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PREFACE

This book is about RF system analysis and design at the level that requires an
understanding of the interaction between the modules of a system so the ultimate
performance can be predicted. It describes concepts that are advanced, that is,
beyond those that are more commonly taught, because these are necessary to the
understanding of effects encountered in practice. It is about answering questions
such as:

• How will the gain of a cascade (a group of modules in series) be affected
by the standing-wave ratio (SWR) specifications of its modules?

• How will noise on a local oscillator affect receiver noise figure and desen-
sitization?

• How does the effective noise figure of a mixer depend on the filtering that
precedes it?

• How can we determine the linearity of a cascade from specifications on
its modules?

• How do we expect intermodulation products (IMs) to change with signal
amplitude and why do they sometimes change differently?

• How can modules be combined to reduce certain intermodulation products
or to turn bad impedance matches into good matches?

• How can the spurious responses in a conversion scheme be visualized and
how can the magnitudes of the spurs be determined? How can this picture
be used to ascertain filter requirements?

xvii



xviii PREFACE

• How does phase noise affect system performance; what are its sources and
how can the effects be predicted?

I will explain methods learned over many years of RF module and system design,
with emphasis on those that do not seem to be well understood. Some are avail-
able in the literature, some were published in reviewed journals, some have
developed with little exposure to peer review, but all have been found to be
important in some aspect of RF system engineering.

I would like to thank Eric Unruh and Bill Bearden for reviewing parts of
the manuscript. I have also benefited greatly from the opportunity to work with
many knowledgeable colleagues during my years at Sylvania-GTE Government
Systems and at ESL-TRW in the Santa Clara (Silicon) Valley and would like
to thank them, and those excellent companies for which we worked, for that
opportunity. I am also grateful for the education that I received at Santa Clara
and Stanford Universities, often with the help of those same companies. However,
only I bear the blame for errors and imperfections in this work.

WILLIAM F. EGAN

Cupertino, California
February, 2003



GETTING FILES FROM THE WILEY ftp
AND INTERNET SITES

To download spreadsheets that are the bases for figures in this book, use an ftp
program or a Web browser.

FTP ACCESS

If you are using an ftp program, type the following at your ftp prompt:

ftp://ftp.wiley.com

Some programs may provide the first “ftp” for you, in which case type

ftp.wiley.com

Log in as anonymous (e.g., User ID: anonymous). Leave password blank. After
you have connected to the Wiley ftp site, navigate through the directory path of:

/public/sci_tech_med/rf_system

WEB ACCESS

If you are using a standard Web browser, type URL address of:
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ftp://ftp.wiley.com

Navigate through the directory path of:

/public/sci_tech_med/rf_system

If you need further information about downloading the files, you can call Wiley’s
technical support at 201-748-6753.



SYMBOLS LIST AND GLOSSARY

The following is a list of terms and symbols used throughout the book. Special
meanings that have been assigned to the symbols are given, although the same
symbols sometimes have other meanings, which should be apparent from the
context of their usage. (For example, A and B can be used for amplitudes of sine
waves, in addition to the special meanings given below.)

≡ is identically equal to, rather than being equal only under
some particular condition

�= is defined as
∼ (superscript) indicates rms
X|y variable X with the condition y or referring to y

X|y2
y1 variable X with y between yl and y2

� x angle or phase of x
�∼ low-pass filter
�∼
�

band-pass filter
acceptance band band of frequencies beyond the passband where rejection

is not required; used to indicate the region between
the passband and a rejection band

contaminant undesired RF power
passband band of frequencies that pass through a filter with

minimal attenuation or with less than a specified
attenuation

xxi
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rejection band band of frequencies that are rejected or receive a
specified attenuation (rejection)

sideband signal in relation to a larger signal

Generic Symbols (applied to other symbols)

* complex conjugate
|x| magnitude or absolute value of x

x̆ x is an equivalent noise factor or gain that can be used in standard
equations to represent cascades with extreme mismatches (see
Section 3.10.4)

Particular Symbols

A voltage gain in dB. Note that G can as well be used if
impedances are the same or the voltage is normalized to R0.

a voltage transfer ratio.
|a| voltage gain (not in dB)
AM amplitude modulation
an nth-order transfer coefficient [see Eq. (4.1)]
aRT round-trip voltage transfer ratio
B noise bandwidth
Br RF bandwidth
Bv video, or postdetection, bandwidth
BW bandwidth
c(n, j ) j th binomial coefficient for (a + b)n (Abromowitz and

Stegun, 1964, p. 10)
cas subscript referring to cascade
CATV cable television
cbl subscript referring to cable
CSO composite second-order distortion (Section 5.2)
CTB composite triple-beat distortion (Section 5.2)
dB decibels
DBM doubly balanced mixer
dBm decibels referenced to 1 mW
dBc decibels referenced to carrier
dBV decibels referenced to 1 V
dBW decibels referenced to 1 W
e voltage from an internal generator
F noise figure, F = 10 dB log10 f or fundamental (as opposed

to harmonic or IM).
f noise factor (not in dB) or standard noise factor (measured

with standard impedances) or frequency
f̂ theoretical noise factor (measured with specified driving

impedance) (see Sections 3.1, N.1)
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FDM frequency division multiplex
fc center frequency
fosc oscillator center frequency
fI or fIF intermediate frequency, frequency at a mixer’s output
fL or fLO local oscillator frequency
FM frequency modulation
fm modulation frequency
fR or fRF radio frequency, the frequency at a mixer’s input
G power gain, sometimes gain in general, in dB.
gk power gain of module k, sometimes gain in general, not in dB.
gpk power gain preceding module k

H subscript referring to harmonic
I , IF intermediate frequency, the result of converting RF using a

local oscillator
i subscript indicating a signal traveling in the direction of the

system input
IF intermediate frequency, frequency at a mixer’s output
IIP input intercept point (IP referred to input levels)
IM intermodulation product (intermod)
IMn nth-order intermod or IM for module n

in subscript indicating a signal entering a module (1) at the port
of concern or (2) at the input port

int(x) integer part of x

IP intercept point
IPn intercept point for nth-order nonlinearity or for module n

ISFDR instantaneous spur-free dynamic range (see Section 5.3)
k Boltzmann’s constant
kT0 approximately 4 × 10−21 W/Hz
L single-sideband relative power density
L, LO local oscillator, the generally relatively high-powered,

controllable, frequency in a frequency conversion or the
oscillator that provides it

Lϕ single-sideband relative power density due to phase noise
M a matrix (bold format indicates a vector or matrix)
m modulation index (see Section 8.1)
m̃ rms phase deviation in radians
ma subscript for “maximum available”
MAX{a, b} the larger of a or b

m × n m refers to the exponent of the LO voltage and n refers to the
exponent of the RF voltage in the expression for a spurious
product; if written, for example, 3 × 4, m is 3 and n is 4

N0 noise power spectral density
NT available thermal noise power spectral density at 290 K, kT0

o subscript indicating a signal traveling in the direction of the
system output.
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OIP output intercept point (IP referred to output levels)
out subscript indicating a signal exiting a module (1) at the port

of concern or (2) at the output port
P power in dB.
p power (not in dB).
pavail,j available power at interface j (preceding module j )
PM phase modulation
pout,j output power at interface j (preceding module j )
PPSD phase power spectral density
PSD power spectral density
R, RF radio frequency, the frequency at a mixer’s input
R0 agreed-upon interface impedance, a standard impedance (e.g.,

50 �); characteristic impedance of a transmission line
RT subscript for “round trip”
S power spectral density or S parameter (see Section 2.2.1)
Ŝ sensitivity (see Section 2.5)
Sijk S parameter of row i and column j in the parameter matrix

for module (or element) number k

SF shape factor, ratio of bandwidth where an attenuation is
specified to passband width

SFDR spur-free dynamic range (see Section 5.3.1)
S/N signal-to-noise power ratio
SSB single-sideband; refers to a single signal in relation to a larger

signal
SWR standing wave ratio (see Section F.2)
T absolute temperature or subscript referring to conditions

during test
T0 temperature of 290 K (16.85◦C)
Tijk T parameter (see Section 2.2.3) of row i and column j in the

parameter matrix for module (or element) number k

Tk noise temperature of module k (see Section 3.2)
UUT unit under test
V a vector (bold format indicates a vector or matrix)
v normalized wave voltage (see Section 2.2.2) or voltage (not in

dB.)
V voltage in dB
v̂ phasor representing the wave voltage (see Section 2.2.2)
ṽ phasor whose magnitude is the rms value of the voltage

ṽ = v̂/
√

2 (see Section 2.2.2)
vi , vin, vo, vout see Fig. 2.2 and Section 2.2.1
�± maximum ± deviation in dB of cable gain Acbl, from the mean
�f peak frequency deviation or frequency offset from spectral

center
ρ reflection coefficient (see Section F.2)
σ standard deviation
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σ 2 variance
τ voltage transfer ratio of a matched cable (i.e., no reflections at

the ends)
ϕ(t) ωt + θ



CHAPTER 1

INTRODUCTION

This book is about systems that operate at radio frequencies (RF) (including
microwaves) where high-frequency techniques, such as impedance matching, are
important. It covers the interactions of the RF modules between the antenna
output and the signal processors. Its goal is to provide an understanding of how
their characteristics combine to determine system performance. This chapter is a
general discussion of topics in the book and of the system design process.

1.1 SYSTEM DESIGN PROCESS

We do system design by conceptualizing a set of functional blocks, and their
specifications, that will interact in a manner that produces the required system
performance. To do this successfully, we require imagination and an understand-
ing of the costs of achieving the various specifications. Of course, we also must
understand how the characteristics of the individual blocks affect the performance
of the system. This is essentially analysis, analysis at the block level. By this
process, we can combine existing blocks with new blocks, using the specifica-
tions of the former and creating specifications for the latter in a manner that will
achieve the system requirements.

The specifications for a block generally consist of the parameter values we
would like it to have plus allowed variations, that is, tolerances. We would like
the tolerances to be zero, but that is not feasible so we accept values that are
compromises between costs and resulting degradations in system performance.
Not until modules have been developed and measured do we know their param-
eters to a high degree of accuracy (at least for one copy). At that point we might
insert the module parameters into a sophisticated simulation program to compute

1

Practical RF System Design. William F. Egan
Copyright  2003 John Wiley & Sons, Inc.

ISBN: 0-471-20023-9



2 CHAPTER 1 INTRODUCTION

the expected cascade performance (or perhaps just hook them together to see
how the cascade works). But it is important in the design process to ascertain
the range of performance to be expected from the cascade, given its module
specifications. We need this ability so we can write the specifications.

Spreadsheets are used extensively in this book because they can be helpful in
improving our understanding, which is our main objective, while also providing
tools to aid in the application of that understanding.

1.2 ORGANIZATION OF THE BOOK

It is common practice to list the modules of an RF system on a spreadsheet,
along with their gains, noise figures, and intercept points, and to design into
that spreadsheet the capability of computing parameters of the cascade from
these module parameters. The spreadsheet then serves as a plan for the system.
The next three chapters are devoted to that process, one chapter for each of
these parameter.

At first it may seem that overall gain can be easily computed from individual
gains, but the usual imperfect impedance matches complicate the process. In
Chapter 2, we discover how to account for these imperfections, either exactly
or, in most cases, by finding the range of system gains that will result from the
range of module parameters permitted by their specifications.

The method for computing system noise figure from module noise figures
is well known to many RF engineers but some subtleties are not. Ideally, we
use noise figure values that were obtained under the same interface conditions
as seen in the system. Practically, that information is not generally available,
especially at the design concept phase. In Chapter 3, we consider how to use the
information that is available to determine system noise figure and what variations
are to be expected. We also consider how the effective noise figures of mixers
are increased by image noise. Later we will study how the local oscillator (LO)
can contribute to the mixer’s noise figure.

The concept of intercept points, how to use intercept points to compute inter-
modulation products, and how to obtain cascade intercept points from those of the
modules will be studied in Chapter 4. Anomalous intermods that do not follow
the usual rules are also described.

The combined effects of noise and intermodulation products are considered
in Chapter 5. One result is the concept of spur-free dynamic range. Another is
the portrayal of noise distributions resulting from the intermodulation of bands
of noise. The similarity between noise bands and bands of signals both aids the
analysis and provides practical applications for it.

Having established the means for computing parameters for cascades of mod-
ules connected in series, in Chapter 6 we take a brief journey through vari-
ous means of connecting modules or components in parallel. We discover the
advantages that these various methods provide in suppressing spurious outputs
and how their overall parameters are related to the parameters of the individ-
ual components.
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Then, in Chapter 7, we consider the method for design of frequency converters
that uses graphs to give an immediate picture of the spurs and their relationships
to the desired signal bands, allowing us to visualize problems and solutions. We
also learn how to predict spurious levels and those, along with the relationships
between the spurs and the passbands, permit us to ascertain filter requirements.

The processes described in the initial chapters are linear, or almost so, except
for the frequency translation inherent in frequency conversion. Some processes,
however, are severely nonlinear and, while performance is typically characterized
for the one signal that is supposed to be present, we need a method to determine
what happens when small, contaminating, signals accompany that desired sig-
nal. This is considered in Chapter 8. The most important nonlinearity in many
applications is that associated with the mixer’s LO; so we emphasize the system
effects of contaminants on the LO.

Lastly, in Chapter 9, we will study phase noise: where it comes from, how it
passes through a system, and what are its important effects in the RF system.

1.3 APPENDIXES

Material that is not essential to the flow of the main text, but that is nevertheless
important, has been organized in 17 appendixes. These are designated by letters,
and an attempt has been made to choose a letter that could be associated with
the content (e.g., G for gain, M for matrix) as an aid to recalling the location
of the material. Some appendixes are tutorial, providing a reference for those
who are unfamiliar with certain background material, or who may need their
memory refreshed, without holding up other readers. Some appendixes expand
upon the material in the chapters, sometimes providing more detailed explanations
or backup. Others extend the material.

1.4 SPREADSHEETS

The spreadsheets were created in Microsoft


Excel and can be downloaded as
Microsoft Excel 97/98 workbook files (see page xix). This makes them available
for the readers’ own use and also presents an opportunity for better understanding.
One can study the equations being used and view the charts, which appear in
black and white in the text, in color on the computer screen. One can also
make use of Excel’s Trace Precedents feature (see, e.g., Fig. 3.5) to illustrate the
composition of various equations.

1.5 TEST AND SIMULATION

Ultimately, we know how a system performs by observing it in operation. We
could also observe the results of an accurate simulation, that being one that
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produces the same results as the system. Under some conditions, it may be easier,
quicker, or more economical to simulate a system than to build and test it. Even
though the proof of the simulation model is its correspondence to the system, it
can be valuable as an initial estimate of the system to be improved as test data
becomes available. Once confidence is established, there may be advantages in
using the model to estimate system performance under various conditions or to
predict the effect of modifications. But modeling and simulating is basically the
same as building and testing. They are the means by which system performance
is verified. First there must be a system and, before that, a system design.

In the early stages of system design we use a general knowledge of the per-
formance available from various system components. As the design progresses,
we get more specific and begin to use the characteristics of particular realizations
of the component blocks. We may initially have to estimate certain performance
characteristics, possibly based on an understanding of theoretical or typical con-
nections between certain specifications. As the design progresses we will want
assurance of important parameter values, and we might ultimately test a number
of components of a given type to ascertain the repeatability of characteristics.
Finally we will specify the performance required from the system’s component
blocks to ensure the system meets its performance requirements.

Based on information concerning the likelihood of deviations from desired
performance provided by our system design analysis, we may be led to accept
a small but nonzero probability of performance outside of the desired bounds.
Once the system has been built and tested, it may be possible to use an accurate
simulation to show that the results achieved, even with expected component
variations, are better than the worst case implied by the combination of the
individual block specifications. To base expected performance on simulated or
measured results, rather than on functional block specifications, however, requires
that we have continuing control over the construction details of the components
of various copies of the system, rather than merely ensuring that the blocks
meet their specifications. For example, a particular amplifier design may produce
a stable phase shift that has a fortuitous effect on system performance, but we
would have to control changes in its design and in that of interacting components.

Another important aspect of test is general experimentation, not confined to a
particular design, for the purpose of verifying the degree of applicability of theory
to various practical components. Examples of reports giving such supporting
experimental data can be seen in Egan (2000), relative to the theory in Chapter 8,
and in Henderson (1993a), relative to Chapter 7. We can hope that these, and the
other, chapters will suggest opportunities for additional worthwhile papers.

1.6 PRACTICAL SKEPTICISM

There is a tendency for engineering students to assume that anything written in
a book is accurate. This comes naturally from our struggle just to approach the
knowledge of the authors whose books we study (and to be able to show this on
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exams). With enough experience in using published information, however, we
are likely to develop some skepticism, especially if we should spend many hours
pursuing a development based on an erroneous parameter value or perhaps on
a concept that applies almost universally — but not in our case. Even reviewed
journals, which we might expect to be most nearly free of errors, and classic
works contain sources of such problems. But the technical literature also contains
valuable, even essential, information; so a healthy skepticism is one that leads
us to consult it freely and extensively but to continually check what we learn.
We check for accuracy in our reference sources, for accuracy in our use of the
information, and to ensure that it truly applies to our development. We check by
considering how concepts correlate with each other (e.g., does this make sense in
terms of what I already know), by verifying agreement between answers obtained
by different methods, and by testing as we proceed in our developments. The
greater the cost of failure, the more important is verification. Unexpected results
can be opportunities to increase our knowledge, but we do not want to pay too
high a price for the educational experience.

1.7 REFERENCES

References are included for several reasons: to recognize the sources, to offer
alternate presentations of the material, or to provide sources for associated topics
that are beyond the scope of this work. The author–date style of referencing is
used throughout the book. From these, one can easily find the complete reference
descriptions in the References at the end of the text. Some notes are placed at
the end of the chapter in which they are referenced.



CHAPTER 2

GAIN

In this chapter, we determine the effect of impedance mismatches (reflections) on
system gain. For a simple cascade of linear modules (Fig. 2.1), we could write
the overall transfer function or ratio as

g = g1g2 · · · gN, (2.1)

where
gj

�= uj+1

uj

(2.2)

and u is voltage or current or power. The gain is |g|, which is the same as g if
u is power. This would require that we measure the values of u in the cascade.
If we measure them in some other environment, we could get different gains
because of differing impedances at the interfaces. However, it may be difficult
to measure u in the cascade, and a gain that must be measured in the final
cascade has limited value in predicting or specifying performance. For example,
a variation of about ±1 dB in overall gain can occur for each interface where
the standing-wave ratios (SWRs) are 2 and a change as high as 2.5 dB can occur
when they are 3. (See Appendix F.1 for a discussion of decibels (dB).)

Here we consider how the expected gain of a cascade of linear modules can
be determined, as well as variations in its gain, based on measured or specified
parameters of the individual modules. Throughout this book, gains and other
parameters are so generally functions of frequency that the functionality is not
shown explicitly. Equations whose frequency dependence is not indicated will
apply at any given frequency.

We begin with a description, for modules and their cascades, that applies
without limitations but which requires detailed knowledge of impedances and

7
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g1u1 g2

u2 u3

gn un +1

Modules

Cascade

Fig. 2.1 Transfer functions in a simple cascade.

which can be complicated to use. Then we will discover a way to simplify the
description of the overall cascade by taking into account special characteristics
of some of its parts. This will lead us to a standard cascade, composed of unilat-
eral modules separated by interconnects (e.g., cables) that have well-controlled
impedances. The unilateral modules, usually active, have negligible reverse trans-
mission. The passive cables are well matched at the standard impedance (e.g.,
50 �) of the cascade interfaces; these are the impedances used in characterizing
the modules.

It is common to specify the desired performance of each module plus allowed
variations from that ideal. The desired performance includes a gain and standard
interface impedances. The allowed variations are given by a gain tolerance and
the required degree of input and output impedance matches, expressed as max-
imum SWRs or, equivalently, return losses or reflection coefficient magnitudes
(see Appendix F.2). These are the parameters required for determination of the
performance of the standard cascade. We will also find ways to fit bilateral
modules into this scheme.

We will also consider the case where the modules are specified in terms
of their performance with various nonstandard interface impedances (e.g.,
2000 �–j500 �), and we will discover how to characterize cascades of these
modules. For cases where it may be desirable to include these nonstandard
cascades as parts of a standard cascade, we will determine how to describe
them in those terms.

Finally, we will study the use of sensitivities in analyzing cascade performance.
Many varieties of power gains are described in Appendix G. If all interfaces

were at standard impedance levels (e.g., 50 � everywhere), these gains would
all be the same, but the usually unintended mismatches lead to differing values
for gain, depending on the definitions employed.

2.1 SIMPLE CASES

In some cases these complexities are unimportant. For example, where operational
amplifiers (op amps) are used at lower frequencies, measurements of voltages
at interfaces can be practical and their low output impedances and high input
impedances allow performance in the voltage-amplifier cascade to duplicate what
was measured during test. However, this luxury is rare at radio frequencies.
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In other cases, complexities may be ignored in an effort to get an answer
with minimum effort or with the available information. That answer may be
adequate for the task at hand; at least it is better than no estimate. Commonly,
we simply assume that gains will be the same as when a module or interconnect
was tested in a standard-impedance environment. We try to make this so by
keeping input and output impedances close to that standard impedance when
designing or selecting modules.

While this simplified approach can be useful, we will consider here how to
make use of additional information about modules to get a better estimate of
cascade performance, one that includes the range of gain values to be expected.

2.2 GENERAL CASE

To characterize the modules so their performance in the system can be predicted,
we need more parameters, a set of four (generally called two-port parameters; we
are characterizing our modules as having two ports, an input port and an output
port) for each module (Gonzalez, 1984, pp. 1–31; Pozar, 2001, pp. 47–55). We
begin by considering the parameters that we can use to describe the modules.

2.2.1 S Parameters

Individual RF modules are usually defined by their S (scattering) parameters
(Pozar, 2001, pp. 50–53; Gonzalez, 1984, pp. 9–10). This can be done with the
help of the matrix (see Appendix M for help in using matrices),

[
vout,1

vout,2

]
=

[
S11 S12

S21 S22

]
1

[
vin,1

vin,2

]
. (2.3)

The subscripts in and out refer to waves propagating1 into and out of the module
at either port (1 or 2). The other subscripts on the vector components indicate
the input port 1 or output port 2, whereas the subscript on each matrix element
is its row and column, respectively. Subscript 1 on the matrix indicates module
1. We use the same index for the module and for its input port (port 1 here).

We can also write the subscripts in terms of the system with i or o, referring to
waves traveling toward the input or toward the output of the system, respectively.
Refer to Fig. 2.2. With this notation, Eq. (2.3) becomes

[
vi1

vo2

]
=

[
S11 S12

S21 S22

]
1

[
vo1

vi2

]
. (2.4)

More generally, for the j th module,

[
vi,j

vo,j+1

]
=

[
S11 S12

S21 S22

]
j

[
vo,j

vi,j+1

]
. (2.5)
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Module
3

vin,3 = vo,3

vout,3 = vi,3

Cable 2

vout,4 = vo,4

vin,4 = vi,4

Cable 4 Module
j

vin, j = vo, j

vout, j = vi, j

Cable j−1

vout, j+1 = vo, j+1

vin, j+1 = vi, j+1

Cable j +1

Module

THESE ARE in

Module

THESE ARE out

System
input

Module

THESE ARE i

System
output

Module

THESE ARE o

Fig. 2.2 Definitions of wave subscripts.

By normal matrix multiplication then,

vi,j = S11j vo,j + S12j vi,j+1 (2.6)

and
vo,j+1 = S21j vo,j + S22j vi,j+1. (2.7)

This is a convenient form for measurements. It relates signals coming “out” of
the module, at either port, to those going “in” at either port. We can control the
inputs, ensuring that there is only one by terminating the port to which we do
not apply a signal, and measuring the two resulting outputs, one at each port
(Fig. 2.3). These give us two of the four parameters and a second measurement,
with input to the other port, gives the other two.

Calibrated
generator

Module
under
test

Sample

Measure
reflection

Calibrated
coupler

R0 R0

vout,1 vin,2 = 0

vin,1 vout,2
Measure
output

Fig. 2.3 Measurement setup.



GENERAL CASE 11

Thus, for module 1, with port 2 terminated (vin,2 ≡ vi2 = 0), we measure the
reflected signal at port 1 to give the reflection coefficient for that port,

S11 = vout,1

vin,1
≡ vi1

vo1
(2.8)

and the transmission coefficient from port 1 to port 2,

S21 = vout,2

vin,1
≡ vo2

vo1
. (2.9)

Then we turn the module around and input to port 2 while terminating port
1, giving the reverse transmission coefficient and port 2 reflection coefficient,
respectively:

S12 = vout,1

vin,2
≡ vi1

vi2
, (2.10)

S22 = vout,2

vin,2
≡ vo2

vi2
. (2.11)

(We are using both subscript forms here as an aid in understanding their equiva-
lency.) In each case the S parameter subscripts represent the ports of effect and
cause, respectively, Seffect cause, where “effect” is the port where “out” occurs and
“cause” is the port where “in” occurs.

2.2.2 Normalized Waves

We have called vx (i.e., vo, vi , vout, or vin) a “wave,” but the symbol implies
a voltage. It is customary to use normalized voltages with S parameters, and
the usual way to normalize them is by division of the root-mean-square (rms)
voltage by

√
R0, where R0 is the real part of the characteristic impedance Z0 of

the transmission line in which the waves reside. We will assume that Z0 is real.2

An RF voltage corresponding to vx can be represented by

Vmx cos(ωt + θ) = Re Vmxe
j (ωt+θ). (2.12)

This can be abbreviated
v̂x(t) = v̂xe

jωt , (2.13)

where
v̂x = Vmxe

jθ . (2.14)

Sometimes a phasor is employed whose magnitude is the effective (rms) value
(Hewlett-Packard, 1996; Yola, 1961; Kurokawa, 1965):

ṽx = (Vmx/
√

2)ejθ . (2.15)
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Our normalized voltage,
vx = ṽx/

√
R0, (2.16)

uses this form, which has the advantage that the available power in the traveling
wave can be expressed simply as

px = |vx |2. (2.17)

Traditionally, the symbol an is used for vin,n and bn is used for vout,n.
If, on the other hand, the phasor employed in Eq. (2.16) is v̂x rather than ṽx

(Pozar, 1990, p. 229, 1998, p. 204), the power will be |vx |2/2. In most cases the
module parameters are ratios of two waves at the same impedance; so it makes
no difference whether they are ratios of vx or of v̂x or of ṽx .

2.2.3 T Parameters

Unfortunately, we cannot use S matrices conveniently for determining overall
response because we cannot multiply them together to produce anything useful.
We require a matrix equation for overall transfer function of the form

V1= MVn+1= M1M2M3· · · MnVn+1. (2.18)

Here the vector Vj , representing a module input, has the same identifying number
(subscript) as the matrix Mj , representing the module. Note that we are operating
on outputs to give inputs. This is nice in that the matrices are then written in the
same order in which the modules are traditionally arrayed in a drawing (left to
right from input to output, as in Fig. 2.1). There is also an even better reason.
The vector on which the matrix operates (multiplies) must contain the information
needed to produce the resulting product. Unilateral modules that have little or no
reverse transmission do not provide significant information about the output to
the input; thus a mathematical representation in which the matrix operated on that
input would not work well. On the other hand, all modules of interest produce
outputs that are functions of their inputs; so there is sufficient information in the
vector representing the output to form the input.3

Equation (2.18) implies
V1= M1V2 (2.19)

and
V2= M2V3 (2.20)

in order that
V1= M1(M2V3) = M1M2V3 (2.21)

and so on. All this implies that V2 represents the state between modules 1 and 2
so we define the vector

Vj =
[

vo

vi

]
j

=
[

voj

vij

]
, (2.22)
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where j represents the port and o and i indicate the voltage wave moving right
toward the system output or left toward its input, respectively. Thus the matrix
connecting such vectors has the form (Dechamps and Dyson, 1986; Gonzalez,
1984, pp. 11–12) [

vo

vi

]
1

=
[

T11 T12

T21 T22

]
1

[
vo

vi

]
2
. (2.23)

As before, the module and its input have the same subscript. In many cases it
will be more convenient to move the subscript from the vector or matrix to its
individual elements, adding the port number as the last subscript:

[
vo1

vi1

]
=

[
T111 T121

T211 T221

] [
vo2

vi2

]
. (2.24)

Each vector, in this representation, describes two waves that occur at a single
point in the system whereas, for the S parameters, the vector elements represented
waves from different ports.4 However, S-parameter measurements are simpler
than T -parameter measurements. Consider that T121 is the ratio between a wave
entering the module at port 1, vo1, and one entering it at port 2, vi2, while
the wave leaving it at port 2, vo2, is set to zero. To measure this directly, we
would require two phase-coherent generators, one driving each port, that would
be adjusted so the outputs due to each at port 2 would cancel.

2.2.4 Relationships Between S and T Parameters

It is simpler to measure the S parameters and obtain the T parameters from them.
For example, T22 for module 1 is

T22 = vi1

vi2

∣∣∣∣
vo2=0

. (2.25)

Equation (2.7) indicates that the condition vo2 = 0 requires

S21vo1 = −S22vi2. (2.26)

Combining this with Eq. (2.6) we obtain

vi1 = −S11S22

S21
vi2 + S12vi2 =

[
S12 − S11S22

S21

]
vi2 (2.27)

from which we obtain the T parameter in terms of S parameters,

T22 = S12 − S11S22

S21
. (2.28)
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By a similar process we can obtain the other values of Tij in terms of the Sij :

[
T11 T12

T21 T22

]
=




1

S21
−S22

S21
S11

S21
S12 − S11S22

S21


 (2.29)

= 1

S21

[
1 −S22

S11 S12S21 − S11S22

]
, (2.30)

and of Sij in terms of Tij ,

[
S11 S12

S21 S22

]
=




T21

T11
T22 − T12T21

T11
1

T11
−T12

T11


 (2.31)

= 1

T11

[
T21 T11T22 − T12T21

1 −T12

]
. (2.32)

2.2.5 Restrictions on T Parameters

We can now show more specifically why the T matrix was designed to give
input as a function of output, rather than the converse. For unilateral gain in
the forward direction, S12 = 0. This simplifies T22 in Eq. (2.30). On the other
hand, unilateral gain in the reverse direction, S21 = 0, causes the elements in
Eq. (2.30) to become infinite. As S21 approaches 0, V2 becomes a weak function
of V1, so a large number is required to give V1 in terms of V2. Moreover, if
forward transmission is small, vo2 may become a stronger function of vi2 than
of vo1, in which case V1 becomes dependent on the difference between the two
components of V2 and subject to error due to small inaccuracies in M. As a result,
M should not represent a process where transmission from V1 to V2, as defined
by Eq. (2.9), is small or zero. For this reason, Eq. (2.19) is written as it is, since
transmission toward the system output S21 is a purpose of a system, and thus is
expected to be appreciable, whereas reverse transmission S12 is often minimized.

2.2.6 Cascade Response

Now we can obtain the overall response of a series of modules (a cascade) by
multiplying their individual T matrices. The sequence in which the matrices are
arrayed must be the same as the sequence, from input to output, of the elements
in the cascade and the interface (standard) impedances must be those in which
the S or T parameters were measured. If the parameters of adjacent modules
are defined for different standard impedances at the same interface, one of them
must be recharacterized. This can be done by inserting a T matrix representing
the impedance transition, as described in Appendix I.
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The process can be aided by a mathematical program (e.g., MATLAB


), or
perhaps done implicitly using a network analysis program, if we have values for
all the parameters in all the modules. However, we will often not have values
for all the parameters and, generally, when we do have such information, it
will be in terms of ranges of parameters, maximums and minimums or expected
distributions. We could estimate the distribution of all the parameters and do
a Monte Carlo analysis, obtaining a distribution of solutions based on trials
with various parameter values drawn according to their distributions. Both the
complexity of such a process and the desire for a better understanding of the
results suggest that simpler methods are desirable.

2.3 SIMPLIFICATION: UNILATERAL MODULES

In general, the reflection at any module input port in a cascade depends on the part
of the cascade that follows. Looking into a given module, we see an impedance
that is affected by every following module. That is why we must multiply T

matrices.
When a module has zero reverse transmission (S12j = 0), Eq. (2.6) shows that

the forward and reverse waves at the input port are related just by the module
parameter S11j . Nothing that occurs at the output port can influence this relation-
ship so the reflection at the input port is independent of the impedance seen at the
module output. This greatly simplifies the determination of the reflection at the
input port, making it dependent on the parameters of just that one module. Sim-
ilarly, since the reverse wave at the module output does not influence the input,
the output reflection is independent of the parameters of preceding modules.

As a result, if the modules are unilateral, the gain of the cascade can be
determined from the parameters of the individual modules, rather than by matrix
multiplication. Therefore, it is important to consider what kinds of modules (or
combinations of modules) can be treated as unilateral and, then, how cascades
of unilateral modules can be analyzed.

Some modules tend to be unilateral, to transmit information from input to
output but not in the reverse direction, or only weakly in the reverse direction.
Complex modules [e.g., frequency converters, modules with digital signal pro-
cessing (DSP) between input and output] often fit this category. Even amplifiers,
if they are unconditionally stable, have

|S21S12| < 1; (2.33)

so, when they are well terminated, the reverse transmission is small.

2.3.1 Module Gain

For module gain we will use the commonly specified transducer power gain
(Appendix G) with given interface impedances (usually 50 � for RF). This is
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the ratio of output power into the nominal load resistance to the power available
from a source that has nominal input resistance. It differs from available gain, for
which the load would be the conjugate of the actual module output impedance
rather than a standardized nominal resistance.

In testing a module with index j , the output power can be read from a power
meter or spectrum analyzer, one with impedance equal to the nominal impedance
of the output port, RL. It is related to the forward output voltage during the test
vo,j+1,T by

pout,j+1 = |vo,j+1,T |2 = |ṽo,j+1,T |2/RL. (2.34)

The input power can be read from a signal generator that is, as is usual, calibrated
in terms of its available power. It is related to the forward input voltage voj by

pavail,j = |vo,j |2 = |ṽo,j |2/RS, (2.35)

where RS is the source resistance. Therefore, the transducer power gain given
for module j is

gj =
∣∣∣∣vo,j+1,T

voj

∣∣∣∣
2

=
∣∣∣∣vo,j+1

voj

∣∣∣∣
2

vi,j+1=0

= |S21j |2 (2.36)

=
∣∣∣∣ v̂o,j+1,T

v̂oj

∣∣∣∣
2

Rs

RL

=
∣∣∣∣ v̂o,j+1

v̂oj

∣∣∣∣
2

v̂i,j+1=0

Rs

RL

. (2.37)

Note that vo,j+1,T is equivalent to vo,j+1 with vi,j+1 = 0 because the module is
tested with a load that equals the impedance of the interconnect and of the device
in which the waves are measured so there is no measured reflection during test.

Usually Rs = RL and the last resistor ratio disappears. In any case, |S21| can
be related to the transducer power gain by Eq. (2.36).

The variables that form the ratio gj during the test must also be those to
which gj refers in the cascade. These are the wave induced by the module in its
output cable (excluding any wave reflected from the output of the module) and the
forward wave impinging on the module input.

2.3.2 Transmission Line Interconnections

Now we determine the gain of a cascade of unilateral elements interconnected by
cables (transmission lines) whose characteristic impedances are the same as those
used in characterizing the modules. We will call this a standard cascade. Because
they are unilateral, we look at each pair of interconnected modules as a source
and a load with all interaction between them being independent of anything that
precedes the source (excepting its driving voltage) or follows the load (Fig. 2.4).
We require a means to account for the effects of mismatches at the source output
and the load input on the performance of the combined pair. Direct connection
of the modules is a degenerate case where the cable length goes to zero.
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j − 1
Source

j + 1
Load

j

Cable

Fig. 2.4 Source and load connected.

Since we use the variables vojT and vo,j+1 in defining the source (j − 1) and
load (j + 1) module gains, respectively, the gain of cable j that connects them
must be the ratio of vo,j+1 to vojT . Then we will be able to write a cascade
voltage transfer function as

acas = am1acbl,2am3acbl,4 · · · amN, (2.38)

where the first subscript indicates module m or cable, cbl,

amj = vo,j+1,T

vo,j

(2.39)

and
acbl,j = vo,j+1

vojT

. (2.40)

Then the overall transfer function will be

acas = vo2T

vo1

vo3

vo2T

vo4T

vo3

vo5

vo4T

· · · vo,N+1,T

vo,N

= vo,N+1,T

vo1
. (2.41)

We assume for now that the final module drives a matched load so vo,N+1,T =
vo,N+1 and acas = vo,N+1/vo1, as desired. (Other cases will also be handled.)

When the source is tested, it sends a forward wave vojT into a cable and
load that have nominal real impedances (Fig. 2.5). This produces, at the test
cable output,

vo,j+1,T = τvojT , (2.42)

where the factor τ is the voltage transfer ratio representing the time delay and
attenuation in the cable.

During test, the output vo,j+1,T is absorbed in, and measured at, the load.
In the cascade, the value of the forward wave vo,j+1 is the value that appears
during test (vo,j+1,T ) plus waves reflected in sequence from the load (S11,j+1)

j − 1
Source Z0 = R0

vo,j,T vo,j+1,T

R0

Fig. 2.5 Forward wave from source.
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∑ tj

−tjS22, j −1

vo, j, T vo,j+1

S11, j +1

−

+

Fig. 2.6 Multiple reflections in cascade.

and the source (S22,j−1). Refer to Fig. 2.6. We must determine the value of that
net forward wave vo,j+1 since this is what drives the load module j + 1 and
determines the output from that module. The load module will respond as if it
were sent a signal vo,j+1 from a matched source during test.

The primary state variables in the standard cascade are:

• The forward wave at the output of each interconnect
• The induced wave at the input of each interconnect

The latter would be the forward wave at the input if the interconnect were properly
terminated at its output. Otherwise, however, the forward wave also includes
double reflections from the input of the driven module and the output of the
driving module.

The ratio acbl,j of the closed-loop output in Fig. 2.6 to the forward wave that
drives its input during test (when there is no reflected wave in the cable) we
call the cable gain. It is given by the normal equation for closed-loop trans-
fer function:

acbl,j = vo,j+1

vojT

= τj

1 − S22,j−1S11,j+1τ
2
j

, (2.43)

where
τj = exp(h − jb), (2.44)

where −h = αd is loss in nepers5 and b = βd is the phase lag in the cable of
length d . A minus has been used in the feedback path to cancel the minus at the
summer of the customary feedback configuration.

The corresponding gain in forward power (or squared voltage if the input and
output impedances differ) is

gcbl,j = |acbl,j |2 (2.45)

= |τj |2
(1 − S22,j−1S11,j+1τ

2
j )[1 − S∗

22,j−1S
∗
11,j+1(τ

2
j )∗]

(2.46)

= |τj |2
1 − 2|S22,j−1S11,j+1τ

2
j | cos θ + |S22,j−1S11,j+1τ

2
j |2 (2.47)

= 1

e−2h − 2|S22,j−1||S11,j+1| cos θ + |S22,j−1|2|S11,j+1|2e2h
, (2.48)
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where

θ = −2b + ϕj−1 + ϕj+1, (2.49)

ϕj−1 = � S22,j−1, (2.50)

and
ϕj+1 = � S11,j+1. (2.51)

We can see here that, if the attenuation is high (h � 1), the power gain is just
the interconnect loss, e2h.

We define the round-trip, or open-loop, voltage gain,

|aRTj | �= |τj |2|S22,j−1||S11,j+1| (2.52)

= |τj |2 SWRj − 1

SWRj + 1

SWRj+1 − 1

SWRj+1 + 1
, (2.53)

where |τj | = exp(hj ) and SWRj and SWRj+1 are standing-wave ratios associated
with the reflections. We have given the SWR a subscript corresponding to the
interface where it occurs (as we do for the voltage vector there). We can do
this because the cable is assumed to have SWR = 1 so only the module’s SWR
requires a value at each interface.

Using Eq. (2.52), we can write Eq. (2.47) as

gcbl,j = |τj |2
1 − 2|aRTj | cos θ + |aRTj |2 . (2.54)

2.3.2.1 Effective Power Gain We now compute the mean and peak values
of the gain in forward power (the square of the voltage magnitude if impedances
differ), in the cascade relative to that in test, over all values of θ . These can be
considered to be the values expected over a random distribution of phases of the
reflections or the values that will be seen as frequency changes in a cable that is
many wavelengths long (thus changing the phase shift through the cable). From
Eq. (2.54) (dropping the subscript j for simplicity), the minimum and maximum
gains in the cable are

|acbl|max = |τ |√
1 − 2|aRTj | + |aRTj |2

= |τ |
1 − |aRT| (2.55)

and

|acbl|min = |τ |√
1 + 2|aRTj | + |aRTj |2

= |τ |
1 + |aRT| . (2.56)

The average gain as the frequency varies is the same as the average as θ varies
since Eq. (2.49) can be written

θ = ϕj−1 + ϕj+1 − 2ωd/v, (2.57)
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Fig. 2.7 Excess of mean cable gain over nominal cable gain due to reflections.

where v is the velocity in the cable and d is its length. This average is obtained
from

gcbl = |τ |2
2π

∫ 2π

0

dθ

1 − 2|aRT| cos θ + |aRT|2 (2.58)

= |τ |2
1 − |aRT|2 . (2.59)

This indicates that the average cable loss is reduced by the reflections. The
relationship is plotted in Fig. 2.7. From this we can see that the mean cable gain
differs little from the nominal value, |τ |2, in many practical cases.

It is apparent, from Eqs. (2.59), (2.55), and (2.56), that the average value of
power gain is the geometric mean of the maximum and the minimum,

gcbl,j = |acbl|max|acbl|min, (2.60)

and it follows that, in dB, it is the arithmetic mean,

Gcbl = Gcbl,max + Gcbl,min

2
. (2.61)

The maximum deviation from the mean is, in dB,

�+
�= Gcbl,max − Gcbl (2.62)



SIMPLIFICATION: UNILATERAL MODULES 21

= 10 dB log10
|τ |

1 − |aRT| − 10 dB log10
|τ |

1 + |aRT| (2.63)

= 10 dB log10

(
1 + |aRT|
1 − |aRT

)
. (2.64)

It is also quickly apparent that �+ = −�−. That is, the deviation from mean, in
dB, at the maximum, is the same as at the minimum.

Since log10(x) = 0.434 ln(x) and ln[(1 + |aRT|)/(1 − |aRT|)] = 2[|aRT| +
|aRT|3/3 + |aRT|5/5 + . . .],

�+ ≈ 8.7 dB |aRT| for |aRT| � 1. (2.65)

Example 2.1 Cable Gain Find the minimum, maximum, and mean cable
gains for a cable that has a loss of 2 dB in a matched environment (its nominal
loss) but is operating with a SWR of 2 looking into the driving module and a
SWR of 3 looking into the load.

We obtain the magnitude of the voltage transfer ratio for the matched cable,

|τ | = 10(−2 dB/20 dB) = 0.7943. (2.66)

The round-trip voltage gain, from Eq. (2.53), is

|aRT| = (0.7943)2 2 − 1

2 + 1

3 − 1

3 + 1
= 0.631 × 1

3
× 1

2
= 0.1052. (2.67)

From Eqs. (2.55) and (2.56) the extremes of the cable voltage gain are

|acbl|max = 0.7943

1 − 0.1052
= 0.8876 ⇒ −1.035 dB (2.68)

and

|acbl|min = 0.7943

1 + 0.1052
= 0.7187 ⇒ −2.869 dB. (2.69)

The mean power gain is obtained from Eq. (2.59) as

gcbl = 0.79432

1 − 0.1052
= 0.6380 ⇒ −1.952 dB, (2.70)

which is also the average of the maximum and minimum gains in dB, Eqs. (2.68)
and (2.69).

Alternatively, we can find the values in Eqs. (2.68) and (2.69) approximately
using Eq. (2.65). The deviation of the maximum and minimum gains in dB from
their mean is

� ≈ 8.7 dB × 0.1052 = 0.915 dB. (2.71)
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This approximation along with Eq. (2.70) implies

Acbl,max ≡ Gcbl,max ≈ −1.952 dB + 0.915 dB = −1.037 dB (2.72)

and

Acbl,min ≡ Gcbl,min ≈ −1.952 dB − 0.915 dB = −2.867 dB, (2.73)

which are approximately the values obtained in Eqs. (2.68) and (2.69).

Example 2.2 Effect of Mismatch The gain of a cascade is estimated by
adding (in dB) the transducer gains of all its modules and subtracting the nominal
losses of the cables. If we accept an SWR specification of 2 at the output of one
of the modules and 3 at the input to the following module, and if these modules
are connected by a cable with 2 dB of nominal loss, how will this affect the gain
of the cascade.

Based on Example 2.1, we know that the gain of the cascade can vary about
±0.92 dB [Eq. (2.71)] due to such an interface. There would also be an increase
in mean gain of about 0.05 dB [Eq. (2.70)] under any conditions where the
specified SWRs actually occurred. This is the mean over all possible phases due
to the reflections and cable delay. It is small compared to the maximum and
minimum gain changes and would be even smaller if averaged over the various
actual values of SWR so the main effect is the ±0.92 dB uncertainty introduced
into the cascade gain. This amount of variation requires that the worst-case phase
relationships occur when both SWRs are at their maximum allowed values.

The variance of G, σ 2
G, is also important since these variances will add for all

of the modules and interconnects to give an overall variance for the cascade. The
variance may provide a more useful estimate of the range of gains to be expected
if the maximum and minimum are considered too extreme for an application,
especially as the number of modules and interconnects grow. The deviation of
Gcbl = 10 dB log(|gcbl|) from its mean, Eq. (2.62), is plotted, for various |aRT|,
as a function of θ in Fig. 2.8. From the data represented there, the variance can
be computed (summing 40 data points over half a cycle of θ ), giving a standard
deviation σG as plotted in Fig. 2.9. This relationship can be well approximated as

σG ≈ 0.7�+ (2.74)

for
|aRT| < 0.7. (2.75)

The inequality |aRT| < 0.7 corresponds to SWRs less than 11 at both ends of the
cable and should therefore cover most cases.
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2.3.2.2 Power Delivered to the Load We briefly consider how much power
is delivered by the cable to its load in Appendix L. This is not an important
parameter in our cascade since module gains are relative to the forward power
at the cable output rather than the absorbed power, but it can be useful for other
purposes and it may help to clarify the meaning of the effective gain of the cable.
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2.3.2.3 Phase Variation Due to Reflection In some cases we may need to
know how much the phase delay can vary due to mismatches at the ends of a (pos-
sibly calibrated) interconnect. We rewrite Eq. (2.43), using (2.49) and (2.52), as

acbl = exp(h − jb)

1 − |aRT| exp(jθ)
= ehe−jb

(1 − |aRT| cos θ) − j |aRT| sin θ
(2.76)

to make clear that the phase of acbl is γ − b, where b is the phase lag due to
one-way transmission through the cable, and

γ = arctan
|aRT| sin θ

1 − |aRT| cos θ
(2.77)

is the additional phase shift due to the reflections. To find the extreme values of
γ as θ varies over 360◦, we set the derivative,

dγ

dθ
= |aRT| cos θ(1 − |aRT| cos θ) − (|aRT| sin θ)2

(1 − |aRT| cos θ)2 + (|aRT| sin θ)2
= |aRT|(cos θ − |aRT|)

1 − 2|aRT| cos θ + |aRT|2 ,

(2.78)
to zero, obtaining

cos θ = |aRT| at
dγ

dθ
= 0. (2.79)

Using that value of θ in Eq. (2.77), we obtain

γmax,min = arctan
±|aRT|√1 − |aRT|2

1 − |aRT|2 = ±arctan
|aRT|√

1 − |aRT|2 (2.80)

= ±arcsin|aRT|. (2.81)

In addition, calculation of γ from Eq. (2.77) for 40 points over one cycle of θ

indicates that γ has zero mean and a standard deviation as plotted versus |aRT|
in Fig. 2.10. As was the case for gain variation, the standard deviation can be
approximated as 70% of the peak,

σγ ≈ 0.7γmax, (2.82)

with good accuracy for SWRs less than 10.

2.3.2.4 Generalization to Bilateral Modules We have written the expres-
sions in this section (2.3) for unilateral modules, but they generally can be applied
also to bilateral modules with an appropriate interpretation of the parameters.
That requires that S11,j+1 and S22,j−1 in the expressions for acbl be changed
to the reflection coefficients of the preceding and succeeding cascade sections,
respectively. We might give them symbols ρ11,j+1 and ρ11,j−1 or S11,(j+1)− and
S22,(j−1)+. This generalization might be useful for some simple problems, but the
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complexity of computing the reflection from two cascades of modules for each
acbl in a cascade shows why unilateral modules are needed for simplicity.

2.3.3 Overall Response, Standard Cascade

2.3.3.1 Gain The total power gain of a standard cascade is the sum of the
(dB) module power gains, as measured in an environment of nominal interface
impedances, plus the effective gains of the interconnections. For each module
we can estimate a mean value and a peak deviation from the mean as well as a
standard deviation. From these we can compute the overall cascade gain,

Gcas =
N∑

j=1

Gj, (2.83)

where j is the index of either a module or an interconnection, of which there
are N total, and G represents mean, maximum, or minimum gain in dB. This is
basically the same as Eq. (2.38).

Similarly, the variance of the gain can be computed from

σ 2
cas =

N∑
j=1

σ 2
j , (2.84)

where σj is the estimated standard deviation of gain for a module or of effective
gain for an interconnection.

If adjacent modules are connected directly, without a cable, we can still
conceive of a zero-length cable between them. That gives us a place in
which to define the waves and allows us to use module transducer gains in
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our standard-impedance framework. Both modules must be characterized using
the impedance of the chosen cable at their interface. (In the design phase,
characterization may consist of estimates based on expected module designs.)
If the output and input impedances of the modules at the interface differ,
the impedance of the zero-length cable should be set equal to one of them,
preferably the one that can be matched with the smallest SWR, in order
to minimize superfluous reflections and the resulting variations in calculated
cascade performance. Then the other module must be recharacterized for that
interface impedance.

2.3.3.2 End Elements in the Cascade The gain given by Eq. (2.83) is the
cascade’s transducer gain where the impedance of the source is the same as the
standard impedance that is defined for the input of the first module and that of
the load is the same as for the last module (Fig. 2.11). However, other sources
and loads can be accommodated.

The last element N may be a module that drives a load at the nominal
impedance or one that drives no load at all. In the latter case, the module can
be given a convenient transfer function that represents the ratio of a desired
observed variable (e.g., a meter reading) to the driving signal, vo,N , the same
ratio that is used in characterizing the module. In the former case, output condi-
tions will be the same as during measurement so the measured gain of module
N will apply. (If the load is separated from the module by a cable of nominal
impedance, the power dissipated in that load can easily be related to the power
at the module output.)

A load that is not at nominal impedance can be treated like the final module
in the cascade. For example, a 10-� resistive load connected to a 50-� output
cable provides an SWR of 5 at the cable output. The power dissipated in the
load will be 0.556 times the power in the forward wave in the cable6, so the last
module can be characterized by a SWR of 5 and a power gain of 0.556. The
computed cascade output will then be the power delivered to the 10-� load.

If the cascade source impedance is not matched to the standard impedance of
the cable to which it is connected, that cable becomes the first element in the
cascade and has the source SWR at its input. The cascade gain is then relative to
the power that the source delivers to that cable (in vojT of Fig. 2.6). For example,
an antenna might be designed to match 50 � and its SWR and output power into
50 � specified. That specified power would be the power induced into the cable,
and the forward power at the cable output would depend on that induced power
and on the SWRs at the antenna and at the cable output, just as if the cable were

Source

Cable
1

Cable
2

Cable
3

Load

Module
1

Module
2

Module
3

Module
4

Fig. 2.11 Cascade of unilateral modules.
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driven by a module. The cascade gain would be relative to the power that the
antenna would deliver to a 50-� resistor.

2.3.3.3 Phase Since phase shifts of the modules and effective phase shifts
of the interconnections add to give the cascade phase shift, these can also be
summed, based on specifications or estimates for the modules and the expected
phase shift due to cable length (−b) plus γ [Eq. (2.77)]. Maximum variations can
be estimated for the modules and added to those given by the extremes for the
interconnections in Eq. (2.80). Variances can also be estimated and added, as in
Eq. (2.84), for each of the series elements, using Eq. (2.82) for interconnections.

2.3.3.4 Cascade Calculations

Example 2.3 Figure 2.11 shows a cascade of unilateral modules separated by
cables at the nominal impedance for the system, the impedance at which the
module parameters are characterized (say 50 �). Figure 2.12 is a spreadsheet
used in calculating the characteristics of the overall cascade. (This should be
downloaded so the underlying equations can be read.)

A B C D E F G H
2 Gain Gain SWR
3 nom +/− at out |a RT|
4 Module 1 12.0 dB 1.0 dB 1.5
5 Cable 1 −1.5 dB 1.5 0.028318
6 Module 2 8.0 dB 2.0 dB 2
7 Cable 2 −1.0 dB 2 0.088259
8 Module 3 2.0 dB 2.0 dB 2.8
9 Cable 3 −0.8 dB 3.2 0.206377

10 Module 4 30.0 dB 2.0 dB
11 DERIVED
12 Gain Gain Gain Gain Gain phase phase
13 mean max min ± s ± s

14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB
15 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB 0.17 dB 1.6227° 1.1359°
16 Module 2 8.00 dB 10.00 dB 6.00 dB 2.00 dB 1.25 dB
17 Cable 2 −0.97 dB −0.20 dB −1.73 dB 0.77 dB 0.54 dB 5.0634° 3.5444°
18 Module 3 2.00 dB 4.00 dB 0.00 dB 2.00 dB 0.80 dB
19 Cable 3 −0.61 dB 1.21 dB −2.43 dB 1.82 dB 1.27 dB 11.9101° 8.3371°
20 Module 4 30.00 dB 32.00 dB 28.00 dB 2.00 dB 1.30 dB
21
22 at output of
23 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB 0.0000° 0.0000°
24 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB 0.53 dB 1.6227° 1.1359°
25 Module 2 18.50 dB 21.75 dB 15.26 dB 3.25 dB 1.36 dB 1.6227° 1.1359°
26 Cable 2 17.54 dB 21.55 dB 13.52 dB 4.01 dB 1.46 dB 6.6861° 3.7220°
27 Module 3 19.54 dB 25.55 dB 13.52 dB 6.01 dB 1.66 dB 6.6861° 3.7220°
28 Cable 3 18.93 dB 26.76 dB 11.09 dB 7.83 dB 2.10 dB 18.5963° 9.1302°
29 Module 4 48.93 dB 58.76 dB 39.09 dB 9.83 dB 2.47 dB 18.5963° 9.1302°

CUMULATIVE

Fig. 2.12 Spreadsheet for cascade of unilateral modules.
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Cells B4–D10 (inclusive) are specified module and cable parameters. From
these are derived the individual stage parameters in rows 14–20 and from those
are computed the cumulative gains and phase shifts in rows 23–29.

Cells D4–D9 give the SWRs at the outputs of each element. These are due to
the modules, not to the interconnects, presuming that the latter are much better
matched than the former. Thus cell D5 gives the input SWR for Module 2, even
though it is labeled as the SWR at the output of the preceding interconnect.
Source and load are 50 � so no SWR is shown for them.

Cells G5, G7, and G9 are the values of |aRT| computed from the loss in column
B and the SWRs at either end of the cable (column D) according to Eq. (2.53).

In cells E14–E20, maximum variations for the module gains are taken from
corresponding values in cells C4–C10. Maximum variations for cable intercon-
nects are taken from Eq. (2.64), based on values for |aRT| in the corresponding
cells G5–G9.

Standard deviations σ of gain are estimated for each module (F14–F20),
perhaps from data or perhaps based on the specified maximum deviations and
expected distribution of variations. Standard deviations for the interconnects are
taken as 0.7 times the peak deviations in the column to their left in accordance
with Eq. (2.74).

For phase, we have shown only variations, and those only for the intercon-
nects. We could, of course, also give such values for the modules. The effective
variations in phase due to interconnections (cells G15–G19) are computed based
on |aRT| (cells G5–G9) using Eq. (2.81). Standard deviations (H15–H19) are
computed as 0.7 times these peak variations in accordance with Eq. (2.82).

Maximum and minimum gains (cells C14–D20) are computed from the mean
values (cells B14–B20) and peak variations (cells E14–E20).

Cumulative gains and peak variations (cells B23–E29) are obtained by adding
the value for that element, given in rows 14–20 of the same column, to the sum
in the cell just above. The cumulative standard deviations (cells F23–F29) are
obtained similarly except they are squared before adding (and then the root is
taken). Cumulative phase peak variations and standard deviations (G23–H29)
are similarly computed.

Row 29 gives cumulative values for the cascade. Note that, while the sum
of module peak gain variations (cells C4–C10) is ±7 dB, the cumulative peak
variation (cell E29) is ±9.83 dB, the difference being due to mismatches.

2.3.4 Combined with Bilateral Modules

Modules that are not, or cannot be approximated as, unilateral require a repre-
sentation such as the T parameters when they are in cascade. A cascade of such
modules can then be represented as a single module with parameters obtained
by multiplying the T matrices together. The inclusion of any unilateral mod-
ule in a cascade of otherwise bilateral modules causes the entire cascade to
become unilateral. This must be so because the unilateral module prevents reverse
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transmission through the cascade. We show this mathematically (and obtain some
useful expressions in the process) as follows.

The S-parameter matrix for a cascade of two modules is given by (see
Appendix S)

Scomp ≡
(

S11comp S12comp

S21comp S22comp

)

=




S111 + S112S121S211

1 − S112S221

S121S122

1 − S112S221
S212S211

1 − S112S221
S222 + S122S212S221

1 − S112S221


 , (2.85)

where the third subscript is the module number and module 1 drives module 2.
If module 1 is unilateral (S121 = 0, Fig. 2.13a), this becomes

Scomp|1 unilateral =

 S111 0

S212S211

1 − S112S221
S222 + S122S212S221

1 − S112S221


 . (2.86)

If module 2 is unilateral (S122 = 0, Fig. 2.13b), this becomes

Scomp|2 unilateral =




S111 + S112S121S211

1 − S112S221
0

S212S211

1 − S112S221
S222


 . (2.87)

In each case we see that the composite is unilateral, since S12,comp = 0. If either
of these composites is combined with another bilateral module, either after or

vo1 vo3

vi3
vi1 vi2

vo2

= vo1 S111

S111

S211 S221

0 S112 S122

S212 S222

(a)

vo1 vo3

vi3
vi1 vi2

vo2S111 S121

S211 S221

S112

S212 S222

0

= S112vo2

(b)

Fig. 2.13 Bilateral module combined with unilateral module.
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before it, the composite parameters will be given either by Eq. (2.86) or by
Eq. (2.87) with the S parameters of the original pair taken from Eq. (2.86) or
from Eq. (2.87) as appropriate. Therefore, the addition of a bilateral module will
produce another unilateral composite, and so forth.

These composites can then be used as elements in a cascade of unilateral
modules. This will be illustrated in the following example.

Example 2.4 Composite Module from Bilateral and Unilateral Modules
Figure 2.14 shows a cascade consisting of two bilateral modules followed by
a unilateral module interconnected with cables matched to the nominal system
impedance. The S parameters of the cascade elements are shown in the spreadsheet
of Fig. 2.15 in cells C3–F12. Note that the last module, E, has S12 = 0, defining it
as unilateral, whereas the other two modules have finite S12 and thus are bilateral.

Cells C15–F24 contain the equivalent T parameters, obtained from the S

parameters according to Eq. (2.29). These are automatically (i.e., by formulas
in the spreadsheet) converted from polar to rectangular form in cells C27–G36.
These rows are copied into a MATLAB script (Fig. 2.16). The semicolon required
to mark the end of the matrix row in MATLAB is included in cells E27–E36
to facilitate the paste operation. The real and imaginary parts are transferred
separately and combined in the script. (Matrix B is shown in rectangular form
to illustrate an alternate, if less convenient, way to enter the data.)

After all the T matrices have been filled in the script, it is executed and
computes the product of the T matrices. The output from the script is shown
at the bottom of Fig. 2.16. (In MATLAB, results of command lines that are
not terminated by semicolons are printed, so the various matrices appear in the
output.) Only the E matrix and the product T matrix are visible in the figure. The
magnitude Tm and angle Ta of the product matrix T are also created to facilitate
conversion to S parameters.

The resulting product is converted from T -matrix form to S-matrix form
according to Eq. (2.31) and entered into cells C39–F40 (Fig. 2.15). The SWR
and dB gains corresponding to the S parameters are automatically computed and
entered in rows 41 and 42. Note that S12 for the composite is essentially zero,
signifying a composite unilateral module.

The conversions from S to T parameters and visa versa were facilitated by an
ST-Conversion Calculator spreadsheet, shown in Fig. 2.17. (The second page of

Source

Cable
B

Cable
D

Load

Module
A

Module
C

Module
E

bilateral bilateral  unilateral

Fig. 2.14 Cascade of bilateral modules and one unilateral module.



SIMPLIFICATION: UNILATERAL MODULES 31

A B C D E F G
2 S11 S12 S21 S22
3 Module A magnitude 0.224 0.2 1.8 0.4
4 degrees −30 0 −45 180
5 Cable B magnitude 0 0.9 0.9 0
6 degrees 0 −60 −60 0
7 Module C magnitude 0.2 0.15 1.78 0.25
8 degrees 0 −30 −30 0
9 Cable D magnitude 0 0.9 0.9 0
10 degrees 0 −60 −60 0
11 Module E magnitude 0.2 0 2.2 0.3333
12 degrees −30 0 −60 −30
13
14 T11 T12 T21 T22
15 Module A magnitude 0.5555556 −0.2222222 0.1244444 0.2484159
16 degrees 45.00° 225.00° 15.00° 2.97°
17 Cable B magnitude 1.1111111 0 0 0.9
18 degrees 60 60 60 −60
19 Module C magnitude 0.5617978 −0.1404494 0.1123596 0.1381143
20 degrees 30 30 30 −40.144628
21 Cable D magnitude 1.1111111 0 0 0.9
22 degrees 60 60 60 −60
23 Module E magnitude 0.4545455 −0.1515 0.0909091 0.0303
24 degrees 60 30 30 180
25 [rad/deg = 0.0174533]
26 T11 T12 T21 T22
27 Module A real 0.3928371 0.1571348 ; 0.1202041 0.24808
28 imaginary 0.3928371 0.1571348 ; 0.0322086 0.01288
29 Cable B real 0.5555556 0 ; 0 0.45
30 imaginary 0.9622504 0 ; 0 −0.7794
31 Module C real 0.4865311 −0.1216328 ; 0.0973062 0.10558
32 imaginary 0.2808989 −0.0702247 ; 0.0561798 −0.089
33 Cable D real 0.5555556 0 ; 0 0.45
34 imaginary 0.9622504 0 ; 0 −0.7794
35 Module E real 0.2272727 −0.1312028 ; 0.0787296 −0.0303
36 imaginary 0.3936479 −0.07575 ; 0.0454545 3.7E−18
37
38 S11 S12 S21 S22
39 Total magnitude 0.20022 0.00003 5.62430 0.33352
40 degrees −41.6826 1.5398 106.7776 0
41 SWR 1.50 2.00
42 −91.48 dB 15.00 dBgain

Fig. 2.15 Spreadsheet for composite parameters.

this spreadsheet is an aid to facilitate copying from matrix-shaped format of the
script output to the linear-shaped format of the spreadsheet.)

The gain and SWRs for the composite module can now be entered as those
of a unilateral module in a cascade, such as that represented by Fig. 2.18 and
the spreadsheet in Fig. 2.19 where the composite in Fig. 2.14 becomes Module
2. (Compare its gain and SWR to the values in lines 41 and 42 of Fig. 2.15.)
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Fig. 2.16 MATLAB script and response, multiplication of T matrices.

2.3.5 Lossy Interconnections

Well-matched but lossy elements, attenuators or isolators, reduce the interac-
tions between the modules on either side and can cause them to act as if they
were unilateral.
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ENTER
magnitude

magnitude

degrees

degrees

EQUIVALENT

ENTER
magnitude

magnitude

degrees

degrees

EQUIVALENT

S11
0
0

T11

0.00°
0.25118864

T11
4.75E−03

−1.51E+02
S11

151.36°
0

T12
0.00E+00

0 0 0
S12

0.00°

T21
0 0

S21

151.36°
0 210.322635

T22

S22

151.36°
0

S12
0
0

T12

0.00°
0.13162285

S21
3.981

0
T21

0.00°
0

S22
−0.524

0
T22

0.00°
0

Fig. 2.17 S –T conversion calculator.
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Cable
1

Cable
2

Load

Module
1

Module
2

Module
3

Module
4

Attenuator

Fig. 2.18 Cascade with attenuator.

Figure 2.20 shows a cascade of three bilateral modules where the middle
module (index 2) is reflectionless but lossy. We will treat it as a lossy interconnect.
The source might represent all the previous modules, and the load might represent
all of the subsequent modules, in the cascade. The reverse wave at port 2, vi2,
equals vo2 multiplied by the round-trip loss of the following element, 2, times the
reflection coefficient at the input to 3. This is reflected at the output of module
1 and combines with the wave transmitted through module 1 to give

vo2 = S211vo1(1 + aRT + a2
RT + . . .), (2.88)

where the (total) round-trip loss is

aRT = S212ρ3S122ρ1. (2.89)

The four parameters in aRT represent the forward transfer function in the lossy
element 2, the reflection at the input to element 3, the reverse transmission in the
lossy element, and the reflection at the output of element 1, respectively. Here
ρ1 includes reflections due to module 1 directly as well as all previous modules.
Likewise, ρ3 includes reflections from the first and all subsequent modules within
the load. All of these parameters can be small so the product aRT can be much
less than one, in which case it can be ignored in Eq. (2.88). This condition can
be true regardless of ρ1 and ρ3 (which are always less than 1) if there is enough
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A B C D E F G H
2 Gain Gain SWR
3 nom +/− at out |a RT|
4 Module 1 12.0 dB 1.0 dB 1.5
5 Cable 1 −1.5 dB 1.5 0.02832
6 Module 2 15.0 dB 2.0 dB 2
7 Attenuator −8.0 dB 2 0.01761
8 Module 3 2.0 dB 2.0 dB 2.8
9 Cable 2 −0.8 dB 3.2 0.20638

10 Module 4 30.0 dB 2.0 dB
11 DERIVED
12 Gain Gain Gain Gain Gain phase phase
13 mean max min s ±± s

14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB
15 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB 0.17 dB 1.6227° 1.1359°
16 Module 2 15.00 dB 17.00 dB 13.00 dB 2.00 dB 1.00 dB
17 Attenuator −8.00 dB −7.85 dB −8.15 dB 0.15 dB 0.11 dB 1.0090° 0.7063°
18 Module 3 2.00 dB 4.00 dB 0.00 dB 2.00 dB 0.80 dB
19 Cable 2 −0.61 dB 1.21 dB −2.43 dB 1.82 dB 1.27 dB 11.9101° 8.3371°
20 Module 4 30.00 dB 32.00 dB 28.00 dB 2.00 dB 1.30 dB
21
22 at output of
23 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB 0.0000° 0.0000°
24 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB 0.53 dB 1.6227° 1.1359°
25 Module 2 25.50 dB 28.75 dB 22.26 dB 3.25 dB 1.13 dB 1.6227° 1.1359°
26 Attenuator 17.50 dB 20.90 dB 14.11 dB 3.40 dB 1.14 dB 2.6317° 1.3376°
27 Module 3 19.50 dB 24.90 dB 14.11 dB 5.40 dB 1.39 dB 2.6317° 1.3376°
28 Cable 2 18.89 dB 26.11 dB 11.68 dB 7.22 dB 1.88 dB 14.5419° 8.4437°
29 Module 4 48.89 dB 58.11 dB 39.68 dB 9.22 dB 2.29 dB 14.5419° 8.4437°

CUMULATIVE

Fig. 2.19 Spreadsheet for cascade with attenuator.

S111

S211

S121 S113 S123

S213 S223S221 S212

S122

vo1 vo2 vo3 vo4

vi1 vi2 vi3 vi4

0

0
LoadSource

1 2 3

Lossyr1 r3

Fig. 2.20 Modules separated by well-matched lossy module.

attenuation in the interconnect. Then the forward wave from the output of module
1 is simply

vo2 ≈ S211vo1, (2.90)

and the output from the lossy interconnect is

vo3 ≈ S212S211vo1. (2.91)



SIMPLIFICATION: UNILATERAL MODULES 35

Thus, transmission through the bilateral module (1) and lossy interconnect (2) is
represented by the simple product of S21’s for these two components, as if module
1 were unilateral. Moreover, the wave out of the input of module 1 is (Fig. 2.20)

vi1 = vo1S111 + vi2S121 = vo1S111 + vo2S212ρ3S122S121. (2.92)

If we use Eq. (2.90) for vo2, this becomes

vi1 ≈ vo1[S111 + S211S212ρ3S122S121] ≈ vo1S111, (2.93)

where the small value of the product of the group of five factors, which includes
the round-trip loss of the interconnect (S122S212), was used to discard them. We
see that vi1 is solely due to the reflection at the input of module 1, as if that module
were unilateral. Thus module 1 acts like a unilateral module when followed by
a sufficiently lossy interconnect. Furthermore, and for similar reasons, the first
module following a sufficiently lossy interconnect is effectively unilateral. Any
reverse transmission through module 3 is attenuated by the round-trip loss of the
interconnect plus the reflection coefficient ρ1 before reentering module 3. The
output of module 3 is, therefore,

vo4 = vo3S213 + vi4S223, (2.94)

as if it were unilateral, and we have already shown that vi1 is not influenced by
vi4, again consistent with unilaterality in module 3.

Example 2.5 Attenuator in Cascade In this example, after first considering
the effect of including an attenuator in a cascade of unilateral modules, we will
investigate its effectiveness in permitting adjacent bilateral modules to be treated
as unilateral.

Figures 2.18 and 2.19 show a cascade that includes an attenuator. These are
similar to the cascade discussed in Example 2.3 (Figs. 2.11 and 2.12) except the
middle cable has been replaced by an attenuator and the gain of the preceding
module has been adjusted to compensate for the added loss. The treatment is
not basically different with the attenuator; the interconnect just has more loss.
[There could be some additional complexities if the attenuator had a variation in
its basic (matched) gain. Then we would have to decide how to combine these
variations with the variation due to reflections at the ends of the interconnect
(e.g., add them, add their squares, etc.).]

The presence of the attenuator reduces the effects of reflections at that interface
by attenuating the reflected waves. Note in Fig. 2.19 the large effective gain
variation in cable 2 (cell E19) compared to that for cable 1 (cell E15). This is
due to the low attenuation and large SWRs at the ends of the former. Note how
the presence of the attenuator has reduced the variations in overall gain between
Examples 2.3 and 2.4 (cells E29 in Figs. 2.12 and 2.19).

Now let us test the effectiveness of the attenuator in removing the effects
of feedback (S12) in adjacent modules. In these tests we will vary the gain of
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the attenuator, maintaining constant nominal cascade gain (product of individual
element gains) by varying the gain of the final module to compensate. For each
setting we will compare the cascade gain when S12 is zero (unilateral) in the
modules before and after the attenuator to the cascade gain when these modules
are bilateral. In the latter case, we will set S12 = 1/S21 in both modules, the
upper limit of reverse gain for unconditional stability.

We will calculate the overall transfer function by multiplying T matrices,
using MATLAB to multiply the matrices and Excel spreadsheets for the other
calculations. This is similar to what was done in Example 2.4, but this time we
will include the S –T matrix conversions on the spreadsheet, rather than using a
separate conversion spreadsheet.

First, we must specify the module parameters more completely than given in
Fig. 2.19. We must add a phase for each of the S parameters since Fig. 2.19
only gives the magnitude of the transfer functions and the SWRs, which do not
reveal the phases of the reflections. We will set all the phases to zero in these
experiments, mainly in an attempt to prevent a fortuitous choice of phases from
canceling the effects of the reflections. This also reduces the calculation time
some since we will not have to copy varying phases into MATLAB.

Excerpts from the spreadsheet are shown in Fig. 2.21. The region of the
spreadsheet where we enter S parameters is shown at Fig. 2.21a. Note that S12

has been set equal to the reciprocal of S21 for Modules 2 and 3. This cascade
gain will be compared to the cascade gain that occurs when these two values
are set equal to zero. The attenuator gain is entered in dB (right column) and
S12 = S21 is automatically set to give that value. The spreadsheet also automati-
cally sets S21 of Module 4 to maintain a total nominal (not considering reflections)
gain of 48.7 dB.

MATLAB is used, as it was in Example 2.4, to multiply the matrices, but here
the spreadsheet includes the conversions between S and T parameters, which
employed a separate calculator spreadsheet before. The T parameters of the units
(modules and cables) are copied from the spreadsheet into MATLAB, which then
computes their product, which is the T matrix for the cascade. This is entered
into the spreadsheet (Fig. 2.21c), with some help from Excel’s Text to Columns
feature. The spreadsheet then converts these T parameters to S parameters, as
shown in Fig. 2.21b. Parts b and c show portions of the spreadsheet for two
attenuator settings. As before, gain in dB and SWR are computed from the S

parameters. Note that the overall S12 is −∞ dB due to the presence of unilateral
modules in the chain.

Test 1: Cascade of Fig. 2.21 Gain is plotted against the attenuator value in
Fig. 2.22. Note that the difference between the gain when true unilateral modules
are used and that when severely bilateral modules are used, on both sides of the
attenuator, goes from 3.7 dB with zero attenuation to only 0.25 dB with 12 dB of
attenuation. This confirms that unilateral modules can replace the bilateral mod-
ules if the adjacent attenuation is high enough. The gain varies with attenuation,
even with unilateral modules, because of the reflections at the interfaces at either
end of the attenuator.
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Module 1 magnitude
degrees

Cable 1 magnitude
degrees

Module 2 magnitude
degrees

Attenuator magnitude
degrees

Module 3 magnitude
degrees

Module 4 magnitude
degrees

Cable 2 magnitude
degrees

0
0
0
0

0.2
0
0
0

0.333
0
0
0

0.524
0

S11
0
0

0.841
0

0.17782794
0

0.251
0

0.79432823
0

0.912
0
0
0

S12
3.981

0
0.841

0
5.623

0
0.251

0
1.259

0
0.912

0
50.119

0

S21
0.2

0
0
0

0.333
0
0
0

0.474
0
0
0
0
0

S22
12.00 dB

−1.50 dB

15.00 dB

−12.00 dB

2.00 dB

−0.80 dB

34.00 dB

48.70 dB

(a) Module S parameter input

M2 AND M3 CONDITIONALLY UNSTABLE (VERGE)
Total
Attenuator

magnitude
degrees
SWR
gain

0 dB

0.00E + 00
0.00°

6.11E + 02
0.00°

1.00

0.00E + 00
0.00°
1.00

0
0.00°

−inf 55.73 dB

S11 S12 S21 S22

Total
Attenuator

magnitude
degrees
SWR
gain

−1 dB

0.00E + 00
0.00°

5.31E + 02
0.00°

1.00

0.00E + 00
0.00°
1.00

0
0.00°

−inf 54.51 dB

(b) Output for cascade

MATLAB Tm MATLAB Ta

1.636E − 03
0.000E + 00

0
0

0
0

0
0

1.882E − 03
0.000E + 00

0
0

0
0

0
0

(c) Magnitude and phase of four T-matrix elements are entered here from MATLAB.
This part of the spreadsheet is to the right of (b) above. Data for two runs are shown;
more can be accommodated.

Fig. 2.21 Spreadsheet for computing cascade gain with bilateral modules.

