
Principles
of Communication
Systems Simulation

with Wireless
Applications

William H. Tranter
K. Sam Shanmugan

Theodore S. Rappaport
Kurt L. Kosbar

PRENTICE HALL
Professional Technical Reference
Upper Saddle River, New Jersey 07458
www.phptr.com

Tranter FM revised 11-18.fm Page 1 Wednesday, November 19, 2003 10:34 AM

Library of Congress Cataloging-in-Publication Data
Principles of communication systems simulation with wireless applications / William H. Tranter ...[et al.]

p. cm. – (Prentice Hall communications engineering and emerging technologies series ; 16)
Includes bibliographical references and index.
ISBN 0-13-494790-8
1. Telecommunication systems–Computer simulation. I. Tranter, William H. II. Series.

TK\5102.5.P673 2003
621.382'01'1–dc22

2003063403
Editorial/production supervision: Kerry Reardon
Composition: Lori Hughes and TIPS Technical Publishing, Inc.
Cover design director: Jerry Votta
Cover design: Nina Scuderi
Art director: Gail Cocker-Bogusz
Manufacturing manager: Alexis Heydt-Long
Manufacturing buyer: Maura Zaldivar
Publisher: Bernard Goodwin
Editorial assistant: Michelle Vincenti
Marketing manager: Dan DePasquale
Full-service production manager: Anne R. Garcia

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases of special
sales. For more information, please contact: U.S. Corporate and Government Sales, 1-800-382-3419,
corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact: International Sales, 1-317-581-
3793, international@pearsontechgroup.com

Company and product names mentioned herein are the trademarks of their respective owners.

MATLAB is a registered trademark of The MathWorks, Inc. for MATLAB product information, please contact:

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
Email: info@mathworks.com
Web: www.mathworks.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

Printed in the United States of America

First printing

ISBN 0-13-494790-8

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Education de Mexico, S.A. de C.V.
Pearson Education-Japan
Pearson Education Malaysia, Pte. Ltd.

Copyright © 2004 Pearson Education, Inc.

Prentice Hall Professional Technical Reference

Upper Saddle River, NJ 07458

Tranter FM revised 11-18.fm Page 2 Wednesday, November 19, 2003 10:34 AM

Tranter FM revised 11-18.fm Page 3 Wednesday, November 19, 2003 10:34 AM

Dedications

To my loving and supportive wife Judy.
William H. Tranter

To my loving wife Radha.
K. Sam Shanmugan

To my loving wife, our children, and my former students.
Theodore S. Rappaport

To my wife and children.
Kurt L. Kosbar

Tranter FM revised 11-18.fm Page 4 Wednesday, November 19, 2003 10:34 AM

“TranterBook” — 2003/11/18 — 14:44 — page v — #1
�

�

�

�

�

�

�

�

CONTENTS

PREFACE xvii

Part I Introduction 1

1 THE ROLE OF SIMULATION 1
1.1 Examples of Complexity 2

1.1.1 The Analytically Tractable System 3
1.1.2 The Analytically Tedious System 5
1.1.3 The Analytically Intractable System 7

1.2 Multidisciplinary Aspects of Simulation 8
1.3 Models 11
1.4 Deterministic and Stochastic Simulations 14

1.4.1 An Example of a Deterministic Simulation 16
1.4.2 An Example of a Stochastic Simulation 17

1.5 The Role of Simulation 19
1.5.1 Link Budget and System-Level Specification Process 20
1.5.2 Implementation and Testing of Key Components 22
1.5.3 Completion of the Hardware Prototype and Validation

of the Simulation Model 22
1.5.4 End-of-Life Predictions 22

1.6 Software Packages for Simulation 23
1.7 A Word of Warning 26
1.8 The Use of MATLAB 27
1.9 Outline of the Book 27
1.10 Further Reading 28

v

“TranterBook” — 2003/11/18 — 14:44 — page vi — #2
�

�

�

�

�

�

�

�

vi Contents

2 SIMULATION METHODOLOGY 31
2.1 Introduction 32
2.2 Aspects of Methodology 34

2.2.1 Mapping a Problem into a Simulation Model 34
2.2.2 Modeling of Individual Blocks 41
2.2.3 Random Process Modeling and Simulation 47

2.3 Performance Estimation 49
2.4 Summary 52
2.5 Further Reading 52
2.6 Problems 52

Part II Fundamental Concepts and Techniques 55

3 SAMPLING AND QUANTIZING 55
3.1 Sampling 56

3.1.1 The Lowpass Sampling Theorem 56
3.1.2 Sampling Lowpass Random Signals 61
3.1.3 Bandpass Sampling 61

3.2 Quantizing 65
3.3 Reconstruction and Interpolation 71

3.3.1 Ideal Reconstruction 71
3.3.2 Upsampling and Downsampling 72

3.4 The Simulation Sampling Frequency 78
3.4.1 General Development 79
3.4.2 Independent Data Symbols 81
3.4.3 Simulation Sampling Frequency 83

3.5 Summary 87
3.6 Further Reading 89
3.7 References 90
3.8 Problems 90

4 LOWPASS SIMULATION MODELS FOR BANDPASS
SIGNALS AND SYSTEMS 95
4.1 The Lowpass Complex Envelope for Bandpass Signals 95

4.1.1 The Complex Envelope: The Time-Domain View 96
4.1.2 The Complex Envelope: The Frequency-Domain View 108
4.1.3 Derivation of Xd(f) and Xq(f) from X̃(f) 110
4.1.4 Energy and Power 111

“TranterBook” — 2003/11/18 — 14:44 — page vii — #3
�

�

�

�

�

�

�

�

Contents vii

4.1.5 Quadrature Models for Random Bandpass Signals 112
4.1.6 Signal-to-Noise Ratios 115

4.2 Linear Bandpass Systems 118
4.2.1 Linear Time-Invariant Systems 118
4.2.2 Derivation of hd(t) and hq(t) from H(f) 122

4.3 Multicarrier Signals 125
4.4 Nonlinear and Time-Varying Systems 128

4.4.1 Nonlinear Systems 128
4.4.2 Time-Varying Systems 130

4.5 Summary 132
4.6 Further Reading 133
4.7 References 134
4.8 Problems 134
4.9 Appendix A: MATLAB Program QAMDEMO 139

4.9.1 Main Program: c4 qamdemo.m 139
4.9.2 Supporting Routines 140

4.10 Appendix B: Proof of Input-Output Relationship 141

5 FILTER MODELS AND SIMULATION TECHNIQUES 143
5.1 Introduction 144
5.2 IIR and FIR Filters 146

5.2.1 IIR Filters 146
5.2.2 FIR Filters 147
5.2.3 Synthesis and Simulation 147

5.3 IIR and FIR Filter Implementations 148
5.3.1 Direct Form II and Transposed Direct

Form II Implementations 148
5.3.2 FIR Filter Implementation 154

5.4 IIR Filters: Synthesis Techniques and Filter Characteristics 155
5.4.1 Impulse-Invariant Filters 155
5.4.2 Step-Invariant Filters 156
5.4.3 Bilinear z-Transform Filters 157
5.4.4 Computer-Aided Design of IIR Digital Filters 165
5.4.5 Error Sources in IIR Filters 167

5.5 FIR Filters: Synthesis Techniques and Filter Characteristics 167
5.5.1 Design from the Amplitude Response 170
5.5.2 Design from the Impulse Response 177
5.5.3 Implementation of FIR Filter Simulation Models 180
5.5.4 Computer-Aided Design of FIR Digital Filters 184

“TranterBook” — 2003/11/18 — 14:44 — page viii — #4
�

�

�

�

�

�

�

�

viii Contents

5.5.5 Comments on FIR Design 186
5.6 Summary 186
5.7 Further Reading 189
5.8 References 189
5.9 Problems 190
5.10 Appendix A: Raised Cosine Pulse Example 192

5.10.1 Main program c5 rcosdemo.m 192
5.10.2 Function file c5 rcos.m 192

5.11 Appendix B: Square Root Raised Cosine Pulse Example 193
5.11.1 Main Program c5 sqrcdemo.m 193
5.11.2 Function file c5 sqrc.m 193

5.12 Appendix C: MATLAB Code and Data for Example 5.11 194
5.12.1 c5 FIRFilterExample.m 195
5.12.2 FIR Filter AMP Delay.m 196
5.12.3 shift ifft.m 198
5.12.4 log psd.m 198

6 CASE STUDY: PHASE-LOCKED LOOPS
AND DIFFERENTIAL EQUATION METHODS 201
6.1 Basic Phase-Locked Loop Concepts 202

6.1.1 PLL Models 204
6.1.2 The Nonlinear Phase Model 206
6.1.3 Nonlinear Model with Complex Input 208
6.1.4 The Linear Model and the Loop Transfer Function 208

6.2 First-Order and Second-Order Loops 210
6.2.1 The First-Order PLL 210
6.2.2 The Second-Order PLL 214

6.3 Case Study: Simulating the PLL 215
6.3.1 The Simulation Architecture 215
6.3.2 The Simulation 216
6.3.3 Simulation Results 219
6.3.4 Error Sources in the Simulation 220

6.4 Solving Differential Equations Using Simulation 223
6.4.1 Simulation Diagrams 224
6.4.2 The PLL Revisited 225

6.5 Summary 230
6.6 Further Reading 231
6.7 References 231
6.8 Problems 232

“TranterBook” — 2003/11/18 — 14:44 — page ix — #5
�

�

�

�

�

�

�

�

Contents ix

6.9 Appendix A: PLL Simulation Program 236
6.10 Appendix B: Preprocessor for PLL Example Simulation 237
6.11 Appendix C: PLL Postprocessor 238

6.11.1 Main Program 238
6.11.2 Called Routines 239

6.12 Appendix D: MATLAB Code for Example 6.3 241

7 GENERATING AND PROCESSING RANDOM SIGNALS 243
7.1 Stationary and Ergodic Processes 244
7.2 Uniform Random Number Generators 248

7.2.1 Linear Congruence 248
7.2.2 Testing Random Number Generators 252
7.2.3 Minimum Standards 256
7.2.4 MATLAB Implementation 257
7.2.5 Seed Numbers and Vectors 258

7.3 Mapping Uniform RVs to an Arbitrary pdf 258
7.3.1 The Inverse Transform Method 259
7.3.2 The Histogram Method 264
7.3.3 Rejection Methods 266

7.4 Generating Uncorrelated Gaussian Random Numbers 269
7.4.1 The Sum of Uniforms Method 270
7.4.2 Mapping a Rayleigh RV to a Gaussian RV 273
7.4.3 The Polar Method 275
7.4.4 MATLAB Implementation 276

7.5 Generating Correlated Gaussian Random Numbers 277
7.5.1 Establishing a Given Correlation Coefficient 277
7.5.2 Establishing an Arbitrary PSD

or Autocorrelation Function 278
7.6 Establishing a pdf and a PSD 282
7.7 PN Sequence Generators 283
7.8 Signal Processing 290

7.8.1 Input/Output Means 291
7.8.2 Input/Output Cross-Correlation 291
7.8.3 Output Autocorrelation Function 292
7.8.4 Input/Output Variances 293

7.9 Summary 293
7.10 Further Reading 294
7.11 References 294
7.12 Problems 295

“TranterBook” — 2003/11/18 — 14:44 — page x — #6
�

�

�

�

�

�

�

�

x Contents

7.13 Appendix A: MATLAB Code for Example 7.11 299
7.14 Main Program: c7 Jakes.m 299

7.14.1 Supporting Routines 300

8 POSTPROCESSING 303
8.1 Basic Graphical Techniques 304

8.1.1 A System Example—π/4 DQPSK Transmission 304
8.1.2 Waveforms, Eye Diagrams, and Scatter Plots 307

8.2 Estimation 309
8.2.1 Histograms 309
8.2.2 Power Spectral Density Estimation 316
8.2.3 Gain, Delay, and Signal-to-Noise Ratios 323

8.3 Coding 329
8.3.1 Analytic Approach to Block Coding 330
8.3.2 Analytic Approach to Convolutional Coding 333

8.4 Summary 336
8.5 Further Reading 336
8.6 References 338
8.7 Problems 339
8.8 Appendix A: MATLAB Code for Example 8.1 342

8.8.1 Main Program: c8 pi4demo.m 342
8.8.2 Supporting Routines 344

9 INTRODUCTION TO MONTE CARLO METHODS 347
9.1 Fundamental Concepts 347

9.1.1 Relative Frequency 348
9.1.2 Unbiased and Consistent Estimators 349
9.1.3 Monte Carlo Estimation 349
9.1.4 The Estimation of π 351

9.2 Application to Communications Systems—The AWGN Channel 354
9.2.1 The Binomial Distribution 355
9.2.2 Two Simple Monte Carlo Simulations 359

9.3 Monte Carlo Integration 366
9.3.1 Basic Concepts 368
9.3.2 Convergence 370
9.3.3 Confidence Intervals 371

9.4 Summary 375
9.5 Further Reading 375
9.6 References 375
9.7 Problems 376

“TranterBook” — 2003/11/18 — 14:44 — page xi — #7
�

�

�

�

�

�

�

�

Contents xi

10 MONTE CARLO SIMULATION
OF COMMUNICATION SYSTEMS 379
10.1 Two Monte Carlo Examples 380
10.2 Semianalytic Techniques 393

10.2.1 Basic Considerations 394
10.2.2 Equivalent Noise Sources 397
10.2.3 Semianalytic BER Estimation for PSK 398
10.2.4 Semianalytic BER Estimation for QPSK 400
10.2.5 Choice of Data Sequence 404

10.3 Summary 405
10.4 References 406
10.5 Problems 406
10.6 Appendix A: Simulation Code for Example 10.1 408

10.6.1 Main Program 408
10.6.2 Supporting Program: random binary.m 409

10.7 Appendix B: Simulation Code for Example 10.2 410
10.7.1 Main Program 410
10.7.2 Supporting Programs 414
10.7.3 vxcorr.m 414

10.8 Appendix C: Simulation Code for Example 10.3 415
10.8.1 Main Program: c10 PSKSA.m 415
10.8.2 Supporting Programs 416

10.9 Appendix D: Simulation Code for Example 10.4 418
10.9.1 Supporting Programs 419

11 METHODOLOGY FOR SIMULATING
A WIRELESS SYSTEM 421
11.1 System-Level Simplifications and Sampling Rate Considerations 423
11.2 Overall Methodology 424

11.2.1 Methodology for Simulation of the Analog Portion
of the System 429

11.2.2 Summary of Methodology for Simulating
the Analog Portion of the System 441

11.2.3 Estimation of the Coded BER 441
11.2.4 Estimation of Voice-Quality Metric 441
11.2.5 Summary of Overall Methodology 442

11.3 Summary 443
11.4 Further Reading 443
11.5 References 444
11.6 Problems 444

“TranterBook” — 2003/11/18 — 14:44 — page xii — #8
�

�

�

�

�

�

�

�

xii Contents

Part III Advanced Models and Simulation Techniques 447

12 MODELING AND SIMULATION OF NONLINEARITIES 447
12.1 Introduction 448

12.1.1 Types of Nonlinearities and Models 448
12.1.2 Simulation of Nonlinearities—Factors to Consider 449

12.2 Modeling and Simulation of Memoryless Nonlinearities 451
12.2.1 Baseband Nonlinearities 452
12.2.2 Bandpass Nonlinearities—Zonal Bandpass Model 453
12.2.3 Lowpass Complex Envelope

(AM-to-AM and AM-to-PM) Models 455
12.2.4 Simulation of Complex Envelope Models 461
12.2.5 The Multicarrier Case 462

12.3 Modeling and Simulation of Nonlinearities with Memory 468
12.3.1 Empirical Models Based on Swept Tone Measurements 470
12.3.2 Other Models 472

12.4 Techniques for Solving Nonlinear Differential Equations 475
12.4.1 State Vector Form of the NLDE 476
12.4.2 Recursive Solutions of NLDE-Scalar Case 479
12.4.3 General Form of Multistep Methods 483
12.4.4 Accuracy and Stability of Numerical Integration Methods 483
12.4.5 Solution of Higher-Order NLDE-Vector Case 485

12.5 PLL Example 486
12.5.1 Integration Methods 486

12.6 Summary 488
12.7 Further Reading 488
12.8 References 489
12.9 Problems 490
12.10 Appendix A: Saleh’s Model 493
12.11 Appendix B: MATLAB Code for Example 12.2 494

12.11.1 Supporting Routines 495

13 MODELING AND SIMULATION
OF TIME-VARYING SYSTEMS 497
13.1 Introduction 497

13.1.1 Examples of Time-Varying Systems 498
13.1.2 Modeling and Simulation Approach 499

13.2 Models for LTV Systems 500
13.2.1 Time-Domain Description for LTV System 500

“TranterBook” — 2003/11/18 — 14:44 — page xiii — #9
�

�

�

�

�

�

�

�

Contents xiii

13.2.2 Frequency Domain Description of LTV Systems 503
13.2.3 Properties of LTV Systems 505

13.3 Random Process Models 511
13.4 Simulation Models for LTV Systems 515

13.4.1 Tapped Delay Line Model 515
13.5 MATLAB Examples 518

13.5.1 MATLAB Example 1 518
13.5.2 MATLAB Example 2 520

13.6 Summary 522
13.7 Further Reading 523
13.8 References 523
13.9 Problems 523
13.10 Appendix A: Code for MATLAB Example 1 525

13.10.1 Supporting Program 526
13.11 Appendix B: Code for MATLAB Example 2 527

13.11.1 Supporting Routines 528
13.11.2 mpsk pulses.m 528

14 MODELING AND SIMULATION
OF WAVEFORM CHANNELS 529
14.1 Introduction 529

14.1.1 Models of Communication Channels 530
14.1.2 Simulation of Communication Channels 531
14.1.3 Discrete Channel Models 532
14.1.4 Methodology for Simulating Communication

System Performance 532
14.1.5 Outline of Chapter 533

14.2 Wired and Guided Wave Channels 533
14.3 Radio Channels 534

14.3.1 Tropospheric Channel 536
14.3.2 Rain Effects on Radio Channels 537

14.4 Multipath Fading Channels 538
14.4.1 Introduction 538
14.4.2 Example of a Multipath Fading Channel 538
14.4.3 Discrete Versus Diffused Multipath 545

14.5 Modeling Multipath Fading Channels 546
14.6 Random Process Models 547

14.6.1 Models for Temporal Variations
in the Channel Response (Fading) 549

“TranterBook” — 2003/11/18 — 14:44 — page xiv — #10
�

�

�

�

�

�

�

�

xiv Contents

14.6.2 Important Parameters 550
14.7 Simulation Methodology 552

14.7.1 Simulation of Diffused Multipath Fading Channels 553
14.7.2 Simulation of Discrete Multipath Fading Channels 558
14.7.3 Examples of Discrete Multipath Fading Channel Models 565
14.7.4 Models for Indoor Wireless Channels 571

14.8 Summary 571
14.9 Further Reading 572
14.10 References 572
14.11 Problems 575
14.12 Appendix A: MATLAB Code for Example 14.1 577

14.12.1 Main Program 577
14.12.2 Supporting Functions 578

14.13 Appendix B: MATLAB Code for Example 14.2 580
14.13.1 Main Program 580
14.13.2 Supporting Functions 581

15 DISCRETE CHANNEL MODELS 583
15.1 Introduction 584
15.2 Discrete Memoryless Channel Models 586
15.3 Markov Models for Discrete Channels with Memory 589

15.3.1 Two-State Model 589
15.3.2 N -state Markov Model 596
15.3.3 First-Order Markov Process 597
15.3.4 Stationarity 597
15.3.5 Simulation of the Markov Model 598

15.4 Example HMMs—Gilbert and Fritchman Models 601
15.5 Estimation of Markov Model Parameters 604

15.5.1 Scaling 611
15.5.2 Convergence and Stopping Criteria 612
15.5.3 Block Equivalent Markov Models 613

15.6 Two Examples 615
15.7 Summary 621
15.8 Further Reading 622
15.9 References 622
15.10 Problems 623
15.11 Appendix A: Error Vector Generation 627

15.11.1 Program: c15 errvector.m 627
15.11.2 Program: c15 hmmtest.m 628

“TranterBook” — 2003/11/18 — 14:44 — page xv — #11
�

�

�

�

�

�

�

�

Contents xv

15.12 Appendix B: The Baum-Welch Algorithm 629
15.13 Appendix C: The Semi-Hidden Markov Model 632
15.14 Appendix D: Run-Length Code Generation 636
15.15 Appendix E: Determination of Error-Free Distribution 637

15.15.1 c15 intervals1.m 637
15.15.2 c15 intervals2.m 637

16 EFFICIENT SIMULATION TECHNIQUES 639
16.1 Tail Extrapolation 640
16.2 pdf Estimators 642
16.3 Importance Sampling 645

16.3.1 Area of an Ellipse 646
16.3.2 Sensitivity to the pdf 655
16.3.3 A Final Twist 656
16.3.4 The Communication Problem 657
16.3.5 Conventional and Improved Importance Sampling 659

16.4 Summary 660
16.5 Further Reading 660
16.6 References 662
16.7 Problems 662
16.8 Appendix A: MATLAB Code for Example 16.3 665

16.8.1 Supporting Routines 669

17 CASE STUDY: SIMULATION
OF A CELLULAR RADIO SYSTEM 671
17.1 Introduction 671
17.2 Cellular Radio System 673

17.2.1 System-Level Description 673
17.2.2 Modeling a Cellular Communication System 676

17.3 Simulation Methodology 688
17.3.1 The Simulation 688
17.3.2 Processing the Simulation Results 700

17.4 Summary 706
17.5 Further Reading 706
17.6 References 707
17.7 Problems 708
17.8 Appendix A: Program for Generating the Erlang B Chart 710
17.9 Appendix B: Initialization Code for Simulation 712
17.10 Appendix C: Modeling Co-Channel Interference 714

“TranterBook” — 2003/11/18 — 14:44 — page xvi — #12
�

�

�

�

�

�

�

�

xvi Contents

17.10.1 Wilkinson’s Method 715
17.10.2 Schwartz and Yeh’s Method 717

17.11 Appendix D: MATLAB Code for Wilkinson’s Method 718

18 TWO EXAMPLE SIMULATIONS 719
18.1 A Code-Division Multiple Access System 720

18.1.1 The System 720
18.1.2 The Simulation Program 724
18.1.3 Example Simulations 726
18.1.4 Development of Markov Models 729

18.2 FDM System with a Nonlinear Satellite Transponder 734
18.2.1 System Description and Simulation Objectives 734
18.2.2 The Overall Simulation Model 737
18.2.3 Uplink FDM Signal Generation 738
18.2.4 Satellite Transponder Model 740
18.2.5 Receiver Model and Semianalytic BER Estimator 741
18.2.6 Simulation Results 742
18.2.7 Summary and Conclusions 744

18.3 References 746
18.4 Appendix A: MATLAB Code for CDMA Example 747

18.4.1 Supporting Functions 750
18.5 Appendix B: Preprocessors for CDMA Application 753

18.5.1 Validation Run 753
18.5.2 Study Illustrating the Effect of the Ricean K-Factor 753

18.6 Appendix C: MATLAB Function c18 errvector.m 755
18.7 Appendix D: MATLAB Code for Satellite FDM Example 756

18.7.1 Supporting Functions 760

INDEX 767

ABOUT THE AUTHORS 775

“TranterBook” — 2003/11/19 — 15:38 — page xvii — #13
�

�

�

�

�

�

�

�

PREFACE

This book is a result of the recent rapid advances in two related technologies: com-
munications and computers. Over the past few decades, communication systems
have increased in complexity to the point where system design and performance
analysis can no longer be conducted without a significant level of computer sup-
port. Many of the communication systems of fifty years ago were either power or
noise limited. A significant degrading effect in many of these systems was thermal
noise, which was modeled using the additive Gaussian noise channel. Many modern
communication systems, however, such as the wireless cellular system, operate in
environments that are interference and bandwidth limited. In addition, the desire
for wideband channels and miniature components pushes transmission frequencies
into the gigahertz range, where propagation characteristics are more complicated
and multipath-induced fading is a common problem. In order to combat these ef-
fects, complex receiver structures, such as those using complicated synchronization
structures, demodulators and symbol estimators, and RAKE processors, are often
used. Many of these systems are not analytically tractable using non-computer
based techniques, and simulation is often necessary for the design and analysis of
these systems.

The same advances in technology that made modern communication systems
possible, namely microprocessors and DSP techniques, also provided us with high-
speed digital computers. The modern workstation and personal computer (PC)
have computational capabilities greatly exceeding the mainframe computers used
just a few years ago. In addition, modern workstations and PCs are inexpensive
and therefore available at the desktop of design engineers. As a result, simulation-
based design and analysis techniques are practical tools widely used throughout the
communications industry.

As a result, graduate-level courses dealing with simulation-based design and
analysis of communication systems are becoming more common. Students derive
a number of benefits from these courses. Through the use of simulation, students
in communications courses can study the operating characteristics of systems that
are more complex and more real world than those studied in traditional commu-
nications courses since, in traditional courses, complexity must be constrained to
ensure that analyses can be conducted. Simulation allows system parameters to
be easily changed, and the impact of these changes can be rapidly evaluated by

xvii

“TranterBook” — 2003/11/19 — 15:38 — page xviii — #14
�

�

�

�

�

�

�

�

xviii Preface

using interactive and visual displays of simulation results. In addition, an under-
standing of simulation techniques supports the research programs of many graduate
students working in the communications area. Finally, students going into the com-
munications industry upon graduation have skills needed by industry. This book is
intended to support these courses.

A number of the applications and examples discussed in this book are targeted
to wireless communication systems. This was done for several reasons. First, many
students studying communications will eventually work in the wireless industry.
Also, a significant number of graduate students pursuing university-based research
are working on problems related to wireless communications. Finally, as a result
of the high level of interest in wireless communications, many graduate programs
contain courses in wireless communications. This book is designed to support, at
least in part, these courses, as well as the self-study needs of the working engineer.

This book is divided into three major sections. The first section, Introduction,
consists of two chapters. The first of these introductory chapters discusses the moti-
vation for using simulation in both the analysis and the design process. The theory
of simulation is shown to draw on several classic fields of study such as number the-
ory, probability theory, stochastic processes, and digital signal processing, to name
only a few. We hope that students will appreciate that the study of simulation ties
together, or unifies, material from a number of separate areas of study. Different
types of simulations are discussed, as well as software packages used for simulation.
The development of appropriate simulation models and simulation methodology is
a basic theme of this book, and the basic concepts of model development are intro-
duced in Chapters 1 and 2. Chapter 2 focuses on methodology at a very high level.
Many of the basic concepts used throughout the book are introduced here. Students
are encouraged to revisit this material frequently as the remainder of the book is
studied. Revisiting this material will help ensure that the big picture remains in
focus as specific concepts are explored in detail.

The second section, Fundamental Techniques, consists of nine chapters (Chap-
ters 3-11). These nine chapters present basic material encountered in almost all
simulations of communication systems. The sampling theorem, and the role of
the sampling theorem in simulation, is the subject of Chapter 3. Also covered are
quantization, pulse shaping, and the effect of pulse shaping on the required sampling
frequency. The representation of bandpass signals by quadrature lowpass signals,
which is a fundamental tool of simulation methodology, is the subject of Chapter 4.
This is a key chapter, in that the techniques presented here will be used repeatedly
throughout the book. Filter models and simulation techniques for digital filters
are the subject of Chapter 5. Filters, of course, have memory, and more computa-
tion is required to simulate filters than most other functional blocks in a system.
As a result, filters must be efficiently simulated if reasonable run times are to be
achieved. The simulation of a phase-locked loop is presented as a case study in
Chapter 6. The student should realize that, even though this material is presented
early in the study of simulation, important problems can be investigated with the
tools developed to this point. This case study focuses on the acquisition behavior of
the phase-locked loop. Acquisition studies require the use of nonlinear models and,

“TranterBook” — 2003/11/19 — 15:38 — page xix — #15
�

�

�

�

�

�

�

�

Preface xix

as a result, analysis is very difficult using traditional techniques. The methodology
used to develop the simulation is presented in detail, and serves as a guide to the
simulations developed later in the book. The simulation techniques for generating
random numbers are the subject of Chapter 7. Initially, the focus is on the generation
of a pseudo-random sequence having a uniform probability density function (pdf).
Both linear conguential methods and techniques based on pseudo-noise (PN)
sequences are included. A number of methods for shaping the pdf and PSD of a
random sequence are presented. Postprocessing, which is the manipulation of the
data generated by a simulation into desired forms for visualization and analysis,
is the subject of Chapter 8. Monte Carlo simulation techniques are introduced in
Chapter 9 as a general tool for estimating the value of a parameter. The concept
of unbiased and consistent estimators is introduced, and the convergence proper-
ties of estimators is investigated. The concepts developed in Chapter 9 are applied
to communications systems in Chapter 10, which is devoted to Monte Carlo and
semianalytic simulation of communication systems. Several simple examples are
presented in this chapter. Chapter 11 discusses in detail the methodology used for
simulating a wireless communications system in a slowly-varying environment. The
calculation of the outage probability is emphasized, and a number of semianalytic
techniques are presented for reducing the simulation run time.

The third section of this book, Advanced Models and Simulation Techniques, is
devoted to a number of specialized topics encountered when developing more ad-
vanced simulations. Chapter 12 is devoted to the simulation of nonlinear systems.
Model development based on measurements is emphasized, and a number of models
that have found widespread use are presented. Chapter 13 deals with time-varying
systems. The important subject of modeling time-varying channels is introduced.
Chapter 14 presents a number of models for waveform channels. Drawing on the
material presented in the preceding chapter, models for multipath fading channels
are developed. Chapter 15 continues the study of channel models, and presents
techniques for replacing waveform channel models with discrete channel models at
the symbol level. The motivation is a significant reduction in the required simu-
lation run time. The principal tools used are the Baum-Welch algorithm and the
hidden Markov model. System models based on the hidden Markov model are
presented. Chapter 16 deals with various strategies for reducing the variance of a
bit error rate estimator. Several strategies are presented, but the emphasis is on
importance sampling. Chapter 17 is devoted to the simulation of wireless cellular
communication systems. It is shown that cellular systems tend to be interference
limited rather than noise limited. In many systems, co-channel interference is a ma-
jor degrading effect. Chapter 18 concludes the book with two example simulations.
The first of these considers a CDMA system, and presents a simulation in which the
bit error rate is computed as a function of the spread-spectrum processing gain, the
number of interferers, the power-delay profile, and the signal-to-noise ratio at the
receiver input. The data collected by the simulation is used to construct a discrete
channel model based on the hidden Markov model. The hidden Markov model is
then used to statistically reconstruct the error events on the channel. The BER is
then computed using the discrete channel model, and the results are compared with

“TranterBook” — 2003/11/19 — 15:38 — page xx — #16
�

�

�

�

�

�

�

�

xx Preface

the results obtained using a waveform-level channel model. The second example is
an FDM system operating over a nonlinear channel. The effect of intermodulation
distortion on bit error rate is investigated using semianalytic techniques.

From the preceding discussion, it is clear that this book covers a very wide
range of topics. A completely rigorous treatment of all of the topics considered
here would require a volume many times the size of this book, and the result would
not be suitable as a course textbook. A compromise between completeness and
rigor must always be made in developing a textbook. We have, in developing this
book, attempted to provide sufficient rigor to make the results both understandable and
believable. A large number of references are given for those wishing additional study.

Although this book is targeted to a one-semester course in communications,
there is more material included here than is typically covered in a one-semester
course. In the view of the authors, all courses using this book should cover the first
two sections (Chapters 1-11). The instructor can then complete the course with
selected material from the third section (Chapters 12-18), assuming that time is
available.

A number of computer programs, written in MATLAB, are included in the text.
The decision to include computer code within the body of the book was made for a
number of reasons. First, the programs illustrate the methodology used to develop
simulations, and illustrate the algorithms used to perform a number of important
DSP operations. In addition, many code segments included in the MATLAB exam-
ples can be used by the student to aid the development of their own simulations.
In order not to break the flow of the material, only short programs, those requiring
no more than a single page of text, are included within the body of the chapters.
Programs that are too long to fit on a single page are placed in appendices at the
end of the chapter. The MATLAB code included here is designed to be easily fol-
lowed by the student. For that reason, a number of the MATLAB programs are
not written in the most efficient manner possible, in that for-loops are often used
when the loop could be replaced by a matrix operation. It is not suggested that
the student type the computer code from the text. A web page is maintained by
Prentice Hall containing all of the computer code included in the text, and code
can be downloaded from this site. The URL is

http://authors.phptr.com/tranter/

The MATLAB code on this site will be updated periodically in order to ensure that
errors and omissions are corrected.

The choice of MATLAB requires some explanation. There are a number of
reasons for this choice, and these are discussed in detail in Chapter 1. The main
motivations are compactness (complex algorithms can be expressed with a very few
lines of code), graphics support, and the installed base. Since MATLAB is used
extensively in engineering curricula, most students will already have the resources
required to execute the MATLAB programs contained herein. Many simulation
programs involve extensive computational burden, and reasonable execution run
times require the use of a compiled language such as C or C++. This is especially

“TranterBook” — 2003/11/19 — 15:38 — page xxi — #17
�

�

�

�

�

�

�

�

Preface xxi

true of Monte Carlo simulations used to estimate the bit error rate when the signal-
to-noise ratio is high. Many symbols must be processed through the channel in order
to achieve a quality (low variance) estimator. MATLAB, however, is a powerful tool
even in this situation, since a prototype simulation can be developed in MATLAB
to design and test the individual signal-processing algorithms, as well as the entire
simulation. The resulting MATLAB code can then be mapped to C or C++ code
for more efficient execution, and the results obtained can be compared against the
results achieved with the prototype MATLAB simulation. Using MATLAB for
prototyping allows conceptual errors to be quickly identified, which often speeds
the development of the final software product. SIMULINK, although designed for
simulation, was not used in this book, so that the details of the algorithms used
in simulation programs, and the methodology used to develop the simulation code,
would be clear to the students.

ACKNOWLEDGMENTS

A number of colleagues, research sponsors, and organizations have contributed sig-
nificantly to this book. Early in this project a CRCD (Combined Research Cur-
riculum Development) grant was awarded to Virginia Tech by the National Science
Foundation. Much of the material in Chapters 3-10 and Chapter 17 was developed
as a part of this effort. The NSF program manager Mary Poats, encouraged us to
develop simulation-based courses within the communications curriculum, and we
thank her for the encouragement and support. The authors thank Cyndy Graham
of Virginia Tech for her LaTeX skills, and for managing the development of such
a large manuscript. In addition, the individual authors have the following specific
acknowledgements:

William H. Tranter thanks the many students who took the simulation of com-
munications systems course at the University of Missouri–Rolla, Canterbury Uni-
versity (Christchurch, New Zealand), and at Virginia Tech from the notes that
formed the basis of much of this book. These students provided many valuable sug-
gestions. Specific thanks are due to Jing Jiang, who helped with the semianalytic
estimators in Chapter 10; Ihsan Akbar, who did much of the coding of the Markov
and semi-Markov model estimators in Chapter 15 (especially the code contained
in Appendices B, C, and D); and Bob Boyle, who developed the CDMA estima-
tor upon which the CDMA case study in Chapter 18 is based. He also thanks
Sam Shanmugan, who provided friendship, support, encouragement, and above all
patience, through the years that it took to bring this material together. Also to
be thanked are Des Taylor and Richard Duke, who provided support through an
Erskine Fellowship at Canterbury University, and Theodore Rappaport at Virginia
Tech, who provided support during a sabbatical year. It was during this sabbatical
that much of the material in the early chapters of this book were originally drafted.

Sam Shanmugan would like to thank his colleagues and students at the Uni-
versity of Kansas, who have in many ways contributed to this book, and also the
University of Canterbury, Christchurch, New Zealand for the Erskine Professorship
during his sabbatical when much of this book was written. He would also like to
thank his wife for her patience, understanding, and support while he was working

“TranterBook” — 2003/11/19 — 15:38 — page xxii — #18
�

�

�

�

�

�

�

�

xxii Preface

on this and on many other writing projects. Dr. Shanmugan would like to add a
special note of thanks to his co-author Professor William Tranter, for his friendship
and the extra effort he put in towards pulling together all the material for this book.

Ted Rappaport wishes to thank his many graduate students who provided in-
sights and support through their teaching and research activites in wireless com-
munications simulation and analysis. In particular, Prof. Paulo Cardieri, Univer-
sity of Campinas—UNICAMP, Brazil; Hao Xu of QUALCOMM Incorporated; and
Prof. Gregory Durgin of the Georgia Institute of Technology, all contributed sugges-
tions for the text. In particular, Dr. Cardieri’s experiences as a graduate student
researcher formed the basis of Chapter 17.

Kurt Kosbar thanks the students who screened early versions of this material,
and the reviewers who provided valuable comments, including Douglas Bell, Harry
Nichols, and David Cunningham.

William H. Tranter
K. Sam Shanmugan

Theodore S. Rappaport
Kurt L. Kosbar

“TranterBook” — 2003/11/18 — 16:12 — page 1 — #19
�

�

�

�

�

�

�

�

PART I

Introduction

Chapter 1

THE ROLE OF SIMULATION

The complexity of modern communication systems is a driving force behind the
widespread use of simulation. This complexity results both from the architecture of
modern communication systems and from the environments in which these systems
are deployed. Modern communication systems are required to operate at high data
rates with constrained power and bandwidth. These conflicting requirements lead
to complex modulation and pulse shaping along with error control coding and an
increased level of signal processing at the receiver. Synchronization requirements
also become more stringent at high data rates and, as a result, receivers become
more complex. While the analysis of linear communication systems operating in
the presence of additive, white, Gaussian noise is usually quite simple, most modern
systems operate in much more hostile environments. Multihop systems often require
nonlinear amplifiers for efficiency. Wireless cellular systems often operate in the
presence of heavy interference along with multipath and shadowing that leads to
signal fading at the receiver site. This combination of complex systems and hostile
environments leads to design and analysis problems that are no longer analytically
tractable using traditional (nonsimulation-based) techniques.

Fortunately, the past two decades have seen the development of digital comput-
ers that are both powerful and inexpensive. Thus, modern computers are suitable
for use at the desktop and can therefore be dedicated to the solution of problems
taking many hours of computer time without interfering with the work of others.
Computers have become easy to use, and the cost of computer resources is no longer

1

“TranterBook” — 2003/11/18 — 16:12 — page 2 — #20
�

�

�

�

�

�

�

�

2 The Role of Simulation Chapter 1

a significant factor in many efforts. As a result, computer-aided design and analysis
techniques are available to almost all who need them. The development of powerful
software packages targeted to communication systems has accelerated the use of
simulation in the communications area. Thus, the increase in system complexity
has been accompanied by an increase in computing power. In many cases, the avail-
ability of appropriate computational power has directly led to many of the complex
signal-processing structures that constitute the building blocks of modern commu-
nication systems. Thus, it is not just good luck that computational tools appeared
at the time they were needed. Rather, practical computational power, in the form of
the microprocessor, is the enabling technology for modern communication systems
and is also the enabling technology for powerful simulation engines.

The growth in computer technology has also been accompanied by a rapid
growth in what we loosely refer to as simulation theory. As a result, the tools
and methodologies required for the successful application of simulation to design
and analysis problems are more accessible and better understood than was the case
a few decades ago. A large number of technical papers and several books are now
available that illustrate the application of these tools to the design and analysis of
communication systems.

An important motivation for the use of simulation is that simulation is a valuable
tool for gaining insight into system behavior. A properly developed simulation is
much like a laboratory implementation of a system. Measurements can easily be
made at various points in the system under study. Parametric studies are easily
conducted, since parameter values, such as filter bandwidths and signal-to-noise
ratios (SNRs), can be changed at will and the effects of these changes on system
performance can quickly be observed. Time-domain waveforms, signal spectra,
eye diagrams, signal constellations, histograms, and many other graphical displays
can easily be generated and, if desired, a comparison can be made between these
graphical products and the equivalent displays generated by system hardware. We
will see that the process of comparing simulation results with hardware-generated
results is an important part of the design process. Most importantly, perhaps, one
can perform “what if” studies more easily and economically using a simulation than
with actual system hardware. Although we often perform a simulation to obtain a
number, such as a bit error rate (BER), the main role of simulation, as noted by R.
W. Hamming, is not to obtain numbers but to gain insight.

1.1 Examples of Complexity

The complexity of communication systems varies widely. We now consider three
communications systems of increasing complexity. We will see that for the first
system, simulation is not necessary. For the second system, simulation, while not
necessary, may be useful. For the third system, simulation is necessary in order
to conduct detailed performance studies. Even the most complicated of the three
systems considered here is still simple by today’s standard.

“TranterBook” — 2003/11/18 — 16:12 — page 3 — #21
�

�

�

�

�

�

�

�

Section 1.1. Examples of Complexity 3

^

^

Figure 1.1 Analytically tractable communications system.

1.1.1 The Analytically Tractable System

A very simple communications system is shown in Figure 1.1. This system should
remind us of the basic communications system studied in a first course on communi-
cations theory. The data source generates a sequence of symbols, dk. The symbols
are assumed to be discrete. The source symbols are assumed to be elements from
a finite symbol library. For a binary communication system, the source alphabet
consists of two symbols, which are usually denoted {0, 1}. In addition, the source
is assumed to be memoryless, which means that the kth symbol generated by the
source is independent from all other symbols generated by the source. A data source
satisfying these properties is referred to as a discrete memoryless source (DMS). The
role of the modulator is to map the source symbols onto waveforms, with a different
waveform representing each of the source symbols. For a binary system, we have
two possible waveforms generated by the modulator. This set of waveforms may be
denoted {s1(t), s2(t)}. The transmitter, in this case, is simply assumed to amplify
the modulator output so that the signals generated by the modulator are radiated
with the desired energy per bit.

The next part of the system is the channel. In general, the channel is the most
difficult part of the system to model accurately. Here, however, we will assume that
the channel simply adds noise to the transmitted signal. This noise is assumed to
have a power spectral density (PSD) that is constant for all frequency. Noise satis-
fying this constant PSD property is referred to as white noise. The noise amplitude
is also assumed to have a Gaussian probability density function. Channels in which
the noise is additive, white, and Gaussian are referred to as AWGN channels.

The function of the receiver is to observe the signal at the receiver input and
from this observation form an estimate, denoted d̂k, of the original data signal,

“TranterBook” — 2003/11/18 — 16:12 — page 4 — #22
�

�

�

�

�

�

�

�

4 The Role of Simulation Chapter 1

dk. The receiver illustrated in Figure 1.1 is referred to as an optimum receiver
because the estimate of the data symbol is made so that the probability of error,
PE , is minimized. We know from basic digital communication theory that the
optimum receiver for the system described in the preceding paragraphs (binary
signaling in an AWGN environment) consists of a matched filter (or, equivalently, a
correlation receiver), which observes the signal over a symbol period. The output of
the matched filter is sampled at the end of a symbol period to generate a statistic,
Vk, which is a random variable because of the addition of noise to the transmitted
signal in the channel. The statistic, Vk, is compared to a threshold, T . If Vk > T
the decision, d̂k, is made in favor in one of the data symbols. If Vk < T the decision
is made in favor of the other data signal.

We refer to this system as an analytically tractable because, with a knowledge
of basic communication theory, analysis of the system is carried out with ease. For
example, the probability of error is found to be

PE = Q

(√
k

Es

N0

)
(1.1)

where Es represents the average energy, calculated over a symbol period, associated
with the set of waveforms {s1(t), s2(t)}, and N0 represents the single-sided power
spectral density of the additive channel noise. The parameter, k, is determined by
the correlation of the waveforms {s1(t), s2(t)}. As an example, for FSK (frequency-
shift keying) transmission, the waveforms {s1(t), s2(t)} are sinusoids having different
frequencies and equal power. Assuming that the frequencies are chosen correctly,
the signals are uncorrelated and k = 1. For the PSK case (phase-shift keying),
the signals used for data transmission are assumed to be sinusoids having the same
frequencies and equal power but different initial phases. If the phase difference is π
radians, so that s2(t) = −s1(t), the signals are anticorrelated and k = 2.

The performance of the system illustrated in Figure 1.1 is easily determined using
traditional analysis techniques, and we are therefore able to classify the system as
analytically tractable. Why is this system analytically tractable? The first and
most obvious reason deals with the AWGN channel and the fact that the receiver
is linear. Since the noise is Gaussian and the matched filter is a linear system,
the decision statistic, Vk, is a Gaussian random variable. We are therefore able
to calculate the bit error rate (BER) analytically as a function of the parameters
of the receiver filter and determine the values of those parameters that result in a
minimum BER.

There are a number of other factors leading to the fact that the system shown
in Figure 1.1 is analytically tractable. These relate to the simplicity of the system
model, which results from a number of assumptions. The data source was assumed
memoryless, which may or may not be true in practice. In addition, perfect symbol
synchronization was assumed, so that we have exact knowledge of the beginning and
ending times of the data symbols. This assumption allows the decision statistic, Vk,
to be correctly extracted.

Would simulation ever play a role in an analytically tractable system? The
answer is yes, since the system shown in Figure 1.1 may well be the basic building

“TranterBook” — 2003/11/18 — 16:12 — page 5 — #23
�

�

�

�

�

�

�

�

Section 1.1. Examples of Complexity 5

block of a more complex system. The simulation code can be developed for the
system. The resulting simulation can be validated with ease, since analysis of the
system is straightforward. At this point the data source, modulator, channel, or
receiver can be modified as required to model the system under study. In addition,
other subsystems as needed can be added to the simulation model. As we proceed
with the task of developing a simulation model of the system of interest, we can be
confident that the starting point was correct.

1.1.2 The Analytically Tedious System

We now turn attention to a somewhat more complex system. The system illustrated
in Figure 1.2, which is identical to the previously investigated system except for the
addition of the nonlinear high-power amplifier (HPA) and filter in the transmitter.
Consider first the nonlinear amplifier. Nonlinear amplifiers exhibit much higher
power efficiency than linear amplifiers and, as a result, are often preferred over lin-
ear amplifiers for use in environments where power is limited. Examples include
space applications and mobile cellular systems, where battery power must be con-
served. Unlike linear amplifiers, which preserve the spectrum of the input signal,
the nonlinear amplifier will generate harmonic and intermodulation distortion. As
a result, the spectrum of the amplifier output will be spread over a much larger
bandwidth than that occupied by the spectrum of the modulator output. The filter
following the amplifier will in most cases be a bandpass filter with a center fre-
quency equal to the desired carrier frequency. The role of the filter is to attenuate
the harmonic and intermodulation distortion resulting from the nonlinearity.

The filter following the modulator and HPA leads to time dispersion of the data
signal so that the filtered signals are no longer time limited to the symbol period.

^

^

Figure 1.2 Analytically tedious communications system.

“TranterBook” — 2003/11/18 — 16:12 — page 6 — #24
�

�

�

�

�

�

�

�

6 The Role of Simulation Chapter 1

This leads to intersymbol interference (ISI). As a result of ISI, the probability of
error of the ith symbol is dependent upon one or more of the symbols previous to
the symbol upon which the decision is being made. The number of previous symbols
that must be considered in the demodulation of the ith symbol depends upon the
memory associated with the signal at the filter output. If the probability of error
for the ith symbol depends on the k previous symbols we compute the quantity

Pr {Ei|di−1di−2 · · ·di−k}
For the binary case there are 2k different sequences of length k. Assuming that each
data symbol is equally likely to be a binary 0 or 1, the error probability of the ith

symbol is given by

PE =
1
2k

1∑
di−1=0

1∑
di−2=0

· · ·
1∑

di−k=0

Pr {Ei|di−1di−2 · · · di−k} (1.2)

In other words, one must compute 2k different error probabilities, with each error
probability dependent upon one of the 2k preceding sequences of length k, and
average the k results. Since the channel is assumed AWGN, each of the 2k error
probabilities is a Gaussian Q-function. It is a straightforward, but tedious procedure
to calculate the argument of each Q-function and, therefore, simulation is often used.

The system illustrated in Figure 1.2 has an important property that makes
analysis straightforward. Note that the system is linear from the point at which
the noise is injected to the point at which the statistic Vk appears. The statistic Vk

often takes the form

Vk = Sk + Ik + Nk (1.3)

where Sk and Ik are the components of Vk due to signal and intersymbol interference,
respectively, and Nk is the component of Vk due to the channel noise. Thus, if the
channel noise is Gaussian, Nk will be a Gaussian random variable, since it is a linear
transformation of a Gaussian random variable. In addition, the decision statistic
Vk will be a Gaussian random variable having the same variance as Nk but with
mean Sk + Ik, both of which are deterministic. The mean of Vk can be computed
in a straightforward manner. The variance of Vk is determined from knowledge of
the power spectral density of the channel noise and the equivalent noise bandwidth
the system from the channel to the point where Vk appears. The pdf of Vk is
therefore known and the error probability is easily determined. To summarize, the
reason that we can easily determine the pdf of Vk, even though the system has a
nonlinearity, is because the noise does not pass through the system nonlinearity.

The fact that the noise passes only through the linear portion of the system
has a significant impact on the simulation methodology. Because the noise does
not pass through a nonlinearity, the mean of Vk can quickly be determined using a
noise-free simulation. The variance of Vk can be determined analytically and, as a
result, the pdf of Vk is known and the error probably is easily determined. These
concepts are combined in a simulation technique that is both simple and fast. The

“TranterBook” — 2003/11/18 — 16:12 — page 7 — #25
�

�

�

�

�

�

�

�

Section 1.1. Examples of Complexity 7

result is the semi-analytic method in which analysis and simulation is combined in
a way that leads to very fast simulations. Semi-analytic simulation is an important
tool and will be the subject of a later chapter.

1.1.3 The Analytically Intractable System

The system illustrated in Figure 1.3 is referred to as an analytically intractable
system and is a simple model of a two-hop satellite communications system. The
satellite transponder is modeled as a nonlinear HPA and a filter to remove the out-
of-band harmonic distortion caused by the nonlinearity. Comparison of Figure 1.3
with Figure 1.2 shows that they are quite similar. A satellite channel model has been
added and consists of two noise sources rather than one. One noise source represents
the uplink (transmitter-to-satellite) noise, and the other noise source represents the
downlink (satellite-to-receiver) noise. The problem lies in the fact that the noise at
the receiver consists of two components; the downlink noise and the uplink noise
that was passed through the nonlinear HPA. Even assuming that both the uplink
and the downlink noise are Gaussian, the pdf of the noise at the receiver is very

^

^

Figure 1.3 Analytically intractable communications system.

“TranterBook” — 2003/11/18 — 16:12 — page 8 — #26
�

�

�

�

�

�

�

�

8 The Role of Simulation Chapter 1

difficult to determine. The downlink noise is easy to model, since the downlink noise
passes only through the linear portion of the system. The uplink noise, however,
leads to difficulties. The reason for the difficulty lies in the fact that the uplink
noise passes through the nonlinear HPA. Even if the uplink noise is Gaussian, the
pdf of the uplink noise at receiver input is no longer Gaussian. Determination of the
pdf of the decision statistic, Vk, is a very difficult, if not impossible, undertaking.
Without exact knowledge of the pdf of the decision statistic, the probability of error
cannot be determined. Simulation is an essential tool for these types of systems.

The range of communication systems considered in this section has been very
narrow. The systems were chosen simply to illustrate how increasing complexity
gives rise to the need for simulation. Many systems of current interest fall into the
analytically intractable category. Consider, for example, a wireless cellular radio
link operating in a high interference and multipath environment. Simulation is
almost always necessary for the detailed analysis of such systems.

1.2 Multidisciplinary Aspects of Simulation

Prior to the 1970s simulation problems were often solved in a somewhat ad hoc man-
ner. The methodologies for developing simulations, and the error sources present
in all simulation programs, were not understood by many. Over the past 20 years,
the research community has produced a body of knowledge that provides a method-
ology for simulation development and a theoretical framework for solving many of
the problems that arise in the development of simulation programs. This body of
knowledge provides those using simulation as an analytical tool the insights and
understanding necessary to develop reliable simulations that execute in reasonable
computer run times. Building this body of knowledge has required the integration
of material from a variety of fields. Although not exhaustive, nine important areas
of study that impact our study of simulation are depicted in Figure 1.4. We will
now briefly look at these nine areas in order to better understand their relationship
to the art and science of simulation.

The concepts of linear system theory give us the techniques for determining the
input-output relationships of linear systems. This body of knowledge allows us to
represent system models in both the time domain (the system impulse response)
and in the frequency domain (the system transfer function). The basic concepts of
linear system theory builds the foundation for much of what follows.

An understanding of communication theory is obviously important to our study.
The architecture of systems, the operational characteristics of various subsystems
such as modulators and equalizers, and the details of channel models must be un-
derstood prior to the development of a simulation. While simulation can be used to
determine appropriate values for system parameters, the practical range of param-
eter values must usually be known before the simulation is developed. Some insight
into proper system behavior is necessary in order to ensure that the simulation is
working properly and that the results are reasonable.

The tools of digital signal processing (DSP) are used to develop the algorithms
that constitute the simulation model of a communication system. This simulation

“TranterBook” — 2003/11/18 — 16:12 — page 9 — #27
�

�

�

�

�

�

�

�

Section 1.2. Multidisciplinary Aspects of Simulation 9

Simulation of
Communication

Systems

Numerical
Analysis Stochastic

Process
Theory

Communication
Theory

Number
Theory

Digital
Signal

Processing

Linear
System
Theory

Probability
Theory

Computer
Science

Estimation
Theory

Figure 1.4 Areas impacting the study of the simulation of communication systems.

model usually consists of several discrete-time approximations of continuous-time
system components, such as filters, and a knowledge of DSP techniques is necessary
to understand and appreciate the nature of these approximations. As a matter of
fact, each functional block in a simulation model is a DSP operation and, there-
fore, the tools of digital signal processing provide the techniques for implementing
simulations.

Numerical analysis is closely related to DSP but is mentioned separately, since
it is an older discipline. Many classical techniques, such as the suite of tools for
numerical integration, polynomial interpolation, and curve fitting have their origins
in numerical analysis.

The concepts of probability are also fundamental to our study. The performance
measures of communication systems are often expressed in probabilistic terms. As
examples, we often have interest in the probability of bit error or symbol error
in a digital communication system. In synchronization systems we have interest
in the probability that a phase error will exceed a given level. Basic probability
theory provides us with the concept of random variables and the probability density
function. Knowledge of the underlying probability density function allows us to
compute the quantities previously discussed. We will see later that the result of
many simulations (called stochastic simulations) is typically a random variable,
and the variance of that random variable is often a measure of the usefulness and
statistical accuracy of the simulation.

The signal and noise waveforms that are processed by our simulations will, in
many cases, be assumed to be sample functions of a stochastic process. Development
of the algorithms to produce waveforms having the appropriate statistical properties

“TranterBook” — 2003/11/18 — 16:12 — page 10 — #28
�

�

�

�

�

�

�

�

10 The Role of Simulation Chapter 1

will require knowledge of the underlying stochastic process. This is especially true
for developing simulation models for channels. Stochastic process theory gives us the
tools to describe these processes in the time domain (the autocorrelation function)
and in the frequency domain (the power spectral density). Many other applications
of stochastic process theory will appear in the course of our work.

A few of the very basic concepts of number theory provide us with the tools
used to develop random number generators. These random number generators
are the basic building blocks of the waveform generators used to represent digital
sequences, noise waveforms, signal fading, and random interference, to name only
a few applications.

Some of the basic concepts of computer science will be useful in the course of our
study. As examples, the word length, and the format of words, used to represent
samples of signals will impact simulation accuracy, although this is often of minimal
importance in floating-point processors. The choice of language is important in the
development of commercial simulators. Available memory, and the organization of
that memory, will impact the manner in which data and instructions are passed
from one part of the simulation to another. Graphics requirements and capabilities
will determine how waveforms are displayed and will impact the transportability of
the simulation code from one computer platform to another.

The tools and concepts of estimation theory will allow us to evaluate the effec-
tiveness of a given simulation result. As mentioned earlier, the result of a stochastic
simulation is a random variable. Each execution of the simulation will produce a
value of that random variable, and this random variable will constitute an estimator
of a desired quantity. Typically, all values produced by replications of the simula-
tion will be different. Simulations are most useful when the estimator produced by
a simulation is unbiased and consistent. Unbiased estimators are those for which
the average value of the estimate is the quantity being measured. This is another
way of saying that on the average the estimates produced by the simulation are
correct. This is clearly a desired attribute. A consistent estimate is one for which
the variance of the estimate decreases as the simulation run length increases. In
other words, if 100 independent measurements of the height of a person are made,
and the results averaged, we would expect a more accurate estimate of the height
than would result from a single measurement. Estimation theory provides us with
the analytical tools necessary to explore questions of this type and, in general, to
access the reliability of simulation results.

The previous paragraphs are not intended to make a study of simulation appear
to be a daunting task. The goal is simply to point out that simulation is a field
of study in its own right. It draws from many other fields just as electrical engi-
neering draws from physics, mathematics, and chemistry, to name only a few. It is
expected that those embarking on this study have a grasp of linear system theory,
communications, and probability theory. Much of the remaining material will be
treated in the following chapters of this text.

“TranterBook” — 2003/11/18 — 16:12 — page 11 — #29
�

�

�

�

�

�

�

�

Section 1.3. Models 11

1.3 Models

The first step in developing a simulation of a communication system is the devel-
opment of a simulation model for the system of interest. We are all familiar with
models and should understand that models describe the input-out relationship of
physical systems or devices. These models are typically expressed in mathematical
form. The art of modeling is to develop behavioral models (we use this term since
the model captures the input-output behavior of the device under specific condi-
tions) that are sufficiently detailed to maintain the essential features of the system
being modeled and yet are not overly complex so that the models can be used with
reasonable expenditures of computational resources. Tradeoffs between accuracy,
complexity, and computational requirements are therefore usually required.

It is useful to consider two different types of models in the work to follow:
analytical models and simulation models. Both analytical models and simulation
models are abstractions of a physical device or system as illustrated in Figure 1.5.
The physical device illustrated in Figure 1.5 may be a single circuit element such
as a resistor or a subsystem such as a single chip implementation of a phase-locked
loop (PLL) used as a bit synchronizer. It may be a complete communications sys-
tem. The first and most important step in the modeling process is to identify those
attributes and operational characteristics of the physical device that are to be rep-
resented in the model. The identification of these essential features often requires
considerable engineering judgment and always requires a thorough understanding
of the application for which the model is being developed. The accuracy required
of any mathematical analysis or any computer simulation based on the model is
limited by the accuracy of the model. Once these questions have been answered,
an analytical model is developed that captures the essential features of the phys-
ical device. Analytical models typically take the form of equations, or systems of
equations, that define the input-output relationship of the physical device. These

Physical
Device

Analytical
Model

Simulation
Model

Hardware

Equations

Computer Code

Increasing Level of
Abstraction

Figure 1.5 Devices and models.

“TranterBook” — 2003/11/18 — 16:12 — page 12 — #30
�

�

�

�

�

�

�

�

12 The Role of Simulation Chapter 1

equations are, at best, only a partial description of the device being modeled, since
only certain aspects of the device are modeled. In addition, the equations that de-
fine the device are typically accurate only over a limited range of voltages, currents,
and frequencies. The simulation model is usually a collection of algorithms that
implement a numerical solution of the equations defining the analytical model. The
techniques of numerical analysis and digital signal processing are the tools used in
the development of these algorithms.

We also see from Figure 1.5 that the level of abstraction increases as one moves
from the physical device to the analytical model and finally to the simulation model.
The increase in abstraction results, in part, from the assumptions and approxi-
mations made in moving from the physical device to the analytical model to the
simulation model. Every assumption and approximation moves us farther from the
physical device and its operating characteristics. In addition, the level of abstraction
present at any step in the process is due, in large part, to the representation used for
the analytical model. As an example, assume that the physical device being consid-
ered is a phase-locked loop. The analytical model for a PLL can take many forms,
with each form corresponding to a different level of abstraction. An analytical model
having a low level of abstraction could consist of a system of equations, with each
equation corresponding a single functional operation within the PLL. Each of these
functional, or signal-processing, operations within the PLL (phase detector, loop
filter, and voltage-controlled oscillator) is represented by a separately identifiable
equation within the system of equations defining the overall PLL. The process and
assumptions used in moving from the hardware device to the analytical model are
often clear from observation of these equations. In addition, simulations developed
from such a system of equations may allow individual signals of interest within the
PLL to be observed and compared to corresponding signals in the hardware device.
We will see that such comparisons are often an essential part of the design process.
On the other hand, the individual equations representing separate signal-processing
operations may be combined into a single nonlinear (and perhaps time-varying)
differential equation relating the input-output relationship of the PLL, which leads
to a much more abstract model. The individual signal-processing operations that
take place within the PLL, and the waveforms associated with these operations, are
no longer separately identifiable. It might seem logical to consider only analytical
models having a low level of abstraction. This, however, is not the case.

Models having different levels of abstraction will be frequently encountered
throughout our studies. As another example, we will see that channels may be
modeled using a waveform-level approach, in which sample values of waveforms are
processed by the model. On the other hand, channels may be represented by a
discrete Markov process based on symbols rather than on samples of waveforms. In
addition, Markov channel models usually absorb the modulator, transmitter, and
receiver into the channel. These models are highly abstract and are difficult to
parameterize accurately but, once found, result in numerically efficient simulations
that execute rapidly. This efficiency is a principal reason for having interest in the
more abstract modeling approaches.

“TranterBook” — 2003/11/18 — 16:12 — page 13 — #31
�

�

�

�

�

�

�

�

Section 1.3. Models 13

Model Complexity
Low High

Run Time vs. ComplexityError vs. Complexity

Long

ShortLow

High Practical Region of
Operation

M
od

el
in

g
E

rr
or

s
Sim

ulation R
un T

im
e

Figure 1.6 Effects of model complexity.

Figure 1.6 also tells us much about the modeling process. It is intuitively ob-
vious that a desirable attribute of a simulation is fast execution of the simulation
code. Simple models will execute faster than more complex models, since fewer
lines of computer code need to be processed each time the model is invoked by
the simulation. Simple models may not, however, fully characterize the important
attributes of a device, and therefore the simulation may yield inaccurate results. In
such a case, more complex models are necessary. While more complex models may
yield more accurate simulation results, the increased accuracy usually comes at the
cost of increased simulation run time.

Figure 1.6 makes it clear that the desirable attributes of simulation accuracy and
execution speed are in competition. A well-designed simulation is one that provides
reasonable accuracy along with reasonable execution speeds. Of course, when the
specifications for a simulation demand a high level of accuracy, the ability to trade
off accuracy and execution speed becomes severely constrained. In this case the
model complexity must be sufficient to guarantee the required accuracy, and long
simulation run times become, perhaps, unavoidable.

Figure 1.6 tells only part of the story. More complex models often require
that extensive measurements be made before accurate simulation models can be
developed. The development of simulation models for a nonlinear amplifier is one
example. Another, and even more complex example is the development of a simula-
tion model of a wireless communication channel when multiple interference sources
and severe frequency selective fading is present. There are many other cases we
could mention in which extensive measurements are required. It should be kept in
mind that these measurements require resources (both equipment and engineering
time) and therefore a relationship exists between the cost of model development
and model complexity. It should also be kept in mind that complex models are
more error prone than simple models.

“TranterBook” — 2003/11/18 — 16:12 — page 14 — #32
�

�

�

�

�

�

�

�

14 The Role of Simulation Chapter 1

When we move from an analytical model to a discrete-time (digital) simulation
model, additional assumptions and approximations are involved. At this point we
mention only a few of the most obvious. The voltages and currents present in both
the physical device and in the analytical model are usually considered to be continu-
ous functions of the continuous variable time. In moving from the analytical model
to the simulation model, we move from the continuous domain to the discrete do-
main. This process involves quantizing the amplitudes of the voltages and currents
and time sampling these quantities. The process of time sampling leads to alias-
ing errors, and quantizing amplitudes leads to quantizing errors. While quantizing
errors are often negligible in simulations performed on floating-point processors,
aliasing errors require our attention if the sampling frequency for the simulation is
to be selected appropriately. Aliasing errors are reduced by increasing the sampling
frequency, but an increased sampling frequency results in more samples being re-
quired to represent a given segment of data. The result is that more samples must
be processed in order to execute the simulation, and the time necessary to exe-
cute the simulation is thereby increased. Hence, a tradeoff therefore exists between
sampling frequency and simulation run time. One therefore should not attempt to
eliminate aliasing errors, or most other errors for that matter, but rather should
seek a simulation having the required accuracy with reasonable run times.

The modeling concepts briefly touched on here will be revisited in more detail
in the following chapter and will be encountered many times throughout this book.
The purpose of this brief introduction is simply to remind the reader that we deal
not with physical devices but with models in performing any engineering analy-
sis. Analytical models (equations) are abstractions of physical devices and involve
many assumptions and approximations. Simulation models are based on analytical
models and involve additional assumptions and approximations. Great care must
be exercised at each step in this process to ensure a valid simulation model and to
ensure that the simulation results reflect reality.

1.4 Deterministic and Stochastic Simulations

There are basically two types of simulation: deterministic simulation and stochastic
simulation. Deterministic simulation is probably familiar to most of us from pre-
vious experiences. An example might be a SPICE simulation of a fixed electrical
circuit in which the response to certain deterministic input signals are of interest. A
software program is developed that represents the components of the circuit and the
input applied to the circuit. The simulation generates the currents present in each
branch of the network and, consequently, generates the voltage across each circuit
element. The voltages and currents are typically expressed as waveforms. The de-
sired time duration of these waveforms is specified prior to executing the simulation
program. Since the circuit is fixed and the input signal is deterministic, identical
results will be obtained each time the simulation is executed. In addition, these
same waveforms will be obtained if the network is solved using traditional (pencil
and paper) techniques. Simulation is used in order to save time and to avoid the
mathematical errors that result from performing long and tedious calculations.

“TranterBook” — 2003/11/18 — 16:12 — page 15 — #33
�

�

�

�

�

�

�

�

Section 1.4. Deterministic and Stochastic Simulations 15

Now assume that the input to the network is a random waveform. (In more
precise terminology we would say that the input to the network is a sample function
of a stochastic process.) Equivalently the system model might require that the
resistance of a resistor is a random variable defined by a certain probability density
function. The result of this simulation will no longer be a deterministic waveform,
and samples of this waveform will yield a set of random variables. Simulations in
which random quantities are present are referred to as stochastic simulations.

As an example assume that the voltage across a certain circuit element is denoted
e(t) and the simulation is performed to generate the value of e(t) at 1 millisecond.
In other words we desire e(0.001). In a deterministic simulation e(0.001) is fixed and
we get the same result each time we perform the simulation. We also get this same
number using traditional analysis techniques. In a stochastic simulation e(0.001) is
a random variable and each time we perform the simulation we get a different value
of this random variable.

Another example might be a digital communication system in which the received
signal consists of the transmitted signal plus random noise. Suppose that it is our
task to compute the probability of symbol error at the receiver output. We know
from a basic course in digital communications that if the modulation format is
BPSK (binary phase-shift keying) and if the channel is AWGN (additive, white,
Gaussian noise), the probability of symbol error is given by

PE = Q

(√
2Eb

No

)
(1.4)

where Eb is the symbol energy, N0 is the single-sided noise power spectral density,
and Q(x) is the Gaussian Q-function defined by

Q(x) =
1√
2π

∫ ∞

x

exp
(
−y2

2

)
dy (1.5)

Note that PE is a number and not a random variable, even though there is a random
quantity (noise) present at the receiver input. The number PE is an average over an
infinite number of trials, in which a trial consists of passing a digital symbol through
the system and observing the result. The result, of course, will be that either a
correct decision or an error is observed at the receiver output. For ergodic processes
we can determine the probability of error in two different ways. We can view a single
bit being transmitted and calculate PE as an ensemble average in which we have
an infinite ensemble of noise waveforms all having the same statistical properties.
Alternately, we can determine PE as a time average by transmitting infinitely many
binary symbols and using a single sample function of the noise. The key is that we
calculate PE using an infinite number of transmitted binary symbols. If instead of
determining PE based on an infinite number of transmitted symbols, we estimate PE

using a finite number of transmitted binary symbols, we will find that the estimate
of PE is indeed a random variable, since each finite-duration sample function will
yield a different (hopefully not much different) value for the error probability. This
will be demonstrated in a following paragraph when we take a brief look at the
Monte Carlo technique.

“TranterBook” — 2003/11/18 — 16:12 — page 16 — #34
�

�

�

�

�

�

�

�

16 The Role of Simulation Chapter 1

It is very important to note that both analysis and deterministic simulations
result in a number. Each time the analysis is performed, the same number will
result. Each time a deterministic simulation is performed, the same result will
be obtained. Stochastic simulations, however, result in random variables, and the
statistical behavior of these random variables is very important in determining the
quality of the simulation result.

1.4.1 An Example of a Deterministic Simulation

Although the main purpose of this book is to present and explore the techniques
used in stochastic simulations, one should not lose sight of the fact that completely
deterministic simulations are important tools for gaining insights into the oper-
ational behavior of communication systems. One can execute a simulation that
determines the waveforms present at points of interest in a system. System param-
eters can be changed and the effects of changing parameters can be readily observed.
Very simple models can often be used and still important results can be obtained.

As a simple example consider a phase-locked loop, such as would be used for
synchronization or demodulation. A block diagram is illustrated in Figure 1.7.
The system appears quite simple. However, due to the nonlinear characteristics
of the phase detector, analysis of phase-locked loops in the acquisition mode is
quite complex. As a simple example, an important performance parameter of a
PLL is the time required to acquire a signal, given various loop parameters and
the specification of the input signal. To solve this problem analytically requires
the solution of a nonlinear differential equation. We therefore turn our attention to
simulation.

Suppose that a PLL is designed with a natural frequency of 5 Hz and a damp-
ing factor of 0.707. Also assume that the PLL is operating in lock and that the
input frequency changes instantaneously by 20 Hz at t = 0.1 second. Given the
large ratio of the step change in the input frequency to the natural frequency of
the PLL, the PLL will lose phase lock and must reacquire the input signal. The
nonlinear behavior of the loop leads to a phenomenon called “cycle slipping,” and

Phase
Detector

Voltage-
Controlled
Oscillator

Loop
Filter

Loop
Amplifier

Input

Figure 1.7 PLL model.

“TranterBook” — 2003/11/18 — 16:12 — page 17 — #35
�

�

�

�

�

�

�

�

Section 1.4. Deterministic and Stochastic Simulations 17

Time (seconds)

Input

VCO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

25

Fr
eq

ue
nc

y
D

er
iv

at
io

n
(H

er
tz

)

Figure 1.8 PLL acquisition behavior.

the acquisition time will be largely dependant upon the number of cycles slipped in
the acquisition process.

The result of a simple simulation is illustrated in Figure 1.8, in which the step
in the input frequency occurs at t = 0.1. We see that the PLL slips three cycles and
then reacquires approximately 0.6 s after application of the frequency step. The
simulation is completely deterministic, and performing multiple simulations using
the same PLL parameters and signal model will result in identical results. This
problem will be explored in greater depth in a later chapter in order to examine
techniques for developing system simulations without the complications imposed by
the presence of random perturbations.

1.4.2 An Example of a Stochastic Simulation

We now consider a completely different situation. Consider the simple digital com-
munication system illustrated in Figure 1.1 and assume that we wish to determine
the bit error rate (BER). The most basic simulation technique for determining
this important performance measure is to pass a large number of digital symbols
through the system and count errors at the receiver output. This is known as the
Monte Carlo technique. If N symbols are processed by the system and Ne errors are
observed at the system output, the Monte Carlo estimate of the error probability is

P̂E =
Ne

N
(1.6)

“TranterBook” — 2003/11/18 — 16:12 — page 18 — #36
�

�

�

�

�

�

�

�

18 The Role of Simulation Chapter 1

This is known as the BER based on N symbols, and the value of the BER is that
it provides an estimate of the symbol error probability, which, using the relative
frequency definition of probability, is

PE = lim
N→∞

Ne

N
(1.7)

Since a simulation of necessity can process only a finite number of symbols, the
symbol error probability can only be approximated.

Since the terms bit error rate and probability of bit error are often taken to
mean the same thing, it might appear confusing to distinguish between the two.
These two terms, however, are actually quite different. The BER is an estimate of
the probability of bit error. One should keep in mind that “rate” is formed as a
fraction, such as miles per hour. BER is indeed a rate, since it means Ne errors
per N transmitted symbols. Replicating the random experiment of transmitting
N symbols through a noisy, or random, channel K times will usually result in K
different error counts, Ne. The probability of bit error, however, is based on passing
an infinite number of symbols through the system. The probability of bit error,
rather than being a random variable, is a number. For example, the probability
of bit error for a binary PSK (phase-shift keying) system in an AWGN (additive,
white, Gaussian noise) is Q(

√
2Eb/N0) where Eb is the energy per bit and N0 is

the single-sided power spectral density of the channel noise. This number remains
fixed as long as Eb and N0 are held constant.

Suppose we perform K = 7 independent Monte Carlo simulations of a binary
PSK communications system in which we have adjusted Eb/N0 so that the prob-
ability of symbol (or bit) error is 0.1. Each simulation is based on N = 1, 000
transmitted symbols. The result of replicating the random experiment of passing
1,000 symbols through the random channel seven times is shown in Figure 1.9.
The randomness is evident in that the BER based on any number of transmissions
N ≤ 1, 000 gives a spread of results. This spread is related to the variance of the es-
timate and in general, in order for simulation results to be useful, the spread should
be small. Note that, for the results shown in Figure 1.9, the variance grows smaller
as N grows larger. This is typical behavior for a correctly developed estimator. Also
note that for large N , the results cluster about the true probability or error, and we
tend to believe that, for a correctly developed simulation, the estimator, P̂E , will
converge to the probability of error, PE, consistent with the relative frequency def-
inition of probability. This is also typical of correctly developed estimators. These
two desired conditions are well-defined concepts in estimation theory. If the vari-
ance of the estimate tends to zero as N grows arbitrarily large, we say that the
estimate is consistent. Also, if E

{
P̂E

}
= PE , we say that the estimate is unbiased.

We will have much more to say about the properties of estimators in later chapters,
and we will also learn how to develop the simulation upon which Figure 1.9 is based.

“TranterBook” — 2003/11/18 — 16:12 — page 19 — #37
�

�

�

�

�

�

�

�

Section 1.5. The Role of Simulation 19

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Transmitted Symbols

Probability of Symbol Error = 0.1

= Q E Ns2 0/

B
E

R

()

Figure 1.9 Monte Carlo simulation results.

1.5 The Role of Simulation

Simulation is used extensively during the many phases of the system design process
and deployment process of modern communication systems. While simulation is
used primarily for performance evaluation and design tradeoff studies (parameter
optimization), simulation can also be used for establishing test procedures and
benchmarks, end-of-life predictions, and anomaly investigations after the system
has been deployed in the field. Both the simulation methodology and the simulation
model used to represent the system will depend on the various phases of the design,
implementation, and the lifecycle of the system. The simulation methodology will
also be governed or guided by the overall design flow used. We illustrate the design
flow and the use of simulation during various phases of the design and lifecycle of
a communication system.

The design of a complex communication system is done from the “top down,”
whereas hardware implementation usually proceeds from the “bottom up.” By this
we mean that, in designing a system, we start at the system level (the highest
level of abstraction) and start filling in the details of the design from system level
and proceed down to subsystem level and finally to the component level. We then
reach the bottom level at which the details of component assembly can be iden-
tified. When building a system, the components are first fabricated. These are
then assembled into subsystems, and finally the entire system is constructed from
the subsystems. Simulation development follows the top-down approach. We start
with a system-level simulation, having a high level of abstraction, followed by more

“TranterBook” — 2003/11/18 — 16:12 — page 20 — #38
�

�

�

�

�

�

�

�

20 The Role of Simulation Chapter 1

and more detailed models and simulations of subsystems and components. As the
implementation begins, the measured characteristics of components and subsystems
are included in the simulation model.

We now describe the various phases of the design process and how simulations
are used during various phases of the design process.

1.5.1 Link Budget and System-Level Specification Process

The design process for a communications system begins with the statement and
analysis of user requirements and performance expectations including throughput,
error rate, outage probability, and constraints on bandwidth, power, weight, com-
plexity/cost, channel over which the system is expected to operate, and the life
expectancy of the system. Based on the user requirements, the “systems engineer”
arrives at an initial concept for the system such as the modulation schemes to be
used, the coding and equalization techniques if necessary, and so on. A set of pa-
rameter values called A-level specifications such as power levels, bandwidths, and
modulation index are also established during this initial stage of the design.

The overall goal at this point in the design process is to determine a system
topology and the parameter values that will meet performance objectives and also
meet the design constraints. As stated earlier, the system performance will be
a function of the signal-to-noise ratio (SNR, or equivalently the value of Eb/N0)
and the total distortion introduced by all the components in the communication
link. The signal-to-noise ratio is established though a process called link budgeting,
which for the most part is a power calculation that takes into account such factors
as the transmitted power, antenna gains, path losses, power gains, and noise figures
of amplifiers and filters.1 While the link budget is not the primary quantity of
interest in simulations, it does establish a range of values of S/N or Eb/N0 over
which simulations for performance estimations have to be carried out.

Since it is impossible to build ideal components, practical implementation of
components like amplifiers and filters will produce nonideal behavior. As a result,
signal distortion will be induced, which will impact system performance. This is
taken into account in the link budget by calculating the performance of the system
with ideal components and then including “implementation losses” that account
for performance degradation due to the signal distortion induced by nonideal com-
ponents. The implementation loss is a measure (often an estimate based on prior
experience) of how much the Eb/N0 must be increased in order to overcome the
effect of the distortion induced by nonideal components. Sometimes the implemen-
tation losses are also referred to as communication or distortion parameters. Note
that some parameters, such as filter bandwidths, might affect the noise power at

1A link budget typically takes the form of a spreadsheet in which all of the system gains and
losses (both signal and noise) including propagation loss, antenna gains, amplifier noise, cabling
losses and other effects are identified and numerically defined. These are usually expressed in dB.
After the spreadsheet is complete, the SNR necessary at the receiver input for the required level of
performance is determinied. Using the spreadsheet, one can then work backward and determine
the transmitter power required to achieve the required performance.

“TranterBook” — 2003/11/18 — 16:12 — page 21 — #39
�

�

�

�

�

�

�

�

Section 1.5. The Role of Simulation 21

various points in the system and this in turn will impact the link budget as well as
the distortion.

The system designer starts with an initial configuration for the system, the
A-level specs and the link budget. The link budget is expressed in a spreadsheet-
like format, and the bottom line in the link budget is the net Eb/N0 at a critical
point in the system after all the implementation losses have been taken into ac-
count. This “critical point” is often the receiver input. The link budget is said
to be “closed” or “balanced” if the link has sufficient Eb/N0, with a safe margin,
to produce acceptable system performance. There are many different measures of
system performance. As examples, analog systems often use mean-square error as
a performance measure while a typical performance measure for digital systems is
the bit error rate. At this point in the design process, the performance metric is
computed from approximate formulas and not simulated. Since all of the imple-
mentation losses have been accounted in the net Eb/N0, the BER, for example, can
be computed using the formula for an ideal system.

If the link budget does not close or balance, then the A-level specifications, the
implementation losses, and even the system configuration are changed and the link
budget is recomputed. For example, the bandwidth of one or more filters may be
changed, the antenna size (gain) may be increased, and the specification of the noise
figure of an amplifier might be lowered. This process is continued until the budget
is balanced or closed with an adequate margin.

Based on the initial system configuration, the A-level specifications and the link
budget, which is now assumed to be closed, it should be possible to construct a
simulation model that can be used to verify the link budget and refine the design.
Performance measures can be estimated accurately and performance degradations
due to nonideal implementations can be verified through detailed simulations. If the
allocations in the link budget are verified through simulation and the link budget
is still closed, the design process then proceeds to the next stage, which involves
the detailed design and implementation of subsystems and components. If the link
budget does not close, then some of the distortion allocations are changed and
the system topology and A-level specs might have to be changed. For example,
the coding gain might have to be increased and the specifications on the linearity
requirements of an amplifier might be changed. Also if the simulation indicates that
the distortion due to a component is less than what was allocated to that component
in the link budget, the resulting savings can be applied to relax the requirements
for some other component (i.e., more distortion can be tolerated elsewhere in the
system). This iterative process continues until the link budget is balanced. A
balanced link budget provides the initial specifications for hardware (and software)
development.

This initial phase of the design involves a considerable amount of “art,” and it
is usually done by someone who has a considerable level of experience in designing
communication systems. In most cases the initial design will be based on previous
designs for similar systems with minor modifications. In other words, new designs
are often evolutionary or incremental in nature.

“TranterBook” — 2003/11/18 — 16:12 — page 22 — #40
�

�

�

�

�

�

�

�

22 The Role of Simulation Chapter 1

1.5.2 Implementation and Testing of Key Components

The design for a new communication system will almost always contain some new
signal-processing algorithms, and new hardware (and software) technologies. With
any new technology there is always some risk or uncertainty about performance. If
the new technology is introduced in a critical element of a communication system,
that component must first to be built and tested under realistic operating conditions
in order to verify the performance and minimize the risk. Since only a few key
components will have been built at this early stage in the design process, it is
impossible to test the entire system in hardware. Simulation provides an excellent
test environment in this situation and the use of simulation is much less costly
than hardware prototyping an entire system. All components and signals, up to
the input to the component being tested and after its output, are simulated with
measured characteristics of the component being tested inserted into the simulation
model for the component. For example, if the component being tested is a new
amplifier, its AM to AM and AM to PM transfer characteristics are measured and
the measured characteristics are inserted into a nonlinear model for the amplifier.
The entire system is then simulated to verify the resulting performance and the link
budget. Once again, if the measured characteristics inserted into the simulation
indicate better-than-expected distortion, then the savings are applied elsewhere in
the system.

If the link budget closes, then the hardware development proceeds to the next
critical component. Otherwise, either the component is redesigned, rebuilt, and
tested again, or the link budget is modified to take into account additional degra-
dation introduced by the component (beyond what was allocated in the original link
budget for the component). This procedure is repeated for other key components.

1.5.3 Completion of the Hardware Prototype and Validation
of the Simulation Model

As the procedure described above advances, a hardware prototype of the entire
system begins to emerge along with an accompanying simulation model. The sim-
ulation model now includes measured characteristics for most of the components
in the model. Many of the performance metrics for the entire system can now be
measured on the hardware prototype. Parallel simulations are also conducted. Mea-
sured performance characteristics can be compared with the simulation results, and
vice versa. Simulations provide benchmarks for testing, and test results validate
the simulations. The end result of this phase of the design process is a complete
prototype of the system, which serves as the basis for developing the production
version of the system. In addition, we have a validated simulation model that can
be used for end-of-life (EOL) predictions with a high degree of confidence.

1.5.4 End-of-Life Predictions

While the preceding procedure leads to a design that guarantees a given level of
performance when the system is deployed, there is another important requirement
that must be satisfied for most systems. This is the end-of-life performance. Many

“TranterBook” — 2003/11/18 — 16:12 — page 23 — #41
�

�

�

�

�

�

�

�

Section 1.6. Software Packages for Simulation 23

communication systems such as communication satellites and under-sea cable sys-
tems are expected to have a long lifespan (usually 10 years or more) over which
performance must be guaranteed. It is of course impossible to subject a hardware
prototype to an actual lifecycle test, since such a test might, if executed in real time,
last many years! While procedures for so called accelerated life testing have been
developed, it is a common practice to use simulations as a complementary approach
to accelerated life testing.

EOL performance predictions using simulations are accomplished though the
use of aging models for the major components in the system. If we have a validated
simulation model for the entire system at the beginning of life (BOL) and also have
good models for the behavior of components as a function of age, which are some-
what easier to obtain, then the aging models for the components can be substituted
in the validated BOL model to arrive at EOL performance metrics for the system.

If the predicted EOL performance is satisfactory, and the final EOL link budget
is closed with adequate margin, the system design and implementation is complete.
Otherwise, the process has to be iterated until convergence is achieved.

A summary of the key steps in the design flow and the role of simulation in
communication systems engineering is shown in Figure 1.10.

1.6 Software Packages for Simulation

Over the past decade a variety of software packages have been developed, and
are being widely used, to simulate communication systems at the waveform level.
The essential components of a simulation framework for communication systems
include a model builder, a model library, a simulation kernel, and a postprocessor.
Individual simulation packages differ in the way these components are implemented
and in the scope and focus of the model libraries that are provided.

Irrespective of the specific simulation package used, the first step in simulating
a communication system consists of building simulation models of the various sub-
systems that make up the overall system and configuring these subsystems into an
end-to-end simulation of the system of interest. Simulation models can be built
using a general-purpose programming language and writing the appropriate code
or by using a graphical model builder. With graphical model builders, simulation
models of subsystems and of the overall communication system are developed using
building blocks taken from the model libraries provided with the simulation environ-
ment. Icons representing functional blocks such as information sources, encoders,
modulators, multiplexers, channel models, noise and interference sources, filters, de-
modulators, decoders, and demultiplexers are selected from various model libraries.
These subsystem icons are then placed on the screen of a PC or workstation, moved
to appropriate locations, and “wired” together to create a simulation model in a hi-
erarchical block diagram form. SIMULINK is a relatively simple simulation package
using the graphical model builder approach.

Models are built either from the top down or from the bottom up with the top-
down view being preferred by systems engineers and the bottom-up approach being
the choice of hardware engineers. At the “leaf level,” which is the lowest level in the

“TranterBook” — 2003/11/18 — 16:12 — page 24 — #42
�

�

�

�

�

�

�

�

24 The Role of Simulation Chapter 1

User Requirements

Initial System Concepts

Simulate and
Verify Link Budget

Measured
Characteristics
of Components

Adjust Link
Budget and
Distortion
Parameters

Link Budget, A-level Specs, and Distortion Allocations

Hardware
Development

Link Budget Closed?

Measure HW
Performance

Simulate and
Verify Link Budget

Loop Until HW
Development is
Completed

Complete Simulation Model Complete HW Prototype

NO YES

Validate Simulation Model

End-of-Life Predictions

Link Closed?

Aging Models
for Components

TROUBLE!!
No Yes

DONE! (GET PAID)

Figure 1.10 Systems engineering and design flow.

“TranterBook” — 2003/11/18 — 16:12 — page 25 — #43
�

�

�

�

�

�

�

�

Section 1.6. Software Packages for Simulation 25

hierarchy, models can have a number of representations ranging from floating-point
subroutines or procedures in a programming language, such as FORTRAN, C, or
C++, to bit-level implementations of subsystem models in VHDL.

As an alternate approach to using a graphical block diagram editor for model
building, one could use an intermediate (pseudo) language such as the MATLAB
command language. Those producing simulations to guide the development of com-
plex and expensive communication systems generally prefer the block diagram ap-
proach and graphical model builders. This preference results because the block
diagram approach is a natural representation of communication systems and pro-
vides the systems engineer with a user-friendly environment. Despite the advantages
of the block diagram approach, we will use MATLAB extensively in the work to
follow for the reasons discussed in Section 1.8.

The level of effort expended in building a simulation model of a system is greatly
reduced by the availability of model libraries that contain an extensive set of well-
documented and well-tested building blocks. Many of the commercial simulation
packages for communications systems available today have extensive model libraries
available.

After the simulation model is developed, simulation parameters (such as sam-
pling rates, seed numbers for random number generators and simulation length) and
design parameters (such as filter bandwidths, code rates, and signal-to-noise ratios)
are specified. The simulation is then executed. Linking all the models together,
generating executable code, starting the simulation, saving sampled values of wave-
forms generated by the simulation, and monitoring the completion of simulation are
functions that are usually performed by the simulation kernel/manager.

After the completion of the simulation, performance measures such as bit error
rates and signal-to-noise ratios are computed from the waveforms generated by the
simulation and the results are displayed as a function of design parameters using a
simulation “postprocessor.” Spectral plots, waveform plots, scatter diagrams, and
eye diagrams are some of the commonly used visual aids for both viewing the sim-
ulation results and for debugging the simulation. As an additional aid in viewing
results and debugging simulations, some simulation environments also provide the
ability to view simulation results inactively as they are generated during a simula-
tion rather than viewing results only after a simulation has been completed. This
is especially helpful in simulations requiring lengthy run times.

Just as a well-stocked model library reduces the effort involved in creating a
simulation model, a well-developed postprocessor with good interactive graphical
capabilities can significantly reduce the effort involved in analyzing and displaying
the simulation results. A rich set of analysis and estimation algorithms for error
rates, power spectral densities, probability density functions, statistical parameters,
and a flexible set of display routines are essential components of a good postprocessor.

Different simulation kernels or frameworks provide different sampling and sim-
ulation techniques. These techniques can be classified as time driven (single-rate,
multirate, or variable-rate sampling), stream driven, event driven, or mixed. In
the simplest case of a time-driven simulation there is a single simulation clock, and
each functional block in the simulation model is executed once every “tick” of the

“TranterBook” — 2003/11/18 — 16:12 — page 26 — #44
�

�

�

�

�

�

�

�

26 The Role of Simulation Chapter 1

simulation clock. The simulation clock is then advanced by a fixed (constant) in-
crement equal, to the reciprocal of the sampling frequency. All functional blocks in
the model are then invoked again so that each model can update the model state
to correspond to the new value of the simulation clock. Simulations of this type are
structured as a single “do loop” or “for loop” in which each tick of the simulation
clock increments the loop index by one.

Event-driven simulations, on the other hand, advance the clock by an arbitrary
amount to the scheduled time of the next event of interest, and each functional block
in the system updates its state corresponding to the value of the new simulation
time. Typically, only a few blocks need to be activated to update their internal
states, and no processing takes place during the “inter-event” time. Simulations of
queueing systems are typically developed in this manner.

Event-driven and variable-step size simulations are computationally more effi-
cient than time-driven simulations. However, they might require interpolation and
resampling in some cases and they do carry an overhead associated with schedul-
ing. For simulations of communication systems, time-driven simulation with either
single-rate or multirate sampling is most commonly used. Multirate sampling is
called for in simulations of systems having signals with widely varying bandwidths.
A spread spectrum system is therefore an example of a system in which the use of
multirate sampling can greatly reduce the required simulation run time.

Digital signal-processing algorithms play an important role in both simulation
and in the implementation of communication systems. Simulation algorithms used
for functions such as filtering and equalization can actually be used for implementing
these functions in hardware or in software using DSP processors. Hence it is often
of interest to include implementation issues such as bit widths and resource sharing
in the simulation model and to move seamlessly from simulation to implementation.
For hardware implementation, this is accomplished using hardware description lan-
guages such as VHDL to provide the interface between the system-level simulation
framework and the hardware design tools. For software implementation of system
components the simulation framework can translate the simulation algorithm to
the assembly language code required for a target DSP processor. These links to
implementation are becoming increasingly important as more and more functions
in communication receivers are implemented in digital hardware or as embedded
software.

1.7 A Word of Warning

We should never think of simulation as a replacement for traditional analysis or
hardware measurements. Simulation is most powerful when used hand in hand
with analysis and measurement. Quite often, the insights gained through repeated
simulations allow the critical parameters in a system to be identified and for the
system model to be simplified. The resulting simplifications often allow additional
analysis to be performed.

“TranterBook” — 2003/11/18 — 11:36 — page 27 — #45
�

�

�

�

�

�

�

�

Some level of analysis is always required for solving system-level problems. As
an example, one must understand the basic dependence of performance parameters,
such as the bit error rate, mean-square error at the demodulator output, or the
signal-to-noise ratio at the receiver input, on system parameters, such as transmitted
power and bandwidth, modulation format, or code rate, in order to ensure that the
system is performing properly and that the simulation results are reasonable. In
other words, as parameters are varied within a simulation, one must ensure that the
observed results of these changes are reasonable and consistent with known theory.
These “sanity checks” are important for validating the simulation and almost always
require some level of analytical effort.

1.8 The Use of MATLAB

MATLAB will be used throughout this book for demonstrating concepts, for prob-
lem solving, and for performing example simulations. As mentioned in the preface,
there are a number of reasons for the choice of MATLAB. First, MATLAB is widely
used in the engineering community. MATLAB combines excellent computational
capabilities with excellent and easy-to-use graphical capabilities. MATLAB con-
tains a rich library of preprogrammed functions (m-files) for generating, analyz-
ing, processing and displaying signals. Add-on libraries (toolboxes) allow the basic
MATLAB library to be supplemented with m-files important to specific application
areas. It is easy for the MATLAB user to generate new m-files for user-dependent
applications. In addition, MATLAB code is very concise, making it possible to
express complex signal-processing (simulation) algorithms using a very few lines of
code.

Most of the examples, demonstrations, and problems used in this book can be
solved using the Student Edition of MATLAB. Occasionally, a restriction present
in the MATLAB Student Edition may make it necessary to use the professional
version of MATLAB.

1.9 Outline of the Book

This book is divided into three parts. The first part, “Introduction,” consists of two
chapters that explore simulation and modeling philosophy in a very broad context.
The second part, “Fundamental Concepts and Techniques,” covers the basic tech-
niques used in the simulation of almost all communication systems. These include
the fundamental concepts of sampling and discrete system theory, filters and filter
models, the representation of signals and systems in simulations, noise generation
and modeling, the development of graphical displays, and Monte Carlo simulation
techniques. A number of simple case studies are included in Part II. The first
case study, devoted to the acquisition behavior of phase-locked loops, allows us to
illustrate simple simulation techniques and to identify the sources of error in sim-
ulations without having to consider the complicating effects of noise. The second
case study considers the simulation of a wireless communications system. This case
study comes after our study of noise, and therefore the effects of noise on the

Section 1.9. Outline of the Book 27

Section 1.9. Outline of the Book 27

“TranterBook” — 2003/11/18 — 16:12 — page 28 — #46
�

�

�

�

�

�

�

�

28 The Role of Simulation Chapter 1

communications system are considered. After a careful study of Part II, one should
be able to simulate a moderately complex digital communications system in operat-
ing in a Gaussian noise environment. While simulation, strictly speaking, may not
always be necessary for determining the performance of these systems, important
insights can often be gained by observing the waveforms present at various points
in the system. Simulation of simpler systems, in which the simulation results can
easily be understood and verified, often provides a starting point for developing
simulations of more complex systems.

The third part of this book, “Advanced Modeling and Simulation Techniques,”
treats many of the concepts required for the development of simulations of mod-
ern systems. In Part III, simulation strategies for nonlinear and time-varying sys-
tems are explored. Attention is then turned to the important problem of modeling
time-varying channels, such as those encountered in mobile wireless communica-
tion systems. Both waveform-based models and discrete channel models based on
Markov processes are considered. Finally, variance reduction techniques are briefly
considered. The general term variance reduction techniques encompasses a number
of strategies that allow knowledge of system details to be used in a way that reduces
the time required to execute a simulation with a given level of accuracy.

1.10 Further Reading

Very few books have been written that focus specifically on the simulation of com-
munication systems. Two books falling into this category are

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

F. M. Gardner and J. D. Baker, Simulation Techniques, New York: Wiley, 1997.

However, a number of books cover general topics relevant to our study. Several that
are cited from time-to-time in this book include

R. Y. Rubinstein, Simulation and the Monte Carlo Method, New York: Wiley,
1981.

B. D. Ripley, Stochastic Simulation, New York: Wiley, 1987.

S. M. Ross, A Course in Simulation, New York: Macmillan, 1990.

P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation, 2nd ed., New
York: Springer-Verlag, 1987.

As mentioned earlier in this chapter, MATLAB is used throughout this book
to illustrate methodology and algorithms. A number of complete simulations are
also included. It is therefore important to have at least a basic familiarity with
MATLAB. While the MATLAB manuals, together with the online help, provide
descriptions of the techniques and routines used in this book, the following two
references have been useful to the authors:

“TranterBook” — 2003/11/18 — 16:12 — page 29 — #47
�

�

�

�

�

�

�

�

Section 1.10. Further Reading 29

D. Hanselman and B. Littlefield, Mastering MATLAB 5: A Comprehensive Tuto-
rial and Reference, Upper Saddle River, NJ: Prentice-Hall, 1998.

A. Biran and M. Breiner, MATLAB for Engineers, Reading, MA: Addison-Wesley,
1995.

G. J. Borse, Numerical Methods With MATLAB, Boston, MA: PWS Publishing
Company, 1997.

The first of these books, as the title implies, is a good tutorial on MATLAB and
is a useful reference for the beginning MATLAB user. The second two books are
more oriented toward applications and algorithms. The last cited book (Borse) is
more advanced and contains a number of DSP applications and techniques that are
useful in the development of simulations.

“TranterBook” — 2003/11/18 — 16:12 — page 30 — #48
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 31 — #49
�

�

�

�

�

�

�

�

Chapter 2

SIMULATION
METHODOLOGY

As discussed in the preceding chapter, simulation plays an important role in the
design of communication systems. Simulation is used for the detailed design of vari-
ous components in a communication system as well as for system-level performance
evaluation. This chapter is, in many ways, a continuation of the material presented
in Chapter 1. In this chapter we will consider the modeling and simulation process
in more detail and will see that there are both qualitative and quantitative aspects
of simulation. Stated another way, simulation is both an art and a science.

Some steps used for creating and executing a simulation model are theoretically
based and therefore quantitative in nature. Modeling of individual system compo-
nents and the generation of random numbers fall in this category. On the other
hand, many steps in simulation involve approaches and considerations that are not
clearly quantifiable and are heuristic in nature. These are lumped into what is
loosely called the “methodology” of simulation. The emphasis of this chapter is on
the methodology or the “art” of simulation, especially as it applies to system-level
performance evaluation. The “science” of simulation, the part that deals with the
quantitative aspects of modeling, estimation, etc., are dealt with in later chapters.
The quantitative and qualitative parts of simulation are not totally dichotomous
but are closely interrelated. All steps used in simulation, including the modeling of

31

“TranterBook” — 2003/11/18 — 16:12 — page 32 — #50
�

�

�

�

�

�

�

�

32 Simulation Methodology Chapter 2

specific components, involve some “methodology.” Furthermore, the executation of
a simulation requires a set of algorithms.

For discussion and presentation purposes we will treat these two topics, the
quantitative and qualitative aspects of simulation, as if they are somewhat disjoint.
However, some familiarity with each topic will aid in the understanding of the
other. This chapter should therefore be read before proceeding to the remainder
of the book. The material in this chapter will have greatest value, however, if it is
periodically revisited as the remaining chapters are studied.

2.1 Introduction

All but the most simple simulation problems involve the following fundamental
steps:

• Mapping a given problem into a simulation model

• Decomposing the overall problem into a set of smaller problems

• Selecting an appropriate set of modeling, simulation, and estimation tech-
niques and applying them to solve these subproblems

• Combining the results of the subproblems to provide a solution to the overall
problem

Usually, specific techniques for solving the smaller subproblems (the third bullet)
will be well defined and rigorous, and are algorithmic or quantitative in nature.
For example, the technique for simulating a linear filter represented by a transfer
function using the finite impulse response (FIR) method is the well-defined convo-
lutional sum. On the other hand, the overall “methodology” used for mapping a
design or performance estimation problem to a suitable simulation model, and se-
lecting a set of consistent and compatible techniques for applying that model, will
involve heuristic procedures and “tricks of the trade.”

The basic purpose of a communication system is to process waveforms and sym-
bols, and hence the simulation of communication systems is an attempt to emu-
late this process by generating and processing sampled values of those waveforms.
This involves modeling the signal-processing operations performed by the various
functional “blocks” in a communication system and generating the required input
waveforms that enter the communication system at various points. The process
of “running” or “executing” a simulation consists of driving the models with ap-
propriate input waveforms to produce output waveforms (which might serve as
inputs to other functional blocks), and analyzing these waveforms to optimize de-
sign parameters or to obtain performance measures such as error rates in a digital
communication system.

To illustrate the various aspects of methodology, we will use the example of
a digital communication system operating over a time-varying or “fading” mobile
communication channel. This channel introduces linear distortion that can be min-
imized by an equalizer in the receiver. The approaches to the detailed design of

“TranterBook” — 2003/11/18 — 16:12 — page 33 — #51
�

�

�

�

�

�

�

�

Section 2.1. Introduction 33

the equalizer will be used to illustrate some aspects of methodology. The channel
will also be time-varying because of mobility, causing the received signal to change
randomly as a function of time. This random change in the received signal level
is referred to as fading. When the received signal power falls below some thresh-
old, the performance of the system as measured by the probability of error will
become unacceptable and the system will be declared to be out of service. The
outage probability of a communication system is defined as the percentage of time
the communication system is “not available” due to bad channel conditions, which
cause the error rate to exceed some specified threshold value. Estimation of the out-
age probability will require the simulation of the system under a large number of
channel conditions and hence is a computationally intensive task. Methods for min-
imizing the overall computational burden associated with executing the simulation
will be discussed.

The overall approach to waveform-level simulation of communication system is
straightforward. We start with a description of the portion of the system that is to
be simulated in a block diagram form in which each functional block in the block
diagram performs a specific signal-processing operation. The appropriate simulation
model for each functional block is chosen from a library of available models, and
the block diagram model is created by interconnecting the set of chosen blocks (i.e.,
their models). Specific values, or a permissible range of values, for the parameters of
each block, such as the bandwidths of filters, are specified prior to the execution of
simulation. The block diagram is simplified if possible, and partitioned if necessary.
The mapping of the design, and/or the performance estimation problem, into a
simulation model is one of the most difficult steps in methodology. The computer
time required for executing the simulation, and the accuracy of the simulation
results, will depend upon how well this is done.

The next step involves the generation of sampled values of all the input wave-
forms or the stimuli to drive the simulation model. Signals, noise, and interference
are represented by random processes, and sampled values of random processes are
generated using random number generators. During simulation, the outputs of
the random number generators are applied as inputs of the appropriate blocks to
“drive” the simulation model and produce sampled values at the outputs of various
functional blocks. Some of the output samples are recorded and are analyzed either
while the simulation is executing (“in-line estimation”) or at the end of simulation
(“off-line estimation” or postprocessing), and various performance measures such
as signal-to-noise ratios (SNRs), mean-square error, and probability of error are
estimated.

The final step, and a very important step, in the simulation is the validation
of the simulation results using analytical approximations and bounds, or measured
results when available. Measured results are typically available only toward the
end of a design cycle after prototypes have been built. Even when a prototype
system is available, only a limited number of measurements are typically made.
Measurements are inherently expensive and the reason we rely on simulation is to
avoid the time and expense of taking a large number of measurements. (If everything
can be measured at the time the measurement is required, then there is no need for

“TranterBook” — 2003/11/18 — 16:12 — page 34 — #52
�

�

�

�

�

�

�

�

34 Simulation Methodology Chapter 2

simulation!) Nevertheless, some validation against measured results has to be done
to verify the models and the methodology used, and to establish the credibility of
the simulation results.

A real communication system will usually be far too complex to model and sim-
ulate exactly in its entirety even if unlimited computational resources are available.
A variety of techniques are used to reduce the overall complexity of the simulation
problem to something that is within the scope of the available computer resources,
the time available, and the accuracy desired. These techniques or tricks of the trade
are loosely referred to as methodology and are described in the following sections
with examples.

2.2 Aspects of Methodology

The overall approach, or methodology, used to solve a design or performance estima-
tion problem depends on the nature of the specific problem. While it is difficult to
present methodology as an independent set of rules or algorithms, there are certain
generic aspects of methodology that can be applied to a wide variety of simulation
problems. We describe these first and then present a set of specific methods for
solving a set of individual problems.

2.2.1 Mapping a Problem into a Simulation Model

The starting point of a simulation is a clear statement of the problem and the
objectives of the simulation. To illustrate various aspects of methodology, we will
use the mobile communication system example, and consider the following two
problems:

• Equalizer Design: Determine the number of taps, the tap spacing, and the
number of bits used to perform the arithmetic operations in the equalizer to
be used in the receiver.

• System Performance Evaluation: Determine the Eb/N0 required to maintain
an acceptable level of performance. (A more detailed description of the system
and its performance specifications will be provided in later sections of this
chapter.)

The first problem deals with the detailed design of a component in the receiver,
whereas the second problem is one of system-level performance estimation. These
two problems require different approaches in terms of what portion of the system
to model, the level of detail to be included in the model, as well as the modeling
techniques, the simulation techniques, and the estimation procedures to be used.
Also, we must assume that the first problem has been solved before we can approach
the second problem.

Irrespective of whether we are dealing with a detailed design problem, or a
high-level performance estimation problem, the starting point is usually a detailed
block diagram that represents the portion of the system that needs to be simulated.
This block diagram representation, in its initial form, will often include more detail

“TranterBook” — 2003/11/18 — 16:12 — page 35 — #53
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 35

than what might ultimately be necessary and also might have a lot of detail dealing
with aspects of the system that might have no bearing on the design or performance
issues being addressed. Nevertheless, it is customary and useful, as a starting point,
to include “everything that one can think of” in the initial overall block diagram.

The final simulation model is created from the initial block diagram by simpli-
fying it. There are three classes of generic techniques that are applied in this step
of creating a simulation model:

• Hierarchical representation

• Partitioning and conditioning

• Simplifications (approximations, assumptions, and various simplifications)

Hierarchical Representation

Hierarchy is a commonly used approach for reducing the complexity in modeling,
software design and other applications. In the context of a communication system,
hierarchy is used to manage and reduce the complexity of the simulation model
and also reduce the computational load associated with simulating the model. The
hierarchical representation is done in various “layers” starting with a “system”-
level model and progressing down through various other layers, which are usually
referred to as the subsystem layer, the component layer, and the physical (gate-
level or circuit) layer. Example “layers” for a particular communications system
are shown in Figures 2.1, 2.2, and 2.3. The number of layers and the terminology
used to define a given layer are not unique. There could be an arbitrary number of
layers in the hierarchy, and what might be viewed as a subsystem in one context
may be considered as a system in a different context. Nevertheless, we will use the
term system to refer to the entire entity of interest. In terms of a hardware analogy,
a system usually may be viewed as what is contained in a rack, cabinet, or box. A
system contains subsystems that are often implemented at the board level. Boards
are assembled from components (discrete components and ICs) and what is inside
ICs are transistors and other physical devices.

In a hierarchical representation, or model of a system, the building blocks used
in lower layers in the hierarchy will contain more detail, whereas the blocks at the
higher layers are more abstract and deal with the overall function of the block. The
decomposition into lower layers is done until no further meaningful decomposition
is possible or necessary. The lowest level is often based on components such as
resistors, capacitors, and ICs.

In the context of a communication system, the system-level model, shown in
Figure 2.1, will consist of functional blocks such as information sources, encoders,
decoders, modulators, demodulators, filters, and the channel. Each of these func-
tional blocks can be considered a subsystem and decomposed, or expanded further,
in order to show more detail. For example, the timing recovery subsystem can be de-
composed into a fourth-order nonlinearity, two bandpass filters, and a phase-locked
loop (PLL) as shown in Figure 2.2. Additional decomposition yields a “component”-
level model. As examples, the bandpass filters shown in Figure 2.2 may be discrete

“TranterBook” — 2003/11/18 — 16:12 — page 36 — #54
�

�

�

�

�

�

�

�

36 Simulation Methodology Chapter 2

Baseband
Demod.

Equalizer Receiver
Filter

Carrier Recovery RF Demodulator

Information
Source

Source
Encoder

Baseband
Modulator

and
Transmitter

Filter

Channel
Encoder

(Interleaver)

RF Modulator

Noise

Interference from Other Users

Communication
Channel

Channel
Decoder

(Deinterleaver)

Source Decoder

Information Sink

Timing
Recovery

See Figure 2.2

Figure 2.1 System-level model for communication system.

Bandpass
Filter

PLL
f fvco c= 4

Bandpass
Filter
@ 4 fc

•b g
4

Figure 2.2 System-level model for timing recovery subsystem.

“TranterBook” — 2003/11/18 — 16:12 — page 37 — #55
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 37

Loop
Filter

Phase
Detector

VCO

Figure 2.3 Component-level model for PLL.

component analog filters, microwave filters, or digital filters. In the case of analog
filters, it might be possible to expand the filters into “circuit”-level models. For a
digital filter, this decomposition will be down to bit-level adders, multipliers, and
accumulators. A layer below this will involve individual transistors and gates. How-
ever, we very seldom go down to this level of detail in the context of waveform-level
simulation of communication systems. The “component”-layer model for the PLL,
which was briefly discussed in Chapter 1, is shown in Figure 2.3. We will consider
the simulation of the PLL in detail later in this book. As with the filter, additional
decomposition to a circuit-level model may be necessary for certain applications.

The main reason for using the concept of hierarchy is to manage the complexity
of the simulation model and also to reduce the computational burden associated
with simulating the model. In general, one should perform the simulation at the
highest possible level of abstraction, consistent with the goals of the simulation,
since higher levels of abstraction imply fewer paramerers and more efficient sim-
ulations. In the equalizer design example, the equalizer itself might be simulated
at the bit level, whereas the channel might be simulated at a much higher level of
abstraction. For example, a transfer function might be used to represent a channel.
Similarly, a digital baseband filter in the receiver need not be simulated at the bit
level if the goal of the simulation is system performance evaluation. The manner
in which the filter is implemented will, of course, not affect the performance of the
overall system so long as the transfer function of the filter is preserved.

In addition to reducing complexity and the required simulation time, higher-
level models will have fewer parameters and also might be easier to validate. Fewer
parameters imply that the model can be characterized by fewer measurements.
For example, a circuit-level model of a Butterworth filter might involve a dozen
or more component values. However, a high-level transfer function of the same
Butterworth filter is characterized by just two parameters, the filter order and the
filter bandwidth. Both of these parameters are easy to measure. In addition,
validation of simulation results is simpler, with fewer measurements required, when
the simulation model is at a higher level of abstraction.

At the system level, simulation is done at a highest level of abstraction using
“behavioral” models such as transfer functions rather than physical models. The
functional forms of the behavioral models are usually assumed or obtained from
separate, but not concurrent, simulations of the lower-level blocks, or from

“TranterBook” — 2003/11/18 — 16:12 — page 38 — #56
�

�

�

�

�

�

�

�

38 Simulation Methodology Chapter 2

measurements. A digital filter, for example, might be simulated at the bit level and
an analog filter might be simulated at the circuit level. A higher-level model for
both filters can be derived from the bit-level or circuit-level simulations in the form
of a transfer function. The only model for the filter that will be used at the higher
level will be the transfer function model, which is computationally more efficient
than a bit-level or circuit-level model. The details of the lower-level model, whether
it is an analog filter or digital filter, is completely hidden from the higher layer. This
approach of creating a higher-level model from the details of a lower-level model,
and substituting back at the higher level is called “back annotation.”

During the early phase of the design cycle, the filter transfer function is assumed
or “specified” (e.g., a fifth-order Elliptic filter) and the actual characterization of
the transfer function will be obtained later when the filter has been designed and
simulated. Later in the design cycle, when the filter is actually built, its trans-
fer function can be measured and the measured transfer function can be used in
higher-level simulations. Simulation is very flexible in this context and a hierarchi-
cal approach adds to the flexibility of including multiple versions of models for a
subsystem or a component with different levels of abstraction, but with the same ex-
ternal interfaces and parameters. In addition, hierarchy also reduces overall model
complexity and the resulting computational burden.

Like the modeling process, the actual design of a communication system also
flows top down through various layers. In the design process, specifications flow
down through the layers of the hierarchy, and characterization (measured or sim-
ulated at the lower levels) flows back up through the layers of hierarchy. In some
applications, it might be necessary to use different levels of detail in a single simu-
lation model. For example, in the equalizer design, it may be necessary to estimate
the system probability of error as a function of number of bits used for arithmetic
in the equalizer. In this case all parts of the system surrounding the equalizer will
be simulated at a very high level of abstraction, whereas the equalizer itself might
be simulated in great detail using, sometimes, a different simulator. This approach
is often referred to as “co-simulation.”

Partitioning and Conditioning

Partitioning of a complex problem into a set of interrelated but independent prob-
lems, which can be solved separately and whose solutions can be combined later,
is another technique that is useful for reducing the complexity and also the com-
putational burden. Whereas hierarchy deals with different levels of abstraction,
partitioning usually deals with the same level of abstraction but with various as-
pects of the problem that can be simulated separately and the results combined.
Thus, for partitioning, we view and inspect the block diagram “horizontally” while
hierarchy may be viewed as a “vertical” separation. In the context of the example
shown in Figure 2.1 it might be possible to separate synchronization and coding
from the rest of the problem and simulate them separately.

Conditioning is another technique that is very similar to partitioning—we simply
fix the condition or state of a portion of the system and simulate the rest of the
system under various values of the conditioned variables or states. The conditioned

“TranterBook” — 2003/11/18 — 16:12 — page 39 — #57
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 39

part of the system is simulated separately and the results obtained in the first part
are averaged with respect to the distribution of the conditioning variable obtained
in the second part. This process is best illustrated with an example.

Suppose we wish to estimate the probability of error in the system shown in
Figure 2.1 with nonideal synchronization (timing and carrier recovery). We can use
partitioning and conditioning to simplify the problem by estimating the conditional
probability of error in the system for various values of timing and carrier phase
errors, and then simulating the synchronization system to obtain the distribution
of the timing errors. We then average the conditional probability of error with
respect to the distribution of timing errors and phase errors. What we are doing
here is a well-known operation in statistics involving conditional expected values.
In general:

EXY {g(X, Y)} =
∫ ∫

g(x, y)fXY (x, y) dx dy

=
∫ {∫

g(x, y)fX|Y (x | y) dx

}
fY (y) dy (2.1)

which, in terms of conditional expectation, is

EXY {g(X, Y)} = EY

{
EX|Y {g(X, Y)}} (2.2)

Returning to our example of determining the bit error rate (BER) in the presence
of timing errors and phase errors, this principle can be applied to give

P̂E =
∫ ∫

P̂r{Error | τ, θ} f̂TΘ(τ, θ) dτ dθ (2.3)

where P̂r {Error | τ, θ} is the simulation-based estimate of the conditioned probabil-
ity of error in the system given that the phase error is θ and the timing error is
τ . The result of averaging, P̂E , is the unconditioned (overall) probability of error
and fTΘ(τ, θ) is the estimated (simulated) distribution of the phase error and tim-
ing error produced by the synchronization system. Note that the synchronization
system is simulated by itself, apart from the rest of the system, and the results are
averaged. This leads to the simulation of two simpler systems and should result in
less simulation time.

If we can assume that the timing and phase recovery systems produce indepen-
dent timing and phase errors, then these parts can be partitioned and simulated
separately to obtain estimates of the distributions of the timing error, f̂T(τ), and
the phase error, f̂Θ(θ). The joint distribution of the timing and phase error can be
obtained as

f̂TΘ(τ, θ) = f̂T(τ)f̂Θ(θ) (2.4)

which can then be substituted in (2.3) to do the averaging.
It should be noted that partitioning deals with separating the problem into

parts and conditioning guides partitioning and, more importantly, helps integrate

“TranterBook” — 2003/11/18 — 16:12 — page 40 — #58
�

�

�

�

�

�

�

�

40 Simulation Methodology Chapter 2

the results. The independence assumption, where appropriate, also aids in bring-
ing simulation results together. The latter will be case in which the simulated
parts produce statistically independent phenomena and processes that need to be
combined.

Simplifications and Approximations

It was stated earlier that, as a starting point, it is common practice to include as
much detail in the initial block diagram model as possible. The complexities of the
overall model and the subsystem models are then reduced using a number of tech-
niques including the omission of those blocks that do not have a significant impact
on the problem being addressed, the use of approximations, and simplification by
combining blocks.

As an example of how portions of the block diagram may be omitted, consider
the system-level performance evaluation problem. If we can assume that the channel
is very slowly time varying, and that the system is operating at a high signal-to-
noise ratio, S/N , it is reasonable to expect that synchronization errors will be very
small and hence the effects of synchronization can be ignored during performance
estimation. In this situation, the timing recovery and the carrier recovery portions
need not be simulated and can be deleted from the block diagram.

Approximations and assumptions are used extensively to simplify the simulation
model. The most commonly used assumptions and approximations involve time
invariance (stationarity), and linearization. While most practical systems, when
observed over a long time and over a wide dynamic range of the input signal, might
exhibit time-varying and nonlinear behavior, they can be well approximated by
linear and time-invariant models over short time periods and for low signal levels.

Time invariance implies that over the simulation interval, the properties of the
signals and system components being modeled do not change. In practice, the
concept of time invariance is applied as an approximation in a relative and not in
an absolute sense. If a system parameter is changing slowly, there are situations
in which it may be assumed fixed over the simulation interval. As an example,
consider the problem of BER estimation over a radio channel in which the transmit
and receive antennas are stationary. If the changes in channel characteristics are
due to changes in the atmospheric conditions, which have a time constant of several
minutes to hours, and if the symbol rate of transmission is millions of symbols per
second, then the channel can be assumed to be “quasi-static.” That is to say that
the channel remains in nearly the same condition while several hundred millions of
symbols flow through it and it is meaningful to talk about instantaneous probability
of error for a given channel condition. If the BER being estimated is of the order
of 10−3, then we need to simulate only a few thousand symbols to estimate this
BER. This represents a simulation time interval of milliseconds, whereas the time
constant of the channel is of the order of several minutes and hence it is reasonable
to assume the channel to be static during the simulation interval. This quasi-static
approximation plays a very important role in simplifying simulation models.

The quasi-static assumption, and the resulting simplifications, may be applied
in any system in which we have phenomena and processes that have significantly

“TranterBook” — 2003/11/18 — 16:12 — page 41 — #59
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 41

different bandwidths. In such systems, it might be possible to simulate the effects
of the faster process while assuming the slow process to be in a fixed state. We can
therefore view the quasi-static assumption as a requirement for partitioning and
conditioning.

In a similar vein, we use linear approximations for nonlinear components. Non-
linear models in general are very complex to analyze, and while they are somewhat
easier to simulate, they still pose problems. Whenever possible we try to approxi-
mate the behavior of these components by linear models.

