are a number of simple ways that an approxi-
mate measurement of focal length and back focal length can be made.

The measurement of the back focal length, or BFL (see Sec. 1.2 and
Fig. 1.1), is relatively easy. When using a lens bench, a target at infin-
ity is provided by the collimator; the location of the focal point is
determined by focusing the lens bench microscope alternately on the
focal point and on the last surface of the lens. A distant object (a tree,
a building, a telephone pole) makes a reasonable substitute for a colli-
mator. To get a rough measurement, one simply focuses the target on
a light-colored wall or a piece of typing paper as shown in Fig. 6.1,
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Distant object

Lens to be measured

A wall or any 
smooth light surface

X +FFL   
BFL + x'

Image

A large distance

Figure 6.1 The back focal length (BFL) of a lens can be measured using a distant
object (instead of a collimator) and measuring the lens-to-image distance with a scale
or ruler. If the object is not effectively at infinity, the newtonian focus shift (x″ � �f2/x)
is subtracted from the measurement.
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and measures the lens-to-image distance with a scale. If the lens has
spherical aberration (and most simple lenses do) your measurement
will come up a bit shorter than the paraxial back focus. If there is
enough light, the spherical aberration can be minimized by reducing
the lens aperture with a mask.

Using an object which is not collimated (i.e., not located at infinity)
will introduce a small error in your measurement. The error in locat-
ing the focal point is indicated by Newton’s equation [Eq. (1.1)] as x′ �
�f2/x, where x′ is the error, f is the focal length, and x is the distance
to your target. For example, if you measure the back focus of a 2-in-
focal-length lens using a target down the hall which is only 50 ft (600
in) away, the error will be x′ � 22/600 � 0.007 in; this is less than the
error in your crude measurement of the back focus is likely to be.
Even in cases where this error is significant, you can always calculate
the error and subtract it from the measured BFL to improve the
validity of the result.

One problem associated with this technique is that stray light
falling on the image will make it difficult to see and focus. A card-
board screen with a hole for the lens is one way around this problem;
using a light bulb as a target in a darkened room is another. Figure
6.2 shows a matchbox slipped over the scale and slid into best focus
as a handy tool for making the measurement.

156 Chapter Six

Lens to be
measured

Machinist's
steel scale

Small
match box

Image

Figure 6.2 A matchbox-sized box (or a folded piece of pasteboard) slipped over a
machinist’s steel scale makes a convenient way to measure the back focal length of a
lens.
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The measurement of the effective focal length (EFL) is considerably
more difficult, because it involves the location of the principal points.
Figure 1.2 shows the principal point locations for simple lenses of var-
ious shapes. A fair estimate can be made for single elements and most
cemented doublets by assuming that the space between the principal
points is approximately one-third of the axial thickness of the lens. 
[A somewhat better estimate for singlets is t(n�1)/n.] For planocon-
vex forms, one principal point is always located at the curved surface;
for equiconvex lenses the points are evenly spaced within the lens. As
illustrated in Fig. 6.3, adding a suitable fraction of the axial thickness
to the measured BFL will then get an estimate for the EFL. For an
anastigmat, such as a Cooke triplet or a Tessar, the principal point
locations are more difficult to estimate. Adding one-half to two-thirds
of the vertex length of the lens to the BFL is about the best estimate
one can make. In a complex lens the principal points are often almost
coincident, and occasionally reversed.

To get a better value for the focal length one must measure a mag-
nification. Magnification is simply the ratio of the image size to the
object size. An illuminated object of known size is imaged and the
image size is measured; admittedly, doing this accurately may be eas-
ier said than done, but it can be done. The setup is shown schemati-
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P1 P2 F2

BFLT

EFL

T(n-1)/n T/3

Figure 6.3 One way of estimating the effective focal length (EFL) is to add a suit-
able fraction of the element thickness to the measured back focal length (BFL). For
a planoconvex element, the convex side should face the distant target to minimize
spherical aberration. If the lens is reversed, the measured BFL will equal the EFL,
but the spherical aberration will be much larger and will affect the measurement.

Getting the Most Out of “Stock” Lenses

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



cally in Fig. 6.4. The object-to-image distance (often called the total
track length) is measured. The estimated spacing between the princi-
pal points is subtracted from the track length. This adjusted length is
scaled to get s and s′. Dividing the adjusted track length T by (m+1),
where m is the ratio of the image to object size will get s; then (T�s)
equals s′. (Note that we use a positive sign for the magnification m in
this case.) Now we solve the Gauss equation [Eq. (1.4)] to get the focal
length.

If this process is carried out accurately for several different object-
to-image distances, it is possible to eliminate the estimation of the
principal point separation by making a simultaneous solution for the
exact value.

Sample calculations

The object is a back-illuminated transparent scale, 15 in long, and the
lens forms an image which is measured at 3.5 in. The magnification is
thus m � 3.5/15 � 0.2333. The object-to-image distance is 40 in, and
the lens is 1 in thick. Assuming that the principal points are separat-
ed by one-third the lens thickness, or 0.333, the adjusted track length
is 39.667 in. We get the Gauss object distance by dividing the track
length by (m+1), or 1.2333, which gives us s � 39.667/1.2333 � 32.162
in and s′ � 39.667�32.162 � 7.5045 in. Substituting s and s′ into Eq.
(1.4), and solving for f gives us the focal length. (Note that our sign
convention requires s to be negative.)
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h h' = m h

S S'

Total track length

Principal point
separation

Object Lens to be
measured Image

P P1 2

Figure 6.4 Setup for measuring effective focal length (EFL) by measuring the magni-
fication at finite conjugates: The magnification (here taken as the ratio of measured
image size to object size—positive for an inverted image) and the track length are
measured. Then the gaussian conjugates can be found by dividing the total track
length (minus the principal point separation) by the magnification plus 1 to get S.
Then S″ � mS, and the Gauss equation can be solved for the focal length.
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� �

� �

f � 6.0847 in

Yet another way to measure EFL involves the use of a distant target
whose angular size is known. The size of the image of the target is
measured. Then the focal length of the lens is equal to half the image
size divided by the tangent of the half angle which the object sub-
tends. If the object is not at infinity, the Newton correction of f2/x can
be applied (as in the discussion of BFL above). A distant building with
vents, chimneys, elevator towers, etc., on its roof line can be mea-
sured with a theodolite through a convenient window to serve as a
target of this type. Alternatively, the measurement of a lens of known
focal length can be used to determine the angle.