Test 2: No Reflections at the Attenuator In this test the reflections are removed
from the modules at the ends of the attenuator to prevent any variations with
attenuation in the true unilateral case. All of the other interfaces are given SWRs
of 3 (S11 or S22 = 0.5). The input parameters are shown in Fig. 2.23 and results
are plotted in Fig. 2.24. Note that the gain is now not a function of attenuation
at all when the modules are truly unilateral. The effect with bilateral modules
adjacent to the attenuator varied from about 2.2 dB for no attenuation and 0.25 dB
for about 9-dB attenuation.
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Fig. 2.22 Effect of attenuation and feedback, test 1.

Module 1 magnitude
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Attenuator magnitude
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0
0
0
0
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0
0
0
0
0
0
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0
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0
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30.00 dB
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Fig. 2.23 Parameters for test 2.

These tests show to what degree the attenuator allowed adjacent bilateral
modules to be approximated as unilateral. They are only two particular cases
(making room for further studies). However, the values of reverse transmission
S12 were high, at the limit of conditional instability, reflections were relatively
high, and phases were all the same to prevent cancellation. We might expect
greater effectiveness in many practical cases.

2.3.6 Additional Considerations

2.3.6.1 Variations in SWRs In our examples, we have assumed a fixed
SWR for each module in computing variances. If these are maximum SWRs, the
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Fig. 2.24 Effect of attenuation and feedback, test 2.

variances will be pessimistic since the variance of the total would be reduced by
variations of SWR below its maximum. Figure 2.25 shows variances of gain and
phase with SWR in the cascade of Fig. 2.19. These are plotted against a multi-
plier that was applied simultaneously to each |ρ|. The values used in Fig. 2.19
correspond to a multiplier value of one, whereas all SWRs become one when
the |ρ| multiplier is zero. In that case, the remaining standard deviation of gain
is due to specified gain variations, not SWRs.

2.3.6.2 Reflections at Interconnects We have also neglected the possibil-
ity of reflections in the interconnects, including the possibility of some difference
in the exact impedances of the interconnects and the measurement system (Egan,
2002, Section R.2). We expect that passive interconnects can be built with rela-
tively good control over interface impedances, but there are bound to be additional
reflections. Not surprisingly, they decrease the gain and increase its variabil-
ity (Egan, 2002, Section R.1). Fortunately, reflections in interconnects and the
reduced levels of SWRs that were discussed in the previous paragraph have
contrary effects on gain variation. Unfortunately, they both tend to decrease
mean gain.

2.3.6.3 Parameters in Composite Modules While the range of parame-
ters to be expected from individual modules may be available from specifications
or test results, it may be more difficult to determine that range for composite mod-
ules. These are equivalent unilateral modules composed of one or more bilateral
modules plus a unilateral module, as described in Section 2.3.5, or similar com-
posites to be described in the next section. Such composites can be included
as equivalent unilateral modules, but it may be necessary to vary some of the
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Fig. 2.25 Effect of SWR on gain and phase deviation, cascade of Fig. 2.19.

module parameters (e.g., phases of the S parameters) over their expected ranges
to determine the expected range of parameters of the composite.

2.4 NONSTANDARD IMPEDANCES

Some modules may be specified by their input and output impedances, rather
than their SWRs. They may also be specified by their maximum available gains,
that is, the power delivered to a matched load divided by the power absorbed by
the module when it is driven by a matched source (Appendix G).7 Appendix Z
treats unilateral modules that are so specified (we will call them nonstandard
modules) and provides formulas and a spreadsheet for computing the response
of a cascade of such modules and obtaining the cascade’s S parameters. Once
that is done, the nonstandard cascade can be included as a module in a standard
cascade. (This is also true for a single nonstandard module.)

2.5 USE OF SENSITIVITIES TO FIND VARIATIONS

We have given formulas, in Section 2.3.3, for determining maximums and min-
imums and variances of cascade gains based on mismatches and on estimates of
variances for individual modules. But, if we compose a unilateral module from
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bilateral modules or nonstandard modules, how are we to determine the range of
parameters of the composite module, which is based on many parameters within
the individual modules of the composite? One way is to perform a Monte Carlo
analysis, but it may be more efficient to determine the sensitivity of the composite
parameters to individual parameters and then use these to determine worst-case
variations of the composite parameters, perhaps also estimating variances based
on the worst cases.

The advantage of the sensitivity analysis is that the individual parameters can
be varied one time, whereas in Monte Carlo each of these parameters must be
given many values. The disadvantage is that the sensitivity assumes linearity, that
the sensitivity is applicable even in the presence of variations of other parameters
and for whatever magnitude of parameter changes we ultimately use. Its accuracy
declines as the magnitudes of pertinent changes increase, but its relative simplicity
may recommend it, at least for initial evaluation.

Sensitivity analysis is more broadly useful than this usage within composite
modules, however. It can help us concentrate on module parameters that are most
influential in affecting overall cascade performance, and it can help us to quickly
estimate the effects of changes in module parameters on cascade parameters.

The basic sensitivity equation gives the change in an overall cascade parameter
(e.g., gain) as

dy =
N∑

j=1

Ŝj dxj , (2.95)

where

Ŝj
�= ∂y

∂xj

(2.96)

is the sensitivity of changes in a scalar quantity y to a change in an individual
module parameter xj , assuming the xj are independent of each other. We can
compute Ŝj by writing an expression for y and performing the differentiation
indicated by Eq. (2.96), or we can obtain the derivative by making a small change
in xj and observing the corresponding change in the computed value of y. In
some cases we will find the latter easier; we will consider that method here.

We can determine the maximum change in |y| for a given set of changes in
|x| from

|dy|max =
N∑

j=1

|Ŝj dxj |, (2.97)

where dxj is approximated as the expected change in xj and dy is approximated
as the resulting change in the cascade parameter. (We say “approximate” because
this is only strictly true for differential changes.) When the parameter xj is
complex, we include changes of both the real and imaginary parts of xj in
Eq. (2.97). The absolute values of the changes are added to find how dy would
change if the signs for the individual dx ’s were all chosen to cause dy to change
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in the same direction. This is based on the assumption of linearity, in which case
a change in the sign of dxj causes only a change in the sign of dy.

Example 2.6 Sensitivities Using Spreadsheet Figure 2.26 shows part of the
spreadsheet of Fig. 2.19 with some modifications to aid in the computation of
sensitivities. In this case, the sensitivity of minimum cascade gain to the SWRs
is being computed (the sensitivity of cascade gain to module gain being trivial).

A change of 0.1 has been entered at cell A6. This has caused cell F6 to change
by that amount, resulting in a change in the minimum cascade gain in row 29.
The value of minimum gain with this change has been copied (by value) from
cell E29 to cell C36. This is done for each SWR (using a module or interconnect
name to identify the corresponding SWR). Each time that 0.1 is entered into a
different cell in A4–A9, we copy (by value) the resulting gain from cell E29 into
the appropriate cell in range C34–C39. The value with no modification to the
SWR (i.e., with cells A4–A9 blank) is entered in cell C33 for reference. Changes
from unmodified to modified gains are given in cells D34–D39. Sensitivities
are given in cells E34–E39 for each SWR through division of the changes in
cells D34–D39 by the value of the change that was used, which we entered
in cell F33.

In creating this spreadsheet from its predecessor (after a new column A was
inserted), cells E4–E9 were moved to the right using cut-and-paste (by cell
dragging), so the references in the various formulas in the spreadsheet would

B

A B C D E F G H I
2 Gain Gain SWR SWR
3 ∆ SWR nom +/− at out modified | RT|
4 Module 1 12.0 dB 1.0 dB 1.5 1.5
5 Cable 1 −1.5 dB 1.5 1.5 0.028318
6 0.1 Module 2 15.0 dB 2.0 dB 2 2.1
7 Attenuator −8.0 dB 2 2 0.018746
8 Module 3 2.0 dB 2.0 dB 2.8 2.8
9 Cable 2 −0.8 dB 3.2 3.2 0.206377
10 Module 4 30.0 dB 2.0 dB
11 DERIVED
12 Gain Gain Gain Gain Gain phase phase
13 mean max min ± s ± s

14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB

29 Module 4 48.89 dB 58.12 dB 39.67 dB 9.23 dB 2.29 dB 14.6070° 8.448°
30 ⇑
31 Gain
32 min ∆ Gain Sens. At
33 reference 39.6762
34 Module 1 39.6394 −0.0367 −0.3672
35 Cable 1 39.6394 −0.0367 −0.3672
36 Module 2 39.6665 −0.0097 −0.0969
37 Attenuator 39.6665 −0.0097 −0.0969
38 Module 3 39.6339 −0.0422 −0.4223
39 Cable 2 39.6448 −0.0314 −0.3136

∆ = 0.1

a

Fig. 2.26 Spreadsheet with sensitivities.
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be changed to the new locations. The values in the cells were then copied back
to their former locations. Then the number in cell F4 was replaced with the
equation =A4+E4 and this equation was copied to cells F5–F9 (the references
will change for each cell as we do so). Thus we can enter new values of SWR
into cells E4–E9, and F4–F9 will acquire the changes but will also reflect any
change entered in cells A4–A9.

It is tempting to use cut-and-paste (or drag the cell) to move the �SWR value
down through cells A4–A9 as we observe the effect on the gain. However, that
can be disastrous because the spreadsheet equations that reference the dragged
cell will change their reference to follow the movement, destroying the integrity
of the spreadsheet (the same process that was used in creating F4–F9). This
can happen even if the referencing cells are locked. To avoid this we delete the
contents of one cell and write the value into the next, or, more conveniently, we
can copy-and-paste (not cut-and-paste) the value into a new cell (say by pulling
on the cell’s lower-right corner) and then delete the original value.

When it is worth the effort, we can create macros using the spreadsheet’s built-
in capability to do these processes automatically, possibly using other pages in
the workbook to hold intermediate data.

Example 2.7 Changes Using Spreadsheet Figure 2.27 is similar to Fig. 2.26,
but here we are computing changes in the minimum gain due to specific changes
in the SWRs. We proceed as before but we now record, in cells A34–A39,
the �SWR values used. The sensitivities that were in cells E34–E39 have been
replaced with the absolute values of the changes in gains (cells D34–D39). (Since
all the changes have the same sign, absolute value is of reduced importance for
this case.) The sum of these absolute values is given in cell E40 and below
that are the implied minimum and maximum values of minimum gain due to
these changes.

Recall that we have not accounted for variations in SWR (Section 2.3.6.1),
so we might want to use this process to discern how the gain might be changed
when the SWR does vary from the values used in cells E4–E9. If those values
are worst case, we might enter expected changes to more typical values as the
�SWRs. If they are typical, we might use the �SWRs to bring them to worst
case or to indicate expected variations, sign uncertain. In the latter case, cells
E42 and E43 would be pertinent, whereas, in the other cases, cell D41, which
retains signs, might be more applicable.

2.6 SUMMARY

• S parameters are a convenient set of two-port parameters for RF modules
with standard interface impedances.

• Modules in cascade are represented by T parameters because the T matrices
can be multiplied together to produce a representation of the cascade.
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A B C D E F G H I
2 Gain Gain SWR SWR
3 ∆ SWR nom +/− at out modified |a RT|
4 Module 1 12.0 dB 1.0 dB 1.5 1.5
5 Cable 1 −1.5 dB 1.5 1.5 0.02832
6 Module 2 15.0 dB 2.0 dB 2 2
7 Attenuator −8.0 dB 2 2 0.01761
8 Module 3 2.0 dB 2.0 dB 2.8 2.8
9 0.2 Cable 2 −0.8 dB 3.2 3.4 0.21491

10 Module 4 30.0 dB 2.0 dB
11 DERIVED
12 Gain Gain Gain Gain Gain phase phase
13 mean max min ± s ± s

14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB

29 Module 4 48.91 dB 58.21 dB 39.61 dB 9.30 dB 2.32 dB 15.0417° 8.7894°

30 ⇑
31 Gain
32 min ∆ Gain |∆|
33 reference 39.6762
34 Module 1 39.6574 −0.0187 0.01874
35 Cable 1 39.6501 −0.026 0.02602
36 Module 2 39.6665 −0.0097 0.00969
37 Attenuator 39.6628 −0.0134 0.01339
38 Module 3 39.6177 −0.0585 0.05847
39 Cable 2 39.615 −0.0612 0.06119
40 sum: −0.1688 0.16876
41 39.5074
42 39.5074
43 39.8449

changed min Gain:
min min Gain:
max min Gain:

0.05
0.07
0.1

0.14
0.14
0.2

Fig. 2.27 Spreadsheet with changes.

• Unilateral modules in cascade can be represented by their transducer gains
and SWRs without complete knowledge of their impedances.

• The range of expected gains can be obtained for a standard cascade of
unilateral modules separated by standard-impedance interconnects.

• Bilateral modules can be combined with a unilateral module to make a
composite unilateral module that can be included in a cascade of unilateral
modules.

• Lossy interconnects reduce the influence of SWR and sufficiently lossy
interconnects allow adjacent bilateral modules to be treated as unilateral.

• Gain can be computed for nonstandard cascades of unilateral modules if
module input and output impedances are known.

• Such modules, or cascades of them, can be represented as equivalent standard
modules and interfaced with the standard (impedance) modules for analysis.

• Spreadsheets can be used to compute sensitivities of cascade parameters to
module parameters.
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• Spreadsheets can be used to show the maximum variation in a cascade
parameter caused by specified variations in module parameters.

ENDNOTES

1Other, nonpropagating, electric and magnetic fields can extend through a module port, decaying
along a transmission line (e.g., evanescent fields). If the line is short enough, module performance
might then be affected by a structure attached to the other end of the line. We are not considering
such effects, which are akin to shielding problems.
2Although Z0 for lossy transmission lines can have an imaginary component (Ramo et al., 1984,
pp. 249–251; Pozar, 2001, pp. 31–32), we would normally expect and require it to be small. For
example, the properties of a 0.2 inch diameter 50-� cable, RG58 (Jordan, 1986, pp. 29-27–29-29),
indicate that the imaginary part of Z0 is less than 2% of total at 10 MHz and less than about 0.2% at
100 MHz, based on formulas for the attenuation constant and characteristic impedance in low-loss
cables (Ramo et al., 1984, pp. 250–251). We assume Z0 = R0 for simplicity, but it appears that
complex Z0 can be accommodated if the traveling waves that we define in Section 2.2 (e.g., v̂x and
ṽx ) are taken across the real part of Z0 (Kurokawa, 1965; Yola, 1961). The traveling voltage would
then be higher than v̂x , but v̂x would appear across the real part of a reflectionless termination Z0,
and px in Eq. (2.17) would give the power delivered to that termination. In addition, px would be
the available power from a source that is matched to the line, that is, one with output impedance
Z∗

0 , although the voltage at the input to the line would be higher due to what appears across the
reactive component.
3Some texts have used the inverse of the T parameters that we use here (Dicke, 1948, pp. 150–151;
Ramo et al., 1984, pp. 535–539]. These concentrate on passive microwave circuits that are usu-
ally bilateral. Many different names have been used to describe T parameters and their inverse:
transmission coefficients, T matrix, scattering transfer parameters, chain scattering parameters.
4An alternate type of matrix that can be multiplied to form the representation for a cascade uses the
ABCD parameters (Pozar, 2001, pp. 53–55). The state vector used there consists of the voltage and
current at a terminal rather than the forward and reverse waves.
5There are 8.686 dB per neper, which we can see as follows. Since

e−h = 10−L/(20 dB) = (eln 10)−L/(20 dB), h = L
ln 10

20 dB
,

giving (8.686 dB)h = L.
6

|ρ|2 =
(

50 � − 10 �

50 � + 10 �

)2

= 4

9
.

The part of the forward power that gets into the load is 1 − 4
9 = 5

9 = 0.556.
7Available gain is module output power into a matched load divided by source power into a matched
(to the source) load. If the source impedance is the complex conjugate of the module input impedance,
the input power in the gain definition will be the power actually absorbed in the module. The module
output power will then be maximum so the gain will be the maximum available gain.



CHAPTER 3

NOISE FIGURE

The amount of noise added to a signal that is being processed is of critical impor-
tance in most RF systems. This addition of noise by the system is characterized
by its noise figure (or, alternatively, noise temperature). In this chapter we con-
sider how the noise figure for a simple cascade of modules can be obtained from
individual module noise figures. We then extend the concept to standard cascades,
voltage-amplifier cascades, and combinations of the three types. We also learn
how to account for image noise in mixers.

3.1 NOISE FACTOR AND NOISE FIGURE

Noise factor (Hewlett-Packard, 1983; Haus et al., 1960a) is the signal-to-noise
power ratio at the input (1) of a module or cascade divided by the signal-to-noise
power ratio at its output (2):

f = (S/N)in

(S/N)out
(3.1)

= psignal,1/pnoise,1

psignal,2/pnoise,2
(3.2)

= pnoise,2/pnoise,1

psignal,2/psignal,1
. (3.3)

We will use the term noise figure (NF) and symbol F for f expressed in dB:

F
�= 10 log10 f. (3.4)
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The input noise power pnoise,1 is, by definition, the thermal (Johnson) noise power
from the source at 290 K (about 17◦C) into a matched load, the available noise
power at that temperature. This theoretical noise level is pnoise,1 = kT0B, where
k is Boltzmann’s constant, T0 is 290 K, and B is noise bandwidth. The value
of NT

�= kT0 is approximately 4 × 10−21 W, or −174 dBm, per Hz bandwidth.1

[Resistors also have flicker noise, which dominates at low frequencies (Egan,
2000, p. 119).] The input signal power psignal,1 is the available source power of
the signal.

The output powers are also defined into a matched load. The ratio of output
power to input power then meets the definition of available gain (see Appendix G).
Figure 3.1 shows a noise figure test setup where some of the variables have
circumflexes (hats) to identify them with this theoretical setup. Note that the
impedance of the source and load must, in general, be changed for each device
under test (DUT), the source impedance to correspond to the specified source and
the load impedance to match the impedance at the DUT output.

The noise factor is the factor by which the inherent random noise of the source
resistance at 290 K would have to increase to account for the additional output
noise that is actually produced by the DUT.

An alternate representation of module noise is noise temperature, which is the
increase in source temperature that could have accounted for the module noise
contribution. We will include both representations in some of the development
that follows.

Source

signal

noise

R22(k−)

esignal, s

Matched load

R22(k−)

jX22(k−) −jX22(k−) R22(k−)

(esignal/2)2

vsignal, s + vnoise, senoise, s

psignal, k =ˆ

psignal, (k+1)T ˆ

pnoise, (k+1)T ˆ

pnoise, kˆ

R22(k−)

(enoise, s/2)2

=

= kT0B

−jX22kjX22k

i2k

jX11k

ek vnk

R22k

R22k

R11k
a′kek

Module under test

(Z12ki2k)

Matched load

ˆ= gpak psignal, k

ˆ= gpak fk(kT0B)

Fig. 3.1 Noise figure test, theoretical.
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Noise is usually computed by integrating the noise density N0 over a fre-
quency band that, by definition of noise bandwidth B, gives the same results
as multiplication by the single number B (Egan, 1998, pp. 357–360). This pro-
cess is accomplished experimentally by measuring the total noise power passing
through the passband of the device with two known input noise levels. From these
two measurements, the available gain and the noise figure can be computed. (If
the lower noise level is the inherent source noise, the higher level can be con-
sidered to simulate a broadband signal added to the inherent noise.) Sometimes
a narrow filter, centered on the signal frequency, is provided, experimentally or
theoretically, and the resulting noise figure is called the spot noise figure because
it provides information at a particular frequency (spot) rather than averaging it
over a wider passband.

We can replace the signal power ratio in Eq. (3.3) with the available power
gain ga and can replace pnoise,1 with available noise power, giving the theoretical
measured noise factor:

f̂ = pnoise,2/ga

kT0B
. (3.5)

This form illustrates that the noise factor is the ratio of actual noise, referenced
to the source, to theoretical source noise.

3.2 MODULES IN CASCADE

First we consider a single module with an ideal source and load. Ideally, it would
output a noise level that would be the ideal source noise times the gain. Then
f would be unity (F = 0 dB), and the noise temperature of the module would
be absolute zero. Any increase over this amount is due to the module (assuming
temperature T = 290 K).

The contribution of noise power by module k is the difference between the
noise power at its output, pnoise,k+1, and the ideal source noise, kT0B, multiplied
by the module gain:

�pn@out,k = pnoise,k+1 − (kT0B)gk, (3.6a)

which can also be written

�pn@out,k = kBTkgk, (3.6b)

where Tk is the noise temperature of module k.
This can be referred to the input of the module by dividing it by the module

gain:

�pn@in,k = pnoise,k+1

gk

− kT0B (3.7a)

or
�pn@in,k = kBTk. (3.7b)
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Here �pn@in,k is the additional noise in the source driving module k that would
account for the observed noise. The contribution of the module to the noise factor
is this power divided by the inherent source noise:

�fk = �pn@in,k

kT0B
. (3.8)

From Eqs. (3.7a) and (3.5) we see that this equals

�fk = pnoise,k+1/gk − kT0B

kT0B
= fk − 1, (3.9a)

whereas, from Eqs. (3.7b) and (3.5), we see that it also equals

�fk = Tk

T0
. (3.9b)

If the module is part of a cascade, its contribution to the cascade noise factor
is reduced by the gain gpk preceding the module (the product of the preceding
module gains), since the cascade noise factor indicates the effective increase in
the noise of the source for the whole cascade:

�fsource,k = fk − 1

gpk

= fk − 1
k−1∏
i=1

gi

(3.10a)

= Tk/T0

gpk

= Tk

T0

k−1∏
i=1

gi

. (3.10b)

While we have dropped the a subscript on the gain and the circumflex from f ,
all of the gains here are available power gains and f is still the theoretical noise
factor f̂ .

The total equivalent noise from the source is

pnoise,equiv source = kT0B +
n∑

k=1

�pn@in,k

gpk

. (3.11)

We divide Eq. (3.11) by the inherent available source noise power kT0B to get
the total noise factor for the cascade:

fcas = 1 +
N∑

k=1

�fsource,k. (3.12a)



MODULES IN CASCADE 51

We can also divide Eq. (3.11) by kB to obtain the noise temperature for a system,
source plus cascade:

Tsys = T0 + Tcas = T0 +
N∑

k=1

Tk

gpk

. (3.12b)

By Eq. (3.10a), Eq. (3.12a) is

fcas = 1 +
N∑

k=1

fk − 1

gpk

= 1 +
N∑

k=1

fk − 1
k−1∏
i=1

gi

. (3.13)

There is no gain preceding the first module so the denominator should be 1 for
k = 1. This can be made clearer if the contribution from the first cascade element,
f1 − 1, is written separately. This also has the advantage of not requiring some
unnecessary arithmetic.

fcas = f1 +
N∑

k=2

fk − 1

gpk

= f1 +
N∑

k=2

fk − 1
k−1∏
i=1

gi

. (3.14)

This expression is somewhat awkward to compute because noise figure and gain
(F and G) are usually given in dB and they must be converted from dB, using,
for example,

f = 10F/(10 dB), (3.15)

before they can be used in Eq. (3.14). Of course, �G can be computed before
conversion to

∏
g, but the summation in (3.14) cannot be done before all vari-

ables are converted from dB.
For two elements in cascade (N = 2), Eq. (3.14) simplifies to

fcas = f1 + (f2 − 1)/g1. (3.16)

Example 3.1 Cascade Noise Figure Two modules in series each have a 3-dB
noise figure and a 6-dB gain. What is the cascade noise figure?

From Eq. (3.14),

fcas = 103 dB/10 dB + 103 dB/10 dB − 1

106 dB/10 dB
= 2 + 0.25 = 2.25 ⇒ F2 = 3.52 dB.

(3.17)

What will be the noise figure if another such stage is added to the cascade?

fcas = 103 dB/10 dB + 103 dB/10 dB − 1

106 dB/10 dB
+ 103 dB/10 dB − 1

1012 dB/10 dB

= 2 + 0.25 + 0.0625 = 2.31 ⇒ F3 = 3.64 dB. (3.18)
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Here we can see that the noise factor has less effect further down the cascade
where it is preceded by more gain.

All of this has been done for a source temperature of T0 in accordance with the
definition of noise figure. If the operational source temperature is Ts , Eq. (3.12b)
can be modified to give a system noise temperature of

Tsys,op = Ts +
N∑

k=1

Tk

gpk

. (3.19)

The source is often an antenna and the source temperature is then identified as
Ts = Tant.

The value of Tsys,op determines how much noise occurs at the output of the
system in its operational environment, where the source temperature is Ts , and
this is the equation of importance in determining system performance. However,
once the allowable value of the summation term Tcas has been determined, Tsys in
Eq. (3.12b) can be computed with Ts = T0 and, from that, fcas can be obtained,
permitting the required cascade noise factor or noise figure to be specified. These
relationships are summarized in Table 3.1.

Example 3.2 Specifying Noise Figure to Meet System Requirement What
noise figure is required for the cascade so the system noise temperature will be
400 K when the source temperature is 50 K (perhaps from an antenna looking
at a cool sky)?

From Eq. (3.19), in the operating environment,

Tsys,op = 400 K = 50 K + Tcas, (3.20)

leading to

Tcas =
N∑

k=1

Tk

gpk

= 350 K. (3.21)

Then Eq. (3.12b) gives, at the standard source temperature,

Tsys = T0 + 350 K = 640 K. (3.22)

Dividing by T0, we obtain the allowed noise figure:

fcas = Tcas

T0
+ 1 = Tsys

T0
= 2.21 ⇒ 3.44 dB. (3.23)
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3.3 APPLICABLE GAINS AND NOISE FACTORS

For several practical reasons, noise factor is ordinarily measured using a standard
source impedance. This is the theoretical noise factor only if the tested module
is to be driven by that standard impedance in the cascade, a usual, but practically
unattainable, goal.

While the gains in Eq. (3.13) are supposed to be available gains, Appendix N
shows that the gains that we have used in Section 2.3 for our standard cascade
are appropriate when using noise factors as they are usually measured, assuming
unilateral modules (Z12k = 0) with isolated noise sources. In other words, the
theoretical relationship involving f̂ and ga also applies to f and g as defined for
our standard cascade. We have represented the noise source in Fig. 3.1 as isolated,
making its contribution independent of the driving source. While this is important
to our analysis, we would expect to see some dependence of module noise on
the impedance of the driving source. This will be considered in Section 3.8.

Figure 3.2 illustrates the usual method for determination of noise factor for a
module and its contribution to the noise factor of a cascade. In both cases, the
noise from an effective source that would produce the observed output noise is
to be compared to the ideal source noise. Switch position 1 would be used to
measure (actually or theoretically) these values. Unlike Fig. 3.1, the source in
Fig. 3.2 has standard interface impedance R0.

During module test, switch position 3 would be used to send the available
source power through a cable (of standard interface impedance R0) to the module.

Source

R0

signal

noise

esignal, s

enoise, s

Standard
impedance

Cascade
1 to k−1

R0

vok

jX11k jX22k

Module

vnk
R11k

R22k

a′kek

vo, (k + 1)

R0 Z(k+)

1

1

3

3

2

2

1

1

3

2

2

3

Available source power
Cascade
Module in test

Cables
Z0 = R0

ek

Fig. 3.2 Noise figure in cascade and in test.
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Theoretically, if we could turn off the noise source in the module, we could then
increase enoise,s until the noise level at vo,(k+1) would be reestablished. Then we
could move to switch position 1 and measure the increased noise level. The ratio
of this level to the originally measured thermal noise would be the module noise
factor. Since we cannot actually do this, we compute what would happen if we did.

In the cascade (switch position 2), the part of the cascade preceding the module
would replace the cable from the source. If we could follow the same theoretical
procedure that we have just described for the module, removing only the module
noise, we could measure the module’s contribution to the cascade noise figure.
Again, we compute what we cannot measure directly.

The module test will establish the increase in the noise in the forward wave
vok that is required to reproduce the observed module noise in a noiseless module.
This will be the same whether the module is being tested or is in a cascade. Once
this is established, the effective increase of the available noise in the source can
be related to the noise in vok by the gain from the source to vok in the cascade.
Because vok is the variable we have used in our standard-cascade calculations,
the gains employed there also apply to noise figure calculations.

While R0 is usually the same for all modules and the cascade, this is not
necessary. There can be a change in the standard impedance along the cascade.
Where this occurs, the input and output of some module (and their interconnects)
would have different standard impedances. Each module would be tested with its
standard input impedance (in switch positions 3 and 1), and the cascade would
be tested with its standard input impedance (in switch positions 2 and 1).

We now show how the contribution from lossy interconnects is appropriately
incorporated in our model.

3.4 NOISE FIGURE OF AN ATTENUATOR

The noise figure of a (ideal) passive attenuator at a temperature of T0 (290 K) equals
its attenuation. This is because the available noise at the output of the attenuator
is the available noise from the Thevenin resistance of the attenuator, presumably
the same as the standard impedance of the cables at that point in the cascade. This
is the same as the available noise from the source, at the input to the attenuator,
during characterization. Thus the noises in Eq. (3.1) cancel and f becomes the
ratio of input signal power to output signal power, which equals the attenuation.

If we did a circuit-noise analysis of an attenuator, say a π or T network, we
would get the same results (but less efficiently). We can do it either way (but
must not add the two effects).

The combined noise figure of a module preceded by an attenuator at T0 equals
the module noise figure plus the attenuation. (The gain of the combination is,
of course, lowered by the attenuation also.) To see this, write Eq. (3.14) for an
attenuator followed by a module, using 1/g1 for the attenuation of the attenuator:

f = 1

g1
+ f2 − 1

g1
= f2

g1
. (3.24)
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In dB, this is
F = F2 + (−G1), (3.25)

where −G1 is the attenuation of the attenuator (F > F2 because G1 < 1). Here
g1 is available power gain, which suits well the definition of the attenuation.

If the attenuator is at a temperature T , the output noise that is not attributable
to the source (which is at T0 by definition) changes proportionally to T , giving
a noise factor of (Pozar, 2001, p. 91)

f (T ) = 1 + (1/g − 1)T /T0, (3.26)

which reduces to 1/g at T = T0.

3.5 NOISE FIGURE OF AN INTERCONNECT

The transmission line interconnects, described in Section 2.3.2, will generally
have some loss, but the gain we have ascribed to them also involves the effects
of multiple reflections, so we might suspect that they do not act like simple
attenuators. A lengthy analysis in Appendix N, Section N.6, shows that the proper
noise figure for an interconnect in a standard cascade at T = T0 is

fcbl = 1/g2 + |ρ1|2(1 − g2), (3.27)

where 1/g2 is the attenuation of the properly terminated interconnect and ρ1 is
the reflection coefficient looking into the output of the preceding module. This
can also be expressed as

fcbl(SWR) = 1

g2
+

[
SWR1 − 1

SWR1 + 1

]2

(1 − g2). (3.28)

If the cable is at a temperature other than T0, fcbl will be modified in a manner
similar to the change in f for a simple attenuator [Eq. (3.26)]:

fcbl(T , SWR) = 1 + [fcbl(SWR) − 1]T /T0. (3.29)

This general expression includes Eqs. (3.26) and (3.28) as particular cases.

3.6 CASCADE NOISE FIGURE

Example 3.3 Cascade Noise Figure Figure 3.3 shows the spreadsheet used
in the previous analysis with added noise figure information. We compute the
cascade noise figure for several combinations of values of noise figures and gains.
Cells G4–H10 give mean and maximum noise figures defined for the modules.
The interconnect noise figures, in cells G to L, 15, 17, and 19, are obtained
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using Eqs. (3.28) and (3.29). The temperature is entered in cell J3. SWRs are
assumed to be fixed at the values given in cells D4–D9 so fcbl varies only if its
attenuation (cells B5, B7, and B9) has a specified variation (cells C5, C7, and
C9). In this example, a variation is given for the attenuator (line 7) but not for
the other interconnects.

Cumulative noise figure (cells G24–L30) through stage j is computed accord-
ing to Eq. (3.16), where the subscript 1 refers to the cascade preceding stage j

and 2 refers to stage j . If all modules and interconnects were treated separately,
using Eq. (3.14), the results would be the same but the formulas would be longer.

3.7 EXPECTED VALUE AND VARIANCE OF NOISE FIGURE

Figure 3.3 gives the noise figure when all gains are mean, but not the mean,
or expected, noise figure. As can be seen from a plot of the computed values
(Fig. 3.4), the mean noise figure should be expected to be higher than the noise
figure at the mean gain since it increases more at low gains than it decreases
with the same deviation on the high side. A Monte Carlo analysis would give us
a distribution from which we could obtain mean gain and standard deviation or
variance. Short of that, we might estimate the mean value as being on the high
side of the value obtained with mean gains (e.g., 2.9 or 3 dB with mean noise
figures in Fig. 3.4).

For small variances we can use a sensitivity analysis to determine the vari-
ance of the noise figure of a cascade from the variances of individual element
parameters according to (see Appendix V)

σ 2
Fcas

=
∑

i

[Ŝ2
f iσ

2
f i + Ŝ2

giσ
2
gi + Ŝ2

SWRiσ
2
SWRi]. (3.30)

39 dB 44 dB 49 dB 54 dB 59 dB

Gain

2.4 dB

2.9 dB

3.4 dB

3.9 dB

4.4 dB

N
F

Max NFs

Mean NFs

Fig. 3.4 Cascade noise figure from Fig. 3.3.
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The sensitivities Ŝxi can be determined by making small changes in the variables
and observing their effects on Fcas. Except for the variables involved, this is
similar to what was done in Example 2.6 (see Fig. 2.26), and the spreadsheet
can be used to aid in computing Ŝxi , as is done there, and in giving the variance
according to Eq. (3.30) once the sensitivities have been determined.

Unfortunately, this process is somewhat time consuming and has to be done
anew whenever the system is modified so we would like to obtain Eq. (3.30)
in closed form. This can be rather complex but is done in Appendix V for the
simplified case where only the module noise figures vary (i.e., with fixed gains
and fixed SWRs). In this case, we can write the resulting variance of the cascade
noise figure Fcas,n at stage n in terms of the noise figure Fcas,(n−1) one stage
earlier as

σ 2
Fcas,n

= 10−Fcas,n/5 dB{10Fcas(n−1)/5 dBσ 2
Fcas(n−1)

+ 10(Fcas,n−Gcas(n−1))/5 dBσ 2
Fn

}, (3.31)

where Gcas(n−1) is the cascade gain through the previous stage and Fn is the noise
figure of the nth stage. This restriction of variances to module noise figures is con-
sistent with our spreadsheet where the SWRs are fixed and where computations
are made for several sets of fixed gains.

In Fig. 3.5 some cells not of current interest have been removed from Fig. 3.3,
and two columns of cumulative estimated noise figure standard deviations have
been added at cells I25–J31. Equation (3.31) has been implemented in these cells.
The cells from which data is drawn for cell J29 (its precedents) are indicated by
arrows, with circles at their origins (under Excel 98’s menu item, Tools; Auditing;
Trace Precedents).

Cell I31 gives σFcas when all elements have mean gains and cell J31 gives it
for minimum gains, in which case Fcas (cell H31) is maximum. Note that, in this
example, the variance of Fcas decreases as elements are added. This is a variance
of noise figure in dB and therefore represents a larger absolute variance as the
value of Fcas to which it applies increases. Let us now consider a potential source
of variations in the module noise factors.

3.8 IMPEDANCE-DEPENDENT NOISE FACTORS

We have represented the noise contribution of a module by an equivalent noise
source at the input to the cascade. This can be multiplied by the transducer gain
to the module output to obtain the noise delivered to a standard impedance at
the output of the module. It can also be multiplied by the transducer gain to the
module’s input to determine the equivalent noise that would be delivered to a
standard impedance there, or it can be multiplied by available gain to obtain the
noise that would be delivered to a matched load.

If the module noise source is isolated, the equivalent cascade source can be
computed using a module noise factor that was measured in a standard-impedance
environment. Since this determines the noise power that would be delivered to a
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A B C D E F G H I J
2 Gain Gain SWR Temp. NF
3 nom +/− at out |a RT| 290 K mean max s
4 Module 1 12.0 dB 1.0 dB 1.5 2.0 dB 2.6 dB 0.3 dB
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 10.0 dB 2.0 dB 2 4.0 dB 5.0 dB 0.6 dB
7 Attenuator −8.0 dB 0.5 dB 1.5 0.0106
8 Module 3 7.0 dB 2.0 dB 2.8 3.0 dB 3.7 dB 0.4 dB
9 Cable 2 −0.8 dB 3.2 0.2064

10 Module 4 30.0 dB 2.0 dB 5.0 dB 5.5 dB 0.3 dB
11
12
13 mean max min ± s mean G min G
14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB 2.00 dB 2.00 dB
15 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB 0.17 dB 1.54 dB 1.54 dB
16 Module 2 10.00 dB 12.00 dB 8.00 dB 2.00 dB 1.00 dB 4.00 dB 4.00 dB
17 Attenuator −8.00 dB −7.41 dB −8.59 dB 0.59 dB 0.41 dB 8.06 dB 8.56 dB
18 Module 3 7.00 dB 9.00 dB 5.00 dB 2.00 dB 0.80 dB 3.00 dB 3.00 dB
19 Cable 2 −0.61 dB 1.21 dB −2.43 dB 1.82 dB 1.27 dB 0.93 dB 0.93 dB
20 Module 4 30.00 dB 32.00 dB 28.00 dB 2.00 dB 1.30 dB 5.00 dB 5.00 dB
21
22
23
24 at output of mean max min ± s mean G min G mean G min G
25 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 0.50 dB 2.00 dB 2.00 dB 0.30 dB 0.30 dB
26 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB 0.53 dB 2.07 dB 2.09 dB 0.30 dB 0.29 dB
27 Module 2 20.50 dB 23.75 dB 17.26 dB 3.25 dB 1.13 dB 2.42 dB 2.55 dB 0.28 dB 0.27 dB
28 Attenuator 12.50 dB 16.34 dB 8.67 dB 3.84 dB 1.20 dB 2.54 dB 2.82 dB 0.27 dB 0.26 dB
29 Module 3 19.50 dB 25.34 dB 13.67 dB 5.84 dB 1.45 dB 2.67 dB 3.12 dB 0.26 dB 0.25 dB
30 Cable 2 18.89 dB 26.55 dB 11.24 dB 7.66 dB 1.93 dB 2.68 dB 3.14 dB 0.26 dB 0.25 dB
31 Module 4 48.89 dB 58.55 dB 39.24 dB 9.66 dB 2.32 dB 2.74 dB 3.47 dB 0.26 dB 0.23 dB

DERIVEDDERIVEDDERIVEDDERIVED
Gain NF using mean NFs at

CUMULATIVECUMULATIVECUMULATIVECUMULATIVE

Gain
cum. NF using
mean NFs at

cum. NFs using
mean NF at

Fig. 3.5 Spreadsheet with noise figure variances and showing data sources for cell J29.

standard impedance, we can find the equivalent cascade source noise power by
dividing by transducer gain.

However, if the module noise source is not isolated, if its value depends on
the source impedance, accurate determination of the module noise factor requires
that it be measured using the same source impedance that the module sees in the
cascade. That measurement determines the equivalent noise power that would be
delivered by the driving source to a matched load at the module input so the
equivalent cascade noise source is obtained by dividing that power by available
gain (i.e., the gain into a matched load) from the cascade input to the module
input. Multiplying the equivalent cascade noise source, so obtained, by transducer
gain still determines how much noise is delivered to a standard impedance, but
we cannot, without loss of accuracy, use a noise factor that was measured in
a standard-impedance environment to find the value of the equivalent cascade
noise source.

3.8.1 Representation

The dependence of noise factor on input impedance has been represented as
shown in Fig. 3.6 (Haus et al., 1960b). Here a noisy module (1–2) consists of
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1 in

vn

1′ 2Noise-free
module

Fig. 3.6 Module with input noise sources.

a noise-free module (1′ –2) proceeded by a pair of noise sources. (The noise
sources, voltage vn and current in, are often specified for op amps, for example.)
These two sources are, in general, partly correlated and this must be taken into
account. All of the noise in the module can be represented by in and vn, and these
can be used to determine the dependence of noise figure on source impedance.

For completeness, it might seem that another pair of sources would be required
at the output to represent the dependence of noise figure on load impedance.
However, there is no such dependency. Whereas the noise sources in Fig. 3.6
can be absorbed into the driving source when noise factor is determined, the
load identically converts all preceding sources, signal or noise, to output power.
Therefore, the ratio of signal to noise does not depend on load impedance. If we
should redefine port 1 as the output, we could then show that noise appearing in
the source depends on the load impedance, so there is a symmetry.

The source-dependent noise factor can be expressed as

f̂ = f0 + Rn

Gs

[(Gs − G0)
2 + (Bs − B0)

2] (3.32)

= f0 + Rn

Gs

|Ys − Y0|2. (3.33)

Here Ys = Gs + jBs is the source admittance connected to port 1 and Y0 is the
optimum value of that source admittance, for which f̂ has its minimum value, f0.
Part of Y0 represents the correlation between the two sources; Rn is a constant,
called the equivalent noise resistance. We mark f̂ as a theoretical noise factor
because Fig. 3.1 represents its test procedure wherein

Ys = 1

R22(k−) + jX22(k−)

. (3.34)

3.8.2 Constant-Noise Circles

For given values of f̂ and f0, Eq. (3.33) describes a circle on the Smith
chart (Gonzalez, 1984, pp. 142–145; Pozar, 2001, pp. 214–216; Section F.5).
Figure 3.7 shows two such circles. The one for f̂ = f̂2 passes through the point
that represents a particular source admittance Y ′

s , indicating that, with that source
admittance, the module has noise factor f̂2.
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Ys’

ƒ2
ˆ

ƒ1
ˆ

ƒ(Y0) = ƒ0
ˆ

Fig. 3.7 Constant f̂ curves on Smith chart. These are theoretical noise factors f̂ rather
than standard noise factors f .

If the source impedance seen by the module changes while the reflection
coefficient (SWR) remains constant, as when the length of a lossless intercon-
nect changes or the phase of the reflection, but not its magnitude, changes, the
impedance (and admittance) seen by the module will be represented by a circle,
as shown in Fig. 3.8. Here additional constant-f̂ curves have been drawn. We
see that the noise figure varies between f̂1 and f̂4 as the phase goes through
all values. This shows us the range of noise factors corresponding to a given
SWR. Ideally, the SWR will be small so f̂ will not change much. It also helps
if the optimum f0 occurs at the standard impedance value R0, in the center of
the Smith chart.

3.8.3 Relation to Standard Noise Factor

In the center of the chart, f̂ = f since the standard noise factor occurs when the
source impedance is the standard impedance R0. Elsewhere on the chart the the-
oretical noise factor f̂ for the given source impedance (Fig. 3.1) is shown. Our
standard noise factor, referred to a cascade input as described in Section 3.3, accu-
rately indicates the cascade noise figure if the noise source is isolated (Figs. 3.1
and 3.2). Even this isolated noise source produces theoretical noise factors that
are represented as shown in Fig. 3.8 (see Appendix N). Therefore, a noise figure
that is described by constant-noise-figure circles on a Smith chart does not imply
that our standard treatment is inaccurate.
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Ys’

ƒ2
ˆ

ƒ(R0) = ƒˆ

ƒ3
ˆ

ƒ4
ˆ

ƒ1
ˆ

ƒ(Y0) = ƒ0
ˆ

SWR

Source impedance
seen by module,
constant SWR circle

Fig. 3.8 Locus of f̂ with changing line length. In the center, the theoretical noise factor
f̂ is the same as standard noise factor f .

We can check on the accuracy of our treatment that uses an isolated noise
source by comparing f̂ , given by constant-noise-figure circles for a particular
module, to f̂ calculated (as shown in the next paragraph) for our isolated-source
model. We can make the comparison along a circle representing the SWR seen
at the output of the cable that drives the module whose noise figure is under
consideration. If Fig. 3.8 represents f̂ for a module and the constant-SWR circle
represents the impedance at the output of the cable, we can compare f̂ computed
for an isolated noise source to that indicated by the constant-noise circles. If the
value of f̂ is the same in both cases, the noise source is isolated, as assumed.
Otherwise, the ratio of the two noise factors will indicate how much correction
is required to f . Essentially, we could consider f to be a function of the source
impedance as we move along the constant-SWR circle.

The value of f̂k , for module k having an isolated noise source, can be computed
at a point P on the Smith chart, from

f̂k − 1

fk − 1
= |Z11k + Z22(k−)|2/R22(k−)

|Z11k + R0|2/R0
, (3.35)

where Z22k− is the impedance at P, fk is the noise factor in the center of the chart,
and Z11k is the impedance looking into the input of module k. Equation (3.35)
is developed in Section N.2. It is reasonable to expect that Z11k will be known
if f̂k is known in such detail.
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3.8.4 Using the Theoretical Noise Factor

The SWR at the cable output can be obtained from the SWR specified for the
preceding module output by converting SWR to reflection coefficient ρ, reducing
ρ, by the round-trip loss in the cable, and reconverting to SWR (see Section F.2).

As we move around the circle that represents maximum SWR, if f̂k(Z22k−)

deviates from the value given by Eq. (3.35), we might use that deviation in
establishing the tolerance for fk . We have given up some information, though,
because the gain that references (fk − 1) to the preceding module also depends
on the variation in output impedance around the constant-SWR circle. Thus we
might, for example, use maximum noise factor with minimum gain even though
they do not occur at the same point on the circle.

We can retain more information by using f̂k , rather than fk , for a particular
module for which it is known, but we must then reference the added noise to the
cascade input using available gain. Available gain is higher than the transducer
gain into R0 by a factor,

ga

gt

= 1

1 − |ρ|2 , (3.36)

where ρ corresponds to the SWR for the circle [see Appendix N, Eq. (36)]. The
gain to the output of the previous module in a standard cascade is the transducer
gain gtp,k−1 for that part of the cascade (Fig. 3.9). To obtain the available gain
gapk at the module input, decrease gtp,k−1 by the one-way loss of the cable,
1/|τ |2, and then divide by (1 − |ρ|2). Thus Eq. (3.10a) becomes

�fsource,k = 1 − |ρ|2
gtp,k−1|τ |2 (f̂k − 1). (3.37)

The contribution to the cascade noise factor, (f̂k − 1), is thereby divided by gapk

to reference it to the input.
By this procedure, we refer a varying noise factor f̂k to the cascade input

using a gain ga that is independent of the reflections in the preceding cable. In
the standard procedure, the gain varies due to varying phases but f is fixed. The
results are the same for an isolated noise source (see proof in Section N.4).

If we know Z22(k−) (i.e., the location on the SWR circle), we can obtain
�f source,k exactly. Otherwise, we obtain a range of values for �f source,k . While

Source ƒk
ˆ

gtp, k−1 |tk−1|2

Transducer gain 1-way gain

r

Fig. 3.9 Power gains for referencing theoretical noise factor to source.
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the process that we have established for summing the effects of noise contributions
and variations in the standard cascade will be modified when one or more mod-
ules are to be treated differently, all of the contributions at the source �f source,k
must be summed [Eq. (3.12)], no matter how obtained.

Perhaps the most likely module to be treated in a special manner is the first
amplifier in a system since it is not preceded by gain and is therefore very
influential in establishing noise figure. For this case, gtp,k−1 in Eq. (3.37) would
be 1. However, rather than taking the source (perhaps an antenna) as characterized
by a SWR in a standard-impedance system, more information could be obtained
if the actual impedance of the source were used, plotting it on the same Smith
chart with the constant-noise circles. Then the system signal and noise levels at
the output of the amplifier could be established by using that noise factor and
the gain of the amplifier when driven by the actual source.

3.8.5 Summary

• The effect of an isolated noise source is simply represented in the standard
cascade.

• If a plot of constant-noise circles is available for a module, it may be used
to verify that the noise source is isolated or to determine the deviation of
the noise factor from that case.

• If there is a deviation from the isolated case, that deviation may be taken
into account in determining the expected variations in the noise factor.

• It is possible (if complicated) to use the noise circles, and the noise factors
that they imply along the constant-SWR circle, together with the available
gain to the module input, to determine more exactly the contribution to the
cascade noise factor.

3.9 IMAGE NOISE, MIXERS

When a mixer, used for frequency conversion, appears in a cascade, there is
usually an opportunity for additional noise to enter. This is because the mixer
translates two frequency bands into the intended output frequency band. While
only one of them normally carries a signal, both the intended input band and
the other, image, band carry noise. Frequency conversions will be discussed in
detail in Chapter 7; here we treat the mixer as a component in the cascade whose
effective noise figure must be determined, based on the image noise that enters
through it. Additional increases in mixer noise factor due to LO noise will be
discussed in Section 8.4.

In the less common case where the mixer is designed to reject the image
band, either due to an internal filter or an image rejection configuration in which
the image response is canceled, the mixer can be treated like any other module,
characterized by a gain and noise figure. However, that is not the case being
treated here.
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If the mixer is preceded directly by an image-rejecting (image) filter that
presents a match, supplying only thermal noise (kTB) at the image frequency,
the mixer’s effective noise figure will be its measured (specified) single-sideband
noise figure. Otherwise the mixer will convert two bands of noise to its output
[intermediate frequency (IF)]. Assuming there is to be a signal in only one of
these bands, so that the theoretical source noise is considered to be only the
noise in that one band, the noise factor, defined by Eq. (3.1), will be increased
due to the insertion of this additional noise. If the circuitry preceding the mixer
is high-gain broadband (same gain at all frequencies of importance), the cascade
noise figure can increase as much as 3 dB. If a filter appears at some intermediate
point, after the front end of that cascade but not immediately before the mixer,
the increase in cascade noise figure will be somewhere between 0 and 3 dB. The
increase in the effective noise figure of the mixer will be much greater. We will
determine exactly what the increases will be for this general case.

3.9.1 Effective Noise Figure of the Mixer

The single-sideband gain of a mixer is measured by inputting a signal at frequency
fR and measuring the output at frequency fI , where

fI = fI+
�= fL + fR (3.38)

or
fI = fI−

�= |fL − fR|, (3.39)

and fL is the local oscillator (LO) frequency. The part of the cascade preceding
the mixer operates in the vicinity of fR and the part after the mixer operates
near fI .

Both output frequencies (fI+ and fI−) occur, but only one is used to determine
single-sideband gain. Likewise, the signal at only one of these output frequen-
cies, and the noise in its vicinity, are used to measure single-sideband noise
figure. Broadband terminations are commonly used on all three ports for these
measurements.

The fact that two IF signals are created by each RF signal implies that each
IF can be created by two different RFs (Fig. 3.10);

fR+
�= fL + fI (3.40)

and
fR−

�= |fL − fI |. (3.41)

A signal exists at only one of these frequencies — the other is termed the image
frequency — in most applications, but noise is converted to the IF from both.

Figure 3.11 shows a generic cascade, beginning with a matched source impe-
dance, followed by an amplifier, an image rejection filter, another amplifier, the
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ƒ1 ƒR− ƒL ƒR+

LO

IF
Signal Image

Fig. 3.10 Conversion frequencies. The noise bands shown are those that eventually
appear in the IF.

Bandpass
filter

Mixer

Rsource

B1 B2 B3 B4 B5

Fig. 3.11 Cascade with mixer. The “Amplifier” blocks (B1, B3, B5) can each represent
cascades of other elements.

mixer, and a final amplifier. Each module, or block, is unique because of its
location relative to the mixer or filter, and each may represent a cascade of other
modules. Block Bj has gain gj and noise factor fj . The filter should ideally
be a triplexer, allowing the cascade to see the environment encountered during
characterization, or at least a diplexer, presenting a matching impedance at the
image frequency.2 This is especially important in the degenerate case in which B3
disappears. It is also important for any filter at the IF output (see Section 7.2.2).
Equation (3.14) written explicitly for this arrangement is

fcas = fB1 + fB2 − 1

gB1
+ fB3 − 1

gB1gB2
+ fB4 − 1

gB1gB2gB3
+ fB5 − 1

gB1gB2gB3gB4
. (3.42)

The image noise, which appears at the input to the mixer, is available thermal
noise NT times f ′

B3g
′
B3, where primes are used in case parameters are different

at the image frequency than they are at the desired signal frequency. Again,
these may represent the composite parameters for a cascade that is represented
here by block B3. The difference between this image noise and the noise that
was present when the mixer was characterized is NT (f ′

B3g
′
B3 − 1). The change

appears at the mixer output multiplied by the mixer gain at the image frequency
g′

B4. The input noise in the signal band that would produce the same output is
obtained by dividing this by the mixer gain at the signal frequency gB4. Thus the
effective change in input noise is NT �fB4, where �fB4 is the effective change
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in the mixer noise figure due to the image noise:

�fB4 = (f ′
B3g

′
B3 − 1)

g′
B4

gB4
. (3.43)

The system noise with image noise is then

fcas = fB1 + fB2 − 1

gB1
+ fB3 − 1

gB1gB2
+ (f ′

B3g
′
B3 − 1)(g′

B4/gB4) + fB4 − 1

gB1gB2gB3

+ fB5 − 1

gB1gB2gB3gB4
. (3.44)

From this, we can write, for the fourth module

�fB4 = (f ′
B3g

′
B3 − 1)(g′

B4/gB4) + fB4 − 1

gB1gB2gB3
, (3.45)

or we can use Eq. (3.42) but substitute fe4, the effective noise factor of the mixer
with image noise, for the measured noise factor fB4:

fe4 = fB4 + (f ′
B3g

′
B3 − 1)

g′
B4

gB4
. (3.46)

When we use the same mixer gain for the signal and the image, Eq. (3.45)
becomes

�fB4|g′
B4=gB4 = f ′

B3g
′
B3 + fB4 − 2

gB1gB2gB3
. (3.47)

If the filter is not a triplexer or diplexer but is reactive at the image frequency,
the value of f ′

B3g
′
B3 may have to be modified to give the correct noise output at

the image frequency under that condition.
If the cascade begins with the filter B2, we set gB1 = fB1 = 1 (as if B1

were a short cable). If also there is no filter, we also set gB2 = fB2 = 1 and the
cascade effectively begins with thermal noise at the input to B3. In this latter
case, Eq. (3.44) would become

fcas = fB3 + (f ′
B3g

′
B3 − 1)(g′

B4/gB4) + fB4 − 1

gB3
+ fB5 − 1

gB3gB4

= fB3 + fe4 − 1

gB3
+ fB5 − 1

gB3gB4
. (3.48)

As an alternative, we could represent by B3 the whole cascade preceding the
mixer (see Example 3.6). In that case, Eq. (3.48) would be used and the effect
of the filter would be represented by its great attenuation at the image frequency
rather than by complete elimination of the image. This could sometimes be awk-
ward, requiring us to designate parameters at the image frequency for many
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modules preceding the filter, even when their contribution to the effective noise
factor of the mixer is negligible.

3.9.2 Verification for Simple Cases

Other presentations of this theory have come up with results that are close, but
not quite identical, to this; so we should check some simple cases to see if it
makes sense.

A simple case that fails in some other representations is that where the system
consists of the mixer alone. Assume that gB1 through gB3 and gB5 represents
short pieces of matched cable. Then, for those four modules, g = 1 and f = 1
and (3.44) is

fcas = 1 + 1 − 1

1
+ 1 − 1

1
+ (1 − 1)(g′

B4/gB4) + fB4 − 1

1
+ 1 − 1

gB4
= fB4

(3.49)

as it should be.
For another test, replace B3 with a short cable so the mixer sees, at the image

frequency, only a termination. Then

fcas = fB1 + fB2 − 1

gB1
+ 1 − 1

gB1gB2
+ (1 − 1)(g′

B4/gB4) + fB4 − 1

gB1gB2

+ fB5 − 1

gB1gB2gB4
(3.50)

= fB1 + fB2 − 1

gB1
+ fB4 − 1

gB1gB2
+ fB5 − 1

gB1gB2gB4
, (3.51)

which is a normal representation without image noise.

3.9.3 Examples of Image Noise

Example 3.4 Effect in a Simple Front End A simple RF front end is illus-
trated in Fig. 3.12 (fB1 = fB2 = gB1 = gB2 = 1, f ′

B3 = fB3, f ′
B4 = fB4, g′

B3 =
gB3 and g′

B4 = gB4 in Fig. 3.11) and its noise figure is plotted in Fig. 3.13 as
a function of the preamplifier (B3) gain. Curve 1 shows the noise figure when

LO

Source
(matched)

B4, Mixer
gain: −6.5 dB

NF: 7 dB

Amp
NF: 2 dB

Amp
NF: 4 dB

B3 B5

Fig. 3.12 Simple RF front end. Components are assumed to be broadband and all ports
are matched.
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Fig. 3.13 Noise figure for subsystem in Fig. 3.12 with and without image noise and
difference between the two.

image noise is accounted for [Eq. (3.44)]; curve 2 shows the noise figure with no
image noise [Eq. (3.42)]; and curve 3 shows the difference. This difference could
represent an error in the system performance estimate, if existing image noise
is not taken into account. It could also represent a loss in performance because
image noise was not properly filtered out.

Example 3.5 Spreadsheet with Image Noise, Broadband System Figure 3.14
is a spreadsheet with gain and noise figure given for seven modules (cells C4–D10)
plus cumulative gain and noise figure (cells C14–D20) computed as before, but
using cells E4–E10 for derived noise figure. The latter differ from the values in
the column to their left only where a module is identified in cells B4–B10 as being
a mixer. Then the effective noise figure of the mixer is used [Eq. (3.46)]. Here
we have assumed broad bandwidth, that is, that the gain and noise figures in the
image band are the same as in the desired signal band (f = f ′, g = g′), except,
of course, in the filter, which is assumed to reject the image completely.

The “mixer” and “filter” designations in cells B4–B10 can be moved so the
effect of their placement on total noise figure (cell D20) can be observed. These
words must not be moved using a cut operation or by dragging because the
spreadsheet will then outsmart itself by moving all references to the cells that
contain these words, following the words. This will defeat any change as a result
of the movement and will corrupt the spreadsheet for further use. Move the words
by retyping or by first copying and then erasing their former locations.

Cells F5 and G5 contain the cumulative gain and noise figure, respectively,
at the filter position. They are copied from the corresponding cells in C14–D20
(i.e., F5 = C15, etc.). Columns F4–F10 and G4–G10 are summed to find the
values in these two cells, whichever row they are in, since no other cells in these
ranges contain values. These two values are then used in the cell on the same
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A B C D E F G
2 enter Gain
3 below expected expected derived gain NF
4 Module 1 12.00 dB 2.00 dB 2.00 dB
5 Module 2 filter −4.00 dB 4.00 dB 4.00 dB 8 2.2538
6 Module 3 6.00 dB 2.50 dB 2.50 dB
7 Module 4 −2.00 dB 2.00 dB 2.00 dB
8 Module 5 8.00 dB 3.00 dB 3.00 dB
9 Module 6 mixer −7.50 dB 8.00 dB 16.24 dB
10 Module 7 20.00 dB 3.00 dB 3.00 dB
11
12
13 at output of Gain NF
14 Module 1 12.00 dB 2.00 dB
15 Module 2 8.00 dB 2.25 dB
16 Module 3 14.00 dB 2.56 dB
17 Module 4 12.00 dB 2.62 dB
18 Module 5 20.00 dB 2.76 dB
19 Module 6 12.50 dB 3.62 dB
20 Module 7 32.50 dB 3.72 dB

NF cumulative at filter

CUMULATIVE

Fig. 3.14 Spreadsheet with image noise.

line as “mixer” in E4–E10 to give effective noise figure according to Eq. (3.46).
The following development will show how Eq. (3.46) is reorganized in terms of
individual component modules (e.g., “Module 1,” rather than effective modules
consisting of multiple component modules, like “B1”) to enable its computation
from the spreadsheet. However, it may be simpler just to study the spreadsheet.

The value of fB3, for the cascade from the module just after the filter through
the module just before the mixer (composite module B3 in Fig. 3.11), is obtained
from Eq. (3.14) as

fB3 = fcas|k(M)−1
k(F)+1 = 1 +

k(M)−1∑
j=k(F)+1

fj − 1
j−1∏

i=k(F)+1

gi

, (3.52)

where k(M) is the index of the mixer and k(F) is the index of the filter, and x|n2
n1

represents parameter x of the cascade starting with element n1 and ending with
element n2. [Similarly to Eq. (3.13), the denominator is one when j = k(F) + 1.]
We can write this in terms of the noise factor preceding the mixer and the noise
factor preceding and including the filter:

fB3 = 1 +
k(M)−1∑

j=1

fj − 1
j−1∏

i=k(F)+1

gi

−
k(F)∑
j=1

fj − 1
j−1∏

i=k(F)+1

gi

(3.53)
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= 1 +




k(M)−1∑
j=1

fj − 1
j−1∏
i=1

gi

−
k(F)∑
j=1

fj − 1
j−1∏
i=1

gi




k(F)∏
i=1

gi (3.54)

= 1 + [fcas,k(M)−1 − fcas,k(F)]gcas,k(F), (3.55)

where fcas,j is the noise factor for the cascade of modules from 1 to j .
The gain of block B3 can be written

gB3 = gcas|k(M)−1
k(F)+1 = gcas,k(M)−1

gcas,k(F)

; (3.56)

so the product of the noise factor and the gain is

fB3gB3 = {1 + [fcas,k(M)−1 − fcas,k(F)]gcas,k(F)}gcas,k(M)−1

gcas,k(F)

. (3.57)

Similarly, at the image frequency,

f ′
B3g

′
B3 = {1 + [f ′

cas,k(M)−1 − f ′
cas,k(F)]g

′
cas,k(F)}

g′
cas,k(M)−1

g′
cas,k(F)

. (3.58)

When a cell in B5–B10 contains “mixer,” the corresponding line in cells E5–E10
uses Eq. (3.46), where f ′

3g
′
3 = f3g3 is obtained from Eq. (3.58). In that equation,

g′
cas,k(F ) and f ′

cas,k(F ) come from the nonblank cell in F4–F10 or G4–G10,
respectively, while g′

cas,k(M)−1 and f ′
cas,k(M)−1 come from the appropriate cell

in C14–C20 or D14–D20, respectively. The appropriate cells are in the line for
the module before the one marked “mixer” in cells B4–B10.

Example 3.6 Parameters Differing at Image Frequency Figure 3.15a is
similar to Fig. 3.14 but allows for different values of g and f at the image
frequency (columns F and G). The conversion from Fig. 3.14 is straightforward
(although the ratio g′

B4/gB4 must now be included). This allows also for an
alternative, simpler, realization of the spreadsheet since the filter can now be
represented as part of module B3 in Fig. 3.11, an individual module that is char-
acterized as having much more loss at the image frequency than at the desired
frequency. This is done in cells F5 and G5 in Fig. 3.15b. Columns H and I of
Fig. 3.15a are gone. There is no need to determine f and g for modules B1 and
B2 in Fig. 3.11. They have now disappeared (fB1 = gB1 = fB2 = gB2 = 1), as
in Fig. 3.12, and the filter has become part of module B3. The noise figure at the
mixer (cell E9) uses Eq. (3.45) directly, obtaining f ′

3 and g′
3 from the correspond-

ing cells in F14–G20. This can be more accurate because it allows the filter to
be given a finite attenuation at the image frequency, whereas the attenuation of
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( )a

( )b

A B C D E F G H I

2 enter Gain
3 below expected expected derived Gain NF gain NF
4 Module 1 12.00 dB 2.00 dB 2.00 dB 11.00 dB 2.20 dB
5 Module 2 filter −4.00 dB 4.00 dB 4.00 dB −20.00 dB 20.00 dB −9 9.788
6 Module 3 6.00 dB 2.50 dB 2.50 dB 5.00 dB 2.50 dB
7 Module 4 −2.00 dB 2.00 dB 2.00 dB −2.30 dB 2.30 dB
8 Module 5 8.00 dB 3.00 dB 3.00 dB 8.00 dB 3.00 dB
9 Module 6 mixer −7.50 dB 8.10 dB 15.06 dB −8.00 dB 8.60 dB

10 Module 7 20.00 dB 3.00 dB 3.00 dB 17.00 dB 3.00 dB
11
12
13 at output of Gain NF Gain NF
14 Module 1 12.00 dB 2.00 dB 11.00 dB 2.20 dB
15 Module 2 8.00 dB 2.25 dB −9.00 dB 9.79 dB
16 Module 3 14.00 dB 2.56 dB −4.00 dB 11.96 dB
17 Module 4 12.00 dB 2.62 dB −6.30 dB 12.42 dB
18 Module 5 20.00 dB 2.76 dB 1.70 dB 13.37 dB
19 Module 6 12.50 dB 3.43 dB −6.30 dB 14.14 dB
20 Module 7 32.50 dB 3.53 dB 10.70 dB 14.80 dB

CUMULATIVE CUMULATIVE at image

NF
cumulative at 

filterexpected at image

A B C D E F G
2 enter Gain
3 below expected expected derived Gain NF
4 Module 1 12.00 dB 2.00 dB 2.00 dB 11.00 dB 2.20 dB
5 Module 2 −4.00 dB 4.00 dB 4.00 dB −20.00 dB 20.00 dB
6 Module 3 6.00 dB 2.50 dB 2.50 dB 5.00 dB 2.50 dB
7 Module 4 −2.00 dB 2.00 dB 2.00 dB −2.30 dB 2.30 dB
8 Module 5 8.00 dB 3.00 dB 3.00 dB 8.00 dB 3.00 dB
9 Module 6 mixer −7.50 dB 8.10 dB 15.34 dB −8.00 dB 8.60 dB

10 Module 7 20.00 dB 3.00 dB 3.00 dB 17.00 dB 3.00 dB
11
12
13 at output of Gain NF Gain NF
14 Module 1 12.00 dB 2.00 dB 11.00 dB 2.20 dB
15 Module 2 8.00 dB 2.25 dB −9.00 dB 9.79 dB
16 Module 3 14.00 dB 2.56 dB −4.00 dB 11.96 dB
17 Module 4 12.00 dB 2.62 dB −6.30 dB 12.42 dB
18 Module 5 20.00 dB 2.76 dB 1.70 dB 13.37 dB
19 Module 6 12.50 dB 3.47 dB −6.30 dB 14.14 dB
20 Module 7 32.50 dB 3.57 dB 10.70 dB 14.80 dB

expected at image

CUMULATIVE CUMULATIVE at image

NF

Fig. 3.15 Spreadsheets with parameters differing at image frequency. The filter elimi-
nates the image at (a), as in Fig. 3.14. At (b) the filter presents a high, but finite, attenuation
of the image.

image noise is infinite in the other representation. (The image frequency param-
eters given for the filter and preceding modules in Fig. 3.15a ultimately have
no effect on the derived mixer noise figure.) However, accounting for the image
response of modules preceding the mixer can be a nuisance if there are many of
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them, especially if their effect at the filter output is small. The representations
of Fig. 3.15a and 3.15b are equivalent in the limit where the filter has infinite
attenuation at the image frequency. That attenuation has been purposefully set
rather low in Fig. 3.15 in order that there be some difference between the values
in cells D20 in the two figures. One might increase it to see how large it must be
for the overall noise figures in the two representations to be equal within some
tolerance.

Example 3.7 Combined with Interconnects in a Standard Cascade
Figure 3.16 is similar to Fig. 3.5, showing the effects of mismatches at interfaces,
except that only noise figures for mean gain and mean individual noise figures
have been retained (for simplicity) and the equations for noise figure in cells I16,
I18, and I20 use the conditional formulas for effective noise figure with image
noise that were used in Fig. 3.14. Cells B14 and B20 designate the corresponding
modules as filter and mixer, respectively. This illustrates how image noise and
mismatches can be included in the same analysis. Of course, this can also be
done with combinations of gain and noise figure extremes as used in Fig. 3.3,
and we could use the technique in Fig. 3.15b of listing separate parameters at
the desired and image frequencies.

However, the mixer is not particularly well represented as a unilateral module,
as is assumed in our standard cascade analysis. Unbalanced mixers provide little
RF-to-IF (the signal path) isolation. Fortunately, doubly balanced mixers are
commonly used and they do provide some isolation. RF-to-IF isolation, which
indicates how much of the RF signal is seen in the IF, is often greater than
20 dB, sometimes much greater, providing significant round-trip loss. In that
case mismatches at the mixer output have little effect on the signal at its input.
However, the two-way conversion loss provides another path, from RF-to-IF-
to-RF, and the conversion loss usually ranges from 5 to 10 dB, providing as
little as 10-dB two-way loss. On the other hand, good design practice promotes
care in providing the specified termination for a mixer. The SWRs obtained in
characterization will, in that case, also occur in the cascade, and reflections at
the output will be minimized, reducing the impact of the reverse transmission on
the analysis.

3.10 EXTREME MISMATCH, VOLTAGE AMPLIFIERS

In some cases, particularly at lower frequencies, amplifiers that are characterized
by high input impedances (and often low output impedances) may be used in
cascade. The amplifier stages often consist of elementary amplifiers and associ-
ated input and feedback impedances (Egan, 1998, pp. 49–54). Often the voltage
gain and equivalent input noise generators are specified for the elementary ampli-
fier circuit, the extreme mismatch at interfaces is a very bad approximation to
a standard interface, and it is difficult to analyze these cascades except in terms
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of terminal voltages. We will term such amplifiers and cascades “hi-Z” and will
see how to determine the noise figure for a hi-Z cascade so it can be treated as
a module driven by the standard impedance R0 that precedes it.

3.10.1 Module Noise Factor

Refer to Fig. 3.17, which is the same as Fig. 3.1 except some variables have been
added and some deleted and zero reverse transmission is assumed. Equation (3.1)
can be written in terms of open-circuit voltage sources, e, as

f̂k =
|esignal,s/2|2

R22(k−)

/
|enoise,s/2|2

R22(k−)

|esignal,out,k/2|2
R22k

/
|enoise,out,k/2|2

R22k

(3.59)

= |esignal,s/2|2/|enoise,s/2|2
|esignal,out,k/2|2/|enoise,out,k/2|2 (3.60)

= |enoise,out,k/2|2
kT0BR22(k−)

/
|esignal,out,k/2|2
|esignal,s/2|2 , (3.61)

where R22(k−) is the resistance looking into the part of the cascade preceding
module k (equal to R22(k−1) if module k − 1 is unilateral). The ratio of the
module’s output open-circuit voltage to the source’s open-circuit voltage is

esignal,out,k

esignal,s
= ckak, (3.62)

where

ck
�= vsignal,k

esignal,s
= Z11k

Z11k + Z22(k−)

(3.63)

is the ratio of the interface voltage to the source voltage that produces it,

ak = esignal,out,k

vsignal,k
(3.64)

is the open-circuit (no module load) voltage gain of module k, and

vk = vsignal,k + vnoise,k. (3.65)

Combining Eq. (3.62) with Eq. (3.61), we obtain the noise factor for module k:

f̂k = |enoise,out,k/2|2
kT0BR22(k−)|ckak|2

. (3.66)
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Source

Module under test

Matched load

Matched load

R22(k−)

R22(k−)

R22(k−)jX22(k−)

−jX22k
jX22kjX11kvk

ek vnk

−jX22(k−)

signal

noise

esignal,s

psignal,k =

pnoise,k

(esignal/2)2

R22(k−)

R22k

R22k

R11k

(enoise,s/2)2

vsignal,s + vnoise,senoise,s

esignal, out,k

+enoise, out,k

ˆ

ˆ

=

= kT0B

a′kek = eout,k

=

Fig. 3.17 Noise figure test, theoretical. This is the same as Fig. 3.1 with some other
variables shown.

If the module were noiseless, |e2
noise,out,k/2|2 would equal the denominator of

Eq. (3.66), giving fk = 1. Thus the noise contributed by the module is equivalent
to an additional effective noise source, in the Source, with an rms value

�̃vnk = 2
√

kT0BR22(k−)(f̂k − 1), (3.67)

which would produce
�pnk = kT0B(f̂k − 1) (3.68)

into R22(k−). Note, however, that this voltage would produce

�pnk = kT0B(f̂k − 1)R22(k−)/R0 (3.69)

into a matched load if it were in series with the cascade source impedance R0

(Fig. 3.2, switch position 1). (Here we are neglecting any reactances, which would
have to be canceled by their conjugates.) The ratio, R22(k−)/R0, had not appeared
in our standard cascade because we employed power gains there whereas, here,
we are using voltage gains.
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3.10.2 Cascade Noise Factor

We assume that each hi-Z module will be measured with the same driving
impedance Z22(k−) that it sees in the cascade or that the noise factor will be cal-
culated (Appendix A, Section A.3) for such a driving impedance. Calculations
can be facilitated by information giving equivalent input noise voltage and noise
current generators, which is often provided for op amps (Steffes, 1998; Baier,
1996) (see also Section 3.8).

In a cascade, the effective cascade Source noise voltage that is equivalent to
the noise in module k, is reduced by the gain of the other modules between the
source and the noise:

esignal,out,(k−1)

esignal,s
= esignal,out,1

esignal,s

esignal,out,2

esignal,out,1
· · · esignal,out,(k−1)

esignal,out,(k−2)

=
k−1∏

1

cjaj . (3.70)

Division by this gain places the equivalent noise source in series with the cascade
Source impedance R0. Therefore, the available power from the total equivalent
added noise voltage at the cascade source is the sum of the noise powers given
by Eq. (3.69), each divided by the preceding gain:

�pn = kT0B

N∑
k=1

(f̂k − 1)

k−1∏
i=1(k �=1)

|ciai |2
R22(k−)

R0
, (3.71)

and the total noise factor is

ftotal = 1 + �pn

kT0B
(3.72)

= 1 +
N∑

k=1

(f̂k − 1)

k−1∏
i=1(k �=1)

|ciai |2
R22(k−)

R0
(3.73)

= f̂1 +
N∑

k=2

(f̂k − 1)

k−1∏
i=1

|ciai |2
R22(k−)

R0
. (3.74)

Here we have used R22(1−) = R0. That is, the first module in the hi-Z cascade is
driven from a source, the real part of which is R0. If R0 is the standard impedance
at the input interface to the hi-Z cascade, the hi-Z cascade can be treated like
any module in a standard cascade as can its noise figure. In other words, if the
standard impedance at the input to the hi-Z cascade is R0, Eq. (3.73) gives the
noise factor to be used for the hi-Z cascade as if it were a module in a standard
cascade. (The gain used for this equivalent module would be its transducer gain,
as for any other module.)
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3.10.3 Combined with Unilateral Modules

A cascade of voltage amplifiers can be considered an equivalent standard mod-
ule, driven by the standard impedance at the output of the preceding cascade,
as in Fig. 3.2, switch position 2. R0 might represent the well-controlled output
impedance from the preceding part of a cascade or it might be the standard
interface impedance of a cable connecting the cascade of voltage amplifiers
to preceding standard-impedance stages. Recall that the noise factor used in
Section 3.3 was also measured with a standard interface impedance.

If the input to the voltage-amplifier section is not well matched to R0, it will
be important that the output of the last module in the preceding section be well
matched to the cable impedance to prevent excessive variations in cable gain at
the interface.

3.10.4 Equivalent Noise Factor

We may want to use a noise factor program or spreadsheet that is built for the
standard cascade relationships, Eq. (3.13) or its equivalent Eq. (3.14). To enable
us to do so, we can define parameters that can be put into that equation for gain
and noise factor but will give us results according to Eq. (3.73). To this end,
we define

f̆k = 1 + (f̂k − 1)R22(k−)/R0 (3.75)

and
ğk = |ckak|2. (3.76)

Replacing fk and gk with these variables in Eq. (3.13) [or in a program that
realizes Eq. (3.13)] will cause f to be computed according to Eq. (3.73).

3.11 USING NOISE FIGURE SENSITIVITIES

Sensitivities of cascade noise figure to module parameters can be especially useful
in identifying critical modules in a cascade. We can write

dFcas =
∑

k

(Ŝf kdfk + Ŝgkdgk + ŜSWRkdSWRk), (3.77)

where

Ŝxk = ∂Fcas

∂xk

(3.78)

is the sensitivity of Fcas to the parameter xi . This is based on the Taylor series
[(see Eq. (2) in Appendix V]. Equation (3.77) is further developed in Appendix V
for the case where gains and SWRs are fixed and only the module noise figures
vary, leading to

dFcas(dFj ) = 10−Fcas/10 dB{10F1/10 dBdF1 + 10(F3−G1−G2)/10 dBdF3 + · · ·},
(3.79)
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where Fj is not shown for j odd based on the assumption that those elements are
interconnects. An alternative is to determine sensitivities from the spreadsheet, as
we did for gain in Example 2.4. An example of the use of this process for determin-
ing sensitivities of noise figure to module parameters is given in Section 3.12.3.