Finally, we use many of the principles of linear systems to simplify the block
diagram. We can combine several cascaded and parallel blocks into one block by
multiplying or adding the transfer functions of the cascaded and parallel blocks,
respectively. In the case of linear time-invariant blocks we can also interchange the
order of the blocks when doing so leads to a simpler model. This type of simpli-
fication is desirable, especially when using simulation for performance estimation.
First of all, performance estimation simulations are usually very long, and hence
the effort in simplifying the model is justifiable. Second, unlike the situation in
which simulation is used to support a detailed design, we are not interested in ob-
serving the evolution and progression of waveform through each functional block of
the system. When simulation is used for performance estimation we are usually in-
terested in simply comparing the input and output waveforms and counting errors.
In this situation the intermediate waveforms are of very little interest or use. The
entire system can be reduced to a very small number of blocks during performance
estimation, and this would lead to considerable reduction in simulation time. If the
blocks have similar complexity, combining the transfer function of n blocks will lead
to computational savings of the order of (but less than) n.

To state the obvious, it must be clear that every attempt should be made to
reduce the simulation model to the smallest number of functional blocks possible
with the highest-level abstraction consistent with the goals of the simulation exer-
cise. High-level models and lower-level models are relative terms. While high-level
system descriptions with a smaller number of subsystem models will require less
computation time, more detailed models will in general lead to more accurate simu-
lation results. This improved accuracy, however, comes at the expense of increased
computational time.

2.2.2 Modeling of Individual Blocks

The role of each functional block in a communication system is to perform a spe-
cific signal-processing function and hence its simulation model should mirror this
function with varying degrees of abstraction. Irrespective of the internal details,
the simulation model should accept a sequence of time-ordered samples of the in-
put waveform and produce a time-ordered set of output samples according to some
well-defined transfer characteristic. A number of choices and considerations must
be taken into account in building the model, and we describe some of the method-
ological issues associated with modeling in the following sections. (Even though we
now focus our attention on models at the system or subsystem level, some of the

“TranterBook” — 2003/11/18 — 16:12 — page 42 — #60
�

�

�

�

�

�

�

�

42 Simulation Methodology Chapter 2

methodological issues described in the preceding section apply here. Also, many of
the concepts described here at the subsystem level also apply at the system level.)

The simulation model of a subsystem or a component (block) is a transformation
of the form

{y[k], y[k − 1], · · · , y[k − m]}
= F {x[k − j], x[k − j − 1], · · · , x[k − j − n]; k; p1, p2, · · · pq} (2.5)

where x [k] represents input samples, y[k] represents output samples, p1, p2, · · · , pq

represent parameters of the block, and k = m, 2m, 3m, · · · is a time index. The
model uses n samples of the input to produce m samples of the output per “in-
vocation” of the model according to the transformation F , which will be defined
explicitly in terms of the input samples, the parameters of the block, and the time
index k. If the transformation F does not depend upon the index k, the model is
time invariant. If m > 0, the model is considered a block input-output model, and
when m = 0 we have a sample-by-sample model. If n = 0 the model is memoryless.

In constructing the model for a functional block, and executing the model within
a simulation, a number of considerations must be taken into account. These con-
siderations are related to each other even though they are presented in an arbitrary
order.

Lowpass Equivalent Representation

Communication systems contain components and signals that are either bandpass
or lowpass in nature. From a simulation perspective, it is computationally ad-
vantageous to represent all signals and system elements by the complex lowpass
equivalent representation. For signals and linear systems, the lowpass equivalent is
obtained by shifting the bandpass spectra from the carrier frequency to f = 0 and
the linear model of the block can be implemented using the lowpass equivalent rep-
resentation of the input and output signals and the signal transformation. Details
of this representation are presented in Chapter 4.

The lowpass equivalent of a deterministic signal is obtained via frequency trans-
lation of its Fourier transform, whereas the power spectral densities are used for
random signals. If the bandpass spectrum is nonsymmetric around the carrier,
the lowpass equivalent representation in the time domain will be complex valued.
Furthermore, the components of the lowpass equivalent random process will be
correlated in this case.

For certain types of nonlinear systems it is also possible to use the lowpass
equivalent representation. Details of the lowpass equivalent models for nonlinear
systems are described in Chapter 12.

Sampling

When signals and systems are lowpass or represented by their lowpass equivalent in
the bandpass case, they can be sampled and represented by uniformly time spaced
samples. The minimum sampling rate required is twice the bandwidth of the signal
(or the system) for the ideal lowpass case. However, in practical cases in which

“TranterBook” — 2003/11/18 — 16:12 — page 43 — #61
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 43

frequency functions may not be confined to a finite bandwidth, the sampling rate
is often taken to be 8 to 16 times some measure of bandwidth, such as the 3-dB
bandwidth. In the case of digital systems the sampling rate is usually set at 8
to 16 times the symbol rate. Factors such as aliasing error, frequency warping
in filters implemented using bilinear transforms, and bandwidth expansion due to
nonlinearities need to be considered in establishing a suitable sampling rate. These
effects can be minimized by increasing the sampling rate, but higher sampling rates
will increase the computational load and therefore one has to trade off accuracy
versus simulation time. Multirate sampling, variable step size, and/or partitioning
fast and slower parts of the system, when possible, are techniques that can be
applied to reduce the computational burden.

Linear versus Nonlinear Models

While most of the blocks in communication systems will be linear, a significant
portion of a communication system may involve nonlinear processing. Some of the
nonlinear processing is intentional whereas some is unintended. Examples of the
former are operations such as decision feedback equalizers, nonlinear operations in
synchronization subsystems, and intentional limiting of impulse noise. Examples
of the latter are the nonlinear behavior of power amplifiers near their maximum
operating power.

As a first approximation, most of the nonlinearities can be modeled as having
linear effects on communication signals, particularly if the signal is a constant enve-
lope signal such as phase-shift keying (PSK). However, in multicarrier systems, or in
single-carrier systems with higher-order quadrature amplitude modulation (QAM),
unintended nonlinear behavior might impact system performance significantly and
hence it is necessary to include nonlinear simulation models. Fortunately, most
of these nonlinearities in communication systems can be modeled efficiently using
complex lowpass equivalent representation.

There are various approaches to modeling systems with nonlinearities. These
include, in order of increasing complexity, memoryless power series nonlinear mod-
els, frequency-selective nonlinear models with memory, and nonlinear differential
equations. The mathematical analysis of nonlinear systems, and the evaluation of
the effects of nonlinearities, is in general difficult. However, simulation is rather
straightforward even in the case of frequency-selective nonlinear models.

Nonlinear models fall into two broad categories: input-output block models and
nonlinear differential equations. The first set of models are usually based on mea-
surements whereas the second class of models are often derived from modeling the
physical behavior of the device. Solutions of nonlinear differential equation models
implemented using variable time-step integration models are computationally most
efficient even though they might involve more setup time. It is also possible to
decompose a nonlinear subsystem in a block diagram form and simulate in block
diagram form using simpler building blocks such as memoryless nonlinearities and
filters. This approach, although easier to set up, will not be the most computation-
ally efficient approach.

“TranterBook” — 2003/11/18 — 16:12 — page 44 — #62
�

�

�

�

�

�

�

�

44 Simulation Methodology Chapter 2

One important factor that must be considered while simulating nonlinear ele-
ments is that the nonlinearity will produce bandwidth expansion and the sampling
rate has to be set high enough to capture the effects of the bandwidth expansion.

Time Invariance

As stated earlier, all systems, components, and processes will exhibit time-varying
behavior to some extent when observed over a long time period. Whether or not to
use a time-varying model is guided by a number of factors.

In many applications such as modeling and simulating an optical fiber, the
fiber characteristics may change very little over the lifespan of the communication
system, and hence a time-invariant model will be adequate. In other cases, the time
variations might be significant but the rate of change of the time variations may
be very slow compared to the bandwidth of the time-invariant parts of the system.
The quasi-static approximation is valid in this situation and the simulation can be
carried out using fixed snapshots of the time-varying parts and the results can be
averaged (i.e., partitioning and averaging). In these two cases, the performance
measure of interest is some long-term average rather than the dynamic behavior.

The third approach that is warranted sometimes is the dynamic simulation of
the time variations. This approach is used when the time variations are “rapid” and
the performance measure of interest is based on the dynamic or transient behavior
of the system is of interest. An example of this is the acquisition and tracking
behavior of the synchronization subsystem time in a burst mode communication
system operating over a fast fading channel. The simulation model for this case
will be a tapped delay line with time-varying tap gains, which are often modeled as
filtered random processes.

While the tapped delay line simulation model for time-varying systems is straight-
forward to derive and implement, two factors must be taken into account. First,
there might be significant spectral spreading due to time variations. The result of
this spectral spreading will lead to a requirement for higher sampling rates. In ad-
dition, the order of time-varying blocks cannot be changed, since the commutative
property does not hold for time-varying systems.

Memory

If the instantaneous output y[k] of a component depends on the instantaneous input
x[k] (or x[k−j]), the component is memoryless; otherwise the component has mem-
ory. Filters, due to their frequency-selective behavior, have memory (frequency-
selective behavior and memory are synonymous). Also, some types of nonlinearities
have memory and there are many models available for simulating such components.
Care must be exercised in implementing models with memory with respect to stor-
ing the internal states of the model such that the model can be reentrant. For
example, when a generic filter model is used in several instances in a block dia-
gram, the internal state of each instance of the filter must be stored separately so
that when a filter model is invoked several times during a simulation it is always
entered with its previous state intact.

“TranterBook” — 2003/11/18 — 16:12 — page 45 — #63
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 45

Time-Domain and Frequency-Domain Simulations

The input-output relationship of a functional block, or system component, can be
modeled and simulated in either the time domain or in the frequency domain. The
computational burden of the two approaches for linear blocks is often approximately
equivalent,1 and the preferred domain of implementation will depend on the domain
in which the specifications are initially provided. For example, if a filter is specified
in terms of measured frequency response, it is natural and convenient to implement
the filtering operation within the model in frequency domain. For nonlinear com-
ponents, the specifications and implementation are almost always performed in the
time domain.

While the implementation of a model can be in either the time or frequency do-
main, it is common practice to use time domain samples to represent the input and
output signals. Frequency domain models, such as filters simulated using the fast
Fourier transform (FFT), will require internal buffering of the time domain input
samples, taking the transform of the input vector stored in the buffer followed by
frequency domain processing, inverse FFT, and buffering at the output. Buffering
is required, since taking the transform is a block-processing operation based on a
set of samples rather than on a single sample. During simulation, samples of the
input and output may be transferred in and out of the buffers one sample at a time
or in blocks of N samples.

Block Processing

A model may be implemented to accept and process one time domain sample at
a time or a block of N time domain samples per invocation of the model. The
computational efficiency of the two methods will depend on the relative complexity
of the model and the overhead associated with the invocation of the model. If the
model is simple with a small number of internal states and parameters, or if the
overhead of calling or invoking a model is small compared to the computations per-
formed inside the model, then it is convenient and efficient to invoke the model on a
sample-by-sample basis. When the invocation overhead is large, it is computation-
ally more efficient to use a block or vector-processing approach where the model is
called with an input vector of size N .

Block processing requires buffering and a careful interface to the blocks preced-
ing and following the block in question. Block processing introduces a time delay
of N ∗ Ts seconds, since the output cannot be computed until all N samples of the
input are accumulated and transferred into the model. Inclusion of a block input-
output model in a feedback loop will produce incorrect results because of the large
processing delay. Also, if block-processing models are intermixed with nonlinear
models, it may be necessary to revert to sample-by-sample processing for the non-

1At first reading this statement may not seem obvious. The computational burden associated
with the convolutation required for simulaion of systems with memory in the time domain can
be reduced by truncating the impulse response and using an infinite impulse response (IIR) filter
structure. Some preprocessing must be done to establish the filter structure but this need only
be done once. Overhead is also associated with the frequency domain approach because of the
required buffering.

“TranterBook” — 2003/11/18 — 16:12 — page 46 — #64
�

�

�

�

�

�

�

�

46 Simulation Methodology Chapter 2

linear elements, since blocking the input and processing on a block-by-block basis
assumes that superposition holds, which is not the case with nonlinear blocks. An
example of this situation occurs when a nonlinearity appears between two overlap
and add type FFT filters. The overlap and add FFT filter is based on the linearity
principle. The technique is to compute the filter response to nonoverlapping blocks
of input samples and add the responses at the output. With a nonlinearity after
the filter, this block processing cannot be carried through the nonlinearity, since su-
perposition does not apply across the nonlinearity. To do this processing correctly,
the response due to each block of input samples has to be added at the output of
the first filter, and the nonlinearity model then processes the added output of the
first filter on a sample-by-sample basis. The output of the nonlinearity can then be
processed by the second filter using the overlap and add method of block processing.

Another factor that has to be taken into account with block processing is schedul-
ing. If different models in a system use different input and output block sizes, then
the simulation framework should be capable of scheduling the order and frequency
of invocations properly. Otherwise, the user has to take care of the scheduling.

Variable Step-Size Processing

Multirate sampling is used in simulations if a system model includes processes and
phenomena of widely differing bandwidths. With multirate sampling, each signal
is sampled and processed at a rate consistent with its bandwidth, and this leads to
significant improvements in computational efficiency. When multirate sampling is
used, interpolation and or decimation might be necessary to interface the sample
streams with different sampling rates.

Variable step-size processing is also used often to improve computational ef-
ficiency. This approach is commonly used in numerical integration routines for
solving linear and nonlinear differential equations. If the underlying differential
equations and their solutions are well behaved, then this approach will reduce the
computational load significantly. When a variable step size is used in a model, the
output has to be buffered and resampled if the following blocks use a uniform step
size.

Parameterization

One of the primary uses of simulation is design optimization, which in most cases
reduces to finding the optimum value of critical parameters such as the bandwidth of
a receiver filter, the operating point of an amplifier, and the number of quantization
levels to be used in the receiver. In order to do this, models have to parameterized
properly and the key design parameters should be made visible externally; that is,
models should have “external knobs” that can be used to adjust the deign parameter
iteratively during simulations. One consideration that must be taken into account is
the number of parameters for a given model. In general this number should be kept
to a minimum, since a complex communication system will involve a large number
of components. If each component has a large number of external parameters, the
overall parameter space becomes very large. In this case it will be extremely difficult

“TranterBook” — 2003/11/18 — 16:12 — page 47 — #65
�

�

�

�

�

�

�

�

Section 2.2. Aspects of Methodology 47

to optimize the design using simulation. Also, measurement of parameter values
and validation becomes easier with a smaller number of parameters.

Interface to Other Blocks

While the modeling and simulation approach used for each component depends on
the nature of the component being modeled and simulated, considerable attention
must be paid to the interfacing of a given model to the models of other blocks.
Since the block diagram of a system might consist of an arbitrary set of blocks that
are interconnected in an arbitrary manner, consistency and compatibility must be
ensured either by the simulation framework and/or by the user. This task can be
made easier if the models of individual blocks are constructed with well-defined and
well-documented interfaces. Inconsistencies might result for a number of reasons.
These include different domains of processing, signal types, block size, step size,
multirate sampling, inconsistent parameter specification within different blocks, and
many other reasons outlined in the preceding sections.

Many of the difficulties in simulating a complex system-level model arise be-
cause of these inconsistencies. Hence it is necessary to exercise care in formulating
the overall simulation model and the selection of the individual blocks and their
parameters in the context of not only the individual models but also in the context
of the overall model.

2.2.3 Random Process Modeling and Simulation

Assuming that we have a system model with the highest level of abstraction and
least complexity, we now turn our attention to aspects of methodology that apply
to modeling and generating the input waveforms (signals, noise, and interference)
that drive the simulation model. Since the basic goal of waveform-level simulation
of communication systems is to emulate the waveforms in the system and compute
some measures of waveform fidelity, it is important that close attention be paid to
the modeling and simulation of the input waveforms or stimuli.

In a communication systems, information-bearing waveforms as well as un-
wanted noise and interference are random in nature and they are modeled by random
processes. Stationarity is almost universally assumed, since it can be justified in
many cases based on the nature of the signals or sequences being modeled. For
example, the statistics of the symbol sequence in an English-language text have not
changed over hundreds of years and hence a stationary model can be justified.

Stationary random processes are characterized by multidimensional probabil-
ity distributions, which are difficult to specify, and it is also very difficult in the
general case to generate sampled values of a stationary process with an arbitrary n-
dimensional distribution. One notable exception is the stationary Gaussian process,
which is completely specified by the second-order distribution (whose parameters
are the mean and the autocorrelation function). For non-Gaussian processes it is a
common practice to limit the specification to second-order distributions.

Sampled values of random processes that are used to drive the simulations are
sequences of random numbers that are generated using random number generators.

“TranterBook” — 2003/11/18 — 16:12 — page 48 — #66
�

�

�

�

�

�

�

�

48 Simulation Methodology Chapter 2

Algorithms for generating random sequences with arbitrary distributions (first and
second order) and correlation functions are presented elsewhere in the book. We
discuss below some aspects of methodology that apply the modeling and generation
of sampled values of random process.

Gaussian Approximation

Two concepts simplify the stimuli generation considerably. The first one is the
Gaussian approximation, which can be invoked via the central limit theorem, which
states that the summed effect due to a large number of independent causes tends
to a Gaussian process. In other words, Y = X1 + X2 + · · · + Xn approaches a
Gaussian distribution for large n assuming that the component variables Xi are
independent. Thus, the noise picked up by the antenna of a receiver, contributed
by a large number of sources, can be approximated by a Gaussian process. Similarly,
interference from a large number of users can also be approximated by a Gaussian
process, and hence it is not necessary to individually generate the signals from a
large number of users and sum them. The net result can be duplicated by the
output of a single Gaussian random number generator.

Equivalent Process Representation

The second concept deals with the notion of equivalent process representation, which
can be stated as follows. Suppose an input random process X(t) goes through n
blocks and appears at the output of the nth block as a process Y (t). If by some
means (through a rigorous analysis or by approximation or through simulation
itself) we can deduce the properties of the process Y (t), then for all subsequent
processing that follows the nth block we can simply inject a sequence that represents
the sampled values of Y (t), thus eliminating the need to generate and process
sampled values of X(t) through n blocks. When X(t) is Gaussian and the blocks are
linear it can be shown analytically that Y (t) will also be Gaussian. The parameters
of the process Y (t) can be derived analytically or through a simulation of X(t)
passing through the n blocks. Unfortunately, it is difficult to derive the properties
of Y (t) analytically when X(t) is arbitrary and or the blocks are nonlinear. In such
cases simulation can be used to estimate the properties of Y (t) and the estimated
properties can be used to generate the equivalent process.

This approach is used to represent phase noise in communication systems as
well as timing and phase jitter produced by synchronization subsystems. The most
commonly used assumption here is that these processes are stationary Gaussian. For
the front-end noise process, the power spectral density (PSD) that will be assumed
to be white. For other processes, the PSD is assumed to be given in closed form as a
ratio of polynomials in f2, in which case the process can be generated by filtering a
white Gaussian process with a filter whose transfer function can be obtained using
spectral factorization methods. In the case of arbitrary PSD functions, such as
the case for the doppler PSD of fading channels, we can either approximate the
spectrum by a ratio of polynomials in f2 and apply the spectral factoring method
to obtain the transfer function of a filter or fit an autoregressive moving average

“TranterBook” — 2003/11/18 — 16:12 — page 49 — #67
�

�

�

�

�

�

�

�

Section 2.3. Performance Estimation 49

(ARMA) model directly to the PSD to obtain the coefficients of a recursive filter
that will produce the desired PSD.

Non-Gaussian processes with arbitrary PSDs are harder to synthesize and simu-
late. A method for handling this case, though very difficult to apply, may be found
Chapter 7.

Slow versus Fast Processes

It is not uncommon to have in a communication system many different random phe-
nomena with widely different bandwidths or “time constants.” If the bandwidth of
one process is much different from the other, say, a difference of several orders of
magnitude, then one of the following two approaches should be taken in order to
reduce simulation time. In the first approach, which is applicable when the band-
widths differ by several orders of magnitude, the problem should be partitioned and
conditioned on the slow process and the simulation should be executed separately
if possible with the value of the slow process held constant while the portion of the
system dealing with the faster process is simulated. There is no need to generate
sampled values of the slow process during the simulation, since its value will change
very little over the duration of a large number of samples of the faster process. This
approach is commonly used to simulate the performance of communication systems
operating over slowly fading channels.

A second approach that can be considered is multirate sampling, which is ap-
plicable when the bandwidths of the processes differ, say, by one or two orders of
magnitude. Here the processes are sampled at different rates consistent with their
bandwidths so that the number of samples generated during the simulation interval
is proportional to the bandwidths of the respective processes. Interpolation and
decimation can be used when necessary to mix these signals together at some point
in the system. (If the bandwidths differ by less than an order of magnitude, then the
overhead associated with multirate sampling will offset any computational savings
that might result.)

2.3 Performance Estimation

One of the main objectives of simulation is performance estimation. For commu-
nication systems, the primary measure of performance is the output signal-to-noise
ratio (S/N)o for analog communication systems, and bit error rate (BER) or frame
error rate (FER) for digital communication systems. Signal-to-noise ratio is also a
secondary measure of performance in digital communication systems. Performance
measures are estimated using Monte Carlo techniques. To illustrate the methodol-
ogy aspects of Monte Carlo simulation and performance estimation, let us consider
the problem of estimating the probability of error in a digital communication sys-
tem. The simulation model for the candidate system in shown in Figure 2.4. Note
that the simulation model in this figure is a simplified model of the system shown
in Figure 2.1. Some blocks such as the synchronization and coding are left out of
this block diagram. Synchronization is either assumed to be ideal, or the effects
of imperfect synchronization are handled though conditioning and partitioning as

“TranterBook” — 2003/11/18 — 16:12 — page 50 — #68
�

�

�

�

�

�

�

�

50 Simulation Methodology Chapter 2

Data
Source

QPSK
Modulator

Transmitter
Filter

Receiver
Filter

Linear
Equalizer

Sample
and

Decide

Compare
and

Count Errors

Delay

White, Gaussian Noise

AWGN Channel

�PE

Figure 2.4 Simulation model for BER determination.

explained in the preceding section. Coding is also omitted, since our focus here is
on computing the uncoded probability of error in the system; the effects of coding
are handled separately as outlined in Chapter 8. Also, the channel is assumed to be
slowly varying or quasi-static, and the equalizer weights are “frozen” in place after
they have converged to steady-state values.

The bit error rate performance of the system can be simulated using a random
bit sequence as the modulator input and it is not necessary to include an actual data
source, source decoder, error control coder, and interleaver in the overall simulation
model—the net effect of these blocks is to produce a random binary sequence, and
therefore these functional blocks can be omitted from the block diagram and be
replaced by a block that produces as its output a random binary sequence.

These simplifications are typical of what is usually done prior to executing a sim-
ulation for performance estimation. The primary motivation for the simplification
is the reduction of simulation time, which could be very long in the case of per-
formance estimation involving low error rates. Hence, only those components that
might have a significant impact on performance are included in the block diagram,
which is reduced to as minimal a form as possible.

The BER is determined using the Monte Carlo method. As mentioned in the
previous chapter, the bit (or symbol) error probability cannot be determined but
rather is estimated by passing N symbols through the system and counting errors.
Assuming that Ne errors are counted in passing N symbols through the system, the
BER is

“TranterBook” — 2003/11/18 — 16:12 — page 51 — #69
�

�

�

�

�

�

�

�

Section 2.3. Performance Estimation 51

P̂E =
Ne

N
(2.6)

which is an estimate of the error probability

PE = lim
N→∞

Ne

N
(2.7)

In general, the Monte Carlo estimate is unbiased. Small values of N give error
estimates with large variance and large values of N give error estimates with small
variance. The estimate P̂E converges to PE , the true value of the error probability,
as N → ∞, and we therefore typically use the largest practical value of N . A
natural tradeoff exists between simulation accuracy and the simulation run time.
In a later chapter we consider techniques for reducing the variance of the error
estimate for a fixed value of N . These techniques, collectively known as variance
reduction techniques, require a combination of analysis and simulation and must be
applied with considerable care.

Two functional blocks appear in the simulation model, Figure 2.4, that are not
part of the physical system being analyzed. These are the blocks labeled “Delay”
and “Compare and Count Errors.” The “Compare and Count Errors” block has a
clear function. The received symbols are compared to the original data symbols so
that the error count, Ne, can be determined. A moment’s thought shows the need for
the block labeled “Delay.” A number of the functional blocks in the communication
system have a nonzero phase response, and therefore a signal passing through these
functional blocks incurs a time delay. As a result, the signal at the output of the
data source must be delayed so that a given symbol at the output of the receiver
is compared to the corresponding symbol at the output of the data source. The
determination of this delay must be done with care. If the delay is not exactly
correct, the resulting BER estimate will no longer be unbiased and, on average,
the estimated BER will exceed the true probability of error. The determination of
the appropriate value of the “delay” is part of the important part of a procedure
known as calibration. Calibration of a simulation is a procedure performed to ensure
that signal levels, noise levels, delays, and other important system attributes in the
simulation of a system match the corresponding attributes of the system being
simulated. This important aspect of simulation is examined in detail in Chapter 10
when we consider Monte Carlo methods in detail.

The delay block is realized as a delay line of variable length. The length for a
specific application is selected to give the proper alignment of demodulated symbols
at the receiver output with the symbols at the data source output. The delay is
usually quantized to be an integer number of sampling periods. Having very fine
control over the delay requires having very short sampling periods or, equivalently,
having very large sampling frequency for the simulation. Increasing the sampling
frequency increases the required time to execute the simulation. This is a typical
result, and we will see in our future studies that minimizing the error sources in a
simulation has the negative effect of increasing the simulation run time. Effectively
controlling the many tradeoffs involved in developing an effective simulation is, as
previously noted, part of the “art” of simulation.

“TranterBook” — 2003/11/18 — 16:12 — page 52 — #70
�

�

�

�

�

�

�

�

52 Simulation Methodology Chapter 2

2.4 Summary

This chapter has presented the basic methodology that is used for simulation de-
velopment. Whether time driven or event driven, simulations must be properly
developed and organized if reliable, and verifiable, results are to be obtained. The
concepts presented in this chapter outline the main considerations that play a sig-
nificant role in this process. The organizational structure of a simulation often
mirrors the approach used for actual system design. However, many tricks of the
trade have been discussed that can be applied to a simulation in order to ensure
that the simulation results accurately reflect the operation of the system under de-
sign or evaluation. Throughout the remainder of this book, we will make use of
the techniques outlined in this chapter. As pointed out early in this chapter, the
student is encouraged to revisit this material from time to time as the study of
simulation progresses.

2.5 Further Reading

The references given in Chapter 1 are also appropriate for the material given here.

2.6 Problems

2.1 Read the table of contents of the two books, Simulation of Communication
Systems by Jeruchim, Balaban, and Shanmugan, and Simulation Techniques
by Gardner and Baker (citations to these two books are given in the Further
Reading section of Chapter 1). Compare the topics covered in these two books
with the ones covered in this text.

2.2 Read and summarize the following tutorial articles dealing with simulation:

(a) W. H. Tranter and K. L. Kosbar, “Simulation of Communication Sys-
tems,” IEEE Communications Magazine, July 1994, pp. 26–36.

(b) K. Sam Shanmugan, “Simulation and Implementation Tools for Commu-
nication and Signal Processing Systems,” IEEE Communications Maga-
zine, July 1994, pp. 36–41.

(c) B. D. Woerner, J. H. Reed, and T. S. Rappaport, “Simulation Issues for
Future Wireless Modems,” IEEE Communications Magazine, July 1994,
pp. 42–53.

(d) K. Sam Shanmugan, “Simulation of Communication Systems,” Wiley
Encyclopedia of Communications, ed. John Proakis, New York: Wiley,
2001.

2.3 The IEEE Journal on Selected Areas in Communications periodically pub-
lishes issues on computer-aided modeling and analysis of communication sys-
tems. Starting with the first issue on this topic, which was published in
January 1984, locate all subsequent issues on this topic. Scan the articles in
these issues and write a brief paper covering:

“TranterBook” — 2003/11/18 — 16:12 — page 53 — #71
�

�

�

�

�

�

�

�

Section 2.6. Problems 53

(a) Types of analysis and design problems addressed using simulation

(b) Evolution of various simulation techniques and methodologies over the
past 15 years

(c) Evolution of simulation frameworks over the past 15 years

2.4 Find the Websites for the following software packages: MATLAB, Labview,
SPW, ADS, OPNET, and others. From these Websites download general
information about these packages. Collect and summarize information about
the following aspects of these packages:

(a) Simulation engines for each framework (time driven, event driven, data-
flow, etc.)

(b) Model libraries and toolboxes available to support the development of
simulation programs

(c) Model-building framework and debugging

(d) Interactive simulation capabilities

(e) Signal analysis and display capabilities

(f) Availability of online tutorials and demos (if there are online demos,
exercise them and comment about what you learned from the tutorial)

2.5 Consider a passive single-pole RC lowpass filter. Describe the various hierar-
chical representations of the filter in terms of “layers” as discussed earlier in
this chapter.

2.6 Describe how conditioning could be used to simulate the impact of timing
errors in a matched-filter data detector.

“TranterBook” — 2003/11/18 — 16:12 — page 54 — #72
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 55 — #73
�

�

�

�

�

�

�

�

PART II

Fundamental Concepts
and Techniques

Chapter 3

SAMPLING
AND QUANTIZING

Our main purpose in this book is to study the basic techniques required to accurately
simulate communication systems using digital computers. In most communications
applications, waveforms are generated and processed through the system under
study. The computer, of course, can only process numbers representing samples of
the waveforms of interest. In addition, since the computer has finite word length,
the sample values have finite precision. In other words, the sample values are
quantized. Thus, sampling and quantizing are underlying operations in all digital
simulations, and each of these operations give rise to errors in the simulation results.
The complete elimination of these error sources is not possible and tradeoffs are
often required. We will see that the best we can do is to minimize the effects of
sampling and quantizing on simulation accuracy. It is worth noting that many
physical systems make use of digital signal-processing (DSP) techniques and also
suffer from the effects of sampling and quantizing errors.

55

“TranterBook” — 2003/11/18 — 16:12 — page 56 — #74
�

�

�

�

�

�

�

�

56 Sampling and Quantizing Chapter 3

3.1 Sampling

As illustrated in Figure 3.1, a digital signal is formed from an analog signal by the
operations of sampling, quantizing, and encoding. The analog signal, denoted x(t),
is continuous in both time and amplitude. The result of the sampling operation is
a signal that is still continuous in amplitude but discrete in time. Such signals are
often referred to as sampled-data signals. A digital signal is formed from a sampled
data-signal by encoding the time-sampled values onto a finite set of values. As we
will see, errors are usually induced at each step of this process.

3.1.1 The Lowpass Sampling Theorem

The first step in forming a digital signal from a continuous-time signal, x (t), is to
sample x (t) at a uniformly spaced series of points in time to produce the sample
values, xs(t) = x (kTs) = x[k].1 The parameter Ts is known as the sampling period
and is the inverse of the sampling frequency, fs.

A model for the sampling operation is illustrated in Figure 3.2. The signal x (t)
is multiplied by a periodic pulse p (t) to form the sampled signal xs (t). In other
words

xs (t) = x (t) p (t) (3.1)

The signal p (t) is referred to as the sampling function. The sampling function is
assumed to be a narrow pulse, which is either zero or one. Thus xs (t) = x (t) when
p (t) = 1, and xs (t) = 0 when p (t) = 0. We will see shortly that only the period of
the sampling function p(t) is significant and the waveshape of p(t) is arbitrary. The
pulse type function illustrated in Figure 3.2 simply provides us with the intuitively
pleasing notion of a switch periodically closing at the sampling instants.

Sample Quantize Encode

()x t

Analog signal
(Continuous in
both time and
amplitude)

Sampled-data
signal (Discrete in
time and
continuous in
amplitude)

Discrete time
discrete
amplitude
signal

Digital
signal

x[k]

Figure 3.1 Sampling, quantizing, and encoding.

1Once a signal is sampled, the sample values are a function of the index k and the notation
x[k] is used. This notation, made popular by Oppenheim and Schafer [1], is commonly used in
the DSP literature. Since the square brackets implies a sampling operation the subscript s is not
needed to denote sampling. The value of x[·] is defined only for integer arguments.

“TranterBook” — 2003/11/18 — 16:12 — page 57 — #75
�

�

�

�

�

�

�

�

Section 3.1. Sampling 57

()p t

()x t ()sx t

(a) Sampling operation

…

t

()p t

0 Ts 2Ts 3Ts

(b) Sampling function

Figure 3.2 Sampling operation and sampling function.

Since p (t) is a periodic signal, it can be represented by the Fourier series

p (t) =
∞∑

n=−∞
Cn exp(j2πnfst) (3.2)

in which the Fourier coefficients are given by

Cn =
1
Ts

∫ Ts/2

−Ts/2

p (t) exp(−j2πnfst) dt (3.3)

Substituting (3.2) into (3.1) gives

xs (t) = x(t)
∞∑

n=−∞
Cn exp(j2πnfst) (3.4)

for the sampled signal.
In order to derive the sampling theorem and thereby show that under appro-

priate conditions x (t) is completely represented by the samples x (kTs), we must
derive the spectrum of xs (t) and show that x(t) can indeed be reconstructed from
xs(t). The Fourier transform of the sampled signal is

Xs (f) =
∫ ∞

−∞
x(t)

∞∑
n=−∞

Cn exp(j2πnfst) exp(−j2πft) dt (3.5)

which, upon interchanging integration and summation, becomes

Xs (f) =
∞∑

n=−∞
Cn

∫ ∞

−∞
x (t) exp [−j2π(f − nfs)t] dt (3.6)

Since the Fourier transform of the continuous-time signal x(t) is

X (f) =
∫ ∞

−∞
x (t) exp(−j2πft) dt (3.7)

“TranterBook” — 2003/11/18 — 16:12 — page 58 — #76
�

�

�

�

�

�

�

�

58 Sampling and Quantizing Chapter 3

it follows from (3.6) that the Fourier transform of the sampled signal can be written

Xs (f) =
∞∑

n=−∞
CnX (f − nfs) (3.8)

We therefore see that the effect of sampling a continuous-time signal is to reproduce
the spectrum of the signal being sampled about dc (f = 0) and all harmonics of
the sampling frequency (f = nfs). The translated spectra are weighted by the
corresponding Fourier coefficient in the series expansion of the sampling pulse p(t).

The next, and final, step in the development of the sampling theorem is to
define p(t). Since the samples are assumed to be taken instantaneously, a suitable
definition of p(t) is

p(t) =
∞∑

k=−∞
δ(t − kTs) (3.9)

This is known as impulse function sampling in which the sample values are rep-
resented by the weights of the impulse functions. Substitution of (3.9) into (3.3)
gives

Cn =
1
Ts

∫ Ts/2

−Ts/2

δ (t) exp(−j2πnfst) dt (3.10)

Applying the sifting property of the delta function gives

Cn =
1
Ts

= fs (3.11)

Using this result in (3.2) shows that the Fourier transform of p(t) can be represented
by

P (f) = fs

∞∑
n=−∞

δ(f − nfs) (3.12)

For impulse function sampling Cn = fs for all n. Thus, using (3.8) the spectrum of
the sampled signal becomes

Xs (f) = fs

∞∑
n=−∞

X (f − nfs) (3.13)

Note that this result could have also been obtained from the expression

Xs(f) = X(f) � P (f) (3.14)

where � denotes convolution. The generation of Xs(f) using (3.14) is illustrated in
Figure 3.3 for the case of a bandlimited signal.

“TranterBook” — 2003/11/18 — 16:12 — page 59 — #77
�

�

�

�

�

�

�

�

�
�

�
�

 f

 f f

 A

 A
f s

 f s

 −
f s

 f s
 f s

 f s

 2
f s

 f s f s
 −

f s
 2

f s

0 00

 f h

 X
(f

)

 X
s(

f)

 P
(f

)

f
f

s
h

−

F
ig

u
re

3
.3

S
a
m

p
li
n
g

v
ie

w
ed

in
th

e
fr

eq
u
en

cy
d
o
m

a
in

.

59

“TranterBook” — 2003/11/18 — 16:12 — page 60 — #78
�

�

�

�

�

�

�

�

60 Sampling and Quantizing Chapter 3

The sampling theorem can be developed from observation of Figure 3.3. In order
for the samples x (nTs) to contain all of the information in the continuous-time signal
x (t), so that no information is lost in the sampling process, the sampling must be
performed so that x (t) can be reconstructed without error from the samples x (nTs).
We will see that reconstruction of x(t) from xs(t) is accomplished by extracting the
n = 0 term from Xs(f) by lowpass filtering. Accomplishing reconstruction without
error therefore requires that the portion of the spectrum of Xs(f) about f = ±fs

[the n = ±1 terms in (3.13)] not overlap the portion of the spectrum about f = 0
[the n = 0 term in (3.13)]. In other words, all translated spectra in (3.13) must be
disjoint. This requires that fs − fh > fh or fs > 2fh, which proves the sampling
theorem for lowpass signals.

Theorem 1 A bandlimited signal may be reconstructed without error from sam-
ples of the signal if the sampling frequency fs exceeds 2fh, where fh is the highest
frequency present in the signal being sampled.

While this theorem is usually referred to as the lowpass sampling theorem, it also
works for bandpass signals. However, applying the lowpass sampling theorem to
bandpass signals usually results in excessively high sampling frequencies. Sampling
bandpass signals is the topic of a later section.

If fs < 2fh the spectra centered on f = ±fs overlap the spectrum centered on
f = 0 and the output of the reconstruction filter, as illustrated in Figure 3.4, will
be a distorted version of x(t). This distortion is referred to as aliasing. The effect
of aliasing is also illustrated in Figure 3.4, assuming that the spectrum of x(t) is
real.

Passband of
reconstruction filter

 f
 −fs 2fs fs0

Aliasing
error

 f
0

 Xs(f)

− f s / 2 f s / 2

Figure 3.4 Illustration of undersampling leading to aliasing error.

“TranterBook” — 2003/11/18 — 16:12 — page 61 — #79
�

�

�

�

�

�

�

�

Section 3.1. Sampling 61

3.1.2 Sampling Lowpass Random Signals

The waveform x(t) in the preceding discussion was assumed to be a deterministic
finite-energy signal. As a result of these assumptions, the Fourier transform exists
and the sampling theorem could be based on the spectrum (the Fourier transform) of
the signal. In most of our applications throughout this book it will be more natural
to assume that the simulation processes sample functions of a random process.
Therefore, instead of selecting a sampling frequency based on the Fourier transform
of the signal to be sampled, the selection of an appropriate sampling frequency must
be based on the power spectral density (PSD) of the sampling frequency.

For the case of random signals we write

Xs(t) = X(t)P (t) (3.15)

where the sampling function P (t) is written

P (t) =
∞∑

k=−∞
δ(t − kTs − D) (3.16)

in which D is a random variable independent of X(t) and uniformly distributed
in (0, Ts). Note the similarity of (3.15) and (3.1) and the similarity of (3.16) and
(3.9). There are only two essential differences. First, uppercase letters are used in
the time functions X(t), P (t), and Xs(t) to remind us that they represent random
processes. The other difference is the use of the random variable D in (3.16). The
effect of D is to ensure that Xs(t) is a stationary random process. Without the
inclusion of D the sampled signal is cyclostationary. The effect of D is to make the
time origin of P (t) random but fixed.

The power spectral density of Xs(t) is found by first determining the autocor-
relation function of

Xs(t) = X(t)
∞∑

k=−∞
δ(t − kTs − D) (3.17)

The Fourier transform of the resulting autocorrelation function gives the PSD of
Xs(t), which is [2]

SXs(f) = f2
s

∞∑
n=−∞

SX (f − nfs) (3.18)

where SX(f) denotes the PSD of X(t). Note the similarity of (3.18) and (3.13).
Also note that Figures 3.3 and 3.4 apply if the spectra are PSDs corresponding
to X(t) and if the axes are labeled accordingly. Note that the sampling theorem
as previously derived still holds, and therefore the signal must be sampled at a
frequency exceeding twice the sampling frequency if aliasing is to be avoided.

3.1.3 Bandpass Sampling

We now consider the problem of sampling bandpass signals. There are a number of
strategies that can be used for representing bandpass signals by a set of samples.
In the following sections we consider the two most common methods.

“TranterBook” — 2003/11/18 — 16:12 — page 62 — #80
�

�

�

�

�

�

�

�

62 Sampling and Quantizing Chapter 3

The Bandpass Sampling Theorem

The bandpass sampling theorem for real bandpass signals is stated as follows [2]:

Theorem 2 If a bandpass signal has bandwidth B and highest frequency fh, the
signal can be sampled and reconstructed using a sampling frequency of fs = 2fh/m,
where m is the largest integer not exceeding fh/B. All higher sampling frequencies
are not necessarily usable unless they exceed 2fh, which is the value of fs dictated
by the lowpass sampling theorem.

A plot of the normalized sampling frequency fs/B as a function of the normalized
center frequency f0/B is illustrated in Figure 3.5, where f0 and fh are related by
fh = f0+B/2. We see that the allowable sampling frequency always lies in the range
2B ≤ fs ≤ 4B. However, for f0 � B, which is typically the case, the sampling
frequency dictated by the bandpass sampling theorem is approximately equal to,
but is lower bounded by, 2B.

Sampling Direct/Quadrature Signals

Suppose we have a bandpass signal expressed in the form

x(t) = A(t) cos [2πfct + φ(t)] (3.19)

The function A(t) is referred to as the envelope of the bandpass signal and the
function φ(t) is referred to as the phase deviation of the bandpass signal. In most
communications applications both A(t) and φ(t) are lowpass signal and have band-
widths roughly on the order of the bandwidth of the information-bearing signal.
Using standard trigonometric identities, the bandpass signal can be written

x(t) = A(t) cosφ(t) cos 2πfct − A(t) sin φ(t) sin 2πfct (3.20)

or

x(t) = xd(t) cos 2πfct − xq(t) sin 2πfct (3.21)

In this representation

xd(t) = A(t) cos φ(t) (3.22)

is called the direct (or in-phase) component and

xq(t) = A(t) sin φ(t) (3.23)

is the quadrature component. Since A(t) and φ(t) are lowpass signals, it follows
that xd(t) and xq(t) are lowpass signals and therefore must be sampled in accor-
dance with the lowpass sampling theorem. Note from (3.21) that if xd(t), xq(t)
and the carrier frequency fc are known, the bandpass signal can be reconstructed
without error. The representation of bandpass signals using direct and quadature
components will be covered in detail in Chapter 4.

“TranterBook” — 2003/11/18 — 16:12 — page 63 — #81
�

�

�

�

�

�

�

�

0
1

2
3

4
5

6
7

8
9

10
0

0.
51

1.
52

2.
53

3.
54

N
or

m
al

iz
ed

 c
en

te
r

fr
eq

ue
nc

y−
 f 0

/ B

Normalized sampling frequency−

fs / B

F
ig

u
re

3
.5

T
h
e

re
q
u
ir

ed
sa

m
p
li
n
g

fr
eq

u
en

cy
fo

r
b
a
n
d
p
a
ss

sa
m

p
li
n
g
.

63

“TranterBook” — 2003/11/18 — 16:12 — page 64 — #82
�

�

�

�

�

�

�

�

64 Sampling and Quantizing Chapter 3

 f
0

~
()X f

−
B

2
B

2

 f
0

X f()

f0− f0

B

(a) Bandpass signal

(b) Complex envelope

Figure 3.6 Bandpass signal and the corresponding complex envelope.

The frequency-domain representation of a bandpass signal is given in Figure
3.6(a). The complex envelope corresponding to this signal is defined by

x̃(t) = xd(t) + jxq(t) (3.24)

Since both xd(t) and xq(t) are lowpass signals:

X̃(f) = Xd(f) + jXq(f) (3.25)

is lowpass as illustrated in Figure 3.6(b). In Figure 3.6 we see that X̃(f), and
consequently xd(t) and xq(t) are lowpass signals. Thus xd(t) and xq(t) must be
sampled according to the lowpass sampling theorem. Since the highest frequency
present in xd(t) and xq(t) is B/2, the minimum sampling frequency for each is
B. However, two lowpass signals [xd(t) and xq(t)] must be sampled rather than
one. As a result, a sampling rate exceeding 2B must be used. We therefore see
that sampling the complex envelope using the lowpass sampling theorem yields the
same required sampling frequency as sampling the real bandpass signal using the
bandpass sampling theorem for the typical case in which f0 � B.

Example 3.1. It follows from the preceding discussion that the bandpass signal
x(t) can be reconstructed without error if xd(t) and xq(t) are sampled appropriately
in accordance with the lowpass sampling theorem. The advantage of representing
bandpass signals by lowpass signals is obvious. Consider, for example, that we are
to represent 1 second of an FM signal by a set of samples. Assume that the carrier
frequency is 100 MHz (typical for the FM broadcast band) and that the highest
frequency present in the modulation or information-bearing signal is 15 kHz. The
bandwidth B of the modulated signal is usually approximated by Carson’s rule [2],
which is

B = 2(D + 1)W (3.26)

“TranterBook” — 2003/11/18 — 16:12 — page 65 — #83
�

�

�

�

�

�

�

�

Section 3.2. Quantizing 65

Assuming a deviation ratio D of 5 gives

B = 2(5 + 1)15 kHz (3.27)

which is 180 kHz (90 kHz each side of the carrier). The highest frequency present
in the modulated signal is therefore 100,090 kHz. Thus, 1 second of signal requires
a minimum of 200,180,000 samples according to the lowpass sampling theorem.

Now suppose we elect to represent the FM signal in direct/quadrature form.
The bandwidth of both xd(t) and xq(t) is B/2, or 90 kHz. Thus xd(t) and xq(t) will
each require at least 180,000 samples to represent 1 second of signal. This gives a
total of 360,000 lowpass samples to represent 1 second of data. The savings is

200, 180, 000
360, 000

≈ 556 (3.28)

and translates directly into a corresponding reduction in computer run time. �

3.2 Quantizing

The quantizing process and a simple fixed-point encoding process is illustrated in
Figure 3.7, which shows a continuous-time waveform and a number of samples of
that waveform. The sample values are represented by the heavy dots. Each sample
falls into a quantizing level. Assuming that there are n quantizing levels and that
each quantizing level is represented by a b-bit binary word, it follows that

n = 2b (3.29)

In Figure 3.7 each quantizing level is mapped to three-bit (b = 3 and n = 8)
digital word. After quantizing, sample values are represented by the digital word

000

001

101

110

111

100

010

011

Figure 3.7 Quantizing and encoding.

“TranterBook” — 2003/11/18 — 16:12 — page 66 — #84
�

�

�

�

�

�

�

�

66 Sampling and Quantizing Chapter 3

x k

e kq

x kq

Figure 3.8 Model for quantizing error.

corresponding to the quantizing level into which the sample value falls, and digi-
tal processing of the waveform is accomplished by processing these digital words.
For example, the first three sample values (from left to right) in Figure 3.7 are
represented by the binary sequence 100110111.

From sampling theory we know that a continuous-time bandlimited signal, sam-
pled at a frequency exceeding the Nyquist frequency, can be reconstructed without
error from the samples. Therefore, under these conditions the sampling operation
is reversible. The quantizing operation, however, is not reversible. Once sample
values are quantized, only the quantizing level is maintained and therefore a ran-
dom error is induced. As before, the value of the waveform at the sampling instant
t = kTs is denoted x[k], and the corresponding quantized value is denoted xq[k],
which is

xq[k] = x[k] + eq[k] (3.30)

where eq[k] is the error induced by the quantizing process. The quantizer model
implied by (3.30) is illustrated in Figure 3.8. If the original signal is not bandlimited,
the resulting digital signal contains both aliasing and quantizing errors.

The quantity of interest is the signal-to-noise ratio (SNR), where the noise is
interpreted as the noise resulting from the quantizing process. The SNR due to
quantizing, denoted (SNR)q, is

(SNR)q =
S

Nq
=

E
{
x2[k]

}
E
{
e2

q[k]
} (3.31)

where E{·} denotes statistical expectation and Nq is the noise power resulting
from the quantizing process. In order to determine (SNR)q the probability density
function of the error eq[k] must be known. The pdf of the quantizing error is a
function of the format used to represent numbers in the computer. There are a
wide variety of formats that can be used. The broad categories are fixed point and
floating point.

Fixed-Point Arithmetic

Even though we are, for the most part, considering simulation using general-purpose
computers in which numbers are represented in a floating-point format, we pause
to consider quantizing errors resulting from fixed-point number representations.

“TranterBook” — 2003/11/18 — 16:12 — page 67 — #85
�

�

�

�

�

�

�

�

Section 3.2. Quantizing 67

There are several reasons for considering fixed-point arithmetic (quantizing). First,
by considering fixed-point arithmetic, the basic mechanism by which quantizing er-
rors arise is illustrated. Also, special-purpose simulators have been developed that
use fixed-point arithmetic because fixed-point calculations can be executed much
faster than floating-point calculations. In addition, power consumption is usually
lower with fixed-point processors. Perhaps the most important reason for consid-
ering fixed-point arithmetic is that devices using fixed-point arithmetic must often
be simulated. For example, software-based communications systems are becoming
popular, since they can easily be reconfigured for different applications by simply
downloading appropriate programs to the device. In order to be commercially at-
tractive in a competitive environment, these systems must be available at the lowest
possible cost. Cost is typically minimized by using fixed-point arithmetic and, in
addition, fixed-point algorithms execute much faster than floating-point algorithms.
We should point out that the design of these software-based devices usually starts
with a simulation and, when the simulation shows that the device is properly de-
signed and meets specifications, the simulation code is downloaded to the device.2

In such applications, the simulation of the device and the physical device merge to a
great extent. As previously mentioned, speed, cost, and power consumption require-
ments usually dictate that many commercial devices utilize fixed-point arithmetic,
and simulation is an important tool for the design and performance evaluation of
these devices.

Assume that the width of a quantizing level, as illustrated in Figure 3.7, is
denoted ∆. Also assume that a sample value corresponding to a given quantizing
level is assumed to be the value at the center of the quantizing level.3 In this
case the maximum value of |eq[k]| is ∆/2. If the number of quantizing levels is
large, corresponding to long digital wordlengths, and if the signal varies significantly
from sample to sample, a given sample is equally likely to fall at any point in the
quantizing level. For this case the errors due to quantizing can be assumed to be
uniformly distributed and independent. The pdf (probability density function) of
the quantizing error is therefore uniform over the range [−∆/2, ∆/2] as illustrated
in Figure 3.9. Denoting the quantizing error of the kth sample by eq[k], we have

E {eq[k]} =
∫ ∆/2

−∆/2

x
1
∆

dx = 0 (3.32)

so that the quantizing error is zero mean. The variance of eq[k] is

E
{
e2

q[k]
}

=
∫ ∆/2

−∆/2

x2 1
∆

dx =
∆2

12
(3.33)

We now compute the signal-to-noise ratio due to quantizing.
2Recall the design cycle discussed in Chapter 1.
3In order to demonstrate basic principles, the pdf is assumed to be for a simple zero-mean pro-

cess. In practice the pdf will depend on the manner in which fixed-point numbers are represented
in the computer. The most common representations are sign-magnitude, ones-complement, and
twos-complement [1].

“TranterBook” — 2003/11/18 — 16:12 — page 68 — #86
�

�

�

�

�

�

�

�

68 Sampling and Quantizing Chapter 3

−
∆

2
∆

2
0

1

∆

f eE qq
()

eq

Figure 3.9 Assumed pdf of quantizing error.

Assume that a quantizer has a dynamic range D and that the word length is b.
Assuming binary arithmetic, there are 2b possible quantizing levels and the dynamic
range is given by

D = 2b∆ (3.34)

Thus

∆ = D2−b (3.35)

and the noise power due to quantizing is

Nq = E
{
e2

q[k]
}

=
D2

12
2−2b (3.36)

The dynamic range is determined by the peak-to-peak value of the input signal to
the quantizer. If the signal power is S, the signal-to-noise ratio due to quantizing,
(SNR)q, is

(SNR)q =
S(

D2

12

)
2−2b

=
12S

D2
22b (3.37)

Assuming the signal to be zero mean, the values of S and D are related by the
crest factor of the underlying signal. The crest factor is defined as the ratio of the
RMS, or standard deviation, of a signal to the peak value of the signal. To illustrate
this relationship, assume that the underlying signal, having dynamic range (peak-
to-peak value) D, lies in the range ±D. Since the signal power is S, the standard
deviation is

√
S. Therefore, the crest factor is

Fc =
√

S

D/2
=

2
√

S

D
(3.38)

Substitution of (3.38) into (3.37) gives

(SNR)q = 3F 2
c 22b (3.39)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 69 --- #87
�

�

�

�

�

�

�

�

Section 3.2. Quantizing 69

which, in dB units, is

(SNR)q = 4.7712 + 20 log10 Fc + 6.0206b dB (3.40)

Note that signals with a high crest factor are more immune to quantizing error than
signals with a small crest factor. This result is logical, since signals with a high crest
factor have a large standard deviation, which means that they are more spread out
through the quantizing levels. It is, however, the word length b that has the most
significant impact on (SNR)q. Note that (SNR)q improves by 6 dB for each bit
added to the word length.

Floating-Point Arithmetic

As mentioned previously, throughout most of this book our concern will be simula-
tions for execution on general-purpose computers that utilize floating-point number
representations. The form of a floating-point number is ±M ∗ (±10ˆE), where M
and E are referred to as the mantissa and exponent, respectively. Where accuracy
is required, 64-bit (double-precision) digital words are used and these 64 bits must
be allocated between the mantissa and exponent. This allocation can have a sig-
nificant effect on the result of a given computation. Fortunately, this assignment
has been standardized and most, but not all, computers adhere to the standard.
The ANSI/IEEE standard for floating-point arithmetic specifies that 53 bits are
assigned to the mantissa and 11 bits are assigned to the exponent [3]. Fortunately,
MATLAB provides a simple way to determine whether or not the IEEE standard
is implemented on a given computer. One simply enters isieee at the MATLAB
prompt, and a 1 is returned if the standard is implemented.

Since we will be using MATLAB throughout this book for developing and
demonstrating simulations, it is important to consider the accuracy that can be
expected. For our purposes, the most important parameters resulting from the
floating-point format are the resolution (the difference between 1 and the next
largest floating-point number), which is the MATLAB variable eps, the largest
number that can be represented (realmax in MATLAB) and the smallest posi-
tive number that can be represented (realmin in MATLAB). Executing the simple
MATLAB script mparameters tests for compliance with the IEEE floating-point
standard and returns the values of each of these three important parameters. The
script mparameters follows.

% File: c3_mparameters.m
format long % display full precision
a = [‘The value of isieee is ’,num2str(isieee),‘.’];
b = [‘The value of eps is ’,num2str(eps,15),‘.’];
c = [‘The value of realmax is ’,num2str(realmax,15),‘.’];
d = [‘The value of realmin is ’,num2str(realmin,15),‘.’];
disp(a) % display isieee
disp(b) % display eps
disp(c) % display realmax
disp(d) % display realmin

“TranterBook” — 2003/11/18 — 16:12 — page 70 — #88
�

�

�

�

�

�

�

�

70 Sampling and Quantizing Chapter 3

format short % restore default format
% End script file.

Executing the file mparameters on a computer that implements the IEEE floating-
point standard provides the following results:

>> mparameters
The value of isieee is 1.
The value of eps is 2.22044604925031e-016.
The value of realmax is 1.79769313486232e+308.
The value of realmin is 2.2250738585072e-308.

The first result displayed (isiee = 1) indicates that the computer does indeed
conform to the ANSI/IEEE standard for floating-point arithmetic. The next result
is eps, which is essentially the smallest resolvable difference between two numbers.
Note that eps is 2−52 (the extra bit associated with the mantissa accounts for the
sign bit), which illustrates the relationship between eps and the word length. We
see that more than 15 significant figures of accuracy are achieved. It is the value
of eps that ties most closely to the width of the quantization level ∆ that was
discussed in connection with fixed-point arithmetic. Note that ±realmax defines
the dynamic range, which, in this case exceeds 600 orders of magnitude.

Example 3.2. Suppose that we use floating-point arithmetic, consistent with the
ANSI/IEEE standard, to compute the value of

A = 1 − 0.4 − 0.3 − 0.2 − 0.1 (3.41)

which is obviously zero. However, performing this computation in MATLAB gives
the following:

>> a = 1-0.4-0.3-0.2-0.1
a =
-2.7756e-017

We see that the error induced by floating-point arithmetic is certainly small and is
probably negligible in most applications. The error is not zero, however, and the
user should always keep in mind that computed results are not usually exact. �

From this point forward we will assume that the quantizing errors resulting
from floating-point calculations are negligible. While this is an appropriate (and
necessary) assumption for the material contained in the remainder of this book,
one should be aware that even small errors can accumulate, in certain types of
calculations, to the point where the results are useless. DSP calculations in which
the signal of interest is a small difference of two very large numbers are a classical
example. Very large block length FFTs can give problems because of the large
number of butterfly calculations that are cascaded. There are many other examples.
In developing DSP algorithms care must be used to ensure that finite word length
effects are minimized.

“TranterBook” — 2003/11/18 — 16:12 — page 71 — #89
�

�

�

�

�

�

�

�

Section 3.3. Reconstruction and Interpolation 71

3.3 Reconstruction and Interpolation

We now consider the reconstruction of a continuous-time signal from a sequence of
samples. Since a digital simulation processes only sample values, a continuous-time
signal is never reconstructed from a set of samples in a simulation environment.
Consideration of the reconstruction process, however, leads to the subject of inter-
polation, which is an important operation in a simulation environment.

The general reconstruction technique is to pass the samples through a linear
filter having an impulse response h(t). Thus the reconstructed waveform is given
by xr(t) = xs(t) � h(t), where, as before, � denotes convolution. From (3.1) and
(3.9) we can write

xs(t) = x(t)
∞∑

k=−∞
δ(t − kTs) =

∞∑
k=−∞

x(kTs)δ(t − kTs) (3.42)

Thus, the reconstructed signal is given by

xr(t) =

[∞∑
k=−∞

x(kTs)δ(t − kTs)

]
� h(t) (3.43)

which is

xr(t) =
∞∑

k=−∞
x(kTs)h (t − kTs) (3.44)

The problem is to choose a h(t) that gives satisfactory results with a reasonable
level of computational burden.

3.3.1 Ideal Reconstruction

Assuming that a bandlimited signal is sampled at a rate exceeding 2fh, the signal
may be reconstructed by passing the samples through an ideal lowpass filter having
a bandwidth of fs/2. This can be seen in Figure 3.10. If fs > 2fh the spectra
centered on f = ±fs do not overlap the spectrum centered on f = 0. The output
of the resconstruction filter is fsX(f) or, in the time domain, fsx(t). Amplitude
scaling by 1/fs = Ts yields x(t).

It follows from Figure 3.10 that the impulse response of the reconstruction filter
is

h(t) = Ts

∫ fs/2

−fs/2

exp(j2πft)df (3.45)

where the scale factor of Ts has been included. Thus:

h(t) = Ts
1

j2πt
[exp (jπfst) − exp (jπfst)] (3.46)

“TranterBook” — 2003/11/18 — 16:12 — page 72 — #90
�

�

�

�

�

�

�

�

72 Sampling and Quantizing Chapter 3

Passband of
reconstruction filter

 f
 −fs 2fs fs0 fh

 Afs

 fs / 2

 Xs(f)

f fs h−

Ts

Figure 3.10 Reconstruction filter.

or

h(t) = Ts
1
πt

sin(πfst) = sinc(fst) (3.47)

Substitution into (3.44) gives

xr(t) =
∞∑

k=−∞
x(kTs) sinc [fs(t − kTs)] (3.48)

or, in more convenient form:

xr(t) =
∞∑

k=−∞
x(kTs) sinc

(
t

Ts
− k

)
(3.49)

Note that since the signal x(t) is assumed bandlimited and the sampling frequency
is sufficiently high to ensure that aliasing errors are avoided, xr(t) = x(t). Thus,
perfect reconstruction is achieved, at least in theory. Note, however, that (3.49) can
never be used in practice, since the sinc(·) function is infinite in extent. Equation
(3.49) will be used, however, as the building block for a practical interpolation
technique in the following section.

3.3.2 Upsampling and Downsampling

Upsampling and downsampling are used in the simulation of many systems. The
need for these operations is illustrated by an example. Consider the direct sequence
spread-spectrum system illustrated in Figure 3.11. The data source generates a data
signal having a narrowband spectrum of bandwidth W .4 The data signal is multi-
plied by a wideband spreading code c(t), which is represented by a binary sequence

4The terms narrowband and wideband are used in a relative sense.

“TranterBook” — 2003/11/18 — 16:12 — page 73 — #91
�

�

�

�

�

�

�

�

D
at

a
So

ur
ce

R
ec

ei
ve

r
C

ha
nn

el
L

ow
pa

ss
Fi

lt
er

In
te

rf
er

en
ce

 f
ro

m
ot

he
r

us
er

s

Ja
m

m
in

g

N
oi

se

c(
t)

Sp
re

ad
in

g
co

de
c(

t)
D

es
pr

ea
di

ng
 c

od
e

W
id

eb
an

d
po

rt
io

n
of

 s
ys

te
m

, B
W

 =
 B

N
ar

ro
w

ba
nd

po
rt

io
n

of
sy

st
em

N
ar

ro
w

ba
nd

po
rt

io
n

of
sy

st
em

B
W

 =
 W

B
W

 =
 W

M
M

F
ig

u
re

3
.1

1
S
y
st

em
in

w
h
ic

h
u
p
sa

m
p
li
n
g

a
n
d

d
ow

n
sa

m
p
li
n
g

is
u
se

fu
l.

73

“TranterBook” — 2003/11/18 — 16:12 — page 74 — #92
�

�

�

�

�

�

�

�

74 Sampling and Quantizing Chapter 3

with a symbol rate much greater than the data rate. The ratio of the spreading
code rate to the data rate is called the processing gain of the system. Multiplication
by the spreading code c(t) generates a wideband signal, having bandwidth B. The
channel imperfections may consist of interference from other users, jamming signals
in military communication systems, noise, and perhaps other degradations not ac-
counted for in Figure 3.11. The waveform at the output of the channel is multiplied
by the despreading code. The spreading code is assumed to take on values ±1 and
if the spreading code and the despreading code are identical and properly synchro-
nized, multiplying the spreading code and the despreading code gives c2(t) = 1 so
that the spreading and despreading codes have no effect on the channel of interest.
Note that the data signal is multiplied by c(t) twice and the channel impairments
are multiplied by c(t) only once. Thus, at the input to the lowpass filter following
multiplication by the despreading code the data signal is again narrowband and all
other components are wideband. The lowpass filter extracts the narrowband data
signal and passes it to the receiver.

The important attribute of the system illustrated in Figure 3.11 is that both
narrowband signals and wideband signals are present. If B � W , which is typically
the case, sampling the narrowband signal at the sampling rate required for the
wideband signal will be inefficient and will result in excessive simulation run times.
Ideally, each signal should be sampled with a sampling rate appropriate for that
signal.

Since signals having two different bandwidths are present in the example sys-
tem, it is appropriate to use two different sampling rates. Thus the sampling rate
must be increased at the boundary between the narrowband and wideband por-
tions of the system (left-hand dashed line in Figure 3.11) and decreased at the
boundary between the wideband and narrowband portions of the system (right-
hand dashed line in Figure 3.11). Increasing the sampling rate is accomplished by
upsampling followed by interpolation, in which new sample values are interpolated
from old sample values. Reducing the sampling rate is accomplished by decima-
tion in which unneeded samples are discarded. Upsampling is represented by a
block with an upward-pointing arrow and downsampling is represented by a block
with a downward-pointing arrow. The parameter M represents the factor by which
the sampling period is reduced (upsampling) or increased (downsampling) by the
process.

In the material to follow we will use Ts to represent the sampling period prior
to the upsampling or downampling process. After upsampling or downsampling,
the sampling period will be represented by Tu or Td, respectively. The signal prior
to upsampling or downsampling is denoted x(t) (no subscript on x) and the signal
after upsampling or downsampling will be denoted using the appropriate subscript;
for example, xu(t) and xd(t).

Upsampling and Interpolation

Upsampling is the first operation illustrated in Figure 3.11 and is the process
through which the sampling frequency is increased. Since upsampling reduces
the sampling period by a factor of M the new sampling period Tu and the old

“TranterBook” — 2003/11/18 — 16:12 — page 75 — #93
�

�

�

�

�

�

�

�

Section 3.3. Reconstruction and Interpolation 75

sampling period Ts are related by Tu = Ts/M . Thus, in terms of an underlying
continuous-time signal x(t), the upsampling process generates new sample values
x(kTu) = x(kTs/M) from the old sample values x(kTs). As an example, suppose
that we construct a new set of samples by interpolating the reconstructed signal
xr(t), given by (3.49) at points t = nTs/M . Performing this operations gives

xi(nTu) = x(nTs/M) =
∞∑

k=−∞
x(kTs) sinc

(n

M
− k
)

(3.50)

This is not a practical interpolator, since the sinc(·) function is infinite in extent.
Truncating the sinc(·) function yields

xi(nTu) = x(nTs/M) ∼=
L∑

k=−L

x(kTs) sinc
(n

M
− k
)

(3.51)

a more practical, although not perfect, interpolator. Making L large clearly reduces
the interpolation error. However, since each interpolated sample requires 2L + 1
samples, the computational burden is often unacceptable for large L. Thus, there is
a tradeoff between computational burden and accuracy. This tradeoff will be seen
many times in our study of simulation. Note also that, since a causal function must
be used for interpolation, a delay of LTs is induced. This delay does not present a
problem in simulation, but we must be aware of its presence.

A more practical interpolator, requiring much less computation than the sinc(·)
function interpolator, is the linear interpolator. The linear interpolator, although
much simpler than the sinc(·) function interpolator, can be used when the un-
derlying signal is significantly oversampled. The impulse response of the linear
interpolator is defined by

h[k] =
{

(M − |k|)/M, k = 0,±1,±2, · · · ,±(M − 1)
0, otherwise (3.52)

Note that there are 2M − 1 nonzero values of h[k]. A MATLAB program for
developing h[k] follows:

% File: c3_lininterp.m
function h=c3_lininterp(M)
h1 = zeros(1,(M-1));
for j=1:(M-1)

h1(j) = j/M;
end
h = [0,h1,1,fliplr(h1),0];
% End of function file.

The upsampling operation is implemented on a discrete set of samples as a two-
step process as illustrated in Figure 3.12. We first form xu[k] from x[k] according to

“TranterBook” — 2003/11/18 — 16:12 — page 76 — #94
�

�

�

�

�

�

�

�

76 Sampling and Quantizing Chapter 3

M

Linear filter

h[k]

Upsample Interpolate

x k x ku x ki

Figure 3.12 Upsampling and interpolation.

xu[k] =
{

x[k/M], k = 0,±M,±2M, · · · ,
0, otherwise (3.53)

which can be implemented with the MATLAB code

% File: c3_upsample.m
function out=c3_upsamp(in,M)
L = length(in);
out = zeros(1,(L-1)*M+1);
for j=1:L
out(M*(j-1)+1)=in(j);

end
% End of function file.

The result of this operation is to place M−1 zero value samples between each sample
in the original sequence x[k]. Interpolation is then accomplished by convolving xu[k]
with h[k], the impulse response of the linear interpolator. The process of linear
interpolation with M = 3 is illustrated in Figure 3.13. Note that only two samples
are used in the upsampling operation. The necessary delay is then Ts. As illustrated
in Figure 3.13, the interpolated value is found by summing the contributions from

x k

x k −1

k −1 k

f
M

M
x k1

1
=

−

f
M

M
x k2

2
1=

−
−

Interpolated value
f f1 2+

Figure 3.13 Illustration of interpolation process.

“TranterBook” — 2003/11/18 — 16:12 — page 77 — #95
�

�

�

�

�

�

�

�

Section 3.3. Reconstruction and Interpolation 77

x[k] and x[k−1], which are ((M −1)/M)x[k] and ((M −2)/M)x[k−1], respectively.
Thus, with M = 3, the interpolated value is

2
3
x [k] +

1
3
x [k − 1]

Since only two samples are used in the interpolation process, linear interpolation is
very fast.

Example 3.3. As an illustration of upsampling and interpolation we consider
interpolating the samples of a sinewave. The basic samples are illustrated in the
top segment of Figure 3.14 as x[k]. Upsampling with M = 6 yields the sample
values xu[k]. Linear interpolation with M = 6 gives the sequence of samples xi[k].
Note the delay of Ts. The MATLAB program used to generate Figure 3.14 follows:

% File: c3 upsampex.m
M = 6; % upsample factor
h = c3 lininterp(M); % imp response of linear interpolator
t = 0:10; % time vector
tu = 0:60; % upsampled time vector
x = sin(2*pi*t/10); % original samples
xu = c3 upsamp(x,M); % upsampled sequence
subplot(3,1,1)

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 10 20 30 40 50 60
-1

0

1

0 10 20 30 40 50 60 70 80
-1

0

1

x k

x ku

x ki

Figure 3.14 Upsampling and interpolation operations used in Example 3.3.

“TranterBook” — 2003/11/18 — 16:12 — page 78 — #96
�

�

�

�

�

�

�

�

78 Sampling and Quantizing Chapter 3

stem(t,x,‘k.’)
ylabel(‘x’)
subplot(3,1,2)
stem(tu,xu,‘k.’)
ylabel(‘xu’)
xi = conv(h,xu);
subplot(3,1,3)
stem(xi,‘k.’)
ylabel(‘xi’)

�
It is clear that upsampling and downsampling involve a significant amount of

overhead. If the upsampling factor M is modest, say, 2 or 3, it is usually best to
develop the simulation using a single sampling frequency and therefore oversample
the narrowband signals present in the system. If, however, the difference in B and
W exceeds an order of magnitude, it is usually most efficient to utilize multiple
sampling frequencies in the simulation and sample each signal at an appropriate
sampling frequency.

Downsampling (Decimation)

Downsampling is the second operation illustrated in Figure 3.11 and is the process
through which the sampling frequency is reduced. The process is accomplished by
replacing a block of M samples by a single sample. Downsampling is therefore
much simpler than upsampling. The functional representation for the samples at
the output of a downsampler is obtained by recognizing that the downsampling
process increases the sampling period by a factor of M . Thus the samples at the
output of a downsampler, denoted xd(kTd), are given by xd(kTd) = x(kMTs). The
sample values are given by

xd[k] = x[kM] (3.54)

We need to be careful, however, to ensure that the downsampled signal does not
exhibit aliasing.

3.4 The Simulation Sampling Frequency

A fundamental decision that must be made in the development of a simulation is
the selection of the sampling frequency. For linear systems without feedback, the
necessary sampling frequency is dictated by the allowable aliasing error, which in
turn is dependent on the power spectral density of the underlying pulse shape.5 We
therefore pause to consider a common model for representing baseband signals used

5It will be shown in later chapters that, in addition to signal bandwidth, a number of other
factors affect the required sampling frequency. For example, the presence of nonlinearities result
in a requirement for higher sampling frequencies. The same is often true for systems containing
feedback. In addition, multipath channels place requirements on the sampling frequency so that
the multipath delays can be resolved. All of these topics will be considered in detail in later
chapters.

“TranterBook” — 2003/11/18 — 16:12 — page 79 — #97
�

�

�

�

�

�

�

�

Section 3.4. The Simulation Sampling Frequency 79

for data transmission and to develop a technique for calculating the power spectral
density of the signal corresponding to the pulse shape. Since the pulse shape plays
such an important role in the selection of an appropriate sampling frequency, we
consider the problem in some detail.

We know from our study of sampling that the complete elimination of aliasing
errors requires an infinite sampling frequency. This is clearly a situation that cannot
be achieved in practice. In addition, as the sampling frequency increases, more
samples must be processed for each data symbol passed through the system. This
increases the time required for executing the simulation. Since aliasing errors cannot
be eliminated in practice, a natural strategy is to choose a sampling frequency for
the simulation that achieves an acceptable tradeoff between aliasing errors and
simulation run time. Of course, a sampling frequency must be selected so that the
errors due to aliasing are negligible compared to the system degradations being
investigated by the simulation.

3.4.1 General Development

A common model for the transmitted signal in a digital communication system is

x(t) = A
∞∑

k=0

akp(t − kT − ∆) (3.55)

where

· · · , a−2, a−1, a0, a1, a2, · · · , ak, · · ·

is a sequence of a random variables representing the data. The values of ak are typ-
ically denoted +1 or -1 in a binary digital system, p(t) is the pulse shape function,
T is the symbol period (bit period for binary transmission), and ∆ is a random
variable uniformly distributed over the sampling period.6 The parameter A is a
scaling constant used to establish the power in the transmitted signal. By incorpo-
rating this parameter, we can scale the pulse shape function so that the peak value
is unity. We assume that E{ak} = 0 and E {akak+m} = Rm represent the mean
and the autocorrelation of the data sequence, respectively.

It is easily shown [2] that the autocorrelation function of the transmitted signal
is given by

RXX(τ) = A2
∞∑

m=−∞
Rmr(τ − mT) (3.56)

in which

r(τ) =
1
T

∫ ∞

−∞
p(t)p(t + τ)dt (3.57)

6Note that we are now using p(t) for the pulse shape rather than for the sampling function as
in the preceding section. The meaning of p(t) will be clear from the context in which it is used.

“TranterBook” — 2003/11/18 — 16:12 — page 80 — #98
�

�

�

�

�

�

�

�

80 Sampling and Quantizing Chapter 3

The required sampling frequency is determined from the PSD of the transmitted
signal. Applying the Weiner-Khintchine theorem to (3.56) gives

SX(f) = A2

∫ ∞

−∞

(∞∑
m=−∞

Rmr(τ − mT)

)
exp (−j2πfτ) dτ (3.58)

or

SX(f) = A2
∞∑

m=−∞
Rm

∫ ∞

−∞
r(τ − mT) exp (−j2πfτ) dτ (3.59)

We now put this in a form more useful for computation.
The first step is to apply the change of variables α = τ − mT to (3.59). This

gives

SX(f) = A2
∞∑

m=−∞
Rm

∫ ∞

−∞
r(α) exp [−j2πf(α + mT)] dα (3.60)

Denoting

Sr(f) =
∫ ∞

−∞
r(α) exp(−j2πfα) dα (3.61)

gives

SX(f) = A2
∞∑

m=−∞
RmSr(f) exp(−j2πfmT) (3.62)

We now determine Sr(f).
Fourier transforming (3.57) gives

Sr(f) =
∫ ∞

−∞

(
1
T

∫ ∞

−∞
p(t)p(t + α) dt

)
exp(−j2πfα) dα (3.63)

Applying the change of variables β = t+α allows (3.63) to be expressed in the form

Sr(f) =
1
T

(∫ ∞

−∞
p(t) exp(j2πft) dt

)(∫ ∞

−∞
p(β) exp(−j2πfβ) dβ

)
(3.64)

The second term in (3.64) is the Fourier transform of the pulse shape function p(t)
and the first term is the complex conjugate of the first term. This gives

Sr(f) =
|P (f)|2

T
=

G(f)
T

(3.65)

where G(f) is the energy spectral density of the pulse shape function p(t). Substi-
tution of (3.65) into (3.62) gives the general result

SX(f) = A2 G(f)
T

∞∑
m=−∞

Rm exp(−j2πfmT) (3.66)

In many applications the data symbols can be assumed independent. This assump-
tion results in significant simplifications.

“TranterBook” — 2003/11/18 — 16:12 — page 81 — #99
�

�

�

�

�

�

�

�

Section 3.4. The Simulation Sampling Frequency 81

3.4.2 Independent Data Symbols

If the data symbols {ak} are independent the autocorrelation becomes

Rm = E {akak+m} = E {ak}E {ak+m} = a2
kδ[m] (3.67)

so that Rm = a2
k for m = 0 and Rm = 0 otherwise. The PSD of x(t) as defined by

(3.66) takes a very simple form for this case:

SX(f) = A2 a2
kG(f)

T
(3.68)

If the data symbols are assumed to be ak = ±1 for all k, a2
k = 1 and

SX(f) = A2 G(f)
T

(3.69)

which is independent of the data.7 For the case in which the data symbols are not
independent, the underlying autocorrelation function Rm must be determined and
(3.66) must be evaluated term by term. See [2] for an example.

Example 3.4. Consider the rectangular pulse shape illustrated in Figure 3.15. It
follows from Figure 3.15 that

P (f) =
∫ T

0

exp(−j2πft) dt =
1

j2πf
[1 − exp(−j2πfT)] (3.70)

This can be placed in the form

P (f) =
1

j2πf
[exp(jπfT) − exp(−jπfT)] exp(−jπfT)

=
sin(πfT)

πf
exp(−jπfT) (3.71)

 t

 p(t)

0

1

 T

Figure 3.15 Rectangular pulse shape.

7We make the assumption that the data samples are +1 and −1 rather than +1 and 0 to be
consistent with the assumption that E{ak} = 0.

“TranterBook” — 2003/11/18 — 16:12 — page 82 — #100
�

�

�

�

�

�

�

�

82 Sampling and Quantizing Chapter 3

or, in terms of the sinc(·) function

P (f) = T sinc(fT) exp(−jπfT) (3.72)

Therefore

G(f) = |P (f)|2 = T 2 sinc2(fT)

Substitution into (3.69) gives

SX(f) = A2T sinc2(fT) (3.73)

for the power spectral density of x(t).
The transmitted power is, from (3.69)

P =
∫ ∞

−∞
SX(f) df = A2 1

T

∫ ∞

−∞
G(f) df (3.74)

From Parseval’s theorem and Figure 3.15 we know that∫ ∞

−∞
G(f)df =

∫ ∞

−∞
|P (f)|2 df =

∫ ∞

−∞
p2(t) dt = T (3.75)

Substitution into (3.74) gives

P = A2 (3.76)

as expected. This simple result arises from the fact that p(t) is a unit amplitude
pulse. Thus

∑
akp(t − kT − ∆) has unit power. Multiplication by A as shown

in (3.55) simply scales the power by A2. For other pulse shapes the relationship
between power and A must be computed using the technique just illustrated. Re-
member also the assumed data sequence {ak} is a unit power (variance) process.

�

Example 3.5. An interesting pulse shape, which will be needed later, is illustrated
in Figure 3.16(a). The basic pulse shape p(t) can be expressed p1(t) � p1(t) where
� denotes convolution and p1(t) is illustrated in Figure 3.16(b). Taking the Fourier
transform of p1(t) gives

P1(f) =

√
T

2
sinc

(
T

2
f

)
exp(−jπfT/2) (3.77)

Since convolution in the time domain is equivalent to multiplication in the frequency
domain we have

|P (f)| = |P1(f)|2 =
T

2
sinc2

(
T

2
f

)
(3.78)

“TranterBook” — 2003/11/25 — 9:37 — page 83 — #42
�

�

�

�

�

�

�

�

Section 3.4. The Simulation Sampling Frequency 83

 t

 p(t)

0

1

 T
 t

 p1(t)

0

2

T

T

2
(a) Triangular pulse shape (b) Basic shape for convolution

Figure 3.16 Triangular pulse shape.

Thus

G(f) = |P (f)|2 =
T 2

4
sinc4

(
T

2
f

)
(3.79)

Substitution into (3.69) gives

SX(f) =
A2T

4
sinc4

(
T

2
f

)
(3.80)

This result will be used later in this chapter and in the problems. �

3.4.3 Simulation Sampling Frequency

We now return to the problem of relating the simulation sampling frequency to a
given pulse shape. This is accomplished by considering the signal-to-noise ratio of
the sampling process where the noise power arises from aliasing. The goal is to select
a sampling frequency so that the errors due to aliasing are negligible compared to
the system degradations being investigated by the simulation. It will be shown that
the required sampling frequency is dependent upon the waveshapes present in the
simulation model.

Consider a waveform defined by (3.55), having the rectangular pulse shape il-
lustrated in Figure 3.15, to be sampled as illustrated in Figure 3.17. In drawing

Figure 3.17 Sequence of rectangular pulses sampled at six samples per symbol.

“TranterBook” — 2003/11/18 — 16:12 — page 84 — #102
�

�

�

�

�

�

�

�

84 Sampling and Quantizing Chapter 3

Figure 3.17 a sampling frequency of six times the symbol frequency was assumed.
The power spectral density of the data sequence is given by (3.73). Combining this
result with (3.18) gives

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2[(f − nfs)T] (3.81)

Sampling the data sequence at m samples per symbol (fs = m/T) gives

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2
[
(f − nm

T
)T
]

(3.82)

which is

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2 (fT − nm) (3.83)

The next task is to compute the signal-to-noise ratio due to aliasing.
The signal-to-noise ratio due to aliasing can be expressed (SNR)a = S/Na where

the signal power is

S =
∫ fs/2

−fs/2

f2
s A2T sinc2(fT) df = 2f2

s A2T

∫ fs/2

0

sinc2(fT) df (3.84)

and the noise power due to aliasing is

Na =
∫ fs/2

−fs/2

f2
s

∞∑
n=−∞

n�=0

A2T sinc2 (fT − nm) df

= 2f2
s A2T

∞∑
n=−∞

n�=0

∫ fs/2

0

sinc2 (fT − nm) df (3.85)

Note that we have made use of the fact that PSD is an even function of frequency.
The signal power is determined by integrating the n = 0 term in (3.83) over the
simulation bandwidth |f | < fs/2. The noise power due to aliasing is the power from
all of the frequency translated terms (n 	= 0) that fall in the simulation bandwidth.
Thus, the noise due to aliasing is found by integrating over all terms in (3.83) with
the n = 0 term excepted. This is made clear by Figure 3.18, which is drawn (not
to scale) for m = 6. Figure 3.18 illustrates the positive frequency portion of the
n = 0 term of (3.83) in the range 0 < f < fs. The translated spectra for n = ±1
and n = 2 are also shown.

The next step in the determination of (SNR)a is to show that both S and Na

can be determined using only the n = 0 term in (3.83). The lobes of the sinc(·)
function, each having width 1/T , are illustrated and numbered in Figure 3.18. Note
that for m = 6 and n = 0 lobes 1, 2, and 3 fall in the range 0 < f < fs/2 and

“TranterBook” — 2003/11/18 — 16:12 — page 85 — #103
�

�

�

�

�

�

�

�

f
=

0
f

f s
=

/2
f

f s
=

f
f s

=
2

f
f s

=
−

 f f f f

1

1

1

1
1

2
2

2

2

2

3
3

3

3

3

4

4

4
4

4

5

5
5

5

5

6

6

6

6
6

7

7

7

8

8

8

9

9

9 10

10

10

11

11

11

12

12

12

0
1 T

3 T

12 T

6 T

n
=

0

n
=
−1

n
=

1

n
=

2

F
ig

u
re

3
.1

8
S
p
ec

tr
a

a
n
d

tr
a
n
sl
a
te

d
sp

ec
tr

a
fo

r
n

=
0
,
n

=
±1

,
a
n
d

n
=

2
.

85

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 86 --- #104
�

�

�

�

�

�

�

�

86 Sampling and Quantizing Chapter 3

therefore represent signal power. Lobes 4, 5, and 6 fall into the range 0 < f < fs/2
for the n = 1 term and therefore represents aliasing noise. In a similar manner
lobes 7, 8, and 9 result from the n = −1 term in (3.83) and lobes 10, 11, and 12
result from the n = 2 term in (3.83). Continuing this line of thought shows that

∞∑
n=−∞

n�=0

∫ fs/2

0

sinc2 (fT − nm) df =
∫ ∞

fs/2

sinc2 (fT − nm) df (3.86)

Therefore

(SNR)a =
S

Na
=

∫ fs/2

0
sinc2(fT) df∫∞

fs/2
sinc2(fT) df

(3.87)

As can be seen by comparing Examples 3.4 and 3.5, the form of the integrand will
be different depending on the pulse shape.

We will frequently find it necessary to use numerical integration in order to
evaluate (SNR)a. In order to accomplish this a second sampling operation is intro-
duced in which the continuous frequency variable f is sampled at points f = jf1.
For accuracy we clearly require f1
 1/T so that many samples are taken in each
lobe of the sinc(·) function. Frequency sampling in this way allows the integrals in
(3.87) to be replaced by sums. In order to satisfy f1
 1/T let f1 = 1/(kT) where
k is large so that the error induced by the numerical integration is small. With
f = jf1 and f1 = 1/(kT) we have

fT =
j

k
(3.88)

The next step is to compute the folding frequency fs/2 in terms of the discrete
parameters k and m. From Figure 3.18 we see that, for m samples per symbol, the
folding frequency fs/2 is m/(2T). Since k samples are taken for every frequency
interval of width 1/T , the folding frequency corresponds to the index km/2. Using
(3.88) and the fact that fs/2 corresponds to km/2 in (3.87) gives

(SNR)a
∼=

∑km/2
j=0 sinc2(j/k)∑∞

j=km/2 sinc2(j/k)
(3.89)

The preceding is an approximation because numerical integration is used to approx-
imate the true value of the integral.

The MATLAB program to evaluate (3.89) follows.

% File: c3_sna.m
k = 50; % samples per lobe
nsamp = 50000; % total frequency samples
snrdb = zeros(1,17); % initialize memory
x = 4:20; % vector for plotting
for m = 4:20 % iterate samples per symbol

“TranterBook” — 2003/11/18 — 16:12 — page 87 — #105
�

�

�

�

�

�

�

�

Section 3.5. Summary 87

signal = 0; noise = 0; % initialize sum values
f_fold = k*m/2; % folding frequency
for j = 1:f_fold

term = (sin(pi*j/k)/(pi*j/k))^2;
signal = signal+term;

end
for j = (f_fold+1):nsamp

term = (sin(pi*j/k)/(pi*j/k))^2;
noise = noise+term;

end
snrdb(m-3) = 10*log10(signal/noise);

end
plot(x,snrdb) % plot results}
xlabel(‘Samples per symbol’)}
ylabel(‘Signal-to-aliasing noise ratio’)}
% End script file.

Note that 50 frequency samples are taken in each lobe of the sinc(·) function and
that a total of 50,000 frequency samples are taken. Thus, the summation in the
denominator of (3.89) spans 1,000 lobes of the sinc(·) function, after which the PSD
is assumed negligible. This assumption may be verified by experimenting with the
parameter nsamp.

Executing the preceding program yields the result illustrated in Figure 3.19.
Note that (SNR)a is slightly less than 17 dB for m = 10 samples per symbol
and that (SNR)a continues to increase as m increases. However, the impact on
(SNR)a decreases for increasing m. Also note that the PSD of the sampled signal
decreases as 1/f2 for a rectangular pulse shape. Example 3.5 shows that the PSD
of the sampled signal decreases as 1/f4 for a triangular pulse shape. Thus, for a
given value of m, the value of (SNR)a will be greater for the triangular pulse shape
than for the rectangular pulse shape. The rectangular pulse shape represents is a
worst-case situation. Other pulse shapes are considered in the Problems.

In a practical communications system the pulse shape p(t) is chosen to give
a required bandwidth efficiency [2]. High bandwidth efficiency implies that the
spectrum of x(t) as defined by (3.55) is compact about f = 0.8 Thus, signals that
exhibit high bandwidth efficiency require a smaller value of m for a given (SNR)a.

3.5 Summary

The purpose of this chapter was to cover a number of topics related to sampling
and the representation of sample values in communication system simulations. Two
fundamental sampling theorems were considered the lowpass sampling theorem and
the bandpass sampling theorem. Since bandpass signals are usually represented by
lowpass signals in system simulations, the lowpass sampling theorem is the most

8The reference is f = 0 rather than f = fc, in which fc is a nonzero carrier frequency, since
(3.55) represents a lowpass model of a bandpass process.

“TranterBook” — 2003/11/18 — 16:12 — page 88 — #106
�

�

�

�

�

�

�

�

88 Sampling and Quantizing Chapter 3

4 6 8 10 12 14 16 18 20
12

13

14

15

16

17

18

19

20

Samples per symbol

Si
gn

al
-t

o-
al

ia
si

ng
 n

oi
se

 r
at

io

Figure 3.19 Signal-to-aliasing-noise ratio for the rectangular pulse shape.

important of these to theorems for our application. We saw that a bandlimited
lowpass signal may be sampled and that the underlying bandpass signal may be
reconstructed from the sample values if the sampling frequency exceeds twice the
bandwidth of the bandlimited lowpass signal. The bandpass sampling theorem,
although less useful in the simulation context than the lowpass sampling theorem,
gave a somewhat similar result. Bandpass signals could be sampled and recon-
structed if the sampling frequency is between 2B and 4B where B is the bandwidth
of the bandpass signal being sampled.

Next quantizing was considered. Quantizing errors are present in all simulations,
since sample values must be represented by digital words of finite length. Two types
of quantizing errors were considered; errors resulting from fixed-point number rep-
resentations and errors resulting from floating-point number representations. When
fixed-point number representations are used, the signal-to-quantizing-noise ratio in-
creases 6 dB for each bit added to the word length. When simulations are preformed
on general-purpose computers, which use floating-point number representations, the
noise resulting from quantizing errors is usually negligible. This noise, however, is
never zero and there are situations in which errors can accumulate and significantly
degrade the accuracy of the simulation result. The simulation user must therefore
be aware of this potential error source.

“TranterBook” — 2003/11/18 — 16:12 — page 89 — #107
�

�

�

�

�

�

�

�

Section 3.6. Further Reading 89

The third section of this chapter treated reconstruction and interpolation. We
saw that if a lowpass bandlimited signal is sampled with a sampling frequency
exceeding twice the signal bandwidth, the underlying continuous-time signal can be
reconstructed without error by weighting each sample with a sin(x)/x waveform,
which is equivalent to passing the samples through an ideal lowpass filter. The
result is a waveform defined for all values of time and, by extracting “new” sam-
ples between the original samples, interpolated samples can be generated. This
operation, known as upsampling, increases the effective sampling frequency. The
inverse operation, downsampling, can be accomplished by extracting every M th

sample from the original set of samples. Using the operations of upsampling and
downsampling, one can develop a simulation in which multiple sampling frequen-
cies are present. This is useful when the system being simulated contains signals
having widely differing bandwidths. A spread-spectrum communications system is
an example of such a system.

The final topic treated in this chapter was the important problem of relating the
sampling frequency to the pulse shape used for waveform transmission. The pulse
shape was assumed time limited and therefore cannot be bandlimited. Therefore
aliasing errors occur. The criterion used for selecting the sampling frequency was
to determine the required signal-to-noise ratio, where aliasing error constituted the
noise source. A general method was developed for determining the PSD of the
modulated signal and numerical integration of this PSD determined the signal-to-
aliasing-noise ratio.

3.6 Further Reading

Most textbooks on basic communication theory consider several of the topics pre-
sented in this chapter. Included are the sampling theorem and models for trans-
mitted signals using various pulse shape functions. Examples are:

R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modu-
lation and Noise, 5th ed., New York: Wiley, 2001.

R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall, 2001.

The topics of quantizing, interpolation, and decimation are typically covered in text-
books on digital signal processing. Although a wide variety of books are available
in this category, the following is recommended:

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1989.

The following textbook is an excellent reference on multirate signal processing and
sampling rate conversion:

R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1983.

“TranterBook” — 2003/11/18 — 16:12 — page 90 — #108
�

�

�

�

�

�

�

�

90 Sampling and Quantizing Chapter 3

Simulation applications of the topics presented in this chapter can be found in:

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

3.7 References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice-Hall, 1989.

2. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

3. The ANSI/IEEE Standard 754-1985 (available from IEEE).

3.8 Problems

3.1 A signal x(t), given by

x(t) = 5 cos(6πt) + 3 sin(8πt)

is sampled using a sampling frequency fs of 10 samples per second. Plot
X(f) and Xs(f). Plot the output of the reconstruction filter assuming that
the reconstruction filter is an ideal lowpass filter with a bandwidth of fs/2.
The passband gain of the reconstruction filter is Ts = 1/fs.

3.2 Repeat the preceding problem using a sampling frequency of 7 samples per
second.

3.3 Develop a MATLAB program that produces, and therefore verifies, Figure
3.5.

3.4 A bandpass signal has a center frequency of 15 MHz and a bandwidth of 750
kHz (375 kHz each side of the carrier).

(a) Using the bandpass sampling theorem determine the minimum sampling
frequency at which the bandpass signal can be sampled and reconstructed
without error.

(b) By drawing the spectrum of the sampled signal and defining all frequen-
cies of interest, show that the signal can be reconstructed without error
if the sampling frequency found in (a) is used.

(c) Starting with the sampling frequency found in (a) consider the effect
of increasing the sampling frequency. By how much can the sampling
frequency be increased without incurring aliasing errors?

3.5 Assume that a signal defined by 5 sin(10πt) is sampled and quantized using a
fixed-point number representation.

(a) Determine the dynamic range of the signal.

“TranterBook” — 2003/11/18 — 16:12 — page 91 — #109
�

�

�

�

�

�

�

�

Section 3.8. Problems 91

(b) Determine the crest factor of the signal.

(c) Determine the signal-to-noise ratio (SNR)a for b = 4, 8, 16, and 32 bits.

3.6 Repeat the preceding problem for the signal illustrated Figure 3.20.

3.7 In evaluating the effect of a fixed-point quantizing process, the assumption was
made that the error induced by the quantizing process can be represented by
a uniformly distributed random value. In this problem we investigate the
validity of this assumption.

(a) Use sin(6t) as a signal. Using a sampling frequency of 20 Hz, generate,
using MATLAB, a vector of 10,000 samples of this waveform. Note that
the signal frequency and the sampling frequency are not harmonically
related. Why was this done?

(b) Develop a MATLAB model for a fixed-point quantizer that contains 16
quantizing levels (b = 4). Using this model quantize the sample values
generated in (a). Generate a vector representing the 10,000 values of
quantizing error.

(c) Compute the values of E{e[k]} and E{e2[k]}. Compare with the theo-
retical values and explain the results.

(d) Using the MATLAB function hist, generate a histogram of the quantiz-
ing errors. What do you conclude?

3.8 The value of realmax is the largest number that can be represented on a com-
puter that adheres to the ANSI/IEEE standard for representing floating-point
numbers. Anything larger results in an overflow, which in MATLAB is repre-
sented by Inf. Using a computer that adheres to the ANSI/IEEE standard
make the following computations and answer the accompanying questions:

(a) Compute realmax + 1. Note that no overflow occurs. Explain this
apparent contradiction.

(b) Compute realmax + 1.0e291 and realmax + 1.0e292. Explain the
results.

3.9 Using MATLAB, compute

A = 1 − 0.5 − 0.25 − 0.125− 0.125

Compare the result of this calculation with the result of Example 3.2. Explain
the difference.

3.10 Fill in the steps to derive (3.56) and (3.57).

3.11 Data is transmitted as modeled by (3.55) in which the pulse shape p(t) is the
triangular pulse illustrated in Figure 3.16(a). Develop a MATLAB program
to plot the signal to aliasing noise ratio (SNR)a as the number of samples per
symbol varies from 4 to 20. Compare the result with that of the rectangular
pulse shape by plotting both on the same set of axes. Explain the results.

“TranterBook” — 2003/11/18 — 16:12 — page 92 — #110
�

�

�

�

�

�

�

�

0A

-A

 t

F
ig

u
re

3
.2

0
F
ig

u
re

fo
r

P
ro

b
le

m
3
.6

.

92

“TranterBook” — 2003/11/18 — 16:12 — page 93 — #111
�

�

�

�

�

�

�

�

Section 3.8. Problems 93

3.12 The energy spectral density of an MSK (minimum shift keyed) signal is defined
by

GMSK(f) =
16Tb cos2 (2πTbf)

π2
[
1 − (4Tbf)2

]2
where Tb is the bit time [2]. Develop a MATLAB program to plot the signal
to aliasing noise ratio (SNR)a as the number of samples per symbol varies
from 4 to 20. Compare the result with that of the rectangular pulse shape by
plotting both on the same set of axes. Explain the results.

3.13 Repeat the preceding problem for the QPSK signal for which

G(f) = 2Tb sinc2 (2Tbf)

“TranterBook” — 2003/11/18 — 16:12 — page 94 — #112
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 95 — #113
�

�

�

�

�

�

�

�

Chapter 4

LOWPASS SIMULATION
MODELS FOR BANDPASS
SIGNALS AND SYSTEMS

As we saw in the previous chapter, a large number of samples are required to
generate an RF (radio frequency) bandpass (BP) signal, and for that reason RF
bandpass signals are not typically used in waveform-level simulations. RF signals
are bandpass signals in which the carrier frequency fc usually exceeds the bandwidth
B by several orders of magnitude. Using lowpass (LP) representations for bandpass
signals typically results in simulations that execute much faster and have greatly
reduced data storage and signal-processing requirements. The use of lowpass models
for both signals and systems for use in simulation is the focus of this chapter.

4.1 The Lowpass Complex Envelope for Bandpass Signals

We now look at the lowpass complex envelope representation of bandpass signals in
detail. The representation is viewed in both the time domain and in the frequency
domain. Both deterministic and random signals are considered.

95

“TranterBook” — 2003/11/18 — 16:12 — page 96 — #114
�

�

�

�

�

�

�

�

96 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.1.1 The Complex Envelope: The Time-Domain View

A general bandpass signal, such as would be found at the output of a modulator,
can always be written in the form1

x(t) = A(t) cos [2πf0t + φ(t)] (4.1)

where A(t) is the amplitude, or real envelope, of the signal and φ(t) is the phase
deviation from the phase 2πf0t. For the case in which (4.1) represents the output
of a modulator, f0 is the carrier frequency and 2πf0t is the instantaneous phase of
the unmodulated carrier. It follows from Euler’s formula2 that (4.1) can be written

x(t) = Re {A(t) exp [jφ(t)] exp (j2πf0t)} (4.2)

which is

x(t) = Re {x̃(t) exp (j2πf0t)} (4.3)

The quantity

x̃(t) = A(t) exp [jφ(t)] (4.4)

is known as the complex envelope of the real signal x(t). Equation (4.4) is the polar,
or exponential, form of the complex envelope.

It is often convenient to express the complex envelope in rectangular form, which
is

x̃(t) = xd(t) + jxq(t) (4.5)

The real and imaginary parts of the complex envelope are referred to as the di-
rect component and quadrature component of x(t), respectively. Applying Euler’s
formula to (4.4) gives

x̃(t) = A(t) cosφ(t) + jA(t) sin φ(t) (4.6)

Thus:

xd(t) = A(t) cos φ(t) (4.7)

and

xq(t) = A(t) sin φ(t) (4.8)

In applications of practical interest A(t) and φ(t) are lowpass functions with band-
widths much less than f0. Thus, xd(t) and xq(t) are also lowpass signals. It follows

1Throughout this chapter we will usually write mathematical expressions in terms of continuous
time t in order to simplify notation. Keep in mind, however, that digital simulations actually
process sample values defined by sampling at times t = nT , where T is the sampling period.

2exp(jθ) = cos θ + j sin θ.

“TranterBook” — 2003/11/18 — 16:12 — page 97 — #115
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 97

from the definition of complex numbers that A(t) and φ(t) are related to xd(t) and
xq(t) by

A(t) = |x̃(t)| =
√

x2
d(t) + x2

q(t) (4.9)

and

φ(t) = arctan
xq(t)
xd(t)

(4.10)

Using (4.3) and (4.5), the time-domain signal x(t) can be written

x(t) = Re{[xd(t) + jxq(t)][cos 2πf0t + j sin 2πf0t]} (4.11)

which is

x(t) = xd(t) cos(2πf0t) − xq(t) sin(2πf0t) (4.12)

Note that (4.12) could have been written by applying the trigonometric identity

cos(a + b) = cos(a) cos(b) − sin(a) sin(b) (4.13)

to (4.1) and defining xd(t) and xq(t) using (4.7) and (4.8).
Although f0 is typically chosen as the center frequency of the bandpass signal,

f0 is arbitrary and can be chosen for convenience. However, as will be illustrated
in Example 4.1, xd(t) and xq(t) are dependent upon the selection of f0. Example
4.2 illustrates the lowpass representation of an analog FM signal. Examples 4.3,
4.4 and 4.5 illustrate the application to digital signals. These last three examples
illustrate the development of simulation models for digital modulators.

Example 4.1. Consider the bandpass signal

x(t) = A sin (2πfmt) cos (2πfct + φ) (4.14)

where fc is the carrier frequency and φ is the carrier phase deviation. We assume
that fc � fm and desire xd(t) and xq(t) as defined by (4.3) and (4.5). The first step
is to choose the frequency f0 defined in (4.3). In order not to assume that f0 = fc,
let fc = f0 + f∆. This gives

x(t) = A sin (2πfmt) cos (2πf0t + 2πf∆t + φ) (4.15)

which can be written

x(t) = Re {A sin (2πfmt) exp(j2πf∆t) exp (jφ) exp (j2πf0t)} (4.16)

By inspection, the complex envelope is

x̃(t) = A sin (2πfmt) exp [j(2πf∆t + φ)] (4.17)

“TranterBook” — 2003/11/18 — 16:12 — page 98 — #116
�

�

�

�

�

�

�

�

98 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

Thus:

x̃(t) = A sin (2πfmt) [cos(2πf∆t + φ) + j sin(2πf∆t + φ)] (4.18)

from which

xd(t) = A sin (2πfmt) cos(2πf∆t + φ) (4.19)

and

xq(t) = A sin(2πfmt) sin(2πf∆t + φ) (4.20)

follow directly by equating real and imaginary parts. Note that both xd(t) and
xq(t) depend upon the relationship between fc and f0. The simplest expressions
result if f0 = fc (f∆ = 0) but, as previously mentioned, the choice of f0 is arbitrary.
In simulation problems we typically choose f0 so that the computational burden is
minimized. �

Example 4.2. An analog FM modulator is defined by the expression

xc(t) = Ac cos
(

2πfct + kf

∫ t

t0

m(α) dα + φ(t0)
)

(4.21)

where Ac and fc represent the amplitude and frequency of the unmodulated carrier,
respectively, m(t) is the message or information carrying signal, kf is the modulation
index, t0 is an arbitrary reference time, and φ(t0) is the phase deviation at time t0.
Assuming that the time reference t0 = 0 is selected and that φ(t0) = 0, it follows
that xc(t) can be represented

xc(t) = Re
{

Ac exp
(

jkf

∫ t

0

m(α) dα

)
exp (j2πfct)

}
(4.22)

Thus, the complex envelope is

x̃(t) = Ac exp
(

jkf

∫ t

0

m(α) dα

)
(4.23)

from which

xd(t) = Ac cos
(

kf

∫ t

0

m(α) dα

)
(4.24)

and

xq(t) = Ac sin
(

kf

∫ t

0

m(α) dα

)
(4.25)

Thus, in order to represent x(t) in a simulation, it is necessary only to generate the
two lowpass signals given by (4.24) and (4.25).

“TranterBook” — 2003/11/18 — 16:12 — page 99 — #117
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 99

A suite of models for an FM modulator are illustrated in Figure 4.1. Figure
4.1(a) shows the continuous-time bandpass model. The continuous-time lowpass
model, in which the output is the lowpass complex envelope representation of xc(t),
is shown in Figure 4.1(b). The discrete-time equivalent is illustrated in Figure
4.1(c), in which the sampling period is T and n indexes the samples. Note that, in
the discrete-time model, the integrator is modeled as an accumulator (summation
operator). This is equivalent to rectangular integration in which the area accumu-
lated in the kth time slot is Tm(kT). Other integrator models can be used, as will
be discussed in later chapters. �

We now consider a few examples involving digital modulation. In order to do
this a simulation model for the modulator is needed. The basic model is illustrated
in Figure 4.2. [Note: Figure 4.2 illustrates a bandpass model for which the out-
put is the bandpass signal xck(t). The lowpass model used for simulation has the
outputs xdk(t) and xqk(t), which define the lowpass complex envelope of xck(t).]
We assume that ak represents a binary data stream. In addition, M -ary signaling,
in which b information bits are grouped together to form a data symbol so that
the transmitted signal in the kth signaling interval can carry more than 1 bit of
information. Typically M = 2b, but this is not a necessary assumption. The binary
to M -ary symbol mapping shown in Figure 4.2 performs the function of grouping
together b bits to form the M -ary symbol. The output of the mapper are the direct
and quadrature components of the k-symbol. These are denoted dk and qk. (The
kth symbol itself can be viewed as complex valued, sk = dk + jqk.)

The symbols dk and qk can be considered impulse functions having weights
determined by the bit-to-symbol mapping. The impulse response of the pulse-
shaping filter is denoted p(t) so that the direct and quadrature signals for the kth

signaling interval, kT < t < (k + 1)T , are xdk(t) and xqk(t) as shown in Figure 4.2.
The transmitter output for the kth signaling interval is

xck(t) = xdk(t) cos 2πf0t − xqk(t) sin 2πf0t (4.26)

The corresponding discrete-time signal model is

xck(nT) = xdk(nT) cos 2πf0nT − xqk(nT) sin 2πf0nT (4.27)

which is simply the sampled version of the continuous-time signal model.
Before leaving this topic, we pause to review a few terms, to briefly discuss

scattergrams, and to point out the difference between scattergrams, as used in the
simulation context, and signal constellations, which are familiar to us from our study
of digital communication theory. A signal space is defined as a K-dimensional space
generated by K orthonormal basis functions φi(t), i = 1, 2, · · · , K and signals are
represented as vectors in this space. For example, assume an M -ary communications
system in which one of m signals is transmitted in the kth signaling interval. In
terms of the basis functions, the signal transmitted in the kth signaling interval is
expressed

xc(t) =
K∑

i=1

ximφi(t), kT < t < (k + 1)T, m = 1, 2, · · · , M (4.28)

“TranterBook” — 2003/11/18 — 16:12 — page 100 — #118
�

�

�

�

�

�

�

�

In
te

gr
at

or
Ph

as
e

M
od

ul
at

or

A
f

t
c

c
co

s(
)

2π

m
t(
)

x
t

A
f

t
k

m
d

c
c

c
f

t
(

)
co

s
(

)
=

+
2

0
π

α
α

In
te

gr
at

or
m

t(
)

A
j

c
ex

p

~
(

)
ex

p
(

)
x

t
A

jk
m

d
c

f

t
=

α
α

0

k
f

A
j

c
ex

p
k

f

m
0

(b
)

F
M

 m
od

ul
at

io
n,

 c
on

ti
nu

ou
s-

tim
e

lo
w

pa
ss

 m
od

el

(c
)

FM
 m

od
ul

at
io

n,
 d

is
cr

et
e-

tim
e

lo
w

pa
ss

 m
od

el

(a
)

F
M

 m
od

ul
at

io
n,

 c
on

ti
nu

ou
s-

ti
m

e
ba

nd
pa

ss
 m

od
el

~
(

)
ex

p
(

)
x

nT
A

jk
T

m
kT

c
f

km

=
= 0

m
nT(

)
T
Σ

(
)

(
)

[
]

Σ

(
)

[
]

[
]

∫ ∫

F
ig

u
re

4
.1

M
o
d
el

s
fo

r
th

e
F
M

m
o
d
u
la

ti
o
n

p
ro

ce
ss

.

100

“TranterBook” — 2003/11/18 — 16:12 — page 101 — #119
�

�

�

�

�

�

�

�

B
in

ar
y

(b
it)

to
M

-a
ry

Sy
m

bo
l

M
ap

pi
ng

Pu
ls

e
Sh

ap
in

g
Fi

lte
r

Pu
ls

e
Sh

ap
in

g
Fi

lte
r

a k

x
t

d
p

t
kT

dk
k

(
)

(
)

=
−

x
t

q
p

t
kT

qk
k

(
)

(
)

=
−

d
k q k

si
n

2
0

πf
t

co
s2

0
πf

t

x
t

ck
(

)

F
ig

u
re

4
.2

S
im

u
la

ti
o
n

m
o
d
el

fo
r

d
ig

it
a
l
m

o
d
u
la

to
r

(b
a
n
d
p
a
ss

m
o
d
el

).

101

“TranterBook” — 2003/11/18 — 16:12 — page 102 — #120
�

�

�

�

�

�

�

�

102 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

In signal space the mth signal is represented by the vector

Xm = [x1m x2m · · · xKm] (4.29)

Signal space is scaled so that |Xm|2 represents the energy associated with the mth

signal in the set of possible transmitter outputs. The K-dimensional plot of the
points Xm, m = 1, 2, · · · , M defines the signal constellation.

The scattergram corresponding to a signal is a plot of xq(t) versus xq(t) and is
therefore defined in terms of the lowpass complex envelope of a real bandpass signal.
The dimensionality of the scattergram is one if xd(t) = 0 or xq(t) = 0. Otherwise,
the dimensionality of the scattergram is two. Examples 4.3 and 4.4 illustrate that
the scattergram and the signal constellation are closely related when K = 2, which
is the case for QPSK and QAM. We will see in Example 4.5 that this relationship
is lost when the dimensionality of the signal space exceeds two.

Example 4.3. (QPSK) In order to form a QPSK signal, the data symbols ak

are formed by taking binary symbols two at a time. Thus each data symbol consists
of one of the binary pairs 00, 01, 10, or 11. The bandpass QPSK signal for the kth

signaling interval has the form

xck(t) = Ac cos(2πf0t + φk), kT < t < (k + 1)T (4.30)

where φk takes on one of the four values +π/4, −π/4, +3π/4, or −3π/4. The
complex envelope corresponding to xck(t) can be written

x̃ck(t) = Re{Ac exp(jφk)} (4.31)

from which the direct and quadrature components are

xdk(t) = Ac cosφk (4.32)

and

xqk(t) = Ac sinφk (4.33)

Note that if p(t) is constant over a signaling interval, both xdk(t) and xqk(t) are
constant over a signaling interval. In this case both xdk(t) and xqk(t) take on only
one of two values and switch instantaneously from one value to the other. If xqk(t)
is plotted as a function of xqdk(t), the scattergram, illustrated in Figure 4.3, results.
Note that Figure 4.3, when properly scaled, also represents the signal constellation.

Each of the points in the QPSK signal constellation correspond to a pair of
binary symbols as determined by the bit-to-symbol mapping illustrated in Figure
4.2. Although the mechanism by which pairs of binary symbols are mapped to
QPSK symbols is arbitrary, the mapping shown in Figure 4.3, which is known as
Gray code mapping, is frequently used. In Gray code mapping nearest neighbors,
in signal space, differ in only one binary symbol. This strategy is justified, since
the error probability is typically an inverse monotonic function of the Euclidean

“TranterBook” — 2003/11/18 — 16:12 — page 103 — #121
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 103

(11)

(01)

(10)

(00)

Q

D

Figure 4.3 QPSK scattergram for constant p(t).

distance between points in signal space.3 For the mapping illustrated in Figure 4.3,
assume that the bit sequence is b1b2, where b1 is the most significant bit and b2 is
the least significant bit. If b2 = 0, dk = 1, and if b2 = 1, dk = −1 so that the least
significant bit determines whether the QPSK symbol is in the left half or in the
right half of the D-Q plane. In a similar fashion, if b1 = 0, qk = 1, and if b1 = 1,
qk = −1 so that the most significant bit determines whether the QPSK symbol is
in the upper half or in the lower half of the D-Q plane.

In order to look at QPSK scattergrams for a nonconstant p(t) and the corre-
sponding time-domain waveforms a simple MATLAB program is developed. The
program is given in Appendix A and is somewhat general in that the number of
levels on the D (direct) axis and the Q (quadrature) axis can be assigned indepen-
dently. For QPSK both of these parameters are equal to two. The pulse-shaping
filter is a sixth-order Butterworth filter.4 The filter bandwidth used in the simula-

3For example, for an AWGN channel, the pairwise error probability Pr{xi → xj}, which is
the probability of transmitting xi(t) and deciding (incorrectly) at the receiver that xj(t) was
transmitted, j �= i, is

Pr{xi → xj} = Q

„‖Yi − Yj‖√
2N0

«

In this expression Yi and Yj are vectors, in signal space, corresponding to yi(t) and yj(t), which are
xi(t) and xj(t) referenced to the receiver input and ‖Yi − Yj‖ represents the Euclidean distance
separating yi(t) and yj(t) [1]. Thus as signal vectors move closer together due to channel conditions
or system inperfections, the error probability increases.

4Normally we would use a zero-ISI filter, such as a root-raised cosine filter, for these applications
to ensure that the error probability does not increase due to the memory induced by the filter.
However, high-order Butterworth filters approximate zero-ISI filters, since they are nearly ideal
and therefore closely approximate a sin(x)/x impulse response. In addition, they are quickly
implemented in MATLAB using built-in functions.

“TranterBook” — 2003/11/18 — 16:12 — page 104 — #122
�

�

�

�

�

�

�

�

104 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

tion, denoted bw, is equal to the symbol rate.5 The input to the MATLAB program
follows.

>>c4 qamdemo
Number of D levels > 2
Number of Q levels > 2
Number of symbols > 100
Number of samples per symbol > 20
Filter bandwidth, 0<bw<1 > 0.1

Executing the program given in Appendix A with these parameters yields the
results illustrated in Figure 4.4. The top row shows scattergrams formed by
plotting xq(t) as a function of xd(t). The scattergram at the top left results for
p(t) = 1, 0 ≤ t < Tsym, where Tsym is the symbol period (twice the bit period). Note
the relationship of this scattergram to the signal constellation shown in Figure 4.3.
The scattergram at the top right is formed by passing this signal through a sixth-
order Butterworth filter. The corresponding time-domain signals are illustrated on
the bottom row of Figure 4.4, with xd(t) at the bottom left and xq(t) at the bottom
right.

It is also worth noting from the simulation program given in Appendix A that
the bit pattern is never explicitly formed. Rather, symbols are formed that represent
pairs of bits. The receiver model demodulates symbols and, using simulation, the
symbol error rate can be estimated. The mapping of symbol error rate to bit error
rate is deterministic and can be accomplished analytically. �

Example 4.4. (16-QAM) The block diagram of a QAM transmitter can also
be represented as shown in Figure 4.2. The bit-to-symbol mapper maps each group
of four input binary symbols ak to a single 16-QAM symbol. The signal constellation
is illustrated in Figure 4.5 along with the binary sequence corresponding to each
16-QAM symbol. As was the case with QPSK, the mapping of binary symbols to
16-QAM symbols is arbitrary but the mapping is usually defined such that a Gray
code results. Note that Figure 4.5 is a Gray code mapping [2].

In QPSK each of the symbols dk and qk could take on one of two values, which
in the previous example were defined to be +1 and −1. We see from Figure 4.5 that
both dk and qk in 16-QAM can take on one of four values in each symbol period.

5Keep in mind that MATLAB normalizes filter bandwidths to the Nyquist frequency, fN , which
is half the sampling frequency fs. In other words, the MATLAB parameter bw is fbw/fN , where
fbw is the filter bandwidth in Hertz. Assume that the sampling frequency is k times the symbol
rate fsym (recall the discussion of the simulation sampling frequency from the preceding chapter).
Also assume that the ratio of the filter bandwidth to the symbol rate, fbw/fsym is denoted λ.
Using these definitions the ratio of the filter bandwidth to the Nyquist frequency (the normalized
bandwidth used in MATLAB), is

fbw

fN
=

2fbw

fs
=

2

k

fbw

fsym
=

2λ

k

Thus, if the filter bandwidth is equal to the symbol rate λ = 1. Also, if the simulation sampling
frequency is 20 times the symbol rate, k = 20. This leads to a normalized filter bandwidth of 0.1
as used in the simulation.

“TranterBook” — 2003/11/18 — 16:12 — page 105 — #123
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 105

-1 0 1

-1

-0.5

0

0.5

1

xd

x
q

-1 0 1

-1

-0.5

0

0.5

1

xd

x
q

0 10 20 30
-2

-1

0

1

2

symbol index

x
d

0 10 20 30
-2

-1

0

1

2

symbol index

x
q

Figure 4.4 QPSK simulation results.

Q

D

(1011) (1001) (0001) (0011)

(1010) (1000) (0000) (0010)

(1111) (1101) (0101) (0111)

(1110) (1100) (0100) (0110)

Figure 4.5 16-QAM signal constellation.

“TranterBook” — 2003/11/18 — 16:12 — page 106 — #124
�

�

�

�

�

�

�

�

106 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

For convenience in the simulation to follow these four values are defined to be +3,
+1, −1, and −3.

The same program used for the QPSK example can be used for the 16-QAM
example. For 16-QAM the number of the number of levels on the D (direct) axis
and the Q (quadrature) axis are both equal to four. The pulse-shaping filter is, once
again, a sixth-order Butterworth filter. For this example the filter bandwidth used
in the simulation is twice the symbol rate. The input to the MATLAB program
follows.

>> c4 qamdemo
Number of D levels > 4
Number of Q levels > 4
Number of symbols > 500
Number of samples per symbol > 20
Filter bandwidth, 0<bw<1 > 0.2

Executing the program given in Appendix A with the preceding parameters
yields the results illustrated in Figure 4.6. The top row shows scattergrams formed
by plotting xq(t) as a function of xd(t). The scattergram at the top left results
for p(t) = 1, 0 ≤ t < Tsym, where Tsym is the symbol period (four times the bit
period). Note the relationship of this scattergram to the signal constellation shown
in Figure 4.5. The scattergram at the top right is formed by passing this signal
through a sixth-order Butterworth filter. The corresponding time-domain signals
are illustrated on the bottom row of Figure 4.6, with xd(t) at the bottom left and
xq(t) at the bottom right. The four (steady-state) values can clearly be seen.

As in the previous example the bit pattern is never explicitly formed in the sim-
ulation. Rather, symbols are formed that represent 16-QAM symbols The receiver
model demodulates symbols and, using simulation, the symbol error rate can be
estimated. The mapping of symbol error rate to bit error rate is deterministic and
can be accomplished analytically. �

Example 4.5. (4-FSK) In the two preceding examples the dimensionality of
the signal space of the transmitted signals was two so that the mapping from signal
space to the D-Q plane was trivial. We now consider an example in which binary
symbols are grouped together two at a time as in QPSK but the dimensionality of
the signal space is four. Thus, the signal-space is generated using four orthogonal
basis functions rather than two basis functions as in QPSK. For this example the
basis functions are chosen to be sinusoids having different frequencies (thus the
name 4-FSK). Letting the pulse shaping function p(t) be the constant A over the
kth signaling interval we have

sm(t) = A cos(2πfmt), kT < t < (k + 1)T, m = 1, 2, 3, 4 (4.34)

Thus, in each signaling interval one of four sinusoids are transmitted. Note that
each sm(t) must pass through an integer number of cycles in the T -second signaling
interval to ensure that

“TranterBook” — 2003/11/18 — 16:12 — page 107 — #125
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 107

-5 0 5
-4

-2

0

2

4

xd

x
q

-4 -2 0 2 4

-2

0

2

xd

x
q

0 10 20 30
-4

-2

0

2

4

symbol index

x
d

0 10 20 30
-4

-2

0

2

4

symbol index

x
q

Figure 4.6 16-QAM simulation results.