6.4 System Mock-up and Test

A simple way of testing an optical system is to make a mock-up by
fastening the elements to a ruler (or other convenient straightedge)
with one of the available waxes which are commonly used for this
purpose. This material is basically beeswax, formulated so that, when
warmed in the hand, it is soft, pliable, and adherent to most things.
But it becomes relatively firm at room temperature. This wax is avail-
able in stick form as optician’s “red wax” or in an unpigmented tan
color. Universal Photonics, Inc., of Hicksville, NY, carries “Red (or
White) Sticky Wax” in stick or bulk form, and Central Scientific has a
tacky wax packaged in 1- or 2-lb cans. The optics are conveniently
stuck on the edge of the scale as indicated in Fig. 6.5, and a fair
impression of the performance can be obtained by viewing through
the optics or projecting the image on a suitable screen.

A somewhat more elaborate lens bench can be made inexpensively
from cold-rolled hexagonal bar as shown in Fig. 6.6. Two bars are fas-
tened parallel to each other, spaced apart so that short carrier sec-
tions can slide along the length of the bars. Each carrier section is
drilled to accept a vertical rod, which is adjustable for height and
fixed by tightening a set-screw. The lens can be waxed on the end of
the rod, or a short length of angle iron can be threaded on the end of
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the rod to serve as a V block to hold the optics. This bench allows easy
and rapid adjustment of the spacings and alignments of the system
components.

In making a mock-up of a system, the alignment of the optics with
respect to the optical axis can be extremely important. Establish an
axial center point on the object, and add the downstream components
one at a time, making sure that each image they form is well centered
on the axis. Visually sighting over (or through) the optics is often
helpful, as is the use of an HeNe laser beam as an alignment aid. Be
especially careful in the adjustment of mirrors and prisms; many peo-
ple make the mistake of underestimating how serious the effect of a
misaligned reflecting component can be. If cylindrical elements are
included in the system, the orientation of the cylinder axes is critical,
especially if there are orthogonal cylinders or if the object is a slit.

The simplest method of performance testing is by the visual evalua-
tion of resolution. As indicated in Sec. 4.3, resolution is not the be-all,
end-all of image evaluation, but it is easy and quick to test. A bar tar-
get similar to that shown in Fig. 6.7 is readily obtainable; one can be
“homemade” with black drafting tape and white paper, or a copy of
USAF 1951 can be purchased for a few dollars (or Fig. 6.7 can be
xeroxed and used). Another type of test target can be made by
scratching fine lines through the aluminized surface of a first-surface
mirror, and illuminating it from the rear. The image of a pinhole tar-
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Ruler or 
straight edge

Lens

Lens

Tacky  wax

Figure 6.5 A straightedge and some tacky wax make a convenient way to mock
up an optical system. This is especially handy for trying out visual systems
such as telescopes or microscopes.
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get can be examined to analyze both aberrations and alignment prob-
lems (which are indicated by a nonsymmetrical blur spot on the axis).

For testing eyepieces, magnifiers, or similar devices, where the
appearance of an extended field is important, a piece of graph paper
makes an excellent test target. One can readily evaluate the image
distortion and curvature of field, as well as the effect of changing the
eye position, with this sort of target.

An often overlooked factor in developing an optical system is the
deleterious effect of stray light. This is light from outside the field of
view which is reflected or scattered from some part of the assembly
(typically the housing of the optics) into the field of view, where it can
either reduce the image contrast or produce ghost images. This can
come as a great surprise when the first complete model of the system
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Figure 6.6 An inexpensive lens bench can be made from hexagonal steel bars. Two bars
are fastened together as shown here so the short sections of bar will slide between
them. The optics can be waxed on the sliders, or angle iron V troughs threaded on rods
which are adjustable for height alignment can be used to support the optics.
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is made, because often the system mock-up is mechanically quite dif-
ferent from the final product, and the stray light may not be present
in the mock-up. There are two ways that stray light can be handled.
In a system which has an internal pupil, a glare stop, as shown in
Fig. 2.7, is both invaluable and effective. Stops can be placed at every
internal pupil and also at every internal image plane. The other tech-
nique is simply blackening the offending (reflecting) member.
Sometimes it is difficult to know where the problem is. An effective
method of locating the source is to simply look into the optics from the
location in the image where the stray light is showing up. In other
words, put your eye there and look back into the optics. This view is
most sensitive if the eye is placed in a location where the image
should be dark, e.g., outside the field of view. Then you can see the
(image of) structure from which the light is reflected. Another place to
look is at the exit pupil, which can be examined with a magnifying
glass. The image of the inside of the optical instrument is typically
focused near the exit pupil. Once you’ve located the culprit, a flat
black paint (such as Floquil flat black model locomotive paint, avail-
able from your local hobby shop) will usually fix things. Another very
effective material is black flocked paper, which can be glued on the
reflecting surface. Flocked paper is a good absorber; it can be
obtained from Edmund Scientific in Barrington, NJ.
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Figure 6.7 A three-bar resolution target. Each pat-
tern differs from the next by a factor equal to the
sixth root of 2 (1.1225), and thus the groups of six
differ by a factor of 2. Targets of this type are com-
mercially available on film or as metal evaporated
on glass.
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6.5 Aberrations

This section presents a brief straightforward discussion of aberra-
tions (which are imperfections in the image). For a more complete
treatment, the texts listed in the bibliography are recommended. The
so-called primary aberrations are

1. Spherical aberration

2. Coma

3. Astigmatism

4. Petzval field curvature

5. Distortion

6. Axial chromatic aberration

7. Lateral color

The first five are called Seidel aberrations or third-order aberrations.
The image blurs caused by these aberrations vary with aperture y
and field h according to

1. y3

2. y2h

3. yh2

4. yh2

5. h3

6. y

7. h

These relationships can be used to estimate how the aberration blurs
will change if the aperture or field of view of a simple system is
changed. For example, aberration 2, coma, has a blur spot whose size
varies with y2h, so that if we double the aperture size the blur will
increase by a factor of 4 (22), but doubling the field h will simply dou-
ble the blur. Note that the exponents add up to three for the Seidel
aberrations, hence the name “third-order.” Chromatic aberrations 6
and 7 vary as y and h to the first power; as you may have deduced
from this, these are “first-order” aberrations.