3.12 MIXED CASCADE EXAMPLE

Example 3.8 Figure 3.18 shows a cascade that begins as a standard cascade,
unilateral modules interconnected by cables of standard impedance, and ends with
a cascade of voltage amplifiers. The latter consists of Op Amps 1–3. Intermediate
modules are treated as a simple cascade, appropriate for good impedance matches.
Parameters are given in Fig. 3.19, rows 4–15. The emitter follower in the Tran-
sistor Amplifier has sufficient current gain to provide an effective transformation
from 50 to 125 �. An impedance transformation from 125 � to 2 k� occurs
in the Transformer (1-to-4 voltage ratio, 16-to-1 impedance ratio). The Filter is
designed for 2-k� interfaces, which it sees at both ports. Op Amp 1 has high input
impedance, so only the shunt 2 k� is seen, and the Filter provides a 2-k� source
for the cascade of voltage amplifiers. The last two op amp circuits are inverting
and have voltage gains of 1 and 10, respectively. We use 20-� effective output
resistances for the three op amps in closed loop. These are the result of higher
open-loop output resistances, which are reduced by the feedback. As a result, this
value will change with frequency as the open-loop gains of the op amps change.

The reference resistance for the voltage-amplifier cascade is the 2-k� driv-
ing resistance. Power gains are used to the left of that point and transform the
equivalent 2-k� source noise to equivalent noise at the overall source on the
far left. No interconnect is assumed after cable 3, although we could have used
effective cables to account for mismatches. However, good matches are likely at
the Transistor-Amplifier output and Op Amp 1 input; so interconnect resonances
would be killed there anyway.

Effective gains, according to Eq. (3.76), are computed in cells B13–B15 and
effective noise factors, according to Eq. (3.75), are computed in cells F28–F30
(they are copied to the right since no gain variation is indicated for these ampli-
fiers). Rows 34–45 contain cumulative values computed as before.

+
− −

+ −
+

Cable 1 Cable 2 Cable 3
50 Ω

Amp 1 Amp 2 Mixer

50 Ω
interface

125 Ω
interface

2 kΩ
interface

2 kΩ
interface

Transistor amp Transformer Filter Op amp 1 Op amp 2 Op amp 3
turns
1:4 turns

1:4

2 kΩ 2 kΩ

125 Ω
50
Ω 3 kΩ

2 kΩ
2 kΩ

2 kΩ 2 kΩ

20 kΩ

1 kΩ

Fig. 3.18 Standard cascade feeding voltage amplifiers.
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A B C D E F G H
2 Gain Gain SWR NF Temperature
3 nom +/− at out |aa RT| mean 290 K
4 Amp1 12.0 dB 1.0 dB 1.5 2.0 dB
5 Cable 1 −1.5 dB 1.5 0.028
6 Amp 2 12.0 dB 2.0 dB 2.5 4.0 dB
7 Cable 2 −1.0 dB 3 0.17
8 Mixer −8.0 dB 2.0 dB 3
9 Cable 3 −0.2 dB 1 0

10 Transistor Amp 1.4 dB 0.2 dB 5.0 dB
11 Transformer −0.4 dB 0.1 dB 1/g
12 Filter −7.0 dB 0.3 dB R 0 R 22k− 1/g c k a k
13 Op Amp 1 12.0 dB 2000 Ω 2000 Ω 6.5000 dB 1 4
14 Op Amp 2 −0.1 dB 2000 Ω 20 Ω 27.8674 dB 0.990099 1
15 Op Amp 3 19.9 dB 2000 Ω 20 Ω 25.7646 dB 0.990099 10
16
17
18 mean max min ± mean G max G min G
19 Amp1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 2.00 dB 2.00 dB 2.00 dB
20 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB 1.54 dB 1.54 dB 1.54 dB
21 Amp 2 12.00 dB 14.00 dB 10.00 dB 2.00 dB 4.00 dB 4.00 dB 4.00 dB
22 Cable 2 −0.87 dB 0.62 dB −2.37 dB 1.49 dB 1.13 dB 1.13 dB 1.13 dB
23 Mixer −8.00 dB −6.00 dB −10.00 dB 2.00 dB 8.55 dB 6.55 dB 10.55 dB
24 Cable 3 −0.20 dB −0.20 dB −0.20 dB 0.00 dB 0.25 dB 0.25 dB 0.25 dB
25 Transistor Amp 1.40 dB 1.60 dB 1.20 dB 0.20 dB 5.00 dB 5.00 dB 5.00 dB
26 Transformer −0.40 dB −0.30 dB −0.50 dB 0.10 dB 0.40 dB 0.30 dB 0.50 dB
27 Filter −7.00 dB −6.70 dB −7.30 dB 0.30 dB 7.00 dB 6.70 dB 7.30 dB
28 Op Amp 1 12.04 dB 12.04 dB 12.04 dB 0.00 dB 6.50 dB 6.50 dB 6.5000 dB
29 Op Amp 2 −0.09 dB −0.09 dB −0.09 dB 0.00 dB 8.52 dB 8.52 dB 8.5186 dB
30 Op Amp 3 19.91 dB 19.91 dB 19.91 dB 0.00 dB 6.78 dB 6.78 dB 6.7770 dB
31
32
33 at output of mean max min ± mean G max G min G
34 Amp1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 2.00 dB 2.00 dB 2.0000 dB
35 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB 2.07 dB 2.06 dB 2.0914 dB
36 Amp 2 22.50 dB 25.75 dB 19.26 dB 3.25 dB 2.42 dB 2.32 dB 2.5478 dB
37 Cable 2 21.63 dB 26.37 dB 16.89 dB 4.74 dB 2.43 dB 2.32 dB 2.5563 dB
38 Mixer 13.63 dB 20.37 dB 6.89 dB 6.74 dB 2.53 dB 2.35 dB 3.0389 dB
39 Cable 3 13.43 dB 20.17 dB 6.69 dB 6.74 dB 2.54 dB 2.35 dB 3.0645 dB
40 Transistor Amp 14.83 dB 21.77 dB 7.89 dB 6.94 dB 2.77 dB 2.40 dB 3.9590 dB
41 Transformer 14.43 dB 21.47 dB 7.39 dB 7.04 dB 2.77 dB 2.40 dB 3.9934 dB
42 Filter 7.43 dB 14.77 dB 0.09 dB 7.34 dB 3.09 dB 2.47 dB 5.1914 dB
43 Op Amp 1 19.47 dB 26.81 dB 12.13 dB 7.34 dB 4.26 dB 2.74 dB 8.2600 dB
44 Op Amp 2 19.39 dB 26.72 dB 12.05 dB 7.34 dB 4.37 dB 2.77 dB 8.4958 dB
45 Op Amp 3 39.30 dB 46.64 dB 31.96 dB 7.34 dB 4.44 dB 2.79 dB 8.6377 dB
46 *Note: Cable NF depends on SWR, which is assumed to be fixed.

1/g + 0.55 dB

DERIVED (B13-B15 are derived also.)

CUMULATIVE
Gain NF using mean NFs at

Gain NF using mean NFs (see Note*) at

Fig. 3.19 Spreadsheet for Fig. 3.18.

3.12.1 Effects of Some Resistor Changes

As should be expected, the overall noise factor is not changed if we redraw the
boundaries between op amps to include part of the input resistor of op amp 2 or
3 as part of the previous stage. This is verified in Appendix A, Section A.1.

We have used 20 � as the output resistance of the op amps. The correct value
may be difficult to ascertain and will not be constant, as we have assumed, since
it depends on the closed-loop gain of the op amp. Section A.2 shows that, while
doubling this assumed resistance changes the noise factor of the individual op
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amp stages significantly, it has little effect on the overall noise factor. This is
only partly due to the magnitude of the preceding gain.

We might also be concerned with the effect of a change in the source resistance
for the voltage-amplifier cascade, R0 in Eq. (3.71), especially since the output
impedance of the filter is likely to vary some. However, Section A.2 again shows
that the overall noise figure is little affected in this example.

3.12.2 Accounting for Other Reflections

How might we discover the range of variations in cascade noise factor and gain
that occur due to a mismatch at the filter input? We could treat the Transformer as
part of the Transistor Amp, taking its losses into account in computing the latter’s
noise figure and gain and giving the new module the SWR of the transformer
(which is well terminated at the Transistor Amp output). We should be able to
treat the Filter as a unilateral module because it has a good termination at the
input to Op Amp 1, the same termination with which it was presumably tested.
Therefore there will be no reflections through the filter to contend with except
those that are included in the measured input SWR. In addition, a round trip
attenuation of 14 dB helps to isolate the input SWR from effects at the Filter
output. Now that we would have two effectively unilateral modules, we could
interconnect them with a zero-length 2-k� interconnect and use the equations
for a standard cascade to include the range of variations to be expected due to
this interface.

3.12.3 Using Sensitivities

Sensitivities of cascade noise figure to module gains and noise figures are shown
in Fig. 3.20, cells I34–J45, for minimum gain.

To obtain these values we begin with the equation in cell I45, which gives the
difference between the noise figure in cell H45 and the value in the same cell of

A B C D E F G H I J
31
32
33 at output of mean max min ± mean G max G min G per dB Gain per dB NF
34 Amp 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB 2.00 dB 2.00 dB 2.0000 dB −0.781 dB 0.219 dB
35 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB 2.07 dB 2.06 dB 2.0914 dB −0.749 dB
36 Amp 2 22.50 dB 25.75 dB 19.26 dB 3.25 dB 2.42 dB 2.32 dB 2.5478 dB −0.752 dB 0.041 dB
37 Cable 2 21.63 dB 26.37 dB 16.89 dB 4.74 dB 2.43 dB 2.32 dB 2.5563 dB 0.540 dB
38 Mixer 13.63 dB 20.37 dB 6.89 dB 6.74 dB 2.53 dB 2.35 dB 3.0389 dB −0.754 dB 0.032 dB
39 Cable 3 13.43 dB 20.17 dB 6.69 dB 6.74 dB 2.54 dB 2.35 dB 3.0645 dB −0.757 dB
40 Transistor Amp 14.83 dB 21.77 dB 7.89 dB 6.94 dB 2.77 dB 2.40 dB 3.9590 dB −0.657 dB 0.094 dB
41 Transformer 14.43 dB 21.47 dB 7.39 dB 7.04 dB 2.77 dB 2.40 dB 3.9934 dB −0.679 dB
42 Filter 7.43 dB 14.77 dB 0.09 dB 7.34 dB 3.09 dB 2.47 dB 5.1914 dB −0.679 dB
43 Op Amp 1 19.47 dB 26.81 dB 12.13 dB 7.34 dB 4.26 dB 2.74 dB 8.2600 dB −0.082 dB 0.601 dB
44 Op Amp 2 19.39 dB 26.72 dB 12.05 dB 7.34 dB 4.37 dB 2.77 dB 8.4958 dB −0.032 dB 0.052 dB
45 Op Amp 3 39.30 dB 46.64 dB 31.96 dB 7.34 dB 4.44 dB 2.79 dB 8.6377 dB 0.000 dB 0.033 dB
46 *Note: Cable NF depends on SWR, which is assumed to be fixed.

CUMULATIVE for min G
Sensitivity, NF ChangeNF using mean NFs atGain

Fig. 3.20 Sensitivities of cascade NF to module gain and NF for Fig. 3.18 at minimum
gain. Missing cells are as in Fig. 3.19.
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Fig. 3.19 (our reference value). Initially the value in cell I45 is zero, but, if we
modify a module parameter, it will indicate the change in module noise figure
due to the change in the module parameter. To make the sensitivity approximate a
derivative [Eq. (3.78)], we will use small changes in module parameters, 0.1 dB,
so we include a factor of 10 to the formula in I45 in order to get sensitivity in
units of dB/dB. Then we copy that equation (cell I45) to all the cells in I34–J45
[maintaining its reference to cells H45 (one in Fig. 3.19 and one in Fig. 3.20)
by designating them $H$45 before copying]. When we change the gain of Amp
1 (in cell B4) by 0.1 dB, all of the cells in I34–J45 will show the resulting
change in cascade noise figure (times 10). We then copy cell I34 and paste it
“by value” in place, replacing the formula by its numerical value as we do so.
When we return cell B4 to its original value, all of the cells in I34–J45 return to
zero value (indicating we have accurately restored the original value) except for
cell I34, which retains the pasted value. We do this for each gain and each noise
figure that is specified and that is not simply the negative of the gain (in dB).
In the latter cases we blank the corresponding sensitivity cell. When we have
completed this process, each cell in the range (except possibly I45) contains a
number, rather than a formula.

Analyzing the results, we note that all of the gains up to Op Amp 1 are fairly
significant. This is consistent with the fact that the cumulative gain just before
Op Amp 1 is close to zero, dropping the signal into thermal noise. (We would
expect these sensitivities to be considerably smaller if we were analyzing the
cascade with mean gains rather than minimum values.)

In column J, we see a significant sensitivity to Op-Amp-1 noise figure. This
might lead us to attempt to improve its noise figure (12 dB, f = 16). The match-
ing resistor across its input (which we need there) automatically contributes 1
to its noise factor and the 1-k� and 3-k� resistors together contribute 1.5. We
might reduce the latter some but would probably look for a lower-noise op amp
to improve performance significantly.

The transformer in the Transistor Amp is there to give the amplifier power
gain and to reduce the effect of the noise from the 125-� output resistor, plus the
base spreading resistance, on the noise factor. If we remove it, its noise figure
increases from 5 dB to about 13 dB. According to the sensitivity in cell J40, the
cascade noise figure should therefore increase by [0.095 (8 dB) =] 0.76 dB. If
we make the change in module noise figure in the spreadsheet, we actually see
an increase of 1.74 dB, the inaccuracy being due to the large size of the change,
as can be seen in Fig. 3.21.

Removing that transformer would have an even more important effect on
gain, decreasing it by almost 12 dB. Based on sensitivity, this would increase
the cascade noise figure by [−0.666 (−11.8 dB) =] 7.87 dB. Again, if we make
the change we see a larger increase, 10.3 dB.

The total cascade noise figure increase, due to both effects, would be 10.5 dB,
which is less than the sum of the two effects, again a result of the relatively
large change. If we decrease the module gain only 1 dB or increase its noise
figure only 1 dB, we obtain cascade noise figure increases of 0.685 and 0.103 dB
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Fig. 3.21 Change in cascade noise figure with change in Transistor Amp noise figure.

respectfully. If we make both changes, we get a resulting change in cascade noise
figure of 0.773, within 2% of the sum of the individual changes. This shows the
importance of small changes for accuracy. In spite of the inaccuracy for large
changes, however, the sensitivities do point out the relative importance of this
module and the order of the changes to be expected.

3.13 GAIN CONTROLS

3.13.1 Automatic Gain Control

Example 3.9 Gain Determines Input Traditional automatic gain control
(AGC) incorporates an adjustment of gain to bring the signal level at the cascade
output to a desired level. Figure 3.22 is a modification of Fig. 3.3 in which only
mean parameters have been retained. A target output level has been added at cell
B31. Cell B32 shows the input signal level for which that target output level will
be attained. A box has been drawn about cell B10 to indicate that it is the cell
where gain is changed to attain the target level. Of course, the input level in cell
B32 will respond to changes in any of the chain parameters that affect gain. One
can vary the module gain in cell B10 and record the corresponding input level
although, in practice, it is the input level that causes a change in module gain.
This represents a control loop of at least type 1, since there is no error in the
output level, relative to the target, regardless of the input level. The input level
is easily computed from the cumulative gain and the target level. A type 0 loop
would have some error, which would change proportionally to the input.
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A B C D
2 T = 290 K assumed SWR
3 Gain at out |a RT|
4 Module 1 12.0 dB 1.5
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 10.0 dB 2
7 Attenuator −8.0 dB 1.5 0.0106
8 Module 3 7.0 dB 2.8
9 Cable 2 −0.8 dB 3.2 0.2064

10 Gain Control 30.0 dB
11
12 Mean Gain
13 Module 1 12.00 dB
14 Cable 1 −1.50 dB
15 Module 2 10.00 dB
16 Attenuator −8.00 dB
17 Module 3 7.00 dB
18 Cable 2 −0.61 dB
19 Gain Control 30.00 dB
20
21 Mean Gain
22 at output of
23 Module 1 12.00 dB
24 Cable 1 10.50 dB
25 Module 2 20.50 dB
26 Attenuator 12.50 dB
27 Module 3 19.50 dB
28 Cable 2 18.89 dB
29 Gain Control 48.89 dB
30
31 Target out: −50 dBm
32 Input Level: −98.89 dBm

DERIVED

CUMULATIVE

Fig. 3.22 AGC with input level indicator.

Example 3.10 Input Determines Gain The spreadsheet in Fig. 3.23 provides
similar information but is a better model of the cascade. It is designed so the
gain (cell B11) of the Gain Control module changes in response to the input level
given in cell B34. The required gain is the difference between the target output
level and the input level. The gain that is required in the Gain Control (cell B35)
is the difference between this required gain and the cumulative gain for all the
preceding modules. The gain of the Gain Control (cell B11) is set equal to that
value unless it is out of the range given by cells C11 and D11. (Module gains do
have limits.) If it is out of range, the Gain Control gain goes to the nearest limit.
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A B C D
2 T = 290 K assumed SWR
3 Gain at out |aa RT|
4 Module 1 12.0 dB 1.5
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 10.0 dB 2
7 Attenuator −8.0 dB 1.5 0.0106
8 Module 3 7.0 dB 2.8
9 Cable 2 −0.8 dB 3.2 0.2064

10 min max
11 Gain Control 21.1 dB 10 dB 50 dB
12
13 DERIVED
14 Gain
15 Module 1 12.00 dB
16 Cable 1 −1.50 dB
17 Module 2 10.00 dB
18 Attenuator −8.00 dB
19 Module 3 7.00 dB
20 Cable 2 −0.61 dB
21 Gain Control 30.00 dB
22 CUMULATIVE
23 Gain
24 at output of
25 Module 1 12.00 dB
26 Cable 1 10.50 dB
27 Module 2 20.50 dB
28 Attenuator 12.50 dB
29 Module 3 19.50 dB
30 Cable 2 18.89 dB
31 Gain Control 48.89 dB
32
33 Target out: −50 dBm
34 Input Level: −90 dBm
35 Required Gain Control: 21.1 dB

Fig. 3.23 AGC with specified input level.

3.13.2 Level Control

Figure 3.24 shows another type of gain control, one we might call Level Control.
Its object is to keep the output noise level fixed. This might be used in conjunction
with a circuit that is set to detect signals that surpass the received noise level by
a given amount. In the system, the output noise power is somehow measured in a
manner to exclude signal power. The measured value is compared to the desired
level, and the gain of the Gain Control is adjusted to minimize the difference.
This could be done either manually or automatically.
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A B C D E
2 T = 290 K assumed SWR
3 Gain at out |a RT| NF
4 Module 1 12.0 dB 1.5 2.0 dB
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 10.0 dB 2 4.0 dB
7 Attenuator −8.0 dB 1.5 0.0106
8 Module 3 7.0 dB 2.8 3.0 dB
9 Cable 2 −0.8 dB 3.2 0.2064

10 min G max G
11 Gain Control 39.35 dB 10 dB 50 dB 5.0 dB
12
13 DERIVED
14 Gain NF
15 Module 1 12.00 dB 2.00 dB
16 Cable 1 −1.50 dB 1.54 dB
17 Module 2 10.00 dB 4.00 dB
18 Attenuator −8.00 dB 8.06 dB
19 Module 3 7.00 dB 3.00 dB
20 Cable 2 −0.61 dB 0.93 dB
21 Gain Control 39.35 dB 5.00 dB
22 CUMULATIVE
23 Gain NF
24 at output of
25 Module 1 12.00 dB 2.00 dB
26 Cable 1 10.50 dB 2.07 dB
27 Module 2 20.50 dB 2.42 dB
28 Attenuator 12.50 dB 2.54 dB
29 Module 3 19.50 dB 2.67 dB
30 Cable 2 18.89 dB 2.68 dB
31 Gain Control 58.25 dB 2.74 dB
32
33
34 Bandwidth: 2 MHz
35 Noise Into Gain Control: −89.35 dBm
36 Target out: −50 dBm
37 Required in Gain Control: 39.35 dB
38 Set Gain Control: 0.00 dB (0 dB for Automatic)

Fig. 3.24 Level control.

Example 3.11 Open-Loop Control In the spreadsheet (Fig 3.24) thermal
noise in the specified bandwidth is computed and multiplied by the noise factor
and the cumulative gain to the input of the last module. This total is subtracted
from the target noise output to give the required gain in the last module, the Gain
Control. The Gain Control is given that gain if it is within the allowed limits
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(cells C11 and D11) and if cell B38 contains zero. If cell B38 does not contain
zero, the Gain Control gain is set to the value in cell B38. This allows the gain
to be either specified or automatically controlled. The value of zero was chosen
to set automatic level control because it is well out of the range of gains that
would be specified.

Example 3.12 Closed-Loop Control There is sometimes another reason to
provide the ability to set the gain manually. If the noise factor of the last module
should vary with its gain (this could be incorporated in the formula for cell
E11, for example) or if the Gain Control module should not be the last module
in the cascade, the control process would become iterative because the noise
figure could change with gain. The spreadsheet will execute a settable number of
iterations, but it might be necessary to set some reasonable value of gain initially
to permit the final value to be achieved. An example of such a spreadsheet is
shown in Fig. 3.25 where the computed output noise level is partially determined
by the variable that is being adjusted, the gain of the Gain Control module.

These same processes can easily be implemented for multiple conditions (e.g.,
maximum NF and minimum gain) on the same spreadsheet.

Advantages of building in the automatic gain adjustment include being more
easily able to see the overall effect of a change in a module parameter, for
example, the change in cascade noise figure that occurs when the gain of some
module changes, or to see if the Gain Control module goes out of its allowed
range as a result of some parameter change. (A conditional warning to that effect
has been incorporated in cells C37 and D37 in Fig. 3.24.)

3.14 SUMMARY

• Noise factor f is the noise at the output of a module or cascade relative to
what would be there if only the amplified theoretical noise of the source, at
a temperature of 290 K, were present.

• In this book, noise figure F is f expressed in dB.

• For a cascade, (f − 1) is the sum of noise contributions from the cas-
cade’s elements, each represented by (f − 1) for the element divided by
the preceding gain.

• Source impedance can influence module noise factor. Theoretically, f for a
module is measured with the same driving impedance that the module sees
in the cascade.

• Commonly, f is measured with standard interface impedance.

• This commonly measured f is appropriate for use in our “standard cas-
cade” model where unilateral modules are interconnected by cables of
standard impedances.
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A B C D E
2 T = 290 K assumed SWR
3 Gain at out |a RT| NF
4 Module 1 12.0 dB 1.5 2.0 dB
5 Cable 1 −1.5 dB 1.5 0.02832
6 Module 2 10.0 dB 2 4.0 dB
7 Attenuator −18.0 dB 1.5 0.00106
8 min G max G
9 5 dB 35 dB

10 Gain Control 25.5 dB 2.8 3.0 dB
11 Cable 2 −0.8 dB 3.2 0.20638
12 Module 4 29.0 dB 10.0 dB
13
14 DERIVED
15 Gain NF
16 Module 1 12.00 dB 2.00 dB
17 Cable 1 −1.50 dB 1.54 dB
18 Module 2 10.00 dB 4.00 dB
19 Attenuator −18.00 dB 18.01 dB
20 Gain Control 25.51 dB 3.00 dB
21 Cable 2 −0.61 dB 0.93 dB
22 Module 4 29.00 dB 10.00 dB
23 CUMULATIVE
24 Gain NF
25 at output of
26 Module 1 12.00 dB 2.00 dB
27 Cable 1 10.50 dB 2.07 dB
28 Module 2 20.50 dB 2.42 dB
29 Attenuator 2.50 dB 3.62 dB
30 Gain Control 28.01 dB 4.56 dB
31 Cable 2 27.40 dB 4.56 dB
32 Module 4 56.40 dB 4.59 dB
33
34 Bandwidth: 2 MHz
35 Noise Out: −50 dBm
36 Target out: −50 dBm
37 Required Gain Control: 25.5 dB
38 Gain Error: 0.0E+00
39 Set Gain Control: 99.00 dB (99 dB for Automatic)

<-enter cmd+= to iterate

Fig. 3.25 Level control with iteration.
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• The noise factor for an attenuator at T0 equals its attenuation (f = 1/g).
• Interconnect cables have effective noise factors that depend on the output

SWR of the driving module.
• The variance of cascade noise figure, due to variations in individual module

noise figures, can be conveniently computed by extending the cascade one
element at a time.

• The effective noise factor of a mixer must account for the addition of
image noise.

• Noise factor for a cascade of voltage amplifiers can be given in terms that
are more convenient when power gain is difficult to use.

• Noise factor can be obtained for cascades consisting of sections of standard
cascades, simple cascades, and voltage-amplifier cascades.

• Sensitivities are useful in analysis of the effects of module gains and noise
figures on cascade noise figure.

• The signal level corresponding to a module gain can be indicated for auto-
matic gain control (AGC), or the gain can be set in response to a given
input level.

• Level control, to standardize the output noise level, can be incorporated in
the spreadsheet.

ENDNOTES

14.0038 . . . × 10−21 or −173.9753 . . . dBm/Hz.
2Simple bandpass filters are reflective at out-of-band frequencies. A diplexer consists of two parallel
filters whose interaction has been taken into account. We would pass the signal through one of these
filters and terminate the input to the other so the mixer would see a proper impedance match over
both the desired and image bands. Ideally, a triplexer, which provides three parallel filters, could
provide proper termination in the RF passband and at frequencies above and below the passband.
Similar considerations may be even more important at the other mixer ports (see Section 7.2.2).



CHAPTER 4

NONLINEARITY IN THE SIGNAL PATH

In this chapter we consider how to represent nonlinearities in modules and cas-
cades. Nonlinearities produce additional signals that are often objectionable in
RF systems. Some of these can be removed by filtering. Some cannot. To effec-
tively design RF systems, we must be able to predict at what frequencies these
spurious signals will occur and their expected magnitudes.

4.1 REPRESENTING NONLINEAR RESPONSES

Figure 4.1 shows a typical curve of output voltage plotted against input voltage.
Ideally the curve would be a straight line extending indefinitely, but, practically,
it will have some curvature and eventually saturate. However, we can usually
represent a curve such as this by a Taylor series,

vout = a0 + a1vin + a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · · , (4.1)

where vin is the change in input voltage from the operating point (the point about
which the series is written) and the ai are real. (Phase shift and frequency sensi-
tivity can be accounted for in functions preceding or following the nonlinearity.)

The first term is a bias term and not of interest here. The second term is
the desired linear term, a1 being the linear voltage gain a. The other terms
represent the curvature of the gain curve, and they create undesired components
at other frequencies. If only one signal is present, the undesired components will
be harmonics of the fundamental, but, if there are more signals in vin, signals
will be produced with frequencies that are mathematical combinations of the
frequencies of the input signals (e.g., three times the frequency of one signal less
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vout

vin

Ideal

Actual

Fig. 4.1 Voltage transfer curve with straight-line approximation.

the frequency of the second), called intermodulation products or intermods. It
is instructive to study the results when there are two input signals (although we
will eventually consider large numbers of signals). This shows the formation of
harmonics as well as intermods.

We write the input signal as

vin = A cos ϕa(t) + B cos ϕb(t), (4.2)

where
ϕa(t) = ωat + θa (4.3)

and
ϕb(t) = ωbt + θb. (4.4)

At times we will drop the explicitly shown time dependence, writing ϕ for ϕ(t).

4.2 SECOND-ORDER TERMS

The even-order term of primary interest will be the second-order term, that is,
the one arising from v2

in. Combining the third term on the right of Eq. (4.1) with
Eq. (4.2), we obtain

v2 = a2[A cos ϕa(t) + B cos ϕb(t)]
2 (4.5)

= a2[A2 cos2 ϕa(t) + 2AB cos ϕa(t) cos ϕb(t) + B2 cos2 ϕb(t)] (4.6)

= a2

{
A2

2
[1 + cos 2ϕa(t)] + AB

{
cos[ϕa(t) − ϕb(t)]

+ cos[ϕa(t) + ϕb(t)]

}

+B2

2
[1 + cos 2ϕb(t)]

}
(4.7)
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= a2


 A2 + B2

2
+ A2

2
cos 2ϕa(t) + B2

2
cos 2ϕb(t)

+ AB{cos[ϕa(t) − ϕb(t)] + cos[ϕa(t) + ϕb(t)]}


 , (4.8)

where trigonometric identities have been employed to obtain Eq. (4.7) from (4.6).
The first term in Eq. (4.8) is a direct current (DC) term, essentially detection.

The second and third terms are second harmonics of the two signals, shown
at d and f in Fig. 4.2, where the fundamentals are at a and b. The last terms
are the difference frequency term, at c in Fig. 4.2, and the sum frequency term,
which has frequency between those of the two harmonics, at e. These last two
terms are intermods. When the amplitudes of the input signals are equal, they are
6 dB greater than the harmonics, as can be seen from Eq. (4.8) and is suggested
in Fig. 4.2.

4.2.1 Intercept Points

We can plot (Fig. 4.3) the powers of these undesired signals on the same plot
with the power in the desired output fundamental, all against the power of each
input signal. At low levels, all of these curves are straight lines (we will discuss
the curvature at high levels presently). Since the second-order products increase
twice as fast as the desired fundamental, the straight lines cross. At the crossing
point, either for the intermod or the harmonic, the fundamental and the second-
order product have equal output powers. Since the slopes of the straight lines
are known, these crossing points, called intercept points (IPs), define the second-
order products at low levels. They are called by terms such as the “second-order
intermod output intercept point,” for the power out at the intersection of the
intermod and fundamental curves, and represented by shortcuts such as OIP2IM.
For the input power where the harmonic curve crosses the fundamental, this
would be IIP2H . Since an IP lies on the linear response curve, an OIP is higher
than the corresponding IIP by the linear gain. Typically, the larger of the input
or output intercept points is specified; so amplifiers use OIPs and mixers use
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Fig. 4.2 Spectrum of second-order products from two equal-amplitude signals.
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Fig. 4.3 Output powers of fundamentals and second-order products, two equal-power
inputs.

IIPs (which makes sense from a marketing viewpoint, large numbers being more
desirable). Some may even add the power of the two fundamentals, increasing
the value of the IP by 3 dB — we will not!

Refer to Fig. 4.3. If an output is x dB below the second-harmonic IP, its
second harmonic will be 2x dB below that IP. Similarly, if two equal-amplitude
signals are x dB below the second-order IM intercept point, their IMs will be
2x dB below that IP. This implies that the difference (separation) between two
equal-amplitude fundamentals and their harmonics or IMs is the same as the
difference between those fundamentals and the corresponding IP. In other words,
the signal level is midway between the IP level and the corresponding harmonic
or IM level.

Example 4.1 Second Harmonic See Fig. 4.4. The output second-harmonic
IP (OIP2H ) is at 17 dBm and the output signal power is −8 dBm, 25 dB below
the intercept point. Therefore, the second harmonic is another 25 dB down, at
−33 dBm, (2 × 25 dB =) 50 dB below the intercept point. We also know, from
the 25-dB difference between the IIP2H and the input signal power, that the
harmonic is 25 dB below the signal at the output.

If the amplitude of only one input signal changes, we see from Eq. (4.8) that
the harmonic of the changing signal will change by twice as many dB as does
the input, but the other harmonic will be unaffected. The intermods’ amplitudes
change by the sum of the changes in the two input signals; so, if only one
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Fig. 4.4 Example 4.1.
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Fig. 4.5 Spectrum of second-order products from two unequal signals.

fundamental changes, the IMs will change by the same amount. This is illustrated
in Fig. 4.5.

4.2.2 Mathematical Representations

Now we will express mathematically what we have just described, based on
Eq. (4.8). The second-harmonic output power pout,H2 is related to the fundamen-
tal output power pout,F and the second-order harmonic output intercept point
OIP2H by

pout,H2 = p2
out,F

pOIP2,H

. (4.9)
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Our symbol pOIP2,H is perhaps more proper than simply OIP2H , although the
latter is generally considered a power also, even though it is termed a “point.”

The output power pout,IM2 in either second-order IM is related to the powers
in the two fundamental outputs, pout,F1 and pout,F2, and to the second-order IM
intercept point OIP2IM, by

pout,IM2 = pout,F1pout,F2

pOIP2,IM
. (4.10)

Here, F1 represents the fundamental a or b in Figs. 4.2 and 4.5 and F2 is the
other fundamental.

The ratio between the second harmonic of the fundamental F and the funda-
mental at the output can be obtained by dividing Eq. (4.9) by pout,F :

pout,H2

pout,F
= pout,F

pOIP2,H

. (4.11)

The ratio of either second-order IM to the output power in fundamental number
1 is similarly obtained by dividing Eq. (4.10) by the power in that fundamental:

pout,IM2

pout,F1
= pout,F2

pOIP2,IM
. (4.12)

All these expressions can be related to equivalent input parameters by dividing
the variables by the gain at the fundamental, for example:

pin,IM2

pin,F1
= pin,F2

pIIP2,IM
. (4.13)

The variables here are: equivalent input power level for the second-order IM,
pin,IM2; power input at fundamentals 1 and 2, pin,F1 and pin,F2, respectively; and
input intercept point for second-order IMs, pIIP2,IM. The equivalent input power
for a harmonic or IM is the input power that would have generated that signal
had it been linearly amplified from the input rather than being created within
the module.

These expressions can all be written in dB also. For example, Eq. (4.9) becomes

Pout,H2 = 2Pout,F − POIP2,H . (4.14)

See Appendix H for a compilation of these various forms.
From Eqs. (4.1), (4.2), and (4.8), and the definition of intercept point, it is

apparent that the output amplitude at IP2IM satisfies

AOPI2,IM = |a1|AIIP2,IM = |a2|A2
IIP2,IM, (4.15)

so
AIIP2,IM = |a1/a2|, (4.16)
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implying a power, dissipated in the resistance R across which the voltage
appears, of

pIIP2,IM = 1

2R

(
a1

a2

)2

. (4.17)

Note from Eq. (4.1) that a1 is unitless and a2 has inverse-voltage units, giving
Eq. (4.17) power units.

4.2.3 Other Even-Order Terms

The fifth term on the right side of Eq. (4.1) contains v4
in and will look like

Eq. (4.8) squared, except for the coefficient a4 instead of a2. This will pro-
duce additional harmonic and intermodulation terms. Since the slope of the
output power versus fundamental power for these, and higher-order, terms will be
steeper than for the second-order terms, they will become negligible (compared
to the second-order terms) at sufficiently low signal levels. Their influence on the
second-order terms is of interest, however, because they, and other even-order
terms, account for the curvature in the second-order curves of Fig. 4.3 at high
levels. Note that the DC term in Eq. (4.8), when multiplied by another copy of
Eq. (4.8), as occurs when the fourth-order term is formed, produces terms with
frequencies identical to those of the second-order term. The same thing happens
when higher even-order terms are expanded. Thus, the second harmonic and
second-order IMs are proportional to c2a2C2 + c4a4C4 + c6a6C6 + · · ·, where
ai is from Eq. (4.1), ci is another constant, and Ci is some product AjBi−j ,
ranging from Ai to Bi , depending on the particular IM or harmonic. When
A = B, for example, Ci = AjAi−j = Ai . Only the first (lowest order) term is
significant at low levels of A and B, leading to the straight-line characteristic
at low levels in Fig. 4.3, but the other terms become significant at high lev-
els. The combination of all these terms at high levels produces the flattening of
the curve there. It is conceivable that a higher slope could occur at high lev-
els, corresponding to these higher powers in Ci , but we must remember that
the values of the set of coefficients in Eq. (4.1) are an effect of the true curve,
not its cause.

4.3 THIRD-ORDER TERMS

The third-order term in Eq. (4.1) is a3v
3
in. It can be obtained by multiplying

Eq. (4.8) by Eq. (4.2), excepting that a2 is replaced by a3. The result is

a3v
3
in = a3




A2 + B2

2
+ A2

2
cos 2ϕa + B2

2
cos 2ϕb

+ AB[cos(ϕa − ϕb) + cos(ϕa + ϕb)]


 (A cos ϕa + B cos ϕb)

(4.18)



98 CHAPTER 4 NONLINEARITY IN THE SIGNAL PATH

= a3




A2 + B2

2
(A cos ϕa+B cos ϕb)

+ A2

4
[A cos ϕa+A cos 3ϕa+B cos(2ϕa−ϕb)+B cos(2ϕa+ϕb)]

+ B2

4
[A cos(ϕa − 2ϕb) + A cos(ϕa + 2ϕb) + B cos ϕb + B cos 3ϕb]

+ AB

2

[
A cos(2ϕa − ϕb) + 2A cos ϕb + A cos(2ϕa + ϕb)

+ B cos(ϕa − 2ϕb) + 2B cos ϕa + B cos(ϕa + 2ϕb)

]




(4.19)

= a3

4




(3A3 + 6AB2) cos ϕa + (3B3 + 6A2B) cos ϕb

+ 3[A2B cos(2ϕa − ϕb) + AB2 cos(ϕa − 2ϕb)]
+ 3[A2B cos(2ϕa + ϕb) + AB2 cos(ϕa + 2ϕb)]
+ A3 cos 3ϕa + B3 cos 3ϕb




, (4.20)

where ϕa ≡ ϕa(t) and ϕb ≡ ϕb(t).
The first line in Eq. (4.20) contains signals at the fundamental frequencies,

but their amplitudes are nonlinear functions of the input amplitudes (when A

and B are equal, for example, they are proportional to the cube of the input
amplitudes). They will contribute to the nonlinear shape of the fundamental gain
at high levels. The second and third lines contain the IM terms and the last
line has the third harmonics. At low levels, IMs and harmonics that contain n

times a frequency have amplitudes that are proportional to the nth power of the
corresponding fundamental amplitudes. At high levels, other terms with powers
of n + 2i, where i is an integer, become appreciable and produce curvature in
the (dB) response plots.

Figure 4.6 shows the third-order frequency spectrum with two inputs of the
same level, and Fig. 4.7 shows changes to that spectrum when the amplitude of
only one of the signals changes. Third-order IMs that are close to the desired
signals (containing terms with frequency differences) are particularly troublesome
because of the difficulty in filtering them.
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Fig. 4.7 Spectrum of third-order products from two unequal signals.
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4.3.1 Intercept Points

Figure 4.8 shows the straight-line changes of fundamental, harmonic, and inter-
mod powers with input power at low levels and their extensions to third-order
IPs. This is similar to what is shown in Fig. 4.3 for second-order products, but the
slopes for the third-order products are steeper since they represent cubic nonlin-
earities rather than squares. IMs and harmonics change 3 dB for each dB change
in the inputs and fundamental outputs. Their ratios to the desired fundamentals
change 2 dB per dB of changes in the latter. The same variations in the manner
of specifying IP2s that were discussed in Section 4.2.1 apply here for IP3s.
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Fig. 4.9 Example 4.2.

Example 4.2 Third-Order IM See Fig. 4.9. The output third-order-IM IP
(OIP3IM) is at 21 dBm, and the output power for both signals is +5 dBm, 16 dB
below the intercept point. Therefore, the third-order IMs are twice 16 dB below
the signal, at −27 dBm, which is also thrice 16 dB below the IP. We can also
ascertain this 32-dB difference between fundamental and IM from the 16-dB
difference between input signal and IIP3IM.

4.3.2 Mathematical Representations

The following can be discerned by examination of Eq. (4.20). The third-harmonic
output power pout,H3 is related to the fundamental output power pout,F , and the
third-order harmonic output intercept point OIP3H by

pout,H3 = p3
out,F

p2
OIP3,H

. (4.21)

The IM output power pout,IM3 at a frequency ±2f1 ± f2 is related to the powers in
the two fundamental outputs, pout,F1 at f1 and pout,F2 at f2, and to the third-order
IM intercept point OIP3IM, by

pout,IM3(±2f1 ± f2) = p2
out,F1pout,F2

p2
OIP3,IM

. (4.22)
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Note that pout,F1 is the power of the fundamental whose frequency is doubled in
the formula for the IM’s output frequency. Which of the two frequencies is f1

will be different for different IMs. In the region near the fundamental frequencies
(which, for this discussion, we assume to be relatively close), each IM uses the
frequency of its nearest fundamental twice in Eq. (4.20) so pout,F1 is the power
in the nearest fundamental. In the region near the third harmonics, pout,F1 is the
power of the fundamental that produces the nearest harmonic. For example, in
Fig. 4.7, the power in a is squared in obtaining the power in c and in f , whereas
the power in b is used only once.

The ratio of the third harmonic to the desired fundamental output can be
obtained by dividing Eq. (4.21) by Pout,F :

pout,H3

pout,F
= p2

out,F

p2
OIP3,H

. (4.23)

The ratio of an IM3 to its nearest fundamental, or to the fundamental that produces
the nearest third harmonic, is, from Eq. (4.22),

pout,IM3(±2f1 ± f2)

pout,F1
= pout,F1pout,F2

p2
OIP3,IM

. (4.24)

These expressions can be written in terms of input quantities or in dB in the
same manner as demonstrated in Section 4.2. See Appendix H for a compilation
of these forms.

From Eqs. (4.1), (4.2), and (4.20), and the definition of IP, it is apparent that
the output amplitude at IP3IM satisfies

AOIP3,IM = |a1|AIIP3,IM = ( 3
4

) |a3|A3
IIP3,IM, (4.25)

so
A2

IIP3,IM = ( 4
3

) |a1/a3|, (4.26)

implying a power, dissipated in the resistance R across which the voltage
appears, of

pIIP3,IM = 2

3R

∣∣∣∣a1

a3

∣∣∣∣ . (4.27)

Note from Eq. (4.1) that a1 is unitless and a3 has units of inverse-voltage squared,
giving Eq. (4.27) power units.

4.3.3 Other Odd-Order Terms

The last term shown if Eq. (4.1) can be obtained, except for a change from a2a3

to a5, by multiplying Eq. (4.20) by Eq. (4.8). Again, as with even orders, the DC
term in Eq. (4.8) causes all of the frequencies in the third-order term to reappear
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in the fifth-order term and, as in that case, the third-order magnitudes take on
the form d3a3C3 + d5a5C5 + d7a7C7 + · · ·, where the first term dominates at low
levels but the others explain the curvature at high levels.

In a similar manner, since Eq. (4.20) contains signals at the fundamental fre-
quencies, the fundamental contained within this and additional odd-order terms
explain the curvature of the fundamental response at high levels. The curvature of
the gain curve for cos ϕa(t) is due to An terms originating in nth-order nonlineari-
ties. However, the multiplier for cos ϕa(t) also contains powers of B. Thus, when
a strong signal is present at ϕb(t), the gain for cos ϕa(t) can be seriously affected
by the amplitude of the signal at ϕb(t). This can cause desensitization, a reduc-
tion of the signal strength, and thus the sensitivity, for one signal in the presence
of another, strong, signal (sometimes called a blocker) (Domino et al., 2001). It
can also cause cross modulation because, when the strong signal is amplitude
modulated, the gain for the weaker signal will change as the amplitude of the
strong signal changes, causing amplitude modulation (AM) to be transferred from
the strong to the weak signal (Rohde and Bucher, 1988, pp. 72–75).

Appendix P contains additional mathematical development that can be applied
to higher order IMs, as well as those discussed in this chapter.

4.4 FREQUENCY DEPENDENCE AND RELATIONSHIP
BETWEEN PRODUCTS

Frequency dependence can cause the observed powers to differ from the powers
that enter or leave the nonlinearity. IMs that are expected to have identical ampli-
tudes may have different levels as a result. This can be accommodated in our
model by preceding and/or following the nonlinearity by filters. (In the case of
a feedback amplifier, for example, a following low-pass filter might account for
gain rolloff after the nonlinearity while a preceding high-pass filter might account
for a compensating drive increase with frequency. The effects of the two filters
would ideally cause the gain to be frequency independent, but the IMs would still
increase with frequency due to the increasing signal seen by the nonlinearity.)

To the degree that the frequency response after the nonlinearity is flat, IMs
may be predictable from harmonics. We can see from Fig. 4.3 that the second-
order IMs are 6 dB higher than the harmonics, as are the corresponding IP2s.
From Fig. 4.8 we see that the third-order IMs are 9.54 dB greater than the third
harmonics and that the IP3H exceeds the IP3IM by 4.77 dB.

In addition, we may be able to relate the −1-dB compression level to the IP3.
We can see, from Eq. (4.20), that, when only one signal is present, the amplitude
of the fundamental term, ( 3

4 )a3A
3, is thrice the amplitude of the third harmonic.

It is also equal to the amplitudes of the IMs that occur when a second signal
of equal amplitude (i.e., A = B) is added. The fundamental from the first-order
product [Eq. (4.1)] is a1A. If we assume that the signs of these two fundamental
terms oppose and that there are no other significant terms at the fundamental,
1-dB compression occurs when the third-order fundamental term reduces the sum
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with the first-order term by 1 dB:

|a1|A−1 dB − 3
4 |a3|A3

−1 dB

|a1|A−1 dB
= 1 − 3

4

∣∣∣∣a3

a1

∣∣∣∣ A2
−1 dB = 10−1/20, (4.28)

3

4

∣∣∣∣a3

a1

∣∣∣∣ A2
−1 dB = 0.10875. (4.29)

Substituting for a3/a1 from Eq. (4.26), we obtain

A2
−1 dB

A2
IIP3,IM

= pin,−1 dB

pIIP3,IM
= 0.10875 ⇒ −9.64 dB. (4.30)

Since there is a 1-dB gain reduction at the 1-dB compression level, the output
power at this level is

Pout,−1 dB = (PIIP3,IM + G − 1 dB) − 9.64 dB = POIP3,IM − 10.64 dB. (4.31)

If we measure an IM that is near the signal (in frequency) to obtain OIP3IM,
the frequency response could easily be the same for the signal and the IM,
removing some risk from our flat-response assumption. However, we cannot
know that higher-odd-order terms will not make significant contributions to the
compression.1 While we can reduce signal levels to eliminate higher order terms
in relating harmonics to IMs, a low signal level does not apply at the com-
pression point. If we are going to measure the harmonics or IMs at the high
level required for compression, we might as well measure the compression level
directly. The development above does provide some theoretical basis for the 1-
dB output compression point being 10.6 dB below the OIP3IM, but that depends
on the third-order product being the only significant contributor to compression.
We can find many amplifiers that are within a few dB of demonstrating this
relationship, but we can also find some that deviate from it significantly. Perhaps
this relationship is best used as an estimate in early design based on the hope
that we will be able to find an amplifier for which it does hold if we need to.

4.5 NONLINEAR PRODUCTS IN THE CASCADES

Throughout our development of intercept points for cascades, we will assume that
gain is the same for all of the signals of interest, intermods and fundamentals.
We do this to simplify the expressions. We could develop a general expression
with different gains for each signal but, if the gains differ significantly, it may
be as well to rely on our ability to compute each intermod in each module,
applying the appropriate gains to each signal both before and after the point
of generation and appropriately adding the resulting intermods at the output or,
equivalently, at the input. We can still develop an overall intercept point based
on the signal strengths and the basic equations such as Eq. (4.10). For the case
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where the frequency response is sufficiently flat, however, and to aid our general
understanding, it will be useful to have a simple expression relating the cascade
intercept points to the module intercept points.

We begin by determining the intercept point for two modules in cascade before
attacking the more general case.

4.5.1 Two-Module Cascade

Multiplying the third-order intermod power at the output of the first module, as
given by Eq. (4.22), by the gain g2 of a second module, we obtain its power at
the output of the second module:

g2pout,IM3,1(±2f1 ± f2) = g2
p2

out,F1,1pout,F2,1

p2
OIP3,IM,1

. (4.32)

The last subscripts refer to the number of the module where the intermod is
generated or where the gain occurs. To this will be added the intermod generated
in the output module (number 2). If the phase relationship between the two
intermods is random, the mean power (over all possible phases) will be the sum
of the individual powers:

pout,IM3,casc(±2f1 ± f2) = g2
p2

out,F1,1pout,F2,1

p2
OIP3,IM,1

+ p2
out,F1,2pout,F2,2

p2
OIP3,IM,2

(4.33)

= (g2pout,F1,1)
2(g2pout,F2,1)

(g2pOIP3,IM,1)2
+ p2

out,F1,2pout,F2,2

p2
OIP3,IM,2

(4.34)

= p2
out,F1,cascpout,F2,casc

[
1

(g2pOIP3,IM,1)
2

+ 1

p2
OIP3,IM,2

]
. (4.35)

Here we have recognized that power at the output of module 2 equals power at
the output of the cascade, as does the output power of module 1 multiplied by
the g2. From this we see that we can write an expression for the cascade in the
form of Eq. (4.22) if

1

p2
OIP3,casc

= 1

(g2pOIP3,1)2
+ 1

p2
OIP3,2

, (4.36)

which, therefore, defines the relationship between the cascade and module third-
order intercept points for the case where phases add randomly. In the worst case,
where the intermods add in phase, we must add voltages rather than powers, so
we would change Eqs. (4.33)–(4.36) to read

p
1/2
out,IM3,casc(±2f1 ± f2) = g

1/2
2

pout,F1,1p
1/2
out,F2,1

pOIP3,IM,1
+ pout,F1,2p

1/2
out,F2,2

pOIP3,IM,2
(4.37)
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= (g2pout,F1,1)(g2pout,F2,1)
1/2

g2pOIP3,IM,1
+ pout,F1,2p

1/2
out,F2,2

pOIP3,IM,2
(4.38)

= pout,F1,cascp
1/2
out,F2,casc

(
1

g2pOIP3,IM,1
+ 1

pOIP3,IM,2

)
. (4.39)

Squaring this expression and comparing to Eq. (4.22), we find that

1

pOIP3,casc
= 1

g2pOIP3,1
+ 1

pOIP3,2
. (4.40)

The IM subscripts have been left off Eqs. (4.36) and (4.40) because they apply
both to IMs and harmonics, which we can easily see by repeating the develop-
ments for harmonics, referring to Eq. (4.21) rather than to Eq. (4.22).

If we follow a similar process for second-order intermods, referring to Eq. (4.10)
rather than (4.22) or Eq. (4.9) rather than to Eq. (4.21), we obtain

1

pOIP2,casc
= 1

g2pOIP2,1
+ 1

pOIP2,2
(4.41)

for random phases and

1

p
1/2
OIP2,casc

= 1

(g2pOIP2,1)1/2
+ 1

p
1/2
OIP2,2

(4.42)

for coherent addition of the intermods.
Similar equations can be written for cascade input IPs by referring all of the

module IPs to the cascade input. For example, we can multiply Eq. (4.42) by the
square root of the cascade gain g1g2 to give

1

p
1/2
IIP2,casc

= 1

(pOIP2,1/g1)1/2
+ 1

[pOIP2,2/(g1g2)]1/2
(4.43)

= 1

p
1/2
IIP2,1

+ 1

(pIIP2,2/g1)
1/2

. (4.44)

4.5.2 General Cascade

The ratio of two output powers (or voltages), such as in Eqs. (4.11) or (4.24),
or of two input powers, as in Eq. (4.13), does not change as we move through
the stages in a cascade. That is, if the ratio exists at some point in the cascade,
it will be the same when both quantities are amplified by subsequent stages or
when the signals are referred to the input, assuming the same frequency response
for the two powers forming the ratio. For example, if we divide both sides of
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Eq. (4.32) by g2pout,F1,1, we obtain

g2pout,IM3,1(±2f1 ± f2)

g2pout,F1,1
= pout,F1,1pout,F2,1

p2
OIP3,1

, (4.45)

which is independent of g2. Thus, the output (or the input by reference) will
contain many intermodulation products at the same frequency, each produced in
a different stage of the cascade, and each with the same power, relative to the
signal, that it had when it was created. Here we will find a single equivalent IP,
to represent the entire cascade, that produces the same result. The development
will be similar to the previous section but more general.

The general form of the expressions that we have obtained for nth-order inter-
mods or harmonics at a module output can be written

pout,n

pout,F1
= kout

pn−1
OIPn

, (4.46)

where

kout =
n−1∏
m=1

pout,F i (4.47)

and i = 1 or i = 2 (e.g., pout,F1pout,F2 or p3
out,F1), is some product of output

powers that depends on the particular IM or harmonic being considered. Here n

indicates the order of the nonlinearity. We have dropped the designator H or IM;
the development will apply to either. Compare to Eqs. (4.11), (4.12), (4.23), and
(4.24). For the whole cascade this would be written

pout,n,cas

pout,F1,cas
= kout,cas

pn−1
OIPn,cas

. (4.48)

4.5.3 IMs Adding Coherently

In the worst case, all q of the products generated in the q stages of a cascade
are in phase; so their voltage amplitudes add at the output, as do the q ratios of
the product to one of the fundamental voltages:

(
vout,n

vout,F1

)
cas

=
q∑

i=1

(
vout,n

vout,F1

)
i

. (4.49)

Adding those ratios is the same as adding the intermod voltages because the
fundamental is the same for each of the addends at the output or when referred
to any given point in the cascade.

We can write Eq. (4.46) for the cascade as
(

kout

pn−1
OIPn

)
cas

=
(

pout,n

pout,F1

)
cas

=
(

vout,n

vout,F1

)2

cas

(4.50)
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and combine it with Eq. (4.49), after taking the square root, to give

(
kout

pn−1
OIPn

)1/2

cas

=
q∑

i=1

(
vout,n

vout,F1

)
i

. (4.51)

Now using Eq. (4.46) for the modules, this becomes

(
kout

pn−1
OIPn

)1/2

cas

=
q∑

i=1

(
kout

pn−1
OIPn

)1/2

i

. (4.52)

Dividing both sides by k
1/2
out,cas we obtain

1

p
(n−1)/2
OIPn,cas

= 1

k
1/2
out,cas

q∑
i=1

k
1/2
out,i

p
(n−1)/2
OIPn,i

. (4.53)

Since kout is the product of (n − 1) output power levels [see Eq. (4.47)], the ratio
of kout,cas to kout,i is the product of n − 1 power gains from the output of module
i to the cascade output. Using that equivalence, we have

1

p
(n−1)/2
OIPn,cas

=
q∑

i=1

1

(gi+1,qpOIPn,i)(n−1)/2
, (4.54)

where

gk,q
�=

q∏
j=k

gj (4.55)

is the gain for modules k through q and, thus, the gain from the input to module
k to the cascade output. Thus gi+1,qpOIPn,i just represents the intercept point of
module i amplified or referred to the output, where it is combined with the other
amplified module intercept points.

We can change this relationship between OIPs to one between IIPs by dividing
the denominator by g

(n−1)/2
1,q to obtain

1

p
(n−1)/2
IIPn,cas

=
q∑

i=1

(
g1,i

pOIPn,i

)(n−1)/2

=
q∑

i=1

(
g1,i−1

pIIPn,i

)(n−1)/2

(4.56)

The IM3s that are close to the desired signals tend to receive the same phase shift
as the fundamental because their frequencies are close. Consider this scenario,
which is tabulated in Table 4.1. Suppose that, at some point, two fundamental
signals have phases θ1 and θ2 and a third-order product is created with time-
varying phase of 2ϕ1(t) − ϕ2(t), implying a frequency of 2ω1 − ω2 (close to the
signal at ω1) plus a phase 2θ1 − θ2. In traveling to another module, these signals
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TABLE 4.1 Phases of Close (in frequency) Signals and IMs Formed at Two Differ-
ent Locations

Frequency of signal f1 f2 fIM3 = 2f1 − f2

Phase at module 1 θ1 θ2 2θ1 − θ2

Phase at module 2 θ1 + �θ θ2 + �θ 2θ1 − θ2 + �θ

Phase of new IM3 at module 2 2(θ1 + �θ) − θ2 − �θ =
2θ1 − θ2 + �θ

pick up a phase shift of �θ so the fundamentals have phase shift θ1 + �θ and
θ2 + �θ and the third-order IM has phase of 2θ1 − θ2 + �θ . Then an IM is
created at the same frequency in the second module. If the process is similar
to what produced the first IM, the new IM will have phase 2(θ1 + �θ) − (θ2 +
�θ) = 2θ1 − θ2 + �θ . But this is the same phase that the first IM has on arrival
in the second module; so the IMs created in two different locations add in phase.

Therefore, it would not be surprising to find that IM3s close to the signals add
in phase and Eq. (4.53), while being worst case, may also be close to typical for
third-order IMs near the signals (Maas, 1995). For third-order IMs, Eq. (4.54)
becomes

1

pOIP3,cas
=

q∑
i=1

1

gi+1,qpOIP3,i

; (4.57)

so the cascade IP3 is the reciprocal of the sum of the reciprocals of individual
IP3s. They add much as do parallel resistances.

We could also write [Eq. (4.56)] as

1

pIIP3,cas
=

q∑
i=1

g1,i−1

pIIP3,i

. (4.58)

4.5.4 IMs Adding Randomly

If the IMs have random phase, we expect the powers to add. Equation (4.53)
still gives the worst case, but we expect the results to be closer to a value given
by adding powers rather than voltages. Proceeding as before, but using powers,
Eq. (4.50) leads to(

kout

pn−1
OIPn

)
cas

=
q∑

i=1

(
pout,n

pout,Fj

)
i

=
(

pout,n

pout,Fj

)
cas

(4.59)

=
q∑

i=1

(
kout

pn−1
OIPn

)
i

, (4.60)

which can be written

1

pn−1
OIPn,cas

=
q∑

i=1

1

(gi+1,qpOIPn,i)n−1
. (4.61)
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This differs from Eq. (4.54) for coherent addition in that the powers, n − 1, were
there divided by 2.

We could also write the relationship in terms of input intercept points:

1

pn−1
IIPn,cas

=
q∑

i=1

(
g1,i−1

pIIPn,i

)n−1

. (4.62)

These equations are more appropriate for products that are not close to the desired
signal, such as the third-order products near the third harmonics and all of the
second-order products. For these, the phase shifts produced by time delays in
traveling will differ because, for a given delay, the phase shifts are proportional to
frequency. In addition, multiplications that are not of the form mθ1 − (m − 1)θ2,
as they are for the close-in IM3s, will not produce the same phase shift, relative
to the fundamental, when they occur at two different locations.

For n = 2, Eq. (4.61) gives

1

pOIP2,cas
=

q∑
i=1

1

gi+1,qpOIP2,i

, (4.63)

which has the same form as Eq. (4.57). Therefore, this form may be appropriate
for both second-order and close-to-signal third-order products.

4.5.5 IMs That Do Not Add

Third-order products, such as c and d in Fig. 4.6, follow the signal through
frequency translations since they are always separated from the signals by a
fixed offset. Thus, IM3s of this type, generated before a frequency translation
(heterodyning in a mixer), add to the same type generated after a translation.
The pretranslation set is translated to the frequencies at which the posttranslation
IMs occur.

Other products shown in Fig. 4.6 and the second-order products in Fig. 4.2 do
not possess this property. Their separations from the signal depend on the signal
frequency. Therefore, pretranslation IMs will occur at different frequencies after
the translation than will the IMs created there.

The IM3s (c and d in Fig. 4.6) that follow the signals (a and b in Fig. 4.6) are
most important because of their ability to sneak through filters along with signals
and because they reinforce across translations. The next most important IMs are
usually second-order since they are closer to the signals than the other third-
order IMs. They are most important in video bands, that is, bands that include
zero frequency or have a very large ratio of upper- to lower-edge frequencies.
Such bands can contain fundamentals (a and b in Figs. 4.2 and 4.6) and their
harmonics and signals near the harmonics (d –f in Fig. 4.2 and e–h in Fig. 4.6)
as well as difference-frequency signals (c in Fig. 4.2).

Filtering may determine whether certain IMs are generated throughout the
system or only in certain parts. Two signals that are very closely spaced and that
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are well within all filter bands will generate IM3s that add everywhere. As the
separation between the signals increases, one or both of the signals or one or both
of the IMs may be reduced by filtering. Then the amplitudes of the IMs in the
cascade become a function of the separation between the signals (Synder, 1978).

4.5.6 Effect of Mismatch on IPs

In Chapter 3, we showed how the noise factor, as usually measured, was appro-
priate for use in our standard cascade. We used an isolated noise source in that
development, but we also considered, in Section 3.8, how the driving impedance
could affect the value of the noise source and how to use such information when
available. There are similar considerations for the use of IPs in cascade.

As long as the IPs, as measured with standard impedances, do not change,
they are appropriate for use in a standard cascade. The gain that references them
to the cascade input is appropriate for relating the output measured during test
(vojT in Fig. 2.5) to the system input. However, the accuracy of the cascade
analysis suffers from any dependence of IP on mismatch at the module output.
If the reflection from the module output S22(k−) were linear, the relative IMs
transmitted through the interconnect would be the same as in vojT , but, in many
cases, this would not be true. Since reflected signals can cause an effective change
in the load of the output amplifier, reflections can significantly influence the IP.
For example, higher impedance would cause a larger voltage swing and thus
produce distortion at a lower module input level.

Commonly, the only information available on module IPs would have been
obtained into standard impedance, and these would be used as best estimates
of performance in the actual cascade. However, for greater accuracy, we could
measure the IPs with the load that the module sees in the cascade or an equivalent
load (Fig. 4.10). Since we are measuring the forward wave in the cable, the gain
from the forward wave at the input of the module under test to the forward wave
at the cable output can also be determined, avoiding the usual use of a range of
effective cable gains.

In general, however, we are assuming that the load impedance is unknown,
except for its standing-wave ratio (SWR). We would therefore vary the phase of
the mismatch in Fig. 4.10, one having the specified SWR (perhaps by using a
line stretcher in the interconnect), and measure the IPs as a function of phase

to Measurement system

Coupler
Module

under test
Mismatched

load

Zload

Fig. 4.10 Measuring IPs with mismatches.
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at fixed SWR. This would be referred to the module input or output to give the
range of IPs to be expected with the specified load SWR. We should correlate
the measured IP with the observed effective cable gain so we do not use an
inappropriate combination in our cascade calculations (e.g., low IP at low gain
when the two do not occur simultaneously).

4.6 EXAMPLES: SPREADSHEETS FOR IMs IN A CASCADE

Example 4.3 Computing IMs of a Cascade Figure 4.11 is a spreadsheet for
a standard cascade with second- and third-order OIPs added in cells F4–G10.
The cumulative IIP2s and IIP3s for the cascade are given in cells F24–K30 for
the cascade ending with each module or interconnect. They could be obtained
from Eq. (4.63) multiplied by the cascade gain to give input IPs. However, as
was true for noise figures, we will find it more convenient to use formulas for
two elements, the first of which consists of a cascade composed of all previous
modules. Therefore, we use Eqs. (4.40) and (4.41), multiplying them by the gain
g1g2 for the cascade being considered. Since both equations have the same form,
we can just write

1

pOIP,casc/g1g2
= 1

pOIP,1/g1
+ 1

pOIP,2/g1g2
, (4.64)

= 1

pIIP,casc
, (4.65)

where the module or interconnect under consideration has index 2 and the pre-
ceding cascade has index 1.

Note how severely the input IPs can be affected by gain variations (compare
cells F30–H30 and also I30–K30).

The products being computed in this spreadsheet are IMs, rather than harmon-
ics, according to the label in cells F2–G2, although only the OIP values would
be changed for harmonics. We just need to label the spreadsheet to show what
we are computing.

A display of sensitivities of the cascade IPs to module IPs and gains can be
valuable. These would be obtained, as they were for gains (Section 2.5) and noise
figures (Section 3.11), by listing changes in the overall IPs obtained by experi-
mentally changing component parameters on the spreadsheet and normalizing to
a 1-dB component parameter change.

Example 4.4 Frequency Conversion and IMs That Do Not Add The prob-
lem, discussed in Section 4.5.5, of IP2s that do not add, is illustrated in Fig. 4.12.
Here a mixer changes the signal frequency in the midst of the cascade and thus
changes the frequencies of the second-order products. Line 32 has been added and
labeled “mixer from in.” It refers to the second-order IMs at the sum or difference
of two input frequencies. These are translated by the mixer in the same manner
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A B C D E F G H
2 Gain Gain SWR
3 nom +/− at out |a RT| OIP3 OIP2a OIP2b
4 Module 1 1.0 dB 1.5 9.0 dBm 19.0 dBm
5 Cable 1 1.5 0.0283
6 Module 2 1.5 dB 2 27.0 dBm 40.0 dBm
7 Cable 2 2 0.0883
8 Module 3 (mixer) 1.5 dB 2.8 19.0 dBm 52.0 dBm 57.0 dBm
9 Cable 3 (diplexer) 1.5 0.0189 24.0 dBm 60.0 dBm

10 Module 4 1.0 dB 2 26.0 dBm 37.0 dBm
11 Cable 4 1.7 0.0719
12 Module 5 1.5 dB 3 30.0 dBm 44.0 dBm
13
14
15 mean max min ±
16 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB
17 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB
18 Module 2 15.00 dB 16.50 dB 13.50 dB 1.50 dB
19 Cable 2 −0.97 dB −0.20 dB −1.73 dB 0.77 dB
20 Module 3 (mixer) −9.00 dB −7.50 dB −10.50 dB 1.50 dB
21 Cable 3 (diplexer) −7.00 dB −6.83 dB −7.16 dB 0.16 dB
22 Module 4 15.00 dB 16.00 dB 14.00 dB 1.00 dB
23 Cable 4 −0.78 dB −0.15 dB −1.40 dB 0.63 dB
24 Module 5 6.00 dB 7.50 dB 4.50 dB 1.50 dB
25
26 IIP3 with IIP2 with IIP2 with
27 mean max min ± mean gain mean gain max gain
28 Module 1

at output of
12.00 dB 13.00 dB 11.00 dB 1.00 dB −3.00 dBm 7.00 dBm 6.00 dBm

29 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB −3.00 dBm 7.00 dBm 6.00 dBm
30 Module 2 25.50 dB 28.25 dB 22.76 dB 2.75 dB −4.32 dBm 6.29 dBm 4.98 dBm
31 Cable 2 24.54 dB 28.05 dB 21.02 dB 3.51 dB −4.32 dBm 6.29 dBm 4.98 dBm
32 mixer from in 15.54 dB 20.55 dB 10.52 dB 6.28 dBm 4.97 dBm
33 mixer at out 15.54 dB 20.55 dB 10.52 dB 5.01 dB −4.99 dBm 41.46 dBm 36.45 dBm
34 Cable 3 (diplexer) 8.54 dB 13.72 dB 3.36 dB 5.18 dB −5.03 dBm 41.46 dBm 36.45 dBm
35 Module 4 23.54 dB 29.72 dB 17.36 dB 6.18 dB −5.74 dBm 13.45 dBm 7.28 dBm
36 Cable 4 22.76 dB 29.57 dB 15.96 dB 6.80 dB −5.74 dBm 13.45 dBm 7.28 dBm
37 Module 5 28.76 dB 37.07 dB 20.46 dB 8.30 dB −6.53 dBm 11.25 dBm 4.09 dBm

Gain

IMs

DERIVED
Gain

CUMULATIVE

12.0 dB
−1.5 dB
15.0 dB
−1.0 dB
−9.0 dB
−7.0 dB
15.0 dB
−0.8 dB
6.0 dB

Fig. 4.12 Spreadsheet, with frequency conversion, giving IP2s.

as are the signals. The next line is labeled “mixer at out” and refers to the IM
at the sum or difference of two output signal frequencies. Lines 33–37 contain
IIP2 data for the part of the cascade after the mixer. Line 33 begins anew with
the OIP2 of the mixer output, not combining the previous IIP2s since they are at
different frequencies. Thus cells G32–H32 contain IIPs for one set of IMs and
cells G37–H37 contain IIPs for another set at different frequencies.

We could use multiple columns if we were interested in more than one IM
that did not add through the frequency translation and that were characterized by
different sets of IPs. Note that cells G8 and H8 contain different OIP2 values for
the mixer. There are separate OIP2s for the input frequencies and for the output
frequencies. The value in G8 is related to the 1 × 2(LO × 2RF) mixer spurs,
involving the second-order products of the input signal (RF). The value in H8
is related to the 2 × 2 products (2LO × 2RF), for example, the second harmonic
of the desired 1 × 1 mixer output (IF). Another of the 2 × 2s appears at the
mixer output at the frequency difference between the two signals, but the product
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that was created at the same frequency at the input has there been translated to
a different frequency.

“Cable 3” is actually a diplexer (or, perhaps, a triplexer), a filter for removing
undesired products while presenting a proper interface impedance both within
and without the passband. Treating it as a cable assumes perfect match, at its

A B C D E F G H
2 Gain Gain SWR
3 nom +/− at out |a RT| OIP3 OIP2a OIP2b
4 Module 1 12.0 dB 1.0 dB 1.5 9 dBm 19 dBm
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 15.0 dB 1.5 dB 2 27 dBm 40 dBm
7 Cable 2 −1.0 dB 2 0.0883
8 Module 3 (mixer) −9.0 dB 1.5 dB 2.8 19 dBm 52 dBm 57 dBm
9 Cable 3 (diplexer) −7.0 dB 1.5 0.0189 24 dBm 60 dBm
10 Module 4 15.0 dB 1.0 dB 2 26 dBm 37 dBm
11 Cable 4 −0.8 dB 1.7 0.0719
12 Module 5 6.0 dB 1.5 dB 3 30 dBm 44 dBm

IMs

A B C D E F
13
14
15 mean max min ±
16 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB
17 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB
18 Module 2 15.00 dB 16.50 dB 13.50 dB 1.50 dB
19 Cable 2 −0.97 dB −0.20 dB −1.73 dB 0.77 dB
20 Module 3 (mixer) −9.00 dB −7.50 dB −10.50 dB 1.50 dB
21 Cable 3 (diplexer) −7.00 dB −6.83 dB −7.16 dB 0.16 dB
22 Module 4 15.00 dB 16.00 dB 14.00 dB 1.00 dB
23 Cable 4 −0.78 dB −0.15 dB −1.40 dB 0.63 dB
24 Module 5 6.00 dB 7.50 dB 4.50 dB 1.50 dB
25
26 Gain

27 at output of mean coherent
non-

coherent
non-

coherentcoherent
28 Module 1 12.00 dB −3.00 dBm −3.00 dBm 7.00 dBm 7.00 dBm
29 Cable 1 10.50 dB −3.00 dBm −3.00 dBm 7.00 dBm 7.00 dBm
30 Module 2 25.50 dB −4.32 dBm −3.26 dBm 3.94 dBm 6.29 dBm
31 Cable 2 24.54 dB −4.32 dBm −3.26 dBm 3.94 dBm 6.29 dBm
32 mixer from in 15.54 dB 3.74 dBm 6.28 dBm
33 mixer at out 15.54 dB −4.99 dBm −3.35 dBm 41.46 dBm 41.46 dBm
34 Cable 3 (diplexer) 8.54 dB −5.03 dBm −3.35 dBm 39.08 dBm 41.46 dBm
35 Module 4 23.54 dB −5.74 dBm −3.50 dBm 13.02 dBm 13.45 dBm
36 Cable 4 22.76 dB −5.74 dBm −3.50 dBm 13.02 dBm 13.45 dBm
37 Module 5 28.76 dB −6.53 dBm −3.73 dBm 8.04 dBm 11.25 dBm

DERIVED
Gain

CUMULATIVE
IIP3 IIP2 with

Fig. 4.13 Spreadsheet giving IPs with both coherent and noncoherent addition.
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terminals, to the standard impedance. An alternative, which would allow the
inclusion of SWRs for the diplexer, would be to treat it as a unilateral module
with cables on either side. That would be an approximation also, depending on
its attenuation and the matches at the cable ends to give effective unilaterality.

Example 4.5 Coherent and Noncoherent Addition Figure 4.13 shows both
coherent and noncoherent addition of IMs, according to Eq. (4.56) and (4.62),
respectively (modified for only two levels, as before). Only mean gains are used.

4.7 ANOMALOUS IMs

Occasionally, we may find a module with IMs at the frequencies expected for
IM3s but that vary with amplitude like IM2s (i.e., as in Fig. 4.3). Such an anomaly
is illustrated in Fig. 4.14. This can occur when the transfer curve has hysteresis,
due to the presence of magnetic circuits. For example, power amplifiers often
use ferrite cores in making baluns, transformers, and combiners, and filters may
use such transformers in matching. The theory we have used to this point was
based on the Taylor series of Eq. (4.1), representing a curve such as is shown in
Fig. 4.1, but this does not describe a transfer function containing hysteresis, in
which the curve differs for increasing and decreasing input values and changes
with the magnitude of the signals. Two such curves are shown in Fig. 4.15. The
magnetic flux density B, which is ultimately proportional to a voltage within the

Output
intercept

point
(level)

Fundamental power in

Fundamental
1:1 slope

Expected
3:1 slope

3rd Order
frequencies,

2:1 slope

Po
w

er
 o

ut

Fig. 4.14 Anomalous IMs have frequencies of third-order IMs but amplitude dependence
of second-order IMs.
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B~vout

H~iin

Fig. 4.15 Hysteresis.

device, and which at least influences the module output voltage, is here plotted
against the magnetic field intensity, which is proportional to the input current
and, thus, to the input voltage. The change in shape between the two curves
shown, one of which represents larger peak values than the other, is apparent.

Two 1935 studies (Kalb and Bennett, 1935; Latimer, 1935–36) obtained the
response for such a circuit, assuming the hysteresis curves consisted of back-to-
back parabolas (Snelling, 1988). The term representing the hysteresis produces a
third harmonic (in the case of one signal) and is proportional to the square of the
peak value of H . For two equal-amplitude driving signals, the ratios of output
IMs and harmonics to the fundamentals have been shown to be proportional to
the input voltage, in the fashion of a second-order IM, not to its square, as with
third orders.

Both the curvature at high levels and the possibility of anomalies suggest
the measurement of multiple points, preferably in the region of expected input
powers, to confidently establish the intercept points. Perhaps of more concern
is the possibility of a mix of both normal and anomalous third-order IMs, as
illustrated in Fig. 4.16, since there is a greater possibility of the anomaly being
undetected when a few points on a third-order slope are measured at higher levels.

4.8 MEASURING IMs

Figure 4.17 shows the setup for measuring harmonic IP (Barkley, 2001). Ideally,
with the switches up, we measure the power of the signal from the module
under test and the relative level of the harmonic using a calibrated spectrum
analyzer. Then, as we change the power from the generator, we plot these, as
in Fig. 4.3 or 4.8, and determine the power where the two extended lines cross.
If we know we are in the desired straight-line regions, measurements will only
be necessary at one power level. However, generally we should verify that the
straight line continues through the region representing the powers that are of
interest in the system.

A potential problem arises from the possible generation of the same harmonics
we are trying to measure in some part of the measurement system. Even high-
quality signal generators have surprisingly high harmonic levels. If the signal
generator harmonic level, measured without the module in place, is significant,
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Fig. 4.16 Normal and anomalous third-orders are both present.

Signal
generator

Module
under test

Spectrum
analyzer

Band-stop filter

Fig. 4.17 Harmonic test.

it will have to be filtered before driving the module under test. The spectrum
analyzer is also suspect as a source of harmonics. If a change in its input atten-
uator does not change both the fundamental and the harmonic by the change in
attenuation, some of the harmonic power is being generated in the analyzer. In
that case, a filter must be inserted before the analyzer to attenuate the fundamen-
tal so it will not generate harmonics in the analyzer. Of course, filter losses must
be accounted for in our calculations.