∫ kT

(k−1)T

si(t)sj(t) dt = 0, i, j = 1, 2, 3, 4, i 	= j (4.35)

so that the signals are orthogonal.
Writing sm(t) in the form

sm(t) = A cos[2π(fm − f0)t + 2πf0t], kT < t < (k + 1)T, m = 1, 2, 3, 4 (4.36)

yields

sm(t) = Re {A exp[j2π(fm − f0)t] exp(j2πf0t)} ,

kT < t < (k + 1)T, m = 1, 2, 3, 4 (4.37)

Thus, the complex envelope corresponding to the mth signal in the set of transmitted
signals is

s̃m(t) = A exp[j2π(fm − f0)t], kT < t < (k + 1)T, m = 1, 2, 3, 4 (4.38)

“TranterBook” — 2003/11/18 — 16:12 — page 108 — #126
�

�

�

�

�

�

�

�

108 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

from which

xdk(t) = A cos[2π(fm − f0)t], m = 1, 2, 3, 4 (4.39)

and

xqk(t) = A sin[2π(fm − f0)t], m = 1, 2, 3, 4 (4.40)

Note that, even though p(t) is a constant, both xdk(t) and xqk(t) are time-varying
over a signaling interval. This is in contrast to the results of the preceding two
examples and is a consequence of the fact that the dimensionality of the underlying
signal space K exceeds 2, the dimensionality of the D-Q plane. �

4.1.2 The Complex Envelope: The Frequency-Domain View

From (4.3) we can write

x(t) =
1
2
x̃(t) exp (j2πf0t) +

1
2
x̃∗(t) exp (−j2πf0t) (4.41)

Multiplying by exp (−j2πf0t) gives

2x(t) exp (−j2πf0t) = x̃(t) + x̃∗(t) exp (−j4πf0t) (4.42)

or

x̃(t) = 2x(t) exp (−j2πf0t) − x̃∗(t) exp (−j4πf0t) (4.43)

As we saw in the previous section, x̃(t) is a lowpass signal (a signal having a spec-
trum that is nonzero only in the neighborhood of f = 0). Taking the lowpass
portion of (4.43) yields

x̃(t) = Lp {2x(t) exp (−j2πf0t) − x̃∗(t) exp (−j4πf0t)} (4.44)

where Lp {·} denotes the lowpass portion of the argument.
The Fourier transform of (4.43) is given by

X̃(f) = 2X(f + f0) − X̃∗(f + 2f0) (4.45)

As illustrated in Figure 4.7, X(f) is nonzero except in the neighborhood of f =
±f0, with X+(f) representing the positive frequency portion of X(f) and X−(f)
representing the negative frequency portion of X(f). Thus, X̃∗(f + 2f0) is nonzero
except in the neighborhood of f = −f0 (X+(f) translated to the left by 2f0) and
f = −3f0 (X−(f) translated to the left by 2f0). This term does not contribute
to X̃(f) or, equivalently, to x̃(t), since X̃(f) is nonzero only in the neighborhood
of f = 0. The manner in which X(f + f0) contributes to x̃(t) is illustrated in
Figure 4.7. Note that X(f +f0) is nonzero except in the neighborhood of f = −2f0

“TranterBook” — 2003/11/18 — 16:12 — page 109 — #127
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 109

~
()X f

A

2A

 f

 f
0− f0

−2 0f

f0

X f()

− f0

U f f()+ 0

B

2 0X f f()+

0−
B

2

B

2

2A

 f
0−

B

2
B

2

X f− () X f+ ()

2 0X f f+ +()

2 0X f f− +()

2 0X f f+ +()

Figure 4.7 Derivation of eX(f) from X(f).

(X−(f) translated to the left by f0) and f = 0 (X+(f) translated to the left by f0).
It therefore follows that only X+(f + f0) contributes to x̃(t) and

X̃(f) = 2X+(f + f0) (4.46)

which is equivalent to

x̃(t) = 2 Lp {x(t) exp (−j2πf0t)} (4.47)

As illustrated in Figure 4.7, the lowpass filtering operation can be implemented by
using a filter having the transfer function H(f) = U(f + f0). Thus, (4.46) can be
expressed

X̃(f) = 2X(f + f0)U(f + f0) (4.48)

“TranterBook” — 2003/11/18 — 16:12 — page 110 — #128
�

�

�

�

�

�

�

�

110 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.1.3 Derivation of Xd(f) and Xq(f) from X̃(f)

Expressions for Xd(f) and Xq(f) are easily derived. Fourier transforming (4.5)
yields

X̃(f) = Xd(f) + jXq(f) (4.49)

Replacing f by −f gives

X̃(−f) = Xd(−f) + jXq(−f) (4.50)

Since xd(t) and xq(t) are real, Xd(−f) = X∗
d(f) and Xd(−f) = X∗

d(f). Thus,
(4.50) can be written

X̃(−f) = X∗
d (f) + jX∗

q (f) (4.51)

Complex conjugating (4.51) gives

X̃∗(−f) = Xd(f) − jXq(f) (4.52)

Adding (4.49) and (4.52) gives

Xd(f) =
1
2

(
X̃(f) + X̃∗(−f)

)
(4.53)

Multiplying (4.52) by −1 and adding the result to (4.49) gives

Xq(f) =
1
2j

(
X̃(f) − X̃∗(−f)

)
(4.54)

Inverse Fourier transforming Xd(f) and Xq(f), as defined by (4.53) and (4.54),
gives xd(t) and xq(t), respectively.

The spectra Xd(f) and Xq(f) corresponding to the lowpass complex envelope
X̃(f) derived in Figure 4.7 are illustrated in Figure 4.8. These spectra follow directly

X fd ()
2A

 f
0−

B

2

B

2

A

jX fq ()

A

 f
0

−
B

2

B

2
−A

Figure 4.8 Spectrum of direct and quadrature components.

“TranterBook” — 2003/11/18 — 16:12 — page 111 — #129
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 111

from (4.53) and (4.54). Also note that in plotting the quarature component it is
more natural to plot jXq(f). Note that Xd(f) is real and even and that Xq(f) is
imaginary and odd.

From Figure 4.7 we see that the spectrum X(f) of the real bandpass signal x(t)
is nonsymmetric about f0. As a result, samples of the lowpass complex envelope
x̃(t) will be complex valued. Both the real and imaginary part of x̃(t), xd(t), and
xq(t) will have bandwidth B/2, which is half the bandwidth of the real bandpass
signal x(t). Thus, as discussed in the previous chapter, both xd(t) and xq(t) must
be sampled at a rate exceeding 2(B/2) = B samples per second. The result of
this sampling operation will produce at least 2B samples per second. Conversely, if
X(f) has conjugate symmetry about f0, X̃(f) will have conjugate symmetry about
f = 0. For this case x̃(t) will be real (xq(t) = 0) and sampling the quadrature
component will not be required.

4.1.4 Energy and Power

As we know from linear system theory, Parseval’s theorem tells us that the Fourier
transform preserves energy and power. Unfortunately, however, the energy (or
power) in the complex envelope is not equal to the corresponding energy (or power)
in the corresponding bandpass signal. Using (4.41) gives

|x(t)|2 =
1
4
|x̃(t) exp (j2πf0t) + x̃∗(t) exp (−j2πf0t)|2 (4.55)

for the instantaneous power in x(t). The preceding expression gives

|x(t)|2 =
1
4

[x̃(t) exp (j2πf0t) + x̃∗(t) exp (−j2πf0t)]

· [x̃∗(t) exp (−j2πf0t) + x̃(t) exp (j2πf0t)] (4.56)

Carrying out the indicated multiplication yields

|x(t)|2 =
1
4

[
|x̃(t)|2 + [x̃(t)]2 exp (j4πf0t)

+ [x̃∗(t)]2 exp (−j4πf0t) + |x̃(t)|2
]

(4.57)

Since the terms [x̃(t)]2 exp (j4πf0t) and [x̃∗(t)]2 exp (−j4πf0t) represent bandpass
signals, and therefore have zero average value, taking the expectation yields

E
{
|x(t)|2

}
=

1
2
E
{
|x̃(t)|2

}
(4.58)

By definition, the average power in the real bandpass signal x(t) is

Ex = E
{
|x(t)|2

}
(4.59)

This is sometimes referred to as real power. The power in the lowpass complex
envelope x̃(t), which is sometimes referred to as complex power, is

Eex = E
{
|x̃(t)|2

}
(4.60)

“TranterBook” — 2003/11/18 — 16:12 — page 112 — #130
�

�

�

�

�

�

�

�

112 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

Substitution of (4.59) and (4.60) into (4.58) yields

Eex = 2Ex (4.61)

Thus, the power in the complex envelope of a signal is twice the power in the real
bandpass signal from which it is derived. Fortunately, as we will see in a section soon
to follow, a similar result holds for random signals and noise. Therefore, a number of
important quantities, most notably the signal-to-noise ratio, are preserved when real
bandpass signals are represented by their corresponding lowpass complex envelopes.

4.1.5 Quadrature Models for Random Bandpass Signals

The representation of signals in the frequency domain, through the use of the Fourier
transform, implies that the signals are deterministic energy signals. Bandpass ran-
dom signals also have a lowpass representation in terms of direct and quadrature
components. The underlying mathematics for generating lowpass signal models for
random bandpass signals is quite a bit different from that used in the previous two
sections. We pause a minute to review the underlying theory.

Consider, for example, a narrowband random process defined by the equation

n(t) = nd(t) cos(2πf0t + θ) − nq(t) sin(2πf0t + θ) (4.62)

where θ is an arbitrary phase angle uniformly distributed in [−π, π).6 The process
in (4.62) can be written

n(t) = R(t) cos[2πf0t + φ(t) + θ] (4.63)

or equivalently

n(t) = Re {R(t) exp [jφ(t)] exp [j(2πf0t + θ)]} (4.64)

The complex envelope corresponding to n(t) is defined as

ñ(t) = R(t) exp [jφ(t)] (4.65)

In rectangular coordinates

ñ(t) = nd(t) + jnq(t) (4.66)

The real envelope R(t) is

R(t) = |ñ(t)| =
√

n2
d(t) + n2

q(t) (4.67)

and

φ(t) = arctan
nq(t)
nd(t)

(4.68)

6The random phase is required for the process to be stationary. Without the random phase,
which is equivalent to an arbitrary time reference, the process is cyclostationary.

“TranterBook” — 2003/11/18 — 16:12 — page 113 — #131
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 113

We assume that we know the power spectral density (PSD) of n(t). The problem
is to determine the PSD nd(t), nq(t), and ñ(t).

The problem of determining quadrature models for bandpass random processes
is commonly covered in basic courses on communication theory [3]. We cite only
the most important results here. All of these results will be useful in the work to
follow.

• (Means) Since n(t) is a bandpass process, it is zero mean. Thus, the expec-
tation of the right-hand side of (4.62) is zero mean and, consequently, nd(t)
and nq(t) are also zero mean. Therefore:

E {n(t)} = E {nd(t)} = E {nq(t)} = 0 (4.69)

where E {·} denotes statistical expectation.

• (Variances) It also follows that nd(t) and nq(t) have the same variance (or
power, since the process is assumed zero mean) and this power is equal to the
total power in the bandpass process. In other words:

E
{
n2(t)

}
= E

{
n2

d(t)
}

= E
{
n2

q(t)
}

= N (4.70)

where N is the total power in the underlying bandpass process.

• (PSD of nd(t) and nq(t)) The PSD of nd(t) and nq(t) are equal and are
determined from the PSD of n(t), denoted Sn(f), by the expression [3]

Snd
(f) = Snq(f) = Lp [Sn(f − f0) + Sn(f + f0)] (4.71)

• (Autocorrelation of nd(t) and nq(t)) It follows from the Weiner-Khintchine
theorem [3] that

Rnd
(τ) ↔ Snd

(f) (4.72)

and

Rnq(τ) ↔ Snq(f) (4.73)

where Rnd
(τ) and Rnq(τ) are the autocorrelation functions of nd(t) and nq(t)

and ←→ denotes a Fourier transform pair.

• (Cross-PSD) The cross PSD of nd(t) and nq(t) is given by

Sndnq(f) = j Lp[Sn(f − f0) − Sn(f + f0)] (4.74)

Note that the cross-PSD is imaginary.

• (Cross-correlation of nd(t) and nq(t)) We again invoke the Weiner-Khintchine
theorem to define the cross-correlation of nd(t) and nq(t). The result is

Rndnq(τ) ↔ Sndnq(f) (4.75)

“TranterBook” — 2003/11/18 — 16:12 — page 114 — #132
�

�

�

�

�

�

�

�

114 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

where Rndnq (τ) is the cross-correlation of nd(t) and nq(t). Note that since
Sndnq(f) is imaginary, Rndnq(τ) is odd. For bandlimited processes the cross-
correlation, as well as either autocorrelation, must be continuous. Thus, for
a bandlimited process, nd(t) and nq(t) are uncorrelated. However, nd(t) and
nq(t + τ) may be correlated for τ 	= 0.

• (Mean of the complex envelope ñ(t)). The mean of ñ(t) is

E {ñ(t)} = E {nd(t) + jnq(t)} (4.76)

Since the expectation of the sum is the sum of the expectations

E {ñ(t)} = E {nd(t)} + jE{nq(t)} = 0 + j0 = 0 (4.77)

• (Variance of the complex envelope ñ(t)). The power in ñ(t) is

Pen = E
{
|ñ(t)|2

}
= E

{
[nd(t) + jnq(t)]

[
n∗

d(t) − jn∗
q(t)
]}

(4.78)

Since ñ(t) is zero mean, E
{
|ñ(t)|2

}
is also the variance. Carrying out the

indicated multiplication, (4.78) can be written

Pen = E
{|nd(t)|2

}
+ E

{|nq(t)|2
}

+ jE {n∗
d(t)nq(t)} − jE

{
nd(t)n∗

q(t)
}

(4.79)

Since nd(t) and nq(t) are uncorrelated for bandlimited processes

E {n∗
d(t)nq(t)} = E {n∗

d(t)}E {nq(t)} = 0 (4.80)

and, in a similar fashion

E
{
nd(t)n∗

q(t)
}

= E {nd(t)}E
{
n∗

q(t)
}

= 0 (4.81)

Thus

Pen = E
{|nd(t)|2

}
+ E

{|nq(t)|2
}

= Pnd
+ Pnq (4.82)

where Pnd
and Pnq represent the power in nd(t) and nq(t), respectively. It

follows from (4.70) that

Pen = 2E
{
n2(t)

}
= 2N (4.83)

which means that the power in the lowpass complex envelope representation
of a bandpass signal is double the power of the real bandpass signal from
which the lowpass complex envelope is derived.

• (PSD of the complex envelope ñ(t)). From (4.71) we know that the PSD of
nd(t) and nq(t) are equal. Thus

Sen(f) = Snd
(f) + Snq(f) = 2Snd

(f) (4.84)

We now illustrate why the preceding relationships are important in the simula-
tion context.

“TranterBook” — 2003/11/18 — 16:12 — page 115 — #133
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 115

4.1.6 Signal-to-Noise Ratios

As we know from basic communication theory, the signal-to-noise ratio (SNR) at
the input of a receiver is usually a major factor in determining the performance
of the system. At a receiver input, both the signal and the noise are bandpass.
Assuming that the signal and noise are additive, the receiver input is

z(t) = x(t) + n(t) (4.85)

where x(t) is the signal and n(t) represents the noise. The signal-to-noise ratio, in
terms of the real bandpass signals, is defined as

(SNR)bp =
E
{
x2(t)

}
E {n2(t)} (4.86)

It follows from (4.58) and (4.83) that

(SNR)bp =
1
2E
{
|x̃(t)|2

}
1
2E
{
|ñ(t)|2

} =
E
{
|x̃(t)|2

}
E
{
|ñ(t)|2

} = (SNR)lp (4.87)

where (SNR)bp and (SNR)lp refer to the signal-to-noise ratio based on the real
bandpass signals and the corresponding lowpass complex envelopes, respectively.
This very important result shows that representing bandpass functions (both sig-
nal and noise) by their respective lowpass equivalents, which is standard simula-
tion methodology, preserves the signal-to-noise ratios. A simple example further
illustrates this important fact by viewing the underlying signals in the frequency
domain.

Example 4.6. (SNR Transformations) As a simple example, assume that a
bandpass signal is represented by

z(t) = x(t) + n(t) = x(t) + nd(t) cos(2πf0t + θ) − nq(t) sin(2πf0t + θ) (4.88)

where x(t) is the sinusoid

x(t) = A cos(2πf0t) (4.89)

The bandpass signal can be represented

x(t) =
A

2
exp (j2πf0t) +

A

2
exp (−j2πf0t) (4.90)

This PSD of x(t) is, therefore:

Sx(f) =
A2

4
δ(f − f0) +

A2

4
δ(f + f0) (4.91)

as illustrated in Figure 4.9(a). Thus, the total power in the real bandpass signal is

“TranterBook” — 2003/11/18 — 16:12 — page 116 — #134
�

�

�

�

�

�

�

�

116 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

f0− f0

 f
0

A2

4
A2

4

S fx ()

 B

f0− f0

 f
0

S fn ()
N0

2

 f
0

S fx~ ()

A2

 f

S f S fn nd q
(), ()

N0

0−
B

2
B

2

S fn~ ()

 f

2 0N

0−
B

2
B

2

(d) PSD of direct and
quadrature noise components

(e) PSD of lowpass noise model

(c) PSD of lowpass signal model

(b) PSD of bandpass noise model

(a) PSD of bandpass signal model

Figure 4.9 Calculation of signal-to-noise ratio.

“TranterBook” — 2003/11/18 — 16:12 — page 117 — #135
�

�

�

�

�

�

�

�

Section 4.1. The Lowpass Complex Envelope for Bandpass Signals 117

Px =
∫ ∞

−∞
Sx(f) df =

A2

2
(4.92)

as expected from (4.89). The PSD of the assumed noise is illustrated in Figure
4.9(b). Thus, the total noise power is

Pn =
∫ ∞

−∞
Sn(f) df = 2

(
N0

2
B

)
= N0B (4.93)

This gives, from (4.92) and (4.93)

(SNR)bp =
A2

2N0B
(4.94)

for the bandpass signal-to-noise ratio.
We now turn our attention to the lowpass equivalents of x(t) and n(t). Equation

(4.89) can be written

x(t) = Re {A exp (j2πf0t)} (4.95)

from which the complex envelope is

x̃(t) = A (4.96)

The power in the complex envelope is

Pex = E
{
|x̃(t)|2

}
= A2 (4.97)

which gives the PSD

Pex(f) = A2δ(f) (4.98)

as shown in Figure 4.9(c). The PSD of nd(t) and nq(t) given by (4.71) and is
illustrated in Figure 4.9(d). From (4.84) the PSD of ñ(t) is found by multiplying
the PSD illustrated in Figure 4.9(d) by two. The result is illustrated in Figure
4.9(e). From Figure 4.9(e) the power in the complex lowpass representation of the
noise is

Pen =
∫ ∞

−∞
Sen(f) df = 2N0B (4.99)

Combining (4.97) and (4.99) yields

(SNR)lp =
Pex

Pen
=

A2

2N0B
(4.100)

Comparing (4.94) and (4.100) we see that the signal-to-noise ratio is preserved when
real bandpass signals are replaced by their complex lowpass equivalents. �

“TranterBook” — 2003/11/18 — 16:12 — page 118 — #136
�

�

�

�

�

�

�

�

118 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.2 Linear Bandpass Systems

We now turn our attention from signals to systems. The basic problem is to deter-
mine the time-domain input-output relationship for a linear system given that the
input to the system and the unit impulse response of the system are both bandpass
signals expressed in terms of lowpass complex envelopes. The result will provide
us with a methodology for developing waveform-level simulations of linear systems
based on lowpass models.

4.2.1 Linear Time-Invariant Systems

Assuming that a system is linear, we know that convolution may be used to de-
termine the output, y(t), given the input, x(t). For the time-invariant case the
convolution takes the simple form

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ � x(t) � h(t) (4.101)

where h(t) is the unit impulse response of the time-invariant system and the symbol
� is used to denote convolution. By definition, the complex envelopes of the linear
time-invariant (LTIV) system input, x̃(t), and output, ỹ(t), are defined by

x(t) = Re {x̃(t) exp(j2πf0t)} (4.102)

and

y(t) = Re {ỹ(t) exp(j2πf0t)} (4.103)

respectively. If we require that the relationship between x̃(t) and ỹ(t) satisfy

ỹ(t) =
∫ ∞

−∞
x̃(λ)h̃(t − λ) dλ � x̃(t) � h̃(t) (4.104)

so that (4.101) and (4.104) have exactly the same form, the unit impulse response
of the bandpass system h(t) and the corresponding complex envelope, h̃(t) must be
related by

h(t) = Re
{
2h̃(t) exp (j2πf0t)

}
(4.105)

A formal proof of the preceding statements appear in Appendix B. A consequence
of the factor of 2 is that a unity gain bandpass filter corresponds to a complex
envelope representation of a unity gain lowpass filter.

Equation (4.105) is easily justified by showing that the factor of 2 in (4.105)
results in the transformation of a unity gain bandpass filter into the unity gain
lowpass filter so that the factor of 2 preserves the filter passband gain. Consider
the ideal bandpass filter characteristic illustrated in Figure 4.10(a). The transfer
function of the ideal bandpass filter is represented by

H(f) = H+(f) + H−(f) (4.106)

“TranterBook” — 2003/11/18 — 16:12 — page 119 — #137
�

�

�

�

�

�

�

�

Section 4.2. Linear Bandpass Systems 119

H f f+ +()0H f f− +()0

−2 0f 0

 1

 f

~
() ()H f H f f= ++ 0

 1

 f
 0

(c) Lowpass (complex envelope) model

(a) Ideal bandpass filter transfer function

 f

H f
+
()H f

-
()

H f()

− f0 f0 0

 1

 B

H f f()+ 0

(b) Frequency translated bandpass filter transfer function

Figure 4.10 Ideal bandpass filter and lowpass model.

where H+(f) and H−(f) are the positive frequency and negative frequency portions
of the bandpass filter transfer function, respectively. Replacing f by f + f0 gives

H(f + f0) = H+(f + f0) + H−(f + f0) (4.107)

as illustrated in Figure 4.10(b). Clearly H+(f + f0) is a lowpass function and is
therefore defined as H̃(f). Thus:

H̃(f) = H+(f + f0) (4.108)

as shown in Figure 4.10(c). Note that (4.108) can also be written

H̃(f) = H(f + f0)U(f + f0) (4.109)

We see that a unity gain bandpass filter maps to a unity gain lowpass filter, since
H̃(f) is derived from the positive frequency portion of the transfer function for the
bandpass filter by a simple frequency translation, and that no amplitude scaling is
involved.

“TranterBook” — 2003/11/18 — 16:12 — page 120 — #138
�

�

�

�

�

�

�

�

120 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

It is important to understand the difference between (4.48) and (4.109). Repre-
senting bandpass signals by their lowpass complex envelope results in

X̃(f) = 2X(f + f0)U(f + f0) (4.110)

while representing linear bandpass systems by their lowpass equivalent results in

H̃(f) = H(f + f0)U(f + f0) (4.111)

Except for the factor of 2, the two expressions are equivalent.
From (4.101) and (4.104) we see that there are two techniques that can be used

to compute, in the time domain, the output of an LTIV system given the bandpass
input signal and the unit impulse response of the network. The two techniques are
illustrated in Figure 4.11. The first technique is to simply convolve x(t) and h(t)
as defined by (4.101) and illustrated in Figure 4.11(a). The second technique is to
determine the complex envelopes of x(t) and h(t), convolve the complex envelopes
as defined by (4.104), and then determine the bandpass output signal, y(t), using
(4.103). This technique is shown in Figure 4.11(b).

Using (4.104) we can write

ỹ(t) = yd(t) + jyq(t) = [xd(t) + jxq(t)] � [hd(t) + jhq(t)] (4.112)

Since the convolution of a sum is the sum of convolutions (linear operations again)
we have

Determine
Complex
Envelope

Determine
Complex
Envelope

 x(t)

 y(t)

 h(t)

 exp j f t2 0π

Real
Convolution

 x(t)

 h(t)

 y(t)

 (a) System analysis using bandpass signals

 (b) System analysis using complex envelope signals

ReCC

~()y t

~()x t

~
()h t

()

{ }

(CC denotes complex convolution)

Figure 4.11 Time-domain signal analysis techniques.

“TranterBook” — 2003/11/18 — 16:12 — page 121 — #139
�

�

�

�

�

�

�

�

Section 4.2. Linear Bandpass Systems 121

yd(t) + jyq(t) = [xd(t) � hd(t) − xq(t) � hq(t)]
+ j [xd(t) � hq(t) + xq(t) � hd(t)] (4.113)

Thus, the direct component of a linear system output is given by

yd(t) = xd(t) � hd(t) − xq(t) � hq(t) (4.114)

and the quadrature component of a linear system output is given by

yq(t) = xd(t) � hq(t) + xq(t) � hd(t) (4.115)

The convolution of two complex functions is therefore equivalent to four real convo-
lutions just as the multiplication of two complex numbers is equivalent to four real
multiplications. The operations for deriving the direct and quadrature outputs of
a linear bandpass system are defined by the operations shown in Figure 4.12.

Example 4.7. In this example we determine the values of hd(t) and hq(t) for a
bandpass phase shifter. Assume that the input to the system is

x(t) = A cos (2πf0t + θ) (4.116)

and that the output of the phase shifter is

y(t) = A cos (2πf0t + θ + φ) (4.117)

so that the system shifts the input phase by φ. This model could be used to
represent synchronization errors in a demodulator. In order to simulate this device
using complex lowpass models hd(t) and hq(t) must be derived.

The complex envelope of x(t) and y(t) are given by

x̃(t) = A exp(jθ) (4.118)

x td ()

x tq ()

y td ()

y tq ()

h td ()

h tq ()

h tq ()

h td ()

-

Figure 4.12 Model for linear bandpass system.

“TranterBook” — 2003/11/18 — 16:12 — page 122 — #140
�

�

�

�

�

�

�

�

122 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

and

ỹ(t) = A exp [j (θ + φ)] = A exp(jθ) exp(jφ) (4.119)

respectively. It follows that

ỹ(t) = x̃(t) exp(jφ) (4.120)

Writing this in rectangular coordinates yields

[yd(t) + jyq(t)] = [xd(t) + jxq(t)] [cosφ + j sin φ] (4.121)

Equating real parts gives

yd(t) = xd(t) cosφ − xq(t) sin φ (4.122)

and equating imaginary parts gives

yq(t) = xd(t) sin φ + xq(t) cos φ (4.123)

In this example xd(t) and xq(t) are multiplied by the cosφ and sinφ, respectively.
Thus:

hd(t) = (cosφ)δ(t) (4.124)

and

hq(t) = (sin φ)δ(t) (4.125)

Note that the delta function is present because the system is memoryless.
The lowpass model of a phase-shift network is illustrated in Figure 4.12 with

hd(t) and hq(t) given by (4.124) and (4.125), respectively. Of course, φ could be
time varying. �

4.2.2 Derivation of hd(t) and hq(t) from H(f)

In order to simulate a system using bandpass components, such as bandpass filters,
we typically know the transfer function, H(f). The lowpass simulation model for
the filter is that illustrated in Figure 4.12. In order to develop the simulation model
for the filter, which is based on the complex envelope of h(t), it is necessary to
determine hd(t) and hq(t) from H(f), the transfer function of the bandpass filter.
There are two fundamental methods for finding hd(t) and hq(t). The first method is
to determine Hd(f) and Hq(f) from H(f) and inverse transform Hd(f) and Hq(f)
in order to establish hd(t) and hq(t). The second method is to determine H̃(f) from
H(f), inverse transform H̃(f) to find h̃(t), and take the real and imaginary parts
of h̃(t) to determine hd(t) and hq(t).

The first step in either of the two methods of finding hd(t) and hq(t) from H(f)
is to determine H̃(f). By definition

H̃(f) = H+(f + f0) = Hd(f) + jHq(f) (4.126)

“TranterBook” — 2003/11/18 — 16:12 — page 123 — #141
�

�

�

�

�

�

�

�

Section 4.2. Linear Bandpass Systems 123

Taking the inverse Fourier transform yields

h̃(t) = hd(t) + jhq(t) (4.127)

The real and imaginary parts of h̃(t) give hd(t) and hq(t), respectively.
Replacing f by −f in (4.126) gives

H̃(−f) = Hd(−f) + jHq(−f) (4.128)

Since hd(t) and hq(t) are both real functions of time, basic Fourier transform theory
tells us that Hd(−f) is the complex conjugate of Hd(f) and that Hq(−f) is the
complex conjugate of Hq(f). Thus, (4.128) can be written

H̃(−f) = H∗
d (f) + jH∗

q (f) (4.129)

Note that H̃(f) and H̃(−f) are not complex conjugate pairs, because h̃(t) is not,
in general, a real function of time. Taking the complex conjugate of (4.129) gives

H̃∗(−f) = Hd(f) − jHq(f) (4.130)

Adding (4.126) and (4.130) gives

Hd(f) =
1
2

(
H̃(f) + H̃∗(−f)

)
(4.131)

Multiplying (4.130) by −1 and adding the result to (4.126) gives

Hq(f) =
1
j2

(
H̃(f) − H̃∗(−f)

)
(4.132)

The functions hd(t) and hq(t) are then obtained from the inverse Fourier transforms
of Hd(f) and Hq(f), respectively. If H̃(f) = H̃∗(−f), so that H̃q(f) and hq(t)
are both zero, H(f) is said to exhibit conjugate symmetry about f0. Figure 4.13
illustrates H̃(f), H̃∗(−f), Hd(f) and Hq(f) for the case in which H(f) is an ideal
bandpass filter.

Example 4.8. We now consider the determination of hd(t) and hq(t) directly
from H(f). From H(f), H̃(f) is written using (4.108) as illustrated in Figure 4.13.
The inverse transform of H̃(f) is

h̃(t) =
∫ ∞

−∞
H̃(f) exp (j2πft) df =

∫ fu−f0

fl−f0

exp (j2πft) df (4.133)

since H̃(f) = 1 over the range of integration. This integrates to

h̃(t) =
1

j2πt
[exp (j2π(fu − f0)t) − exp (j2π(fl − f0)t)] (4.134)

“TranterBook” — 2003/11/18 — 16:12 — page 124 — #142
�

�

�

�

�

�

�

�

124 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

Figure 4.13 eH(f), eH∗(−f), Hd(f), and Hq(f) for an assumed H(f).

The preceding expression can be written

h̃(t) =
1

j2πt
[exp (jπ(fu − fl) t) − exp(jπ (fl − fu) t)]

· exp
(
−j2π

(
f0 − fu + fl

2

)
t

)
(4.135)

which is

h̃(t) =
1
πt

sin (π(fu − fl)t) exp
(
−j2π

(
f0 − fu + fl

2

)
t

)
(4.136)

Taking the real and imaginary parts yields

hd(t) =
1
πt

sin (π(fu − fl)t) cos
(

2π

(
f0 − fu + fl

2

)
t

)
(4.137)

and

hq(t) = − 1
πt

sin (π(fu − fl)t) sin
(

2π

(
f0 − fu + fl

2

)
t

)
(4.138)

“TranterBook” — 2003/11/18 — 16:12 — page 125 — #143
�

�

�

�

�

�

�

�

Section 4.3. Multicarrier Signals 125

Note that if f0 is selected to be the algebraic center frequency (fu +fl)/2, hq(t) = 0
for all t. This obviously simplifies the lowpass simulation model illustrated in Figure
4.12. The important consequence is that the computational burden associated with
finding the system output, given the system input, is reduced by a factor of 2. �

As implied in the preceding example, in many cases of practical interest f0 can be
selected so that h̃q(t)
 h̃d(t) for all t. In such cases hq(t) can often be neglected
so that the complex envelope of the impulse response can be approximated as a
real function without significant loss of accuracy. As pointed out in the preceding
example, it is important to take advantage of this approximation when applicable,
since elimination of hq(t) reduces the computational burden of the filtering operation
by a factor of 2. It follows from basic Fourier transform theory that h̃(t) is real
if H̃(f) exhibits conjugate symmetry (even amplitude spectrum and odd phase
spectrum) about f = 0. This will be the case if H(f), the transfer function of
the bandpass filter, exhibits conjugate symmetry about f = f0. Most filter designs
closely approximate this property if the bandwidth of the filter is small compared
to the center frequency of the filter. The quadrature component can be viewed as
a measure of the conjugate asymmetry of H(f) about f0.

4.3 Multicarrier Signals

Consider the frequency division multiplex (FDM) of M signals

y(t) =
M∑
i=1

ai(t) cos [2πfit + φi(t)] (4.139)

where ai(t) and φi(t) represent the amplitude and phase modulation on the ith

carrier, respectively, and fi is the ith carrier frequency. Since the terms ai(t) are
real, we may write

y(t) = Re

{
M∑
i=1

ai(t) exp [jφi(t)] exp (j2πfit)

}
(4.140)

Defining

x̃i(t) = ai(t) exp [jφi(t)] (4.141)

gives

y(t) = Re

{
M∑
i=1

x̃i(t) exp (j2πfit)

}
(4.142)

We can define the complex envelope of y(t) as

y(t) =
M∑
i=1

ỹ(t) exp (j2πf0t) (4.143)

“TranterBook” — 2003/11/18 — 16:12 — page 126 — #144
�

�

�

�

�

�

�

�

126 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

where, for the moment, f0 remains arbitrary. With this definition y(t) can be
written

y(t) = Re

{
M∑
i=1

x̃i(t) exp [j2π(fi − f0)t] exp(j2πf0t)

}
(4.144)

Thus, the complex envelope of y(t) is

ỹ(t) =
M∑
i=1

x̃i(t) exp [j2π(fi − f0)t]

=
M∑
i=1

ai(t) exp [jφi(t)] exp [j2π(fi − f0)t] (4.145)

The direct and quadrature components of the FDM signal are therefore given by

yd(t) =
M∑
i=1

ai(t) cos [2π(fi − f0)t + φi(t)] (4.146)

and

yq(t) =
M∑
i=1

ai(t) sin [2π(fi − f0)t + φi(t)] (4.147)

respectively.

Example 4.9. Consider the frequency division multiplex (FDM) signal consisting
of four channel signals as shown in Figure 4.14(a). Suppose that the signal of
interest is x2(t) and that a simulation is being performed in order to examine the
effects of adjacent channel interference and intermodulation distortion resulting
from a nonlinear amplifier in the system. Since we have interest in x2(t), we shall
let f0 = f2 so that x2(t) is translated to f = 0 when the complex envelope of the
composite signal y(t) is formed. With f0 = f2 the complex envelope of y(t) is

ỹ(t) =
4∑

i=1

x̃i(t) exp [j2π(fi − f2)t] (4.148)

This is illustrated in Figure 4.14(b) for f0 = f2. Note that the minimum sampling
frequency for ỹ(t) is dependent on which bandpass signal is translated to f = 0.
For the case shown, f0 = f2, the sampling frequency must satisfy

fs > 2
[
(f4 − f2) +

B

2

]
(4.149)

where B is the bandwidth of X4(f). The operations involved in forming ỹ(t) are
illustrated in Figure 4.15. �

“TranterBook” — 2003/11/18 — 16:12 — page 127 — #145
�

�

�

�

�

�

�

�

Section 4.3. Multicarrier Signals 127

f4f3f2f1

f
0

X f()
X f1() X f2 () X f3() X f4 ()

(a) Spectrum of FDM signal

f f4 0−f f3 0−f f1 0−
f

0

~
()X f

~
()X f1

~
()X f2

~
()X f3

~
()X f4

(b) Spectrum of complex envelope with f0 = f2

Figure 4.14 Complex envelope of an FDM signal.

~()y t

exp ()j f f t2 1 2π −

exp ()j f f t2 3 2π −

exp ()j f f t2 4 2π −

~ ()x t1

~ ()x t2

~ ()x t3

~ ()x t4

Figure 4.15 Signal processing for the complex envelope of an FDM signal.

“TranterBook” — 2003/11/18 — 16:12 — page 128 — #146
�

�

�

�

�

�

�

�

128 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.4 Nonlinear and Time-Varying Systems

Throughout this chapter, the focus has been on fixed (time-invariant) linear sys-
tems. Many systems of practical interest involve time-varying components, such as
the wireless radio channel, or nonlinear components, such as high-power amplifiers
operating near the point of saturation. Design and analysis of systems that are
nonlinear, or time-varying, or both nonlinear and time-varying, using traditional
mathematical tools are usually very difficult or even impossible. As a result, simu-
lation is frequently used as a design and analysis tool for these systems. Chapter 12
focuses on nonlinear systems and Chapter 13 is devoted to time-varying systems.
However, for completeness we very briefly consider nonlinear and time-varying sys-
tems here.

4.4.1 Nonlinear Systems

The basic concept of a transfer function is not defined for a nonlinear system. Even
though an impulse response can be measured for a nonlinear system, it does not
in general relate the system output to the system input through convolution. The
familiar convolution integral is based on the concept of superposition, which does not
hold for nonlinear systems. Simulation models for nonlinear systems can certainly
be developed but they are typically based on measurements obtained from physical
systems. Analysis can sometimes be used to develop simulation models for nonlinear
systems, but the techniques are usually ad hoc and cannot be generalized. Several
important simulation models for nonlinear systems are explored in Chapter 12.

We now pause to consider a simulation model for a simple nonlinear system.
The model developed in this example will be useful in our later work.

Example 4.10. Assume that the input to a system has the form

x(t) = A(t) cos [2πf0t + θ(t)] (4.150)

Measurements made at the system output for various choices of A(t) and θ(t) show
that the envelope of the system output is a constant independent of A(t) but that
the zero crossings of the input are preserved and match the zero crossings of the
output. Thus, the measurements suggest that the system can be accurately modeled
by a bandpass hard limiter. Our task is to develop a simulation model for the device.

The complex envelope of the system input is

x̃(t) = A(t) exp [jθ(t)] = xd(t) + xq(t) (4.151)

The output of the bandpass hard limiter is defined as a sinusoid having a constant
amplitude and a phase deviation equal to the phase deviation of the input. Thus

y(t) = B cos [2πf0t + θ(t)] (4.152)

for which the complex envelope is

ỹ(t) = B exp [jθ(t)] (4.153)

“TranterBook” — 2003/11/18 — 16:12 — page 129 — #147
�

�

�

�

�

�

�

�

Section 4.4. Nonlinear and Time-Varying Systems 129

where B is an assumed positive constant. We see that, for a bandpass hard limiter,
it is the envelope of the signal that is hard limited rather than the signal itself.

Note that by definition of magnitude√
x2

d(t) + x2
q(t) = |A(t)| (4.154)

The complex envelope of the output signal can be written

ỹ(t) =
B

|A(t)| x̃(t) (4.155)

Thus

ỹ(t) =
B [xd(t) + jxq(t)]√

x2
d(t) + x2

q(t)
(4.156)

from which

yd(t) =
Bxd(t)√

x2
d(t) + x2

q(t)
(4.157)

and

yq(t) =
Bxq(t)√

x2
d(t) + x2

q(t)
(4.158)

The device defined by (4.157) and (4.158) is referred to as a bandpass hard limiter.
It removes all variations on the envelope while preserving the zero-crossing locations.

�
A number of demodulators are based on nonlinear operations. For example,

assume that r(t), defined by

r(t) = A(t) cos [2πfct + φ(t)] (4.159)

represents a received signal at the input of a demodulator. Also assume that the
purpose of the demodulator is to remove the positive portion of envelope as is the
case for AM [3].7 The envelope detector, which is usually used for envelope recovery
(AM demodulation), has the output z(t) defined by

z(t) = |r̃(t)| = |A(t) exp [jφ(t)]| (4.160)

7Recall that an AM (amplitude modulated) signal is defined by

x(t) = A [1 + am(t)] cos [2πfct + φ(t)]

where a is the modulation index and m(t) is the message signal normalized so that am(t) ≤ 1 for
all t. For this signal the positive portion of the envelope, with the dc term removed, is the message
signal to be recovered by the demodulator.

“TranterBook” — 2003/11/18 — 16:12 — page 130 — #148
�

�

�

�

�

�

�

�

130 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

which is

z(t) = |A(t)| (4.161)

Also useful for carrier recovery is the square-law demodulator defined by

z(t) = |r̃(t)|2 = |A(t)|2 (4.162)

The envelope and square-law demodulators are examples of noncoherent nonlinear
demodulators and are used when recovery of the carrier phase deviation φ(t) is not
required.

A number of situations exist in which recovery of the carrier phase deviation is
required. Examples are demodulators for analog FM and PM signals and demodu-
lators for PSK and QPSK digital signals. The basic building block for demodulators
requiring phase recovery is the phase-locked loop (PLL). The phase-locked loop is
a nonlinear system and is covered in detail in Chapter 6.

4.4.2 Time-Varying Systems

In contrast to the nonlinear case, if a system is linear but time-varying, many of
the tools developed in this chapter can be used for analysis and system-modeling
purposes. This is true because, as long as a system is linear, convolution can still be
used to relate the system input and output in the time domain and transfer functions
can be used to relate the system input and output in the frequency domain. The
system impulse response and the system transfer function are defined for linear time-
varying systems. However, both the impulse response and the transfer function must
be modified from their time-invariant definitions to account for the time-varying
nature of the system.

For example, if a linear system is time-varying, the system input x(t) and output
y(t) are related by the convolution of complex envelopes

ỹ(t) =
∫ ∞

−∞
h̃(τ, t)x̃(t − τ) dτ (4.163)

where h̃(τ, t) is the time-varying impulse response of the system. The impulse
response h̃(τ, t) is defined as the response of the system, measured at time t, to
an impulse applied at the input τ seconds earlier. In other words, an impulse is
applied to the system input at time t − τ and the response is measured at time t,
after an “elapsed time” of τ . For a time-invariant system, the impulse response is
a function only of the time difference t − τ . The impulse is assumed to be applied
at t − τ = 0 and the resulting impulse response is the familiar h(τ).

Since the impulse response of a time-varying system is a function of two time-
domain variables, t and τ , the transfer function of a time-varying system is also a
function of two frequency-domain variables. It is defined as

“TranterBook” — 2003/11/18 — 16:12 — page 131 — #149
�

�

�

�

�

�

�

�

Section 4.4. Nonlinear and Time-Varying Systems 131

H̃(f1, f2) =
∫ ∞

−∞

∫ ∞

−∞
h̃(τ, t) exp(−j2πf1τ − j2πf2t) dτ dt (4.164)

It follows that h̃(τ, t) and H̃(f1, f2) are a Fourier transform pair.
These concepts will be expanded upon in Chapter 13 and the results will be

a theoretical framework for the design, analysis, and simulation of linear time-
varying systems. Thus, even though the focus of this chapter is linear time-invariant
systems, many of the concepts discussed in this chapter serve as a foundation for
developing a methodology for simulating time-varying systems.

Example 4.11. Consider the situation depicted in Figure 4.16. A receiver in a
moving automobile (mobile) receives a signal from a single transmitter that has
propagated along two paths. One propagation path is a direct path from the trans-
mitter to the mobile. The second path is due to a reflection off a building. This is
often referred to as the two-ray model. The automobile is assumed to be moving as
shown. As a result of this movement, the lengths of both paths change with time.
Consequently both the signal attenuation and the propagation delay for each path
are time-varying. Assume that the attenuation and delay associated with the nth

signal path are denoted an(t) and τn(t), respectively. The received signal can then
be defined by the simple channel model

y(t) = a1(t)x(t − τ1(t)) + a2(t)x(t − τ2(t)) =
2∑

n=1

an(t)x(t − τn(t)) (4.165)

We assume that the input to the channel input is general modulated signal [see
(4.1)]

x(t) = A(t) cos(2πfct + φ(t)) (4.166)

Substitution of (4.166) into (4.165) yields

y(t) =
2∑

n=1

an(t)A(t − τn(t)) cos [2πfc(t − τn(t)) + φ(t − τn(t))] (4.167)

Transmitter

Path 1

Mobile

Path 2
Building

Figure 4.16 Two-ray mobile communications propagation equipment.

“TranterBook” — 2003/11/18 — 16:12 — page 132 — #150
�

�

�

�

�

�

�

�

132 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

Since waveform-level simulation is usually accomplished using complex envelope
signals, we now determine the complex envelope for both x(t) and y(t).

The complex envelope of the transmitted signal is, by inspection:

x̃(t) = A(t) exp [φ(t)] (4.168)

Determining the complex envelope of the received signal defined by (4.167) takes a
little more effort. Since an(t) and A(t) are both real, (4.167) can be written

y(t) = Re
{ 2∑

n=1

an(t)A(t − τn(t)) exp [jφ(t − τn(t))]

· exp [−j2πfcτn(t)] exp(j2πfct)
}

(4.169)

From (4.168)

x̃(t − τn(t)) = A(t − τn(t)) exp [jφ(t − τn(t))] (4.170)

so that

y(t) = Re

{
2∑

n=1

an(t)x̃(t − τn(t)) exp [−j2πfcτn(t)] exp(j2πfct)

}
(4.171)

The complex path attenuation is defined as

ãn(t) = an(t) exp [−j2πfcτn(t)] (4.172)

so that

y(t) = Re

{
2∑

n=1

ãn(t)x̃(t − τn(t)) exp(j2πfct)

}
(4.173)

Thus, the complex envelope of the receiver input is

ỹ(t) =
2∑

n=1

ãn(t)x̃(t − τn(t)) (4.174)

This defines the complex lowpass channel model. This model will be revisited in
Chapter 14 when we consider waveform channel models in detail. �

4.5 Summary

This chapter dealt with signal and system theory based on lowpass complex en-
velope representations of bandpass signals and systems. The motivation for using
complex envelope representations for bandpass signals and systems in simulations
is computational efficiency. Through the use of the complex envelope, the number

“TranterBook” — 2003/11/18 — 16:12 — page 133 — #151
�

�

�

�

�

�

�

�

Section 4.6. Further Reading 133

of samples required to represent a bandpass signal is significantly reduced. The use
of these techniques directly leads to a significant reduction in the time required to
execute a given simulation. Therefore, in the work to follow we will attempt to
model all bandpass signals and systems using lowpass complex models.

Two fundamental concepts were addressed in this chapter. The first concept was
the development of models for signals and systems based on the lowpass complex
envelope representation of bandpass signals and the lowpass equivalent impulse
response of bandpass systems. The second concept dealt with the development of
techniques for calculating the lowpass complex envelope for the system output given
the lowpass complex envelope of the system input and the lowpass model for the
system. We saw that complex envelope models for bandpass signals are typically
specified in terms of xd(t) and xq(t), which are the real and imaginary components
of the lowpass complex envelope x̃(t). Processing the complex envelope of the
system input through the system model, defined by hd(t) and hq(t), usually involves
four real convolutions. The computational burden associated with this operation
can be reduced by a factor of 2 if the transfer function of the bandpass system
exhibits conjugate symmetry about the reference frequency f0. This reduction
in computational burden arises from the fact that hq(t) = 0 for the conjugate
symmetry case. In many cases of practical interest hq(t), while not exactly equal to
zero, is negligible compared to hd(t). A filter having a bandwidth much less than
the center frequency is an example of a case in which hq(t) can be neglected.

While the emphasis in this chapter was on fixed (time-invariant) linear systems,
many practical communication systems involve operations that are nonlinear, time-
varying, or both. While these systems are much more complicated than the fixed
linear systems considered here, as illustrated by the two examples presented in the
preceding section, it is possible to develop simulation models, based on complex
envelope representations, for these systems also. These more complicated systems
are covered in Chapters 12 and 13.

4.6 Further Reading

The topic of signal and system analysis, based on complex envelope representations
with an emphasis on applications to communications, can be found in a variety of
books. The following are examples:

S. Haykin, Communication Systems, 3rd ed., New York: Wiley, 1994.

R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modu-
lation and Noise, 5th ed., New York: Wiley, 2002.

The following two books present the material in this chapter from a simulation
point of view:

M. C. Jeruchim, P. Balaban and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Plenum, 2000.

F. M. Gardner and J. D. Baker, Simulation Techniques, New York: Wiley, 1997.

“TranterBook” — 2003/11/18 — 16:12 — page 134 — #152
�

�

�

�

�

�

�

�

134 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.7 References

1. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and
Coding, New York: McGraw-Hill, 1979.

2. W. T. Webb and L. Hanzo, Modern Quadrature Amplitude Modulation, New
York: IEEE Press and London: Pentech Press, 1994.

3. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

4.8 Problems

4.1 Another method for defining the lowpass complex envelope is through the use
of the Hilbert transform. The Hilbert transform of a signal x(t) is denoted
x̂(t) and is computed by passing x(t) through a linear filter having the transfer
function

H(f) = −j sgn(f)

where

sgn(f) =
{

1,
−1,

f > 0
f < 0

so that

X̂(f) = −j sgn(f)X(f)

The analytic signal xA(t) corresponding to the real signal x(t) is the complex
signal defined by

xA(t) = x(t) + jx̂(t)

The lowpass complex envelope is then written

x̃(t) = xA(t) exp(−j2πf0t)

where f0 is usually taken as the center frequency of the bandpass signal x(t).

(a) Assuming that a real bandpass signal has the spectrum defined by X(f)
in Figure 4.7, determine and accurately sketch the magnitude spectrum
of the analytic signal. Label all amplitudes and frequencies of interest.

(b) Using the analytic signal found in (a), determine and accurately sketch
the spectrum of the complex envelope. Compare this result with X̃(f)
as shown in Figure 4.7.

“TranterBook” — 2003/11/18 — 16:12 — page 135 — #153
�

�

�

�

�

�

�

�

Section 4.8. Problems 135

4.2 A bandpass signal is defined by

x(t) = 6m(t) cos [2π(100)t]

where

m(t) = 3 cos [2π(10)t] + 4 sin [2π(20)t]

(a) Plot the spectrum (both amplitude and phase) of x(t).

(b) Using the technique outlined in Problem 1, determine and plot (both
amplitude and phase) the spectrum of the analytic signal xA(t).

(c) Using the result of (b), determine and plot (both amplitude and phase)
the spectrum of the analytic signal x̃(t).

4.3 An angle modulated signal is defined by

x(t) = 10 cos [2π(100)t + 2 sin(2π(10)t)]

(a) Determine xd(t) and xq(t) analytically and plot both xd(t) and xq(t).

(b) Using MATLAB and the fast Fourier transform, determine and plot
X(f). Plot both magnitude and phase.

(c) Using MATLAB, determine X̃(f) and plot the result (both magnitude
and phase).

(d) Using MATLAB, determine xd(t) and xq(t) and plot the results.

(e) Compare the results of (d) with (a).

4.4 An FM signal is represented by

xc(t) = Ac sin
(

2πfct + kf

∫ t

0

m(t) dt +
π

6

)
(a) Determine the expressions for xd(t) and xq(t).

(b) Assuming that the complex envelope is represented in the form

x̃c(t) = A(t) exp(jφ(t))

determine expressions for A(t) and φ(t).

4.5 A single sideband (SSB) signal can be represented by

xc(t) = Ac [m(t) cos(2πfct) ± m̂(t) sin(2πfct)]

where the plus sign is used for lower sideband SSB, the minus sign is used for
upper sideband SSB, and m̂(t) is the Hilbert transform of the message signal
m(t).

“TranterBook” — 2003/11/18 — 16:12 — page 136 — #154
�

�

�

�

�

�

�

�

136 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

(a) Determine the expressions for xd(t) and xq(t), in terms of m(t), for both
upper sideband SSB and lower sideband SSB.

(b) Determine expressions for A(t) and φ(t) in terms of m(t).

(c) Assuming that

m(t) = 2 cos(2πt) − sin(4πt)

determine and plot xd(t), xq(t), A(t), and φ(t). (Hint: A MATLAB
program may be useful for developing the plots.)

4.6 In frequency-shift keyed (FSK) signaling, transmission of a binary 0 (space)
or a binary 1 (mark) is accomplished using signals of two different frequencies.
For example, assume that an FSK signal is given by

x(t) = A sin
[
2πf0t − (−1)k

πf∆t
]
, 0 < t < Tb (4.175)

where Tb is the bit period and f∆ is the difference between the two frequencies
in the FSK signal set. It follows that the two frequencies in the FSK signaling
set are f0 + f∆/2 and f0 − f∆/2. Determine the complex envelope of x(t) in
both polar and rectangular form.

4.7 Binary phase-shift keying (PSK) signals can be defined by

x(t) = A sin
[
2πfct − (−1)k

φ
]
, 0 < t < Tb (4.176)

where the signal defined by k = 0 is used for transmission of a binary 0 and
the signal defined by k = 1 corresponds to transmission of a binary 1. As in
the previous problem, Tb is the bit period. Determine the complex envelope
of x(t) in both polar and rectangular form.

4.8 The Fourier transform of a signal x(t) is illustrated in Figure 4.17. Assume
that X(f) is real and positive for all f .

X f()

 f
90−90 110−110 0

4

Figure 4.17 Signal spectrum for Problem 4.8.

“TranterBook” — 2003/11/18 — 16:12 — page 137 — #155
�

�

�

�

�

�

�

�

Section 4.8. Problems 137

(a) Determine and plot Xd(f) and xd(t) for f0 = 100.

(b) Determine and plot Xd(f) and xd(t) for f0 = 95.

(c) Determine and plot Xd(f) and xd(t) for f0 = 90.

(d) Compare and discuss the results.

4.9 Develop a MATLAB program to compute and plot hd(t) and hq(t) as defined
by (4.137) and (4.138). Assume that fl = 180, fu = 220 and that f0 takes on
the following four values:

(a) f0 = 200 Hz

(b) f0 = 190 Hz

(c) f0 = 180 Hz

(d) f0 = 160 Hz

Compare the results. What do you observe from this comparison?

4.10 The Fourier transform of the complex envelope of a signal x(t) is shown in
Figure 4.18. Assume that X̃(f) is real and positive for all f . Plot accu-
rately Xd(f) and Xq(f). Be sure to label all frequencies of interest and the
amplitudes corresponding to these frequencies.

4.11 A second-order bandpass filter is defined by

H(s) =
sωb

s2 + sωb + ω2
0

where ω0 is the geometric center frequency of the filter in radians/second
and ωb is the filter bandwidth in radians/second. Assume that the impulse
response of the filter is defined by

h(t) = Re{2h̃(t) exp(jω0t)}

~
()X f

 f

 5

200−10 10

Figure 4.18 Complex envelope for Problem 4.10.

“TranterBook” — 2003/11/18 — 16:12 — page 138 — #156
�

�

�

�

�

�

�

�

138 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

(a) Determine hd(t) and hq(t).

(b) Let ω0 = 1 and ωb = 0.2. Using the results of (a) plot hd(t) and hq(t).

(c) Repeat (b) for ωb = 0.05.

(d) Compare the results of (b) and (c). What do you conclude?

4.12 The input to a bandpass hard limiter is the AM signal

x(t) = 5(2 + sin 2πt) cos
(
20πt +

π

6

)
The output of the hard limiter is to be

y(t) = 7 cos
(
20πt +

π

6

)
(a) Determine x̃(t) and, using a suitable MATLAB program, plot xd(t) and

xq(t).

(b) Develop a MATLAB program to implement the simulation model of the
bandpass hard limiter.

(c) Using x̃(t) as the input to the simulation model, generate and plot yd(t),
yq(t), and |ỹ(t)|.

(d) Using yd(t) and yq(t) as generated by the simulation, generate and plot
y(t). Compare the result with the analytical expression for y(t).

(e) Develop analytical expressions for xd(t), xq(t), yd(t), and yq(t). Plot
each of these and compare with the results obtained in (a) and (c).

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 139 --- #157
�

�

�

�

�

�

�

�

Section 4.9. Appendix A: MATLAB Program QAMDEMO 139

4.9 Appendix A: MATLAB Program QAMDEMO

4.9.1 Main Program: c4 qamdemo.m

% File: c4_qamdemo.m
levelx = input(‘Number of D levels > ’);
levely = input(‘Number of Q levels > ’);
m = input(‘Number of symbols > ’);
n = input(‘Number of samples per symbol > ’);
bw = input(‘Filter bandwidth, 0<bw<1 > ’);%
%
[xd,xq] = qam(levelx,levely,m,n);
%
[b,a] = butter(6,bw); % determine filter coefficients
yd = filter(b,a,xd); % filter direct coefficient
yq = filter(b,a,xq); % filter quadrature coefficient
%
subplot(2,2,1) % first pane
plot(xd,xq,‘o’) % unfiltered scatterplot
a = 1.4;
maxd = max(xd); maxq = max(xq);
mind = min(xd); minq = min(xq);
axis([a*mind a*maxd a*minq a*maxq])
axis equal
xlabel(‘xd’); ylabel(‘xq’)
%
subplot(2,2,2) % second pane
plot(yd,yq) % filtered scatterplot
axis equal;
xlabel(‘xd’); ylabel(‘xq’);
%
sym = 30; % number of symbols in time plot
nsym = (0:sym*n)/n; % x axis vector for time plots
subplot(2,2,3) % third pane
plot(nsym(1:sym*n),yd(1:sym*n)) % filtered direct component
xlabel(‘symbol index’);
ylabel(‘xd’);
%
subplot(2,2,4) % fourth pane
plot(nsym(1:sym*n),yq(1:sym*n)) % filtered quadrature component
xlabel(‘symbol index’);
ylabel(‘xq’);
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 140 — #158
�

�

�

�

�

�

�

�

140 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

4.9.2 Supporting Routines

qam.m

function [xd,xq] = qam(levelx,levely,m,n)
xd = mary(levelx,m,n);
xq = mary(levely,m,n);
% End of function file.

mary.m

function y= mary(levels,m,n)
% m = number of symbols
% n = samples per symbol
l = m*n; % Total sequence length
y = zeros(1,l-n+1); % Initalize output vector
lm1 = levels-1;
x=2*fix(levels*rand(1,m))-lm1;
for i = 1:m % Loop to generate info symbols

k = (i-1)*n+1;
y(k) = x(i);

end
y = conv(y,ones(1,n)); % Make each symbol n samples
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 141 — #159
�

�

�

�

�

�

�

�

Section 4.10. Appendix B: Proof of Input-Output Relationship 141

4.10 Appendix B: Proof of Input-Output Relationship

We now formally show that if x(t) and h(t) are defined as

x(t) = Re{x̃(t) exp (j2πf0t)} (4.177)

and

h(t) = Re{2h̃(t) exp (j2πf0t)} (4.178)

then

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dy = Re{ỹ(t) exp (j2πf0t)} (4.179)

where

ỹ(t) = x̃(t) � h̃(t)

The proof of (4.179) is accomplished by substituting x(t) and h(t) in the integral
and evaluating the result. Recognizing that the sum of a function and its complex
conjugate is twice the real part of the function allows us to express x(t) and h(t) in
the form

x(t) =
1
2
x̃(t) exp (j2πf0t) +

1
2
x̃∗(t) exp (−j2πf0t) (4.180)

and

h(t) = h̃(t) exp (j2πf0t) + h̃∗(t) exp (−j2πf0t) (4.181)

respectively. Substituting x(t) and h(t) into the convolution integral yields y(t) as
the sum of four integrals. We therefore write

y(t) = I1 + I2 + I3 + I4 (4.182)

where

I1 =
1
2

∫ ∞

−∞
x̃(λ) exp (j2πf0λ) h̃∗(t − λ) exp (−j2πf0(t − λ)) dλ

=
1
2

exp (−j2πf0t)
∫ ∞

−∞
x̃(λ)h̃∗(t − λ) exp (j4πf0λ) dλ (4.183)

I2 =
1
2

∫ ∞

−∞
x̃∗(λ) exp (−j2πf0λ) h̃(t − λ) exp (j2πf0(t − λ)) dλ

=
1
2

exp (j2πf0t)
∫ ∞

−∞
x̃∗(λ)h̃(t − λ) exp (−j4πf0λ) dλ (4.184)

“TranterBook” — 2003/11/18 — 16:12 — page 142 — #160
�

�

�

�

�

�

�

�

142 Lowpass Simulation Models for Bandpass Signals and Systems Chapter 4

I3 =
1
2

∫ ∞

−∞
x̃(λ) exp (j2πf0λ) h̃(t − λ) exp (j2πf0(t − λ)) dλ

=
1
2

exp (j2πf0t)
∫ ∞

−∞
x̃(λ)h̃(t − λ) dλ (4.185)

and

I4 =
1
2

∫ ∞

−∞
x̃∗(λ) exp (−j2πf0λ) h̃∗(t − λ) exp (−j2πf0(t − λ)) dλ

=
1
2

exp (−j2πf0t)
∫ ∞

−∞
x̃∗(λ)h̃∗(t − λ) dλ (4.186)

Note that the integrands in both I1 and I2 are complex bandpass signals having
a center frequency of 2f0. The envelope of these functions is slowly varying with
respect to 2f0, since the bandwidth of x̃(t) and h̃(t) is assumed to be much less
than 2f0. The integral therefore approximately cancels half-cycle by half-cycle.
The approximation that I1 and I2 are negligible improves as f0 increases. Thus,
limf0→∞(I1and I2) = 0.

Note also that I3 and I4 are complex conjugates. Thus:

y(t) = I3 + I4 = I3 + I∗3 = 2 Re{I3} (4.187)

Substitution of (4.185) into (4.187) yields

y(t) = Re
{[∫ ∞

−∞
x̃(λ)h̃(t − λ) dλ

]
exp (j2πf0t)

}
(4.188)

which is equivalent to

y(t) = Re {[x̃(t) � ỹ(t)] exp (j2πf0t)} (4.189)

Since by definition

y(t) = Re {ỹ(t) exp (j2πf0t)} (4.190)

it follows that

ỹ(t) = x̃(t) � h̃(t) (4.191)

The preceding development shows that two bandpass signals may be convolved
by convolving their complex envelopes and using (4.190) to generate the desired
bandpass signal from its complex envelope. Note the asumption that f0 is large.

“TranterBook” — 2003/11/18 — 16:12 — page 143 — #161
�

�

�

�

�

�

�

�

Chapter 5

FILTER MODELS AND
SIMULATION TECHNIQUES

This chapter focuses on the development of simulation models for filters. Filters are
an important part of many of the subsystems that make up a communication system.
Many of these filters are analog and must be mapped to a suitable digital equivalent
for simulation purposes. A number of techniques are available for performing this
mapping, all of which involve approximations and all of which induce errors in the
simulation results. The technique used for generating a given filter for use in a given
application will depend on a number of factors. Many of the most useful techniques
for synthesizing and simulating filters will be explored in this chapter. Of particular
interest are the limitations and the error sources inherent in these techniques.

Filters are by definition frequency selective and have impulse responses that
may be either finite or infinite in duration. Since filters are frequency selective they
induce memory and, as a consequence of this memory, computation of the filter
output at a given time will require the use of past filter inputs and/or past filter
outputs. Thus, filters require storage, and storing and retrieving sample values add
significantly to the computational burden in a simulation program. This, in turn,
adds to the simulation run time. Consequently, we seek architectures leading to
algorithms that reduce the computational burden.

The purpose of this chapter is not to provide a detailed account of digital fil-
ter design techniques. A large number of textbooks exist on the subject of digital

143

“TranterBook” — 2003/11/18 — 16:12 — page 144 — #162
�

�

�

�

�

�

�

�

144 Filter Models and Simulation Techniques Chapter 5

filter design, and the basic techniques have been in use for many years. A partial
list of these books appear in the Further Reading section at the end of this chapter.
Our goal here is to review the most useful of these techniques and to present a
variety of simple examples. The results of these examples provide us with a feel for
the approximation errors that typically occur in simulation applications.

5.1 Introduction

A number of the techniques for developing digital filters are illustrated in Figure
5.1. The classical synthesis techniques for digital filters are often based on analog
prototypes. In this case, development of the digital filter required in the simulation
model starts with the s (Laplace) domain transfer function of the analog filter for
which we seek the digital equivalent. The problem is then reduced to finding a
digital filter that is equivalent, in some appropriate sense, to the analog prototype.
There are many ways to define this equivalence. The fundamental methods are
to base the measurement of equivalence on either a time-domain criterion or on
a frequency-domain criterion. Although we usually think of filtering in terms of
frequency selectivity characteristics, which are defined in the frequency domain,
time-domain criteria are frequently used and result in efficient and useful filter

Filters Based on Analog Prototypes Filters Not Based on
Analog Prototypes

 Time-Domain
Methods

Frequency-
Domain
Methods

CAD
Methods

Digital Filters

Impulse-
Invariant

Filters

Step-
Invariant

Filters

Bilinear
z-transform

Filters

Best Fit to
Transfer
Function

Frequency
or Time-
Domain

Sampling

Linear
Phase
Filters

FIR Filters
IIR Filters

Figure 5.1 Digital filter classifications.

“TranterBook” — 2003/11/18 — 16:12 — page 145 — #163
�

�

�

�

�

�

�

�

Section 5.1. Introduction 145

designs. A time-domain criterion is applied by requiring that the output of the
digital filter match the sampled output of the analog prototype upon which the
design is based. The two fundamental synthesis techniques based on time-domain
criteria are the impulse-invariant digital filter and the step-invariant digital filter.
The impulse-invariant digital filter is a design in which the impulse response of the
digital filter matches the sampled impulse response of the analog prototype. For
the step-invariant digital filter, the step response of the digital filter matches the
sampled step response of the underlying analog prototype. Many other designs are
possible using “test signals” other than impulses and unit steps. We will see that
if the analog prototype and the resulting digital filters are equivalent in the time
domain they are also approximately equivalent in the frequency domain, at least for
values of frequency that are small compared to the sampling frequency.1 This will
be illustrated in the examples that follow.

Perhaps the most popular method for mapping an analog prototype to a dig-
ital equivalent is through application of the bilinear z-transform. The bilinear z-
transform synthesis method, which is strictly an algebraic technique, allows one
to match points in the frequency response so that both the analog prototype and
the resulting digital filter have identical frequency responses (amplitude and phase)
at certain designated values of frequency. In addition, the bilinear z-transform
method eliminates aliasing errors at the expense of a nonlinear frequency warping.
This technique will be illustrated in an example to follow. The bilinear z-transform
filter is widely used in simulation applications.

Synthesis techniques based on analog prototypes result in IIR (infinite-duration
impulse response) digital filters. This is to be expected, since analog filters have
impulse responses that asymptotically approach zero but, strictly speaking, have an
impulse response that is infinite in duration. The impulse response produced by one
of the standard IIR design methods may be truncated in order to generate an FIR
(finite-duration impulse response) digital filter for use in a simulation program. The
error produced by this truncation can be reduced to an acceptable level by including
a sufficient number of terms in the resulting FIR impulse response.

An important attribute of digital filters is that digital filters can be developed
that have no analog counterpart. The most important filters falling into this cat-
egory are filters that allow a given amplitude response to be approximated while
maintaining a perfectly linear phase response. These are FIR filters and are im-
plemented with transversal delay line structures. A number of design techniques
exist for these filters. The most fundamental method is to expand the desired am-
plitude response, which is periodic in the sampling frequency, in a Fourier series.
The resulting Fourier coefficients define the impulse response of the digital filter [1].
The FFT can be used to perform this operation. This is an example of frequency
sampling, since the desired frequency response is “sampled” at various points in

1This statement might at first seem rather strange. Because of the one-to-one correspondence
between a continuous-time signal and its Fourier transform, equivalence in the time domain implies
equivalence in the frequency domain. In digital filters another parameter, namely, the sampling
frequency, is present. The underlying sampling process gives rise to aliasing errors. The result
is that sampled impulse or step responses can yield filters with different frequency responses
depending on the sampling frequency.

“TranterBook” — 2003/11/18 — 16:12 — page 146 — #164
�

�

�

�

�

�

�

�

146 Filter Models and Simulation Techniques Chapter 5

frequency. The inverse FFT of these frequency samples gives the impulse response
of the filter. Convolving the filter input with the impulse response implements the
simulation model of the filter and generates the filter output.

A number of computer-aided design (CAD) techniques exist for designing dig-
ital filters. Two of these techniques are explored later in this chapter. The first
technique leads to an IIR filter, and the second technique leads to a linear-phase
FIR filter.

5.2 IIR and FIR Filters

As implied in the preceding discussion, digital filters are usually classified according
to the impulse response duration (IIR or FIR). Closely tied to the impulse response
classification is the implementation or structure, which will be discussed in the
following section. We now take a look at various filter models.

5.2.1 IIR Filters

A linear digital signal processor (digital filter) computes the current output sample
y[n] as a weighted sum of N past output samples, y[n− k], 1 ≤ k ≤ N , the current
input sample, x[n], and N past input samples, x[n−k], 1 ≤ k ≤ N . In other words,
the algorithm for computing the current output in terms of previous inputs and
outputs is

y[n] =
N∑

k=0

bkx[n − k] −
N∑

k=1

aky[n − k] (5.1)

We will see in the following section that efficient algorithms exist for implementing
the computation defined by (5.1) within a simulation program.

If any of the weights in (5.1), bk or ak, k ≥ 1, have nonzero value, the processor
has memory and is therefore frequency selective and we refer to it as a filter. For a
time-varying system, one or more of the weights will be a function of the index n.2

The transfer function H(z) results by taking the z-transform of both sides of (5.1).
This is accomplished by recalling that the z-transform is a linear operator, so that
the transform of a sum is equal to the sum of transforms, and also recalling that a
delay of k sample periods is equivalent to multiplication by z−k. This yields

Y (z)

[
1 +

N∑
k=1

akz−k

]
= X(z)

N∑
k=0

bkz−k (5.2)

which gives the transfer function

H(z) =
Y (z)
X(z)

=
∑N

k=0 bkz−k

1 +
∑N

k=1 akz−k
(5.3)

2For now we will assume time invariance. Time-varying systems will be the subject of
Chapter 13.

“TranterBook” — 2003/11/18 — 16:12 — page 147 — #165
�

�

�

�

�

�

�

�

Section 5.2. IIR and FIR Filters 147

This is the general form of the transfer function for a linear, time-invariant, filter.
In the applications considered here we will usually have interest in the impulse

response or the frequency response of the filter under study. The impulse response,
denoted h[n], is the inverse z-transform of the transfer function H(z). The frequency
response is found by substituting exp(j2πfT) for z in the transfer function. In other
words, the frequency response is

H(z)|z=exp(j2πfT) = H(exp(j2πfT)) (5.4)

The impulse response of the digital filter, denoted h[n], is found by letting x[n] =
δ[n], where

δ[n] =
{

1, n = 0
0, n 	= 0 (5.5)

in (5.1). Due to the recursive nature of (5.1) (y[n] is a function of y[n − 1]) the
impulse response h[n] will, in general, have infinite duration and we therefore refer
to the filter as an IIR filter. Note that the impulse response, h[n], is a discrete
function of the index n while the frequency response is a continuous function of the
continuous variable f .

5.2.2 FIR Filters

An FIR digital filter results if ak = 0, k ≥ 1 in (5.1) or, equivalently, in (5.3). Thus,
the transfer function of an FIR digital filter is

H(z) =
N∑

k=0

bkz−k (5.6)

and the corresponding impulse response is

h[n] =
N∑

k=0

bkδ[n − k] (5.7)

which is nonzero only for n in the range 0 ≤ n ≤ N . Thus, the impulse response
has at most N +1 nonzero terms and is therefore finite in duration. The algorithm
for generating the filter output sequence y[n] from the input sequence x[n] is the
discrete convolution

y[n] =
N∑

k=0

bkx[n − k] =
N∑

k=0

h[k]x[n − k] (5.8)

which follows directly from (5.1) with ak = 0 for k > 0.

5.2.3 Synthesis and Simulation

It should be pointed out that use of a filter in a simulation program involves two
very distinct operations. The first operation is synthesis. In the synthesis operation

“TranterBook” — 2003/11/18 — 16:12 — page 148 — #166
�

�

�

�

�

�

�

�

148 Filter Models and Simulation Techniques Chapter 5

the filtering requirements are specified and the filter transfer function, H(z), that
meets these requirements is determined. This establishes the simulation model.
The result of the synthesis operation is usually expressed as two vectors, one vector
containing the denominator coefficients, ak, and the other vector containing the
numerator coefficients, bk. Together, these two vectors define the transfer function
(5.3) and the algorithm for generating the filter output given the filter input. The
computational burden associated with the synthesis operation is not usually signif-
icant, even if complex algorithms are used, since filter synthesis is only performed
once and, therefore, takes place outside of the main simulation loop. The second
operation involves the computation of filter outputs at each simulation time step,
that is, at each tick of the simulation clock. This operation may have to be repeated
millions, or even billions, of times in a Monte Carlo simulation program. There-
fore, the computational burden associated with this operation must be minimized
if reasonable simulation run times are to result. The transposed filter structure
considered in the following section addresses this important concern.

5.3 IIR and FIR Filter Implementations

We now briefly examine the manner in which digital filters are realized in a simu-
lation program. As discussed at the conclusion of the preceding section, the goal
is to minimize the computational burden so that the time required to execute a
simulation is minimized.

5.3.1 Direct Form II and Transposed Direct Form II
Implementations

An efficient technique for implementing IIR digital filters in a simulation program
is the transposed Direct Form II architecture.3 The signal flow graphs of the trans-
posed Direct Form II architecture, and the Direct Form II architecture from which
it is derived, are both illustrated in Figure 5.2. We start with the Direct Form
II structure because it is a straightforward implementation of the defining differ-
ence equation expressed by (5.1). The student should take time to verify that both
structures illustrated in Figure 5.2 satisfy (5.1) and (5.3).

The transposed Direct Form II structure is the most commonly used structure
in the simulation of filters because of execution speed. It is easily derived from the
Direct Form II structure. The rules for generating a transposed filter structure from
a given filter structure are simple:

1. Redraw the original (Direct Form II) signal flow graph maintaining the archi-
tecture (all links maintain their relative positions).

2. Reverse the direction of signal flow in each link.

3We assume that the simulation will be executed on a floating-point machine so that coefficient
quantization and other finite word length effects are not important. For fixed-point applications,
it is often necessary to decompose an Nth order filter into first-order or second-order parallel or
cascade structures in order to reduce the effects of coefficient quantization [2].

“TranterBook” — 2003/11/18 — 16:12 — page 149 — #167
�

�

�

�

�

�

�

�

Section 5.3. IIR and FIR Filter Implementations 149

z 1

z 1

z 1

z 1

b0 x n[] y n[]

z 1

z 1

z 1

z 1

b0

a1

a2

a3

a4 b4

b3

b2

b1 w1

w2

w3

w4

x n[] y n[]

DF II Filter Transposed DF II Filter

b4

b3

b2

b1 a1

a2

a3

a4

w0

Figure 5.2 Implementation structures for IIR filters.

3. Assign to the new link the same operation (multiplication by a constant, delay,
etc.) that was assigned to the original link.

4. If desired, flip (left to right) the newly constructed signal flow graph so that
the direction of the input/output signal flow is consistent with the original
signal flow graph. (Note: Signal flow is usually from left to right.)

The new signal flow graph, known as the transposed Direct Form II (DF II) struc-
ture, will have the same transfer function as the original signal flow graph [2].

To see the attraction of the transposed DF II implementation, the fourth-order
transposed DF II filter shown in Figure 5.2 is considered. (The extension to higher-
order filters is obvious.) We are given the input sample x[n] and are required to
compute the output y[n]. The first step is to compute the state variables wj [n] for
j = 0, 1, · · ·4. Note that for a fourth-order filter there are five state variables in our
formulation. The five state variables are given by the computation

w0[n] = w1[n − 1] + b0x[n] (5.9)
w1[n] = −a1w0[n] + w2[n − 1] + b1x[n] (5.10)
w2[n] = −a2w0[n] + w3[n − 1] + b2x[n] (5.11)
w3[n] = −a3w0[n] + w4[n − 1] + b3x[n] (5.12)
w4[n] = −a4w0[n] + b4x[n] (5.13)

We now consider the computational advantage of the transposed structure defined
by the preceding equations.

“TranterBook” — 2003/11/18 — 16:12 — page 150 — #168
�

�

�

�

�

�

�

�

150 Filter Models and Simulation Techniques Chapter 5

The state variables as expressed by (5.9) through (5.13) may be computed “in
sequence.” For example note that, given the input x[n], w0[n] can be computed,
since w1[n− 1] is known from the previous pass through the simulation loop. Once
w0[n] is known, w1[n] can be computed. Continuing the computation we see that
wj [n] depends only on wk[n] where k < j. Thus the computation of each state
variable only requires knowledge of previously computed quantities. As a matter of
fact, the MATLAB code for implementing (5.9) through (5.13) within a simulation
loop is

w1 = 0; w2 = 0; w3 = 0; w4 = 0; % initialize state variables
for k = 1:npts % beginning of simulation loop

...

w0 = w1 + b0*x;
w1 = -a1*w0 + w2 + b1*x;
w2 = -a2*w0 + w3 + b2*x;
w3 = -a3*w0 + w4 + b3*x;
w4 = -a4*w0 + b4*x;
y = w0;

...

end % end of simulation loop}

In the preceding code x and y represent the current filter input, x[k], and output,
y[k], respectively. Note that the one-sample delay operations illustrated in (5.9)
through (5.13) are implemented through the order in which the state variables are
computed. No storage and retrieval is necessary. As a result, the algorithm is
fast compared to algorithms based on other structures, which is why the MATLAB
routine filter is based on the transposed DF II structure. Also note that the state
variables w1, w2, w3, and w4 must be initialized prior to entering the simulation loop
the first time. This initialization induces a transient response into the filter output.
Typically the simulation loop must be executed a number of times before useful data
can be collected from the simulation. This time is often referred to as the “settle
time” and is several times the reciprocal of the filter bandwidth. A vectorized form
of these calculations will be discussed shortly (see Example 5.1).

State equations for a digital filter are usually expressed in matrix form. State
variable matrix formulations are most valuable when the filter has multiple inputs
and outputs. Here, however, we will have interest only in filters having a single
input x[n] and a single output y[n]. The general expression for a single-input filter
is [2]

W[n] = FcW[n] + FdW[n − 1] + Bx[n] (5.14)

where W[n] and W[n − 1] are k × 1 column vectors representing the current and
previous state variables, respectively, Fc and Fd are k×k coefficient matrices and B

“TranterBook” — 2003/11/18 — 16:12 — page 151 — #169
�

�

�

�

�

�

�

�

Section 5.3. IIR and FIR Filter Implementations 151

is a k × 1 column vector coupling the input x[n] to the state variables. The output
equation for a single output y[n] is

y[n] = CW[n] (5.15)

where C is a 1 × k row vector.
Equations (5.9) through (5.13) can be placed in the matrix form

w0[n]
w1[n]
w2[n]
w3[n]
w4[n]

 =

0 0 0 0 0

−a1 0 0 0 0
−a2 0 0 0 0
−a3 0 0 0 0
−a4 0 0 0 0

w0[n]
w1[n]
w2[n]
w3[n]
w4[n]

 (5.16)

+

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

w0[n − 1]
w1[n − 1]
w2[n − 1]
w3[n − 1]
w4[n − 1]

+

b0

b1

b2

b3

b4

x[n]

A moments reflection shows that the states can be computed “in sequence” because
the matrix Fc relating wj [n] and wk[n] in (5.16) has all zeros on and above the main
diagonal. Signal-flow graphs having this property are known as computable graphs
[2]. The term computable does not mean that this form is required in order for one to
be able to calculate the output given the input. This is easily seen, since the upper
triangular structure can be destroyed by simply relabeling the states. Rather, the
term computable simply means that the states may be computed in turn as shown
in (5.9) through (5.13). It can be shown that a necessary and sufficient condition
for a computable form to exist is that there be no closed paths without at least one
delay, that is, z−1, element in the path [2].

One of the conveniences of MATLAB is that the filter coefficients ak and bk can
be computed with ease for a vast number of different analog prototypes. Although
these filter coefficients are typically generated for use in the MATLAB routine,
filter, which is intended for block processing, IIR filters may be simulated on a
sample-by-sample basis using the simple three-line MATLAB program

out = b(1)*in + sreg(1,1); % compute filter output
sreg = in*b - out*a + sreg; % update shift register contents
sreg = [sreg(1,2:(order+1)),0]; % cycle shift register

where a and b are determined outside of the simulation loop. The parameter sreg
in the preceding code represents the shift register of length order+1 where order
is the order of the filter. An advantage of the approach illustrated here is that
the MATLAB filter synthesis routines, such as butter, cheby1, and elliptic, can
be used to compute the filter coefficient vectors a and b. Care must be used to
ensure that the vectors holding the numerator and denominator coefficients have

“TranterBook” — 2003/11/18 — 16:12 — page 152 — #170
�

�

�

�

�

�

�

�

152 Filter Models and Simulation Techniques Chapter 5

the same length. If the two vectors are not of equal length, the shorter vector can
be zero-padded to the length of the longer sequence.

Example 5.1. In order to illustrate the preceding technique, consider the follow-
ing MATLAB program, which determines the impulse response of a fourth-order
Butterworth filter using both block and serial (sample-by-sample) processing:

% File: c5 filterex1.m
n = 40; % number of samples
order = 4; % filter order
[b,a] = butter(order,0.1); % prototype
%
% The following segment is the block processing implementation.
%
in1 = [1,zeros(1,n-1)]; % input vector
out1 = filter(b,a,in1); % output vector
%
% The following segment is the sample-by-sample implementation.
%
sreg = zeros(1,order+1); % initialize shift register
for k=1:n

if k==1
in=1; % impulse input

else
in=0;

end
out = b(1)*in + sreg(1,1); % determine output
sreg = in*b - out*a + sreg; % update register
sreg = [sreg(1,2:(order+1)),0]; % shift
out2(k) = out; % create output vector

end
%
subplot(2,1,1)
index = 0:n-1;
stem(index,out1)
xlabel(‘Sample Index’)
ylabel(‘Block Processing’)
subplot(2,1,2)
stem(index,out2)
xlabel(‘Sample Index’)
ylabel(‘Serial Processing’)
% End of script file.

The result of executing this program is illustrated in Figure 5.3. We see that
both the block-processing and the serial-processing technique produce identical
results. �

“TranterBook” — 2003/11/18 — 16:12 — page 153 — #171
�

�

�

�

�

�

�

�

F
ig

u
re

5
.3

C
o
m

p
a
ri
so

n
o
f
b
lo

ck
a
n
d

se
ri
a
l
p
ro

ce
ss

in
g
.

153

“TranterBook” — 2003/11/18 — 16:12 — page 154 — #172
�

�

�

�

�

�

�

�

154 Filter Models and Simulation Techniques Chapter 5

5.3.2 FIR Filter Implementation

The implementation strategy for FIR digital filters follows immediately from Figure
5.2 by letting ak = 0, k ≥ 1. The resulting two structures are evident and are
illustrated in Figure 5.4. These are referred to as tapped delay line or transversal
delay line (TDL) structures, since they are implemented as delay lines (cascaded
z−1 elements) with taps for the multiplication by the weights bk.

Figure 5.4 FIR filter structures.

“TranterBook” — 2003/11/18 — 16:12 — page 155 — #173
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 155

5.4 IIR Filters: Synthesis Techniques
and Filter Characteristics

IIR (infinite-duration impulse response) filters are typically designed from analog
prototypes (Butterworth, Chebyshev, Elliptic, etc.) and are implemented using
recursive structures. Modern communication systems do not rely on analog proto-
types to the extent that was the case several decades ago, except possibly in the RF
stages of the system. Many modern systems, such as the software radio, make exten-
sive use of DSP techniques for implementing the system building blocks (including
filters). In these DSP-based systems the problem of developing digital equivalents
for analog prototypes does not arise, since the filters used in the physical hardware
are already in digital form. As a result, the classical techniques for digital filter syn-
thesis, those using an analog prototype as a starting point, are fading in importance.
However, designs from analog prototypes are still used in many applications and
are therefore worthy of consideration. Several computer-aided design techniques
have been developed for IIR filters, one of which is considered here. Since the goal
is to illustrate basic techniques, and the errors induced in a simulation through
the use of these techniques, only very simple applications of those techniques will
be considered. More complicated examples are provided in textbooks devoted to
digital filter design, a few of which are cited at the end of this chapter.

5.4.1 Impulse-Invariant Filters

Assume that the unit pulse response of a digital filter is, except for an amplitude
scaling, equal to the sampled impulse response of an analog filter. For this case the
digital filter is known as the impulse-invariant realization of the analog filter. In
other words, the transfer function of the digital filter, H(z), is defined by [1]

H(z) = TZ {L−1 [Ha(s)] |t=nT

}
(5.17)

where L−1(·) denotes the inverse Laplace transform, Z(·) denotes the z-transform,
Ha(s) denotes the transfer function of the analog filter, and T , which is amplitude
scaling, denotes the sampling period.

In order to illustrate the impulse-invariance technique we consider the simplest
possible analog prototype, which is

Ha(s) =
a

s + a
(5.18)

Note that this is a first-order lowpass filter with a dc (f = 0) gain of one.

Example 5.2. From (5.17) the first step is to take the inverse Laplace transform
of Ha(s). This gives the impulse response

L−1 [Ha(s)] = ha(t) = a exp(−at)u(t) (5.19)

“TranterBook” — 2003/11/18 — 16:12 — page 156 — #174
�

�

�

�

�

�

�

�

156 Filter Models and Simulation Techniques Chapter 5

in which u(t) is the unit step and is used to denote that the filter is causal. Prior
to taking the z-transform the impulse response must be sampled at the sampling
instants t = nT . This gives

L−1 [Ha(s)] |t=nT = ha[n] = a exp(−anT)u[n] (5.20)

The z-transform of ha[n] is

Z {L−1 [Ha(s)] |t=nT

}
=

∞∑
n=0

a [exp(−aT)]n z−n (5.21)

Performing the sum and multiplying by the sampling period gives

H(z) =
aT

1 − exp(−aT)z−1
(5.22)

which is the impulse invariant equivalent of (5.18). The frequency-domain behavior
of this filter will be explored in Example 5.5. �

5.4.2 Step-Invariant Filters

The step-invariant filter is frequently used in simulations (we will see the reason
for this in a following section). For the step-invariant filter, the unit pulse response
of the digital filter is equivalent to the sampled step response of the analog filter.
Since the step response of the analog filter, expressed in the frequency domain, is
Ha(s)/s, the transfer function of a step-invariant filter is

1
1 − z−1

H(z) = Z
{
L−1

[
1
s
Ha(s)

]
|t=nT

}
(5.23)

Note that the left-hand side of (5.23) is the response of a digital filter, having transfer
function H(z), to a sampled unit step. The right-hand side of (5.23) represents the
z-transform of the sampled unit step response of the prototype analog filter.

Example 5.3. In this example we again use (5.18) as the analog prototype. The
step response of the analog filter is

1
s
Ha(s) =

a

s(s + a)
(5.24)

Partial fraction expansion is then used to obtain

1
s
Ha(s) =

1
s
− 1

s + a
(5.25)

Taking the inverse Laplace transform and sampling at t = nT gives

L−1

[
1
s
Ha(s)

]
|t=nT = u[n] − exp(−anT)u[n] (5.26)

“TranterBook” — 2003/11/18 — 16:12 — page 157 — #175
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 157

and taking the z-transform gives

1
1 − z−1

H(z) =
∞∑

n=0

{1 − [exp(−aT)]n} z−n (5.27)

or

1
1 − z−1

H(z) =
1

1 − z−1
− 1

1 − exp(−aT)z−1
(5.28)

The transfer function of the step-invariant digital filter is

H(z) = 1 − 1 − z−1

1 − exp(−aT)z−1
(5.29)

Writing the preceding in standard form as defined by (5.3) yields

H(z) =
[1 − exp(−aT)] z−1

1 − exp(−aT)z−1
(5.30)

The frequency domain behavior of this filter will be explored in Example 5.5. The
result will be compared with the impulse-invariant result. �

5.4.3 Bilinear z-Transform Filters

The bilinear z-transform filter is perhaps the most commonly used filter in simu-
lation programs. There are a number of reasons for this. First, as we will see in
the following section, the synthesis of digital filters using the bilinear z-transform
technique is very straightforward and is entirely algebraic. In addition, we will see
that the bilinear z-transform filter does not exhibit aliasing.

Synthesis Technique

The bilinear z-transform synthesis technique maps an analog prototype, Ha(s), to
a digital filter using a simple algebraic transformation. Specifically, the transfer
function of the digital filter, H(z), is defined by [1, 2]

H(z) = Ha(s)|s=C(1−z−1)/(1+z−1) (5.31)

where C is a constant. The technique used to appropriately determine C will be
discussed shortly. Since Ha(s) is typically defined as a ratio of polynomials in s,
the algebraic mapping defined by (5.31) gives H(z) in the desired form of a ratio of
polynomials in z−1. Implementation of the filter follows as discussed in the previous
section.

To show that the transfer function of the resulting digital filter has desirable
properties, we substitute exp(sdT), where sd is the complex frequency variable for
the digital filter, for z in the definition of the bilinear z-transform. This gives

s =
1 − exp(−sdT)
1 + exp(−sdT)

(5.32)

“TranterBook” — 2003/11/18 — 16:12 — page 158 — #176
�

�

�

�

�

�

�

�

158 Filter Models and Simulation Techniques Chapter 5

Substitution of j2πfa for s and j2πfd for sd in the preceding expression gives

j2πfa = C
exp(jπfdT) − exp(−jπfdT)
exp(jπfdT) + exp(−jπfdT)

(5.33)

which is

2πfa = C tan(πfdT) (5.34)

or

C = 2πfa cot(πfdT) (5.35)

This defines the relationship between the frequency responses of the prototype ana-
log filter and the resulting digital filter. Adjusting C in this manner so that fc = fd

for an arbitrary sampling frequency is called prewarping.
The transformation relating fa and fd is clearly nonlinear. In developing simula-

tion models for communications systems, as well as for many other types of systems,
it is usually desirable to maintain the shape of the transfer function, in both ampli-
tude and phase, as the analog filter is mapped to its digital equivalent. Maintaining
the shape of the transfer function requires that the transformation relating fd and
fa be, to the extent possible, linear. Since tan(x) ≈ x for small x an approximately
linear transformation requires that πfdT
 1 or

fd
 1
π

fs (5.36)

where fd ranges over the frequencies of interest and fs is the sampling frequency.
The value of C that results in an approximately linear transformation with fd ≈ fa

is easy to determine. Linearity requires that

2πfa ≈ C(πfdT) (5.37)

If we also require that fa ≈ fd we have

C =
2
T

= 2fs (5.38)

Unfortunately, maintaining fa ≈ fd for all frequencies of interest, such as the fre-
quency range of a filter passband, typically requires an excessively high sampling
frequency. This leads to simulation run times that are often impractical.

Example 5.4. In order to illustrate the bilinear z-transform synthesis method we
once again turn to the simple first-order analog prototype defined by (5.18). By
definition, the bilinear z-transform filter has the transfer function

H(z) =
a

s + a

∣∣∣∣s = C
1 − z−1

1 + z−1
(5.39)

“TranterBook” — 2003/11/18 — 16:12 — page 159 — #177
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 159

This gives

H(z) =
a(1 + z−1)

C(1 − z−1) + a(1 + z−1)
(5.40)

which, in standard form, is

H(z) =
a

C+a + a
C+az−1

1 − C−a
C+az−1

(5.41)

The frequency-domain behavior of this filter will be explored in the following
example. �

Example 5.5. In this example the responses of the three filters designed in the
last three examples will be compared. Assume that the sampling frequency is 100
Hz (T = 0.01) and that the parameter a is 2π(10) so that the 3 dB frequency of
the analog filter is 10 Hz. With these assumed values we have

aT = 0.628319 (5.42)

and

exp(−aT) = 0.533488 (5.43)

Thus, from (5.22), the transfer function of the impulse-invariant filter is

Hii(z) =
0.628319

1 − 0.533488z−1
(5.44)

For the step-invariant filter we have, from (5.30):

Hsi(z) =
(1 − 0.533488)z−1

1 − 0.533488z−1
(5.45)

Two versions of the bilinear z-transform filter will be given. First, if no frequency
prewarping is used, so that the amplitude responses of the analog prototype filter
and the digital filter agree closely for low frequencies

C =
2
T

= 200 (5.46)

Substituting the values of C and a into (5.41) gives

Hbl(z) =
0.239057 + 0.239057z−1

1 − 0.5218861z−1
(5.47)

Now suppose that the value of C is chosen so that the frequency responses are
matched at the 3 dB frequency of the analog filter. For this case

fa = fd =
a

2π
(5.48)

“TranterBook” — 2003/11/18 — 16:12 — page 160 — #178
�

�

�

�

�

�

�

�

160 Filter Models and Simulation Techniques Chapter 5

so that, from (5.35), the value of C is

C = a cot
(

aT

2

)
(5.49)

which gives

C = 40π cot (0.2π) = 172.961 (5.50)

Using this value of C in (5.41) gives

Hbl(z) =
0.420808 + 0.420808z−1

1 − 0.158384z−1
(5.51)

The student should compare the responses defined by (5.47) and (5.51). (See Prob-
lem 5.2.)

The amplitude responses of the impulse invariant, the step invariant, and the
first bilinear z-transform filter, described by (5.47), are generated using the following
MATLAB code:

% File: c5 threefilters.m
T = 0.01;
f = 0:0.1:50;
z = exp(-i*2*pi*f*T); % see (5.4)
a0 = 0.239057; a1=0.239057; b1=0.521886; % bilinear z-transform
num = a0+a1*z;
den = 1-b1*z;
ampx = abs(num./den);
a0 = 0.628319; b1 = 0.533488; % impulse invariant
num = a0;
den = 1-b1*z;
ampy = abs(num./den);
a0 = 1.0; a1 = 0.533488; b1 = 0.533488; % step invriant
num = (a0-a1)*z;
den = 1-b1*z;
ampz = abs(num./den);
plot(f,ampx,f,ampy,f,ampz)
xlabel(‘Frequency - Hz’)
ylabel(‘Amplitude Response’)
% End of script file.

The results are illustrated in Figure 5.5. Note that both the step-invariant filter and
the bilinear z-transform filter have unity gain at dc. The dc gain of the impulse-
invariant filter is considerably larger than unity as a result of aliasing. Note also
that the bilinear z-transform filter has a zero at the Nyquist frequency (fs/2). This
results since the analog prototype has a zero at f = ∞ and this zero is mapped to
the Nyquist frequency under the bilinear z-transformation. �

“TranterBook” — 2003/11/18 — 16:12 — page 161 — #179
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 161

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hertz)

A
m

pl
it

ud
e

R
es

po
ns

e

Impulse-invariant filter

Step-invariant filter

Bilinear z-transform filter

Figure 5.5 Comparison of amplitude responses.

Example 5.6. The filter developed in the previous example was based on a very
simple first-order prototype and the filter coefficients: the values of ak and bk were
determined without computer aid. In this example we consider a fifth-order ellip-
tic filter with 1 dB passband ripple and a minimum 20 dB stop-band attenuation.
While it is certainly possible to determine the filter coefficients using the analyt-
ical techniques illustrated in the preceding example, considerable effort would be
required because of the complexity of the transfer function of the analog prototype.

MATLAB, however, has a number of digital filter synthesis tools in the Signals
and Systems Toolbox. Among these are routines for the design of impulse-invariant
and bilinear z-transform digital filters. The MATLAB code for the synthesis of the
fifth-order elliptic filter is as follows:

% File: c5 ellipexam.m
fs = 100; % set sampling frequency
fc = 20; % set cuttoff frequency
f = 0:0.1:50; % define frequency vector
[b,a] = ellip(5,1,20,2*pi*fc,‘s’); % synthesize elliptic filter
h = freqs(b,a,2*pi*f); % amp. resp. of analog filter
[bz1,az1] = impinvar(b,a,fs); % impulse invariant digital filter

“TranterBook” — 2003/11/18 — 16:12 — page 162 — #180
�

�

�

�

�

�

�

�

162 Filter Models and Simulation Techniques Chapter 5

h1 = freqz(bz1,az1,f,fs); % amplitude response of above
[bz2,az2] = bilinear(b,a,fs); % bilinear z filter (not prewarped)
h2 = freqz(bz2,az2,f,fs); % amplitude response of above
[bz3,az3] = bilinear(b,a,fs,fc); % bilinear z filter (prewarped)
h3 = freqz(bz3,az3,f,fs); % amplitude response of above
subplot(211) % subplot 1
plot(f,abs(h),f,abs(h1)) % plot
xlabel(‘Frequency - Hz’) % label x axis
ylabel(‘Amplitude Response’) % label y axis
subplot(212) % subplot 2
plot(f,abs(h2),f,abs(h3)) % plot
xlabel(‘Frequency - Hz’) % label x axis
ylabel(‘Amplitude Response’) % label y axis
% End of script file.

Note that four frequency responses are generated. First, the amplitude response of
the analog prototype is generated to serve as a basis of comparison. The amplitude
response of the impulse-invariant digital filter is generated and plotted with the
amplitude response of the analog prototype. Two bilinear z-transform digital filters
are synthesized: one with frequency warping and one without frequency warping.
These are plotted in order to illustrate the effect of frequency warping.

The amplitude response of the analog prototype, the impulse-invariant digital
filter, and the two bilinear z-transform filters are compared in Figure 5.6. Two sepa-
rate plots are used to reduce clutter. The top plot compares the amplitude response
of the impulse-invariant digital filter with the analog prototype. Note that, except
for the bandwidth, they compare poorly. The reason for this is aliasing error, which
is quite pronounced in the case of an elliptic filter, since the amplitude response
of the analog prototype is not bandlimited because of the stopband behavior of
the filter. This can be seen in the elevated amplitude response in both the filter
passband and in the filter stopband.

The bottom plot illustrates that the bilinear z-transform synthesis method per-
forms much better. If frequency warping is not used, the cutoff frequency is re-
duced from 20 Hz to approximately 18 Hz as expected. Prewarping the cutoff
frequency of the digital filter to the cutoff frequency of the analog prototype re-
sults in an amplitude response that closely matches that of the analog prototype
over most of the frequency range. There is, however, one notable difference. At
the Nyquist frequency (fs/2 = 50 Hz) the amplitude response of the analog pro-
totype is 0.1, corresponding to 20 dB attenuation, while the amplitude response of
the bilinear z-transform digital filter is 0 (−∞ dB). The analog filter has a zero at
f = ∞ and, under the bilinear z-transformation, this zero is mapped to the Nyquist
frequency. �

“TranterBook” — 2003/11/18 — 16:12 — page 163 — #181
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 163

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Frequency-Hz

A
m

pl
itu

de
 R

es
po

ns
e

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Frequency-Hz

A
m

pl
it

ud
e

R
es

po
ns

e

Analog
prototype

Impulse invariance

Bilinear z-transform
prewarped
not prewarped

Figure 5.6 Comparison of amplitude responses.

Special Case: Trapezoidal Integration

An important integration algorithm, frequently used in simulation programs, is
trapezoidal integration. In general, discrete-time integration is defined by the
expression

y[n] = y[n − 1] + �(n − 1, n) (5.52)

where y[n] and y[n− 1] denote the integrator output at index n and n − 1, respec-
tively, and �(n − 1, n) denotes the incremental area added to the integral in the
time increment (n − 1)T < t ≤ nT . The incremental area is illustrated in Figure
5.7 and is given by

�(n − 1, n) =
T

2
(x[n] + x[n − 1]) (5.53)

Thus

y[n] − y[n − 1] =
T

2
(x[n] + x[n − 1]) (5.54)

“TranterBook” — 2003/11/18 — 16:12 — page 164 — #182
�

�

�

�

�

�

�

�

164 Filter Models and Simulation Techniques Chapter 5

x(nT)

t
nT nT-T

Area
T

x nT x nT T= + −
2

() ()

x nT T()−

Figure 5.7 Trapezoidal integration.

Taking the z-transform of both sides of (5.54) yields the transfer function of the
trapezoidal integrator. The result is

H(z) =
Y (z)
X(z)

=
T

2
1 + z−1

1 − z−1
(5.55)

If we design an integration algorithm based on the bilinear z-transform synthesis
technique, the result is

H(z) = Ha(s)|
s= 2

T
1−z−1

1+z−1
(5.56)

or, since integration is equivalent to division by s

H(z) =
1
s

∣∣∣∣
s= 2

T
1−z−1

1+z−1

=
T

2
1 + z−1

1 − z−1
(5.57)

which is identical to the trapezoidal integration rule expressed by (5.55).
The signal-flow graph corresponding to the transposed DF II implementation of

the trapezoidal integrator is illustrated in Figure 5.8. Note that, with the exception
of the amplitude scaling by T/2, all multiplies are unity. The MATLAB simulation

w1 = in + w2;
w2 = in + w1;
out = w1/twofs;

in outw1

w2

z−1

T

fs2

1

2
=

Figure 5.8 Signal-flow graph for trapezoidal integrator and MATLAB code.

“TranterBook” — 2003/11/18 — 16:12 — page 165 — #183
�

�

�

�

�

�

�

�

Section 5.4. IIR Filters: Synthesis Techniques and Filter Characteristics 165

code is also shown in Figure 5.8. We see that the delay is realized by the order in
which the states, w1 and w2, are computed.

Trapezoidal integration is only one of many different integration algorithms used
in simulation programs. Having a variety of algorithms provides one with the capa-
bility of making a number of speed/performance tradeoffs. Some of these algorithms
will be treated in Chapter 12.

5.4.4 Computer-Aided Design of IIR Digital Filters

Over the past few decades a number of computer-aided design techniques have
been developed for both IIR and FIR digital filters [2]. The FIR techniques have
received more widespread application than the IIR techniques, but IIR techniques
are sometimes used, since smaller structures (fewer delay elements) often result.
One advantage of the computer-aided design methods is that they allow digital
filters to be developed that have no analog equivalent. In addition, the use of
computer-aided design methods allow implementation tradeoffs, such as complexity
(the required number of coefficients) and accuracy (the error between an actual and
a target amplitude response), to be studied quickly and systematically.

A common technique for developing IIR filters is to adjust the filter coefficients
so that the best fit to a desired response is obtained. In the most common tech-
nique, one specifies a desired filter characteristic, which is most often the amplitude
response of the desired filter, and the order N of the digital filter. This leads to a
constrained optimization problem in which the order N is the constraint and the
best fit, in the minimum mean square error sense, is determined. Various algo-
rithms for accomplishing this task are described in the literature. We consider here
an example.

Example 5.7. A channelizing filter is to be developed having the characteristic
illustrated in Figure 5.9. Note that the filter passes two channels, only one of which
has been translated to dc. Note also that frequency in Figure 5.9 is normalized with
respect to the Nyquist frequency (one-half the sampling frequency). In terms of this
normalized frequency fN = f/(fs/2), the filter amplitude response is defined as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

A fd ()

f

f s(/)2

Figure 5.9 Desired amplitude response.

“TranterBook” — 2003/11/18 — 16:12 — page 166 — #184
�

�

�

�

�

�

�

�

166 Filter Models and Simulation Techniques Chapter 5

Ad(f) =
{

1, |f | < 0.1, 0.25 < f < 0.35
0, 0.12 < f < 0.23, 0.37 < f < 1 (5.58)

The three frequency bands not included in the expression for Ad(f) are transition
bands. These are indicated by the heavy black regions in Figure 5.9.

The MATLAB program for designing the filter is as follows:

% File: c5 yw.m
order = 20, % degree of polynomials
f = [0 0.1 0.12 0.23 0.25 0.35 0.37 1]; % frequency points
amp = [1 1 0 0 1 1 0 0]; % amplitude response
[b,a] = yulewalk(order,f,amp); % synthesize filter
freqz(b,a) % display results
% End of script file.

Note that a 20th order filter is generated so that both the denominator and the
numerator polynomials of H(z) are polynomials of degree 20 in z−1. Executing the
program yields the result illustrated in Figure 5.10. Note that the stopband attenu-
ation is approximately 30 dB or better. The passbands are reasonably well shaped
and the phase response is approximately linear across the passbands. Whether or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1500

-1000

-500

0

Normalized frequency (Nyquist == 1)

P
h

a
s

e
 (

d
e

g
re

e
s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-60

-40

-20

0

20

Normalized frequency (Nyquist == 1)

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

 (
d

B
)

Figure 5.10 Computer-aided design results for IIR filter.

“TranterBook” — 2003/11/18 — 16:12 — page 167 — #185
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 167

not this filter is a satisfactory approximation to the ideal response defined by (5.58)
is a matter of judgment, and a system simulation using this filter may be required
to answer that question. Increasing the filter order will improve the approxima-
tion error but at the cost of increased complexity resulting in increased simulation
runtime. �

5.4.5 Error Sources in IIR Filters

In this section we summarize the error sources resulting in the approximation of ana-
log filters by IIR digital filters. We have seen that the source of error is dependent
upon the synthesis method used. For the most part these errors may be minimized
by using a very high sampling frequency in the simulation. However, unnecessarily
high sampling frequencies result in simulations that take an unnecessarily long time
to execute. As is usually the case, selection of a sampling frequency for a simu-
lation involves a tradeoff between accuracy and the time required to execute the
simulation. The error sources are summarized in Table 5.1.

Table 5.1 IIR Digital Filter Error Sources

Synthesis Technique Error Source To Mimimize Error
Impulse invariant Aliasing Choose a higher sampling

frequency
Step invariant Aliasing Choose a higher sampling

frequency
Bilinear z-transform Frequency warping Select a sampling frequency

much larger than the highest
critical frequency

CAD method Approximation error Increase filter order or use
another synthesis method
more suitable to the
application

5.5 FIR Filters: Synthesis Techniques
and Filter Characteristics

If the impulse response of a filter h[n] is finite, or has been made finite by truncating
an originally infinite duration impulse response, the filter output in the discrete time
domain is given by

y(nT) = T

N∑
k=0

h(kT)x{(n − k)T } (5.59)

“TranterBook” — 2003/11/18 — 16:12 — page 168 — #186
�

�

�

�

�

�

�

�

168 Filter Models and Simulation Techniques Chapter 5

which, using standard DSP notation, is

y[n] =
N∑

k=0

h[n]x[n − k] =
N∑

k=0

bkx[n − k] (5.60)

or, in terms of the z transform,

Y (z) =
N∑

k=0

bkz−kX(z) (5.61)

Equation (5.60), which defines an FIR digital filter, is the discrete-time version of
the convolution integral for analog (continuous time) filters. Note that (5.60) and
(5.61) are the same as the filter model defined by (5.1) and (5.3) with ak = 0 for
k ≥ 1. The filter is FIR (Finite duration Impulse Response) since there are at most
N + 1 nonzero terms in h[n]. Since ak = 0 for k ≥ 1 the FIR filter has no feedback
paths. The convolution operation in time domain defined in (5.60) can be simulated
using the MATLAB function filter.

The FIR filter is attractive for a number of reasons, the most significant of which
are as follows:

1. Not all filters in a communication system can be expressed in terms of a trans-
fer function in the Laplace transform domain and hence the IIR techniques
described in the previous sections cannot be applied directly. Two important
filters that fall into this category are the square root raised cosine (SQRC)
pulse shaping filter, and the Jakes Doppler filter. These filters are easily
simulated using the FIR approach.

2. In many simulation applications, filter data may be given empirically in the
form of measured frequency response or impulse response data. It is much
easier to simulate these filters using the FIR approach. While there are some
techniques available for fitting an ARMA model to the frequency response
data, such approximations do not yield satisfactory results when the frequency
response data is not relatively smooth.

3. With the FIR approach we can specify arbitrary amplitude and phase re-
sponses, and they can be independent of each other. Thus it is possible, for
example, to simulate an ideal brick-wall filter with linear phase response.

4. The FIR filters lack feedback and are therefore always stable

The FIR simulation model does have one main drawback, namely, it is com-
putationally not as efficient as the IIR implementation. Direct implementation of
the convolution operation given in (5.60) requires N (complex) multiplication and
additions for each output sample to be generated. If the impulse response is very
long, say N > 1024 points, the FIR algorithm will execute much more slowly than
a typical IIR filter algorithm. For an IIR filter the number of additions and mul-
tiplications required to generate each output sample are determined by the order

“TranterBook” — 2003/11/18 — 16:12 — page 169 — #187
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 169

of the filter and not by the length of the impulse response as is the case for the
FIR filter.

The computational efficiency of the FIR model can be improved by using DFT/
FFT operators to perform the convolution operation [2]. When using DFT/FFT
operators it is important to pay attention to the following:

1. DFT/FFT operators are periodic in nature and they produce circular or pe-
riodically convolved outputs. To obtain linearly convolved outputs, the input
sequence and the impulse response sequence must be zero-padded [2]. In or-
der to get the maximum computational efficiency, the extended length of the
padded vectors should be a power of two so that radix-2 FFT algorithms can
be utilized.

2. If the input sequence is very long, the input sequence is typically broken
up into smaller non overlapping blocks and convolution is performed for each
input block to find the corresponding output blocks, which are then overlapped
properly and added [2] to produce the overall output. If the length of the input
block is relatively short, say less than say 216 samples, the output block is
typically computed in “one shot”. Otherwise, an overlap and add approach is
recommended. The overlap and add method of DFT/FFT based convolution
can be performed using the MATLAB function fftfilt.

3. DFT/FFT based convolution is a block processing operation and the first
sample in the output block is produced only after sufficient input samples
have been accumulated to carry out the DFT/FFT operation. Because of
this built-in delay, DFT/FFT filters cannot typically be used to simulate a
filter that is part of a feedback loop.

It is well known that the computational efficiency of the time domain convolution
versus DFT based operation is proportional to log2 N/N . If the length of the
impulse response is less than 128 samples, there is not a significant difference in the
computational load between the time domain convolution and the DFT/FFT based
implementations.

The computational efficiency of FIR methods (both time domain and DFT/FFT
based convolution) improve if the length of the impulse response is shortened by
truncation. Truncation is equivalent to multiplying the impulse response h[k], k =
0.1.2 · · · , by a window function w[k] with a duration of N samples. The value of N
is typically chosen such that at least 98% of the total energy in h[n] is contained
within the window. In other words

N∑
k=0

|h[k]|2 = 0.98
∞∑

k=0

|h[k]|2 (5.62)

“TranterBook” — 2003/11/18 — 16:12 — page 170 — #188
�

�

�

�

�

�

�

�

170 Filter Models and Simulation Techniques Chapter 5

The simplest window function is the rectangular window function which zeroes out
the impulse response samples for k > N . In other words

w[k] =
{

1,
0,

0 ≤ k ≤ N
otherwise (5.63)

Many other window functions can be used. They are described in the literature.
Truncation (windowing) in time is equivalent to convolution in the frequency

domain, that is, HT (f) = H(f) � W (f), where, as always � denotes convolution.
Ideally the window function in the frequency domain should be defined by W (f) =
δ(f) since convolution with an impulse will not modify H(f). An impulse in the
frequency domain, however, corresponds to a constant in the time domain, which is
infinite in duration rather than finite in duration. Thus, the ideal characteristic in
the frequency domain gives rise to nonideal characteristics in the time domain. The
inverse is also true. The selection of a window function is therefore a compromise
and the resulting window introduces distortion. This distortion can be minimized
by the appropriate choice of a window function. The desirable characteristics of the
window function include (keep in mind that we would ideally like an impulse in the
frequency domain):

1. “narrow main lobe” in the frequency domain containing most of the energy

2. small side lobes

The most commonly used window functions are the Rectangular window, the Ham-
ming window, and the Kaiser window. In selecting a window function, the trade-off
is between minimizing signal distortion versus computational load of applying the
window.

5.5.1 Design from the Amplitude Response

A fundamental technique for designing FIR digital filters is based on the fact that
the frequency response (magnitude and phase) and the unit impulse response of the
filter are a Fourier transform pair. We typically derive the unit impulse response
by specifying a desired amplitude response A(f) and calculating the inverse Fourier
transform. The target amplitude response is usually specified to be real and even
so that the resulting unit impulse response is real and even. Since the impulse
response is even, it is noncausal and, in order to implement the system in the
time domain, the impulse response must be truncated so that it is of finite extent
and must be shifted in time so that it is causal. Truncating the impulse response
must be done with care in order not to introduce significant errors. The use of
appropriate windowing can often reduce the impact of these errors. Shifting the
impulse in time simply gives the filter a linear phase response equivalent to a group
delay equal to the time shift. This technique produces a filter with an arbitrary
amplitude response and a linear phase shift. If one desires a filter with both a target
amplitude and phase response, a complex transfer function is specified. The final
filter, assuming that the errors induced by truncation of the impulse response are

“TranterBook” — 2003/11/18 — 16:12 — page 171 — #189
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 171

not significant will, except for a constant group delay, satisfy both the amplitude
and phase response requirements of the target filter.

The amplitude response of a digital filter, which is a continous function of fre-
quency f , is periodic in the sampling frequency and can be expresed as a Fourier
series. The Fourier coefficients, which are discrete, give the impulse response of
the desired digital filter. As we will see in the following two examples, the impulse
response may be obtained by formally determining the inverse Fourier transform of
the desired frequency response or may be obtained by applying the inverse FFT to
a set of samples of the desired amplitude response. These techniques are very basic
and, if used with care, result in useful filter designs.

Since the amplitude response of a digital filter is periodic in the sampling fre-
quency, the amplitude response can be expanded in a Fourier series of the form

H(ej2πfT) =
M−1∑
n=0

h[n] exp(−j2πnfT) (5.64)

where h[n] represents the Fourier coefficients, M represents the length of the impulse
response and T = 1/fs. Note that (5.64) is precisely (5.6) with (5.4) used to
obtain the steady-state frequency response from the transfer function H(z). We
now assume that M = 2L + 1 for reasons that will be apparent later. With this
substitution and the change of index k = n − L we have

H(ej2πfT) =
L∑

k=−L

h[k + L] exp[−j2π(k + L)fT] (5.65)

or

H(ej2πfT) = exp(−j2πLfT)
L∑

k=−L

h[k + L] exp(−j2πkfT) (5.66)

which can be written in the form

H(ej2πfT) = exp(−j2πLfT)H1(ej2πfT) (5.67)

where

H1(ej2πfT) =
L∑

k=−L

h1[k] exp(−j2πkfT) (5.68)

Clearly h1[k] = h[k + L], which is the impulse response of the causal filter defined
by (5.64) shifted shifted L samples. Note that the filter defined by (5.68) is not
a casual filter. It is, however, very easy to design using basic Fourier techniques
and can be made causal by simply shifting the impulse response by an appropriate
amount. The amplitude response of the filters defined by h[n] and h1[n] will clearly
be identical and the transfer functions will differ only by a linear phase shift as
defined in (5.67). Thus we base our design procedure on (5.68).

“TranterBook” — 2003/11/18 — 16:12 — page 172 — #190
�

�

�

�

�

�

�

�

172 Filter Models and Simulation Techniques Chapter 5

Assume that a filter is to have a given amplitude response H1(ej2πfT) = A(f).
Multiplying both sides of (5.68) by exp(j2πmfT) gives

A(f) exp(j2πmfT) =
L∑

k=−L

h1[k] exp[j2π(m − k)fT] (5.69)

Integrating both sides of (5.69) over the simulation bandwidth, which is one period
of H1(ej2πfT), gives

L∑
k=−L

h1[k]I(m, k) =
∫ fs/2

−fs/2

A(f) exp(j2πmfT) df (5.70)

where

I(m, k) =
∫ fs/2

−fs/2

exp[j2π(m − k)fT] df (5.71)

Integrating, and recognizing that fsT = 1, yields

I(m, k) =
1
T

sinπ(m − k)
π(m − k)

=
1
T

δ(m − k) (5.72)

Substituting this result into (5.70) gives

h1[m] = T

∫ fs/2

−fs/2

A(f) exp(j2πmfT) df, −L ≤ m ≤ L (5.73)

This will be our basic design equation.

Example 5.8. In this example we design a digital lowpass filter that approximates
an ideal digital filter with a bandwidth of λfN = λfs/2, where fN is the Nyquist
rate, fs is the sampling frequency, and λ is a parameter between 0 and 1. Thus the
desired amplitude response is

A(f) =
{

1,
0,

|f | < λfs/2
otherwise (5.74)

From (5.73) we have

h1[m] = T

∫ λfs/2

−λfs/2

(1) exp(j2πmfT) df (5.75)

Performing the integration gives

h1[m] = T
1

πmT

1
j2

[exp(jπmλfsT) − exp(−jπmλfsT)] (5.76)

“TranterBook” — 2003/11/18 — 16:12 — page 173 — #191
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 173

Since fsT = 1, (5.76) can be written

h1[m] =
1

πm
sin(πmλ) (5.77)

Note that h1[0] = h[L] = λ.
The following MATLAB code is used to explore the preceding technique:

% File: c5 FIRdesign.m
L = 30; % 2L+1 total points
lam = 0.3; % normalized cutoff frequency
m = -L:1:L; % vector of points
bp = sin(pi*lam*(m+eps))./(pi*(m+eps)); % impulse response
stem(0:2*L,bp,‘.’) % plot impulse response
xlabel(‘Sample index’)
ylabel(‘Impulse response’)
figure; a = 1; freqz(bp,a) % plot amp and phase response
figure; subplot(2,1,1) % new figure
[H w] = freqz(bp,a);
plot(w/pi,abs(H)); grid; % unwindowed amp response
xlabel(‘Frequency (normalized to the Nyquist frequency = fs/2)’)
ylabel(‘|H(f)| (unwindowed)’)
subplot(2,1,2)
w = 0.54+0.46*cos(pi*m/L); % Hamming window
wbp = bp.*w; % apply window
[H w] = freqz(wbp,a);
plot(w/pi,abs(H)); grid; % windowed amp response
xlabel(‘Frequency (normalized to the Nyquist frequency = fs/2)’)
ylabel(‘|H(f)| (windowed)’)
% End of script file.

In the preceding code we have used L = 30 and λ = 0.3. Note that eps is added
to the index m in order to prevent an indeterminate form at m = 0. The required
shift of L = 30 samples to make the impulse causal is accomplised by the way in
which MATLAB indexes vectors.

The first output generated by the MATLAB program is the impulse response,
which is illustrated in Figure 5.11. Note that h[30] = 0.3 as determined earlier.
Note also that the impulse is even about the center weight at m = L = 30.

The amplitude and phase response of the FIR filter, generated using the MAT-
LAB command freqz in the default plot mode, is illustrated in Figure 5.12. As
expected, the filter has linear phase since the impulse response is even about the
center weight. The linear phase shift (constant group delay) results from shifting
the impulse response L samples to make the filter causal. The sawtooth-like phase
response in the stopband results from the sign changes in the amplitude response.