Spherical aberration causes a circular image blur which is the same
over the entire field of view. It is the only monochromatic aberration
which occurs on the optical axis. As shown in Fig. 6.8A, it results from
the rays through different zones of the aperture being focused at dif-
ferent distances from the lens.
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(c)

(b)

(a)

Figure 6.8 The primary aberrations: (A) Spherical aberration—the
rays through the outer zones of the lens focus (cross the axis) closer
to the lens than the rays through the central zones. This is “under-
corrected” or negative spherical aberration. (B) Coma—the rays
through the outer zones of the lens form a larger image than the
rays through the center. “Overcorrected” or positive coma. (C) Field
curvature—images farther from the axis focus nearer to the lens
than the on-axis images. This is an “inward” or negative field curva-
ture.
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(d)

(e) (f)

(g)

Red

Blue

Figure 6.8 (Continued) (D) Astigmatism—the tangential (vertical) fan of rays is
focused to the left of the sagittal (horizontal) fan. This is negative astigmatism.
(E) Distortion—the magnification increases as the field angle increases.
“Pincushion” or positive distortion. (F) Distortion—“barrel” or negative distortion.
(G) Axial chromatic aberration—the short-wavelength (blue) light is focused near-
er the lens than the long-wavelength (red) light. “Undercorrected,” negative chro-
matic.
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Coma causes a comet-shaped flare for off-axis points. It results
from a lens having different magnifications for rays passing through
different zones of the aperture. Coma is illustrated in Fig. 6.8B. The
size of the flare increases with the distance of the image from the
axis. The coma flare always points toward or away from the axis.

Astigmatism and field curvature cause the off-axis images to be
focused on a curved, saucer-shaped surface as drawn in Fig. 6.8C,
instead of an ideal flat image surface. This surface is paraboloidal, so
the amount of defocusing, and the blur it causes, vary as the square
of the image distance from the axis. The astigmatism, illustrated in
Fig. 6.8D, causes the image of a line pattern which has a radial direc-
tion to be focused on a differently shaped saucer than a line pattern
running in a perpendicular direction.

Distortion causes straight lines which do not intersect the axis to be
imaged as curved lines. This results from the fact that the magnifica-
tion varies across the field and causes the image of a square or rec-
tangular object to be bowed outward (barrel distortion, Fig. 6.8F) or
sagged inward (pincushion distortion, Fig. 6.8E).

Axial chromatic aberration is a variation of image position with
wavelength and is caused by the variation of index with wavelength.
The index of refraction for a short wavelength is higher than for long
wavelength, so blue light is focused closer to the lens than red light,
as indicated in Fig. 6.8G. This causes a blurred image which is the
same over the whole field. Axial chromatic and spherical are the only
primary aberrations that exist on the axis. Obviously there are no
chromatic aberrations if the light is monochromatic, as with laser
light.
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(h)

Red

Blue

Figure 6.8 (Continued) (H) Lateral color—the image size is larger for long-wave-
length (red) light than for short-wavelength (blue) light. Negative lateral color.
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Lateral color, often called chromatic difference of magnification or
CDM, results from a different magnification for each color. As drawn
in Fig. 6.8H, red and blue images of an off-axis object point are sepa-
rated in a radial direction, and the separation increases with the dis-
tance from the axis.

In addition to aperture and field, as cited above, most aberrations
vary with the shape of the lens element. For example, if the object is
distant, spherical aberration is a minimum for a particular shape. For
glass lenses this shape is approximately planoconvex, with the convex
surface facing the distant object. The variation of spherical aberration
with lens shape, as a function of index, is shown in Fig. 6.9.

For distant objects, biconvex and meniscus (one side convex, the
other concave) lenses have more aberration. But for very high index
lenses, such as silicon (n � 3.5) or germanium (n � 4.0), the minimum
spherical shape is meniscus with the convex side facing the object as
indicated in Fig. 6.9. But if we consider a different object location, the
shape for minimum spherical changes. For example, at one-to-one
imagery, the equiconvex shape has the least spherical. Thus for any
given element in an optical system, one orientation may be much pre-
ferred to the other. Figure 6.10 shows the variation of the angular
spherical aberration blur with object distance for three different lens
shapes.

The position of the aperture stop, relative to the lens shape, can
have a big effect on the off-axis aberrations (coma, astigmatism, dis-
tortion, and lateral color). Often, reversing a lens will make a signifi-
cant difference in the system performance at the edge of the field,
because it changes its orientation with respect to the stop.

In general, the higher the power of a lens, the more aberration it
will introduce to the system. So a good way to reduce the aberrations
is to substitute two low-power elements for a single high-power ele-
ment as shown in Fig. 6.11. When the elements are properly shaped
to take advantage of this “split,” the spherical aberration can be
reduced by a factor of 5 or so. A split is most effective against spheri-
cal aberration. Another technique for reducing spherical is to spread
the “work” equally, where work is the amount that the lens bends the
light ray. A quick look at Eq. (1.19) indicates that “work” is simply y�,
the product of ray height and lens power.