We assume that the switch is either free from significant harmonics and IMs
or, more likely, that it actually represents reconnection of cables, there not being
an actual switch. Figure 4.18 shows the setup for measuring IPIM. The additions
are a second generator and a power combiner to add the two signals. In addition
to the potential problems encountered in the harmonic test, we now must be
concerned about the generation of IMs in these two added components. A signal
leaking through the power combiner from one generator to the other can generate
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Signal
generator

Signal
generator

Spectrum
analyzer

Band-stop filter

Module
under
test

Σ
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Fig. 4.18 IM test.

Spectrum
analyzer

Signal
generator

Signal
generator

Module
under
test

Power
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Mismatched
load

Zload

Coupler

∑

Fig. 4.19 IM test with mismatches.

IMs in the generator. Some generators are rated for IM generation under these
conditions. It may be necessary to add isolators or attenuators at the generator
outputs. In addition, the power combiner is a possible source for IMs.

Testing the input signal to the module for IMs may be difficult; another ampli-
fier may be needed to get the significant IM level high enough to observe without
the module under test. If filtering is required to eliminate the fundamentals before
the analyzer, it must now filter out two signals while passing the IMs.

Figure 4.19 is a combination of Figs. 4.18 and 4.10, which shows the testing of
IMs with a mismatched load more completely than does Fig. 4.10. The equivalent
diagram for testing harmonics would be a similar combination of Figs. 4.17
and 4.10.

In Section 4.4 we discussed the relationship between IMs and harmonics that
would enable us to predict the former from the latter under certain restrictions.
This has the advantage of only requiring one signal source. One restriction was
that the same gain should apply at the harmonics and the IMs. Another concerned
small contribution from higher-order products so the harmonics and IMs are of
the lowest order (second or third), as our relationships assume. If we measure
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harmonic power versus input power over a range, we can ensure that the curve is
following the theoretical relationship for the lowest order IM and use data in that
region. Modulated signals have also been used to measure distortion (Heutmaker
et al., 1997).

While we have emphasized IMs in modules, we should be aware that appar-
ently innocuous components, such as cable assemblies (Deats and Hartman,
1997), can produce IMs that are significant at high power levels.

4.9 COMPRESSION IN THE CASCADE

The output power level that is 1 dB below the level expected using the small-
signal gain is a measure of gain compression at high signal levels. It is called
the 1-dB compression level, Pout,−1 dB, and is illustrated in Fig. 4.20. To predict
the 1-dB compression level for a cascade, we would have to multiply (add gains
in dB of) all of the transfer curves in the compression region. We could then
find the 1-dB compression level from the composite, as in Fig. 4.20. Because
of the complexity of this process, we consider two approximate processes in the
following example.

Example 4.6 Refer to Fig. 4.21. In cells I25–K31, we show the equivalent
cascade input compression point for each module, obtained by dividing the mod-
ule 1-dB compression power by the preceding power gain and adding 1 dB (to
account for the 1-dB gain compression in the module). These numbers are not
accurate unless all of the preceding modules are in their linear region, but they
allow us to compare the potential effects of all of the compressions of the various
modules. They tell us the effect of each module if it alone were in compression.

We show the lowest of these values in cells I33–K33. The first module is
dominant except at max gain, where the last module becomes so.

1 dB

Power in

Po
w

er
 o

ut

1 dB compression
output level

Power out at
fixed gain

Power out if fixed
gain reduced 1 dB

Actual-
power out

Fig. 4.20 1-dB compression.
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A B C D E F G H I J K
2 Gain Gain SWR
3 nom +/− at out |a RT| OIP3 output
4 Module 1 12.0 dB 1.0 dB 1.5 0.0 dBm 10.0 dBm
5 Cable 1 −1.5 dB 1.5 0.0283
6 Module 2 8.0 dB 2.0 dB 2 10.0 dBm 23.0 dBm
7 Cable 2 −1.0 dB 2 0.0883
8 Module 3 2.0 dB 2.0 dB 2.8 10.0 dBm 22.0 dBm

24.0 dBm 35.0 dBm
9 Cable 3 −0.8 dB 3.2 0.2064

10 Module 4 15.0 dB 2.0 dB
11
12
13 mean max min ±
14 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB
15 Cable 1 −1.50 dB −1.25 dB −1.74 dB 0.25 dB
16 Module 2 8.00 dB 10.00 dB 6.00 dB 2.00 dB
17 Cable 2 −0.97 dB −0.20 dB −1.73 dB 0.77 dB
18 Module 3 2.00 dB 4.00 dB 0.00 dB 2.00 dB
19 Cable 3 −0.61 dB 1.21 dB −2.43 dB 1.82 dB
20 Module 4 15.00 dB 17.00 dB 13.00 dB 2.00 dB 5 dB of minimum
21
22
23
24 at output of mean max min ± mean gain max gain min gain mean gain max gain min gain
25 Module 1 12.00 dB 13.00 dB 11.00 dB 1.00 dB −12.00 dBm −13.00 dBm −11.00 dBm −1.00 dBm −2.00 dBm 0.00 dBm
26 Cable 1 10.50 dB 11.75 dB 9.26 dB 1.25 dB −12.00 dBm −13.00 dBm −11.00 dBm
27 Module 2 18.50 dB 21.75 dB 15.26 dB 3.25 dB −13.60 dBm −15.43 dBm −12.03 dBm 5.50 dBm 2.25 dBm 8.74 dBm
28 Cable 2 17.54 dB 21.55 dB 13.52 dB 4.01 dB −13.60 dBm −15.43 dBm −12.03 dBm
29 Module 3 19.54 dB 25.55 dB 13.52 dB 6.01 dB −15.04 dBm −18.50 dBm −12.60 dBm 3.46 dBm −2.55 dBm 9.48 dBm
30 Cable 3 18.93 dB 26.76 dB 11.09 dB 7.83 dB −15.04 dBm −18.50 dBm −12.60 dBm
31 Module 4 33.93 dB 43.76 dB 24.09 dB 9.83 dB −16.21 dBm −22.19 dBm −12.84 dBm 2.07 dBm −7.76 dBm 11.91 dBm
32 11 dB
33 −4.2 dBm −10.2 dBm −0.8 dBm −1.0 dBm −7.8 dBm 0.0 dBm
34 28.7 dBm 32.6 dBm 22.3 dBm 31.9 dBm 35.0 dBm 23.1 dBmOutput Power at 1-dB Compression:

MINIMUMhigher than IP3 at output:1-dB compression if
Input Power at 1-dB Compression:

CUMULATIVE

Gain IIP3 with
Input at 1-dB compression in module
if no compression in previous stages

1-dB compression

DERIVED
Gain

Highlight compressions within

Fig. 4.21 Spreadsheet for 1-dB compression.

To aid our analysis, we have set a level, in cell J20, that indicates a range of
equivalent input compression levels to be highlighted. In this example we have
chosen 5 dB so any level within 5 dB of the minimum (row 33) will be displayed
as bold. For mean gain (cells I25–I31), this results in three highlighted values
that are within 5 dB of the minimum (cells I33–K33). With min or max gain,
no other modules are this close to the minimum, showing that the modules are
better matched for compression effects at mean gain.

We might see a relatively fixed relationship between IP3 and Pout,−1 dB levels
for the various modules that make up the cascade (see Section 4.4). This is
probably due to the dependence of both parameters on the same distortion. (For
example, we might expect a very overdriven amplifier to produce something like
a square wave. It has many odd harmonics, whose amplitudes are proportional
to the amplitude of the square wave and thus, to the limiting level.) We have
set an approximate amount by which Pout,−1 dB exceeds OIP3IM in cell D32, and
this is added to the cascade IIP3s (cells F31–H31) in cells F33–H33 to obtain
estimates of the equivalent input level at 1-dB compression.
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Line 34 shows equivalent output 1-dB compression powers. They are obtained
by adding cascade gain (cells B31–D31) less 1 dB to each input level in line 33.

4.10 OTHER NONIDEAL EFFECTS

Amplitude modulation to phase modulation (AM-to-PM) conversion (Toolin,
2000; Laico, 1956) can be significant in some cascades, and frequency modulation
to amplitude modulation (FM-to-AM) conversion can be produced whenever
the passband is not flat. When the frequencies of two signals become close,
the variation in supply current at their difference frequency may become too
low for effective bypassing by a particular bias network, causing supply voltage
variation and AM at the difference frequency. Time-varying heat dissipation due
to such beats or due to other transient effects can cause parameter variations
(Yang et al., 2000).

4.11 SUMMARY

• Second-order harmonics and IMs increase in power 2 dB for each dB
increase in the fundamental power. Therefore, their ratio to the fundamental
increases 1 dB per dB of increase in the fundamental.

• Third-order harmonics and IMs increase in power 3 dB for each dB increase
in the fundamental power. Therefore, their ratio to the fundamental increases
2 dB per dB of increase in the fundamental.

• Second- and third-order harmonics and IMs can be represented by intercept
points.

• Some third-order IMs remain close in frequency to the fundamentals that
caused them. These are particularly important because they often cannot be
filtered out.

• Third-order IMs that are close to the signal in frequency tend to add coher-
ently. The reciprocal of the cascade pIP3 equals the sum of the reciprocals
of the individual module pIP3s, all referenced to the cascade input, assuming
coherent addition.

• Second-order IMs tend to add randomly. The reciprocal of the cascade pIP2

is the sum of the reciprocals of the individual module pIP2s, all referenced
to the cascade input, assuming random phases.

• Frequency conversions change the frequency offset of the second-order IMs
but close in third-order IMs generated before the conversion continue to add
to those generated after the conversion.

• Anomalous IMs, with third-order frequencies and second-order amplitude
responses, can be caused by the hysteresis in ferrites.

• In measuring IPs, care must be taken to avoid harmonics and IMs generated
by the measurement equipment.

• Computation of 1-dB compression for a cascade is awkward; so we look at
the affect of individual modules on the cascade, highlighting the significant
contributors, or relate the 1-dB compression level to the IP3.
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ENDNOTE

1Winder (1993) has shown that, if the fifth harmonic is at least 41 dB weaker than the third, the
effect of fifth-order products on the third-order relationships will be small, less than 25% in voltage.



CHAPTER 5

NOISE AND NONLINEARITY

Here we consider the interaction between the noise and the nonlinearities that
were discussed in the previous chapters. First, we will consider the intermodu-
lation products that are produced by noise or by noiselike signals. Then we will
consider how the noise figure and nonlinearities combine to establish a dynamic
range. We will conclude with a discussion of spreadsheets that combine these
effects and of certain enhancements that can be introduced into them.

5.1 INTERMODULATION OF NOISE

Noise is also affected by nonlinearities and dense signals [e.g., frequency divi-
sion multiplex (FDM)] are sometimes characterized as noise for analysis. We
can extend the work we have done for two signals to many signals with a
specified amplitude distribution, writing them as a summation of individual
signals and formulating the results of multiplying these summations in the pro-
cess of obtaining v2

in or v3
in in Eq. (4.1). Then we must determine how the

resulting power distribution is described, taking into account coherence or non-
coherence of the various components. We then allow the number of signals to
approach infinity as each represents the power in a bandwidth that approaches
differential width. This can be an arduous process. We will attempt to gain
an understanding of this process by doing it here for a simple case using a
simplified process, leaving greater detail and rigor to works on communication
theory (Rice 1944, 1945; Blachman 1966; Davenport and Root 1958; Schwartz
et al., 1966).1 Nevertheless, we will look at several practical applications of the
results we obtain.
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5.1.1 Preview

For a preview of the kind of results to be expected, refer to Fig. 5.1, which shows
results from the second-order v2

in term. The input power spectrum is shown in
dashed lines. [In this section we use two-sided power spectral density (PSD)
where the power is evenly divided between positive and negative frequencies.]
At Fig 5.1a, no signal is present. The second-order term produces three triangular
distributions of noise power, corresponding to the IMs, c and e in Fig. 4.2. As
the number of signals increases, the number of IMs grows faster than the number
of harmonics, and the IMs come to dominate. While the sum-frequency response
may appear to be equal to the difference-frequency response in Fig. 4.2 but not in
Fig. 5.1, the total bandwidth, considering both positive and negative frequencies,
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Fig. 5.1 Output power spectral density (shown solid) of a square-law device whose
input is Gaussian noise with a rectangular power spectral density (shown dashed) plus a
sinusoid. The powers of the sinusoids are represented by arrows. At (a) the sinusoidal
input has zero amplitude. At (b) it is centered in the noise spectrum. At (c) it is eccentric.
(From Blachman, 1966, p. 91; used with permission.)



INTERMODULATION OF NOISE 125

is twice as great for the sum frequencies as for the difference frequencies in
Fig. 5.1. The powers in the two regions are equal, but it is more spread out at
the sum frequencies. Note that, in Fig. 4.2, if a and b represented the extremes
of a band of many signals, the difference frequencies would extend from zero to
the frequency of c, whereas the sum frequencies would extend over a band twice
that wide, from d to f .

When a signal is added (in Fig. 5.1b), the shape of the power density changes
due to mixing between the discrete signal and the noise. The display at Fig. 5.1c

shows what happens when that signal moves from the center of the band.
We will develop the details for a case where no signal is present, similar to

Fig. 5.1a but will also include third-order products.

5.1.2 Flat Bandpass Noise

Figure 5.2 shows white noise with power p over a bandwidth of B centered at
fc. The two-sided PSD is, therefore, S0/2 = p/(2B); S0 is the one-sided PSD,
applicable when negative frequencies are not used, and S0/2 is the two-sided PSD,
where half of the power is at positive frequencies and half at negative frequencies.
The linear term will have the same PSD multiplied by a2

1 [Eq. (4.1)], since the
voltage is multiplied by a1.

5.1.3 Second-Order Products

Second-order terms arise from multiplication of the input by itself. Initially,
assume that the input consists of a large number of cosines, closely and evenly
spaced in frequency, with voltage amplitudes corresponding to the power density
represented by Fig. 5.2. Since multiplication of time waveforms implies convo-
lution of their transforms, the Fourier transform of the second-order term arises
from the convolution of the finely spaced impulses, representing cosines, and
having power spectral density shown in Fig. 5.2 (Bracewell, 1965, pp. 79–80,
24–40). The convolution is obtained by integrating the product of the transform
with another image of the transform, flipped about the zero frequency axis (which
makes no difference for transforms of cosines, since they are even functions of
frequency) and shifted by f . This result gives the transform of the product at
frequency f . It is equivalent to what would be obtained by writing a sum of
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Fig. 5.2 Input noise spectrum.
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infinitesimally spaced cosines [e.g., vi = Ai cos 2π(fstart + iδ)] and adding the
products of the various components that produce signals at a frequency f (e.g.,
vivi+k if f = kδ). This process produces a triangle in the frequency domain with
maximum amplitude at zero frequency, where the two factors are aligned.

5.1.3.1 DC Term The mean-square voltage in a differential bandwidth at any
frequency x within the rectangles of Fig. 5.2 is

ẽ2
xdx = pR

2B
dx, (5.1)

where R is the resistance in which the power is dissipated and across which
the voltage appears. Here x is used for frequency to differentiate it from the
independent variable f of the convolution, which represents the offset of the
two multiplied spectrums. The transform of the second-order term in Eq. (4.1) is
obtained by the convolution of two copies of this spectrum multiplied by a2. Its
value, for f = 0, is

v(0) = a2

[∫ −fc+B/2

−fc−B/2
ẽ2
x dx +

∫ fc+B/2

fc−B/2
ẽ2
x dx

]
= a2ẽ2

x2B = a2pR. (5.2)

This is a zero-frequency, or DC, term and the corresponding power is

p20 = v2(0)

R
= a2

2p
2R =

(
a2

a1

)2

(a2
1p)pR. (5.3)

Writing a2
1p as the output power p1 and substituting from Eq. (4.17), we obtain

p20 = p

2pIIP2,IM
p1 = p2

1

2pOIP2,IM
, (5.4)

where we multiplied numerator and denominator by |a1|2 to get the last term.
This power is represented by an impulse at zero frequency of value (area) p20. It
corresponds to the DC terms in Eq. (4.8). If the originally assumed cosines now
are allowed to become noiselike, having random phases, this term is not changed
because, since f = 0, each member of the summation is being multiplied by an
identical member. The fundamental and DC outputs are shown in Fig. 5.3.

5.1.3.2 Density Except for this case with exactly zero-frequency offset
between the factors, the convolution represents a summation of voltages, taken
from various parts of the original distribution, whose frequencies differ by f . If
we now no longer assume a series of cosines but, rather, a series of sinusoids
with random phases (noise), integration will be the summation of noncoherent
sinusoids, sinusoids whose phases are randomly related, except where some
special consideration shows them to be coherent.
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Fig. 5.3 Fundamental and second-order DC outputs.

Looking at the sum a little closer, we find that it is made up of coherent pairs
since, for each product eiej that occurs in multiplying one set of voltages by
the other, there is a second identical product ej ei . One pair arises from ei in
the first distribution and ej in the second, and the other arises from ej in the
first distribution and ei in the second.2 The voltages add for the two members of
each coherent pair whereas the powers add when the various pairs, which are not
coherent with each other (i.e., their phase relationships are random), are added.
Therefore, the result has twice the power density that it would if everything
were noncoherent. [Adding the two members of a pair gives a power four times
the individual powers, rather than two times, as noncoherent addition would
give. Thus the summation of voltage that occurred for coherent signals (cosines)
implies twice the summation of powers.] Therefore, we integrate the product of
input PSDs to get a resulting PSD and double the result in recognition of the
coherent pairs:

S ′
2(f )

2
= 2

S0(f )

2
�S0(f )

2
, (5.5)

where correlation is indicated by the pentagram and the prime differentiates
this function from the same function after it has been multiplied by appropriate
constants. This correlation is the same as convolution, since S(f ) = S(−f ).

As f approaches zero, the correlation becomes equal to the integral of a
constant [S0(0)/2]2 over a width of 2B, so Eq. (5.5) gives

S ′
2(0)

2
= 4B

(
S0

2

)2

(5.6)

at the center.3 As f increases, the two rectangle pairs shift relative to each other,
decreasing the region over which a nonzero product exists, and leading to a
function that decreases linearly to zero value at f = B. (As f approaches B, the
number of components ej whose frequencies differ by f approaches zero.) This
is the middle triangle shown in Fig. 5.4a.

As f approaches 2fc, one of the rectangles begins to overlap the other, pro-
ducing the additional result shown near ±2fc. The amplitude of this triangle is



128 CHAPTER 5 NOISE AND NONLINEARITY

−2fc 2fc0
B

S2′(0)
S2′( f )

4

S2′(0)

2

S0

2
= 2B

2

Tw
o-

si
de

d
po

w
er

 d
en

si
ty

(a)

−2fc 2fc0
B

S2(0)

Second-order
output

4

S2(0)

2

p1

pOIP2,IM

S0

2
= a2

24BR =
2 S1

2

Tw
o-

si
de

d
po

w
er

 d
en

si
ty

(b)

Fig. 5.4 Second-order noise products.

only half that of the middle triangle because only one set of products is involved,
whereas the products of both rectangles were summed for the middle triangle.

Multiplying Eq. (5.6) by a2
2R, we obtain the PSD for the second-order term

in Eq. (4.1),4

S2(0)

2
= a2

2R
S ′

2(0)

2
= a2

24BR

(
S0

2

)2

. (5.7)

We can replace the input power density multiplied by bandwidth by the equivalent
power p,

S2(0)

2
=

(
a2

a1

)2

2R

(
S0

2

)
a2

1p. (5.8)

Using Eq. (4.17) and writing power gain times input power as output power,
this is

S2(0)

2
= p1

pIIP2,IM

(
S0

2

)
= p1

pOIP2,IM

(
S1

2

)
, (5.9)

which is shown in Fig. 5.4b.

5.1.3.3 Effect of a Signal with the Noise The DC power represented by
the impulse in Fig. 5.3 is proportional to the total power squared; so it increases
when a signal is present. Since this term is proportional to p2, it is proportional to

(psignal + pnoise)
2 = p2

signal + 2psignalpnoise + p2
noise, (5.10)
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rather than to just the sum of the two squared powers. The middle term is a
signal–cross–noise (s × n) term, and it increases the response to the signal.
In addition, there are s × n noise density terms that increase the noise in the
presence of the signal, as seen in Fig. 5.1. The ratio of the s × n noise power to
the n × n power in the middle of that figure (a region that would be low passed
for detection) is twice the input S/N :

(
ps×n

pn×n

)
low-frequency

= 2
(

S

N

)
in

(5.11)

(Davenport and Root, 1958, pp. 257–263). Thus, if a signal pulse appears whose
power equals the noise power, the mean (“DC”) value of the detected output
will increase to four times what it was before the pulse, according to Eq. (5.10),
while the noise (ps×n + pn×n) will also increase, to three times its former value,
according to Eq. (5.11). If a detection threshold has been set to minimize false
detections due to the noise existing in the absence of the signal, the first effect
helps to bring the output over that threshold when a signal arrives. However, the
second effect introduces an uncertainty as to whether the pulse will exceed the
threshold, since it increases the noise during the pulse. It may cause a pulse that
would otherwise be too small to break threshold to do so, or it might cause a
larger pulse to be below threshold.

5.1.3.4 Crystal Video Receiver with Preamplification A crystal video
receiver consists of an RF filter, a detector, and a video filter. In Fig. 5.5, these are
preceded by an amplifier (Klipper, 1965). The RF filter determines the range of
frequencies admitted, and the video filter is made wide enough to pass a detected
pulse with required fidelity. (We show a bandpass video filter so the DC com-
ponent due to noise alone will be rejected.) Thus an RF band of width Br can be
observed without tuning. The noise from the square-law detector [i.e., using the
second-order term in Eq. (4.1)] has a distribution shaped like Fig. 5.4 with peak
value given by Eq. (5.7) with B designated as Br . Here S0 = N0fpregpre, where
N0 is the one-sided input thermal noise power density and fpre and gpre are the cas-
cade noise factor and gain of the preamplifier and filters that precede the detector.

Therefore, the peak PSD is

S2(0)

2
= a2

2R

(
N0

2

)2

4Brf
2
preg

2
pre. (5.12)

N0

Input
filter

Square-law
detector

Video
filter

BIF

Preamplifier RF filter

BRF = Br
Bin >> Br

Fig. 5.5 Crystal video receiver.
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The video band extends from zero (approximately) to Bv, and the average height
of the triangle in that range is (see Fig. 5.4b)

S2,avg

2
= S2(0)

2

(
1 − Bv

2Br

)
, (5.13)

leading to a noise power of

pn =
∫ Bv

0
S2(f ) df = S2,avgBv = S2(0)

(
1 − Bv

2Br

)
Bv (5.14)

= a2
2RN2

0 f 2
preg

2
pre2

(
BrBv − B2

v

2

)
. (5.15)

Note that, while narrowing Bv reduces the noise, the noise power still depends on
the RF bandwidth Br . This unusual dependence of noise power on the bandwidths
will be seen in expressions for noise in this type of receiver when there is no
signal. The addition of a signal creates additional power proportional to the
signal voltage and terms resulting from multiplication of the signal by the noise
(Klipper, 1965).

5.1.4 Third-Order Products

5.1.4.1 Density Spectrum If we convolve the rectangular voltage spectrum
of the input (corresponding to Fig. 5.2) with that for the triangular second-order
response (corresponding to Fig. 5.4a), we obtain the voltage spectrum for e3,
shaped as shown in Fig. 5.6. This time, since we are multiplying three copies
of the set of cosines, we find that the result at a given frequency consists of
noncoherent groups of six coherent pairs.5 Therefore, the transform of the cube
of the PSD is

S ′
3(f )

2
= 6

S(f )

2
�S(f )

2
�S(f )

2
. (5.16)

When the rectangular input spectrum (Fig. 5.2) is shifted by ±fc, the rectangle
multiplies the center of the second-order PSD plus the half-size triangle at 2fc
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Fig. 5.6 Third-order noise products.
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(Fig. 5.4b). The peak of the third-order response is

S3(0)

2
= 6a2

3

(
S0

2

)3

2BR2
(

3

4

)
B

(
3

2

)
. (5.17)

The factor 6 comes from the number of voltages in a coherent group. Coefficient
a3 comes from Eq. (4.1). The next term and the factor 2B is from the product
of the S0/2 and S ′

2(0)/2, the density of the input (Fig. 5.2) and the density at
the center to the second-order triangle (Fig. 5.4a). The term R2 results from the
conversion of S0 to a mean-squared voltage (generating R3) and reconversion of
the product to a power density (generating 1/R), much as occurred in Eq. (5.12).
The factor 3

4 represents the ratio of average-to-peak value for the triangle in
the region ±B/2 so that multiplication by 3

4B amounts to integration over that
bandwidth. The factor 3

2 adds the product of the smaller triangle and rectangle
to that of the larger triangle and rectangle. This can be simplified to

S3(0)

2
= a2

3R
2 27

2

(
S0

2

)3

B2 = 27

8

(
a3

a1

)2

R2p2
(

S1

2

)
(5.18)

= 27

8

(
2

3RpIIP3,IM

)2

R2p2
(

S1

2

)
= 3

2

(
S1

2

) (
p1

pOIP3,IM

)2

. (5.19)

The shape of this curve can be determined without great difficulty by analysis of
the correlation process.

5.1.4.2 Third-Order Terms at Input Frequencies Since there are terms in
Eq. (4.20) at the frequency of the input, we might expect to see them also when
working with densities. Appendix T shows that there is an additional output PSD
at the input frequencies of

ε = 4
(

S1

2

) [
sign

(
a3

a1

) (
p

pIIP3,IM

)
+

(
p

pIIP3,IM

)2
]

. (5.20)

This modifies S1/2 by a small amount as long as p � pIIP3,IM. It is included in
Fig. 5.7, which shows a composite of all the spectrum components that we have
discussed.

5.1.4.3 NPR Measurement Noise power ratio (NPR) is a parameter used to
determine whether a system is sufficiently noise free and distortion free to handle
frequency-division-multiplex (FDM) traffic. The test is performed by creating a
rectangular noise spectrum that emulates the FDM channels and removing a
narrow slot, representing one channel, by filtering (Fong et al., 1986). Third-
order nonlinearities will fill in the slot (Fig. 5.8). The depth of the slot after
the spectrum has passed through the system is a measure of the amount of the
noise that can be expected in a channel due, for one thing, to power in adjacent
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Fig. 5.8 NPR noise loading and distortion.

channels. A slot that is narrow compared to the noise band will have little effect
on the third-order products produced, in which case Eq. (5.19) will apply at
midband, enabling us to compute the NPR there due to third-order products.

Example 5.1 NPR An FDM system has OIP3IM = 29 dBm. What total signal
power at the output will permit 50 dB NPR for any channel due to IMs? Since
the maximum third-order product is in the center of the input band (Fig. 5.7), the
required output power is the level that will cause that density to be 50 dB lower
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than the first-order output density. Using Eq. (5.19) (assuming for now, that we
can ignore ε), we have

S3(0)

2
= 10−50/10

(
S1

2

)
= 3

2

(
S1

2

) ( p1

1029/10mW

)2
, (5.21)

10−5 = 3

2

( p1

102.9mW

)2
, (5.22)

p1 =
√

2

3
10−2.5102.9mW = 2.05 mW. (5.23)

We will now check the assumption that the modification of the signal strength
by ε is negligible. From Eq. (5.20),

ε = 4
(

S1

2

) [
±

(
2.05 mW

102.9mW

)
+

(
2.05 mW

102.9mW

)2
]

, (5.24)

|ε| ≤ 4
(

S1

2

)
[2.6 × 10−3 + 6.7 × 10−6] = 0.010

(
S1

2

)
. (5.25)

Thus the signal PSD is changed by 1%, modifying the NPR by only 0.04 dB.

5.2 COMPOSITE DISTORTION

Cable television (CATV) systems are sensitive to a type of interference con-
sisting of spurs produced by the influence of nonlinearities on the many visual
(picture) carriers (Thomas, 1995). Due to the presence of many evenly spaced
channels in these systems, interference can be produced in a given channel by
multiple spurious signals, all appearing at the same frequency and caused by
various combinations of carriers. This interference is called composite. The two
types of primary concern are composite second-order (CSO) distortion, caused by
second-order nonlinearities, and composite triple beat (CTB) distortion, caused
by third-order nonlinearities. In the HRC CATV system, carriers occur at multi-
ples of 6 MHz, beginning at 54 MHz, while, in the IRC system, they are offset
from these 6-MHz multiples, being higher by 1.25 MHz. The most common,
or Standard, system is similar to the IRC system except that carriers at 73.25,
79.25, and 85.25 MHz are replaced by carriers at 77.25 and 83.25 MHz. Most
of the channels in the Standard system are thus the same as for the IRC system,
and we will ignore the deviations from that scheme for simplicity. In the HRC
system all of the in-band interferers fall on carrier frequencies. The situation is
more complicated for the other, offset, systems. Second-order products of offset
(by 1.25 MHz) carriers will occur at sum frequencies, making them higher by
1.25 MHz than the nearest channel frequency:

(6n + 1.25) + (6m + 1.25) = (6q + 1.25) + 1.25 (5.26)
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or at difference frequencies, making them 1.25 MHz low:

(6n + 1.25) − (6m + 1.25) = (6q + 1.25) − 1.25. (5.27)

Third-order products of offset carriers will be at carrier frequencies,

(6m + 1.25) + (6n + 1.25) − (6p + 1.25) = (6q + 1.25), (5.28)

or offset by 2.5 MHz,

(6m + 1.25) + (6n + 1.25) + (6p + 1.25) = (6q + 1.25) + 2.5 MHz, (5.29)

(6m + 1.25) − (6n + 1.25) − (6p + 1.25) = (6q + 1.25) − 2.5 MHz. (5.30)

While the interferers are very close to each other in frequency, their relative
phases wander over time so the average sum of spurious powers is measured.
The RF bandwidth is usually 30 kHz so only the responses at one offset are
summed. Our development for intermodulation of noise spectrums in the pre-
vious section began by considering a large number of evenly spaced discrete
signals whose spacing was then allowed to shrink to zero. Here we are faced
with a large number of evenly spaced signals whose spacing does not shrink to
zero, but we may be able to approximate them as a continuous spectrum and use
the previous development to determine the resulting spurious spectrum, given the
IP2 and IP3. Practically, there are many things that will limit the accuracy of
this approach. The amplifiers may operate at total powers that are higher than the
power where the intercept points accurately predict IM levels. Output powers are
generally not flat (which interferes with the application of our particular devel-
opment, which assumed flat spectrums) and IPs are often frequency sensitive.
Nevertheless, even a limited ability to relate CSO and CTB distortion to IPs can
be of value. Figure 5.9 is the same as Fig. 5.7 but redrawn for a 110-channel IRC
(or Standard, approximately) CATV system. Each 6-MHz frequency segment rep-
resents the power in one carrier centered in that segment (thus the edges extend
3 MHz beyond the end carriers). One thing we note is that the parts of the spec-
trum that are at negative frequencies now produce IMs with positive frequencies,
and visa versa. Note the apparent similarity between the third-order output at
positive frequencies in Fig. 5.9 and the calculated density of CTBs in Fig. 5.10.

5.2.1 Second-Order IMs (CSO)

Note, in Fig. 5.9c, that the maximum value of S2(0)/2 is almost equal to the
value at the first system carrier frequency, 55.25 MHz. It is only 1/11 of the
way from the peak of the 666-MHz-wide sloped region and less than 0.5 dB
from the peak. Therefore, we will take the peak to be the worst case for CSO.
While the larger central response contains difference frequencies, the smaller
(half height) responses contain sum frequencies, and thus the actual discrete fre-
quencies are at different offsets. Even if they did add, the maximum would not be
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Fig. 5.10 Number of CTB products versus frequency for an 80-carrier IRC CATV sys-
tem. (From Cain, 1999; used with permission.)

changed because the smaller responses go to zero where the larger one peaks. The
maximum magnitude of the second-order density relative to the fundamental is

S2(0)

S1
= p1

pOIP2,IM
. (5.31)
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Since we are representing both the CSO distortion and the carrier by densities
integrated over 6 MHz, we can multiply both numerator and denominator by
6 MHz to obtain the equivalent composite distortion and carrier, respectively.
Therefore, this ratio is also the maximum CSO to carrier ratio:

CSOrelative <
p1

pOIP2,IM
. (5.32)

5.2.2 Third-Order IMs (CTB)

Similarly, the main third-order responses will not occur at the same frequencies as
do the spill-over from negative frequencies [the positive and negative frequencies
for a given carrier are separated by 2(6n + 1.25) MHz = (6q + 1.25) MHz +
1.25 MHz] or as the spectrum at three times the frequency, but these would not
contribute significantly at the peak anyway. By a procedure similar to what we
used for CSO,

CTBrelative ≤ S3(0)

S1
= 3

2

(
p1

pOIP3,IM

)2

. (5.33)

5.2.3 CSO and CTB Example

Example 5.2 Let us see how well this theory agrees with the typical values for
a CATV amplifier, one whose data sheet provides all of the values needed for
computation, the RF Micro-Devices (2001) model RF2317. It is tested with 110
carriers, each at an input voltage of +10 dBmV in a 75-� system. The nominal
gain is 15 dB so the output power is −23.8 dBm per signal:

15 dB + 10 dB + 10 dBW log
[
(10−3 V)2/75 �

1 W

]
(5.34)

= 25 dB − 78.75 dBW = −23.75 dBm. (5.35)

Total output power for 110 carriers is

p1 = −23.75 dBm + 10 dB log(110) = −3.34 dBm. (5.36)

The OIP2 is given at +63 dBm. Substituting these last two numbers into
Eq. (5.32), we obtain

CSOrelative ≤ −66 dBc. (5.37)

The highest CSO given on the data sheet is −63 dBc at 1.25 MHz below the
lowest carrier. That location agrees with the theoretical maximum but the level
is 3 dB higher.

Typical OIP3 is +40 dBm at 500 MHz and goes to +42 at 100 MHz and +38
at 900 MHz. Equation (5.33) at 40 dBm OIP3 and −3.3 dBm p1 gives

CTBrelative ≤ 10 dB log(1.5) − 2(3.3 dBm + 40 dBm) = −84.8 dBc. (5.38)
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The data sheet gives CTB as −85 dBc at 331.25, and 547.25 MHz and 1 dB
lower at 55.25 MHz, which very closely matches our estimate. These agreements
are probably closer than we should expect given the variations in parameters with
power and frequency.6

5.3 DYNAMIC RANGE

Dynamic range is the range of signal power levels over which a system will
operate properly. The lower limit is generally set by noise and the upper limit is
set by some undesirable phenomenon.

5.3.1 Spurious-Free Dynamic Range

We can set a threshold or lower limit PT at which signals can be detected
without excessive interference by noise. This will form the lower limit of an
acceptable range of signal powers. As the power of input signals, say a pair of
them, increases, spurs will eventually be created. If the spur power rises above
that of the noise in the processing, or analysis, bandwidth Bp, signals at PT

will begin to see interference at a level greater than what we have defined as
acceptable. The bandwidth Bp is the noise bandwidth in which the signal is
ultimately observed or processed so the level of interference depends on the
noise power in that bandwidth. (Actually, when the spurs are just at the noise
level the total interference will have been increased. We will still consider PT

the acceptable minimum signal level. Perhaps we will take into consideration
the possibility of interference due to both noise and equal-power spurs when we
choose PT , or perhaps we will disregard the degradation from the spurs because
they occur less often than the noise, which is continuous.) The input level PM

that produces spurs at levels equal to the noise power is the upper limit of the
range of acceptable signal powers. The difference between the minimum level
PT and the maximum level PM is called the spur-free dynamic range (SFDR).
This is sometimes called the instantaneous SFDR (ISFDR) to differentiate it from
a system in which variable attenuators permit reception of strong signals at one
time and weak signals at another time. Usually the spurs considered are close-in
third-order IMs, since it is difficult or impossible to eliminate them by filtering.

To relate the ISFDR to the IP3 and the third-order IM level (Tsui, 1985,
pp. 28–31; Tsui, 1995, pp. 204–205), we write the relationship illustrated in
Fig. 4.8, using Eq. (28) in Appendix H for two equal-power input signals (see
Fig. 5.11), as

Pin,IM3 = 3Pin,F − 2PIIP3,IM (5.39)

and rearrange to obtain

3(Pin,F − Pin,IM3) = 2(PIIP3,IM − Pin,IM3) (5.40)
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PIIP3,IM

Pin,IM3

Power in
bandwidth

Bp
(dBm)

Frequency

Pin,F

PT
Pn

Poffset

Fig. 5.11 SFDR.

or
(Pin,F − Pin,IM3) = 2

3 (PIIP3,IM − Pin,IM3). (5.41)

This says that the separation between the signal and the IM3 spur is two thirds
of the separation between the IP3 and that spur, as can be seen in Fig. 4.8.

Since the IM power, when the input level is PM , is equal to the noise level,
we have there

Pin,IM3 = Pn, (5.42)

and Eq. (5.41) becomes

(PM − Pn) = 2
3 (PIIP3,IM − Pn). (5.43)

The ISFDR is equal to the difference between PM and Pn, as given by Eq. (5.43),
reduced by the amount Poffset by which PT exceeds Pn:

ISFDR = 2
3 (PIIP3,IM − Pn) − Poffset, (5.44)

where Pn is given by

Pn = 10 dB log10(kT Bp) + F (5.45)

= 10 dB log10(Bp/Hz) + F − 174 dBm. (5.46)

It is not unusual to set Poffset = 0 in order to obtain a measure that is independent
of the particular processing on which Poffset depends.

Note how heavily ISFDR depends on Bp [Eqs. (5.44) and (5.46)]. The same
cascade can have vastly different ISFDRs for different processing bandwidths, a
parameter that may not be inherent in the cascade.

Example 5.3 ISFDR The third-order input intercept point IIP3 is −3 dBm
and the noise figure is 8 dB. Find the ISFDR for a 40-MHz processing bandwidth.
Find it for a 4-kHz processing bandwidth. Use Poffset = 0.



OPTIMIZING CASCADES 139

From Eq. (5.46), the noise level in 40 MHz is

Pn = 76 dB + 8 dB − 174 dBm = −90 dBm.

Using this in Eq. (5.44), we obtain

ISFDR|40 MHz = 2
3 (−3 dBm + 90 dBm) = 58 dB.

For a 4-kHz bandwidth, we obtain Pn = −130 dBm and, as a result,

ISFDR|4 kHz = 2
3 (−3 dBm + 130 dBm) = 84.7 dB.

For the wider bandwidth, the maximum signal is −32 dBm, 58 dB above the
noise level of −90 dBm. With the narrower bandwidth, the signal is only
−45.3 dBm, but this is 84.7 dB above the noise level of −130 dBm. Thus the
maximum signal is 13.3 dB weaker (one third of the change in noise levels)
when the dynamic range is 26.7 dB higher (two thirds of the change in noise
levels). When the noise goes down, the maximum signal goes down also, but by
a lesser amount, giving a larger separation between maximum signal and noise.

5.3.2 Other Range Limitations

The compression level (Section 4.9) can limit dynamic range, even for single
signals. The resulting instantaneous dynamic range is the difference between the
1-dB compression level and the threshold PT . If the IP3 is on the order of 10 dB
higher than the compression level (Section 4.4), the ISFDR due to third-order
spurs will be more limiting for ranges greater than about 20 dB. Nevertheless,
in some applications single signals may be sufficiently more important or likely
than multiple signals to make the limitation due to compression significant.

Dynamic range can also be limited by various spurs that are created in mixers
(Chapter 7). These must be controlled through careful design of the frequency
conversion, for which dynamic range is an important design parameter.

5.4 OPTIMIZING CASCADES

5.4.1 Combining Parameters on One Spreadsheet

We have seen how gain, noise factor, and intercept points can be included in
spreadsheets. We will often include all of these on a single spreadsheet as we
develop a design, enabling us to see, and to optimize, the trade-off between
system intercept point and noise figure as we modify the distribution of gain.
We will include them all here, first for an ideal standard cascade consisting of
unilateral modules interconnected by cables that are well matched to the same
standard impedance for which the modules are designed.
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Example 5.4 Combined Parameters for a Standard Cascade Figure 5.12
shows such a spreadsheet in which cascade noise figures and third-order inter-
cept points are obtained for several combinations of variations in the module
parameters. The ISFDR is also given for mean gains and noise figures, based on
Eqs. (5.44) and (5.46). Note that a combined spreadsheet is necessary for ISFDR
since values are required for both noise figure and IP3.

Example 5.5 Combined Parameters for a Less Ideal Cascade In addition,
we consider the less ideal circuit shown in Fig. 5.13 for which we make some
approximations in order to fit the circuit to our standard cascade. The image
filter, along with the cables on either end of it, is treated as a reflectionless
interconnect. This is done because the filter cannot be realistically approximated
as a unilateral module. The same kind of characterization is used for the diplexer.
These approximations depend on well-matched components for accuracy. The
mixer is characterized as a unilateral module. See Example 3.7.

The spreadsheet for this circuit is shown in Fig. 5.14. The effect of image
noise has been included, but an image noise multiplier has been added to enable
us to easily remove the image noise in order to observe its effect. Setting the
multiplier (cell J5) to one includes the image noise in the cascade model while
setting it to zero removes image noise. Cells F21–H21 contain the effective noise
figure of the mixer according to Eq. (3.46). The term f ′

B3g
′
B3 is realized in cells

I–K, 20 and 22. The process is the same as described in Example 3.5, but the
fact that only two levels are involved makes that development overkill for this
case. The noise figure for the two-element cascade between the filter and the
mixer f ′

B3 can be represented by Eq. (3.14), where gpk is just the gain of “amp
1,” taken from cells B19–D19. This is then multiplied by g′

B3, which can be
obtained either by summing the gains in rows 19 and 20 (columns B–D) or
subtracting the cumulative gain at the filter output (cells B30–D30) from that at
the mixer input (cells B32–D32).

The last line in Fig. 5.14 shows the change in the cascade parameters when the
spreadsheet is simplified by removal of all reflections (SWR = 1 everywhere).
We can see that the mismatches affect the extreme cascade parameters more than
they affect mean values (see Section 2.3.2.1). This might lead us to expect that
reflections at the filter or diplexer, which we have ignored, will have relatively
little effect on the mean or typical performance. The effects of such missing

image
filter diplexer

cable
2

cable
4

amp
2

module 5

mixeramp 1preamp

fRF fIF

Fig. 5.13 Block diagram of cascade with frequency conversion.
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A B C D
1
2 Noise IMs
3 Gain Figure OIP3
4 item 1 12.0 dB 2.3 dB 0.0 dBm
5 item 2 −1.5 dB 1.5 dB
6 item 3 8.0 dB 3.0 dB 10.0 dBm
7 item 4 −1.0 dB 1.0 dB
8 item 5 2.0 dB 8.0 dB 10.0 dBm
9 item 6 −0.8 dB 0.8 dB
10 item 7 15.0 dB 5.0 dB 24.0 dBm
11
12 at output of Gain NF IIP3
13 item 1 12.00 dB 2.30 dB −12.00 dB
14 item 2 10.50 dB 2.37 dB −12.00 dB
15 item 3 18.50 dB 2.58 dB −13.60 dB
16 item 4 17.50 dB 2.59 dB −13.60 dB
17 item 5 19.50 dB 2.81 dB −15.03 dB
18 item 6 18.70 dB 2.82 dB −15.03 dB
19 item 7 33.70 dB 2.88 dB −16.15 dB

SIMPLIFIED CASCADE SPREADSHEET

Cumulative Cascade

Fig. 5.15 Simplified spreadsheet for cascade of Fig. 5.12.

reflections may be further countered by the fact that the SWRs that are included
in the calculations are often specified maximums.

Example 5.6 Simplified Combined Spreadsheet Figure 5.15 is a very sim-
ple spreadsheet for the system analyzed in Fig. 5.12 in which all SWRs and
variations are ignored. Compare the results in line 19 with the corresponding
mean values on line 31 of Fig. 5.12. This spreadsheet is very easy to use and to
expand [just insert any additional required lines for item parameters below line
10 and copy (present) line 19 below as many times as necessary]. Such a simple
spreadsheet can be very useful for initial design calculations.

5.4.2 Optimization Example

Example 5.7 Figure 5.16 is the block diagram of a double-conversion receiver
with the gain, noise figure, and IIP3IM [in (dBm)] plotted below. These cascade
parameters were plotted from a simplified spreadsheet, such as that in Fig. 5.15,
one that does not yet account for reflections. Gain is obtained as early in the
cascade as possible so that the effect of subsequent noise figures will be mini-
mized. The gain is limited, however, in order to preserve IIP3 by not driving the
modules nearer to the output of the cascade too hard. Balancing noise figure and
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F2 through A2

Fig. 5.17 Noise contributions of components.

IIP3 usually produces the seesawing gain that we see here as we move along the
cascade. The resulting growth in noise figure and drop in IIP3 along the cascade
can be seen in the figure.

Figure 5.17 shows the noise contribution, f − 1 divided by the preceding
gain, of each module. Two horizontal lines show the contributions of the first
two amplifiers combined with the directly preceding attenuations since the net
effect is easily determined (Section 3.4). It is important to minimize losses before
the preamplifier since they contribute directly to the cascade noise figure. Because
of its gain, the preamplifier largely establishes the noise figure of the cascade,
although, in order to keep the signal levels down, its gain is not so high that
other components do not also make some contribution.

Figure 5.18 shows limitations due to component IIP3s, referenced to the cas-
cade input. (Note that, whereas large values in Fig. 5.17 indicate significant
contributions of cascade noise, in Fig. 5.18 small values indicate significant limi-
tations on IIP3.) We see that the first amplifier also largely establishes the cascade
IIP3. Higher power components may be used nearer to the output where the sig-
nal level has grown. For example, the second mixer M2 has a higher IIP3 than
the first mixer M1. This can be accomplished by using a higher LO drive level
in the second mixer. Notice that M2 still presents a greater limit to cascade IIP3
than does M1.

Maintaining a fairly constant gain tends to maximize the SFDR. If the three
amplifiers were placed where A1 is in Fig. 5.16 (maintaining the same order as
shown), noise figure would improve by about 1.7 dB but IIP3 would decrease
by 39 dB, leading to a 20-dB degradation in SFDR (Table 5.1). If all three
were placed at the output (again maintaining their order), IIP3 would improve
9 dB but noise figure would worsen by 24 dB, a devastating degradation for
most receivers, and SFDR would be 10 dB worse than with the gain distributed
as in Fig. 5.16.
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IIP3 referenced to input

Component

2.5

2.0

1.0

1.5

0.5

0.0

A1 M1 M2A2 A3

m
W

Fig. 5.18 IIP3 limitations of components.

TABLE 5.1 Effects of Redistributing Amplifiers

NF (dB) IIP3 (dBm)
ISFDR in

10 kHz (dB)

Distributed amplification 5.30 −7.4 80.90
All amps in front 3.62 −39.17 60.81
All amps in back 29.62 1.72 70.74

We can see from Figs. 5.17 and 5.18 that the first amplifier largely determines
both the noise figure and the IIP3 and, therefore the dynamic range, for that con-
figuration. The cascade SFDR is only 4.4 dB less than that of the first amplifier.

5.5 SPREADSHEET ENHANCEMENTS

There are many enhancements that can be usefully included, depending on the
project. We have already seen how to include gain control. Here we list a few oth-
ers, which may be added as the project develops and more data becomes available.

5.5.1 Lookup Tables

We may wish to represent the dependence of a module parameter on some other
parameter, such as frequency or temperature or module gain. This other parameter
can be entered manually or may be a module parameter. The dependent parameter
can be taken from a table stored in some other part of the spreadsheet, perhaps
on another page of a workbook, and its value can be interpolated from that
table. Worksheet functions such as INDEX, MATCH, LOOKUP, VLOOKUP,
HLOOKUP, and FORECAST can be useful in implementing these selections.
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5.5.2 Using Controls

Buttons and other controls can be incorporated into a spreadsheet. We might use
a button to sequence through various system configurations, displaying the iden-
tities of the configurations by using macros and lookup tables. Module or cable
parameters can be keyed on the chosen configuration. We might use checkboxes
for similar purposes or enter a number or a word in a cell as a control.

5.6 SUMMARY

• Noise also produces IM products. Although more difficult, methods used to
determine IMs for discrete signals can also be applied with care to noise.

• Large numbers of discrete signals (e.g., FDM or CATV) can be approxi-
mated as noise.

• ISFDR is limited by spurs and noise. It depends on noise figure, intercept
point (usually third-order), and processing bandwidth.

• Spreadsheets can incorporate harmonic and intercept point calculations along
with gain and noise factors. These can be incorporated for various conditions
and configurations and developed and refined as the project progresses.

• ISFDR can be included on a spreadsheet that incorporates noise figure and
intercept point.

• Gain is needed at the front end of a cascade to reduce the contribution of
subsequent components to the cascade noise figure.

• Excessive gain at the front end of a cascade reduces its input intercept points.
• Gain is usually kept fairly constant throughout the cascade to maximum

ISFDR.

ENDNOTES

1The author is indebted to Dr. Nelson Blachman for private conversations and internal memos on
this subject.
2Power is obtained from ei (x)ej (f − x)∗ but the spectrum is composed of odd imaginary terms and
real even terms. The processes of conjugation and frequency negation effectively cancel each other
for odd imaginary terms and have no effect for real even terms.
3This product is not valid at f = 0; we have previously shown that coherence changes the results
there. However, it is valid for any other value of f , no matter how small, and therefore S2(0) still
represents the peak of the distribution.
4We multiply S0 in Eq. (5.6) by R to convert from power to mean-square voltage, producing R2.
Then we multiply by a2

2 to obtain the mean-square voltage from the second-order nonlinearity. Then
we divide by R to obtain the corresponding power.
5For example, (a + b + c + . . .)3 = (2ab + 2bc + 2ac + . . .)(a + b + c + . . .) = 2abc + 2abc +
2abc + . . . .
6Based on experiments, Germanov (1998) reduced estimates of multicarrier IMs by 3 dB below
the levels that he had theoretically calculated from tests with two or three signals. He cited the
lower voltage peaks, with a given total signal power, when there are many signals. In terms of
Eq. (4.1), this may correspond to differing effects of higher order terms (which are responsible for
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the curvature in the IM curves of Figs. 4.3 and 4.8) when the powers of individual signals decrease
while the number of them increases. While it seems unlikely that a significant improvement in the
linearity (in dB) of the relationship between IM and signal powers will occur as a result of simply
decreasing the power per signal without decreasing the total power, neither is it apparent that the
relationship is simply dependent on total RF power, independent of the number of signals over which
it is spread. We would probably be most confident in the accuracy of predicted levels, based on IM
level curves taken with two signals, when the total power of all signals does not exceed the total
power for the two signals at the top of the linear range of those curves.



CHAPTER 6

ARCHITECTURES THAT IMPROVE
LINEARITY

In this chapter we consider several architectures that can improve linearity by
canceling IMs or harmonics that are produced in an amplifying component (Seidel
et al., 1968). We begin with amplifier modules combined in parallel. We might
note that this improves linearity inherently by reducing the power required from
the individual combined modules. However, we will be concerned here with the
cancellation of IMs that can occur, depending on the details of how the modules
are combined.

Another way to improve linearity is the use of feedback, although its appli-
cation is limited at higher frequencies due to potential instability associated with
inherent delays. This problem is avoided in another method that we will consider,
feedforward.

6.1 PARALLEL COMBINING

So far we have considered modules combined in cascade but modules are also
combined in parallel. Amplifiers are often combined this way (Gonzalez, 1984,
pp. 181–183) in order to obtain an RF power level that is beyond the capa-
bility of an individual amplifier. Some circuits that are used to combine and
divide RF power1 have unique properties that affect the performance parameters
that we have studied. Internally these circuits often use transmission lines in
interesting combinations to produce their unique properties (Sevick, 1987), but
here we are concerned, not with these methods, but with the resulting external
properties and their potential for linearity improvement. We assume that these
properties are retained at all frequencies of interest although that may, at times,
be problematical.
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6.1.1 90◦ Hybrid

Figure 6.1 shows the ideal transfer characteristic of a 90◦ hybrid. There will be, in
addition, a time delay that produces the same phase shift in each of the four paths
without altering the ideality of the hybrid. The power of a signal entering one
port is split into two equal parts, which appear at the two opposite ports, all ports
being at the same impedance. Practically, there will be loss in the hybrids and
undesired phase shifts, but we will study the ideal case to get an understanding
of the general properties of circuits using 90◦ hybrids.

Simple 90◦ hybrids typically cover about an octave, but much wider bands
are possible in designs that employ multiple sections.

6.1.1.1 Combining Amplifiers A typical use for the 90◦ hybrid is illustrated
in Fig. 6.2, which shows a module that combines the power from two amplifiers.
The upper amplifier receives the same signal as the lower one, but delayed 90◦.
When the signals are recombined, the output of the lower amplifier is delayed 90◦
in reaching the composite output so, if the amplifiers are identical, the two output
signals combine in phase at the module output. Thus the powers of two amplifiers
are added. This is a useful feature when one amplifier does not have sufficient
power capacity. The scheme can be repeated for additional power increases.

The output termination receives the signal that passed through the lower ampli-
fier plus the signal from the upper amplifier, which should be identical but shifted
a total of 180◦. Ideally these cancel, but the termination dissipates any power
that results from differences in the two signals due to nonideal hybrids or mis-
matched amplifiers.

va

vb

vc

vd

1/√2

1/√2 ∠−90°

1/√2 ∠−90°

1/√2

Fig. 6.1 90◦ hybrid.

Input
termination

Amp1

Output
terminationAmp2

Pin

Pout

90°
H

90°
H

Fig. 6.2 Amplifiers combined using 90◦ hybrids.
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There is some variation in power division across the hybrid’s bandwidth. Thus,
the 0◦ output may exceed the −90◦ output at some frequencies and conversely.
Unfortunately, in Fig. 4.2, one signal path receives two 0◦ shifts from the hybrids,
and the other receives two −90◦ shifts, tending to accentuate deviations from the
ideal. If a sign reversal could be obtained in one of the amplifiers, the output port
would be interchanged with the output termination port. If this could be done
without degrading the match between the amplifiers, it would have the advantage
of improving the match between the two signal paths because there would be
one 0◦ and one −90◦ shift in each path.

6.1.1.2 Impedance Matching To the degree that the amplifiers are identi-
cal, the reflection coefficients at their inputs will be identical. Since the signal
into the upper amplifier lags the lower one by 90◦, its reflection will lag the
lower reflection by 90◦ also. The upper reflection picks up another −90◦ going
through the hybrid back to the module input, so, at the input, it is a total of 180◦
out of phase with the reflection from the lower amplifier. Thus, the reflections
cancel at the module input. Tracing the phase of the reflection entering the input
termination in the same way, we find that the two reflections are in phase there,
so all of the reflected power is dissipated in the input termination. Thus, two
poorly matched amplifiers can be combined to produce a well-matched amplifier
module, if the individual amplifiers are identical.

The output port is well matched for the same reason. This is particularly
important if Amp 1 and Amp 2 are not well matched to the standard impedance
R0. They may be just active devices with high output impedances. As long as the
output impedances are identical, a signal sent into the output will end up in the
output termination and not be reflected. Even if their impedances differ greatly
from each other, if they are both much higher than R0 they will produce nearly
identical reflections that will cancel at the module output.

6.1.1.3 Intermods and Harmonics If second and third harmonics are gen-
erated in Amp 2, its output can be expressed as

vo2 = v1 cos ϕ(t) + v2 cos[2ϕ(t)] + v3 cos[3ϕ(t)]. (6.1)

Similarly, the output from Amp 1 would be

vo1 = v1 cos[ϕ(t) − 90◦] + v2 cos{2[ϕ(t) − 90◦]} + v3 cos{3[ϕ(t) − 90◦]} (6.2)

= v1 cos[ϕ(t) − 90◦] + v2 cos[2ϕ(t) − 180◦] + v3 cos[3ϕ(t) − 270◦]. (6.3)

Output vo2 is delayed another 90◦, producing

vo2d = v1 cos[ϕ(t) − 90◦] + v2 cos[2ϕ(t) − 90◦] + v3 cos[3ϕ(t) − 90◦] (6.4)

before adding to vo1 in the output. The sum voltage is

voT = (vo1 + vo2d)/
√

2 (6.5)

= √
2v1 cos[ϕ(t) − 90◦] + v2 cos[2ϕ(t) − 135◦]. (6.6)
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The fundamentals have added, producing twice the power of a single fundamen-
tal. The second harmonic frequencies have added in quadrature, giving a 3-dB
reduction relative to the fundamental. The third-harmonics have canceled. Ideally,
this amplifier has no third harmonics. They are all sent to the output termination.

It is easy to show that second-order IMs act like second harmonics. When
the fundamentals add, the IMs in vo1 contain −180◦; when they subtract, they
contain 0◦. In either case they are in quadrature to the IMs in vo2d , so the ratio
of the second-order IMs to the fundamental is 3 dB lower in the output of the
module than at the individual amplifiers.

Third-order intermods near the third harmonics (f and g in Fig. 4.6) result
from the addition of frequencies and contain the same 3 × 90◦ that the third
harmonics do. As a result they are canceled along with the harmonics. The
more important third-order IMs (c and d in Fig. 4.6), those near the signals,
however, act like the signals. Since their frequencies are the differences between
one fundamental and the second harmonic of the other, their phases contain
the same −90◦ that the fundamentals do, so these IMs from the two amplifiers
add coherently.

6.1.1.4 Summary The 90◦ hybrids can be used to add the powers of two
identical amplifiers. Ideally, the input and output ports of the composite ampli-
fier will be reflectionless. The relative (to the signal) amplitudes of second-order
harmonics and IMs will be reduced 3 dB (compared to their values in the individ-
ual amplifiers). Third harmonics and nearby third-order IMs will be eliminated
while third-order IMs near the signals will not be reduced.

6.1.2 180◦ Hybrid

Figure 6.3 shows the ideal transfer characteristic of a 180◦ hybrid. Additional
delay and loss will be present in practical hybrids, as noted for the 90◦ hybrid.
The power of a signal entering one port is split in two equal parts, which appear at
the two opposite ports, all ports being at the same impedance level. These devices
are characteristically very broadband, sometimes covering two or three decades.

6.1.2.1 Combining Amplifiers The 180◦ hybrids can be used to combine
identical amplifiers, as illustrated in Fig. 6.4. The input to the upper amplifier is
delayed 180◦, inverted, relative to the other. A similar operation at the output

va

vb

vc

vd

1/√2

1/√2 ∠−180°

1/√2

1/√2

Fig. 6.3 180◦ hybrid.
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Fig. 6.4 Amplifiers combined using 180◦ hybrids.

recombines the signals in phase at the load, and any signal appearing in the
output termination is due to imbalances.

6.1.2.2 Impedance Matching Reflections from the inputs or outputs of the
individual amplifiers add at the module input or output, having made either a 0◦
or a 360◦ round trip, so there is no improvement in impedance matching.

6.1.2.3 Intermods and Harmonics If the output of Amp 2 is

vo2 = v1 cos ϕ(t) + v2 cos[2ϕ(t)] + v3 cos[3ϕ(t)], (6.7)

the output from Amp 1 will be

vo1 = v1 cos[ϕ(t) − 180◦] + v2 cos{2[ϕ(t) − 180◦]}
+ v3 cos{3[ϕ(t) − 180◦]} (6.8)

= v1 cos[ϕ(t) − 180◦] + v2 cos[2ϕ(t) − 360◦]

+ v3 cos[3ϕ(t) − 540◦]. (6.9)

Output vo2 is delayed another 180◦, producing

vo2d = v1 cos[ϕ(t) − 180◦] + v2 cos[2ϕ(t) − 180◦] + v3 cos[3ϕ(t) − 180◦],
(6.10)

before adding to vo1 in the output. The sum voltage is

voT = (vo1 + vo2d)/
√

2 (6.11)

= √
2{v1 cos[ϕ(t) − 180◦] + v3 cos[3ϕ(t) − 180◦]}. (6.12)

The fundamentals have added, producing twice the power of each. The powers
of odd-order harmonics likewise add at the output. Even-order harmonics cancel
at the output, all their power going to the output termination.

IMs will have the same phase as harmonics of the same order or will differ
by a multiple of 360◦; so IMs have the same fate as harmonics of the same
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order. We show this as follows. An nth-order IM may have frequency [(n −
q)f1 + qf2], where n and q are positive integers. The total phase shift will
be n times the phase shift of the fundamental, θ . The case where q = n or
q = 0 is a harmonic. Other cases have the same phase shift, (n − q)θ + qθ =
nθ . Difference-frequency IMs have frequency (n − q)f1 − qf2 and phase shift
(n − q)θ − qθ = (n − 2q)θ . This is a change of q × 2θ from the phase of the
harmonic but, for θ = −180◦, a change equal to a multiple of 2θ is ineffective.

6.1.2.4 Summary A composite amplifier using 180◦ hybrids at input and
output ideally contains no even-order harmonics or IMs. These are all dissipated
in the output load. Odd-order harmonics and IMs are not suppressed, nor are the
input and output matches improved relative to the individual amplifiers.

6.1.3 Simple Push–Pull

A push–pull amplifier is shown in Fig. 6.5 (Hardy, 1979, pp. 301–302). Since
other circuits that combine pairs of amplifiers are sometimes called push–pull, we
will identify this form as “simple” push–pull. The circuit is similar to Fig. 6.4
except that the output combiner is not a hybrid, which would isolate the two
amplifiers from each other, but is a transformer, which does not provide isolation.
Difficulties associated with this lack of isolation may account for the restricted
use of simple push–pull amplifiers in spite of other advantages, which will be
instructive to consider. (Commonly, the 180◦ power division at the input would
be accomplished using a transformer also.)

Efficiency can be improved by operating the individual amplifiers class B,
where each amplifier is on during only half of the fundamental cycle. If this is
done with a 180◦ hybrid combiner at the output (Fig. 6.4), the strong even-
order harmonic content in the half cycles from each individual amplifier is
routed to the output termination where it is dissipated, decreasing the amplifier’s
efficiency. With a transformer, whichever of Amp 1 or Amp 2 is conducting
at any time drives the load. When an amplifier is not conducting, it sees the
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i2

i2

v

0

0

0

Fig. 6.5 Simple push–pull amplifier.
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high-voltage swing generated by the other amplifier. The signals from the two
amplifiers combine at the output. Ideally, all harmonics are even and cancel
but are not dissipated. [Complementary devices (e.g., npn and pnp or n- and p-
channel) are sometimes used to combine the two half cycles without requiring
transformers.]

With the hybrid, the even-order harmonics are eliminated from each amplifier’s
output, leaving a sine wave that is added to the sine wave from the other amplifier.
With class B operation of a simple push–pull, the two outputs are simply added
and form a sinusoid as a result. In both cases balance is required for complete
cancellation of even-order harmonics and odd-order harmonics are not canceled.

If the amplifiers should be operating class A (sinusoidal current from each
amplifier), ideally the total current would add at the output for either type of
180◦ combiner. If one of the amplifiers should stop conducting, the power from
the simple push–pull circuit would be halved whereas the output from the hybrid
would drop to one quarter because, under those conditions of imbalance, half of
the power would be dissipated in the hybrid’s load. However, a damaged amplifier
in a simple push–pull pair could affect the other amplifier, possibly destroying
it, due to the lack of isolation.

6.1.4 Gain

If we remove the amplifiers from Fig. 6.2 or Fig. 6.4, we obtain the config-
uration shown in Fig. 6.6. It is apparent that the signals add at the output,
since they arrive there in phase. Thus, for ideal hybrids, either 90◦ or 180◦,
the gain is one. The addition of amplifiers with gain g will increase the out-
put by g, giving a module gain equal to the gain of each individual amplifier.
This will be reduced by dissipation losses in the hybrids. Other deviations
from ideal in hybrids (typical the magnitude and phase of the transfers vary
some over the specified RF band) or differences in the two amplifiers will also
cause losses. Amplifier input mismatches, which cause the input signal to be
reflected into the input termination, are already accounted for in the way the
transducer gains of the individual amplifiers are measured (presumably with the
same standard impedance).

Input
termination

Output
termination

Pin

Pout

qq

Fig. 6.6 Hybrids without amplifiers.



156 CHAPTER 6 ARCHITECTURES THAT IMPROVE LINEARITY

6.1.5 Noise Figure

When the composite amplifier is driven by the standard impedance R0, the noise
at the output of each individual amplifier will be kT0BfAmpgAmp. The part of this
noise originating in each amplifier is kT0B(fAmp − 1)gAmp. Half of this goes to
the combiner output and half goes to the output termination so the amplifier noise
at the combiner output has the same level as the noise from one amplifier. The
source noise is divided and amplified and recombines coherently at the combiner
output along with the signal. Its power at the output is kT0BgAmp. (The input
termination noise combines coherently in the output termination at the same
level.) Therefore the total output noise is kT0BfAmpgAmp, which is fAmpgAmp

greater than the input noise to the module. Since the signal is greater by gAmp at
the output than at the input, the noise factor for the composite is the same as for
the individual amplifiers:

fmodule = Sin

Sout

Nout

Nin
= 1

gAmp
fAmpgAmp = fAmp. (6.13)

It is simple to account for loss in the input hybrid since it acts like an attenuator
in front of the module and thus increases fmodule by its attenuation. (Since noise
factor for the individual amplifiers was presumably measured with a standard
impedance source, reflections from the inputs of those amplifiers are again already
accounted for.) Output attenuation, less one, will be divided by g before being
added to f , so it will have less impact.

6.1.6 Combiner Trees

The amplifiers, shown in Fig. 6.2 or Fig. 6.4, might consist of modules that are
again represented by either of these figures, thus combining four elementary
amplifiers. Such a module might, in turn, serve as an amplifier for a higher
level module, and so forth. Figure 6.7 shows three levels of power combining.
Each level serves as an amplifier for the next higher level. Thus one can use
the configuration in Fig. 6.2 or 6.4 repeatedly, increasing the number of devices
combined and the maximum output power.

The power dividers and combiners can be 90◦ hybrids, 180◦ hybrids, or in-
phase dividers and combiners. We might use combinations to gain the combined
advantages of the different types. For example, we might use 90◦ hybrids in Level
1 for impedance matching and odd-harmonic suppression and 180◦ hybrids in
Level 2 for even-harmonic suppression. We must be aware, however, that the
hybrids may contain magnetic cores and so can produce harmonics and IMs
themselves (Section 4.7).

Each level increases the total output power by 3 dB (assuming a fixed output
power from each amplifier) less the loss in its output combiner, but the overall
gain decreases by the losses in its input and output combiners, so amplifiers may
be inserted in the input power division structure (or tree).
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Level 1
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Pout

Pin

Fig. 6.7 Combiner tree.

6.1.7 Cascade Analysis of a Combiner Tree

We can analyze a combiner tree, such as is shown in Fig. 6.7, as a cascade by
using total powers in all of the legs at each interface as the variables at that point
in the cascade. Thus each power divider is represented as an attenuator with gain
(in a matched circuit) of

g = pout

pin
, (6.14)

where pin is the total power at all q inputs and pout is the total power at all
2q outputs (e.g., q = 1 for the first divider). Ideally, the attenuation is 0 dB
and g = 1.

The combined M amplifiers (M = 8 in Fig. 6.7) have M times the input power
and M times the equivalent input noise of a single amplifier; so the combined
noise figure is the same as that of a single amplifier. The combined output signal
power and the combined output power at each intermod are all M times greater
than for a single amplifier; so the intercept points for an nth-order nonlinearity are

pIPn,combined = M × pIPn,amp. (6.15)

Amplifiers that may appear at other levels can be treated similarly.
Each output power combiner also acts as an attenuator, and Eq. (6.14) applies

again except that there are now 2q inputs and q outputs. However, if the combiner
provides cancellation of an intermod, this must be accounted for by an increase



158 CHAPTER 6 ARCHITECTURES THAT IMPROVE LINEARITY

in the system input IP occurring at that module. If the combiner is a 90◦ hybrid,
there is an additional 3-dB reduction in second-order products [Eq. (6.6)], which
corresponds to a 3-dB increase in the system IP2. Ideally 90◦ hybrids completely
cancel third harmonics and some IM3s, so the system IP3 for those products
would become infinite at that point. Realistically, the balance will be imperfect
so a finite increase in IP3 should be used to represent the partial cancellation (1 dB
increase for each 2 dB of cancellation). Similarly, a 180◦ hybrid theoretically pro-
vides infinite cancellation of second-order products, but we can represent actual
performance by increasing the IP2 by an amount equal to the cancellation in dB.

Imperfections in power combining, caused by differences in the phase or
amplitude of the two combined signals, lead to increased attenuation and
decreased cancellation in the combiners. However, these errors are due not only
to the combiners but also to imperfections in other components at that level.
For example, an error of ϕ in the relative phases of the outputs from the power
dividers at the front of Level 2 (Fig. 5.7) has the same effect as an error of
ϕ at the inputs to the combiners at the other end of that level. Errors in the
dividers might increase the attenuation in the combiners or they might tend to
cancel errors in the combiners, thus decreasing their attenuations. The effective
gain and phase errors at the combiners are the total path errors for the level.
Likewise, differences in gains through supposedly identical devices within the
level can contribute to losses in the combiners at the level output. A statistical
analysis of the effects of variances in the various component parameters on the
overall expected gain and gain variance can be important in some applications
but is beyond the scope of this book.

6.2 FEEDBACK

Figure 6.8 shows an operational amplifier (op amp) circuit with negative feed-
back. We have seen this before in Fig. 3.18. The negative feedback in this circuit
can cause the transfer function to be more a function of the passive components
than of the active amplifier and, therefore, to be quite linear. Figure 6.9 shows
a mathematical block diagram corresponding to Fig. 6.8. The standard equation
for the closed-loop transfer function is

a = aop

1 + aopaFB
. (6.16)

When the open-loop gain |aopaFB| is much greater than one, this becomes

a ≈ 1/aFB, (6.17)

and the circuit transfer function becomes dependent on the passive components
that determine aFB. [Note that the transfer function of the input block in Fig. 6.9,
when multiplied by Eq. (6.17), produces the standard transfer function for this
circuit, RFB/Rin.]
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Fig. 6.9 Block diagram of op amp.

The main problem at higher frequencies is stability. For stability, the open-
loop gain |aopaFB| should be less than one by the time the open-loop excess
phase � aopaFB reaches −180◦. For this reason, a single-pole roll-off is commonly
incorporated into aop to reduce the gain below unity by the time the unavoidable
phase shift in the transfer function reaches −90◦, which will add to the −90◦
that accompanies the roll-off (Egan, 1998, pp. 49–54). As a result, the open-
loop gain is often low at higher RF frequencies, limiting this method to the
lower frequencies.

One method for overcoming this limitation feeds back the detected amplitude
of the output for comparison to the detected amplitude of the input. When the
modulation is sufficiently low in frequency, significant open-loop gain can be
obtained in that loop to produce good modulation linearity. Phase can also be
controlled this way in the case of quadrature amplitude modulation (QAM) signals
where a coherent carrier signal is available to act as a reference for coherent
detection. In that case, the signal can be separated into normal components and
the AM of each can be controlled separately (Katz, 1999).

6.3 FEEDFORWARD2

In Fig. 6.10, a1 is the linear voltage transfer function of the main amplifier and a′
1

is the linear voltage transfer function of a secondary amplifier. Part of the input
is sent to the main amplifier and part to the secondary amplifier. The output
of the main amplifier is sampled in a directional coupler3 and injected into the
secondary line by another directional coupler (c2 and c3, respectively). The gains
and delay τ1 and phase shift ϕ1 are ideally such that the versions of the input
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Fig. 6.10 Feedforward amplifier. Component amplifiers are represented by their linear
voltage gains a; couplers by their coupling c and main-line gain c′ (both voltage gains).
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Fig. 6.11 Feedforward block diagram.

signal, arriving at the secondary amplifier by the two paths, cancel, leaving only
the distortion that was generated in the main amplifier to enter the secondary
amplifier. Since the secondary amplifier has only this small residual signal to
amplify, it is presumably less subject to distortion than the main amplifier. The
amplified distortion is subtracted from the main signal in the output coupler,
canceling the distortion. Again, this cancellation requires proper values of gain
and τ2 and ϕ2. A mathematical block diagram is shown in Fig. 6.11.

6.3.1 Intermods and Harmonics

Assuming all adjustments are correct, the signal entering the secondary amplifier
can be written, from Eq. (4.1), as

vdif = az(a1vin + a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · · − a1vin) (6.18)

= az(a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · ·), (6.19)

where
az = c1c2c3. (6.20)

The output of the secondary amplifier is

v2,out = az

{
a′

1[a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · ·]

+a′
2[a2v

2
in + · · ·]2 + a′

3[a2v
2
in + · · ·]3 + · · ·

}
. (6.21)
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If this is subtracted from the output from the main amplifier, properly delayed
and phase shifted, it will cancel the IMs and harmonics created in the main
amplifier, producing

vout = ay




a1vin + a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · ·

−[a2v
2
in + a3v

3
in + a4v

4
in + a5v

5
in + · · ·]

−a′
2[a2v

2
in + · · ·]2 − a′

3[a2v
2
in + · · ·]3 − · · ·


 (6.22)

= ay{a1vin − a′
2[a2v

2
in + · · ·]2 − a′

3[a2v
2
in + · · ·]3 − · · ·}, (6.23)

where
ay = c1c

′
2e−j (ωτ2+ϕ2)c′

4 (6.24)

Here we have exchanged spurs (IMs and harmonics) produced by the secondary
amplifier, which is amplifying only the relatively weak spurs from the main
amplifier, for the spurs produced in the main amplifier, which is amplifying the
relatively powerful main signal.

6.3.2 Bandwidth

The delay and phase shift in parallel with each amplifier are intended to duplicate
the delay and phase shift within the amplifier and coupling devices and to add
the 180◦ phase shift required for subtraction if that is not obtained in some other
way. Only the phase shifter is necessary for this at any given frequency, but the
delay is incorporated to try to match the phase shift in the other branch over a
wide frequency range. Otherwise cancellation will occur at only one frequency. It
is, of course, necessary that the various coupling factors c be adjusted to produce
the same magnitude of gain in each path so some means of gain adjustment is
desirable also.

A failure to match paths from input to output will result in incomplete cancel-
lation of the IMs. A failure to match paths from input to the secondary amplifier
will cause it to carry some of the main signal to the detriment of its linearity
as well as a loss in overall gain due to unnecessary cancellation of the desired
signal. The system tends to flatten the gain (i.e., to reduce ripple) since changes
in a1 from optimum cause error signals that are amplified by a2 and used to
cancel the change at the output.

6.3.3 Noise Figure

The noise figure of the overall amplifier is ideally (assuming perfect adjustment)
that of the path from input to output through τ1 and the secondary ampli-
fier (Fig. 6.10).

There are three paths from input to output. In Fig. 6.11, let the upper path
have a transfer function of au, the lower path have a transfer function of al , and
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the path that crosses from upper to lower at the couplers have a transfer function
of ax . We know that IMs in the crossing path cancel those in the upper path so

au = −ax. (6.25)

We also know that the crossing path and the lower path are the same after they
join at the secondary amplifier input and that they cancel each other up to that
point, so

al = −ax. (6.26)

Therefore, the net transfer function is

a = au + ax + al = au = −ax = al, (6.27)

so we see amplified input noise, using the transfer function of any of the three
paths. Noise generated in the common part of the upper and crossing paths cancels
at the output. The rest of the upper path is just an attenuator at one port of the
output coupler and is accounted for in that coupler’s noise figure. Much as in
the case of image noise when a mixer is driven by a diplexer (Section 3.9.1), the
termination at that port is assumed in computing the noise figure of the coupler
in the path through the other port. The remaining and uncanceled component
noise is due to the lower path. Therefore, the lower path contains the input noise
and all of the uncanceled component noise, including the effect of loss in the
output coupler.

Since the noise figure is determined by the lower path, the best noise figure will
occur when c′

1 � c1, which will require that a1 be large for a given overall gain.

6.4 NONIDEAL PERFORMANCE

We have described how certain circuit configurations can ideally eliminate the
effects of nonlinearities in some active components. Detailed discussion of how
other imperfections in various parts of the configurations affect the results is
beyond the scope of this book.