The magnitude response in the filter passband appears to be flat in Figure 5.12.
In order to verify this, the magnitude response is plotted a second time using a linear
scale in order to avoid the amplituder compression induced by the log scale. The
result is illustrated in the top pane in Figure 5.13. We see that there is considerable

“TranterBook” — 2003/11/18 — 16:12 — page 174 — #192
�

�

�

�

�

�

�

�

174 Filter Models and Simulation Techniques Chapter 5

0 10 20 30 40 50 60
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Sample index

Im
p

u
ls

e
 r

e
s

p
o

n
s

e

Figure 5.11 FIR filter impulse response.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2000

-1500

-1000

-500

0

Normalized frequency (Nyquist == 1)

P
h

a
s

e
 (

d
e

g
re

e
s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

Normalized frequency (Nyquist == 1)

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

 (
d

B
)

Figure 5.12 Amplitude and phase response of example filter.

“TranterBook” — 2003/11/18 — 16:12 — page 175 — #193
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Frequency (normalized to the Nyquist frequency = fs/2)

|H
(f

)|
 (

u
n

w
in

d
o

w
e

d
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Frequency (normalized to the Nyquist frequency = fs/2)

|H
(f

)|
 (

w
in

d
o

w
e

d
)

Figure 5.13 Effect of windowing.

ripple in the passband. This ripple is caused by truncating the impulse response by
multipling the impulse response by a rectangular window which, in the frequency
domain, is equivalent to convolving the ideal frequency response with sin(βf)/βf .
(The value of β is determined by the width of the window.) The passband ripple
resulting from the rectanglar window can be reduced by using a window function
that has a smoother transition from w[n] = 1 to w[n] = 0. (Recall that we desire
a window function that is more like an impulse function in the frequency domain.)
A simple and frequently used window function is the Hamming window defined by
the weights

w[n] = 0.54 + 0.46 cos
(πn

L

)
, −L ≤ n ≤ L (5.78)

Note that the window function w[n] must be shifted in time by L samples so that
w[0] is centered on h[n]. The result of using the Hamming window is illustrated in
the bottom pane of Figure 5.13. Note that both the passband and the stopband
ripple is supressed when the Hamming filter is used. �

Example 5.9. In this example we design a digital lowpass filter having the am-
plitude response of an analog Butterworth filter but also having linear phase. There

“TranterBook” — 2003/11/18 — 16:12 — page 176 — #194
�

�

�

�

�

�

�

�

176 Filter Models and Simulation Techniques Chapter 5

is no analog equivalent to this filter. The Butterworth filter is defined by the am-
plitude response

A(f) =
1√

1 + (f/fc)
n (5.79)

where fc is the bandwidth, or 3-dB frequency and n is the order of the filter. The
next step is to sample the frequency response. The frequency response samples are
given by

A(fk) =
1√

1 + (fk/fc)
n (5.80)

An inverse FFT operation is then performed on these frequency samples to gen-
erate the impulse response. Keep in mind that, for an N -point inverse FFT, the
negative time samples will appear in the returned vector with index ranging from
(N/2) + 1 to N and must be reindexed to give the proper impulse response. The
code for computing the impulse response samples for a linear phase filter having a
Butterworth amplitude response follows.

% File: c5 firbutter.m
order = 30; fc =5; % set filter parameters
fmax = 100; % set max frequency
npts = 256; % set number of samples
f = (0:(npts-1))*(fmax/(npts-1)); % frequency vector
nn = 2*npts; % size ifft
H = zeros(1,nn); % initialize vector
Ha = 1./(sqrt(1+(f/fc).^order)); % amplitude response
H = [Ha 0 fliplr(Ha(2:npts))]; % even amplitude response
[cimp resp] = ifft(H,nn); % complex impulse response
imp resp = real(cimp resp); % take real part
aa = imp resp(1:npts); % time > = 0
bb = imp resp((npts+1):nn); % time < 0
reimpulse = [bb aa]; % real and even imp. resp.
plot(reimpulse) % plot result
% End of script file.

The impulse response is illustrated in Figure 5.14 for order = 1 and order =
30. The response is a two-sided decreasing exponential (two-sided since we assumed
the amplitude response A(f) real). For order = 30, the impulse response should
closely approximate a sinc function since a Butterworth filter of very high order is
a good approximation of an ideal (brick wall) filter. Thus the results illustrated in
Figure 5.14 appear correct.

In practice one would wish to minimize the computational burden in a simula-
tion by minimizing the number of weights (bk terms) used to represent the impulse
response. Minimizing the number of weights minimizes the number of multiply op-
erations and the number of stages in the tapped delay line (shift register). It appears

“TranterBook” — 2003/11/18 — 16:12 — page 177 — #195
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 177

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

Sample Index

 A
m

pl
it

ud
e

0 100 200 300 400 500 600
-0.02

0

0.02

0.04

0.06

Sample Index

 A
m

pl
it

ud
e

order = 1

order = 30

Figure 5.14 Filter synthesis results—impulse responses

that many of the weights in the order = 1 impulse response are approximately zero
and can therefore be eliminated with negligible impact on the amplitude response.
The same may be true (but to a lesser extent) in the order = 30 impulse response.
One therefore should window the impulse response with a rectangular window,
having sufficient width to contain all significant terms in the impulse response, and
discard those terms outside the window. �

5.5.2 Design from the Impulse Response

The previous example, in which the digital filter was synthesized from the spec-
ification of the amplitude and phase response characteristics, is an application of
frequency sampling. In many applications, an analytical expression is known for the
impulse response of the filter. When this is the case, sampling the impulse response
gives results in an FIR filter design. This is particularly true of filters used to form
the pulse shape to be used for signal transmission. In this case the data is viewed as

“TranterBook” — 2003/11/18 — 16:12 — page 178 — #196
�

�

�

�

�

�

�

�

178 Filter Models and Simulation Techniques Chapter 5

a sequence of impulses separated in time by the pulse duration, T . For the binary
case we have

d(t) =
∑

k

dkδ(t − kT) (5.81)

where dk = 1 for a binary 1 and dk = −1 for a binary 0. Passing this through a
pulse-shaping filter having impulse response p(t) gives the waveform

x(t) =
∑

k

dkp(t − kT) (5.82)

The following example gives two common examples.

Example 5.10. The pulse shape p(t) used for data transmission is often chosen to
be a pulse shape satisfying the Nyquist zero-ISI (intersymbol interference) property
[3, 4, 5]. One example of a zero-ISI pulse shape is the raised cosine pulse given, in
the frequency domain, by

P (f) =

T,
T
2

[
1 + cos πT

β

(
|f | − 1−β

2T

)]
,

0,

0 ≤ |f | ≤ 1−β
2T

1−β
2T < |f | ≤ 1+β

2T

|f | > 1−β
2T

(5.83)

where T is the pulse duration or symbol time. Taking the inverse Fourier transform
gives the pulse shape

p(t) =
sin πt/T

πt/T

cos(πβt/T)
1 − 4β2t2/T 2

(5.84)

This is clearly a noncausal pulse. Typically one delays the pulse by an integer
number of symbol periods, say mT , and truncates the pulse to 2mT . The value
of m is a tradeoff between convenience and accuracy requirements. We then take
k samples per symbol period so that T = kTs where Ts is the sampling period.
Replacing t by t − td = t − mT , letting t = nTs and T = kTs yields

t

T
→ nTs − mkTs

kTs
=

n

k
− m (5.85)

Making this substitution in (5.84) gives the sample sequence

p[n] =
sin π{(n/k) − m}

π{(n/k) − m}
cos(πβ{(n/k) − m}

1 − 4β2{(n/k)− m}2
, 0 ≤ n ≤ 2m (5.86)

representing the impulse response of the digital filter.
In order to illustrate the raised cosine response, we let x[n] = δ[n − 1] be the

input to a filter having the impulse response p[n]. The output is

y[n] = p[n] � x[n] = p[n − 1] (5.87)

“TranterBook” — 2003/11/18 — 16:12 — page 179 — #197
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 179

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

A
m

p
lit

u
d

e

Figure 5.15 Raised cosine pulse example.

The result is illustrated in Figure 5.15 for β = 0.32, k = 10 samples per symbol
and m = 4 symbols. It can clearly be seen that p[n] is identically equal to zero at
integer multiples of the assumed pulse duration T = 1. The MATLAB program
used to generate Figure 5.15 is given in Appendix A.

In many system designs the transfer function P (f) is realized as the cascade of
two filters with each having the transfer function

√
P (f). One of these filters is

part of the transmitter and the other filter is part of the receiver. This gives

pSQRC(t) = 4β
cos[(1 + β)πt/T] + sin[(1 − β)πt/T](4βt/T)−1

π
√

T [1 − 16β2t2/T 2]
(5.88)

The substitution defined by (5.85) can be applied to implement the delay and
sampling operations. The result is

pSQRC [n] =

4β
cos{(1 + β)π[(n/k) − m]} + sin{(1 − β)π[(n/k) − m]}{4β[(n/k)− m]}−1

π
√

T [1 − 16β2[(n/k) − m]2]
(5.89)

“TranterBook” — 2003/11/18 — 16:12 — page 180 — #198
�

�

�

�

�

�

�

�

180 Filter Models and Simulation Techniques Chapter 5

2 3 4 5 6 7 8
-0.5

0

0.5

1

1.5

Time

p
[n

-1
]

6 7 8 9 10 11 12
-5

0

5

10

Time

c
o

n
v(

p
[n

-1
],

p
[n

])

Figure 5.16 Square root raised cosine pulse.

Figure 5.16 (top pane) illustrates the response of the filter having the impulse
response pSQRC [n] to input δ[n − 1]. This is

pSQRC [n] � δ[n − 1] = pSQRC [n − 1] (5.90)

The filter parameters are β = 0.32, k = 10 samples per symbol, T = 1, and m = 4
symbols. Note that the zero crossings do not exactly occur at integer multiples of
T = 1. The bottom pane of Figure 5.16 illustrates the convolution of the sample
sequence shown in the top frame with pSQRC [n]. This essentially represents the
convolution of pSQRC [n] with itself and is the equivalent of two SQRC filters in
cascade. Note that the zero crossings now fall at integer multiples of T = 1, since
the cascade combination of two SQRC filters is a zero-ISI filter. The MATLAB
program used to compute these results is given in Appendix B. �

5.5.3 Implementation of FIR Filter Simulation Models

We have seen that FIR models play a central role in the simulation of communication
systems. In the previous sections, design techniques were demonstrated for the case
in which the transfer function, or the impulse response, were known analytically so

“TranterBook” — 2003/11/18 — 16:12 — page 181 — #199
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 181

that they could be sampled. Another important use of the FIR simulation model is
during the later stages of a design process. At this point, filters may have already
been designed and built and so that the measured frequency response is available.
FIR simulation models are especially suitable for simulating filters whose frequency
response is given in empirical form (measured or otherwise).

Let us look at the important steps involved in simulating a filter whose frequency
response is arbitrary and is specified empirically in table form (this data is usually
obtained from network analyzer measurements). The first step is the selection of two
key parameters, namely, the sampling rate and the time duration of the truncated
impulse response. These parameters for implementing an FIR filter must be chosen
carefully in order to minimize the computational complexity while at the same time
providing satisfactory resolution in both the time and the frequency domains. The
guidelines for choosing these parameters are:

• The sampling rate, fs typically satisfies fs > 16B to 32B, where B is the
bandwidth of the filter. The time resolution, the time between samples, Ts is
then 1/fs.

• The frequency resolution, ∆f is 1/(NTs) where N = fs/∆f . The preferred
value is between B/64 and B/32.

• The number of samples/symbol is a integer, which is typically a power of 2.
The minimum value is 8.

• The duration of the impulse response is typically 8 to 16 symbols.

These considerations will typically lead to N = 1024, where N is the number of
filter taps or the number of samples of the impulse response. After choosing the
key parameters fs and N (and hence Ts and ∆f) we then preprocess the given
frequency response data and implement the simulation model.

The first step in the implementation of the model involves the preprocessing of
the frequency-response data. This step consists of applying a bandpass-to-lowpass
transformation (if the filter is a bandpass filter), resampling the frequency response
data, and converting group delay to phase by numerically integrating the group
delay data. The bandpass-to-lowpass transformation is simply a relabeling of the
frequency axis (f1 = f − fc).

This operation may result in a lowpass equivalent that does not have conjugate
symmetry about f = 0. In this case the impulse response of the lowpass equivalent
filter may be complex valued. As a practical example, this effect occurs when the
bandpass-to-lowpass transformation is applied to a vestigal sideband filter.

The second step (resampling) will be necessary, for example, if the network
analyzer measurements are given at frequency points different from those to be used
in the FIR implementation. For example suppose that 100 samples of the frequency
response are collected using the network analyzer and the FIR implementation is
to be based on N = 1024 samples. The frequency response in this case must be
interpolated. A simple linear interpolation will be adequate in most cases [1]. The
last step is the conversion of group delay response to phase response. Again, group

“TranterBook” — 2003/11/18 — 16:12 — page 182 — #200
�

�

�

�

�

�

�

�

182 Filter Models and Simulation Techniques Chapter 5

delay data can be converted to phase response by numerically integrating the group
delay over frequency.

Once the frequency response of the lowpass equivalent version of the filter is
available, the MATLAB implementation of the FIR model consists of the following
steps:

1. Extend the frequency response data to −fs/2 to fs/2, and obtain sampled
values of the transfer function H(f), −fs/2 < f < fs/2 where f = k∆f ,
k = −N/2 to N/2−1, where ∆f is the resolution in frequency domain (∆f =
1/(NTs).

2. Move the negative frequency portion of H(f) to N/2 + 1 to N so that the
frequency response is now contained in H(k∆f), k = 1, 2, · · · , N .

3. Take the inverse FFT to obtain the impulse response [the sampling rate in
time domain will be Ts = 1/(N∆f)].

4. Apply a window to the impulse response if necessary (make sure that the
impulse response is “rotated” properly, and centered within the window func-
tion). Normalize the windowed impulse response to have unit energy.

After the truncated impulse response is obtained, the filter can be simulated in
MATLAB using the filter function with parameters a = 1 and b = h, where h
is the impulse response array, that is, the filter output is computed using output
= filter (b,a,input). If the input sequence is very long, the output can be
computed using the function output = fftfilt(b,input,N), which implements
the FIR filter in blocks using the overlap and add method with a block size of N as
mentioned previously.

The following MATLAB example shows how to simulate a 125 MHz bandpass
channelizing filter used in satellite applications. The measured characteristics of
the data are given in terms of amplitude response and delay characteristics (see
Appendix C).

Example 5.11. The MATLAB program for designing an FIR filter using the
technique just described is contained in Appendix C. The measured data upon
which the design is based is also contained in Appendix C (Tables 5.4 and 5.5).
The results are illustrated in Figures 5.17 and 5.18 with Figure 5.17 illustrating
the windowed and unwindowed impulse responses and Figure 5.18 illustrating the
windowed and unwindowed amplitude responses. The windowed and unwindowed
responses are plotted separately since they match almost perfectly and they would
be indistinguishable from each other if plotted together. The only significant dif-
ference between the two amplitude responses is the flat region in the neighborhood
of sample index 150 to 200. The attenuation is slightly greater when the Hamming
window is used. �

“TranterBook” — 2003/11/18 — 16:12 — page 183 — #201
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 183

0 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time Sample Index

F
ilt

e
r

Im
p

u
ls

e
 R

e
s

p
o

n
s

e

0 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time Sample Index

W
in

d
o

w
e

d
 F

ilt
e

r
Im

p
u

ls
e

 R
e

s
p

o
n

s
e

Figure 5.17 Impulse responses (unwindowed and windowed).

-400 -200 0 200 400
-60

-50

-40

-30

-20

-10

0

Frequency Sample Index

F
re

q
u

e
n

c
y

 R
e

s
p

o
n

s
e

-400 -200 0 200 400
-60

-50

-40

-30

-20

-10

0

Frequency Sample Index

W
in

d
o

w
e

d
 F

re
q

u
e

n
c

y
 R

e
s

p
o

n
s

e

Figure 5.18 Amplitude responses (unwindowed and windowed).

“TranterBook” — 2003/11/18 — 16:12 — page 184 — #202
�

�

�

�

�

�

�

�

184 Filter Models and Simulation Techniques Chapter 5

5.5.4 Computer-Aided Design of FIR Digital Filters

The most popular of the CAD techniques for FIR filter design is the Parks-McClellan
algorithm, which is applicable to filters whose ideal amplitude response characteris-
tic is piecewise constant. As an example of the application of the Parks-McClellan
algorithm consider again the synthesis of the channelizing filter having the ampli-
tude response characteristic shown in Figure 5.9. The Parks-McClellan algorithm
makes use of a Chebyshev polynomial fit to the desired amplitude response and
is an equiripple approximation to the desired amplitude response. That is, on a
linear scale, the amplitude of the passband and the stopband ripples are equal. The
optimization is in the minimax sense in that the maximum error is minimized.

Example 5.12. As an example of computer-aided design of FIR filters and the
Parks-McClellan algorithm, consider the desired amplitude response shown in Fig-
ure 5.9. The MATLAB program for determining the impulse of the desired filter
follows:

% File: c5 pmc.m
order = 50, % points in impulse response
f = [0 0.1 0.12 0.23 0.25 0.35 0.37 1]; % frequency points
amp = [1 1 0 0 1 1 0 0]; % amplitude response
b = remez(order,f,amp); % synthesize filter
stem(b,‘.k’) % plot impulse response
xlabel(‘Sample Index’) % label x axis
ylabel(‘Amplitude’) % label y axis
pause % pause
freqz(b,1) % plot results
% End of script file.

Note that the vectors designating the frequency points and the desired amplitude
response at those frequency points are common to both the IIR and FIR filter
synthesis programs.

Executing the program yields the impulse response illustrated in Figure 5.19.
Note that there are 51 terms in the impulse response, corresponding to order =
50, and that the impulse response is even about the center term. Implementation
of the filter takes the form of a TDL with the values illustrated in Figure 5.19 as
the tap weights. Design of the filter can be performed “off line” or it can be linked
directly to the simulation program so that the filter design process becomes part of
the simulation process.

The amplitude and phase response of the digital filter are illustrated in Figure
5.20. Note the passband and the stopband ripple, which is characteristic of the
Parks-McClellan design process. We see that the stopband attenuation is almost
20 dB. The stopband attenuation could be increased by increasing the order of the
filter. Increasing the order of the filter will also reduce the passband ripple. The
required filter order is determined by the allowable passband ripple (small passband
ripple requires a higher-order filter), the stopband attenuation (greater stopband
attenuation requires a higher-order filter), and the width of the transition bands

“TranterBook” — 2003/11/18 — 16:12 — page 185 — #203
�

�

�

�

�

�

�

�

Section 5.5. FIR Filters: Synthesis Techniques and Filter Characteristics 185

0 10 20 30 40 50 60
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sample Index

A
m

p
lit

u
d

e

Figure 5.19 Impulse response of example FIR filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-800

-600

-400

-200

0

Normalized frequency (Nyquist == 1)

P
h

a
s

e
 (

d
e

g
re

e
s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-60

-40

-20

0

20

Normalized frequency (Nyquist == 1)

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

 (
d

B
)

Figure 5.20 Amplitude and phase response of example FIR filter.

“TranterBook” — 2003/11/18 — 16:12 — page 186 — #204
�

�

�

�

�

�

�

�

186 Filter Models and Simulation Techniques Chapter 5

(narrow transition bands require a higher-order filter). Typically design using the
Parks-McClellan process is an iterative process in which specifications are adjusted
within allowable limits in the hope that an impulse response with a reasonable
length will result.

Since the impulse response takes the form of a delayed even function, the phase
response will be linear as can be seen in Figure 5.20. The 180-degree jumps in the
phase response correspond to the sign changes in the amplitude response as the
amplitude response goes through zero (−∞ dB). The slope of the phase response,
the group delay of the filter, is determined by the delay required to make the impulse
response causal. �

5.5.5 Comments on FIR Design

As previously mentioned, FIR filters can be designed that have no analog equiva-
lent. This is of increasing importance since communications systems are becoming
more software based with filtering operations performed digitally. In terms of im-
plementation, the most important advantages and disadvantages are given in Table
5.2. Figure 5.21 summarizes FIR filter design and simulation techniques. Note that
design may be performed using either time-domain or frequency-domain data. A
time-domain simulation or a frequency-domain simulation may result from either
choice of design data.

Table 5.2 Advantages and Disadvantages of FIR Filter Implementation Techniques

Implementation Advantages Disadvantages
Time Domain Simple implementation Time consuming for long

impulse response
sequences

Frequncy Domain Fast processing
Easy to design using
frequency response data

Introduces artificial delay
equal to FFT block
length
Cannot be used in
systems with feedback

CAD Methods Leads to linear phase
filters

Long impulse responses
typical

5.6 Summary

In this chapter we considered the design of digital filters for use in simulations.
A number of techniques are available for this task and each technique has both
advantages and disadvantages. Design can proceed from an analog prototype or one
can design a digital filter for which no analog prototype exists. In addition, digital
filter design can be accomplished using a time-domain criterion or a frequency-
domain criterion. The basic filter classifications are IIR and FIR. The technique that
is selected for a given simulation is often dictated by experience and insight rather

“TranterBook” — 2003/11/18 — 16:12 — page 187 — #205
�

�

�

�

�

�

�

�

Section 5.6. Summary 187

Lowpass equivalent impulse
response

(Interpolate and resample)

Truncate and window

Frequency domain filter data in
tabular form

(Interpolate and resample)

Transform to lowpass equivalent

Compute impulse response and
window

Use time-domain
discrete convolution

Pad impulse response for
linear convolution

Compute frequency
response using FFT

Use FFT for frequency
domain filtering

Time-domain simulation

Frequency-domain simulation

Time-domain design

Frequency-domain design
DESIGN

SIMULATION

Figure 5.21 FIR filter design and simulation techniques.

than by any specific analytical technique. Thus, selection of a given methodology
for representing filters in a simulation is, as discussed in Chapter 2, often more
“art” than “science.”

The transposed Direct Form II filter structure is almost universally used rep-
resenting IIR filters in simulation applications. The reason for this lies in the fact
that unit delays, the basic building block of filter structures, can be implemented

“TranterBook” — 2003/11/18 — 16:12 — page 188 — #206
�

�

�

�

�

�

�

�

188 Filter Models and Simulation Techniques Chapter 5

through the order in which filter states are called in a simulation program. Use of
the transposed Direct Form II structure results in very fast execution of the filter
program.

The most common techniques for designing IIR filters based on analog proto-
types are the impulse-invariant method, the step-invariant method, and the bilinear
z-transform method. The first two of these techniques, impulse invariance and step
invariance, are time-domain synthesis techniques, since the goal is to match the
impulse or step response of the digital filter to the impulse response or step re-
sponse of the analog prototype. The resulting frequency response of the digital
filter, when compared to the frequency response of the analog prototype, exhibits
errors due to aliasing. This effect is worse in the impulse-invariant digital filter than
in the step-invariant digital filter, which is why the step-invariant filter is frequently
preferred in simulation applications. In order to minimize aliasing errors, the sam-
pling frequency must be increased. The bilinear z-transform synthesis technique is
a frequency-domain synthesis method, since one attempts to match the frequency
response of the digital filter to the frequency response of the analog prototype. This
frequency response matching can be accomplished only at a limited number of fre-
quencies (usually two). Errors result because of frequency warping. These errors
can be minimized by choosing a sampling frequency much higher than the highest
critical frequency in the filter. We see that increasing the sampling frequency is
a general requirement for reducing the effect of the error sources inherent in the
various synthesis techniques. This, in turn, increases the execution time for the
simulation. Thus, we have a tradeoff between simulation run time and error.

A special case of IIR synthesis, based on the bilinear z-transform, was the trape-
zoidal integrator. We will see in the following chapter that, by using digital inte-
gration, we have the capability to simulate any system described by a differential
equation. Numerical integration, based on the trapezoidal integration technique,
will be used frequently in the work to follow.

FIR digital filters are typically realized in the time domain using a shift register
architecture, often referred to as a transversal delay line. In the frequency domain
FIR filters are implemented by taking the Fourier transform of the desired ampli-
tude response. This can obviously be implemented using the FFT. Several design
techniques for FIR filters were considered. One technique is to sample the target fre-
quency response and inverse transform the samples to obtain the impulse response.
If the impulse response of an analog filter is known, it may be sampled in order to
define the digital filter. A technique for designing a FIR filter using measured data
was also demonstrated. The other technique was based on computer-aided design.
The Parks-McClellan algorithm is the most common computer-aided design method
and results on a filter that is perfectly linear phase.

The most important simulation advantages and disadvantages of IIR and FIR
filters are summarized in Table 5.3.

“TranterBook” — 2003/11/18 — 11:36 — page 189 — #207
�

�

�

�

�

�

�

�

Table 5.3 Advantages and Disadvantages of IIR and FIR Filters

Filter Type Advantages Disadvantages
IIR Fast execution

Simple design using analog
prototypes

An analog prototype
typically required
Phase response is typically
disregarded
Errors due to aliasing or
frequency warping are often
significant

FIR Arbitrary amplitude and
phase responses are easily
modeled

Impementation using direct
convolution is insfficient
(excessive simulation time)
FFT implementation is often
complicated and leads to
artificial delay due to block
processing
Errors due to aliasing and
truncation of the impulse
response are often significant

5.7 Further Reading

A number of textbooks have been written that provide details on the design of
digital filters. The following is just a small sampling.

A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing, Upper Sad-
dle River, NJ: Prentice Hall, 1989.

S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, New York:
McGraw-Hill, 1998.

A. Antoniou, Digital Filters: Analysis, Design and Applications, New York: McGraw-
Hill, 1993.

R. W. Hamming, Digital Filters, 3rd ed., Upper Saddle River, NJ: Prentice Hall,
1989.

5.8 References

1. R. E. Ziemer, W. H. Tranter, and D. R. Fannin, Signals and Systems: Con-
tinuous and Discrete, 4th ed., Upper Saddle River, NJ: Prentice Hall, 1998.

2. A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1989.

3. T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall PTR, 2002.

Section 5.8. References 189

“TranterBook” — 2003/11/18 — 16:12 — page 190 — #208
�

�

�

�

�

�

�

�

190 Filter Models and Simulation Techniques Chapter 5

4. G. L. Stuber, Principles of Mobile Communication, Boston: Kluwer, 1996.

5. J. D. Gibson, ed., The Communications Handbook, Boca Raton, FL: CRC
Press and IEEE Press, 1997.

5.9 Problems

5.1 Show that the two structures shown in Figure 5.2 have the same transfer
function.

5.2 Develop a MATLAB program to compare (5.47) and (5.51). Plot the ampli-
tude responses and explain any differences.

5.3 Derive and plot the amplitude and phase responses for the filters shown in
Figure 5.5 assuming a sampling frequency of 200 Hz. Show that the aliasing
error is reduced by increasing the sampling frequency from 100 Hz to 200 Hz.

5.4 Add to Figure 5.5 the amplitude response of the analog prototype on which
the three digital filters are based.

5.5 Use the MATLAB commands impinvar to design the impulse-invariant filter
discussed in Example 5.1 and the MATLAB program bilinear to design
the bilinear z-transform filter discussed in Example 5.3. By examining the
coefficients of the numerator and denominator, as generated by the MATLAB
program, compare the results.

5.6 Figure 5.6 compares the amplitude response of three digital filters with the
analog prototype from which they were derived. Supplement the MATLAB
program with the code required to generate the phase responses of the four
filters. Plot and compare the phase responses.

5.7 A linear filter used in a simulation is defined by the two coefficient vectors

a = [1.0000 − 1.8777 1.6181 − 0.5724]

and

b = [0.0210 0.0630 0.0630 0.0210]

The sampling frequency is 100 Hz. Define the filter by determining the filter
type and all revelent parameters (order, bandwidth,etc.). Document how this
is accomplished and show all steps in the analysis.

5.8 Repeat the preceding problem assuming that the two coefficient vectors are

a = [1.0000 − 2.6649 3.2814 − 2.0817 0.5798]

and

b = [0.0051 0.0203 0.0304 0.0203 0.0051]

As before, the sampling frequency is 100 Hz.

“TranterBook” — 2003/11/18 — 16:12 — page 191 — #209
�

�

�

�

�

�

�

�

Section 5.9. Problems 191

5.9 Consider the program for generating the impulse response of a FIR digital
filter having the amplitude response of an analog Butterworth filter. It was
pointed out in the discussion that the digital filter will have linear phase.
Show this by determining and plotting the phase response of the filter for
order=1 and order=30.

5.10 Plot the amplitude and phase responses of the filters defined by (5.47) and
(5.51). Discuss the results.

5.11 Plot the impulse response of a raised cosine filter given by (5.84) β = 0.2, 0.5,
0.7, and 0.9.

5.12 Plot the impulse response of a square root raised cosine filter given by (5.88)
β = 0.2, 0.5, 0.7, and 0.9.

5.13 An ideal lowpass filter is defined by

A(f) =
{

1,
0,

|f | < 20 Hz
|f | > 22 Hz

The transition band is defined by 20 < |f | < 22.

(a) Using the Parks-McClellen algorithm, design a digital filter that approx-
imates the given analog filter.

(b) Assume a sampling frequency of 100 Hz and let the order of the filter be
50. Plot the frequency and phase response and measure the passband
ripple and the stopband ripple.

(c) Now assume that the transition band is defined by 20 < |f | < 25. What
filter order is required to give the same passband and stopband ripple as
was determined in (b).

5.14 Determine the Fourier transform of the amplitude response of the channelizing
filter illustrated in Figure 5.9. Determine the amplitude response that results
using a 51 point series expansion of the desired amplitude response. Com-
pare this result with the result obtained using the Parks-McClellan synthesis
technique (Example 5.12). Comment on the results.

5.15 Design an FIR digital filter to simulate a VSB (vestigal side band) bandpass
filter using the approach demonstrated in Example 5.10. The amplitude re-
sponse to be approximated is illustrated in Figure 5.22. Note that VSB filters
have an amplitude response that is nonsymmetrical about the carrier.

“TranterBook” — 2003/11/18 — 16:12 — page 192 — #210
�

�

�

�

�

�

�

�

192 Filter Models and Simulation Techniques Chapter 5

H f()

−960 960−1020 10200
 f (MHz)

Figure 5.22 Amplitude response for Problem 5.15.

5.10 Appendix A: Raised Cosine Pulse Example
5.10.1 Main program c5 rcosdemo.m

% File: c5_rcosdemo.m
k = 10; % samples per symbol
m = 4; % delay
beta = 0.32; % bandwidth factor
h=rcos(k,m,beta); % impulse response
in = zeros(1,101); in(11) = 1; % input
out = conv(in,h); % output
t = 0:0.1:10; % time vector for plot
stem(t,out(1:101),‘.’) % plot output}
grid
xlabel(‘Time’)
ylabel(‘Amplitude’)
% End of script file.

5.10.2 Function file c5 rcos.m

% File: c5_rcos.m
function h=rcos(k,m,beta)
% k - samples per symbol
% m - delay is mT
% beta - bandwidth factor
%
beta = beta;
n = 0:2*m*k;
z = (n/k)-m+eps;
t1 = cos(beta*pi*z);
t2 = sin(pi*z)./(pi*z);
t3 = 1-4*beta*beta*z.*z;
h = t2.*t1./(t3);
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 193 — #211
�

�

�

�

�

�

�

�

Section 5.11. Appendix B: Square Root Raised Cosine Pulse Example 193

5.11 Appendix B: Square Root Raised Cosine Pulse Example

5.11.1 Main Program c5 sqrcdemo.m

% File: c5_sqrcdemo.m
T = 1; % symbol time
k = 10; % samples per symbol
m = 4; % delay
beta = 0.32; % bandwidth factor
h=sqrc(T,k,m,beta); % impulse response
in = zeros(1,101); in(11) = 1; % input
out = conv(in,h); % output h[10]
out1 = conv(out,h); % conv of h[n-10] and h[n]
t = 2:0.1:8; % time vector for plot
subplot(2,1,1)
stem(t,out(21:81),‘.’) % plot h[n-10]
grid
xlabel(‘Time’)
ylabel(‘h[n-10]’)
subplot(2,1,2)
t = 6:0.1:12; % time vector for plot
stem(t,out1(61:121),‘.’) % plot conv of h[n-10] and h[n]
grid
xlabel(‘Time’)
ylabel(‘conv(h[n-10],h[n])’)
% End of script file.

5.11.2 Function file c5 sqrc.m

% File: c5_sqrc.m
function h=sqrc(T,k,m,beta)
% T - symbol time
% k - samples per symbol
% m - delay is mT
% beta - bandwidth factor
%
n = 0:2*m*k;
z = (n/k)-m+eps;
t1 = cos((1+beta)*pi*z);
t2 = sin((1-beta)*pi*z);
t3 = 1./(4*beta*z);
den = 1-16*beta*beta*z.*z;
num = t1+t2.*t3;
c = 4*beta/(pi*sqrt(T));
h = c*num./den;
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 194 --- #212
�

�

�

�

�

�

�

�

194 Filter Models and Simulation Techniques Chapter 5

5.12 Appendix C: MATLAB Code and Data
for Example 5.11

The code in Appendix C implements MATLAB Example 5.11.

Main Program: c5 FIRFilterExample.m (script file)

Called Functions: FIR Filter AMP Delay.m, Log psd.m, shift ifft.m

Note 1: The filter data is given in Tables 5.4 and 5.5.
Note 2: hamming.m is a MATLAB library function.

Table 5.4 Negative Frequency Data

Freq. |H(f)|2 Grp.Del. Freq. |H(f)|2 Grp.Del.
−500.0 −60.0 33.3333 −54.0 −2.2 10.6667
−400.0 −60.0 33.3333 −52.0 −1.8 7.4667
−380.0 −60.0 33.3333 −50.0 −1.5 5.6667
−360.0 −60.0 33.3333 −48.0 −0.24 4.0000
−340.0 −60.0 33.3333 −46.0 −0.1 3.0000
−320.0 −60.0 33.3333 −44.0 −0.04 2.0000
−300.0 −60.0 33.3333 −42.0 0.0 1.4000
−280.0 −60.0 33.3333 −40.0 0.08 0.8000
−260.0 −60.0 33.3333 −38.0 0.12 0.5333
−240.0 −60.0 33.3333 −36.0 0.14 0.2667
−220.0 −60.0 33.3333 −34.0 0.16 0.1333
−200.0 −60.0 33.3333 −32.0 0.19 0.0
−180.0 −60.0 33.3333 −30.0 0.2 0.0
−160.0 −60.0 33.3333 −28.0 0.2 0.0
−140.0 −60.0 33.3333 −26.0 0.2 0.0
−120.0 −60.0 33.3333 −24.0 0.18 0.0
−100.0 −60.0 33.3333 −22.0 0.17 0.0
−80.0 −50.0 33.3333 −20.0 0.16 0.0
−70.0 −40.0 33.3333 −18.0 0.15 0.0
−69.0 −30.0 31.6667 −16.0 0.14 0.0
−68.0 −25.0 30.0000 −14.0 0.13 0.0
−66.0 −20.0 26.6667 −12.0 0.12 0.0
−64.0 −15.0 24.3333 −10.0 0.11 0.0
−62.5 −10.0 22.6667 −8.0 0.1 0.0
−62.0 −8.0 20.0000 −6.0 0.06 0.0
−60.0 −6.0 18.3333 −4.0 0.04 0.0
−58.0 −4.5 16.6667 −2.0 0.02 0.0
−56.0 −3.0 14.1333

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 195 --- #213
�

�

�

�

�

�

�

�

Section 5.12. Appendix C: MATLAB Code and Data for Example 5.11 195

Table 5.5 Positive Frequency Data

Freq. |H(f)|2 Grp. Del. Freq. |H(f)|2 Grp. Del.
0.0 0.0 0.0 56.0 −1.2 12.6667
2.0 0.0 0.0 58.0 −1.6 14.3333
4.0 0.0 0.0 60.0 −2.04 18.6667
6.0 −0.02 0.0 62.0 −2.5 20.3333
8.0 −0.02 0.0 62.5 −3.0 22.0000
10.0 −0.02 0.0 64.0 −4.0 24.3333
12.0 −0.02 0.0 66.0 −6.0 26.6667
14.0 −0.01 0.0 68.0 −8.0 30.0000
16.0 0.0 0.0 69.0 −10.0 33.3333
18.0 0.01 0.0 70.0 −12.0 33.3333
20.0 0.02 0.0 80.0 −40.0 33.3333
22.0 0.025 0.0 100.0 −50.0 33.3333
24.0 0.03 0.0 120.0 −50.0 33.3333
26.0 0.04 0.0 140.0 −50.0 33.3333
28.0 0.06 0.0 160.0 −50.0 33.3333
30.0 0.06 1.0000 180.0 −50.0 33.3333
32.0 0.06 1.2667 200.0 −50.0 33.3333
34.0 0.06 1.5000 220.0 −50.0 33.3333
36.0 0.06 1.6667 240.0 −50.0 33.3333
38.0 0.01 2.0000 260.0 −50.0 33.3333
40.0 −0.02 3.0000 280.0 −50.0 33.3333
42.0 −0.1 3.5000 300.0 −50.0 33.3333
44.0 −0.16 4.0000 320.0 −50.0 33.3333
46.0 −0.3 5.2000 340.0 −50.0 33.3333
48.0 −0.46 6.5000 360.0 −50.0 33.3333
50.0 −0.7 8.0000 380.0 −50.0 33.3333
52.0 −0.804 9.3333 400.0 −50.0 33.3333
54.0 −1.2 10.6667 500.0 −50.0 33.3333

5.12.1 c5 FIRFilterExample.m

% File: c5_FIRFilterExample.m
fscale=1; fshift=0.0; dscale = 1000; % scaling parameters
c5_Filter_Data; % load data
Freq_Resp = data; fs = 900; filtsize = 512; ts = 1/fs;
[himp time] = FIR_Filter_AMP_Delay(Freq_Resp,fs,filtsize,fscale,...

fshift,dscale);

%
% Apply a window
%

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 196 --- #214
�

�

�

�

�

�

�

�

196 Filter Models and Simulation Techniques Chapter 5

nw = 256; window1 = hamming(nw); window = zeros(filtsize,1);
%
% Make sure the window is centered properly
%
wstart = (filtsize/2)-(nw/2); wend = (filtsize/2)+(nw/2)-1;
window(wstart:wend) = window1;
impw = himp.*window’;
%
figure; subplot(1,2,1); plot(abs(himp)); grid;
xlabel(‘Time Sample Index’); ylabel(‘Filter Impulse Response’);
subplot(1,2,2); plot(abs(impw)); grid;
xlabel(‘Time Sample Index’); ylabel(‘Windowed Filter Impulse...

Response’);
[logpsd,freq,ptotal,pmax] = log_psd(himp,filtsize,ts);
[logpsdw,freq,ptotal,pmax] = log_psd(impw,filtsize,ts);
figure; subplot(1,2,1)
plot(freq(128:384),logpsd(128:384)); grid;
xlabel(‘Frequency Sample Index’); ylabel(‘Frequency Response’);
subplot(1,2,2)
plot(freq(128:384),logpsdw(128:384)); grid;
xlabel(‘Frequency Sample Index’); ylabel(‘Windowed Frequency...

Response’);
% End of script file.

5.12.2 FIR Filter AMP Delay.m

% File: FIR_Filter_AMP_Delay.m
function [h,times] = FIR_Filter_AMP_Delay (H,fs,n,fscale,fshift,...

dscale)
% This function returns the impulse response of an FIR filter
% h = row vector of impulse response values at t=times
% h is rotated to center the impulse response array at n/2*ts
% It is assumed that there is no ‘constant delay’ in the freq...
% response given
% H is an array of frequency response
% Column 1 : Frequencies fk in ascending order
% After translation and scaling frequencies must be -fs/2 < f < fs/2
% Column 2 : 20*log(|H(fk)|;
% Column 3: group delay in units 1/frequency
% (i.e., if freq is given in Mhz, then delay should be in micro...
% seconds)
% Otherwise use dscale to adjust delay = delay/dscale
% Ex: If delay is given in ns then delay in microsecs = delay ns/1000
% Phase response is obtained by integration delay from f= 0
% Phase((k+1)df) = phase(kdf) + 2*pi* (fs/nfft)delay (kdf)
% =phase(kdf) + (2*pi*/nfft) (delay (kdf)/ts)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 197 --- #215
�

�

�

�

�

�

�

�

Section 5.12. Appendix C: MATLAB Code and Data for Example 5.11 197

% fscale and fshift: f = (f-fshift)/fscale
% fs : Sampling rate
% n: duration of the impulse response; The frequency response
% is resampled from (-fs/2)+df/2 to fs/2-df/2 using df = fs/n
%
ts =1/fs; df = fs/n;
%
% Pick up the frequency, magnitude and phase response arrays
% Convert dbs to real magnitudes; Rescale frequencies
%
Hfreq=H(:,1); Hmag=H(:,2); Hdelay=H(:,3);
nn=max(size(Hmag)); Hreal=10.^(Hmag/20);
Hfreq=(Hfreq-fshift)/fscale; Hdelay = Hdelay/dscale;
%
% Set up index array for frequencies and times
%
index1=[0:1:(n/2)]; index2=[-(n/2)+1:1:-1]; index=[index1 index2]’;
frequencies=(index*df); times=index*ts;
%
% Use shift fft function to change rotate the time indices
%
times=shift_ifft(times,n);
%
% Freq array goes from [0, df, 2df, ...to fs/2 -fs/2+df,....-df]
% Time array goes from 0 to n/2*ts -ts to - (n/2-1)ts
% For interpolation purposes add two more entries at -fs/2 and fs/2
% to the frequency response data
%
fmin=min(min(frequencies));fmax=max(max(frequencies));
%
% Extend freq and other arrays to cover from -fs/2 + df to fs/2 + df
%
Hfreq1 =Hfreq; Hreal1 = Hreal; Hdelay1 = Hdelay;
if fmin < Hfreq(1,1) % If the lower end does not extend to -fs/2...

% add a point
Hfreq1=[fmin;Hfreq];
Hreal1=[1e-10;Hreal] ;
Hdelay1=[Hdelay(1,1);Hdelay];

end
if fmax > Hfreq(nn,1) % If the higher end does not extend to fs/2...

% add a point
Hfreq1=[Hfreq1; fmax];
Hreal1=[Hreal1;1e-10] ;
Hdelay1=[Hdelay1 ;Hdelay(nn,1)];

end

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 198 --- #216
�

�

�

�

�

�

�

�

198 Filter Models and Simulation Techniques Chapter 5

%
% Interpolate the frequency response data and compute the complex
% transfer function mag*exp(i*phase)
%
Hreal_interpolated=interp1(Hfreq1,Hreal1,frequencies);
Hdelay_interpolated=interp1(Hfreq1,Hdelay1,frequencies);
%
% Integrate delay to find phase response
%
sum=0.;
Hphase(1)=0.; % Phase at carrier freq = 0
for k = 2:(n/2)+1 % Integrate fore f >0

sum= sum -(Hdelay_interpolated(k,1)/ts)* (2*pi/n);
Hphase(k,1) = sum;

end
sum=0.0;
for k = n:-1:(n/2)+2 % Integrate for f <0

sum = sum+(Hdelay_interpolated(k,1)/ts)* (2*pi/n);
Hphase(k,1)=sum;

end
Hcomplex =Hreal_interpolated.*exp(i*Hphase);
%
% Find the inverse fft and rotate it
%
hh=ifft(Hcomplex); h=(shift_ifft(hh,n));
%
% End of filter design and end of function file.

5.12.3 shift ifft.m

% File: shift_ifft.m
function y = shift_ifft(x,n)
% Circular shift ifft array
for k=1:(n/2)-1
y(k)=x((n/2)+k+1);

end
for k=1:n/2+1
y((n/2)-1+k)=x(k);

end
% End of function file.

5.12.4 log psd.m

% File: log_psd.m
function [logpsd,freq,ptotal,pmax] = log_psd(x,n,ts)
% This function takes the n time domain samples (real or complex)

“TranterBook” — 2003/11/18 — 16:12 — page 199 — #217
�

�

�

�

�

�

�

�

Section 5.12. Appendix C: MATLAB Code and Data for Example 5.11 199

% and finds the psd by taking (fft/n)^2. The two sided spectrum is
% produced by shifting the psd; The array freq provides the
% appropriate frequency values for plotting purposes.
% By taking 10*log10(psd/max(psd)) the psd is normalized; values
% below 60db are set equal to -60db
%
% n must be an even number, preferably a power of 2
%
y = zeros(1,n); % initialize y vector
%
h = waitbar(0,‘For Loop in PSD Calculation’);
for k=1:n

freq(k) =(k-1-(n/2))/(n*ts);
y(k) = x(k)*((-1.0)^k);
waitbar(k/n)

end;
%
v = fft(y)/n;
psd = abs(v).^2;
pmax = max(psd);
ptotal = sum(psd);
logpsd = 10*log10(psd/pmax);
%
% Truncate negative values at -60 dB
for k = 1:n

if(logpsd(k)<-60.0)
logpsd (k) = -60.0;

end
end
close(h)
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 200 — #218
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 201 — #219
�

�

�

�

�

�

�

�

Chapter 6

CASE STUDY:
PHASE-LOCKED LOOPS
AND DIFFERENTIAL
EQUATION METHODS

Even though it is still early in our study of simulation, we now have the tools re-
quired to use simulation effectively to investigate the design and operating charac-
teristics of a number of important systems. While there are many candidate systems
that could be explored at this point in our studies, our focus in this chapter is on the
phase-locked loop (PLL). There are a variety of justifications for this choice. First,
the PLL is a basic building block for many subsystems used in the implementation
of modern communication systems. PLLs are widely used in frequency synthesis, for
frequency multipliers and dividers, for carrier and symbol synchronization, and in
the implementation of coherent receivers [1, 2]. There are many other applications
for the PLL. Since the PLL is a nonlinear system, and is therefore very difficult to
analyze and design using traditional (nonsimulation based) methods, simulation is
widely used for the design and analysis of systems based on the PLL. We will see
that a basic knowledge of numerical integration methods, such as we gained in the

201

“TranterBook” — 2003/11/18 — 16:12 — page 202 — #220
�

�

�

�

�

�

�

�

202 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

preceding chapter, provides the concepts necessary to develop effective simulations
for PLLs and for many other systems of interest.

Another reason for using the PLL for a detailed example simulation is that
the PLL involves feedback. We will see that systems involving feedback must be
simulated with care, especially with respect to the sampling frequency, if significant
simulation errors are to be avoided.

As discussed in Chapter 4, analysis based on lowpass system models is equivalent
to an analysis based on the corresponding bandpass system models, assuming of
course that the lowpass models are correctly developed. In addition, simulation
models derived from lowpass analytical models execute much more quickly than
simulations based on bandpass models. Thus, much of the work in this chapter will
be based on lowpass models. Finally, all simulations presented in this chapter are
deterministic simulations, as discussed in Chapter 1.

Although the focus of this chapter is to illustrate a number of elementary simula-
tion techniques, and we use the PLL only as an interesting case study relevant to the
study of communications, sufficient theory is presented to make the results under-
standable and to provide a “sanity check” on the simulation results. It is important,
as discussed in Chapter 1, that analysis and simulation work hand in hand. This
chapter, therefore, begins with a basic description of the PLL. Using the first-order
loop as an example, we show how the loop achieves phase lock. Attention is then
turned to the second-order loop, which is more useful in system implementations.
We use simulation to illustrate the cycle-slipping phenomena and to determine the
time required to achieve phase lock. Simulation is accomplished by developing a
discrete-time simulation model for the PLL by replacing continuous-time integration
by the trapezoidal integration rule explored in the previous chapter.

Later in this chapter we will appreciate that, in addition to having the tools
for studying PLLs, we also have the required tools for using simulation to study
any system that can be defined in terms of a differential equation. The differential
equation, and therefore the underlying system, can be nonlinear, time-varying, or
both nonlinear and time-varying. Thus, upon completing this chapter, we will have
the tools required to simulate a wide variety of extremely complicated systems.

6.1 Basic Phase-Locked Loop Concepts

The basic model of a PLL is illustrated in Figure 6.1. The input signal is assumed
to be

xin(t) = Ac cos [2πfct + φ(t)] (6.1)

and the signal at the output of the voltage-controlled oscillator (VCO) is assumed
to have the form

xvco(t) = −Av sin [2πfct + θ(t)] (6.2)

The basic role of a PLL is to synchronize the phase of the VCO with the phase of
the input signal so that the phase error, φ(t) = θ(t), is small. We will see how this
is accomplished in the following sections.

“TranterBook” — 2003/11/18 — 16:12 — page 203 — #221
�

�

�

�

�

�

�

�

Ph
as

e
D

et
ec

to
r

L
oo

p
A

m
pl

if
ie

r
(G

ai
n

=
 µ

)

L
oo

p
Fi

lte
r

V
ol

ta
ge

-C
on

tr
ol

le
d

O
sc

ill
at

or
(V

C
O

)

)
(t

x in
)

(t
e vc

o

)
(t

x vc
o

e
t

d
(

) F
ig

u
re

6
.1

B
lo

ck
d
ia

g
ra

m
o
f
P

L
L
.

203

“TranterBook” — 2003/11/18 — 16:12 — page 204 — #222
�

�

�

�

�

�

�

�

204 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

PLLs typically operate in one of two modes, acquisition and tracking. In the
acquisition mode, the PLL is attempting to synchronize, in both frequency and
phase, the VCO output with an input signal. We will see that, in the acquisition
mode, phase errors can be quite large. In this case, PLL operation is distinctly
nonlinear, and a nonlinear model is required for analysis. Analysis of nonlinear
models is extremely difficult and simulation is often required. In the tracking mode,
however, the phase error is often small for long periods of time, and analysis using
a simple linear model can often provide satisfactory results without the need for
simulation. The standard loop parameters, as we will see, are defined in terms of
the linear model. Thus, we have interest in both linear and nonlinear models. The
focus of the simulations developed in this chapter will be on the nonlinear behavior
of the system.

6.1.1 PLL Models

The first step in the development of a simulation model for a PLL is to model
the phase detector. The characteristics of the phase detector determine, in large
part, the operating characteristics of the PLL. There are many different types of
phase detectors, and the choice of the phase detector model to be used in a given
situation is dependent upon the application. The most common phase detector
model, referred to as the sinusoidal phase detector, is one in which the output of
the phase detector is proportional to the sine of the phase error. The sinusoidal
phase detector can be viewed as consisting of a multiplier and a lowpass filter as
shown in Figure 6.2. The only function of the lowpass filter is to remove the second
harmonic of the carrier frequency resulting from the multiplication. We will see
later that, in practical applications, the lowpass filter is not necessary.

Using the phase-detector model shown in Figure 6.2, the output of the phase
detector is

ed(t) =
1
2
AcAv sin [φ(t) − θ(t)] (6.3)

where the quantity φ(t)−θ(t) is referred to as the phase error. Later we will denote
the phase error by ψ(t), but for now it is better to keep all of our expressions in
terms of input phase, φ(t), and VCO phase, θ(t). We desire the VCO phase to be

[])()(sin
2

1
ttAA vc θφ −[])(2cos ttfA cc φπ +

[])(2sin ttfA cv θπ +−

Lowpass
Filter

Figure 6.2 Model for a sinusoidal phase detector.

“TranterBook” — 2003/11/18 — 16:12 — page 205 — #223
�

�

�

�

�

�

�

�

Section 6.1. Basic Phase-Locked Loop Concepts 205

an estimator of the input phase and therefore proper operation of the PLL requires
that the phase error be driven toward zero. The steady-state phase error may or
may not be zero depending upon the characteristics of the input signal and the loop
filter.

Note that the PLL input and the VCO output are in phase quadrature for φ(t) =
θ(t). This is required if the phase detector output is to be an odd function of the
phase error. It is easily seen that if cosine functions are used in both (6.1) and (6.2),
with the arguments unchanged, the phase detector output will be proportional to
cos [φ(t) − θ(t)], which is an even function of the phase error. This, of course, yields
the undesirable situation in which negative phase errors are not distinguishable from
positive phase errors.

After multiplication by the loop amplifier gain, µ, the phase detector output
ed(t) is filtered by a loop filter having the transfer function F (s) and unit impulse
response f(t). The input to the VCO is therefore given by

evco (t) =
∫ ∞

−∞
µed (λ) f (t − λ) dλ (6.4)

which is simply the convolution of the loop filter impulse response with the loop
filter input. For a sinusoidal phase detector this becomes

evco (t) =
∫ ∞

−∞

1
2
µAcAv sin [φ (λ) − θ (λ)] f (t − λ) dλ (6.5)

The next step is to relate the VCO phase deviation θ(t) to the VCO input. By
definition, the frequency deviation of the VCO output is proportional to the VCO
input signal so that

dθ

dt
= 2πKdevco (t) (6.6)

where Kd is the VCO constant and has units of Hz/v. Solving for θ(t) gives

θ(t) = 2πKd

∫ t

−∞
evco (λ) dλ (6.7)

Substituting (6.5) for evco (t) yields

θ (t) = G

∫ t

−∞

∫ ∞

−∞
sin [φ (λ) − θ (λ)] f (τ − λ) dλdτ (6.8)

where G is defined as the loop gain and is given by

G = πKdµAcAv (6.9)

Equation (6.8) is the nonlinear integral equation relating the phase deviation of
the input φ (t) to the VCO phase deviation θ (t). Keep in mind that the impulse
response of the loop filter, f(t), is still arbitrary.

“TranterBook” — 2003/11/18 — 16:12 — page 206 — #224
�

�

�

�

�

�

�

�

206 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

In developing system simulations, one should be careful about combining pa-
rameters as we did in (6.9). Combining terms is a valid step if the purpose of the
simulation is to determine the input-output characteristics of the system or the
characteristics of the system as a whole, such as the time required for a PLL to
achieve phase lock. On the other hand, if the simulation is being performed to ex-
amine the waveforms present at the input or the output of various functional blocks
within the system, the parameters that define G cannot be grouped together. It
they are grouped together, the waveforms present at various points in the system
will not be scaled properly or may not even be identifiable.

6.1.2 The Nonlinear Phase Model

It is apparent from (6.8) that the relationship between θ (t) and φ (t) does not de-
pend in any way on the carrier frequency fc, and therefore the carrier frequency
need not be considered in the simulation model. We therefore seek a model that es-
tablishes the proper relationship between θ(t) and φ (t) without consideration of the
carrier frequency. This model is shown in Figure 6.3 and is known as the nonlinear
phase model of the PLL. It is a nonlinear model because of the sinusoidal nonlinear-
ity and is a phase model because the model establishes the relationship between the
input phase deviation and the VCO phase deviation rather than establishing the
relationship between the actual loop input and VCO output signals as expressed
by (6.1) and (6.2), respectively. It is important to remember that the input to the
model illustrated in Figure 6.1 is the actual bandpass signal present in the system
under study, while the input to the nonlinear phase model shown in Figure 6.3 is
the phase deviation of the input bandpass signal. If the phase deviation of the
input signal, φ(t), the carrier frequency, and the signal amplitude are known, (6.1)
is completely determined. In like manner, if the VCO phase deviation, θ(t), the
carrier frequency, and the signal amplitude are known, the VCO output expressed

)sin(Loop
Gain

G

Loop
Filter
F(s)

−

)(tφ

)(tθ

e td ()

Voltage-Controlled
Oscillator (VCO)
Lowpass Model

e tvco ()

Linear Model

Figure 6.3 Nonlinear PLL phase model (linear model indicated by dotted line).

“TranterBook” — 2003/11/18 — 16:12 — page 207 — #225
�

�

�

�

�

�

�

�

Section 6.1. Basic Phase-Locked Loop Concepts 207

by (6.2) is completely determined. Thus, the nonlinear phase model expresses the
relationship between the input phase and the VCO phase, which are the important
quantities of interest. In simulation applications the nonlinear phase model pays
additional dividends. Since the loop input and VCO output phase deviations are
lowpass signals, they can be sampled at a much lower sampling rate than the signals
expressed by (6.1) and (6.2), which are bandpass signals.

At this point another word is in order concerning the lowpass filter used to
remove the second harmonic of the carrier produced by the multiplier present in
the phase detector model. This filter is simply part of a conceptual model and,
as mentioned previously, need not be present in the physical device. It is easily
seen that this filter may be eliminated. Equation (6.7) shows that the VCO model
is simply an integrator. Since an integrator is a lowpass filter, which has infinite
gain at f = 0 and unity gain at f = 1/(2π) Hz, the VCO will prevent the second
harmonic of the carrier frequency from propagating around the loop and appearing
at the VCO output.

Example 6.1. In this example a general technique for modeling phase detectors
is examined. Although a sinusoidal phase detector is assumed throughout this
chapter, it is easy to model a phase detector having an arbitrary characteristic.
A general technique is to represent the function relating the output of the phase
detector to the input of the phase detector by a Fourier series. This gives

ed(t) =
N∑

k=1

ck sin [kψ(t)] (6.10)

where ck represents the Fourier coefficients of the phase detector characteristic and
ψ(t) = φ(t) − θ(t) is the phase error. A given phase detector characteristic can be
modeled to any required accuracy by adjusting the number of terms, N , used in the
series expansion. Note that only odd terms are included in the series so that ed(t)
will be an odd function of the phase error. As a simple example, the sinusoidal
phase detector defined in Figure 6.2 is represented by

ck =
{

1
2AcAv,
0,

k = 1
otherwise (6.11)

where N ≥ 1.
The MATLAB code for the phase detector described by (6.10) is easily written

in vector form. The vector B is defined as

B = [1 2 3 · · · N]

and the vector of Fourier coefficients is

C = [c1 c2 c3 · · · cN]

Assuming that pdin and pdout are the input and output of the phase detector
model, respectively, the phase detector output can be written

pdout = (sin(B ∗ pdin)) ∗ C’

“TranterBook” — 2003/11/18 — 16:12 — page 208 — #226
�

�

�

�

�

�

�

�

208 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

where C’ is the transpose of C. Since B and C are completely defined by the phase
detector model, they are fixed and should be defined outside of the simulation loop.

We will later see that the most general method for simulating systems is to use
the Monte Carlo technique, which requires that the simulation loop be executed
a large number of times. When the Monte Carlo technique is used, very long
simulation run times often result and it becomes important to use the most efficient
algorithms possible. A vector formulation is therefore used to compute pdout in
order to avoid the looping operation typically used to evaluate summations. �

6.1.3 Nonlinear Model with Complex Input

Phase-locked loops are usually modeled so that the loop input is the phase deviation
φ(t). When the PLL is used within a system, one often wishes to develop a model in
which the loop input is a complex envelope lowpass signal A exp [jφ(t)] representing
(6.1). Such a model is illustrated in Figure 6.4 for a sinusoidal phase detector. Phase
detectors having other characteristics are easily derived.

As illustrated in Figure 6.4 the input signal, in complex envelope form, is first
passed through a bandpass limiter, which was discussed in Chapter 4, Example
4.10. (Here we assume that the parameter B, defined in Example 4.1, is set equal
to one.)1 The operation of the complex phase detector model should be clear from
the expressions given in Figure 6.4 defining the signal at each point in the model.
Note that the inputs to the multiplier are expressed in complex exponential form
and that the imaginary part of the multiplier output gives sin [φ(t) − θ(t)].

6.1.4 The Linear Model and the Loop Transfer Function

If the phase error is small so that the linear approximation

sin [φ (t) − θ(t)] ≈ φ (t) − θ (t) (6.12)

can be made, the loop equation, (6.8), becomes

θ (t) = G

∫ t

−∞

∫ ∞

−∞
[φ (λ) − θ (λ)] f (τ − λ) dλdτ (6.13)

This results in the linear phase model of the PLL, which is identical to the nonlinear
phase model except that the sinusoidal nonlinearity is removed. This is shown by
the dotted line in Figure 6.3.

Taking the Laplace transform of (6.13), recognizing that integration is equiv-
alent to division by s and that convolution in the time domain is equivalent to
multiplication in the frequency domain, yields

Θ (s) = G [Φ (s) − Θ (s)]
F (s)

s
(6.14)

1Recall from basic communication theory that a bandpass limiter is often used at the input to
a PLL in order to supress variations in the input envelope. This is, for example, the case when
PLLs are used for FM demodulation.

“TranterBook” — 2003/11/18 — 16:12 — page 209 — #227
�

�

�

�

�

�

�

�

 V
C

O
L

ow
pa

ss
M

od
el

e
t

vc
o
(

)
ex

p
−

•
j b
g

)
(t

θ

ex
p

(
)

j
t

φ

�
(

)
ex

p
(

)
x

t
A

j
t

=
φ

ex
p

(
)

−
j

t
θ

ex
p

(
)

(
)

j
t

t
φ

θ
−

m
r

Im
• b
g

si
n

(
)

(
)

φ
θ

t
t

−

C
om

pl
ex

Ph
as

e
D

et
ec

to
r

B
an

dp
as

s
L

im
ite

r

F
ig

u
re

6
.4

C
o
m

p
le

x
lo

w
p
a
ss

p
h
a
se

d
et

ec
to

r
m

o
d
el

.

209

“TranterBook” — 2003/11/18 — 16:12 — page 210 — #228
�

�

�

�

�

�

�

�

210 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

The transfer function H (s) relating the VCO phase to the input phase is therefore
given by

H (s) =
Θ (s)
Φ (s)

=
GF (s)

s + GF (s)
(6.15)

It must be kept in mind that the transfer function given in (6.15) is based on a
linear assumption and, in general, is not valid. Strictly speaking, transfer functions
for nonlinear systems do not exist.

Even though simulation is typically used to study the nonlinear behavior of the
PLL, linear models are useful for several purposes. First, as we will see in a following
section, loop parameters are almost always defined in terms of the linear model. In
addition, analytical analysis based on the linear model is usually easy and can often
help verify (sanity check) the simulation results. Finally, linear models are often
used to study tracking behavior for those applications in which the signal being
tracked is varying at a rate slower than the loop bandwidth.

6.2 First-Order and Second-Order Loops

The acquisition and tracking behavior of a PLL depends in large measure upon the
order of the loop, and for this reason we consider two choices for the loop filter
transfer function. The order of a PLL implementation is equal to the number of
finite poles in the transfer function H(s) as given by (6.15). It follows that the order
of a given PLL implementation exceeds the number of poles of F (s) by one, with
the extra pole resulting from the integration in the VCO model. We now briefly
look at first-order (no loop filter) and second-order PLLs (first-order loop filter).
Although the first-order PLL does not have desirable operating characteristics, as
will be shown, we will use the first-order PLL to illustrate the mechanism by which
the loop achieves phase lock.

6.2.1 The First-Order PLL

For the first-order PLL F (s) = 1 so that

f (t) = δ (t) (6.16)

Substitution into (6.8) yields

θ(t) = G

∫ t

−∞

∫ ∞

−∞
sin [φ (λ) − θ (λ)] δ (τ − λ) dλdτ (6.17)

Performing the integration on λ using the sifting property of the impulse (delta)
function gives

θ (t) = G

∫ t

−∞
sin [φ (τ) − θ(τ)] dτ (6.18)

“TranterBook” — 2003/11/18 — 16:12 — page 211 — #229
�

�

�

�

�

�

�

�

Section 6.2. First-Order and Second-Order Loops 211

Differentiating with respect to t yields the differential equation

dθ

dt
= G sin [φ (t) − θ (t)] (6.19)

Writing (6.19) in terms of the phase error ψ (t) = φ (t)−θ (t) provides the differential
equation relating the phase error and the input phase. This is

dφ

dt
− dψ

dt
= G sin ψ (t) (6.20)

We now determine the phase error for an input frequency step.
In order to study the response of a first-order PLL to a step in frequency of f∆

Hz at time t0 we let

dφ

dt
= 2πf∆u (t − t0) (6.21)

so that (6.20), for t > t0, becomes

dψ

dt
= 2πf∆ − G sin ψ (t) (6.22)

This gives the relationship between the frequency error and the phase error for
t > t0.

Equation (6.22) is illustrated in Figure 6.5 and is called the phase plane equation
or, simply, the phase plane, and describes the dynamic behavior of the system. The
phase plane has a number of important properties, and understanding a few of them
provides insight into how, and under what conditions, the loop achieves lock. Note
that the relationship between phase error and frequency error must satisfy (6.22) at
each point in time. These time-dependent points are known as operating points. In
the upper-half phase plane, the operating point moves from left to right and in the
lower-half phase plane the operating point moves from right to left. This is easily
seen. First we let

dψ

dt
≈ ∆ψ

∆t
(6.23)

0

∆fπ2 A

B C D

d

dt

ψ

 ψ
2πf∆−G

Figure 6.5 First-order phase plane.

“TranterBook” — 2003/11/18 — 16:12 — page 212 — #230
�

�

�

�

�

�

�

�

212 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

where ∆ψ and ∆t denote small increments in phase error and time, respectively.
Clearly ∆t > 0 for all t, since time always increases. Thus, dψ > 0 in the upper-half
phase plane and dψ < 0 in the lower-half phase plane. The phase error therefore
increases (moves from left to right) in the upper-half phase plane and the phase error
decreases (moves from right to left) in the lower-half phase plane. This is illustrated
by the solid arrows in Figure 6.5. A stationary operating point can lie only on
the boundary between the upper-half phase plane and the lower-half phase plane.
This, of course, denotes that the phase error is constant or, equivalently, that the
frequency error is zero. An operating point is stable if, after a small perturbation,
the operating point returns to its original location. If a small perturbation results in
the operating point moving to a new position, the original operating point is called
unstable. Thus points B and D in Figure 6.5 are stable operating points and point
C is an unstable operating point. Movement of the operating points is indicated by
the dotted lines in Figure 6.5.

It can be seen from (6.22) that if 2πf∆ < G, the steady-state operating point is
the stable point B given that the initial operating point due to the frequency step
is A. At this point the frequency error is zero and the steady-state phase error is
the solution of (6.22) with dψ/dt = 0. This gives the steady-state phase error

ψss = sin−1

(
2πf∆

G

)
(6.24)

As a final observation of the phase plane, note that if 2πf∆ > G there is no solution
to (6.22) for zero frequency error dψ/dt and the operating point will move to the
right for all time for f∆ > 0 and will move to the left for all time for f∆ < 0. The
loop gain G therefore becomes the lock range for the first-order loop. Note from
(6.15) that G is also the loop bandwidth (in rad/s) for the first-order PLL.

Example 6.2. As a simple example suppose that f∆ = 5 so that 2πf∆ = 31.42.
Also assume that the loop gain takes on two different values, namely, G = 30
and G = 40. The resulting phase planes are shown in Figure 6.6. The phase
plane shows that for f∆ = 5, G = 40, and 2πf∆ < G, the frequency error de-
creases to zero monotonically. There is no overshoot, since the system is first order.
For f∆ = 5 and G = 30, 2πf∆ > G, and (6.22) has no solution for zero fre-
quency error. For this case phase lock will not be achieved and the system will
forever oscillate. �

The phase plane is made clearer by Figure 6.7, which shows the input frequency
deviation, dφ/dt, and the VCO frequency deviation, dθ/dt, for G = 30 and G = 40.
The resulting input frequency deviation and VCO frequency deviation are shown
in Figure 6.7 for 2πf∆ = 31.42 with G = 30 and G = 40. Note that for G = 40 the
loop achieves phase lock while for G = 30 phase lock is not achieved and the VCO
phase deviation oscillates forever.

We have seen that both the lock range of the first-order PLL and the loop
bandwidth are determined by the parameter G. For most applications a large lock
range and a small loop bandwidth are desired. This cannot be acccomplished with
a first-order loop and, therefore, the first-order PLL is not usually practical. The

“TranterBook” — 2003/11/18 — 16:12 — page 213 — #231
�

�

�

�

�

�

�

�

Section 6.2. First-Order and Second-Order Loops 213

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

Phase Error /Pi

Fr
eq

ue
nc

y
E

rr
or

 (
H

er
tz

)

G = 30

G = 40

Figure 6.6 Phase plane plot for first-order PLL with G = 30 and G = 40.

Figure 6.7 Input frequency and VCO frequency for G = 30 and G = 40.

“TranterBook” — 2003/11/18 — 16:12 — page 214 — #232
�

�

�

�

�

�

�

�

214 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

second-order loop is a practical system for many applications and will provide
aninteresting simulation case study.

6.2.2 The Second-Order PLL

We saw in the preceding section that the first-order PLL has a limited lock range.
In addition, since the loop has only a single parameter, the ability to adjust loop
parameters to meet a given set of operating specifications is severely limited. Im-
proved operating characteristics and design capabilities are achieved by changing
the loop filter so that a second-order PLL results.

The general form of the loop filter for a second-order PLL is

F (s) =
s + a

s + λa
(6.25)

The perfect second-order PLL is defined by λ = 0, which denotes a loop filter
containing a perfect integration (pole at s = 0). In typical applications, λ
 1.
Substituting the loop filter transfer function into (6.15) gives

H (s) =
G (s + a)

s2 + (G + λa)s + Ga
(6.26)

for the loop linear-model transfer function.
Linear second-order systems are usually parameterized in terms of the system

damping factor, denoted ζ, and the system natural frequency, denoted ωn. The
denominator of the transfer function is often referred to as the characteristic poly-
nomial, which, for a second-order system, is expressed in the standard form

s2 + 2ζωns + ω2
n

Equating the characteristic polynimial in (6.26) to the standard form yields

s2 + (G + λa)s + Ga = s2 + 2ζωns + ω2
n (6.27)

In typical applications the PLL is designed for a given damping factor and natural
frequency by specifying ζ and ωn. The required physical parameters (in this case
G and a) are then determined so that the design values of ζ and ωn are achieved.
Equating terms having like powers of s in (6.27) gives

2ζωn = G + λa (6.28)

and

ω2
n = Ga (6.29)

Assuming that λ is a known constant, we may solve (6.29) for a and substitute the
result in (6.28). This gives the quadratic equation

G2 − 2ζωnG + λω2
n = 0 (6.30)

“TranterBook” — 2003/11/18 — 16:12 — page 215 — #233
�

�

�

�

�

�

�

�

Section 6.3. Case Study: Simulating the PLL 215

which, upon solving for G yields

G = ζωn + ωn

√
ζ2 − λ (6.31)

This result, together with (6.29) gives

a =
ωn

ζ +
√

ζ2 − λ
(6.32)

Note that since a is a real parameter, λ must be less than ζ2. Typical values of ζ2

lie in the neighborhood of 1/2 (ζ = 1/
√

2 is a common choice) and, as previously
mentioned, λ
 1. Note that for a perfect second-order PLL, G = 2ζωn and
a = ωn/2ζ.

6.3 Case Study: Simulating the PLL

We are now in a position to simulate a second-order PLL and use our very basic
knowledge of PLL theory to sanity check the results. First, however, we pause to
consider a simple architecture for the overall simulation program. The simulation
model is then developed and the simulation is executed. Finally, the error sources
in the simulation are briefly discussed.

6.3.1 The Simulation Architecture

It is often useful to divide the software for a simulation into several distinct programs
as shown in Figure 6.8. Here we see three separate elements of the overall simulation
program. These elements are designated the preprocessor, the simulation engine,
and the postprocessor. These three programs perform three distinctly different
functions and, if desired, can be developed in three different languages. Partitioning
a simulation in this manner results in simulation code that is more easily developed,
understood, and maintained. It is also efficient, since code segments can often be
reused in different applications. This is especially true of the postprocessor.

The purpose of the preprocessor is to specify all parameters necessary to de-
fine the system under study (system parameters) and to set the parameters that
manage execution of the simulation (intrinsic parameters). Example system pa-
rameters include items such as filter orders, filter types and bandwidths, amplifier
gains, code rate, spreading ratios, carrier frequencies, bit rates, and signal-to-noise
ratios. Intrinsic parameters include the sampling frequency, settle times (required
to ensure that startup transients have decayed to negligible values), and the number

Preprocessor
Simulation

Engine Postprocessor

Figure 6.8 Simulation architecture.

“TranterBook” — 2003/11/18 — 16:12 — page 216 — #234
�

�

�

�

�

�

�

�

216 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

of samples to be processed. In addition, the data to be passed to the postprocessor
for analysis or plotting must be saved by the simulation and, therefore, the data
files required by the postprocessor must be specified by the preprocessor so that the
appropriate data is saved as the simulation is executed. An example might be a
vector of waveform samples and a vector of sample times used in the postprocessor
to calibrate the time axis of signal plots. Once all of the necessary information
has been specified in the preprocessor, the data created within the preprocessor is
typically written to a file so that it is available to the simulation engine and to
the postprocessor. In the MATLAB examples to follow, the preprocessor data is
written to the MATLAB workspace.

The simulation engine reads the data stored in the file (or in the workspace) cre-
ated by the preprocessor and executes the simulation. The purpose of a simulation
is, of course, to generate data for later investigation using the postprocessor. This
may take the form of numbers (signal-to-noise ratios, bit error rates, code gain, etc.)
or may be vectors of sample values for additional processing by the postprocessor.
The information generated by the simulation engine is stored in files and passed to
the postprocessor. In the case of MATLAB it is usually most convenient to simply
leave the data generated by the simulation engine in the MATLAB workspace.

The postprocessor takes the data generated by the simulation engine and gener-
ates the final simulation products required by the user. These may include waveform
plots, signal constellations, plots of the bit error rate as a function of Eb/N0, the
power spectral density at a point in the system under study, eye diagrams, and
histograms. The list of possibilities is almost endless. Appropriately derived graph-
ical displays can greatly facilitate an understanding of the system under study. We
consider postprocessing and the generation of graphical displays in more detail in
Chapter 8.

The postprocessor clearly requires a significant level of graphical support. This
was one reason to relay on MATLAB for the applications presented here. Post-
processors are most useful when they are menu driven and provide a variety of
signal processing and display options. While the simulations to follow in this chap-
ter are quite simple, as are the preprocessor and the postprocessor, they serve to
demonstrate the roles of each of these elements of a simulation.

As previously mentioned, the preprocessor, the simulation engine, and the post-
processor can be written in different languages. A recent project by one of the au-
thors used Visual Basic for the preprocessor, C++ for the simulation engine (chosen
for execution speed), and MATLAB for the postprocessor. MATLAB is frequently
chosen for postprocessor development because of MATLAB’s rich graphics library.

6.3.2 The Simulation

The simulation model is straightforward except, perhaps, for the loop filter. Since
the loop filter transfer function, as defined by (6.25) is not a proper function,2 long
division is applied to yield

2Recall that a proper function is one in which the degree of the denominator polynomial exceeds
the degree of the numerator polynomial by at least one.

“TranterBook” — 2003/11/18 — 16:12 — page 217 — #235
�

�

�

�

�

�

�

�

Section 6.3. Case Study: Simulating the PLL 217

F (s) = 1 +
(1 − λ)a
s + λa

= 1 + F1(s) (6.33)

Thus, F (s) can be realized as a parallel combination of two transfer functions, the
first of which is a constant and the second of which is F1(s). Clearly

F1(s) =
(1 − λ)a
s + λa

=
Y1(s)
X1(s)

(6.34)

where Y1(s) and X1(s) represent the Laplace transform of the output and input,
respectively, of the subfilter F1(s). Cross-multiplying gives

sY1(s) = (1 − λ) aX1(s) − λaY1(s) (6.35)

which in the time domain is

dy1

dt
= (1 − λ)ax1(t) − λay1(t) (6.36)

It follows that the loop filter is realized by the system illustrated in Figure 6.9.
The next step in developing the simulation code for the second-order PLL is

to develop a signal-flow graph3 for the system and to designate the points on the
signal-flow graph at which the signals are to be defined. The resulting signal-flow
graph is illustrated in Figure 6.10. Note that the loop filter model follows directly
from Figure 6.9 with

a1 = (1 − λ)a (6.37)

and

a2 = λa (6.38)

∑

∫∑

−λa

()1− λ a

x

x1

y1�y1

y

Figure 6.9 Loop filter model.

3A signal-flow graph is used rather than a block diagram simply for compactness.

“TranterBook” — 2003/11/18 — 16:12 — page 218 — #236
�

�

�

�

�

�

�

�

 a
1

 G

si
n(

)•
L

oo
p

F
il

te
r

M
od

el

s1
s2

s3
s6

s4
a

In
te

gr
at

or
 M

od
el

z−1
1 2
f s

w
1b w
2b

s5

In
te

gr
at

or
 M

od
el

z−1

w
1c w
2c

1 2
f s

ph
iv

co

ph
in

−1

s4

−
a2

F
ig

u
re

6
.1

0
S
ig

n
a
l-
fl
ow

g
ra

p
h

fo
r

se
co

n
d
-o

rd
er

P
L
L
.

218

“TranterBook” — 2003/11/18 — 16:12 — page 219 — #237
�

�

�

�

�

�

�

�

Section 6.3. Case Study: Simulating the PLL 219

The points at which the signals are to be defined in the simulation code are rep-
resented by the heavy black dots on the signal-flow graph. Note that we are using
trapezoidal integration as developed in the previous chapter.

The simulation code follows directly from the signal-flow graph. Each sample
value computed in the simulation loop carries an identification corresponding to the
identification defined in the signal-flow graph. For example, the line of code

s2 = sin(s1)

defines the sinusoidal nonlinearity representing the phase detector, where s1 and
s2 are defined in the signal-flow graph. All other lines of code in the simulation
loop follow in a similar manner. Thus, the MATLAB code that realizes the main
simulation loop is

% beginning of simulation loop
for i=1:npts

s1 = phin-phivco; % phase error
s2 = sin(s1); % sinusoidal phase detector
s3 = G*s2;
s4 = a1*s3;
s4a = s4-a2*s5; % loop filter integrator input
w1b = s4a+w2b; % filter integrator (step 1)
w2b = s4a+w1b; % filter integrator (step 2)
s5 = w1b/twofs; % generate filter output
s6 = s3+s5; % VCO integrator input
w1c = s6+w2c; % VCO integrator(step 1)
w2c = s6+w1c; % VCO integrator(step 2)
phivco = w1c/twofs; % generate VCO output

end
% end of simulation loop

The constant twofs is twice the sampling frequency, as required for the trapezoidal
integrator, and is computed outside of the simulation loop.

The complete simulation code for the second-order PLL is given in Appendix
A. Note that the code given in Appendix A differs slightly from the code given
here, since vectors are developed for the input phase, the phase error, and the
VCO frequency. These vectors are required by the postprocessor for plotting wave-
forms. The MATLAB code for the preprocessor and the postprocessor are given
in Appendices B and C, respectively. Note that the postprocessor is menu driven.
Menu-driven postprocessors are typical in simulation packages.

6.3.3 Simulation Results

An example simulation was performed assuming that the PLL input frequency
deviation is a unit step at time t0. Thus:

dφ

dt
= 2πf∆u (t − t0) (6.39)

“TranterBook” — 2003/11/18 — 16:12 — page 220 — #238
�

�

�

�

�

�

�

�

220 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

which is the same input that we assumed for the first-order PLL previously. The
following PLL parameters are used:

frequency step, f∆ = 40 Hz
loop natural frequency, ωn/2π = 10 Hz

relative pole offset, λ = 0.10

loop damping factor, ζ = 1/
√

2 (6.40)
sampling frequency, fs = 5000 Hz

tstop = 0.8 s

These items are entered using the preprocessor.
The menu selections used in the example postprocessor (Appendix C) allow the

simulation user to examine a number of items of interest with ease. These include
the input frequency and VCO frequency, the frequency error, and the phase plane.
For space considerations we illustrate only two postprocessor-generated plots here.
The phase plane is illustrated in the top pane of Figure 6.11. The input frequency
(the unit step of 40 Hz at t0 = 0.08) and the VCO frequency (the waveform that
oscillates) are illustrated in the bottom pane of Figure 6.11. It should be remem-
bered that we are working with lowpass models. Thus, input frequency and VCO
frequency actually refer to the input frequency deviation and the VCO frequency
deviation from the nominal carrier frequency, fc.

Note from the phase plane that the five cycles are slipped and that the steady-
state error is slightly greater than 10π. From Figure 6.11 we see that the input
frequency steps by 40 Hz as specified. The VCO frequency, however, oscillates
through five cycles and then phase lock is achieved on the sixth cycle. This behavior
is referred to as “cycle slipping” and is characteristic of nonlinear synchronizers when
the change in input frequency significantly exceeds the natural frequency.

6.3.4 Error Sources in the Simulation

There are a number of error sources present in this simulation. These error sources,
as discussed in Chapter 1, result both from mapping the physical device to an
analytical model and from mapping the analytical model to the simulation model.
These error sources are briefly discussed in the following paragraphs.

The Analytical Model

In developing an analytical model for a device, a number of assumptions are of-
ten made. These approximations typically involve idealizations of the various loop
components and may not be valid if highly accurate simulations of a physical device
are to be obtained. Where highly accurate simulation results are required, labora-
tory measurements are often necessary to determine sufficiently accurate component
models. Various restrictions may also apply to signals within the loop that are not
accounted for in a basic analytical model. For example, in the simulation just
developed, the signal levels at any point in the loop were allowed to rise to any
value dictated by the loop equations. In practice, however, the maximum value

“TranterBook” — 2003/11/18 — 16:12 — page 221 — #239
�

�

�

�

�

�

�

�

0
2

4
6

8
1

0
1

2
-2

00

2
0

4
0

6
0

P
h

a
s

e
 P

la
n

e
 P

lo
t

P
h

a
s

e
 E

rr
o

r
/P

i

Frequency Error (Hertz)

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
-2

00

2
0

4
0

6
0

In
p

u
t

F
re

q
ue

n
c

y
 a

n
d

 V
C

O
 F

re
q

u
e

n
c

y

T
im

e
 (

S
e

c
o

n
d

s)

Frequency (Hertz)

F
ig

u
re

6
.1

1
S
im

u
la

ti
o
n

re
su

lt
s.

221

“TranterBook” — 2003/11/18 — 16:12 — page 222 — #240
�

�

�

�

�

�

�

�

222 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

of any signal in the loop will be constrained by the power supply voltages. Other
approximations may also require consideration. Depending on the requirements of
the simulation user, a more detailed analytical model than the one used here for a
second-order PLL may be necessary.

The Simulation Model

There are a number of potential error sources associated with the process of mapping
the analytical model to the simulation model. For example, while the physical
system processes continuous-time signals, the simulation, of necessity, processes
samples of continuous-time signals. Sampling, of course, leads to aliasing errors. In
some cases quantizing errors must be considered. In addition, analog filters in the
hardware or analytical model must be replaced by digital filters in the simulation
model. As we previously saw, the digital filter never has the same amplitude and
phase response as the analog filter it replaces. Errors resulting from frequency
warping or aliasing must often be considered.

An important error source is present in all systems involving feedback. For ex-
ample, the output of the phase detector in the analog (hardware) PLL is defined by

ed(t) = sin [φ(t) − θ(t)] (6.41)

Ideally, a discrete-time model for this would be

ed(nT) = sin [φ(nT) − θ(nT)] (6.42)

where φ (nT) is the “current” input to the PLL. However, θ (nT), the phase devia-
tion at the output of the VCO, is not available, since ed(nT) is needed to compute it.
The computational “deadlock” resulting from the interdependency between ed(nT)
and θ (nT) is handled by using the previously computed value of the VCO phase
deviation, θ ((n − 1)T), to compute ed(nT). In other words, the model defined by
(6.42) is replaced by

ed(nT) = sin [φ(nT) − θ((n − 1)T)] (6.43)

Thus, a one-sample delay has been introduced in the feedback loop that is not
present in the physical model or in the analytical model. While this one-sample
delay may have a negligible effect on the accuracy of the simulation for small sim-
ulation step size (high sampling frequency), it may well have an effect for practical
simulation step sizes. The effect of this one-sample delay is to induce a linear phase
shift (a constant time delay) on the open-loop transfer function. This reduces the
phase margin of the system and, if the simulation step size is sufficiently large, can
drive the system into instability.

If a simulation is to have a given level of accuracy the simulation models must
be based on analytical models having at least the same level of accuracy. If the
physical devices being modeled exhibit significant variation across a group of simi-
lar devices, it is usually necessary to base the simulation models on measured data
carefully obtained using accurately calibrated instrumentation. Nonlinear ampli-
fiers often fall into this category, as do devices containing components that exhibit

“TranterBook” — 2003/11/18 — 16:12 — page 223 — #241
�

�

�

�

�

�

�

�

Section 6.4. Solving Differential Equations Using Simulation 223

significant aging effects. Other examples are models for channels that exhibit sig-
nificant multipath effects.

Only a few error sources have been considered here, but it is important to realize
that, as discussed in Chapter 1, the analytical model captures only a portion of the
characteristics (hopefully the most important characteristics) of the physical device,
and additional errors are incurred as the analytical model is mapped to a simulation
model. These error sources are dependent upon both the system (analytical) model
and the simulation methodology. The simulation user must identify these error
sources and ensure that the accumulated effect of these sources is sufficiently small
to ensure that the simulation results are valid. If this important step is neglected
by the simulation user, the results will be suspect and of little value.

6.4 Solving Differential Equations Using Simulation

Back in the days prior to the widespread use of digital computers, the analog com-
puter provided a convenient tool for solving differential equations. Analog computer
techniques proved most useful for nonlinear and/or time-varying equations for which
general analytical solution techniques do not exist. Since the “analog computer tech-
nique” could be applied to systems that were nonlinear or time-varying, or both,
analog computers found widespread use. While the “analog computer solution” did
not take the form of an equation, which is the standard form for expressing the
solution to a differential equation, it did allow waveforms at various points present
in a system to be plotted with ease. Parametric studies are easily conducted and it
is therefore possible to gain significant insight into the operating characteristics of
complex systems using the analog computer. Not surprisingly, the analog computer
developed into a powerful simulation tool.

While the analog computer is a powerful tool, using it is not always a simple
task. The basic component of the analog computer is the operational amplifier
(OpAmp). OpAmps, especially those in use during the days in which the analog
computer was enjoying popularity, were subject to drift. Frequent calibration was
therefore necessary. In addition, the implementation of multiplication and division
was difficult. Analog computers could only process signals having limited band-
width and, as a result, frequency scaling and time scaling frequently had to be
applied. When the digital computer became widely available and easy to use, the
analog computer faded from use. However, much of the methodology developed for
analog computers is applicable to simulation using digital computers. Thus, the
body of knowledge developed for analog computers provides an important collec-
tion of simulation techniques applicable to digital computers. As an example, one
of the early simulation programs, CSMP (Continuous System Modeling Program),
developed by IBM for the System 360 family of computers, was basically a digital
computer simulation of an analog computer. When the personal computer (PC) de-
veloped into a useful tool for scientists and engineers, various PC-based versions of
CSMP were developed and several are still in use today. One of the early simulation
programs targeted to communications systems, TOPSIM, was based on CSMP [3].

“TranterBook” — 2003/11/18 — 16:12 — page 224 — #242
�

�

�

�

�

�

�

�

224 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

6.4.1 Simulation Diagrams

The first step in solving a differential equation using the analog computer technique
is to develop the so-called analog computer simulation diagram. The process is
straightforward. As a simple example, assume that a system is defined by the
differential equation

d2y

dt2
+ a

dy

dt
+ by = x(t) (6.44)

where a and b are, for now, assumed constant. Solving the differential equation for
d2y/dt2 gives

d2y

dt2
= x(t) − a

dy

dt
− by (6.45)

We then integrate d2y/dt2 to obtain dy/dt, and integrate dy/dt to obtain y(t).
These quantities can then be multiplied, or otherwise manipulated, by appropriate
constants or functions to form the terms necessary for representation of the various
terms in (6.45). Combining them appropriately yields the differential equation and
the analog computer simulation diagram. A little thought shows that the analog
computer simulation diagram for our example differential equation is as shown in
Figure 6.12. While Figure 6.12 was developed for (6.45), which is a simple linear
equation with constant coefficients and is solvable using a variety of methods, the
beauty of the analog computer technique comes from the fact that the technique is
applicable to nonlinear and time-varying systems of arbitrary order.

∫∑ ∫

− a

− b

x(t) d y

dt

2

2

dy

dt y

Figure 6.12 Simulation diagram for linear, time-invariant, second-order system.

“TranterBook” — 2003/11/18 — 16:12 — page 225 — #243
�

�

�

�

�

�

�

�

Section 6.4. Solving Differential Equations Using Simulation 225

∫∑

x(t)

∫∫

d y

dt

3

3

d y

dt

2

2

−a t() −b t() −c t()

y2

y
dy

dt

Externally generated
time-varying functions

Figure 6.13 Simulation diagram for a nonlinear, time-varying, third-order system.

As an example of a system that is both nonlinear and time-varying, assume that
a system of interest is defined by the differential equation

d3y

dt3
+ a(t)y(t)

d2y

dt2
+ b(t)y2(t)

dy

dt
+ c(t)y(t) = x(t) (6.46)

Solving for d3y/dt3 gives

d3y

dt3
= x(t) − a(t)y(t)

d2y

dt2
− b(t)y2(t)

dy

dt
− c(t)y(t) (6.47)

from which the simulation diagram shown in Figure 6.13 immediately follows. The
time-varying coefficients a(t), b(t), and c(t) can be specified by appropriate equa-
tions or may be files of measured data collected experimentally.

6.4.2 The PLL Revisited

We now consider the simulation of the PLL using the differential equation approach.
The first step is to derive the differential equation. From Figure 6.3 it follows that

Evco(s) = GF (s)Ed(s) (6.48)

“TranterBook” — 2003/11/18 — 16:12 — page 226 — #244
�

�

�

�

�

�

�

�

226 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

Since the VCO in the PLL model illustrated in Figure 6.3 can be represented by an
integrator, we have

Θ(s) =
1
s
Evco(s) (6.49)

Substitution of (6.48) in (6.49) and using (6.25) for the loop filter gives

Θ(s) =
G

s

(
s + a

s + λa

)
Ed(s) (6.50)

We will simplify the problem slightly by assuming a “perfect” second-order loop for
which λ = 0. This yields

s2Θ(s) = sGEd(s) + GaEd(s) (6.51)

Since multiplication by s is equivalent to differentiation in the time domain, we
have the differential equation

d2θ

dt2
= G

d

dt
ed(t) + Gaed(t) (6.52)

By definition

ed(t) = sin ψ(t) (6.53)

and

d2ψ

dt2
=

d2φ

dt2
− d2θ

dt2
(6.54)

Equation (6.52) can then be written

d2ψ

dt2
+ G

d

dt
{sin ψ(t)} + Ga sinψ(t) =

d2φ

dt2
(6.55)

where ψ(t) is the PLL phase error and φ(t) is the phase deviation of the input
signal. Prior to developing the analog computer simulation diagram, we first write
the preceding equation in the form

d2ψ

dt2
+ G cosψ(t)

dψ

dt
+ Ga sin ψ(t) =

d2φ

dt2
(6.56)

The simulation diagram for this system is illustrated in Figure 6.14. We desire to
examine this system with a step change in the input frequency deviation at t = t0.
Thus, as before, we let

dφ

dt
= 2πf∆u (t − t0) (6.57)

“TranterBook” — 2003/11/18 — 16:12 — page 227 — #245
�

�

�

�

�

�

�

�

Section 6.4. Solving Differential Equations Using Simulation 227

∫∑ ∫

− G

− Ga

2

2

dt

d ψ
dt

dψ
ψ

)cos(•

)sin(•

2

2

dt

d φ

Figure 6.14 Simulation diagram for a perfect second-order PLL based on the differential
equation.

so that

d2φ

dt2
= 2πf∆δ (t − t0) (6.58)

Thus the input shown in Figure 6.14 is an impulse.
It is often desirable to place the input at a point in the simulation diagram that

allows for a more straightforward simulation. For example, as previously shown,
the input in Figure 6.14 is an impulse. Integrating the impulse and moving it to
the right of the first integrator as shown in Figure 6.15 allows us to use the step

∫∑ ∫

− G

− Ga

[]φψ −
2

2

dt

d
dt

dψ
ψ

)cos(•

)sin(•

dt

dφ

Figure 6.15 Simulation diagram with a frequency step as the input.

“TranterBook” — 2003/11/18 — 16:12 — page 228 — #246
�

�

�

�

�

�

�

�

228 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

function defined by (6.57) as an “equivalent input.” Simple modifications such as
this can often significantly simplify a simulation.

Example 6.3. We end this chapter with a simulation of a system that is both
nonlinear and time-varying. Assume that a system of interest is defined by the
differential equations

d2y

dt2
+ 3 |y(t)| dy

dt
+ 9y(t) = 4 exp(−t/2), t < 20 (6.59)

and

d2y

dt2
+ 3

dy

dt
+ 9y(t) = 4 exp(−t/2), t ≥ 20 (6.60)

The system is nonlinear because of the |y(t)| dy
dt term in the equation defining the

system for t < 20 and is time-varying, since the form of the differential equation is
time-dependent. The fact that the system is characterized by two separate differ-
ential equations can be implemented by a switch that changes position at t = 20
seconds as shown in Figure 6.16. In position A the system is nonlinear, while in
position B the system is linear. The phase plane will illustrate that, as expected,
the response of a nonlinear system is quite different from the response of a linear
system. As we know, solving nonlinear differential equations is a formidable task
and we therefore resort to simulation. The MATLAB program to realize the ex-
ample system is given in Appendix D. Note the similarity between this system and
the second-order PLL. Since both systems are second order, two integrators are
required in both cases. The only significant difference in the two systems is the
equation at the output of the summing junction, which closes the simulation loop.

Executing the simulation program given in Appendix D results in the phase
plane illustrated in Figure 6.17. Note that the phase trajectory both begins and

∑

4 2exp /−tb g d y

dt

2

2

dy

dt y t()

 −3 abs(•)
A

B

−9

 t = 20

∫∫

Figure 6.16 Example nonlinear time-varying system.

“TranterBook” — 2003/11/18 — 16:12 — page 229 — #247
�

�

�

�

�

�

�

�

Section 6.4. Solving Differential Equations Using Simulation 229

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 y(t)

dy/dt

Figure 6.17 Phase plane for the example simulation.

ends at the origin (0,0). The point at which the switch changes, t = 20 seconds, is
approximately indicated by the arrow. One sees that the phase plane approaches
a limit cycle as indicated by the convergence of the phase trajectory to a closed
loop. A system operating in the limit-cycle mode is an oscillator. The frequency
of oscillation and the waveshape of y(t), or its derivative, can be determined by
plotting the time-domain waveforms. Oscillation will continue as long as the switch
is in position A.

Moving the switch to position B results in a linear system. At the time the
switch is moved to position B (t = 20), the input is negligible [actually exp(−10)]
and the system response closely approximates that of an unexcited second-order
system, with the initial conditions given by the values of y(t) and dy

dt at the time
the switch is moved from position A to position B. �

Throughout this chapter we have used the trapezoidal numerical integration rule
to approximate true integration. This was done for simplicity and, as mentioned
earlier, the trapezoidal rule works quite well if the sampling frequency is sufficiently
high. Other integration rules will be the subject of later study when a more general
study of nonlinear systems is presented. (See Chapter 12.)

“TranterBook” — 2003/11/18 — 16:12 — page 230 — #248
�

�

�

�

�

�

�

�

230 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

6.5 Summary

The trapezoidal integration rule, developed in the preceding chapter, gives us the
capability to develop numerical solutions to differential equations. Since all lumped
parameter systems can be described by a differential equation, it follows that a
wide variety of systems can be simulated using trapezoidal integration to approx-
imate continuous-time integration. Since the phase-locked loop is a fundamental
building block of many communications systems, it provides a useful case study for
illustrating a number of simulation concepts.

In order to develop a simulation model of the PLL, an analytical model must
first be derived. The analysis required for model development also leads to an
understanding of the basic operational characteristics of the PLL and, in turn,
makes the simulation results understandable. Thus, the first two sections of this
chapter focused on the development of an analytical model of the PLL. We saw that
the major components of the PLL are the phase detector, the loop filter, and the
voltage controlled oscillator. Two different phase detector models were developed,
the sinusoidal phase detector and a generalized phase detector model based on the
Fourier series expansion of the phase detector characteristic. It was shown that
the VCO is an FM modulator. The loop filter and the loop gain control the PLL
dynamics.

In general, the PLL is a nonlinear system with the nonlinearity resulting from
the phase detector. Since the PLL is a nonlinear system, analysis using traditional
analytical methods is difficult and we therefore turn to simulation. If, however, the
phase error is small, system behavior becomes linear and the techniques of linear
system theory are sufficient for analysis. Operation as a linear system is often
referred to as tracking and nonlinear operation is referred to as acquisition. We
therefore have two important PLL models, the nonlinear model, which is general,
and the linear model, which can be used for those cases in which the phase error
is small. The linear model is used to define the damping factor and the natural
frequency of the second-order PLL.

Using a first-order PLL, for which the loop filter is zero order, the concept of a
phase plane was introduced. The characteristics of the phase plane illustrated the
mechanism by which the PLL achieves phase lock. It was shown that the first-order
PLL has a finite lock range limited by the loop gain. As a result, the first-order
PLL is not suitable for many applications. The second-order PLL has an infinite
lock range and is widely used.

Prior to performing a simulation study of the second-order PLL, an architec-
ture for the simulation code was developed. The simulation code is conveniently
divided into three separate programs, a preprocessor, a simulation engine, and a
postprocessor. The preprocessor is a short program through which the parameters
necessary for defining the system under study and the parameters required to man-
age execution of the simulation are defined. The simulation engine contains the
code for executing the simulation. The postprocessor takes the data produced by
the simulation engine and generates the output required by the simulation user.
Partitioning the code in this way makes the simulation software easier to maintain

“TranterBook” — 2003/11/18 — 11:36 — page 231 — #249
�

�

�

�

�

�

�

�

and understand. In addition, the three code segments can be developed in different
languages, which makes it possible to match the choice of language to the task of
the program.

An example simulation was performed for a second-order PLL. The cycle slipping
phenomena was clearly observable from both the phase plane and the time-domain
waveforms.

After considering the PLL, attention was turned to the more general problem
of simulating systems from the differential equation. By solving for the highest
derivative and using repeated integration, we saw that all terms in the differential
equation can be generated and, therefore, the differential equation could be solved.
This approach was widely used as a simulation technique for analog computers.
The analog computer technique for simulating a system is very general and can be
used for systems that are nonlinear and/or time-varying.

6.6 Further Reading

A large number books have been written that treat the phase-locked loop in detail.
A small sampling of this list includes the following:

R. E. Best, Phase-Locked Loops: Theory, Design and Applications, New York:
McGraw-Hill, 1984.

A. Blanchard, Phaselock Loops, New York: Wiley, 1976.

F. M. Gardner, Phaselock Techniques, 2nd ed., New York: Wiley, 1981.

D. R. Stephens, Phase-Locked Loops for Wireless Communications, Boston: Kluwer
Academic Publishers, 1998.

A. J. Viterbi, Principles of Coherent Communications, New York: McGraw-Hill,
1966.

6.7 References

1. R. E. Ziemer and W. H. Tranter, Principles of Communications; Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

2. H. Meyr and G. Ascheid, Synchronization in Digital Communications, Volume
1: Phase-, Frequency-Locked Loops, and Amplitude Control, New York: Wiley
Interscience, 1990.

3. K. Sam Shanmugan, “An Update on Software Packages for Simulation of
Communication Systems (Links),” IEEE Journal on Selected Areas in Com-
munications, Vol. 6, No. 1, January 1988, pp. 5–12. (This paper contains
a discussion of many of the early simulation languages and a good set of
references on these early tools.)

Section 6.7. References 231

“TranterBook” — 2003/11/18 — 16:12 — page 232 — #250
�

�

�

�

�

�

�

�

232 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

6.8 Problems

6.1 Develop and run a simulation to verify the results presented in Figures 6.6
and 6.7.

6.2 Using simulation, determine the steady-state phase error for a first-order PLL
with G = 40 (see Figure 6.6). Estimate this value using the linear model. How
do they compare? Repeat for G = 50 and G = 100. What do you conclude?

6.3 The results given in Figure 6.11 were obtained by executing the simulation
program given in Appendix A together with the preprocessor and postpro-
cessor given in Appendices B and C, respectively. A pole offset λ of 0.10
was assumed. An imperfect loop typically slips more cycles than a perfect
loop and therefore takes longer to achieve phase lock. Examine the impact
of the pole offset by executing the program assuming a perfect loop (λ = 0).
Except for the pole offset use the same parameters as given in (6.40). How
many cycles are slipped by the perfect loop? By how much is the lock time
reduced?

6.4 Using simulation, determine the steady-state phase error for a second-order
PLL with λ = 0.10 (see Figure 6.11 and consider using the zoom on MATLAB
command). Estimate this value, mod(2π), using the linear model. How do
they compare? Repeat for λ = 0, λ = 0.05, and λ = 0.2. What do you
conclude?

6.5 In this problem we wish to examine the effect of the sampling frequency on
the simulation program given in Appendix A. As a first step execute the
simulation using the parameters given in (6.40). Repeat the simulation using
sampling frequencies of 50 Hz, 100 Hz, and 500 Hz. Comment on the results.
Repeat the simulation using a sampling frequency of 10,000 Hz. What does
this last simulation tell you? How can you determine that a suitable sampling
frequency is being used?

6.6 In this problem we consider the use of the technique described in Example
6.1 to model the triangular phase detector characteristic illustrated in Figure
6.18. Determine the values of the B and C vectors for N = 11. Modify the
simulation code given in Appendix A to include this phase detector model.

2π

−2π

π
2

π
2

e td b g

ψ ()t

Figure 6.18 Triangular-wave phase detector characteristic.

“TranterBook” — 2003/11/18 — 16:12 — page 233 — #251
�

�

�

�

�

�

�

�

Section 6.8. Problems 233

π−π

e td ()

 ψ ()t

Figure 6.19 Sawtooth-wave phase detector characteristic.

6.7 Repeat the preceding problem for the sawtooth-wave phase detector input-
output characteristic illustrated in Figure 6.19. As before, the slope of the
input-output characteristic is +1 at all points except at odd multiples of π
and it is periodic with period 2π.

6.8 Using the results of Problem 6.6, simulate a second-order PLL with a triangular-
wave phase detector characteristic. Use the PLL parameters given in (6.40)
that provided the results illustrated in Figure 6.11 for a sinusoidal phase de-
tector. Compare the results obtained with the triangular-wave phase detector
with those given in Figure 6.11.

6.9 Using the results of Problem 6.7, simulate a second-order PLL with a sawtooth-
wave phase detector characteristic. As in the previous problem use the PLL
parameters given in (6.40) that provided the results illustrated in Figure 6.11
for a sinusoidal phase detector. Compare the results obtained with a sawtooth-
wave phase detector with those given in Figure 6.11.

6.10 Develop a signal-flow graph corresponding to Figure 6.15 and label the nodes
that would be used in a simulation as was done in Figure 6.10. Using the
signal-flow graph, write a MATLAB program for simulating the system and
displaying the results. The preprocessor and postprocessor given in Appen-
dices B and C, respectively, can be used. Execute the simulation for ∆f = 40,
fn = 10, ζ = 1/

√
2, and λ = 0. Compare the results to that obtained by exe-

cuting the simulation code given in Appendix A.

6.11 We previously saw that in order to break the computational deadlock result-
ing from the presence of feedback, a one sample delay had to be inserted in
the feedback loop. This gave rise to the following expression defining the rela-
tionship between input phase, the VCO phase, and the phase detector output:

ed(nT) = sin [φ(nT) − θ((n − 1)T)]

“TranterBook” — 2003/11/18 — 16:12 — page 234 — #252
�

�

�

�

�

�

�

�

234 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

In many models of PLLs used at high frequencies it is appropriate to use the
model

ed(nT) = sin [φ(nT) − θ((n − 1)T − kT)]

where kT represents “transport delay.” Transport delay results from the finite
time required for a signal to propagate from one functional block to another
functional block in a hardware implementation. In principle, transport delay
accounts for the propagation delay around the loop that is not accounted for
by the sum of the group delays of the functional blocks.

Modify the simulation program given in Appendix A to include the effects
of transport delay. Execute the simulation using the parameters defined by
(6.40) and various values of transport delay. Since transport delay increases
the time required to achieve phase lock, the value of tstop may have to be
increased. At what value of k does instability result?

6.12 For the nonlinear time-varying system investigated in Example 6.3, determine
the frequency of oscillation assuming that the switch has been in position “A”
for a long time. Plot the waveforms for y(t) and dy/dt describing limit cycle
behavior.

6.13 In Example 6.3 the limit cycle, because of the default axis scaling used by
MATLAB very nearly approximates a circle in Figure 6.17. However, since
the abscissa and the ordinate in Figure 6.17 are not scaled equally, the limit
cycle is not a circle but an oval. Modify the program given in Appendix D so
that the true shape of the limit cycle is revealed. What is the equation of the
limit cycle? Can you justify this equation?

6.14 Two systems are to be compared assuming a common input. One system is
defined by the differential equation

d2θ

dt2
+ |θ| dθ

dt
+ θ = 0

and the second system is defined by

d2θ

dt2
+ θ

∣∣∣∣dθ

dt

∣∣∣∣+ θ = 0

By solving both differential equations subject to initial conditions, θ(0) = 1,
dy(t)/dt|t=0 = 0, and d2y(t)/dt2|t=0 = 0, compare the responses of the two
systems.

6.15 A Costas PLL, which is used for demodulation of DSB and PSK signals, is
illustrated in Figure 6.20. The input signal is assumed to be

x(t) = Ac cos [2πfct + φ(t)]

“TranterBook” — 2003/11/18 — 16:12 — page 235 — #253
�

�

�

�

�

�

�

�

Section 6.8. Problems 235

(a) Develop a lowpass model using the input phase deviation φ(t) as the
input to the model.

(b) Repeat using the lowpass complex envelope x̃(t) as the input to the
model.

Loop
Filter
F(s)

VCO
e tvco ()

Lowpass
Filter

Lowpass
Filter

90
Phase Shift

2 2cos ()π φf t tc +

x t()

A tc cos ()φ

z t()

y t()

A tc sin ()φ

− +2 2sin ()π φf t tc

Figure 6.20 Costas PLL.

“TranterBook” — 2003/11/18 — 16:12 — page 236 — #254
�

�

�

�

�

�

�

�

236 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

6.9 Appendix A: PLL Simulation Program

% File: c6_PLLsim.m
w2b = 0; w2c = 0; s5 = 0; phivco = 0; % initialize
twopi = 2*pi; % define 2*pi
twofs = 2*fs; % define 2*fs
G = 2*pi*fn*(zeta+sqrt(zeta*zeta-lambda)); % set loop gain
a = 2*pi*fn/(zeta+sqrt(zeta*zeta-lambda)); % set filter parameter
a1 = a*(1-lambda); a2 = a*lambda; % define constants
phierror = zeros(1,npts); % initialize vector
fvco = zeros(1,npts); % initialize vector

% beginning of simulation loop

for i = 1:npts
s1 = phin(i) - phivco; % phase error
s2 = sin(s1); % sinusoidal phase detector
s3 = G*s2;
s4 = a1*s3;
s4a = s4-a2*s5; % loop filter integrator input
w1b = s4a+w2b; % filter integrator (step 1)
w2b = s4a+w1b; % filter integrator (step 2)
s5 = w1b/twofs; % generate filter output
s6 = s3+s5; % VCO integrator input
w1c = s6+w2c; % VCO integrator (step 1)
w2c = s6+w1c; % VCO integrator (step 2)
phivco = w1c/twofs; % generate VCO output
phierror(i) = s1; % build phase error vector
fvco(i) = s6/twopi; % build VCO input vector

end

% end of simulation loop
freqerror = fin-fvco; % build frequency error vector
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 237 — #255
�

�

�

�

�

�

�

�

Section 6.10. Appendix B: Preprocessor for PLL Example Simulation 237

6.10 Appendix B: Preprocessor for PLL Example Simulation

% File: c6_PLLpre.m
clear all % be safe
disp(‘ ’) % insert blank line
fdel = input(‘Enter the size of the frequency step in Hertz > ’);
fn = input(‘Enter the loop natural frequency in Hertz > ’);
lambda = input(‘Enter lambda, the relative pole offset > ’);
disp(‘ ’)
disp(‘Accept default values:’)
disp(‘ zeta = 1/sqrt(2),’)
disp(‘ fs = 200*fn, and’)
disp(‘ tstop = 1’)
dtype = input(‘Enter y for yes or n for no > ’,‘s’);
if dtype == ‘y’

zeta = 1/sqrt(2);
fs = 200*fn;
tstop = 1;

else
zeta = input(‘Enter zeta, the loop damping factor > ’);
fs = input(‘Enter the sampling frequency in Hertz > ’);
tstop = input(‘Enter tstop, the simulation runtime > ’);

end
npts = fs*tstop+1; % number of simulation points
t = (0:(npts-1))/fs; % default time vector
nsettle = fix(npts/10); % set nsettle time as 0.1*npts
tsettle = nsettle/fs; % set tsettle
%
% The next two lines establish the loop input frequency and phase
% deviations.
%
fin = [zeros(1,nsettle),fdel*ones(1,npts-nsettle)];
phin = [zeros(1,nsettle),2*pi*fdel*t(1:(npts-nsettle))];
disp(‘ ’) % insert blank line
%
% End of script file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 238 --- #256
�

�

�

�

�

�

�

�

238 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

6.11 Appendix C: PLL Postprocessor

6.11.1 Main Program

% File: c6_PLLpost.m
kk = 0;
while kk == 0

k = menu(‘Phase Lock Loop Postprocessor’,...
‘Input Frequency and VCO Frequency’,‘Input Phase and VCO Phase’,...
‘Frequency Error’,‘Phase Error’,‘Phase Plane Plot’,...
‘Phase Plane and Time Domain Plots’,‘Exit Program’);
if k == 1

plot(t,fin,t,fvco)
title(‘Input Frequency and VCO Frequency’)
xlabel(‘Time - Seconds’); ylabel(‘Frequency - Hertz’);
pause

elseif k ==2
pvco = phin-phierror;
plot(t,phin,t,pvco)
title(‘Input Phase and VCO Phase’)
xlabel(‘Time - Seconds’); ylabel(‘Phase - Radians’);
pause

elseif k == 3
plot(t,freqerror);
title(‘Frequency Error’)
xlabel(‘Time - Seconds’); ylabel(‘Frequency Error - Hertz’);
pause

elseif k == 4
plot(t,phierror);
title(‘Phase Error’)
xlabel(‘Time - Seconds’); ylabel(‘Phase Error - Radians’);
pause

elseif k == 5
ppplot

elseif k == 6
subplot(211);
phierrn = phierror/pi;
plot(phierrn,freqerror);
grid;
title(‘Phase Plane Plot’);
xlabel(‘Phase Error /Pi’); ylabel(‘Frequency Error - Hertz’);
subplot(212)
plot(t,fin,t,fvco); grid
title(‘Input Frequency and VCO Frequency’)
xlabel(‘Time - Seconds’); ylabel(‘Frequency - Hertz’);
subplot(111)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 239 --- #257
�

�

�

�

�

�

�

�

Section 6.11. Appendix C: PLL Postprocessor 239

elseif k == 7
kk = 1;

end
end
% End of script file.

6.11.2 Called Routines

Script File ppplot.m

% ppplot.m is the script file for plotting phase plane plots. If
% the phase plane is constrained to (-pi,pi) ppplot.m calls
% pplane.m.
%
kz = 0;
while kz == 0
k = menu(‘Phase Plane Options’,...
‘Extended Phase Plane’,...
‘Phase Plane mod(2pi)’,...
‘Exit Phase Plane Menu’);
if k == 1

phierrn = phierror/pi;
plot(phierrn,freqerror,‘k’)
title(‘Phase Plane Plot’)
xlabel(‘Phase Error /Pi’); ylabel(‘Frequency Error - Hertz’)
grid
pause

elseif k == 2
pplane(phierror,freqerror,nsettle+1)
pause

elseif k == 3
kz = 1;

end
end
% End of script file.

Function pplane.m

function [] = pplane(x,y,nsettle)
% Plots the phase plane with phase in the range (-pi,pi)
ln = length(x);
maxfreq = max(y);
minfreq = min(y);
close % Old figure discarded
axis([-1 1 1.1*minfreq 1.1*maxfreq]); % Establish scale
hold on % Collect info for new fig
j = nsettle;

“TranterBook” — 2003/11/18 — 16:12 — page 240 — #258
�

�

�

�

�

�

�

�

240 Case Study: Phase-Locked Loops and Differential Equation Methods Chapter 6

while j < ln
i = 1;
while x(j) < pi & j < ln

a(i) = x(j)/pi;
b(i) = y(j);
j = j+1;
i = i+1;

end
plot(a,b,‘k’)
a = [];
b = [];
x = x - 2*pi;

end
hold off
title(‘Phase-Plane Plot’)
xlabel(‘Phase Error / Pi’); ylabel(‘Frequency Error in Hertz’)
grid
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 241 — #259
�

�

�

�

�

�

�

�

Section 6.12. Appendix D: MATLAB Code for Example 6.3 241

6.12 Appendix D: MATLAB Code for Example 6.3

% File: c6_nltvde.m
w2b = 0; w2c = 0; % initialize integrators
yd = 0; y = 0; % initialize differential equation
tfinal = 50; % simulation time
fs = 100; % sampling frequency
delt = 1/fs; % sampling period
npts = 1+fs*tfinal; % number of samples simulated
ydv = zeros(1,npts); % vector of dy/dt samples
yv = zeros(1,npts); % vector of y(t) samples

% beginning of simulation loop
for i=1:npts

t = (i-1)*delt; % time
if t < 20

ydd = 4*exp(-t/2)-3*yd*abs(y)-9*y; % de for t<20
else

ydd = 4*exp(-t/2)-3*yd-9*y; % de for t>=20
end
w1b = ydd+w2b; % first integrator - step 1
w2b = ydd+w1b; % first integrator - step 2
yd = w1b/(2*fs); % first integrator output
w1c = yd+w2c; % second integrator - step 1
w2c = yd+w1c; % second integrator - step 2
y = w1c/(2*fs); % second integrator output
ydv(1,i) = yd; % build dy/dt vector
yv(1,i) = y; % build y(t) vector

end}
% end of simulation loop

plot(yv,ydv) % plot phase plane
xlabel(‘y(t)’) % label x axis
ylabel(‘dy/dt’) % label y zaxis
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 242 — #260
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 243 — #261
�

�

�

�

�

�

�

�

Chapter 7

GENERATING
AND PROCESSING
RANDOM SIGNALS

To this point we have been concerned with deterministic signals in simulations.
In all communication systems of practical interest, random effects such as channel
noise, interference, and fading, degrade the information-bearing signal as it passes
through the system from information source to the final user. Accurate simulation
of these systems at the waveform level requires that these random effects be modeled
accurately. Therefore, algorithms are required to produce these random effects. The
fundamental building block is the random number generator. While much can be
said about random number generators (several books and many research papers have
been written on the subject), the emphasis in this chapter is on the use of random
number generators in the simulation of communication systems. Thus, we restrict
our study to the essential task of generating sampled versions of random waveforms
(signals, interference, noise, etc.) for use in simulation programs. In the simulation
context, all random processes must be expressed by sequences of random variables.
Generating and testing these random sequences are the subject of this chapter.
Many programming languages useful for developing simulation programs, such as
MATLAB, contain random number generators as part of the library of “built-in”

243

“TranterBook” — 2003/11/18 — 16:12 — page 244 — #262
�

�

�

�

�

�

�

�

244 Generating and Processing Random Signals Chapter 7

functions. Understanding the concepts upon which these number generators are
based provides important insight into the overall simulation program. It is wise to
ensure that these number generators are properly designed and appropriate for use
in a given application.

We will see that these random number generators do not, strictly speaking,
generate random numbers, but produce sequences that appear random over the
observation (simulation) interval so that they can be used to approximate a sample
function of a random process in a given simulation program. By “appear random”
we mean that the generated sequences, over a given simulation interval, have the
properties required to accurately model a random process, with the required level
of accuracy, for a given application. We refer to such sequences as pseudo-random
sequences, since, even though they are deterministic, they appear random when used
for a given application. The accuracy required is dependent on the application. For
example, if we must generate a waveform to represent the noise at the input of a
PLL discriminator, higher accuracy is required to model the noise waveform for an
input SNR of 50 dB than for 8 dB. More accuracy is required to model the noise
component in a digital communications system if the bit-error probability is 10−7

than if the bit-error probability is 10−3.
In this chapter we first consider the generation of sample functions of a ran-

dom process. The concept of stationarity is examined in the simulation context.
Simulation models for digital modulators are then briefly considered. After these
preliminary discussions, we turn our attention to the main focus of this chapter and
consider the following:

• Generating uncorrelated random numbers uniformly distributed in (0,1)

• Mapping random numbers that are uncorrelated and uniformly distributed
to random numbers that are uncorrelated and have an arbitrary (desired)
probability density function (pdf)

• Generating random numbers that are uncorrelated and have a Gaussian pdf

• Generating random numbers that are correlated and have a Gaussian pdf

• Generating random numbers that are correlated and have an arbitrary (de-
sired) pdf

We then take a brief look at the generation of pseudonoise (PN) sequences and at
several computational techniques applied to sequences of random numbers.

7.1 Stationary and Ergodic Processes

When simulating a communications system, the sample functions generated to rep-
resent signals, noise, and interference will be assumed ergodic. This is required,
since we typically process time-domain samples of waveforms through the system
sequentially and, at each point in the system, there is a single waveform (sample
function). We make the assumption that the waveform processed by the simulation

“TranterBook” — 2003/11/18 — 16:12 — page 245 — #263
�

�

�

�

�

�

�

�

Section 7.1. Stationary and Ergodic Processes 245

is a typical member of the ensemble defined by the underlying statistical model.
Various statistical quantities such as moments, signal-to-noise ratios, and bit-error
rates will be computed as time average quantities. When comparing simulation
results with corresponding theoretical results, there will usually be an underlying
assumption that time averages, computed by the simulation, are equivalent to en-
semble averages. As a result, there is an implied assumption that the underlying
random processes are ergodic.

Ergodic processes are always stationary. Therefore, the sample functions gener-
ated within a simulation are always assumed to be members of a stationary random
process. Recall from basic random process theory that the definition of stationar-
ity is that all statistical quantities are independent of the time origin. In order to
demonstrate several of these ideas, we pause to consider a simple example.