Petzval field curvature is a function of lens power and index; it is
not affected by shape or object distance, as are the other aberrations.
In essence, it amounts roughly to the sum of all the positive power in
the system minus the sum of all the negative power. Looked at this
way, it’s apparent that the usual field curvature problem that we
encounter when using stock optics is due to having only positive ele-
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Figure 6.9 The angular spherical aberration blur of a single-lens element as a function
of lens shape for various values of the index of refraction. The object is at infinity. � is
the element power and y is the semiaperture. The angular blur � can be converted to
longitudinal spherical aberration by LA � �2�/y�2, or to transverse aberration by TA
� �2�/�.
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Figure 6.10 Spherical aberration varies as a function of the object distance. The graph
plots this variation for three-element shapes for a lens with an index of n � 1.80. Note
that for the planoconvex shape the minimum spherical occurs when the curved side
faces the longer conjugate, whereas for the equiconvex shape the minimum is at 1:1
magnification. The size of the blur spot can be found by multiplying the angular blur by
the image distance. � is the element power and y is the semiaperture.
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ments in a system; this is why the field curvature is almost always
curved inward, toward the lens. Flat-field lenses correct this by intro-
ducing negative power where it doesn’t have much effect on the ray
slope, namely, where the ray height is low. Anastigmat lenses get
their correction by using high index glass and separating positive and
negative power in order to lower the ray height on the negative ele-
ments relative to the positive elements. In a “stock” layout we are
usually stuck with lots of positive lenses, but sometimes there is one
thing that we can do, and that’s the introduction of what is called a
field flattener. This is usually a negative element placed at or near a
focal plane (where the ray height is very low and the lens has little
effect on the other aberrations or on the image size) as shown in Fig.
6.12A. A field flattener can have a very salubrious effect on a system
with too much inward field curvature. Note that the reverse is also
true; a positive field lens will increase the inward field curvature.
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Figure 6.11 The spherical aberration of an element
can be reduced by a factor of 5 or more by splitting
it into two elements, each shaped to minimize its
spherical aberration.
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Note also that while a positive converging lens has inward field cur-
vature, a converging (concave) mirror has backward field curvature
and needs a positive field flattener as shown in Fig. 6.12B.

6.6 Capabilities of Various Lens Types

The aperture and field at which a lens is used can be said to define its
capabilities. However, it should be apparent that the level of image
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(a)

(b)
Figure 6.12 A field flattener is a lens placed close to the image where it
has little effect except on the Petzval field curvature. A negative lens, as
shown in (A), will flatten an inward-curving field such as that produced
by positive components. In (B), the concave mirror has a backward-curv-
ing field which is corrected by a positive field flattener lens.
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quality involved will effectively determine how much aperture and
field the lens can handle. Thus, a given type of lens will be “capable”
of covering a wider field at a larger aperture if the required image
quality is low than if it is high. Therefore, we can describe capabilities
only in very approximate terms. Your application may be such that a
given lens type can do much more or much less than the average.

A single-lens element is generally totally uncorrected and may be
afflicted with all of the aberrations. Since the aberrations vary with
field and aperture, simple lens systems are best when used at small
fields and small apertures. A simple “landscape lens” as used in an inex-
pensive camera works at f/10 or f/15 and covers a field of 30 or 40°. At
higher speeds the field coverage is usually much less. A doublet lens can
be corrected for chromatic aberration (an achromat) as well as spherical
aberration and coma, so that it can produce a good image over a small
field of view. Typical usage is at about f/5 and 1° field. Any thin lens sys-
tem, that is, one with a very short overall length compared to its focal
length (such as a single element or a cemented doublet all by itself), will
always be afflicted with a large amount of astigmatism, which will
cause an inward-curving field. Thus a thin system such as a telescope
objective can cover only a very small field of view, to the order of a few
degrees, if a good image is required. A longer system can, if handled
properly, greatly improve the off-axis image quality (even if the length
results from simply spacing a stop away from a single element).

Multielement lenses are usually designed for specific applications.
Camera lenses (anastigmats) are usually designed for objects at a dis-
tance and are designed to cover a relatively wide angular field, often to
the order of 40 or 50°. Most such lenses can be depended on to perform
well as long as the object is at least 25 focal lengths away. In general
high-speed lenses are more sensitive to close object distances than
slower lenses. But note that enlarging lenses are designed to work at
close distances, from ten-to-one down to one-to-one magnification.

Ordinary microscope objectives are intended for use at a specific
image distance (about 160 mm) and are very sensitive to departures
from their nominal conjugates. “Infinity corrected” objectives are
designed to be used with the image at infinity, rather than the usual
distance. Most microscope objectives are designed to be used with a
thin glass coverslip between the lens and the object and will perform
poorly without one; there are also objectives designed to be used with-
out a coverslip. The primary effect of a departure from the design con-
ditions is to change the spherical aberration. These comments are
especially important for high power and high numerical aperture
(NA) microscope objectives, where a small departure from the nomi-
nal usage can ruin the performance of the system.
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Figure 6.13 shows the typical angular coverage and relative aper-
ture capabilities of many of the common lens types, and can be used
as a rough guide to the complexity of lens usually necessary for vari-
ous applications.
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Figure 6.13 Map showing the design types which are commonly used for various
combinations of aperture and field of view.
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6.7 Unusual Lens Types

An aspheric surface can be used by a lens designer as an additional
degree of freedom in correcting the aberrations. For example, in a sin-
glet lens an aspheric can be used to correct the spherical aberration.
But note well that the presence of an aspheric surface on a lens does
not mean that all the aberrations have been corrected. Molded
aspheric surfaces are commonly used in projection condenser systems.
Diamond turned aspheric lenses for infrared use are available (as
stock optics) in materials such as germanium and zinc selenide.

A fresnel lens, as shown in Fig. 6.14, is a lens where the thickness
has been removed to produce a thin, light piece. Molded glass fresnels
have been used for years in spotlights, marine lanterns, railway sig-
nal lights, etc., but glass fresnel lenses cannot be molded with fine
details, so the step size in glass is quite large. However, plastic fres-
nels can be made with very fine steps and in very thin configurations.
The slope of the step face can be made so that spherical aberration is
corrected, and such a lens does a very acceptable job for tasks such as
concentrating energy or illumination condensers, but in general fres-
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Figure 6.14 The fresnel lens—each facet of the fres-
nel lens has the slope of the corresponding section of
the lens, but the thickness is reduced by its stepped
construction.
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nels are not used to produce high-quality images. The fresnel is most
commonly seen as the condenser of an overhead (transparency) pro-
jector, a field lens behind the screen of a projection TV, a field lens in
the viewfinder of a single-lens reflex camera, or a wide-angle viewer
for the rear window of a van.