Feedforward and parallel configurations require accurate matching of paths to
prevent loss of power and gain and to effectively cancel nonlinearities. Deter-
mining the effects of inaccurate transfer functions is an important part of design.
It requires writing the detailed overall transfer function and introducing the vari-
ous amplitude and phase perturbations that can be expected from components to
determine their effects on the output.

The response of a feedback configuration ideally depends on only a few com-
ponents, but the imperfections of the open-loop amplifier are attenuated by only
a finite amount, and that amount depends on open-loop gain, which falls with
increasing frequency. For example, an IM voltage vIM that would appear at the
amplifier output without feedback will be reduced to approximately vIM/|aL|,
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where |aL| is the open-loop gain, as long as |aL| � 1. This may practically
eliminate the IM if it has a frequency well below the loop bandwidth but will
have small effect if the frequency exceeds that bandwidth.

6.5 SUMMARY

• Modules that combine two identical amplifiers using 90◦ hybrids ideally
have good input and output matches to the standard impedance.

• Third harmonics and third-order IMs that are near the harmonics (at fre-
quency sums) generated in the two identical amplifiers are ideally eliminated
when 90◦ hybrids are used to combine them. Third-order IMs near the
fundamentals (at difference frequencies) are not reduced.

• Even-order harmonics and IMs generated in two identical amplifiers are
ideally eliminated when 180◦ hybrids are used to combine them.

• Class B simple push–pull amplifiers are inherently more efficient than
amplifiers combined using 180◦ hybrids.

• The gain of a module that combines two identical amplifiers using 90◦ or
180◦ hybrids ideally equals the gain of each individual amplifier.

• The noise factor of a module that combines two identical amplifiers using 90◦
or 180◦ hybrids ideally equals the noise factor of each individual amplifier.

• Multiple levels of combining modules can add the powers of many amplifiers.
• Combiner trees can be analyzed as cascades using the total powers at

each interface.
• Hybrids that contain magnetic cores can cause harmonics and IMs.
• Feedback improves linearity but has stability problems at high frequencies.
• Feedforward techniques amplify the error and use it to cancel distortion.

ENDNOTES

1Tsui (1985, pp. 245–273), Vizmuller (1995, pp. 146–158), Anaren (2000), and MA-COM (2000).
2Arntz (2000), Huh et al. (2001), Myer (1994), Seidel (1971a, 1971b), and Seidel et al. (1968,
pp. 675–711).
3A directional coupler couples part of a wave to another line. The direction of travel of the signal in
the coupled (secondary) line depends on its direction of travel in the main line. The representation
in Fig. 6.10 is for main- and secondary-line signals traveling in the same direction (e.g., left to
right). The coupling factor is the ratio of the power of the coupled signal to the power of the signal
entering the coupler. The directivity is the ratio of the signal power launched in a given direction
in the secondary line with a given incident wave in the main line to the same power when the
wave in the main line is reversed. Ideally, this is infinite, practically maybe 10–45 dB, depending
on frequency and the bandwidth of the coupler.



CHAPTER 7

FREQUENCY CONVERSION

Nearly all traditional radio receivers,1 as well as other electronic systems, employ
frequency conversion. This is also called heterodyning and the radio architecture
that uses it is called superheterodyne. Prior to the introduction of the superhetero-
dyne system, selective radios required filters with many variable components, all
changing synchronously to track the signal. With the superheterodyne system,
the desired frequency is converted to a fixed frequency, and the primary filter
can thus be fixed, a much easier and more effective design. Receivers are not the
only applications that use heterodyning to change frequency.

7.1 BASICS

7.1.1 The Mixer

The device in which heterodyning occurs is called a mixer.2 There are two inputs,
the RF (radio frequency or radio-frequency signal) and the LO (local oscillator).
The desired output is the IF (intermediate frequency or intermediate-frequency
signal). This terminology corresponds well to the mixer’s usage in a receiver,
but we will so identify the mixer’s ports and their signals in other frequency
converters as well.

The mixer contains a device that multiplies the RF signal by the LO signal.
The product of these two sinusoids can be decomposed into a sinusoid whose
frequency is the sum of the RF and LO frequencies and another having the
difference frequency. One of these is the desired frequency-shifted IF.

A simple mixer may consist of a single diode or some other electronic device
(e.g., a field-effect transistor) that can be operated in such a way as to produce
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166 CHAPTER 7 FREQUENCY CONVERSION

the required product. A general nonlinearity contains a squaring term that will
produce the required product. (We will discuss the mathematics of this process
in the following sections.). When a single diode is used, the RF, LO, and IF
all occur at the same location and can only be separated by filtering. A singly
balanced mixer can be created using two diodes whose inputs and outputs are
phased and combined in such a way that one of the inputs (e.g., the LO) cancels
at the IF output port. A doubly balanced mixer (DBM) (Fig. 7.1) can cancel the
appearance of both inputs in the IF. Harmonics of the balanced signals are also
canceled. (The degree of cancellation is finite in all cases.) The remainder of our
discussion assumes a doubly balanced diode mixer but most of the material will
be generally applicable (Egan, 2000, pp. 36–43, 64–67).

Usually the LO power is much greater than the RF power and, as a result,
the mixer acts like a linear element to the through path (RF to IF), except for
the frequency translation. To operate in this manner with large RF signals, the
LO power may have to be increased, perhaps from 7 dBm for a low-level mixer
to as much as 27 dBm for a high-level mixer. High-level mixers may have one
or more additional diodes, or perhaps other passive elements, in series with each
diode shown in Fig. 7.1, or they may combine two of these diode bridges.

Even more complex combinations of diodes and combiners can produce mix-
ers with special advantages. For example, the IF at the sum frequency or at
the difference frequency can be canceled, leaving a single-sideband mixer that
produces an output at only the sum or the difference frequency. At the other
extreme of complexity, LO and mixer are sometimes combined in one active
device, called a converter.

Here are some of the parameters by which mixers are characterized:

Frequency ranges: the RF, LO, and IF ranges for which the mixer is designed.
LO power level : the design or maximum LO power.
Conversion loss: the ratio of IF to RF power, sometimes given as a function of

LO power. This is also called single-sideband conversion loss because the
output power of only one of the two converted signals (sum or difference
frequency) is measured.

1-dB input compression level : the RF power at which the conversion loss
increases by 1 dB over the low-level value.

RF

LO

IF

Fig. 7.1 Doubly balanced mixer. RF and LO ports shown are considered balanced but
the IF port is unbalanced.
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Noise figure: this is equal to or greater than the conversion loss.
Spurious levels: a list or table of the levels (usually typical) of various unde-

sired products created in the nonlinearity. These are given for particular
LO and RF power levels and generally are measured with broadband ter-
minations on all ports. They are usually relative to the level of the desired
IF signal.

IM intercept points: usually the IIP3IM.
Isolation: between the various ports, LO, RF, and IF; for example, how much

is the LO power attenuated in getting to the IF output.
Impedance and SWR: as for other active devices. The other characteristics

depend on the impedance matches at the terminals.

7.1.2 Conversion in Receivers

Incoming RF signals are injected into a mixer, as is the stronger LO. The nonlin-
earity produces signals at the sum and difference of the LO and RF frequencies,
and one of these becomes the IF, to which the IF filter is tuned. A radio is tuned
by changing the frequency of the LO, and thus of the RF signal that will convert
to the IF frequency. The range of incoming frequencies is restricted by a rela-
tively broad filter, either fixed or tuned. This prevents the sum frequency from
being received when the difference frequency is desired and visa versa. Among
these two inputs, the undesired signal is called the image of the desired signal.
The process is illustrated in Fig. 7.2.

The desired conversion process is indicated by Eq. (3.38) or (3.39), which can
be combined to give the tuned frequency as

fR = |fL ± fI |. (7.1)

Here the RF frequency that will pass through the IF filter after conversion is given
as a function of the LO frequency. The sign in the equation is controlled by the

RF in

RF filter

Preamplifier
Mixer

Frequency
selection

Triplexer

Tune oscillator
IF filter

IF
amplifier

Out-of-band
termination

LO

Fig. 7.2 Superheterodyne architecture. The out-of-band termination is good design prac-
tice but not essential. (The upper half of the triplexer is a bandstop filter; the lower half
is a matching bandpass filter.)
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RF filter, which should allow only one of these frequencies to pass — otherwise
both can be received. The process is illustrated in Fig. 3.10. The bandwidths can
be seen there from the width of the noise bands.

Since the sum or difference frequency is normally generated in a nonlinearity,
spurious signals (spurs) at other frequencies are also generated, commonly at
weaker levels. This is the same process that was described in Chapter 4, except
that, here, one of the two significant inputs is the relatively large LO. We do not
want to see either of the inputs in the IF. We are looking for one of the products
of the RF and the LO, produced in the nonlinearity, and are trying to avoid other
products of these two signals and of other, unavoidable, input signals, with the
LO. This involves a more complex design process.

7.1.3 Spurs

When the LO is tuned to produce a signal at the IF frequency according to
Eq. (7.1) with the intended sign, and a signal is produced in the IF, but by a
process that gives a different relationship between the RF and IF frequencies, we
say we have a spurious response, or spur. The spur appears to have been converted
from the RF frequency that corresponds, by the equation for the desired response,
to the LO setting; but it is, in fact, the response to some other signal. Spurious
responses to the intended RF signal should be rejected by the IF filter while the
RF filter limits the range of RF frequencies that might otherwise produce spurs.
A designer may say that there is a spur at some frequency, referring either to the
frequency of an IF signal resulting from a spurious response or to the frequency
of an RF signal that causes a spurious response in the IF. The former might be
produced by the desired signal; the latter by what can be termed an interferer
since it can cause interference with the desired signal.

Spurs that only occur when a certain RF frequency, or range of frequencies, is
received, are called single-frequency spurs — IMs require two RF signals. Spurs
that occur without an RF signal are called internal spurs. They are produced by
contaminating signals elsewhere in the receiver.

Single-frequency spurs are described by

fIF = mfLO + nfRF. (7.2)

These are called m-by-n spurs or |m|-by-|n| spurs. For example, if m = −2 and
n = 3, the spur may be called minus-two-by-three or two-by-three (or −2 × 3
or 2 × 3). If no sign is given, it is probably safer to assume it has been left out
rather than to assume that both signs are positive. If we want to specify m = 2
and n = 3, we can say plus-two-by-plus-three. We will put the LO multiplier m

first; sometimes it is done the other way.3

Figure 7.3 is a chart that gives the expected level of various spurious responses.
It is organized as an |n| × |m| matrix of spur levels relative to the level of the
desired 1 × 1 signal. This particular chart is unusual in that it gives information
for three different mixers at two RF power levels and in the large number of
spurs for which it gives values.
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Spurs that are produced at the desired IF frequency by the desired RF frequency
are called crossover spurs. Here an RF signal is converted to the same IF fre-
quency by each of two processes, the intended conversion and the spurious
response. Even if we should find no harm from superimposing two copies of
the same signal, any slight detuning from the LO frequency that produces the
crossover spur produces two copies of the signal separated by some finite fre-
quency. Crossover spurs are particularly troublesome because they cannot be
preventing by filtering since the desired signal must be passed. Appendix X
contains a list of crossover spurs.

Design involves consideration of all possible RF input signals, whether desired
or undesired, and the choice of the LO frequency range and filtering to mini-
mize interference due to spurious responses. Sometimes the RF filter becomes
a preselector, which is tuned or broken into selectable segments. Sometimes
the conversion is done in more than one step to avoid undesired responses.
Mixers can be selected for desirable spurious performance and balanced (Egan,
1998, pp. 36–43) to reduce the appearance of the LO and input signals and their
harmonics in the IF.

7.1.4 Conversion in Synthesizers and Exciters

Another use for heterodyning is in frequency synthesis. This can be represented
in a manner similar to Fig. 7.2, but the RF and LO are fixed or synthesized
frequencies, and the object is to combine them to produce a new synthesized
frequency at the IF.4 Here we have control over the signals existing in the RF,
rather than being subject to whatever is picked up by an antenna, so no RF filter
is required. We also have control of signal levels. Now the spurious responses of
interest are IF signals, produced by the intended, actual, RF, that are passed by the
IF filter. We must prevent these undesired signals in the IF, and the acceptable
level of such signals in the output is often much lower than for the receiver.
Heterodyning in exciters, which provide signals for transmitters, is similar to
that in synthesizers.

In upconverters, the mixer port that is labeled “IF” may be used as the
input port because its designated frequency range is lower than the port labeled
“RF.” This is generally acceptable, but we may need a different spur level chart
(Fig. 7.3) for this usage. Regardless of its label on the physical device, we will
still call the input port the RF port in our discussions.

7.1.5 Calculators

Appendix C describes two calculators that can be helpful in computing frequency
ranges in receiver and synthesizer conversions.

7.1.6 Design Methods

The design method for frequency conversion that we will discuss uses a two-
dimensional picture of the spurious products in the frequency regions of interest.
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On this we superimpose a representation of the passband, the range of frequencies
that our design must pass. An important feature of this representation is that it
allows us to picture the entire design at once, rather than observing the results
of stepping one or more parameters through its range of interest.

However, there are, in general, three frequencies of importance, the LO, the
RF, and IF. The application of the two-dimensional representation is straight-
forward if one of these frequencies is fixed. Otherwise we must reduce a three-
dimensional problem to a two-dimensional representation for visualization. We
can do this by normalizing two of the frequencies to the third. This complicates
the interpretation of the picture somewhat (although this can be mitigated by a
computer aid) but still allows us to visualize the whole design.

Software that simulates testing of a converter design (e.g., Kyle, 1999; Wood,
2001b), perhaps permitting the specification of filter responses and mixer char-
acteristics, may be initially easier to comprehend; it is closer to the designer’s
experience. However, its realism can be its downfall. Actual testing of converter
performance, especially in the common situation where both RF and LO vary,
can be a time-consuming process. (It is not unusual for designers to use spurious
frequencies that are computed during design to guide their search during testing,
at least initially.) Simulation can be faster than actual testing, but we still must
investigate all of the combinations of these two variables, requiring that each be
stepped in acceptably small increments. The method that we will use requires no
stepping of variables; the variables are continuous. The entire design is visualized
at once. More importantly, this allows us to more easily visualize alternatives.

Perhaps all design of this complexity involves trial and error, where a particular
design is analyzed and then changed until the results of analysis are acceptable.
Commonly the designer’s imagination is involved in selecting alternatives to
analyze, looking for the most satisfactory solution. The method that we will use
seems better suited to this process than does simulation. We may find simulation
satisfying as a check on the final design and for optimizing parameters (e.g.,
filter characteristics), particularly for multiple (series) conversions. Even there, we
must deal with the fact that a simulation employs one set of frequencies at a time.

7.1.7 Example

Appendix E gives an example of a frequency conversion with its desired and
spurious responses and illustrates the method used for analysis and visualization.
The reader can refer to it at any point to clarify the processes.

7.2 SPURIOUS LEVELS5

We will first look at the levels to be expected from undesired signals and then at
their frequencies.

7.2.1 Dependence on Signal Strength

We have seen that the DC term in Eq. (4.8) results in frequencies associated with
a nonlinearity of order k being produced by all of the terms of order equal to k,
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or higher than k by some multiple of 2. Thus a spur of frequency

f = nfa + mfb, (7.3)

where
|n| + |m| = k, (7.4)

can be produced by the nonlinearity of order k + 2i, where i is zero or any
positive integer. [Equation (7.3) is the same relationship that is expressed by
Eq. (7.2).] The spur amplitude produced by that nonlinearity would be propor-
tional to

A|n|B |m|(A2 + B2)i . (7.5)

In the case where fb is the LO frequency, the LO amplitude B is much greater
than the RF amplitude A. Therefore,

A2 + B2 ≈ B2, (7.6)

and the amplitude from Eq. (7.5) becomes

A|n|B |m|+2i . (7.7)

Thus the general form of a spur is

v|n||m| =
( ∞∑

i=1

c|n||m|iA|n|B |m|+2i

)
cos[nϕa(t) + mϕb(t)] (7.8)

= d|n||m|A|n| cos[nϕa(t) + mϕb(t)], (7.9)

where d|n||m| is a constant for a given spur and LO level.
Because A2 � B2, there is only one power of A in this equation, but there

are many powers of B, and B cannot be said to be small, so we are left to
simply write that sum of powers (each multiplied by the appropriate value of c)
as a constant, d|n||m|. While this tells us nothing of the relationship between the
strength of the m-by-n spur and the LO amplitude, it does tell us that the spur’s
amplitude is proportional to the |n|th power of the RF amplitude.

These equations apply to each diode in a balanced mixer. The signals in each
diode differ in sign; in a doubly balanced mixer all four possible combinations of
signs on the two signals (LO and RF) appear in the four diodes. The four diode
signals are combined in such a manner that the RF and LO inputs are canceled at
the output. In addition, all spurious responses, except those for odd m and n, are
theoretically canceled. This trend can be seen in Fig. 7.3, especially for n = 1.
Since the mixer spur levels are a sum of diode voltages such as in Eq. (7.9), they
will have the same form.
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7.2.2 Estimating Levels

We will find it convenient to consider the amplitude of the spur v|m||n| relative to
the amplitude of the desired signal v11, since this ratio R|m||n| does not change
in linear components once the spur has been created (assuming flat frequency
response and no other spurs created at the same frequency). Moreover, this is also
the equivalent ratio of the spur-to-signal amplitudes preceding the mixer, that is,
this is the amplitude of an equivalent spurious input relative to the desired signal.
Since the level of the signal at the output of the mixer is related to its level at
the input by conversion loss, 1/gmixer, we can write, based on Eq. (7.9),

R|m||n|
�= |v|m||n||

|v11| ∼ A|n|

|v11| = A|n|

gmixerA
∼ A|n|−1. (7.10)

We will use this proportionality to predict the ratio of spur-to-signal amplitude
at a given signal level from the ratio at some other signal level.

While we have established no theoretical basis for the dependence of spur
amplitude on LO amplitude, Henderson (1993a) has found that the spur-to-signal
amplitude ratio R|m||n|, in doubly balanced diode mixers, tends to be given by6

R|m||n| ∼ (A/B)|n|−1. (7.11)

Note that the value of m does not enter into this expression. We can express this
relationship in dB as

(�R|m||n|)dB = (|n| − 1)[(�A)dB − (�B)dB], (7.12)

where (�R|m||n|)dB is the change in spur-to-signal-level ratio resulting from a
change in signal level (�A)dB and a change in LO level (�B)dB, all in dB.

Thus we can predict changes in the spur-to-signal ratio as a function of signal
amplitude for small enough signals based on theory, and we can estimate the
effect of a change in LO strength based on observation. We would like the basic
data to be as close to design values as practical in both amplitude and frequency.
This is especially true for the LO signal strength since we lack a theoretical basis
for predicting its effect. Fortunately, we have control over the LO levels, whereas
the RF levels often vary over a wide range.

Figure 7.4 shows a spreadsheet that predicts the changes in spur levels based
on this relationship. Data for mixer A in Fig. 7.3 has been entered in the upper
table along with the LO and RF levels that occurred during their measurement.
LO and RF levels in our system are entered in the lower part. Based on all of
that information, relative (to signal) spur levels are displayed in the bottom part
of the figure. A minus is understood for all of the relative spur levels and >x

means that the spur is at least x below the signal and is, therefore, at a relative
level of < −x. This dependence of spur levels on signal and LO levels influences
the choice of mixers and of LO power and the distribution of gain in a cascade.

Spur levels vary from unit to unit, so design margins are required. They vary
with terminations, so broadband terminations at the design impedance are usually



174 CHAPTER 7 FREQUENCY CONVERSION

0
1 24

73
67
86

>   90
>   90 >   90 >   90 >   90 >   90 >   90 >   90 >   90 >   90

>   90

>   90>   90

>   90

>   90

>   90

>   90

>   90

>   90 >   90

>   90

>   90>   90

2
3
4
5
6
7
8

26
0

73
64

80

35
35
74
69
86

39
13
70
50
88
71

50
40
71
77
88

41
24
64
47
85
68

87

53
45
69
74
86

49
28
64
44
85
65

51
49
69
74

88

? ? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7 8
m (LO multiple)

RF: −10 dBm
LO:    7 dBm

n
(RF

mult.)

0
1 24

86
93

125
>   142
>   155 >   155 >   155 >   155 >   155 >   155 >   155 >   155 >   155

>   129

>   168>   168

>   142

>   168

>   142

>   168

>   142

>   168 >   168

>   129

>   168>   168

2
3
4
5
6
7
8

13
0

86
90

132

22
35
87
95

125

26
13
83
76

127
123

37
40
84

103
127

28
24
77
73

124
120

165

40
45
82

100
125

36
28
77
70

124
117

38
49
82

100

140

? ? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7 8
m (LO multiple)

RF: −20 dBm
LO:  10 dBm

n
(RF

mult.)

Given Data

Derived

Fig. 7.4 Levels of spurs relative to signal (minus understood) for given LO and RF
levels. The upper table is measured data and the lower table estimates values with the RF
and LO levels given there.

important to reproducing results obtained during characterization. They can also
vary with frequency so we should try to obtain characterizations at frequencies
close to those in the intended operations. Further, as we shall see, the predicted
dependence on RF level can be inaccurate if the signal is too strong.

Broadband terminations are important because the mixer performance is influ-
enced by impedances seen by spurious responses as well as by the desired
responses. Maas (1993, pp. 188–189) indicates that reactive out-of-band ter-
minations at the IF port of a DBM (Fig. 7.1) can change spur and IM levels
by as much as ±20 dB, while such mismatches on the LO port can account
for ±10 dB. Only a 1- or 2-dB effect is expected from such mismatches at the
RF input port.

Even-order terms in the signal or signals that are balanced tend to cancel
(Henderson, 1993c, pp. 482–483). In a DBM we therefore expect spurs with
m or n even to be small compared to odd spurs and spurs with both m and n

even to be even smaller. This is commonly observed to be true (McClaning and
Vito, 2000, p. 306). The trend can be seen in Fig. 7.3 along with the decrease in
level at higher orders and the particularly high level of m × 1 spurs. Since the
unbalanced IF port in a DBM is usually rated lower in frequency than the other
two ports, it is sometimes used as an input port for upconversion (unlike the
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configuration of Fig. 7.1). This can change the spur levels. Lacking a separate
chart for this configuration, Henderson (1993a) recommends increasing by 10 dB
the estimated levels of spurs that are both of odd order in the low-frequency signal
that enters the IF port and of even order in the other input.

7.2.3 Strategy for Using Levels

Our goal will be to limit the maximum spur level that is produced for a given
range of possible input signal levels. This range will include the maximum lev-
els of undesired signals and possibly of the desired signal, if its spurs can be
a problem. The maximum spur level in a synthesizer is set by spectral purity
requirements. In a receiver, it may be set below the minimum desired signal by
some required signal-to-interference ratio or, if we are concerned about misiden-
tifying received signals, it might be related to a detection threshold or the noise
level. As noted above, it is helpful to deal with relative spur levels, how far the
spurs are below the desired 1 × 1 product. Relative spur levels can be improved
by reducing signal strength as long as n exceeds 1. The greater the value of n,
the faster the spur level changes with signal strength. Thus, if we use operat-
ing regions where n is large, we can more effectively control the relative spur
level by the strength of the RF signal at the mixer input. However, noise figure
is degraded when the signal strength is lowered at the input to a mixer, so
compromise is required.

Example 7.1 Spur Levels The strongest signal to be received is −15 dBm,
and the weakest desired signal will be −80 dBm. We require a 10-dB
signal-to-spur ratio so the strongest allowed spur, referred to the input, is
−90 dBm — 10 dB below the weak signal and 75 dB below the strong signal.
Therefore we require the relative spur amplitude to be −75 dB with an RF level
of −15 dBm. We consider an operating region in which an |m| × |n| = 2 × 3
spur is present, and the upper table in Fig. 7.4 applies to our mixer. (Therefore,
the −15-dBm received input must have been amplified by 5 dB before the mixer
so its level can be −10 dBm, for which the table applies, at the mixer input.) The
relative level of the 2 × 3, according to the table, is −69 dBc, 6 dB larger than
allowed. We know it will decrease by (n − 1 =) 2 dB for each dB decrease in the
signal strength, so the signal at the mixer input must be reduced by (6 dB/2 =)
3 dB relative to the −10 dBm for which the table was made, giving −13 dBm
maximum input to the mixer. (For clarity, we are not including design margins
here.) This means we are only allowed 2 dB of net gain preceding the mixer, and
the gain to the mixer output will be a loss, not good for noise figure. We might
seek a more spur-free operating region or one where the spurs are weaker or we
might find another mixer with better performance for the spur of concern. We
might also find a mixer designed for a higher LO power. If the spur had n = 1,
we could not have improved its relative level by changing the signal strength.
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7.3 TWO-SIGNAL IMs

In Chapter 4 we studied the production of the intermodulation products (including
harmonics) of two signals in a module, and we have just studied the special case
where one of these signals, the LO, was much larger than the other. Now we look
at what might be considered a combination of these two cases, the production
of IMs in a mixer (Cheadle, 1993, pp. 489–494). To a large degree, the mixer
acts like other modules except that it changes the frequency of the signals that
pass through it. As in the case of other modules, it needs to be characterized
for IMs so we can determine what spurious products will be generated from the
interaction of two signals that pass through it. These are not products that are
created by interaction between the LO and the signals — we intend to control
those products so they do not create significant problems. Here we are concerned
with the interaction between two converted signals. In the absence of specific
characterization for IMs, we can make use of a theoretical relationship between
the mixer spur products and these IMs, which is due to the fact that they are all
based on the same nonlinear coefficients. The disadvantage of using spur-level
tables to find IM levels is due to the possible frequency dependence of these
products, which can cause spurs and IMs that are based on the same nonlinearity
to not be related as expected when their frequencies are significantly different.
Nonetheless, in the absence of more specific data, it is worth understanding
what information about IM levels is contained in the spur-level table. We show,
in Appendix P, that the ratio r of the amplitude of the largest nth-order IM,
resulting from two signals of equal amplitude, to the amplitude of either 1 × n

spur (which has order n + 1) is given by

r = c[n, int(n/2)], (7.13)

where c is the binomial coefficient and int(x) is the integer part of x. For n = 2,
these are IMs c and e in Fig. 4.2 and, for n = 3, they are IMs c, d , f , and g in
Fig. 4.6, while the harmonics in these figures correspond to (single-frequency)

TABLE 7.1 Ratio (r) of Largest IM to Mixer Spur

IM order n n for spur IM-to-spur ratio, r

2 2 2 6.0 dB
3 3 3 9.5 dB
4 4 6 15.6 dB
5 5 10 20.0 dB
6 6 20 26.0 dB
7 7 35 30.9 dB
8 8 70 36.9 dB
9 9 126 42.0 dB
10 10 252 48.0 dB



POWER RANGE FOR PREDICTABLE LEVELS 177

mixer spurs. In Fig. 4.6, the typically large separation between the important
IMs, at c or d , and the harmonics, at e or h, illustrates the danger that frequency
response will alter the theoretical relationship between the two. The values for r

in Eq. (7.13) are shown in Table 7.1.
Intercept points can be computed, as in Chapter 4, once the IM levels have

been determined for a given signal level.

7.4 POWER RANGE FOR PREDICTABLE LEVELS

Figure 7.5 shows output IM3 levels plotted against input power in each of two
equal tones. Curves are plotted for the Class 1 and the Class 3 mixer types of
Fig. 7.3. If we base the IP3 on some output level Px taken in the nonlinear
regions, all predicted IM levels in the linear region (i.e., where the IM power is
proportional to input power in dB) will be in error by the vertical offset between
Px and the linear extension from the low-power region. For example, the data
point for the Class 3 mixer at +10 dBm input power would lead to estimated
low-level IMs that are 13 dB low.

The maximum input levels for which the theoretical relationship holds have
been given as −20, −10, and 0 dBm for Class 1, Class 2, and Class 3 mixers,
respectively (Cheadle, 1993, p. 490).

Since the IM level is closely related to a corresponding spur level, we would
expect that the 1 × 3 spur level would not follow the theoretical relationship to
input power above these levels either. One way to gain confidence that we are
in the linear range is to compare measured spur levels at one RF input level to
those predicted from measurements at another level. This is done in Fig. 7.6.
Note the large errors for the Class 1 mixer especially,7 not surprising in light of
the top of the linear range for the third-order IMs given above. We will usually
want to use the spur level for the lower of the two RF levels unless the IMs are
only measurable at the higher level (or if the higher level is closer to the design
value). As we progress in our design and narrow down the mixer that will be
used, measurements on a number of mixers of those types may be warranted.
This would provide an opportunity for using the expected frequency ranges and
terminations also.

Example 7.2 Mixer IM We will compare the reported IP3 for three mixers to
the levels that we compute from their 1 × 3 spurs, which are shown in Fig. 7.3.
We begin with the M9E Class 3 mixer with 27 dBm LO power.

With 0 dBm RF input level, the relative level of the 1 × 3 spur from Fig. 7.3
is −73 dBc. With two input signals at 0 dBm, each would produce this spur
level, but they would also produce close-in third-order IMs at a level 9.5 dB
higher, according to Table 7.1. These IMs will appear near the converted signals
at a relative level of (9.5 − 73 =) −63.5 dBc. The IIP3 will be higher than the
signal level by (63.5/2 =) 31.8 dBc [Eq. (4.24) or Appendix H, Eq. (32)], so
the input intercept point will be (0 dBm + 31.8 dBc =) 31.8 dBm. The mea-
sured value is 32.5 dBm (Stellex Catalog, 1997, p. 467), within 0.7 dB of the
estimated value.
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Fig. 7.5 IM3 output level for Class 1 and Class 3 mixers plotted against input power in
each of two tones (Cheadle, 1993, p. 490).

Next we look at the M9BC Class 2 mixer with +17 dBm LO power. With
−10 dBm RF input level, the relative level of the 1 × 3 spur is given (Fig. 7.3) as
−77 dBc. With two input signals at −10 dBm, each would produce this level of
1 × 3 spurs plus close-in third-order IMs at a level 9.5 dB higher. These IMs will
appear near the converted signals at a relative level of (9.5 − 77 =) −67.5 dBc.
The intercept point will be higher than the signal level by (67.5/2 =) 33.8 dBc,
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so the input intercept point will be (−10 dBm + 33.8 dBc =) 23.8 dBm. Repeat-
ing this process for a 0-dBm input level, for which the 1 × 3 spur is given as
−58 dBc, we obtain an IIP3 of 24.3 dBm. The measured IM3 level at 50 MHz
for this mixer is −70 dBc with a −10 dBm RF input (Stellex Catalog, 1997,
p. 467). The corresponding IIP3 would be (−10 dBm + 70 dB/2 =) 25 dBm,
within about 1 dB of the estimate from the spur levels.

However, we compute an IIP3 of 17.3 dBm for the M1 Class 1 mixer, using
spur data for −10 dBm RF input, whereas the IP3 given for that mixer is only
11.5 dBm (Watkins-Johnson Catalog, 1993, p. 449), and the value implied from
data for low-level mixers, such as this, in general is 15.5 dBm (Stellex Catalog,
1997, p. 467). The disagreement is even greater if we use spur data for 0-dBm RF
input. This should not be too surprising since the RF levels exceed the −20 dBm
maximum given for linear IM response for Class 1 mixers (although the error is
in the opposite direction of that implied by Fig. 7.5).

7.5 SPUR PLOT, LO REFERENCE

We would like a plot that shows all of the spurious frequencies so we can
superimpose a representation of our passbands and see if the spurs fall within
them. Spurious frequencies occur when a frequency implied by Eq. (7.9),

fI = mfL + nfR, (7.2)

is in the IF band. Here fI is the IF, fR is the RF contained in ϕa(t), and
fL is the LO frequency in ϕb(t). We want a plot of Eq. (7.2) for the various
combinations of m and n, but there are too many variables for a two-dimensional
plot; we must eliminate one of them. One possibility is to fix fL. This will be
particularly useful for conversions where the LO is fixed, nontunable frequency-
band converters. In this case we can plot fI against fR for a fixed fL and various
m and n. Alternately, we can normalize to fL, plotting fI /fL versus fR/fL for
various m and n:

fI /fL = m + nfR/fL. (7.14)

This normalized version is most useful for making a plot that can be used for
different projects. We could carefully plot these curves, label each with m and n,
and use a copy of the plot for any project. We can also create a spreadsheet to
give this plot, as illustrated by Fig. 7.7, which represents data on an associated
spreadsheet.

7.5.1 Spreadsheet Plot Description

In Fig. 7.7, the LO has the value 5.5. We can use this to represent 5.5 GHz or
5.5 kHz. The units are arbitrary, but the same units apply to all of the numbers,
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182 CHAPTER 7 FREQUENCY CONVERSION

LO, RF, and IF. This spreadsheet is done for 0 ≤ m ≤ 10 and 0 ≤ n ≤ 5. Some
spur plots and their accompanying spreadsheets are designed to provide 116
curves (Fig. 7.7), while others provide only 61. The spreadsheet is designed so
a high maximum m can be easily exchanged for high maximum n within these
limits. While 61 curves can provide a clearer presentation, the larger number may
be needed in practice because, as can be seen from Fig. 7.3, spur levels do not
fall very fast with m.

The spurs are listed in the legend to the right in Fig. 7.7, each spur having its
curve number in parentheses and its values of |m|, |n|. Curves are color coded in
the operating spreadsheet, and touching a line with the cursor causes the legend
information for that curve to be displayed. Clicking on a line causes the line
equation, written in terms of cell coordinates and ending in the curve number, to
appear at the top of the window.

The heavy lines are |m| × |n| = 1 × 1 products. One of them normally repre-
sents the desired IF. The upper 1 × 1 represents upconversion, where the IF is
the sum of the RF and LO frequencies. The lower-right heavy curve represents
low-side downconversion, where the LO is below the RF. The lower-left heavy
curve represent high-side downconversion where the LO is above the RF and the
IF; here n = −1 in Eq. (7.2), causing spectral inversion. By this we mean that
increasing RF frequencies cause decreasing IF frequencies. Thus, if signal a has
a higher frequency than signal b at the RF port, a will have a lower frequency
than b at the IF port.

Crossovers, where spur curves cross these heavy curves, are listed in
Appendix X. The frequency ratios, labeled as RF/LO, there can be multiplied
by the LO frequency to give the RF at these crossovers. (We will sometimes
use R, L, and I to represent the three mixer ports and sometimes use RF, LO,
and IF.)

7.5.2 Example of a Band Conversion

Example 7.3 Let us represent a high-side downconversion from an RF band
extending from 4 to 4.5 MHz using this plot. (The LO frequency is still 5.5 MHz.)
The representation is shown in Fig. 7.8, where we have changed the RF range
on the spreadsheet and the display limits on the graph to concentrate around this
area. We have drawn a “rectangle,” extending from 4 to 4.5 MHz on the RF
axis, with corners on the 1 × −1 curve. This represents the minimum RF and
minimum IF band to accomplish the desired conversion, which can be seen to be
a conversion to an IF band from 1 to 1.5 MHz. This, of course, also corresponds
to Eq. (7.1). Now we see, by touching the lines that go through the conversion
region represented by the rectangle, that the spurs that will occur in band are,
from left to right at the top of the rectangle, numbers 40, 20, and 30. From
the legend (or the display by the cursor), these are (m × n =) 4 × −5, −2 × 3,
and −3 × 4 spurs. (However, the legend and cursor display do not indicate to
which of the two numbers the minus sign belongs. We have assigned it to the
number that results in IF > 0.) If the mixer should have the characteristics of the
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mixer represented by Fig. 7.4, and if the LO and RF levels should be as given
in the upper table there, the spur-to-signal ratios for these would be < −90 dB,
−69 dB, and −88 dB, respectively. Most of the nearby out-of-band spurs have
the same orders, which becomes apparent when they are selected (and viewed in
color). The closest new spur (i.e., not with the same m and n as an in-band spur)
is at RF equal to 4.75 when the IF is 1.5. This is 0.5 from the RF band center.
Since the RF bandwidth also equals 0.5, the RF filter shape factor at that point is

SF = BWspur/BWpass = (2 × 0.5)/0.5 = 2. (7.15)

Here BWspur is twice the separation of the spur from the filter center and BWpass

is the filter passband width. Whatever attenuation is required from the filter would
be required at that SF. However, this is curve 21, a 2 × 2 spur, which Fig. 7.4
shows to be 74 dB below the signal, lower than one of the in-band spurs, so we
will not improve the worst-case signal-to-spur ratio by reducing it.

7.5.3 Other Information on the Plot

The vertical dashed line in Fig. 7.7, where the RF equals the LO (equals 5.5), is
not a spur in the same sense as the others. It represents potential LO leakage out
the RF port and through the RF filter. This can be a significant problem in some
designs so the line provides a warning if it is in or near the conversion rectangle.
The horizontal line at IF = 5.5 is curve 12, representing leakage of the LO into
the IF, another strong signal to be avoided in or near the operating region. Its
level equals the LO power reduced by the LO-to-IF isolation. This gives an IF
power level (dBm), not a level relative to the signal (dB).

Example 7.4 Relative Level of LO Leakage For a mixer, LO-to-IF isolation
is 30 dB. Conversion loss is 8 dB. LO level is +7 dBm and signal level is
−20 dBm. The LO strength in the IF is

PLO-in-IF = +7 dBm − 30 dB = −23 dBm. (7.16)

The signal level there is

Psignal-in-IF = −20 dBm − 8 dB = −28 dBm. (7.17)

The relative level of the undesired product is

R = PLO-in-IF − Psignal-in-IF = −23 dBm + 28 dBm = 5 dB. (7.18)

So the LO provides a very strong undesired signal. Good designs usually make
this relatively easy to filter.
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If we were preparing a plot for general use, we would write the spur orders (m
and n) on the curves and normalize to an LO frequency of 1, which we can easily
do by selecting that value in this spreadsheet. Figure 7.9 shows a normalized
linear plot. It also illustrates a spreadsheet problem in the region below IF = 0.5
(for this particular plot). Because no point happens to be plotted where IF = 0 for
some curves, they become distorted at low values of IF; points either side of the
true minimum are connected without going through the minimum. As used here,
the plotted points were automatically distributed evenly between the minimum
and maximum specified values on the spreadsheet. The spacing is 0.2, so points
at multiples of 0.5 are missed. The problem will be reduced if smaller regions
of RF are plotted. The required points can also be entered into the spreadsheet
or more points can be used. The use of this graph is not restricted to fixed LOs.
We can represent an LO range on the normalized graph. We will treat this topic
in the next section.

7.6 SPUR PLOT, IF REFERENCE

From here we will use a spur plot for a fixed IF (rather than a fixed LO), possibly
normalized to the IF. Such plots are shown in Figs. 7.10 and 7.11, the latter being
a logarithmic plot. (These are 61-curve plots, but 116-curve plots are available
in the workbook that contains these plots.) The version of Eq. (7.2) that we plot
now is

fL = (fI − nfR)/m (7.19)

with fI fixed. The version normalized to fI is obtained by dividing by fI :

fL/fI = (1 − nfR/fI )/m, (7.20)

but that plot can also be obtained by setting fI = 1. Then the axes are understood
to be fL/fI and fR/fI . Note that the heavy curve with the negative slope (part
of curve 8) represents upconversion, fI = fR + fL. The rest of that curve, with
the positive slope at the lower right, represents low-side downconversion, fI =
fR − fL. Heavy curve 6, with the positive slope at the top, represents high-
side downconversion, fI = fL − fR . The ratios R/I , from Appendix X, can be
multiplied by the IF to find RFs at the crossovers.

Example 7.5 Conversion to a Single IF Suppose we wish to convert a band
from 4.8 to 5.6 GHz to a narrow band at 2 GHz. We will approximate the IF band-
width as zero. This problem fits well our fixed IF value. Figure 7.12 shows the
normalized plot for such a condition; RF (4.8–5.6 GHz) and LO (6.8–7.6 GHz)
frequencies are divided by IF = 2 GHz. Figure 7.13 shows essentially the same
plot with spurs and their levels, from the lower table in Fig. 7.4, labeled. Looking
at Fig. 7.4, we can see that spur levels do not fall off with increasing m as they
do with increasing n. For that reason, we are interested in higher LO multiples,
even though no spur-level information is available for m > 8. Fortunately, we
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find that no spurs with m > 5 appear in Fig. 7.13. Increasing both m and n to
10 does produce additional spurs, as is evident in Fig. 7.14 — apparently spurs
will not occur in this region if there is too much difference between the values
of m and n — but we know, from Fig. 7.4, that the higher levels of n tend to
produce weak spurs.

High-side downconversion (LO > RF > IF) is usually preferable to low-side
downconversion (RF > LO > IF). Let us look at the graph for the latter to see if
the reason might be apparent. Figure 7.15 shows the same RF-to-IF conversion
using a low LO. The spurs are generally larger, especially the very large 2 × 1
that appears in band. Moreover, if we look at m up to 10 with n still only as
high as 5, we get Fig. 7.16, so we can expect many higher-order spurs with
low values of n, and therefore at high levels. The advantages of high-side over
low-side downconversion are discussed further in Section 7.9.3.

If the IF varies, in a plot that is normalized to the IF, the conversion rectangle
will move diagonally because both axes are normalized to the IF.

Example 7.6 Conversion to an IF Range Figure 7.17 shows the same LO
range as in Fig. 7.13, but the 2-GHz IF has been changed into a range from 1.9
to 2.1 GHz. The conversion rectangles at the ends of this range are shown in
the figure, where they are interconnected to form a conversion “polygon” that
shows the path along which the rectangle moves as the IF changes. (These lines
meet at the origin since both coordinates are divided by an infinite IF at that
extreme.) The RF bands have been widened by ±0.1 GHz (to 4.7–5.7 GHz)
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Fig. 7.17 Finite IF band, linear plot.
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Fig. 7.18 Finite IF band, log plot.

also, to accommodate wider incoming signal bandwidths corresponding to the IF
bandwidth. In a log plot (Fig. 7.18), the rectangle maintains its size as it moves
with changing IF and the diagonal sides of the polygon are parallel.

While we found that the LO-referenced spreadsheet was particularly suited
for band conversions, in which the LO is fixed, they can also be represented in
a normalized IF-referenced plot.

Example 7.7 Band Converters Figure 7.19 shows what happens if we fix the
LO in the center of the range it had in Fig. 7.18, at 7.2 GHz. The two rectangles
have shrunk to single lines since the LO has only one value (the normalized
LO has many values but that is a result of the changing IFs). Now we are only
converting a 200-MHz band to the IF, however, whereas we had been able to
receive a 1-GHz-wide band. (The 1 × −1 curve extends from RF = 5.1, IF = 2.1,
at the bottom of the polygon, to RF = 5.3, IF = 1.9, at the top.) To again receive
the wider band with a fixed LO we must widen the IF (to 1.5–2.5 GHz). The
result of the wider IF is illustrated in Fig. 7.20. The 1 × −1 desired curve now
goes corner to corner, indicating that the entire IF band is being used.

Appendix B summarizes the various shapes used to represent passbands with
the IF-referenced spur plot and considers the representation of passbands and
rejection bands in greater depth.
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Sometimes the LO frequency is placed in the middle of the RF passband, con-
verting the center of the incoming spectrum to zero, or near zero, frequency (base-
band) (Mashhour et al., 2001). Such systems may be called direct-conversion,
homodyne, or zero-IF. Typically this is done in two parallel paths, the LO signals
at the two mixers being in quadrature to each other. In this case the mixer might
be considered a phase or amplitude detector, but we can still analyze the spurs.

Example 7.8 Zero IF Let us look at a 2.4-GHz ±22 MHz RF input that
is converted (detected) in this manner with a baseband that extends from near
zero to 22 MHz. We will use the spur levels from the bottom table in Fig. 7.4.
Figure 7.21 shows the spur plot at the maximum IF. If we look at lower IFs
(up and to the right on the graph) we find that the 1 × −1 and −1 × 1 desired
products and the spur curves come closer together, heading for zero separation
at zero IF. All of the in-band spurs are k × k, essentially the kth harmonic of the
IF. The nearest out-of-band spur, for m, n ≤ 10, is a 10 × 9 at a shape factor
of about 12 (not visible in Fig. 7.21). There is probably an 11 × 10 closer, but
these high-n spurs should be small.

In cases where the baseband extends to zero frequency, DC generated in the
mixer can be a problem. Imperfect balance can allow some of the detected signal
[the DC terms in the even-order responses (Section 4.2)] to appear at the output.
Detection can occur between the LO at the LO port and any of the LO signal
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Fig. 7.21 Conversion to baseband.
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that leaks into the RF port. That DC is not reduced by balance. It is the intended
output of a mixer acting as a phase detector or a coherent amplitude detector,
and its magnitude depends on the phase relationship between the signals at the
two ports. The problem is exacerbated if LO leakage is amplified before entering
the RF port as a result of leaking into the preceding RF cascade. Flicker noise,
whose power is inversely proportional to frequency, can also cause problems at
low baseband frequencies.

7.7 SHAPE FACTORS

The closer is the spur curve to the required passband, the more difficult it is
to attenuate the spur by filtering. We use the shape factor parameter to indicate
the degree of difficulty in rejecting a spur due to this fact. See Fig. 7.22a. The
shape factor is the ratio of the required rejection bandwidth to the required pass
bandwidth. The rejection bandwidth is twice the difference between the filter
center frequency and the frequency of the spur under consideration.

The degree of difficulty also depends on the required rejection level. Thus,
as the spur becomes stronger, we want a larger shape factor so the required
high value of rejection will be more easily obtained. Note, however, that a filter
that attenuates the RF by 1 dB attenuates the resulting mixer product by n dB.
Thus, for example, if a 1 × 3 spur is too large by 6 dB, the RF filter need
provide only 2 dB more attenuation. Here we are assuming that the filter pro-
vides attenuation at frequencies that produce the spur, but not at frequencies
where the desired signal occurs. On the other hand, a reduction of 6 dB in the
spur, relative to the signal, could also be obtained by a 3-dB attenuation of
the RF. In that case the spur falls 9 dB but, unlike the reduction caused by
filtering, the desired signal will also drop, by 3 dB, producing again a relative
improvement of 6 dB.

The shape factor does not, by itself, define the required filtering, but it is
one of two necessary parameters, the other being the required attenuation at that
shape factor. It can also be important to know whether the spur frequency is

Pass BW

R

Rejection

BW

Frequency

(a) (b)

Spur

∆I

∆R

IF
LO

RF

Fig. 7.22 Shape factor definitions.
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above or below the filter passband since many filters do not possess arithmetic
symmetry; this is most noticeable in filters having high percentage bandwidths.

7.7.1 Definitions

Both RF and IF shape factors are defined. The latter is important if, for example,
the detected power in the defined IF is being measured because spurious responses
that fall out of the IF passband might then be measured as signals. If the IF is
to be further converted, the IF filter may be the RF filter for the next conversion
or it might be supplanted in importance by such a filter. If the IF is to be further
analyzed, say by passing through multiple contiguous filters, an IF shape factor
may not be significant.

The shape factor (SF) is the separation from band center divided by half of
the bandwidth. For RF this is

SFR = (�R + BR/2)/(BR/2) (7.21)

= 2(�R/BR) + 1, (7.22)

and for IF it is

SFI = (�I + BI/2)/(BI /2) = 2(�I/BI ) + 1, (7.23)

where �R and �I are shown in Fig. 7.22b, and BR and BI are the RF and IF
bandwidths. Note that �R and �I are negative for in-band spurs, allowing shape
factors as small as zero for spurs that go through band center, in our treatment.

The point from which we measure �R (at an extreme of the IF) implies that
we are concerned only with frequencies that are converted into the designated IF
passband; there the attenuation is provided only by the RF filter. Similarly, the
point from which we measure �I (at an extreme of the RF) implies that only
frequencies converted from the designated RF passband, for which attenuation
is only due to the IF filter, are of interest. This need not be true always. For
example, it is conceivable that a spur that is slightly out of the IF passband
might receive less attenuation from the combined RF and IF filters than one
that is within the IF passband. (See Appendix B, Section B.2.) Nevertheless, the
computed shape factors are of great value in initial design and probably are close
to the requirements obtained from final design calculations in most cases.

The attenuation obtained at a given shape factor from a given filter often
depends upon whether the rejection frequency is above or below the passband
(see Section B.3).

7.7.2 RF Filter Requirements

Example 7.9 Filter Requirements Table Figure 7.23 shows a table contain-
ing data from the spur plot in Fig. 7.24. The third column gives the spur amplitude
relative to the signal amplitude. The fourth column gives the shape factor, to
which a sign has been appended to indicate whether the spur is below or above the
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Spurs are shown up to m = 10 by n = 5, where ± m × LO ± n × RF = IF.
  Shape Factors (SF) less than 15.00 are shown.
     Mixer File is "High Level"
     LO Level: 13 dBm. RF Level: −5 dBm.
     IF Levels below −100 dBc excluded.

Rectangle dimensions, spur levels, filter shape factors follow.
∗is input change from given RF Level to give output at
                          −75 dB  relative to given RF Level.
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Plot unknowns with * at: −80
For knowns, plot * off graph at: −100
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Fig. 7.23 Table showing spur levels, RF shape factors, and required changes in input
levels.

center of the RF passband. Even in-band spurs are given shape factors here. The
shape factors can be obtained from measurements on a plot or, for greater accu-
racy, by solving Eq. (7.2) along the appropriate line. For example, in Fig. 7.13,
if we wanted the shape factor for the 2 × −2 spur, we would set fL/fI to 3.4,
its value at the bottom of the rectangle, with m = 2 and n = −2, in a normalized
version (we could also use true frequencies) of Eq. (7.2), and obtain

1 = nfR/fI + mfL/fI = −2fR/fI + 2(3.4), (7.24)

fR/fI = 2.9. (7.25)

Knowing that the filter is centered at fR/fI = 2.6 and has a normalized width
of 0.4, we compute the RF shape factor, using Eq. (7.21), as

SFR = (2.9 − 2.6)/(0.4/2) = 1.5. (7.26)
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Fig. 7.24 Spur plot for Fig. 7.23.

The ∗ column in Fig. 7.23 contains the change in input level that would cause
the spur to go to the specified level (−75 dB) relative to the given “RF Level”
(−5 dBm at the input). For the case shown, that allowed spur level is (−5 dBm
−75 dB =) − 80 dBm. Looking at this in a little more detail, the third column
tells the relative amplitude of spurs caused by an input at the specified RF level.
The ∗ column shows what increase or decrease in the specified RF level would
be necessary to adjust a spur to its required level (−80 dBm in this case). This is
n times the required change in the spur, which implies that the reference level is
not changing (otherwise the ratio would be n − 1). For example, the first row in
the spur list shows that the −2 × 3 spur is at −69 dBc, 6 dB above the specified
level. The ∗ column in that row indicates that 2 dB of attenuation is required at
RF. That would produce the required 6 dB reduction, since |n| = 3.

The RF Level is set equal to the maximum level of the desired signal. Filtering
does not change that level because the desired signal is within the passband, but
filtering must change the level of the undesired signal that produces the spur if
it is excessive. If the maximum level of the interferer should be the same as that
of the desired signal, any attenuation indicated in the ∗ column would have to
be provided by filtering. If the level of the interferer should be greater than the
RF Level, an additional attenuation equal to that excess would also be required
and visa versa for weaker interferers.
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Fig. 7.25 Points giving required filter shape.

If there is significant ripple in the passband of the filter, we can use the
minimum loss in obtaining the signal strength. Then required attenuation will be
relative to that loss.

Example 7.10 Plotting the Filter Requirement The ∗ levels from Fig. 7.23
have been plotted in Fig. 7.25. Unknown levels have been placed at the bottom of
the graph, as has the desired signal, which was identified by 0-dBc level and zero
shape factor (meaning it has gone through the center of the RF band). Asterisks
have been placed on these symbols to indicate that their levels do not have the
same meaning as the others. Perhaps we will want to measure the amplitude
of these spurs, whose levels are unknown. The filter response curve should be
below all of the other points. Thus an attenuation of 14 dB is required at a shape
factor of 2.33, and an attenuation of 75 dB is necessary to attenuate the image
frequency at a shape factor of 12.55, both on the high side. The low side requires
only 2 dB at a shape factor of −6.56.

The spur designated as 0 × 0 is also shown at the bottom of Fig. 7.25. It is
the LO-to-RF leakage. We must take into account the allowed “reradiation” and
the mixer and RF amplifier isolations to determine how much reduction the filter
must provide this signal at a shape factor of 5.67.

Figures 7.24 and 7.13 both represent converters with zero IF bandwidths. In
general, the RF filter computations must be made at the extremes of the IF band
(e.g., for rectangles 2 and 3 in Fig. 7.18), unless the spur plot shows that one end
dominates. It is conceivable that an in-band spur could cross through a conversion
polygon and be out of band at both IF extremes, but such cases seem unlikely
in practice and would be revealed by the spur plot or by a difference in sign of
the shape factor at the two ends.

7.7.3 IF Filter Requirements

If the IF is to be detected, that is, if its power is to be measured or if modulation
is to be extracted from it, all spurious signals should be below some threshold.
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Then the total of IF and RF filtering must be adequate to reduce all spurs to that
allowed level everywhere, and required IF shape factors can be computed in the
same manner as were the RF shape factors.

Example 7.11 IF Filter Figure 7.26 shows a list of IF shape factors for the
design illustrated in Fig. 7.17. The required attenuation is determined by com-
parison of the dBc column to the allowed spur level. In this example, the 3 × −3
spur exceeds the allowed −85-dBc level by 9 dB so this much attenuation is
required at the indicated shape factor of 13. The value is shown in the right
column, which differs from the ∗ column in Fig. 7.23 in that the level differ-
ence is here not divided by n since the attenuation comes after the nonlinear
process. As before, the RF level represents the desired signal, and, presumably,
the largest in-band RF signal, which is the signal producing the spurs. Shape
factors are measured along lines corresponding to changes in IF with the RF
and LO fixed. These extend from the corners of the rectangles toward (0,0) in

Spurs are shown up to m = 5 by n = 5, where ± m × LO ± n × RF = IF.
IF Shape Factors (SF) less than 30 are shown.
     Mixer File is "Figure 7.4"
     LO Level: 10 dBm. RF Level: −20 dBm.
Rectangle dimensions, spur levels, filter shape factors follow.

                          

# 2
(x  :  2.473 − 3)          RF:  4.699 − 5.699
(y  : 4 − 3.578)            LO:  6.799 − 7.6

IF:  1.9

# 3
(x  :  2.238 − 2.714)    RF:  4.699 − 5.699
(y  : 3.619 − 3.238)     LO:  6.799 − 7.6

IF Shape Factors for Connected Pairs

For rectangle pair 3,2:

IF:  2.1
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−1

1
2
2
3
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4
4

m

5
4
5
3
4
2

−1
−3
−2
−4
−3
−5
−4

n

?
−127
−123

−95
−125

−86
0

−95
−87

−127
−76

?
−127

dBc

−7.00
0.00
0.00
0.00

16.00
0.00
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−9.00
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0.00

13.00
0.00

24.00

SF

--
42
38
10
40

1
--

10
2

42
−9
--

42

Allowed
Gain (dB)

"Allowed Gain" is minus required IF Filter attenuation.

                                       −85 dB  relative to given RF Level.

Fig. 7.26 IF shape factor data for Fig. 7.17.
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linear plots and are along lines parallel to the diagonal edges of the polygons
in log plots.

If the IF is to be further processed in a manner that provides additional fil-
tering, that requirement may be relieved or replaced by requirements peculiar to
the process.

In addition to their role in preventing adverse effects from spurs, another
requirement usually accommodated by an IF filter is selectivity. Selectivity is the
ability of a receiver to prevent interference from adjacent signals. A selectivity
specification may just give the attenuation required of a signal separated from
the signal to which the receiver is tuned by a given frequency. It can be applied
directly to the IF filter.

7.8 DOUBLE CONVERSION

What is the design process when multiple conversions are employed? There can
be various combinations of fixed and tunable conversions. We will probably
design each conversion separately, ensuring that reasonable RF and IF filters can
be used successfully. Eventually, optimizing the design will cause us to consider
the interaction between the specifications of the stages.

Let us consider double conversions. That should also provide a guide for even
greater numbers of serial conversions.

A simple and conservative approach in designing the first converter stage is
to provide filters that cause all spurs to be below the ultimately required level.
Then, even if they are converted linearly in the second stage, they will not be
a problem. A more optimum approach is to allow the parameters of the first-IF
filter to be determined by design of the second converter stage, where it becomes
effectively the RF filter.

The RF filter requirements for the second stage can be determined to meet
spur requirements in the same manner as for the first stage. Once determined, the
required second-stage RF filter attenuation at a given frequency can be reduced
by subtracting the minimum loss for the same signal in the first-stage RF filter
since the two are added to determine the strength of received signals as seen at
the input to the second mixer. The minimum loss is determined at a given IF by
considering the attenuations that occur as the LO is tuned (Fig. 7.27).

This relief applies to signals but not to spurs in the first IF since they do not
pass through the first-stage RF filter. However, the spurs are weaker than the
converted signal, so they do not need as much attenuation. If we allow relief
that exceeds the relative level of the signal to the spur at the output of the first
mixer, there is a possibility that a spur from the first conversion might cause an
excessively large spur in the second conversion.

For example, if 50 dB of attenuation is required for the second-stage RF
filtering at some frequency and the signal at that frequency will receive at least
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RF response,
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Required response
2nd RF Filter

Relieved response

First-IF frequency

RF response,
high LO

Fig. 7.27 Second RF (first IF) filter requirement relieved by contribution of first RF filter.

30 dB attenuation from the first RF filter, only 20 dB is required from the second-
stage RF filter (which is also the first-stage IF filter). That puts the signal at
−50 dB at the input to the second mixer. However, a −25-dB spur at the output
of the first mixer is stronger than the input signal attenuated by 30 dB, and
reducing it by the relieved attenuation of 20 dB would still leave it at −45 dB,
5 dB higher than allowed. The problem occurs because the relief, 30 dB, exceeds
the signal-to-spur ratio, 25 dB.

7.9 OPERATING REGIONS

Here we consider the properties of the various regions of the spur plot that affect
their usefulness as operating regions.

7.9.1 Advantageous Regions

Figure 7.28 is a log plot showing some spurs that are particularly important. LO
reradiation (fLO = fRF) is also shown. RF passbands that include this line allow
the strong LO signal to pass through the RF filter after reduction by the LO-to-RF
isolation. This can be a problem; “reradiation” refers to the possibility that the
LO might radiate from a receiver’s antenna.

The 0 × 1 RF feedthrough is also shown. Along this line, the RF could leak
to the IF without conversion, attenuated by the RF-to-IF isolation. This is often
called the IF response since it appears when an RF input occurs at the IF fre-
quency. It is often required to be as small as the image (the undesired ±1 × ±1),
which response may be specified separately.
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Fig. 7.28 Spurs of primary concern.

The horizontal lines represent harmonics of the LO, occurring where the LO
frequency is a fraction of the IF. These are “internal spurs,” meaning that they
occur even in the absence of an input signal. They are relatively large and do
not decrease with weaker input levels. In fact their relative levels get worse with
weaker signals.

The other curves are m × ±1 spurs. These are of particular concern because
they can be strong, as can be seen from Fig. 7.4, and their relative strength cannot
be decreased by decreasing the RF level. Included are the three sections of the
|m| × |n| = 1 × 1 curve, one of which will be used to give the desired response.
The ±2 × 1 curves have the same shape but are shifted downward so they come
to LO/IF = 1

2 , rather than to 1, as RF/IF ⇒ 0. The same pattern can be seen
for the other ±m × 1 curves. They have three segments with the same form as
the desired 1 × 1, but they are at lower levels of LO/IF, approaching 1/m as
RF/IF ⇒ 0. They will fill the shaded area as m increases (reaching the lower
right corner at m = 90).

While small regions that are free of large spurs can be found along the ±1 ×
±1 curves throughout the plot, we tend to pick regions that appear clear in
Fig. 7.28 to minimize interference by large spurs, especially for wide bands.
We will now consider three regions that are identified in Fig. 7.29. We can
use Fig. 7.30, which has spurs up to n = 3, to see some other spurs in these
regions.
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Fig. 7.29 Advantageous regions for conversion. Ellipses are meant to focus attention on
certain areas of the plot rather than to define boundaries.

7.9.1.1 Region 1: fLO > fRF, fIF This is where the IF and RF are relatively
close and the LO frequency is their sum. It is along the 1 × −1 curve and is
relatively clear of spurs excepting possibly the lower harmonics of the RF (e.g.,
the second at RF/IF = 0.5, visible in Fig. 7.30) and the −1 × 3. LO reradiation
(fLO = fRF) and the IF response (vertical line at RF/IF = 1) can be problems
in this region. The latter can sometimes force the use of two serial conversions
(double conversion), neither of which is in Region 1, to translate a frequency
band by a relatively small amount.

7.9.1.2 Region 2: fLO, fRF � fIF This region in the upper-right corner is the
region for significant downconversion, commonly in a receiver. It includes both
the 1 × −1 and the −1 × 1 desired conversion curves and is clear for narrow
bandwidths. The primary problems are the image and LO reradiation (fLO = fRF).
Where spurs must be very low, ±2 × ±2 spurs (see below) can be a significant
problem, discouraging large ratios between the RF and IF frequencies.

7.9.1.3 Region 3: fLO ≈ fIF > fRF This is the region of significant upconver-
sion, commonly in an exciter or possibly a spectrum analyzer (McClaning and
Vito, 2000, p. 715). It includes both the 1 × 1 and 1 × −1 desired conversions.
Here the main problems are LO feedthrough (fLO = fIF), ±1 × ±2 spurs, and
possibly harmonics of the RF (fRF/fIF = 1/n).
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Fig. 7.30 Plot as in Fig. 7.29 but with maximum |n| increased to 3.

7.9.2 Limitation on Downconversion, Two-by-Twos

In this section, we see that the relative IF bandwidth (percent bandwidth) in
Region 2 is limited by the 2 × 2 spur and that the limitation is more severe for
wider RF bandwidths or tuning ranges. This can prevent the desired downcon-
version from being accomplished in a single conversion.

We can see from Fig. 7.30 how the ±2 × ±2 response parallels the desired
±1 × ±1 response in Region 2 (this region is also shown expanded in Fig. 7.21).
It is apparent that the ±2 × ±2 curves can be the limitation here. These spurs
occur in the IF at the second harmonic of the IF frequency:

fIF2×2 = ±2fRF ± 2fLO = 2(±fRF ± fLO) = 2fIF1×1. (7.27)

They can occur whenever the IF band is an octave wide but, more generally,
whenever a signal can be converted to half of an IF frequency. That is, if the
RF filter rejects any signal that would not be converted into the IF passband, the
problem occurs when the IF bandwidth reaches one octave. However, if the RF
filter is wider such that it allows signals to be converted to frequencies below the
IF band, even though those converted signals are rejected by the IF filter their
second harmonics may pass through it.

Example 7.12 Limitation Due to 2 × 2 Spurs Figure 7.31 shows the spur
plot for a one-octave IF (5–10 MHz) with a fixed LO (85 MHz) and a 1 × −1
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Fig. 7.31 2 × 2 spur (curve is marked with dashes for emphasis).

conversion (fIF = fLO − fRF). The signal at the low end of the RF band
(75 MHz) is converted to the high end of the IF band (10 MHz, at 1) by the
desired process. The spur is converted to the same frequency when its RF is at
the high end of the band (80 MHz, at 1):

2 × 85 MHz − 2 × 80 MHz = 10 MHz. (7.28)

When the RF increases to the top of the band, at 80 MHz, the resulting IF is
5 MHz, one octave lower (at 2). If the IF were not an octave wide, the RF
bandwidth could have been smaller and the RF band would not have enclosed
both the 1 × −1 and the 2 × −2 at 1.

Even if the RF signal that would cause this spur is outside the RF bandwidth, it
is worth considering the shape factor that is imposed on the RF filter by this spur.
Figure 7.32 shows the converted RF band (i.e., plotted against the corresponding
IF frequencies) and the IF band. The highest frequency of the IF is fI,max, and
the highest IF signal whose second harmonic can be in the IF band is half this
frequency. The shape factor for rejecting it will be minimum when the converted
RF band is lowest in IF frequency. This minimum converted RF will be BR

below fI,max; to tune lower would be to eliminate part of the IF band from use.
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fRc, min fRc, max

fI, maxfI, max/2

fIc

SF × BR /2 ∆ fR

BR

BI

BR

Converted RF
band at tuning

extremes

IF Band
Highest

fundamental
frequency with
2 × 2 in IF band

Fig. 7.32 Geometry for calculating 2 × 2 filtering requirement. (fIc and fRc are center
frequencies.)

From this geometry, if we measure frequency changes from the upper edge of
the IF band, we can write

SF × BR/2 + BR/2 = fI,max − fI,max/2 = fI,max/2, (7.29)

SF = fI,max

BR

− 1. (7.30)

We can write this in terms of the IF center frequency fIc and bandwidth BI as

SF = fIc + BI/2

BR

− 1 = fIc/BI + 0.5

BR/BI

− 1. (7.31)

Since the tuning range is �fR = BR − BI , this can also be written as

SF = fIc/BI + 0.5

1 + �fR/BI

− 1. (7.32)

If the tuning range is zero (band conversion), this is

SF = fIc/BI − 0.5. (7.33)

The results are represented in Fig. 7.33a, where we can see that higher shape
factors, required for ease of filtering, result in smaller percentage IF bandwidths,
especially when the RF bandwidth is large compared to the IF bandwidth. The
latter situation corresponds to relatively wide tuning ranges. The same data is
shown in a different form in Fig. 7.33b.
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Fig. 7.33 RF shape factor required to reject 2 × 2.

7.9.3 Higher Values of m

We have seen that spur levels do not drop rapidly with increasing LO multiples
(|m| values), as they typically do with increasing RF multiples (|n| values), and
there will always be a limit to the number of spur curves we will draw. It
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is therefore important to know whether or not we might be impacted by LO
multiples that are higher than we have explicitly considered. To this end, we
will consider where spur curves appear as |m| increases, restricting our study
to the lower values of |n|, where large spur levels are more likely. (Review
Fig. 7.4 to see the reason for these choices.) We have already identified a region
that is covered as |m| increases, with |n| = 1, by the shaded area in Fig. 7.29,
but here we will look at these curves more explicitly, and at those with higher
|n| values.

Figure 7.34 shows curves with |n| ≤ 3 and |m| = 10, except where those
curves are off the plot, in which case the curve with the highest |m| that occurs
on the plot is shown. For any value of |m| (e.g., 10), there are 3 curves for each
|n|, corresponding to the various perturbations of signs of m and n. In addition
to these, sections of curves for the two next lower values of m are also shown to
enable us to see the separation and to estimate how curves with higher values of
m would be spread out. In the lower left corner, entire curves with the highest
three values of m are shown, since they are too short to justify showing only
segments — the main reason for showing just segments of some curves is to
reduce the clutter of the plot.

We can see that, as the values of |m| increase, the curves move lower on the
plot, tending to fill in the region at the bottom near RF/IF = 1. While this is
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Fig. 7.34 Spurs at high values of |m|. Curves are shown for 0 < |n| ≤ 3. Segments are
shown for two lower values of |m| to indicate spacing.
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an alternative to Region 1 for producing relatively small changes in frequency,
it has not been recommended in spite of some problems that we have described
for Region 1. (Here the LO frequency is the difference between the LO and RF
frequencies rather than being their sum as in Region 1.)

7.10 EXAMPLES

Here are some examples of use of the spur plots.

Example 7.13 AM Radio We use the following specification for this example:

Frequency range: 535–1605 kHz
IF: 455 kHz
IF bandwidth: ±5 kHz
Image rejection: 60 dB

Here we use again the mixer spur level table of Fig. 7.4 but with the signal
level set at −40 dBm. In typical AM radios, the mixer will usually be much less
elaborate, possibly being part of a converter stage, one that combines oscillator
and mixer.

First we try a fixed RF filter covering the whole RF band (Fig. 7.35). However,
we find that the image, the −1 × 1 curve, which must be attenuated 60 dB, is in-
band. At the LO frequencies where this occurs, we could simultaneously receive
two different stations with equal ease. The LO reradiation (0 × 0) might also
be a problem as well as the IF response (0 × 1). Reradiation can be attenuated
by isolation from RF amplifiers. To reduce the 0 × 1 IF response with the filter
shown would require an impractical shape factor of 1.14.

For these reasons, we go to the traditional AM receiver design with a tuned
RF filter (Fig. 7.36), choosing a 20% bandwidth (so we need not tune very
accurately). Now the −1 × 1 image can be filtered with a shape factor of 5.6
and the 0 × 0 LO reradiation with a shape factor of 2.8. The 0 × 1 IF response
might still be a problem, requiring a shape factor of only 1.4 (or a separate filter)
to reduce signals received at the IF frequency (from mobile marine radios) when
the receiver is tuned to its lowest frequencies.

With an FM radio, we do not have the 0 × 1 IF response problem because the
10.7 MHz IF is far removed from the 88- to 108-MHz RF band. However, the
image would again force us to tune the RF filter.

Example 7.14 Switched Preselector Another possible (if unusual) solution
for the AM radio is to use a switched preselector, choosing different fixed RF
filters for different parts of the RF band. Figure 7.37 shows such a realization.
Because the channels are well defined, no overlap is shown, but, in practice, there
would be overlap at the maximum allowed bandwidths due to finite tolerances.
Now the 0 × 1 IF response can be filtered with a minimum shape factor of
1.75, and the minimum shape factor to attenuate the image is 3.18, the same for
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Fig. 7.35 AM broadcast band with fixed RF filter. The two rectangles represent the
extremes of the IF band.

both upper bands. We have chosen not to attenuate the 0 × 0 LO reradiation by
filtering — otherwise more and smaller preselector bands would be used.

Example 7.15 Multiband Downconverter A multiband downconverter is a
special case of the switched preselector converter in which the LO has only one
frequency per band. In the example shown in Fig. 7.38 we are downconverting
10–13 GHz to 3–4 GHz in 1-GHz-wide bands, using a high-side LO at three
fixed frequencies (14, 15, and 16 GHz). The unnormalized and normalized fre-
quencies are shown in Table 7.2. We are using the mixer table of Fig. 7.4 again
but with the signal level set to −12 dBm. We have an in-band spur at −73 dB
and must reduce the 3 × 3 response at least 19 dB to keep it lower than that
in-band spur (not to imply that this is how spurious requirements are ordinarily
set). This will require a little more than (19 dB/3 ≈) 6-dB attenuation by the RF
filter at a shape factor of 4.33 for each filter, a relatively easy requirement. Some
band overlap would be needed in practice to permit signals with finite widths to
be received at the band breaks, if for no other reason (e.g., frequency drift).

Example 7.16 Design Aid for Switched Preselectors Figure 7.39 shows a
spreadsheet aid for use in the design of converters with switched preselectors.
As an example, the first four segments have been used to plan a multiband
downconverter (Fig. 7.40) in which the frequency range of a 30- to 165-MHz
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Fig. 7.36 AM broadcast band with 20% bandwidth RF filter. Bottom of polygon is
expanded at (b). Parallelogram 1–2 represents a 106-MHz-wide RF band at the low end
of the RF range and a fixed LO frequency of 990 MHz with a 10-MHz-wide IF band. It
is similar to Fig. 7.19. This progresses toward 3 as the LO and the RF filters are tuned
to the high end of the band.
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Fig. 7.38 Switched downconverter.
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TABLE 7.2 Values for Fig. 7.38

RF LO IF

min max max min
10 11 14 4 3
11 12 15 4 3
12 13 16 4 3

Rectangle Normalized Values at max IF = 4
1 2.50 2.75 3.50
3 2.75 3.00 3.75
5 3.00 3.25 4.00

Rectangle Normalized Values at min IF = 3
2 3.33 3.67 4.67
4 3.67 4.00 5.00
6 4.00 4.33 5.33

A B C D E F G H I J K L M N O P

1 12 9 2000 @ 13 40 15

2 BA C D E F G H I J K L M N O

3 ER1 more goal SF: 2.80 1.90 1.70 1.50 1.50 1.90

4 ER2 m→ 2 5 7

5 ER'R Seg. IF1 RF1 LO1 n→ −1 3 3 LO BW

6 # # IF2 RF2 LO2 R/IF2 L/IF2 R/IF1 L/IF1 Image IF Spur1 Spur2 Spur3 Rerad CF = Fo

7 Title: 

8 ER2 1 151.67 500 348.33 10.27 7.157 3.297 2.297 103

9 ER2 48.67 397 348.33 8.157 7.157 2.618 2.297 448.5

10 ER2 2 120.33 397 276.67 10.36 7.218 3.299 2.299 82

11 ER2 38.33 315 276.67 8.218 7.218 2.618 2.299 356

12 ER2 3 95 315 220 10.5 7.333 3.316 2.316 65

13 ER2 30 250 220 8.333 7.333 2.632 2.316 282.5

14 ER2 4 40 250 290 2 2.32 6.25 7.25 85

15 ER2 125 165 290 1.32 2.32 4.125 7.25
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29 LO→ max: 348 min: 220 1.58 :1 ratio BW: min: 65.00 max: 103.00 1.585 :1 ratio
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safety factors

minimum safety factor for each spur→

⇐ used to disable unused rows. Otherwise minimums safety factors will not be correct.

Information about:

normalized coordinates

  DESIGN EXAMPLE (extend 30-165 to 500) Shape Factors (SF) over

B

Fig. 7.39 Part of spreadsheet used as aid in developing converters with switched
preselectors.

(or kHz or GHz) device is extended to 30–500 MHz (or kHz or GHz). The user
manipulates RF2 and LO1 to find an optimum division of bands. Other variables
that can be derived from these, such as the LO2, the IFs, and RF1 for the next
band, are computed automatically. Overlap is not included but could be built
into the equations. Shape factors for certain spurs, including those with m and
n values that the user has predetermined to be important (e.g., by looking at the
spur graph), are automatically computed. Shape factor goals, something attainable
with the required attenuation and the technology to be used, have been entered
and the safety factors of the computed shape factors relative to those goals are
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30-165
MHz

device

30-500
MHz

device

Fig. 7.40 Multiband design example.

also computed and displayed. Summary information for the design is displayed
at the bottom. More information, which is not shown in this figure, is presented
to the right. This spreadsheet can be used or modified for other designs. ER2,
shown in column 1, is just a warning that refers to a note concerning the proper
interpretation of certain negative numbers that appear on that line. ER1 would
be displayed if the IFs, RFs, and LOs in a segment did not relate in a correct
manner. The user modifies cells D9, D11, and so forth to change band breaks
and changes cells E8, E10, and so forth to change LO frequencies and resulting
IFs, observing cells J28–O28 for filter safety factors. Sometimes such tools are
worth using for optimization; sometimes they are overkill.

7.11 NOTE ON SPUR PLOTS USED IN THIS CHAPTER

Spur plots were used long before the advent of computer-aided engineering. A
careful plot of the normalized spur equation, either Eq. (7.14) or (7.20), could
be copied and used for many projects by many engineers. Today the task can be
aided by the use of a spreadsheet, as in Figs. 7.7–7.12.

Starting with Fig. 7.13, the spur plots were generated using specialized soft-
ware, which allowed the displayed region and the maximum values of m and n

to be easily chosen, curves for spurs below a specified level to be deleted, spur
information to be printed on the display, and polygons representing the passbands
to be displayed. This allowed more efficient use of space in this book and aided
in the explanation of the concepts, its main purpose.

The specialized software would also be helpful for design but, at the time
of this printing, it is not generally available. However, some of its features are
incorporated in available software, for example the “Mixer Spur Chart Calculator”
(Roetter and Belliveau, 1997) and Spur Finder (Wood, 2001a).

7.12 SUMMARY

• Heterodyning, or frequency mixing, is used in most radio receivers and
many frequency synthesizers and transmitter exciters.
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• The desired IF is the sum or difference between the RF and a stronger
LO frequency.