Example 7.1. Assume that the sample functions of a random process are defined
by the expression

x(t, ξi) = A cos(2πft + φi) (7.1)

in which ξi is an outcome in the sample space of an underlying random experiment,
and each outcome ξi is mapped to a phase φi. We also assume that the underlying
random experiment consists of drawing a number from a uniform number generator.
The result of this draw is the outcome ξi = ui, where ui is uniformly distributed in
(0, 1). The value of ui is then mapped into a phase φi = kui. With A and f fixed,
the value of φi determines the waveform. In this example we have interest in two
values of k, namely, k = 2π, in which the phase is uniformly distributed in (0, 2π),
and k = π/2, in which the phase is uniformly distributed in (0, π/2). As a second
example, assume that the random process is described by the expression

x(t, ξi) = A(1 + ui) cos 2πft (7.2)

In this case the amplitude is uniformly distributed in the range (A, 2A).
The following MATLAB program produces three sets of sample functions of a

random process. The first set of waveforms, denoted x(t), corresponds to (7.1)
with k = 2π. The second set of waveforms, denoted y(t), corresponds to (7.1) with
k = π/2. The third set of waveforms, denoted z(t), are defined by (7.2). For all
waveforms, A = 1 and f = 1. Two seconds of data and twenty sample functions
are generated for each simulation.

% File: c7 sinewave.m
f = 1; % frequency of sinusoid
fs = 100; % sampling frequency
t = (0:200)/fs; % time vector
for i=1:20

x(:,i) = cos(2*pi*f*t+rand(1)*2*pi)’;
y(:,i) = cos(2*pi*f*t+rand(1)*pi/2)’;
z(:,i) = (1+rand(1))*cos(2*pi*f*t)’;

end
subplot(3,1,1); plot(t,x,‘k’); ylabel(‘x(t)’)

“TranterBook” — 2003/11/18 — 16:12 — page 246 — #264
�

�

�

�

�

�

�

�

246 Generating and Processing Random Signals Chapter 7

subplot(3,1,2); plot(t,y,‘k’); ylabel(‘y(t)’)
subplot(3,1,3); plot(t,z,‘k’); ylabel(‘z(t)’)
% End of script file.

Executing this program yields the results illustrated in Figure 7.1.
The time averages of all sample functions comprising x(t), y(t), and z(t) are

all equal to zero. The reader can easily verify (see Problem 7.1 that the ensemble
averages of x(t) are approximately zero when computed at a large number of points,
ti for 0 ≤ ti ≤ 2. The time averages will converge to zero as the number of sample
functions tends to ∞. For y(t), however, the ensemble average is approximately 1
for t in the neighborhood of 0.875 and 1.875, is approximately −1 for t in the neigh-
borhood of 0.375 and 1.375, and is approximately zero for t in the neighborhood of
0.125, 0.625, 1.125, and 1,625. This is an example of a cyclostationary process, in
which the moments are periodic.

The sample functions denoted by z(t) are also sample functions from a cyclo-
stationary process. Note that sampling the process at t = 0.5k generates a random
variable, the mean of which is approximately +1.5 for k even and is approximately
−1.5 for k odd. �

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

x
(t

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

y
(t

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

0

2

z
(t

)

Figure 7.1 Sample functions for three different random processes.

“TranterBook” — 2003/11/18 — 16:12 — page 247 — #265
�

�

�

�

�

�

�

�

Section 7.1. Stationary and Ergodic Processes 247

The preceding example made use of the MATLAB uniform random number
generator rand. In the following example we illustrate the use of a random number
generator for modeling a digital modulator. In the following section the algorithms
used for implementing uniform number generators is explored in detail.

Example 7.2. In the work to follow we have frequent need for models of digi-
tal modulators. The fundamental building block for these modulators will be the
function random binary, which produces a binary waveform having values +1 or
−1. The number of bits produced, as well as the number of samples per bit, are
arguments. The listing follows:

function [x, bits] = random binary(nbits,nsamples)
% This function generates a random binary waveform of length nbits
% sampled at a rate of nsamples/bit.
x = zeros(1,nbits*nsamples);
bits = round(rand(1,nbits));
for m=1:nbits

for n=1:nsamples
index = (m-1)*nsamples + n;
x(1,index) = (-1)^bits(m);
end

end

The function random binary can be used to simulate a number of digital mod-
ulators. For example a QPSK modulator can be simulated using the MATLAB
statement

x = random binary(nbits,nsamples)+i*random binary(nbits,nsamples);

The following MATLAB program generates a QPSK signal for 10 bits with a sam-
pling frequency of 8 samples per bit:

% File: c7 example2.m
nbits = 10; nsamples = 8;
x = random binary(nbits,nsamples)+i*random binary(nbits,nsamples);
xd = real(x); xq = imag(x);
subplot(2,1,1)
stem(xd,‘.’); grid; axis([0 80 -1.5 1.5]);
xlabel(‘Sample Index’); ylabel(‘xd’)
subplot(2,1,2)
stem(xq,‘.’); grid; axis([0 80 -1.5 1.5]);
xlabel(‘Sample Index’); ylabel(‘xq’)
% End of script file.

Executing the program yields the QPSK signal, having the direct and quadrature
components, illustrated in Figure 7.2. �

“TranterBook” — 2003/11/18 — 16:12 — page 248 — #266
�

�

�

�

�

�

�

�

248 Generating and Processing Random Signals Chapter 7

0 10 20 30 40 50 60 70 80
-1.5

-1

-0.5

0

0.5

1

1.5

Sample Index

x
d

0 10 20 30 40 50 60 70 80
-1.5

-1

-0.5

0

0.5

1

1.5

Sample Index

x
q

Figure 7.2 Direct and quadrature components of a QPSK signal.

7.2 Uniform Random Number Generators

A random variable having a uniform probability density function is easily trans-
formed to a random variable having a desired pdf other than uniform. Therefore,
the first step in the generation of a random variable having a specified pdf is to
generate a random variable that is uniformly distributed on the interval (0,1). This
is typically accomplished by first generating a sequence of numbers (integers) be-
tween 0 and M and then dividing each element of the sequence by M . The most
common technique for implementing random number generators is known as linear
congruence.

7.2.1 Linear Congruence

A linear congruence generator (LCG) is defined by the operation

xi+1 = [axi + c]mod(m) (7.3)

where a and c are referred to as the multiplier and increment, respectively, and
the parameter m is referred to as the modulus. This is, of course, a deterministic
sequential algorithm in which successive values of x are generated in turn. The

“TranterBook” — 2003/11/18 — 16:12 — page 249 — #267
�

�

�

�

�

�

�

�

Section 7.2. Uniform Random Number Generators 249

initial value of x, denoted x0, is referred to as the seed number of the generator.
(We will have more to say about seed numbers later in this section.) Given that x0,
a, c, and m are integers, all numbers produced by the LCG will be integers. Since
the operation [axi + c] is evaluated mod(m) it follows that, at most, m distinct
integers can be generated by (7.3). A desirable property of the generator output is
that it has a long period, so that the maximum number of integers are produced in
the output sequence before the sequence repeats. When the period is maximized, for
a given value of m, we say that the generator is full period. In addition, application
to a given simulation program places other demands on the LCG. For example, we
usually require that the samples xi and xi+1 be uncorrelated. In addition, the LCG
output may be required to pass other statistical tests, depending on the application.
The LCG can take many different forms. In this section, only the most common
algorithms are considered.

Technique A: The Mixed Congruence Algorithm

The most general congruence algorithm is the “mixed” congruence algorithm for
which c 	= 0. We refer to this algorithm as a mixed algorithm because both mul-
tiplication and addition are involved in the calculation of xi+1. The mixed linear
algorithm takes the form given in (7.3)

xi+1 = [axi + c] mod(m) (7.4)

For c 	= 0, the generator has a maximum period of m. This period is achieved if
and only if

• The increment c is relatively prime to m. In other words, c and m have no
common prime factors.

• a − 1 is a multiple of p, where p represents the prime factors of the modulus
m.

• a − 1 is a multiple of 4 if m is a multiple of m.

A proof of the foregoing statement is given by Knuth [1].

Example 7.3. We wish to design a mixed congruence generator having a period
m = 5, 000. Since

5000 =
(
23
) (

54
)

(7.5)

we can ensure that m and c are relatively prime by setting c equal to a product of
primes other than 2 and 5. This satisfies the first property. One of many possibilities
is to set

c =
(
32
) (

72
)

= 1323 (7.6)

The value of a must now be selected. The second property is satisfied by setting

a − 1 = k1p1 (7.7)

“TranterBook” — 2003/11/18 — 16:12 — page 250 — #268
�

�

�

�

�

�

�

�

250 Generating and Processing Random Signals Chapter 7

and

a − 1 = k2p2 (7.8)

where p1 = 2 and p2 = 5 (the factors of m), and k1 and k2 are arbitrary integers.
Since 4 is a factor of m = 5, 000, we satisfy the third bullet by setting

a − 1 = 4k3 (7.9)

where k3 is an arbitrary integer. An obvious choice for a is to let

a − 1 = 4kp1p2 (7.10)

or

a − 1 = 2 · 4 · 5 · k = 40k (7.11)

where k is an integer. With k = 6, we have a = 241. Thus:

xi+1 = [241xi + 1323]mod (5000) (7.12)

is a full-period generator. Note that there are many other choices of parameters
that will produce a full-period generator with m = 5, 000. �

Example 7.4. In this example we show that the LCG designed in the previous
example does indeed have a period of m = 5, 000. In the following MATLAB
program, a seed number is entered and the program runs until the seed reoccurs. If
n integers are generated and n > m without the seed recurring, one assumes that
the generator is caught in a loop in which a short sequence is repeatedly generated.
The MATLAB program is

% File: c7 LCGperiod.m
a = input(‘Enter multiplier a > ’);
c = input(‘Enter offset c > ’);
m = input(‘Enter modulus m > ’);
seed = input(‘Enter seed > ’);
n=1; ix = rem((seed*a+c),m);
while (ix~=seed)&(n<m+2)

n = n+1; ix = rem((ix*a+c),m);
end
if n>m

disp(‘Caught in a loop.’)
else

text = [‘The period is ’,num2str(n,15),‘.’];
disp(text)

end
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 251 — #269
�

�

�

�

�

�

�

�

Section 7.2. Uniform Random Number Generators 251

Executing the program yields the following dialog:

� c7 LCGperiod
Enter multiplier a > 241
Enter offset c > 1323
Enter modulus m > 5000
Enter seed > 1
The period is 5000.

We see that the period is indeed 5,000 as expected. �

Technique B: The Multiplicative Algorithm With Prime Modulus

The multiplicative generator is defined as

xi+1 = [axi] mod(m) (7.13)

which is the mixed algorithm with the increment c set equal to zero. Note that xi

cannot equal zero for c = 0. Therefore, the full period is m − 1 rather than m, as
was the case previously. The multiplicative algorithm produces a full period if [1]

• m is prime (m is usually required to be large)

• a is a primitive element mod(m)

As we know, a prime number is a number evenly divisible only by 1 or by the
number itself. The second property perhaps requires an explanation. We mean
that a is a primitive element mod(m) if ai − 1 is a multiple of m for i = m− 1, but
for no smaller value of i. In other words, a is a primitive element mod(m) if

am−1 − 1
m

= k (7.14)

and

ai − 1
m

	= k, i = 1, 2, 3, · · · , m − 2 (7.15)

for k an arbitrary integer. For a proof that (7.13) produces a full-period generator
under the given conditions see [1].

Technique C: The Multiplicative Algorithm with Nonprime Modulus

The most important case in which the modulus m is not a prime number is m equal
to a power of two. In other words:

xi+1 = [axi] mod(2n) (7.16)

“TranterBook” — 2003/11/18 — 16:12 — page 252 — #270
�

�

�

�

�

�

�

�

252 Generating and Processing Random Signals Chapter 7

for integer n. For the case defined by (7.16), the maximum period is 2n/4 = 2n−2.
This period is achieved if

• The multiplier a is 3 or 5 mod(8)

• The seed x0 is odd

A proof is given by Knuth [1].
Since the product of two odd numbers is odd, it follows that all values generated

by (7.16) are odd if x0 is odd. Thus, no even values of xi are generated, which
reduces the period by a factor of two. The odd integers generated by (7.16) are
divided into two sets, only one of which is generated for a given seed. This reduces
the period by another factor of two. The set of odd integers actually generated
depends upon the choice of the seed. (See Problem 7.3.)

The advantage of using m = 2k is that integer overflow can be used to perform
the mod(m) operation. This reduces the computation time. While this is indeed
desirable, the result is a program that is not easily transportable.

7.2.2 Testing Random Number Generators

The previous section provides us with the tools for generating pseudo-random num-
bers that are uniformly distributed between 0 and 1. To this point we have con-
sidered only the period of the sequence produced by an LCG. While we obviously
wish this period to be long, there are other desirable attributes to be satisfied for a
given application. At the very least, we desire the sequence to be delta correlated
(white). Other requirements may be necessitated by the application.

A number of procedures have been developed for testing the randomness of a
given sequence. Among the most popular of these are the Chi-square test, the
Kolomogorov-Smirnov test, and the spectral test. A study of these is beyond the
scope of the material presented here. The interested student is referred to the
literature [1, 2]. The spectral test appears to be the most powerful of these tests.
A brief description of the spectral test, applied to the Wichmann-Hill algorithm to
be discussed later, is given in the paper by Coates [3].

For many of the applications to follow, the most important attribute to be
satisfied is that the elements of a given sequence are independent, or at least un-
correlated. Toward this end, we consider two very simple tests: scatterplots and
the Durbin-Watson test. It should be pointed out that the properties of a given
sequence apply to the complete sequence (the full period). If one uses only a portion
of the sequence, the properties of the complete sequence no longer apply.

Scatterplots

The scatterplot is best illustrated by an example.

Example 7.5. A scatterplot is a plot of xi+1 as a function of xi, and represents
an empirical measure of the quality of the number generator. For this example, we
consider two number generators defined by

xi+1 = (65xi + 1)mod(2048) (7.17)

“TranterBook” — 2003/11/18 — 16:12 — page 253 — #271
�

�

�

�

�

�

�

�

Section 7.2. Uniform Random Number Generators 253

and

xi+1 = (1229xi + 1)mod(2048) (7.18)

Applying the program c7 LCGperiod.m presented in Example 7.2 shows that both of
these generators are full period. The MATLAB code for generating the scatterplots
for each of these generators is

% File: c7 LCDemo1.m
m = 2048; c = 1; seed = 1; % default values of m and c
a1 = 65; a2 = 1229; % multiplier values
ix1 = seed; ix2 = seed; % initialize algorithm
x1 = zeros(1,m); x2 = zeros(1,m); % initialize arrays
for i=1:m

ix1 = rem((ix1*a1+c),m);
x1(i) = ix1/m;
ix2 = rem((ix2*a2+c),m);
x2(i) = ix2/m;

end
subplot(1,2,1)
y1 = [x1(1,2:m),x1(1,1)];
plot(x1,y1,‘.’) % plot results for a1
subplot(1,2,2)
y2 = [x2(1,2:m),x2(1,1)];
plot(x2,y2,‘.’) % plot results for a2
% End of script file.

Executing the program yields the scatterplots illustrated in Figure 7.3. One seeks a
scatterplot in which all combinations of the ordinate xi+1 and the abscissa xi occur.
For this case, the scatterplot is devoid of structure. It appears from Figure 7.3 that
a = 65 yields a generator having smaller serial correlation than the generator with
a = 1,229. We will see in Example 7.6 that this is indeed the case. �

The Durbin-Watson Test

The Durbin-Watson test for independence is implemented by calculating the Durbin
parameter

D =
(1/N)

∑N
n=2(X [n] − X [n− 1])2

(1/N)
∑N

n=1 X2[n]
(7.19)

where X [n] is a zero-mean random variable [4]. We will show that values of D in
the neighborhood of 2 imply small correlation between X [n] and X [n− 1].

In order to illustrate the properties of the Durbin-Watson test, assume that
X [n − 1] and X [n] are correlated and that X [n] is an ergodic process. In order to
simplify the notation we assume that N is large so that N − 1 ≈ N and write

D =
E
{
(X − Y)2

}
E {X2} =

1
σ2

x

E
{
(X − Y)2

}
(7.20)

“TranterBook” — 2003/11/18 — 16:12 — page 254 — #272
�

�

�

�

�

�

�

�

254 Generating and Processing Random Signals Chapter 7

Figure 7.3 Scatterplots for a1 = 65 (left) and a2 = 1,229 (right).

where X denotes X [n], Y denotes X [n − 1], and E {·} denotes expectation. Since
we assumed that X [n] and X [n− 1] are correlated we let1

Y = ρX +
√

1 − ρ2Z (7.21)

where X and Z are uncorrelated and ρ is the correlation coefficient relating X and
Y . Note that X , Y , and Z all have equal variance, which we denote σ2. Substituting
(7.21) in (7.20) gives

D =
1
σ2

E
{

(1 − ρ)2X2 − 2(1 − ρ)
√

1 − ρ2XZ + (1 − ρ2)Z2
}

(7.22)

The middle term is zero, since X and Z are uncorrelated and zero-mean. Since X
and Z have equal variance

D =
(1 − ρ)2σ2 + (1 − ρ2)σ2

σ2
= 2(1 − ρ) (7.23)

Since −1 ≤ ρ ≤ 1, the Durbin parameter D varies between 0 and 4, with D = 2 if
ρ = 0. Values of D < 2 imply positive correlation, while D > 2 implies negative

1This transformation will be discussed in Section 7.5.1.

“TranterBook” — 2003/11/18 — 16:12 — page 255 — #273
�

�

�

�

�

�

�

�

Section 7.2. Uniform Random Number Generators 255

values of ρ. The following MATLAB function computes the value of the Durbin
parameter:

% File: c7_durbin.m
function D = durbin(x)
N = length(x); % length of input vector
y = x-mean(x); % remove dc
ydiff = y(2:N)-y(1:(N-1)); % numerator summand
Num = sum(ydiff.*ydiff); % numerator factor of D
Den = sum(y.*y); % denominator factor of D
D = Num/Den; % Durbin factor
% End of script file.

Example 7.6. In this example, we calculate the value of D for the two noise
generators considered in Example 7.5. The MATLAB code is as follows:

% File: c7 LCDemo2.m
m = 2048; c = 1; seed = 1;
a1 = 65; a2 = 1229;
ix1 = 1; ix2 = 1;
x1 = zeros(1,m); x2 = zeros(1,m);
for i=1:m

ix1 = rem((ix1*a1+c),m);
x1(i) = ix1;
ix2 = rem((ix2*a2+c),m);
x2(i) = ix2;

end
D1 = c7 Durbin(x1); D2 = c7 Durbin(x2); % calculate Durbin parameters
rho1 = 1-D1/2; rho2 = 1- D2/2; % calculate correlation
text1 = [‘The value of D1 is ’,num2str(D1),‘ and rho1 is ’,...

num2str(rho1),‘.’];
text2 = [‘The value of D2 is ’,num2str(D2),‘ and rho2 is ’,...

num2str(rho2),‘.’];
disp(text1)
disp(text2)
% End of script file.

Executing the program yields:

� c7 LCDemo2
The value of D1 is 1.9925 and rho1 is 0.0037273.
The value of D2 is 1.6037 and rho2 is 0.19814.

For a1 = 65 the correlation is approximately 0, while for a2 = 1,229 the correlation
is approximately 0.2. It therefore follows from the Durbin-Watson test that a1 = 65

“TranterBook” — 2003/11/18 — 16:12 — page 256 — #274
�

�

�

�

�

�

�

�

256 Generating and Processing Random Signals Chapter 7

gives superior results to a2 = 1, 229. This result is consistent with the scatterplots
shown in Figure 7.3. �

7.2.3 Minimum Standards

It is a major task to thoroughly test a given LCG for quality by showing that a
variety of statistical tests for randomness are passed. This is especially true when
the generated sequence is long. In order to partially solve this problem, a number
of algorithms have been identified as minimum standard algorithms. A minimum
standard algorithm is one that is [5]

• Full period

• Passes all applicable statistical tests for randomness

• Easily transportable from one computer to another

Once such an algorithm has been identified and properly documented, it becomes
a minimum standard. The algorithm can then be used with confidence by others
without additional testing. As pointed out in [5], if a minimum standard algorithm
is used, one need not worry about the correctness of the algorithm, but must ensure
that the algorithm is implemented correctly for the given computational environ-
ment.2 An important programming concern is that all numbers generated by the
algorithm be uniquely representable.3

Lewis, Goodman, and Miller Minimum Standard

The Lewis, Goodman, and Miller minimum standard is defined by [5]

xi+1 = (16807xi)mod(2147483647) (7.24)

in which m is the Mersenne4 prime 231 − 1. This value of m was first suggested by
Lehmer, who was responsible for much of the basic work on LCGs more than half a
century ago [5]. It is widely used and is easily implemented in integer arithmetic on
32-bit computers, and in floating-point arithmetic if the mantissa exceeds 31 bits.5

The Wichmann-Hill Algorithm

The previous work has shown that we desire number generators having long periods.
An effective technique for constructing a waveform having a long period is to sum
several periodic waveforms having slightly different periods. For example, cos 2π(1)t

2We generally assume that a computational environment is a general-purpose computer. How-
ever, for some applications the computational environment could be a special-purpose machine,
an ASIC chip, an FPGA chip, or a programmable DSP chip.

3For speed of computation, LCGs are typically implemented using integer arithmetic. In MAT-
LAB we use floating-point arithmetic. In order to uniquely represent each number defined by the
algorithm, m must be less than the MATLAB constant eps, the default value of which exceeds
4 × 1015 on IEEE compliant computers (see Chapter 3).

4If m = 2k − 1 is a prime number, m is known as a Mersenne prime.
5Recall from Chapter 3 that the IEEE floating-point standard assigns 51 bits to the mantissa.

“TranterBook” — 2003/11/18 — 16:12 — page 257 — #275
�

�

�

�

�

�

�

�

Section 7.2. Uniform Random Number Generators 257

has a period of 1 second and cos 2π(1.0001)t has a period of 10, 000/10, 001, which
is slightly less than 1 second. The composite waveform can be written in the form

x(t) = cos 2π(10000/10000)t+ cos 2π(10001/10000)t (7.25)

which has a period of 10, 000 seconds, or approximately 2.78 hours. During this
period, the first component goes through 10, 000 periods and the second component
goes through 10, 001 periods. Additional components can be used if desired.

The same technique can be applied to LCGs by combining several number gen-
erators having different, but approximately the same, periods [6]. The Wichmann-
Hill algorithm is probably the best known example of a combined number generator.
Many different variations of the Wichmann-Hill algorithm are possible. The original
algorithm, which is nicely described in a paper by Coates [3], uses three component
generators defined as

xi+1 = (171xi)mod(30269) (7.26)
yi+1 = (170yi)mod(30307) (7.27)
zi+1 = (172zi)mod(30323) (7.28)

The three component generators are indeed full-period generators (see Problem
7.11). The three component generators are combined to give the output

ui =
(xi

30269
+

yi

30307
+

zi

30323

)
mod(1) (7.29)

This Wichmann-Hill algorithm is equivalent to a multiplicative LCG with multiplier

a = 16, 555, 425, 264, 690 (7.30)

and modulus

m = 30269 · 30307 · 30323 ≈ 2.7817× 1013 (7.31)

Since M is clearly not prime, the period is shorter than m − 1. It is shown in
[3] that the period is approximately 7.0 × 1012 that, although less than m, is still
extremely long.

The Wichmann-Hill algorithm, although somewhat different in architecture from
the previously presented minimum standard, is considered a minimum standard
uniform number generator, since it has been tested extensively, has been shown to
pass all of the standard statistical tests, and is easily transported from one machine
to another [3].

7.2.4 MATLAB Implementation

Prior to the release of MATLAB 5, the uniform random number generator rand,
included in the MATLAB library, was the minimum standard number generator de-
fined by (7.24). The uniform random number generator used in MATLAB versions

“TranterBook” — 2003/11/18 — 16:12 — page 258 — #276
�

�

�

�

�

�

�

�

258 Generating and Processing Random Signals Chapter 7

5 and 6 is based on a technique developed by Marsaglia.6 This number generator,
which is targeted at the generation of floating-point numbers rather than scaled
integers, is briefly described in a short paper by Moler [7]. MathWorks claims that
this number generator has a period exceeding 21492 and is “fairly sure” that all
floating-point numbers between eps and 1-eps/2 are generated, where the MAT-
LAB constant eps, as described in Chapter 3, is 2−52. The new number generator
uses only addition and subtraction. Since no multiplications or divisions are used,
the algorithm executes much faster than an LCG.

7.2.5 Seed Numbers and Vectors

Since the simulation examples presented in this book are based on MATLAB, it is
important to briefly consider the way in which MATLAB handles seeds. The “old”
MATLAB random number generator (prior to MATLAB 5 and defined by (7.24)
used a single seed number. The “new” random number uses a vector seed, referred
to as the state of the number generator. This vector consists of 35 elements (32
floating-point numbers, two integers, and a flag) that define the state of the number
generator [7]. With MATLAB 5 or later, either number generator can be used. The
new random number generator is the default. The old random number defined by
(7.24) can be invoked by using the command RAND(‘seed’,0) or RAND(‘seed’,J).
As with all MATLAB commands, the user should carefully study the information
provided by the help command. In addition, the user should be aware of the
following (the term seed is used to cover both integer seeds and state vectors):

• The user can either use the default seed number or can specify a seed number.

• Closing and reopening MATLAB resets the seed to the default value. Thus,
if one makes N calls to a random number generator, then closes and reopens
MATLAB and makes N more calls to a random number generator, the same
N numbers will be produced in both cases. This property can be used to
advantage in MATLAB, since it allows one to reproduce identical sequences
of results. This is useful for testing purposes.

• The system clock can be used to randomize the initial seed. (See MATLAB
help for details.)

• Seed numbers are stored in a buffer and not on the MATLAB workspace. As
a result, executing the command clear all has no effect.

7.3 Mapping Uniform RVs to an Arbitrary pdf

Many different methods have been developed for mapping a uniformly distributed
random variable to a target random variable having a pdf that is not uniform. There
are basically three different situations that occur:

1. The cumulative distribution for the target random variable is known in closed
form. We will see that if the CDF of the target random variable is known in

6See The MathWorks Support Solution Number 8542.

“TranterBook” — 2003/11/18 — 16:12 — page 259 — #277
�

�

�

�

�

�

�

�

Section 7.3. Mapping Uniform RVs to an Arbitrary pdf 259

closed form, a very simple technique, known as the inverse transform method,
can be used.

2. The pdf of the target random variable is known in closed form, but the CDF
is not known in closed form. The important Gaussian random variable falls
into this category. A number of ad hoc methods exist for this case and, in
addition, rejection methods can be used.

3. Neither the pdf nor the CDF are known in closed form. This situation is often
encountered when one must develop a random number generator to fit the pdf
of experimentally collected data.

We now examine techniques that can be used in each of these three cases.

7.3.1 The Inverse Transform Method

The inverse transform method allows us to transform a uniformly distributed un-
correlated random sequence U to an uncorrelated (independent samples) sequence
X having a distribution function, FX (x). The transformation makes use of a mem-
oryless nonlinearity as shown in Figure 7.4. The fact that the nonlinearity is mem-
oryless ensures that the output sequence is uncorrelated if the input sequence is
uncorrelated. Of course, by the Weiner-Khitchine theorem, a sequence of uncorre-
lated random numbers has a PSD which is constant (white). The technique is to
simply set

U = FX (X) (7.32)

and solve for x, which gives

X = F−1
X (U) (7.33)

Application of the inverse transform technique requires that the distribution func-
tion, FX (x), be known in closed form.

It is easy to see that the inverse transform technique yields a random variable
with the required distribution function [2, 8]. Recall that a distribution, FX (x),
is a nondecreasing function of the argument x, as illustrated in Figure 7.5. By
definition

FX (x) = Pr {X ≤ x} (7.34)

Memoryless
Nonlinear

Transformation

Input:

pdf: uniform

PSD (uncorrelated)

X t

K

()

=

Output:

pdf: arbitrary

PSD (uncorrelated)

Y t

K

()

=

Figure 7.4 Inverse transform method.

“TranterBook” — 2003/11/18 — 16:12 — page 260 — #278
�

�

�

�

�

�

�

�

260 Generating and Processing Random Signals Chapter 7

F xX ()

1

0

U

x
F UX

−1()

Figure 7.5 Cumulative distribution function.

Setting X = F−1 (U) and recognizing that FX(x) is monotonic gives

FX (x) = Pr
{
F−1 (U) ≤ x

}
= Pr {U ≤ FX (x)} = FX (x) (7.35)

which is the desired result. We now pause to illustrate the technique through a
simple example.

Example 7.7. In this example, a uniform random variable will be transformed
into a random variable having the one-sided exponential distribution

fX(x) = β exp (−βx)u(x), β > 0 (7.36)

where u(x) is the unit step defined by

u(x) =
{

1, x > 0
0, x < 0 (7.37)

The first step is to find the CDF. This is

FX(x) =
∫ x

0

β exp (−βy) dy = 1 − exp (−βx) (7.38)

Equating the distribution function to the uniform random variable U gives

1 − exp (−βX) = U (7.39)

which, when solved for X , provides the result

exp (−βX) = 1 − U (7.40)

Since the random variable 1 − U is equivalent to the random variable U (Z = U
and Z = 1 − U have the same pdf), we may write the solution for X as

X = − 1
β

ln(U) (7.41)

“TranterBook” — 2003/11/18 — 16:12 — page 261 — #279
�

�

�

�

�

�

�

�

Section 7.3. Mapping Uniform RVs to an Arbitrary pdf 261

The MATLAB code for implementing the uniform-to-exponential transforma-
tion follows:

% File: c7 uni2exp.m
clear all % be safe
n = input(‘Enter number of points > ’);
b = 3; % set pdf parameter
u = rand(1,n); % generate U
y exp = -log(u)/b; % transformation
[N samp,x] = hist(y exp,20); % get histogram parameters
subplot(2,1,1)
bar(x,N samp,1) % plot histogram
ylabel(‘Number of Samples’)
xlabel(‘Independent Variable - x’)
subplot(2,1,2)
y = b*exp(-3*x); % calculate pdf
del x = x(3)-x(2); % determine bin width
p hist = N samp/n/del x; % probability from histogram
plot(x,y,‘k’,x,p hist,‘ok’) % compare
ylabel(‘Probability Density’)
xlabel(‘Independent Variable - x’)
legend(‘true pdf’,‘samples from histogram’,1)
% End of script file.

The result for β = 3 and N = 100 is illustrated in Figure 7.6. The top portion
of Figure 7.6 shows the histogram. The second part of Figure 7.6 shows both the
theoretical pdf and the resulting “experimental” values for 100 samples. The rela-
tively poor results obtained with N = 100 provide motivation to try again with a
significantly larger number of samples. The result for N = 2, 000 is illustrated in
Figure 7.7. A significant improvement is noted. �

Example 7.8. As a second example, consider the Rayleigh random variable de-
scribed by the pdf

fR(r) =
r

σ2
exp

(
− r2

2σ2

)
u(r) (7.42)

where, as before, the unit step defines the pdf to be single-sided. The CDF is
given by

FR(r) =
∫ r

0

y

σ2
exp

(
− y2

2σ2

)
dy = 1 − exp

(
− r2

2σ2

)
(7.43)

Setting FR(R) = U gives

1 − exp
(
− R2

2σ2

)
= U (7.44)

“TranterBook” — 2003/11/18 — 16:12 — page 262 — #280
�

�

�

�

�

�

�

�

262 Generating and Processing Random Signals Chapter 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

N
um

be
r

of
 S

am
pl

es

Independent Variable - x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

Pr
ob

ab
ili

ty
 D

en
si

ty

Independent Variable - x

true pdf
samples from histogram

Figure 7.6 Uniform to exponential transformation for N = 100.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

N
um

be
r

of
 S

am
pl

es

Independent Variable - x

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Pr
ob

ab
ili

ty
 D

en
si

ty

Independent Variable - x

true pdf
samples from histogram

Figure 7.7 Uniform to exponential transformation for N = 2, 000.

“TranterBook” — 2003/11/18 — 16:12 — page 263 — #281
�

�

�

�

�

�

�

�

Section 7.3. Mapping Uniform RVs to an Arbitrary pdf 263

This is equivalent to

exp
(
− R2

2σ2

)
= U (7.45)

where we have once again recognized the equivalence of 1 − U and U . Solving for
R gives

R =
√
−2σ2 ln(U) (7.46)

This transformation is the initial step in the Box-Muller algorithm, which is one of
the basic algorithms for Gaussian number generation.

As with the previous example, it is interesting to implement the transformation
and evaluate the performance as a function of the number of points transformed.
The MATLAB program follows, and the results for N = 10, 000 are shown in Figure
7.8. Other values of N should be used and the results compared to Figure 7.8.

0 1 2 3 4 5 6 7 8
0

500

1000

1500

N
um

be
r

of
 S

am
pl

es

Independent Variable - x

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty
 D

en
si

ty

Independent Variable - x

true pdf
samples from histogram

Figure 7.8 Uniform to Rayleigh transformation with N = 10, 000.

“TranterBook” — 2003/11/18 — 16:12 — page 264 — #282
�

�

�

�

�

�

�

�

264 Generating and Processing Random Signals Chapter 7

% File: c7 uni2ray.m
clear all % be safe
n = input(’Enter number of points > ’);
varR = 3; % set pdf parameter
u = rand(1,n); % generate U
y exp = sqrt(-2*varR*log(u)); % transformation
[N samp,r] = hist(y exp,20); % get histogram parameters
subplot(2,1,1)
bar(r,N samp,1) % plot histogram
ylabel(‘Number of Samples’)
xlabel(‘Independent Variable - x’)
subplot(2,1,2)
term1 = r.*r/2/varR; % exponent
ray = (r/varR).*exp(-term1); % Rayleigh pdf
del r = r(3)-r(2); % determine bin width
p hist = N samp/n/del r; % probability from histogram
plot(r,ray,‘k’,r,p hist,‘ok’) % compare results
ylabel(‘Probability Density’)
xlabel(‘Independent Variable - x’)
legend(‘true pdf’,‘samples from histogram’,1)
% End of script file. �

The previous two examples illustrated the application of the inverse transform
method to continuous random variables. The technique, however, can be applied
to discrete random variables. The histogram method, which we now describe, is a
numerical (discrete data) version of the inverse transform method.

7.3.2 The Histogram Method

Assume that we have a set of data collected experimentally. In such a situation,
both the pdf and the CDF are unknown, even though the pdf can be approximated
by a histogram of the data. Our problem is to develop an algorithm for generating
a set of samples having a pdf approximating the pdf of the experimental data. The
first step is to generate a histogram of the experimental data. Assume that the
histogram illustrated in Figure 7.9 results. Once the histogram is generated, an
approximation to the pdf and CDF are known and, therefore, the inverse transform
method can be applied. The technique presented here is a simple extension of the
inverse transform method studied in the previous section.

The probability that a sample value x lies in the ith histogram bin is

Pi = Pr {xi−1 < x < xi} = ci (xi − xi−1) (7.47)

The CDF, evaluated at the point x, is denoted

FX(x) = Fi−1 + ci(x − xi−1) (7.48)

“TranterBook” — 2003/11/18 — 16:12 — page 265 — #283
�

�

�

�

�

�

�

�

Section 7.3. Mapping Uniform RVs to an Arbitrary pdf 265

• • • • • • PNPiP3P2P1

cN

c3

ci

c2

c1

 x

xixi−1x2x1x0 xNxN −1x3

Figure 7.9 Histogram of experimental data.

where

Fi−1 = Pr{X ≤ xi−1} =
i−1∑
j=1

Pi−1 (7.49)

The next step is to set FX(X) = U , where U is a uniform random variable.
This gives

FX(X) = U = Fi−1 + ci (X − xi−1) (7.50)

Solving for X gives

X = xi−1 +
1
ci

(U − Fi−1) (7.51)

The algorithm for the required number generator is defined by the following three
steps:

1. Generate U by drawing a sample from a random number generator producing
numbers uniformly distributed in (0, 1).

2. Determine the value of i so that

Fi−1 < U ≤ Fi (7.52)

where Fi is defined in (7.49).

3. Generate X according to (7.51) and return X to the calling program.

The fidelity of the number generator clearly depends on the accuracy of the under-
lying histogram. The accuracy of the histogram, as we shall see in the following
chapter, depends on the number of samples available.

“TranterBook” — 2003/11/18 — 16:12 — page 266 — #284
�

�

�

�

�

�

�

�

266 Generating and Processing Random Signals Chapter 7

7.3.3 Rejection Methods

The rejection (or acceptance) technique for generating random variables having a
desired or “target” pdf, fX(x), basically involves bounding the target pdf by a
function MgX(x), in which gX(x) represents the pdf of an easily generated random
variable and M is a constant suitably large to ensure that

MgX(x) ≥ fX(x), all x (7.53)

In the simplest form, gX (x) is uniform on (0, a). If the target pdf fX(x) is zero
outside the range (0, a) we have

MgX(x) =
{

b = M/a,
0,

0 ≤ x ≤ a
otherwise (7.54)

where, since MgX(x) bounds fX(x),

b =
M

a
≥ max {fX(x)} (7.55)

This is illustrated in Figure 7.10.
The algorithm for generating the random variable X having pdf fX(x) is defined

by the following four steps:

1. Generate U1 and U2 uniform in (0, 1).

2. Generate V1 uniform in (0, a), where a is the maximum value of X .

0
0

M

a
b=

x dx+
x

1

a

a

f xX ()

g xX ()

Mg xX ()

Figure 7.10 Rejection method for Example 7.9.

“TranterBook” — 2003/11/18 — 16:12 — page 267 — #285
�

�

�

�

�

�

�

�

Section 7.3. Mapping Uniform RVs to an Arbitrary pdf 267

3. Generate V2 uniform in (0, b), where b is at least the maximum of fX (x).

4. If V2 ≤ fX(V1), set X = V1. If the inequality is not satisfied, V1 and V2 are
discarded and the process is repeated from step 1.

It is easy to show that this procedure produces a random variable X having the
target pdf, fX(x).

Since V1 and V2 are uniformly distributed, the point generated by the sample pair
(V1, V2) has an equal probability of falling anywhere in the area ab. The probability
that V1 is accepted is the fraction of the ab area falling under the pdf fX(x). This
is the ratio of the shaded area in Figure 7.10 to the total area ab. Thus:

Pr {V1 is accepted} =

∫ a

0
fX(x) dx

ab
(7.56)

Since the numerator in the preceding expression is one by definition:

Pr {V1 is accepted} =
1
ab

=
1
M

(7.57)

Thus:

Pr {x < V1 ≤ x + dx |V1 is accepted} =
Pr {x < V1 ≤ x + dx, V1 is accepted}

Pr {V1 is accepted}
=

fX(x)dx/ab

1/ab
(7.58)

= fX(x) dx = Pr {x < X ≤ x + dx} (7.59)

which defines the target pdf.

Example 7.9. In this example, we apply the technique just discussed to the pdf

fX(x) =
{

4
πR2

√
R2 − x2,

0,
0 ≤ x ≤ R
otherwise (7.60)

The algorithm for generating the random variable X having pdf fX(x) is obtained
by letting a = R and b = M/R. Figure 7.10, modified for this specific case, is
illustrated in Figure 7.11.

The MATLAB code follows:

% File: c7 rejex1.m
R = 7; % default value of R
M =4/pi; % value of M
N = input(‘Input number of points N > ’); % set N
fx = zeros(1,N); % array of output samples
u1 = rand(1,N); u2 = rand(1,N); % generate u1 and u2
v1 = R*u1; % generate v1
v2 = (M/R)*rand(1,N); % generate v2 (g(x))
kpts = 0; % initialize counter

“TranterBook” — 2003/11/18 — 16:12 — page 268 — #286
�

�

�

�

�

�

�

�

268 Generating and Processing Random Signals Chapter 7

for k=1:N
if v2(k)<(M/(R*R))*sqrt(R*R-v1(k)*v1(k));
kpts=kpts+1; % increment counter
fx(kpts)=v1(k); % save output sample
end
end
fx = fx(1:kpts);
[N samp,x] = hist(fx,20); % histogram parameters
subplot(2,1,1)
bar(x,N samp,1) % plot histogram
ylabel(‘Number of Samples’)
xlabel(‘Independent Variable - x’)
subplot(2,1,2)
yt = (M/R/R)*sqrt(R*R-x.*x); % calculate pdf
del x = x(3)-x(2); % determine bin width
p hist = N samp/kpts/del x; % probability from histogram
plot(x,yt,‘k’,x,p hist,‘ok’) % compare
ylabel(‘Probability Density’)
xlabel(‘Independent Variable - x’)
legend(‘true pdf’,‘samples from histogram’,3)
text = [‘The number of points accepted is ’,...
num2str(kpts,15),‘ and N is ’,num2str(N,15),‘.’];
disp(text)
% End of script file.

Executing this program for N = 3, 000 points yields the results illustrated in
Figure 7.12. Of these 3,000 points, 2,301 were accepted and 699 were rejected. This

 R0
0

1

R

M

R R
=

4

π

f xX ()

g xX ()

Mg xX ()

Figure 7.11 Rejection method for Example 7.9.

“TranterBook” — 2003/11/18 — 16:12 — page 269 — #287
�

�

�

�

�

�

�

�

Section 7.4. Generating Uncorrelated Gaussian Random Numbers 269

0 1 2 3 4 5 6 7
0

50

100

150

200
N

u
m

b
e

r
o

f
S

a
m

p
le

s

Independent Variable - x

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a

b
ili

ty
 D

e
n

s
it

y

Independent Variable - x

true pdf
samples from histogram

Figure 7.12 Results for rejection exercise.

gives an efficiency of 76.70%, which is close to the theoretical (as N → ∞) value
of 78.54%. �

Even though we have illustrated the rejection method for the case in which the
bounding pdf is uniform, the technique illustrated here is easily modified for the
case in which the bounding pdf is not uniform. Ideally, the target pdf should be
tightly bounded so that the probability of rejection is minimized. The rejection
method works well in cases in which the target pdf has finite support (is nonzero
only over a finite range). Finite support is, however, not necessary and the rejection
technique, as illustrated here, can easily be extended to the infinite support case.
A nice treatment of the rejection method is given in Rubinstein [2].

7.4 Generating Uncorrelated Gaussian Random Numbers

We know from our study of communication systems that the Gaussian random
variable is frequently encountered and represents an appropriate model for thermal noise
and a number of other phenomena. Gaussian noise generators are a fundamental

“TranterBook” — 2003/11/18 — 16:12 — page 270 — #288
�

�

�

�

�

�

�

�

270 Generating and Processing Random Signals Chapter 7

building block in many simulations and, as a result, a number of techniques have
been developed for producing Gaussian random variables. The CDF is

FX(x) =
∫ x

−∞

1√
2πσ

exp
(

y2

2σ2

)
dy = 1 − Q

(x

σ

)
(7.61)

where Q(x) is the Gaussian Q-function defined by

Q(x) =
1√
2π

∫ ∞

x

exp(−y2/2) dy (7.62)

Since the Gaussian Q-function cannot be written in closed form, the inverse trans-
form technique cannot be used. Rejection techniques can be applied but are not
efficient. Thus, we seek other techniques for generating Gaussian random variables.

7.4.1 The Sum of Uniforms Method

The central limit theorem (CLT) provides an attractive avenue for developing a
random variable having a Gaussian pdf. The CLT states that, under rather general
conditions, the pdf of the sum of N independent random variables will converge to
a Gaussian random variable as N → ∞ [8].

Assume that we have N independent uniform random variables, Ui , i = 1, 2, ...,
N . From these N uniform random variables we form

Y = B
N∑

i=0

(
Ui − 1

2

)
(7.63)

where B is a constant that establishes the variance of Y . From the CLT, we know
that Y converges to a Gaussian random variable as N → ∞. Since E {Ui} = 1

2 , the
mean of Y is

E {Y } = B

N∑
i=0

(
E{Ui} − 1

2

)
= 0 (7.64)

The variance of Y is found by first noting that the variance of Ui − 1
2 is

var
{

Ui − 1
2

}
=
∫ 1/2

−1/2

x2dx =
1
12

(7.65)

Since the component random variables Ui are assumed independent

σ2
y = B2

N∑
i=1

var
{

Ui − 1
2

}
(7.66)

we have

σ2
y =

NB2

12
(7.67)

“TranterBook” — 2003/11/18 — 16:12 — page 271 — #289
�

�

�

�

�

�

�

�

Section 7.4. Generating Uncorrelated Gaussian Random Numbers 271

Thus, given the value of N , the variance of Y, σ2
y , can be set to any desired value by

the proper selection of B. The selection is N is a tradeoff between speed and the
accuracy of the tails of the resulting pdf. The value of N is often set to 12, since
N = 12 gives the simple result B = σy .

While the procedure of generating a Gaussian random variable based on the
central limit theorem is straightforward, several significant difficulties occur when
one attempts to apply it to practical problems in digital communications. First,
since Ui − 1

2 varies from − 1
2 to 1

2 , it follows from (7.63) that Y varies from −BN/2
to BN/2. Thus, even though (7.63) may closely approximate the pdf of a Gaussian
random variable in the neighborhood of the mean, the tails of the pdf are truncated
to ±BN/2. If one is simulating a digital communication system for the purpose
of determining the probability of symbol error, the tails of the pdf are important,
since the tails of the pdf represent the large noise values that result in transmission
errors. The effect of the truncation of the tails of the pdf of Y can be minimized
by choosing N sufficiently large.

Specifically, from (7.67), the value of B is

B = σy

√
12
N

(7.68)

Therefore the “approximately Gaussian” pdf is truncated so that it is nonzero only
in the range

±σy
N

2

√
12
N

= ±σy

√
3N (7.69)

With N = 100, the Gaussian random variable is truncated at ±17.32σy. For some
applications, truncation at 17 standard deviations may still yield significant errors.
The appropriate value of N is application dependent.

The difficulty with truncating the tails of the probability density function of
the noise in a digital communications system is illustrated in Figure 7.13, which
shows the conditional pdfs of the output of a matched filter receiver for a low
receiver input SNR and for a high receiver input SNR. (The tails of the pdfs are not
actually discontinuous. Figure 7.13 is drawn to emphasize the effect of truncation.)
The pdfs are conditioned on a binary 0 transmitted, denoted fV (v|0), and on a
binary 1 transmitted, denoted fV (v|1). Figure 7.13 is constructed assuming that
the noise variance is constant and that the SNR is adjusted by varying the signal
power. For the case in which the receiver input SNR is sufficiently low, as in Figure
7.13(a), there is considerable overlap of the conditional pdfs and the probability of
error may be determined with reasonable accuracy. As the signal power increases,
the conditional pdfs are pushed farther apart and the simulation accuracy degrades.
Due to the truncation of the tails of the conditional pdfs, increasing the signal power
eventually results in a situation in which the conditional pdfs no longer overlap.
This is illustrated in Figure 7.13(b). If the conditional pdfs do not overlap, the
probability of error is zero independent of the SNR. This is clearly not a realistic
situation.

“TranterBook” — 2003/11/18 — 16:12 — page 272 — #290
�

�

�

�

�

�

�

�

272 Generating and Processing Random Signals Chapter 7

k

v

(a) Low receiver input SNR

(b) High receiver input SNR

v

k

f vV (|)1

f vV (|)1

f vV (|)0

f vV (|)0

Figure 7.13 Pdf of matched filter output for low receiver input SNR and for high reciever
input SNR.

Choosing N large, however, leads to the second difficulty with using (7.63) to
approximate a Gaussian random variable. Since it takes N calls to the uniform
random number to generate a single value of X , use of the algorithm defined by
(7.63) can require excessive CPU time.

The two redeeming features of (7.63) are that it does a good job of approximating
a Gaussian random variable in the neighborhood of the mean of Y , and that Y will
be approximately Gaussian even if the pdfs of the constitute random variables, Ui,
are not uniform.

While we are mainly concerned with simulation using serial processing with a
single CPU, this is a good place to point out that algorithms that are not suitable for
traditional serial processing applications may be quite suitable for use with parallel
processing machines. For example, if a certain parallel processing machine uses 100
CPUs, it is possible to generate 100 values of a uniform random variable in the same
time required to generate a single value of a uniform variate. Summing 100 uniform
random variables may result in an excellent approximation to a Gaussian random
variable for most applications and, using parallel processing, can be accomplished
very quickly. This is just one example in which the choice of algorithm depends on
the computational environment.

“TranterBook” — 2003/11/18 — 16:12 — page 273 — #291
�

�

�

�

�

�

�

�

Section 7.4. Generating Uncorrelated Gaussian Random Numbers 273

7.4.2 Mapping a Rayleigh RV to a Gaussian RV

From Example 7.8 we know that a Rayleigh random variable R can be generated
from a uniform random variable U through the use of the transformation R =√−2σ2 ln U . We now consider the problem of mapping a Rayleigh random variable
to a Gaussian random variable.

Assume that X and Y are two independent Gaussian random variables having
equal variance σ2. Since X and Y are independent, the joint pdf is the product of
the marginal pdfs. Thus

fXY (x, y) =
1√
2πσ

exp
(
− x2

2σ2

)
1√
2πσ

exp
(
− y2

2σ2

)
=

1
2πσ2

exp
(
−x2 + y2

2σ2

)
(7.70)

With x = r cos θ and y = r sin θ we have

x2 + y2 = r2 (7.71)

and

θ = tan−1
(y

x

)
(7.72)

The joint pdf fRΘ(r, θ) is found from fXY (x, y) by the transformation

fRΘ(r, θ) dARΘ = fXY (x, y) dAXY (7.73)

where dARΘ and dAXY represent differential areas in the R, Θ and X, Y planes,
respectively. It follows from (7.73) that

fRΘ(r, θ) = fXY (x, y)
dAXY

dARΘ

∣∣∣∣x=r cos θ
y=r sin θ

(7.74)

The ratio of the differential areas is the Jacobian of the transformation, which is

dAXY

dARΘ
=

∂(x, y)
∂(r, θ)

=
∣∣∣∣ dx/dr dx/dθ

dy/dr dy/dθ

∣∣∣∣ (7.75)

This gives

dAXY

dARΘ
=
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r (7.76)

Thus:

fRΘ(r, θ) =
r

2πσ2
exp

(
− r2

2σ2

)
, 0 ≤ r < ∞, 0 ≤ θ < 2π (7.77)

We now examine the marginal pdfs of R and Θ.

“TranterBook” — 2003/11/18 — 16:12 — page 274 — #292
�

�

�

�

�

�

�

�

274 Generating and Processing Random Signals Chapter 7

The pdf of R is

fR(r) =
∫ 2π

0

r

2πσ2
exp

(
− r2

2σ2

)
dθ =

r

σ2
exp

(
− r2

2σ2

)
, 0 ≤ r < ∞ (7.78)

and the pdf of Θ is

fΘ(θ) =
∫ ∞

0

r

2πσ2
exp

(
− r2

2σ2

)
dr =

1
2π

, 0 ≤ θ < 2π (7.79)

Thus, R is a Rayleigh random variable and Θ is uniform. Since a Rayleigh random
variable is generated from two orthogonal Gaussian random variables, it follows that
orthogonal projections of a Rayleigh random variable produce a pair of Gaussian
random variables. Therefore, assuming that R is Rayleigh and Θ is uniform over
(0, 2π), Gaussian random variables X and Y can be produced using

X = R cosΘ (7.80)

and

Y = R sin Θ (7.81)

Both X and Y are zero-mean random variables and both have variance σ2. Since
they are uncorrelated and Gaussian, it follows that X and Y are statistically in-
dependent. Thus, a pair of independent Gaussian random variables X and Y are
generated from a pair of uniformly distributed random variables U1 and U2 by the
algorithm

X =
√
−2σ2 ln(U1) cos 2πU2 (7.82)

and

Y =
√
−2σ2 ln(U1) sin 2πU2 (7.83)

where we have used (7.46) for R.
A MATLAB program for implementing the Box-Muller algorithm follows:

% File: c7_boxmul.m
function [out1,out2]=c7_boxmul(N)
u1 = rand(1,N); % generate first uniform RV
u2 = rand(1,N); % generate second uniform RV
ray = sqrt(-2*log(u1)); % generate Rayleigh RV
out1 = ray.*cos(2*pi*u2); % first Gaussian output
out2 = ray.*sin(2*pi*u2); % second Gaussian output
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 275 — #293
�

�

�

�

�

�

�

�

Section 7.4. Generating Uncorrelated Gaussian Random Numbers 275

7.4.3 The Polar Method

Another algorithm for generating a pair of uncorrelated zero-mean Gaussian random
variables is the polar method [9]. The polar algorithm consists of the following steps:

1. Generate two independent random variables, U1 and U2, both of which are
uniform on the interval (0,1).

2. Let V1 = 2U1 − 1 and V2 = 2U2 − 1 so that V1 and V2 are independent and
uniform on (-1,1).

3. Form S =
√

V 2
1 + V 2

2 . If S < 1 proceed to step 4. If S ≥ 1 discard S and go
back to step 1.

4. Form A(S) =
√

(−2σ2 ln S)/S.

5. Set X = A(S)V1 and Y = A(S)V2.

The MATLAB code for generating a pair of Gaussian random vectors using the
polar method follows:

% File: c7_polar.m
function [out1,out2]=c7_polar(N)
u1 = rand(1,N); u2 = rand(1,N); % generate uniform RVs
v1 = 2*u1-1; v2 = 2*u2-1; % make uniform in -1 to +1
outa = zeros(1,N); outb = zeros(1,N); % allocate memory
j = 1; % initialize counter
for i=1:N

s(i) = v1(i)^2 + v2(i)^2; % generate s
if s(i) $<$ 1 % test
j = j+1; % increment counter
a(i) = sqrt((-2*log(s(i)))/s(i));
outa(j) = a(i)*v1(i); % first Gaussian RV
outb(j) = a(i)*v2(i); % second Gaussian RV
end

end
out1 = outa(1,1:j); out2 = outb(1,1:j); % truncate arrays
% End of function file.

Note that the MATLAB library function rand was used to generate the required
pair of uniform random variables in the preceding example code. Obviously a user-
supplied uniform random number generator, based on LCG techniques, could have
been used.

The polar method is an example of a rejection method, since, as we see from
step 3, some values of S are rejected. Thus, fewer than N random variables will
be generated with each call to this function. The probability of rejection is easily
determined from Figure 7.14. The random variables V1 and V2 are uniformly

“TranterBook” — 2003/11/18 — 16:12 — page 276 — #294
�

�

�

�

�

�

�

�

276 Generating and Processing Random Signals Chapter 7

 R

1

1−1

−1

V1

V2

Figure 7.14 Polar method.

distributed over the box, having area Abox = 4, that bounds the circle of radius
R = 1 and area Acircle = π. The probability that S is not rejected is therefore

Pr {Rejection} = 1 − Acircle

Abox
= 0.2146 (7.84)

The polar algorithm often provides results that have better correlation properties
than the Box-Muller algorithm. There is, however, a disadvantage with the polar
method. Note that N calls to the Box-Muller algorithm will generate N pairs of
Gaussian random variables. If the polar algorithm is called N times, the number
of pairs of Gaussian random variables generated will be a random variable having
mean (π/4)N . The fact that an unknown number of calls must be made to the
polar algorithm in order to generate a given number of Gaussian random variables
often complicates the simulation program.

7.4.4 MATLAB Implementation

Prior to the release of MATLAB 5, the Gaussian random number contained in the
MATLAB library, randn, made use of the minimum standard number generator
given in (7.24) and the polar method to map the uniformly distributed random
numbers to random numbers having a Gaussian distribution. Starting with MAT-
LAB 5, a completely different algorithm, involving no multiplications or divisions,
replaced the previously used algorithm. The new random number generator pro-
duces numbers having a Gaussian pdf directly without requiring a transformation
of uniformly distributed random numbers. Since multiplication and division are not
used in the algorithm, and the uniform to Gaussian step is not needed, it is very

“TranterBook” — 2003/11/18 — 16:12 — page 277 — #295
�

�

�

�

�

�

�

�

Section 7.5. Generating Correlated Gaussian Random Numbers 277

fast. The algorithm used in later versions of MATLAB is a refined version of the
basic Ziggurt algorithm [1] and is described in detail in a paper by Marsaglia and
Tsang [10].

7.5 Generating Correlated Gaussian Random Numbers

So far, the goal has been to generate uncorrelated random numbers. We now turn
our attention to the situation in which the goal is to generate random numbers that
have a Gaussian pdf and are correlated. We first examine a simple technique for
generating two sequences that are related through a given correlation coefficient
(first-order correlation). We then turn our attention to the more general case in
which the generated sequence is to have a given power spectral density (PSD).
Establishing the PSD is, of course, equivalent to establishing a given autocorrelation
function.

7.5.1 Establishing a Given Correlation Coefficient

We have seen two methods for generating a pair of (approximately) uncorrelated
Gaussian random variables. It is an easy task to map a pair of uncorrelated Gaus-
sian random variables, denoted X and Y , to a pair of Gaussian random variables
having a specified level of correlation. Assuming that X and Y are zero mean and
uncorrelated, the next step is to generate a third random variable Z, defined by

Z = ρX +
√

1 − ρ2Y (7.85)

where ρ is a parameter with |ρ| ≤ 1. With this algorithm, X and Z are zero
mean random variables with equal variance. We will show that ρ is the correlation
coefficient relating X and Z.

The proof is simple. It is clear that Z is a Gaussian random variable, since it
is a linear combination of Gaussian random variables. It also follows that Z is zero
mean if X and Y are zero mean. The variance of Z is

σ2
Z = E

{
[ρX +

√
1 − ρ2Y]2

}
= ρ2E

{
X2
}

+ 2ρ
√

1 − ρ2E {XY } + (1 − ρ2)E
{
Y 2
}

(7.86)

Since E {XY } = E {X}E {Y } = 0 and σ2
X = σ2

Y = σ2, the preceding becomes

σ2
Z = ρ2σ2 + (1 − ρ2)σ2 = σ2 (7.87)

The covariance E {XZ} is

E {XZ} = E {X [ρX + (1 − ρ)Y]}
= ρE

{
X2
}

+ (1 − ρ)E {XY }
= ρE

{
X2
}

= ρσ2 (7.88)

“TranterBook” — 2003/11/18 — 16:12 — page 278 — #296
�

�

�

�

�

�

�

�

278 Generating and Processing Random Signals Chapter 7

where the last step follows because X and Y are independent and zero mean. The
correlation coefficient ρXZ is

ρXZ =
E {XZ}
σXσZ

=
ρσ2

σ2
= ρ (7.89)

as desired.

7.5.2 Establishing an Arbitrary PSD or Autocorrelation Function

The general technique used for establishing a sequence of random numbers with
a given autocorrelation function, or equivalently a given PSD, is to filter a set of
uncorrelated samples so that the target PSD is established. Uncorrelated samples
have, by definition, a PSD that is constant over the simulation bandwidth |f | <
fs/2. The variance is, by definition, the area under Sn(f). This is, as illustrated in
Figure 7.15,

σ2
n =

1
2
N0fs (7.90)

Thus, in order to establish a given noise PSD, N0, the random number (noise)
generator variance, and the sampling frequency must satisfy

fs =
2σ2

n

N0
(7.91)

Thus, the required noise generator variance for a given PSD is a function of the
sampling frequency.

The establishment of a desired PSD for a random sequence is relatively straight-
forward using a fundamental result from basic stochastic process theory. We know
that if the input to a linear system is a random process having a PSD SX(f), the
PSD of the system output is

SY (f) = |H(f)|2 SX(f) (7.92)

 f
− f s

2
f s

2

N0

2

S fn ()

0

Figure 7.15 PSD for independent samples.

“TranterBook” — 2003/11/18 — 16:12 — page 279 — #297
�

�

�

�

�

�

�

�

Section 7.5. Generating Correlated Gaussian Random Numbers 279

Linear System
H(f)

Input:

pdf: Gaussian

PSD (uncorrelated)

X t

K

()

=

Output:

pdf: Gaussian

PSD (correlated)

Y t

S fY

()

()=

Figure 7.16 Generation of a correlated random sequence.

where H(f) is the transfer function of the linear system. This is illustrated in
Figure 7.16. If the noise samples are independent, the PSD of the input is constant
at K = N0/2 Watts/Hz,

SY (f) = |H(f)|2 K (7.93)

and the required H(f) to establish the target PSD is

H(f) =
√

SY (f)/K (7.94)

Therefore, the problem of shaping the power spectral density to meet a given re-
quirement reduces to the problem of finding a filter with a transfer function H(f)
so that H2(f) gives the required spectral shape.

Example 7.10. A convenient method for synthesizing a filter having a given
transfer function is to determine the best fit, in the minimum mean-square error
sense, to the transfer function. Solving the Yule-Walker equations using the MAT-
LAB function yulewalk accomplishes this task. Specifically, the function yulewalk
determines the filter coefficients bk and ak so that the transfer function

H(z) =
b0 + b1z

−1 + · · · + bnz−n

1 + a1z−1 + · · · + anz−n
(7.95)

is the minimum mean-square error fit to a given transfer function.
In order to illustrate the technique, assume that a given PSD is to have the

form S(f) = K/f . This is referred to as flicker or one-over-f noise [11] and is often
used to model phase noise in oscillators. In order to generate this noise, we must
generate a filter having a transfer function of the form H(f) = K/

√
f . Passing

white noise through this filter generates the required flicker noise process. Since
H(f) → ∞ as f → 0, the transfer function is defined as

H(f) =
{

0,
K/

√
f,

|f | < f0

|f | > f0
(7.96)

The following MATLAB program generates an approximation to the required H(f)
in which frequency is normalized to the Nyquist frequency fN and f0 = fN/20:

% File: c7 flicker.m
f = 0:100; % frequency points
fn = 100; % Nyquist rate

“TranterBook” — 2003/11/18 — 16:12 — page 280 — #298
�

�

�

�

�

�

�

�

280 Generating and Processing Random Signals Chapter 7

F = f/fn; % frequency vector
M = abs(100./sqrt(f)); % normalized fequency response
M = [zeros(1,6),M(6:100)]; % bound from zero frequency
[b1,a1] = yulewalk(3,F,M); % generate order=3 filter
[b2,a2] = yulewalk(20,F,M); % generate order=20 filter
[h1,w1] = freqz(b1,a1); % generate 3-rd order H(f)
[h2,w2] = freqz(b2,a2); % generate 20-th order H(f)
subplot(2,1,1)
plot(F,M,‘:’,w1/pi,abs(h1))
xlabel(‘Normalized Frequency’)
ylabel(‘Squared Magnitude Response’)
subplot(2,1,2)
plot(F,M,‘:’,w2/pi,abs(h2))
xlabel(‘Normalized Frequency’)
ylabel(‘Squared Magnitude Response’)
%End of script file.

Executing the program yields the results illustrated in Figure 7.17. The desired
transfer function is illustrated by the dashed line. The third-order approxima-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

Normalized Frequency

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

Normalized Frequency

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

Figure 7.17 Generation of flicker noise.

“TranterBook” — 2003/11/18 — 16:12 — page 281 — #299
�

�

�

�

�

�

�

�

Section 7.5. Generating Correlated Gaussian Random Numbers 281

tion is illustrated in the top pane and the twentieth-order approximation, which
is clearly superior to the third-order approximation, is illustrated in the bottom
pane. Note that a low-order approximation is adequate in the region where H(f) is
relatively smooth. In a frequency region where H(f) is changing rapidly, a higher-
order approximation is required. This approach is a powerful tool for generating
arbitrary PSDs. �

Example 7.11. The simulation of wireless systems, in which motion is present,
requires the generation of a process having the power spectral density

S(f) =

{
1√

1−(f/fd)2
,

0,

|f | < fd

otherwise (7.97)

to represent the effect of doppler. The quantity fd in (7.97) represents the maximum
doppler frequency. As illustrated in (7.94), the required filter transfer function is

H(f) =

{ [
1 − (f/fd)2

]−1/4
,

0,

|f | < fd

otherwise (7.98)

This filter is implemented as an FIR filter whose impulse response is obtained by
taking the inverse DFT of sampled values of (7.98).

The MATLAB program for generating the impulse response of the Jakes filter,
and filtering white noise with the filter, is contained in Appendix A. Executing the
code yields the results illustrated in Figures 7.18 and 7.19. Figure 7.18 illustrates

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-0.2

0

0.2

0.4

0.6

Time

Im
p

u
ls

e
 R

e
s

p
o

n
s

e

-800 -600 -400 -200 0 200 400 600 800
0

0.5

1

1.5
x 10

-3

Frequency

P
S

D

Figure 7.18 Impulse response and target PSD.

“TranterBook” — 2003/11/18 — 16:12 — page 282 — #300
�

�

�

�

�

�

�

�

282 Generating and Processing Random Signals Chapter 7

-500 -400 -300 -200 -100 0 100 200 300 400 500
-50

-40

-30

-20

-10

0

Frequency

P
S

D

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
-20

-15

-10

-5

0

Time

L
o

g
 A

m
p

lit
u

d
e

Figure 7.19 Estimated PSD and envelope function.

the impulse response and the transfer function H(f) (bottom pane). Figure 7.19
illustrates the effect of passing complex white noise through the filter. The top
pane shows the estimated PSD at the filter output. The bottom pane illustrates
the magnitude of the envelope on a log scale. In a wireless communication system,
this corresponds to the fading envelope. �

7.6 Establishing a pdf and a PSD

Generating a noise waveform that simultaneously satisfies a given PSD and pdf
requirement is, in general, a difficult task. There is, however, one situation in which
this problem is not difficult. If the pdf of the system output is to be Gaussian,
one can simply generate a sample sequence for the filter input in which the samples
are Gaussian and independent. Since the input samples are independent, the PSD
will be constant at K Watts/Hz. The PSD can be shaped using a linear filter, as
described in the previous section. Since the PSD shaping filter is linear, the pdf of
the output will be Gaussian. We have this simple result because any linear trans-
formation of a Gaussian process yields another Gaussian process [8]. Fortunately,
many practical problems can be handled in this manner.

If both the pdf and the PSD of a target waveform are specified and the pdf is
required to be something other than Gaussian, the problem is much more difficult.
A solution to this problem was proposed by Sondhi [12]. The basic scheme for
implementing the Sondhi algorithm is illustrated in Figure 7.20. As always, we
start with a sequence of samples u[n] that are uniformly distributed on the interval

“TranterBook” — 2003/11/18 — 16:12 — page 283 — #301
�

�

�

�

�

�

�

�

Section 7.7. PN Sequence Generators 283

NML1 NML2Linear
Filter

PSD: white
pdf: uniform

PSD: white
pdf: Gaussian

PSD: nonwhite (predistorted)
pdf: Gaussian

PSD: shaped as desired
pdf: shaped as desired

u n[] z n[]x n[] y n[]

Figure 7.20 The Sondhi algorithm.

(0,1). In addition, the sequence {u[n]} is assumed to be delta correlated so that
the PSD is white. The job of the first memoryless nonlinearity, denoted MNL1,
is to map the sequence {u[n]} into a sequence {x[n]}, which is white but has a
Gaussian pdf. We have studied several techniques for accomplishing this mapping.
The filtering operation predistorts the spectrum so that the PSD is SY (f). Since
the filter is linear, the pdf of the sequence {y[n]} remains Gaussian. The basic
operation of the second memoryless nonlinearity, denoted MNL2, is to map the
Gaussian pdf of the sequence {y[n]} to the final desired pdf. However, the second
nonlinearity also affects SY (f). Thus, the filter must modify the predistorted PSD
SY (f), so that passing the sample sequence through the second nonlinearity will
result in the sequence {z[n]} having both the desired PSD and pdf.

A detailed example of the Sondhi algorithm is beyond the scope of our current
effort and the interested student is referred to [12]. An interesting simple example
in which a number generator is developed having a first-order (single pole) PSD is
given in the paper by Coates et al. [3].

7.7 PN Sequence Generators

Pseudonoise (PN) sequence generators are used in a number of applications, espe-
cially in the area of synchronization. As one application, PN sequences are used for
approximating a random variable having a uniform probability density function. A
PN sequence generator can take a number of forms [13] but the most common form,
and the one upon which we shall concentrate, is illustrated in Figure 7.21.

In the simulation context, the most important reason for using PN sequences is
for modeling data sources. By using a PN sequence generator almost all possible
bit combinations having a given length can be can be produced over the shortest

“TranterBook” — 2003/11/18 — 16:12 — page 284 — #302
�

�

�

�

�

�

�

�

g 1

N
 -

 s
ta

ge
 s

hi
ft

 r
eg

is
te

r

O
ut

pu
t

1
4

2
3

N
-1

N
�

g 2
g 3

g 4
g

N
−1

M
od

-2
 a

dd
er

f
n[

]

F
ig

u
re

7
.2

1
P

N
se

q
u
en

ce
g
en

er
a
to

r.

284

“TranterBook” — 2003/11/18 — 16:12 — page 285 — #303
�

�

�

�

�

�

�

�

Section 7.7. PN Sequence Generators 285

possible simulation length. We will use this fact to study the impact of inter-
symbol interference (ISI) when we consider semianalytic simulation techniques in
Chapter 10.

A PN sequence generator consists of three basic components: an N -stage shift
register, a mod-2 adder, and a connection vector that defines the connections be-
tween specific shift register stages and the mod-2 adder. The connection vector
establishes the performance characteristics of the generator and is defined by the
polynomial

g(D) = 1 + g1D + g2D
2 + · · · gN−1D

N−1 + DN (7.99)

If gi = 1, a connection exists between the ith stage of the shift register and the
mod-2 adder. If gi = 0, there is no connection. Note that in the polynomial g(D),
both g0 and gN are equal to 1.

It can be shown that the maximum period of the PN sequence generator output
is

L = 2N − 1 (7.100)

and is achieved if, and only if, the polynomial g(D) is primitive [13].7 The autocor-
relation function R[m] of the output of the PN sequence generator is illustrated in
Figure 7.22, in which we assume that the data values (symbols) are ±1. For m = 0
or a multiple of L, the autocorrelation is one. For 0 < m < L, the autocorrelation
R[m] is −1/L, which for large L is approximately zero. Thus, for PN sequences
having a large period, the autocorrelation function approaches an impulse. The
PSD is therefore approximately white as desired. The PN sequence has many in-
teresting properties, many of which are summarized in [13]. Several properties of
interest in the simulation context include the following:

• The sequence in nearly balanced. In other words, in one period of the se-
quence, the number of ones will exceed the number of zeros by 1. By adding
an extra zero at the right point, the sequence can be balanced.

1 2 3

L

m

R[m]

�

L − 2 L −1

1

−1/ L

Figure 7.22 Autocorrelation of register contents for a maximal length PN sequence.

7A polynomial g(D) of degree N is primitive if the smallest integer k for which g(D) divides
Dk + 1 without remainder is k = 2N − 1.

“TranterBook” — 2003/11/18 — 16:12 — page 286 — #304
�

�

�

�

�

�

�

�

286 Generating and Processing Random Signals Chapter 7

• All possible bit combinations appear within one period, except for the fact
that there is no sequence of N zeros but there is a sequence of N ones. (Note
that if all shift registers contain a binary zero, the generator will become stuck
in the all-zero state. By adding an extra zero at the point where there are
N − 1 zeros, the sequence can be balanced. The result will be a deBruijn
sequence [14]).

• The autocorrelation function, although periodic, is very nearly the same as
that of a random binary waveform.

The design of a PN sequence generator based on an N -stage shift register reduces
to finding a primitive polynomial of degree N . For large N this can be a very
difficult task. Fortunately, extensive tables of primitive polynomials are available
in the literature [13]. A small sample, represented in a form consistent with (7.99),
is given in Table 7.1.

Developing a simulation program for the PN sequence generator is quite simple.
First, let the shift register contents be represented by the vector

B = [b1 b2 · · · bN−1 bN] (7.101)

and let the connection vector be represented by

G = [g1 g2 · · · gN−1 gN] (7.102)

The output of the mod-2 adder, as illustrated in Figure 7.21, is the feedback symbol
f [n]. It is defined by

f [n] =
N∑

i=1

bigi = B(GT) (7.103)

Table 7.1 Short Table of Primitive Polynomials

N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14

3 1 0 1
4 1 0 0 1
5 0 1 0 0 1
6 1 0 0 0 0 1
7 0 0 1 0 0 0 1
8 0 1 1 1 0 0 0 1
9 0 0 0 1 0 0 0 0 1
10 0 0 1 0 0 0 0 0 0 1
11 0 1 0 0 0 0 0 0 0 0 1
12 1 0 0 1 0 1 0 0 0 0 0 1
13 1 0 1 1 0 0 0 0 0 0 0 0 1
14 1 0 0 0 0 1 0 0 0 1 0 0 0 1

“TranterBook” — 2003/11/18 — 16:12 — page 287 — #305
�

�

�

�

�

�

�

�

Section 7.7. PN Sequence Generators 287

The feedback signal is also the next value of b1. The register must obviously be
initialized with a vector B in which at least one value of bj is nonzero.

Example 7.12. Our goal in this example is to design a PN sequence generator
with N = 10. With g(D) primitive, the period will be, from (7.100), L = 1,023.
The connection vector is, from Table 7.1,

G = [0 0 1 0 0 0 0 0 0 1] (7.104)

indicating a connection from the third and last stages of the shift register. This
yields the configuration shown in Figure 7.23. The MATLAB code for simulating
the PN generator is as follows:

% File: c7 PNdemo.m
pntaps = [0 0 1 0 0 0 0 0 0 1]; % shift register taps
pninitial = [0 0 0 0 0 0 0 0 0 1]; % initial shift register state
pndata = zeros(1,1023); % initialize output vector
samp per sym = 1; % samples per symbol
pnregister = pninitial; % initialize shift register
n = 0; % initialize counter
kk = 0; % set terminator indicator
while kk == 0
n = n+1; % increment counter
pndata(1,n) = pnregister(1,1); % save output
feedback = rem((pnregister*pntaps’),2); % calculate feedback
pnregister = [feedback,pnregister(1,1:9)]; % increment register
if pnregister == pninitial; kk = 1; end % reset termination
end
text = [‘The period is ’,num2str(n,15),‘.’];
disp(text) % display period
pndata=replicate(pndata,samp per sym); % replicate data
kn = n*samp per sym; % output vector length
pndata = 2*pndata - 1; % make output +/- one
a = fft(pndata);
b = a.*conj(a); % PSD of data
Rm = real(ifft(b))/kn; % autocorrelation
x1 = (0:length(Rm)-1)/samp per sym;
x2 = 0:100;
subplot(3,1,1)
plot(x1,Rm,‘.k’); ylabel(‘R[m]’)
subplot(3,1,2)
stem(x2,Rm(1:101),‘.k’); ylabel(‘Partial R[m]’)
subplot(3,1,3)
stem(x2,pndata(1:101),‘.k’); ylabel(‘First 100 outputs’)
axis([0 100 -1.5 1.5]);
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 288 — #306
�

�

�

�

�

�

�

�

N
 -

 s
ta

ge
 s

hi
ft

 r
eg

is
te

r

O
ut

pu
t

1
4

2
3

9
10

�

M
od

-2
 a

dd
er

f
n[

]

F
ig

u
re

7
.2

3
P

N
se

q
u
en

ce
g
en

er
a
to

r
fo

r
E

x
a
m

p
le

7
.5

.

288

“TranterBook” — 2003/11/18 — 16:12 — page 289 — #307
�

�

�

�

�

�

�

�

Section 7.7. PN Sequence Generators 289

Note that the program performs a test to ensure that the PN sequence generator
is indeed full period. (For this case, executing the program returns the period as
1023, which is full period for N = 10.) The program also generates a plot of the
autocorrelation function, the first 101 samples of the autocorrelation, and the first
101 samples at the generator output. These results for one sample/symbol are
illustrated in Figure 7.24. Changing the sampling rate to five samples results in
Figure 7.25. �

0 200 400 600 800 1000 1200
-0.5

0

0.5

1

R
[m

]

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

P
a

rt
ia

l
R

[m
]

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

F
ir

s
t

1
0

0
 o

u
tp

u
ts

Figure 7.24 Generated plots for one sample per symbol.

“TranterBook” — 2003/11/18 — 16:12 — page 290 — #308
�

�

�

�

�

�

�

�

290 Generating and Processing Random Signals Chapter 7

Figure 7.25 Generated plots for five samples per symbol.

7.8 Signal Processing

In this section we examine several input-output relationships for linear systems for
the case in which the system input, and consequently the system output, is random.
We have interest in the following basic results:

• Relationship between the mean of the system input and the system output

• Relationship between the variance of the system input and the system output

• Input-output cross-correlation

• Relationship between the autocorrelation and PSD of the system input and
the system output

These relationships, which are useful in the study of simulation, give us the basic
tools for signal processing for the case in which the system input is a sample function
of a random process. Throughout the analyses to follow, we will assume that the
system of interest is linear and fixed, and that the input to the system is wide-sense

“TranterBook” — 2003/11/18 — 16:12 — page 291 — #309
�

�

�

�

�

�

�

�

Section 7.8. Signal Processing 291

stationary.8 More detail on processing random signals can be found in a variety of
books. An excellent reference is Oppenheim and Schafer [15].

7.8.1 Input/Output Means

Since the system is assumed linear, output samples y[n] are related to input samples
x[n] by the well-known discrete convolution relationship. Thus, as always

y[n] =
∞∑

k=−∞
h[k]x[n − k] (7.105)

The mean, or dc value, of the output is, by definition

E {y[n]} = E

{ ∞∑
k=−∞

h[k]x[n − k]

}
=

∞∑
k=−∞

h[k]E {x[n − k]} (7.106)

since the expected value of a sum is the sum of the expected values. We also note
that, for a fixed system, the terms representing the unit impulse response h[k] are
constants. From the stationarity assumption, E {x[n − k]} = E {x[n]}. This gives
the simple result

my = mx

∞∑
k=−∞

h[k] (7.107)

where mx and my are the mean of x[n] and y[n], respectively. Note that since∑∞
k=−∞ h[k] = H(0), the preceding expression can be written

my = H(0)mx (7.108)

where H(0) is the dc gain of the filter.

7.8.2 Input/Output Cross-Correlation

The input-output cross-correlation is defined by

E{x[n]y[n + m]} = Rxy[m] = E

x[n]
∞∑

j=−∞
h[j]x[n − j + m]

 (7.109)

which is

Rxy[m] =
∞∑

j=−∞
h[j]E {x[n]x[n − j + m]} (7.110)

8Recall that a wide-sense stationary process is one for which means and variances are inde-
pendent of the time origin, and the autocorrelation function is only dependent on the time lag
between samples.

“TranterBook” — 2003/11/18 — 16:12 — page 292 — #310
�

�

�

�

�

�

�

�

292 Generating and Processing Random Signals Chapter 7

which is

Rxy[m] =
∞∑

j=−∞
h[j]Rxx[m − j] (7.111)

The input-output cross-correlation is used in the development of a number of per-
formance estimators. One of these, an estimator for the signal-to-noise ratio at a
point in a system, will be developed in Chapter 8.

7.8.3 Output Autocorrelation Function

By definition, the autocorrelation function of the system output is, at lag m,
E{y[n]y[n + m]}. This gives

E{y[n]y[n + m]} = Ryy[m]

= E

∞∑

j=−∞
h[j]x[n − j]

∞∑
k=−∞

h[k]x[n − k + m]

 (7.112)

which is

Ryy[m] =
∞∑

j=−∞

∞∑
k=−∞

h[j]h[k]E {x[n − j]x[n + m − k]} (7.113)

Once again we rely on the assumption that x[n] is stationary to go to the next step.
If x[n] is stationary, the autocorrelation E {x[n − j]x[n − k + m]} depends only on
the lag m − k + j and

Ryy[m] =
∞∑

j=−∞

∞∑
k=−∞

h[j]h[k]Rxx(m − k + j) (7.114)

where Rxx[m] is the autocorrelation of x[n] at lag m. Unfortunately, the expres-
sion for Ryy[m] cannot, in general, be simplified further without knowledge of the
statistics of x[n]. The one exception is when x[n] is a delta-correlated (white) se-
quence. Taking the discrete Fourier transform of both sides of (7.114) yields the
input-output PSD relationship

Sy(f) = Sx(f) |H(f)|2 (7.115)

which was used to generate correlated sequences.
If the input sequence is delta-correlated (i.e., white noise), by definition

Rxx[m] = E{x[n]x[n + m]} =
{

σ2
x,
0,

m = 0
m 	= 0

}
= σ2

xδ[m] (7.116)

Substitution into (7.114) gives

Ryy[m] = σ2
x

∞∑
j=−∞

∞∑
k=−∞

h[j]h[k]δ(m − k + j) = σ2
x

∞∑
j=−∞

h[j]h[j + m] (7.117)

where we have used the sifting property of the delta function.

“TranterBook” — 2003/11/18 — 16:12 — page 293 — #311
�

�

�

�

�

�

�

�

Section 7.9. Summary 293

7.8.4 Input/Output Variances

The variance of the system output is, by definition, Ryy[0] = E
{
y2[n]

}
. For the

general case, the output variance follows from (7.114) with m = 0. The result is

σ2
y =

∞∑
j=−∞

∞∑
k=−∞

h[j]h[k]Rxx[j − k] (7.118)

If x[n] is a delta-correlated (white noise) sequence, σ2
y can be found by simply letting

m = 0 in (7.117). This gives

σ2
y = σ2

x

∞∑
j=−∞

h2[j] (7.119)

This result will be encountered again when we study equivalent noise bandwidth in
Chapter 10.

7.9 Summary

Our goal in this chapter was to explore techniques for generating and processing
random signals. The results of our study give us the tools to represent noise,
interference, random information-bearing signals, and other random phenomena in
communication systems.

First we explored methods for generating a pseudo-random set of uniformly
distributed integers. A fundamental technique for generating uniformly distributed
integers is the linear congruence generator (LCG). While there are many variations
of the LCG, the goal is to generate a sequence having the longest possible period.
We also wish to generate a set of integers having the lowest possible correlation.
Two tests for correlation were considered: the scatterplot and the Durbin-Watson
test. Many other tests are available, but they tend to be more complicated to
implement.

After a pseudo-random sequence is generated, the next step is to shape the
pdf and the PSD so that a given waveform in the system being simulated can be
modeled with a required level of accuracy. Several methods were studied for shaping
the pdf. The simplest technique was the inverse transform method, which required
that the CDF be known in closed form. Two ad hoc techniques were explored for
generating independent pairs of Gaussian random variables. These were the Box-
Muller algorithm and the polar algorithm. A technique for emulating experimental
data, based on the histogram, was also explored. Shaping the PSD is a filtering
operation. The filtering operation preserves the pdf if the pdf is Gaussian. If one
must shape both the pdf and the PSD, and if the target pdf is not Gaussian, a
difficult problem results. This problem can be solved using the Sondhi algorithm.

Sequences having low correlation can also be generated using the PN sequence
generator, which is implemented as a shift register having an appropriately cho-
sen feedback function. In typical applications, the LCG is used to model noise
and interference waveforms, and the PN sequence generator is used to model data
sources.

“TranterBook” — 2003/11/18 — 16:12 — page 294 — #312
�

�

�

�

�

�

�

�

294 Generating and Processing Random Signals Chapter 7

7.10 Further Reading

This chapter covered a number of diverse topics. Random number generation is
the subject of many papers and books. For an overview, the paper by Park and
Miller [5] is strongly recommended. For a detailed treatment, complete with proofs,
Knuth [1] is highly recommended. The general subject of mapping uniform pdfs to
a specific target pdf is also contained in many books. Rubinstein [2] and Ross [9]
are reasonably complete.

7.11 References

1. D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd ed., Reading, MA: Addison-Wesley, 1981.

2. R. Y. Rubinstein, Simulation and the Monte Carlo Method, New York: Wiley,
1981.

3. R. F. W. Coates, G. J. Janacek, and K. W. Lever, “Monte Carlo Simula-
tion and Random Number Generation,” IEEE Journal on Selected Areas in
Communications, Vol. 6, No. 1, January 1988, pp. 58–66.

4. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation
and Data Analysis, New York: Wiley, 1988.

5. S. K. Park and K. W. Miller, “Random Number Generators: Good Ones Are
Hard to Find,” Communications of the ACM, Vol. 31, No. 10, October 1988,
pp. 1192–1201.

6. P. L’Ecuyer, “Efficient and Portable Combined Random Number Generators,”
Communications of the ACM, Vol. 31, No. 6, June 1988, pp. 742–774.

7. C. Moler, “Random Thoughts: 10435 Is a Very Long Time,” Matlab News &
Notes, Natick, MA: MathWorks, Fall, 1995.

8. A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed.,
New York: McGraw-Hill, 1991.

9. S. M. Ross, A Course in Simulation, New York: Macmillan, 1990.

10. G. Marsaglia and W. W. Tsang, “A Fast, Easily Implemented Method for
Sampling From Decreasing or Symmetric Unimodal Density Functions,” SIAM
Journal of Scientific and Statistical Computing, Vol. 1, No. 2, June 1989, pp.
349–359.

11. H. W. Ott, Noise Reduction Techniques in Electronic Systems, New York:
Wiley, 1976.

12. M. M. Sondhi, “Random Processes With Specified Spectral Density and First-
Order Probability Density,” Bell System Technical Journal, Vol. 62, 1983, pp.
679–700.

“TranterBook” — 2003/11/18 — 16:12 — page 295 — #313
�

�

�

�

�

�

�

�

Section 7.12. Problems 295

13. R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication, 2nd
ed., Upper Saddle River, NJ: Prentice Hall, 2001.

14. S. Golomb, Shift Register Sequences, Laguna Hills, CA: Aegean Press, 1982.

15. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1989.

7.12 Problems

7.1 Write a MATLAB program to compute the ensemble averages of x(t), y(t),
and z(t) as defined in Example 7.1 for N = 20, 50, and 100, where N is the
number of sample functions. Do this for 51 values of t for 0 ≤ t ≤ 2. Discuss
the results. For N = 20, plot the ensemble average as a function of t. Why is
it a sinusoid?

7.2 Consider y(t) as defined in Example 7.1. Compute the ensemble average
E {y(t)}. Estimate E {y(t)} using N = 5 sample functions at 51 points ti
where 0 ≤ ti ≤ 2. Plot the result and compare with E {y(t)}. Repeat for
N = 20, N = 50, and N = 100. What do you conclude?

7.3 Repeat the preceding problem for z(t) as defined in Example 7.1.

7.4 A random telegraph waveform is defined as a waveform that takes on values
+1 or −1 with the switching instants occuring at random. Develop a MAT-
LAB program for computing and plotting three sample functions of a random
telegraph waveform.

7.5 Using Example 7.2 as a guide, develop a MATLAB program for simulating a
8-PSK modulator.

7.6 Using Example 7.2 as a guide, develop a MATLAB program for simulating a
16-QAM modulator.

7.7 Develop a MATLAB program for testing whether or not a number m is prime.
Also develop a program to identify primitive elements mod(m). Using this
program, determine which elements are primitive mod(89). Using the results
of this investigation develop a multiplicative LCG and show that it has period
88.

7.8 Suppose we wish to develop a uniform number generator with m = 5,000,
a = 241, and c = 1, 323. Unfortunately, a small error results in the multiplier
a being entered as 240. Using the seed x0 = 1, describe the impact of this
error.

7.9 Design a mixed congruential generator having a period of 6,000. Using the
MATLAB routine c7 LCGPeriod.m show that a period of 6,000 is actually
achieved.

“TranterBook” — 2003/11/18 — 16:12 — page 296 — #314
�

�

�

�

�

�

�

�

296 Generating and Processing Random Signals Chapter 7

7.10 A mixed congruential generator has a = c = 1 and m = 256. Assuming
that the seed is x0 = 0, describe the generator output. Is this a full-period
generator? Determine the scatterplot and test for independence using the
Durbin-Watson algorithm.

7.11 Show that the three component generators of the Wichmann-Hill algorithm
have periods of 30268, 30306 and 330322. You may use the MATLAB routine
c7 LCGPeriod.m to solve this problem.

7.12 Show, using both analysis and simulation, that the random number generator
defined by

xi+1 = 5xi mod(7)

is a full-period generator. Determine the generated sequence for seeds x0 = 1
and x0 = 4. Compare the sequences and comment on the results.

7.13 Show, using both analysis and simulation, that the LCG described by

xi+1 = 133xi mod(256)

has a period of 64. Using an appropriate MATLAB program with the seed
x0 = 1, determine the generated sequence.

7.14 Run the MATLAB program given in Example 7.8 for N = 100, 1,000, and
20, 000. Compare the results to those illustrated in Figure 7.8. Comment on
the results.

7.15 A Weibull random variable is defined by the pdf

fX(x) = axa−1 exp(−xa)u(x)

where a is a parameter and u(x) denotes the unit step. Using the inverse
transform method, develop an algorithm for generating a sequence of random
numbers having a Weibull distribution. Using the algorithm just generated
with a = 5, generate 500 samples of a Weibull random variable. Plot the
histogram and compare with the pdf.

7.16 A Laplacian random variable is defined by the pdf

fX(x) =
a

2
exp(−a |x|), a > 0

Note that this pdf is double-sided. Using the inverse transform method, de-
termine an algorithm for generating X from a uniforrmly distributed random
variable. Let a = 3 and generate 1,000 samples of X . Determine the resulting
histogram and compare the result with the theoretical pdf.

7.17 (a) Generate N = 1000 pairs of zero-mean Gaussian random variables using
the Box-Muller algorithm. The desired variance is σ2 = 5. From the set
of generated samples determine mX , mZ , σ2

X , σ2
Z , and ρXZ . Comment

on the results.

“TranterBook” — 2003/11/18 — 16:12 — page 297 — #315
�

�

�

�

�

�

�

�

Section 7.12. Problems 297

(b) Repeat part (a) but generate approximately N = 1, 000 random variables
using the polar method.

7.18 Both the Box-Muller and the polar techniques for generating a pair of random
numbers require that a pair of independent uniformly distributed random
numbers be generated. This can be accomplished using the following two
lines of code:

u1 = rand(1,N);
u2 = rand(1,N);

Will the code segment

u1 = rand(1,N);
u2 = [u1(1,N),u1(1,1:N-1)];

work just as well? Why or why not? Test both of the code segments to
demonstrate the validity of your answer.

7.19 Rework Example 7.8 for the pdf

fX(x) =
{

4
2πR2

√
R2 − x2,

0,
−R ≤ x ≤ R
otherwise

Note that this will require a simple modification to the algorithm used in
Example 7.9.

7.20 The unit impulse response of the Jakes filter defined by (7.98) is given by

h(t) = K (πfdt)
−1/4 Γ (3/4) fdJ1/4(2πfdt)

where J1/4(·) is the fractional Bessel function and Γ(·) denotes the gamma
function. Let fd = 10 Hz and plot h(t). Compare with the sampled unit
impulse response derived by taking the inverse FFT of H(f) as determined
in Example 7.11.

7.21 In this problem you are to extend the rejection method so that a random
variable having infinite support can be generated. The target pdf describes
the generalized Gaussian random variable, which is defined by

fX(x) =
v√

8σΓ(1/v)
exp

(
−
∣∣∣∣x − m√

2σ

∣∣∣∣v)
where m is the mean, v is the mode σ is a parameter, and Γ(·) denotes the
gamma function. Note that for v = 2, fX(x) is Gaussian.

“TranterBook” — 2003/11/18 — 16:12 — page 298 — #316
�

�

�

�

�

�

�

�

298 Generating and Processing Random Signals Chapter 7

(a) Plot the generalized Gaussian pdf for m = 0 and v = 1, 1.5, 2, and 2.5.

(b) Develop, using a rejection method, an algorithm for generating X with
v = 1.5 and m = 0. Select a bounding function and plot both the
bounding function and fX(x).

(c) Using the algorithm with v = 1.5 and m = 0, generate 10,000 values of
X . Plot the resulting histogram and compare with the theoretical pdf.

7.22 Using the algorithm defined by (7.87), generate N = 50 pairs of zero-mean
Gaussian random variables with σ2 = 3 and ρ = 0.6. From the set of generated
samples, determine mX , mZ , σ2

X , σ2
Z , and ρXZ . Repeat for N = 5,000.

Comment on the results.

7.23 Develop an algorithm for generating a set of uncorrelated samples having the
PSD

S(f) = [1 − cos(πf/fs)]
2

where fs is the sampling frequency. Generate 10,000 samples having the target
PSD and verify the algorithm. Using the generated data, determine the au-
tocorrelation function and compare with the target autocorrelation function.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 299 --- #317
�

�

�

�

�

�

�

�

Section 7.13. Appendix A: MATLAB Code for Example 7.11 299

7.13 Appendix A: MATLAB Code for Example 7.11

7.14 Main Program: c7 Jakes.m

% File c7_Jakes.m
% Generate and test the impulse response of the filter.
%
fd = 100; % maximum doppler
impw = jakes_filter(fd); % call to Jakes filter
fs = 16*fd; ts = 1/fs; % sampling frequency and time
time = [1*ts:ts:128*ts]; % time vector for plot
subplot(2,1,1)
stem(time,impw,‘.’); grid;
xlabel(‘Time’); ylabel(‘Impulse Response’)
%
% Square the fft and check the power transfer function.
%
[h f] = linear_fft(impw,128,ts); % generate H(f) for filter
subplot(2,1,2)
plot(f,abs(h.*h)); grid;
xlabel(‘Frequency’); ylabel(‘PSD’)
%
% Put Gaussian noise through and check the output psd.
%
x = randn(1,1024); % generate Gaussian input
y = filter(impw,1,x); % filter Gaussian input
[output_psd ff] = log_psd(y,1024,ts); % log of PSD figure;
subplot(2,1,1)
plot(ff,output_psd); grid;
axis([-500 500 -50 0])
xlabel(‘Frequency’); ylabel(‘PSD’)
%
% Filter complex noise and look at the envelope fading.
%
z = randn(1,1024)+i*randn(1,1024); % generate complex noise
zz = filter(impw,1,z); % filter complex noise
time = (0.0:ts:1024*ts); % new time axis
%
% Normalize output and plot envelope.
%
zz = zz/max(max(abs(zz))); % normalize to one
subplot(2,1,2)
plot(time(161:480),10*log10(abs(zz(161:480)))); grid;
axis([0.1 0.3 -20 0])
xlabel(‘Time’); ylabel(‘Log Amplitude’)
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 300 --- #318
�

�

�

�

�

�

�

�

300 Generating and Processing Random Signals Chapter 7

7.14.1 Supporting Routines

Jakes filter.m

% File: Jakes_filter.m
function [impw] = jakes_filter(fd)
% FIR implementation of the Jakes filter (128 points)
n = 512; nn = 2*n; % nn is FFT block size
fs = 0:fd/64:fd; % sampling frequency = 16*fd
H = zeros(1,n); % initialize H(f)
for k=1:(n/8+1) % psd for k=1:65

jpsd(k)=1/((1-((fs(k))/fd)^2)^0.5);
if(jpsd(k))>1000

jpsd(k)=1000;
end
H(k)=jpsd(k)^0.5; % first 65 points of H

end
for k=1:n % generate negative frequencies

H(n+k) = H(n+1-k);
end
[inv,time] = linear_fft(H,nn,fd/64); % inverse FFT
imp = real(inv(450:577)); % middle 128 points
impw = imp.*hanning(128)’; % apply hanning window
energy = sum(impw.^2); % compute energy
impw = impw/(energy^0.5); % normalize
% End of function file.

linear fft.m

% File: linear_fft.m
function [fftx,freq] = linear_fft(x,n,ts)
% This function takes n (must be even) time domain samples (real or
% complex) and finds the PSD by taking (fft/n)^2. The two sided
% spectrum is produced by shifting the PSD. The array freq provides
% the appropriate frequency values for plotting purposes.
y = zeros(1,n);
for k=1:n

freq(k) =(k-1-(n/2))/(n*ts);
y(k) = x(k)*((-1.0)^(k+1));

end;
fftx = fft(y)/n;
% End of function file.

log psd.m

% File: log_psd.m
function [logpsd,freq,ptotal,pmax] = log_psd(x,n,ts)

“TranterBook” — 2003/11/18 — 16:12 — page 301 — #319
�

�

�

�

�

�

�

�

Section 7.14. Main Program: c7 Jakes.m 301

% This function takes the n time domain samples (real or complex)
% and finds the psd by taking (fft/n)^2. The two sided spectrum is
% produced by shifting the psd; The array freq provides the
% appropriate frequency values for plotting purposes.
% By taking 10*log10(psd/max(psd)) the psd is normalized; values
% below -60 dB are set equal to -60dB.
%
% n must be an even number, preferably a power of 2
%
y = zeros(1,n); % initialize y vector
%
h = waitbar(0,‘For Loop in PSD Calculation’);
for k=1:n
freq(k) =(k-1-(n/2))/(n*ts);
y(k) = x(k)*((-1.0)^k);
waitbar(k/n)

end;
%
v = fft(y)/n;
psd = abs(v).^2;
pmax=max(psd);
ptotal=sum(psd);
logpsd = 10*log10(psd/pmax);
%
% Truncate negative values at -60 dB
%
for k =1:n
if(logpsd(k)<-60.0)
logpsd (k) =-60.0;
end

end
close(h)
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 302 — #320
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 303 — #321
�

�

�

�

�

�

�

�

Chapter 8

POSTPROCESSING

In this chapter we briefly introduce the important topic of postprocessing. As
discussed previously, the role of the postprocessor is to manipulate the data created
by the simulation into a useful form. Postprocessors are usually graphics intensive,
since visual displays are more easily interpreted than numerical listings, which are
the most common data output from a simulation program. For example, a plot
of the bit error rate for several different systems conveys information more quickly
than a numerical table containing the same information.

Postprocessing routines may, or may not, involve significant computational com-
plexity. Some postprocessors simply take data created by a simulation and, after
properly formatting the data, generate the appropriate graphical output. An ex-
ample is a routine for generating a plot of bit or symbol error probability, PE , as
a function of Eb/N0. The values of PE , along with the accompanying values of
Eb/N0, are created by the simulation and passed to the postprocessor as data files.
The postprocessor simply formats the data and creates the required plot. Other
examples of postprocessors that generate graphical output with minimal processing
are those for displaying signal waveforms, eye diagrams, and scatter plots.

On the other hand, some postprocessing routines involve significant data pro-
cessing. Most of these involve some type of estimation. A simple example is the
generation of a histogram, which is an estimator of a probability density function.
More complex examples are estimators for time delay, signal-to-noise ratio (SNR),
and power spectral density. Other examples considered in this chapter involve the

303

“TranterBook” — 2003/11/18 — 16:12 — page 304 — #322
�

�

�

�

�

�

�

�

304 Postprocessing Chapter 8

mapping of the channel symbol error rate to a decoded bit error rate for a system
utilizing error-control coding. The list of possible postprocessing operations is vir-
tually endless and, in this chapter, we only explore a few examples. All of these
operations are considered postprocessing, since they make use of the data created
by a simulation and are implemented after the simulation engine has completed its
work. (Recall the discussion of the simulation engine in Chapter 6.)

8.1 Basic Graphical Techniques

In order to illustrate the graphical techniques used in a typical simulation post-
processor, the concepts are considered within the context of an example system.
The choice for an example system is, of course, arbitrary. We consider here π/4
DQPSK, since it has a number of interesting characteristics and is used in a number
of wireless systems [1].1

8.1.1 A System Example—π/4 DQPSK Transmission

A block diagram of a π/4 DQPSK transmitter is illustrated in Figure 8.1. The
output of the data source is assumed to be a sequence, a, of the form

a(1)a(2)a(3)a(4) · · ·a(k) · · ·

The parallel-to-serial converter assigns alternate (odd-indexed) symbols to the direct
channel and the remaining (even-indexed) symbols to the quadrature channel. Thus:

a(1)a(2)a(3)a(4) · · · a(k) · · · = d(1)q(1)d(2)q(2) · · · d
(

k + 1
2

)
q

(
k

2
+ 1
)
· · ·

The transmitted signal is given by

xc(t) = A cos [2πfct + θ(k)] , (k − 1)Ts < t < kTs (8.1)

where Ts is the symbol period. The phase deviation of the transmitted signal is
determined by the values of d(k) and q(k) as well as the phase deviation θ(k − 1),
which is the phase deviation during the previous symbol period. This dependence
of the previous symbol period is, of course, what makes π/4 DQPSK a differential
modulation technique. The relationship between θ(k) and θ(k − 1) is

θ(k) = θ(k − 1) + φ(k) (8.2)

where φ(k) is an explicit function of d(k) and q(k), and is defined in Table 8.1. The
required transmitted phases are generated in the phase mapper shown in Figure 8.1.
The phase mapper uses d(k), q(k), and θ(k−1) to generate the new values d′(k) and

1π/4 DQPSK has been adopted as the modulation format in a number of system standards.
These include the USDC (United States Digital Cellular) system, the PACS (Personal Access
Communication System) PCS system, the PDC (Pacific Digital Cellular) system, and the PHS
(Personal Handy Phone) cordless system. [1]

“TranterBook” — 2003/11/18 — 16:12 — page 305 — #323
�

�

�

�

�

�

�

�

S
er

ia
l-

to
-

pa
ra

lle
l

co
nv

er
te

r

Pu
ls

e-

sh
ap

in
g

fi
lt

er

Pu
ls

e-

sh
ap

in
g

fi
lt

er

co
s(

)
2π

f
t c

si
n(

)
2π

f
t c

x
t

c
(

)

q
k(

)

d
k(

)

a
k(

)
D

at
a

so
ur

ce

Ph
as

e
m

ap
pi

ng

d
k(

)

q
k(

)

` `
F
ig

u
re

8
.1

π
/
4

D
Q

P
S
K

tr
a
n
sm

it
te

r.

305

“TranterBook” — 2003/11/18 — 16:12 — page 306 — #324
�

�

�

�

�

�

�

�

306 Postprocessing Chapter 8

Table 8.1 Differential Phase Shifts for π/4 DQPSK

Information Symbols, d(k) and q(k) Differential Phase Shift, φ(k)
1 1 π/4
0 1 3π/4
0 0 −3π/4
1 0 −π/4

q′(k), so that the transmitted signal has the proper phase. After appropriate pulse
shaping, the direct and quadrature channel signals are translated to the transmission
frequency, fc, as shown.

As an example, assume that the output of the data source is the binary sequence

0010110111 · · · (8.3)

and that the initial phase is defined by θ(0) = 0. Since the first two data symbols
are 00, it follows from Table 8.1 that φ(1) = −3π/4. From (8.2) we then have

θ(1) = 0 − 3π

4
= −3π

4

The next two data symbols are 10, so that φ(2) = −π/4. Thus:

θ(2) = −3π

4
− π

4
= −π

The next two data symbols are 11. Thus, φ(3) = π/4, which gives

θ(3) = −π +
π

4
= −3π

4

In like manner, φ(4) = 3π/4, so that

θ(4) = −3π

4
+

3π

4
= 0

and φ(5) = π/4, which gives

θ(5) = 0 +
π

4
=

π

4

A quick observation illustrates that θ(1), θ(3), and θ(5) are phases from the first
QPSK signal constellation illustrated in Figure 8.2(a), and that θ(2) and θ(4) are
phases from the second QPSK signal constellation illustrated in Figure 8.2(b). Thus,
π/4 DQPSK operates by transmitting signal points from alternating QPSK signal
constellations where the two QPSK signal constellations are displaced by a π/4
phase rotation. Although this has been demonstrated using a specific data sequence,
we see that the result is general, since the differential phases only take on the values
±π/4 or ±3π/4.

“TranterBook” — 2003/11/18 — 16:12 — page 307 — #325
�

�

�

�

�

�

�

�

Section 8.1. Basic Graphical Techniques 307

 D

 Q

 D

 Q

(a) QPSK: Phase set 1 (b) QPSK: Phase set 2

Figure 8.2 Signal constellations for π/4 DQPSK.

8.1.2 Waveforms, Eye Diagrams, and Scatter Plots

Prior to demonstrating the basic programs for plotting waveforms, eye diagrams,
and scatter plots, we first pause to illustrate the relationship between these plots.
Suppose that we develop a three-dimensional coordinate system as shown in Figure
8.3 with the axes labeled as shown. Note that three intersecting planes can be
formed, each of which contain two of the axes. These planes are formed by the
D and t axes, the Q and t axes, and the Q and D axes. If the direct-channel
signal xd(t) is plotted on the (D, t) plane and the quadrature channel signal xq(t)
is plotted on the (Q, t) plane, a three-dimensional signal, parameterized on t, is

 D

 t Q

(Q versus D)

(D versus t)

(Q versus t)

Figure 8.3 Three-dimensional coordinate system.

“TranterBook” — 2003/11/18 — 16:12 — page 308 — #326
�

�

�

�

�

�

�

�

308 Postprocessing Chapter 8

generated. Projecting this signal onto a given subspace (D, t), (Q, t), or (D, Q),
generates xd(t), xq(t), or the scatter plot, which is a plot of xq(t) as a function
of xd(t). This is illustrated in Figure 8.3. Looking in from the right so that the
(D, t) plane is seen edge-on shows the quadrature signal xq(t). In the same manner,
the direct channel signal, xd(t), is obtained by viewing the three-dimensional image
from below so that the (Q, t) plane is seen edge-on. Looking down the time axis so
that the time axis becomes a point reveals the scatter plot.

While the three-dimensional (Q, D, t) image is seldom generated in practice,
visualizing the (Q, D, t) image is a good learning tool and shows clearly the re-
lationship between xd(t), xq(t), and the scatter plot. An interesting tutorial was
based on this concept [2].

Eye Diagrams

The eye diagram gives a qualitative measure of system performance [3]. A well-
defined and open eye usually indicates good performance, while a poorly defined
eye usually indicates poor performance. In addition, the size of the eye relates to
the accuracy required of the symbol synchronizer. While the eye diagram does not
provide a quantitative measure of system performance, it is difficult to conceive of
a high-performance system having a poorly defined eye diagram.

The generation of an eye diagram is illustrated in Figure 8.4. Three segments
of a waveform, with each segment corresponding to a symbol period, are shown

Segment 1

Segment 3

Segment 2 Segment 3Segment 1

(a) Three segments (60 samples) of a waveform

(b) Three-segment eye diagram

Figure 8.4 Generation of an eye diagram.

“TranterBook” — 2003/11/18 — 16:12 — page 309 — #327
�

�

�

�

�

�

�

�

Section 8.2. Estimation 309

in Figure 8.4. The waveform corresponding to three data symbols is illustrated in
Figure 8.4(a). Assume that this waveform is displayed on an oscilloscope and that
the oscilloscope is triggered at the points denoted by the dotted vertical lines. The
result will be the three-segment eye diagram illustrated in Figure 8.4(b).

Example 8.1. In this example, several important signals present in a π/2 DPSK
system are generated and displayed. The MATLAB program for simulating the
system and generating the graphical output is given in Appendix A. Upon entering
the program name, c8 pi4demo, at the MATLAB prompt, a menu is presented.
From this menu the user may select one of the following seven options (after a plot
is generated, hitting the space bar will display the menu so that another selection
can be made):

1. Unfiltered π/4 DQPSK signal constellation

2. Unfiltered π4 DQPSK eye diagram

3. Filtered π/4 DQPSK signal constellation

4. Filtered π4 DQPSK eye diagram

5. Unfiltered direct and quadrature signals

6. Filtered direct and quadrature signals

7. Exit program (return MATLAB prompt)

The student should study the material in Appendix A closely, as it illustrates many
of the common postprocessing procedures. In addition, the code used for generating
the various plots can be used in the postprocessor of other simulation programs.
Here we illustrate three of the more interesting results. Figures 8.5, 8.6, and 8.7
illustrate the scatter plot (signal constellation), the direct and quadrature channel
signals, and the direct and quadrature channel eye diagrams, respectively. [Note
that by visualizing the three-dimensional signal in the (D, Q, t) space as previously
discussed, the relationship between Figures 8.5 and 8.7 is easily seen.] �

8.2 Estimation

Many useful estimation routines are based on data generated by a simulation pro-
gram. Here we consider only a small sampling of the many possibilities.

8.2.1 Histograms

When a set of samples of a random process is available, as will be the case in a
simulation environment, a histogram formed from that set of samples is frequently
used as an estimator of the underlying probability density function (pdf). The
histogram is formed by grouping data, consisting of N total samples, into B bins

“TranterBook” — 2003/11/18 — 16:12 — page 310 — #328
�

�

�

�

�

�

�

�

-1
.5

-1
-0

.5
0

0
.5

1
1

.5

-1

-0
.50

0
.51

D
ir

e
c

t
C

h
a

n
n

e
l

Quadrature Channel

F
ig

u
re

8
.5

F
il
te

re
d

si
g
n
a
l
co

n
st

el
la

ti
o
n
.

310

“TranterBook” — 2003/11/18 — 16:12 — page 311 — #329
�

�

�

�

�

�

�

�

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

-1
.5-1

-0
.50

0
.51

1
.5

N
o

rm
a

liz
e

d
 T

im
e

Direct

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

-1
.5-1

-0
.50

0
.51

1
.5

N
o

rm
a

liz
e

d
 T

im
e

Quadratute

F
ig

u
re

8
.6

U
n
fi
lt

er
ed

d
ir

ec
t

a
n
d

q
u
a
d
ra

tu
re

si
g
n
a
ls
.

311

“TranterBook” — 2003/11/18 — 16:12 — page 312 — #330
�

�

�

�

�

�

�

�

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

-2-1012

S
a

m
p

le
 I

n
d

e
x

Direct

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

-2-1012

S
a

m
p

le
 I

n
d

e
x

Quadratute

F
ig

u
re

8
.7

F
il
te

re
d

ey
e

d
ia

g
ra

m
.

312

“TranterBook” — 2003/11/18 — 16:12 — page 313 — #331
�

�

�

�

�

�

�

�

Section 8.2. Estimation 313

or cells. Each bin is assumed to have equal width W , and the center of each bin is
denoted bi. A given sample x[n] falls into the ith bin if

bi − W

2
< x[n] ≤ bi +

W

2
(8.4)

The quantity of interest is Ni, which denotes the number of samples falling into the
ith bin. Clearly

N =
B∑

i=1

Ni (8.5)

We adopt the notation Count{N : R} to represent the number of samples, in
the set of N total samples, falling into the histogram bin defined by R. Thus

Ni = Count
{

N : bi − W

2
< x[n] ≤ bi +

W

2

}
(8.6)

A bar graph is then plotted in which the height of each bar is proportional to Ni,
and each bar is centered at bi. In order to be an estimator of the pdf, the histogram
is scaled so that the total area is one. This is accomplished by dividing Ni by NW .
The height of each bar is then Ni/NW . The area of the bar, Ai, representing the
ith histogram bin, is found by multiplying the height by the width W . Thus

Ai =
(

Ni

NW

)
W =

Ni

N
(8.7)

Note that Ai represents the relative frequency of the ith histogram bin. The total
area is

B∑
i=1

Ni

N
= 1 (8.8)

as required if the histogram is to represent a probability density function.
Note that each histogram bin represents the pdf over a finite span of width W

by a constant. For some point within a given bin, the estimator of the pdf will be
unbiased. However, over most of the range defined by a given histogram bin, the
estimator will be biased. It is easily shown, by expanding the pdf fX(x) in a Taylor
series about the center of the ith bin, that the bias is [4]

E
{
fX(bi) − f̂X(bi)

}
≈ d2fX(x)

dx2

∣∣∣∣
x=bi

W 2

24
(8.9)

Thus, the bias can be reduced only by decreasing the bin width, W .
It can also be shown that the variance of the estimator is [4]

var
{
f̂X(bi)

}
≈ 1

NW
fX(bi) [1 − WfX(bi)] (8.10)

“TranterBook” — 2003/11/18 — 16:12 — page 314 — #332
�

�

�

�

�

�

�

�

314 Postprocessing Chapter 8

Note that WfX(bi) is the probability of the event that a given sample falls into bin
bi. Since it is a probability, WfX(bi) ≤ 1 is less than one and is usually much less
than one. Thus

var
{
f̂X(bi)

}
≈ 1

NW
fX(bi) (8.11)

We see that, for fixed N , increasing W decreases the variance of the estimator.
Unfortunately, from (8.9), we see that the effect of increasing W increases the bias.
We therefore desire small W and large NW . Thus, N and W must be related. For
example, if W = 1/

√
N and NW =

√
N , W → 0 as N → ∞ and also NW → ∞ as

N → ∞. In this case, for sufficiently large N , the result will be a pdf with negligible
bias and negligible variance. The following example illustrates the histogram for
various choices of N and W .

Example 8.2. Assume that we generate N samples of a zero-mean unit-variance
Gaussian random variable. The pdf is estimated by constructing a histogram with
B bins. In this example, we wish to examine the impact of varying both N and B.
In order to accomplish this, the following MATLAB problem is used:

% File c9 hist.m
subplot(2,2,1)
x = randn(1,100); hist(x,20)
ylabel(‘N i’); xlabel(‘(a)’)
subplot(2,2,2)
x = randn(1,100); hist(x,5)
ylabel(‘N i’); xlabel(‘(b)’)
subplot(2,2,3)
x = randn(1,1000); hist(x,50)
ylabel(‘N i’); xlabel(‘(c)’)
subplot(2,2,4)
x = randn(1,100000); hist(x,50)
ylabel(‘N i’); xlabel(‘(d)’)
% End of script file.

Executing this program gives the results illustrated in Figure 8.2. Figure 8.2(a)
illustrates the results for N = 100 and B = 20. As we can see, the histogram
is not well defined, since N/B = 5, which is much too small to yield a reliable
estimator for the number of samples falling into a given histogram bin. Figure
8.2(b) illustrates the result for N = 100 and B = 5. While the ratio for N/B is now
much larger, the number of bins is too small. Note that with N fixed, the histogram
with B = 5 will exhibit greater bias than B = 20. Figure 8.2(c) illustrates the result
for N = 1,000 and B = 50. While this provides a better estimator, the ratio N/B is
once again too small and we therefore increase N . Figure 8.2(d) illustrates the result
for N = 100,000 and B = 50. This yields N/B = 2,000 and the resulting histogram
has the predicted Gaussian shape. If the underlying pdf has a complicated shape, a
very large number of samples is often required if the histogram is to be an accurate
estimator of the pdf. �

“TranterBook” — 2003/11/18 — 16:12 — page 315 — #333
�

�

�

�

�

�

�

�

-4
-2

0
2

4
05

1
0

1
5

Ni

(a
)

-4
-2

0
2

4
0

1
0

2
0

3
0

4
0

Ni

(b
)

-4
-2

0
2

4
0

2
0

4
0

6
0

8
0

Ni

(c
)

-5
0

5
0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

Ni

(d
)

F
ig

u
re

8
.8

H
is
to

g
ra

m
s

fo
r

a
G

a
u
ss

ia
n

ra
n
d
o
m

va
ri
a
b
le

(a
)

N
=

1
0
0
,

B
=

2
0
;

(b
)

N
=

1
0
0
,

B
=

5
;

(c
)

N
=

1
,0

0
0
,
B

=
5
0
;
(d

)
N

=
1
0
0
,0

0
0
,

B
=

5
0
.

315

“TranterBook” — 2003/11/18 — 16:12 — page 316 — #334
�

�

�

�

�

�

�

�

316 Postprocessing Chapter 8

8.2.2 Power Spectral Density Estimation

Another postprocessing operation that is frequently used in a simulation study is
the estimation of the power spectral density (PSD) of a signal at a point in a system.
This is a more difficult task than we might generally assume. Typically the waveform
of interest is a sample function of a stochastic process. This leads to a situation
in which the PSD at a given value of frequency f1 is a random variable. It then
becomes, as with most problems in estimation theory, necessary to minimize the
variance of the spectral estimate Ŝ(f1). A number of books [5–9] and many papers
have been written on this topic and many techniques have been developed for PSD
estimation. In this section we consider only the most fundamental techniques. The
techniques considered here are based on the fast Fourier transform (FFT) and are
frequently used in the simulation context.

The Periodogram

The simplest, fastest, and most frequently used PSD estimation algorithm is the
periodogram. It is defined by

Ŝ(kf∆) =
1
N

∣∣∣∣∣
N−1∑
n=0

x[n] exp(−j2πkf∆n)

∣∣∣∣∣
2

=
1
N

|IN (kf∆)|2 ,

k = 0, 1, · · · , N − 1 (8.12)

in which N is the total number of samples in the data record, and IN (kf∆) is the
N -point FFT of the data for which the PSD estimate at frequency f = kf∆ is to
be computed. The computational efficiency of the periodogram comes from the use
of the FFT to form the PSD estimate. The result provides us with N frequency
domain estimates having a resolution of f∆ = fs/N , where fs is the sampling
frequency associated with the time-domain points for which the spectral estimate is
being performed. Note that fs in this context is not always the sampling frequency
associated with the simulation. For example, if a given signal in a simulation is
significantly oversampled, the samples may be decimated2 prior to forming the
PSD estimate.

The difficulty with the periodogram is that it is biased and is not a consistent
estimator of the PSD at a frequency f . For many applications, the variance of
the periodogram is unacceptably high. The bias results from the unavoidable fact
that the data record is finite. However, for sufficiently large N , the bias can be
neglected. Therefore, the main difficulty results from the high variance. Assuming
that the data samples x[n] are independent, the variance of the spectral estimate
at frequency f is [6]

var
(
Ŝ(f)

)
= σ4

x

{
1 +

(
sin[2πfN]
N sin[2πf]

)2
}

(8.13)

2Recall the discussion of decimation in Chapter 3.

“TranterBook” — 2003/11/18 — 16:12 — page 317 — #335
�

�

�

�

�

�

�

�

Section 8.2. Estimation 317

where σ2
x is the variance of the data samples x[n]. We observe that the variance

of Ŝ(f) does not tend to zero as N → ∞ and, for large N , the variance of the
spectral estimate is independent of frequency. The periodogram, however, despite
this serious flaw, is useful for a “quick look” at the PSD.

The Periodogram With a Data Window

If a data window is not explicitly specified, the default rectangular window is used.3

For a rectangular window each sample value x[n] is multiplied by w[n] = 1 for
0 ≤ n ≤ N − 1. The impact of the rectangular window is to convolve the data
samples x[n], with the Fourier transform of w[n], which has the amplitude spectrum
sin(πNf)/N sin(πf). The sidelobe structure of this data window, when viewed in
the frequency domain, results in considerable spectral leakage [6]. This spectral
leakage distorts and reduces the dynamic range of the estimated spectrum. (See
Problem 8.7.)