A diffractive surface (sometimes called a kinoform or binary) is a
fresnel surface where the step depth produces a phase (or path
length) step of one wavelength, or a small integral number of wave-
lengths. The fresnel surface can be shaped (or blazed) to correspond
to an aspheric surface and can thus correct aberrations. Since the
surface is a diffraction device analogous to a grating, its chromatic
dispersion characteristics are of the opposite sign from, and quite
extreme compared to, ordinary optical material. This allows, for
example, a single-lens element to be corrected for chromatic aberra-
tion, spherical aberration, and coma. As with most diffraction effects,
there are efficiency limitations on bandwidth, etc.

Grin (gradient index) rods or Selfoc lenses are soda-straw-sized
glass rods with an index of refraction which varies radially, from a
high index near the axis of the rod to a low index at the edge. A qua-
dratic variation of the index allows the device to function as a reason-
ably well-corrected lens. A short section acts like an ordinary lens.
Small, short grin rods are often used as objective lenses for the flexi-
ble fiber-optic endoscopes used in arthroscopic surgery. As shown in
Fig. 6.15, a longer rod can behave like a three-lens system: a relay
lens, a field lens, and another relay lens, to produce an upright image
at unit magnification. An array of such rods can be found in tabletop
copy machines. A still longer grin rod can be used as a periscope or
rigid endoscope.
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Figure 6.15 A “grin rod” or “Selfoc” lens has a radial gradient index, high at the central
axis and lower toward the edge of the rod (according to a quadratic law which causes
the rod to act like a lens). In this figure a long rod behaves as if it were three lenses:
two relay lenses (which are indicated by the path of the solid-line rays), plus a field
lens (as indicated by the dashed rays).
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Another type of gradient index is called an axial index gradient; here
the index changes along the axis as you progress through the lens.
When used in a spherical-surfaced lens, the index gradient can cause a
spherical surface to refract light like an aspheric surface, and a single-
lens element can be made free of spherical aberration and coma.

6.8 How to Use a Singlet (Single Element)

When using “stock” lenses our choice of elements is quite limited.
Indeed, the usual choice that optical catalogs offer us is between a
planoconvex (or nearly so) lens and a biconvex (which is probably
equiconvex) lens, as indicated in Fig. 6.16. In the following discus-
sions, a biconvex which has one surface much more strongly curved
than the other can be regarded as a planoconvex. If both surfaces are
similarly shaped, the lens can be treated as equiconvex (although in
this case there may be a preferred orientation).

We can start our considerations by assuming that we have a system
which requires a well-corrected image over a small field of view. What
this means is that we will want to minimize the spherical aberration
in the image and that we won’t worry too much about the off-axis
image. We consider the three cases diagramed in Fig. 6.17.

For a telescope objective type, that is, a system with the object a
long distance away, say more than 5 or 10 focal lengths, we choose a
planoconvex lens and orient it with the curved surface toward the dis-
tant object.
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Equi-
convex

Almost
plano-
convex

Plano-
convex

Meniscus

Figure 6.16 The forms of single-lens elements which are commonly available
from catalogs.
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For a microscope objective type, that is, a lens which will magnify
the object by five or more times, we again choose a planoconvex but
face the plano side toward the object.

For a relay lens type, that is, a lens with a magnification between
(�)5� and (�)0.2�, a biconvex lens is the choice. If the lens is not
equiconvex, orient the more strongly curved surface (i.e., the shorter
radius) toward the longer conjugate.
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"Telescope objective type"

"Microscope objective type"

"Relay lens type"

(a)

(b)

(c)

Figure 6.17 For applications with small fields of view there are three common
cases: (A) the “telescope objective” type, where the object is a long distance to the
left; a planoconvex lens with the convex side facing the distant object minimizes the
spherical aberration; (B) the “microscope objective” type, where the image is dis-
tant, and the convex side of a planoconvex lens faces the image to minimize spheri-
cal; and (C) the “relay lens” type where neither conjugate is greatly longer than the
other; a biconvex lens is best, with the more strongly curved surface facing the
longer conjugate.
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For a wider field of view, we must be more concerned with the off-axis
aberrations. In this case the location of the aperture stop can be critical,
since its position will affect coma, astigmatism, and field curvature. In
general, we must sacrifice the image quality at the axis in order to get
better performance at the edge of the field. Usually a planoconvex or a
meniscus (one side convex, the other concave) is the best bet, with the
aperture stop on the plano (or concave, if meniscus) side of the lens, as
shown in Fig. 6.18. Note that the lens wants to sort of “wrap around”
the stop. This is the reason that most camera lenses have an external
shape which is almost like a sphere with the stop in the center. When
there is no separate stop and the object is some distance away, a
planoconvex lens with the plano toward the object often works well
(because the coma in the image produces a sort of field flattening effect).

When a singlet is used as a magnifying glass and held close to the
eye as in Fig. 6.19A, a planoconvex lens with the plano side toward
the eye works best. Here the pupil of the eye acts as the aperture
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Stop

Stop

Figure 6.18 For applications where a wider field of view is covered, the lens is orient-
ed with the field aberrations (coma and astigmatism) as the prime concern. An aper-
ture stop, spaced away from the lens on the “concave” or plano side (as shown in this
figure), can have a favorable effect on the off-axis imagery.
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stop, and the lens is “wrapped around” it. This usage is the same as
found in head-mounted displays (HMD) and is also much like that in
a telescope eyepiece. However, if the lens is a foot or two from the eye,
as shown in Fig. 6.19B or as in a tabletop slide viewer or in a head-up
display (HUD), the plano side should face away from the eye. This is
because the image of the eye formed by the lens is a pupil of the sys-
tem, and, with the lens well away from the eye, this image is on the
far side of the lens. We want the plano side to face the stop/pupil, so
that the lens wraps around the pupil. For a general-purpose magnifi-
er which is used both near to and far from the eye, an equiconvex
shape is probably the best compromise, although the two-lens magni-
fier as described below is much better.

Note that these comments can also be applied to a planoconvex
cemented achromatic doublet.