• Spurious products are also created in mixing.
• A spur-level table describes the levels of spurious products for a particular

mixer.
• An m × n spur occurs at a frequency fIF = mfLO + nfRF.
• The ratio of spur amplitude to the desired (±1 × ±1) IF amplitude decreases

(n − 1) dB for each dB reduction in the RF signal (with fixed LO power).
• A study of doubly balanced mixers has found that this ratio tends to remain

unchanged when the LO power changes proportionally to the signal power
(equal changes in dB).

• Two-signal IM levels depend on the same nonlinearities that produce spurs.
• IMs are produced effectively at the mixer input with amplitudes related to

the 1 × n spurs as if those spurs were nth harmonics.
• Plots of spurious responses can be drawn for constant LO frequency or for

constant IF frequency and can be normalized to either.
• Advantageous regions for conversion can be identified from spur plots.
• Rectangles and polygons can be drawn on the spur plots to represent conver-

sion regions. The spur curves pass through them where in-band spurs occur.
• On a spur plot that is normalized to the IF, a rectangle represents a given

LO range and RF band. As the IF changes, the rectangle moves diagonally,
producing polygons that represent also the IF range.

• Shape factors required to filter spurs can also be found from these plots.

ENDNOTES

1Bullock (1995), Rohde and Bucher (1988), and Tsui (1985).
2Henderson (1989, 1993a, 1993b, 1993c), Cheadle (1993), Maas (1993), and Egan (1998, pp. 36–43,
64–66).
3A harmonic of the LO is sometimes used to generate the IF (fIF = mfLO ± fIF), particularly at
very high frequencies. We will not treat this case here but there would be many similarities.
4In some other cases, the frequency conversion occurs in the feedback path of a phase-locked loop
(Egan, 2000, pp. 344–348). Considerations are similar to those described here but can be complicated
by sampling effects (Egan, 2000, pp. 87–94).
5See also Egan (2000, pp. 8–10).
6Henderson (1993a) does develop equations for spur levels in doubly balanced mixers as functions
of various balance parameters (see also Roetter and Belliveau, 1997). While these show dependence
on LO power as well as RF power, Henderson indicates that the latter dependence is more reliable
in practice.
7We use data for a Class 1 mixer at −10 dBm in Fig. 7.4 because there are more measured levels
for this mixer. The fact that these levels may not be as accurate for predicting spur levels as we
would like in some actual mixer does not detract from its usefulness in explaining the theory. If we
desire, we can assume that Fig. 7.4 represents a mixer that does perform in accordance with theory
over the range of signal powers at which we use it, or we can just recognize the errors possible in
the approximation.



CHAPTER 8

CONTAMINATING SIGNALS IN SEVERE
NONLINEARITIES

It is debatable whether a source of undesired, or contaminating, power should
be called a signal, but that is what we are referring to here, for lack of a better
term. A contaminating signal in a linear module or cascade can be treated in
the manner we have studied, like a desired signal. There are times, however,
when an undesired signal is sent through a severe nonlinearity, and we must
understand what happens at the output of that nonlinearity. When we use a
nonlinear module, it is usually characterized so we can tell how it responds to a
single driving signal, but how does it respond to an accompanying contaminating
signal?

There are three characteristics, which commonly apply to such a process,
that give us a handle on the analysis. First, there is a desired signal driving
the nonlinearity; otherwise we would just shut down the path to isolate the
contaminant. Second, the nonlinearity is severe so it generally limits the output
amplitude of the desired signal. Third, the contaminant is much smaller than the
desired signal.

In looking for an alternative to a complicated nonlinear analysis, we take
advantage of these relationships to find an easier way to analyze the effect of a
contaminant that accompanies a large signal as they both pass through a device
that provides amplitude limiting. Our process (Egan, 1981) will be to character-
ize the contaminant in the presence of the desired signal as a single sideband
on that signal and to decompose that sideband into an equivalent combination
of sidebands that represent AM and that represent FM (or phase modulation,
PM — they are basically the same). We do this because we can often determine
the responses to the AM and FM separately.
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8.1 DECOMPOSITION

Figure 8.1 shows the sum of a strong and a weak sinusoid in three representa-
tions.1 The waveforms are shown as a function of time at (a), in a Fourier
frequency domain representation (Bracewell, 1965, pp. 79–80) at (b), and in a
phasor representation at (c). The right part of the representations at (b) and (c) are
straightforward equivalents to the signals at (a). They are also, however, entirely
equivalent to the representations to their left, where certain components add and
others cancel. The advantage of the representations on the left is that they give
us another way to look at the two signals. They represent a sum of AM and FM
on a carrier, the latter being the strong signal.

The nature of the representations on the left can be verified by referring to
the representations of AM and FM shown in Figs. 8.2 and 8.3, respectively.
Consequently, we can represent a small contaminating signal plus a strong desired
signal as simultaneous AM and FM of the strong signal.

Each member of each pair, whether AM or FM, is half (−6 dB) the amplitude
of the original small signal and is offset in frequency from the large signal by the

1
fC

+

=−fC fC fC

f

fC

AM
sideband

FM
sideband

SSB

=

AM sideband

FM sideband

Carrier Carrier
SSB

(a)

(b)

(c)

t

Fig. 8.1 Decomposition of SSB into AM and FM: (a) time, (b) Fourier, and (c) phasor
representations. (From Egan, 2000.)
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1
fC

1
fm

m

m

t

1=A

−fC fC
fC + fm

1/2

m/4

f

(b)

(a)

1

(c)

m/2

Fig. 8.2 AM: (a) time, (b) Fourier, and (c) phasor representations. (From Egan, 2000.)

separation between the original signals, which is fm, the modulation frequency
of the AM and the FM. The amplitudes of these sidebands relative to the strong
signal (their carrier) equal m/2, where m is the modulation index. For FM or
PM, this is the peak phase deviation (in radians):

m = �f

fm

, (8.1)

where �f is the peak frequency deviation and fm is the modulation frequency
(both in the same units). For AM, it is

m = �a

a
, (8.2)

where a is the average amplitude of the sinusoid and �a is the peak change in
amplitude. Therefore, a small contaminant that has amplitude relative to the large
signal of

m = aweak

astrong
(8.3)
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1/fm

t

(a)

1/2

m/4

−fC fC

fC + fm

f

(b)

(c)

1 m/2

Fig. 8.3 Narrow-band FM (exaggerated for illustration): (a) time, (b) Fourier, and
(c) phasor representations. (From Egan, 2000.)

is equivalent to a pair of sidebands representing AM with a modulation index of
m plus a pair representing FM, also with a modulation index of m. The phases
are such that two of the sidebands from each pair add to produce the original
small signal, and the other two cancel each other.

This representation is only valid for a contaminant that is much weaker than
the strong signal because Eq. (8.1) is only valid for small m. FM sidebands
occur at all offsets from the carrier that are multiples of fm, and we are able
to use this representation only because, for small enough m, the other sidebands
can be neglected. The carrier has amplitude AJ0(m) ≈ A, and the first sideband
at ±fm has amplitude AJ1(m) ≈ m/2. For example, for m = 0.1, the error in
approximation for the carrier amplitude is only 0.25% and it is 0.12% for the
first sideband while the second (unrepresented) sideband has an amplitude that
is only about 2.4% of the represented sideband.

Parts (b) of Figs. 8.1, 8.2, and 8.3 represent amplitude modulation by a cosine
and frequency modulation by a negative cosine (or phase modulation by a nega-
tive sine) of a cosine carrier and also show the equivalence of that to the addition
of a small cosine. When the absolute or relative phases of the two original sig-
nals change, the decomposition still works and produces the same AM and FM
deviations as given above, but the phases of the component signals change. For
example, 180◦ phase shift in the frequency modulation to give a positive cosine
would produce the upper sideband rather than the lower.
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8.2 HARD LIMITING

A hard limiter (Egan, 1998, p. 398) produces a rectangular waveform of fixed
amplitude with transitions synchronized to those of the input signal. The funda-
mental component of this output has the same frequency as the input signal. The
harmonics may be removed by filtering.

What do we see at the output of a hard limiter if a strong signal, which becomes
hard-limited, and a weak contaminant enter the limiter? We can decompose the
pair entering the limiter into the strong signal plus AM and FM sidebands. The
AM will be eliminated by hard limiting, leaving only the FM. The limiting level
will determine the amplitude of the strong output signal. The phase deviation of
the output and of its fundamental component will not be altered by limiting so the
FM sidebands on the fundamental will retain the same level, relative to the desired
signal, at the limiter output that they had at its input. Thus there are sidebands
on the fundamental output at ±fm that have voltage amplitudes, relative at the
carrier (strong signal), of m/2, half (−6 dB) of the relative amplitude of the
single-sideband contaminant. This is illustrated in Fig. 8.4. (We do not show the
harmonics that are also produced by this process but which may have been filtered
out. Relative sideband levels on those harmonics will be higher in proportion to
the harmonic number, as explained for frequency multipliers in Section 8.6.)

While a hard limiter does not pass AM, AM can be converted to FM if the
input level at which the output transition occurs is not centered on the input
waveform. In that case, a change in input amplitude will change the time at
which the transition occurs.

8.3 SOFT LIMITING

Figure 8.5 shows the amplitude response characteristic for typical saturating non-
linearities. The operating point is often close to the flat region of maximum output.
We can write the slope S of the curve in Fig. 8.5 as

dPo

dPi

= d(10 dB log10 po)

d(10 dB log10 pi)
= d ln(po)

d ln(pi)
= dpo/po

dpi/pi

. (8.4)

For small changes, this is also the ratio of the relative change in output amplitude
to the relative change in input amplitude, that is, the ratio of AM modulation

m
(in dB)

m/2
(in dB)

fc fcfc + fm fc + fm

fc − fm

Hard limiter

Fig. 8.4 Contaminant passing through hard limiter.
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Fig. 8.5 Saturating nonlinearities.
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Fig. 8.6 AM suppression by soft limiting.

indexes. To see this, we write the right side of Eq. (8.4) in terms of voltages:

dPo

dPi

= [(vo + dvo)
2 − v2

o]/v2
o

[(vi + dvi)2 − v2
i ]/v2

i

= [2vodvo − d2vo]/v2
o

[2vidvi − d2vi]/v2
i

. (8.5)

Neglecting the relatively small squared differentials, this is

dPo

dPi

= dvo/vo

dvi/vi

≈ mAMo

mAMi

. (8.6)

Thus the transfer gain for the AM modulation index is the slope of the transfer
characteristic in dB. If the slope is 0.2 dB out per dB in, mAM will be multiplied
by 0.2 (−14 dB) in passing through the nonlinearity (Fig. 8.6).
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The modulation would generally become distorted in the limiting process (e.g.,
increases in amplitude might be suppressed more than decreases) so the reduced
AM sidebands are likely to be accompanied by other sidebands at offsets that
are harmonics of the input modulation frequency. These are shown in Fig. 8.6.

As before, the FM sidebands on the fundamental are not changed:

mFMo = mFMi . (8.7)

8.4 MIXERS, THROUGH THE LO PORT

Here we consider how a contaminant on the LO is transferred to the IF (Egan,
2000, pp. 78–84).

8.4.1 AM Suppression

Figure 8.7 shows a mixer conversion loss characteristic. It is labeled for conver-
sion gain Gc(PL), a function of LO power, PL. Since the IF output power is

Po(PL) = Gc(PL) + Pi, (8.8)

when the IF input power Pi is fixed, Po(PL) equals Gc(PL) plus a constant. [For
example, the axis values for Po(PL) and Gc(PL) are numerically the same if
Pi = 0 dBm.] Therefore, the slope of Po(PL) and of Gc(PL) at a given value of
Pi are the same, and the AM transfer characteristic, from the LO to the IF, is
given by Eq. (8.6), written for this case as

mAM,IF

mAM,LO
= dG(PL)

dPL

. (8.9)
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Fig. 8.7 Conversion loss curve.
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Since the mixer will usually be operated for low conversion loss, this will usually
be a small number (Ŝ � 1), and AM on the LO is suppressed when it appears
in the IF.

8.4.2 FM Transfer

According to Eq. (7.1), any frequency change in the LO will cause a change
of equal magnitude in the IF. Thus both the peak frequency deviation �f and
its modulation frequency fm will transfer from the LO to the IF, and the FM
sidebands in the IF will have the same relative level as the FM sidebands in the
LO (i.e., m/2). In the IF, FM from the LO is indistinguishable from FM from the
RF (Fig. 8.8). (FM will be greater on LO harmonics than on its fundamental, but
we are primarily interested in the effect on the desired 1 × 1 products in the IF.)

8.4.3 Single-Sideband Transfer

If the conversion gain curve is horizontal at the operating point, the transfer from
LO to IF will be like transmission through a hard limiter. A sideband of relative
value m on the LO will produce two FM sidebands of amplitude m/2 each in
the IF (as in Fig. 8.4). If the conversion loss curve has a positive slope, the
amplitude of the sideband in the IF that is at the frequency to which the single
sideband (SSB) on the LO would have converted will increase, and the amplitude
of the other will decrease, due to the addition and subtraction, respectively, of
the FM and attenuated AM sidebands. (If the slope were 1, there would be
no other sideband, just a single frequency conversion of the SSB.) A negative

LO
frequency

Signal (RF)
frequency

IF (LO−Signal)
frequency

Time

Fr
eq

ue
nc

y

Fig. 8.8 Transfer of frequency modulation through a mixer. (From Egan, 2000.)
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slope on the conversion loss curve would cause the larger sideband to be on the
other side.

Example 8.1 Transfer from the LO The desired LO is accompanied by a
contaminating sine wave that is 30 dB weaker and higher in frequency by 1 MHz.
The mixer transfer loss curve increases 1 dB for each 4-dB increase in the input
power at the operating point. If the IF is the sum of the RF and LO frequencies,
show the IF spectrum.

See Fig. 8.9. The equivalent AM and FM sidebands on the LO are at −36 dBc.
The FM sidebands are transferred to the IF along with the AM sidebands, the latter
multiplied by the slope 1

4 . The AM sidebands in the IF therefore have amplitude
one fourth of the FM sidebands. On the high side, the sum is 5

4 (+1.94 dB) higher
than −36 dBc and, on the low side, the sum is 3

4 (−2.5 dB) relative to −36 dBc.
Thus the high sideband has amplitude −36 dBc + 1.94 dB = −34.06 dBc, and
the low sideband has amplitude −36 dBc − 2.5 dB = −38.5 dBc. The AM and

LO

IF

−30 dB

−30 dBc

−36 dBc −36 dBc

AM

FM

Note: These two are
actually coincident.

1 MHz

−34.06 dBc

−38.5 dBc

Fig. 8.9 Example 8.1.
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FM sidebands reinforce on the side where the original single sideband existed in
the LO and oppose on the side where there was no sideband in the LO.

8.4.4 Mixing Between LO Components

The desired LO and its undesired sideband will mix in the nonlinear elements of
the mixer, producing sum and difference components and other, usually weaker,
components. When a mixer is balanced to cancel the LO in the IF, these products
will also tend to cancel.

If we considered the contaminating sideband on the LO as decomposed into
AM and FM, we find that the two FM sidebands cancel on translation to their
difference frequency fm while the AM sidebands at fm reinforce.2 It does not
seem surprising that an LO that is frequency modulated does not produce mixing
products. Looking at it this way, there is only one signal; its frequency is just
changing. On the other hand, with AM, the IF signal at fm is basically the result
of a detection process. We get the same results whether we decompose the single
sideband or not. The difference is important when we do have AM or FM rather
than a decomposition involving both. Even if the contaminant is pure FM at some
point, however, it can produce AM by passing through a frequency-sensitive (not
flat) circuit.

In an unbalanced mixer (e.g., a single diode), the results of two signals from
the LO mixing are the same as when one is considered the RF; the resulting IF is
weaker than the small signal by the conversion loss. When the LO is balanced,
however, we get an additional reduction due to balance, perhaps 20 dB. We will
call that additional reduction the balance of the LO port.

Mixing also occurs between multiple RF signals (see Section 7.3), but their
amplitudes are small enough that the result tends to be small compared to the
results of mixing with the LO. Some mixing products will also be reduced by
any RF balance (e.g., in a doubly balanced mixer).

8.4.5 Troublesome Frequency Ranges in the LO

We can highlight some frequency ranges in the LO that have a potential for
producing contaminating signals in the IF. Refer to Figs. 8.10 and 8.11.

8.4.5.1 Range 1 The problem in Range 1 in Fig. 8.10 is transfer of FM
sidebands (actual or equivalent) to the IF band. This is a “single-frequency spur,”
requiring one RF signal to exist. At the edge of this band, the LO-induced
sidebands are separated from the RF signal by the IF or RF bandwidth, whichever
is greater. A contaminant in Range 1 will not always produce a contaminant in
the IF. It depends on the signals that are in the RF, but this is the area of danger.
See the examples below for a better understanding of this.

If the RF bandwidth is greater than the IF bandwidth, a signal on one edge
of the RF filter might acquire a sideband as far away as the other edge. This



MIXERS, THROUGH THE LO PORT 229

center line

Max(BIF, BRF)

2 21 1

fIF

fLO

fIF

BIF

BIF: IF (output) bandwidth
BRF: RF (signal input) bandwidth

BIF

Fig. 8.10 Ranges in LO that can produce troublesome sidebands in the IF. (From Egan,
2000.)
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Fig. 8.11 Ranges where spurs on the LO can produce leakage to the IF. (From Egan,
2000.)

could be converted to the IF since, presumably, any part of the RF band can be
converted into the IF band. This is illustrated in Fig. 8.12a, where the x axis
represents the RF and the RF equivalent to the IF, that is, the RF frequency that
would be translated, by the conversion process, to the IF shown. (We could as
easily let x represent the IF frequency in the IF filter and the RF frequency that
will translate to the IF.) For the case illustrated, the contaminant would enter the
IF band when the latter is translated to the low end of the range shown (i.e.,
when the IF band slides to the left arrow point).

However, if the IF band is wider (this might occur in the mixing of two
synthesized frequencies to give a wider frequency range), as shown at Fig. 8.12b,
the sideband can be as far from the signal as the IF bandwidth because, when the
edge of the RF band where the signal is located is translated to one edge of the IF
band, the sideband can be at the other edge of the IF band. It is necessary for the
RF signal to pass through the RF filter, but it is not necessary for the equivalent
sideband to be within the RF band because it is created in the mixer after the
RF filter. For the case illustrated, the contaminant enters the IF band when the
tuning is as shown. When the LO changes such that the IF band moves right,
converting the RF band to a different portion of the IF band, the contaminant
shown will no longer be in band.
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RF band

IF band

RF band

IF band

Received
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FM sideband
induced by LO
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Fig. 8.12 Maximum sideband offset: determined by RF bandwidth at (a) and by IF
bandwidth at (b). The IF is shown vs. equivalent RF.

If the sidebands are just equivalent FM sidebands (obtained from a contami-
nating single sideband), the sideband whose frequency could be mathematically
obtained by conversion, using the contaminant as the LO, will not move with
the LO. A change of �f in the LO frequency moves the signal in the IF by
�f , leaving one of the sidebands unmoved (while the other moves by 2�f ). In
Fig. 8.12b, if the left sideband is such a contaminant, it will maintain its posi-
tion in the IF as the LO moves. If, however, the right sideband is fixed, the left
sideband will move when the LO tunes and it might move away from the IF band.

We will now look at an example of true FM sidebands plus four examples
of equivalent FM sidebands covering the four variations of RF SSB frequencies
and LO frequencies at their extremes. These will demonstrate the validity of this
range as a source of spurs.

Example 8.2 FM Contaminant Transferred from LO to IF The RF band
and signal are shown in Fig. 8.13a. Figure 8.13b shows the LO at the frequency
that converts the upper edge of the RF band to the lower edge of the IF band.
Figure 8.13c shows the other end of the LO range, which would convert the low
end of the RF to the high end of the IF. The tuning range of the LO equals the
difference between the RF and IF bandwidths.

These contaminating sidebands are true FM sidebands, and they are at the max-
imum problematic offset, according to Fig. 8.10, Range 1. In this case, that offset
is the RF bandwidth, 15 MHz. At Fig. 8.13b, we see that the RF signal is con-
verted to one edge of the IF while, at the other extreme of the LO, shown at (c),
the contaminating signal arrives at the IF band edge, showing that the assumed
sideband separation is the true limit if the modulation frequency fm is fixed. The
relative sideband amplitude in the LO, −66 dBc, is transferred to the IF.

Example 8.3 SSB Contaminant on Verge of Transfer from LO to IF
Figure 8.14c is like Fig. 8.13c but the upper FM sideband has been dropped
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100 MHz

115 MHz
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66 dB
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Fig. 8.13 FM contaminant transferred from LO to IF.
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Fig. 8.14 SSB contaminant transferred from LO to IF, RF at high end.

and the remaining sideband is at −60 dBc relative to the LO. The equivalent
FM sidebands are therefore the same for the two figures, with a 6-dB level
reduction occurring in going from single sideband to equivalent FM sidebands.
The difference is that the SSB contaminant is fixed in frequency so, when the
LO moves, the modulation frequency fm of the equivalent FM, which equals
the separation between the LO and the contaminant, changes. As a result, when
the LO goes higher in frequency from (c) to (b), the sideband moves away from
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the IF band twice as fast as it did with fixed fm in Fig. 8.13. Nevertheless, as
in the previous case, the minimum separation equal to the RF bandwidth barely
allows the contaminant into the IF band.

Note that one of the sidebands in the IF does not move. This is at the IF
frequency that would be obtained by using the SSB on the LO as an LO for
converting the RF. The IF signal is offset from this stationary sideband by the
separation between the LO and its single sideband, and the other sideband is
offset by twice that frequency difference.

Example 8.4 SSB Contaminant Not Transferred In Fig. 8.15b, the other
sideband from Fig. 8.13b has been retained as a single sideband. Now the sta-
tionary sideband is at 40 MHz in the IF and no sideband gets close to the IF
band, but this is because of the particular RF frequency in this example.

Example 8.5 SSB Contaminant on Verge of Transfer with Signal at Other
End of RF Band The only independent condition that changes between
Figs. 8.15 and 8.16 is the end of the RF band where the signal appears. The
LO and its contaminating sideband are the same. The fixed sideband is now at
55 MHz in the IF. In Fig. 8.16c, the signal is converted to the high end of the
IF band whereas it goes out of the IF band as the LO is tuned toward its high
end, shown at 8.16b. At Fig. 8.16b, however, where the signal is well out of the
IF band, the contaminant has just reached it. This happens just at the offset limit
given by the RF bandwidth.

Example 8.6 SSB Contaminant Not Transferred with Signal at Other End
of the RF Band The difference between Figs. 8.17 and 8.16 is that the con-
taminant has been moved to 15 MHz below the LO in 8.17c. The LO picture is

RF

RF passband
−40 dBm

60 MHz 75 MHz
IF

IF

25−33 MHz
IF passband

10 MHz 25 MHz

4 MHz
93 MHz

40 MHz
18 MHz

40 MHz
100 MHz

115 MHz

LO
+10 dBm

−50 dBm

66 dB

60 dB
LO

(a)

(b)

(c)

Fig. 8.15 SSB contaminant not transferred to IF, RF at high end.
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Fig. 8.16 SSB contaminant transferred from LO to IF, RF at low end.
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Fig. 8.17 SSB contaminant not transferred to IF, RF at low end.

the same as in Fig. 8.14. This causes the contaminant appearing at 18 MHz in
the IF to be stationary as the LO moves away from the contaminant, going from
Fig. 8.17c to 8.17b. Results are similar to Fig. 8.15 for the other end of the RF
band. The contaminant does not enter the IF band.

Considering these four examples, if the SSB contaminant remains more than
the RF bandwidth from the LO, we will not get a contaminant in the IF; if it
is closer than that, we can get a contaminant in the IF. Therefore, Range 1 is
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a valid danger area for both SSB and FM sidebands when the RF bandwidth
exceeds the IF bandwidth. A similar set of examples, for the case where the IF
bandwidth exceeds the RF bandwidth, confirms the IF bandwidth as the maxi-
mum contaminant offset for that case. (AM suppression was assumed for these
examples.)

8.4.5.2 Range 2 A contaminant in Range 2 (Fig. 8.10) can mix with the LO
to produce a signal in the IF passband that might leak through. This is an internal
spur because it exists independently of the presence of a signal at the RF. The
amplitude of the contaminant will be reduced by the conversion loss and balance
of the LO port.

The balance for the contaminant probably has to be obtained from the LO-to-
IF isolation ILI (a positive number of dB), although the frequency difference of
these two signals might affect the accuracy of the approximation. A pair of AM
sidebands appearing in both parts of Region 2 will increase the contaminant in
the IF by 6 dB over a single sideband of the same amplitude but FM sidebands in
this region (possibly produced by limiting) will not produce an IF contaminant.

Example 8.7 LO Contaminant Converted into IF The LO and its contam-
inant are shown in Fig. 8.18 along with the IF passband and the contaminant
induced into the IF by this process. The 89-MHz LO and 115-MHz contaminant
mix to give 26 MHz. After a 7-dB conversion loss, the resulting 26-MHz signal
has level (−50 dBm − 7 dB) = −57 dBm. After rejection by 23 dB of balance,
the level is (−57 dBm − 23 dB) = −80 dBm in the IF.

8.4.5.3 Range 3 This is also an internal spur, requiring no RF signal. Fre-
quencies in Range 3 (Fig. 8.11) are in the IF passband so only balance protects
the IF from signals at these frequencies (although limiting in the LO circuitry
could reduce an incoming single sideband as much as 6 dB).

Example 8.8 LO Contaminant Leaking into IF The same contaminant in
the IF as in Example 8.7 could be produced by a contaminant at the LO port
at frequency 26 MHz and amplitude (−80 dBm + 23 dB =) −57 dBm, where
23 dB is the LO port balance.

−80 dBm

26 MHz

25−33 MHz
IF passband

89 MHz 115 MHz

LO

+10 dBm

−50 dBm

Fig. 8.18 Contaminant transferred from LO to IF.
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8.4.5.4 Range 4 A contaminant in Range 4 (Fig. 8.11) has equivalent AM
sidebands on the LO that may be attenuated by limiting action, leaving a partially
uncanceled equivalent FM sideband in Range 3. It will be at least 6 dB weaker
than the original. From there it can leak to the IF, reduced by balance, to produce
an internal spur. The process depends on limiting in the LO circuitry (perhaps
within the mixer). This is not the same as the limiting shown in Fig. 8.7, which
applies to the transfer of amplitude modulation to a signal. If there is no limiting
on the LO signal itself, the process of this region will not occur.

Example 8.9 LO Contaminant Equivalent Sideband Leaking into IF Given:
Hard LO limiting, 23-dB LO-to-IF balance, and two contaminants as shown in
Fig. 8.19.

The 87-MHz contaminant is decomposed into sidebands at ±(87 − 50 =)

37 MHz offset from the 50-MHz LO. The lower of these sidebands is at (50 −
37 =) 13 MHz in the IF passband. The level of the contaminant is −50 dBm
so the equivalent FM sidebands are at −56 dBm. This is attenuated 23 dB by
the LO-to-IF balance, causing it to arrive at (−56 dBm − 23 dB) = −79 dBm
in the IF.

The 118-MHz contaminant is decomposed into sidebands at ±(118 − 50 =)

68 MHz on the 50-MHz LO. The lower sideband is at (50 − 68 =) − 18 MHz.
The absolute value is 18 MHz and a sinusoid at this frequency is produced in
the IF. Since the LO contaminant is 10 dB larger than the first one considered,
the level in the IF at 18 MHz is (−79 dBm + 10 dB =) −69 dBm.

The negative frequency only affects the phase of the signal. If we used neg-
ative frequencies, as in a proper Fourier analysis, we would see that there is a
+18-MHz component produced by the negative frequencies corresponding to the
positive frequencies shown in Fig. 8.19. Together with the −18-MHz component
produced by the positive frequencies, these two impulses at ±18 MHz represent
an 18-MHz sinusoid.

8.4.6 Summary of Ranges

Table 8.1 summarizes the characteristics of the four ranges for SSB contaminants.
The LO-part balance has here been equated to LO-to-IF isolation.

−79 dBm −69 dBm

+10 dBm

−50 dBm −40 dBm

13 MHz 18 MHz 50 MHz 87 MHz 118 MHz

80−88 MHz

112−130 MHz

100 MHz
12−20 MHz
IF passband

LO

Range 4

Fig. 8.19 Equivalent FM contaminant transferred from LO to IF.
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TABLE 8.1 Characteristics of Troublesome Ranges in LO with Attenuation from
LO to IF Shown for SSB Contaminanta

Attenuations
for a SSB

Range Process
Conversion

Loss
SSB-to-FM
Loss (dB)

LO-to-IF
Isolation

Spur Type
Produced

1 FM on signal ≈6 Single frequency
2 Mixing with LO x ≥0 x Internal
3 Leakage, LO-to-IF 0–6 x Internal
4 SSB->FM on LO ≥6 x Internal

aNot for modulation sidebands in pairs. Frequency-independent LO-IF isolation is assumed.

While this is an important guideline for alerting the designer to danger areas,
the level of contamination experienced in practice is dependent on such things as
the degree of LO limiting (possibly some of it buried within the mixer), internal
mixer coupling, and response variations with frequency. It may be appropriate
to determine these levels more precisely by experimentation at some stage in
the design. The gathering and publication of data on IF contamination in these
ranges for various mixers would be of significant value for many RF designers.
In the mean time, the theory presented here gives us important information for
initial system design.

One can conceive of other combinations of these processes that might produce
internal spurs from contaminants on the LO, especially those in the vicinity
of higher LO harmonics. However, removal of LO contaminants by means of
filtering becomes relatively easy when they are well separated from the LO
in frequency.

8.4.7 Effect on Noise Figure

Noise on the LO is transferred to the IF by the same processes discussed above
for discrete signals. Ranges 2, 3, and 4 are portals for internal spurs, spurs
that exist in the absence of an RF signal. When the contaminant is additive
noise, these processes transfer noise from the LO to the IF, and thus increase
the effective mixer noise without the necessity of a signal being present. This
produces an increase in the mixer’s noise figure. The transfer of FM noise to
signals in Range 1 produces noise that varies with the strength of the signals
and cannot be characterized as an increase in noise figure. It is the subject of the
next chapter.

8.4.7.1 Computing the Increase If a noise power density of knNT , where
NT = kT0 is thermal noise density and kn is a multiplying factor, exists in Range
3 (Fig. 8.11), it will appear at the mixer IF after reduction by the LO-to-IF
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balance. Noise density in Range 4 will appear in the IF after being attenuated by
the same amount plus at least 6 dB. Transfer of the noise in Range 2 is reduced
by the conversion loss and balance. Table 8.1 applies to noise also.

If the reduction in noise power in the IF due to one of these transfer processes
is krj , the increase in noise density in the IF, due to that process, will be (knj −
1)NT /krj . Without noise from the LO, the noise at the mixer output is NT fmgm,
where fm is the mixer’s noise factor and gm is its gain, the reciprocal of it
conversion loss. Often fm = 1/gm, leaving just thermal noise in the IF. The ratio
of noise factor with the LO noise to the noise factor without it, for N noise
processes (there can be two process for each of ranges 2 and 4), is

fm,L

fm

= fmgmNT + (kn1 − 1)NT /kr1 + (kn2 − 1)NT /kr2 · · · + (knN − 1)NT /krN

fmgmNT

= 1 + 1

fmgm

N∑
j=1

knj − 1

krj

. (8.10)

Example 8.10 Mixer Noise Factor Increase Due to LO Noise The noise
floor at the output of the LO oscillator is 20 dB above thermal noise. This
may be due, for example, to 16 dB available gain and 4 dB noise figure act-
ing on thermal noise at the input to the oscillator’s active device. The oscillator
level is 10 dBm, but 23 dBm is required for a particular high-level mixer, so
13 dB of gain is needed after the oscillator. This is shown in Fig. 8.20. Neglect-
ing the noise figure of the amplifier (e.g., because the input noise is so high),
the noise floor at the mixer’s LO port is higher than NT by (20 dB + 13 dB
=) 33 dB (kn = 10(33/10) = 2000). If the balance from the LO port is 30 dB
(kr = 10(30/100) = 1000), and if the mixer noise factor equals its conversion loss

IF band

+10 dBm
+23 dBm

−7 dBm

20 dB

LO
IF

3 dB

33 dB

NT = −174 dBm/Hz

Oscillator +13 dB

−30 dB

Fig. 8.20 Example of noise figure increase from broadband noise in LO.
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(fmgm = 1), Eq. (8.10) gives the increase in mixer’s noise factor from Range 3
(LO to IF leakage) as

fm,L

fm

= 1 + kn − 1

kr

1

fmgm

= 1 + 1999

1000
= 3 ⇒ 4.8 dB. (8.11)

Noise would also be added to the IF through the processes of Ranges 2 and 4.
There are two frequencies in each of these ranges that will convert into the IF so
there are four such processes in addition to the one from Range 3. For purposes
of illustration, we will assume minimum loss from SSB-to-FM conversion, even
though that assumption is not compatible for the various ranges. The reduction
factor krj for Range 4 is then 6 dB greater than for Range 3 while krj for Range
2 is greater by the conversion loss, say 8 dB (a factor of 6.3 for power). Taking
these five LO noise sources into account, Eq. (8.11) becomes

fm,L

fm

= 1 +
N∑
j

knj − 1

krj

≈ 1 + 1999
[

1

1000

(
1 + 2

4
+ 2

6.3

)]
= 4.63 ⇒ 6.7 dB.

(8.12)

If the oscillator power had been only 0 dBm, requiring more LO amplifier gain,
the increase in mixer noise figure would have been 15.7 dB. This shows the
importance of starting with a high-power (as well as low-noise) oscillator. The
difference between the value in Eq. (8.12) and that in Eq. (8.11) shows the impor-
tance of filtering out some of these ranges.

8.4.7.2 Filtering the Noise It may be possible to remove noise sources by
filtering before the LO port. These ranges can be filtered most effectively if there
is a relatively large frequency separation between them and the LO, so we can
simultaneously attenuate frequencies in the range of concern and pass the LO. In
performing a high-ratio downconversion (i.e., where the IF is much lower than
the RF), the LO frequency will be close to the RF. Then the separation between
Range 2 and the LO will be relatively (on a percentage basis) small so a high-Q
filter will be required to reduce noise in Range 2. If, on the other hand, there is
a high-ratio upconversion, the LO will be close to the IF, making Range 3 and
the lower-frequency part of Range 4 difficult to filter.

8.4.7.3 Oscillator Noise Sidebands The situation can be further aggra-
vated by an increase of noise near the LO center frequency. Oscillator power
spectrums are not single-frequency lines (Egan, 2000, pp. 94–101, 106–118).
They have finite widths due to noise modulation. Most of the oscillator’s side-
band noise power is FM; there is a fundamental process that causes this. However,
there may also be AM noise caused, for example, by power supply noise that
modulates the oscillator’s amplitude. This may be difficult to observe because
it is often masked by the FM noise when spectral power is observed, as on a
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spectrum analyzer. To separate the two noise types, the modulations, AM or FM,
must first be separately detected.

Range 2 is not sensitive to FM noise on the oscillator. FM sidebands do not
mix with the main LO power, but AM sidebands can. This is another reason why
Range 2 may cause a problem in high-ratio downconversions, where it is close
to the LO frequency.

AM sidebands may be attenuated by limiting in the LO circuitry, but FM side-
bands will appear in the IF at the same level, relative to the LO leakage, that they
had in the LO (assuming frequency-independent balance). Therefore, FM side-
bands are reduced by the LO-to-IF isolation. Those that extend to Range 3 will
enter the IF passband. They will not look like FM sidebands there; they will just
be added noise. This is another reason that Range 3 may cause a problem in high-
ratio upconversions, especially since FM sidebands on oscillators can be large.

Example 8.11 Noise with High-Ratio Upconversion A band near 1 MHz
is to be converted to 200 MHz. The LO frequency is 201 MHz. The 10-dBm
oscillator has a loaded Q of 25, an FM noise floor of −160 dBc/Hz, and noise
sidebands falling −6 dB/octave in the range of interest. The mixer has LO-to-IF
isolation of 26 dB.

FM noise typically falls at −6 dB or −9 dB/octave of frequency offset from
the oscillator center frequency until it reaches the FM noise floor at the center fre-
quency divided by 2Q. Therefore, the FM noise will climb toward spectral center
at offsets less than (201 MHz/50 =) 4 MHz in this case. The LO power appearing
in the IF is (10 dBm − 26 dB =) − 16 dBm, and the noise floor from the oscil-
lator there is at (−16 dBm − 160 dBc/Hz =) − 176 dBm/Hz (2 dB below the
available thermal noise). See Fig. 8.21. The IF is 1 MHz from the LO (and thus
two octaves below the 4-MHz noise corner), so, with a slope of −6 dB/octave,
the noise will be 12 dB greater than the noise floor, or −164 dBm/Hz, at the IF.
This is 10 dB above the available thermal noise. Therefore, kn/kr in Eq. (8.10)
is 10 and, if the mixer’s noise figure equals its conversion loss without this noise,
Eq. (8.10) shows a noise factor increase of (1 + 10 =) 11, or 10.4 dB.

We can, alternatively, compute kn and kr separately. We obtain kr as
(1026 dB/10 dB =)400. The oscillator noise floor is (10 dBm − 160 dBc/Hz =) −
150 dBm/Hz. The 12-dB increase from 4-MHz to 1-MHz offset gives
−138 dBm/Hz at ±1 MHz. This is (−138 dBm/Hz + 174 dBm/Hz =) 36 dB
above thermal noise. Therefore, kn is (1036 dB/10 dB =) 4000 and kn/kr =
4000/400 = 10, as before.

To keep the noise density 6 dB below thermal noise (to give only a 1-dB
increase in the total), a 201-MHz bandpass filter with 16 dB of attenuation at a 1%
bandwidth (1 MHz from center) would be required. This might have significant
loss at the center frequency.

Range 4 is important for SSB contaminants because they can convert to FM
in Range 3, but it need not be considered for FM sidebands. They would already
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Fig. 8.21 LO noise power density at the IF port: (a) is a linear plot against frequency
and (b) is a log plot of the tangential approximation.

be in Range 3, and we have found (Section 8.4.4) that FM sidebands do not mix
with the LO.

8.5 FREQUENCY DIVIDERS

Frequency dividers (Egan, 2000, pp. 87–94) reduce the frequency of a signal by
a constant factor. The most common type is a digital divider, consisting basically
of bistable flip-flops and other logic circuits. The divider changes state when
the effective edge (increasing or decreasing voltage) of the input signal passes
threshold. There is essentially no transfer of AM through the divider; it acts as an
ideal limiter. (AM-to-PM conversion can occur if the input is biased so switching
occurs at a level other than the average input level.)

8.5.1 Sideband Reduction

The divider does pass, but modify, FM. The modulation frequency fm is the
same at input and the output; so is any change in the time of occurrence of a
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zero crossing. In other words, cause and effect happen at the same frequency and
with only a time delay between them. What is different between output and input
is the frequency; the output frequency being lower by the divide ratio, N . The
frequency is divided by N uniformly so frequency deviation �f is also divided
by N . Thus the FM modulation index,

mFM = �f

fm

, (8.13)

is smaller by a factor N at the output,

mFMo = mFMi/N. (8.14)

As a result, the FM sidebands are smaller at the output by this factor.
Another way to look at this is that m is peak phase deviation, and it is related

to the frequency f and the peak deviation of the zero crossing �t by

m = f × �t, (8.15)

so m is smaller by N at the output where the frequency is smaller by N .
A single-sideband contaminant, at the input to a divider, that has amplitude

r relative to the signal there, has equivalent FM sidebands with relative ampli-
tude of r/2 and will produce sidebands of relative amplitude r/(2N) at the
divider output. The output, and possibly the input, will not be a sinusoid. This
relative sideband level applies to the harmonics at the output as well as the fun-
damental, but the effective divide ratio to a harmonic is smaller by the harmonic
number [e.g., the relative amplitude at the third harmonic of the output would
be r/(2N/3)].

Example 8.12 Frequency Divider Spectrums at Input and Output
Figure 8.22 shows the spectrums at the input (a) and the fundamental output (b)
of a ÷5 frequency divider with FM on the input. The input FM sidebands are
at −46 dBc. This might represent decomposition of a −40-dB single sideband.
The modulation frequency is fm = 1 kHz, so the spectral lines are offset 1 kHz
from the input carrier. The output carrier is at one fifth the input frequency. The
FM sidebands there are still offset 1 kHz since the modulation frequency does
not change in frequency division. Since the deviation has been reduced by 5,
however, the modulation indexes are reduced by 5 also, so the relative sidebands
are lower by

20 dB log10(5) = 14 dB. (8.16)

8.5.2 Sampling

While reduction of FM sidebands by N is the primary effect observed at low
modulation frequencies, a more complicated analysis must be applied at frequen-
cies that are not low compared to the divider output frequency. We can receive
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Fig. 8.22 Spectrums at input and output of a ÷5.

information about the phase or frequency of the effective edge at the output only
when it occurs, once each cycle of the output frequency. The phase and frequency
of the output are effectively being sampled at that rate. This has important con-
sequences. For example, if a divider has an output frequency of 10 kHz and the
input is frequency modulated at a rate of 30.1 kHz, the output frequency will
have FM at a modulation frequency fm of (30.1 kHz − 3 × 10 kHz) = 100 Hz.
The modulation index at the output will be mout = min/N , where min is the mod-
ulation index at the input, and all the modulation sidebands on the fundamental
will be smaller by N than they are at the input. Refer to Egan (2000) or Egan
(1981) for more information on this sampling process.

8.5.3 Internal Noise

Like most RF components, frequency dividers have internal noise, but the level
is often low enough to be ignored. See Egan (2000, 123–127) for some divider
noise levels.

8.6 FREQUENCY MULTIPLIERS

Frequency multipliers combine some of the features of frequency dividers and
of soft limiters. They tend to be operated near saturation, so AM transfer is
reduced. We can use the method described for soft limiters to compute by how
much. While frequency dividers decrease frequency by a factor N , resulting
in attenuation of FM sidebands by that same factor, the multiplier increases
frequency by the multiplication factor M and increases the amplitude of FM
sidebands by the same factor. We can combine the output AM and FM as we
did in Example 8.1. Since AM is often attenuated and FM is multiplied by M ,
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the effect of AM at the output can often be ignored. However, input AM can
be converted to PM (delay through the multiplier can decrease at higher signal
levels) and the resulting FM will be multiplied. As the frequency is multiplied to
higher values, the FM deviation may increase to the point where the spectrum can
no longer be represented by the simplified approximation of the Bessel functions
(e.g., J1 ≈ m/2).

Example 8.13 Frequency Multiplier Spectrum at Input and Output Refer
to Fig. 8.22 again but this time use the lower spectrum (b) as the input to a ×5
multiplier. The output sidebands are increased in relative level by the value given
by Eq. (8.16). If the FM were an equivalent due to a single sideband at one of
the sideband frequencies, the single sideband would have amplitude −54 dBc.
If there were AM at the same modulation frequency, possibly as a result of
decomposition of a single sideband, the slope of the power transfer curve would
tell us how much of the original AM would be transferred to the output, and we
would superimpose these sidebands on the FM sidebands shown. We would have
to estimate their relative phase, hopefully from physical considerations. However,
if they were attenuated, they would be more than 14 dB smaller than the FM
sidebands. The significance of the AM sidebands should tend to decrease as the
multiplication factor M increases.

When additive noise is processed by a multiplier, the output noise variance
can increase due to mixing between noise components. The effect is sometimes
represented by division of the output phase variance by a “squaring loss,” SL ≤ 1
(Egan, 1998, p. 389; Lindsey and Simon, 1973, pp. 57–75). See Egan (2000,
pp. 126–128), for some frequency multiplier internal noise levels, which can be
quite low.

8.7 SUMMARY

• A small signal can be considered a single sideband of the large signal that
accompanies it.

• A small single sideband can be decomposed into AM and FM (or PM)
sidebands on the large-signal carrier.

• The AM and FM sidebands have half the amplitude of the SSB.
• The AM and FM sidebands add to form the SSB and cancel on the other

side of the large signal.
• Hard limiting eliminates the AM, leaving FM sidebands on both sides of

the carrier.
• Soft limiting attenuates the AM. The AM gain is obtained from the slope

of a gain curve that has axes in dB.
• The LO appears at the IF port of the mixer, reduced by the LO-to-IF isolation.
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• Mixers tend to be operated with the LO in saturation. This reduces AM
transfer to the IF.

• FM is transferred from the LO to the IF. Contaminants near the LO in
frequency (Range 1) are transferred to the IF as FM or equivalent FM.

• FM transfer creates single-signal spurs.
• Contaminants separated from the LO frequency by the IF frequency (Range

2) can mix with the LO to create contaminants at the IF frequency. These
appear in the IF, reduced by balance and conversion loss.

• Contaminants in the LO at the IF frequency (Range 3) pass to the IF reduced
by balance.

• Contaminants offset from twice the LO frequency by the IF frequency
(Range 4) can form equivalent FM sidebands that are at the IF frequency
if the LO is limited. These appear in the IF attenuated by the LO-to-IF
isolation and at least 6-dB loss in converting from SSB to FM.

• Contaminants in Ranges 2 through 4 create internal spurs.
• Noise is transferred to the IF in a manner similar to discrete contaminants

and increases the mixer’s noise figure.
• Noise can be filtered before entering the LO port if the problem ranges are

not too close to the LO.
• Components of FM noise sidebands on the LO that are in the IF frequency

band can add noise to the IF. This noise will be reduced by the LO-to-
IF isolation.

• Frequency dividers limit AM. FM is reduced from input to output by the
divide ratio.

• Sampling effects can produce new frequencies at the output of a frequency
divider.

• Frequency multipliers limit AM to a degree. The slope of the gain curve in
dB can be used to determine the degree of transfer of AM.

• Frequency multipliers increase FM deviation by the multiplication factor.

ENDNOTES

1Egan (1981, p. 800); Egan (2000, pp. 72–78); Egan (1998, p. 353); Goldman (1948).
2Information about sum-frequency products can be discerned through similar analysis, but that fre-
quency region, near the second harmonic of the LO, is not of interest in most practical frequency
translators.



CHAPTER 9

PHASE NOISE

We have considered, in Chapter 3 and beyond, noise that is added to RF sig-
nals in a system and that is characterized by noise figure. Because this noise is
additive, the detriment to a signal that is imbedded in it can be lessened by an
increase in signal power. However, there is another kind of noise that is basically
multiplicative and whose harmful effects are therefore not reduced by an increase
in signal power. The process by which this noise affects a signal is modulation,
rather than addition, and the type with the more serious effect is generally phase,
rather than amplitude, modulation. Phase noise is the subject of this chapter.

9.1 DESCRIBING PHASE NOISE

An undesired phase modulation of a signal is phase noise (Egan, 1998, Chap-
ter 11). Phase modulation (PM) implies frequency modulation (FM). If we have
phase modulation with a peak deviation of m and a modulation frequency of fm,
we have frequency modulation with a peak deviation of �f , and the same mod-
ulation frequency and the two deviations are related by Eq. (8.1). Their values
differ by a factor fm, but we cannot have one without the other. This modulation
creates a pair of sidebands on the modulated carrier. If they are not too large (see
Section 8.1), each sideband has amplitude, relative to the carrier, of m/2. The
relative power in each sideband is the square of the relative sideband amplitude:

psideband

pcarrier
=

(m

2

)2 = m2/2

2
= m̃2

2
, (9.1)

where m̃ is the rms phase deviation in radians. This says that the relative power
of each sideband equals half the mean-square phase deviation.
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Random noise is expressed as a density. The available thermal noise density is
NT = kT0. Multiplying it by the width B of a rectangular band gives noise power:

p = kT0B. (9.2)

If the band is not rectangular, then B is the noise bandwidth, which has a value
defined by Eq. (9.2). If the noise density N0(f ) is not flat, multiplying it by a
differential bandwidth will give the power in that bandwidth:

dp(f ) = N0(f ) df. (9.3)

We can then integrate dp(f ) over a range of frequencies to get the noise in that
range, or bandwidth:

p|f2
f1

=
∫ f2

f1

dp =
∫ f2

f1

N0(f ) df . (9.4)

The density of mean-square phase deviation is called phase-power spectral den-
sity (PPSD). Its symbol is Sϕ . The mean-square phase deviation for modulation
frequencies from f1 to f2 is

σ 2
ϕ |f2

f1
= m̃2|f2

f1
=

∫ f2

f1

Sϕ(fm) dfm. (9.5)

We will use the symbol L for sideband relative (to carrier power) power density.
It is called single-sideband density because it only relates to the power in one of
the two sidebands, rather than the sum of powers on both sides of the carrier. Its
units are reciprocal hertz (Hz−1), since it expresses the ratio of a power density
to the carrier power. When we are speaking only of phase noise, we will use
the symbol Lϕ . The relative sideband power over a frequency range is obtained
by integrating L(f ) over that range. The term Lϕ is related to PPSD, Sϕ , in
rad2/Hz by

Lϕ(�f ) = Sϕ(fm)/2, (9.6)

where �f , the frequency offset from spectral center, equals the modulation
frequency fm.

We can verify this by multiplying both sides of this equation by df to give

dpsideband

pcarrier
= dm̃2/2, (9.7)

which is the same as Eq. (9.1) for a differential bandwidth.
In decibels, we would write

Lϕ(�f )|dBc/Hz = Sϕ(fm)dBr/Hz − 3 dB. (9.8)
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Here dBc/Hz is an abbreviation for decibels relative to the carrier per hertz
bandwidth, and dBr/Hz is an abbreviation for decibels relative to a square radian
per hertz bandwidth.

We have seen how a small single sideband (SSB) can be decomposed into
AM and FM sidebands. By the same method we can show that additive noise,
the kind that is added to a signal, such as thermal noise, can be decomposed
into effective AM and FM sidebands on that signal (Egan, 1998, Chapter 13).
Due to the random nature of the phase of noise sidebands, half of the noise
power becomes AM sideband power and half becomes FM sideband power.
Thus, for small additive random noise, the SSB relative power spectral density
(PSD) L is related to the relative PSD due to PM, Lϕ , and the relative PSD due
to AM, LA, by

L = 2Lϕ = 2LA. (9.9)

These are all ratios to the carrier power. Comparing Eqs. (9.6) and (9.9), we see
that Sϕ equals L in the case of small additive noise.

9.2 ADVERSE EFFECTS OF PHASE NOISE

Here are a few examples of the adverse effects of phase noise.

9.2.1 Data Errors

Figure 9.1 shows the constellation of data symbols (points) for a 16QAM code
and the decision boundaries between them. The amplitude of the received sig-
nal is coherently detected against two quadrature carriers that are in synchronism
with the unmodulated signal (the carrier). Two data bits (four values) are obtained
in each normal direction. In the absence of noise, each received symbol matches
one of the constellation points; its coordinates are the outputs from the two detec-
tors. With additive noise, the received signal is described by a two-dimensional
Gaussian probability density about each point. Figure 9.2 shows this distribution
from the top at (a) and the Gaussian distribution along a cut through that at
(b). The weaker is the signal, relative to the noise, the wider will be the density
function. That is, the circle representing a given probability density grows in
diameter when the signal becomes weaker. Probability of error is determined by
integrating the probability density that falls outside the decision boundaries.

Phase noise produces uncertainty in only the phase, as shown in the upper
right of Fig. 9.1. The probability density is maximum at the data point, and error
is again determined by integrating the probability along the part of the arc that is
outside the decision boundaries. (The arc continues with decreasing probability
beyond what is shown.) The distribution along the arc would look like Fig. 9.2b.

The combination of the two types of noise stretches out the circularly sym-
metric distribution due to additive noise along the arc, as shown in the upper left
of Fig. 9.1. The distribution around all of the points is affected by both additive
and phase noise, but the effect of phase noise increases farther from the origin
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Fig. 9.1 Constellation with noise-induced probability distributions.
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Fig. 9.2 Probability distribution.

since the spaces between decision boundaries subtend smaller angles there. The
probabilities of error about all of the constellation points are added (after weight-
ing by the probability of a point being transmitted) to give the overall probability
of symbol (data point) error.

The phase noise reduces the amount of additive noise that is allowed before
the probability of error becomes excessive. Distortion can also contribute to the
error (Johnson, 2002).

9.2.2 Jitter

Figure 9.3 illustrates a jittery sine wave, synchronized at the start of each sweep of
an oscilloscope. The evident change in frequency and phase from sweep to sweep
can cause timing inaccuracies and even lead to clocking incorrect data (acquiring
a data bit twice or not at all) when the data does not have matching jitter.
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Fig. 9.3 Jitter.

Power
in dB

Tuned frequency

Fig. 9.4 Phase noise on interferer covers desired signal.

9.2.3 Receiver Desensitization

Figure 9.4 shows the spectrum of a large signal and a nearby small signal. This
presentation depends on the bandwidth used to observe the signal; assume it is
the receiver’s final IF bandwidth so the power levels represent what a detector
at the system output would sense. We see here that the phase noise on the
large signal covers the small signal, burying it in noise (Egan, 1998, pp. 317,
318; Egan, 2000, pp. 109, 110). This is one form of desensitization (reduction
in sensitivity), one that depends on the separation between signals. The phase
noise could be on the transmitted signal or might have been added to the signals
in our processing. When it is added during a frequency conversion, as has been
described in Section 8.4.5.1, the process is sometimes called “reciprocal mixing.”

Example 9.1 Desensitization A receiver specification calls for less than 1-dB
desensitization within 200 kHz of a 7-dBm signal. The receiver noise figure is
10 dB. What restriction does this place on the LO spectrum?

Added noise that is about 4 dB higher than thermal noise (Fig. 9.5) will
produce a 1-dB reduction in sensitivity by increasing the noise figure from 10
to 11 dB:

10 dB log10[1010 dB/10 dB + 104 dB/10 dB] = 10 log10[10 + 2.5] = 10.97 dB.

(9.10)
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Fig. 9.5 Example 9.1.

Available thermal noise power density is −174 dBm/Hz so the phase noise side-
bands on the strong signal cannot be higher than (−174 dBm/Hz + 4 dB =)
−170 dBm/Hz at a separation of 200 kHz from spectral center. This is [+7 dBm −
(−170 dBm/Hz)] = 177 dBc/Hz below the power of the strong signal. Therefore,
our LOs must have phase noise, at a 200-kHz offset, lower than

Lϕ(200 kHz) = −177 dBc/Hz

so less than the allowed level will be transferred to a clean +7-dBm interferer.

9.3 SOURCES OF PHASE NOISE

Essentially all signals originate in oscillators and all oscillators produce signals
with phase noise. It is an inherent process. Phase noise can also be added to
the signal after it is created, especially as a component of additive noise, or by
vibration of filters or other parts that influence phase (including the oscillators)
(Robins, 1984).

9.3.1 Oscillator Phase Noise Spectrums

Figure 9.6 illustrates typical oscillator phase noise density (Egan, 2000,
pp. 106–118; Leeson, 1966). These are straight-line tangential approximations
on a log plot. At large modulation frequency fm, corresponding to large sideband
separation �f from spectral center, the noise is just amplified additive noise. The
active device is acting essentially as an amplifier, raising the noise power density
at its input by its gain and noise figure. As noted above, Sϕ = L here (they both
equal twice Lϕ). At an offset from spectral center of fm = �f = fosc/(2Q),
where fosc is the frequency of the center of the oscillator’s spectrum and Q is
the loaded quality factor of its resonator, Sϕ begins to rise with decreasing fm.
This is due to feedback in the oscillator circuit, the thing that makes the oscillator
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Fig. 9.6 Sϕ for two oscillators. (From Egan, 2000.)

oscillate. This mechanism causes the phase noise to acquire an additional slope
of −6 dB/octave at fm < fosc/(2Q).

Close to fosc there is an increase in noise due to modulation of the active
device by flicker (1/f ) noise, a noise type that is ubiquitous at low frequen-
cies. This causes an additional −3 dB/octave slope. For many voltage-controlled
oscillators (VCOs), this slope change occurs closer to spectral center than the
corner at fosc/(2Q). However, if Q is high enough (e.g., in crystal oscillators), it
may occur at a frequency higher than fosc/(2Q). Therefore, we show two curves
in Fig. 9.6. They both show the effect of flicker noise at the lowest modula-
tion frequencies, giving a slope of −9 dB/octave there. As fm increases, when
the effective flicker noise drops below the additive noise, the slope of curve A
changes from −9 dB/octave to −6 dB/octave and, at higher fm, falls below the
flat additive noise. Curve B, however, representing a high-Q oscillator, reaches
fosc/(2QH ) in the region affected by flicker noise, so its slope changes from −9
to −3 dB/octave and then to zero slope where the effective flicker noise drops
below the flat additive phase noise.

A slope of −12 dB/octave (called random-walk FM) has sometimes been
observed at very low modulation frequencies and may be related to the
physical environment, for example, vibration, temperature, and the like (Howe,
1976, p. 13).

This provides a good theoretical model that seems to match measured results
well, although some deviations can be observed. It provides a guide for straight-
line representations of the, normally noiselike, noise curves.



252 CHAPTER 9 PHASE NOISE

Discrete modulation at power-line frequencies and their harmonics and lumps
caused by vibration (Egan, 2000, p. 118) are other features sometimes seen in
plots of Sϕ .

9.3.2 Integration Limits

How much phase deviation does a given PPSD plot represent? If we integrate the
whole spectrum to find mean-square phase deviation, the answer will be infinite
(Egan, 1998, pp. 302–304). The question is not practical. We can ask how much
phase deviation exists with modulation frequencies above 1 Hz. We can ask what
will be the rms phase deviation measured over a given time or the rms phase
change during a given time. Answering these questions precisely requires more
complex mathematics, but the answers, generally obtained by multiplying the
PPSD by some function that decreases at low frequencies, are finite.

Without the qualifications, if we consider what the question means, an infinite
answer seems justified. To answer the unqualified question by measurement, we
would measure the phase and then come back later to see how much it had
changed. As we continued this process over a long time, we would observe a
continually increasing change, approaching an infinite change as our measurement
time approached infinity.

This means that we must ask the question to which we really need the answer.
When that is properly formulated, which can be difficult in some cases, the answer
will be finite.

9.3.3 Relationship Between Oscillator Sϕ and Lϕ

Equation (9.6) indicates that the SSB relative PSD Lϕ will have the same shape
as the PPSD Sϕ , but Eq. (9.6) is only valid for a small modulation index, that is,
for σϕ � 1 rad (Egan, 2000, pp. 104–106). For oscillator spectrums, where the
integrated phase is infinite, this has been interpreted to mean that the spectrums
of Sϕ and Lϕ match beyond a modulation frequency fm = fmin for which

∫ ∞

fmin

Sϕ dfm � 1 rad2. (9.11)

At lower modulation frequencies the failure of Eq. (9.6) to hold allows the oscil-
lator power to remain finite while the integrated Sϕ approaches infinity. Because
people have often ignored this limitation, the traditional symbol for Lϕ , which
was L , now officially equals half of Sϕ , rather than being the SSB relative power
density due to phase noise (Hellwig et al., 1988).

9.4 PROCESSING PHASE NOISE IN A CASCADE

Phase noise is unaffected by linear processes (amplifiers). However, increases
in noise figure along the cascade will increase the effective phase noise, based
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on Eqs. (9.6) and (9.9). Filters can reduce phase noise at sufficiently high fm;
this is also based on Eq. (9.6), which shows the equivalence of Sϕ and the side-
bands that the filters reduce. Mixers can add phase noise from their LO ports
(see Section 8.4.5.1). Various processing components can add jitter, and thus
phase noise. Power supply noise seems more likely to create AM, but there
can be AM-to-PM conversion in some components (e.g., improperly biased fre-
quency dividers). Frequency multipliers multiply phase noise (see Section 8.6)
by the multiplication ratio M , increasing it by 20 dB log10M . Frequency dividers
divide phase noise (see Section 8.5) by the divide ratio N , changing it by
−20 dB log10N .

9.4.1 Filtering by Phase-Locked Loops

Phase-locked loops (PLLs) filter phase noise directly (Egan, 1998, Chapter 12).
The phase of the output, from a VCO, is made to follow the phase of the loop
input (reference) by a control system that has a defined response to modulation.
The response of a PLL to PM on an input reference signal is low-pass, so it
attenuates high-fm noise on the reference. However, the output of a PLL is from
an oscillator that is constrained to follow the input only at low frequencies so the
loop acts like a high-pass filter to noise introduced by its VCO. This is illustrated
in Fig. 9.7. The bandwidths of these two processes are approximately equal, so
the filters shown in the figure act almost like a diplexer.

Figure 9.8 shows how a phase-locked frequency synthesizer processes phase
noise. The phase noise shown at (Fig. 9.8a) is the VCO noise and the multiplied
reference (input) noise. The latter is multiplied by the divide ratio N because
the output is divided by N , and the loop forces the divided signal to follow the
input, thus causing the output to change phase N times more than the input.

The effect of the loop is shown at Fig. 9.8b. Here the VCO noise has been
suppressed by the loop at modulation frequencies well below the loop bandwidth
(fm at unity open-loop gain). The input reference noise is similarly suppressed
well above the loop bandwidth. (Actually, without the loop, there would be no
reference noise at the output. The “suppression” is relative to what an infinite
bandwidth would produce.) Near the loop bandwidth, the details of the response
depend on other loop parameters.

For more details, including the effects of noise in other loop components, see
Egan, 2002, pp. 106–133.

Hi-pass

Low-pass

VCO phase noise

Reference phase noise

(open-loop)
Σ

Fig. 9.7 Equivalent filtering action of PLL.
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Fig. 9.8 Effect of loop on synthesizer broadband output noise: (a) open loop and
(b) closed loop. (From Egan, 2000.)

9.4.2 Filtering by Ordinary Filters

To find how ordinary filters affect phase noise, we represent the input Sϕ1

by the equivalent Lϕ1 and apply the filter’s frequency response to Lϕ1 (Egan,
2000, pp. 349–351). Then we can translate the resulting Lϕ2 back to Sϕ2, using
Eq. (9.6) both ways.

If the filter is symmetrical about the signal at fc, the response F(fc + fm) of
the bandpass filter can be represented by the response F(fm) to the modulation
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by an equivalent low-pass filter, where

F(fm) = F(fc + fm)/F (fc). (9.12)

That is, the response of the equivalent low-pass filter at a frequency fm is the
same as the relative (to center frequency) response of the bandpass filter at fm

from its center frequency.
At the other extreme of symmetry, if the filter essentially eliminates power at

�f = k1 but not at �f = −k1, Sϕ(fm = k1) will be only a quarter of the value
it would have had with two equal sidebands. (Only half the power exists and half
of that is AM.) In this case, we must decompose the single remaining sideband
into AM and FM before using Eq. (9.6) to convert Lϕ2 back to Sϕ2.

In general, if the signal, after passing through the bandpass filter, no longer
represents pure FM, the sidebands must be separated into Lϕ and La before Lϕ is
reconverted to Sϕ . This can be done by treating each sideband as a single sideband
and adding the FM sidebands after decomposition. The process is represented
in Fig. 9.9.

9.4.3 Implication of Noise Figure

Noise figure tells us how far the (available) noise floor is above kT0. If we have
a signal of power Ps at some point in the cascade, the relative sideband density
due to thermal noise will be

L = F − 174 dBm/Hz − Ps, (9.13)

where Ps is in dBm, F is noise figure in dB, and L is relative sideband density
in dBc/Hz. Since this is random additive noise, the equivalent PPSD is Sϕ =
2Lϕ = L.

9.4.4 Transfer from Local Oscillators

Some of the most significant phase noise sources are LOs used in frequency
conversion. We have seen that FM noise on an LO transfers directly to the signal
as it appears in the IF (Section 8.4.2). We then have the phase noise of one oscil-
lator modulating the spectrum of another oscillator, which itself has phase noise.
The result may be similar to a convolution of the power spectrums. However,
considered from the standpoint of PPSD Sϕ , since the frequency deviations at a

Bandpass

Sj1 Sj2

Lj1 Lj2
SSB⇒FM ×2× 1

2

Fig. 9.9 Effect of bandpass filter on PPSD.
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given fm add, if their phases are random the PPSDs of the two oscillators add
at any value of fm:

Sϕ(fm) = Sϕ1(fm) + Sϕ2(fm). (9.14)

Thus the final value phase noise spectrum will be the sum of the PPSDs of the
incoming signal plus all of the LOs used in frequency conversion (plus possibly
other phase noise discussed in this chapter).

Eq. (9.14) represents the addition of two uncorrelated noise sources. In some
cases a single noise source may arrive at a destination by more than one path so
that the resulting deviations in phase are correlated. In such cases the deviations,
not their variances, must be added (allowing the possibility of cancellation). A
transfer function must be written for phase modulation from source to destination.
Sϕ is then determined by multiplying Sϕ at its source by the squared magnitude
of that transfer function. The resulting Sϕ can then be added to other randomly
related components according to Eq. (9.14).

For example, two frequency synthesizers, each using the same frequency ref-
erence, may generate a first and second LO. The transfer function for phase
deviations from the reference to some point after the second mixer will include
the effects of the paths through the two synthesizers, including delays, frequency
(phase) multiplications, and possibly the filtering effects of PLLs. Low-frequency
phase deviations processed through these two paths may add or subtract, depend-
ing on the frequency conversion plan. Since phase undergoes the same processing
as frequency, their transfer function will match the frequency conversion plan at
zero modulation frequency, but not generally at high modulation frequencies.

Other examples of coherent addition of noise can be seen in Section 9.5.3
below and in Egan, 1998, pages 329–331.

9.4.5 Transfer from Data Clocks

Phase noise residing on the clock of an analog-to-digital converter (ADC) or
of a digital-to-analog converter (DAC) is transferred to the converted data or
waveform.

A phase change δϕc on the clock is equivalent to a time change

δT c = δϕc/fc, (9.15)

where fc is the clock frequency. (Cycles divided by cycles/second or radians
divided by radians/second produce seconds). In an ADC, a clock delay of δT c

causes the value of the sampled signal to be the same as if the signal had been
early by δT c (Fig. 9.10). In a DAC it causes the reconstructed data to be late by
δT c (Fig. 9.11). Therefore, the apparent time change on the signal is

δT s = ±δT c, (9.16)

and the equivalent signal phase change is

δϕs = δT sfs, (9.17)
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Fig. 9.10 ADC with clock jitter.
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Fig. 9.11 DAC with clock jitter. Here δT = |δT c| = |δT s |.

where fs is the frequency of the signal. Putting these last three relationships
together, the phase deviation on the converted signal is

δϕs = ±δϕc

fs

fc

. (9.18)

Thus the phase deviation is transferred to the signal, as in the previous section, but
is reduced by the ratio of the clock frequency to the signal frequency. This applies
to the frequency fs of each component of a complex signal. Equation (9.18)
also implies that the phase power spectral density of the clock is transferred to
the signal:

Sϕs(fs) = Sϕc

(
fs

fc

)2

. (9.19)

Again, the transferred phase change is attenuated, and the degree of attenuation
changes with the frequency of the signal components. If there is phase modulation
on the signal being converted, Sϕs adds to it, as in the previous section.

We can determine the resulting phase variance by integrating Sϕ , as described
in the next section, or, if we can approximate the frequency of the signal as a
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single value, we can write

σϕs = σϕc

fs

fc

. (9.20)

9.4.6 Integration of Phase Noise

We must integrate PPSD over frequency to find the corresponding phase variance,
σ 2

ϕ . We can often approximate PPSD by a set of straight lines on a log plot (Sϕ

in dBr/Hz vs. log fm), as in Fig. 9.6. We can integrate under these curves using
(Egan, 1998, p. 300)

σ 2
ϕ |fm2

fm1
= fm1Sϕ(fm1)

b + 1

[(
fm2

fm1

)b+1

− 1

]
= fm2Sϕ(fm2)

b + 1

[
1 −

(
fm1

fm2

)b+1
]

,

(9.21)

where b is the slope of Sϕ on the log plot,

Sϕ = Kf b
m. (9.22)

A slope designated by b corresponds to 3b dB/octave = 10b dB/decade.
This equation is indeterminate for b = −1, for which special case we use

instead

σ 2
ϕ |fm2

fm1
= fm1Sϕ(fm1) ln

(
fm2

fm1

)
= fm2Sϕ(fm2) ln

(
fm2

fm1

)
. (9.23)

9.5 DETERMINING THE EFFECT ON DATA

Figure 9.1 illustrates how phase noise can increase the probability of a bad deci-
sion on the received data symbol. Figure 9.12 illustrates the effect of phase
noise on a data-error probability curve. Without phase noise, the error probabil-
ity becomes continuously lower as the ratio of signal (carrier) power-to-noise in
the receiver bandwidth increases. With phase noise, a limit is reached where the
errors induced by phase noise dominate and no further improvement is seen with
signal power increases (Reuter, 2000).

9.5.1 Error Probability

Error probability under given noise conditions can be computed by obtaining
the error probability for each symbol (point) in a constellation, multiplying by
the probability of transmission of that symbol (e.g., 1/16 for simple 16QAM)
and adding all of the resulting probabilities of error. The error probability, in
the absence of phase noise, for a particular symbol is computed by integrating
the bivariate Gaussian probability density function over the region outside the
decision boundary for the symbol. A table of functions of the normal probability
distribution would be used. Computation of the error probability with both phase
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Fig. 9.12 Effect of phase noise on error probability.

noise and additive noise, in order to make an accurate version of a plot like
Fig. 9.12, is more complex due to the approximately elliptical distribution about
the point with the major axis perpendicular to the radius. Fortunately, many
of the cells in most constellations have similarities that lead to the same error
probability for a subset, thus reducing the number of independent computations.
For example, the error probability for each data point in the 8PSK constellation
in Fig. 9.13 is the same.

While an approximate error probability can be computed for a combination
of additive and phase noise, it is much easier to get a worst-case value for phase
noise alone, something that serves as the upper limit of error due to phase noise.
We would pick the point that is farthest from center, since the angle that causes
an error is smallest there, and assume a Gaussian distribution of phase. Using
the normal probability curves, we would compute the probability of the phase
being outside the decision boundaries for a given phase variance.

9.5.2 Computing Phase Variance, Limits of Integration

The width of the distributions that are used to determine error probability depend
on the phase variance, σ 2

ϕ , which is obtained by integrating Sϕ over frequency;
but how do we establish limits of integration? At the high end, the modulation
frequency fm should get high enough for the effect to be averaged out over a sym-
bol period, so there should be some high limit on fm based on processing. In the
absence of more sophisticated analysis, we might decide to terminate the integra-
tion at fm = 1/Ts , the reciprocal of the symbol period; but what do we use for a
low-end limit? We know that σ 2

ϕ will be infinite if we just integrate from fm = 0.
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Fig. 9.13 8PSK constellation.
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Fig. 9.14 QAM detection.

As we have seen, in a practical problem, an infinite answer implies the wrong
question. The system could not decode phase without a reference. The phase is
normally detected against a recovered carrier signal. The latter is obtained by
locking to the signal with a phase-locked loop that uses a phase detector that is
able to ignore the data transitions (Fig. 9.14) or with some other circuit that has
similar properties (Egan, 1998, pp. 247–249) — we will assume a loop is used.
If this carrier-recovery loop causes the phase of the recovered carrier to follow
the phase of the signal’s carrier, a phase variation in the data will not be seen
when the data is compared to the recovered carrier.

9.5.3 Effect of the Carrier-Recovery Loop on Phase Noise

The phase noise at the output of the carrier-recovery loop equals the signal phase
noise at its input ϕin multiplied by the loop’s forward transfer function, H(fm).
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The phase detected in the data phase detectors (excluding the data modulation)
is the difference between the input and output of the carrier-recovery loop:

�ϕ(fm) = ϕin(fm)[1 − H(fm)]. (9.24)

The factor [1 − H(fm)] is the error response of a phase-locked loop (Egan, 1998,
Chapter 7), in this case of the carrier recovery loop. Since this is true of the phase
at any frequency, it must also be true of differential bands of phase noise, leading
to a similar expression for PPSD:

S�ϕ(fm) = Sϕ,in|1 − H(fm)|2. (9.25)

Note that, if we write the error response in dB, we do not have to consider whether
or not it is squared, since decibels are defined differently and appropriately for
both phase [20 dB log10 (ϕ1/ϕ2)] and phase squared [10 dB log10 (ϕ2

1/ϕ
2
2)]. Of

course, Eq. (9.25) in dB would become a summation, rather than a product.
The magnitude of the response, 1 − H(fm), is shown in Fig. 9.15. The res-

ponse is

1 − H(fm) = 1

1 + GOL(fm)
, (9.26)

where GOL is the loop’s open-loop transfer function. At high frequencies, GOL(fm)

becomes small and the error response approaches unity (there is no function-
ing loop there, so the entire excitation becomes the error). At low frequencies,

dB

0 dB

|GOL|
Open-loop gain

(tangential)

|1 − H( fm)|
Error

response

fm

Fig. 9.15 Error response of a loop.
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Fig. 9.16 Loop acting on phase noise.

GOL(fm) is large giving

1 − H(fm) ≈ 1/GOL(fm). (9.27)

The open-loop gain |GOL| will often have a slope of −12 dB/octave at low
frequencies (Fig. 9.16). Therefore, its reciprocal and, as a result, the magnitude
of the error response, will have a slope of +12 dB/octave. When this response
multiplies the input PPSD Sϕ,in, which typically has a −9 dB/octave slope at low
frequencies, the resulting slope becomes positive; S�ϕ(fm) decreases as fm goes
toward zero, and the integral of the resulting Sϕ becomes finite.

The higher is the gain of the carrier-recovery loop, the more the low-frequency
noise will be suppressed and the smaller will be S�ϕ(fm), which determines the
phase noise ultimately seen on the data. At low fm, the loop is tracking the phase
noise that is on the data so this noise appears on both inputs to the data-measuring
phase detector, producing no phase difference and, therefore, no output noise.

At very low frequencies the error will again increase with decreasing fre-
quency due to an inevitable reduction of the gain slope and, possibly, due to
−40 dB/decade noise. Noise at very low frequencies may represent a very long
term process corresponding to finite operational lifetime.

9.5.4 Effect of the Loop on Additive Noise

Widening the loop has the additional advantage of attenuating its VCO noise,
which is also multiplied by the loop’s error response. However, the wider
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bandwidth also has the disadvantage of increasing Sϕa , the equivalent phase
noise due to additive noise, at the carrier-recovery output. This is the product of
the equivalent phase noise at the input and H(fm). Since H(fm) is a low-pass
function, increasing bandwidth lets more noise through, shifting the σϕ = 0 curve
in Fig. 9.12 to the right.

If tracking the input phase noise Sϕ is good, why is it not good to track
the phase component of the input additive noise? It appears on the data also.
However, in the process of ignoring phase steps due to the data, Sϕa on the
recovered carrier becomes uncorrelated from Sϕa on the data. Thus the Sϕa that
is tracked by the carrier-recovery loop adds to Sϕa of the data, increasing the
total effective phase noise.

To understand how one kind of noise can cancel while the other adds, consider
that a phase deviation of �ϕ shifts both the carrier phase and the data phase by
�ϕ. Even after the data causes a transition of ϕd , its phase will be increased
by �ϕ. If the loop is wide enough, the data and the recovered carrier will have
the same �ϕ. However, the equivalent phase noise that is derived from additive
noise depends on the relationship between the noise sidebands and the signal
and, when the signal phase steps by ϕd , that relationship changes. The equivalent
phase noise on the data undergoes steps, but the equivalent phase noise on the
recovered carrier does not. Thus the equivalent phase changes do not cancel.