When an arbitrary data window is used, Ŝ(kf∆) takes the form

Ŝ(kf∆) =
1
U

∣∣∣∣∣
N−1∑
n=0

x[n]w[n] exp(−j2πkf∆n)

∣∣∣∣∣
2

(8.14)

where U is the energy in the data window, which is given by

U =
N−1∑
n=0

w2[n] (8.15)

Note that for the rectangular window, for which w[n] = 1 for all n, U = N and
(8.12) results. The choice of data window represents a number of tradeoffs. The
ideal data window must have finite duration in the time domain so that IN (kf∆),
the Fourier transform of the data, can be accurately estimated using a finite data
record. In addition, the estimated Fourier transform of the data record must not
be adversely affected by the window function. Since multiplication in the time do-
main is convolution in the frequency domain, and only convolution with an impulse
function leaves the transform unchanged, the ideal window function is an impulse
in the frequency domain. Since the Fourier transform of an impulse is not of finite
extent, these are conflicting requirements. We therefore seek a data window that, in
the frequency domain, exhibits a narrow main lobe about f = 0, and sidelobes that
are greatly attenuated. A variety of window functions are discussed in the classic
paper by Harris [10].

Segmented Periodograms

A common technique for reducing the variance associated with the periodogram is
to divide the N -sample data record into K segments, with each segment consisting
of M samples. The FFT is computed for each segment and the results are averaged.

3In MATLAB the rectangular window is called the BOXCAR window.

“TranterBook” — 2003/11/18 — 16:12 — page 318 — #336
�

�

�

�

�

�

�

�

318 Postprocessing Chapter 8

The averaging process reduces the variance of the spectral estimate. The segments
may or may not be overlapping. If the segments do not overlap, K = M/N ;
otherwise K > M/N .

The periodogram of the ith data segment is given by

I
(i)
M (kf∆) =

1
U

∣∣∣∣∣
M−1∑
n=0

x(i)[n]w[n] exp(−j2πkf∆n)

∣∣∣∣∣
2

i = 1, 2, · · · , K (8.16)

where x(i)[n] represents the samples in the ith data record and f∆ = fs/M . The K
periodograms are then averaged to produce the PSD estimator

Ŝ(kf∆) =
1
K

K∑
i=1

I
(i)
M (kf∆), k = 0, 1, · · ·M − 1 (8.17)

This estimator is biased, of course, since the data record is finite. Assuming that
the K periodograms are independent

var
(
Ŝ(kf∆)

)
=

1
K

S2(kf∆) (8.18)

which tends to zero as K → ∞.
Comparing (8.12) and (8.16) reveals an obvious problem. The periodogram de-

fined by (8.12) has a frequency resolution of f∆ = fs/N , while the periodogram
defined by (8.16) has a frequency resolution of f∆ = fs/M . Since M < N for
K > 1, the frequency resolution is degraded by segmenting the original N -sample
data record. Thus, using the segmentation technique gives rise to a tradeoff be-
tween resolution and variance. Also, the validity of (8.18) requires that the K
periodograms used in the averaging process be independent. Since we desire the
largest possible value of K for a fixed N, the segments are often overlapped. A 50
percent overlap is often used. When using a 50 percent overlap all samples x[n] are
used twice except for the M/2 samples at each end of the N sample data record,
and the value of K is increased from N/M to 2(N/M) − 1. If data segments are
overlapped, however, the K periodograms are no longer independent and the re-
duction in the variance of the PSD estimator is less than that predicted by (8.18).
The use of a data window, at least partially, helps to restore the independence of
the K segments.4

While there are many data windows that can be used in (8.16), the Hanning
window is frequently used for PSD estimation. The Hanning window is defined by

w[n] =

{
1
2

[
1 − cos

(
2πn

M−1

)]
,

0,

0 ≤ n ≤ M − 1
otherwise (8.19)

4One obviously wishes to select the overlap so that a minimum-variance spectral estimator
results. Marple [8] states that, for a Gaussian process, the minimum variance is achieved with an
overlap of 65 percent when using a Hanning window.

“TranterBook” — 2003/11/18 — 16:12 — page 319 — #337
�

�

�

�

�

�

�

�

Section 8.2. Estimation 319

Example 8.3. In this example we pass independent (white noise) samples through
a Chebyshev filter having 5 dB passband ripple. The problem is to estimate the
PSD at the filter output. The MATLAB program for accomplishing this follows:

% File: c8 PSDexample.m
settle = 100; % ignore transient
fs = 1000; % sampling frequency
N = 50000; % size of data record
f = (0:(N-1))*fs/N; % frequency scale
[b,a] = cheby1(5,5,0.1); % filter
NN = N+settle; % allow transient to die
in = randn(1,NN); % random input
out = filter(b,a,in); % filter output
out = out((settle+1):NN); % strip off initial samples
window = hanning(N)’; % set window function
winout = out.*window; % windowed filter output
fout = abs(fft(winout,N)).^2; % transform and square mag
U = sum(window.*window); % window energy
f1out = fout/U; % scale spectrum
psd1 = 10*log10(abs(f1out)); % log scale
subplot(2,1,1)
plot(f(1:5000),psd1(1:5000))
grid; axis([0 100 -70 10]);
xlabel(‘Frequency, Hz’)
ylabel(‘PSD’)
%
K = 25; % number of segments
M = N/K; % block size
fK = (0:(M-1))*fs/M; % frequency scale
d = zeros(1,M); % initialize vector
psdk = zeros(1,M); % initialize vector
window = hanning(M)’; % set window function
U = sum(window.*window); % window energy
for k=1:K

for j=1:M
index = (k-1)*M+j;
d(j) = out(index);

end
dwin = d.*window;
psdk = (abs(fft(dwin,M)).^2)/U + psdk;

end
psd2 = 10*log10(psdk/K);
subplot(2,1,2)
plot(fK(1:250),psd2(1:250))
grid; axis([0 100 -70 10]);
xlabel(‘Frequency, Hz’)

“TranterBook” — 2003/11/18 — 16:12 — page 320 — #338
�

�

�

�

�

�

�

�

320 Postprocessing Chapter 8

ylabel(‘PSD’)
% End of script file.

Executing the program yields the result shown in Figure 8.9. Note that for the
nonoverlapped case (top pane), the variance is large. Also note that the variance
is independent of frequency. Using 25 segments (bottom pane) results in a much
smaller variance at the cost of reduced frequency resolution. Finally, note that the
5 dB passband ripple of the Chebyshev filter is much more obvious with K = 25
than for K = 1. �

The PSD estimator illustrated in Example 8.3 was developed using basic MAT-
LAB commands. The MATLAB Signal Processing Toolbox contains a number of
routines for PSD estimation. Two of these are psd and pwelch. The interested stu-
dent should study these in some detail. Here we illustrate the Welch periodogram
from the Signal Processing Toolbox.

Example 8.4. In this example, we estimate the PSD of a QPSK signal. Rectan-
gular pulse shaping is assumed, and the direct and quadrature components of the
QPSK signal are sampled at 16 samples per symbol. The MATLAB code follows:

% File: c8 welchp.m
fs = 16;
x = random binary(1024,fs)+i*random binary(1024,fs);
for nwin=1:4

nwindow = nwin*1024;
[pxx,f] = pwelch(x,nwindow,fs);
pxx = pxx/sum(sum(pxx));
n2 = length(f)/2;
pxxdB = 10*log10(pxx/pxx(1));
ptheory = sin(pi*f+eps)./(pi*f+eps);
ptheory = ptheory.*ptheory;
ptheorydB = 10*log10(ptheory/ptheory(1));
subplot(2,2,nwin)
plot(f(1:n2),pxxdB(1:n2),f(1:n2),ptheorydB(1:n2))
ylabel(‘PSD in dB’)
xx = [‘window length = ’,num2str(nwindow)];
xlabel(xx)
axis([0 8 -50, 10]); grid;

end
% End of script file.

Executing the preceding code yields the results illustrated in Figure 8.10. Note that
16 × 1,024 points are generated and that window sizes (nwindow) of 1,024, 2,048,
3,072, and 4,096 are used. As with the preceding example, larger values for nwindow
yield less averaging and, as a result, the estimated PSD exhibits greater variance.
Smaller values for nwindow yield reduced variance at the cost of reduced resolution.
These trends can be seen in Figure 8.10. �

“TranterBook” — 2003/11/18 — 16:12 — page 321 — #339
�

�

�

�

�

�

�

�

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

-6
0

-4
0

-2
00

F
re

q
u

e
n

c
y

,
H

z

PSD

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

-6
0

-4
0

-2
00

F
re

q
u

e
n

c
y

,
H

z

PSD

F
ig

u
re

8
.9

P
ow

er
sp

ec
tr

a
l
d
en

si
ty

es
ti
m

a
te

s,
n
o
t

av
er

a
g
ed

(t
o
p

fr
a
m

e)
a
n
d

av
er

a
g
ed

(b
o
tt

o
m

fr
a
m

e)
.

321

“TranterBook” — 2003/11/18 — 16:12 — page 322 — #340
�

�

�

�

�

�

�

�

0
2

4
6

8
-5

0

-4
0

-3
0

-2
0

-1
0010

PSDindB

w
in

do
w

le
ng

th
=

10
24

0
2

4
6

8
-5

0

-4
0

-3
0

-2
0

-1
0010

PSDindB

w
in

do
w

le
ng

th
=

20
48

0
2

4
6

8
-5

0

-4
0

-3
0

-2
0

-1
0010

PSDindB

w
in

do
w

le
ng

th
=

30
72

0
2

4
6

8
-5

0

-4
0

-3
0

-2
0

-1
0010

PSDindB

w
in

do
w

le
ng

th
=

40
96

F
ig

u
re

8
.1

0
P

S
D

E
st

im
a
te

s
g
en

er
a
te

d
in

E
x
a
m

p
le

8
.4

.

322

“TranterBook” — 2003/11/18 — 16:12 — page 323 — #341
�

�

�

�

�

�

�

�

Section 8.2. Estimation 323

8.2.3 Gain, Delay, and Signal-to-Noise Ratios

The signal-to-noise ratio is a commonly used figure of merit for evaluating the
performance of a communications system. The SNR estimation technique presented
here originated from a method for measuring channel distortion errors in wideband
telementy systems [11], in which the noise in a signal at a point in a system is
defined as the mean-square error (MSE) between the actual signal and a desired
signal at that point. The SNR can be estimated by defining the desired signal as an
amplitude-scaled and time-delayed version of the information-bearing signal at the
system input. In the past, applications of this technique have included monitoring
reliable transmission of digital pulse code modulated data [12] and estimation of
the carrier-to-intermodulation ratio in a nonlinear channel [13].

Theoretical Development for Real Lowpass Signals

For a linear time-invariant distortionless system, the signal y(t) at any point in the
system is an amplitude-scaled and time-delayed version of the input reference signal
x (t). Therefore, we can write the distortionless signal as

z (t) = Ax (t − τ) (8.20)

where A is the gain and τ is the group delay to the point in the system at which the
SNR is to be defined. Let x (t) be the reference signal and y (t) be the measurement
signal, such that

y (t) = Ax (t − τ) + n (t) + d (t) (8.21)

where n (t) represents the external additive noise and d (t) is the signal-dependent
internal distortion induced by the system, which could result from intersymbol
interference or a nonlinearity. A block diagram that depicts the relationships among
different signals in the system is given in Figure 8.11.

The noise power is defined as the MSE between y (t) and the output of the
distortionless system z (t) = Ax(t − τ). That is:

ε (A, τ) = E{[y (t) − Ax (t − τ)]2} (8.22)

The desired estimates for A and τ are the values for which ε (A, τ) is minimized.
The preceding expression can be written

ε (A, τ) = E{y2 (t) + A2x2 (t − τ) − 2Ax(t − τ)y(t)} (8.23)

For stationary signals, the moments are independent of the time origin. In addition,
the expectation of a sum is the sum of the expected values. Equation (8.23) can
therefore be written

ε (A, τ) = E{y2 (t)} + A2E
{
x2 (t)

}− 2AE {x(t)y(t + τ)} (8.24)

or

ε(A, τ) = Py + A2Px − 2ARxy(τ) (8.25)

“TranterBook” — 2003/11/18 — 16:12 — page 324 — #342
�

�

�

�

�

�

�

�

Sy
st

em
U

nd
er

 T
es

t

Id
ea

l
Sy

st
em

T
es

t
Si

gn
al

x
t(
)

M
ea

su
re

m
en

t
Si

gn
al

E
• b
g

o
t

2
ε

τ
(

,
)

A

y
t(
)

z
t

A
x

t
(

)
(

)
=

−
τ

N
oi

se
 a

nd
In

te
rf

er
en

ce

−

F
ig

u
re

8
.1

1
T
es

t
p
ro

ce
d
u
re

fo
r

es
ti

m
a
ti

n
g

g
a
in

,
d
el

ay
,
a
n
d

th
e

si
g
n
a
l-
to

-n
o
is
e

ra
ti
o
.

324

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 325 --- #343
�

�

�

�

�

�

�

�

Section 8.2. Estimation 325

where Px and Py represent the average powers in x(t) and y(t), respectively. Clearly,
the value of τ which minimizes ε(A, τ) is the value of τ , denoted τm, for which Rxy(τ)
is maximized. We refer to this as the system time delay. The system gain, Am, is
the value of A for which

d

dA
ε(A, τm) =

d

dA

[
Py + A2Px − 2ARxy(τm)

]
= 0 (8.26)

This gives

Am =
Rxy(τm)

Px
(8.27)

The power in the error signal is found from (8.25) with A = Am and τ = τm. Since
this is the component of y(t) orthogonal to the signal x(t), we define the power in
the error signal as the noise power, N . Thus:

N = Py − R2
xy(τm)
Px

(8.28)

The power in the signal component of y(t) is

S = Pz = A2
mPx =

Rxy(τm)
Px

(8.29)

Therefore, the signal-to-noise ratio is

S

N
=

R2
xy(τm)
Px

[
Px

PxPy − R2
xy(τm)

]
=

R2
xy(τm)

PxPy − R2
xy(τm)

(8.30)

The correlation coefficient, ρ, relating the signals x(t) and y(t), is defined as

ρ =
R2

xy(τm)√
PxPy

(8.31)

With this definition, the SNR at the measurement point y(t) takes the very simple
form

S

N
=

ρ2

1 − ρ2
(8.32)

For systems with real signals, this problem has been studied by Turner, Tranter,
and Eggleston [4], and Jeruchim and Wolfe [5]. To minimize ε (A, τ) is equivalent
to the maximization of Rxy (τ), the cross-correlation function between the reference
signal x (t), and the measured signal y (t).

A MATLAB function for implementing a postprocessor for estimating the system
gain, delay, and the SNR follows:

“TranterBook” — 2003/11/18 — 16:12 — page 326 — #344
�

�

�

�

�

�

�

�

326 Postprocessing Chapter 8

function [gain,delay,px,py,rxy,rho,snrdb] = snrmse(x,y)
ln = length(x); % length of the reference (x) vector
fx = fft(x,ln); % FFT the reference (x) vector
fy = fft(y,ln); % FFT the measurement (y) vector
fxconj = conj(fx); % conjugate the FFT of the reference vector
sxy = fy .* fxconj; % determine the cross PSD
rxy = ifft(sxy,ln); % determine the cross correlation function
rxy = real(rxy)/ln; % take the real part and scale
px = x*x’/ln; % determine power in reference vector
py = y*y’/ln; % determine power in measurement vector
[rxymax,j] = max(rxy); % find the max of the cross correlation
gain = rxymax/px; % system gain
delay = j-1; % system delay
rxy2 = rxymax*rxymax; % square rxymax for later use
rho = rxymax/sqrt(px*py); % correlation coefficient
snr = rxy2/(px*py-rxy2); % snr
snrdb = 10*log10(snr); % snr in db
% End of function file.

We now pause to work a simple example. (Note: The technique used here for esti-
mating delay will be used in Chapter 10 when we consider semianalytic simulation.)

Example 8.5. In order to illustrate the preceding techniques, assume that x(t)
is the sinusoidal signal

x(t) = A sin(2πfdt) (8.33)

and that the measurement signal (the signal for which the SNR is to be deter-
mined) is

y(t) = GA sin (2πfdt + φ) + B sin(2πfit) + σnn(t) (8.34)

where G is the system gain, n(t) is a zero-mean unit variance white Gaussian noise
process, and σn is the standard deviation of the additive noise process. The PSD
of y(t) is illustrated in Figure 8.12, where Pd is the signal power (the power in the
desired component), Pi is the power in the interfering tone, and N0 is the single-
sided power spectral density of the noise component. It was shown in Chapter 7
that N0 and σn are related by

σ2
n = N0

fs

2
(8.35)

where fs is the sampling frequency.
For this example, the reference signal is defined by

x(t) = 80 sin[2π(2)t] (8.36)

The signal at the receiver input is assumed to be

y(t) = 20 sin
[
2π(2)t − π

4

]
+ 4 sin[2π(8)t] + 0.8n(t) (8.37)

“TranterBook” — 2003/11/18 — 16:12 — page 327 — #345
�

�

�

�

�

�

�

�

Section 8.2. Estimation 327

0

 N0

 f

Thermal noise

Desired signal

Interference

 fd fi fs /2

S fy ()

Pi

Pd

Figure 8.12 Single-sided PSD of the measurement signal y (t).

where n(t) is a sample function of a zero-mean unit-variance process. The MATLAB
program for this senario follows:

% File: c8 snrexample.m
kpts = 1024; % FFT Block size
k = 1:kpts; % sample index vector
fd = 2; % desired signal frequency
fi = 8; % interference frequency
Ax = 80; Ayd = 20; Ayi =4; % amplitudes
phase = pi/4; % phase shift
nstd = 0.8; % noise standard deviation
%
theta = 2*pi*k/kpts; % phase vector
x = Ax*sin(fd*theta); % desired signal
yd = Ayd*sin(fd*theta+pi/4); % desired signal at receiver input
yi = Ayi*sin(fi*theta); % interference
noise = nstd*randn(1,kpts); % noise at receiver input
yy = yd+yi+noise; % receiver input
[gain,delay,px,py,rxy,rho,snrdb] = snrmse(x,yy);
%
% display results
%
cpx = [‘The value of Px is ’,num2str(px),‘.’];
cpy = [‘The value of Py is ’,num2str(py),‘.’];
cgain = [‘The value gain is ’,num2str(gain),‘.’];
cdel = [‘The value of delay is ’,num2str(delay),‘.’];
csnrdb = [‘The value of SNR is ’,num2str(snrdb),‘ dB.’];
disp(‘ ’) % insert blank line
disp(cpx)
disp(cpy)
disp(cgain)
disp(cdel)

“TranterBook” — 2003/11/18 — 16:12 — page 328 — #346
�

�

�

�

�

�

�

�

328 Postprocessing Chapter 8

disp(csnrdb)
% End of script file.

Executing the program yields the following results:

The value of Px is 3200.
The value of Py is 208.7872.
The value gain is 0.25012.
The value of delay is 64.
The value of SNR is 13.6728 dB.

The theoretical values are easily computed. Since the reference signal is a sinusoid
having a peak value of 80:

Px =
1
2

(80)2 = 3200 (8.38)

Three components are present at the receiver input: the sinusoidal signal compo-
nent at 2 Hz, the sinusoidal interference component at 8 Hz, and the white noise
component. The power Py is the sum of these components. This yields

Py =
1
2

(20)2 +
1
2

(4)2 + (0.8)2 = 208.64 (8.39)

The gain is the ratio of the amplitude of the measurement signal to the amplitude of
the corresponding component at the receiver input (the component at 2 Hz). This
gives

G =
20
80

= 0.25 (8.40)

Noting that the signal component has a period of 512 samples [x(t) goes through
two periods in the span of 1,024 samples], and that the phase delay is π/4, the delay
is

τ =
π/4
2π

(512) = 64 samples (8.41)

The SNR is the ratio of the interference plus noise power to the signal at the input
to the receiver. This is the ratio of the first term in (8.39) to the sum of the
last two terms in (8.39). (Note that the interference is considered noise, since the
interference is orthogonal to the signal component.) This gives

S

N
=

200
8.64

= 23.1481 = 13.6452 dB (8.42)

These results are summarized in Table 8.2. The small errors are due to the fact that
the noise variance σ2

n is a random variable since the record length is finite. Modifying

“TranterBook” — 2003/11/18 — 16:12 — page 329 — #347
�

�

�

�

�

�

�

�

Section 8.3. Coding 329

Table 8.2 Summary of Results for Example 8.2

Parameter Theoretical Value Estimated Value
Px 3,200 3,200
Py 208.64 208.7872
G 0.25 0.25012
τ 64 samples 64 samples

S/N 13.6452 dB 13.6728 dB

the program slightly so that five estimates of the SNR (in dB) are generated results
in the vector output

[13.6572 13.6524 13.5016 13.5245 13.5201]

We clearly see that the estimated SNR is a random variable.
The single biggest difficulty with this method is the accurate determination of

delay. Note that if a small error in the estimation of delay occurs, a small error will
result in the estimated value of R2

xy(τm). If the SNR is large, PxPy − R2
xy(τm) � 0

will result and, as we see from (8.30) a small error in the estimation of R2
xy(τm) will

result in a large error in the estimated signal-to-noise ratio. We must therefore be
able to accurately determine the peak value of R2

xy(τ). This may require that R2
xy(τ)

be closely sampled, which requires a high sampling frequency for the simulation.
Thus, we have the ubiquitous tradeoff between accuracy and the time required to
execute the simulation. �

In this development, we have assumed that the signals are real. The technique
illustrated here can be applied with equal ease to signals defined by complex en-
velopes. The estimator for this case is derived by replacing x(t) by xd(t) + jxq(t)
and y(t) by yd(t) + jyq(t). The resulting expression for the SNR is, once again,
(8.32). The details of the development are left to the interested student.

8.3 Coding

When simulation is used to determine the bit error rate (BER) of a digital com-
munication system that makes use of error control coding, one usually does not use
the simulation to count errors at the output of the decoder. There are a variety of
reasons for this. First, the BER at the decoder output is usually very small. Conse-
quently, very long simulation run times are required to collect a sufficient number of
errors to generate accurate estimates of the BER. Also, many decoding algorithms
are computationally complex, which also significantly increases the simulation run
time. In addition, both coders and decoders are deterministic devices. Once the
code is defined, the source data uniquely determines the codewords. Similarly, the
pattern of errors at the receiver output uniquely determines the BER at the de-
coder output. This suggests a semianalytic approach in which the symbol error
rate (SER) at the receiver input, determined using simulation, is mapped to the
decoded BER using analysis. Performing this mapping is, in general, a complex

“TranterBook” — 2003/11/18 — 16:12 — page 330 — #348
�

�

�

�

�

�

�

�

330 Postprocessing Chapter 8

task if exact results are desired. Fortunately, however, exact results are seldom
necessary, and a number of useful approximations and bounds have been developed
to simplify this task.

A waveform-level simulation is typically used to determine the symbol error
rate, SER, at the receiver input. An alternative method is to use discrete channel
models implemented as Markov models (HMMs). The HMM is a computationally
efficient technique for simulating systems for a given set of channel conditions and is
therefore very useful for studying the impact of various coding/decoding algorithms.
The discrete channel model and the HMM will be studied in detail in Chapter 15.

8.3.1 Analytic Approach to Block Coding

As we know, block codes are formed by grouping information symbols into blocks
of length k. To each k-symbol block is appended (n − k) parity symbols to form
codewords of length n. These codewords are then transmitted through the channel
and, due to disturbances in the channel, random errors may result. In most practical
applications, the n-symbol codewords are transmitted in a time slot of duration kTb,
where Tb denotes the time for transmitting a single information bit without coding.
If the transmitted power is the same with and without coding, a typical assumption,
the energy associated with transmission of the code symbols is (k/n)Eb, where Eb

is the energy per bit and k/n is the code rate. Since the energy per transmitted
symbol is reduced through the use of error control coding, the channel symbol error
probability with coding is increased over the symbol (bit) error probability without
coding. One hopes that the added redundancy, through the addition of parity
symbols, will provide sufficient error correction capability to provide a net increase
in system performance. This may or may not be true.

Assume that a given code can correct up to t errors in each n-symbol block.
Also assume that error events are independent, which can at least be approxi-
mately ensured by using interleaving. The probability of error associated with the
code symbols transmitted through the channel is denoted Psc, where the subscript
denotes channel symbols as opposed to information bits. Since t errors per n-symbol
codeword can be corrected by the decoder, the probability that the decoded word
will be in error, Pcw, is

Pcw ≤
n∑

i=t+1

(
n

i

)
P i

sc(1 − Psc)n−i (8.43)

Equality holds in (8.43) if all received blocks of n symbols containing t or fewer
errors are decoded correctly and no blocks of n symbols containing t + 1 or more
errors are decoded correctly. These are known as perfect codes. The only perfect
binary codes are the repetition codes for which n is odd, the single error-correcting
Hamming codes and the triple error-correcting (23,12) Golay code. For all other
codes (8.43) provides a useful bound.

The decoded word error probability, Pcw, does not allow direct comparison of dif-
ferent codes. In order to compare different codes it is necessary to map the decoded
word error probability to a decoded information bit error probability, which we de-

“TranterBook” — 2003/11/18 — 16:12 — page 331 — #349
�

�

�

�

�

�

�

�

Section 8.3. Coding 331

note Pb. An exact mapping is a function of the generator matrix of the code, which
determines the code weight distribution. Fortunately, a highly accurate approxima-
tion has been developed [16, 17]. This approximation is

Pb ≈ q

2(q − 1)

·
[

d

n

d∑
i=t+1

(
n

i

)
P i

sc(1 − Psc)n−i +
1
n

n∑
i=d+1i

(
n

i

)
P i

sc(1 − Psc)n−i

]
(8.44)

where q denotes a q-ary channel. In other words, for binary channels q = 2, and for
Reed-Solomon codes, the most popular nonbinary block code, q = 2k − 1.

Example 8.6. We now illustrate the use of (8.44). Assume a binary (q = 2) phase
shift keying (PSK) communications system operating in an additive, white, Gaus-
sian noise (AWGN) environment. For this case the bit error probability, without
coding, is

Pb = Q
(√

2z
)

(8.45)

where z represents Eb/N0. With an (n, k) block code, the channel symbol error
probability is

Psc = Q

(√
2kz

n

)
(8.46)

Two different binary codes are considered: a (23, 12) Golay code for which n = 23,
t = 3, and d = 7, and a (15, 11) Hamming code for which n = 15, t = 1, and d = 3.

At this point, all parameters and variables in (8.44) are known. Prior to evalu-
ating (8.44), however, we must evaluate(

n

i

)
=

n!
i!(n − i)!

(8.47)

The MATLAB function for evaluating (8.47) follows:5

function out = nkchoose(n,k)
a = sum(log(1:n)); % ln of n!
b = sum(log(1:k)); % ln of k!
c = sum(log(1:(n-k))); % ln of (n-k)!
out = round(exp(a-b-c)); % result
% End of function file.

5MATLAB contains the function nchoosek = n!/
`
k!(n − k)!

´
as a standard m-file. The

routine given here is named nkchoose in order to avoid an obvious conflict with mchoosek. The
technique given here uses logarithms to increase the dynamic range of the computation and is
handy in those applications where n is so large that n! results in an overflow.

“TranterBook” — 2003/11/18 — 16:12 — page 332 — #350
�

�

�

�

�

�

�

�

332 Postprocessing Chapter 8

The MATLAB routine for computing the performance curves for a (15,11) Ham-
ming code and a triple error correcting (23,12) Golay code follows: (Note that PSK
modulation and an AWGN channel is assumed.)

% File c8 cerdemo
zdB = 0:0.1:10; % set Eb/No axis in dB
z = 10.^(zdB/10); % convert to linear scale
ber1 = Q(sqrt(2*z)); % PSK result
ber2 = Q(sqrt(12*2*z/23)); % CSER for (23,12) Golay code
ber3 = Q(sqrt(11*z*2/15)); % CSER for (15,11) Hamming code
berg = cer2ber(2,23,7,3,ber2); % BER for Golay code
berh = cer2ber(2,15,3,1,ber3); % BER for Hamming code
semilogy(zdB,ber1,zdB,berg,zdB,berh) % plot results
xlabel(‘E b/N o in dB’) % label x axis
ylabel(‘Bit Error Probability’) % label y axis
% End of scrit file.

The preceding MATLAB code makes use of the function cer2ber, which converts
the channel symbol error probability to the approximation of the decoded bit error
probability given by (8.44). The MATLAB code for implementing this function is
as follows:

function [ber] = cer2ber(q,n,d,t,ps)
% Converts channel symbol error rate to decoded BER.
lnps = length(ps); % length of error vector
ber = zeros(1,lnps); % initialize output vector
for k=1:lnps % iterate error vector

cer = ps(k); % channel symbol error rate
sum1 = 0; sum2 = 0; % initialize sums
%
% first loop eveluates first sum
%
for i=(t+1):d

term = nkchoose(n,i)*(cer^i)*((1-cer))^(n-i);
sum1 = sum1+term;

end
%
% second loop evaluates second sum
%
for i=(d+1):n

term = i*nkchoose(n,i)*(cer^i)*((1-cer)^(n-i));
sum2 = sum2+term;

end
%
% compute BER (output)
%

“TranterBook” — 2003/11/18 — 16:12 — page 333 — #351
�

�

�

�

�

�

�

�

Section 8.3. Coding 333

ber(k) = (q/(2*(q-1)))*((d/n)*sum1+(1/n)*sum2);
end
% End of function file.

The result of these computations are illustrated in Figure 8.13. �

0 1 2 3 4 5 6 7 8 9 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Eb/No in dB

B
it

E
rr

or
 P

ro
ba

bi
lit

y

(23,12) Golay code

(15,11) Hamming code

Uncoded PSK

Figure 8.13 Performance comparisons for Hamming and Golay block codes.

8.3.2 Analytic Approach to Convolutional Coding

A number of analytic approximations can be used to map the channel symbol error
probability to a decoded bit error probability for the convolutional code case. These
mappings take the form of upper bounds on the error probability and are therefore
the convolutional code equivalent of (8.44). These bounds are usually based on
the Viterbi decoding algorithm, which asymptotically approaches the maximum
likelihood decoder performance, and is the standard for decoding convolutional
codes.

A frequently used bound is based on the transfer function of the convolu-
tional code. The transfer function describes the distance properties of the con-
volutional code and can be derived from the state transition diagram of the code.

“TranterBook” — 2003/11/18 — 16:12 — page 334 — #352
�

�

�

�

�

�

�

�

334 Postprocessing Chapter 8

 ck,1

 ck,2

 bk - 1 bk

 bk

 bk - 2

Figure 8.14 Rate 1/2 convolutional coder for Example 8.6.

The transfer function for the rate 1/2 convolutional coder shown in Figure 8.14 is
given by [18, 19]

T (D, L, I) =
D5L3I

1 − DL(1 + L)I
(8.48)

Expressing (8.48) in polynomial form gives

T (D, L, I) =
∞∑

k=0

D5+kL3+k(1 + L)kI1+k = D5L3I + D6L4(1 + L)I2 + · · · (8.49)

which describes the distance properties of various paths in the trellis for the code
that starts at state 0 and merge to state 0 later on. The power of D denotes the
Hamming distance (the number of binary ones) separating the given path from the
all-zeros path in the decoding trellis. The power of L indicates the length of a given
path. In other words, the exponent of L is incremented each time a branch in the
trellis is traversed. The power of I is incremented if the branch transition results
from a binary one input, and is not incremented if the branch transition results
from a binary zero input. For example, the term D5L3I represents a path having
Hamming distance 5 from the all-zeros path. This path has length 3 and results
from input data having 1 binary one and 2 binary zeros (100 to be exact). The next
term, D6L4(1 + L)I2 = D6L4I2 + D6L5I2, represents two paths, each of which lie
Hamming distance 6 from the all-zeros path. One path has a length of 4 branches
and the other path has a length of 5 branches. The path of length 4 results from an
input of 2 ones and 2 zeros, and the second a results from an input having 2 ones
and 3 zeros. The smallest output weight of all the paths that begin and merge with
the state of all zeros represents the minimum free distance, df , of the code, which
is 5 in this case.

“TranterBook” — 2003/11/18 — 16:12 — page 335 — #353
�

�

�

�

�

�

�

�

Section 8.3. Coding 335

In order to approximate the decoded bit error probability, we first let L = 1 in
(8.48), since we do not have interest in the path lengths. This gives

T (D, I) = T (D, L, I)|L=1 =
D5I

1 − 2DI
(8.50)

For antipodal signaling (PSK) in an AWGN environment, the decoded symbol error
probability is given by [18]

PE < R
∂T (D, I)

∂I

∣∣∣∣
I=1,D=exp(REb/N0)

(8.51)

where R is the code rate (R = 1/2 in this case.). This result is used in Example
8.6. For a general binary symmetric channel, the Bhattachayya bound is used. This
gives [18, 19]

PE <
∂T (D, I)

∂I

∣∣∣∣
I=1,D=d

(8.52)

where

d =
√

4q(1 − q) (8.53)

and q is the channel symbol error probability determined by simulation. The bounds
defined by (8.51) and (8.52) can be rather loose. This is especially true of short
constraint length codes.

Equations (8.51) and (8.52) assume hard decision decoding. With soft decision
decoding, d in (8.51) is replaced d0, where

d0 =
N∑

i=1

√
Pr (yi|0)Pr (yi|1) (8.54)

in which N is the number of quantizer output values, yi is the ith quantized output
value, and the conditional probabilities represent the probability of a 0 or 1 at
the channel input appearing at the quantizer output as level yi. These conditional
probabilities are estimated using either a Monte Carlo or semianalytic technique
over the waveform channel.

Example 8.7. We now apply (8.51) to the rate 1/2 code defined by (8.50), and
illustrated in Figure 8.14. Substitution of (8.50) into (8.52) yields

PE <
1
2

∂

∂I

(
D5I

1 − 2DI

)∣∣∣∣
I=1,D=exp(REb/N0)

=
1
2

D5

(1 − 2D)2

∣∣∣∣
D=exp(REb/N0)

(8.55)

“TranterBook” — 2003/11/18 — 16:12 — page 336 — #354
�

�

�

�

�

�

�

�

336 Postprocessing Chapter 8

The following MATLAB code results:

% File c8 convcode.m
zdB = 2:0.1:10; % set Eb/No axis in dB
z = 10.^(zdB/10); % convert to linear scale
puc = Q(sqrt(2*z)); % uncoded BER
W = exp(-z/2);
Num = W.^5;
Den = 1-4*W+4*W.*W;
ps = 0.5*Num./Den;
semilogy(zdB,puc,‘-.’,zdB,ps)
grid
legend(‘uncoded’,‘coded’)
xlabel(‘E b/N o in dB’) % label x axis
ylabel(‘Bit Error Probability’) % label y axis
% End of script file.

Executing the code results in Figure 8.15 in which the bound on decoded error
probability and the uncoded error probability are compared. �

8.4 Summary

In this chapter we have considered the topic of postprocessing by giving a num-
ber of examples. The generation of waveform plots, signal constellations (scatter
plots) and eye diagrams were demonstrated within the context of a π/4 DQPSK
modulator. We also considered the development of estimators based on data gen-
erated by a simulation. First we considered the histogram, which is an estimator
for probability density functions. While the histogram is, in general, a biased and
nonconsistent estimator for a pdf, we saw that if sufficient data is available, both
the bias and the variance can be made negligible. Next we considered variations
of the basic periodogram as an estimator of the PSD of a signal. We saw that while
the variance of the basic periodogram is often unacceptably large, the variance can
be reduced by averaging periodograms of windowed data segments. This process of
segmenting and averaging periodograms involves a tradeoff between estimator vari-
ance and resolution. The next estimator considered allowed estimation of system
gain, time delay, and signal-to-noise ratio. The techniques developed here will be
used in a following chapter when semianalytic techniques are considered. The final
topic considered in this chapter was the estimation of decoded error probability in
systems using error control coding. The technique here is to determine the channel
symbol rate using simulation and to map the channel symbol error rates to the
decoded bit error rate using bounding techniques.

8.5 Further Reading

For detail on MATLAB graphics capabilities, the reader is encouraged to study the
latest version of the MATLAB manual. With the exception of the simple menu

“TranterBook” — 2003/11/18 — 16:12 — page 337 — #355
�

�

�

�

�

�

�

�

2
3

4
5

6
7

8
9

1
0

1
0

-1
2

1
0

-1
0

1
0

-8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2

E
b
/N

o
 i

n
 d

B

Bit Error Probability

u
n

c
o

d
e

d
c

o
d

e
d

F
ig

u
re

8
.1

5
T
ra

n
sf

er
fu

n
ct

io
n

b
o
u
n
d

fo
r

ex
a
m

p
le

ra
te

1
/
2

co
n
v
o
lu

ti
o
n
a
l
co

d
e.

337

“TranterBook” — 2003/11/18 — 16:12 — page 338 — #356
�

�

�

�

�

�

�

�

338 Postprocessing Chapter 8

given in Example 8.1, postprocessor user interfaces were not covered in this chap-
ter. MATLAB provides routines for developing user interfaces, and the reader is
encouraged to study this material. User interfaces can be used to advantage in the
development of general-purpose postprocessors.

The other topic covered in this chapter dealt with estimators for probability
density functions, power spectral density, gain, delay, and signal-to-noise ratio, as
well as estimators for approximating the performance of coded systems based on
the uncoded symbol error rate on the channel. The references given below provide
detailed information on these topics.

8.6 References

1. T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall, 2002.

2. I-Q Tutor: HP Digital Microwave Communications Guide, Hewlett Packard
Part Number 11736-90002, 1985.

3. E. A. Lee and D. G. Messerschmitt, Digital Communication, 2nd ed., Boston:
Kluwer Academic Publishers, 1994.

4. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation
and Data Analysis, New York: Wiley, 1988.

5. P. Stoick and R. Moses, Introduction to Spectral Analysis, Upper Saddle River,
NJ: Prentice Hall, 1977.

6. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood
Cliffs, NJ: Prentice Hall, 1975.

7. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, En-
glewood Cliffs, NJ: Prentice Hall, 1989.

8. S. L. Marple, Jr., Digital Spectral Analysis With Applications, Upper Saddle
River, NJ: Prentice Hall, 1987.

9. S. M. Kay, Modern Spectral Estimation: Theory and Applications, Upper
Saddle River, NJ: Prentice Hall, 1988.

10. F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform,” Proceedings of the IEEE, Vol. 66, January 1978, pp. 51–
83.

11. T. H. Shepertycki, “Telemetry Error Measurements Using Pseudo-Random
Signals,” IEEE Transactions on Space Electronics and Telemetry, Vol. 10,
September 1964, pp. 111–115.

12. R. M. Gagliardi and C. M. Thomas, “PCM Data Reliability Monitoring
Through Estimation of Signal-to-Noise Ratio,” IEEE Transactions on Com-
munications Technology, Vol. 16, June 1968, pp. 479–486.

“TranterBook” — 2003/11/18 — 16:12 — page 339 — #357
�

�

�

�

�

�

�

�

Section 8.7. Problems 339

13. M. S. Rafie, J. L. Fernandez, and K. S. Shanmugan, “Simulation-Based Esti-
mation of Intermodulation Distortion and C/IM,” IEEE GLOBECOM Con-
ference, 1992, pp. 700–706.

14. M. D. Turner, W. H. Tranter, and T. W. Eggleston, “The Estimation of Signal-
to-Noise Ratios in Digital Computer Simulations of Lowpass and Bandpass
Systems,” 1997 IEEE MIDCON Conference. November 1977, pp. 1–12.

15. M. C. Jeruchim and R. J. Wolfe, “Estimation of the Signal-to-Noise Ratio
(SNR) in Communication Simulation,” IEEE GLOBECOM Conference, 1989,
pp. 35.1.1–35.1.5.

16. D. J. Torrieri, “The Information-Bit Error Rate for Block Codes,” IEEE
Transactions on Communications, Vol. 32, No. 4, April 1984, pp. 474–476.

17. D. J. Torrieri, Principles of Secure Communications, 2nd ed., Boston: Artech
House, 1992.

18. S. G. Wilson, Digital Modulating and Coding, Upper Saddle River, NJ: Pren-
tice Hall, 1996.

19. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and
Coding, New York: McGraw-Hill, 1979.

8.7 Problems

8.1 Based on our knowledge of a π/4 DQPSK transmitter as illustrated in Figure
8.1, draw a block diagram of a π/4 DQPSK receiver. Develop a MATLAB
simulation of a π/4 DQPSK receiver. By combining the receiver simulation
with the transmitter simulation previously developed, show that the reciever
simulation works properly.

8.2 Using the MATLAB code developed for Example 8.1, determine and plot the
magnitude of the complex envelope of both the unfiltered and the filtered π/4
DQPSK signal. What do you observe? Explain the results.

8.3 Using the MATLAB plotting routines, generate the (D, Q, t) coordinate sys-
tem as illustrated in Figure 8.3 and plot xd(t) and xq(t) for a π/4 DQPSP sig-
nal. Use four symbols of both xd(t) and xq(t). Using the resulting MATLAB
program, illustrate the generation of xd(t), xq(t), and the scatter plot from
the three-dimensional image. In addition, generate, the real envelope signal.
(Note: Consider the MATLAB commands plot3, rotate3d, and view.)

8.4 By appropriately modifying the MATLAB program in Appendix A, rework
Example 8.1 so that the filter is a raised cosine filter as described in Chapter
5. Plot the direct channel and the quadrature channel signals at the filter
output. Also plot the eye diagram. Compare the resulting eye diagrams with
those illustrated in Figure 8.7. Use rolloff factors of 0.5 and 0.7.

“TranterBook” — 2003/11/18 — 16:12 — page 340 — #358
�

�

�

�

�

�

�

�

340 Postprocessing Chapter 8

8.5 A Gaussian mixture is a random process defined by the pdf

fX(x) =
a√

2πσ1

exp

[
(x − m1)

2

2σ2
1

]
+

1 − a√
2πσ2

exp

[
(x − m2)

2

2σ2
2

]

Using the parameters a = 0.8, m1 = 0, m2 = 1, and σ1 = σ2 = 1, plot fX(x).
Rework Example 8.2 using the pdf for the Gaussian mixture. Discuss the
results.

8.6 Develop a postprocessor that has as input a file of N samples generated by a
MATLAB program. The postprocessor is to be menu driven and is to generate
a histogram, a PSD estimate of the input data, and the autocorrelation of the
input data. Any necessary parameters required for operation of the postpro-
cessor are to be entered through a parameter file read by the postprocessor.
Test the postprocessor using a vector of N = 5,000 samples generated by
passing N independent samples of a zero-mean, unit-variance, Gaussian pro-
cess through a third-order Butterworth filter having a 3 dB break frequency
of 0.2fN , where fN is the Nyquist rate.

8.7 Rework Example 8.3 using a rectangular data window rather than a Hanning
window. Compare the results using a rectangular window with the results
using a Hanning window. How are they different? Explain the reasons for the
noted differences.

8.8 Determine the theoretical PSD for Example 8.3. Compare the results given
in Example 8.3 with the theoretical results.

8.9 Modify the MATLAB program given in Example 8.3 so that overlapped seg-
ments can be used. Let the number of samples that are overlapped be user
specified. Rework Example 8.3 using a 50 percent overlap (M/2 samples) and
compare the results with the result given in Example 8.3.

8.10 Using the periodogram approach, develop a “power meter” for estimating the
power in a given frequency band f1 ≤ f ≤ f2. Demonstrate the operation of
your power meter by computing the power, in a given frequency band, at the
output of a suitably chosen linear system with a white noise at the system
input. Your choice of a system is arbitrary, but you must verify the validity
of the results given by your power meter.

8.11 The input of a linear system is

x[n] = 1 sin
(

4πn

1024

)
, n = 1, 2, · · · , 1024

Consider two outputs

y1[n] = 5 sin
(

4πn

1024

)
, n = 1, 2, · · · , 1024

“TranterBook” — 2003/11/18 — 16:12 — page 341 — #359
�

�

�

�

�

�

�

�

Section 8.7. Problems 341

and

y2[n] = 5 sin
(

4πn

1024
− π

2
− π

512

)
, n = 1, 2, · · · , 1024

For each output compute the SNR (in dB) of the measurement signal rela-
tive to the reference signal x[n]. Fully explain any differences. What is the
theoretical SNR for each case?

8.12 The input to a linear system is defined by

x[n] = sin(10πnT) + sin(20πnT) = 2 sin(30πT)

and the output is defined by

y[n] = 5 sin
(
10πnT − π

2

)
+ 5 sin

(
20πnT − 3π

4

)
+ 5 sin(30πnT − π)

(a) Using the input x[n] as a reference, determine the system gain and delay
from the input to the point where y[n] is measured. Express the delay
in both sample periods and in seconds. Also detemine the SNR of y[n]
relative to x[n]. You are free to choose the sampling frequency and the
number of samples processed. However, you are to justify these choices.

(b) Discuss the sources of error in your results given in (a). Conduct an
appropriate experiment to show that these errors are not significant.

(c) Does the system exhibit amplitude distortion? Does the system exhibit
phase (delay) distortion?

(d) Suppose y[n] is given by

y[n] = 5 sin
(
10πnT − π

2

)
+ A sin (20πnT − a) + B sin(30πnT − b)

where A, B, a, and b are parameters. What are the values of these
parameters if the system is to be distortionless? Using the techniques
illustrated in Example 8.5, show that your answers are correct.

8.13 BCH codes are binary block codes that allow multiple errors per codeword to
be corrected. An (n, k, t) BCH code has rate k/n, and can correct t errors
per block of n symbols. By using the technique illustrated in Example 8.6,
examine the relative performance of (63,30,6) and (255,123,19) BCH codes.
Assume PSK modulation and compare both BCH codes to the performance
of the uncoded system.

8.14 Extend Example 8.6 so that one may plot the decoded bit error probability
as a function of the channel symbol error probability. Illustrate the resulting
algorithm using a Golay code.

8.15 Rework Example 8.7 using the Bhattachayya bound defined by (8.53). Com-
pare the result to that given in Example 8.7.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 342 --- #360
�

�

�

�

�

�

�

�

342 Postprocessing Chapter 8

8.8 Appendix A: MATLAB Code for Example 8.1

8.8.1 Main Program: c8 pi4demo.m

% File: c8_pi4demo.m
m = 200; bits = 2*m; % number of symbols and bits
sps = 10; % samples per symbol
iphase = 0; % initial phase
order = 5; % filter order
bw = 0.2; % normalized filter bandwidth
%
% initialize vectors
%
data = zeros(1,bits); d = zeros(1,m); q = zeros(1,m);
dd = zeros(1,m); qq = zeros(1,m); theta = zeros(1,m);
thetaout = zeros(1,sps*m);
%
% set direct and quadrature bit streams
%
data = round(rand(1,bits));
dd = data(1:2:bits-1);
qq = data(2:2:bits);
%
% main programs
%
theta(1) = iphase; % set initial phase
thetaout(1:sps) = theta(1)*ones(1,sps);
for k=2:m

if dd(k) == 1
phi_k = (2*qq(k)-1)*pi/4;

else
phi_k = (2*qq(k)-1)*3*pi/4;

end
theta(k) = phi_k + theta(k-1);
for i=1:sps

j = (k-1)*sps+i;
thetaout(j) = theta(k);

end
end
d = cos(thetaout);
q = sin(thetaout);
[b,a] = butter(order,bw);
df = filter(b,a,d);
qf = filter(b,a,q);
%
% postprocessor for plotting

“TranterBook” — 2003/11/18 — 16:12 — page 343 — #361
�

�

�

�

�

�

�

�

Section 8.8. Appendix A: MATLAB Code for Example 8.1 343

%
kk = 0; % set exit counter
while kk == 0 % test exit counter
k = menu(‘pi/4 QPSK Plot Options’,...

‘Unfiltered pi/4 QPSK Signal Constellation’,...
‘Unfiltered pi/4 QPSK Eye Diagram’,...
‘Filtered pi/4 QPSK Signal Constellation’,...
‘Filtered pi/4 OQPSK Eye Diagram’,...
‘Unfiltered Direct and Quadrature Signals’,...
‘Filtered Direct and Quadrature Signals’,...
‘Exit Program’);
if k == 1

sigcon(d,q) % plot unfiltered signal con.
pause

elseif k ==2
dqeye(d,q,4*sps) % plot unfiltered eye diagram
pause

elseif k == 3
sigcon(df,qf) % plot filtered signal con.
pause

elseif k == 4
dqeye(df,qf,4*sps) % plot filtered eye diagram
pause

elseif k == 5
numbsym = 10; % number of symbols plotted
dt = d(1:numbsym*sps); % truncate d vector
qt = q(1:numbsym*sps); % truncate q vector
dqplot(dt,qt) % plot truncated d and q signals
pause

elseif k == 6
numbsym = 10; % number of symbols to be plotted
dft=df(1:numbsym*sps); % truncate df to desired value
qft=qf(1:numbsym*sps); % truncate qf to desired value
dqplot(dft,qft) % plot truncated signals
pause

elseif k == 7
kk = 1; % set exit counter to exit value

end
end
% End of script file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 344 --- #362
�

�

�

�

�

�

�

�

344 Postprocessing Chapter 8

8.8.2 Supporting Routines

sigcon.m

function []=sigcon(x,y)
plot(x,y)
axis(‘square’)
axis(‘equal’)
title(‘SIGNAL CONSTELLATION’)
xlabel(‘Direct Channel’)
ylabel(‘Quadrature Channel’)
% End of function file.

dqeye.m

function [] = dqeye(xd,xq,m)
lx = length(xd); % samples in data segment
kcol = floor(lx/m); % number of columns
xda = [0,xd]; xqa = [0,xq]; % append zeros
for j = 1:kcol % column index

for i = 1:(m+1) % row index
kk = (j-1)*m+i; % sample index
y1(i,j) = xda(kk);
y2(i,j) = xqa(kk);

end
end
subplot(211) % direct channel
plot(y1,‘k’);
title(‘D/Q EYE DIAGRAM’);
xlabel(‘Sample Index’);
ylabel(‘Direct’);
subplot(212) % quadrature channel
plot(y2,‘k’);
xlabel(‘Sample Index’);
ylabel(‘Quadratute’);
subplot(111)
% End of function file.

dqplot.m

function [] = dqplot(xd,xq)
lx = length(xd);
t = 0:lx-1;
nt = t/(lx-1);
nxd = xd(1,1:lx);
nxq = xq(1,1:lx);
subplot(211)

“TranterBook” — 2003/11/18 — 16:12 — page 345 — #363
�

�

�

�

�

�

�

�

Section 8.8. Appendix A: MATLAB Code for Example 8.1 345

plot(nt,nxd);
a = axis;
axis([a(1) a(2) 1.5*a(3) 1.5*a(4)]);
title(‘Direct and Quadrature Channel Signals’);
xlabel(‘Normalized Time’);
ylabel(‘Direct’);
subplot(212)
plot(nt,nxq);
a = axis;
axis([a(1) a(2) 1.5*a(3) 1.5*a(4)]);
xlabel(‘Normalized Time’);
ylabel(‘Quadratute’);
subplot(111)
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 346 — #364
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 347 — #365
�

�

�

�

�

�

�

�

Chapter 9

INTRODUCTION
TO MONTE CARLO
METHODS

The purpose of this chapter is to briefly introduce the basics of the Monte Carlo
technique for estimating the value of a parameter. There is no attempt to be
rigorous, and this chapter covers only a few of the important aspects of Monte Carlo
estimation techniques. The goal of this chapter is to define the Monte Carlo method
and examine some of the basic techniques in a simple and easily understood context.
The important issues of confidence intervals and convergence are briefly examined.
Throughout this chapter we assume that observations used by the estimator are
independent. This assumption will be relaxed in the following chapter, in which we
consider simulation techniques in more detail.

9.1 Fundamental Concepts

Monte Carlo simulations are based on games of chance. This is of course the reason
for the name “Monte Carlo,” the Mediterranean city famous for casino gambling. In
the material to follow, we use the closely related terms “Monte Carlo estimation”

347

“TranterBook” — 2003/11/18 — 16:12 — page 348 — #366
�

�

�

�

�

�

�

�

348 Introduction to Monte Carlo Methods Chapter 9

and “Monte Carlo simulation” almost interchangeably. Monte Carlo simulation
describes a simulation in which a parameter of a system, such as the bit error
rate (BER), is estimated using Monte Carlo techniques. Monte Carlo estimation
is the process of estimating the value of a parameter by performing an underlying
stochastic, or random, experiment.

9.1.1 Relative Frequency

Monte Carlo estimation is based on the relative frequency interpretation of prob-
ability [1]. In defining relative frequency, the first step is to specify a random
experiment and an event of interest, A. We recall from basic probability theory
that a random experiment is an experiment in which the result, or outcome of
performing the experiment, cannot be predicted exactly but can be defined statis-
tically. The most basic random experiment is flipping a coin in which there are
two outcomes of interest defined by the set {Heads, Tails}. Prior to flipping the
coin it is unknown which outcome will occur. However, if it is known that the
coin is an “honest” or unbiased coin, we know that the probability of each outcome
in the set {Heads, Tails} will occur with equal probability and that outcomes are
independent. Performance of the random experiment determines the outcome.

An event is an outcome, or set of outcomes, associated with a random experi-
ment. Using a digital communication system as an example, the random experiment
may simply be defined as transmitting a binary 1. The result at the output of the
receiver will be an estimate of the transmitted binary symbol, which will be either
a binary 0 or a binary 1. The event of interest may be that an error occurred in the
transmission of the binary 1. Determination of the system BER involves estimation
of the conditional probability that a binary 0 was received given that a binary 1
was transmitted.

Having defined a random experiment and an event of interest, we now con-
sider the next step in the Monte Carlo method, which is to execute the random
experiment a large number of times, N . We count the number of occurrences, NA,
corresponding to an event, A, of interest. The probability of the event A is approx-
imated by the relative frequency of the event, which is defined by NA/N [1]. The
probability of the event A, defined in the relative frequency sense, is obtained by
replicating the random experiment an infinite number of times. This gives

Pr(A) = lim
N→∞

NA

N
(9.1)

In the context of estimating the error probability in a digital transmission system N
is the total number of bits or symbols (either actually transmitted over the system
or simulated) and NA is the number of errors (either measured or simulated).

For N < ∞, an obvious practical necessity in Monte Carlo simulations, the
quantity NA/N , is an estimator of Pr(A). This estimator is denoted P̂r(A). It is
important to note that, because of the underlying random experiment, NA will,
for finite N , be a random variable and, consequently, P̂r(A) is a random variable.
The statistics of this random variable determine the accuracy of the estimator and,
therefore, the quality of the simulation.

“TranterBook” — 2003/11/18 — 16:12 — page 349 — #367
�

�

�

�

�

�

�

�

Section 9.1. Fundamental Concepts 349

9.1.2 Unbiased and Consistent Estimators

In order to be useful, Monte Carlo estimators must satisfy several important prop-
erties. First, we desire that Monte Carlo estimators be unbiased. That is, if Â is
the estimate of a parameter A, we desire that

E
{

Â
}

= A (9.2)

In other words, on the average the correct result is obtained.
Assume that a Monte Carlo simulation is performed a number of times resulting

in a collection of estimates of the random variable of interest. Clearly we desire
that these estimates exhibit a small variance. If the estimates are unbiased and
have small variance, the estimator will produce estimates that cluster about the
correct value of the parameter being estimated, and the spread of the estimates will
be small. Analytical determination of the variance of a Monte Carlo estimator is
typically a difficult task unless the underlying events are statistically independent.
Almost always, however, the variance of the estimated values decrease as the sim-
ulation run length (the number of times that the underlying random experiment is
replicated) increases. We refer to estimators satisfying this property as consistent.
For consistent estimators, σ2

bA
→ 0 as N → ∞, where N represents the number

of times that the random experiment is replicated. For unbiased and consistent
estimators, the error

e = A − Â (9.3)

is zero-mean and the error variance, σ2
e , converges to 0 as N → ∞. Unfortunately

this convergence is often very slow.

9.1.3 Monte Carlo Estimation

As a simple example of a Monte Carlo estimator, consider the determination of the
area of a region having a nontrivial shape. Assume that the region whose area is
to be estimated is completely bounded by a box of known area. Define the random
experiment as taking random samples over the bounding box and define the event
of interest, A, as the event that a sample falls within the region whose area is to
be determined. For an unbiased estimator of an unknown area, it is essential that
the random sample points be uniformly distributed within the bounding region of
known area. This can easily be accomplished using a computer program with two
uniform random number generators. The result of generating N = 500 uniformly
distributed sampling points is illustrated in Figure 9.1. The 500 points shown in
Figure 9.1 were generated using the following MATLAB code:

x = rand(1,500);
y = rand(1,500);
plot(x,y,‘k+’)
axis square

“TranterBook” — 2003/11/18 — 16:12 — page 350 — #368
�

�

�

�

�

�

�

�

350 Introduction to Monte Carlo Methods Chapter 9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.1 Uniformly distributed random points.

The next step is to define the event A of interest. We wish to estimate the
area of the sunburst illustrated in Figure 9.2. The quantities Nbox and Nsunburst

are defined as the number of samples falling into the bounding box and in the
sunburst, respectively. Since the sample points are uniformly distributed within
the bounding box, the ratio of the area of the sunburst to the area of the bounding
box, Asuburst/Abox, is approximately equal to the ratio of the number of sample
points falling in the sunburst to the number of points falling in the bounding box,
Nsunburst/Nbox. In other words

Asunburst

Abox
≈ Nsunburst

Nbox
(9.4)

which gives

Asunburst ≈ Abox
Nsunburst

Nbox
(9.5)

Subject to the condition that the sample points are uniformly distributed, the ap-
proximation improves as the number of sample points are increased.

“TranterBook” — 2003/11/18 — 16:12 — page 351 — #369
�

�

�

�

�

�

�

�

Section 9.1. Fundamental Concepts 351

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.2 Monte Carlo estimation of an area.

In order to illustrate the Monte Carlo technique in a simple and straightforward
manner, we consider a Monte Carlo estimator for the value of π. Note that the
estimator is a stochastic simulation in that it is a simulation of a random experiment.
This example therefore serves as an introduction to the material to be presented in
the later chapters of this book.

9.1.4 The Estimation of π

One method of estimating the value of π1 is to bound a pie-shaped area, corre-
sponding to first quadrant of a circle with radius one, by a box of unit area. This is
illustrated in Figure 9.3 together with Nbox total sample points. If the box spans

1The problem of determining the numerical value of π has a rich and very interesting history
that is, surprisingly, closely tied to the history of Monte Carlo simulation. Even though we often
associate the development of Monte Carlo techniques with the development of the digital computer,
the Monte Carlo method was apparently first suggested by Pierre Laplace approximately 200 years
ago. One problem considered by Laplace was a technique for estimating π based on a problem
known as Buffon’s needle. This problem was posed and solved by the French scientist Count
Buffon (George Leclerc) in 1777 [2].

“TranterBook” — 2003/11/18 — 16:12 — page 352 — #370
�

�

�

�

�

�

�

�

352 Introduction to Monte Carlo Methods Chapter 9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R = 1

Figure 9.3 Estimation of π.

the range (0,1) on the x axis and the range (0,1) on the y axis, it is clear that
Abox = 1 and that the area of the pie-shaped region (quarter circle) is

Apie slice =
1
4
[
πR2

]
R=1

=
π

4
(9.6)

It follows that

Apie slice

Abox
=

π

4
(9.7)

Assuming that the samples are uniformly distributed, the ratio of Npie slice to Nbox

will constitute an unbiased and consistent estimator of Apie slice/Abox. Thus

Npie slice

Nbox
≈ Apie slice

Abox
=

π

4
(9.8)

The estimator of π, denoted π̂, is

π̂ =
4Npie slice

Nbox
(9.9)

“TranterBook” — 2003/11/18 — 16:12 — page 353 — #371
�

�

�

�

�

�

�

�

Section 9.1. Fundamental Concepts 353

It therefore follows that the value of π may be estimated by covering the bound-
ing box with uniformly distributed points, counting the points falling within the
inscribed circle, and applying (9.9).

Example 9.1. A MATLAB program can easily be written to implement the pro-
cedure just described. The results are shown in Figure 9.4 for the case in which five
different estimates of π are generated with each estimate based on 500 replications
of the underlying random experiment. The resulting five estimated values of π are
defined by the vector

π̂ =
[

3.0960 3.0720 2.9920 3.1600 3.0480
]

(9.10)

If all five estimates are averaged, the result is π̂ = 3.0736. This result is equivalent
to a single estimate based on 2,500 trials. The MATLAB program used to generate
these results follows:

% File: c9 estimatepi.m
m = input(‘Enter M, number of experiments > ’);
n = input(‘Enter N, number of trials / experiment > ’);
z = zeros(1,m); % initialize array

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Trials

E
s

ti
m

a
te

 o
f

p
i

Figure 9.4 Monte Carlo estimate of π.

“TranterBook” — 2003/11/18 — 16:12 — page 354 — #372
�

�

�

�

�

�

�

�

354 Introduction to Monte Carlo Methods Chapter 9

data = zeros(n,m); % initialize array
for j=1:m

x = rand(1,n);
y = rand(1,n);
k = 0;
for i=1:n

if x(i)^2+y(i)^2<= 1 % Fall in pie slice?
k=k+1;

end
data(i,j) = 4*(k/i); % jth estimate of pi
end
z(j) = data(n,j); % Store data

end
plot(data,‘k’) % Plot curves
xlabel(‘Number of Trials’)
ylabel(‘Estimate of pi’)
% End of script file. �

While the preceding example was very simple, it shares a number of important
attributes with all Monte Carlo simulations. There is a test condition and a couple
of counters. The first counter is incremented each time the random experiment
is performed and the second counter is incremented each time the test condition
is satisfied. In simulations of digital communication systems, in which the goal
is to estimate the bit error rate, the test condition determines whether or not an
error is made on the transmission of a given bit or data symbol. The first counter
is incremented each time a bit, or data symbol, is processed by the simulation,
The second counter is incremented each time an error is observed. This will be
demonstrated in a couple of examples in the following section. First, however, we
pause to examine the characteristics of an AWGN channel.

9.2 Application to Communications

Systems—The AWGN Channel

To estimate the performance of a digital communications system using Monte Carlo
simulation, N symbols are passed through the system (actually a computer simu-
lation model of the system) and the number of transmission errors Ne are counted.
If Ne errors occur in N symbol transmissions, the estimator of the probability of
symbol error is

P̂E =
Ne

N
(9.11)

Is this estimate biased or unbiased? Is the estimate consistent?
In order to investigate these important questions in the simplest possible context,

we will assume an AWGN (additive, white, Gaussian noise) channel. In the AWGN
environment the error events arising from channel noise are independent and the
number of errors Ne in the transmission of N symbols is described by a binomial

“TranterBook” — 2003/11/18 — 16:12 — page 355 — #373
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 355

distribution. We therefore pause to consider the binomial distribution in some
detail. Following the discussion of the binomial distribution, we consider (9.11) as
the estimator for the symbol error probability in two highly idealized communication
systems.

9.2.1 The Binomial Distribution

Our task now is to determine the statistical behavior of P̂E . The first step is to de-
termine the mean and variance of Ne. For independent error events, the probability
of Ne errors in N symbol transmissions is given by the binomial distribution

pN (Ne) =
(

N

Ne

)
PNe

E (1 − PE)N−Ne (9.12)

where (
N

k

)
=

N !
k! (N − k)!

(9.13)

is the binomial coefficient and PE is the probability of error on a single transmission.
The mean and variance of a random variable obeying a binomial distribution,

are easily derived (see Problem 9.7). The mean of Ne is given by

E{Ne} = NPE (9.14)

and the variance of Ne is given by

σ2
Ne

= NPE (1 − PE) (9.15)

Using these results in (9.11), the mean of the Monte Carlo estimator for the prob-
ability of error is

E{P̂E} =
E{Ne}

N
(9.16)

Substitution of (9.14) into (9.16) gives

E{P̂E} =
NPE

N
= PE (9.17)

which shows that the Monte Carlo estimator of the error probability is unbiased.
The variance of the Monte Carlo estimator of the probability of error is

σ2
bPE

=
σ2

Ne

N2
(9.18)

Substitution of (9.15) into (9.18) gives

σ2
bPE

=
PE (1 − PE)

N
(9.19)

“TranterBook” — 2003/11/18 — 16:12 — page 356 — #374
�

�

�

�

�

�

�

�

356 Introduction to Monte Carlo Methods Chapter 9

which shows that the estimator is consistent, since the variance decreases as N →
∞. Keep in mind that both (9.17) and (9.19) assume an underlying binomial
distribution, which is valid only if the error events are independent.

In using Monte Carlo simulation to estimate a performance parameter of a com-
munications system, such as the symbol error probability, unbiased and consistent
estimates are clearly desirable. If an estimator is unbiased we know that, on the
average, Monte Carlo simulation provides the correct result. In addition, if an esti-
mator is to be useful it must have small variance so that, with high probability, the
estimate lies in the neighborhood of the true value being estimated. If an estimator
is unbiased and consistent we know that simulating more symbol transmissions, so
that more errors are counted in a simulation, reduces the variance of the estimator.
Equation (9.19) gives us a feel for the number of errors that must be counted in or-
der for an estimate to have a given variance and this, in turn, provides a feel for the
time required to execute a simulation. A practical problem with (9.19), however,
is that it cannot be used to determine the required value of N for a given variance
since PE is unknown prior to conducting the simulation. In many practical prob-
lems, however, we may be able to determine PE to within an order of magnitude
or so by applying bounds or other analysis tools so that (9.19) may still be useful.
Estimators that are biased but consistent converge to the incorrect value, which is
clearly a highly undesirable situation unless we know how to remove the bias.2

Although it is important to know the characteristics of an estimator, in many
situations proving that a given estimate is unbiased and consistent is a difficult
task. It should be emphasized that all of the results obtained in this section, nice as
they are, are valid only if the errors induced by the channel noise are independent so
that the underlying error distribution is binomial. If the error events are correlated,
such as in a bandlimited channel, the results given here are no longer valid and we
are confronted with a more difficult problem. If error events are not independent,
(9.11) is still a valid estimator of the error probability, however.

Example 9.2. When error events are independent, binary transmission can be
modeled as a coin-tossing experiment. The transmission of N symbols is modeled
by N tosses of a biased coin. We assume that outcome “tails” on the ith toss
corresponds to a correct decision on the ith transmission and outcome “heads” on the
ith toss corresponds to an error on the ith transmission. In this example the statistics
associated with the coin-tossing experiment are determined by simulation. Since
the coin tosses are independent, this experiment models binary data transmission
in an AWGN channel.

Assume that outcome “tails” (no error) occurs with probability 1 − p and that
outcome “heads” (error) occurs with probability p and that we wish to estimate the
value of p by tossing the coin N times. The Monte Carlo estimator of p is

p̂ =
NHeads

N
(9.20)

2Importance sampling, which will be briefly studied in Chapter 16, is a simulation technique
in which an intentional bias is induced for the purpose of reducing the variance of the estimator
for a given value of N . The effect of the bias is then removed so that an ubiased estimator results.
In physical experiments bias may be a serious problem and is often due to calibration errors.

“TranterBook” — 2003/11/18 — 16:12 — page 357 — #375
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 357

where NHeads represents the number of “heads” that occur in a sequence of N
tosses. Of course, for a given sequence of N tosses, the value of NHeads can be any
number between 0 and N but the probability of k “heads” in N tosses is

pN (k) =
(

N

k

)
pk (1 − p)N−k (9.21)

We therefore must conduct this experiment a number of times, M , in order to
estimate the statistical distribution of NHeads and determine p̂, the estimator of p.
The MATLAB program for simulating the coin tossing experiment follows:

% File: c9 cointoss.m
M = 2000; % number of experiments
N = 500; % Number of tosses / experiment
H = zeros(1,M); % initialize array
H theor = zeros(1,M); % initialize array
for j=1:M

A = rand(1,N);
heads = 0; % initialize counter for heads
for k=1:N

if A(k)<=0.2
heads = heads+1; % increment counter for heads

end
end
H(j) = heads;

end
H max = max(H); H min = min(H);
r = H min:H max;
[Nb] = hist(H,r); % generate data for histogram
%
for k=H min:H max

H theor(k) = M*nkchoose(N,k)*((0.2)^k)*((0.8)^(N-k));
end
subplot(2,1,1)
hist(H,r) % plot histogram
xlabel(‘Number of heads’)
ylabel(‘Number of occurences’)
subplot(2,1,2)
plot(r,Nb,‘ok’,r,H theor(1,H min:H max),‘k’)
xlabel(‘Number of heads’)
ylabel(‘Number of occurences’)
% End of script file.

Executing this program yields the result illustrated in Figure 9.5. The histogram is
shown in the top pane and the outcomes of the individual experiments, along with
the theoretical result, are illustrated in the bottom pane. Note that the theoretical

“TranterBook” — 2003/11/18 — 16:12 — page 358 — #376
�

�

�

�

�

�

�

�

7
0

8
0

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
0

5
0

1
0

0

1
5

0

N
u

m
b

e
r

o
f

h
e

a
d

s

Number of occurences

7
0

8
0

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
0

5
0

1
0

0

1
5

0

N
u

m
b

e
r

o
f

h
e

a
d

s

Number of occurences

F
ig

u
re

9
.5

R
es

u
lt

o
f
co

in
-t

o
ss

in
g

ex
p
er

im
en

t.

358

“TranterBook” — 2003/11/18 — 16:12 — page 359 — #377
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 359

result is approximately Gaussian as predicted the Laplace approximation [1]. The
binomial coefficient is computed using the function nkchoose as follows:

function out=nkchoose(n,k)
% Computes n!/k!/(n-k)!
a = sum(log(1:n)); % ln of n!
b = sum(log(1:k)); % ln of k!
c = sum(log(1:(n-k))); % ln of (n-k)!
out = round(exp(a-b-c)); % result
% End of function file.

The binomial coefficient is computed in this way in order to illustrate an algorithm
that is useful for large values of n. Although MATLAB has large dynamic range,
and the technique illustrated in the preceding code is not required for this example,
the technique is often useful when other languages are used. �

9.2.2 Two Simple Monte Carlo Simulations

In this section we consider, for the first time, the Monte Carlo simulation of a
communication system. The following assumptions are made:

• There is no pulse shaping performed at the transmitter.

• The channel is assumed AWGN.

• Data symbols at the source output are independent and equally probable.

• There is no filtering within the system and, as a result, there is no intersymbol
interference.

As a result of these assumptions both the systems and the accompanying simula-
tions considered in this section are extremely simple. The systems are analytically
tractable and the probability of error could be written by inspection by any begin-
ning student of digital communication theory.

Despite the simplicity of the following examples, they are important in that
several important observations are made that will be useful in our future work. In
addition, the basic structure of a simulation program will be established. We will
also see the behavior of Monte Carlo simulations when applied to problems more
focused on the subject of our study; namely, digital communication systems. The
basic simulation model is illustrated in Figure 9.6. Due to the absence of filtering
the delay through the system is zero. Consequently, the delay block (discussed in
Chapter 1), used to line up or synchronize corresponding symbols, prior to com-
paring the transmitted symbol d[n] and the received symbol d̂[n], is not needed for
the simulations considered here. The delay block is shown in Figure 9.6, outlined
by dotted lines, to remind us that this important element is required in almost all
simulations.

Due to the preceding assumptions, the only source of error is channel noise. We
therefore take the approach of defining the direct and quadrature signal components,

“TranterBook” — 2003/11/18 — 16:12 — page 360 — #378
�

�

�

�

�

�

�

�

360 Introduction to Monte Carlo Methods Chapter 9

Data
Source

Transmitter Receiver

Noise
Source

Noise
Source

x nd [] y nd []

x nq[] y nq[]

n nd []

n nq[]

 �[]d n d n[]

Compare
Symbols

 �PE

Delay

Figure 9.6 Simulation model for simple communication system.

xd(t) and xq(t), so that they specify the signal-space components of the signal rather
than samples of time-domain waveforms. The advantage of this approach is that
signal-space components can be specified using a single sample per transmitted
symbol. Processing simulations based upon single samples per symbol execute very
rapidly.3

Using this approach, the assumed bandpass signal at the output of the modulator
is can be expressed

x(t, n) = Ac cos[2πfct + kmd[n] + θ] (9.22)

3This method can often be applied to spread direct-sequence (DS) spectrum systems. If the
processing gain is large, the chip rate is often sufficiently high to justify the assumption that the
change in the waveform over a chip interval is negligible. If this is the case a single sample per
chip can be made. The example code division multiple access (CDMA) simulation in Chapter 18
is based on this assumption.

“TranterBook” — 2003/11/18 — 16:12 — page 361 — #379
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 361

where Ac represents the carrier amplitude, km is a modulation-dependent constant,
d[n] is the nth data symbol (d[n] = 0 or 1), and θ is a reference phase. It follows
by inspection that the complex envelope of x(t, n) is a function of only the symbol
index n and is given by

x̃[n] = Ac exp{kmd[n] + θ} (9.23)

For the examples considered here we will assume that θ = 0. Thus, in Figure 9.6

xd[n] = Ac cos(kmd[n]) (9.24)

and

xq[n] = Ac sin(kmd[n]) (9.25)

In order to determine and plot the BER as a function of Eb/N0 for the system
illustrated in Figure 9.6, the value of Eb is held constant and the noise power is
incremented over the range of interest. This requires calibration of the noise power
at the output of the noise generator in Figure 9.6. From Chapter 7, we know that
the noise variance is related to the noise power spectral density (PSD) by

σ2
n =

N0fs

2
(9.26)

or

N0 = σ2
n

2
fs

(9.27)

The signal-to-noise ratio SNR is defined as Eb/N0 where fs is the sampling fre-
quency. Thus

SNR =
fs

2
Eb

σ2
n

(9.28)

If the energy Eb and the sampling frequency fs are both normalized to one, we have

σn =

√
1
2

1
SNR

(9.29)

This expression is used to establish the noise standard deviation in the simulations
that follow.

Example 9.3. (Binary Phase Shift Keying, PSK). In order to generate
the direct and quadrature signal space components of a binary PSK signal we let
Ac = 1 and km = π in (9.24) and (9.25). This gives

xd[n] = cos(πd[n]) =
{

1,
−1,

d[n] = 0
d[n] = 1 (9.30)

“TranterBook” — 2003/11/18 — 16:12 — page 362 — #380
�

�

�

�

�

�

�

�

362 Introduction to Monte Carlo Methods Chapter 9

Λ1 Λ0

 0
φ1

− E E

d n[] = 0d n[] = 1

Figure 9.7 Signal space representation of binary PSK.

Also

xq[n] = sin(πd[n]) (9.31)

so that the xq(t) = 0 for both d[n] = 0 and d[n] = 1. This gives the signal space
representation of binary PSK that is illustrated in Figure 9.7, in which φ1 is the basis
function of the signal space. Since the signal space is one dimensional (generated by
a single basis function), only the direct components of the signal and noise need be
generated in the simulation. The quadrature path illustrated in Figure 9.6 can be
discarded.4 Figure 9.7 also illustrates the decision regions Λ0 and Λ1. If the received
signal point falls in the Λ0 region (region to the right of φ1 = 0) the receiver makes
the decision d̂[n] = 0. If the received signal point falls in the Λ1 region (region to
the left of φ1 = 1) the receiver makes the decision d̂[n] = 1. The receiver threshold
is zero, which is always the case for equally probable, equal energy, signals in an
AWGN environment [1]. Thus, the decision rule is

d̂[n] =
{

0,
1,

yd[n] > 0
yd[n] < 0 (9.32)

These considerations give the following MATLAB simulation program:5

% File: c9 MCBPSK.m
snrdB min = -3; snrdB max = 8; % SNR (in dB) limits
snrdB = snrdB min:1:snrdB max;
Nsymbols = input(‘Enter number of symbols > ’);
snr = 10.^(snrdB/10); % convert from dB
h = waitbar(0,‘SNR Iteration’);

4Ignoring the quadrature channel is an example of the theorem of irrelevance, which basically
states that, under certain circumstances, a portion of the data present at the receiver input may
be discarded without adversely affecting the system performance [3]. For the problem at hand the
quadrature channel can be discarded, since it contains only noise (no signal component is present)
and the quadrature channel noise is not correlated with the direct channel noise. As an example
of the importance of this theorem, recall that white noise has infinite dimensionality. However,
in simulating a system operating in a white noise environment, it is necessary to generate (and
process) only those noise components that fall within the space defined by the signal.

5Note the use of the waitbar in this and in other simulations to follow. Since many Monte Carlo
simulations take many hours, or even days, to execute, it is good practice to pass information to
the simulation user that provides confidence that the simulation is progressing normally. It is also
useful, where possible, to provide information that gives insight into the required execution time.

“TranterBook” — 2003/11/18 — 16:12 — page 363 — #381
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 363

len snr = length(snrdB);
for j=1:len snr % increment SNR

waitbar(j/len snr)
sigma = sqrt(1/(2*snr(j))); % noise standard deviation
error count = 0;
for k=1:Nsymbols % simulation loop begins

d = round(rand(1)); % data
x d = 2*d - 1; % transmitter output
n d = sigma*randn(1); % noise
y d = x d + n d; % receiver input
if y d > 0 % test condition

d est = 1; % conditional data estimate
else

d est = 0; % conditional data estimate
end
if (d est ~= d)

error count = error count + 1; % error counter
end

end % simulation loop ends
errors(j) = error count; % store error count for plot

end
close(h)
ber sim = errors/Nsymbols; % BER estimate
ber theor = q(sqrt(2*snr)); % theoretical BER
semilogy(snrdB,ber theor,snrdB,ber sim,‘o’)
axis([snrdB min snrdB max 0.0001 1])
xlabel(‘SNR in dB’)
ylabel(‘BER’)
legend(‘Theoretical’,‘Simulation’)
% End of script file.

Executing this program, with Nsymbols = 10000 symbols for each value of SNR,
yields the result illustrated in Figure 9.8. Note that the reliability of the BER
estimator degrades as the SNR increases due to the fact that fewer errors are
counted. This observation suggests that one may wish to relate the number of
simulated symbols to the SNR or continue executation of the simulation until the
same number of errors are counted at each value of the SNR. �

“TranterBook” — 2003/11/18 — 16:12 — page 364 — #382
�

�

�

�

�

�

�

�

364 Introduction to Monte Carlo Methods Chapter 9

-3 -2 -1 0 1 2 3 4 5 6 7 8
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

Theoretical
Simulation

Figure 9.8 Binary phase-shift keying.

Example 9.4. (Binary Frequency-Shift Keying, FSK). In order to gen-
erate the direct and quadrature components of a binary FSK signal space we let
km = π/2 in (9.24) and (9.25). This gives

xd[n] = cos
(π

2
d[n]

)
=
{

1,
0,

d[n] = 0
d[n] = 1 (9.33)

In a similar manner

xq[n] = sin
(π

2
d[n]

)
=
{

0,
1,

d[n] = 0
d[n] = 1 (9.34)

This gives the signal space representation of binary PSK is illustrated in Figure 9.9,
in which φ1 and φ2 are the basis functions of the signal space. (Recall from Chapter
4 that, for a two-dimensional space, the basis functions can be viewed as defining the
direct and quadrature components of the lowpass complex envelope signal.) Since
the signal space for binary FSK is two dimensional, both the direct and quadrature
components of the signal and noise must be generated in the simulation. Figure 9.9

“TranterBook” — 2003/11/18 — 16:12 — page 365 — #383
�

�

�

�

�

�

�

�

Section 9.2. Application to Communications Systems—The AWGN Channel 365

Λ0

Λ1

E

E

0
0 φ1

φ 2

d n[] = 1

d n[] = 0

Figure 9.9 Signal-space representation for binary FSK.

also illustrates the decision regions. If the received signal point falls in the Λ0 region
(region below and to the right of the decision boundary), the receiver makes the
decision d̂[n] = 0. If the received signal point falls in the Λ1 region (region above
and to the left of the decision boundary), the receiver makes the decision d̂[n] = 1.
Note that, for a given point in signal space representing a received signal (yd[n] and
yq[n] in Figure 9.6) the decision rule is

d̂[n] =
{

0,
1,

yd[n] > yq[n]
yd[n] < yq[n] (9.35)

The following MATLAB program implements the simulation:

% File: c9 MCBFSK.m
clear all
snrdB min = 0; snrdB max = 10; % SNR (in dB)limits
snrdB = snrdB min:1:snrdB max;
Nsymbols = input(‘Enter number of symbols > ’);
snr = 10.^(snrdB/10); % convert from dB
h = waitbar(0,‘SNR Iteration’);
len snr = length(snrdB);
for j=1:len snr % increment SNR

waitbar(j/len snr)
sigma = sqrt(1/(2*snr(j))); % noise standard deviation
error count = 0;
for k=1:Nsymbols % simulation loop begins

d = round(rand(1)); % data
if d ==0

x d = 1; % direct transmitter output
x q = 0; % quadrature transmitter output

else
x d = 0; % direct transmitter output
x q = 1; % quadrature transmitter output

“TranterBook” — 2003/11/18 — 16:12 — page 366 — #384
�

�

�

�

�

�

�

�

366 Introduction to Monte Carlo Methods Chapter 9

end
n d = sigma*randn(1); % direct noise component
n q = sigma*randn(1); % quadrature noise component
y d = x d + n d; % direct receiver input
y q = x q + n q; % quadrature receiver input
if y d > y q % test condition

d est = 0; % conditional data estimate
else

d est = 1; % conditional data estimate
end
if (d est ~= d)

error count = error count + 1; % error counter
end

end % simulation loop ends
errors(j) = error count; % store error count for plot

end
close(h)
ber sim = errors/Nsymbols; % BER estimate
ber theor = q(sqrt(snr)); % theoretical BER
semilogy(snrdB,ber theor,snrdB,ber sim,‘o’)
axis([snrdB min snrdB max 0.0001 1])
xlabel(‘SNR in dB’)
ylabel(‘BER’)
legend(‘Theoretical’,‘Simulation’)
% End of script file.

Executing this program, with Nsymbols = 10000 symbols for each value of SNR,
yields the result illustrated in Figure 9.10. Once again note that the reliability
of the estimator degrades as SNR increases due to the fact that fewer errors are
counted. Appropriate corrective actions were suggested in the previous example. �

9.3 Monte Carlo Integration

The subject of Monte Carlo integration arises naturally in our study of communi-
cations. Recall that, for an AWGN channel, the sufficient statistic V , formed by
sampling the output of an integrate-and-dump detector, is a Gaussian random vari-
able with the mean determined by the data symbol and the variance determined by
the channel noise. The conditional probability density functions (pdfs), conditioned
on d[n] = 0 and d[n] = 1, are illustrated in Figure 9.11 where kT is the receiver
threshold. The conditional error probability, conditioned on d[n] = 1 is

Pr (E|d[n] = 1) =
∫ ∞

kT

1√
2πσn

exp
[
− 1

2σ2
n

(x − ν1(T))2
]

dx (9.36)

“TranterBook” — 2003/11/18 — 16:12 — page 367 — #385
�

�

�

�

�

�

�

�

Section 9.3. Monte Carlo Integration 367

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

Theoretical
S imulation

Figure 9.10 Binary frequency-shift keying.

f V d nV | [] = 1b g f V d nV | [] = 0b g

)(2 Tv)(1 Tv
V

kT

Figure 9.11 Conditional pdfs for binary signaling in Gaussian noise.

“TranterBook” — 2003/11/18 — 16:12 — page 368 — #386
�

�

�

�

�

�

�

�

368 Introduction to Monte Carlo Methods Chapter 9

A similar expression follows for Pr (E|d[n] = 0). It follows that estimation of the
system error probability

PE =
1
2

Pr (E|d[n] = 1) +
1
2

Pr (E|d[n] = 0) (9.37)

involves estimation of the value of an integral.
The material presented in this section is based on developments by Ross [4],

Borse [5], Papoulis [6], and Rubenstein [7]. A brief study of Monte Carlo inte-
gration provides additional insight into the Monte Carlo simulation technique. For
example, a study of Monte Carlo integration provides a simple context within which
to illustrate the convergence properties of a Monte Carlo estimator.

9.3.1 Basic Concepts

Assume that we wish to evaluate the integral

I =
∫ 1

0

g(x) dx (9.38)

where g(x) is a function bounded on the range of integration. From basic probability
theory we know that the expected value (ensemble average) of the function g(x) is
given by

E {g(X)} =
∫ ∞

−∞
g(x)fX(x) dx (9.39)

where fX(x) is the probability density function of the random variable X . If the
density function for X satisfies fX(x) = 1 on the interval (0,1) and is zero elsewhere,
it follows that E {g(X)} = I. Thus, if U is a random variable uniformly distributed
in the interval (0,1), it follows that

I = E {g(U)} (9.40)

Using relative frequency arguments we can write

lim
N→∞

[
1
N

N∑
i=0

g(Ui)

]
= E {g(U)} = I (9.41)

Thus, we simulate the integrand in order to sample it at N points in the (0,1)
interval. The average value of the samples then provides an estimator for the value
of the integral. A Monte Carlo simulation of a system does much the same thing.
Since we do not usually have a closed-form expression for the sufficient statistic
over the error region, samples of the statistic are generated using a simulation of
the system.

If we fail to take the limit in (9.41), which will always be the case in practical
applications, an approximation results. Denoting this approximation by Î yields

1
N

N∑
i=0

g(Ui) = Î (9.42)

“TranterBook” — 2003/11/18 — 16:12 — page 369 — #387
�

�

�

�

�

�

�

�

Section 9.3. Monte Carlo Integration 369

for the Monte Carlo estimator of the integral. In summary, the estimator for the
integral is implemented by evaluating the function g(x) at N uniformly distributed
random points and averaging. The process can be applied to any proper integral.
By applying a simple change of variables, proper integrals having arbitrary limits
may be evaluated using Monte Carlo techniques. For example, the integral

I =
∫ b

a

f(x) dx (9.43)

can be placed in the standard form using the change of variable y = (x− a)/(b− a)
to yield

I = (b − a)
∫ 1

0

f [a + (b − a)y] dy (9.44)

Example 9.5. In order to estimate the value of π using Monte Carlo integration
it is necessary to find only a definite integral whose value is a known function of π.
An integral that quickly comes to mind is

I =
∫ 1

0

dx

1 + x2
=

π

4
(9.45)

Thus, we evaluate the integral I using the algorithm defined by (9.42) and multiply
the result by 4. Obviously the best that we can do is to use a large but finite value
of N . In this case we will obtain not π but rather an approximation to π. Thus,
the value of the integral, and consequently the estimated value of π, is a random
variable. The results are shown in Figure 9.12 for five estimates of π, with each
estimate based on 500 trials. The five estimates were

π̂ =
[

3.1418 3.1529 3.1517 3.1040 3.1220
]

(9.46)

If these five results are averaged, we obtain

π̂ = 3.1345 (9.47)

The MATLAB program for estimating π using Monte Carlo integration follows:

% File: c9 example5.m
M=5; % Number of experiments
N=500; % Trials per experiment
u = rand(N,M); % Generate random numbers
uu = 1./(1+u.*u); % Define function
data = zeros(N,M); % Initialize array
% The following four lines of code determine
% M estimates as a function of j, 0<j<=N.
data(1,:) = 4*uu(1,:);
for j=2:N
data(j,:)=4*sum(uu(1:j,:))/j;

“TranterBook” — 2003/11/18 — 16:12 — page 370 — #388
�

�

�

�

�

�

�

�

370 Introduction to Monte Carlo Methods Chapter 9

end
est = data(N,:) % M estimates of pi
est1 = sum(est)/M % Average estimate
plot(data,‘k’) % Plot results
xlabel(‘Number of Trials’)
ylabel(‘Estimate of pi’)
% End of script file. �

0 50 100 150 200 250 300 350 400 450 500
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Number of Trials

E
s

ti
m

a
te

 o
f

p
i

Figure 9.12 Estimation of π using Monte Carlo integration.

9.3.2 Convergence

Assume that the value of an integral, I, is to be estimated and that N random
observations or samples, denoted Xi, are available. We form the estimator of I as

Î =
1
N

N∑
i=1

Xi (9.48)

“TranterBook” — 2003/11/18 — 16:12 — page 371 — #389
�

�

�

�

�

�

�

�

Section 9.3. Monte Carlo Integration 371

We assume that the N observations, Xi, are independent and identically distributed
(IID). The arithmetic mean of the samples is given by

E

{
1
N

N∑
i=1

Xi

}
=

1
N

N∑
i=1

E {Xi} =
NI

N
= I (9.49)

so that the estimate Î is unbiased. Since the observations are assumed independent,
the sample variance is

σ2
bI

=
1

N2

N∑
i=1

σ2
x =

Nσ2
x

N2
=

σ2
x

N
(9.50)

which shows that the integral estimator is consistent.
Assuming that Xi = g(Ui), the variance of the samples, denoted σ2

x, is given
by [3]

σ2
x =

∫ 1

0

g2(u) du −
[∫ 1

0

g(u) du

]2
(9.51)

Thus, given the integrand g(u), the required value of N for a given error variance can
be determined. Since the estimator is consistent, it follows that accurate estimates
of the integral will be obtained if N is sufficiently large. It also follows that accurate
estimates of I will be obtained if the samples of g(ui) have a small variance. Thus,
Monte Carlo estimates of an integral will be very accurate, for a given value of N , if
g(u) is approximately constant (smooth) over the range of integration. As a matter
of fact, it follows that if g(u) is constant over the range of integration, the estimate
Î is exact for N = 1.

9.3.3 Confidence Intervals

The quality of an estimator Î is often expressed in terms of the confidence interval,
which gives the probability (1 − α) that estimates fall within a given range (±βσbI)
of values. There are, therefore, two parameters of interest: the probability, which
is fixed by α, and the range, which is fixed by β. In equation form, the confidence
interval is defined by the expression

Pr
{

I − βσbI ≤ Î ≤ I + βσbI

}
= 1 − α (9.52)

as shown in Figure 9.13. We refer to the interval I ± βσbI as the 1 − α confidence
interval. We now consider the value of the parameter β. Equation (9.52) can be
written in terms of the error Î − I. This gives

Pr
{
−βσbI ≤ Î − I ≤ βσbI

}
= 1 − α (9.53)

“TranterBook” — 2003/11/18 — 16:12 — page 372 — #390
�

�

�

�

�

�

�

�

372 Introduction to Monte Carlo Methods Chapter 9

1−α

α / 2 α / 2

I I
I

+ βσ
�

I
I

− βσ
�

�I

Figure 9.13 Confidence interval.

where σbI = σx/
√

N with σx determined from (9.51). Assuming that the error Î − I
is a Gaussian random variable, which is a reasonable assumption for large N , the
probability density function of Î − I is approximated by

1√
2πσbI

exp

(
− (Î − I)2

2σ2
bI

)

Note that Î − I is a zero-mean random variable, since the estimate of the integral
is unbiased. It follows that

Pr
{
Î − I ≥ βσbI

}
=

1√
2πσbI

∫ ∞

βσbI

exp

(
− t2

2σ2
bI

)
dt (9.54)

With the change of variable y = t/σbI we have

Pr
{

Î − I ≥ βσbI

}
=

1√
2π

∫ ∞

β

exp(y2/2) dy = Q(β) (9.55)

where Q(·) represents the Gaussian Q-function.
It follows from Figure 9.13 that

Pr
{
Î − I ≥ βσbI

}
= Q(β) =

α

2
(9.56)

so that

β = Q−1
(α

2

)
(9.57)

Thus, as shown in Figure 9.13, the probability that the estimate of I falls in the
interval I ±Q−1 (α/2)σx/

√
N is 1−α, where σx is given by (9.51). The quantities

“TranterBook” — 2003/11/18 — 16:12 — page 373 — #391
�

�

�

�

�

�

�

�

Section 9.3. Monte Carlo Integration 373

±Q−1 (α/2)σx/
√

N determine the upper and lower confidence bounds. In order to
evaluate these quantities σx must be determined.

Example 9.6. In order to illustrate the previous concepts, consider the integral

I =
∫ 1

0

exp
(−t2

)
dt (9.58)

Using numerical integration (e.g., the MATLAB function quad) the value of I is

I ≈ 0.7468 (9.59)

In like manner

I2 =
∫ 1

0

[
exp

(−t2
)]2

dt ≈ 0.5981 (9.60)

Substitution of (9.59) and (9.60) into (9.51) yields

σ2
x = 0.5981− (0.7468)2 = 0.0404 (9.61)

Thus, the standard deviation of the estimate of the integral is

σbI =
σx√
N

=
0.2010√

N
(9.62)

and the upper and lower confidence limits are given by

I ± βσbI = 0.7468± Q
(α

2

)(0.2010√
N

)
(9.63)

The results are illustrated in Figure 9.14. The MATLAB program used to generate
the results illustrated in Figure 9.14 follows:

Figure: c9 example6.m
mean = sqrt(pi)*(0.5-q((sqrt(2)))); % result
int2 = sqrt(pi/2)*(0.5-q(2)); % 2nd integral
varx = int2-mean*mean; % estimate variance
stdx = sqrt(varx); % standard deviation
alpha = 0.1; % 90% conf. level
%
nsum = 0; % initialize nsum
nppseg = 1000; % samples per segment
nseg = 100; % number of segments
est = zeros(1,nseg); % initialize vector
%
for j=1:nseg % increment segment

ui = rand(1,nppseg); % uniform samples
gui = sum(exp(-ui.*ui)); % integrand samples
nsum = nsum+gui; % sum samples

“TranterBook” — 2003/11/18 — 16:12 — page 374 — #392
�

�

�

�

�

�

�

�

374 Introduction to Monte Carlo Methods Chapter 9

est(j) = nsum/(j*nppseg); % normalize
end % end loop
%
nn = nppseg*(1:nseg); % sample index
ub = mean+stdx*qinv(alpha/2)./sqrt(nn); % upper bound
lb = mean-stdx*qinv(alpha/2)./sqrt(nn); % lower bound
meanv = mean*ones(1,nseg); % exact result
si = 1:nseg; % seg. index for plot
plot(si,est,‘k-’,si,meanv,‘k--’,si,ub,‘k:’,si,lb,‘k:’)
xlabel(‘Number of Segments’) % x axis label
ylabel(‘Estimate of Integral’) % y axis label
legend(‘estimated value’,‘true value’,...

‘upperbound’,‘lower bound’);
% End of script file.

There is, of course, a significant problem with this example. The upper and lower
bounds of the confidence interval depend on the exact result, which in this example
is known. In general this information will not be known and other approaches will
be necessary. A common approach is to approximate the exact value of the integral
by an estimated value derived using a long simulation to ensure a reasonable level
of accuracy. �

0 10 20 30 40 50 60 70 80 90 100
0.735

0.74

0.745

0.75

0.755

0.76

0.765

Number of Segments

E
s

ti
m

a
te

 o
f

In
te

g
ra

l

es timated value
true value
upper bound
lower bound

Figure 9.14 Monte Carlo estimate and 90% confidence interval.

“TranterBook” — 2003/11/18 — 11:36 — page 375 — #393
�

�

�

�

�

�

�

�

9.4 Summary

This chapter addressed the subject of Monte Carlo estimation and simulation using
a number of simple examples. We saw that Monte Carlo techniques are based on
the performance of stochastic, or random, experiments. An event of interest is
identified and the underlying random experiment is replicated a large number of
times. The ratio of the number of occurrences of the event of interest to the total
number of replications of the random experiment gives the relative frequency of the
event of interest. The relative frequency, which is a random variable, is an estimator
of the probability of the event of interest. For unbiased and consistant estimators,
the relative frequency converges to the probability of the event of interest as the
number of replications gets large.

The results presented in this chapter illustrate the very important distinction
between stochastic simulation and traditional mathematical analysis. When tra-
ditional mathematical analysis is used to determine the value of a parameter, the
result is most often a number. For example, analysis of a digital communication
system may yield the result PE = 1.7638(10−3) which, of course, is a number. How-
ever, the use of Monte Carlo techniques typically provides a result that is a random
variable. The properties of this random variable, such as the mean, variance, prob-
ability density function, etc., tell us much about the quality of the simulation result.

9.5 Further Reading

A number of books consider the general principles of Monte Carlo simulation. Ex-
amples are:

S. M. Ross, A Course in Simulation, New York: Macmillan, 1990.

B. D. Ripley, Stochastic Simulation, New York: Wiley, 1987.

R. Y. Rubenstein, Simulation and the Monte Carlo Method, New York: Wiley,
1981.

The application of Monte Carlo techniques to communcation systems can be found
in the following books:

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

F. M. Gardner and J. D. Baker, Simulation Techniques, New York: Wiley, 1997.

J. G. Proakis and M. Salehi, Contemporary Communication Systems Using MAT-
LAB, Boston: PWS, 1998.

9.6 References

1. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

Section 9.6. References 375

“TranterBook” — 2003/11/18 — 16:12 — page 376 — #394
�

�

�

�

�

�

�

�

376 Introduction to Monte Carlo Methods Chapter 9

2. P. Beckman, A History of π (PI), New York: Barnes and Noble, 1993.

3. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering,
New York: Wiley, 1965.

4. S. M. Ross, A Course in Simulation, New York: Macmillan, 1990.

5. G. B. Borse, Numerical Methods with MATLAB, Boston: PWS Publishing
Company, 1997.

6. A. Papoulis, Probability and Statistics, Upper Saddle River, NJ: Prentice Hall,
1990.

7. R. Y. Rubenstein, Simulation and the Monte Carlo Method, New York: Wiley,
1981.

8. J. W. Craig, “A New, Simple, and Exact Result for Calculating the Probability
of Error for Two-Dimensional Signal Constellations,” Proceedings of the 1991
IEEE Milcom Conference, pp. 571–575.

9.7 Problems

9.1 Repeat Example 9.1 using the same bounding box as was used in Example 9.1,
but let R = 0.5. Discuss the convergence properties observed in this example
and compare with the R = 1 result.

9.2 Repeat Example 9.1 using a bounding box centered on the origin and two
units on each side. In other words, let Abox = 4. Define a circle having radius
R = 1 so that Acircle = π. The circle is also centered on the origin.

9.3 Repeat Example 9.1 using a bounding box centered on the origin and 4 units
on each side. In other words, let Abox = 16, as in the previous problem. Define
a circle of radius R = 1 so that Ac = π. Discuss the convergence properties
observed with Abox = 16 and compare with the results of the previous problem
for which Abox = 4.

9.4 Repeat Example 9.1 using a bounding box centered on the origin and 1.6
units on a side. In other words, let Abox = (1.6)2. Also let R = 1 so that
Acircle = π. Compare the rate of convergence with that found in Example 9.1
and in Problem 9.1. Note that, in this case, the area of the bounding box is
less than the quantity to be estimated. Is the estimate biased? Why or why
not? (This problem hints at a modification of Monte Carlo simulation that can
be used to advantage when excessive simulation run times are encountered.
This strategy leads to importance sampling, an important technique that will
be explored in detail in a later chapter.)

“TranterBook” — 2003/11/18 — 16:12 — page 377 — #395
�

�

�

�

�

�

�

�

Section 9.7. Problems 377

9.5 A Woerneroid6 is defined as the function

r =

(
cos

(
10π

(
θ

2π

)2
))4

, −π ≤ θ < π

(a) Using the area sampling technique as depicted in Figure 9.3, develop a
Monte Carlo simulation determine the area of the Woerneroid.

(b) Verify the result.

9.6 Repeat the preceding problem for θ defined on the range 0 ≤ θ < 2π.

9.7 Prove (9.14) and (9.15).

9.8 Example 9.3 presents a simulation program for a binary PSK communica-
tion system. A number of simplifying conditions were assumed. Under these
assumptions, the conditional error probability given that d[n] = 0 and the
conditional error probability given that d[n] = 1 are equal, and we may eval-
uate system performance using a simulation with d[n] = 0 all n. Modify the
simulation given in Example 9.3 by letting d[n] = 0, all n. Compare the
results with those given in Example 9.3.

9.9 Repeat the preceding problem assuming FSK modulation as was done in Ex-
ample 9.4.

9.10 Simulate a binary PSK system assuming that

xd[n] = cos
(π

6

)
, d[n] = 0

and

xq[n] = sin
(π

6

)
, d[n] = 1

Compare the results with those given in Example 9.3.

9.11 Modify the binary PSK simulation given in Example 9.3 so that each BER
estimate is based on 20 errors. Why would one wish to do this? How would
you use the waitbar in this simulation?

9.12 Develop a MATLAB program to estimate the value of ln 3 using Monte Carlo
integration. Plot the estimated value as a function of the number of sam-
ples, N .

9.13 Use Monte Carlo integration to estimate the value of the integral

I =
∫ 4

1.5

4e−x/2 dx

Compare the Monte Carlo result with the true value of the integral for N =
100, 500, and 1,000 trials.

6Thanks to Brian Woerner of Virginia Tech for this problem.

“TranterBook” — 2003/11/18 — 16:12 — page 378 — #396
�

�

�

�

�

�

�

�

378 Introduction to Monte Carlo Methods Chapter 9

9.14 Repeat the preceding problem for

I =
∫ 1

0

√
1 − x2 dx

9.15 A certain random variable, X, is known to be Gaussian with mean mx = 5
and variance σ2

x = 3.

(a) Determine the probability Pr{−1 < X < 6}. Express this probability in
terms of one or more Gaussian Q-functions. Evaluate the result using
an appropriate numerical approximation to the Q-function(s).

(b) Write a MATLAB program that uses Monte Carlo integration to estimate
the probability found in (a). Plot the estimate of Q(y) as a function of
N , the number of trials. What can you say about this estimate?

9.16 The Gaussian Q-function is defined by

Q(x) =
1√
2π

∫ ∞

x

exp
(−y2/2

)
dy

which is not a proper integral, since the support region is infinite. Another
definition of the Gaussian Q-function is [8]

Q1(x) =
1
π

∫ π/2

0

exp
(
− x2

2 sin2 θ

)
dθ

This is a proper integral and is therefore better suited to estimation using
Monte Carlo techniques than the classical definition.

(a) Use Monte Carlo integration to evaluate Q1(3) using N = 500 sample
points and compare to an accurate approximation of Q(3).

(b) Repeat for N = 100 and N = 1,000.

(c) Compare the results.

“TranterBook” — 2003/11/18 — 16:12 — page 379 — #397
�

�

�

�

�

�

�

�

Chapter 10

MONTE CARLO
SIMULATION
OF COMMUNICATION
SYSTEMS

This chapter extends the basic material on Monte Carlo (MC) techniques explored
in the preceding chapter. In Section 10.1 we consider two example simulations
of communications systems. The first of these systems, a phase-shift key (PSK)
digital communications system, although very simple, serves as a building block for
simulations developed later in this book. This is followed by a more complicated
simulation of a differential QPSK system in which the effects of phase and symbol
synchronization errors are considered. In Section 10.2 we turn our attention to the
semianalytic (SA) technique, which combines MC simulation and analysis.

The two methodologies explored in this chapter are quite different. Monte Carlo
simulations require very little mathematical analysis and can be applied to any com-
munication system for which the signal-processing algorithm required to represent
each functional block in the block diagram of the system is known. Monte Carlo
simulation is therefore a very general tool, but is applied at the expense of very long
simulation run times, since, as we saw in the preceding chapter, a basic tradeoff ex-

379

“TranterBook” — 2003/11/18 — 16:12 — page 380 — #398
�

�

�

�

�

�

�

�

380 Monte Carlo Simulation of Communication Systems Chapter 10

ists between simulation accuracy and the time required to execute the simulation.
Semianalytic simulation requires a higher level of analysis, but the payoff is a sig-
nificantly reduced run time. In addition, execution of an MC simulation yields
an estimate of the bit error rate (BER) at a single value of Eb/N0, while an SA
simulation provides a complete curve of BER as a function of Eb/N0. We will see,
however, that SA simulation is not a methodology that can be universally applied,
since it is applicable to a restricted class of systems. For most applications, an
SA simulation consumes a trivial amount of computer time and, therefore, is the
preferred methodology when it can be applied.

10.1 Two Monte Carlo Examples

As we saw in the previous chapter, the Monte Carlo technique, applied to the
estimation of the BER of a digital communication system, is implemented by passing
N data symbols through a simulation model of the system and counting the number
of errors that occur. Assuming that passing N symbols through the simulation
model results in Ne errors, the estimate of the BER is

P̂E =
Ne

N
(10.1)

We learned in the previous chapter that P̂E is a random variable, and accurate
estimation of the BER requires that the estimator P̂E be unbiased and have small
variance. Small variance requires that N be large and this in turn results in long
computer run times. In the work to follow, the Monte Carlo technique is illustrated
by giving two simple examples. Other examples are contained in the remainder of
this book.

Example 10.1. (PSK). For our first example consider the basic system illus-
trated in Figure 10.1. We assume binary PSK modulation with both signal points
in the signal constellation lying in the direct (in-phase) channel. (Recall Example
9.3.) With this assumption, we can eliminate the quadrature channel from the
simulation. The filter at the output of the modulator, which is assumed to be a
third-order Butterworth filter with a bandwidth equal to the bit rate (BW = rb),
leads to intersymbol interference (ISI). The purpose of the simulation is to deter-
mine the increase in BER resulting from the filter-induced ISI. The program for
simulating the system is given in Appendix A. A block-serial approach is used in
which blocks of 1,000 symbols are processed iteratively until N total symbols are
processed. This was primarily done so that the MATLAB routine filter, which
is a built-in MATLAB function implementing a time-domain convolution, could be
used. As a built-in function it is very efficient and results in a significant reduction
in the simulation run time. Note that one must ensure that the filter output is
continuous from block to block. This is accomplished by using the initial condition
parameter provided in filter.

The first problem is to determine the value of delay. There are a number of
ways in which this can be accomplished. The most elegant way is to crosscorrelate
the modulator output and the receiver output, as was done in Chapter 8 in the

“TranterBook” — 2003/11/18 — 16:12 — page 381 — #399
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 381

White Gaussian Noise

Channel Model

Modulator
dk Transmitter

Filter

Data
Source
(DMS)

Accumulator
Compare

With
Threshold k

Receiver Model

�dk v(t)Vk

Sample at
End of
Symbol
Period

Delay

Figure 10.1 Basic communications system.

signal-to-noise ratio estimator. This will be the method used when we consider SA
simulation. In order to illustrate the importance of correctly choosing the value of
delay, we will use a different technique in this example. Specifically, we will choose
a value of Eb/N0, simulate the system using different values of delay, and observe
the results. The MATLAB routine for accomplishing this follows:

% File: c10 MCBPSKdelay.m
EbNodB = 6; % Eb/No (dB) value
z = 10.^(EbNodB/10); % convert to linear scale
delay = 0:8; % delay vector
BER = zeros(1,length(delay)); % initialize BER vector
Errors = zeros(1,length(delay)); % initialize Errors vector
BER T = q(sqrt(2*z))*ones(1,length(delay));% theoretical BER vector
N = round(100./BER T); % 100 errors for ideal (zero ISI) system
FilterSwitch = 1; % set filter switch (in=1 or out=0)
for k=1:length(delay)

[BER(k),Errors(k)] = c10 MCBPSKrun(N(k),z,delay(k),FilterSwitch)
end
semilogy(delay,BER,‘o’,delay,BER T,‘-’); grid;

“TranterBook” — 2003/11/18 — 16:12 — page 382 — #400
�

�

�

�

�

�

�

�

382 Monte Carlo Simulation of Communication Systems Chapter 10

xlabel(‘Delay’); ylabel(‘Bit Error Rate’);
% End of script file.

Note that the preceding MATLAB script is essentially a combined preprocessor and
postprocessor. (The simulation engine is the MATLAB function given in Appendix
A.) The assumed value of Eb/N0 is 6 dB and delay is iterated from 0 to 8 samples.
Since the sampling frequency is 10 samples per symbol, the step size of delay is
0.1Ts, where Ts is the symbol duration. The value of N is chosen so that a sufficient
number of errors occur to ensure that the estimator variance is suitably small. In
this case, we set N to 100/PT , where PT is the theoretical error probability for
the additive, white, Gaussian noise (AWGN) case. The presence of ISI and other
disturbances will of course increase the number of errors that occur for a given
Eb/N0 over the average value of 100. Note that for each value of delay, both the
value of the BER and the number of errors used to compute the BER are displayed.
This allows the assumption of “a sufficient number of errors to form a reliable BER
estimate” to be verified.

Executing the simulation yields the result illustrated in Figure 10.2. The various
simulation results are indicated by the small circles, and the performance of the ideal

0 1 2 3 4 5 6 7 8
10

-3

10
-2

10
-1

10
0

Delay

B
it

 E
rr

o
r

R
a

te

Figure 10.2 Preliminary simulation used to determine delay.

“TranterBook” — 2003/11/18 — 16:12 — page 383 — #401
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 383

(zero ISI) system operating in an AWGN environment with Eb/N0 = 6 dB is given
by the solid line for reference. An incorrectly chosen value of delay clearly results in
a value of BER that is too large. Since the value of the BER is a minimum at a delay
of 5 samples, one might assume that 5 samples is the appropriate value of delay.
However, since the delay is quantized to an integer number of sample periods, the
value of 5 may not be precisely correct. Observation of Figure 10.2 implies that
the corect delay value is most likely between 5 and 6 sampling periods. A more
precise estimate of the correct value of delay can be determined by executing the
simulation again with a higher sampling frequency (smaller sampling periods). (See
Problem 10.3.) It should also be remembered that the estimator defined in (10.1) is
a random variable and, as a result, any given value of BER may be too high or too
low. The transmitter filter causes ISI, and the effect of ISI will prevent the BER
from achieving the zero-ISI limit for any value of delay. If the transmitter filter is
removed (FilterSwitch=0), the zero-ISI limit can be achieved.

Now that we know the appropriate value of delay, we can execute the simulation
and determine the value of P̂E as a function of Eb/N0. The MATLAB script follows:

% File: c10 MCBPSKber.m
EbNodB = 0:8; % vector of Eb/No (dB) values
z = 10.^(EbNodB/10); % convert to linear scale
delay = 5; % enter delay value (samples)
BER = zeros(1,length(z)); % initialize BER vector
Errors = zeros(1,length(z)); % initialize Errors vector
BER T = q(sqrt(2*z)); % theoretical (AWGN) BER vector
N = round(20./BER T); % 20 errors for ideal (zero ISI) system
FilterSwitch = 1; % Tx filter out=0 or in=1
for k=1:length(z)

N(k) = max(1000,N(k)); % ensure at least one block processed
[BER(k),Errors(k)] = c10 MCBPSKrun(N(k),z(k),delay,FilterSwitch)

end
semilogy(EbNodB,BER,‘o’,EbNodB,BER T)
xlabel(‘E b/N o - dB’); ylabel(‘Bit Error Rate’); grid
legend(‘System Under Study’,‘AWGN Reference’,0)
% End of script file.

Note that Eb/N0 is stepped in 1 dB steps from 0 dB to 8 dB.
When executing a Monte Carlo simulation over a range of Eb/N0 values, using

the same value of N for each value of Eb/N0 will result in an estimated value of
BER that is based on a decreasing number of observed errors as Eb/N0 increases.
As a result, the BER estimate at large values of Eb/N0 will be less reliable than
the BER estimate at smaller values of Eb/N0. This problem can partially be over-
come by setting N , the number of samples processed, to K/PT , where PT is the
error probability for the AWGN case. Since system impairments such as ISI and
synchronization errors will result in simulated values of P̂E that exceed PT , one
will typically observe more than K errors in a given simulation run. The preceding
MATLAB code uses K = 20. If N is determined in this fashion, values of N less

“TranterBook” — 2003/11/18 — 16:12 — page 384 — #402
�

�

�

�

�

�

�

�

384 Monte Carlo Simulation of Communication Systems Chapter 10

0 1 2 3 4 5 6 7 8
10

-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 - dB

B
it

 E
rr

or
 R

at
e

System Under Study
AW GN Reference

Figure 10.3 Binary PSK simulation for system with ISI.

than 1,000 are possible for sufficiently small values of Eb/N0. Since the simulation
is based on the processing of sequential blocks of samples, with a block size of 1,000
symbols (10,000 samples), we must ensure that N > 1, 000 so that at least one
complete block is processed by the simulation. If N < 1, 000, incorrect results will
occur.

Executing the simulation provides the results illustrated in Figure 10.3. The
simulation results are given by the small circles, and the BER of the ideal (zero
ISI) results are given by the solid line. The increased BER resulting from the ISI
caused by the filter is evident.

The block-serial technique used in this example will be used again in Chapter
18 when we examine a simulation of a simplified CDMA system. This simulation,
although simple, will serve as a building block for simulations presented later in
this book. �

Example 10.2. (QPSK). The previous example on BPSK modulation made a
number of simplifying assumptions to keep the simulation code compact and the
analysis tractable. This example of a QPSK system models some new sources of
error, and includes some new parameters that may make it easier to relate the sim-

“TranterBook” — 2003/11/18 — 16:12 — page 385 — #403
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 385

ulation results to those obtained from a physical communications system. Note for
example that the channel attenuation, accounting for the propagation loss between
transmitter and receiver, is included as a simulation parameter. Real (nonscaled)
values for the symbol rate and the sampling frequency are also included in this
simulation. The block diagram for this system is shown in Figure 10.4, and the
code is given in Appendix B. Note that the transmitter filter, although illustrated
in Figure 10.4, is not used in the simulations presented here, in order to reduce
simulation execution time. Provision for including the transmitter filter is included
in the simulation code given in Appendix B.

In coherent radio frequency (RF) systems, the receiver must provide carrier
and symbol synchronization capabilities. Noise and distortion in the channel will
make it impossible for the carrier and symbol synchronizers to operate perfectly.
Incorrect carrier synchronization will result in a phase error, or phase rotation, of the
received signal relative to the transmitted signal. The simulation provided in this
example allows the user to simulate this phase error as a stochastic process. Symbol
synchronization errors will result in the integrate-and-dump detector processing the
received signal over the incorrect time interval. The simulation in this example also
allows the user to examine the errors resulting from this effect.

As we know from basic communication theory, QPSK systems suffer from a
problem called phase ambiguity. Since the channel introduces an unknown time
delay to the signal, it will be impossible for the receiver to determine the absolute
phase of the transmitted signal. For example, in a QPSK system, a transmitter may
send the phase sequence 45◦, 135◦, 45◦, and -45◦. Suppose the channel introduces a
time delay equal to 100.75 cycles of the RF carrier. The receiver will now mistakenly
detect the original 45 degree signal to be -45 degrees, and make similar errors on
the remaining symbols to produce the received sequence of -45◦, -135◦, 135◦. If the
information bits are contained in the absolute phase of the transmitted signal, the
receiver will make a large number of errors. The solution to this problem involves
encoding the information not in the absolute phase, but in the phase difference
between symbols. For example, if the transmitter phase increases 90◦, from 45◦ to
135◦ between the first and second symbols, the receiver will detect these two signals
as -135◦ and 45◦, which still shows a phase increase of 90◦. Differential encoding
is implemented in the MATLAB code given in Appendix B, which is the main
simulation code for the QPSK system. All simulations presented in this example
use repeated calls to this code.

As in the previous example, the time delay through the system must be deter-
mined. The following MATLAB program determines the optimal time delay to be
used at the receiver to account for the signal propagation delay through the system:

% File: c10 MCQPSKdelay.m
Eb = 23; No = -50; % Eb (dBm) and No (dBm/Hz)
ChannelAttenuation = 70; % channel attenuation in dB
N = 1000;
delay = -0.1:0.1:0.5;
EbNo = 10.^(((Eb-ChannelAttenuation)-No)/10);
BER MC = zeros(size(delay));

“TranterBook” — 2003/11/18 — 16:12 — page 386 — #404
�

�

�

�

�

�

�

�

Q
PS

K
D

at
a

So
ur

ce

D
if

fe
re

nt
ia

l
E

nc
od

er
Q

PS
K

M
od

ul
at

or

 A
tte

nu
at

io
n

C
al

cu
la

te
B

E
R

D
if

fe
re

nt
ia

l
D

ec
od

er
T

hr
es

ho
ld

C
om

pa
re

In
te

gr
at

e
an

d
D

um
p

Ph
as

e
R

ot
at

io
n

Ph
as

e
Sy

nc
hr

on
iz

er
Sy

m
bo

l
Sy

nc
hr

on
iz

er

W
hi

te
 G

au
ss

ia
n

N
oi

se

C
ha

nn
el

 M
od

el

T
ra

ns
m

itt
er

Fi
lte

r

F
ig

u
re

1
0
.4

Q
P

S
K

co
m

m
u
n
ic

a
ti

o
n
s

sy
st

em
.

386

“TranterBook” — 2003/11/18 — 16:12 — page 387 — #405
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 387

for k=1:length(delay)
BER MC(k) = c10 MCQPSKrun(N,Eb,No,ChannelAttenuation,...

delay(k),0,0,0);
disp([‘Simulation ’,num2str(k*100/length(delay)),‘% Complete’]);

end
BER T = 0.5*erfc(sqrt(EbNo))*ones(size(delay)); % Theoretical BER
semilogy(delay,BER MC,‘o’,delay,2*BER T,‘-’) % Plot BER vs Delay
xlabel(‘Delay (symbols)’); ylabel(‘Bit Error Rate’);
legend(‘MC BER Estimate’,‘Theoretical BER’); grid;
% End of script file.

Since no channel filter was used, the optimal delay is zero symbols, as shown in
Figure 10.5. Note that we have measured delay with respect to the symbol period
rather than in samples, as was done in the previous example.

Now that we know the delay, we will measure the sensitivity of the BER to static
synchronization phase error. The phase error is measured from 0 to 90 degrees in
10-degree increments. The code for accomplishing this follows:

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
10

-2

10
-1

10
0

Delay (symbols)

B
it

 E
rr

o
r

R
a

te

MC BER Estimate
Theoretical BER

Figure 10.5 Preliminary simulation used to determine delay.