6.9 How to Use a Cemented Doublet

Most stock cemented doublets are designed to be corrected for chro-
matic and spherical aberration, and probably coma as well, when used
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(a) Magnifier close to eye

(b) Magnifier far from eye

Figure 6.19 When a planoconvex lens is used as a magnifier, the best orientation
depends on the location of the eye, which acts as the aperture stop. When close to
the eye, the plano side should face the eye; this orientation minimizes distortion,
coma, and astigmatism. When far from the eye, the convex side should face the eye.
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with an object at infinity. In other words, they are effectively telescope
objectives and are designed to cover a small field of view. As illustrated
in Fig. 6.20, the external form is usually biconvex, with one surface
much more strongly curved than the other, i.e., close to a planoconvex
shape. Just as with the planoconvex singlet, the more strongly curved
surface should face the distant object. If the doublet is used at finite
conjugates, the strong side should face the longer conjugate.

If neither of the exterior surfaces is more significantly curved than
the other, the odds are that the lens was not designed for use with an
infinite conjugate. It may be corrected for use at finite conjugates, or,
what is more likely, it may have been part of a more complex assem-
bly. Here, some experimentation is in order. Try both orientations and
observe the performance. Again, as with the singlet, it’s highly proba-
ble that the stronger surface will want to face the longer conjugate.

A meniscus-shaped doublet is rarely found as a “stock” lens; such a
doublet is most likely either surplus or salvage, and its shape results
from the design of which it was originally part. Although a (thick)
meniscus is very useful as a lens design tool (to flatten the field), such
a lens will probably not be too useful in your system mock-up; it
might work out as part of an eyepiece, with the concave side adjacent
to either the eye or the field stop.

6.10 Combinations of Stock Lenses

Often the use of two lenses instead of one can make a big improve-
ment in system performance. The following paragraphs discuss a
number of possibilities.

High-speed (or large NA) applications. The usual problem in fast sys-
tems is spherical aberration. Using two lenses instead of one, with

180 Chapter Six

Figure 6.20 Most “stock” achromatic doublets are designed as telescope objectives and
are corrected for chromatic and spherical aberration as well as coma with the object at
infinity. The more strongly curved surface should face the more distant conjugate.
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each shaped to minimize the spherical aberration, can alleviate the
situation. The optimum division of power is equal; both elements
have the same focal length, and the sum of their powers equals the
power of the single element which they are replacing. For a distant
object, the first element should be planoconvex, with the convex side
facing the object. Ideally, the second element should be meniscus,
with the convex side facing the first element as sketched in Fig.
6.21A. But since meniscus stock elements are hard to come by, the
usual stock lens arrangement is another planoconvex with its convex
side also facing the object, as in Fig. 6.21B. If one planoconvex singlet
is stronger than the other, place it in the convergent beam. If one of
the lenses is a doublet, it should probably be the one facing the dis-
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(a) (b)

(c) (d)

Figure 6.21 When lenses are used at high speed (large NA or small f-number), spherical
aberration is the usual problem. It can be reduced by using two elements instead of
one. The first should be oriented to minimize spherical for the object location and the
second shaped for its object location. For distant objects the best arrangements are
shown in (A), (B), and (C). The first element is planoconvex and the best shape for the
second is meniscus; if the second is also a planoconvex it should be oriented as in (B). If
one element is a doublet, it should face the longer conjugate as indicated in (C) and (D).
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tant object, followed by the singlet as in Fig. 6.21C. If both are dou-
blets, put their strongly curved surfaces toward the object. If the
application is microscope like, then of course the arrangement is
reversed as shown in Fig. 6.21D.

When the system is to work at finite conjugates, for example, at
one-to-one or at a small magnification, then the best arrangement is
usually with the convex surfaces facing each other (provided that the
angular field is small). Figure 6.22 shows pairs of singlets and dou-
blets working at one-to-one. This arrangement allows each half of the
combination to work close to its design configuration, i.e., with the
object at infinity, and if the angular field is not large, the space may
be varied to get a desired track length. If the magnification is not one-
to-one, using different focal lengths (whose ratio equals the magnifi-
cation) can be beneficial.

A projection condenser is usually two or three elements, shaped and
arranged to minimize spherical aberration. There is often an aspheric
surface. With two elements, the more strongly curved surfaces face
each other; if they are not the same power, the stronger (shorter focal
length) faces the lamp. With three elements, the one nearest the lamp
is often meniscus with the concave surface facing the lamp. The other
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Figure 6.22 For small fields and magnifications which are close to 1:1, the lenses
should be oriented facing each other as shown in order to minimize the spherical. At 1:1
the light is collimated between the lenses; at other magnifications it is nearly so.
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two are often planoconvex, with their curved sides facing. If the ele-
ments are spherical-surfaced, they should each be approximately the
same power. If one is aspheric, it is often stronger than the others and
is the one next to the lamp.

Eyepieces and magnifiers. Very good magnifiers can be made from two
planoconvex elements with the curved sides facing each other as
shown in Fig. 6.23A. This arrangement works well, either close to the
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(a)

(b)

(c)

Figure 6.23 (A) Two planoconvex elements, convex to con-
vex, make a good magnifier which works well both near
the eye and at a distance. (B) For use as a telescope eye-
piece, the spacing is increased to reduce the coma and lat-
eral color (and to allow the left-hand lens to act as a field
lens). (C) The Kellner eyepiece uses a doublet as the eye-
lens to further correct the lateral color. This eyepiece is
often found in ordinary prism binoculars.
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eye or at arm’s length. As a telescope eyepiece, the spacing between
them is often increased to about 50 or 75 percent of the singlet focal
length, so that one element acts as a field lens, as in Fig. 6.23B; this
increased spacing also reduces the lateral color and helps with coma
and astigmatism. (If the elements have different focal lengths, the lens
near the eye should have the shorter focal length.) This is the classical
“Ramsden” eyepiece. If the eyelens is a doublet, it is the “Kellner” eye-
piece shown in Fig. 6.23C; usually the flatter side of the doublet faces
the eye. Some versions of this popular binocular eyepiece are closely
spaced, and some are used in a reversed orientation. A few trials with
a graph paper target and your eye at the exit pupil location will tell
you which arrangement suits your stock lenses the best.