9.5.5 Contribution of Phase Noise to Data Errors
Example 9.2 Figure 9.17 shows the SSB phase noise density of a received
carrier that is modulated by 16QAM. This signal will be frequency converted
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Fig. 9.17 SSB PN density of received carrier.
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Fig. 9.18 SSB PN density of LO synthesizer. Received carrier PN from Fig. 9.17 is also
shown as is PN for synthesizer’s reference.

using an LO with the spectrum shown in Fig. 9.18. This shows the open-loop
VCO phase noise and the noise level after the synthesizer loop attenuates the
VCO noise at frequency offsets that are lower than the loop bandwidth. We will
use tangential (straight lines on a log plot) approximations throughout. At about
20 Hz, the synthesizer’s reference noise pokes out above the suppressed VCO
noise, but we will ignore it because it is about 15 dB lower than the received-
signal noise. Notice that we have changed the ordinate variable from Lϕ to L .
This is done because the open-loop VCO phase noise begins to have values at
low frequencies that are too large for the small-modulation-index approximation
so Lϕ would deviate from the straight-line shape that is characteristic of Sϕ (and,
therefore, of L ) there. We are really interested in Sϕ anyway and are using
single-sideband density as a way of representing it.

The error response of the carrier-recovery loop is shown in Fig. 9.19. Also
shown is the product of this response with the total noise due to signal and
synthesizer. (Here we have used a tangential approximation even for the total,
as opposed to the more accurate process illustrated in Fig. 9.8.) Figure 9.20
shows the integration of this total noise. It employs the spreadsheet IntPhNs,
where the vertices of the overall response are entered in the first two columns.
Equation (9.21) or (9.23) is used, even though the input is for L rather than Sϕ ;
the spreadsheet does the translation. The total rms phase noise (standard devia-
tion) is σϕ = 6.3◦. We notice from the last line, fourth column, in Fig. 9.20, that
very little of the total noise is coming from the highest values of fm, so we are
not very concerned about exactly where to discontinue the integration (e.g., near
the data rate).
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INTEGRATED PHASE DENSITY
Enter SSB density representing phase noise to obtain phase deviation.

ENTER DATA Do not enter data below. Copy last line OK.
Mod.
Freq.
Hz

Integrated
segment

rad^2
sum

rad^2
RMS Phase

rad degrees

SSB

slope
density
dBc/Hz

1.00E+0
4.17E+1
3.24E+2
1.00E+3
2.70E+3
1.00E+4
3.00E+5
1.70E+7
1.00E+8

−139.7
−123.5

−79
−64.3

−60
−65.7
−110
−145
−145

1
4.998
3.003
0.997

−1
−3
−2

0

1.862E−11
1.36E−06

0.0001836
0.0023322
0.0070593
0.0026898
5.915E−06
5.249E−07

1.862E−11
1.36E−06

0.0001849
0.0025171
0.0095764
0.0122662
0.0122721
0.0122726

4.3E−06
0.00117

0.0136
0.05017
0.09786
0.11075
0.11078
0.11078

0.00025
0.06682
0.77917
2.87456
5.60691
6.34567

6.3472
6.34733

Fig. 9.20 Integration of phase noise. Columns 3 and 4 pertain to columns 1 and 2
between previous line and current line.

To evaluate the effect of this much phase noise, we look at the farthest con-
stellation symbol in Fig. 9.1, shown if Fig. 9.21. We calculate the angle at the
decision boundary from the geometry as

ϕb = sin−1
(

1

1.5
√

2

)
= 28.1◦

, (9.28)

where the units are the distance between decision boundaries. (The computa-
tion would be much simpler for Fig. 9.13.) The phase error that will produce a
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Fig. 9.21 Phase error at decision boundary.

decision error is
ϕe = 45◦ − ϕb = 16.9◦

. (9.29)

Thus an error occurs for normalized phase deviations greater than

ϕe/σϕ = 16.9◦
/6.3◦ = 2.68. (9.30)

From tables for the normal distribution Z(x) (Gaussian distribution for σ = 1)
we find that ∫ 2.68

−∞
Z(x) dx = 0.9963 . . . , (9.31)

which tells us that the integral from −∞ to −2.68, or from 2.68 to ∞, is (1 −
0.9963 =) 0.0037. This is the probability of a phase error beyond the decision
boundary on one side. The probability for both sides is twice this, or 0.0074.
This is much too high for most systems. Specifications of 10−6 or 10−8 are more
likely. We must decrease σϕ .

Two methods of decreasing σϕ are suggested by Figs. 9.19 and 9.20. We see
from the latter (column 4) that most of the noise is at frequencies between
1 kHz and 300 kHz. We see from the former that the noise in this region can
be decreased by increasing the bandwidth of the synthesizer loop (now 2.7 kHz)
or by increasing the bandwidth of the carrier-recovery loop (now 10 kHz). The
former may be constrained by the required step size of the synthesizer. The latter
may be constrained by the data rate or additive noise; increasing the carrier-
recovery loop bandwidth will reduce attenuation of perturbations that occur at
the symbol rate and will tend to cause a higher error rate due to additive noise.
We will increase the carrier-recovery loop bandwidth by a factor of 10 to see
what effect it will have.

The new curves are shown in Fig. 9.22. The integration of the phase noise,
shown in Fig. 9.23, now produces a standard deviation of 0.77◦. Equation (9.30)
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Fig. 9.22 PN SSB density, second design.

INTEGRATED PHASE DENSITY
Enter SSB density representing phase noise to obtain phase deviation.

ENTER DATA Do not enter data below. Copy last line OK.
Mod.
Freq.
Hz

Integrated
segment

rad^2
sum

rad^2
RMS Phase

rad degrees

SSB

slope
density
dBc/Hz

1.00E+2
2.56E+2
3.00E+3
1.00E+4
1.00E+5
3.00E+5
1.70E+7
1.00E+8

−147.5
−123

−90.93
−85.7
−95.7
−110
−145
−145

6.001
3
1

−1
−3
−2

0

3.66E−11
1.211E−06
2.449E−05
0.0001239
2.395E−05
5.915E−06
5.249E−07

3.66E−11
1.211E−06

2.57E−05
0.0001497
0.0001736
0.0001795

0.00018

6E−06
0.0011

0.00507
0.01223
0.01318
0.0134
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0.00035
0.06304
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0.70091
0.75492
0.76767
0.76879

Fig. 9.23 Phase integration, second design.

now gives a ratio of
ϕe/σϕ = 16.9◦

/0.77◦ ≈ 22. (9.32)

The normal distribution table gives

1 −
∫ 22

−∞
Z(x) dx = 10−106.8, (9.33)

which is half of the error probability and is infinitesimal, so we need not be
concerned about errors due to phase noise with this wider carrier-recovery loop.
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Assuming that the carrier-recovery loop bandwidth is still low compared to
the data bandwidth, since the carrier-recovery loop low-passes the phase noise
component of the additive noise and does not pass the AM component, we expect
the amount of additive noise on the recovered carrier to be small compared to
the amount on the data.

9.5.6 Effects of the Low-Frequency Phase Noise

Example 9.2 (continued) Let us conclude the example by considering an effect
that we have ignored, an increasing level of phase noise at low frequencies. While
we will come to the conclusion that the additional noise is ignorable, we should
understand the reason. (We will refer to the loop represented by Fig. 9.19 rather
than our final loop in the example because it shows some features of interest in
this discussion better than does Fig. 9.22.)

We see (Fig. 9.19) that the error response of the carrier-recovery loop has
a slope of 20 dB/decade just below the loop bandwidth (between 1 kHz and
10 kHz). This is due to a −20 dB/decade slope in the open-loop gain GOL in
Eq. (9.27), which, in turn, is due to an integration process that is inherent in
the loop. That integration represents a necessary conversion of the loop variable
from frequency to phase, and it applies at all modulation frequencies (fm or �f ).
Below 1 kHz we see an additional +20 dB/decade slope in the error response.
This is characteristic of a type 2 PLL and is produced by an integrator circuit
in the loop filter. If it were not for this circuit, the total phase noise would not
drop as fast at low frequencies and, in fact, it would have a negative slope,
−10 dB/decade, below the corner at 41.7 Hz. This would present a theoretical
problem because the phase noise obtained by integrating to zero would be infinite.

Unfortunately, the integrator circuit does not eliminate the theoretical prob-
lem; it just moves it to a lower frequency. This is because the gain of a true
integration process is inversely proportional to frequency but the actual circuit
will not be able to provide the increasing gain below some frequency. Below that
frequency — let us use 1 Hz for this example — the slope of the carrier-recovery
loop’s error response will revert to +20 dB/decade and, in this example, the total
phase noise will take on a slope of −10 dB/decade. This results in a theoretically
infinite phase variance because we have not restricted the observation period;
the variance grows to unacceptable values only at extremely low frequencies
representing changes over an extremely long time.

Let us use Eq. (9.23) to determine how low in frequency we can set our lower
limit of integration to produce a negligible phase error variance of 0.1◦ squared
(= 3 × 10−6 rad2) from this region. We let fm1 represent that lower limit while
fm2 = 1 Hz. From Fig. 9.19, Sϕ(1 Hz) = 2Lϕ(1 Hz) = 2 × 10−14 rad2/ Hz, so

3 × 10−6rad2 = σ 2
ϕ = 1 Hz × 2 × 10−14 rad2

Hz
ln

(
1 Hz

fm1

)
, (9.34)

fm1 = 1 Hz × exp[−1.5 × 108] = 10−6.52×107
Hz. (9.35)
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This lower limit of integration, 10−6.5×107
Hz, has a period of 106.5×107

(1 with
6.5 × 107 zeros after it) seconds, which is also approximately 106.5×107

years.1

The phase noise that we are not including, below fm1, has even longer peri-
ods, leading us to believe that we will not see this phase deviation in our (or
Earth’s) lifetime.

The proper question is: What will be the variance measured during a finite
time, say 100 years? The answer to that question (Egan, 2000, p. 504) is obtained

by multiplying Sϕ by [1 − sinc2(x)] where sinc(x)
�= sin(πx)/(πx), x = fmT

rad/cycle, and T = 100 years ≈ 3 × 109 seconds. This factor becomes approx-
imately unity at frequencies significantly above (e.g., 10 times) 1 cycle/T ≈
3 × 10−10 Hz, so it has no effect on the variance that we computed in the pre-
vious section. However, it is approximately equal to (πx)2/3 at frequencies
well below 3 × 10−10 Hz. Since x is proportional to fm, this means that the
response slope will increase by 40 dB/decade in that region, effectively eliminat-
ing contributions to σ 2

ϕ below about fm = 0.55 cycle/T = 2 × 10−11 Hz. (This
is where the low-frequency 40-dB/decade slope meets the high-frequency flat
response equal to unity, the corner of a rough tangential approximation.) Since
this is many times 10−6.5×107

Hz, we know that the extra phase deviation will be
much smaller than 0.1◦ (actually 4 × 10−5 degrees) when observed over a period
of 100 years.

9.6 OTHER MEASURES OF PHASE NOISE

Here we discuss two other common measures of phase noise, jitter and Allan
variance.

9.6.1 Jitter

Phase noise implies jitter in a signal’s zero crossings (Egan, 2000, pp. 504–506).
The standard deviation σT of such zero crossings is related to the standard devi-
ation σϕ of phase at frequency f by

σT = σϕ/f, (9.36)

where σϕ uses cycle units for phase to cancel the same units in f , giving σT

time units.
We again must consider how we should obtain these values from Sϕ . If the

jitter of interest is a comparison between zero crossings seen on an oscilloscope at
some delay Tm after a synchronized zero crossing, as in Fig. 9.24, then the phase
noise of interest is that which changes the phase over Tm. (Tm may be just one
period of the wave.) This has been given as (Egan, 2000, p. 506; Drakhlis, 2001)

σ 2
T ≈ 4

ω2
avg.

∫ fm,max

fm,min

Sϕ(fm) sin2
(

πfmTm rad

cycle

)
dfm, (9.37)
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Fig. 9.24 Observed jitter.

where Sϕ is in rad2/Hz, ωavg is the average radian frequency, fm is noise mod-
ulation frequency, and Tm is the time from synchronization (where the phases
are equal, on the left of Fig. 9.24) to observation. One can multiply a plot of Sϕ

by the sin2 and integrate. At higher frequencies, where Sϕ changes little over a
frequency of �f m = 1/Tm, the average value of the sin2, 0.5, can be used for
that function. Note that Eq. (9.37) indicates there is no effect from modulation
frequencies that are multiples of 1/Tm. This is as it should be since they cause
no change in phase over a period Tm.

The upper limit fm,max may depend on the response of the using equipment to
high-frequency variations. It may not be critical if the level of Sϕ is low there. The
lower limit is important, since Sϕ often climbs at low fm, in which case Eq. (9.37)
might produce an infinite answer if fm,min were zero. However, the question asked
in that case is: What is the jitter variance over an infinite time? There is nothing to
limit the period of observation, as there is in practice. Long-term drift is included
in that question. In the absence of a better procedure, we might set fm,min to the
reciprocal of the observation time or some fraction of that reciprocal, in order to
ignore modulations that change little over an observation period.

An equation that gives finite results without requiring finite duration of obser-
vation is available for jitter between the output and input of a PLL that is caused
by the loop’s VCO noise (Egan, 2000, p. 505).

Drakhlis (2001) provides a detailed study of the computation of jitter from Sϕ

and comparisons to measurements using a digital storage oscilloscope (DSO) as
well as discussions of measurement errors.
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9.6.2 Allan Variance

Allan variance σ 2
y (T ) is a measure of short-term frequency stability (not long-

term drift) (Egan, 2000, pp. 499–503; Allan, 1966). It is measured by making a
large number M of adjacent frequency counts of duration T and averaging them
according to

σ 2
y (T ) ≈ 1

2(M − 1)f 2

M−1∑
i=1

�2
i (T ), (9.38)

where the equation is approximate due to the finite number of measurements.
Here f is the average frequency and �i(T ) is the change in frequency between
adjacent averaging (counting) periods. This variance can be computed from Sϕ

by the formula

σ 2
y (T ) = 2

(
2

T ωavg

)2
[∫ fmax

0
Sϕ(fm) sin4

(
πfmT rad

cycle

)
dfm

+
N∑

k=1

ϕ̃2
k sin4

(
πfkT rad

cycle

)]
, (9.39)

where Sϕ is in rad2/Hz, ωavg is the average radian frequency, and fm is noise mod-
ulation frequency. In addition to the density Sϕ , each of N discrete components
is represented in Eq. (9.39) by its modulation frequency fk and its mean-square
phase deviation ϕ̃2

k . Note that phase deviations occurring at frequencies that are
multiples of

fm, fk = cycle/T (9.40)

do not contribute to the variance. They would not affect the difference in average
frequency between adjacent counts since they would affect one count the same
as the next. Note, also, that the sin4(πfmT rad/cycle) is proportional to f 4

m for
fmT � 1 cycle, so the integral will be finite with Sϕ as steep as f −4

m at low
frequencies. The integration can be done graphically at low frequencies but,
when fm gets high enough so Sϕ changes little over a cycle of the sine, sin4 can
be approximated by its average value, 3

8 , to simplify the integration. An algorithm
for computer computation is available (Egan, 1988).

9.7 SUMMARY

• Phase noise is unwanted phase modulation.

• Phase modulation (PM) implies frequency modulation (FM) and visa versa.

• Noiselike PM is described by its phase-power spectral density (PPSD)
Sϕ(fm).
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• Sϕ(fm) can be integrated over modulation frequency fm to give phase
variance σ 2

ϕ .
• If limits of integration are not correctly chosen, computed σϕ may be infinite.
• Single-sideband spectral density Lϕ(�f = fm), corresponding to Sϕ(fm),

is half of the value of Sϕ(fm) if the total phase variance is small compared
to a square radian.

• Additive noise (e.g., thermal noise) can be considered half AM and half
PM on a carrier.

• Phase noise can cause errors in interpretation of data. Widening the carrier-
recovery loop, which is used as a reference in phase detection, can reduce
the effective phase noise.

• Jitter, which is essentially phase noise, can also cause data errors.
• Phase noise on a receiver’s LO can desensitize the receiver by broaden-

ing the spectrum of strong received signals, causing them to cover over
small signals.

• Oscillators are the source of most phase noise.
• Phase noise can be reduced by filtering, particularly by phase-locked loops.
• The variances of uncorrelated phase noise introduced at various stages in a

cascade are additive.
• Allen variance is a measure of phase noise. Its value can be computed from

a plot of Sϕ(fm).

ENDNOTE

1Note that there are 6.5 × 109 zeros in these numbers; if we divide by 1,000,000, the effect won’t
be seen in this notation since 6.5 × 109 ≈ 6.5 × 109 − 6.



APPENDIX A

OP AMP NOISE FACTOR
CALCULATIONS

This appendix details the effects of certain changes in the representation of the cir-
cuit discussed in the Example 3.8 (Section 3.12) and shown in Fig. 3.18. Results
are discussed in Section 3.12.1.

A.1 INVARIANCE WHEN INPUT RESISTOR IS REDISTRIBUTED

The cascade is not changed if we consider part of the input resistor to op amp
2 or 3 to be part of the output resistance of the previous stage. This is just
a matter of redrawing the boundaries between stages. Therefore, the cascade
noise figure should be unaffected. To verify this, Fig. A.1 is another spreadsheet
representing Fig. 3.18 except that 1 k� of the input resistors of op amps 1 and
2 are moved to the previous stages. The last three stages, so considered, are
shown in Fig. A.2. The output resistances R22(k-) seen by the last two stages
now increase by 1 k�, and the noise figure of each stage is changed because of
the new values of R22(k-) and of gain and of the resistor noises that change with
the resistor configuration. The change in noise factor for Op Amp 1 is fairly easily
computed, being due only to the addition of the noise of a 1-k� output resistor.
Section A.3 gives a model for the other two op amps that is used to compute their
noise factors before and after the change. Cells G48–H50 in Fig. A.1 contain
the ratios of the cascade noise factors in Fig. A.1 to those in Fig. 3.19 and the
overall noise factor can be seen to be the same, even though the parameters of
the various amplifiers change considerably. (Compare cells F13–F15 on the two
spreadsheets.)
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A B C D E F G H
12 Filter −7.0 dB 0.3 dB R 0 R 22k− 1/g k a k
13 Op Amp 1 12.0 dB 2000 Ω 2000 Ω 6.5303 dB 1 4
14 Op Amp 2 −0.1 dB 2000 Ω 1020 Ω 11.1394 dB 0.49505 2
15 Op Amp 3 19.9 dB 2000 Ω 1020 Ω 8.6889 dB 0.49505 20
16
17
18 mean max min ± mean G max G min G
28 Op Amp 1 12.04 dB 12.04 dB 12.04 dB 0.00 dB 6.53 dB 6.53 dB 6.53 dB
29 Op Amp 2 −0.09 dB −0.09 dB −0.09 dB 0.00 dB 8.52 dB 8.52 dB 8.52 dB
30 Op Amp 3 19.91 dB 19.91 dB 19.91 dB 0.00 dB 6.30 dB 6.30 dB 6.30 dB
31
32
33 at output of mean max min ± mean G max G min G
42 Filter 7.43 dB 14.77 dB 0.09 dB 7.34 dB 3.09 dB 2.47 dB 5.1914 dB
43 Op Amp 1 19.47 dB 26.81 dB 12.13 dB 7.34 dB 4.27 dB 2.74 dB 8.2798 dB
44 Op Amp 2 19.39 dB 26.72 dB 12.05 dB 7.34 dB 4.38 dB 2.77 dB 8.5150 dB
45 Op Amp 3 39.30 dB 46.64 dB 31.96 dB 7.34 dB 4.44 dB 2.79 dB 8.6377 dB
46
47
48 Op Amp 1 1.004567 0.01979 dB
49 Op Amp 2 1.004413 0.01912 dB
50 Op Amp 3 1.000000 0.00000 dB
51

NF ratio to previous
at min G

*Note: Cable NF depends on SWR, which is assumed to be fixed.

DERIVED (italics  above are derived also)
Gain

CUMULATIVE
Gain

NF using mean NFs (see Note*)

NF using mean NFs

c

Fig. A.1 Alternate spreadsheet for Fig. 3.18. Here each of the last two amplifiers is
partitioned in the middle of its input resistor. Missing lines are identical to those with the
same number in Fig. 3.19.

Op Amp 1 Op Amp 2 Op Amp 3

2 kΩ 2 kΩ
20 kΩ

1 kΩ

1 kΩ 1 kΩ
1 kΩ 1 kΩ3 kΩ

+
−

−
+ −

+

Fig. A.2 Last stages with resistors reassigned.

A.2 EFFECT OF CHANGE IN SOURCE RESISTANCES

We have used 20 � as the output resistance of the op amps. What is the effect
of an inaccurate value for this output resistance?

From Eq. (3.73), we find that the contribution of each stage to total noise
factor is proportional to R22(k-). However, Eq. (3.66) shows that f for each stage
is inversely proportional to R22(k-) so the dependencies cancel except for the −1
in Eq. (3.73). This represents subtraction of the noise attributed to the source, so
it will not appear both as part of the noise of the preceding stage and of the source
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for the stage in question. Thus an error in the value of R22(k-) causes some error in
overall noise factor due to the noise difference between the correct and erroneous
values at that point in the circuit. In addition, R22(k-) has some influence on the
preceding gain through ck, but these values will often be close to unity for circuits
with output impedance that are small compared to the driven impedances.

Figure A.3 is like Fig. 3.19 except the output resistances R22(k-) of the last
three op amps are changed from 20 to 40 �, and noise factors have been recom-
puted for those values. We can see, from cell H58, that this 2:1 change in assumed
output impedance causes only 0.008 dB change in overall noise figure in this
particular cascade, even though the noise figure of the last two amplifiers have
changed nearly 3 dB.

Figure A.4 shows that a change of 10% in source impedance for the first
op amp (cell E13) results in only a 0.03-dB change in overall noise figure for
this example.

A B C D E F G H
12 Filter −7.0 dB 0.3 dB R 0 R 22k- 1/g Ck Ak
13 Op Amp 1 12.0 dB 2000 Ω 2000 Ω 6.5006 dB 1 4
14 Op Amp 2 −0.2 dB 2000 Ω 40 Ω 24.9289 dB 0.98039 1
15 Op Amp 3 19.8 dB 2000 Ω 40 Ω 22.8160 dB 0.98039 10
16 Op Amp 1 1/g 0.0006 dB
17 Op Amp 2 changes: −2.9386 dB
18 Op Amp 3 −2.9485 dB
19
20
21 mean max min ± mean G max G min G
30 Filter −7.00 dB −6.70 dB −7.30 dB 0.30 dB 7.00 dB 6.70 dB 7.30 dB
31 Op Amp 1 12.04 dB 12.04 dB 12.04 dB 0.00 dB 6.50 dB 6.50 dB 6.5006 dB
32 Op Amp 2 −0.17 dB −0.17 dB −0.17 dB 0.00 dB 8.57 dB 8.57 dB 8.5744 dB
33 Op Amp 3 19.83 dB 19.83 dB 19.83 dB 0.00 dB 6.82 dB 6.82 dB 6.8170 dB
34
35
36 Op Amp 1 1.000140 0.00061 dB
37 Op Amp 2 1.012932 0.05580 dB
38 Op Amp 3 1.009249 0.03998 dB
39
40
41 at output of mean max min ± mean G max G min G
50 Filter 7.43 dB 14.77 dB 0.09 dB 7.34 dB 3.09 dB 2.47 dB 5.1914 dB
51 Op Amp 1 19.47 dB 26.81 dB 12.13 dB 7.34 dB 4.26 dB 2.74 dB 8.2604 dB
52 Op Amp 2 19.30 dB 26.64 dB 11.96 dB 7.34 dB 4.37 dB 2.77 dB 8.4997 dB
53 Op Amp 3 39.13 dB 46.47 dB 31.79 dB 7.34 dB 4.44 dB 2.79 dB 8.6458 dB
54
55
56 Op Amp 1 1.000091 0.00040 dB
57 Op Amp 2 1.000882 0.00383 dB
58 Op Amp 3 1.001877 0.00814 dB
59

NF ratio to previous
at min G

*Note: Cable NF depends on SWR, which is assumed to be fixed.

at min G

CUMULATIVE
Gain NF using mean NFs

DERIVED (italics above are derived also)
Gain NF using mean NFs (see Note*)

NF ratio to previous

Fig. A.3 Effect of assumed output resistance. Modification of Fig. 3.19 where output
resistances of Op Amps 1 through 3 change from 20 � to 40 �. Missing lines are as in
Fig. 3.19.
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A B C D E F G H
12 Filter −7.0 dB 0.3 dB R 0 R 22k- 1/g Ck Ak
13 Op Amp 1 12.0 dB 2200 Ω 2200 Ω 6.5000 dB 1 4
14 Op Amp 2 −0.1 dB 2200 Ω 20 Ω 27.8674 dB 0.9901 1
15 Op Amp 3 19.9 dB 2200 Ω 20 Ω 25.7646 dB 0.9901 10
16
17
18 mean max min ± mean G max G min G
27 Filter −7.00 dB −6.70 dB −7.30 dB 0.30 dB 7.00 dB 6.70 dB 7.30 dB
28 Op Amp 1 12.04 dB 12.04 dB 12.04 dB 0.00 dB 6.50 dB 6.50 dB 6.5000 dB
29 Op Amp 2 −0.09 dB −0.09 dB −0.09 dB 0.00 dB 8.17 dB 8.17 dB 8.1653 dB
30 Op Amp 3 19.91 dB 19.91 dB 19.91 dB 0.00 dB 6.45 dB 6.45 dB 6.4533 dB
31
32
33 Op Amp 1 1.000000 0.00000 dB
34 Op Amp 2 0.921877 −0.35327 dB
35 Op Amp 3 0.928185 −0.32365 dB
36
37
38 at output of mean max min ± mean G max G min G
47 Filter 7.43 dB 14.77 dB 0.09 dB 7.34 dB 3.09 dB 2.47 dB 5.1914 dB
48 Op Amp 1 19.47 dB 26.81 dB 12.13 dB 7.34 dB 4.26 dB 2.74 dB 8.2600 dB
49 Op Amp 2 19.39 dB 26.72 dB 12.05 dB 7.34 dB 4.36 dB 2.77 dB 8.4749 dB
50 Op Amp 3 39.30 dB 46.64 dB 31.96 dB 7.34 dB 4.42 dB 2.78 dB 8.6046 dB
51
52
53 1.000000 0.00000 dB
54 0.995195 −0.02092 dB
55 0.992429 −0.03301 dB
56 *Note: Cable NF depends on SWR, which is assumed to be fixed.

NF ratio to previous
at min G

Gain NF using mean NFs

DERIVED (italics  above are derived also)
Gain NF using mean NFs (see Note*)

CUMULATIVE

NF ratio to previous
at min G

Fig. A.4 Effect of 10% change in cascade source resistance. Modification of Fig. 3.18.
Missing lines are as in Fig. 3.19.

A.3 MODEL

Refer to Fig. A.5. The mean-square equivalent input noise voltage due to the
resistors is

e2
R = 4kT0B

[
Rs + Rin + (Rf + Rout)

(
Rs + Rin

Rf

)2
]

, (1)

where the last factor is the reciprocal of the op-amp gain (squared) and refers the
output noise to the input. The term Rout is the output resistance of the op amp, as
reduced by the gain of its feedback loop. Its value will be frequency dependent
because the op-amp gain is frequency dependent.

The mean-square input voltage that produces the same current through Rf as
does in is

e2
i = i2

n(Rs + Rin)
2. (2)
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−

+∼

Rout

RinRs

Rf

in

vn

Fig. A.5 Op amp with noise sources.

The mean-square input voltage that produces the same output as does vn is

e2
v = v2

n

(1 + a)2

a2
= v2

n

(
1 + 1

a

)2

, (3)

where a is the voltage gain of the op amp, Rf /(Rs + Rin). Here vn multiplied
by the gain from the noninverting input (i.e., 1 + a) equals en multiplied by a,
the gain from the inverting input.

Adding these three equivalent mean-square input voltages and dividing by the
voltage equivalent to the available power from the source resistor, we obtain the

TABLE A.1 Op Amp Noise Factors for Various Parameter Values
A B C D E F

2 Nt 3.98107E-21 W
3 Rs 1,020 � 1,020 � 20 � 20 �

4 Rin 1,000 � 1,000 � 2,000 � 2,000 �

5 Rf 20,000 � 2,000 � 20,000 � 2,000 �

6 a 9.9010 0.9901 9.9010 0.9901
7 In 4.00E-12 A
8 Vn 4.00E-09 V
9 eR term from R’s (less Rout) 2.18041176 3.98058824 111.201 203.01
10 ev term From Vn 1.19408284 3.97971466 60.89822488 202.965447
11 ei term From In 4.01941231 4.01941231 204.9900279 204.990028
12 f without Rout 7.39390692 11.9797152 377.0892528 610.965475
13
14 Rout 20 20 20 20
15 f with Rout 7.39410694 11.9997172 377.0994538 611.985575
16 NF 8.68886 dB 10.7917 dB 25.76456 dB 27.8674 dB
17
18 Rout 1020 1020 1020 1020
19 f with Rout 7.40410792 12.9998152 377.6095038 662.990575

20 NF 8.69473 dB 11.1394 dB 25.77043 dB 28.2151 dB
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noise factor (Steffes, 1998):

f = e2
R + e2

i + e2
v

4kT0BRs

(4)

=
(

1 + Rin

Rs

) (
1 + Rs + Rin

Rf

+ Rout

Rf

Rs + Rin

Rf

)
+ e2

i + e2
v

4kT0BRs

(5)

=
(

1 + Rin

Rs

) (
1 + 1

a
+ Rout

Rf a

)
+ i2

n(Rs + Rin)
2 + v2

n(1 + 1/a)2

4kT0BRs

. (6)

By adding the mean-square voltage due to the noise current and the noise voltage
sources, we are assuming their independence. (We can do that for an example,
but the issue can be important in practice where correlation may have to be taken
into account.) The noise factor for various values of these variables is shown in
Table A.1.

Note, from Eq. (6) and from the table, how high gain improves the noise
figure. It would seem to be better to get all the gain in one op amp, rather than
two as is done in Fig. 3.18. There could be other requirements, however, such
as a specific gain required at an intermediate output after Op Amp 2, or wide
bandwidth (which is adversely affected by high closed-loop gain in a classic op
amp), or the desire to study the effects of changes in Op Amp 3 in an example.



APPENDIX B

REPRESENTATIONS OF FREQUENCY
BANDS, IF NORMALIZATION

B.1 PASSBANDS

The passband is plotted on a normalized graph, where a fixed value of LO, RF,
and IF is represented by a point (Fig. B.1). The point can represent more than
one set of LO, RF, and IF values, however, since it only specifies the normalized
values, y and x.

If only the LO changes, its range is represented by a vertical line (Fig. B.2). If
only the IF changes, x and y change equally, leading to a diagonal line (Fig. B.3).

At a given LO and IF, a range of RF values is represented by a horizontal
line (Fig. B.4). As the IF takes on various values, still at the same LO frequency,
the same RF range is represented by multiple horizontal lines (Fig. B.5). We can
represent the RF band over this range of IF values by a parallelogram (Fig. B.6)
that connects the two horizontal lines that are at the extreme IF values.

If the IF is held constant, the RF range is represented at various values of
LO by horizontal lines (Fig. B.7). We can connect the horizontal lines at the
extreme values of LO (Fig. B.8) to form a rectangle representing the RF and LO
ranges together at the fixed IF. This passband, representing a continuum of RF
and LO values, can be drawn for several values of IF (Fig. B.9). The combined
RF, LO, and IF ranges can be represented by a polygon formed by connecting
the rectangles at the IF extremes (Fig. B.10).

B.2 ACCEPTANCE BANDS

Between the passband, where low attenuation is required, and the rejection band,
where a given attenuation is required, is a region where we require neither. We
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f LO / f IF

y =

f RF / f IF

x =

Fig. B.1 Normalized-to-IF graph.

Fig. B.2 LO range.

Fig. B.3 IF range.

Fig. B.4 RF range.
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Fig. B.5 RF range at various IFs.

Fig. B.6 RF and IF ranges.

Fig. B.7 RF range at various LOs.

will call this the acceptance band. In Figs. 7.23 and 7.25, for example, we could
designate a 14-dB rejection band for shape factors greater than 2.33. Then the
acceptance band would extend from the passband edge, at a shape factor of 1,
to a shape factor of 2.33.

If the required attenuation shown at a shape factor of 9 were greater than
14 dB, we could define an additional rejection band starting at 9, and the corre-
sponding additional acceptance band would extend to there. (Also, a rejection of
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Fig. B.8 RF and LO ranges.

Fig. B.9 RF and LO ranges for several IFs.

Fig. B.10 RF, LO, and IF ranges.

75 dB is required at 12.33.) The acceptance band is just the region between the
passband and the point where a given rejection is required.

We can expand the polygon representing the passband to represent an accep-
tance band. While our intention is to reject spurs beyond the acceptance band, we
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would test the response by determining how much attenuation a signal receives
as it moves from the passband, through the acceptance band, into the rejection
band. The rejection r (R in dB) is the ratio of the attenuation in the rejection
band to that in the passband.

With LO and IF fixed, a rejection (attenuation) of R will occur when the RF
is above the upper edge of the RF filter acceptance band or below its lower
edge. This is represented by extending the horizontal lines corresponding to the
RF range (Fig. B.4) to the point where the filter attenuation reaches R. As a
result, the three-dimensional passband is expanded as shown by the dashed lines
in Fig. B.11. Such an acceptance band, if it is arithmetically symmetrical, can be
described by an RF filter shape factor (Section 7.7).

With the LO and RF fixed, a rejection of R dB will occur when the IF is
above the upper edge of the IF filter acceptance band or below its lower edge.
This is represented by extending the diagonal lines corresponding to the IF range
(Fig. B.3) and leads to an extension of the passband as shown in Fig. B.12. Such
an acceptance band, if it is arithmetically symmetrical, can be described by an
IF filter shape factor.

Fig. B.11 RF acceptance band.

Fig. B.12 IF acceptance band.



284 APPENDIX B REPRESENTATIONS OF FREQUENCY BANDS, IF NORMALIZATION

Combining these, we obtain Fig. B.13. This represents the region beyond
which mixer products are reduced by at least R. If the product being rejected
is not of first order in the RF (n > 1), the RF-filter rejection at the edges need
be only R/n whereas the IF-filter rejection would be R. These correspond to
attenuation before and after the point where the spur is created.

The extended RF region in Fig. B.13 is within the IF passband; so attenuation
in that region is due solely to the RF filter. The extended IF region is within the
RF passband; so attenuation there is due only to the IF filter. Beyond the corners
of these regions, attenuation is produced by both the RF and the IF filters. Thus
the region beyond which spurs are reduced by R might actually be as shown in
Figs. B.14 or B.15, depending on the details of the filters.

We can plot the attenuation due to both filters along a particular spur curve.
We might plot the spur attenuation seen in the IF due to the RF filter response,

Fig. B.13 RF and IF acceptance bands.

Fig. B.14 Total acceptance band.
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Fig. B.15 Another total band.

0 100 200 300 400 500 600 700 800 900 1000 1100

Intermediate frequency
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RF

IF & RF

Fig. B.16 Attenuation along a spur curve. Minimum attenuation occurs within passband.

−GIF,R, as a function of the IF:

GIF,R(fIF = mfLO + nfR) = nGRF(fRF). (1)

We would add this to the IF response, GIF(fIF). Figures B.16 and B.17 illustrate
two possible results for some simple filters: one result in which the minimum net
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500 600 700 800 900 1000 1100

Intermediate frequency
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0
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IF RF

IF & RF

Fig. B.17 Attenuation along a spur curve. Minimum attenuation occurs between
passbands.

attenuation occurs within a passband, and one in which it occurs between the IF
and RF passbands. In both cases, however, the minimum attenuation is greater
than both the minimum produced by the IF filter within the RF 3-dB bandwidth
and the minimum produced by the RF filter within the IF 3-dB bandwidth. Thus,
if the attenuation is adequate at the computed RF and IF shape factors, it is
adequate in fact. Nevertheless, we can conceive of the situation in which this
would not be true, especially if the passband is defined at a smaller attenuation
(ripple) level and the filter attenuation increases very slowly.

Such a condition is illustrated in Fig. B.18, which shows the upper left corner
of Fig. B.14. Here a spur curve passes through the line of constant rejection at a
frequency that is within neither the IF nor the RF passband. This condition may
not occur at all in a given application. If it does, the effect may be negligible
compared to such things as the variation in mixer spurious responses.

We have introduced the concept of acceptance band to aid in our understanding
of the combined effect of RF and IF filtering. We will not use it as an analysis
tool per se.

B.3 FILTER ASYMMETRY

Figure B.16 illustrates filter asymmetry. Many bandpass filters are not arithmeti-
cally symmetrical. Attenuation may increase faster on the low-frequency side
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Spur

Fig. B.18 Spur minimally attenuated between pass bands.

of the filter than on the high-frequency side. Thus the filter requirements (e.g.,
the number of poles) depend not only on the required attenuation and the shape
factor but also on whether the spur occurs on the high or low side of the filter.
In Fig. 7.23, this is indicated by the sign that is attached to the shape factor.
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CONVERSION ARITHMETIC

C.1 RECEIVER CALCULATOR

Figure C.1 shows a spreadsheet to aid in calculating the IF and RF filter and
LO ranges, given the center frequencies of the signals at RF and at IF and their
bandwidths. It also illustrates the process. Results are given for high- and low-LO
architectures, that is, for architectures where the LO frequency is above the RF
frequency and for those where it is below.

No units are used. We decide what units these numbers represent, and the
same units (e.g., MHz or kHz) apply to all of the numbers. We are also free to
define the meanings of the bandwidths (e.g., −1 dB, −3 dB, etc.). They are the
ranges over which significant signals can exist.

Data is entered in the upper left box. We enter the maximum and minimum
RF center frequencies and the center frequency of the signal in the IF filter. The
IF bandwidth is set equal to the spectral width. If the RF filter is tuned (i.e., a
tracking filter), we also enter its bandwidth at each end of the RF band (entered
as 10 at both ends in this example), since the bandwidth of a tuned filter might
be determined by considerations other than the spectral width.

The computed LO frequencies convert the specified RF center frequencies to
the specified IF center frequency in every case. The results in the upper right
are for tuned preselector (RF) filters (e.g., see Fig. 7.36), and those below are
for fixed preselector filters, where the specified RF (tracking filter) bandwidths
do not apply. The RF bandwidths include provisions for a finite spectral width
equal to that of the IF filter.

Fixed preselectors must cover the whole signal range so the RF range given at
the lower right is the range required to allow any of the given center frequencies
to be converted to the center of the IF plus the additional bandwidth for signals
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maximum
minimum

Center
frequency

RF

IF

200
100

10
10

PARAMETERS for ENDS of TUNED RANGE

20 0.8

Band-
width

ENTER ABOVE
*RF bandwidth is used only

for "tracking filters"
in tuned preselectors.

Aid for computing Conversion Frequencies

for TUNED
Preselectors

for FIXED
Preselectors

RF bandwidth
not used here

returns
two sets of

4 rectangles

For High LO

For High LO

For Low LO

For Low LO

IF

IF

20.4

20.4
19.6
20.4
19.6
20.4
19.6

20.4
19.6
20.4
19.6

19.6

RF

RF

205
195

LO

LO

220
220

220
120

120
120
180
180

180
80

80
80

205
195

105
95

105
95

200.4
99.6

200.4
99.6

*
*

Fig. C.1 Calculator for receiver frequency conversion.

IF:
max of interest

max synthesized
min synthesized

min of interest

400
260
210
160

Fixed Input =
is (LO or RF)

1000
l

= LO(read as)

IF = LO − RF IF RF LO
@ max IF
 of interest
passband
 @ high IF
passband
 @ low IF
@ min IF
 of interest

400
400
260
260
210
210
160
160

740
790
740
790
740
790
790
740

1000
1000
1000
1000
1000
1000
1000
1000

IF = RF − LO IF RF LO
@ max IF
 of interest
passband
 @ high IF
passband
 @ low IF
@ min IF
 of interest

400
400
260
260
210
210
160
160

1260
1260
1210
1260
1210
1260
1210
1260

1000
1000
1000
1000
1000
1000
1000
1000

IF = LO + RF IF RF LO
@ max IF
 of interest
passband
 @ high IF
passband
 @ low IF
@ min IF
 of interest

400
400
260
260
210
210
160
160

−790
−740
−790
−740
−790
−740
−790
−740

1000
1000
1000
1000
1000
1000
1000
1000

NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED

Aid for computing Synthesis Frequencies

Fig. C.2 Calculator for synthesizer frequency conversions.
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that will fill the IF filter band. The entered RF bandwidths are ignored in these
fixed-preselector calculations.

C.2 SYNTHESIS CALCULATOR

Figure C.2 shows a spreadsheet to aid in calculating the range of mixer inputs
(RF or LO) to produce a given IF range with a given fixed second mixer input
(LO or RF). The LO is fixed at 1000 in this example, and the RF inputs are to be
computed. There are three sets of frequencies for the three ±1 × ±1 products,
two of which are valid results. Which two depends on the chosen output (IF) and
fixed input frequencies.

Each of the three sets defines four straight lines, corresponding to the fixed
and variable inputs at four different IFs (outputs). The middle two sets describe
the synthesized range while the other two correspond to some wider range, pos-
sibly the minimum and maximum output frequencies of interest. They are not
essential, but they allow us to see the IF extended above and below the passband,
highlighting the region where spurs must be controlled.

The four horizontal lines (degenerate rectangles with zero height) correspond-
ing to the upper set in Fig. C.2 are plotted in Fig. C.3. The lines connecting
rectangles 1 and 4 enclose a region corresponding to the RF input at the various

1.2

1.7

2.5

4

3

3.3

4.1

4.9

L
O

/I
F

5.7

6.5

1.8 2.4 3 3.6

RF/IF |m| ≤ 8 |n| ≤ 4Levels ≥ −90

4.2 4.8 5.4

2 × −2
−90

3 × −3
−78

0 × 0

1 × −1
0

2

1

−1 ×  2
−84

1 × −2
−84

1 × −3
−86 −1 ×  3

−86

Fig. C.3 Spur graph for upper synthesizer realization of Fig. C.2.
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IF values. Since the RF range is absolute (like the RF in a receiver with a “brick
wall” filter where no input can occur anywhere outside of the RF passband),
only the shape factor for the IF is significant. The points where spurs enter this
region (or the region enclosed by further extension of these connecting lines)
correspond to the IF shape factors. We can see, from Fig. C.3, that the 2 × −2
spur is the closest, just touching line (rectangle) 1. The shape factor determined
by the point where it enters the extended polygon will define the smallest shape
factor for the IF filter.



APPENDIX E

EXAMPLE OF FREQUENCY
CONVERSION

Suppose we are to convert 3.7 MHz to 1.3 MHz using a high-side LO. This is a
“high-side downconversion.” The LO frequency would be

fLO = fRF + fIF = 3.7 MHz + 1.3 MHz = 5 MHz. (1)

The plot for high-side (1 × −1) downconversion,

fIF = fLO − fRF (2)

is shown in Fig. E.1 with our particular frequencies marked. Line b, representing
fRF = 3.7 MHz, intersects the 1 × −1 curve where fIF = 1.3 MHz (line a). This
diagram indicates that, if we input 3.7 MHz to the mixer, when the LO is at
5 MHz, we get an IF output of 1.3 MHz. In a receiver, this means that we would
tune the LO to 5 MHz in order to convert a 3.7-MHz RF input to our IF at
1.3 MHz. It also shows that a 1.3-MHz IF output implies a 3.7-MHz RF input;
so, when we see a signal at 1.3 MHz in our IF, we interpret it as having originated
at 3.7 MHz. (We are aware that the image frequency could also be implied, but
that is not shown in Fig. E.1.)

In Fig. E.2, a spurious response, the −2 × 3 response, has also been plotted.
This is the solution of

fIF = mfLO + nfRF = −2fLO + 3fRF = −10 MHz + 3fRF. (3)

The plot reveals that another IF output, at 1.1 MHz, is produced by this spurious
response. To eliminate this undesired response, we can filter the IF to pass the
desired response and reject the spurious response. The band edges of such a filter
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1.3 MHz

IF

RF

3.7 MHz

LO at 5 MHz

a

b
1 × −1

Fig. E.1 High-side downconversion from 3.7 to 1.3 MHz.

1.3 MHz

1.1 MHz

IF

RF

3.7 MHz

LO at 5 MHz

a

b

1 × −1

−2 × 3

Fig. E.2 High-side downconversion with −2 × 3 spur.

are indicated by the double lines in Fig. E.3. This filter rejects signals that are
more than 20 kHz from 1.3 MHz.

While the IF filter rejects the 1.1-MHz spurious response, it does not prevent
a signal at some other RF frequency from producing a signal within the IF filter
band. Figure E.4 shows such a spur in the IF caused by the −2 × 3 response.
Here the same 1.3 MHz that we expect to obtain from 3.7 MHz RF is produced
by an RF signal whose frequency is 67 kHz higher (line c). This might interfere
with the desired signal or it might cause us to mistakenly believe that we are
processing a 3.7-MHz RF input whereas we are actually receiving a signal at
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1.3 MHz

1.1 MHz

RF

3.7 MHz

LO at 5 MHz

a

b

1 × −1

−2 × 3

IF

Fig. E.3 Rejecting the spurious response with an IF filter.

1.3 MHz

1.1 MHz

RF

3.7 MHz 3.767 MHz

LO at 5 MHz

a

b c

1 × −1

−2 × 3

IF

Fig. E.4 Spurious RF response.
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1.3 MHz

1.1 MHz

RF

3.7 MHz 3.767 MHz

LO at 5 MHz

a

b c

1 × −1

−2 × 3

IF

Fig. E.5 Spurious responses rejected by IF and RF filters.

another frequency. To prevent this, we use an RF filter, as shown in Fig. E.5.
Only RF frequencies between the vertical double lines are passed.

Now the frequency range of both the RF and the IF are restricted, preventing
(or at least attenuating) the spurious responses. We can simplify Fig. E.5 by
replacing the four double lines by a rectangle outlining their crossing area, as in
Fig. E.6. This rectangle is a square, representing the conversion of all 40 kHz
of the RF band into the full 40-kHz-wide IF band. The 1 × −1 response runs
diagonally, from corner to corner.

In Fig. E.7, the RF bandwidth has been doubled by increasing the frequency
of the upper edge. We note that the −2 × 3 spur is now at the corner of the
rectangle, indicating a spurious response at the upper edge of the RF band and
the lower edge of the IF band, Eq. (3) giving

fIF = −2(5 MHz) + 3(3.76 MHz) = 1.28 MHz. (4)

Since this is at both band edges, neither filter will be effective at reducing the
spur. Either we must ensure that the RF level is small enough that the spur level
is sufficiently (for our application) lower than the desired IF or we will have to
change the design.

Increasing the RF filter bandwidth has made a greater RF range available to
us, but it is not being converted to the IF. Only the original 40-kHz-wide RF band
is being converted to frequencies that are in the IF passband. To take advantage
of the doubled RF range, we must use two LO frequencies. Since the expanded
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1.3 MHz

1.1 MHz

IF

RF

3.7 MHz

LO at 5 MHz

a

b

1 × −1

−2 × 3

Fig. E.6 Rectangle representing the IF and RF bands.

1.3 MHz

20 kHz

IF

RF

1.1 MHz

3.7 MHz

80 kHz

LO at 5 MHz

a

−2 × 3

Fig. E.7 Expanded RF band.
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1.3 MHz

20 kHz

IF

RF

1.1 MHz

1.14 MHz

3.7 MHz
3.74 MHz

80 kHz

a

−2 × 3

LO at 5 MHz

LO at 5.04 MHz

Fig. E.8 Responses with a 5-MHz LO (dashed) and with a 5.04-MHz LO.

part of the RF band is 40 kHz higher in frequency than the original part, we
require an LO with a frequency 40 kHz higher to give the original IF range
according to Eq. (2). The desired and spurious responses are shown in Fig. E.8.
The responses with a 5-MHz LO, the same as are shown in Fig. E.7, are dashed
and the responses with a 5.04-MHz LO are in solid lines.

While we have considered a conversion that uses two LO frequencies to
convert the whole RF band into the IF band, we could take the two sets of curves
as limits as the LO frequency is changed continuously between 5 and 5.04 MHz
and imagine the space between similar response curves as representing the area
occupied as a curve moves continuously from one extreme to the other.

We see that the spur in the IF will still be rejected by the IF filter (but it is at
the band edge at one extreme of the LO range). We see that the lower half of the
RF band (3.7 MHz ± 20 kHz) is converted to the IF band by one LO frequency
and that the upper half (3.74 MHz ± 20 kHz) is converted by the other. Note that
the LO range (40 kHz) plus the IF bandwidth (40 kHz) equals the RF bandwidth
(80 kHz). This is common; the LO moves the center frequencies of signals in
the RF band, but their finite spectral width, presumably corresponding to the IF
bandwidth, requires additional RF bandwidth.

The task of plotting responses over a range of frequencies is typically more
difficult than in this example because more spurious responses must be plotted. It
is generally simpler to normalize the axes of the plot to correspond to a modified
form of Eq. (3),

y = m + nx, (5)

where y = fIF/fLO, x = fRF/fLO, and Eq. (5) is obtained by dividing Eq. (3)
by fLO.
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The curves generated by this equation are similar to those from Eq. (3) with
fLO = 1 and the relationship between their y and x coordinates does not change
with the value of the LO frequency. However, as the LO frequency changes,
the rectangle does move in these normalized coordinates. Figure E.9 shows the
normalized plot corresponding to Fig. E.8. Note that there is only one 1 × −1
desired curve and only one −2 × 3 spur curve, but there are two rectangles
corresponding to the two values of LO frequency. We can see again that the
lower half of the RF band is converted to the IF band when the LO frequency
is 5 MHz and the upper half is converted when it is 5.04 MHz. We can also
see again that the spur is at the same band edges when the LO is 5 MHz but is
separated from the band edge with the 5.04 MHz LO.

If the two rectangles represent extremes of a (more or less) continuous LO
range, we can connect corners as in Fig. E.10. Here the outline is a polygon that
encompasses the passband as the LO frequency varies.

We can see, in Fig. E.11, how two RF sub-bands (3.68 MHz–3.72 MHz and
3.72 MHz–3.76 MHz) are converted to the same IF band by the two extreme
LO frequencies. Following the 1 × −1 curve between the points labeled at the
edges of either rectangle, we see that the lowest RF frequency is converted to the
highest IF frequency. Because this is a high-side downconversion, the spectrum
becomes inverted.

Alternatively, we can normalize the RF and LO frequencies to the IF, as shown
in Fig. E.12. Here the rectangles represent RF and LO ranges at the extreme
values of the IF, and we can visualize the IF moving from one extreme value to
the other along the outlined path. If the LO has only two possible frequencies,

0.26

0.22

0.74

LO at 5 MHz

LO at 5.04 MHz

a

b

−2 × 3

1 × −1

0.01 × 
0.01

square

IF
LO

RF
LO

Fig. E.9 Response curves normalized to LO frequency.
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LO at 5 MHz

LO at 5.04 MHz

0.26

0.74

a

b

−2 × 3

1 × −1IF
LO

RF
LO

Fig. E.10 Locus of the passbands as the LO changes frequency.

−2 × 3

1 × −1

IF
LO

RF
LO

IF: 1.32 MHz
RF: 3.68 MHz
LO: 5.00 MHz

IF: 1.28 MHz
RF: 3.72 MHz
LO: 5.00 MHz

IF: 1.28 MHz
RF: 3.76 MHz
LO: 5.04 MHz

IF: 1.32 MHz
RF: 3.72 MHz
LO: 5.04 MHz

Fig. E.11 Frequencies of translation from RF to IF at one LO setting.

IF: 1.28 MHz

LO at 5.04 MHz

LO : 5 MHz
IF: 1.32 MHz
RF: 3.68 MHz

1 × −1

−2 × 3

LO
IF

RF
IF

Fig. E.12 Response curves normalized to IF.
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IF: 1.32 MHz
RF: 3.68 MHz

LO at 5.04 MHz

LO at 5 MHz

−2 × 3

1 × −1

LO
IF

RF
IF

IF: 1.28 MHz

Fig. E.13 Response normalized to IF with only two LO frequencies.

rather than a continuum, the bands would be represented as in Fig. E.13. This
represents the same design as does Fig. E.9.



APPENDIX F

SOME RELEVANT FORMULAS

F.1 DECIBELS

The power gain of module j is given by the ratio of power delivered to a load
to power input to the module (under some specified conditions, e.g., values of
source and load):

Gj = 10 dB log10(pj+1/pj ), (1)

where log10 is logarithm to the base 10. This can also be written in terms of the
effective (rms) voltages ṽ appearing across the (equivalent shunt) load and input
resistances:

Gj = 10 dB log10

(
ṽ2

j+1/Rj+1

ṽ2
j /Rj

)
(2)

= 20 dB log10

(
ṽj+1

ṽj

)
− 10 dB log10

(
Rj+1

Rj

)
. (3)

Often the last term is ignored and voltage gain is given using

Aj = 20 dB log10

(
ṽj+1

ṽj

)
. (4)

This practice of expressing voltage gain in dB is common and often useful but
not strictly correct unless Rj+1 = Rj , and it can lead to confusion since Eqs. (3)
and (4) will give different values if Rj+1 �= Rj . If Rj+1 = Rj , or if the voltages
are normalized to R (see Section 2.2.2), then A ≡ G.
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The advantage of using decibels is that products or ratios can be obtained by
addition or subtraction of dB. If

gT = g1g2, (5)

then

GT
�= 10 dB log10(gT ) = 10 dB log(g1g2) (6)

≡ 10 dB log(g1) + 10 dB log(g2) ≡ G1 + G2. (7)

Sometimes it is convenient to express even voltage and power in decibels by
taking their ratios to some reference value. For example, dBm uses a 1-mW
reference, dBW uses a 1-W reference, and dBV uses a 1-V reference. Thus, if

Vj = 20 log10
ṽj

1 V
, (8)

and similarly for Vj+1, they would be expressed in dBV, and Eq. (4) could be
expressed as

Aj = Vj+1 − Vj . (9)

F.2 REFLECTION COEFFICIENT AND SWR

The ratio of reflected wave to forward wave at the input or output port of a
module is the reflection coefficient ρm at that port:

ρm = vout

vin
, (10)

where vin is the incident wave and vout is the resulting reflected wave.
The return loss (RL) is the loss of power in the reflected wave relative to the

incident wave, usually expressed in dB,

RL = −20 dB log10 |ρm|, (11)

|ρm| = 10-RL/(20 dB). (12)

In terms of the impedance Zm looking into that port and the standard characteristic
impedance of the transmission line, Z0 = R0, we state, without proof for now,
that (Pozar, 2001, p. 33)

ρm = Zm − R0

Zm + R0
= Zm/R0 − 1

Zm/R0 + 1
. (13)

This coefficient ρm has both magnitude and phase, as Zm has both magnitude
and phase.
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The standing wave caused by the reflection will have a maximum when the
forward wave vin and reverse wave vout add in phase. This maximum will be

Vmax = |vin| + |vout| = |vin|(1 + |ρm|). (14)

Similarly, the minimum will be

Vmin = |vin| − |vout| = |vin|(1 − |ρm|) (15)

so the ratio of Vmax to Vmin, the standing-wave ratio or SWR, will be

SWR = Vmax

Vmin
= 1 + |ρm|

1 − |ρm| . (16)

Solving for |ρm| in terms of SWR, we obtain

|ρm| = 1 − SWR

1 + SWR
. (17)

If Zm is real, so Zm = Rm, Eq. (16) can be combined with Eq. (13) to give

SWR = Rm + R0 + |Rm − R0|
Rm + R0 − |Rm − R0| , (18)

which is

SWR = MAX
{

Rm

R0
,

R0

Rm

}
. (19)

That is, the ratio of Rm to R0 or its reciprocal, whichever is greater than 1.
We will now verify Eq. (13). The voltage at the module input is the sum of

the forward and reverse voltages:

Vm = vin + vout. (20)

The currents equal the voltages divided by R0. However, the forward and reverse
currents have different signs because of the differing directions of propagation.
Therefore, the total current in the direction of the module is

I = (vin − vout)/R0. (21)

The input impedance at the module is the ratio of voltage to current there:

Zm = Vm

Im

= vin + vout

(vin − vout)/R0
(22)

= 1 + ρm

1 − ρm

R0. (23)

Solving this for ρm, we obtain Eq. (13).
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F.3 COMBINING SWRs

F.3.1 Summary of Results

If two lossless reciprocal elements are connected (Fig. F.1) by a cable of unde-
termined length (i.e., if relative signal phases are arbitrary), their individual
reflections combine such that the resulting SWR at the cascade input is (Ragan,
1948) no greater than the product of the individual SWRs:

SWR ≤ SWRmax = SWR1 × SWR2 (24)

and is no less then their quotient:

SWR ≥ SWRmin = SWR1/SWR2, (25)

where
SWR1 ≥ SWR2. (26)

These results are probably better known than are their derivations or their range
of applicability, both of which we explore here.

One can logically extend these relationships to cover N reflections. The max-
imum SWR is then the product of all the individual SWRs:

SWRmax =
N∏

i=1

SWRi , (27)

j

Module 1 Module 2

r = S11
SWR r = S112

SWR2

r = S111
SWR1

R0

R0

Module 1

Fig. F.1 SWR of combined series elements.
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and the minimum is the ratio of the largest SWR to the product of all the others,
except it cannot be less than 1:

SWRmin = MAX




SWR1

N∏
i=2

SWRi

, 1




, (28)

where
SWR1 ≥ SWRi . (29)

If the ratio in Eq. (28) is less than 1, then, by optimum selection of the var-
ious phases (lengths of interconnects), the reflections can be made to cancel
(SWR = 1).

The lossless and reciprocal restrictions need not apply to the remotest reflection
in the cascade.

F.3.2 Development

Here we follow the development by Fano and Lawson (1948) but use the S

and T parameters defined in Section 2.2. Common passive networks are recip-
rocal so that, if a driving voltage or current at one port produces a response
current or voltage, respectively, at a second port, then reversing the network will
cause the same drives to produce the same responses in the opposite direction.
We will use the normalized voltages of Eq. (2.16), which, by that equation, can
be expressed as the square root of the product of voltage and current. Reci-
procity then applies to both the currents and voltages and, as a result, to their
products, giving

S12 = S21. (30)

Since the networks are lossless, the power must either be transmitted or reflected,
leading to

|S11|2 + |S21|2 = 1 (31)

and
|S22|2 + |S12|2 = 1. (32)

Combining the last three equations, we see that

|S11| = |S22|. (33)

Having established this necessary background, we now write the T matrix for a
cascade consisting of a module 1 followed by a lossless interconnect cable and
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ending in a terminated module 2.

T =
(

T11 T12

T21 T22

)
=

(
T111 T121

T211 T221

) (
ejϕ 0
0 e−jϕ

) (
T112 T122

T212 T222

)
(34)

=
(

T111 T121

T211 T221

) (
T112e

jϕ T122e
jϕ

T212e
−jϕ T222e

−jϕ

)
. (35)

From this we can obtain

T11 = T111T112e
jϕ + T121T212e

−jϕ. (36)

Using Eq. (2.29), we can write this as

1

S21
= 1

S211

1

S212
ejϕ(1 − S221S112e

−j2ϕ). (37)

F.3.3 Maximum SWR

The phase ϕ can be chosen to maximize this expression, leading to

1

|S21|min
= 1 + |S221S112|

|S211S212| . (38)

We can use Eq. (31) to write this as

1

|S21|min
= 1 + |S221S112|√

1 − |S111|2
√

1 − |S112|2
. (39)

Again using Eq. (31), as well as Eq. (33), we can write S11 in terms of S21:

|S11|max =
√

1 − |S21|2min =
√

1 − (1 − |S111|2)(1 − |S112|2)
(1 + |S111S112|)2

(40)

=
√

1 + 2|S111S112| + |S111S112|2 − 1 + |S111|2 + |S112|2 − |S111S112|2
(1 + |S111S112|)2

(41)

= |S111| + |S112|
1 + |S111||S112| . (42)

Since S11 = ρm for the terminated cascade, we can use Eq. (16) to give the
maximum SWR for the cascade:

SWRmax = 1 + |S11|max

1 − |S11|max
= 1 + |S111||S112| + |S111| + |S112|

1 + |S111||S112| − |S111| − |S112| (43)
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= (1 + |S111|)(1 + |S112|)
(1 − |S111|)(1 − |S112|) (44)

= SWR1 × SWR2. (45)

F.3.4 Minimum SWR

Now, choosing ϕ to minimize Eq. (37), we can find the minimum value of SWR:

1

|S21|max
= 1 − |S221S112|

|S211S212| (46)

= 1 − |S221S112|√
1 − |S111|2

√
1 − |S112|2

(47)

|S11|min =
√

1 − (1 − |S111|2)(1 − |S112|2)
(1 − |S111S112|)2

(48)

= ||S111| − |S112||
1 − |S111||S112| (49)

SWRmin = 1 + |S11|min

1 − |S11|min
= 1 − |S111||S112| + ||S111| − |S112||

1 − |S111||S112| − ||S111| − |S112|| . (50)

Let
S11+ = Maximum(S111, S112) (51)

and
S11− = Minimum(S111, S112). (52)

Then Eq. (50) becomes

SWRmin = 1 + |S11|min

1 − |S11|min
= 1 − |S11+||S11−| + |S11+| − |S11−|

1 − |S11+||S11−| − |S11+| + |S11−| (53)

= (1 + |S11+|)(1 − |S11−|)
(1 − |S11+|)(1 + |S11−|) (54)

= SWR+
SWR−

, (55)

where SWR+ and SWR− are the two SWRs and

SWR+ ≥ SWR−. (56)

F.3.5 Relaxing Restrictions

While we have assumed that both reflections were produced by lossless reciprocal
networks, that requirement appears to be unnecessary for module 2 since the
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output port of module 1 reacts to the wave reflected from module 2 independently
of how it was produced. In other words, if we replace a lossless reciprocal module
2 with anything else that produces the same reflection, the total reflection from
the input to module 1 will not change.

F.4 IMPEDANCE TRANSFORMATIONS IN CABLES

We can write the impedance looking toward the module through a cable of length
d as Zin(−d). This can also be expressed as

Zin(ϕ) = V (ϕ)

I (ϕ)
= vine

+jϕ + voute
−jϕ

(vine+jϕ − voute−jϕ)/R0
(57)

= 1 + ρme−j2ϕ

1 − ρme−j2ϕ
R0, (58)

where ρm is the complex reflection coefficient at the module and ϕ is the one-way
phase delay through the cable.

Note that Zin(0) = Zm, in agreement with Eq. (23). Then, obtaining the orig-
inal reflection coefficient from Eq. (13), we have (Pozar, 2001, p. 35)

Zin(ϕ) =
1 +

(
Zm − R0

Zm + R0

)
e−j2ϕ

1 −
(

Zm − R0

Zm + R0

)
e−j2ϕ

R0 (59)

= (Zm + R0)e
+jϕ + (Zm − R0)e

−jϕ

(Zm + R0)e
+jϕ − (Zm − R0)e

−jϕ
R0 (60)

= Zm(e+jϕ + e−jϕ) + R0(e
+jϕ − e−jϕ)

Zm(e+jϕ − e−jϕ) + R0(e
+jϕ + e−jϕ)

(61)

= Zm cos ϕ + jR0 sin ϕ

R0 cos ϕ + jZm sin ϕ
R0. (62)

The impedance changes from Zin(0) = Zm to R2
0/Zm at ϕ = 90◦ and back to Zm

at 180◦.
If there is loss in the cable, jϕ in Eq. (57) must be replaced by −h + jb, as

in Eq. (2.44).

F.5 SMITH CHART

The Smith chart (Pozar, 2001, pp. 42–47; Ramo et al., 1984, pp. 229–238; Gon-
zalez, 1984, pp. 43–49) is a plot of

ρ = ρme−jϕ = u + jv, (63)
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where u is the abscissa and v is the ordinate. This complex variable ρm is related
to the complex variable

Zm/R0 = Rm/R0 + jXm/R0 (64)

by Eq. (23), which describes a bilinear transformation that turns the real and
imaginary axes of Zm/R0 into curved lines. The same relationship transforms
the impedance Z into ρ at a distance corresponding to a phase delay of ϕ along
the transmission line. This can be seen in Fig. F.2, which is a simplified Smith
chart (showing only a few of its curves).

The Smith chart is widely used and is very valuable in representing impedance
changes along a lossless transmission line. The heavy circle, which has been
added in the center of this chart, represents a constant reflection magnitude of
|ρ| = 0.5. Moving along this circle, we can read the value of Z/Z0 as the line
length, and thus ϕ, changes. We can begin at a point representing a module’s
input impedance and see how that impedance is transformed as the line is length-
ened. Where the circle intersects X/Z0 = 0, we can read the SWR according
to Eq. (19).

|r | = 1
SWR = ∞

|r | = 0.5
SWR = 3

X/Z0 = 1

X/Z0 = −1

 −1

 −1

0

1

 10

Re (r e−j2j)

Im
 (
r

 e
−j

2j
)

Z = Z0
r = 0

R/Z0 = 1

R/Z0 = 3

R/Z0 = 1/3

X/Z0 = 0

b

a

j

Fig. F.2 Smith (impedance) chart.
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All of the possible impedances that could be seen at a terminal where the
maximum SWR is 3 can be read inside the heavy circle (e.g., Z/Z0 = 1 + j at
point a, 0.333 at b, or 1 at the center).

The same chart can also be used to represent YinR0 by a change in the point
where ϕ = 0, since the reciprocal of the ratio in Eq. (58) can be obtained by
adding π/2 to ϕ. Both the value of YinR0 and of Zin/R0 are often written on the
same chart. Alternately, both YinR0 and Zin/R0 can be plotted using the same
origin for ϕ, forming two sets of curves, one the horizontal reflection of the other.
Then the corresponding admittance and impedance can be read at any point on
the chart.



APPENDIX G

TYPES OF POWER GAIN

Power gain is
g = pout/pin, (1)

but there are various ways to define pout and pin (Petit and McWhorter, 1961, p. 2).

G.1 AVAILABLE GAIN

Figure G.1 illustrates available power gain. The input power pin is the power that
the source delivers to a load that is matched to that source. The output power
pout is the power the module delivers to a load that is matched to its output
impedance when the module is driven by the source. The source impedance must
be specified. (This term has also been used for what we are calling maximum
available power gain (Jay, ed. 1977.)

Available gains can be multiplied to give the available gain of a cascade, as
in Eq. (2.1), even though the variables [Eq. (2.2)] may not actually exist in the
cascade. The intermediate variables uj are powers that would be delivered to a
matched load, whether such a load is present or not. This means that the available
gain of a module depends on the output impedance of the preceding module and
cannot be defined without that information. The same module will have different
available gains in different cascades.

G.2 MAXIMUM AVAILABLE GAIN

Figure G.2 illustrates maximum available power gain. This is available power
gain when the source impedance is matched to the module input impedance, rather
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RS

Zin =
Rin + jXin

Zout = Rout + jXout

RS

Rout

pout

pin

jXS

−jXS

Module −jXout

Fig. G.1 Available gain.

Rin

Rin
pin

poutRout

−jXin

Zout = Rout + jXout

Zin = 
Rin + jXin

Module

jXin

−jXout

Fig. G.2 Maximum available gain.

than maintaining some specified value. This is sometimes called the completely
matched power gain (Jay 1977). Since the source impedance is defined by the
input impedance of the module, this gain can be defined independently of the
driving source. However, it is unlikely to be directly useful in a cascade since
each module would have to match the impedances at both of its interfaces for
this gain to apply. Moreover, testing now requires an input matching network
and, for the general case of a bilateral module, the two port impedances depend
on each other, so finding the correct terminations could be difficult.

G.3 TRANSDUCER GAIN

Figure G.3 illustrates transducer power gain. The input power pin is still the
power that the source delivers to a load that is matched to the source. The output
power pout is the power the module delivers to a specified load when the module
is driven by the source. Both source and load must be specified (50 � real is
usual). From the definitions of the S and T parameters and the normalized waves

Rs

Rs
pin

poutRL

−jXs

Zout = Rout + jXout

Zin = Rin + jXin Module

jXs

−jXL

Fig. G.3 Transducer gain.
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(Section 2.2) we can see that

|S21|2 = 1/|T11|2 = g, (2)

where g is transducer power gain and the source and load impedances are real.

G.4 INSERTION GAIN

Figure G.4 illustrates insertion power gain. The input power pin is the power that
the source delivers to the load that is specified for the module. The output power
pout is the power the module delivers to the specified load when the module is
inserted between the source and the specified load. This gain is the ratio of power
delivered to the module load by the module when it is driven by the source to
the power delivered to that load when the module is removed and the source
drives it directly. As with transducer gain, the source and load impedances must
be specified but the two gains can have different values because the input power
is defined differently in the two cases.

G.5 ACTUAL GAIN

Figure G.5 illustrates the actual power gain. The input power pin is the power
that the source delivers to the module. The output power pout is the power the
module delivers to a specified load when the module is driven by the source.
This is the ratio of the power out of the module to the power into it. The source
impedance need not be specified. We just need to know how much power got
into the module, not how it got there.

Rs

RL
pin

poutRL

jXL

Zout = Rout + jXout

Zin = Rin + jXin Module

jXs

jXL

Fig. G.4 Insertion gain.

Rs

Rin
pin

poutRL

jXin

Zout = Rout + jXout

Zin = Rin + jXin Module

jXs

jXL

Fig. G.5 Actual gain.



APPENDIX H

FORMULAS RELATING
TO IMs AND HARMONICS

This appendix gives various formulas expressing the relationships developed
in Chapter 4. Capitalized variables represent values in dB. Output variables
are related to the corresponding input variables by the (frequency independent)
power gain.

H.1 SECOND HARMONICS

The second-harmonic output power is

pout,H2 = p2
out,F

pOIP2,H

(1)

or
Pout,H2 = 2Pout,F − POIP2,H . (2)

The equivalent second-harmonic input power is

pin,H2 = p2
in,F

pIIP2,H

(3)

or
Pin,H2 = 2Pin,F − PIIP2,H . (4)

The ratio of the second-harmonic power to the fundamental is

pout,H2

pout,F
= pout,F

pOIP2,H

(5)

= pin,H2

pin,F

= pin,F

pIIP2,H

(6)
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or

Pout,H2 − Pout,F = Pout,F − POIP2,H (7)

= Pin,H2 − Pin,F = Pin,F − PIIP2,H . (8)

H.2 SECOND-ORDER IMs

The second-order output IM is

pout,IM2 = pout,F1pout,F2

pOIP2,IM
(9)

or
Pout,IM2 = Pout,F1 + Pout,F2 − POIP2,IM. (10)

The equivalent second-order IM input power is

pin,IM2 = pin,F1pin,F2

pIIP2,IM
(11)

or
Pin,IM2 = Pin,F1 + Pin,F2 − PIIP2,IM. (12)

The ratio of the second-order IM power to the power in fundamental number 1 is

pout,IM2

pout,F1
= pout,F2

pOIP2,IM
(13)

= pin,IM2

pin,F1
= pin,F2

pIIP2,IM
(14)

or

Pout,IM2 − Pout,F1 = Pout,F2 − POIP2,IM (15)

= Pin,IM2 − Pin,F1 = Pin,F2 − PIIP2,IM. (16)

H.3 THIRD HARMONICS

The third-harmonic output power is

pout,H3 = p3
out,F

p2
OIP3,H

(17)

or
Pout,H3 = 3Pout,F − 2POIP3,H . (18)
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The equivalent third-harmonic input power is

pin,H3 = p3
in,F

p2
IIP3,H

(19)

or
Pin,H3 = 3Pin,F − 2PIIP3,H . (20)

The ratio of the third-harmonic power to the fundamental is

pout,H3

pout,F
=

(
pout,F

pOIP3,H

)2

(21)

= pin,H3

pin,F

=
(

pin,F

pIIP3,H

)2

(22)

or

Pout,H3 − Pout,F = 2(Pout,F − POIP3,H ) (23)

= Pin,H3 − Pin,F = 2(Pin,F − PIIP3,H ). (24)

H.4 THIRD-ORDER IMs

The third-order output IM adjacent to the fundamental F1, or to its harmonic,
has power

pout,IM3(±2f1 ± f2) = p2
out,F1pout,F2

p2
OIP3,IM

(25)

or
Pout,IM3(±2f1 ± f2) = 2Pout,F1 + Pout,F2 − 2POIP3,IM. (26)

The equivalent third-order input IM is

pin,IM3(±2f1 ± f2) = p2
in,F1pin,F2

p2
IIP3,IM

(27)

or
Pin,IM3(±2f1 ± f2) = 2Pin,F1 + Pin,F2 − 2PIIP3,IM. (28)

The ratio of this third-order IM to the fundamental pout,F1 adjacent to it is

pout,IM3(±2f1 ± f2)

pout,F1
= pout,F1pout,F2

p2
OIP3,IM

(29)

= pin,IM3(±2f1 ± f2)

pin,F1
= pin,F1pin,F2

p2
IIP3,IM

(30)



320 APPENDIX H FORMULAS RELATING TO IMs AND HARMONICS

or

Pout,IM3(±2f1 ± f2) − Pout,F1 = Pout,F1 + Pout,F2 − 2POIP3,IM (31)

= Pin,IM3(±2f1 ± f2) − Pin,F1 = Pin,F1 + Pin,F2 − 2PIIP3,IM. (32)

H.5 DEFINITIONS OF TERMS

IM is intermodulation product.
IP is intercept point.
pIIP2,H is the power at the second-order harmonic input IP, IIP2H .
pIIP2,IM is the power at the second-order IM input IP, IIP2IM.
pIIP3,H is the power at the third-order harmonic input IP, IIP3H .
pIIP3,IM is power at the third-order IM input IP, IIP3IM.
pin,F is the input power at the fundamental frequency.
pin,F i is the input power in fundamental number i.
pin,H2 is the equivalent second-harmonic input power.
pin,H3 is the equivalent third-harmonic input power.
pin,IM2 is the equivalent second-order IM input power.
pin,IM3 is the equivalent third-order IM input power.
pOIP2,H is the power at the second-order harmonic output IP, OIP2H .
pOIP2,IM is the power at the second-order IM output IP, OIP2IM.
pOIP3,H is the power at the third-order harmonic output IP, OIP3IM.
pOIP3,IM is the power at the third-order IM output IP, OIP3IM.
pout,F is the output power at the fundamental frequency.
pout,F i is the output power in fundamental number i.
pout,H2 is the second-harmonic output power.
pout,H3 is the third-harmonic output power.
pout,IM2 is the second-order IM output power.
pout,IM3 is the third-order IM output power.



APPENDIX I

CHANGING THE STANDARD
IMPEDANCE

Here we show how S or Z parameters for a module can be modified to represent
different standard (interface) impedances than those used during measurement.
For example, the S parameters of a module might be obtained in a 50-� mea-
surement system, but we might connect one or both terminals to a 100-� cable in
a system. Then we would need the S or T parameters for a standard impedance
of 100 � at one or both ports.

One way to determine the module parameters for new standard impedances is
to retest it with the new impedances. However, we can also compute the results
of doing this.

I.1 GENERAL CASE

Figure I.1 shows a module Ma , whose parameters are defined for a characteristic
impedance R1a at the input port and R2a at the output. The module is connected
by cables of those standard impedances to transition modules T1 and T2. At the
other sides of these transitions the system has the new standard impedances,
R1b and R2b, respectively. The transition modules represent junctions between
cables of the old and new impedances. The cables of impedance R1a and R2a are
vanishingly short; so they introduce no phase shift or loss, but they allow us to
visualize a place where the waves were defined for the old standard impedances.
Module Mb has the new standard interface impedances and corresponding new
T parameters,

Tb = T1TaT2, (1)

where Ta is the T matrix of the module in its original representation and T1 and
T2 are the T matrices for the transitions T1 and T2, respectively. The components
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R1b
R1b R2b

R2bR2aR1a
T1

Mb

Ma T2

Z0 =

Fig. I.1 Module with originally measured parameters (M12a) and with new standard
impedances (M12b).