“TranterBook” — 2003/11/18 — 16:12 — page 388 — #406
�

�

�

�

�

�

�

�

388 Monte Carlo Simulation of Communication Systems Chapter 10

% File: c10 MCQPSKphasesync.m
PhaseError = 0:10:90; % Phase Error at Receiver
Eb = 24; No = -50; % Eb (dBm) and No (dBm/Hz)
ChannelAttenuation = 70; % dB
EbNo = 10.^((Eb-ChannelAttenuation-No)/10);
BER T = 0.5*erfc(sqrt(EbNo)*ones(size(PhaseError)));
N = round(100./BER T);
BER MC = zeros(size(PhaseError));
for k=1:length(PhaseError)

BER MC(k) = c10 MCQPSKrun(N(k),Eb,No,ChannelAttenuation,0,0,...
PhaseError(k),0);

disp([’Simulation ’,num2str(k*100/length(PhaseError)),’...
% Complete’]);

end
semilogy(PhaseError,BER MC,‘o’,PhaseError,2*BER T,‘-’)
xlabel(‘Phase Error (Degrees)’);
ylabel(‘Bit Error Rate’);
legend(‘MC BER Estimate’,‘Theoretical BER’); grid;
% End of script file.

Executing the simulation yields the result illustrated in Figure 10.6. Figure 10.6
shows that the BER, as determined by the simulation, reaches a maximum at a
phase error of 45 degrees and decreases back to the optimal value (value for zero
synchronization phase error) for a phase error of 0 or 90 degrees. This behavior is
due to the differential encoder.

Now that we know the optimal phase shift and time delay for the channel, we can
measure the BER as a function of the signal-to-noise ratio (SNR). The MATLAB
code for accomplishing this follows:

% File: c10 MCQPSKber.m
Eb = 22:0.5:26; No = -50; % Eb (dBm) and No (dBm/Hz)
ChannelAttenuation = 70; % Channel attenuation in dB
EbNodB = (Eb-ChannelAttenuation)-No; % Eb/No in dB
EbNo = 10.^(EbNodB./10); % Eb/No in linear units
BER T = 0.5*erfc(sqrt(EbNo)); % BER (theoretical)
N = round(100./BER T); % Symbols to transmit
BER MC = zeros(size(Eb)); % Initialize BER vector
for k=1:length(Eb) % Main Loop

BER MC(k) = c10 MCQPSKrun(N(k),Eb(k),No,ChannelAttenuation,...
0,0,0,0);

disp([’Simulation ’,num2str(k*100/length(Eb)),’% Complete’]);
end
semilogy(EbNodB,BER MC,‘o’,EbNodB,2*BER T,‘-’)
xlabel(‘Eb/No (dB)’); ylabel(‘Bit Error Rate’);
legend(‘MC BER Estimate’,‘Theoretical BER’); grid;
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 389 — #407
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 389

0 10 20 30 40 50 60 70 80 90
10

-2

10
-1

10
0

Phase Error (Degrees)

B
it

 E
rr

o
r

R
a

te

MC BER Estimate
Theoretical BER

Figure 10.6 Sensitivity of BER to static phase errors.

Executing the simulation yields the plot shown in Figure 10.7. We see that the
simulated result is very close to the theoretical AWGN result. This provides at
least a partial sanity check on the simulation.

Next we examine the impact of phase jitter on the system BER. The phase error
process is modeled as white Gaussian noise. The MATLAB code for the simulation
follows:

% File: c10 MCQPSKPhaseJitter.m
PhaseBias = 0; PhaseJitter = 0:2:30;
Eb = 24; No = -50; % Eb (dBm) and No (dBm/Hz)
ChannelAttenuation = 70; % dB
EbNo = 10.^((Eb-ChannelAttenuation-No)/10);
BER T = 0.5*erfc(sqrt(EbNo)*ones(size(PhaseJitter)));
N=round(100./BER T);
BER MC = zeros(size(PhaseJitter));
for k=1:length(PhaseJitter)

BER MC(k) = c10 MCQPSKrun(N(k),Eb,No,ChannelAttenuation,0,0,...
PhaseBias,PhaseJitter(k));

“TranterBook” — 2003/11/18 — 16:12 — page 390 — #408
�

�

�

�

�

�

�

�

390 Monte Carlo Simulation of Communication Systems Chapter 10

disp([’Simulation ’,num2str(k*100/length(PhaseJitter)),’...
% Complete’]);

end
semilogy(PhaseJitter,BER MC,‘o’,PhaseJitter,2*BER T,‘-’)
xlabel(‘Phase Error Std. Dev. (Degrees)’);
ylabel(‘Bit Error Rate’);
legend(‘MC BER Estimate’,‘Theoretical BER’); grid;
% End of script file.

Executing the simulation yields the result illustrated in Figure 10.8. As expected,
the BER increases as the standard deviation of the phase jitter increases. In many
system simulations it is not appropriate to model phase jitter as a white-noise
process. Should this be the case, a finite impulse response (FIR) filter can be
designed to realize the required power spectral density (PSD) of the phase jitter
process.

2 2.5 3 3.5 4 4.5 5 5.5 6
10

-3

10
-2

10
-1

Eb/No (dB)

B
it

 E
rr

o
r

R
a

te

MC BER Estimate
Theoretical BER

Figure 10.7 Simulation and theoretical results for a QPSK system operating in a AWGN
environment.

“TranterBook” — 2003/11/18 — 16:12 — page 391 — #409
�

�

�

�

�

�

�

�

Section 10.1. Two Monte Carlo Examples 391

0 5 10 15 20 25 30
10

-2

10
-1

Phase Error Std. Dev. (Degrees)

B
it

 E
rr

o
r

R
a

te

MC BER Estimate
Theoretical BER

Figure 10.8 Simulation illustrating the sensitivity of QPSK to phase jitter.

The final simulation in this sequence examines the sensitivity of BER to symbol
timing error. The MATLAB code follows:

% File: c10 MCQPSKSymJitter.m
SymJitter = 0:0.02:0.2;
Eb = 24; No = -50; % Eb (dBm) and No (dBm/Hz)
ChannelAttenuation = 70; % channel attenuation in dB
EbNo = 10.^((Eb-ChannelAttenuation-No)/10);
BER T = 0.5*erfc(sqrt(EbNo)*ones(size(SymJitter)));
N=round(100./BER T);
BER MC = zeros(size(SymJitter));
for k=1:length(SymJitter)

BER MC(k) = c10 MCQPSKrun(N(k),Eb,...
No,ChannelAttenuation,0,SymJitter(k),0,0);

disp([‘Simulation ’,num2str(k*100/length(SymJitter)),...
‘% Complete’]);

end
semilogy(SymJitter,BER MC,‘o’,SymJitter,2*BER T,‘-’)

“TranterBook” — 2003/11/18 — 16:12 — page 392 — #410
�

�

�

�

�

�

�

�

392 Monte Carlo Simulation of Communication Systems Chapter 10

xlabel(‘Symbol Timing Error Std. Dev. (Symbols)’);
ylabel(‘Bit Error Rate’);
legend(‘MC BER Estimate’,‘Theoretical BER’); grid;
% End of script file.

The result of executing the simulation is shown in Figure 10.9. Just as in the
phase jitter case, the symbol synchronization error is modeled as a white Gaussian
stochastic process. Once again, if memory effects in the symbol jitter process must
be accurately modeled, an FIR filter can be designed to realize the required PSD.

In addition, in this simulation the transmitted symbols are crosscorrelated (note
the use of the function vxcorr) in order to ensure that the transmitted and received
symbols are properly aligned so that the BER is correctly determined. In future sim-
ulations, including Examples 10.3 and 10.4 to follow, the crosscorrelation technique
will be used to calculate the appropriate value of delay and a separate simulation
to determine this parameter will not be required. A separate simulation program
was used here to illustrate the sensitivity of the simulation results to this impor-
tant parameter. This simulation will be encountered again in Chapter 16 when we
consider importance sampling. �

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-2

10
-1

Symbol Timing Error Std. Dev. (Symbols)

B
it

 E
rr

o
r

R
a

te

MC BER Estimate
Theoretical BER

Figure 10.9 Simulation result illustrating the impact of symbol jitter.

“TranterBook” — 2003/11/18 — 16:12 — page 393 — #411
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 393

10.2 Semianalytic Techniques

As we have seen, the Monte Carlo simulation method is completely general and
may be applied to any system for which simulation models of the various system
building blocks can be defined, or at least approximated, in terms of a numerical
(digital signal processing, DSP) algorithm. No analytical knowledge, outside of that
required to implement the subsystem models, is required. The price paid for using
Monte Carlo methods is the run time required for executing the simulation. If the
system and the channel model are complicated, and the BER is low, the required
run time is sometimes so long that the use of Monte Carlo techniques becomes
impractical for all but the most important simulations.

In the work to follow we stress the estimation of the BER, since the BER is the
most common measure used to evaluate the performance of digital communication
systems. In executing a simulation to estimate the BER, information is collected
that allows other items of interest to be determined. These include waveforms, eye
diagrams, signal constellations, and PSD estimates at various points in the system
of interest.

Fortunately there are alternatives to the pure Monte Carlo method. One of the
most powerful of these alternatives is the semianalytic method, in which analytical
and simulation techniques are used together in a way that yields very rapid estima-
tion of the BER. The SA simulation method, like all rapid simulation techniques,
allows analytical knowledge to be traded off against simulation run time.

The block diagram of a simple system, to which the SA simulation technique is
applicable, is illustrated in Figure 10.10. The kth transmitted symbol is denoted

Noise and Interference

Channel Model

Modulator
dk

Data
Source
(DMS)

Receiver Model

dk v(t)

Filter
Nonlinear

Power
Amplifier

Integrator
Threshold
Compare

v T Vk() =
^

Figure 10.10 Example system to illustrate the SA simulation technique.

“TranterBook” — 2003/11/18 — 16:12 — page 394 — #412
�

�

�

�

�

�

�

�

394 Monte Carlo Simulation of Communication Systems Chapter 10

dk, and the corresponding symbol at the receiver output is d̂k. The transmitted
symbol is received correctly if d̂k = dk, and an error is made if d̂k 	= dk. As we
know from basic communication theory, the quantity Vk is the decision statistic for
the kth transmitted symbol, and the receiver makes a decision by comparing the
value of Vk with a threshold T .

The decision statistic Vk, shown in Figure 10.10, is a function of three
components:

Vk = f(Sk, Dk, Nk) (10.2)

where Sk is the component of Vk due to the transmitted signal; Dk results from
system-induced distortion such as ISI due to filtering or multipath, and Nk is due to
the channel disturbances such as noise and interference. In applying semianalytic
simulation, the combined effects of Sk and Dk are determined by an MC simula-
tion, and the effects of noise, represented by Nk, are treated analytically. The SA
simulation technique is applicable to any system in which the probability density
function of the noise component of Vk can be analytically determined. A simple
case is for the additive Gaussian-noise channel in which the system is linear from
the point where noise is injected to the point at which the decision statistic Vk is
defined. This follows since any linear transformation of a Gaussian random process
yields a Gaussian process. Referring to Figure 10.10, we see that if the channel
noise is Gaussian, the decision statistic Vk is a Gaussian random variable with the
mean determined by Sk and Dk. Thus, semianalytic simulation is a combination of
MC simulation and analysis.

10.2.1 Basic Considerations

As an example, consider a binary PSK (BPSK) system operating an AWGN (ad-
ditive, white, Gaussian noise) environment. For the moment we neglect the trans-
mitter filter and assume full-response signaling.1 The pdf of Vk, conditioned on
transmission of a binary 1 or binary 0, is Gaussian, as illustrated in Figure 10.11.
The probability density functions (pdfs) of the decision statistic, Vk, conditioned
on dk = 0 and dk = 1, are given by

fV (v|dk = 0) =
1√

2πσv

exp
[
− (v − v1)2

2σ2
v

]
(10.3)

and

fV (v|dk = 1) =
1√

2πσv

exp
[
− (v − v2)2

2σ2
v

]
(10.4)

where v1 and v2 are the means of the random variable Vk conditioned on dk = 0
and dk = 1, respectively. The probability of error conditioned on dk = 0 is

Pr {Error|dk = 0} =
∫ ∞

T

fV (v|dk = 0)dv (10.5)

1Recall that a full-response system is one in which the signal energy at the receiver is constrained
to the symbol interval so that the matched-filter receiver, which integrates the received signal over
a symbol period, captures all of the transmitted symbol energy.

“TranterBook” — 2003/11/18 — 16:12 — page 395 — #413
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 395

where T is the decision threshold, and the probability of error conditioned on dk =
1 is

Pr{Error|dk = 1} =
∫ T

−∞
fV (v|dk = 1)dv (10.6)

If the binary symbols dk = 0 and dk = 1 are transmitted with equal probability,
the optimum threshold T is the point at which the two conditional pdfs are equal.
For this case the two conditional error probabilities are equal and the overall error
probability is

PE =
1
2

Pr {Error|dk = 0} +
1
2

Pr{Error|dk = 1} (10.7)

which is

PE = Pr {Error|dk = 0} =
∫ ∞

T

fV (v|dk = 0)dv (10.8)

The probability for an AWGN environment is usually expressed in terms of the
Gaussian Q function. This gives

PE = Q

(
v1

σv

)
(10.9)

where

Q(x) =
1√
2π

∫ ∞

x

exp
(
− t2

2

)
dt (10.10)

defines the Gaussian Q function. Note that with equal energy signals the threshold
T is zero and therefore v2 = −v1. Thus, determination of v1 and σn completely
determine system BER. In order to determine the error probability we need only
to develop a simulation for estimating v1 and σn. The Monte Carlo technique of
counting errors is not required.

The value of v1 can be determined by executing a noiseless simulation. If the
channel noise is removed, the two conditional pfds shown in Figure 10.11(a) collapse
to impulse functions (σn = 0) as shown in Figure 10.11(b). Each of these impulse
functions has unity area, and the locations of the impulse functions define v1 and v2.

The value of σn is determined by executing a simple simulation of that portion
of the system through which the noise passes. For the system being considered
this consists of the receiver, which is modeled as an integrate-and-dump symbol
detector. Assume that this portion of the system has transfer function H(f). If
white (delta-correlated) noise having a two-sided power spectral density of N0/2 is
input to the matched-filter receiver, the variance of the random variable Vk is

σ2
v =

N0

2

∫ ∞

−∞
|H(f)|2 df = N0

∫ ∞

0

|H(f)|2 df (10.11)

“TranterBook” — 2003/11/18 — 16:12 — page 396 — #414
�

�

�

�

�

�

�

�

396 Monte Carlo Simulation of Communication Systems Chapter 10

f
V

v d()= 1f
V

v d()= 0

v

(a) Probability density function of V with noise present

T

v
1

v
2

T

v T
2
−

v

(b) Probability density function of V with noise absent

Figure 10.11 Binary decision process.

As we saw in Chapter 7, the equivalent noise bandwidth is defined as

BN =
∫ ∞

0

|H(f)|2 df (10.12)

and is the equivalent noise bandwidth of the receiver. It follows that the probability
of error is given by

PE = Q

(
v1√

N0BN

)
(10.13)

Note that even though the system is AWGN, the nonlinear amplifier may affect
system performance, since the nonlinear amplifier will affect the shape of the trans-
mitted signals and this, in turn, will affect the value of v1.

We now consider the presence of the transmitter filter. The effect of this filter is
to spread, in time, the energy associated with the transmitted symbols beyond the
symbol period giving rise to intersymbol interference. If the memory length of this
filter is two symbols, the error probability associated with the transmission symbol
will depend not only on the transmitted symbol but also on the previously transmit-
ted symbol. As a result, the calculation of the probability of error will involve four
conditional probability density functions rather than two conditional probability
density functions as shown in Figure 10.11. This is illustrated in Figure 10.12(a).

“TranterBook” — 2003/11/18 — 16:12 — page 397 — #415
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 397

f
V

vd()= 00

f
V

vd()=01

f
V

vd()=11

v
1

v3 T

v

f
V

vd()=10

v2
v4

v
v1

v
3 v2

v
4 T

f
V

vd()= 00 f
V

vd()=01 f
V

vd()=11

f
V

vd()=10

(a) Probability density function of V with noise present

(b) Probability density function of V with noise absent

Figure 10.12 Conditional pdfs with a memory length of two.

As before, execution of a noiseless simulation will yield the values of v1, v2, v3, and
v4. The system probability of error becomes

PE =
1
4

4∑
i=1

Q

(
vi

σv

)
(10.14)

The extension to a memory length of M symbols is obvious.

10.2.2 Equivalent Noise Sources

In applying the semianalytic technique we make use of the idea of an equivalent
noise source. We have seen that the decision statistic Vk is a function of three
components. In other words, Vk = f(Sk, Dk, Nk) where Sk is due to the signal;
Dk results from system-induced distortion such as ISI, and Nk is due to noise.
The effects of Sk and Dk are determined by an MC simulation, and the effects of
noise, represented by Nk, are treated, as we have seen, analytically. If a noise-free
simulation is executed, the resulting sufficient statistic, which is denoted Vk,nf , will
be a function of only Sk and Dk. To this statistic is added a random variable Nk

having the variance defined by (10.11). Thus

Vk = Vk,nf + Nk (10.15)

The random variable Nk may be viewed as a sample from an equivalent noise source
ne(t) as shown in Figure 10.13. This equivalent noise source contains the combined

“TranterBook” — 2003/11/18 — 16:12 — page 398 — #416
�

�

�

�

�

�

�

�

398 Monte Carlo Simulation of Communication Systems Chapter 10

Modulator
dk

Data
Source
(DMS)

dk v(T) = Vk v(t)

Filter
Nonlinear

Power
Amplifier

Integrator
Threshold
Compare

n te ()

^

Figure 10.13 Equivalent noise source for semianalytic simulation.

effects of themal noise, interference, and other channel impairments reflected to the
integrator output of the integrate-and-dump detector. If the channel noise is white,
the impulse response, or equivalently the transfer function, defined in (10.11) is
used to transform the channel noise to the integrator output.

10.2.3 Semianalytic BER Estimation for PSK

We now briefly consider the development of an algorithm for the determination of
the BER in a binary PSK system using semianalytic simulation. We do this in a
way that is easily extendable to QPSK. Consider the signal constellation illustrated
in Figure 10.14. The transmitted signal points are denoted S1 and S2 and the cor-
responding decision regions are denoted D1 and D2. A correct decision is made at
the receiver if Si is transmitted and the received signal falls in region Di; otherwise

××××
S2

S1
D2 D1

f nN xx
()

dx

nx

~
S1

 D

Figure 10.14 Semianalytic BER estimation for PSK.

“TranterBook” — 2003/11/18 — 16:12 — page 399 — #417
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 399

an error occurs. In Figure 10.14 we assume that S1 is transmitted and S̃1 is re-
ceived. As discussed in the previous section, S1 and S̃1 differ because of intersymbol
interference, nonlinear distortion, of other signal-degrading effects. The difference
between S1 and S̃1 is denoted dx. The conditional error probability, conditioned on
the transmission of S1 is

Pr {Error|S1} =
∫

eS1+n/∈D1

1√
2πσn

exp

−
(
n − S̃1

)2

2σ2
n

 dn (10.16)

which is

Pr {Error|S1} =
∫ 0

−∞

1√
2πσn

exp

−
(
n − S̃1

)2

2σ2
n

 dn (10.17)

In terms of the Gaussian Q-function, the preceding equation becomes

Pr {Error|S1} = Q

(
S̃1

σn

)
(10.18)

Thus, knowledge of S̃1, determined using MC simulation, and σn, allows the con-
ditional BER to be determined. In determining σn the value of BN is found from
the simulated impulse response h[n].

Assume that Sk is the kth transmitted bit in a simulated sequence of N bits.
For each value of k, 1 ≤ k ≤ N , Sk will be S1 or S2. The conditional BER is

Pr {Error|Sk} = Q

(
S̃k

σn

)
(10.19)

The overall BER, obtained by averaging over the entire sequence of N bits, is
given by

PE =
1
N

N∑
k=1

Q

(
S̃k

σn

)
(10.20)

Example 10.3. (PSK). The MATLAB code for executing a semianalytic sim-
ulation of a PSK system is given in Appendix C. The methodology used is that
presented in the preceding paragraphs. Due to symmetry, the received symbols are
rotated to positive values. The bandwidth of the transmitter filter, which gives rise
to ISI, is equal to the bit rate. The increase in the BER resulting from ISI is clearly
seen in Figure 10.15. �

“TranterBook” — 2003/11/18 — 16:12 — page 400 — #418
�

�

�

�

�

�

�

�

400 Monte Carlo Simulation of Communication Systems Chapter 10

0 1 2 3 4 5 6 7 8
10

-4

10
-3

10
-2

10
-1

E
b
/N

0
 (dB)

B
it

 E
rr

o
r

R
a

te

System Under Study
AW GN Reference

Figure 10.15 Semianalytic BER estimation for binary PSK.

10.2.4 Semianalytic BER Estimation for QPSK

We now consider a semianalytic estimator for the symbol error probability PS in a
QPSK system.2 Since a QPSK signal constellation has four signal points rather than
two, and since the signal space has two dimensions rather than one, the semianalytic
estimator for QPSK is different from the estimator for PSK in that a dimension
must be added for the quadrature channel.

Consider the signal constellation illustrated in Figure 10.16. The transmitted
signal points are denoted Si, i = 1, 2, 3, 4, and the decision regions are denoted Di,
i = 1, 2, 3, 4. As in the preceding section, a correct decision is made at the receiver
if Si is transmitted and the received signal falls in decision region Di; otherwise an
error occurs. In Figure 10.16 it is assumed that S1 is transmitted, and the noiseless
received signal is denoted S̃1. As a result of intersymbol interference and distortion,
S̃1 	= S1. It is S̃1 rather than S1 that is determined by the semianalytic simulation,

2Note that for QPSK we use semianalytic simulation to compute the symbol error probability,
since QPSK points in signal space are defined by symbols rather than bits. Once the symbol error
probability is determined, the symbol error probability can be converted to the bit error probability
using analysis. For binary PSK, the symbol error probability and the bit error probability are, of
course, equivalent.

“TranterBook” — 2003/11/18 — 16:12 — page 401 — #419
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 401

D1D2

D3
D4

S2

S3
S4

S1

×

D

Q

~
S1

~
Sx

~
Sy

Figure 10.16 Semianalytic BER estimation for QPSK.

since the simulation will account for the effects of intersymbol interference but not
the effects of noise. The direct and quadrature components of S̃1 are denoted S̃x

and S̃y, respectively, where S̃x = Re
(
S̃1

)
and S̃y = Im

(
S̃1

)
. When noise is

considered, by adding nx and ny to S̃x and S̃y, respectively, a correct decision is
made, conditioned on S1 transmitted, if (S̃x + nx, S̃y + ny) ∈ D1. An error is
made if (S̃x + nx, S̃y + ny) /∈ D1. Keep in mind that since we are developing a
semianalytic estimator, the impact of noise is treated analytically and does not
appear in Figure 10.16.

The problem is to determine the noise components nx and ny that will result
in an error given the received (noiseless) point in signal space S̃1. The problem is
very similar to the PSK example just considered. The essential difference is that
we are working in two dimensions rather than one. We assume that the direct and
quadrature additive noise components are uncorrelated and jointly Gaussian. Thus,
given that S1 is transmitted and S̃1 is received, an error is made if

Pr {Error|S1} =
∫ ∫

(eSx+nx, eSy+ny)/∈D1

1
2πσnσn

· exp

−
(
nx − S̃x

)2

2σ2
n

−
(
ny − S̃y

)2

2σ2
n

 dnxdny (10.21)

“TranterBook” — 2003/11/18 — 16:12 — page 402 — #420
�

�

�

�

�

�

�

�

402 Monte Carlo Simulation of Communication Systems Chapter 10

where nx and ny are the direct and quadrature noise components, and σ2
n represents

the noise variance. In order to simplify the notation let

fNx(nx|S̃x, σn) =
1√

2πσn

exp

−
(
nx − S̃x

)2

2σ2
n

 (10.22)

and

fNy(ny|S̃y, σn) =
1√

2πσn

exp

−
(
ny − S̃y

)2

2σ2
n

 (10.23)

With these changes (10.21) becomes

Pr {Error|S1} =
∫ ∫

(eSx+nx, eSy+ny)/∈D1

· fNx(nx|S̃x, σn)fNy(ny|S̃y, σn) dnxdny (10.24)

This can be bounded by the expression

Pr {Error|S1} <

∫ ∫
(eSx+nx, eSy+ny)∈(D2∪D3)

· fNx(nx|S̃x, σn)fNy(ny|S̃y, σn) dnxdny (10.25)

+
∫ ∫

(eSx+nx, eSy+ny)∈(D3∪D4)

fNx(nx)fNy(ny) dnxdny

where the bound occurs since the decision region D3 appears twice in (10.25). From
the definition of the decision regions we can write

Pr {Error|S1} <

∫ 0

−∞
fNx(nx|S̃x, σn) dx

∫ ∞

−∞
fNy(ny|S̃y, σn) dy

+
∫ ∞

−∞
fNx |S̃x, σn(nx) dnx

∫ 0

−∞
fNy(ny|S̃y, σn) dny (10.26)

Recognizing that two of the four integrals in (10.26) are equal to one yields

Pr {Error|S1} <

∫ 0

−∞
fNx(nx|S̃x, σn) dnx +

∫ 0

−∞
fNy(ny|S̃y, σn) dny (10.27)

Substituting (10.22) and (10.23) in the preceding expression, and using the defi-
nitions of S̃x and S̃y, yields the bound on the conditional error probability. This
conditional error probability bound is

Pr {Error|S1} < Q

Re
{
S̃1

}
σn

+ Q

 Im
{
S̃1

}
σn

 (10.28)

“TranterBook” — 2003/11/18 — 16:12 — page 403 — #421
�

�

�

�

�

�

�

�

Section 10.2. Semianalytic Techniques 403

where, as always, Q(·) is the Gaussian Q function. By symmetry, the conditional
error probability is the same for any of the four possible transmitted symbols.

As with PSK assume that Sk is the kth transmitted symbol in a simulated
sequence of N symbols. For each value of k, 1 ≤ k ≤ N , Sk will be S1, S2, S3, or
S4. The bound on the conditional symbol error rate is, from (10.28):

Pr {Error|Sk} < Q

Re
{
S̃k

}
σn

+ Q

 Im
{

S̃k

}
σn

 (10.29)

The overall symbol error rate, obtained by averaging the conditional symbol error
probability over the entire sequence of N symbols, is given by

PS <
1
N

N∑
k=1

Q

Re
{

S̃k

}
σn

+ Q

 Im
{
S̃k

}
σn

 (10.30)

The bit error rate, PE , is PS/2. Note that in the PSK case we obtained an exact
solution, whereas in the case of QPSK we have a bound. The technique used here
to develop a semianalytic estimator is easily extended to MPSK and QAM [1].

The estimator developed here will be used throughout the remainder of this book
for evaluating the performance of a number of systems. Included will be examples
illustrating the effect of multipath and fading in a wireless system and the effect of
nonlinear distortion in a frequency multiplexed satellite communications system.

Example 10.4. (QPSK). The MATLAB code for executing a semianalytic
simulation of a QPSK system is given in Appendix D. The simulation is run to
examine the effect of the ISI resulting from transmitter filtering. The filter band-
width is set equal to the symbol rate (one-half the bit rate, i.e., BW = rb/2). Since
the signal constellation is symmetric, all received signal points are rotated to the
first quadrant as discussed in the preceding paragraphs.

Executing the simulation yields the signal constellation and BER illustrated in
Figure 10.17. The received signal constellation is shown in the left-hand pane of
Figure 10.17. Note that the received signal constellation no longer consists of 4
points, as is the case for ideal QPSK, but now consists of 16 points. In order to
understand the reason for this, assume that the signal point in the first quadrant
represents the data bit 00 and that the system memory, as a result of ISI, is two
symbols (the current and the previous transmitted symbols). As a result, four signal
points will result from the transmission of 00. These four signal points correspond
to 00|00, 00|01, 00|10, and 00|11, where the vertical bar delineates the current
symbol (00) and the previously transmitted symbols. Note also that each of the
four points in the first quadrant are composed of points that are slightly scattered.
This scattering results from the fact that the system exhibits a memory length that
exceeds two symbols, although the effect of this additional memory is small. The
left-hand pane of Figure 10.17 illustrates the BER of the system with transmitter
filtering. The AWGN result is also illustrated for reference. The increase in the
BER resulting from the ISI is clearly seen. �

“TranterBook” — 2003/11/18 — 16:12 — page 404 — #422
�

�

�

�

�

�

�

�

404 Monte Carlo Simulation of Communication Systems Chapter 10

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

Direct Sample

Q
u

a
d

ra
tu

re
 S

a
m

p
le

0 5 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
it

 E
rr

o
r

R
a

te

AW GN Reference
System Under Study

Figure 10.17 QPSK semianalytic simulation results.

10.2.5 Choice of Data Sequence

In applying semianalytic techniques to a system having memory, it is important
to use a data source that generates sequences exhibiting all possible combinations
of data symbols for the given memory length of the system. For example, if the
memory length is three (current symbol plus the two preceding symbols) the symbol
error probability is given by

PS =
1
N

N∑
k=1

Pr {Error|Sk , Sk−1, Sk−2} (10.31)

The error probability will, in general, be different for each (Sk, Sk−1, Sk−2) sequence.
Thus, all combinations of Sk, Sk−1, and Sk−2, must appear an equal number of times
to properly account for the memory efficts. In general, if a binary system exhibits
significant memory spanning N symbols, then all binary sequences of length N
should be generated by the data source an equal number of times in the simulation.
For a binary system there are 2N sequences of length N . There are three popular
ways to accomplish, or at leat approximate, this requirement as follows:

“TranterBook” — 2003/11/18 — 16:12 — page 405 — #423
�

�

�

�

�

�

�

�

Section 10.3. Summary 405

1. If N is reasonably large one may wish to use a PN Sequence for the data source.
As discussed in Chapter 7, the number of sequences generated will not be 2N

as desired but will be L = 2N − 1, since the sequence of N consecutive zeros
will not occur. The result will be an unbalanced sequence having L

2 ones and
L
2 −1 zeros. If N is large, this effect is negligible. Note that one is free to select
N greater than the memory length in order to mitigate this effect. Choosing
N larger than necessary will, however, result in a longer simulation execution
time.

2. If a perfectly balanced sequence is desired, a deBruijn sequence [2] may be
used. As briefly discussed in Chapter 7, a deBruijn sequence is formed by
adding an extra zero at the point where there are N − 1 zeros in the output
of a PN sequence generator.

3. One may of course simply execute the semianalytic sequence using random
data. If this sequence is sufficiently long, all data symbol combinations will
occur approximately the same number of times. This is the approach taken
in Examples 10.3 and 10.4.

10.3 Summary

In this chapter, simulation examples of binary PSK and differential QPSK communi-
cation systems were presented. Strict Monte Carlo simulations were first developed.
These simulations were easily developed using the concepts presented in the previ-
ous chapter. The PSK system was very simple and served to illustrate the basic
concepts. The only degrading effects were intersymbol interference and additive
channel noise. The differential QPSK example considered the simulation of a much
more realistic system.

We next considered semianalytic simulation. Both PSK and QPSK illustrated
that the semianalytic estimators for BER are different for the PSK and QPSK cases.
Thus, a unique procedure for conducting a semianalytic simulation does not exist.
While the estimators are quite different, the methodologies are the same, in that
the semianalytic simulation captures all deterministic system perturbations, such as
intersymbol interference and distortion due to nonlinearities through a conventional
Monte Carlo simulation. The effects of noise and other stochastic effects are dealt
with analytically. This requires that the pdf of the samples upon which a bit or
symbol decision is made is known. The simplest case, and the case most often used,
assumes that the noise is Gaussian and that the system is linear from the point at
which the noise enters the system to the point where bit or symbol decisions are
made is linear. In this case, the pdf of the decision statistic is Gaussian, and the
Monte Carlo simulation is executed to establish the mean of the decision statistic.
We saw that for those cases in which the semianalytic method can be used, very
fast simulations result.

“TranterBook” — 2003/11/25 — 15:38 — page 406 — #40
�

�

�

�

�

�

�

�

406 Monte Carlo Simulation of Communication Systems Chapter 10

10.4 References

1. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Commu-
nication Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers,
2000.

2. S. Golomb, Shift Register Sequences, Laguna Hills, CA: Aegean Press, 1982.

10.5 Problems

10.1 Verify that the MATLAB code segment used in Appendix A

[Btr,Atr]=butter(5,0.2)

with a sampling frequency of 10 samples/symbol yields a filter bandwidth
equal to the symbol rate.

10.2 Rerun the simulation described in Example 10.1 using filter bandwidths of
one-half the symbol rate and double the symbol rate. Compare the result of
these two simulations with the result given in Example 10.1.

10.3 Rerun the simulation described in Example 10.1 using a sampling rate of
20 samples per symbol. Does this result in an improved estimate of delay?
Explain. Estimate the BER using 20 samples/symbol and compare the result
with that obtained in Example 10.1 using 10 samples/symbol.

10.4 Using the appropriate MATLAB routines, compare the required execution
times for the Monte Carlo and semianalytic simulations of the binary PSK
system given in Examples 10.1 and 10.3, respectively.

10.5 The semianalytic BER estimator for the PSK system (Appendix C) contains
the line of code

nbwideal=1/(2*tb)

Explain the purpose of this line of code and verify that it is correct. The
equivalent line of code for the BER estimator for the QPSK system (Appendix
D) is

nbwideal=1/(2*tb*2)

Verify the correctness of this line of code.

10.6 Modify the simulation given in Example 10.1 so that the PSK system is simu-
lated using a symbol-by-symbol approach rather than by using a block serial
approach. In other words, the random binary data source will generate bi-
nary bits (0 or 1), and the waveform samples corresponding to these binary

“TranterBook” — 2003/11/18 — 16:12 — page 407 — #425
�

�

�

�

�

�

�

�

Section 10.5. Problems 407

symbols will be repeated the required number of times to satisfy a given sam-
ples/symbol specification. (You may wish to review Chapter 5 in order to
derive an efficient filter simulation using MATLAB to establish the necessary
numerator and denominator polynomials for the filter transfer function and
use them in a sample-by-sample simulation.)

10.7 Example 10.2 examines the Monte Carlo simulation of a differential QPSK
system. Rewrite this simulation for QPSK rather than for differential QPSK.
Sanity check the simulation result by comparing it with the theoretical result
for QPSK.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 408 --- #426
�

�

�

�

�

�

�

�

408 Monte Carlo Simulation of Communication Systems Chapter 10

10.6 Appendix A: Simulation Code for Example 10.1

10.6.1 Main Program

% File: c10_MCBPSKrun.m
function [BER,Errors]=MCBPSKrun(N,EbNo,delay,FilterSwitch)
SamplesPerSymbol = 10; % samples per symbol
BlockSize = 1000; % block size
NoiseSigma = sqrt(SamplesPerSymbol/(2*EbNo)); % scale noise level
DetectedSymbols = zeros(1,BlockSize); % initialize vector
NumberOfBlocks = floor(N/BlockSize); % number of blocks

% processed
[BTx,ATx] = butter(5,2/SamplesPerSymbol); % compute filter

% parameters
[TxOutput,TxFilterState] = filter(BTx,ATx,0); % initialize state

% vector
BRx = ones(1,SamplesPerSymbol); ARx=1; % matched filter

% parameters
Errors = 0; % initialize error

% counter
%
% Simulation loop begins here.
%
for Block=1:NumberOfBlocks

%
% Generate transmitted symbols
%
[SymbolSamples,TxSymbols] = random_binary(BlockSize,...

SamplesPerSymbol);
%
% Transmitter filter if desired.
%
if FilterSwitch==0

TxOutput = SymbolSamples;
else

[TxOutput,TxFilterState] = filter(BTx,ATx,SymbolSamples,...
TxFilterState);

end
%
% Generate channel noise.
%
NoiseSamples = NoiseSigma*randn(size(TxOutput));
%
% Add signal and noise.
%
RxInput = TxOutput + NoiseSamples;

“TranterBook” — 2003/11/18 — 16:12 — page 409 — #427
�

�

�

�

�

�

�

�

Section 10.6. Appendix A: Simulation Code for Example 10.1 409

%
% Pass Received signal through matched filter.
%
IntegratorOutput = filter(BRx,ARx,RxInput);
%
% Sample matched filter output every SamplesPerSymbol samples,
% compare to transmitted bit, and count errors.
%
for k=1:BlockSize,

m = k*SamplesPerSymbol+delay;
if (m < length(IntegratorOutput))

DetectedSymbols(k)=(1-sign(IntegratorOutput(m)))/2;
if (DetectedSymbols(k) ~= TxSymbols(k))

Errors = Errors + 1;
end

end
end

end
BER = Errors/(BlockSize*NumberOfBlocks); % calculate BER
% End of function file.

10.6.2 Supporting Program: random binary.m

% file: random_binary.m
function [x, bits] = random_binary(nbits,nsamples)
% This function genrates a random binary waveform of length nbits
% sampled at a rate of nsamples/bit.
x = zeros(1,nbits*nsamples);
bits = round(rand(1,nbits));
for m=1:nbits

for n=1:nsamples
index = (m-1)*nsamples + n;
x(1,index) = (-1)^bits(m);

end
end
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 410 --- #428
�

�

�

�

�

�

�

�

410 Monte Carlo Simulation of Communication Systems Chapter 10

10.7 Appendix B: Simulation Code for Example 10.2

10.7.1 Main Program

% file c10_MCQPSKrun.m
function BER_MC=MCQPSKrun(N,Eb,No,ChanAtt,...

TimingBias,TimingJitter,PhaseBias,PhaseJitter)
fs = 1e+6; % sampling Rate (samples/second)
SymRate = 1e+5; % symbol rate (symbols/second)
Ts = 1/fs; % sampling period
TSym = 1/SymRate; % symbol period
SymToSend = N; % symbols to be transmitted
ChanBW = 4.99e+5; % bandwidth of channel (Hz)
MeanCarrierPhaseError = PhaseBias; % mean of carrier phase
StdCarrierPhaseError = PhaseJitter; % stdev of phase error
MeanSymbolSyncError = TimingBias; % mean of symbol sync error
StdSymbolSyncError = TimingJitter; % stdev of symbol sync error
ChanGain = 10^(-ChanAtt/20); % channel gain (linear units)
TxBitClock = Ts/2; % transmitter bit clock
RxBitClock = Ts/2; % receiver bit clock
%
% Standard deviation of noise and signal amplitude at receiver input.
%
RxNoiseStd = sqrt((10^((No-30)/10))*(fs/2)); % stdev of noise
TxSigAmp = sqrt(10^((Eb-30)/10)*SymRate); % signal amplitude
%
% Allocate some memory for probes.
%
SampPerSym = fs/SymRate;
probe1 = zeros((SymToSend+1)*SampPerSym,1);
probe1counter = 1;
probe2 = zeros((SymToSend+1)*SampPerSym,1);
probe2counter = 1;
%
% Counters to keep track of how many symbols have have been sent.
%
TxSymSent = 1;
RxSymDemod = 0;
%
% Buffers that contain the transmitted and received data.
%
[unused,SourceBitsI] = random_binary(SymToSend,1);
[unused,SourceBitsQ] = random_binary(SymToSend,1);
%
% Differentially encode the transmitted data.
%

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 411 --- #429
�

�

�

�

�

�

�

�

Section 10.7. Appendix B: Simulation Code for Example 10.2 411

TxBitsI = SourceBitsI*0; % set first I bit
TxBitsQ = SourceBitsQ*0; % set first Q bit
for k=2:length(TxBitsI)

TxBitsI(k) = or(and(not(xor(SourceBitsI(k),SourceBitsQ(k))),...
xor(SourceBitsI(k),TxBitsI(k-1))), ...
and(xor(SourceBitsI(k),SourceBitsQ(k)),...
xor(SourceBitsQ(k),TxBitsQ(k-1))));

TxBitsQ(k) = or(and(not(xor(SourceBitsI(k),SourceBitsQ(k))),...
xor(SourceBitsQ(k),TxBitsQ(k-1))), ...
and(xor(SourceBitsI(k),SourceBitsQ(k)),...
xor(SourceBitsI(k),TxBitsI(k-1))));

end
%
% Make a complex data stream of the I and Q bits.
%
TxBits = ((TxBitsI*2)-1)+(sqrt(-1)*((TxBitsQ*2)-1));
%
RxIntegrator = 0; % initialize receiver integrator
TxBitClock = 2*TSym; % initialize transmitter
%
% Design the channel filter, and create the filter state array.
%
[b,a] = butter(2,ChanBW/(fs/2));
b = [1]; a = [1]; % filter bypassed
[junk,FilterState] = filter(b,a,0);
%
% Begin simulation loop.
%
while TxSymSent < SymToSend

%
% Update the transmitter’s clock, and see
% if it is time to get new data bits
%
TxBitClock = TxBitClock+Ts;
if TxBitClock > TSym

%
% Time to get new bits
%
TxSymSent = TxSymSent+1;
%
% We don’t want the clock to increase to infinity,
% so subtract off an integer number of Tb seconds.
%
TxBitClock = mod(TxBitClock,TSym);
%

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 412 --- #430
�

�

�

�

�

�

�

�

412 Monte Carlo Simulation of Communication Systems Chapter 10

% Get the new bit, and scale it up appropriately.
%
TxOutput = TxBits(TxSymSent)*TxSigAmp;
end

%
% Pass the transmitted signal through the channel filter.
%
[Rx,FilterState] = filter(b,a,TxOutput,FilterState);
%
% Add white Gaussian noise to the signal.
%
Rx = (ChanGain*Rx)+(RxNoiseStd*(randn(1,1)+sqrt(-1)*randn(1,1)));
%
% Phase rotation due to receiver carrier synchronization error.
%
PhaseRotation = exp(sqrt(-1)*2*pi*...

(MeanCarrierPhaseError+(randn(1,1)*StdCarrierPhaseError))...
/360);
Rx = Rx*PhaseRotation;
probe1(probe1counter) = Rx; probe1counter=probe1counter+1;
%
% Update the Integrate and Dump Filter at the receiver.
%
RxIntegrator = RxIntegrator+Rx;
probe2(probe2counter) = RxIntegrator;
probe2counter=probe2counter+1;
%
% Update the receiver clock, to see if it is time to
% sample and dump the integrator.
%
RxBitClock = RxBitClock+Ts;
xTSym = TSym*(1+MeanSymbolSyncError+...

(StdSymbolSyncError*randn(1,1)));
if RxBitClock > RxTSym % time to demodulate symbol

RxSymDemod = RxSymDemod+1;
RxBitsI(RxSymDemod) = round(sign(real(RxIntegrator))+1)/2;
RxBitsQ(RxSymDemod) = round(sign(imag(RxIntegrator))+1)/2;
RxBitClock = RxBitClock - TSym; % reset receive clock
RxIntegrator = 0; % reset integrator

end
end
%
% Differential decoder.
%
SinkBitsI = SourceBitsI*0; % set first I sink bit

“TranterBook” — 2003/11/18 — 16:12 — page 413 — #431
�

�

�

�

�

�

�

�

Section 10.7. Appendix B: Simulation Code for Example 10.2 413

SinkBitsQ = SourceBitsQ*0; % set first Q sink bit
%
for k=2:RxSymDemod

SinkBitsI(k) = or(and(not(xor(RxBitsI(k),RxBitsQ(k))),...
xor(RxBitsI(k),RxBitsI(k-1))),...
and(xor(RxBitsI(k),RxBitsQ(k)),...
xor(RxBitsQ(k),RxBitsQ(k-1))));

SinkBitsQ(k) = or(and(not(xor(RxBitsI(k),RxBitsQ(k))),...
xor(RxBitsQ(k),RxBitsQ(k-1))),...
and(xor(RxBitsI(k),RxBitsQ(k)),...
xor(RxBitsI(k),RxBitsI(k-1))));

end;
%
% Look for best time delay between input and output for 100 bits.
%
[C,Lags] = vxcorr(SourceBitsI(10:110),SinkBitsI(10:110));
[MaxC,LocMaxC] = max(C);
BestLag = Lags(LocMaxC);
%
% Adjust time delay to match best lag
%
if BestLag > 0

SourceBitsI = SourceBitsI(BestLag+1:length(SourceBitsI));
SourceBitsQ = SourceBitsQ(BestLag+1:length(SourceBitsQ));

elseif BestLag < 0
SinkBitsI = SinkBitsI(-BestLag+1:length(SinkBitsI));
SinkBitsQ = SinkBitsQ(-BestLag+1:length(SinkBitsQ));

end
%
% Make all arrays the same length.
%
TotalBits = min(length(SourceBitsI),length(SinkBitsI));
TotalBits = TotalBits-20;
SourceBitsI = SourceBitsI(10:TotalBits);
SourceBitsQ = SourceBitsQ(10:TotalBits);
SinkBitsI = SinkBitsI(10:TotalBits);
SinkBitsQ = SinkBitsQ(10:TotalBits);
%
% Find the number of errors and the BER.
%
Errors = sum(SourceBitsI ~= SinkBitsI) + sum(SourceBitsQ ~=...

SinkBitsQ);
BER_MC = Errors/(2*length(SourceBitsI));
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 414 — #432
�

�

�

�

�

�

�

�

414 Monte Carlo Simulation of Communication Systems Chapter 10

10.7.2 Supporting Programs

Program random binary.m is defined in Appendix A of this chapter.

10.7.3 vxcorr.m

% File: vxcorr.m
function [c,lags] = vxcorr(a,b)
% This function calculates the unscaled cross-correlation of 2
% vectors of the same length. The output length(c) is
% length(a)+length(b)-1. It is a simplified function of xcorr
% function in matlabR12 using the definition:
% c(m) = E[a(n+m)*conj(b(n))] = E[a(n)*conj(b(n-m))]
%
a = a(:); % convert a to column vector
b = b(:); % convert b to column vector
M = length(a); % same as length(b)
maxlag = M-1; % maximum value of lag
lags = [-maxlag:maxlag]’; % vector of lags
A = fft(a,2^nextpow2(2*M-1)); % fft of A
B = fft(b,2^nextpow2(2*M-1)); % fft of B
c = ifft(A.*conj(B)); % crosscorrelation
%
% Move negative lags before positive lags.
%
c = [c(end-maxlag+1:end,1);c(1:maxlag+1,1)];
%
% Return row vector if a, b are row vectors.
%
[nr nc]=size(a);
if(nr>nc)

c=c.’;
lags=lags.’;

end
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 415 --- #433
�

�

�

�

�

�

�

�

Section 10.8. Appendix C: Simulation Code for Example 10.3 415

10.8 Appendix C: Simulation Code for Example 10.3

10.8.1 Main Program: c10 PSKSA.m

% File: c10_PSKSA.m
NN = 256; % number of symbols
tb = 1; % bit file
p0 = 1; % power
fs = 16; % samples/symbol
ebn0db = [0:1:8]; % Eb/No vector in dB
[bt,at] = butter(5,2/fs); % transmitter filter parameters
x = random_binary(NN,fs); % establish PSK signal
y1 = x; % save signal
y2a = y1*sqrt(p0); % scale amplitude
y2 = filter(bt,at,y2a); % transmitter output
br = ones(1,fs); br = br/fs; ar = 1; % matched filter parameters
y = filter(br,ar,y2); % matched filter output
%
% End of simulation.
%
% The following code sets up the semianalytic estimator. Find the
% max. magnitude of the cross correlation and the corresponding lag.
%
[cor lags] = vxcorr(x,y); % compute crosscorrelation
[cmax nmax] = max(abs(cor)); % maximum of crosscorrelation
timelag = lags(nmax); % lag at max crosscorrelation
theta = angle(cor(nmax)); % determine angle
y = y*exp(-i*theta); % derotate
%
% Noise BW calibration.
%
hh = impz(br,ar); % receiver impulse response
nbw = (fs/2)*sum(hh.^2); % noise bandwidth
%
% Delay the input and do BER estimation on the NN-20+1 128 bits.
% Use middle sample. Make sure the index does not exceed number
% of input points. Eb should be computed at the receiver input.
%
index = (10*fs+8:fs:(NN-10)*fs+8);
xx = x(index);
yy = y(index-timelag+1);
eb = tb*sum(abs(y2).^2)/length(y2);
eb = eb/2;
[peideal,pesystem] = psk_berest(xx,yy,ebn0db,eb,tb,nbw);
semilogy(ebn0db,pesystem,‘ro-’,ebn0db,peideal); grid;
xlabel(‘E_b/N_0 (dB)’); ylabel(‘Bit Error Rate’)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 416 --- #434
�

�

�

�

�

�

�

�

416 Monte Carlo Simulation of Communication Systems Chapter 10

legend(‘System Under Study’,‘AWGN Reference’,0)
% End of script file.

10.8.2 Supporting Programs

Program random binary.m is defined in Appendix A of this chapter. Program
vxcorr.m is defined in Appendix B of this chapter.

psk berest

% File: psk_berest.m
function [peideal,pesystem] = psk_berest(xx,yy,ebn0db,eb,tb,nbw)
% ebn0db is an array of Eb/No values in db (specified at the
% receiver input); tb is the bit duration and nbw is the noise BW
% xx is the reference (ideal) input; yy is the filtered output;
%
nx = length(xx);
%
% For comparision purposes, set the noise BW of the ideal
% receiver (integrate and dump) to be equal to rs/2.
%
nbwideal = 1/(2*tb); % noise bandwidth
for m=1:length(ebn0db)

peideal(m) = 0.0; pesystem(m) = 0.0; % initialize
%
% Find n0 and the variance of the noise.
%
ebn0(m) = 10^(ebn0db(m)/10); % dB to linear
n0 = eb/ebn0(m); % noise power
sigma = sqrt(n0*nbw*2); % variance
sigma1 = sqrt(n0*nbwideal*2); % variance of ideal
%
% Multiply the input constellation/signal by a scale factor so
% that input constellation and the constellations/signal at the
% input to receive filter have the same ave power
% a = sqrt(2*eb/(2*tb)).
%
b = sqrt(2*eb/tb)/sqrt(sum(abs(xx).^2)/nx);
d1 = b*abs(xx);
d3 = abs(yy);
peideal(m) = sum(q(d1/sigma1));
pesystem(m) = sum(q(d3/sigma));

end
peideal = peideal/nx;
pesystem = pesystem/nx;
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 417 — #435
�

�

�

�

�

�

�

�

Section 10.8. Appendix C: Simulation Code for Example 10.3 417

q.m

% File: q.m
function out=q(x)
out=0.5*erfc(x/sqrt(2));
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 418 --- #436
�

�

�

�

�

�

�

�

418 Monte Carlo Simulation of Communication Systems Chapter 10

10.9 Appendix D: Simulation Code for Example 10.4

% File: c14_QPSKSA.m
%
% Default parameters
%
NN = 256; % number of symbols
tb = 0.5; % bit time
p0 = 1; % power
fs = 16; % samples/symbol
ebn0db = [0:1:10]; % Eb/N0 vector
[b,a] = butter(5,1/16); % transmitter filter parameters
%
% Establish QPSK signals
%
x = random_binary(NN,fs)+i*random_binary(NN,fs); % QPSK signal
y1 = x; % save signal
y2a = y1*sqrt(p0); % scale amplitude
%
% Transmitter filter
%
y2 = filter(b,a,y2a); % filtered signal
%
% Matched filter
%
b = ones(1,fs); b = b/fs; a = 1; % matched filter parameters
y = filter(b,a,y2); % matched filter output
%
% End of simulation
%
% Use the semianalytic BER estimator. The following sets
% up the semi analytic estimator. Find the maximum magnitude
% of the cross correlation and the corresponding lag.
%
[cor lags] = vxcorr(x,y);
cmax = max(abs(cor));
nmax = find(abs(cor)==cmax);
timelag = lags(nmax);
theta = angle(cor(nmax));
y = y*exp(-i*theta); % derotate
%
% Noise BW calibration
%
hh = impz(b,a); % receiver impulse response
nbw = (fs/2)*sum(hh.^2); % noise bandwidth

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 419 --- #437
�

�

�

�

�

�

�

�

Section 10.9. Appendix D: Simulation Code for Example 10.4 419

%
% Delay the input, and do BER estimation on the last 128 bits.
% Use middle sample. Make sure the index does not exceed number
% of input points. Eb should be computed at the receiver input.
%
index = (10*fs+8:fs:(NN-10)*fs+8);
xx = x(index);
yy = y(index-timelag+1);
[n1 n2] = size(y2); ny2 = n1*n2;
eb = tb*sum(sum(abs(y2).^2))/ny2;
eb = eb/2;
[peideal,pesystem] = qpsk_berest(xx,yy,ebn0db,eb,tb,nbw);
subplot(1,2,1)
yscale = 1.5*max(real(yy));
plot(yy,’+’)
xlabel(’Direct Sample’); ylabel(’Quadrature Sample’); grid;
axis([-yscale yscale -yscale yscale])
subplot(1,2,2)
semilogy(ebn0db,peideal,ebn0db,pesystem,‘ro-’); grid;
xlabel(‘E_b/N_0 (dB)’); ylabel(‘Bit Error Rate’)
legend(‘AWGN Reference’,‘System Under Study’)
% End of script file.

10.9.1 Supporting Programs

Program random binary.m is defined in Appendix A of this chapter. Program
vxcorr.m is defined in Appendix B of this chapter. Program q.m is defined in
Appendix C of this chapter.

qpsk berest

% File: qpsk_berest.m
function [peideal,pesystem] = qpsk_berest(xx,yy,ebn0db,eb,tb,nbw)
% ebn0db is an array of Eb/No values in db (specified at the
% receiver input); tb is the bit duration and nbw is the noise BW
% xx is the reference (ideal) input; yy is the distorted output;
%
[n1 n2] = size(xx); nx = n1*n2;
[n3 n4] = size(yy); ny = n3*n4;
[n5 n6] = size(ebn0db); neb = n5*n6;
%
% For comparision purposes, set the noise BW of the ideal
% receiver (integrate and dump) to be equal to rs/2.
%
nbwideal = 1/(2*tb*2);
for m=1:neb

“TranterBook” — 2003/11/18 — 16:12 — page 420 — #438
�

�

�

�

�

�

�

�

420 Monte Carlo Simulation of Communication Systems Chapter 10

peideal(m) = 0.0; pesystem(m) = 0.0; % initialize
%
% Find n0 and the variance of the noise.
%
string1 = [’Eb/No = ’,num2str(ebn0db(m))];
disp(string1) % track execution
ebn0(m) = 10^(ebn0db(m)/10); % dB to linear
n0 = eb/ebn0(m); % noise power
sigma = sqrt(n0*nbw*2); % variance
sigma1 = sqrt(n0*nbwideal*2); % variance of ideal
%
% Multiply the input constellation/signal by a scale factor so
% that input constellation and the constellations/signal at the
% input to receive filter have the same ave power
% a=sqrt(2*eb/(2*tb)).
%
b = sqrt(2*eb/tb)/sqrt(sum(abs(xx).^2)/nx);
for n=1:nx
theta = angle(xx(n));
if (theta<0)
theta = theta+2*pi;
end
%
% Rotate x and y to the first quadrant and compute BER.
%
xxx(n) = b*xx(n)*exp(-i*(theta-(pi/4)));
yyy(n) = yy(n)*exp(-i*(theta-(pi/4)));
d1 = real(xxx(n)); d2 = imag(xxx(n)); % reference
d3 = real(yyy(n)); d4 = imag(yyy(n)); % system
pe1 = q(d1/sigma1)+q(d2/sigma1); % reference
pe2 = q(d3/sigma)+q(d4/sigma); % system
peideal(m) = peideal(m)+pe1; % SER of reference
pesystem(m) = pesystem(m)+pe2; % SER of system
end

end
peideal = (1/2)*peideal./nx; % convert to BER
pesystem = (1/2)*pesystem./nx; % convert to BER
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 421 — #439
�

�

�

�

�

�

�

�

Chapter 11

METHODOLOGY
FOR SIMULATING
A WIRELESS SYSTEM

In this chapter we illustrate various aspects of methodology as they apply to the
problem of estimating the performance of a wireless digital communication system
operating over a slowly fading channel. We start with a block diagram of the system,
which is shown in Figure 11.1.

We will assume that the design of the system is nearly complete and the following
aspects of the design have been finalized:

1. The voice signal is source encoded using linear predictive coding to produce
an output bit rate of 9,600 bits per second.

2. Error control coding is accomplished through the use of a rate 1/3 convolu-
tional encoder with hard decision decoding (or soft decision decoding with 8
levels of quantizing).

3. The filters used in the system are 50% square root raised cosine (SQRC).
421

“TranterBook” — 2003/11/18 — 16:12 — page 422 — #440
�

�

�

�

�

�

�

�

422 Methodology for Simulating a Wireless System Chapter 11

H G Source
Decoder

Voice
Output

F E

Timing Recovery

Channel
Decoder

Equalizer

Interference from other users

D C B

Channel

RF Demodulator

Carrier
Recovery

Receive Filter

Baseband
Demodulator

Noise

Voice
Source

Voice
Encoder

Channel
Encoder

Baseband
Modulator

(QPSK)

Transmit
Filter

RF Modulator

A

Figure 11.1 System-level simulation model.

4. The equalizer is a 9 tap synchronously spaced linear mean square (LMS)
equalizer.

5. Modulation is QPSK with coherent demodulation at the receiver.

The channel over which this system is assumed to operate is characterized as a
“two-ray” multipath channel with slow fading (slow compared to the symbol rate
so that the channel can be treated as quasi-static). The input-output relationship
of the channel is given by

ỹ (t) = ã1 (t) x̃ (t − τ1 (t)) − ã2 (t) x̃ (t − τ2 (t)) (11.1)

where x̃ (t) and ỹ (t) are the complex (lowpass) input and output, respectively, and
ã1 (t) and ã2 (t) represent the complex attenuation of the two multipath components

“TranterBook” — 2003/11/18 — 16:12 — page 423 — #441
�

�

�

�

�

�

�

�

Section 11.1. System-Level Simplifications and Sampling Rate Considerations 423

with delays τ1 (t) and τ2 (t). The complex attenuations are modeled as independent
stationary processes, and the bandwidths of these processes (and hence their rate
of change) are assumed to be small compared to the symbol rate. The complex
attenuations are modeled by two independent complex Gaussian processes (Rayleigh
envelope), and the delays are assumed to have uniform distributions. (This channel
will be developed in detail in Chapter 14.)

The channel characteristics are randomly changing as a function of time. There-
fore, the received signal power and the amount of signal distortion introduced by
the channel, which will impact system performance, will also be changing over time.
When the signal loss and distortion are small, the system performance will be very
good, but when the signal loss and distortion are severe the system performance
will degrade significantly. The overall performance metric of interest in this system
is the output voice quality, which is obtained from listening tests. In these tests
the output of the voice decoder is recorded and played back to a number of human
subjects who rate the voice quality from 1 to 5, with 1 being the poorest quality
and 5 being the highest quality. The average of the individual scores from a set
of subjects is used as the voice-quality metric, and the overall goal of the system
design is to guarantee a voice-quality metric greater than or equal to 3 at least 98%
of the time. If the voice-quality metric is less than 3, the communication link is
declared to be unusable and out of service.

The objective of this simulation exercise is to evaluate the system performance,
as measured by a voice-quality metric V as a function of Eb/N0, and compute the
value of Eb/N0 needed to maintain an outage probability less than 2% at a voice
quality metric threshold of 3. We now present the details of the overall approach
that can be used to estimate the outage probability as a function of Eb/N0.

11.1 System-Level Simplifications
and Sampling Rate Considerations

The slow-fading assumption leads to the following immediate simplifications of the
simulation model that will be used for performance estimation.

1. Synchronization: For the purposes of performance estimation it can be as-
sumed that synchronization is ideal, since fading is slow and hence the timing
and phase recovery subsystems can establish near ideal timing and phase ref-
erences. These subsystems can be omitted from the simulation model for
performance estimation.

2. Static channel : The slow-fading assumption also implies that the channel can
be treated as quasi-static and snapshots of the channel can be used during
performance estimation. The channel model now reduces to

ỹ (t) = ã1x̃ (t − τ1) − ã2x̃ (t − τ2) (11.2)

where ã1, ã2, τ1, and τ2 are now random variables whose values remain fixed
during each performance estimation simulation. It is common practice to

“TranterBook” — 2003/11/18 — 16:12 — page 424 — #442
�

�

�

�

�

�

�

�

424 Methodology for Simulating a Wireless System Chapter 11

assume (normalize) τ1 = 0, and ã1 = 1, which results in the input-output
relationship

ỹ (t) = x̃ (t) − ãx̃ (t − τ) (11.3)

and the channel transfer function

Hc (f) = 1 − ã exp (−j2πfτ) (11.4)

In this model, the channel is characterized by two random variables ã and τ ,
where ã has a Rayleigh pdf and τ has a uniform pdf.

3. Radio frequency (RF) modulator and demodulator : These two blocks can be
assumed to perform ideal frequency translations and hence they can be elim-
inated from the simulation model. The entire system can then be simulated
using complex lowpass equivalent representations.

Sampling Rate

One other important simulation parameter that can be established at the outset is
the overall sampling rate. The voice source, the source encoder, the error control
encoder blocks on the transmit side, and the error control decoder and the source
decoder blocks on the receive side, operate on symbol sequences and should be
simulated using one sample per symbol (i.e., they are processed at the appropriate
symbol or bit rate). From the output of the QPSK modulator to the output of the
equalizer we are dealing with waveform representations and hence the signals, and
components in this portion of the overall system should be simulated at a sampling
rate consistent with the bandwidths of the signals and components such as filters.
Since there are no nonlinearities and time-varying components in the system, we
need not be concerned about any bandwidth expansion. Also, there is no need to
consider multirate sampling for this portion of the system, since we are not dealing
with multiple signals with widely differing bandwidths. The sampling rate for the
“analog” portion of the system can be set at 16 times the bandwidth of the QPSK
signal. This can be truncated to the bandwidth of the raised cosine filter, which
is 0.75 times the symbol rate (0.5R + 50% of (0.5R) = 0.75R). With the QPSK
symbol rate of R = (9600 × 3)/2 = 14,400 symbols/second, we can use a sampling
rate of 16 × 0.75 × 14,400 = 172,800 samples/second. This is equivalent to 12
samples/QPSK symbol.

11.2 Overall Methodology

In outage probability estimation we are interested in determining the fraction of
time that the channel conditions degrade the system performance below some ac-
ceptable threshold. Since the channel parameters are random variables, we can
use the Monte Carlo approach to determine the outage probability induced by the
channel. The Monte Carlo approach will involve drawing random numbers from the
distributions of the channel parameters ã and τ and computing the system perfor-
mance for each pair of values for ã and τ. The outage probability is estimated as the

“TranterBook” — 2003/11/18 — 16:12 — page 425 — #443
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 425

percentage of channels simulated that yield a performance metric that is below the
acceptable (threshold) level. Note that this part of the Monte Carlo simulation is
different from the Monte Carlo simulation used for performance estimation for each
channel condition. Monte Carlo simulation for performance estimation will involve
the generation of sampled values of one or more random processes that represent
the signals and noise.

The flowchart of the procedure for estimating outage probability is shown in
Figure 11.2. To estimate outage probability, we need to compute system perfor-
mance as measured by the output voice-quality metric for each value of Eb/N0 and
for thousands of snapshots of the channel. We typically define the channel in terms
of ã and τ (the amplitude-delay profile). Some of these channel conditions will pro-
duce significant performance degradation that might lead to a voice-quality metric
below the desired threshold level (3 in this example). The outage probability for a
given value of Eb/N0 is estimated by the ratio of the number of simulated channels
that produce a voice-quality metric lower than the threshold divided by the total
number of channels simulated. As Eb/N0 is increased the outage probability will
decrease, and by repeating the simulations for different values of Eb/N0 we can find

Select a value of Eb.

Select a set of channel parameters
 (amplitude-delay profile).

Estimate the voice-quality metric V for
each Eb /N0 and channel condition.

Repeat for
10,000 channel
conditions.

Estimate the distribution (histogram) of
V and estimate the outage probability for
each Eb /N0.

Repeat for Eb /N0 from 17 to 35 dB.

Determine minimum
Eb /N0 required.

Figure 11.2 Flowchart for estimating outage probability.

“TranterBook” — 2003/11/18 — 16:12 — page 426 — #444
�

�

�

�

�

�

�

�

426 Methodology for Simulating a Wireless System Chapter 11

1,000

5,000

 V
1 2 3 4 5

Histogram of V for Eb /N0 = 25 dB

Outage
probability

1,000

5,000

 V
1 2 3 4 5

Histogram of V for Eb /N0 = 35 dB

Outage
probability

Figure 11.3 Typical histogram in outage probability calculation.

the (minimum) value of Eb/N0 that guarantees an outage probability less than 2%.
Let us assume that the range of values for Eb/N0 to be considered is given as 17 to
35 dB in increments of 2 dB. Let us also assume that for each Eb/N0 we need to
simulate 10,000 channel conditions in order to obtain the distribution (histogram)
of V and the outage probability. Typical results are illustrated in Figure 11.3. It
can be seen from the histograms that the outage probability is less for Eb/N0 = 35
dB than for Eb/N0 = 25 dB.

For a given channel condition and Eb/N0 we can estimate the voice-quality
metric using a brute-force Monte Carlo approach in which we use sampled and
digitized voice as the input, record the simulated output of the voice decoder, and
play the recorded output to a set of human subjects and determine the voice-quality
metric based on their scores. While this approach mimics reality, it is not practical
to repeat this for thousands of channel conditions and many values of Eb/N0, for
even if we have the computer resources to do the simulations, this approach will
require each listener to score thousands of voice segments.

A better approach is be to divide (partition) the problem into parts and simulate
the parts separately. In order to arrive at an efficient partitioning scheme, let
us consider the influence of different portions of the communication system on
the overall performance as measured by the voice-quality metric. With respect
to Figure 11.4, the waveform “processing” part of the system accepts a binary
sequence at point C and produces a binary sequence for hard decision decoding (or
quantized values for soft decision decoding) at point F. The probability of error q
(or the transition probabilities for soft decision decoding) for this analog portion
of the system, which we will call “the waveform channel,” depends on the channel
parameters and Eb/N0. This probability of error (or a set of transition probabilities
for soft decision decoding) can be estimated via a Monte Carlo or semianalytic
technique with a random binary sequence as the input. It is not necessary to drive
this part of the simulation with encoded voice bits.

“TranterBook” — 2003/11/18 — 16:12 — page 427 — #445
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 427

A

H G F

CB Voice
Source

Voice
Encoder

Channel
Encoder

Channel
Decoder

Voice
Output

Voice
Decoder

E

DBaseband
Modulator

(QPSK)

Transmit
Filter

Comm.
Channel

()and a τ

Receive
Filter

Baseband
Demodulator

Gaussian
Noise
Eb/N0

Equalizer

Waveform
Channel

Waveform Channelm
QPSK Mod/Demod, Filters,
Equalizer, and Noisy Channel

Parameter.
PART III PART II

PART I

A

H G F

CB Voice
Source

Voice
Encoder

Channel
Encoder

Channel
Decoder

Voice
Output

Voice
Decoder

Figure 11.4 Simplified and partitioned simulation model.

The next segment of the system includes the error control encoder and decoder,
which accepts a sequence of binary digits at point B and produces a sequence of bi-
nary digits at point G. The probability of error between points B and G will strictly
be a function of the probability of error q (or the set of transition probabilities) in
the waveform channel. Indeed, since the errors in the waveform channel are the
result of additive, white, Gaussian noise (AWGN), we can assume the error pattern
is an independent sequence and hence, as far as the evaluation of the coded bit
error probability between points B and G are concerned, the waveform channel can
be replaced by a binary random number generator that produces 1’s and 0’s with

“TranterBook” — 2003/11/18 — 16:12 — page 428 — #446
�

�

�

�

�

�

�

�

428 Methodology for Simulating a Wireless System Chapter 11

probabilities q and 1 − q with 1 representing a transmission error in the waveform
channel. The coded error probability PE can be evaluated via a Monte Carlo simu-
lation in which the input to the encoder is a random binary sequence and the entire
waveform channel is replaced by a binary random number generator. There is no
need to drive this part of the simulation with encoded voice bits.

The performance of the error control coding can also be evaluated using a semi-
analytic approach that maps the uncoded error probability q to the coded error
probability PE . The technique for accomplishing this was explored for both block
and convolutional codes as discussed in Chapter 8. With this approach we can map
the distribution of q as a function of Eb/N0 to the distribution of PE as a function
of Eb/N0.

The final step in the estimation of outage probability is the estimation of the
distributions of the voice-quality metric V for various values of Eb/N0. The voice-
quality metric will depend on PE (which itself depends on Eb/N0) and the distribu-
tion of V as a function of PE . Hence the distribution of V as a function of Eb/N0

can be obtained by evaluating the voice-quality metric for different values of PE .
This evaluation can be done independent of the first two parts of the problem; all
we have to do is to evaluate the performance of the voice coder and encoder for
different values of the error probability PE . This is best done using the actual voice
encoder decoder chip set, running digitized voice through them, and evaluating the
voice quality at the output of the encoder as a function of PE . The effect of the
entire system between points B and G is emulated by injecting random errors at
the rate of PE between the output of the voice encoder and the input of the voice
decoder. This part of the voice-quality metric evaluation has to be done for only
about a dozen values of PE , say, from 10−1 to 10−7, and the listener has to score
the voice quality for each of these dozen values of PE , which is much simpler than
having to score the voice quality for thousands of channel conditions in the direct
Monte Carlo simulation of the entire system.

Given the estimate of the voice-quality metric V as a function of PE obtained
from Part III, the distribution of PE as a function of q in Parts II and III, and the
distribution of q as a function of Eb/N0 obtained in Part I, we can obtain V as a
function of Eb/N0. From

V (Eb/N0) = V (Pe(q (Eb/N0))) (11.5)

we can estimate the distribution of V and the outage probability for each value of
Eb/N0. From a plot of the outage probability versus Eb/N0 we can determine the
minimum value of Eb/N0 needed to assure an outage probability less than 2% at a
voice quality less than 3. The overall approach for outage probability estimation is
summarized in Figure 11.5.

We now turn our attention to the details of each of the three parts of performance
evaluation starting with the estimation of the error probability for the waveform
channel. This is the most computationally intensive part, since it has to be repeated
for 10 values of Eb/N0 and 10,000 channel conditions. The other two parts dealing
with the mapping of the error probability q for the waveform channel to the coded

“TranterBook” — 2003/11/18 — 16:12 — page 429 — #447
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 429

Part I: For several values of Eb /N0 and for
10,000 channel conditions, simulate the
channel and estimate the distribution of q
(histogram of q for each value of Eb /N0 for
10,000 channel conditions).

-1 log q-2 -3 -8 -9

Part II: Using a semi-analytic approach, map
each value of q to PE and map the
distribution of q to the distribution of PE
for each value of Eb /N0.

Plot of Eb /N0 versus outage probability and
determine the minimum value of Eb /N0

required for an outage probability of 0.02.

Part III: Evaluate the performance of the voice
encoder/decoder as a function of PE and map the
distribution of PE to the distribution of V for each
value of Eb /N0. Compare outage probability for
each Eb /N0. For the histogram shown,
outage probability = 1,500/10,000 = 0.15.

2,500

1,000

2,500

1,000

Map q to PE

Map PE to V
log q-2 -3 -8 -9-1

Histogram of PE for Eb /N0 = 20 dB

20

0.15

 Eb /N0 in dB

Outage Prob.

1,000
500

1000

5,000

 V1 2 3 4 5
Histogram of V for Eb /N0 = 20 dB

Histogram of q for Eb /N0 = 20 dB

Figure 11.5 Partitioned methodology for outage probability estimation.

error probability PE and the voice-quality metric V are repeated only once for each
of approximately 10 values of q (10 values of Eb/N0).

11.2.1 Methodology for Simulation of the Analog Portion
of the System

The simulation model for the waveform channel (analog portion of the system)
is shown in Figure 11.6. The main objective of the simulation is to obtain the
distribution (histogram) of the probability of error q for 10 different values of Eb/N0.

“TranterBook” — 2003/11/18 — 16:12 — page 430 — #448
�

�

�

�

�

�

�

�

430 Methodology for Simulating a Wireless System Chapter 11

{ }kW { }kz ()z t ()v t

()r t

()y t

()x t

A

{ }kS

{ }kb

{ }ka

G F E

Gaussian noise
and Interference

()n t

D

C

B

Decide Sample LMS
Equalizer

SQRC
Filter

Fading
Channel

Square Root
Raised Cosine
Filter (SQRC)

QPSK
Modulator

Random Binary
Sequence

Random Binary
Sequence

Figure 11.6 Simulation model for analog portion of the system.

For each value of Eb/N0, 10,000 snapshot conditions of the channel are simulated
and the histogram of q is obtained from the estimated BER for each channel. During
each simulation, the channel condition remains fixed.

We describe the salient features of the simulation model before presenting com-
putationally efficient techniques for simulating this portion of the system.

Details of the Simulation Model

Input : The input to the system consists of two random binary sources each with a bit
rate of 14,400 bits/second (combined rate of 28,800 bits per second), which repre-
sents the bit stream coming from the error control encoder. The two bit sequences ak

and bk are combined to produce a complex QPSK symbol sequence S̃k = Ak + jBk,
where Ak and Bk are mappings of the binary sequences ak and bk into amplitude
sequences of +1 or - 1. The QPSK symbol sequence is mapped to a complex valued
QPSK waveform

x̃ (t) =
∞∑

k=−∞
Akp (t − kT) + j

∞∑
k=−∞

Bkp (t − kT) (11.6)

“TranterBook” — 2003/11/18 — 16:12 — page 431 — #449
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 431

which is sampled at a rate of 12 samples per symbol to create a sampled version of
the QPSK waveform

x̃ (mTs) =
∞∑

k=−∞
Akp (mTs − kT) + j

∞∑
k=−∞

Bkp (mTs − kT) (11.7)

where T is the duration of the QPSK symbol, p(t) is a rectangular pulse of unit
amplitude, and duration T . We assume

p (t) =
{

1, 0 < t ≤ T
0, elsewhere (11.8)

(The two random binary sources in Figure 11.6 may be combined into a single ran-
dom binary source operating at the combined rate and the two separate sequences
can be obtained at the output by taking the odd and even numbered bits of the
output.)

Transmit and Receive Filters : The transmit and receive filters are square root
raised cosine (SQRC) filters with the transfer function

HT (f) = HR (f) =

√

T , |f | ≤ 1−β
2T√

T
2

[
1 − sin πT

β

(
f − 1

2T

)]
, 1−β

2T ≤ |f | ≤ 1+β
2T

0, |f | ≥ 1+β
2T

(11.9)

where β = 0.5 for a 50% roll-off [1]. These filters are optimum in the sense that they
produce a finite bandwidth waveform with zero ISI and also produce optimum BER
performance over AWGN channels. It is customary to include a 1/sinc function in
the transfer function of the transmit filter in order to compensate for the fact that
the QPSK waveform at filter input is a rectangular non-return-to-zero (NRZ) pulse
waveform rather than an impulse waveform. The filter transfer function given in
the preceding equation will produce a response with zero intersymbol interference
(ISI) only when the input is a sequence of impulses. Instead of including a 1/sinc
function, we can use an impulse sequence representation of the QPSK waveform; in
this case, only the first of the 12 samples for the kth QPSK symbol has the value
Ak + jBk and the remaining 11 samples are zeros.

The SQRC filters are implemented as finite duration impulse response (FIR)
filters, since an infinite duration impulse response (IIR) implementation will be
very difficult since the transfer function is not given in pole-zero form in the s
(Laplace transform) domain as discussed in Chapter 5. We will assume that an
impulse invariant transformation with time-domain convolution is used for each
filter. The impulse response of the SQRC filter is given by [1]

hT (t) = hR(t) = 8β
cos [(R + 2β)πt] + sin [(R − 2β)πt] (8βt)−1

π
√

R
[
1 − (8βt)2

] ,

−∞ < t < ∞ (11.10)

“TranterBook” — 2003/11/18 — 16:12 — page 432 — #450
�

�

�

�

�

�

�

�

432 Methodology for Simulating a Wireless System Chapter 11

Since this is clearly a noncausal filter, the impulse response is truncated to a length
of four symbols on either side of zero yielding a truncated duration of eight symbols.
Shifting the resulting impulse response by four symbols then yields a causal time
function.

Channel : The quasi-static channel model defined in (11.2) is characterized by
two random variables ã and τ . Each simulation is executed with fixed values of ã
and τ drawn from a Raleigh and uniform distribution, respectively. The value of τ
is rounded off to an integer number of samples, say, r, and the simulation model for
the channel consists of a direct path and a delayed path with a delay of r samples
and attenuation ã. This model is trivial to implement.

Equalizer : The SQRC filters will produce zero ISI only when the channel transfer
function is ideal over the bandwidth of the signal (which in this example is 0.75 times
the symbol rate). Since the channel in this case is nonideal, some residual ISI will
be present in the system and this residual ISI can be minimized by the use of an
equalizer in the receiver. While a wide variety of equalizers are available, we chose
to include a 9 tap, synchronously spaced LMS (linear minimum mean squared error)
equalizer to illustrate several aspects of methodology.

A gradient algorithm is normally used for iteratively adjusting the equalizer
weights. If the equalizer convergence is simulated, this has to be done via a Monte
Carlo simulation using a training sequence for the input and with noise samples
injected during the simulation. Since the LMS equalizer is a linear filter, and the
noise at the input to the receiver is AWGN, the noise at the output of the equalizer
will be additive and Gaussian, and hence a semianalytic technique can be used
for error probability estimation. For BER estimation, we need to simulate only
the effects of ISI distortion, and the effects of additive white Gaussian noise can
be handled analytically without having to do a Monte Carlo simulation with noise
samples.

We could consider two approaches for handling the equalizer when using a semi-
analytic technique for BER estimation. We can run a short Monte Carlo simulation
in the beginning, with noise samples included, wait until the equalizer weights
converge, and then “freeze” the equalizer weights and execute the performance es-
timation simulation with the noise source turned off.

The second approach that could be used for the equalizer is based on the well-
known fact that the equalizer weights will converge to a weight vector whose value
can be computed analytically according to

W̃ = Γ−1R∗ (11.11)

where W̃ is the weight vector, Γ is the “channel covariance matrix,” and R is a
vector of sampled values of the unequalized impulse response of the system from
the input to the transmit filter to the output of the receive filter [2]. This un-
equalized impulse response, sampled at the symbol rate, can be obtained from a
calibration run in which a unit impulse is applied at the transmit filter input and
the impulse response is recorded at the output of the receive filter. The sampled
values of the impulse response are used to compute the autocorrelation function of
the unequalized impulse response and the entries in the matrix Γ are obtained from

“TranterBook” — 2003/11/18 — 16:12 — page 433 — #451
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 433

the values of the autocorrelation function. Diagonal entries in Γ will include the au-
tocorrelation value at zero lag plus the noise variance at the input to the equalizer,
which can be computed knowing the input noise PSD and the noise bandwidth of
the receive filter. With this approach, the equalizer weights can be computed prior
to the simulation for BER estimation as part of the “calibration process” and the
equalizer can be treated as an FIR filter during the BER simulations.

When we use a direct Monte Carlo simulation for performance estimation, the
noise source will be “on,” and hence the iterative (gradient) method is used at the
beginning to let the equalizer weights converge. The weights are then frozen during
performance estimation. (If the semianalytical method is used for BER estimation,
the noise source will be turned off during the semianalytical BER estimation phase.)

Pure Monte Carlo Approach to Performance Estimation

In the direct Monte Carlo approach, the input and noise processes are explicitly
simulated. An estimate of the error rate for each Eb/N0 and channel condition
is obtained by counting the number of errors between the symbol sequence at the
input to the modulator S̃k and at the output of the decision device W̃k. While
the equalizer can provide amplitude normalization (which is not necessary with
QPSK modulation) and can also compensate for phase offsets, a calibration run
must be executed at the beginning to establish a timing reference for the equalizer
and for lining up the input and output symbol sequences. Also, an initial training
sequence might have to be used to aid in the equalizer convergence and the error
rate estimation should start only after the equalizer weights have converged and are
frozen. The essential steps in the Monte Carlo simulation are as follows:

1. Draw a set of ã and τ and start with the initial value of Eb/N0.

2. Execute a calibration run to establish a timing reference for the equalizer and
for lining up the input and output for error counting.

3. Train the equalizer and freeze the weights (noise source turned on with the
variance value computed from Eb/N0).

4. Start the Monte Carlo simulation for performance estimation and run the
simulation until about 50 errors are counted.

5. Repeat for all values of Eb/N0 and 10,000 channel conditions.

6. Compute the histogram of q for each value of Eb/N0.

While the direct Monte Carlo approach is simple to implement in principle, it
does require long simulation runs for each value of Eb/N0 and channel condition.
Even if each simulation takes only a few seconds of CPU time, the total effort
required to repeat the simulations for 10,000 channel conditions and 10 values of
Eb/N0 might be overwhelming.

Since the receiver is linear (an LMS equalizer is an FIR filter), and the noise is
additive and Gaussian at the receiver input, the noise at the output will also be

“TranterBook” — 2003/11/18 — 16:12 — page 434 — #452
�

�

�

�

�

�

�

�

434 Methodology for Simulating a Wireless System Chapter 11

additive and Gaussian. Hence we can use the semianalytic approach for performance
estimation.

Semianalytic Approach to Performance Estimation

The BER in the system will be a function of intersymbol interference and additive
Gaussian noise, the effects of which can be handled analytically. Hence only the ISI
produced by the cascade of the transmit filter, the channel, the receive filter, and
the equalizer is simulated. The BER is estimated (assuming that the transmitted
signal constellation point is (1,1), which maps to (A,A) at the equalizer output as
shown in Figure 11.7) using the semianalytic approach described in the previous
chapter. This gives

q̂ =
1
M

M∑
i=1

{1 − {[1 − Q (A + dxi/σx)] [1 − Q (A + dyi/σy)]}}

≈ Q (A + dxi/σx) + Q (A + dyi/σy) (11.12)

where dxi and dyi are the direct and quadrature components of ISI associated with
the ith simulated symbol, σ2

x and σ2
y are the variances of the direct and quadrature

components of the noise at the output of the equalizer, and M is the number of
symbols simulated.

The values of σ2
x and σ2

y are computed using

σ2
x = σ2

y = N0BN (11.13)

Signal + ISI (i
th

transmitted symbol)
A + dyi

A + dxi
(A,-A)(-A,-A)

(-A,A) (A,A)

Figure 11.7 Semianalytic BER estimation for the QPSK signal.

“TranterBook” — 2003/11/18 — 16:12 — page 435 — #453
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 435

where N0/2 is the PSD of the two-sided bandpass noise at the input to the receive
filter and BN is the noise bandwidth of the receive filter and the equalizer together.
The noise bandwidth is computed from a calibration run as outlined earlier.

The steps in applying semianalytic techniques for performance estimation are
as follows:

1. Initialization: Chose an initial value for Eb/N0 and the channel parameters.

2. Calibrations and equalizer weight determination:

• Establish a timing reference for the equalizer and the overall time delay.

• Obtain the unequalized impulse response via simulation by injecting an
impulse at the input A and compute the weight vector for the equalizer
using (11.11).

• Compute the noise bandwidth of the receive filter and the equalizer and
calibrate the variance of the noise at the output using (11.13).

3. Simulation: Simulate M symbols and estimate the BER according to (11.12).

4. Repeat for 10,000 channels and 10 values of Eb/N0 and compute the histogram
of q.

Faster Semianalytic Technique

The semianalytic error rate estimation can be speeded up considerably by com-
bining all the blocks, the transmit filter, the channel, the receive filter, and the
equalizer (after weights have been computed and set) into one single block, since all
of them are linear time-invariant components. Since no noise samples are injected,
these components of the system, which are in cascade, process the QSPK waveform
signal in a pipeline fashion. From a performance estimation point of view we are
simply interested in the waveform at the output of the equalizer. Since we are not
interested in the waveforms at the outputs of the other blocks in the system, there is
really no need for processing the input waveform through each individual block. By
combining all the blocks into one and processing the input waveform, the equivalent
representation will be computationally very efficient.

The overall impulse response of the system is

h̃ (kTs) = h̃T (kTs) ∗ h̃c (kTs) ∗ h̃R (kTs) ∗ h̃eq (kTs) (11.14)

and this response can actually be obtained via simulation by injecting an impulse
at point A and measuring the impulse response at the output of the equalizer
(point F in Figure 11.4). The overall impulse response can be truncated and the
entire system can be simulated as a single FIR filter. An example of the overall
impulse response is shown in Figure 11.8. Note the delay through the system
is approximately 135 samples and the impulse response can be truncated to 108
samples from sample number 135 to 242. The impulse response is assumed to be
zero outside this interval. The time index for the nonzero values of the impulse
response are renumbered from 0 to 107 for notational convenience.

“TranterBook” — 2003/11/18 — 16:12 — page 436 — #454
�

�

�

�

�

�

�

�

436 Methodology for Simulating a Wireless System Chapter 11

(b) Truncated impulse response sampled at the symbol rate (1 sample/sym)

(a) Truncated impulse response sampled at 178,200 samples per second (12 samples/sym)

135 140 235187
(107)
240

(53)(0)

Maximum value of
the impulse

1

2

3

40

5 7

8 6
 j

~
()

~
h jT hj=

Figure 11.8 Truncated impulse response sampled at 12 samples per symbol and 1 sample
per symbol.

A detailed waveform level simulation of the model will be executed at the sam-
pling rate of rs = 172, 800 samples per second according to the equation

z̃ (mTs) =
107∑
p=0

h̃ (pTs) x̃ ((m − p)Ts) (11.15)

where x̃ (mTs) are the sampled values of the QPSK waveform at the input to the
transmit filter, z̃ (mTs) is the output of the equalizer, and h̃ (pTs) , p = 0 to 107 are
the truncated values of the overall impulse response. The output of the equalizer is
sampled starting at sample number 187 (why) and once every 12 samples afterward
to produce the decision metric z̃k, and a decision W̃k (estimate of the transmitted
symbol) is made based on the value of the decision metric. As far as performance
estimation is concerned, we are interested only in every 12th sample (one every sym-
bol) of the equalizer output, corresponding to decision times, and the intervening
samples are of no interest or use. Since the equalizer operates with a tap spacing of

“TranterBook” — 2003/11/18 — 16:12 — page 437 — #455
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 437

12 samples (or one symbol duration T), we can write an expression for the decision
metric using every 12th sample of the impulse response (see Figure 11.8) as

z̃i =
8∑

j=0

h̃jS̃i−j (11.16)

Note that (11.16) is the entire simulation model for semianalytic error rate
estimation; we simply generate a sequence of QPSK symbols and process them
through (11.16). This requires only eight operations per symbol to produce the
values of the decision metric, which represents the input symbol with additive ISI.
The semianalytic error computation given in (11.12) is applied to the sequence z̃i.

It is easy to see that the model given in (11.16) will be about two orders of
magnitude faster than the model given in (11.15), since we now compute the output
only once every 12th sample and each output sample requires only 8 multiply and
add operations, as opposed to 108 multiply and add operations for the model given
in (11.15). Compared to processing the QPSK waveform though each block, the
combined model in (11.15) will be a factor about three to four times faster, since
we have combined four blocks. Thus, the overall computational savings of the
simulation model given in (11.16) could be of the order of 1,000 compared to the
direct approach wherein we simulate the evolution of waveforms through each block
in the simulation model on a sample by sample basis.

The simulation model given in (11.16), coupled with the semianalytic approach
for BER estimation, will be computationally very efficient. The overall memory
length of the system is nine symbols and hence a PN sequence, having a period of
29 = 512 symbols, will be adequate to produce all possible ISI values except, of
course, the all-zero sequence. Thus, after calibration, each performance simulation
run consists of generating 512 QPSK symbols, computing the 512 output samples
according to (11.16), and applying the semianalytic estimation given in (11.16).
The essential steps in the fast analytic error rate estimation can be summarized as
follows:

1. Initialization: Chose an initial value for Eb/N0 and the channel parameters.

2. Calibrations and equalizer weight determination:

• Establish a timing reference for the equalizer and the overall time delay.

• Obtain the unequalized impulse response via simulation by injecting an
impulse at the input (point A) and compute the weight vector for the
equalizer using (11.11).

• Compute the noise bandwidth of the receive filter and the equalizer and
calibrate the variance of the noise at the output using (11.13).

• Obtain the equalized pulse response sampled at the symbol rate by inject-
ing an impulse at the input (point A) and sampling the impulse response
at the equalizer output once every symbol (Figure 11.8).

“TranterBook” — 2003/11/18 — 16:12 — page 438 — #456
�

�

�

�

�

�

�

�

438 Methodology for Simulating a Wireless System Chapter 11

3. Simulation: Generate M = 512 QPSK symbols, process them according to
(11.16), and estimate the error probability according to (11.12).

4. Repeat for 10,000 channels and 10 values of Eb/N0 and compute the histogram
of q.

Moment Method for BER Estimation

While the fast semianalytic technique described in the preceding section is computa-
tionally very efficient, the computational load increases significantly if the memory
length of the system and/or the order of the modulation scheme increases. The
increase in memory length results, since the number of symbols that need to be
simulated for all possible ISI values increase according to M = mL, where L is the
memory length of the system and m is the alphabet size (2 in the binary case).
When m and L are large, the simulation length will be very long. In such cases we
can use another method to reduce the computational burden.

The basic computation performed in (11.12) can be expressed

q̂ = E {Q (A + Dx/σx)} + E {Q (A + Dy/σy)} (11.17)

where the expectations are taken with respect to Dx and Dy, which are the random
variables that represent the direct and quadrature phase components of the ISI.
Rather than estimating this expected value by averaging over simulated values of
ISI, we can compute the moments of the ISI, approximate the distribution of Dx

and Dy using the computed moments of the ISI, and then perform the expected
value operation using the approximate distribution of ISI.

Let us consider approximating the distribution of Dx using its moments. From
(11.16), we can write the ISI term Dx as

Dx =
8∑

j=0
j �=0

αjAj −
8∑

j=0

βjBj (11.18)

where αj and βj are the real and imaginary components of the impulse response
(i.e., h̃k = αk+jβk), and Aj = ±1, Bj = ±1 are the real and imaginary components
of the QPSK symbol sequence. The moments of Dx can be computed according to

E
{
Dk

x

}
= E

 8∑

j=0
j �=0

αjAj −
8∑

j=0

βjBj

k , k = 1, 2, 3, ... (11.19)

Note that in the preceding equation the values of the impulse response are constants
whose values are known and Aj and Bj are independent binary random variables
with values ±1. The odd moments of Aj and Bj are zero and even moments are
1. Hence the computation of the moments of Dx involves a simple expansion of the
binomial sum in (11.19). We compute the expected values term by term, and add
them.

“TranterBook” — 2003/11/18 — 16:12 — page 439 — #457
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 439

From the moments of Dx we can obtain a discrete approximation to the distribu-
tion of Dx. In this approximation, Dx is treated as a discrete random variable with
J values d1,, dJ , with probabilities p1, ..., pJ . As a simple example of the princi-
ple, consider a discrete approximation of a Gaussian pdf as shown in Figure 11.9.

The abscissas x1,, xJ and the ordinates p1, ..., pJ are chosen such that the
continuous distribution and the discrete approximation yield the same moments

E (Xn) = µn =
J∑

k=1

xn
kpk (11.20)

Given the first 2J moments µ1, ..., µ2J of X, we can solve the set of 2J nonlinear
equations

µn =
J∑

k=1

xn
kpk, n = 1, 2, ..., 2J (11.21)

 pn

 p3
 p2

 p1

 x2 x1 xn

 x

 x

(a) Continuous pdf

(b) Discrete pdf

 fX (x)

 pJ

 xJ

Figure 11.9 Example of a discrete approximation of a Gaussian pdf.

“TranterBook” — 2003/11/18 — 16:12 — page 440 — #458
�

�

�

�

�

�

�

�

440 Methodology for Simulating a Wireless System Chapter 11

for the values of xk and pk, k = 1, 2, · · · , J . Details of the techniques used to
derive the discrete approximation of a distribution using its moments may be found
in [3, 4].

Using the discrete approximation for the ISI distribution we can compute
E {Q (A + Dx/σx)} as

E {Q (A + Dx/σx)} ≈

J∑
j=1

Q (A + dj/σx) pj (11.22)

The second term in (11.17) can be computed using a similar procedure.
Note that, in this method, there is no Monte Carlo simulation at all for perfor-

mance estimation! It is entirely analytic except for two single event simulations ;
one for obtaining the unequalized pulse response from which the equalizer weights
are computed and a second pulse response simulation to obtain the equalized pulse
response sampled at the symbol rate. The moments of the ISI distribution are
computed using (11.19) and the discrete approximation of the distribution of ISI
and the probability of error are also computed. In addition to the two single event
simulations, calibration runs have to be executed for establishing the timing ref-
erences for sampling the unequalized and equalized pulses and for calculating the
noise bandwidth of the receive filter.

The computational efficiency of the moment method will depend on the number
of moments needed to obtain a good approximation of the ISI distribution and the
computational load associated with computing the moments and the moment-based
approximation. The latter will be a function of the length of the impulse response,
which in many cases can be truncated to 10 or so symbols. Good approximations
of the ISI distribution can be obtained from the first six or eight moments.

The moment method is very useful if higher-order modulation schemes such
as 256 QAM are used. In this case the direct and quadrature phase waveforms
have 16 amplitude levels, and if the memory length is 10, then we need a 16-ary
PN sequence of length 1610 symbols to simulate all possible ISI values. Hence the
semianalytic method will require a long simulation, whereas the moment method
in this case will be computationally much more efficient. The key steps in applying
the moment method are summarized below:

1. Initialization: Chose an initial value for EbN0 and the channel parameters.

2. Calibration and equalizer weight determination:

• Establish a timing reference for the equalizer and the overall time delay.
• Obtain the unequalized impulse response via simulation by injecting an

impulse at the input A and compute the weight vector for the equalizer
[Equation (11.11)].

• Compute the noise bandwidth of the receive filter and the equalizer and
calibrate the variance of the noise at the output using (11.13).

• Obtain the equalized pulse response sampled at the symbol rate by inject-
ing an impulse at the input (point A in Figure 11.4) and sampling the im-
pulse response at the equalizer output once every symbol (Figure 11.8).

“TranterBook” — 2003/11/18 — 16:12 — page 441 — #459
�

�

�

�

�

�

�

�

Section 11.2. Overall Methodology 441

3. BER Computation:

• Compute the moments and moment based approximation of the distri-
bution of ISI.

• Compute the BER according to (11.22).

4. Repeat for 10,000 channels and 10 values of Eb/N0 and compute the histogram
of q.

11.2.2 Summary of Methodology
for Simulating the Analog Portion of the System

In this section we illustrated many important aspects of the methodology for simu-
lating the waveform processing portion of wireless communication systems operating
over slowly fading channels. Several approaches to simplifying the simulation prob-
lem were discussed and a number of performance estimation techniques were also
presented. These techniques range from pure Monte Carlo, to partial Monte Carlo,
to a totally analytic method.

In any performance estimation simulation, a considerable amount of up-front
effort must be expended for simplifying the simulation model and for examining
and evaluating the various approaches that are possible. These efforts will lead
to tremendous computational savings during performance estimation simulations.
While many of the details discussed in the context of the example presented in
this section may not be directly applicable to other problems, the overall method-
ology presented in this example should suggest the range of factors that should be
considered before reaching the final choice of a performance estimation procedure.

It should be obvious by now that calibration and single-event simulations for
measuring pulse and impulse responses play an important role prior to any perfor-
mance estimation. All of these calibrations do not have to be repeated for each
situation. For example, if the channel condition is fixed, the unequalized pulse
response does not have to be measured for each value of Eb/N0.

11.2.3 Estimation of the Coded BER

The next step in outage probability estimation is to obtain the coded bit error
probability PE(Eb/N0) from the uncoded bit error probability q(Eb/N0). This can
be accomplished semianalytically using the transfer function bound for the convo-
lutional code used for error correction. This technique was discussed in Chapter 8.

11.2.4 Estimation of Voice-Quality Metric

The last step in outage probability estimation is the mapping of the coded error
probability to the voice-quality metric. This is accomplished by injecting binary
errors between the output of the voice coder and the input to the decoder and
scoring the quality of the resulting voice output. By repeating the listening tests
for various values of the injected error rate, we can establish the relationship between
the error rate PE and the voice-quality metric V . An example is given in Table 11.1.

“TranterBook” — 2003/11/18 — 16:12 — page 442 — #460
�

�

�

�

�

�

�

�

442 Methodology for Simulating a Wireless System Chapter 11

Table 11.1 Relationship Between Error Probability and Voice Quality

PE Voice Quality V
> 10−1 1

10−1 to 5 × 10−3 2
5 × 10−3 to 10−4 3

10−4 to 10−6 4
< 10−6 5

Note that for this part of the performance evaluation process, the derivation of
the relationship between PE and V can be carried out independent of the previous
steps. Also, this table could have been obtained from the manufacturer of the voice
coder/decoder chip set.

From the preceding table it is clear that the outage probability P (V < 3) can
be expressed in terms of the distribution of PE as

Pr (V < 3) = Pr
{
Pe > 5 × 10−3

}
(11.23)

From the analytic bounds which relate PE to q we can establish the value of q, say,
q0, which yields PE > 5 × 10−3. The system outage probability then is equal to
P (q > q0), which can be obtained for different values of Eb/N0 from the distribution
of the BER q for the analog portion of the channel. The outage probability P (q >
q0), will decrease as Eb/N0 is increased, and by plotting the outage probability
as a function of Eb/N0, we can determine he minimum value of Eb/N0 needed to
maintain P (q > q0) < 0.02.

11.2.5 Summary of Overall Methodology

We now summarize the major steps in the methodology used for estimating outage
probability in a wireless communication system:

1. Determine the relationship between the coded error probability PE and the
voice-quality metric V by simulating the voice encoder/decoder for different
values of PE .

2. Compute the bounds that relate the uncoded probability of error q to the
coded probability of error PE .

3. Simulate the analog portion of the system for various values of Eb/N0 and
10,000 channel conditions and obtain the distribution of q for different values
of Eb/N0.

4. Map the distribution of q to the distribution of V and for different values of
Eb/N0 and determine the value of Eb/N0 needed to maintain the specified
outage probability.

“TranterBook” — 2003/11/18 — 11:36 — page 443 — #461
�

�

�

�

�

�

�

�

11.3 Summary

In this chapter we described the methodology used for estimating system-level per-
formance metrics such as outage probabilities in a typical wireless communication
system operating over a slowly fading channel. This problem requires extensive
simulations for several thousand channel conditions, and brute-force Monte Carlo
simulation is simply not feasible because of the computational burden involved.

Given the computational burden required for simulating the system for many
thousands of channel conditions, we need to carefully look at simplifying the sim-
ulation model, as well as at alternate techniques for estimating the error rate in
the system. Several approaches were discussed in this chapter for reducing the
computational burden associated with this problem, such as

1. Using a hierarchical approach and partitioning the problem so that the com-
plexity of simulations grow linearly rather than in a multiplicative manner for
various combinations of parameter values.

2. Simplifying the simulation model by combining various functional blocks and
looking at alternate approaches for simulating the behavior of individual com-
ponents (e.g., the channel covariance inversion technique for simulating the
equalizer).

3. Using semianaytical techniques when possible.

4. Running the simulations at symbol rate rather than at a rate of 8 to 16
samples/symbol.

5. Using moment based approximations for some of the pdfs involved in the
semianalytical procedure.

6. Reducing the entire simulation run to a small number of single-event simula-
tions and using analytical computations instead of Monte Carlo simulations
for estimating performance metrics.

7. Using a semianalytical technique for obtaining PE from q.

While the techniques discussed in this chapter may not be directly applicable to
a different simulation problem, the overall methodology clearly illustrates the need
to think through and carefully design the simulation experiment. By doing so, it is
possible to reduce the computational burden significantly.

11.4 Further Reading

An excellent example of the application of the methodology discussed here can be
found in

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000,
Chap. 12.

Section 11.4. Further Reading 443

“TranterBook” — 2003/11/18 — 16:12 — page 444 — #462
�

�

�

�

�

�

�

�

444 Methodology for Simulating a Wireless System Chapter 11

11.5 References

1. G. L. Stuber, Principles of Mobile Communication, Boston: Kluwer Academic
Publishers, 1996.

2. J. Proakis, Digital Communications, 3rd ed., New York: McGraw-Hill, 2000.

3. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Mineola,
NY: Dover, 1972.

4. A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Englewood
Cliffs, NJ: Prentice Hall, 1966.

11.6 Problems

11.1 Consider a binary baseband system in which the received signal at sampling
instants consists of yk = Ak + Dk +nk where {Ak} is the transmitted symbol
sequence, Dk is the intersymbol interference, and nk is the noise. Assume the
symbol sequence to be independent and Ak = ±1. The ISI term is given by

D = Dk =
5∑

j=1

hjAj−k

where the sampled values of the overall impulse response of the system that
contribute to ISI are tabulated below:

h1 h2 h3 h4 h5

0.20 0.10 0.08 0.07 0.05

(a) Find the exact distribution of the ISI values.

(b) Find first 10 moments of the ISI.

(c) Find a moment matching approximation to the ISI distribution using
three values of ISI in the approximation.

(d) Compare the probability of error using the exact distribution of the ISI
values and the moment matching approximation.

11.2 Repeat Problem 11.1 for a QPSK signal where the I and Q symbol sequences
{Ak, Bk} are made up of independent binary values ±1 and the overall com-
plex lowpass equivalent response of the system is given in the table below:

h̃1 h̃2 h̃3 h̃4 h̃5

0.20 + j0.08 0.10 + j0.06 0.08 0.07 0.05

where

ỹk = S̃k + D̃k + ñk

“TranterBook” — 2003/11/18 — 16:12 — page 445 — #463
�

�

�

�

�

�

�

�

Section 11.6. Problems 445

S̃k = Ak + Bk

and

D̃k =
5∑

j=1

h̃jSk−j

11.3 Develop a recursive formula for computing the moments of the ISI. In other
words, do an expansion of

Dn =

 5∑
j=1

hjAj−k

n

and arrange it such that the nth moment can be computed by successively
adding the contributions coming from h1, h2, h3, · · · .

11.4 Use the approximations for a Gaussian pdf given in reference [3] with 20
points and compare the first eight moments of the actual Gaussian pdf with
the moments of the approximation.

11.5 Simulate a 5 tap LMS equalizer for a binary system with the impulse response
values given in Problem 11.1 using ordinary Monte Carlo simulations (gradient
algorithm) with noise samples injected and compare the mean square error
results with the weight vectors obtained from the channel covariance inversion
method (Figure 11.10).

Channel with ISI 5 Tap LMS
Equalizer

kA

kkkk nDAy ++=

yk

Figure 11.10 Simulation setup for Problem 11.5. EbN0 = 6 dB.

“TranterBook” — 2003/11/18 — 16:12 — page 446 — #464
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 447 — #465
�

�

�

�

�

�

�

�

PART III

Advanced Models
and Simulation Techniques

Chapter 12

MODELING
AND SIMULATION
OF NONLINEARITIES

Simulation models of functional blocks in communication systems fall into three
broad categories as follows:

1. Linear time-invariant causal systems such as filters and static communication
channels

2. Linear time-varying systems such as fading channels and linear equalizers

3. Nonlinear time-invariant systems such as high-power amplifiers, limiters, and
phase-locked loops (PLLs)

While most of the functional blocks in a communication system are either linear or
can be approximated by linear behavior, there are many functional blocks that are
nonlinear. Some of these components are inherently nonlinear and are intention-
ally included in the system to improve performance. A limiter, for example, is a
nonlinear element that may be included at the front end of a receiver to improve

447

“TranterBook” — 2003/11/18 — 16:12 — page 448 — #466
�

�

�

�

�

�

�

�

448 Modeling and Simulation of Nonlinearities Chapter 12

performance in the presence of impulsive noise. Another example of a nonlinear
device that produces better performance over its linear counterpart is the decision
feedback equalizer (DFE). Other functional blocks, such as a high-power amplifier,
however, may exhibit unintentional nonlinear behavior.

12.1 Introduction

There are many functional blocks in communications systems whose intended or
desired behavior is linear but the physical devices that are used to implement these
functions may produce nonlinear effects over certain ranges of operation. One ex-
ample of such a device is a high-power amplifier, which might exhibit limiting and
saturation when the input amplitude or power is very large.

Mathematical analysis of the effects of nonlinearities is, in general, very difficult.
Even in the case of a simple third-order memoryless nonlinearity such as

y(t) = x(t) − 0.2x3(t) (12.1)

it is very difficult in general to compute the probability density function (pdf) and
the autocorrelation function of the output y(t) given the pdf and the autocorre-
lation function of the input x(t). Using simulation, however, it is very easy to
generate sampled values of the of the input {x(kTs)} and then use (12.1) to gener-
ate sampled values of the output {y(kTs)}. From the two sequences {x(kTs)} and
{y(kTs)} one may estimate a number of quantities of interest including the pdf and
autocorrelation function of x(t), the pdf and autocorrelation function of y(t), and
the crosscorrelation of x(t) and y(t). Indeed, simulation may be the only method
available for the analysis and design of communication systems containing nonlin-
earities, as well as nonideal filters and non-Gaussian noise. This chapter focuses
on methods of modeling and simulating nonlinear components in communication
systems.

12.1.1 Types of Nonlinearities and Models

Nonlinearities in communication systems may be either baseband or bandpass. For
example, a limiter is an example of a baseband nonlinearity whereas a radio fre-
quency (RF) amplifier is a bandpass nonlinearity. The input to a bandpass non-
linearity will be centered at some frequency fc and the spectral components of the
output will lie in the neighborhood of fc. Harmonic terms near 2fc, 3fc · · · , will
not be of interest in most cases, since the functional blocks “downstream” from
the nonlinearity will usually reject the harmonic terms. (One example of where
the harmonic terms might be of interest is in the analysis of “spurs,” or spurious
components, in the output of mixers.) The most commonly used model for a band-
pass nonlinearity is a baseband nonlinearity followed by a “zonal filter” that passes
only those components that lie within on near the edge of the band of frequencies
occupied by the input to the nonlinearity.

Another classification of nonlinearity is based on whether the nonlinearity is, or
is not, memoryless. The output of a memoryless nonlinearity at time t will depend

“TranterBook” — 2003/11/18 — 16:12 — page 449 — #467
�

�

�

�

�

�

�

�

Section 12.1. Introduction 449

 Input OutputInput
Filter

Memoryless
Nonlinearity

Output
Filter

Figure 12.1 Model for a frequency selective nonlinearity with memory.

only on the instantaneous value of the input at time t, whereas a nonlinearity with
memory will generate an output at time t that is a function of the present and past
values of the input. Devices with memory will exhibit frequency-selective behavior,
and they are usually modeled by a memoryless nonlinearity “sandwiched” between
two filters as shown in Figure 12.1. The filters account for the frequency-selective
properties of the nonlinearity with memory.

Bandpass nonlinearities can be modeled and simulated using the real-valued
bandpass version of the signals. As we will see later on, the behavior of most
bandpass nonlinearities can also be modeled and simulated in terms of the low-
pass complex envelopes of the bandpass signals. The lowpass complex envelope
representation leads to significant computational savings and hence is the preferred
simulation technique.

Nonlinear devices may also be described by nonlinear differential equations. In
this case, the simulation may be carried out in the form of a recursive solution of the
nonlinear differential equations. An alternate approach is to represent the nonlinear
system in block diagram form (if possible) and simulate the block diagram model.
This approach is called an assembled block diagram method.

The assembled block diagram method was treated in some detail in Chapter 6
when we studied the phase-locked loop, but to briefly review consider a subsystem
described by the differential equation

d2y(t)
dt2

+ t2
dy(t)
dt

+ ln (|y(t)|) = x(t) (12.2)

This differential equation can be rearranged as

d2y(t)
dt

= −t2
dy(t)
dt

− ln (|y(t)|) + x(t) (12.3)

which can be represented in a block diagram form as shown in Figure 12.2. As we
saw in Chapter 6, the simulation immediately follows by representing the continuous-
time integrations by an appropriate algorithm for discrete-time integration.

The nonlinear differential equation given in (12.2) can also be simulated directly
using recursive numerical integration techniques. This method is computationally
very efficient, but requires some up-front effort to derive the model. For this reason,
it is usually reserved for very complex nonlinear devices.

12.1.2 Simulation of Nonlinearities—Factors to Consider

There are a number of factors to be considered when one attempts to simulate
the behavior of a nonlinearity. The simulation of nonlinearities is almost always
performed in the time domain except for filters included in the model to account

“TranterBook” — 2003/11/18 — 16:12 — page 450 — #468
�

�

�

�

�

�

�

�

450 Modeling and Simulation of Nonlinearities Chapter 12

d y t

dt

2

2

() dy t

dt

() y(t)

∫ ∫

ln •c ht 2

x t()

− −

Figure 12.2 Assembled block diagram model for a nonlinearity.

for frequency-selective behavior. Filters, of course, can be simulated in the time
domain or in the frequency domain.

To illustrate some of the factors that must be considered in the process of mod-
eling or simulating a nonlinearity, assume that the model takes the form of either
the zero-memory model described by (12.1) or the frequency-selective model shown
in Figure 12.1.

Sampling Rate

The first factor we have to consider is the sampling rate. For a linear system we
typically set the sampling rate at 8 to 16 times the bandwidth of the input signal.
In the case of a nonlinearity of the form

y(t) = x(t) − 0.2x3(t) (12.4)

where the input x(t) is a deterministic finite energy signal, the transform Y (f) of
the output y(t) will be given by

Y (f) = X(f) − 0.2X(f) � X(f) � X(f) (12.5)

where � denotes convolution. The triple convolution will lead to a threefold increase
in the bandwidth of Y (f) over the bandwidth of X(f). This effect is called spectral
spreading and is an effect of the nonlinearity. If y(t) is to be represented adequately
without excessive aliasing error, the sampling rate must be set on the basis of the
bandwidth of y(t), which has much higher bandwidth than x(t). Thus, in setting
the sampling rate for simulating a nonlinearity, we must take spectral spreading
into account and set an appropriately high sampling rate. However, the sampling
frequency actually required for simulation will not be as high as that indicated in
this example (see Section 12.2.2 on the zonal bandpass model).

Cascading

Another factor that we have to consider is the effect of cascading linear and nonlinear
blocks as in Figure 12.1. If we are using, for example, the overlap and add technique
for simulating the filters, we have to exercise caution. We cannot process blocks

“TranterBook” — 2003/11/18 — 16:12 — page 451 — #469
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 451

of data through the first filter, then through the nonlinearity and the second filter,
and perform overlap and add at the output of the second filter. This operation is
incorrect, since the principle of superposition does not apply for nonlinearities. A
correct processing technique is to apply overlap and add at the output of the first
filter, compute the time-domain samples representing the first filter output, process
these samples on a sample-by-sample basis through the memoryless nonlinearity,
and apply the overlap and add technique to the second filter. Note that this problem
does not occur in the overlap and save method, since superposition is not applied.

Nonlinear Feedback Loops

Feedback loops might require the insertion of a one-sample delay in the loop in
order to avoid computational deadlocks (recall, from Chapter 6, the feedback path
in a PLL simulation). A small delay in a linear feedback loop may not adversely
affect the simulation results. In a nonlinear system, however, a small delay in a
feedback loop might not only significantly degrade the simulation results but might
even lead to unstable behavior. In order to avoid these effects, the sampling rate
must be increased, which, in effect, decreases the delay.

Variable Sampling Rate and Interpolation

If the model is a nonlinear differential equation that is solved using numerical in-
tegration techniques, many numerical integration algorithms included in software
packages such as SIMULINK will use a variable integration step size. The step
size will be determined automatically at each step depending on the behavior of the
solution. If the solution is well behaved locally, then a large step size might be used.
In order to avoid aliasing problems in downstream blocks, it might be necessary to
interpolate the output and produce uniformly spaced samples of the output signal.

12.2 Modeling and Simulation of Memoryless Nonlinearities

The input-output relationship of a memoryless nonlinearity is given by

y(t) = F (x(t − t0)) (12.6)

where F (·) is a nonlinear function and t0 may be assumed to be zero. If x(t) is a
baseband signal, then y(t) will also be treated as a baseband signal. On the other
hand, if x(t) is a bandpass signal, then y(t) will in general be a bandpass signal,
but y(t) may also contain a dc term as well as harmonics of the input signal. In
practical cases, we might be interested in only those output terms whose spectral
contents lie near the input frequencies. We can select these components of interest
by adding a zonal bandpass filter at the output of the nonlinearity. Thus, the
terminology lowpass versus bandpass applies to the frequency content of the input
and the output. The nonlinearity itself is modeled as a simple instantaneous device.

In Chapter 4 the lowpass complex envelope representation for modeling and sim-
ulating bandpass signals through linear systems was developed. It is desirable to
have models for bandpass nonlinearities also in terms of complex lowpass envelopes

“TranterBook” — 2003/11/18 — 16:12 — page 452 — #470
�

�

�

�

�

�

�

�

452 Modeling and Simulation of Nonlinearities Chapter 12

of the input and output. It turns out that complex lowpass envelope models for
many nonlinear devices including limiters (recall the example in Chapter 4), broad-
band RF amplifiers, phase-locked loops, decision feedback equalizers, and timing
recovery systems can be derived.

12.2.1 Baseband Nonlinearities

The input to a baseband nonlinearity is a real-valued signal x(t) and its output is
also a real-valued signal, y(t). The nonlinearity is modeled as y(t) = F (x(t)). The
most commonly used models of baseband nonlinearities are the power series model
and the limiter model. The power series model is defined by

y(t) =
N∑

k=0

akxk(t) (12.7)

and the general limiter model has the form [1]

y(t) =
Msgn(x(t))

[1 + (m/ |x(t)|)s]1/s
(12.8)

In (12.8), M is the limiting value of the output, m is the input limiting value, and
s is the “shape” parameter. The normalized input-output relationship for a limiter
is given in Figure 12.3 for different values of s. Note that s = ∞ corresponds to a
“soft” limiter and m = 0 corresponds to a hard limiter. Also, note that with m = 0,
the value of s has no effect on the characteristic of the nonlinearity described by
(12.8). Figure 12.3 can be generated with the following MATLAB program:

% File: c12_limiter.m
x = -10:0.1:10; % input voltage vector
M = 1; % output limiting value
m = 1; % input limiting value
s = [0.5 1.0 10.0]; % vector of shape factors
for k = 1:201

xx=x(k);
num = M*sign(xx);
for kk = 1:3
xxx=(m/abs(xx))^s(kk);
den = (1+xxx)^(1/s(kk));

y(k,kk) = num/den;
end

end
plot(x,y(:,1),‘k-’,x,y(:,2),‘k:’,x,y(:,3),‘k--’);
grid
xlabel(‘Input Voltage’)
ylabel(‘Output Voltage’)
legend(‘s=0.5’,‘s=1.0’,‘s=10.0’,2)
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 453 — #471
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 453

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input Voltage

O
u

tp
u

t
V

o
lt

a
g

e

s=0.5
s=1.0
s=10.0

Figure 12.3 Limiter characteristics.

The student is encouraged to examine the behavior of the model for various values
of m and s.

Simulation of the models given in (12.7) and (12.8) is trivial and it is always
implemented in the time domain. We simply generate sample values of x(t), process
these samples through (12.7) or (12.8) to generate samples of y(t). The samples of
y(t) are then used as input to the downstream blocks. The properties of y(t), when
the input x(t) is a random process, can be estimated from the samples {y(kTs)}.
We do need to pay careful attention to the sampling rate requirements as discussed
at the beginning of this section.

12.2.2 Bandpass Nonlinearities—Zonal Bandpass Model

Memoryless bandpass models are used to characterize a variety of narrowband
nonlinear bandpass devices encountered in communications systems. The word
memoryless implies not only an instantaneous relationship between input and out-
put, but also implies that the device does not exhibit frequency-selective behavior
over the bandwidth of operation. The bandwidth of the nonlinear device and the
bandwidth of the signal are both assumed to be much less than fc, where fc is the
carrier frequency.

“TranterBook” — 2003/11/18 — 16:12 — page 454 — #472
�

�

�

�

�

�

�

�

454 Modeling and Simulation of Nonlinearities Chapter 12

When the bandwidth becomes wider, the nonlinearity may exhibit frequency-
selective behavior, and we use appropriate frequency-selective models for such de-
vices. Frequency selectivity is synonymous with memory, and the most commonly
used model for frequency-selective nonlinearities (i.e., nonlinearities with memory)
consists of a memoryless nonlinearity sandwiched between two filters as illustrated
in Figure 12.1. We will focus on bandpass nonlinearities without memory in this
section and deal with nonlinearities with memory in the next section.

Consider a memoryless nonlinearity of the form

y(t) = x(t) − 0.2x3(t) (12.9)

Assume that the input is a bandpass random signal of the form

x(t) = A(t) cos[2πfct + φ(t)] (12.10)

where the amplitude A(t) and the phase deviation φ(t) are lowpass random processes
having bandwidth B
 fc (the narrowband assumption). From (12.9) and (12.10)
we obtain the output of the nonlinearity Y (t) as

y(t) = A(t) cos[2πfct + φ(t)] − 0.2{A(t) cos[2πfct + φ(t)]}3

= A(t) cos[2πfct + φ(t)] − 0.2
4

A3(t){cos[6πfct + 3φ(t)] + 3 cos[2πfct + φ(t)]}

= [A(t) − 0.6
4

A3(t)] cos[2πfct + φ(t)] − 0.2
4

A3(t) cos[6πfct + 3φ(t)] (12.11)

In the preceding equation, the first term is at the center or carrier frequency
fc and the last term is at the third harmonic of the carrier frequency 3fc. The
bandwidth of the third harmonic will be of the order of 3B. Since our assumption
is that fc � B, the second term will be well outside the bandwidth of interest. We
can therefore approximate the first zone output of the nonlinearity as

z(t) ≈ [A(t) − 0.6
4

A3(t)] cos[2πfct + φ(t)] (12.12)

or

z(t) ≈ f(A(t)) cos[2πfct + φ(t)] (12.13)

where

f(A(t)) = [A(t) − 0.6
4

A3(t)] (12.14)

Thus, the model for a narrowband, memoryless nonlinearity is a memoryless
nonlinearity followed by a “zonal” bandpass filter that passes only the “first zone”
output near fc. The model is illustrated in Figure 12.4, in which x(t) and y(t)
represent the bandpass input and output of the model, respectively, and the center
frequency of the zonal bandpass filter is fc. The memoryless nonlinearity itself
does not respond differently to the baseband or bandpass input, and it is also not
sensitive to the carrier frequency. It is the zonal bandpass filter that turns the
baseband model into a bandpass model at fc.