Two achromats work even better. With the strong curves of two iden-
tical achromats facing each other as in Fig. 6.24A, this makes one of
the best general-purpose magnifiers and eyepieces. This is the
“Ploessl” or “symmetrical” eyepiece, justly popular for its high quality,
low cost, versatility, and long eye relief. Depending on exactly what
the shape of your doublet is and what your eye relief is, you may want
to reverse the orientation of one or the other (but not both) of the dou-
blets as indicated in Fig. 6.24B and C.

Wide-field combinations. Let’s face it right up front. It’s very difficult
to put together stock elements so that they perform well over a wide
field of view. Usually your best bet is to obtain a corrected assembly
such as a triplet anastigmat or a camera lens. But there are a few
things we can do to optimize the situation when we don’t have a suit-
able anastigmat available.

As mentioned earlier, to obtain a wide-field coverage we often must
sacrifice the image quality in the center of the field. We have two
basic tools which we can use to improve the image quality at the edge
of the field. One is the placement of the aperture stop, and the other
is the symmetrical principle. If a system is symmetrical about the
stop (in a left-to-right sense as shown in Fig. 6.25), then the system is
free of coma, distortion, and lateral color. Strictly speaking, the sys-
tem must work at unit magnification to be fully symmetrical, but
much of the benefit of symmetry is obtained even if the object is at
infinity. Of course, symmetry works whether we’re doing wide or nar-
row fields of view. But whereas we orient the elements “strong-side-
facing” as in Fig. 6.25A to get the least spherical aberration in a nar-
row-field application, we usually want the strong surfaces facing
outward for wider fields of view as in Fig. 6.25B. Planoconvex or
meniscus elements are the shapes of choice for this. The elements are
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spaced a modest, but significant, distance from the aperture stop,
which is midway between them. The spacing is significant because it
affects the astigmatism; there is an optimum spacing which yields the
best compromise between the amount of astigmatism and the flatness
of the field.

Relay systems. For a relay system which requires some given magni-
fication, consider using two achromats, such that the ratio of their
focal lengths equals the desired magnification, and the sum of their
focal lengths is approximately equal to the desired object-to-image
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(a)

(b)

(c)

Figure 6.24 (A) Two doublets, crown to crown, make
an excellent eyepiece and also an excellent magnifi-
er. This is the symmetrical, or Ploessl, eyepiece. (B)
and (C) Depending on the shape of the doublets and
the eye relief of the telescope, one of these alternate
orientations may work well as an eyepiece.
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distance, as shown in Fig. 6.26. The rays in the space between the
lenses will be collimated, and the spacing between them will not be a
critical dimension. Note that a 45° tilted-plate beam splitter can be
used in a collimated beam without introducing astigmatism. If the
achromats are corrected for an infinite object distance, the relay
image will also be corrected.

The two-achromat relay can produce an excellent image over a
small field. A wider-field system can be made from two photographic
lenses, again used face to face, with collimated light between them, as
shown in Fig. 6.27. Since photo lenses are longer than the achromatic
doublets we discussed in the preceding paragraph, one must be aware
of vignetting. Most photographic objectives vignette when used at full
aperture, often by as much as 50 percent. For an oblique beam (tilting
upward as it goes left to right) the beam is clipped at the bottom by
the aperture of the left lens, and clipped at the top by the right-hand
lens. When two camera lenses are used face to face, their vignetting
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(a)

(b)

Figure 6.25 Left to right (or mirror) symmetry will automatically eliminate coma, dis-
tortion, and lateral color. With two planoconvex elements, the orientation shown in (A)
would be best for a small field, but for a wider field, the orientation in (B) will usually
work better.
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characteristics are usually such that the combination has much worse
vignetting than either lens alone. Thus this sort of relay is usually
limited by vignetting to a smaller field than one might expect. Note
also that if an iris diaphragm is to be used, it should be between the
lenses, rather than using the iris of one of the lenses (unless the field
of view is quite small). This arrangement of readily available stock
camera or enlarging lenses makes an excellent, well-corrected finite
conjugate imaging system.

The above technique of using photo lenses has the virtue of using
them as they were designed to be used, namely, with one conjugate at
infinity. Most photo lenses retain their image quality down to object
distances of about 25 times their focal lengths, more or less, depend-
ing on the design type. But at close distances the image quality dete-
riorates. In general, high-speed lenses tend to be quite sensitive to
object distance. Slower (i.e., low NA, large f-number) lenses can be
used successfully over a wider range of conjugate distances.

A close-up attachment is simply a weak positive lens placed in front
of a camera lens. If, as shown in Fig. 6.28, the focal length of the
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f2f1

Figure 6.26 A well-corrected narrow-field relay can be made from two achromatic dou-
blets by choosing their focal lengths so that their ratio equals the desired magnification
m � �f2/f1. When this is done, the light between the lenses is collimated and each lens
works at its design conjugates (assuming the lenses were designed for an infinitely dis-
tant object).

Figure 6.27 When a wider field than two doublets (as shown in Fig. 6.26) can cover is
needed, two camera lenses can be used, face to face, to make a high-quality relay sys-
tem. If the relay is to have magnification, the focal lengths of the lenses should be cho-
sen so that their ratio equals the magnification. If an iris diaphragm is to be used, it
should be located between the lenses (unless the field is small). Note that with some
lenses vignetting may be a problem.
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attachment lens is approximately equal to the object distance, then
the object is collimated (imaged at infinity) and the camera lens sees
the object as if it were at infinity. The attachment lens is ideally a
meniscus, with the concave side facing the camera lens (so that it
wraps around the stop), although a planoconvex form is often quite
acceptable. If the field is quite narrow, the reverse orientation of the
lens might be better. Note that the use of a close-up attachment is
equivalent to combining two positive lenses to get a lens with a short-
er focal length. You can also use a weak negative focal length attach-
ment to increase the focal length of a camera lens which is too short
for your application.

Beam expander. A laser beam expander is simply a telescope used
“backward” to increase the diameter and to reduce the divergence of
the laser beam. The galilean form of telescope is the most frequently
used because it can be executed with simple elements and has no
internal focus point (which might induce atmospheric breakdown
with a high-power laser). The Kepler telescope can also be used, and
its internal focal point can provide a spatial filter capability, but it is
more difficult to correct the Kepler because both components are posi-
tive, converging lenses.