R1b
R1b R1a

R1aZ0 = T1

Fig. I.2 Input transition module in test.

T1

Z0 = R1b Z0 = R1a

ν∼o1 = 1

ν∼o2

ν∼i1

Fig. I.3 Input transition in test.

of Ta can be obtained from the original S parameters by Eq. (2.29) and the new
S parameters can be found from Tb by Eq. (2.31). All that is needed for the
transformation is the transition matrices.

The testing of module T1 is illustrated in Fig. I.2. We choose the forward
wave at the interface within the module (Fig. I.3) to be

vo1 = 1√
R1b

, (2)

corresponding to an rms voltage of ṽo1 = 1 (units arbitrary). By Eq. (13) in
Appendix F, the reflected voltage is

ṽi1 = R1a − R1b

R1a + R1b

. (3)

The voltage at the interface equals the output wave voltage on the right of the
transition and also the sum of the two waves on the left:

ṽo2 = 1 + ṽi1 = 2
R1a

R1a + R1b

, (4)
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where Eq. (3) was substituted for ṽi1. The corresponding normalized waves are

vi1 = 1√
R1b

R1a − R1b

R1a + R1b

(5)

and

vo2 = 2√
R1a

R1a

R1a + R1b

. (6)

Parameter S11 can be obtained from the ratio between Eqs. (5) and (2) while S21

is the ratio between Eqs. (6) and (2). Measuring with the driving source at the
other port gives S22 and S12, which have similar forms. From all of this we can
write the S matrix for T1,

ST1 =




(
R1a − R1b

R1a + R1b

) (
2
√

R1aR1b

R1a + R1b

)

(
2
√

R1aR1b

R1a + R1b

) (
R1b − R1a

R1a + R1b

)


 . (7)

From Eq. (2.29) the equivalent T matrix is

TT1 = 1

2
√

R1aR1b

[
(R1a + R1b) (R1a − R1b)

(R1a − R1b) (R1a + R1b)

]
. (8)

Similarly, we can write, for T2,

ST2 =




(
R2b − R2a

R2a + R2b

) (
2
√

R2aR2b

R2a + R2b

)

(
2
√

R2aR2b

R2a + R2b

) (
R2a − R2b

R2a + R2b

)


 (9)

and

TT2 = 1

2
√

R2aR2b

[
(R2a + R2b) (R2b − R2a)

(R2b − R2a) (R2a + R2b)

]
. (10)

To summarize, we convert the T matrix for the module with the old standard
impedances to a T matrix with new standard impedances by multiplying by
transition matrices TT1 before and TT2 behind. We use Eqs. (2.29) to change
from S to T parameters initially and (2.31) and to change back to S parameters
after the multiplication. If only one interface impedance is changed, the other
corresponding T matrix will be missing from Eq. (1).

I.2 UNILATERAL MODULE

We can obtain some properties of the S parameters of transformed (by changes
in standard impedances) unilateral modules. The transformed module is still
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unilateral so S12b = S12a = 0. If this is not apparent, it can be seen from Table S.1
in Appendix S. Limits on the SWR of a unilateral module transformed at either
end can be obtained from Section F.3. For example, the maximum SWR of a
module Ma with a transformation at the input is the product of the SWR of T1

and that of Ma , where SWR is obtained for each module from ρ by Eq. (16)
in Appendix F and ρ = S11. The same is true at the output (but ρ = S22 there).
On the untransformed side the reflection is unchanged (Snna = Snnb) as a conse-
quence of unilaterality, which can be seen also from Table S.1. As a result, if
impedance change occurs at both ends, the limits of the resulting SWRs are the
same as if the transformations had occurred separately (i.e., as described above).

We can obtain the transformed forward transfer ratio for a change of standard
impedance at the module input from Table S1 and Eq. (7) as

S21b|�in = S21a

2
√

x

x + 1 + S11a(x − 1)
, (11)

where

x
�= R1a

R1b

, (12)

and, for a change at the output, as

S21b|�out = S21a

2
√

y

y + 1 + S22a(y − 1)
, (13)

where

y
�= R2a

R2b

. (14)

Since S22 is not changed by a transformation at the input (nor is S11 with a
change at the output), we can use Eqs. (11) and (13) together to give the results
of a change in standard impedance at both ends {S21b|�in in Eq. (11) becomes
S21a for Eq. (13)}:

S21b = S21a

4
√

xy

[x + 1 + S11a(x − 1)][y + 1 + S22a(y − 1)]
. (15)



APPENDIX L

POWER DELIVERED TO THE LOAD

This development is referenced in Section 2.3.2.2. We will neglect cable loss here.
The ratio of the forward power at the cable output to the power injected by

the source is, based on Eq. (2.40),

po,j+1

pojT

= |acbl,j |2. (1)

The limits of this ratio are given by Eqs. (2.55) and (2.56), which, for the lossless
case, give

1

(1 + |aRT|)2
≤ po,j+1

pojT

≤ 1

(1 − |aRT|)2
. (2)

This can also be written in terms of the reflection coefficients at the cable ends as

1

(1 + |S11,j+1S22,j−1|)2
≤ po,j+1

pojT

≤ 1

(1 − |S11,j+1S22,j−1|)2
. (3)

The power reflected at the load module input is po,j+1 multiplied by the reflection
|S11,j+1|2, so the power absorbed by the load is what remains:

1 − |S11,j+1|2
(1 + |S11,j+1S22,j−1|)2

≤ pabsorbed,j+1

pojT

≤ 1 − |S11,j+1|2
(1 − |S11,j+1S22,j−1|)2

. (4)
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APPENDIX M

MATRIX MULTIPLICATION

First we will multiply a vector by a matrix. The matrix is

Ma =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 (1)

and the vector is

V1 =

 v1

v2

v3


 . (2)

We have given, to the matrix elements, subscripts that correspond to their row
and column numbers, respectively. The product, V2 = Ma × V1, is

V2 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33





 v1

v2

v3


 =


 (a11v1 + a12v2 + a13v3)

(a21v1 + a22v2 + a23v3)

(a31v1 + a32v2 + a33v3)


 . (3)

Each summation has been placed in parentheses to emphasize that a single number
is formed by the summation.

We can envision this result as being obtained as follows. The first row of Ma

is rotated a quarter turn clockwise and the resulting column is placed against V1.
Then adjacent elements (e.g., a11 and v1) are multiplied. The three products so
obtained are then added to give the first element in V2. In general, the element
of V2 in its rth row and cth column is obtained by multiplying the rth row of
Ma by the cth column of V1 in this manner. In this case, since there is only one
column in V1, V2 turns out to be a one-column vector.
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Two matrices are multiplied following the same rules. Let

Mb =

 b11 b12 b13

b21 b22 b23

b31 b32 b33


 . (4)

The product, Mc = Ma × Mb, is

Mc ≡

c11 c12 c13

c21 c22 c23

c31 c32 c33


=


a11 a12 a13

a21 a22 a23

a31 a32 a33





b11 b12 b13

b21 b22 b23

b31 b32 b33


 (5)

=

(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32) (a11b13 + a12b23 + a13b33)

(a21b11 + a22b21 + a23b31) (a21b12 + a22b22 + a23b32) (a21b13 + a22b23 + a23b33)

(a31b11 + a32b21 + a33b31) (a31b12 + a32b22 + a33b32) (a31b13 + a32b23 + a33b33)


 .

(6)

The elements of Mc can be formed in the same manner as were those of V2.
For example, c23, the element of Mc in the second row and third column, can
be obtained by rotating the second row of Ma clockwise a quarter turn, placing
it against the third column of Mb, multiplying adjacent pairs and adding the
three results.

We can see from Eq. (6) that, in general,

Ma × Mb �= Mb × Ma (7)

because one side of this inequality differs from the other in that the a’s and
b’s in Eq. (6) would be interchanged, but the subscripts would not and none of
the elements of Mc would remain the same under such a change. (That is, the
symbols would be different. It is possible that the numerical values might turn
out to be the same.)



APPENDIX N

NOISE FACTORS—STANDARD
AND THEORETICAL

This appendix contains details of noise factor relationships discussed in Chapter 3.
Figure N.1a represents a module with a noise source. The noise source, a′

kvnk,
is shown at the output, but we can also think of an equivalent source at the
input, as in Fig. N.1b. These models are equivalent to a standard Z-parameter
representation (Linvill and Gibbons, 1961, p. 211) with added noise source, as
shown in Fig. N.1c. The source vnk is placed so it will not interact with the source
driving impedance (or the load). All of the figures represent isolated noise sources
in that respect.

We ignore the feedback (reverse transmission) represented by Z12k . Its value
is zero for unilateral modules but, even in bilateral modules, it would appear
to have no effect on spot noise figure. If some value of S/Nout occurs when
Z12k = 0, when Z12k �= 0 the same ratio between signal and noise will occur in
the fed-back signal and in any reflection thereof. Therefore, the feedback will
have the same effect on the signal as on noise at the same frequency and their
ratio will not be altered.

N.1 THEORETICAL NOISE FACTOR

Although vnk does not here change with source impedance, its contribution to
noise factor will. Theoretically, when the module is tested, it should have the
same source impedance as it will see in the cascade, that is, the output impedance
of the previous stages, Z22(k−), as shown in Fig. 3.1. (If stage k − 1 is unilateral,
k− can be replaced by k − 1.) We define eadded,s to be a voltage in the source
(Fig. N.2) that would produce vnk across R11k . We can see that it is related
to vnk by

vnk = eadded,s γ̂ , (1)
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ek

jX11k

(Z12ki2k)

R11k

i2k

R22k jX22k

a′kvnk

a′kek

i2k

jX11k

(Z12ki2k)

R11k

R22k jX22k

a′kekek vnk

i2k

jX11k jX22k

(Z12ki2k)

R11k

R22k

inki′1k

R11k

vnkink =

Z21ki′1k

=Z21k a′kR11k

(c)

(a)

(b)

Fig. N.1 Module with isolated noise source. The three models are equivalent. The rep-
resentation at (c) is the standard Z-parameter model with the noise source added.

Source

ek

Signal

Noise

Equiv.
added
noise

esignal,s

enoise,s

eadded,s

R22(k−) jX22(k−) jX11k

(Z12ki2k)

R11kvnk

Fig. N.2 Source with equivalent added noise source.

where

γ̂ = R11k

R11k + R22(k−) + j (X11k + X22(k−))
. (2)

Thus, having eadded,s in the source is equivalent to having vnk in the module in
that either would produce the observed module output noise. When tested into
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a matched load (Fig. 3.1), the theoretical noise source would produce a voltage
eadded,s/2 across the load resistor where, from Eq. (1),

eadded,s = vnk

γ̂
. (3)

For this ideal definition of noise factor, Eq. (3.2) becomes

f̂k = Psignal,k/(kT0B)

gakPsignal,k

/{
gak

(
kT0B + |vnk/γ̂ |2

4R22(k−)

)} (4)

= 1 + v2
nk

|2γ̂ |2R22(k−)(kT0B)
, (5)

where gak is available power gain for module k and vnk is the effective (rms)
value of the noise voltage.

We can get f̂k either by computing the signal and noise powers delivered at
the output of the module or by comparing the total noise power theoretically
dissipated in the matched source to the available thermal noise there.

The theoretical noise factor is valuable because it can be used in a cas-
cade where such noise factors are divided by the preceding available gain (see
Appendix G) to accurately determine the equivalent available noise in the source
and, thus, the system noise factor. However, in our standard cascades of unilat-
eral modules (Section 2.3.3), we use transducer gain, rather than available gain,
and neither gain is known precisely due to reflections in the cascade. Moreover,
the theoretical noise factor is not normally measured, due to the requirement
to customize the test for each particular source impedance R22(k−) that will be
seen in use. (Cases where it is given will be discussed in Section N.7.) What is
commonly measured, fortunately, is consistent with our standard cascade.

N.2 STANDARD NOISE FACTOR

When the module is tested with standard interface impedances, as in Fig. N.3, the
equivalents of Eqs. (2)–(5) are (assuming negligible cable losses in the setup)

γ = R11k

R11k + R0 + jX11k

, (6)

eadded,s = vnk

γ
, (7)

and

fk = 1 + v2
nk

|2γ |2R0(kT0B)
. (8)
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Signal

Source

Transducer power gain

Module under test Standard impedance load

Standard impedance load

Noise

esignal,s

enoise,s vsignal,s + vnoise,s

vok  = vsignal,s + vnoise,s

R0

R22kjX11k

ek vnk R11k
a'kek

(Z12ki2k)

jX22k

i2k

R0

R0

v2
signal,s

psignal,o,k = R0

psignal,o,(k+1)T

= k−T0B

v2
noise,s

pnoise,o,k = R0

Cables
Z0 = R0

= gpower,k psignal,o,k

pnoise,o,(k+1)T

= gpower,k  fk(k
−

T0B)

Fig. N.3 Noise figure test, typical (cable loss neglected or compensated).

Therefore, the relationship between the theoretical noise factor and the tested
noise factor is given by

f̂k − 1

fk − 1
= |γ |2R0

|γ̂ |2R22(k−)

(9)

= {[R11k + R22(k−)]2 + [X11k + X22(k−)]2}/R22(k−)

{[R11k + R0]2 + X2
11k}/R0

(10)

= |Z11k + Z22(k−)|2/R22(k−)

|Z11k + R0|2/R0
. (11)

This shows how the theoretical noise factor f̂k differs from the commonly mea-
sured noise factor fk . Either may be larger, and one approximates the other to
the degree that the preceding module has standard output impedance R0.

N.3 STANDARD MODULES AND STANDARD NOISE FACTOR

We will now show that fk − 1 represents the noise power, incident on a unilateral
module, that would produce the same output noise level that is actually produced
by the module, normalized to kT0B. (This differs from (f̂k − 1), which represents
available noise power.)

Assuming unilaterality, the reflection coefficient at the module input is [Appen-
dix F, Eq. (13)]

S11k = R11k + jX11k − R0

R11k + jX11k + R0
(12)
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so the ratio of the noise power pnk dissipated in the module to the incident
forward noise power pnok is

pnk

pnok

= (1 − |S11|2) = 1 − (R11k − R0)
2 + X2

11k

(R11k + R0)
2 + X2

11k

(13)

= 4R11kR0

(R11k + R0)2 + X2
11

= |2γ |2 R0

R11k

. (14)

If pnok is the incident noise power that produces the same noise at the module
output as does the internal source vnk, then it would produce noise power

pnk = v2
nk

R11k

(15)

in R11k . From Eq. (14), its level would be

pnok = v2
nk

R11k

1

|2γ |2
R11k

R0
= v2

nk

R0

1

|2γ |2 . (16)

The ratio of this incident wave power to thermal noise power is

pnok

kT0B
= v2

nk

|2γ |2R0(kT0B)
, (17)

which, from Eq. (8), is related to the tested noise factor by

pnok

kT0B
= fk − 1. (18)

Thus fk − 1 does represent the incident wave power that would produce the
added noise. Dividing it by the ratio of forward power, at the module input, to
available power from the cascade source gives the equivalent available source
noise for use in cascade analysis (all relative to kT0B).

N.4 MODULE NOISE FACTOR IN A STANDARD CASCADE

We use Fig. 3.2 to illustrate the equivalence between the noise factor measured
in the module test and the noise factor used in obtaining the correct system noise
level. Switch position 1 is used to measure source signal and noise power and,
theoretically (it cannot be done experimentally), to measure the equivalent added
noise power from the source (Fig. N.2).

Switch position 3 sends the same forward power to the module as was sent to
(and absorbed in) the matched load in position 1. Multiplying by the module’s
transducer gain, we obtain the power, po(k+1) = |ṽo(k+1)|2/R0 = |vo(k+1)|2, in the
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test load. By comparing the S/N in po(k+1) to that in pok , we determine what
relative increase in the noise power in pok would substitute for the module’s
internal noise [Eq. (18)].

This equivalent increase in pok is the same when the module is in the (standard)
cascade. With the switch in position 2, this equivalent increase in incident noise
power is related to the equivalent available noise power in the cascade source
by the gain from the incident wave at the first module to the incident wave at
module k. The output termination is different in the cascade than during test but
that, presumably, does not affect the ratio between signal and noise, nor does
it affect the module input, since modules in a standard cascade are unilateral.
Thus the usually tested noise factor is the correct value to use in our standard
cascade analysis (Section 2.3.3), where the gains are the ratios of forward waves
(Fig. 2.5).

As further evidence of the validity of this approach, we can show (Section N.8)
that the ratio of the power gain used with fk (gain to the forward wave in the
preceding cable) to that used with f̂k (available gain at that cable’s output) is
given by Eq. (11). Therefore, the effective increase in noise factor referred to
the cascade input, obtained by division of f − 1 by cascade gain, is the same
using either f̂k and available gain or using fk and the gain to the forward wave
in the interconnect cable. Thus the increase in cascade noise factor using either
the theoretical or standard-cascade method is the same.

N.5 HOW CAN THIS BE?

How can this measure f be better than the theoretical noise factor f̂ ? Because
it matches our analysis, which has already given up precision in exchange for an
estimate of mean values and variations therefrom. If we knew all of the module
parameters and had the theoretical noise factors, we could use them to obtain
precise results.

N.6 NOISE FACTOR OF AN INTERCONNECT

An interconnect is an attenuator with phase shift. Assume it is at a temperature of
T0. We then know that the noise factor of an attenuator with attenuation 1/g2 in
a matched cascade is its attenuation. This is because the noise is the same at the
output of the attenuator as at its input, both values being the noise available from
R0, but the signal power is lower by the attenuation at the output. Therefore, the
noise factor is

f2 = (S/N)in/(S/N)out = 1/g2. (19)

We know this without considering the details of the construction of the attenuator,
whether it is a π or a T network, for example, or what values of resistors
are used.
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N.6.1 Noise Factor with Mismatch

We will use the circuit shown in Fig. N.4 to find f2 when the interconnect is
driven from a mismatch. It is not necessary to terminate the circuit in the char-
acteristic impedance R0 of the interconnect — the output S/N will be the same
regardless of the load — but terminating the line in R0 helps us to incorporate g2

into the expression for f2, as is done in a matched cascade. We assume initially
that the interconnect is at temperature T0.

The noise power introduced into the interconnect from the source is

Nin = 4NT Rs

(
R0

|Zs + R0|
)2 1

R0
= 4NT RsR0

|Zs + R0|2 , (20)

where
NT = kT0B. (21)

The noise power at its output is similar but relates to the impedance Zout seen
(looking back into the attenuator) there:

Nout = 4NT RoutR0

|Zout + R0|2 . (22)

The noise factor is

f2 = (S/N)in

(S/N)out
= Sin

Sout

Nout

Nin
(23)

= 1

g2

Rout

Rs

|Zs + R0|2
|Zout + R0|2 . (24)

This is the factor by which mean-square noise voltage v2
n in Fig. N.4 would

have to be multiplied to produce the observed (S/N)out from the interconnect if
the interconnect were noiseless. The part due to the interconnect (removing the
source noise) will be v2

n(f2 − 1).
When the interconnect noise is referred further back the chain, what added

noise, driving the module with output impedance Zs (Source in Fig. N.4), would

Zs

Source

RsXs

v2
s

v2
n

= 4NTRs

r1 r2, ZoutR0
g2

Interconnect

R0Attenuator

Fig. N.4 Interconnect driven from mismatch.
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be equivalent to v2
n(f2 − 1) in series with v2

n and Zs? It would have a value
(f2 − 1)NT /ga1, where ga1 is the available gain of the source module. We know
this because the available gain is measured into Rs so v2

n delivers v2
n/(4Rs) = NT .

Therefore, (f2 − 1)v2
n must deliver (f2 − 1)NT . However, the gain we are using

for the module is its transducer gain into R0. We need an effective noise factor feff

for the interconnect that will give us the correct equivalent cascade input noise
when we follow the normal procedure of dividing (feff − 1) by the transducer
gain, gt1. Expressing this mathematically, we require

(f2 − 1)NT /ga1 = (feff − 1)NT /gt1 (25)

or

fcbl ≡ feff = 1 + gt1

ga1
(f2 − 1) (26)

= 1 + gt1

ga1

(
1

g2

Rout

Rs

|Zs + R0|2
|Zout + R0|2 − 1

)
. (27)

N.6.2 In More Usable Terms

Now we must perform the tedious task of writing Eq. (27) in more useable terms,
using the variables we have available to our system analysis. Fortunately, we will
find that the expression will simplify in the process.

Let the rms voltage vs (Fig. N.4) be produced as a result of an input pin to
the source module. The available gain of the source module is the ratio of the
power into a matched load to pin. Half of the source voltage is applied across
the real part of the matched load so the source module’s available power gain is

ga1 = v2
s

4Rspin
. (28)

Its transducer power gain is the ratio of the power into R0 to pin:

gt1 = v2
s

pin

R0

|Zs + R0|2 . (29)

Therefore, the ratio of gains for the source module is

gt1

ga1
= 4RsR0

|Zs + R0|2 . (30)

The source output impedance can be written, using Eq. (23) in Appendix F, as

Zs = 1 + ρ1

1 − ρ1
R0. (31)
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The denominator in Eq. (30) is

|Zs + R0|2 = R2
0

∣∣∣∣1 + 1 + ρ1

1 − ρ1

∣∣∣∣
2

= R2
0

∣∣∣∣ 2

1 − ρ1

∣∣∣∣
2

= 4R2
0

(1 − ρ1)(1 − ρ∗
1 )

(32)

= 4R2
0

1 − 2|ρ1| cos ϕ1 + |ρ1|2 , (33)

where ϕ1 is the phase of ρ1. Rs , the real part of Zs , can be written, from
Eq. (31), as

Rs = Re Zs = Re
(
R0

1 + ρ1

1 − ρ1

)
= R0 Re

(
1 + ρ1

1 − ρ1

1 − ρ∗
1

1 − ρ∗
1

)
(34)

= R0

(
1 − |ρ1|2

1 − 2|ρ1| cos ϕ1 + |ρ1|2
)

. (35)

Substituting Eqs. (33) and (35) into (30), we obtain

gt1

ga1
= 1 − |ρ1|2, (36)

which is essentially the same Eq. (3.36).
This can also be obtained by comparing eqs. (3.2.2) and (3.2.4) in Gonzalez

(1984, p. 92), using �L = 0 because gt is into R0.
When there is attenuation, Eq. (58) in Appendix F becomes

Zin(−d) = 1 + ρe−2(α+jϕ)

1 − ρe−2(α+jϕ)
R0, (37)

where α is attenuation (in nepers) and ϕ is phase shift in the interconnect (both
one-way). Writing this in terms of our current variables, it becomes

Zout = 1 + ρ1g2e
−j2ϕcbl

1 − ρ1g2e−j2ϕcbl
R0. (38)

Following the procedure that produced Eq. (33), we obtain

|Zout + R0|2 = 4R2
0

1 − 2|ρ1|g2 cos θ + |ρ1|2g2
2

, (39)

where

θ = ϕ1 − 2ϕcbl, (40)
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and ϕcbl is the one-way phase shift through the interconnect. Similarly, we can
obtain Rout in the same manner in which we obtained Rs :

Rout = R0

(
1 − |ρ1|2g2

2

1 − 2|ρ1|g2 cos θ + |ρ1|2g2
2

)
. (41)

Inserting Eqs. (33), (35), (36), (39), and (41) into Eq. (27), we obtain

fcbl = 1 + (1 − |ρ1|2)




1

g2

R0

(
1 − |ρ1|2g2

2

1 − 2|ρ1|g2 cos θ + |ρ1|2g2
2

)

R0

(
1 − |ρ1|2

1 − 2|ρ1| cos ϕ1 + |ρ1|2
)

×
4R2

0

1 − 2|ρ1| cos ϕ1 + |ρ1|2
4R2

0

1 − 2|ρ1|g2 cos θ + |ρ1|2g2
2

− 1


 (42)

= 1 + (1 − |ρ1|2)
(

1/g2 − |ρ1|2g2

1 − |ρ1|2 − 1
)

(43)

= 1/g2 + |ρ1|2(1 − g2). (3.27)

We can see that the noise factor reduces to the appropriate value in the absence
of a mismatch (i.e., ρ1 = 0).

In terms of SWR, we can write Eq. (3.27) as

fcbl = 1

g2
+

(
SWR1 − 1

SWR1 + 1

)2

(1 − g2). (3.28)

In accordance with Section 3.5, the noise factor when the temperature of the
interconnect differs from T0 is

fcbl(T �= T0) = 1 + (fcbl − 1)T /T0. (3.29)

N.6.3 Verification

Figure N.5 represents a small system that we can use to verify Eq. (3.27).
Figure N.6 shows a spreadsheet that compares results from circuit analysis to
results using Eq. (3.27). The upper part of the spreadsheet contains calculations
for a π attenuator matched to 1 �, as shown in Fig. N.5. The figure shows results
for a 6-dB attenuator and several source and load resistances, including a 1-�
match. The lower part of the spreadsheet computes the system noise factor using
Eq. (3.27) for the noise factor of the attenuator and using the transducer gain of
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b branch a branch

v2
s = 4NT

v2
n0 = 4NT

Ideal amp
g = 1

Zin = ∞

Zout = 0

1Ω
1Ω

= 4NT Rs

v2
n1

r1RsXs

Module 1

Source Interconnect
module 2

       attenuator
(noise sources not shown) c branch

RL

Zs

Fig. N.5 System with attenuator, R0 = 1 � (ν values are rms).

A B C D E F G H I
1
2
3
4 signal v2 in source 4 4 4 4
5 shunt R(b,a) 3.0095 3.0095 3.0095 3.0095
6 v2

v2

v2

12.038 12.038 12.038 12.038
7 series R(c) 0.74704 0.74704 0.74704 0.74704
8 2.98816 2.98816 2.98816 2.98816
9 source R (Rs) 1 2 0.5 3

10 8 12 6 16
11 load R (RL) 1 3 0.5 0.5
12 shunt out R 0.75059234 1.50237125 0.42876478 0.42876478
13 shunt in R 0.75059234 1.20151712 0.42876478 1.50237125
14 seen by a branch 0.59962082 1.18128804 0.35081795 0.40907144
15 seen by b branch 0.59962082 1.05869313 0.35081795 0.84472683
16 a-to-out volt ratio 0.16614041 0.28187731 0.10440022 0.11966152
17 v2 from a at out 0.33228053 0.95647707 0.13120706 0.17237066
18 b-to-out volt ratio 0.08326725 0.17381087 0.03807021 0.07992137
19 v2 from b at out 0.08346468 0.36367061 0.01744717 0.07689182
20 c-to-out volt ratio 0.33386002 0.43535278 0.26721483 0.16009582
21 v2 from c at out 0.33306783 0.56635206 0.21336587 0.07658855
22 source-to-out v ratio 0.25059278 0.26154191 0.22914462 0.08017445
23 v2 from source at out 0.50237392 0.82085003 0.31504353 0.10284708
24
25 total noise v2 at out 1.25118696 2.70734977 0.67706363 0.42869811
26 signal v2 at out 0.25118696 0.27361668 0.21002902 0.02571177
27 S/N in: 1 1 1 1
28 S/N out: 0.20075893 0.1010644 0.31020573 0.0599764
29 f = 4.98110 9.89468 3.22367 16.67322
30
31 g2 =  0.251189 = −6 dB
32 rho, input reflection: 0 0.33333333 -0.33333333 0.5
33 Eq. (3.27): fcbl =  3.98107171 4.06427297 4.06427297 4.16827454
34 f1 = 2 3 1.5 4
35 g1 = 1 0.4444444 1.77777778 0.25
36 (fcb1−1) = 2.98107171 3.06427297 3.06427297 3.16827454
37 (fcb1−1)/g1 = 2.98107171 6.89461418 1.72365354 12.6730982
38 f1 + (fcb1−1)/g1 = f = 4.98107 9.89461 3.22365 16.67310
39
40 relative difference: −5.4E−06 −6.8E−06 −4.2E−06 −7.5E−06
41 accuracy of shunt Rs 1.7E−05
42 accuracy of series R 6.7E−05
43
44
45
46

Resistor values take from
E.C. Jordan, ed., Reference Data for Engineers, Radio, Electronics, Computers, and Communications, Seventh Ed.
(Indianapolis, IN: Howard W. Sams & Co., 1986) p. 11−5.

−6 dB pad driven by R = 1 through ideal amp with source output resistance.
Powers normalized to kT 0B.
DETAILED NOISE CALCULATIONS

CALCULATIONS FROM DEVELOPED FORMULA, Eq. (3.27)

Fig. N.6 Comparison of formula to detailed noise calculations, 6-dB attenuator with
various sources and loads.
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the preceding module. The noise factors computed by the two methods are very
close, the relative differences being on the order of inaccuracies in the resistor
values due their truncation to four significant digits. Two other pages of the same
spreadsheet show similar results for 3- and 20-dB attenuators, and another page
shows the correspondence for the 6-dB attenuator with arbitrary temperature.

In these spreadsheets, a change in the value of load resistor (line 11) produces
changes in many other cells, but the system noise figure, which incorporates these
changing values, remains unchanged. The net effect is zero because the output
signal and noise are affected similarly so their ratio does not change.

N.6.4 Comparison with Theoretical Value

Figure N.7 shows a module with an output reflection connected to a cable, which
is terminated in its characteristic impedance R0. The module is matched at its
input. The noise factor for a cable with an input mismatch must produce the same
effective increase in the source noise whether its value is that for a standard cas-
cade or the theoretical value, each used within its corresponding system. We will
show that our value of noise factor for the standard cascade implies the cable noise
temperature given by Pozar’s (2001) expression for use in a theoretical cascade.

Equations (3.27) and (3.29) for the standard system give a noise factor of

fcbl = 1 + [1/g2 + |ρ1|2(1 − g2) − 1]T /T0. (44)

This is referred to the source by dividing by the module’s transducer gain gt , so
the equivalent source noise power is

ns = kT0
fcbl − 1

gt

= kT
1/g2 + |ρ1|2(1 − g2) − 1

gt

. (45)

Using eqs. (6.15) and (6.16) in Pozar (2001), the ratio of transducer gain to
available gain for the module, matched as shown, is

gt

ga

= 1 − |ρ1|2, (46)

R1

R0
R0

R1

Module
r1

Cable

Fig. N.7 Cable with reflection at input.
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which is the same as Eq. (36), so we can write Eq. (45) as

ns = kT
1/g2 + |ρ1|2(1 − g2) − 1

ga(1 − |ρ1|2) . (47)

In the theoretical configuration, this noise is related to the module noise by
available gain:

ns = kTe

ga

, (48)

where Te is the noise temperature of the cable (to match Pozar’s terminology).
From Eqs. (48) and (47), this noise temperature is

Te = gans

k
= 1/g2 + |ρ1|2(1 − g2) − 1

(1 − |ρ1|2) T . (49)

If we replace g2 by 1/L, as in Pozar, this is

Te = L + |ρ1|2(1 − 1/L) − 1

1 − |ρ1|2 T (50)

= L2 + |ρ1|2(L − 1) − L

L(1 − |ρ1|2) T (51)

= (L − 1)(L + |ρ1|2)
L(1 − |ρ1|2) T , (52)

which is equivalent to Pozar’s (2001) Eq. (3.87).

N.7 EFFECT OF SOURCE IMPEDANCE

In the general case, the noise factor can be affected by source impedance differ-
ently than it is with the isolated noise source we have been considering. Haus
et al. (1960b) have represented the general case by using a noise current gener-
ator and a noise voltage generator (Fig. 3.6). This results in a noise factor given
by their Eq. (27) as

f̂ = 1 + Gu

Gs

+ Rn

Gs

[(Gs + Gγ )2 + (Bs + Bγ )2], (53)

where Ys = Gs + jBs is source admittance, Yγ = Gγ + jBγ is called the cor-
relation admittance, Rn is called noise resistance, and Gu is a conductance
representing noise that is uncorrelated between the two sources. We will rewrite
this in terms of impedance so we can compare it to our expression for f̂ for the
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isolated source:

f̂ = 1 + 1

Gs

(Gu + Rn|Ys + Yγ |2) (54)

= 1 + |Zs |2
Rs

(
Gu + Rn

|Zγ + Zs |2
|Zγ Zs |2

)
(55)

= 1 + 1

Rs

(
|Zs |2Gu + Rn

|Zγ + Zs |2
|Zγ |2

)
. (56)

By substituting the equivalent Z22k− for Zs and comparing this to Eqs. (5)
and (2), we find that the isolated source can be represented by Eq. (53) if1

Gu = 0, (57)

Zγ = Z11k, (58)

and

Rn = v2
nk

4kT0B

|Z11k|2
R2

11k

. (59)

Equation (56) can be further manipulated to give Eq. (3.33), which can be rep-
resented by various circles on a Smith chart, depending on the value of f̂ (see
Section 3.8). Note that this form and this relationship between f̂ and source
impedance, which was developed to represent the dependence of noise factor on
source impedance, applies even to the isolated source that we have analyzed here.
Also note, however, how much simpler is our use of f to represent an isolated
noise source in the standard cascade.

N.8 RATIO OF POWER GAINS

Here we determine the ratio of the power gain that is used to refer f̂ to the
cascade input to that which is used to refer f there. This is used in Section N.4.

Assume a Thevenin voltage source with mean-square voltage equal to 4R22k−
watts driving the output impedance Z22k− that is seen by module k at its input.
Half of this voltage will drop across the resistor in a matched load so the power
dissipated in that resistor will be

pa = ṽ2/R22k− = 1 W. (60)

If this source drives module k, the squared voltage appearing across the input to
module k, when it is connected to the source, is

ṽ2
k = 4R22k− watts

|Z11k|2
|Z11k + Z22k−|2 . (61)
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The forward wave voltage ṽf in the cable is related to this voltage by

ṽk = ṽf |1 + S11k| = ṽf

∣∣∣∣1 + Z11k − R0

Z11k + R0

∣∣∣∣ = 2ṽf

∣∣∣∣ Z11k

Z11k + R0

∣∣∣∣ . (62)

Therefore, the square of the forward voltage is

ṽ2
f = |Z11k + R0|2

|Z11k + Z22k−|2 R22k− watts, (63)

and the corresponding power is

pf = |Z11k + R0|2
|Z11k + Z22k−|2

R22k−
R0

watts. (64)

The ratio of powers and, therefore of power gains, are therefore

ga

gf

= pa

pf

= |Z11k + Z22k−|2/R22k−
|Z11k + R0|2/R0

. (65)

This equals Eq. (11), as claimed in Section N.4.

ENDNOTE

1Equation (57) indicates that vn and in in Fig. 3.6 are completely correlated when they represent
the isolated noise source in Fig. 3.2. This is verified by circuit analysis, which shows that ek will
be produced across R11k , independently of the driving source impedance, if in = ek/R11k and vn =
ekZ11k/R11k . But then vn = inZ11k = inZγ , so vn and in are completely correlated.



APPENDIX P

IM PRODUCTS IN MIXERS

This development supports Section 7.3 and is also pertinent to Chapter 4.
In mixing, a relatively weak RF signal,

va = A cos ϕa(t), (1)

where
ϕ(t) = ωt + θ, (2)

is basically raised to the nth power and shifted in phase by mϕb(t), resulting in
a term given by Eq. (7.8). It follows that, if va should consist of two sinusoids,
the results in the mixer output would also appear in this simple form, so that an
input signal

v = v1 + v2 = k1 cos ϕ1(t) + k2 cos ϕ2(t) (3)

would produce an output proportional to

vn = (v1 + v2)
n (4)

with phases additionally shifted by mϕb(t). (This is, in general, a fixed phase
shift plus a frequency shift.) Our objective is to determine the amplitudes of
the IMs, resulting from this process, relative to the linear terms. These can be
determined by expanding Eq. (4). This expansion is well known to be

vn = (v1 + v2)
n =

n∑
i=0

c(n, i)vi
1v

n−i
2 , (5)

where c(n, i) is the binomial coefficient, the values of which are given in Table P.1.
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TABLE P.1 Binomial Coefficients

i
n 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
From Burrington (1954, p. 272).

Expanding, we obtain

vn(ϕ(t)) =
n∑

i=0

c(n, i)ki
1k

n−i
2 cosi ϕ1(t) cosn−i ϕ2(t). (6)

When the signals both have amplitude A, this becomes

vn(ϕ(t)) =
n∑

i=0

c(n, i)An cosi ϕ1(t) cosn−i ϕ2(t). (7)

This process applies directly to the IMs of Chapter 4, which are not frequency
converted. But it also applies to IMs in mixers if we account for the addition of
mϕb(t) to the phase, in which case we need vn[ϕ(t) + mϕb(t)]. However, since
we are interested in the relative amplitude of the terms, we will not bother to
show mϕb(t) explicitly.

The nth-order spurs are produced by the terms with i = 0 or i = n,

vn = An cosn ϕj (t), (8)

where j is 1 or 2. This term can be expanded to give

vn = An

{
1 + cos[2ϕj (t)]

2

}
cosn−2 ϕj (t) (9)

= An

{
3 cos ϕj (t) + cos[3ϕj (t)]

22

}
cosn−3 ϕj(t). (10)
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Repeating this process n − 3 more times gives

vn = · · · + An cos[nϕj(t)]

2n−1
. (11)

This last term is the nth-order spur with amplitude given in the spur-level table.
The terms not shown are at lower frequencies. This frequency ωj also occurs in
other terms in Eq. (4.1) but with amplitudes raised to higher powers. As a result,
at sufficiently low signal levels the term shown in Eq. (11) dominates.

For n odd, we can see from Table P.1 that the strongest IMs have i = (n ±
1)/2. These are also the most troublesome producing frequencies near ω1(t) and
ω2(t). We can expand the corresponding term in Eq. (7), by applying the process
that we used to obtain Eq. (11) to each of its two cosines, to give

vn,(n±1)/2(ϕ(t)) = Anc[n, (n − 1)/2] cos(n−1)/2 ϕ1(t) cos(n+1)/2 ϕ2(t) (12)

= · · · + Anc[n, (n − 1)/2]
cos

[
(n − 1)ϕ1(t)/2

]
cos

[
(n + 1)ϕ2(t)/2

]
2n−2

(13)

≈ Anc[n, (n − 1)/2]

{
cos([(n − 1)ϕ1(t) + (n + 1)ϕ2(t)]/2)

+ cos([(n − 1)ϕ1(t) − (n + 1)ϕ2(t)]/2)

}

2n−1
(14)

= An c[n, (n − 1)/2]

2n−1

{
cos({ϕ2(t) − ϕ1(t) + n[ϕ2(t) + ϕ1(t)]}/2)

+ cos({ϕ1(t) + ϕ2(t) + n[ϕ2(t) − ϕ1(t)]}/2)

}
. (15)

The amplitude of these IMs, relative to the nth-order spur from Eq. (11) is the
binomial coefficient

r = c

(
n,

n − 1

2

)
. (16)

For n = 3, Eq. (15) is

v3,(1 or 2) = A3 3

4

{
cos

(
0.5[ϕ2(t) − ϕ1(t)]
+1.5[ϕ2(t) + ϕ1(t)]

)
+ cos

(
0.5[ϕ1(t) + ϕ2(t)]
+1.5[ϕ2(t) − ϕ1(t)]

)}

(17)

= A3 3

4

{
cos[ϕ1(t) + 2ϕ2(t)] + cos{ϕ2(t) + [ϕ2(t) − ϕ1(t)]}

}
, (18)

representing the IMs f and c or IMs d and g in Fig. 4.6, depending on whether
ϕ2 is a parameter of a or b.

With n even, the largest IM will be for i = n/2 and the equivalent of Eq. (15)
will be

vn,n/2(ϕ(t)) ≈ An
c
(
n,

n

2

)
2n−1

{
cos

(n

2
[ϕ2(t) + ϕ1(t)]

)
+ cos

(n

2
[ϕ2(t) − ϕ1(t)]

)}
.

(19)
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The amplitude, relative to the spur is

r = c
(
n,

n

2

)
. (20)

We can represent both Eq. (16) and (20) by saying that the ratio of the largest
nth-order IMs to the nth order spur is

r = c[n, int(n/2)]. (21)

For n = 2, Eq. (19) is represented by c and e in Fig. 4.2.
The RF is shifted by the LO phase and frequency ϕb(t) to produce the IF.

After the IMs are created, they are shifted by the same amount to accompany
the signal through the conversion. The 1 × n spur is the converted nth harmonic
of the RF, and the IM level is related to that spur (or harmonic) level by r or
R = 20 dB log10 (r). The 1 × n spur level, relative to the desired signal, can be
obtained as the negative of the corresponding value in the spur table; R is added
to that to give the level of the largest IM relative to the signal.

These IM levels are related to the signal level so we need not specify whether
the levels are before or after conversion (assuming the IMs receive the same
conversion loss as the signal). When we express the process in terms of IPs, we
must specify whether we are referring to output levels or equivalent input levels.



APPENDIX S

COMPOSITE S PARAMETERS

We develop here the S parameters for a composite of two modules in terms of
the parameters of the individual modules and show the effects of unilaterality in
one of the individual modules. Results are referenced in Chapter 2.

Equations (2.6) and (2.7) are

vi,j = S11j vo,j + S12j vi,j+1, (2.6)

vo,j+1 = S21j vo,j + S22j vi,j+1. (2.7)

Written for j = 1 and j = 2, they are

vi,1 = S111vo,1 + S121vi,2, (1)

vo,2 = S211vo,1 + S221vi,2, (2)

vi,2 = S112vo,2 + S122vi,3, (3)

and
vo,3 = S212vo,2 + S222vi,3. (4)

Rearranging Eq. (1), we obtain

vi,2 = vi,1 − S111vo,1

S121
. (5)

Rearranging Eq. (4), we obtain

vo,2 = vo,3 − S222vi,3

S212
. (6)
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Equations (2) and (6) can be combined to give

vo,3 − S222vi,3

S212
= S211vo,1 + S221vi,2, (7)

which can be combined with Eq. (5) to give

vo,3 − S222vi,3

S212
= S211vo,1 + S221

vi,1 − S111vo,1

S121
(8)

=
(
S211 − S111S221

S121

)
vo,1 + S221

S121
vi,1. (9)

This can be rearranged to give

vo,3 = S212

[(
S211 − S111S221

S121

)
vo,1 + S221

S121
vi,1

]
+ S222vi,3. (10)

Equations (3) and (5) can be combined to give

vi,1 − S111vo,1

S121
= S112vo,2 + S122vi,3, (11)

which can be combined with Eq. (6) to give

vi,1 − S111vo,1

S121
= S112

vo,3 − S222vi,3

S212
+ S122vi,3 (12)

= S112

S212
vo,3 +

(
S122 − S112S222

S212

)
vi,3. (13)

This can be combined with Eq. (10) to give

vi,1 − S111vo,1

S121
= S112

S212




S212




(
S211 − S111S221

S121

)
vo,1

+S221

S121
vi,1


 + S222vi,3




+
(
S122 − S112S222

S212

)
vi,3 (14)

= S112

{(
S211 − S111S221

S121

)
vo,1 + S221

S121
vi,1

}
+ S122vi,3, (15)

which can be rearranged to give

vi,1

S121
(1 − S112S221) =

(
S111

S121
+ S112S211 − S111S112S221

S121

)
vo,1 + S122vi,3, (16)
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and

vi,1 =
(
S111 + S112S121S211

1 − S112S221

)
vo,1 + S121S122

1 − S112S221
vi,3. (17)

Since port 3 is the output of the composite, this can be written

vi,1,comp = S11,compvo,1,comp + S12,compvi,2,comp, (18)

where

S11,comp = S111 + S112S121S211

1 − S112S221
, (19)

and

S12,comp = S121S122

1 − S112S221
. (20)

Substituting Eq. (17) into Eq. (10), we obtain

vo,3 = S212




(
S211 − S111S221

S121

)
vo,1

+S221

S121




(
S111 + S112S121S211

1 − S112S221

)
vo,1

+ S121S122

1 − S112S221
vi,3







+ S222vi,3 (21)

= S212




S211 − S111S221

S121

+S111S221

S121
+ S112S221S211

1 − S112S221




vo,1 +



S222

+S122S212S221

1 − S112S221


 vi,3 (22)

= S212S211

1 − S112S221
vo,1 +

{
S222 + S122S212S221

1 − S112S221

}
vi,3. (23)

Since port 3 is the output of the composite, this can be written

vo,2,comp = S21,compvo,1,comp + S22,compvi,2,comp, (24)

where

S21,comp = S212S211

1 − S112S221
, (25)

and

S22,comp = S222 + S122S212S221

1 − S112S221
. (26)

We can now write Eqs. (19), (20), (25), and (26) for the particular conditions
of the second module being unilateral (S122 = 0) and for the first module being
unilateral (S121 = 0). See Table S.1.
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TABLE S.1 S Parameters for Composite of Two Modules

General

Module 1
Unilateral
(S121 = 0)

Module 2
Unilateral
(S122 = 0)

S11,comp S111 + S112S121S211

1 − S112S221
S111 S111 + S112S121S211

1 − S112S221

S12,comp
S121S122

1 − S112S221
0 0

S21,comp
S212S211

1 − S112S221

S212S211

1 − S112S221

S212S211

1 − S112S221

S22,comp S222 + S122S212S221

1 − S112S221
S222 + S122S212S221

1 − S112S221
S222



APPENDIX T

THIRD-ORDER TERMS
AT INPUT FREQUENCY

This development supports Section 5.1.4.2.
In the presence of additional frequencies, the first part of Eq. (4.20) becomes

a3

4




(3A3 + 6AB2 + 6AC2 + 6AD2 + · · ·) cos ϕa(t)

+(3B3 + 6BA2 + 6BC2 + 6BD2 + · · ·) cos ϕb(t)

+(3C3 + 6CA2 + 6CB2 + 6CD2 + · · ·) cos ϕc(t) + · · ·


 . (1)

All of the squared amplitudes are from two terms at the same frequency whose
frequencies subtracted to give zero (DC).

Consider the input power spectrum in Fig. 5.2 to be divided into n equally
wide contiguous bands so the mean-square voltage equivalent of the power pi in
each is

|ṽi |2 = pR

n
, (2)

where p is the total input power, R is the resistance in which it is dissipated,
and ṽi has a magnitude and phase like ṽx in Eq. (2.15). We will let these bands
shrink enough so the signal represented by the power in each band is essentially
constant over the time of interest. Then the term in Eq. (1) at the input frequency
fi would have

√
2ṽ3i = a3

4

{
3

(
2pR

n

)3/2

+ 6
n∑

i=2

(
2pR

n

)3/2
}

ejθi , (3)

where i = a, b, c . . . in Eq. (1).

353

Practical RF System Design. William F. Egan
Copyright  2003 John Wiley & Sons, Inc.

ISBN: 0-471-20023-9
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As n becomes large, and, as a result, ṽi becomes small, the first term becomes
negligible and the rms voltage at frequency fi becomes

ṽ3i ≈ 1√
2

a3

4
6n

(
2pR

n

)3/2

ejθi = 3a3
(pR)3/2

√
n

ejθi . (4)

As in Eq. (4.20), the term with this rms value is coherent with the term at the
same frequency from the first-order response:

ṽ1i ≈ a1√
2

(
2pR

n

)1/2

ejθ = a1
(pR)1/2

√
n

ejθ . (5)

The fundamental output power due to the sum of these voltages is

pi = p1T

n
= |ṽ1i + ṽ3i |2

R
= |a1(pR)1/2 + 3a3(pR)3/2|2

nR
(6)

= |a2
1(pR) + 6a1a3(pR)2 + 9a2

3(pR)3|
nR

(7)

= a2
1

∣∣∣∣∣
p

n
+ 6

a3

a1
Rp

(p

n

)
+ 9

(
a3

a1

)2

R2p2
(p

n

)∣∣∣∣∣ (8)

= p1

n

∣∣∣∣∣1 + 6
a3

a1
Rp + 9

(
a3

a1

)2

R2p2

∣∣∣∣∣ , (9)

where p1T is total power at the fundamental, and p1 (= |a1|2p) is the power due
to the first-order term.

We can divide both sides above by the bandwidth represented by each pi ,
B/n, thereby changing p1/n to the PSD of the first-order response, S1. Then,
using Eq. (4.27), the total two-sided PSD in Fig. 5.7 is

S1T

2
= S1

2

[
1 + 6 sign

(
a3

a1

) (
2

3pIIP3,IM

)
p + 9

(
2

3pIIP3,IM

)2

p2

]
(10)

= S1

2

∣∣∣∣∣1 + 4 sign
(

a3

a1

) (
p

pIIP3,IM

)
+ 4

(
p

pIIP3,IM

)2
∣∣∣∣∣ . (11)

Thus ε in Fig. 5.7 is

ε = 4
(

S1

2

) [
sign

(
a3

a1

) (
p

pIIP3,IM

)
+

(
p

pIIP3,IM

)2
]

. (5.20)



APPENDIX V

SENSITIVITIES AND VARIANCE
OF NOISE FIGURE

This appendix is referenced several places in Chapter 3.
From Eq. (3.14) we know that the cascade noise factor fcas is a function of

module and cable noise factors and gains. From Eqs. (3.28) and (2.46), we know
that the cable noise factors and gains are both functions of the module SWRs.
We can write this complex dependence symbolically as

Fcas = F(fi, gi, SWRi ). (1)

We can write a Taylor series for small changes in Fcas retaining only the first
derivatives, based on an assumption of small changes in the individual variables:

dFcas =
∑

i

[
∂Fcas

∂fi

dfi + ∂Fcas

∂gi

dgi + ∂Fcas

∂SWRi

dSWRi

]
. (2)

Since dFcas is composed of these small changes, the variance of Fcas will be the
sum of the variances of each of the elements of the summation:

σ 2
Fcas

=
∑

i

[Ŝ2
f iσ

2
f i + Ŝ2

giσ
2
gi + Ŝ2

SWRiσ
2
SWRi], (3.30)

where

Ŝxk = ∂Fcas

∂xk

(3.78)

is the sensitivity of Fcas to the parameter xk .
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We can write dFcas more simply for fixed gi and SWRi , allowing only vari-
ations dfj in module noise factors. Based on Eq. (3.14), the variation in fcas

would then be

dfcas(dfj ) = ∂fcas

∂f1
df1 + ∂fcas

∂f3
df3 + ∂fcas

∂f5
df5 + · · · , (3)

where even-numbered elements are cables and are not included.
The noise figure is related to the noise factor by

Fcas = 10 dB log10 fcas = 10 dB log10(e) ln(fcas) = 4.343 dB ln(fcas), (4)

so a change in the noise figure can be related to a change in the noise factor by

dFcas = dFcas

dfcas
dfcas = 4.343 dB

fcas
dfcas = 4.343 dB × 10−Fcas/10 dBdfcas. (5)

An inverse relationship can also be written:

0.23 × 10Fj /10 dB dFj

dB
= dfj . (6)

Using Eqs. (3) and (3.14), we can write (5) as

dFcas(dfj ) = 4.343 dB × 10−Fcas/10 dB
{
df1 + df3

g1g2
+ · · ·

}
. (7)

Using Eq. (6), this is

dFcas(dFj ) = 10−Fcas/10 dB
{

10F1/10dBdF1

+10(F3−G1−G2)/10 dBdF3 + · · ·
}

. (3.79)

This gives approximately the change in Fcas as a function of small changes in
the module noise figures about the operating point described by the values of the
Gj ’s and Fj ’s. For small enough changes, it can be used to give the variance of
Fcas as a function of the variances of the noise figures of individual modules:

σ 2
Fcas

(dFj ) = 10−Fcas/5 dB




10F1/5 dBσ 2
F1

+10(F3−G1−G2)/5 dBσ 2
F3

+10

(
F5−

4∑
j=1

Gj

)/
5 dB

σ 2
F5 + · · ·




. (8)

This could be expanded to many stages, following the pattern indicated here, or
we can reduce it to two stages and sequentially use stage 1 as the composite of
all previous stages as we move from input to output of a cascade. For example,

σ 2
Fcas3

= 10−Fcas3/5 dB
{

10F1/5 dBσ 2
F1

+10(F3−G1−G2)/5 dBσ 2
F3

}
(9)
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and

σ 2
Fcas5

= 10−Fcas5/5 dB




10Fcas3/5 dBσ 2
F cas3

+10

(
F5−

4∑
j=1

Gj

)/
5 dB

σ 2
F5


 , (10)

where Fcasj is F for the cascade through stage j .
Equation (10) is the same as Eq. (8). We can also write this as

σ 2
Fcas,n

= 10−Fcas,n/5 dB




10Fcas(n−1)/5 dBσ 2
F cas(n−1)

+10

(
Fcas,n−

n−1∑
j=1

Gj

)/
5 dB

σ 2
Fn


 , (3.31)

depending upon σ 2
Fn being zero for all interconnects. Then every other application

of Eq. (3.31), those that apply to interconnects, will produce a change in cascade
noise figure variance only because of the change in cascade noise figure.



APPENDIX X

CROSSOVER SPURS

Table X.1 is a list of all crossover spurs for the range of m and n shown in its
upper left. The ratios of RF to IF and of RF to LO, which apply to the two types
of normalizations that we have considered, are listed for the three desired-signal

TABLE X.1 Crossover Spurs

 desired m(LO) = 1
desired n(RF) = −1

RF/IF m n RF/LO
0.2 0 5 0.1666667

0.25 0 4 0.2
0.3333333 0 3 0.25
0.3333333 2 −5 0.25

0.5 −1 5 0.3333333
0.5 0 2 0.3333333
0.5 2 −4 0.3333333

0.6666667 −1 4 0.4
1 −2 5 0.5
1 −1 3 0.5
1 0 1 0.5
1 2 −3 0.5
1 3 −5 0.5

1.5 −2 4 0.6
2 −3 5 0.6666667
2 −1 2 0.6666667
2 3 −4 0.6666667
3 −2 3 0.75
3 4 −5 0.75
4 −3 4 0.8
5 −4 5 0.8333333

spur

set max
n = 5

giving
max m

10
10
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TABLE X.1 Crossover Spurs (continued )

 desired m(LO) = 1  desired m(LO) = −1
desired n(RF) = 1 desired n(RF) = 1

RF/IF m n RF/LO RF/IF m n RF/LO
0.1428571 2 −5 0.1666667 1.1 10 0 11
0.1666667 2 −4 0.2 1.1111111 9 0 10

0.2 0 5 0.25 1.125 −10 2 9
0.2 2 −3 0.25 1.125 8 0 9

0.25 0 4 0.3333333 1.1428571 −9 2 8
0.25 2 −2 0.3333333 1.1428571 7 0 8
0.25 3 −5 0.3333333 1.1666667 −8 2 7

0.2857143 3 −4 0.4 1.1666667 6 0 7
0.3333333 −1 5 0.5 1.2 −7 2 6
0.3333333 0 3 0.5 1.2 5 0 6
0.3333333 2 −1 0.5 1.2222222 10 −1 5.5
0.3333333 3 −3 0.5 1.25 −6 2 5
0.3333333 4 −5 0.5 1.25 4 0 5

0.375 4 −4 0.6 1.25 9 −1 5
0.4 −1 4 0.6666667 1.2857143 −10 3 4.5
0.4 3 −2 0.6666667 1.2857143 8 −1 4.5
0.4 5 −5 0.6666667 1.3333333 −9 3 4

0.4285714 −2 5 0.75 1.3333333 −5 2 4
0.4285714 4 −3 0.75 1.3333333 3 0 4
0.4444444 5 −4 0.8 1.3333333 7 −1 4
0.4545455 6 −5 0.8333333 1.375 10 −2 3.6666667

0.5 −3 5 1 1.4 −8 3 3.5
0.5 −2 4 1 1.4 6 −1 3.5
0.5 −1 3 1 1.4285714 9 −2 3.3333333
0.5 0 2 1 1.5 −10 4 3
0.5 2 0 1 1.5 −7 3 3
0.5 3 −1 1 1.5 −4 2 3
0.5 4 −2 1 1.5 2 0 3
0.5 5 −3 1 1.5 5 −1 3
0.5 6 −4 1 1.5 8 −2 3
0.5 7 −5 1 1.5714286 10 −3 2.75

0.5384615 8 −5 1.1666667 1.6 −9 4 2.6666667
0.5454545 7 −4 1.2 1.6 7 −2 2.6666667
0.5555556 −4 5 1.25 1.6666667 −6 3 2.5
0.5555556 6 −3 1.25 1.6666667 4 −1 2.5
0.5714286 −3 4 1.3333333 1.6666667 9 −3 2.5
0.5714286 5 −2 1.3333333 1.75 −8 4 2.3333333
0.5714286 9 −5 1.3333333 1.75 6 −2 2.3333333
0.5833333 8 −4 1.4 1.8 −10 5 2.25

0.6 −5 5 1.5 1.8 8 −3 2.25
0.6 −2 3 1.5 1.8333333 10 −4 2.2
0.6 4 −1 1.5 2 −9 5 2
0.6 7 −3 1.5 2 −7 4 2
0.6 10 −5 1.5 2 −5 3 2

0.6153846 9 −4 1.6 2 −3 2 2
0.625 −4 4 1.6666667 2 1 0 2
0.625 6 −2 1.6666667 2 3 −1 2

0.6363636 −6 5 1.75 2 5 −2 2
0.6363636 8 −3 1.75 2 7 −3 2
0.6428571 10 −4 1.8 2 9 −4 2
0.6666667 −7 5 2 2.2 10 −5 1.8333333

spur spur



361

TABLE X.1 Crossover Spurs (continued )

 desired m(LO) = 1  desired m(LO) = −1
desired n(RF) = 1 desired n(RF) = 1

RF/IF m n RF/LO RF/IF m n RF/LO
spur spur

0.6666667 −7 5 2 2.2 10 −5 1.8333333
0.6666667 −5 4 2 2.25 8 −4 1.8
0.6666667 −3 3 2 2.3333333 −8 5 1.75
0.6666667 −1 2 2 2.3333333 6 −3 1.75
0.6666667 3 0 2 2.5 −6 4 1.6666667
0.6666667 5 −1 2 2.5 4 −2 1.6666667
0.6666667 7 −2 2 2.5 9 −5 1.6666667
0.6666667 9 −3 2 2.6666667 7 −4 1.6
0.6923077 −8 5 2.25 3 −7 5 1.5
0.6923077 10 −3 2.25 3 −4 3 1.5

0.7 −6 4 2.3333333 3 2 −1 1.5
0.7 8 −2 2.3333333 3 5 −3 1.5

0.7142857 −9 5 2.5 3 8 −5 1.5
0.7142857 −4 3 2.5 3.5 6 −4 1.4
0.7142857 6 −1 2.5 4 −5 4 1.3333333
0.7272727 −7 4 2.6666667 4 3 −2 1.3333333
0.7272727 9 −2 2.6666667 4 7 −5 1.3333333
0.7333333 −10 5 2.75 5 −6 5 1.25

0.75 −8 4 3 5 4 −3 1.25
0.75 −5 3 3 6 5 −4 1.2
0.75 −2 2 3 7 6 −5 1.1666667
0.75 4 0 3
0.75 7 −1 3
0.75 10 −2 3

0.7692308 −9 4 3.3333333
0.7777778 −6 3 3.5
0.7777778 8 −1 3.5
0.7857143 −10 4 3.6666667

0.8 −7 3 4
0.8 −3 2 4
0.8 5 0 4
0.8 9 −1 4

0.8181818 −8 3 4.5
0.8181818 10 −1 4.5
0.8333333 −9 3 5
0.8333333 −4 2 5
0.8333333 6 0 5
0.8461538 −10 3 5.5
0.8571429 −5 2 6
0.8571429 7 0 6

0.875 −6 2 7
0.875 8 0 7

0.8888889 −7 2 8
0.8888889 9 0 8

0.9 −8 2 9
0.9 10 0 9

0.9090909 −9 2 10
0.9166667 −10 2 11

curves, with m and n (±1) for them shown at the top. The spurs have been
sorted from lowest to highest frequency ratios or vise versa. Crossovers at zero
or infinity are not shown.

Table X.1 has three major divisions, according to the sign of m and n that
applies to the desired response. Within the divisions for the 1 × 1 or 1 × −1
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desired responses, the values of m and n for the crossover spurs, on any given line,
are the same for RF/IF as for RF/LO. That is because, as the RF increases along
these curves (Fig. 7.28), both RF/IF and RF/LO increase. Therefore, the sequence
in which they cross spurs is the same. However, within the third segment, that
for the −1 × 1 desired response, RF/IF increases with increasing RF but RF/LO
decreases. For this reason, the ratio RF/LO has been sorted by decreasing value
in this last segment so that both ratios on a line refer to the same m and n values.



APPENDIX Z

NONSTANDARD MODULES

Here we treat unilateral modules that are specified by their input and output
impedances and by their transducer gains or their maximum available gains
(Appendix G). Figure Z.1 shows two such modules, each represented by its input
and output impedances (Z11) and (Z22) and a voltage generator that depends on
the voltage across the input resistance (thus on the square root of the input
power). We will see how to compute the gain of a cascade of such modules,
using a spreadsheet as an aid, and how to find the S parameters for such modules
and cascades.

Z.1 GAIN OF CASCADE OF MODULES RELATIVE TO TESTED GAIN

What is the gain of a cascade of modules that interfaces with impedances that
are different than those used in obtaining their gains when they were tested with
matched loads (maximum available gain), assuming negligible reverse transmis-
sion (Z12, S12 = 0)?

The ratio of the voltage across the real part of a driven load to the voltage
across the real part of the module’s input is1

aj
�= e(j+1)

ej

= a′
j

R11(j+1)

Z22j + Z11(j+1)

. (1)

The voltage at the cascade source is e1. The load Z11(j+1) is the input to the next
stage except that Z11(N+1) is the load for a cascade of N modules.
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vj

jX11j

jX22j

jX11j +1

jX22j +1R22j +1

R11j +1

Z11j +1
Z11j

R22j

Z22j

R11j

ej
a ′j ej a ′j+1 ej +1

ej+1

vj +1

Fig. Z.1 The j th module in the cascade.

During module characterization (test), when the load is matched to (i.e., the
complex conjugate of) the module’s output impedance, Eq. (1) becomes

aTj
�= eT (j+1)

eTj

= a′
j

R22j

R22j + R22j

= a′
j

2
. (2)

(The imaginary parts in the denominator cancel since the impedances are
conjugate.)

Since the gain is defined with respect to the voltage across R11, the input
match during test is not significant here. From Eq. (2) we can obtain the internal
parameter a′ in terms of the tested transfer function aT . Substituting a′ from
Eq. (2) into Eq. (1), we obtain the transfer function in the cascade relative to the
tested transfer function for the module:

aj = aTj

2R11(j+1)

Z22j + Z11(j+1)

. (3)

The voltage transfer function for a cascade of N modules is then

acas =

 N∏

j=1

aTj





 N∏

j=1

2R11(j+1)

Z22j + Z11(j+1)


 . (4)

Note that the first product is the transfer function the cascade would have if not
for the differing impedances between test and use, and the second product is the
modification due to the differing impedances.

The (actual) power gain gact,j is the ratio of power absorbed in the load
(R11,j+1) to the power dissipated by the module input resistance (R11,j ). Due to
the impedance matches at input and output, the power gain during test is the
maximum available power gain gmaT :

gmaTj =
∣∣∣∣∣
e2
T (j+1)/R22j

e2
Tj /R11j

∣∣∣∣∣ = |amaTj |2 R11j

R22j

, (5)



GAIN OF CASCADE OF MODULES RELATIVE TO TESTED GAIN 365

but the power gain of a module in the cascade is

gact,j =
∣∣∣∣∣
e2
j+1/R11(j+1)

e2
j /R11j

∣∣∣∣∣ (6)

= |aj |2 R11j

R11(j+1)

= |amaTj |2
4R2

11(j+1)

|Z22j + Z11(j+1)|2
R11j

R11(j+1)

(7)

= gmaTj

R22j

R11j

4R2
11(j+1)

|Z22j + Z11(j+1)|2
R11j

R11(j+1)

= gmaTj

4R22jR11(j+1)

|Z22j + Z11(j+1)|2 . (8)

Here Eqs. (3) and (5) have been used. From this we obtain the actual power gain
(Appendix G) for a cascade of N modules:

gact,cas =
N∏

j=1

gact,j =

 N∏

j=1

gmaTj





 N∏

j=1

4R22jR11(j+1)

|Z22j + Z11(j+1)|2


 . (9)

Here the subscript N + 1 refers to the load and gmaTj is the maximum available
power gain measured when the module was characterized with a matched source
and load. The actual power gain is the ratio of power delivered to the load to the
power absorbed at the input of the cascade.

Example Z.1 Cascade Gain, Nonstandard Modules Figure Z.2 shows a
spreadsheet that executes Eq. (9). The input and output impedances and the power
gain in test (gmaT i) are listed for each module in lines 5–8 with the cascade’s load

A B C D E F
1 Maximum
2 Available
3 Power Gain
4 in test R11 X11 R22 X22
5 Module 1 6.00 dB 200.00 Ω 100.00 Ω 300.00 Ω 150.00 Ω
6 Module 2 9.00 dB 1500.00 Ω −250.00 Ω 1200.00 Ω −200.00 Ω
7 Module 3 4.50 dB 1000.00 Ω 200.00 Ω 500.00 Ω 200.00 Ω
8 Module 4 22.00 dB 250.00 Ω 45.00 Ω 55.00 Ω 10.00 Ω
9 Load 100.00 Ω 25.00 Ω

10
11 Module CUMULATIVE
12 Module 1 3.41 dB 3.41 dB
13 Module 2 8.94 dB 12.36 dB
14 Module 3 3.53 dB 15.88 dB
15 Module 4 21.38 dB 37.27 dB

actual gain in use

Fig. Z.2 Spreadsheet for cascade of nonstandard modules.
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given in line 9. The actual gain of each module in the cascade [Eq. (8)] is given
in cells B12–B15 with the cumulative gain in cells C12–C15. Note that the sum
of the tested gains is 41.5 dB, whereas the cascade gain is only 37.27 dB.

Z.2 FINDING MAXIMUM AVAILABLE GAIN OF A MODULE

We can obtain the value of gmaTj from test data that was not obtained with
matched source and load but rather in a transducer-gain test, with a signal gen-
erator and power meter (Fig. Z.3). Using Eqs. (6) and (8), we write

gmaTj =
∣∣∣∣∣
e2
j+1/R11(j+1)

e2
j /R11j

∣∣∣∣∣
|Z22j + Z11(j+1)|2

4R22jR11(j+1)

. (10)

Here, Z11(j+1), including R11(j+1), is the test load. Assume that the power meter
presents a real impedance equal to that of the connecting cable. Then Z11(j+1) =
R11(j+1). We recognize the first ratio as the ratio of power absorbed in the meter
(assuming negligible cable loss) to that absorbed in the module, so we can write

gmaTj = po,j+1

po,j − pi,j

|Z22j + R11(j+1)|2
4R22jR11(j+1)

= po,j+1

po,j − pi,j

|1 + Z22j /R11(j+1)|2
4R22j /R11(j+1)

.

(11)

If we do not have a value for pi,j , we can relate it to po,j and to the transducer
gain of the module, gtj , by

gmaTj = po,j+1

po,j (1 − |S11j |2)
|1 + Z22j /R11(j+1)|2

4R22j /R11(j+1)

(12)

= gtj

|1 + Z11j /R0j |2
4R11j /R0j

|1 + Z22j /R11(j+1)|2
4R22j /R11(j+1)

. (13)

Cable impedance = R22j +1Measure forward and 
reverse power

poj

pij

Z11j R22j

R11j+1

Z22j

R11j

jX11j

jX22j

ej
a ′j ej

Directional
coupler

Power meter
poj +1

ej+1

Fig. Z.3 Testing module for available gain.
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Here R0j is the characteristic impedance of the input cable (at port j ) during
test, and S11j can be obtained in terms of impedances from Eq. (14) below.

Z.3 INTERCONNECTS

Interconnect impedances may be included as part of the input impedance Z11,j+1

of the following module or the output impedance Z22j of the preceding module.
When a true transmission line is used, Section F.4 may be helpful in translating
the input impedance of the following module to a value at the output of the
preceding module. If the line is made part of the following module and is lossless,
whatever power is absorbed into the combined input structure must be absorbed in
R11,j+1 of the following module. This power is part of the power gain equation
[the numerator in Eq. (6)]. For use with voltage gain [Eq. (1)], e2

j+1 can be
obtained from the power by multiplying the power by R11,j+1.

Z.4 EQUIVALENT S PARAMETERS

Here we will consider how to convert the description of a module in terms
of nonstandard impedances into a description using S parameters for standard
impedances. If the interfaces in a cascade are matched to various resistive val-
ues, the modules on either side of an interface being each matched to the same
resistance with specified deviation therefrom, such a cascade can be treated as a
standard cascade. The variation of standard impedance (e.g., 75 �, 120 �, etc.)
from interface to interface does not invalidate that method. However, when we
convert to an S-parameter description at an impedance significantly different than
the actual interface impedance and apply the methods of Section 2.3, we may be
throwing away significant information and, as a result, generating unnecessarily
large uncertainties in overall performance. In other words, if the impedances of
modules in a cascade are known in detail, rather than by their allowed devia-
tion from a standard impedance, converting them to the latter type of description
throws away useful information. It may be better to compute cascade gain as in
Section Z.1 and then possibly describe the overall cascade by S parameters, as
we will do here.

Figure Z.4 shows the module as it is during characterization. (Note that only
vin,j , vout,j , and vout,j+1 are normalized variables here.) From this figure we can
see (Section F.2)

S11j = Z11j − R0j

Z11j + R0j

, (14)

S22j = Z22j − R0,j+1

Z22j + R0,j+1
, (15)

S21j = vout,(j+1)

vin,j

= ṽout,(j+1)

ṽin,j

√
R0j

R0,j+1
, (16)
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vin, j
vout, j+1

vj

ej

vout, j

jX11j

Z11j

R22j

Z22j

R11j

jX22j

a'j ej

R0

Fig. Z.4 The j th module in test.

= R0,j+1

Z22j + R0,j+1
a′

j

ej

ṽin,j

√
R0j

R0,j+1
(17)

S12j = 0. (18)

To put S21j in a usable form, we write ej in terms of the waves used in defining
S parameters by observing

Z11j

R11j

ej = ṽin,j + ṽout,j = ṽin,j (1 + S11j ). (19)

We then substitute ej from (19) and a′
j from (2) into (17) to obtain

S21j =
√

R0jR0,j+1

Z22j + R0,j+1
2aTj

R11j

Z11j

(1 + S11j ). (20)

Then, substituting for S11j from Eq. (14), we obtain

S21j = 4aTj

√
R0jR0,j+1R11j

(Z11j + R0j )(Z22j + R0,j+1)
. (21)

This expression, along with those of Eqs. (14), (15), and (18), allow S parameters
to be written in terms of nonstandard-module parameters.

The second page of the workbook containing Fig. Z.2 shows how these con-
versions can be made using a spreadsheet. The spreadsheet is written for the
usual case where R0j = R0,j+1 = R0. It uses the module parameters from the
Fig. Z.2 spreadsheet and only the phase of aTj must be added.

Z.5 S PARAMETERS FOR CASCADE OF NONSTANDARD MODULES

We determine the S parameters for a cascade of nonstandard modules so we
can use that cascade as an element in a cascade with standard modules having
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R0 interfaces. Because the modules are unilateral, the input impedance of the
cascade is that of the first module from Eq. (14):

S11 = Z111 − R0

Z111 + R0
, (22)

and the output impedance is that of the last module in the cascade,

S22 = Z22N − R0

Z22N + R0
, (23)

where the last subscript refers to the number of the module in the cascade of
nonstandard modules.

The forward transfer ratio is (Fig. Z.1)

S21 = vo(N+1)

vo1
= v1

vo1

e1

v1

vo(N+1)T

e1
(24)

= (1 + S111)
R111

Z111
acas|Z11(N+1)=R0 (25)

= 2
R111

Z111 + R0
acas|Z11(N+1)=R0 , (26)

where aN |Z11(N+1)=R0 is given by Eq. (4) with Z11(N+1) = R11(N+1) = R0 (i.e.,
with the nonstandard cascade properly terminated). [Equation (22) was used in
obtaining Eq. (26)].

Due to our assumption that S12j ≈ 0 for these modules, S12 = 0 for the cas-
cade also. Thus the cascade meets the unilaterality requirement for modules in
Section 2.3.

Note, from Eqs. (22) and (23), that it is easy to determine variations in the
reflection coefficients of the cascade from the variations in the individual mod-
ules. Also, from Eqs. (26) and (4), the effect of variations in aTj on S21 can be
easily determined. Sensitivity analysis may be helpful in determining the effects
of the various impedances in Eq. (4) on overall gain if that becomes important.

ENDNOTE

1The forward and reverse gain constants in standard Z parameters, Z21 and Z12, respectively,
are ratios of voltages to terminal currents. The internal gain factor used here is related to the
corresponding standard Z parameters by a′

j = Z21j /R11j .
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coherently, 106
randomly, 108
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that do not add, 109
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Appendix T, 353
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interconnect
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literature, use of technical, 5
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Appendix L, 325
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Example 2.2, 22
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IMs in, Appendix P, 345
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parameters, 166
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nonstandard, Appendix Z, 363
unilateral, 8

multiband downconverter, Example 7.15, 212
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additive, effect of loop on, 262
and nonlinearity, 123

summary of Ch. 5, 147
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density, 49, 126
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factor, 47. See also noise figure

attenuator, 55
cascade, 50

module contribution, 50
effect from LO contamination, 236
effect of source impedance on, 341
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impedance dependent, 59

representation, 59
implication re phase noise, 255
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of interconnect, 56, 334
of mixer, effective, 66
Op-Amp calculations, Appendix A, 273
parallel combining, 156
single-sideband, 66
standard, 54, 331

relation to theoretical, 62
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theoretical, 54, 329

relation to standard, 62
using, 64

summary, 65
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voltage amplifier, 74

with unilateral modules, 79
with extreme mismatch, 74

figure, 47. See also noise factor
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sensitivity, Appendix V, 355
spot, 49
variance, 58
variance, Appendix V, 355

flicker, 48
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intermodulation of, 123
Johnson, 48
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power ratio, 131
products

DC term, 126
second-order, 125
third order, 130

sidebands, oscillator, 238
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temperature, 47, 48

cascade, 51
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system, 51
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thermal, 48
nonideal effects

in parallel combining, 162
other, 121

nonlinear products
frequency dependence, 102
general cascade, 105
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relationship between, 102
two-module cascade, 104

nonlinearity
and noise, 123
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summary of Ch. 4, 121
representing, 91

nonstandard
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modules, Appendix Z, 363
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notes, end, 5
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Measurement, 131
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Op-Amp noise factor, Appendix A, 273
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organization of the book, 2
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phase noise representations, 252

out (direction of propagation), 9

parallel combining, 149
gain with, 155
noise factor, 156
nonideal performance in, 162
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scattering, 9
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two-port, 9
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noise, 245
adverse effects, 247
effect of carrier recovery loop on, 260
effect on data, 258
effect on data errors, 263
implication of noise figure, 255
integration of, 258
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measures of, 269
oscillator spectrum, 250
sources of, 250
transfer from LO, 255

power spectral density, 246
shift of a cascade, 27
variance, limits of integration, 259
variation, 24

PLLs, filtering of phase noise by, 253
plotting filter requirements, Example 7.10, 200
power
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Appendix L, 325

gain, 8
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preface, xvii
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propagation direction subscript, 9
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push–pull, simple, 154

random-walk FM, 251
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calculator, 289
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references, 5, 371
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mathematical representation, 95
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Appendix V, 355
using, 82
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definitions, 197
filter, 184, 196

sideband
amplitude, relative, 245
density, relative, 246

signal with noise, effect of, 128
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Smith Chart, 310
soft limiting, 223
source impedance, effect on noise factor, 341
source resistance, effect on Op-Amp noise

factor, 274
specifications, creating and using, 1
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spreadsheet

enhancements, 146
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spur plot, 180
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Appendix X, 359
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plot
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representation of bands, Appendix B, 279
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single-frequency, 168
standard

cascade, 16
overall response, 25

CATV system, 133
impedance, 8
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