Since the laser light is monochromatic and the beam angle is small,
we are mostly concerned with correcting spherical aberration. The
objective (positive) component of the galilean is the big contributor of
spherical aberration, so it is important that it be shaped to minimize
spherical. If the expander is to be made from two simple elements as
diagramed in Fig. 6.29A, the negative element must contribute enough
overcorrected spherical to balance that from the objective lens. Thus
our “stock lens” choice is often a planoconvex element for the objective
and a planoconcave element for the negative, with both lenses orient-
ed so that their plano sides face the laser. (A meniscus form for the
negative has more overcorrected spherical and might produce a better
correction.) For higher-power beam expanders, a well-corrected dou-
blet objective is necessary; it should be combined with a planoconcave
element with its concave side facing the laser as shown in Fig. 6.29B
to minimize its overcorrection of the spherical aberration.

6.11 Sources

Sources of stock lenses

The following are some of the companies which stock lenses. Most
have catalogs. Some have their catalogs on disk; many of these
include the lens prescriptions (radii, thickness, index), and a few have
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free computer programs which can be used to calculate the perfor-
mance of their lenses.
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(a)

(b)
Figure 6.29 A low-power laser beam expander can be made from a planoconvex “eye-
lens” and a planoconvex “objective,” with both plano sides facing the laser. For higher
powers an achromatic doublet is used as the objective to reduce the spherical aberra-
tion, and the planoconcave negative element is reversed.

Ealing Electro-Optics, Inc.
89 Doug Brown Way
Holliston, MA 01746
Tel: 508/429-8370; 
Fax: 508/429-7893; 
http://www.ealing.com

Edmund Scientific
101 East Gloucester Pike
Barrington, NJ 08007
Tel: 609/573-6852; 
Fax: 609/573-6233;
John_Stack@edsci.com

Fresnel Optics, Inc.
1300 Mt. Read Blvd. 
Rochester, NY 14606

Tel: 716/647-1140;
Fax: 716/254-4940

Germanow-Simon Corp., Plastic 
Optics Div.

408 St. Paul St. 
Rochester, NY 14605-1734
Tel: 800/252-5335; 
Fax: 716/232-2314; 
gs optics@aol.com

Janos Technology Inc.
HCR#33, Box 25, Route 35
Townshend, VT 05353-7702
Tel: 802/365-7714; 
Fax: 802/365-4596; 
optics@sover.net
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JML Optical Industries, Inc.
690 Portland Ave., Rochester, NY
14621-5196
Tel: 716/342-9482; 
Fax: 716/342-6125;
marty@jmlopt.com
http://www.jmlopt.com

Melles Griot, Inc.
19 Midstate Drive, Ste. 200
Auburn, MA 01501
Tel: 508/832-3282; 
Fax: 508/832-0390;
76245,2764@compuserve.com

Newport Corporation
1791 Deere Ave., Irvine, CA 92714
Tel: 714/253-1469; 
Fax: 714/253-1650; 
pgriffith@newport.com

Optics for Research
P.O. Box 82, Caldwell, NJ 
07006-0082
Tel: 201/228-4480; 
Fax: 201/228-0915; 
dwilson@ofr.com

Optometrics USA, Inc.
Nemco Way, Stony Brook Ind. Park
Ayer, MA 01432
Tel: 508/772-1700; 
Fax: 508/772-0017; 
opto@optometrics.com

OptoSigma Corp.
2001 Deere Ave.
Santa Ana, CA 92705
Tel: 714/851-5881; 

Fax: 714/851-5058; 
optosigm@ix.netcom.com

Oriel Instruments
250 Long Beach Blvd., P.O. Box 872
Stratford, CT 06497-0872
Tel: 203/377-8282; 
Fax: 203/378-2457;
res_sales@oriel.com

Reynard Corporation
1020 Calle Sombra 
San Clemente, CA 92673
Tel: 714/366-8866; 
Fax: 714/498-9528

Rodenstock Precision Optics, Inc.
4845 Colt Road, Rockford, IL
61109-2611

Rolyn Optics
706 Arrowgrand Circle, Covina, CA
91722-9959
Tel: 818/915-5707; 
Fax: 818/915-1379

Spectral Systems
35 Corporate Park Drive 
Hopewell Junction, NY 12533
Tel: 914/896-2200; 
Fax: 914/896-2203

Spindler & Hoyer Inc.
459 Fortune Blvd. 
Milford, MA 01757
Tel: 508/478-6200; 
800/334-5678;
Fax: 508/478-5980

Their catalog on disk includes an
“Optical Design Program for WIN-
DOWS.”
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Optical design programs

At least two full-featured optical design programs are available free
by downloading from the internet. There may be others. The two that
I currently know of are:
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“KDP, the Free Optical Design 
Program”

Engineering Calculations 
1377 E. Windsor Rd. #317
Glendale, CA 91205
Tel & Fax: 818/507-5705
email: kdpoptics@themall.net
“Available via anonymous FTP at
www.kdpoptics.com in
directory/users/kdpoptics”

“OSLO LT”
Sinclair Optics, 6780 Palmyra Road
Fairport, NY 14450
Tel: 716/425-4380; 
Fax: 716/425-4382
email: oslo@sinopt.com
Web site URL http://www.sinopt.com

(“Visit our home page. Click “OSLO
LT.” Download your free copy.”) This
is the program OSLO LITE except
with “no file save, hard copy by
screen capture only.” The program
has some 3000 lenses included, with
prescriptions.

192 Chapter Six

Directories

Several directories are available which can help in locating sources of
optical things. Probably the most complete is the Photonics Buyer’s
Guide, published by Laurin Publishing Co., Inc., Berkshire Common,
P.O. Box 4949, Pittsfield, MA 01202-4949, Tel:413/499-0514,
Fax:413/442-3180, email: Photonics@MCIMail.com. This is the lead
volume of a four-volume set; it lists optical products by category, giv-
ing sources for each type of product. A second volume, the Photonics
Corporate Guide, lists the names, addresses, etc., of the source com-
panies. Laser Focus World magazine and Lasers & Optronics maga-
zine also publish optical buyers guides which are distributed to sub-
scribers.
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