“TranterBook” — 2003/11/18 — 16:12 — page 455 — #473
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 455

Memoryless
Nonlinearity

Zonal
Bandpass

Filter

z (t) y (t)x t()

Figure 12.4 Zonal Bandpass Model for a Memoryless, Narrowband Nonlinearity.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Note that for the power series model, the bandpass output y(t) has the same
form as the input with the output amplitude related to the input amplitude via
f(A(t)) and the output phase is the same as the input phase. The function f(A(t))
is referred to as the input amplitude to output amplitude, or the AM-to-AM transfer
characteristic, of the nonlinearity. A limiter or power series model affects only the
amplitude of the input signal. The phase is unaffected by the model.

In terms of the complex envelopes of the input x(t) and the output z(t), the
lowpass equivalent model for the power series nonlinearity is

x̃(t) = A(t) exp [jφ(t)] (12.15)

and

z̃(t) = f [A(t)] exp [jφ(t)] (12.16)

The power series model can be simulated using the zonal bandpass model given
in (12.13) and Figure 12.4 or the lowpass equivalent model given in (12.16). Simu-
lating the bandpass model requires a much higher sampling rate and computational
complexity than the lowpass equivalent model. Fortunately it is possible to derive
lowpass equivalent models for most memoryless nonlinearities either analytically or
from measurements as shown in the following sections.

12.2.3 Lowpass Complex Envelope
(AM-to-AM and AM-to-PM) Models

Devices such as bandpass amplifiers, which respond to bandpass inputs having
spectra centered on the carrier frequency, produce outputs that are bandpass in
nature. The spectral components of these bandpass outputs are centered on the
carrier frequency but perhaps have larger bandwidths than the input signal. Such
devices can be modeled using the complex envelope representations of the input
and output signals.

Suppose the input to a memoryless bandpass nonlinearity is of the form

x(t) = A(t) cos[2πfct + φ(t)] = A cos(α) (12.17)

where

α = 2πfct + φ(t) (12.18)

“TranterBook” — 2003/11/18 — 16:12 — page 456 — #474
�

�

�

�

�

�

�

�

456 Modeling and Simulation of Nonlinearities Chapter 12

The output of the memoryless nonlinearity y(t) = F (x(t)) can be expressed as

y(t) = F (A cos(α)) (12.19)

Since A cos(α) is periodic in α, y(t) will also be periodic in α. Therefore, y(t) can
be expanded in a Fourier series:

y(t) = a0 +
∞∑

k=1

(ak cos(kα) + bk sin(kα)) (12.20)

where ak and bk are the Fourier coefficients given by

ak =
1
π

∫ 2π

0

F (A cos(α)) cos(kα)dα (12.21)

and

bk = − 1
π

∫ 2π

0

F (A cos(α)) sin(kα)dα (12.22)

The first zone output z(t) in the vicinity of fc is given by the k = 1 term in the
Fourier series. This gives

z(t) = f1(A(t)) cos[2πfct + φ(t)] − f2(A(t)) sin[2πfct + φ(t)] (12.23)

where

f1(A) = a1 =
1
π

∫ 2π

0

F (A cos(α)) cos(α)dα (12.24)

and

f2(A) = −b1 = − 1
π

∫ 2π

0

F (A cos(α)) sin(α)dα (12.25)

The function f1(A) is sometimes called the first-order Chebyshev transform and
the complex function [f1(A) − jf2(A)] is called the describing function of the
nonlinearity.

The model given by (12.23) can also be expressed as

z(t) = f(A(t)) cos[2πfct + φ(t) + g(A(t))] (12.26)

where

f(A(t)) =
√

f2
1 (A) + f2

2 (A) (12.27)

and

g(A(t)) = arctan(f2(t)/f1(t)) (12.28)

“TranterBook” — 2003/11/18 — 16:12 — page 457 — #475
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 457

In polar coordinates we have

f(A) exp(jg(A)) = f1(A) + jf2(A) (12.29)

The functions f(A) and g(A) are the amplitude-to-amplitude (AM-to-AM) and
amplitude-to-phase (AM-to-PM) transfer characteristics of the nonlinearity.

The model given in (12.26) is a generalization of the input-output relationship
given in (12.12). Whereas the model given in (12.12) accounts for amplitude distor-
tion only, the model given in (12.26) includes both the amplitude distortion and the
phase distortion introduced by the nonlinearity, and it can be expressed in terms
of the complex lowpass equivalents of the input and output as

x̃(t) = A(t) exp[jφ(t)] (12.30)

and

z̃(t) = f(A(t)) exp(jg(A)) exp(jφ(t)) (12.31)

The model given in the preceding equation is in polar form, and it can be converted
to rectangular form

z(t) = sd(t) cos[2πfct + φ(t)] − sq(t) sin[2πfct + φ(t)] (12.32)

where the complex envelope can be expressed in terms of the direct or in-phase
component and the quadrature components of sd(t) and sq(t) as

z̃(t) = [sd(t) + jsq(t)] exp(jφ(t)) (12.33)

in which

sd(t) = f(A(t)) cos(g(A(t)) (12.34)

and

sq(t) = f(A(t)) sin(g(A(t)) (12.35)

Analytical Derivation of AM–to-AM and AM-to-PM Characteristics

The AM-to-AM and AM-to-PM transfer characteristics can be derived for a zonal
bandpass nonlinearity using (12.23). For a hard-limiter type nonlinearity [see (12.8)
with m = 0] it can be easily shown that

f(A) =
4
π

M (12.36)

and

g(A) = 0 (12.37)

The value of f(A) is simply the amplitude of the fundamental sinusoidal component
(the “first zone output”) present in the square wave output of the limiter.

“TranterBook” — 2003/11/18 — 16:12 — page 458 — #476
�

�

�

�

�

�

�

�

458 Modeling and Simulation of Nonlinearities Chapter 12

For the so-called soft-limiter type nonlinearity [see (12.8) with s = ∞], f(A)
and g(A) can be shown to be [1]

f(A)
A

=

M
m ,
2
M

[
arcsin

(
m
A

)
+
(

m
A

) (
1 − m2

A2

)1/2
]

,
A < m
A ≥ m

(12.38)

and

g(A) = 0 (12.39)

which illustrates that the limiter does not introduce any phase distortion.
For any arbitrary memoryless zonal bandpass nonlinearity, we can derive f(A)

and g(A) analytically if the transfer characteristics of the nonlinearity are given
and if the integrals in (12.21) and (12.22) can be evaluated in closed form. In some
cases we might be able to derive the lowpass equivalent model directly.

Consider for example a power series nonlinearity of the form

y(t) =
N∑

k=1

akxk(t) (12.40)

The bandpass input to the nonlinearity x(t) can be expressed in terms of its lowpass
complex envelope as

x(t) = Re {x̃(t) exp(j2πf0t)}
=

1
2

[x̃(t) exp(j2πf0t) + x̃∗(t) exp(−j2πf0t)] (12.41)

In terms of the complex envelope, the nth power of x(t) can be expressed as

xn(t) =
1
22

n∑
k=0

(
n

k

)
[x̃(t)]k [x̃∗(t)]n−k exp (−j2πf0(2k − n)t) (12.42)

Only terms with n odd and 2k − n = ±1 in xn(t) will produce a first-zone output.
Hence the complex envelope of the first-zone output of the power series nonlinear-
ity is

ỹ(t) = x̃(t)
(N−1)/2∑

m=0

a2m+1

22m

(
2m + 1
m + 1

)
|x̃∗(t)|2m (12.43)

Equation (12.43) describes the complex lowpass equivalent model for a power series
type of nonlinearity. [The third-order power series nonlinearity discussed in Section
12.2.2 is a special case of the model given in (12.43).] Note that in this model there
is no phase distortion, that is, g(A) = 0.

“TranterBook” — 2003/11/18 — 16:12 — page 459 — #477
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 459

Measurement of AM-to-AM and AM-to-PM Characteristics

The AM-to-AM and AM-to-PM characteristics of bandpass amplifiers and many
other devices are normally determined experimentally from measurements and are
not derived analytically. The input to the amplifier will be an unmodulated carrier
of amplitude A and the output amplitude f(A) and the output phase g(A) are
measured for different values of A. Such measurements are called “swept-power
measurements” and the results of such measurements are usually included in the
data sheets for the amplifiers.

The AM-to-AM and AM-to-PM characteristics will be displayed in decibel units
of power. The output axis will be normalized with respect to the maximum output
power of the device at saturation and the input axis will be normalized with respect
to the input power that produces the maximum output. These normalized powers
are referred to as output backoff (OBO) and input backoff (IBO), respectively. If the
average input power is very small compared to the input power required to produce
the maximum output power, the amplifier will behave linearly. As the input power
is increased from this low level, the device will begin to exhibit nonlinear behavior.
Sometimes the “operating point” of the amplifier will be specified as so many dBs
below the input power required to produce the maximum output power. It is also
a common practice to normalize the gain of the amplifier to one. It is trivial to add
an ideal amplifier to account for the nonunity gain.

Measurements are typically made at a few input power levels, or equivalently,
at various levels of |A(t)|, and the measured characteristics will be given as a table.
During simulation it might be necessary to interpolate the values in the table for a
given input power level. Also, it should be noted that the model given in (12.30)
and (12.31) is in terms of voltage (or current) levels for x(t), A(t), etc., where
the AM-to-AM measurements are usually given in terms of power levels. In such
cases it will be necessary to convert the power gain or attenuation to voltage (or
current) gain or attenuation. An example of typical AM-to-AM and AM-to-PM
characteristics of a bandpass amplifier is shown in Figure 12.5. Also illustrated in
Figure 12.5 is the operating point and the backoff. The backoff is measured with
respect to the peak value of f (|A(t)|) and is specified with respect to the input
level, input backoff, or with respect to the output level, output backoff.

Analytical Forms of AM-to-AM and AM-to-PM Characteristics

It is often a common practice to approximate the measured AM-to-AM and AM-to-
PM characteristics by analytical forms and to use the analytical forms rather than
numerical interpolation for obtaining the output amplitude and phase values. Two
functional forms widely used to model the measured characteristics of RF amplifiers
[10] are given by

Sp(A) =
αpA

1 + βpA2
; Sq(A) =

αqA
3

(1 + βqA2)2
(12.44)

“TranterBook” — 2003/11/18 — 16:12 — page 460 — #478
�

�

�

�

�

�

�

�

460 Modeling and Simulation of Nonlinearities Chapter 12

|A (t)| (dB)

f A t[()]

g A t[()]

IBO

OBO

Operating
Point

 f
[A

(t
)]

 (
dB

);
 g

[A
(t

)]
 (

de
gr

ee
s)

Figure 12.5 AM-to-AM and AM-to-PM characteristics.

or

f(A) =
αfA

1 + βfA2
; g(A) =

αgA
2

1 + βgA2
(12.45)

The coefficients of the model, αp, αq, βp, and βq, or αf , βf , αg, and βg, are obtained
from data using numerical curve-fitting techniques.

Example 12.1. The following MATLAB code illustrates the generation of the
AM-to-AM and AM-to-PM characteristics using Saleh’s model as defined through
(12.45). The code for Saleh’s model is given in Appendix A in which the model
parameters are defined as αf = 1.1587, βf = 1.15, αg = 4.0, and βg = 2.1.

% File: c12 example1.m
x = 0.1:0.1:2; % input power vector
n = length(x); % length of x
backoff = 0.0; % backoff
y = salehs model(x,backoff,n); % nonlinearity model
subplot(2,1,1)
pin = 10*log10(abs(x)); % input power in dB
pout = 10*log10(abs(y)); % output power in dB
plot(pin,pout); grid;
xlabel(‘Input power - dB’)
ylabel(‘Output power - dB’)
subplot(2,1,2)
plot(pin,(180/pi)*unwrap(angle(y))); grid;
xlabel(‘Input power - dB’)

“TranterBook” — 2003/11/18 — 16:12 — page 461 — #479
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 461

ylabel(‘Phase shift - degrees’)
% End of script file.

Executing the program results in the output illustrated in Figure 12.6. �

-10 -8 -6 -4 -2 0 2 4
-8

-6

-4

-2

0

2

Input power - dB

O
u

tp
u

t
p

o
w

e
r

-
d

B

-10 -8 -6 -4 -2 0 2 4
0

100

200

300

400

Input power - dB

P
h

a
s

e
 s

h
ift

 -
 d

e
g

re
e

s

Figure 12.6 AM-to-PM characteristics.

12.2.4 Simulation of Complex Envelope Models

Complex envelope models can be simulated in the time domain in either polar
form, as defined in (12.30) and (12.31), or in quadrature form as defined in (12.33),
(12.34), and (12.35). The corresponding block diagrams are shown in Figure 12.7.
In polar form, the simulation procedure consists of the following steps:

1. Generate sampled values of the complex envelope of the input {x̃(kTs)}.
2. Compute the input amplitude A(kTs) = |x̃(kTs)|, and phase φ(kTs) =

arg
(

ex(kTs)
|ex(kTs)| .

)
.

3. Find the output amplitude using the AM-to-AM characteristic f(A). (Note:
This step might require interpolation of AM-to-AM values and conversion of
power gain to voltage or current gain.)

“TranterBook” — 2003/11/18 — 16:12 — page 462 — #480
�

�

�

�

�

�

�

�

462 Modeling and Simulation of Nonlinearities Chapter 12

f A jg A() exp ()
exp •b g

|~()|x t

 AM/PM

~()x t

g A()

~()

|~()|

x t

x t

~()y t

AM/AM

f A()

exp()jφ

|~()|x t

~()

|~()|

x t

x t

~()y t

~()x t
S tp ()

jS tq ()

exp()jφ

S jSp q+

(a) Polar model

(b) Quadrature model

Figure 12.7 Complex lowpass envelope models of a zonal bandpass nonlinearity.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

4. Find the output phase offset using the AM-to-PM characteristic g(A). (Note:
This step might require interpolation of AM-to-PM values.)

5. Compute sampled values of the complex output {z̃(kTs)} according to (12.31).

A similar procedure is used for implementing the quadrature model shown in Figure
12.7. Computationally, the two procedures are identical.

12.2.5 The Multicarrier Case

In our development of the AM-to-AM and AM-to-PM models we have thus far
implicitly assumed that the input to the nonlinear device consists of a single carrier
with amplitude modulation A(t) and frequency or phase modulation φ(t). While

“TranterBook” — 2003/11/18 — 16:12 — page 463 — #481
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 463

this might be the case in wideband single-carrier TDMA systems, the input signal
in a FDMA system might consist of many individually modulated carriers and
the sum of many such carriers might be amplified by a single-power amplifier. It
is rather straightforward to extend the AM-to-AM and AM-to-PM models to the
multicarrier case.

The Multicarrier Model

Suppose that the input to a nonlinearity consists of the sum of m modulated carriers

x(t) =
m∑

k=1

Ak(t) cos [2π (fc + fk) t + φk(t)] , −B

2
≤ fk ≤ B

2
(12.46)

where fk is the frequency offset of the kth carrier, fc is the nominal center frequency,
and Ak(t) and φk(t) represent the amplitude and phase modulation associated with
the kth carrier. We can express the composite multicarrier signal in lowpass complex
envelope form as (recall Section 4.3)

x(t) = Re {x̃(t) exp(j2πfct)} (12.47)

where the lowpass complex envelope x̃(t) is given by

x(t) =
m∑

k=1

Ak(t) exp [j2πfkt + jφk(t)] = A(t) exp [jφ(t)] (12.48)

In (12.48) the amplitude of the complex envelope is

A(t) =
√

x2
i (t) + x2

q(t) (12.49)

and the phase is

φ(t) = arctan [xq(t)/xi(t)] (12.50)

where

xi(t) =
m∑

k=1

Ak(t) cos [j2πfkt + jφk(t)] (12.51)

is the direct component and

xq(t) =
m∑

k=1

Ak(t) sin [j2πfkt + jφk(t)] (12.52)

is the quadrature component.
The lowpass complex envelope of the output, z̃(t), and the actual bandpass

output signal z(t) can be obtained from

z̃(t) = f(A(t)) exp [jg(A(t))] exp [jφ(t)] (12.53)

and

z(t) = Re {z̃(t) exp [j2πfct]} (12.54)

respectively.

“TranterBook” — 2003/11/18 — 16:12 — page 464 — #482
�

�

�

�

�

�

�

�

464 Modeling and Simulation of Nonlinearities Chapter 12

Intermodulation Distortion in Multicarrier Systems

Consider a power series nonlinearity of the form

y(t) = x(t) − a3x
3(t) (12.55)

followed by a zonal filter. Suppose that the input to the nonlinearity is the sum of
two modulated tones

x(t) = A1 cos [2π (fc + f1) t] + A2 cos [2π (fc + f2) t] (12.56)

where fc is the carrier frequency, f1 and f2 are the offset frequencies, and fi < B

f0, i = 1, 2. It can be shown that the first zone output (terms in the vicinity of fc)
is given by

z(t) =
{

a1A1(t) −
[
3
4
a3A

3
1(t) +

3
2
a3A

2
2(t)A1(t)

]}
cos [2π (fc + f1) t]

+
{

a1A2(t) −
[
3
4
a3A

3
2(t) +

3
2
a3A

2
1(t)A2(t)

]}
cos [2π (fc + f2) t]

− 3
4
A2

1(t)A2(t) cos [2π (fc + 2f1 − f2) t]

− 3
4
A2

2(t)A1(t) cos [2π (fc + 2f2 − f1) t] (12.57)

The preceding expression for the output consists of distorted terms at the input
frequencies as well as cross-modulated terms at fc + 2f1 − f2 and fc + 2f2 − f1,
which are usually referred to as “intermodulation” distortion terms. These in-
termodulation distortion terms degrade the overall signal quality and might also
produce adjacent channel interference if the frequency of these terms causes them
to fall outside the bandwidth of the signal of interest but inside the bandwidth that
might be occupied by an adjacent signal. (The reader can verify that even-powered
terms in a power series type nonlinearity do not produce any distortion terms in
the vicinity of the input frequency.)

It can be easily seen that, when the input consists of a large number of car-
riers or when the nonlinearity has many higher-order nonlinear terms, the output
will contain a very large number of terms at various linear combinations of the
input frequencies. While it is possible to develop an algorithm for the number of
intermodulation terms, and the frequencies of these terms, it is very difficult to
characterize and analyze the effects of the distortion introduced by the nonlinear-
ity analytically when the input consists of a large number of arbitrarily modulated
carriers and/or when the nonlinearity is severe. The communication literature is
full of techniques for approximating the effects of intermodulation distortion. How-
ever, an exact characterization of intermodulation in a multicarrier digital system
with arbitrary modulation schemes is difficult. Simulation is very useful in such
applications, as will be seen in the following section.

Example 12.2. Consider a memoryless third-order nonlinearity of the form

y(t) = x(t) − 0.3x3(t) (12.58)

“TranterBook” — 2003/11/18 — 16:12 — page 465 — #483
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 465

with a two-tone bandpass input x(t) at frequencies 11 and 14 Hz

x(t) = cos [2π (11) t] + 0.707 cos [2π (14) t] (12.59)

The bandpass versions of the input and output are shown in Figure 12.8. The
intermodulation terms generated by the nonlinearity lie at 8Hz and 17 Hz and the
third harmonics are around 33 and 42Hz.

The lowpass equivalent version of this example, with a reference frequency f0 =
12, has the form

x̃(t) = exp [−j2π (1) t] + 0.707 exp [j2π (2) t] (12.60)

and

ỹ(t) = x̃(t) − 0.75(0.3) |x̃(t)|2 x̃(t) (12.61)

The intermodulation distortion terms now appear at −4 and +5 Hz, respectively
(with respect to the reference frequency f0 = 12 Hz), as illustrated in Figure 12.9.
No third harmonic terms are accounted for in the lowpass equivalent model. The
MATLAB code used to generate the results illustrated in this example is contained
in Appendix B. �

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0

P
S

D
 i

n
 d

B

BP Input @ f1 = 11 and f2=14

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0

Freuency in Hz

P
S

D
 i

n
 d

B

BP output: IM @ 8 and 17 and Third harmonics

Figure 12.8 Nonlinearity input and output based on bandpass model.

“TranterBook” — 2003/11/18 — 16:12 — page 466 — #484
�

�

�

�

�

�

�

�

466 Modeling and Simulation of Nonlinearities Chapter 12

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0
P

S
D

 i
n

 d
B

LP Equivalent input; f0=12; f1=-1 and f2 = 2

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0

Freuency in Hz

P
S

D
 i

n
 d

B

LP Output IM at 2f1-f2= -4 and 2f2-f1 =5

Figure 12.9 Nonlinearity input and output based on lowpass model.

Example 12.3. We now consider the nonlinearity to be based on the AM-to-AM
and AM-to-PM characteristic rather than on the power series model as we did in the
preceding example. The AM-to-AM and AM-to-PM model used in this example is
based on Saleh’s model as defined through (12.45). The AM-to-AM and AM-to-PM
characteristics were determined in Example 12.1 and are illustrated in Figure 12.6.
The parameter values are given in Example 12.1, the MATLAB code for simulating
Saleh’s model is given in Appendix A, and log psd.m is given in Appendix A of
Chapter 7. The lowpass equivalent signal model, which is the sum of two complex
tones of the preceding example, is used for the simulation so that the results can
be compared. The MATLAB code follows:

% File: c12 example3.m
backoff = input(‘Enter backoff in dB > ’);
f1 = -1.0; f2 = 2.0; ts = 1.0/128; n = 1024;
for k=1:n

t(k) = (k-1)*ts;
x(k) = exp(i*2*pi*f1*t(k))+0.707*exp(i*2*pi*f2*t(k));
y(k) = salehs model(x(k),-1*backoff,1);

end

“TranterBook” — 2003/11/18 — 16:12 — page 467 — #485
�

�

�

�

�

�

�

�

Section 12.2. Modeling and Simulation of Memoryless Nonlinearities 467

[psdx,freq] = log psd(x,n,ts);
[psdy,freq] = log psd(y,n,ts);
subplot(2,1,1)
plot(freq,psdx); grid; title(‘Input to the NL’);
ylabel(‘PSD in dB’);
subplot(2,1,2)
plot(freq,psdy); grid; title(‘Output of the NL’);
ylabel(‘PSD in dB’); xlabel(‘Frequency in Hz’);
% End of script file.

Executing the code yields the result illustrated in Figure 12.10 for 5 dB backoff.
(Note: In the MATLAB program we enter backoff as a positive quantity, since
this seems more natural. Note that this is converted to a negative quantity in
the call to the model, since the signal level is, in this case, −5 dB relative to the
peak value.) �

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0
Input to the NL

P
S

D
 i

n
 d

B

-80 -60 -40 -20 0 20 40 60 80
-60

-40

-20

0
Output of the NL

P
S

D
 i

n
 d

B

Frequency in Hz
Figure 12.10 Simulation results for 5 dB backoff.

Example 12.4. We now consider a complex lowpass signal model for a 16-QAM
signal. As in the previous example Saleh’s model for the AM-to-AM and AM-to-PM
characteristics is used. The input and output signal constellation is computed for
a backoff of 10 dB. The purpose of the simulation is to determine the effect of the
nonlinearity on the signal constellation. The MATLAB code for implementing the

“TranterBook” — 2003/11/18 — 16:12 — page 468 — #486
�

�

�

�

�

�

�

�

468 Modeling and Simulation of Nonlinearities Chapter 12

simulation follows:

% File: c12 example4.m
%
% Create input constellation
backoff = input(‘Enter backoff in dB > ’);
N = 1024; % number of points
x1 = 2*fix(4*rand(1,N))-3; % direct components
x2 = 2*fix(4*rand(1,N))-3; % quadrature components
y = x1+i*x2; % signal space points
%
% Run it thru Saleh’s model
z = salehs model(y,-1*backoff,1024);
subplot(1,2,1)
plot(real(y),imag(y));grid; title(‘Input Constellation’);
xlabel(‘direct’); ylabel(‘quadrature’)
axis equal
subplot(1,2,2)
plot(real(z),imag(z));grid; title(‘Output Constellation’);
xlabel(‘direct’); ylabel(‘quadrature’)
axis equal
% End of script file.

Executing the MATLAB program yields the results illustrated in Figure 12.11 for 10
dB backoff. Note that the effect of the nonlinearity is to move a number of the signal
points closer together. As we noted in Chapter 4, for an additive, white, Gaussian
noise (AWGN) channel the pairwise error probability is a monotonic function of the
Euclidean distance between a pair of points in signal space with the error probability
increasing as the points in signal space move closer together. We therefore conclude
that the nonlinearity degrades the probability of error of the communications sys-
tem. Like the eye diagram, the signal constellation gives us a qualitative measure of
system performance. Thus, viewing the change in the signal constellation as system
parameters are varied gives us considerable insight into system performance. This
is especially true for nonlinear systems. The student should therefore simulate this
system a number of times and observe the result of varying the backoff. �

12.3 Modeling and Simulation
of Nonlinearities with Memory

If the output of a nonlinear device depends on the present and past values of the
input signal, the device is classified as a nonlinearity with memory. Memory, or de-
pendence on past input values, is modeled in linear systems by the impulse response
and the convolution integral in the time domain. Linear systems are modeled in
the frequency domain by the transfer function, which implies that the sinusoidal

“TranterBook” — 2003/11/18 — 16:12 — page 469 — #487
�

�

�

�

�

�

�

�

Section 12.3. Modeling and Simulation of Nonlinearities with Memory 469

-2 0 2

-5

-4

-3

-2

-1

0

1

2

3

4

5

Input Constellat ion

Direct

Q
u

a
d

ra
tu

re

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Output Constellation

Direct

Q
u

a
d

ra
tu

re

Figure 12.11 Input and output signal constellations for 10 dB backoff.

steady-state system response is dependent on the input frequency. Thus, memory
and frequency selective behavior are synonymous.

Many nonlinear devices, such as wideband amplifiers, exhibit frequency-selective
behavior. Such behavior will be evident when the response of the device is measured
at different power levels and at different frequencies. If the input-output relationship
does not depend on the frequency of the tone used in the measurements, the device
is memoryless. Otherwise, the device exhibits frequency-selective behavior and
therefore has memory.

Suppose that the input to an AM-to-AM nonlinearity is an unmodulated tone
at some frequency fc + fi where fc is the center frequency of the device and fi is
the offset frequency with respect to the center frequency. The complex envelope of
the input signal is

x̃(t) = A exp [j2πfit] (12.62)

from which

|x̃(t)| = A (12.63)

“TranterBook” — 2003/11/18 — 16:12 — page 470 — #488
�

�

�

�

�

�

�

�

470 Modeling and Simulation of Nonlinearities Chapter 12

If the nonlinearity has no memory, and is therefore not frequency selective, the
output is given by

ỹ(t) = f(A) exp [j2πfit] (12.64)

Note that the output amplitude is independent of frequency.
If measurements indicate that the nonlinearity is frequency selective, we can at-

tempt to account for the frequency selectivity by modifying the AM-to-AM function
to include the input frequency and write the response as

ỹ(t) = f(AH(fi)) exp [j2πfit] (12.65)

As we vary fi over the bandwidth of the device, the function H(fi) accounts for the
frequency dependency of the nonlinearity. Note that H(fi) may be viewed as the
transfer function of a filter that precedes the AM-to-AM nonlinearity. The filter pro-
duces a response AH(fi) exp [j2πfit] when the input is x̃(t) = A exp [j2πfit]. Thus,
the model for the AM-to-AM part of a frequency-selective nonlinearity consists of
a filter H(fi) followed by a memoryless AM-to-AM nonlinearity f(A).

This approach can be extended to account for frequency-selective AM-to-PM
transfer characteristics by including another filter in the model. Indeed, the most
commonly used model for frequency-selective nonlinearities consists of a memoryless
nonlinearity sandwiched between two filters. We now describe two of these models.

12.3.1 Empirical Models Based on Swept Tone Measurements

These models are derived from “swept tone” and “stepped power” measurements
made with an input that is an unmodulated tone of the form

x(t) = Ai cos [2π (fi + fc) t] (12.66)

The output amplitude and phase offset are measured for different values of the input
amplitude Ai and frequency fi producing a set of plots as shown in Figure 12.12(a).
Note that these plots clearly show the frequency dependent nature of the response
of the nonlinear device.

Two models that attempt to take into account the frequency-dependent nature
of nonlinear devices are Poza’s model and Saleh’s model. Both of these models try
to reproduce as accurately as possible the swept tone and stepped power measure-
ments.

Poza’s Model

A simple simulation model that characterizes measurements like the ones shown
in Figure 12.12(a) has been derived by Poza et al. [11] based on the following
assumptions:

1. AM-to-AM: Curves of AM-to-AM for different frequencies are similar in shape,
with all curves being a combination of vertical and horizontal translations of
one another.

“TranterBook” — 2003/11/18 — 16:12 — page 471 — #489
�

�

�

�

�

�

�

�

Section 12.3. Modeling and Simulation of Nonlinearities with Memory 471

(a) Frequency-selective
AM-to-AM data

∆G2
∆G1

f1

f2

f3

∆ ∆g G2 2+

∆g1

(b) Simulation model

∆G1 ∆G2

f1 f2 f3

f

H fA1() H fA2 () AM/AMInput Output

Reference
Memoryless
NonlinearityInput Filter Output Filter

f1 f2 f3

f

∆g2

∆g1

∆ ∆g G1 1+

Input Power (dB)

O
ut

pu
t P

ow
er

 (
dB

)

Figure 12.12 Example of frequency-selective AM-to-AM model.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

2. AM-to-PM: These curves for different frequencies are also similar in shape
and all curves are a combination of horizontal and vertical translations of
each other.

This model requires a complex curve-fitting procedure to fit a family of curves for
the AM-to-AM and AM-to-PM data such that each member of the family is a
translated version of the other member (translation of both horizontal and vertical
axes) of the same family.

Let us first consider how to implement the frequency-selective AM-to-AM sim-
ulation model. The first step in the implementation is to select one of the curves
within the AM-to-AM family as the “reference” nonlinearity at the reference fre-
quency fc. With respect to this curve, the AM-to-AM response at another frequency
f1 can be obtained through a horizontal translation ∆G1 + ∆g1. The horizontal
translation corresponds to an attenuation or gain of the input signal with respect
to the reference nonlinearity at frequency f1, and the vertical translation ∆G1

“TranterBook” — 2003/11/18 — 16:12 — page 472 — #490
�

�

�

�

�

�

�

�

472 Modeling and Simulation of Nonlinearities Chapter 12

corresponds to an attenuation or gain of the output of the reference nonlinearity
at frequency f1. These can be implemented by two FIR filters, one preceding and
one following the reference nonlinearity, with amplitude responses HAM1(f) and
HAM2(f), respectively. Thus, the AM-to-AM model can be implemented as shown
in Figure 12.12.

A similar model and implementation can be derived for the AM-to-PM re-
sponses. This model will consist of an input filter with an amplitude response
HPM (f) preceding the AM-to-PM reference nonlinearity and a phase response
exp [jθPM (f)] following the output. The AM-to-AM and AM-to-PM models can be
combined into one model as shown in Figure 12.13. The AM-to-PM part precedes
the AM-to-AM part, and the input (amplitude) offset introduced by the AM-to-PM
model has to be “taken out” prior to the AM-to-AM model so that the power level
at the input to the AM-to-AM part of the model is the same as the power in the
input signal x̃(t).

Saleh’s Model

A slightly different approach to modeling nonlinearities with memory has been
proposed by Saleh [10]. This model is obtained from the memoryless quadrature
model given in (12.44) and (12.45) by modifying the coefficients to be frequency
dependent. This gives

Sd(A) =
αp(f)A

1 + βp(f)A2
(12.67)

and

Sq(A) =
αq(f)A3

[1 + βq(f)A2]2
(12.68)

The coefficients are obtained from the measurements made at various frequencies f
using a least squares fit. The actual implementation of the model is given in Figure
12.14. The functions illustrated in Figure 12.14 are defined as follows: φ0(f) is the
small signal phase response, Hp(f) =

√
βp(f), Hq(f) =

√
βq(f), P0 = A/(1 + A2),

Gp(f) = αp(f)/
√

βp(f), Gq(f) = αq(f)/
√

β
3/2
q (f), and Q0(A) = A3/[1 + A2]2T .

The details of this derivation are left as an exercise for the reader.
Note that Saleh’s model and Poza’s model start out with different assumptions

and that the two models are topologically different. They are both “block diagram
models” designed to reproduce a specific set of measurements. Both of these models
have more complex structures than models for memoryless nonlinearities. There is
also an added degree of complexity due to the empirical procedure used for fitting
model parameters to measured data.

12.3.2 Other Models

In spite of the complexity, the models described in the preceding section are not
really capable of capturing the behavior of a nonlinearity when the input consists

“TranterBook” — 2003/11/18 — 16:12 — page 473 — #491
�

�

�

�

�

�

�

�

H
f

j
f

P
M

P
M

(
)e

xp
[

(
)]

θ
R

ef
er

en
ce

A
M

-t
o-

PM

R
ef

er
en

ce
A

M
-t

o-
A

M

H
f

H
f

A
M P
M

1
(

)

(
)

H
f

A
M

2
(

)
~

(
)

y
t

~
(

)
x

t

F
ig

u
re

1
2
.1

3
F
re

q
u
en

cy
-s

el
ec

ti
v
e

A
M

-t
o
-A

M
a
n
d

A
M

-t
o
-P

M
(c

o
m

b
in

ed
)

m
o
d
el

.

473

“TranterBook” — 2003/11/18 — 16:12 — page 474 — #492
�

�

�

�

�

�

�

�

H
f

p
(

)

H
f

q
(

)
G

f
q
(

)

G
f

p
(

)
P

A
0
(

)

Q
A

0
(

)

φ
0
(

)
f

~
(

)
y

t
~

(
)

x
t

S
A

f
p
(

,
)

S
A

f
q
(

,
)

 j

F
ig

u
re

1
2
.1

4
S
a
le

h
’s

q
u
a
d
ra

tu
re

m
o
d
el

fo
r

a
n
o
n
li
n
ea

ri
ty

w
it

h
m

em
o
ry

.

S
o
u
rc

e:
M

.
C

.
J
er

u
ch

im
,
P
.
B

a
la

b
a
n
,
a
n
d

K
.
S
.
S
h
a
n
m

u
g
a
n
,
S
im

u
la

ti
o
n

o
f
C
o
m

m
u
n
ic

a
ti
o
n
s

S
y
st

em
s,

2
n
d

ed
.,

N
ew

Y
o
rk

:
K

lu
w

er
A

ca
d
em

ic
/
P

le
n
u
m

P
u
b
li
sh

er
s,

2
0
0
0
.

474

“TranterBook” — 2003/11/18 — 16:12 — page 475 — #493
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 475

of a sum of many modulated carriers, since the models were derived on the basis of
a single, constant envelope, carrier (tone) measurements. Since superposition does
not hold for nonlinear systems, it is not possible to characterize the behavior with
multitone input based on single-tone measurements. It is, of course, very difficult to
make multitone measurements for many different combinations of input frequencies
and power levels. The number of combinations of frequencies and power levels will
be overwhelmingly large when the number of carriers is large.

Some alternate approaches have been suggested, one of which includes approx-
imating the behavior of the nonlinearity using a carrier modulated with a PN se-
quence as the input [12]. The input now approximates the sum of a large number
of carriers with a more or less uniform power spectral density at the input. (Note
that, with this approach, the input spectral components are generated by the mod-
ulating signal.) By changing the total power in the input, measurements are taken
to characterize the behavior of the nonlinearity under input conditions that pro-
duce a reasonable approximation of a multicarrier input. The resulting model has a
transfer function of the form H(f, P), where P is the input power level. The details
of this approach may be found in [12].

Another more general approach that has been suggested for modeling and ana-
lyzing nonlinearities with memory uses the Volterra series. The input-output rela-
tionship in the time domain is given by

y(t) =
∞∑

k=1

yk(t) (12.69)

where

yk(t) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(τ1, · · · , τk)x(t − τ1) · · ·x(t − τk)dτ1 · · · dτk (12.70)

The time response model given in (12.70) assumes that the system has no dc re-
sponse or constant in the output. Note that the model looks like a power series
model. However, each term in the Volterra series model is a k-fold convolution
(and not a kth power) of the input signal with a k-fold impulse response kernel
h(τ1, · · · , τk). A lowpass equivalent version of the model can be derived but it is
exceedingly complex. The interested reader is referred to [13].

While the Volterra series model is analytically very elegant, the higher-order
kernels are difficult to characterize and measure. Hence the model is of limited use
for simulation except in cases where the order of the model is small. As in the case
of power series models, only odd terms contribute to the first zone output.

12.4 Techniques for Solving Nonlinear Differential Equations

We have seen that a nonlinear system with memory may be modeled by a nonlinear
differential equation (NLDE) and the simulation of the system can take place by
substituting a discrete-time integration for the continuous-time integration. We
have also seen there are two approaches to simulating a system described by a

“TranterBook” — 2003/11/18 — 16:12 — page 476 — #494
�

�

�

�

�

�

�

�

476 Modeling and Simulation of Nonlinearities Chapter 12

differential equation. There is the assembled block diagram approach, in which the
system block diagram is constructed using basic building blocks including some
simpler memoryless nonlinear blocks and integrators, and the solution is obtained
by simulating the block diagram model of the nonlinear system. An alternate
approach is to derive the nonlinear differential equation that governs the dynamic
behavior of the PLL and solve the NLDE using recursive procedures. This method,
referred to as the direct or stand-alone method, will be superior in terms of stability
and accuracy for a given sample time. However, some effort will be required to
develop the model and implement this approach, and the effort has to be repeated
for each new nonlinear system that needs to be simulated. With the block diagram
assembly method, a core set of building blocks can be used to construct models of
new systems rather quickly.

All approaches yield the same results when the sample time, or simulation step
time, is small. However, if we desire a large time step in order to reduce the
computational burden, the stand-alone model using a variable step-size solution
technique will be very efficient. The step size is usually chosen automatically by
the solution method depending on the behavior of the underlying NLDE. In regions
where the solution behaves well, it is possible to use very large time steps resulting in
significant savings in simulation time. Some interpolation, however, will be required
if succeeding blocks require uniformly spaced samples.

When a PLL is simulated by itself, the time step required will be determined
by the so-called “loop bandwidth.” If the PLL is simulated along with other parts
a receiver, the sampling rate for the remainder of the receiver will be governed by
the data rate, R. In general, R will be much larger than the loop bandwidth, and
hence the time step commensurate with R will be much smaller than that needed
for accurate simulation of the PLL itself. In this situation, it might be advantageous
to use multirate simulations in which different time steps are used for different parts
of the system with appropriate decimation and interpolation in between.

The focus of the remainder of this chapter is on the simulation of nonlinear
systems with memory using a recursive solution of the underlying NLDE. We will
use the PLL, which we studied extensively in Chapter 6, as an example to illustrate
the methodology.

12.4.1 State Vector Form of the NLDE

The literature on numerical methods is full of techniques for solving nonlinear dif-
ferential equations [14]. From a simulation point of view, techniques that can be
implemented in recursive form are most attractive both from a structural as well
a computational point of view. For linear differential equations of the mth order,
the recursive solution in time domain often makes use of the state variable method
where the system equations are represented in the form

Ẋ(t) = AX(t) + BU(t) (12.71)

and

Y(t) = DX(t) (12.72)

“TranterBook” — 2003/11/18 — 16:12 — page 477 — #495
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 477

where X is the state vector of size m × 1, U is the input vector, Y is the output
vector, A, B and D are matrices of constants which define the system, and m is
the order of the system.

To apply this technique to the PLL, consider the relation between ed(t), as
identified in Figure 12.15 and the VCO phase θ(t). This is the linear part of the
system and it follows from Figure 12.15 that the relationship between θ(t) and ed(t)
is defined by

θ(t) =
∫

c3 [ẋ(t) + c2ẍ(t)] dt = c3x(t) + c2c3ẋ(t) (12.73)

and

ẍ(t) = ed(t) + c1ẋ(t) (12.74)

From the definition of ed(t) and (12.73)

ed(t) = sin [φ(t) − θ(t)] = sin [φ(t) − c2c3ẋ(t) − c3x(t)] (12.75)

Substitution into (12.74) gives the differential equation

ẍ(t) = sin [φ(t) − c2c3ẋ(t) − c3x(t)] + c1ẋ(t) (12.76)

From Figure 6.3 and (6.25) we know that

Θ(s) = G
1
s

s + a

s + λa
Ed(s) (12.77)

and from Figure 12.15 we have

Θ(s) =
c3

s

sc2 + 1
s − c1

Ed(s) = c2c3
1
s

s + 1/c2

s − c1
Ed(s) (12.78)

From which

c1 = −λa, c2 =
1
a
, c2c3 = G, c3 = aG (12.79)

Now, if we define the state variables as

x1(t) = x(t)
x2(t) = ẋ1(t) (12.80)

we can, from (12.76) write the NLDE in the matrix form[
ẋ1

ẋ2

]
=
[

x2

sin[φ(t) − c2c3x2(t) − c3x1(t)] + c1x2(t)

]
=
[

f1(x1,x2, φ)
f2(x1,x2, φ)

]
(12.81)

“TranterBook” — 2003/11/18 — 16:12 — page 478 — #496
�

�

�

�

�

�

�

�

∫
∫

�
�
(

)
x

t

�
(

)
x

t
θ

(
)t

c 1 c 2

c 3

e
t

d
(

)

F
ig

u
re

1
2
.1

5
R

ep
re

se
n
ta

ti
o
n

o
f
th

e
lo

o
p

fi
lt

er
a
n
d

th
e

d
efi

n
it

io
n

o
f
th

e
st

a
te

va
ri

a
b
le

s
fo

r
th

e
N

L
D

E
m

o
d
el

o
f
th

e
P

L
L
.

478

“TranterBook” — 2003/11/18 — 16:12 — page 479 — #497
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 479

Note that the NLDE can also be expressed as

Ẋ = F (X, t, U) (12.82)

where X is a vector of size m, and F is a nonlinear vector function with m compo-
nents and U is the input vector that in this example is the scalar φ(t).

In general, it is possible to convert an mth order NLDE into a set of m simulta-
neous first-order NLDE that are similar in form to the state variable form of mth

order linear differential equations. We now look at methods of solving simultane-
ous (i.e., vector) first-order differential equations, starting with a scalar first-order
differential equation.

12.4.2 Recursive Solutions of NLDE-Scalar Case

Explicit Techniques

Consider a first-order differential equation of the form

ẋ(t) = f(x, t, u) (12.83)

with initial condition x(t0). Let xn denote the solution obtained via numerical
integration at time step tn [we will use the notation x(tn) for the actual solution,
which is not known, and use xn to denote the approximate solution obtained via
numerical integration].

Most of the numerical integration methods for solving nonlinear (or linear) dif-
ferential equations are based on Taylor series expansions. For example, consider the
Taylor series (or some other) expansion of the form

x(tn+1) = x(tn + hn) = x(tn) + hnẋ(tn) + T (hn) (12.84)

where hn is the time step tn+1 − tn, and T is the local error or remainder given by

T (hn) = h2
nẍ(ξ)/2, tn ≤ ξ ≤ tn+1 (12.85)

If hn is sufficiently small, then we can obtain a recursive solution for the first-order
differential equation as

xn+1 = xn + hnẋn = xn + hnfn (12.86)
fn = f(xn, tn, u(tn)) (12.87)

The recursion can be started with the initial condition x(t0) = x0. A simpler
version of the recursive solution can be derived with a fixed step size h as

xn+1 = xn + hẋn = xn + hf(xn, tn, u(tn)) (12.88)
tn+1 = tn + h (12.89)

Equations (12.88) and (12.89) define Euler’s integration method.

“TranterBook” — 2003/11/18 — 16:12 — page 480 — #498
�

�

�

�

�

�

�

�

480 Modeling and Simulation of Nonlinearities Chapter 12

By including the higher derivatives in the Taylor series, we can derive more
accurate integration formulas. For example, a “second-order” integration rule may
be derived by starting from

xn+1 = xn + hẋn +
1
2
h2ẍn (12.90)

Using the approximation for the second derivative

ẍn ≈ ẋn − ẋn−1

h
=

f(xn, tn, u(tn)) − f(xn−1, tn−1, u(tn−1))
h

=
fn − fn−1

h
(12.91)

we obtain the two-step formula called the second-order Adam-Bashforth integration
rule

xn+1 = xn + hfn + h2 fn − fn−1

2h
= xn +

h(3fn − fn−1)
2

(12.92)

Another similar class of integration rules are the various Runge-Kutta (R-K)
methods. One of the most widely used of the R-K formula is the classical four-
stage formula,

xn+1 = xn +
h(k1 + k2 + k3 + k4)

6
(12.93)

where

k1 = f(xn, tn, u(tn)) (12.94)

k2 = f(xn +
hk1

2
, tn +

h

2
, u(tn +

h

2
)) (12.95)

k3 = f(xn +
hk2

2
, tn +

h

2
, u(tn +

h

2
)) (12.96)

k4 = f(xn +
hk3

2
, tn +

h

2
, u(tn +

h

2
)) (12.97)

All three methods described above are called explicit methods, since the recursion
is carried out explicitly, using the solution values and derivative values obtained at
the preceding time step.

Implicit Techniques

There is another class of solution techniques, called implicit techniques, that yield
better accuracy and more stable solutions at the expense of increased computational
burden. In implicit techniques, the solution at time step tn+1 will involve not only
the quantities computed at the previous time step tn but also the quantities to be
computed at the current time step tn+1. This requires the solution of a nonlinear
algebraic equation at each time step.

“TranterBook” — 2003/11/18 — 16:12 — page 481 — #499
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 481

A very simple and very popular implicit technique is the Trapezoidal integration
rule given by

xn+1 = xn +
h

2
[ẋn + ẋn+1]

= xn +
h

2
[f(xn, tn, u(tn)) + f(xn+1, tn+1, u(tn+1))] (12.98)

which is simply a trapezoidal approximation of the areas in the Reimann sum of an
integral. (Recall our discussion of trapezoidal integration in Chapter 5.) It is clear
that the preceding equation gives xn+1 only implicitly, and we have to solve the
nonlinear equation given by (12.98) to obtain xn+1, whereas in the explicit methods
xn+1 does not appear within the nonlinear f(·) on the right-hand side, and hence
the solution, as we have seen, is rather straightforward.

There are many other implicit methods besides the Trapezoidal rule. As another
example of an implicit technique, let us consider the so-called third-order Adams-
Moulton (A-M) method based on the Taylor series expansion

x(tn+1) ≈ xn + hẋn +
h2ẍn

2
+

h3xn

6
(12.99)

with a symmetric approximation for the derivatives

ẋn = f(xn, tn, u(tn)) = fn (12.100)

ẍn =
ẋn+1 − ẋn−1

2h
(12.101)

xn =
ẋn+1 − 2ẋn + xn−1

h2
(12.102)

Substituting these derivatives in (12.99), we obtain the “two-step” Adams-Moulton
integration formula

xn+1 = xn +
h(5fn+1 + 8fn − fn−1)

12
(12.103)

The A-M integration formula given above points out two major problems with
higher-order implicit techniques: initial conditions, and solving a nonlinear equation
at each time step. When the recursion in (12.103) is applied to finding x1 , we need
x0, and x−1. While the initial condition x0 will be given, x−1 is not usually available.
To avoid this problem we start the iterations at n+1 = 2, by using the value of x1,
which may be computed using an explicit method such as the R-K method.

The second difficulty arises because xn+1 appears on the right-hand side inside
the (nonlinear) function f , and hence the solution for xn+1 will require the numerical
solution of the implicit equation given in (12.103). We present below two iterative
methods for accomplishing this.

Implicit Solution Using the Predictor-Corrector Method

The idea behind the predictor-corrector (P-C) method is to first obtain a predicted
value for xn+1 using an explicit technique such as the R-K or the A-B method

“TranterBook” — 2003/11/18 — 16:12 — page 482 — #500
�

�

�

�

�

�

�

�

482 Modeling and Simulation of Nonlinearities Chapter 12

(of the same order as the A-M method) and use this predicted (or the estimated)
value of xn+1 in the right-hand side of (12.103) to obtain a corrected (or improved)
value of xn+1. We then we proceed to n + 2. To improve the accuracy of the
solution, one could use an interactive technique at each time step and repeat the
predictor-corrector method many times. Now, (12.103) is modified as

xr+1
n+1 = xn +

h(5f r
n+1 + 8fn − fn−1)

12
, r = 1, 2, 3.. (12.104)

where r is the iteration index. The iteration is started using a predicted value x1
n+1

of xn+1 (obtained via an explicit method) on the right-hand side of (12.104) to
obtain the next value in the iteration x2

n+1, which is then used in the right-hand
side again to obtain the next improved value and so on until the iterations converge.
[Note: xr+1

n+1 is the (r + 1)st iterated value of xn+1, not the (r + 1)st power of xn+1!]

Implicit Solution Using Newton-Raphson Method

A variety of other techniques, such as the Newton-Raphson (N-R) method, can also
be used for solving the implicit expression defined by (12.103). The N-R method is
based on an iterative technique for finding a solution to y = g(x) = 0, that is, find
the value of x that yields g(x) = 0.

An iterative solution to the “root-finding” problem can be obtained as follows.
With reference to Figure 12.16, the slope of the curve y = g(x) at x0 is given by

ġ(x0) =
AC

BC
=

g(x0)
x0 − x1

(12.105)

We can rearrange the preceding equation as

x1 = x0 − g(x0)
ġ(x0)

(12.106)

x

y g x= ()

x0x1

A

B C

Figure 12.16 Iterative technique for solving g(x) = 0.

“TranterBook” — 2003/11/18 — 16:12 — page 483 — #501
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 483

If this procedure is repeated to generate a sequence of values x1, x2, x3, · · · , by the
recurrence relation

xr+1 = xr − g(xr)
ġ(xr)

(12.107)

the xr converges to the zero of g(x) under quite simple conditions.
This technique could be applied to solving (12.103), by first writing it as

g(xn+1) = xn+1 − xn − h(5fn+1 + 8fn − fn−1)
12

= 0 (12.108)

and applying the recursion given in (12.107) as

xr+1
n+1 = xr

n+1 −
g(xr

n+1)
ġ(xr

n+1)
(12.109)

The iterations given in the preceding equation are repeated until the difference
between successive values is small. The starting value x1

n+1 of xn+1 is obtained
using an explicit method.

12.4.3 General Form of Multistep Methods

The general form of the recursive solution of NLDE can be expressed as

xn+1 =
p∑

i=0

aixn−i + h

p∑
j=−1

bjfn−j (12.110)

which is referred to as a p-step integration rule and it is explicit or implicit depend-
ing on whether b−1 = 0 (explicit) or b−1 	= 0 (implicit). Table 12.1 summarizes the
different integration formulas that are commonly used in simulation. The trunca-
tion error given in the table is obtained from the truncation error associated with
terminating the Taylor series expansion [see (12.84) and (12.85)].

12.4.4 Accuracy and Stability of Numerical Integration Methods

Accuracy

The truncation error at a given time step is proportional to the higher-order deriva-
tives and the step size h. If it is possible to estimate the local truncation error at
each step, then the step size can be adjusted up or down. In general, higher-order
implicit methods are better, since they yield smaller error. However, implicit meth-
ods require solving a nonlinear equation at each step. Reducing step size reduces
local truncation error, and it will also speed up the convergence of the iterative solu-
tion of the nonlinear equation at each time step. Reducing the time step, however,
will increase the overall computational burden.

The truncation error contributes, in a cumulative fashion, to the overall (global)
error. While it is possible to estimate the local truncation error, unfortunately no
general procedures are available for controlling the possible growth of global error.
Therefore, most of the methods rely on estimating the local truncation error and
reducing the step size when necessary.

“TranterBook” — 2003/11/18 — 16:12 — page 484 — #502
�

�

�

�

�

�

�

�

T
a
b
le

1
2
.1

In
te

g
ra

ti
o
n

F
u
n
ct

io
n
s

C
o
m

m
o
n
ly

U
se

d
in

S
im

u
la

ti
o
n

M
et

h
o
d

C
o
effi

ci
en

ts
T
ru

n
ca

ti
on

E
rr

or

Fo
rw

ar
d

E
ul

er
p

=
0;

a
0

=
1;

b −
1

=
0;

b 0
=

1
x

n
+

1
=

x
n

+
h
f n

1 2
h

2
ẍ
(ξ

),
t n

≤
ξ
≤

t n
+

h

B
ac

kw
ar

d
E

ul
er

p
=

0;
a
0

=
1;

b −
1

=
1;

b 0
=

1
x

n
+

1
=

x
n

+
h
f n

+
1

1 2
h

2
ẍ
(ξ

),
t n

≤
ξ
≤

t n
+

h

T
ra

pe
zo

id
al

p
=

0;
a
0

=
1;

b −
1

=
1 2
;b

0
=

1 2

x
n
+

1
=

x
n

+
h 2

[f
n

+
f n

+
1
]

1 1
2
h

3
... x

(ξ
)

A
da

m
-B

as
h-

2

p
=

0;
a
0

=
1;

b −
1

=
0;

b 0
=

3 2
;b

1
=

−
1 2

x
n
+

1
=

x
n

+
h 2

[3
f n

−
f n

+
1
]

5 1
2
h

3
... x

(ξ
)

A
da

m
-M

ou
lt
on

-2

p
=

1;
a
0

=
1;

b −
1

=
5 1
2
;b

0
=

8 1
2
;b

1
=

−
1 1
2

x
n
+

1
=

x
n

+
h 1
2

[5
f n

+
1
+

8f
n
−

f n
−

1
]

1 2
4
h

4
x

(4
)
(ξ

)

484

“TranterBook” — 2003/11/18 — 16:12 — page 485 — #503
�

�

�

�

�

�

�

�

Section 12.4. Techniques for Solving Nonlinear Differential Equations 485

Stability

Another measure of the “goodness” of an integration method is stability, which is a
measure of the degree to which the recursive solution converges to the true solution.
Stability depends on the specific problem and the integration method, and it is
common practice to investigate the stability of different integration methods using
a simple test problem like

ẋ = λx

for which the solution is known to be

x(t) = exp(λt)

If Re(λ) < 0, the real solution tends to zero as t → ∞. With this test case, an
integration rule is said to be stable if the recursive solution converges to zero as
n → ∞.

While it is easy to investigate the stability of the integration methods for the
simple test case, it is difficult to draw general conclusions about stability of a method
when applied to an arbitrary nonlinear differential equation. A general rule of thumb
is that the implicit methods have better stability properties than explicit methods.

It is difficult to track truncation error and stability of the solution of a NLDE,
since tracking the truncation error requires knowledge of the higher-order deriva-
tives, and analysis of stability requires knowledge of the roots of the characteristic
equation of the linearized version of the NLDE in the vicinity of tn. During simula-
tions, an often-used heuristic method consists of comparing the solutions obtained
with time steps h and h/2. If the estimated error associated with both time steps
is within specified limits, then the solution is accepted. If not, the time step is
halved again and the procedure is repeated. This method controls both stability
and truncation error.

Among the multitude of integration techniques that are available, it is impossible
to say which method is the “best” because the answer depends to a large extent on
the problem being considered, the accuracy desired, the type of output needed, and
the computational burden imposed by the integration technique. Trapezoidal rule,
fourth-order Runge-Kutta method, and the Adam-Moulton method (with predictor-
corrector) are the most commonly used methods offering a good tradeoff between
computational complexity and stability and accuracy (with the Trapezoidal method
being the least complex). For a reasonably well behaved nonlinear components or
subsystems system like the PLL, any one of these methods with a small step size
(of the order of eight samples/Hz of bandwidth) will provide a stable and accurate
solution.

12.4.5 Solution of Higher-Order NLDE-Vector Case

If the NLDE model is mth order, then it can be converted to m simultaneous first-
order differential equations (as described in Section 12.4.1), in vector form as

Ẋ = F (X, t,U)

“TranterBook” — 2003/11/18 — 16:12 — page 486 — #504
�

�

�

�

�

�

�

�

486 Modeling and Simulation of Nonlinearities Chapter 12

where X and U are vectors of size m × 1. The multistep iterative solution of the
vector NLDE is of the same form as the scalar case, and is given by

Xn+1 =
p∑

i=0

aiXn−i +
p∑

j=−1

bjẊn−j =
p∑

i=0

aiXn−i +
p∑

j=−1

bjFn−j

where ai and bj are the same scalar constants given in Table 12.1.
For the implicit methods, a set of simultaneous nonlinear equations have to be

solved in each step. Either the predictor-corrector method or the Newton-Raphson
method can be used for this. The vector form of the Newton-Raphson method is
given by

G(Xn+1) = Xn+1 −
p∑

i=0

aiXn−i +
p∑

j=−1

bjFn−j (12.111)

and

Xr+1
n+1 = Xr

n+1 − J−1(Xr
n+1)G(Xr

n+1), r = 1, 2, 3, . . . (12.112)

where the (i, j)th entry in the m × m Jacobian matrix, J(·), is defined as

[J (Xr
n+1)]i,j =

∂ gi(Xr
n+1)

∂ xj
(12.113)

The starting value X1
n+1 of Xn+1 is obtained via an explicit method. At each time

step, tn+1, the iterations are carried out (the iteration index is r) until subsequent
iterated solutions differ by a small amount. Then the time index is advanced to
tn+2, an initial value X1

n+2 of Xn+2 is obtained using an explicit method, and an
iterated solution for Xn+2 is obtained. The procedure is repeated until the time
index reaches the simulation stop time.

12.5 PLL Example

We now return our original PLL problem introduced in Chapter 6 and illustrate
the simulation of the PLL using several of the integration techniques discussed in
the previous section.

12.5.1 Integration Methods

The techniques to be used are defined in terms of the PLL problem in the following
sections.

Forward Euler (Explicit Method)

The defining equations are as follows:

tn+1 = tn + h (12.114)

“TranterBook” — 2003/11/18 — 16:12 — page 487 — #505
�

�

�

�

�

�

�

�

Section 12.5. PLL Example 487

x1,n+1 = x1,n + hx2,n (12.115)

and

x2,n+1 = x2,n + h [sin (φn − c1x2,n − c2x1,n) + c3x2,n] (12.116)

Backward Euler (Implicit Method with Predictor-Corrector)

The predictor is defined by

x1
1,n+1 = x1,n + hx2,n (12.117)

and

x1
2,n+1 = x2,n + h [sin (φn − c1x2,n − c2x1,n) + c3x2,n] (12.118)

and the corrector is defined by

xr+1
1,n+1 = xr

1,n + hxr
2,n, r = 1, 2, · · · (12.119)

and

xr+1
2,n+1 = xr

2,n + h
[
sin
(
φn+1 − c1x

r
2,n+1 − c2x

r
1,n+1

)
+ c3x

r
2,n+1

]
,

r = 1, 2, · · · (12.120)

Backward Euler (Implicit Method with N-R Iterations)

The predictor is the same as with the previous backward Euler [see (12.117) and
(12.118)]. The N-R iterations for Xn+1 are defined by

Xr+1
n+1 = Xr

n+1 − J−1
(
Xr

n+1

)
G
(
Xr

n+1

)
(12.121)

where

G
(
Xr

n+1

)
=
[

g1

(
Xr

n+1

)
g2

(
Xr

n+1

)]
=
[

xr
1,n+1 − xr

1,n − hxr
2,n+1

xr
2,n+1 − xr

2,n + h
[
sin
(
φn − c1x

r
2,n − c2x

r
1,n

)
+ c3x

r
2,n

]] (12.122)

and J−1
(
Xr

n+1

)
is the 2 × 2 matrix

J−1
(
Xr

n+1

)
=
[

e11 e12

e21 e22

]
(12.123)

with elements

e11 = 1 (12.124)
e12 = −h (12.125)

e21 = −c2h
[
cos
(
φn+1 − c1x

r
2,n+1 − c2x

r
1,n+1

)
+ c3x

r
2,n+1

]
(12.126)

e22 = 1 − h
[
c1 cos

(
φn+1 − c1x

r
2,n+1 − c2x

r
1,n+1

)
+ c3

]
(12.127)

It is left as an exercise for the reader to derive similar formulas for the A-M method
with A-B as a predictor and corrector iterations or N-R iterations.

“TranterBook” — 2003/11/18 — 16:12 — page 488 — #506
�

�

�

�

�

�

�

�

488 Modeling and Simulation of Nonlinearities Chapter 12

12.6 Summary

Simulation plays an important role in the analysis of nonlinear components and
their impact on communication system performance. While the performance of
linear systems can, in principle, be attacked by analytical means, the analysis of
the impact of nonlinear components in a system context is by and large intractable.
Simulation may be the only approach for tackling these problems without actually
building the systems and testing them.

In this chapter we developed modeling and simulation techniques for nonlinear
components in communication systems such as power amplifiers and limiters. For
bandpass nonlinearities it was shown that the simulation can be carried out either
with bandpass or with lowpass equivalent models. The complex lowpass equivalent
model will be computationally more efficient. With either model, simulation of
nonlinear components is usually carried out on a sample-by-sample basis in time
domain.

Bandpass nonlinearities may be frequency nonselective (memoryless) or fre-
quency selective (with memory). The lowpass equivalent model for memoryless
bandpass nonlinear components in communication systems can be derived analyt-
ically or obtained from swept power measurements. For devices such as bandpass
limiters, the lowpass equivalent model can be analytically derived using the Fourier
integrals and the resulting model is expressed in terms of the AM-to-AM [f(A)]
and AM-to-PM [g(A)] transfer characteristics. For devices such as high-power am-
plifiers, the AM-to-AM and AM-to-PM characteristics are directly obtained from
measurements. These transfer characteristics can be stored in empirical form in
tables or can be approximated by functional forms such as the ones given in (12.44)
and (12.45). Simulation of the AM-to-AM and AM-to-PM models consist of gen-
erating sampled values of the input complex envelope and obtaining the sampled
values of the output complex envelope as shown in Figure 12.7.

For bandpass nonlinear devices operating over wide bandwidths, it may be
necessary to use frequency-selective models. The preferred simulation model for
frequency-selective nonlinearities consists of two filters with a memoryless nonlinear-
ity sandwiched in between. The transfer function of the filters and the transfer char-
acteristics of the memoryless nonlinearity can be obtained from swept power/swept
frequency measurements. Once the structure and parameters of the model are
specified, simulation is rather straightforward.

An alternate approach for simulating nonlinearities is based on representing the
dynamic behavior of the system by a set of nonlinear differential equations and
solving them using numerical integration techniques. This method is very useful
for simulating such devices as PLLs and is very efficient computationally.

12.7 Further Reading

An excellent and detailed treatment of the topics covered in this chapter and addi-
tional material on simulation of nonlinear components may be found in

“TranterBook” — 2003/11/18 — 16:12 — page 489 — #507
�

�

�

�

�

�

�

�

Section 12.8. References 489

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., Kluwer Academic/Plenum Publishers, 2000, Chap. 5.

The literature on nonlinear systems is rather broad and is also very application
dependent. The literature on this topic can be divided into the following categories:

1. Mathematical and numerical techniques for solving nonlinear differential
equations

2. Nonlinear circuit analysis techniques

3. Nonlinear control systems

4. Modeling and simulation of nonlinear components in communication systems

A selected set of papers from the last group are given in the list of references.

12.8 References

1. R. Deutsch, Nonlinear Transformations of Random Signals, New York: Pren-
tice Hall, 1962.

2. E. Bedrosian and S. O. Rice, “The Output Properties of Volterra Systems
(Nonlinear Systems with Memory) Driven by Harmonic and Gaussian Inputs,”
Proceedings of the IEEE, Vol. 59, December 1971, pp. 1688–1707.

3. N. M. Blachman, “Bandpass Nonlinearities,” IEEE Transactions on Informa-
tion Theory, Vol. IT-10, April 1974, pp. 162–164.

4. N. M. Blachman, “Detectors, Bandpass Nontinearities and the Chebyshev
Transform,” IEEE Transactions on Information Theory, Vol. IT-17, No. 4,
July 1971, pp. 398–404.

5. G. L. Wise, A. P. Traganitis, and J. B. Thomas, “The Effect of a Memoryless
Nonlinearity on the Spectrum of a Random Process,” IEEE Transactions on
Information Theory, Vol. IT-23, No. 1, January 1977, pp. 84–89.

6. J. S. Bendat, Nonlinear Systems Analysis and Identification, New York: Wi-
ley, 1990.

7. O. Shimbo, Transmission Analysis in Communication Systems, Vols. 1 and
2, Rockville, MD: Computer Science Press, 1988.

8. L. C. Palmer and S. Lebowitz, “Computer Simulation of Solid-State Ampli-
fiers,” COMSAT Technical Review, Vol. 8, No. 2, Fall 1978, pp. 371–404.

9. K. W. Schneider and W. H. Tranter, “Efficient Simulation of Multi-Carrier
Digital Communication Systems in Nonlinear Channel Environments,” Pro-
ceedings of the IEEE 1992 Milcom Conference, San Diego, CA, October 11–14,
1992.

“TranterBook” — 2003/11/18 — 16:12 — page 490 — #508
�

�

�

�

�

�

�

�

490 Modeling and Simulation of Nonlinearities Chapter 12

10. A. A. M. Saleh, “Frequency-Independent and Frequency-Dependent Nonlinear
Models of TWT Amplifiers,” IEEE Transactions on Communications, Vol.
C0M-29, No. 11, November 1981, pp. 1715–1720.

11. H. B. Poza, Z. A. Sarkozy, and H. L. Berger, “A Wideband Data Link Com-
puter Simulation Model,” Proceedings of the 1975 NAECON Conference, Day-
ton, OH, June 10–12, 1975.

12. R. Blum and M. C. Jeruchim, “Modeling Nonlinear Amplifiers for Commu-
nication Simulation,” Proceedings of the 1989 IEEE International Conference
on Communications, Boston, MA, June 1989.

13. W. Bosch and G. Gatti, “Measurement and Simulation of Memory Effects
in Predistortion Linearizers,” IEEE Transactions on Microwave Theory and
Techniques, Vol. 37, No. 12, December 1989 , pp. 1885–1890.

14. D. Quinney, An Introduction to the Numerical Solution of Differential Equa-
tions, New York: Wiley, 1987.

12.9 Problems

12.1 Derive the complex lowpass equivalent (CPE) model for the cubic nonlinearity
of the form

y(t) = x(t) − 0.25x3(t)

For a two-tone input of equal amplitudes at f1 = 13 Hz and f2 = 15 Hz,
find the first-zone output for the bandpass case analytically and compute the
power levels of the various output components. Simulate the bandpass and
the LPE models and compare the simulated power levels with the computed
power levels. Do this for at least three different sampling rates and compare
the results.

12.2 Show that a second-order nonlinearity does not produce any first-zone inter-
modulation products (use a two-tone input as in Problem 12.1).

12.3 Show that f2(A) = 0 in the LPE model for an arbitrary memoryless nonlin-
earity y(t) = g(x(t)).

12.4 Derive the LPE model for a bandpass soft limiter and simulate the bandpass
and LPE models with the same input as in Problem 12.1 and compare the
results.

12.5 Derive the LPE model for the nonlinearity y(t) = |x(t)|.
12.6 Derive the LPE model for the limiter given in (12.8) and plot A versus f(A).

Note that the Fourier integral will have to be evaluated using numerical inte-
gration procedures.

“TranterBook” — 2003/11/18 — 16:12 — page 491 — #509
�

�

�

�

�

�

�

�

Section 12.9. Problems 491

12.7 Experimental tests performed on a TWT amplifier results in the data given
in Table 12.2.

(a) Implement a simulation model for a TWT amplifier specified by the AM-
to-AM and AM-to-PM data given in Table 12.2.

(b) Simulate this model with a 64 QAM input for backoffs of −10 and −20
dB and compare the distortion in the signal constellations.

(c) Repeat the simulations for the two-tone input described in Problem 12.1
and observe the intermodulation components and their power levels as a
function of backoff.

Table 12.2 Experimental TWT Data

Input
Power

Output
Power

Phase
(degrees)

Input
Power

Output
Power

Phase
(degrees)

0 0 32.8510 0.2230 0.6570 17.3930
0.0110 0.0500 32.8510 0.2510 0.6970 16.0620
0.0120 0.0560 32.7570 0.2820 0.7370 14.8880
0.0140 0.0630 32.6540 0.3160 0.7770 13.5740
0.0150 0.0700 32.4840 0.3540 0.8130 12.2540
0.0170 0.0790 32.3210 0.3980 0.8480 11.0110
0.0190 0.0880 32.1930 0.4460 0.8770 9.7070
0.0220 0.0980 31.9740 0.5010 0.9050 8.3830
0.0250 0.1100 31.5650 0.5620 0.9320 6.9150
0.0280 0.1230 31.2160 0.6300 0.9510 5.4690
0.0310 0.1370 30.8170 0.7070 0.9700 41.1550
0.0350 0.1520 30.4400 0.7950 0.9810 2.8770
0.0390 0.1690 30.0840 0.8910 0.9920 1.4660
0.0440 0.1890 29.6240 1.0000 1.0000 0
0.0500 0.2100 29.1450 1.1220 0.9980 -1.5710
0.0560 0.2330 28.6350 1.2580 0.9980 -3.0480
0.0630 0.2570 28.0410 1.4120 0.9890 -4.7500
0.0700 0.2840 27.3180 1.5840 0.9820 -6.5670
0.0790 0.3130 26.3990 1.7780 0.9760 -8.3850
0.0890 0.3440 25.6150 1.9950 0.9700 -10.2020
0.1000 0.3770 24.8700 2.2480 0.9630 -12.0190
0.1120 0.4130 23.9820 2.5110 0.9570 -13.8360
0.1250 0.4510 23.0500 2.8120 0.9510 -15.6530
0.1410 0.4910 22.0380 3.1620 0.9450 -17.4710
0.1580 0.5320 21.0060 3.5480 0.9380 -19.2880
0.1770 0.5730 19.9700 3.9810 0.9320 -21.1050
0.1990 0.6150 18.6400 4.4660 0.9260 -22.9220

“TranterBook” — 2003/11/18 — 16:12 — page 492 — #510
�

�

�

�

�

�

�

�

492 Modeling and Simulation of Nonlinearities Chapter 12

12.8 Set up a four-carrier QPSK input into the TWTA model specified by Table
12.2. The symbol rate for each QPSK signal is 1 symbol/sec and the lowpass
equivalent carrier frequencies are f1 = −2.5 Hz, f2 = −1.25 Hz, f3 = 1.25
Hz, and f4 = 2.5 Hz. Assume that each QPSK signal is filtered by an SQRC
filter with a roll off factor of 25%. Plot the power spectral density at the
output of the TWT and observe the spectral regrowth in the vicinity of the
tails and at f = 0 as the backoff is varied. Explain the spectral regrowth due
to the nonlinearity in general and the intermodulation products in particular.
Where would you expect the IM to be worst? Repeat for different carrier
spacing and backoffs.

12.9 Fit a Saleh’s functional form to the AM-to-AM and AM-to-PM data given in
Table 12.2.

12.10 Implement a simulation model for the second-order PLL using the various numer-
ical integration techniques given in Table 12.1. Simulate a second-order PLL
using the same parameter values as the example in Chapter 6 and compare
the results.

“TranterBook” — 2003/11/18 — 16:12 — page 493 — #511
�

�

�

�

�

�

�

�

Section 12.10. Appendix A: Saleh’s Model 493

12.10 Appendix A: Saleh’s Model

% File: salehs_model.m
function [y]=salehs_model(x,backoff,n)
% This function implements Saleh’s model
% x is the complex input vector of size n;
% Back-off is in db; the input amplitude is scaled by
% c=10^(backoff/20);
% The maximum normalized input power should be less than 3 dB
% i.e., 20 log10(a*abs(x)) < 3 dB

y = zeros(1,n)*(1.0+i*1.0); % initialize output array
a1=2.1587; b1=1.15; % model parameters
a2=4.0; b2=2.1; % model parameters
c=10^(backoff/20); % backoff in dB
for k=1:n

ain = c*abs(x(k));
thetain(k) = angle(x(k));
aout = a1*ain/(1+b1*ain^2);
thetapm(k) = a2*ain^4/(1+b2*ain^2);
thetaout(k) = thetain(k)+thetapm(k);
y(k) = aout*exp(i*thetaout(k));

end;
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 494 --- #512
�

�

�

�

�

�

�

�

494 Modeling and Simulation of Nonlinearities Chapter 12

12.11 Appendix B: MATLAB Code for Example 12.2

% File: c12_example2.m
% This example implements both Lowpass and bandpass versions of a
% power series nonlinearity of the form y(t) = x(t) - a3*x(t)^3
% For the BP Model f1=11Hz; f2=14Hz; IM @ 8 and 17 Hz
% The 3rd harmonics are at 33 and 42 Hz
%
% For the LPE model the ref freq is f0 =10Hz
% Hence f1=-1 and f2=2 Hz; IM @ -4 and 5Hz
% Input parameters: None;
% Plots: BP input; BP output; LPE input; LPE Output
f1=11.0; f2=14.0; ts=1.0/128; n=1024; a3=0.3;
% Generate input samples
for k=1:n
t(k)=(k-1)*ts;
x(k) = cos(2*pi*f1*t(k))+0.707*cos(2*pi*f2*t(k));

end
% Generate output samples
for k=1:n
y(k)=x(k)-a3*x(k)^3;

end;
% Plot the results
[psdx,freq]=log_psd(x,n,ts); [psdy,freq]=log_psd(y,n,ts);
subplot(2,1,1)
plot (freq,psdx,‘b’); grid;
ylabel(‘PSD in dB’)
title(‘BP Input @ f1 = 11 and f2=14’);
subplot(2,1,2)
plot (freq,psdy,‘b’); grid;
xlabel(‘Frequency in Hz’)
ylabel(‘PSD in dB’)
title(‘BP output: IM @ 8 and 17 and Third harmonics’)
%
% This Section of the model implements the LPE model for the 3-rd
% order power series nonlinearity.
% Baseband model: y(t) = x(t) - a3*x(t)^3.
% LPE Model: y(k)=x(k)+0.75*a3*(abs(x(k))^2)*x(k);
% Generate LPE of the input signals using 12Hz as the ref frequency
% And generate output samples using the LPE model
f1=-1.0; f2=2.0;
for k=1:n
t(k)=(k-1)*ts;
x(k) = exp(i*2*pi*f1*t(k))+0.707*exp(i*2*pi*f2*t(k));
y(k)=x(k)+0.75*a3*(abs(x(k))^2)*x(k);

“TranterBook” — 2003/11/18 — 16:12 — page 495 — #513
�

�

�

�

�

�

�

�

Section 12.11. Appendix B: MATLAB Code for Example 12.2 495

end
% Plot the results
[psdx,freq]=log_psd(x,n,ts); [psdy,freq]=log_psd(y,n,ts);
figure;
subplot(2,1,1)
plot(freq,psdx); grid;
ylabel(‘PSD in dB’)
title(‘LP Equivalent input; f0=12; f1=-1 and f2 = 2’);
subplot(2,1,2)
plot(freq,psdy); grid;
xlabel(‘Frequency in Hz’)
ylabel(‘PSD in dB’)
title(‘LP Output IM at 2f1-f2= -4 and 2f2-f1 =5’)
% End of script file.

12.11.1 Supporting Routines

Program log psd.m is defined in Appendix A of Chapter 7.

“TranterBook” — 2003/11/18 — 16:12 — page 496 — #514
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 497 — #515
�

�

�

�

�

�

�

�

Chapter 13

MODELING
AND SIMULATION
OF TIME-VARYING
SYSTEMS

Up to this point in our studies, all components in the system under study, and the
resulting models for those components, have been fixed or time-invariant. Linear
time-invariant (LTIV) models, and their application to the modeling and simulation
of system elements such as filters, were discussed in detail in the preceding chapters.
Linear elements in a communication system can be time invariant or time varying
in nature. We now remove the restriction of time invariance and turn our attention
to the modeling and simulation of time-varying systems. As we will see, there are
many examples of time-varying systems. Of particular interest later in our studies,
will be the time-varying channel that is encountered in the mobile radio system.

13.1 Introduction

The assumption of time invariance implies that the properties of the system being
modeled do not change over time. If we are modeling a time-invariant system by

497

“TranterBook” — 2003/11/18 — 16:12 — page 498 — #516
�

�

�

�

�

�

�

�

498 Modeling and Simulation of Time-Varying Systems Chapter 13

a transfer function, time invariance requires that the transfer function (both mag-
nitude and phase) remain fixed as a function of time. Consider, for example, the
model of a third-order Butterworth filter with a 3-dB bandwidth of 1 MHz. Time
invariance implies that neither the order nor the bandwidth of the filter changes
as a function of time. The filter is only time invariant if the values of all physical
components, such as the resistors, capacitors, and the parameters of active compo-
nents, such as the gain of an operational amplifier, do not change with time. While
the time-invariance assumption may hold over a shorter periods of time, component
values do change over longer periods of time due to aging. (Recall the role of end-
of-life performance predictions discussed in Chapter 1.) From a practical point of
view, whether or not a system can be considered time invariant depends not only
on the system but also on the nature of the problem being solved.

Whether to use a time-invariant or time-varying system model is usually deter-
mined by the rate at which the characteristics of the communication system being
modeled are changing in comparison to other parameters of the communication
system such as the symbol rate. As an example, if the time constant associated
with the system time variations is very large compared to the symbol rate, then a
time-invariant model may be justified. On the other hand, if the system parame-
ters are changing at a rate approaching the symbol rate, a time-varying model is
appropriate. Thus, there is a notion of “slow” or “fast” variations, compared to
the symbol rate, or some other attribute of the system that influences the choice of
a time-varying or time-invariant model. We further examine this point using two
examples.

13.1.1 Examples of Time-Varying Systems

Consider a microwave radio communication system in which the transmitting and
receiving antennas are located on fixed microwave towers. The “channel” between
these antennas is the atmosphere, and the changes in the channel characteristics are
due to changes in the atmospheric conditions, which typically have time constants
on the order of minutes or hours. If the communication link is operating at a symbol
rate of 100 Mbit/s, the time constant associated with the channel variations is very
long compared to the symbol time of 10−8 s. Indeed, the channel will remain in
nearly the same state while billions of symbols flow over the link. If the objective
of a system simulation is estimation of the bit error rate (BER), the channel can
be assumed to be in a “static” state and a time-invariant model can be used during
the time interval over which the BER is estimated. The resulting BER estimate, of
course, is valid only for the particular channel state used in the simulation. The long-
term behavior of the channel, and its impact on long-term system performance, can
be evaluated by analyzing system performance over a series of “snapshots” of static
channel conditions, using a different time-invariant model for each snapshot. This is
illustrated in Figure 13.1, where three simulations are developed for the three values
of channel attenuation shown. From such simulations, one can obtain performance
measures such as “outage probabilities,” which describe the portion of time during
which the channel performance might fall below some BER threshold. If 10, 000
channel snapshots are simulated and 100 of these channel conditions produce a BER

“TranterBook” — 2003/11/18 — 16:12 — page 499 — #517
�

�

�

�

�

�

�

�

Section 13.1. Introduction 499

0 2 3 4 5 6
Time - seconds

Channel
Attenuation

Figure 13.1 Snapshots of a slowly varying time-varying channel.

corresponding to unsatisfactory system performance, BER> 10−3, for example,
then the outage probability is (100/10, 000) = 0.01 for this specific BER threshold.

As a second example, consider a mobile communication system consisting of a
fixed base station and a mobile user. The characteristics of the communication
channel between the transmitter and the receiver will be time varying, since the
parameters of the channel, such as the attenuation and delay, are changing due to
relative motion between the base station and the mobile user. In addition, changes
in atmospheric conditions will also contribute to the time-varying nature of the
channel. If the mobile user is rapidly moving and if the symbol rate is of the order
of 10, 000 symbols per second, the rate at which channel conditions are changing
might be comparable to the symbol rate. In this case a time-varying channel model
would be required. While a time-varying model may or may not be needed for
BER estimation, such a model will be necessary to study the behavior of receiver
subsystems such as synchronizers and equalizers.

13.1.2 Modeling and Simulation Approach

As with LTIV systems, LTV systems can be modeled and simulated in either the
time domain or in the frequency domain. The time-domain approach leads to a
model consisting of a tapped delay-line structure with time-varying tap gains. This
model is very easy to implement for simulation purposes and is computationally
very efficient if the time-varying impulse response is relatively short.

Many of the modeling and simulation concepts previously discussed for
LTIV systems apply to LTV systems, but with some important differences. Par-
ticular attention must be paid to the sampling rate used in the simulation, since
an increase in the sampling rate will be required because of bandwidth expansion
resulting from underlying time variations. One source of bandwidth expansion is
the “doppler” spreading in a mobile communications system. In addition, caution

“TranterBook” — 2003/11/18 — 16:12 — page 500 — #518
�

�

�

�

�

�

�

�

500 Modeling and Simulation of Time-Varying Systems Chapter 13

must be exercised in simplifying the block diagrams of LTV systems, since LTV
blocks do not obey commutative properties and hence the order of computations
cannot be interchanged between LTV blocks as with LTIV blocks.

However, as long as the time-varying system is linear in nature, superposition
and convolution apply, and many of the time-domain and frequency-domain analysis
techniques developed for LTIV systems can be used, with slight modifications, to
model and simulate LTV systems. We will also use equivalent lowpass signal and
system representations as we develop simulation models and techniques for time-
varying systems.

13.2 Models for LTV Systems

In the time domain, a linear time-invariant system is described by a complex enve-
lope impulse response h̃(τ), where h̃(τ) is defined as the response of the system at
time τ to an impulse applied at the input at time t = 0. The variable τ represents
the “elapsed time,” which is the difference between the time at which the impulse
response is measured and the time at which the impulse is applied at the system
input. The complex envelope input-output relationship for a LTIV system is given
by the familiar convolution integral

ỹ(t) =
∫ ∞

−∞
h̃(τ)x̃(t − τ) dτ (13.1)

where x̃(t) and ỹ(t) represent the complex envelopes of the system input and output,
respectively.

Taking the Fourier transform of (13.1) gives the input-output relationship for
the LTIV system in the frequency domain. This is

Ỹ (f) = X̃(f)H̃(f) (13.2)

where H̃(f) is the transfer function of the system, and X̃(f) and Ỹ (f) are the
Fourier transforms of the input and output, respectively. The output ỹ(t) is obtained
by taking the inverse transform of Ỹ (f). This gives

ỹ(t) =
∫ ∞

−∞
Ỹ (f) exp(j2πft) df

=
∫ ∞

−∞
X̃(f)H̃(f) exp(j2πft) df (13.3)

The preceding expressions serve as the starting point for deriving models for time-
varying systems.

13.2.1 Time-Domain Description for LTV System

Time-varying systems are also characterized in the time domain by an impulse
response. For time-varying systems the impulse takes the form h̃(τ, t), which is
defined as the response of the system measured at time t, to an impulse applied at

“TranterBook” — 2003/11/18 — 16:12 — page 501 — #519
�

�

�

�

�

�

�

�

Section 13.2. Models for LTV Systems 501

the input τ seconds earlier. In other words, the impulse is applied at the input at
time t−τ and the response is measured at time t, after an “elapsed time” of τ . Since
the system is time-varying, the impulse response will change as a function of both
the time at which the impulse is applied, t − τ , and the time at which the output
is measured, t. For a time-invariant system, the impulse response will strictly be a
function of the elapsed time τ and it is therefore represented by h̃(τ). Note that the
impulse response of a time-varying system is a function of two arguments, while the
impulse response of a time-invariant system has one argument. Figure 13.2 depicts
the impulse response of both time-invariant and time-varying systems.

While the impulse response of a LTIV system maintains the same functional
form irrespective of when the impulse is applied at the input, the impulse response
of a LTV system depends on when the input is applied. In other words, for an LTIV
system

h̃(τ, t1) = h̃(τ, t2) = h̃(τ) (13.4)

but for an LTV system

h̃(τ, t1) 	= h̃(τ, t2) (13.5)

t1 t1

t2 t2

 t

(a) Impulse response of time-invariant system.

t2 t2

t1 t1

 t

(b) Impulse response of time-varying system.

h t(,)1

h t(,)2

h() h()

Input Input

Input Input

(,)h t
(,)h t

τ τ
τ

τ
τ

τ

τ τ

τ τ

−τ −τ

−τ −τ

Figure 13.2 Impulse response of a time-invariant and a time-varying system.

“TranterBook” — 2003/11/18 — 16:12 — page 502 — #520
�

�

�

�

�

�

�

�

502 Modeling and Simulation of Time-Varying Systems Chapter 13

In addition, the response of an LTIV system to an arbitrary input remains the same
irrespective of when the input is applied to the system except for a time delay. If
the input x̃(t) produces an output ỹ(t), then the same input applied t0 seconds
later, x̃(t − t0), will produce a delayed version, ỹ(t − t0), of ỹ(t) at the system
output. In a time-varying system, this will not be the case, and the responses due
to identical inputs may be entirely different if identical inputs are applied to the
system at different times.

Note that the important difference between the impulse response of an LTIV
system and an LTV system is that the impulse response for a time-invariant system
is strictly a function of the elapsed time and not the time at which the input is
applied or the time at which the output is observed. The impulse response of a
time-varying system, on the other hand, is a function of both the elapsed time, τ ,
and the observation time, t.

The two time variables τ and t in h̃(τ, t) characterize two different aspects of the
system. The variable τ has the same role as the τ variable in the impulse response
h̃(τ) of time-invariant systems for which the Fourier transform associated with this
variable carries the notions of transfer function, frequency response, and bandwidth.
For an LTV system, one can develop the notion of a transfer function, although it
is a time-varying transfer function H̃(f, t), by simply taking the Fourier transform
of h̃(τ, t) with respect to τ as

H̃(f, t) =
∫ ∞

−∞
h̃(τ, t) exp(−j2πfτ) dτ (13.6)

If the system is “slowly time-varying,” then the concepts of frequency response and
bandwidth can be applied to H̃(f, t). Whereas the LTIV system is characterized by
a single impulse response function and a single transfer function, the LTV system is
characterized by a family of impulse response functions and transfer functions, with
one function for each value of t. If h̃(τ, t) = h̃(τ) or equivalently H̃(f, t) = H̃(f),
then the system is time invariant.

The variable t in h̃(τ, t) and H̃(f, t) describes the time-varying nature of the
system. Strong dependence on t, and fast changes associated with t, indicate a
rapidly time-varying system. Usually, the time-varying nature of the system is
modeled as a random phenomenon, and h̃(τ, t) is treated as a random process in t. If
the process is stationary, then the time variations can be modeled by an appropriate
autocorrelation function in the time domain or by a corresponding power spectral
density in the frequency domain. The time constant of the autocorrelation function
or the bandwidth of the power spectral density are key parameters that describe
whether h̃(τ, t) is slowly or rapidly time-varying.

From the definition of the impulse response of LTV systems, it is easy to see
that the input-output relationship can be expressed by the convolution integral

ỹ(t) =
∫ ∞

−∞
h̃(τ, t)x̃(t − τ) dτ

=
∫ ∞

−∞
h̃(t − τ, t)x̃(τ) dτ (13.7)

“TranterBook” — 2003/11/18 — 16:12 — page 503 — #521
�

�

�

�

�

�

�

�

Section 13.2. Models for LTV Systems 503

The frequency domain version of the input-output relationship is somewhat more
complicated, as shown in the following section.

13.2.2 Frequency Domain Description of LTV Systems

As a starting point for the frequency domain description of LTV systems, let us
define a two-dimensional Fourier transform of h̃(τ, t) as

H̃(f1, f2) =
∫ ∞

−∞

∫ ∞

−∞
h̃(τ, t) exp(−j2πf1τ − j2πf2t) dτ dt (13.8)

In defining this two-dimensional Fourier transform, the usual finite energy assump-
tion is made about the impulse response function to ensure existence of the Fourier
transform. However, we will see later that for channel modeling, h̃(τ, t) will be
treated as a stationary random process in t in which case the Fourier transform of
h̃(τ, t) may not exist with respect to t. The autocorrelation function, of course, will
exist and the appropriate procedure is to define the autocorrelation of h̃(τ, t) with
respect to the t variable, and then take the Fourier transform of the autocorrelation
function to obtain the frequency domain representation. The result is the power
spectral density of the random process. It should also be noted that if the system
is time invariant, then h̃(τ, t) = h̃(τ), and H̃(f1,f2) = H̃(f1)δ(f2) .

Taking the inverse transform of H̃(f1, f2) gives

h̃(τ, t) =
∫ ∞

−∞

∫ ∞

−∞
H̃(f1,f2) exp(j2πf1τ + j2πf2t) df1 df2 (13.9)

Substituting h̃(τ, t) in (13.7), shows that

Ỹ (f) =
∫ ∞

−∞
H̃(f1, f − f1)X̃(f1) df1 (13.10)

and

ỹ(t) =
∫ ∞

−∞
Ỹ (f) exp(j2πft) df (13.11)

In the two-dimensional “transfer function” defined in (13.8), the frequency vari-
able f1is associated with the time variable, and it may be viewed as analogous to the
frequency variable f in the transfer function H(f) of linear time-invariant systems.
However, the input-output relationship for LTV systems in the frequency domain,
given in (13.10), involves a convolution in the frequency domain in the second vari-
able of the transfer function H̃(f1, f2). This convolution accounts for the effect of
the time-varying nature of the system in the frequency domain.

If the input to an LTIV system is a tone at fc + f0

x(t) = A cos[2π(fc + f0)t] (13.12)

“TranterBook” — 2003/11/18 — 16:12 — page 504 — #522
�

�

�

�

�

�

�

�

504 Modeling and Simulation of Time-Varying Systems Chapter 13

for which the complex envelope is

x̃(t) = A exp(j2πf0t) (13.13)

the input-output relationship in the frequency domain is given by

X̃(f) = Aδ(f − f0) (13.14)

and

Ỹ (f) = H̃(f)X̃(f) = H̃(f0)Aδ(f − f0) (13.15)

The system complex envelope output, in the time domain, is defined as

ỹ(t) = A
∣∣∣H̃(f0)

∣∣∣ exp[j2πf0t + ∠H̃(f0)] (13.16)

and the time-domain bandpass signal is given by

y(t) = A
∣∣∣H̃(f0)

∣∣∣ cos[2π(fc + f0)t + ∠H̃(f0)] (13.17)

The relationship given in (13.13) and (13.17) for LTIV systems show that when
the input to the system is a complex tone at frequency f0, the system produces an
output tone at the same frequency. The amplitude and phase of the output tone
are affected by the amplitude and phase response of the system at frequency f0.
This is illustrated in Figure 13.3.

We now consider the same situation for a time-varying system. With the same
input, (13.13), the output of an LTV system in the frequency domain is

Ỹ (f) =
∫ ∞

−∞
H̃(f1, f − f1)X̃(f1) df1

=
∫ ∞

−∞
H̃(f1, f − f1)Aδ(f1 − f0) df1

= H̃(f0, f − f0)A (13.18)

(c) Output

 f

(b) Transfer function

 A f fδ ()− 0

(a) Input

 f
f0

X f()
 H f A f f() ()0 0δ −

 f
f0

Y f()

H f()0

f0

H f()

Figure 13.3 Response of an LTIV system to a tone input.

“TranterBook” — 2003/11/18 — 16:12 — page 505 — #523
�

�

�

�

�

�

�

�

Section 13.2. Models for LTV Systems 505

~
(,)H f f f A0 0−

 A f fδ ()− 0

 f

 f

∆B

0

0

f0

f f0 + ∆

Input

Output

Figure 13.4 Response of an LTV system to a tone input (note the spectral “shift” ∆f
and “spreading” ∆B).

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

The preceding equation shows that the output does not consist of a single tone but
possibly a continuum of tones at all frequencies as dictated by the behavior of the
two-dimensional transfer function in f2. An example is shown in Figure 13.4. [Note
that if the system is time invariant, then h̃(τ, t) = h̃(τ), H̃(f1,f2) = H̃(f1)δ(f2),
and (13.18) produces Ỹ (f) = H̃(f0)Aδ(f − f0) which is the same as (13.15).]

In general, the output of an LTV system responding to an input tone at fre-
quency f0 might be shifted in frequency and also might be spread. In the context of
mobile communication channels, this is referred to as the doppler shift and doppler
spreading respectively, and is produced by the relative motion (velocity and accel-
eration) between the transmitting and receiving antennas or by other changes in
the channel.

13.2.3 Properties of LTV Systems

Several properties of LTIV systems are useful in simplifying the simulation model of
communication systems. Examples include the combining of the transfer functions
of blocks in parallel, blocks in series, and combinations of blocks in series and par-
allel. These operations are based on the associative, distributive, and commutative
properties of LTIV systems. These properties are now examined for LTV systems.

Associative Property

To examine the associative property in detail, consider the system shown in Figure
13.5(a). The output of the first block in Figure 13.5(a) is given by

w̃(t) =
∫ ∞

−∞
h̃1(τ1, t)x̃(t − τ1) dτ1 =

∫ ∞

−∞
h̃1(t − τ1, t)x̃(τ1) dτ1 (13.19)

“TranterBook” — 2003/11/18 — 16:12 — page 506 — #524
�

�

�

�

�

�

�

�

506 Modeling and Simulation of Time-Varying Systems Chapter 13

~x ta f ~w ta f
~

(,)h t1 τ ~
(,)h t2 τ

~y ta f

(a) Series connection (b) Equivalent system

~

(,)h tτ
~x ta f

~y ta f

Figure 13.5 Series connection and equivalent system.

The output of the second block is

ỹ(t) =
∫ ∞

−∞
h̃2(τ2, t)w̃(t − τ2) dτ2 (13.20)

Substituting for w̃(t) gives

ỹ(t) =
∫ ∞

−∞
h̃2(τ2, t)

[∫ ∞

−∞
h̃1(t − τ2 − τ1, t − τ2)x̃(τ1) dτ1

]
dτ2 (13.21)

which can be written

ỹ(t) =
∫ ∞

−∞
x̃(τ1)

[∫ ∞

−∞
h̃1(t − τ2 − τ1, t − τ2)h̃2(τ2, t) dτ2

]
dτ1 (13.22)

The quantity inside the brackets is the overall impulse response of the system h̃(t−
τ1, t). Substituting τ = t−τ1, we obtain the overall impulse response of two cascaded
blocks as

h̃(τ, t) =
∫ ∞

−∞
h̃1(τ − τ2, t − τ2)h̃2(τ2, t) dτ2 (13.23)

In simpler appearing form we have

h̃(τ, t) =
∫ ∞

−∞
h̃1(τ − α, t − α)h̃2(α, t) dα (13.24)

Using the preceding equation, we can define the associative property for an LTV
system as

x̃(τ) � h̃1(τ) � h̃2(τ) = [x̃(τ) � h̃1(τ)] � h̃2(τ)

= x̃(τ) � [h̃1(τ) � h̃2(τ)] (13.25)

The overall impulse response is

h̃(τ, t) = h̃1(τ, t) � h̃2(τ, t) (13.26)

where

h̃(τ, t) =
∫ ∞

−∞
h̃1(τ − α, t − α)h̃2(α, t)dα (13.27)

as shown in Figure 13.5(b).

“TranterBook” — 2003/11/18 — 16:12 — page 507 — #525
�

�

�

�

�

�

�

�

Section 13.2. Models for LTV Systems 507

Commutative Property

While it is possible to combine the response of two LTV blocks in series according
to (13.27), one cannot interchange the order of LTV blocks. Interchanging the
two blocks yields the overall impulse response as the convolution of the individual
impulse responses. Thus

g̃(τ, t) = h̃2(τ, t) � h̃1(τ, t)

=
∫ ∞

−∞
h̃2(τ − α, t − α)h̃1(α, t)dα (13.28)

In general, h̃(τ, t) 	= g̃(τ, t). Hence, interchanging the order of LTV is not, in general,
a valid operation. The example given in Figure 13.6 provides a specific example for
which the commutative property does not hold for LTV blocks, that is,

h̃1(τ, t) � h̃2(τ, t) 	= h̃2(τ, t) � h̃1(τ, t) (13.29)

for LTV systems. However, it should be noted that the commutative property does
hold for LTIV blocks, that is,

h̃1(τ) � h̃2(τ) = h̃2(τ) � h̃1(τ) (13.30)

for LTIV systems.

d

dt
•b g

 t

~()x t t= ~()y t t= 2

d

dt
•b g

 t

~()x t t= ~()y t t=

t 2

1

Figure 13.6 Example on interchanging LTV blocks.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Distributive Property

The reader can verify that the distributive property

x̃(τ) � [h̃1(τ, t) + h̃2(τ, t)] = x̃(τ) � h̃1(τ, t) + x̃(τ) � h̃2(τ, t) (13.31)

“TranterBook” — 2003/11/18 — 16:12 — page 508 — #526
�

�

�

�

�

�

�

�

508 Modeling and Simulation of Time-Varying Systems Chapter 13

~
,h tτa f

~x tb g
~y ta f

(a) Series and parallel connections (b) Equivalent system

~
,h t3 τa f

~
,h t2 τa f

~
,h t1 τa f

~x ta f ~()y t

Figure 13.7 Series/parallel connection and equivalent system.

or, equivalently

h̃1(τ, t) � [h̃2(τ, t) + h̃3(τ, t)] = h̃1(τ, t) � h̃2(τ, t) + h̃1(τ, t) � h̃3(τ, t) (13.32)

holds for LTV systems. An example of the simplification of simulation block dia-
grams of LTV systems, which result from the associative and distributive properties,
is shown in Figure 13.7, where

h̃(τ, t) = h̃1(τ, t) � h̃2(τ, t) + h̃1(τ, t) � h̃3(τ, t) (13.33)

in Figure 13.7(b).
Unfortunately, the one simplification that results in significant computational

efficiency in LTIV blocks does not apply directly for LTV blocks. Block diagrams
involving feedback cannot be simplified.

Example 13.1. Assume that the input to a linear time-varying system is defined
by a unit amplitude complex exponential having a frequency of 1 kHz. In other
words

x̃(t) = exp (j2000πt) (13.34)

which, in the frequency domain, is

X̃(f) = δ (f − 1000) (13.35)

The system, defined by h̃ (τ, t), is assumed to have a time-varying impulse response

h̃ (τ, t) = a1 (t) δ (τ) + a2 (t) δ (τ − T) + a3 (t) δ (τ − 2T) (13.36)

where T is 1 ms and the time-varying attenuations, ai (t), are given by

a1(t) = 1 cos (100πt) (13.37)

a2(t) = 0.7 cos (200πt) (13.38)

“TranterBook” — 2003/11/18 — 16:12 — page 509 — #527
�

�

�

�

�

�

�

�

Section 13.2. Models for LTV Systems 509

and

a3(t) = 0.3 cos (300πt) (13.39)

Figure 13.8 illustrates ten “snapshots” of the impulse response h̃(τ, t) taken every 2
ms starting at t = 0 s. We can see that the system is a function of both the elapsed
time, τ , and the observation time, t. Diagrams of this type are frequently used to
describe the time-varying channel typical of wireless communications systems.

The time-varying frequency response of the channel is found by taking the two-
dimensional Fourier transform defined by (13.8). Substituting the impulse response
defined by (13.36) into (13.8) gives

H̃ (f1, f2) =
∫ ∞

−∞

∫ ∞

−∞
1 cos (100πt) δ (τ)

· exp (−j2πf1τ) exp (−j2πf2t) dτdt

+
∫ ∞

−∞

∫ ∞

−∞
0.7 cos (200πt) δ (τ − T)

· exp (−j2πf1τ) exp (−j2πf2t) dτdt

+
∫ ∞

−∞

∫ ∞

−∞
0.3 cos (300πt) δ (τ − 2T)

· exp (−j2πf1τ) exp (−j2πf2t) dτdt (13.40)

 t ms

0 2 4

~
(,)h tτ

τ

Figure 13.8 eh(τ, t) as a function of both τ and t.

“TranterBook” — 2003/11/18 — 16:12 — page 510 — #528
�

�

�

�

�

�

�

�

510 Modeling and Simulation of Time-Varying Systems Chapter 13

and then applying the sifting and modulation Fourier transform theorems, we find
the transfer function

H̃ (f1, f2) =
1
2
δ (f2 ± 50) +

0.7
2

δ (f2 ± 100) exp (−j2πf1T)

+
0.3
2

δ (f2 ± 150) exp (−j4πf1T) (13.41)

whose magnitude response is plotted in Figure 13.9. Note that, in contrast to an
LTIV system, the transfer function is dependent on both f1 and f2.

The system output is defined by (13.10). Substitution of (13.35) and (13.41)
into (13.10) gives

Ỹ (f) =
1
2

∫ ∞

−∞
δ [(f − f1) ± 50] δ (f1 − 1000)df1

+
0.7
2

∫ ∞

−∞
δ [(f − f1) ± 100] δ (f1 − 1000) exp (−j2πf1T)df1

+
0.3
2

∫ ∞

−∞
δ [(f − f1) ± 150] δ (f1 − 1000) exp (−j4πf1T)df1 (13.42)

which, using the shifting property of the delta function, integrates to

Ỹ (f) =
1
2
δ (f − 1000 ± 50)

+
0.7
2

δ (f − 1000± 100) exp (−j2000πT)

+
0.3
2

δ (f − 1000± 150) exp (−j4000πT) (13.43)

()1 2,H f f�

0 .5

2f

5 0 1 0 0 1 5 05 0−1 0 0−1 5 0− 0

f1

Figure 13.9 Fourier transform of time-varying impulse response.

“TranterBook” — 2003/11/18 — 16:12 — page 511 — #529
�

�

�

�

�

�

�

�

Section 13.3. Random Process Models 511

()Y f�

0 .5

f

5 0f∆ =

1 0 0 00
0

Figure 13.10 System output.

The response of the time-varying system to the assumed input is illustrated in
Figure 13.10. We see that the input, which is a single tone at 1,000 Hz, has been
shifted, as well as spread in frequency, due to the time-varying channel impulse
response. The spreading effect will be explained in the following section. �

13.3 Random Process Models

In many time-varying systems, the characteristics of the system change as a function
of time in a random manner. Examples include changes in hardware characteristics
due to aging of the components and changes in the characteristics of a wireless
channel due to changes in the atmospheric conditions. These variations in time are
usually modeled as random processes. If the underlying model is linear, the random
variations of the system characteristics as a function of time can be handled by
treating the impulse response h̃(τ, t) as a random process in t. Such an approach
is extensively used to model mobile wireless communication channels. While the
details of different types of channel models will be considered in the next chapter,
we provide a brief introduction here, in order to develop a generic simulation model
for randomly time-varying systems. (In this section, we will use lower-case functions
of time to denote random processes even though it is customary to use upper-case
letters to denote random variables and random processes. Upper-case letters will
be used to denote Fourier transforms.)

As a simple example, consider a system in which the output is an attenuated
and delayed version of the input, where the attenuation is randomly changing as a
function of time. The system is characterized by an impulse response

h̃(τ, t) = a(t)δ(τ − t0) (13.44)

where a(t) is the time-varying attenuation and t0 is the delay. The input-output
relationship is given by

ỹ(t) =
∫ ∞

−∞
h̃(τ, t)x̃(t − τ) dτ = a(t)x̃(t − t0) (13.45)

The attenuation a(t) can be modeled as a stationary or nonstationary random
process. The preferred model is a stationary random process, since this leads to the

“TranterBook” — 2003/11/18 — 16:12 — page 512 — #530
�

�

�

�

�

�

�

�

512 Modeling and Simulation of Time-Varying Systems Chapter 13

autocorrelation function and power spectral density. Modeling a(t) as a stationary
process still permits a time-varying impulse response model.

If the input x̃(t) to the system is a stationary random process, the autocorrela-
tion and the power spectral density of the output can be obtained as

Reyey(α) = E {ỹ∗(t)ỹ(t + α)} (13.46)

which is

Reyey(α) = E {ã∗(t)x̃∗(t − t0)ã(t + α)x̃(t − t0 + α)} (13.47)

Assuming that the input process x̃(t) and the attenuation ã(t) are uncorrelated,
which is a reasonable assumption, the output autocorrelation reduces to the simple
form

Reyey(α) = Reaea(α)Rexex(α) (13.48)

By taking the Fourier transform of the preceding equation, we can obtain the power
spectral density (PSD) of the output. The result is

Seyey(f) = Seaea(f) � Sexex(f) (13.49)

The convolution in the preceding equation could lead to a spectral shifting and
spreading. If the input is a randomly phased complex exponential:

x̃(t) = A exp(j2πf0t + jθ), θ Uniform in [−π, π]

then

Rexex(α) = A2 exp(j2πf0α) (13.50)

from which the input PSD is

Sexex(f) = A2δ(f − f0) (13.51)

The output PSD is

Seyey(f) = A2Seheh(f − f0) (13.52)

as illustrated in Figure 13.11. An LTIV system will produce an output power spec-
tral density of the form

Seyey(f) = A2δ(f − f0) |H(f0)|2 (13.53)

The essential difference between the LTV system and the LTIV system is the spec-
tral spreading caused by the LTV system.

One manifestation of spectral spreading in simulation is that the sampling rate
has to be increased appropriately at least by an amount equal to twice the band-
width expansion due to the spreading. A rule of thumb is to arrive at a sampling

“TranterBook” — 2003/11/18 — 16:12 — page 513 — #531
�

�

�

�

�

�

�

�

Section 13.3. Random Process Models 513

 f

 f

S f A f fxx~~ () ()= −2
0δ

S f A S f fyy h h~~ ~~() ()= −2
0

f00

∆B

0 f0

Input PSD

Output PSD

Figure 13.11 Spectral spreading in a time-varying system.

rate treating the system as time invariant and increasing the sampling rate to ac-
commodate the “excess” bandwidth, which is equal to the bandwidth of the random
process modeling the time-varying nature of the system.

A more general version of the time-varying model treats h̃(τ, t) as a stationary
random process in t with an autocorrelation function

Reheh(τ1, τ2, α) = E
{
h̃∗(τ1, t)h̃(τ2, t + α)

}
(13.54)

The most commonly used model for h̃(τ, t) is a zero mean stationary Gaussian
process that leads to a Rayleigh probability density function for

∣∣∣h̃(τ, t)
∣∣∣. In this

model, it is usually assumed that h̃(τ1, t) and h̃(τ2, t) are uncorrelated for τ1 	= τ2.
In other words:

Reheh(τ1, τ2, α) = E
{
h̃∗(τ1, t)h̃(τ2, t + α)

}
= Reheh(τ1, α)δ(τ1 − τ2) (13.55)

For this case, the autocorrelation of the output of the system can be obtained from

Reyey(α) = E {ỹ∗(t)ỹ(t + α)} (13.56)

Substituting for ỹ(t) yields

Reyey(α) =

E

{∫ ∞

−∞
h̃∗(τ1, t)x̃∗(t − τ1) dτ1

∫ ∞

−∞
h̃(τ2, t + α)x̃(t + α − τ2) dτ2

}
(13.57)

“TranterBook” — 2003/11/18 — 16:12 — page 514 — #532
�

�

�

�

�

�

�

�

514 Modeling and Simulation of Time-Varying Systems Chapter 13

Interchanging orders of expectation and integration results in

Reyey(α) =∫ ∞

−∞

∫ ∞

−∞
E
{
h̃∗(τ1, t)h̃(τ2, t + α)x̃∗(t − τ1)x̃(t + α − τ2)

}
dτ1 dτ2 (13.58)

Assuming x̃(t) and h̃(t) independent, which is certainly reasonable, yields

Reyey(α) =
∫ ∞

−∞

∫ ∞

−∞
E
{

h̃∗(τ1, t)h̃(τ2, t + α)
}

· E {x̃∗(t − τ1)x̃(t + α − τ2)} dτ1 dτ2 (13.59)

Recognizing that the two expectations are autocorrelation functions and invoking
(13.55) provides the simplification

Reyey(α) =
∫ ∞

−∞

∫ ∞

−∞
Reheh(τ1, α)δ(τ1 − τ2)Rexex(α + τ1 − τ2) dτ1 dτ2 (13.60)

Performing the integration on τ2 using the sifting property gives

Reyey(α) = Rexex(α)
∫ ∞

−∞
Reheh(τ1, α) dτ1 (13.61)

which can be expressed by

Reyey(α) = Rexex(α)R̄eheh(α) (13.62)

where

R̄eheh(α) =
∫ ∞

−∞
Reheh(τ1, α) dτ1 (13.63)

The power spectral density of the output can be obtained by taking the Fourier
transform of (13.62), which leads to the convolution

Seyey(f) = Sexex(f) � S̄eheh(f) (13.64)

where �, as always, denotes convolution. Note that S̄eheh(f) is “averaged” power
spectral density and is the Fourier transform of the “averaged” autocorrelation
function defined in (13.63).

Note that the output power spectral density is a convolution of the input power
spectral density and the “averaged” power spectral density of the random process
that models the time variations. In contrast, the power spectral density relationship
for an LTIV system is given by

Seyey(f) = Sexex(f) |H(f)|2 (13.65)

Once again, when the input is a tone, an LTIV system produces an output tone
at the same frequency, whereas the output of an LTV system could be shifted and
spread in frequency.

“TranterBook” — 2003/11/18 — 16:12 — page 515 — #533
�

�

�

�

�

�

�

�

Section 13.4. Simulation Models for LTV Systems 515

13.4 Simulation Models for LTV Systems

Given a description of an LTV system in the form of its impulse response h̃(τ, t),
a simulation model can be derived using the sampling theorem assuming that the
input to the channel is bandlimited [1]. We start from the input-output relationship
given by the convolution integral

ỹ(t) =
∫ ∞

−∞
h̃(τ, t)x̃(t − τ) dτ

and use the sampling theorem to represent the input in terms of its sampled values.
From the sampling theorem we know that a lowpass signal w̃(τ) bandlimited to

B Hz can be represented in terms of its sampled values as

w̃(τ) =
∞∑

n=−∞
w̃(nT)

sin(2πB(τ − nT))
2πB(τ − nT)

(13.66)

where 1/T is the sampling rate, which is set equal to the Nyquist rate 2B. The
minimum sampling rate of 2B is chosen to minimize the computational burden of
the simulation model. Using the representation given above, with x̃(t − τ) = w̃(τ),
we can replace x̃(t − τ) in the convolution integral by

x̃(t − τ) =
∞∑

n=−∞
x̃(t − nT)

sin(2πB(τ − nT))
2πB(τ − nT)

(13.67)

which leads to

ỹ(τ) =
∫ ∞

−∞
h̃(τ, t)

{ ∞∑
n=−∞

x̃(t − nT)
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ

=
∞∑

n=−∞
x̃(t − nT)

∫ ∞

−∞
h̃(τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ (13.68)

We can therefore write

ỹ(t) =
∞∑

n=−∞
x̃(t − nT)g̃n(t) (13.69)

where

g̃n(t) =
∫ ∞

−∞
h̃(τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ (13.70)

Equations (13.69) and (13.70) define a simulation model for time-varying systems.

13.4.1 Tapped Delay Line Model

The model given in (13.69) can be implemented in the form of a tapped delay line
(TDL) as shown in Figure 13.12, with the tap gain functions specified by (13.70).
In general, the tap gain functions will themselves be random processes and they
will be correlated, that is, g̃n(t) and g̃m(t) will be correlated.

“TranterBook” — 2003/11/18 — 16:12 — page 516 — #534
�

�

�

�

�

�

�

�

516 Modeling and Simulation of Time-Varying Systems Chapter 13

∆ ∆ ∆… …

~ ()g tm−
~ ()g t0

~ ()g tm

~()x t

~()y t

… …

Figure 13.12 Tapped delay-line model.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Simplification of the TDL Model

The model shown above can be simplified in many ways using several approxima-
tions and assumptions. First, it is often assumed that the tap gain processes are
uncorrelated. They are also approximated by

g̃n(t) ≈ T h̃(nT, t) (13.71)

In this approximation, the tap gain functions represent the sampled values of the
time-varying impulse response h̃(τ, t), where the sampling is done in the impulse
response variable.

The second approximation involves truncation of the impulse response. If

E

{∣∣∣h̃(τ, t)
∣∣∣2}→ 0, |τ | ≥ mT

then the summation in (13.69) can be truncated to 2m + 1 terms as

∞∑
n=−∞

x̃(t − nT)g̃n(t) ≈
m∑

n=−m

x̃(t − nT)g̃n(t) (13.72)

and the tapped delay line model has only a finite number of taps as shown in Figure
13.12. The total number of taps should be kept to a minimum in order to maximize
the computational efficiency of the model.

“TranterBook” — 2003/11/18 — 16:12 — page 517 — #535
�

�

�

�

�

�

�

�

Section 13.4. Simulation Models for LTV Systems 517

Finally, if the system is time invariant, then h̃(τ, t) = h̃(τ), and the tap gains
become constants

g̃n(t) = g̃n ≈ T h̃(nT)

In other words, the gains are simply the sampled values of the impulse response of
the LTIV system, and the tapped delay line model reduces to an impulse invariant
model, or an FIR filter performing time domain convolution.

One other aspect of the TDL also deserves additional attention. The TDL
model shown in Figure 13.12 has continuous time input x̃(t) and continuous time
output ỹ(t). However, in simulation we will use sampled values of x̃(t) and ỹ(t).
Sampling should normally be carried out using a sampling frequency 8 to 16 times
the bandwidth, where the bandwidth includes the effect of spreading due to the
time-varying nature of the system. This effect can be seen in (13.52) and (13.64).
Note that the Nyquist rate of 2B was used to derive the TDL model, and the tap
spacing is T = 1/2B, which will be >> Ts, where Ts is the sampling time for the
input and output signals. It is of course possible to derive a TDL model with a
smaller tap spacing of Ts, but such a model will be computationally inefficient and
does not necessarily improve the accuracy.

Generation of Tap Gain Processes

The tap gain processes are stationary random processes with a given probability
density function and power spectral density. The simplest model for the tap gain
processes assumes them to be uncorrelated, complex, zero mean Gaussian processes
with different variances but identical power spectral densities. In this case, the tap
gain processes can be generated by filtering white Gaussian processes, as shown in
Figure 13.13.

H f()

Tap input
~()x t iT−

Tap output

g ti ()

Gain ai

Input:

Unit variance,

complex Gaussian process ~()n t

Figure 13.13 Generation of the ith tap gain process, t = kTs.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

“TranterBook” — 2003/11/18 — 16:12 — page 518 — #536
�

�

�

�

�

�

�

�

518 Modeling and Simulation of Time-Varying Systems Chapter 13

The filter transfer function is chosen such that it produces the desired power
spectral density, that is, H(f) is chosen such that

Segeg(f) = Senen(f)
∣∣∣H̃(f)

∣∣∣2 =
∣∣∣H̃(f)

∣∣∣2 (13.73)

where Senen(f) is the power spectral density of the input noise process, which can
be set equal to 1, and Segeg(f) is the specified power spectral density of the tap gain
processes. The static gain, ai, in Figure 13.13 accounts for the different power levels
or variances for the different taps. If the power spectral density of the tap gains are
different, then different filters will be used for the different taps.

There are several ways of implementing the spectral shaping filter (also referred
to as the doppler filter in channel models). An FIR filter in the time domain is the
most common implementation, since the (doppler) power spectral densities do not
lend themselves to spectral factoring and implementation in recursive form.

In generating the tap gain processes, it should be noted that the bandwidth
of the tap gain processes of slowly varying systems will be small compared to the
bandwidth of the system and the signals that flow through it. In this case, the tap
gain filter should be designed and executed at a slower sampling rate. Interpolation
can be used at the output of the filter to produce denser samples at a rate consistent
with the sampling rate of the signal coming into the tap. Designing the filter at
the higher sampling rate will lead to computational inefficiencies as well as stability
problems.

13.5 MATLAB Examples

We conclude this chapter with two MATLAB examples illustrating the concepts
presented in this chapter.

13.5.1 MATLAB Example 1

This example illustrates the spectral spreading that takes place in a time-varying
system as shown in (13.64). The system simulated is a simple one in which the
bandpass input to the system is a “tone” of the form x(t) = cos [2π (f0 + f1) t],
which corresponds to a lowpass equivalent signal

x̃(t) = exp(j2πf1t) (13.74)

The lowpass equivalent impulse response of the system is assumed to be of the form

h̃(τ, t) = ã(t)δ(t − τ0) (13.75)

which is an allpass channel with a delay of τ0 and a complex, time-varying attenu-
ation of ã(t). The attenuation is modeled as a zero-mean Gaussian random process
with a power spectral density

Seaea(f) =
1

(j2πf)2 + B2
(13.76)

“TranterBook” — 2003/11/18 — 16:12 — page 519 — #537
�

�

�

�

�

�

�

�

Section 13.5. MATLAB Examples 519

where B is the doppler bandwidth. The complex envelope of the output of the
time-varying system can be shown to be

ỹ(t) = ã(t)x̃(t − τ0) (13.77)

Simulation of this model involves generating sampled values of the input tone
and multiplying with a filtered complex Gaussian process, where the filter used is
chosen to have a transfer function that yields the power spectral density given by
(13.76). It is left as an exercise for the reader (Problem 13.6) to show that the
required filter has the transfer function

H(s) =
1

s + B
(13.78)

The simulation results illustrated are for parameter values f1 = 512 Hz, B = 64
Hz, τ0 = 0, fs = 8,192 samples/sec and simulation length = 8,192 samples.

Results of the simulation are shown in Figures 13.14 and 13.15. The power spec-
tral density of the filtered Gaussian process and the time-domain values of the
correlated Gaussian sequence generated by the filter are shown in the top and bot-
tom frames of Figure 13.14, respectively. The input tone expressed by (13.74) and

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-60

-40

-20

0

Im
p

u
ls

e
 R

e
s

p
o

n
s

e
 i

n
 d

B

Frequency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-40

-30

-20

-10

0

10

S
q

.
M

a
g

.
o

f
h

(t
)

in
 d

B

Time Sample Index
Figure 13.14 Frequency domain (top) and time domain (bottom) representation of the
filtered Gaussian process.

“TranterBook” — 2003/11/18 — 16:12 — page 520 — #538
�

�

�

�

�

�

�

�

520 Modeling and Simulation of Time-Varying Systems Chapter 13

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-60

-40

-20

0

P
S

D
 o

f
T

o
n

e
 I

n
p

u
t

in
 d

B

Frequency

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
-60

-40

-20

0

P
S

D
 o

f
O

u
tp

u
t

in
 d

B

Frequency
Figure 13.15 PSD of input tone and spread system output.

output of the time-varying system, both in the frequency domain, are shown in the
top and bottom frames of Figure 13.15, respectively. The spectral spreading due to
the time-varying nature of the system can be seen in the bottom frame of Figure
13.15. The MATLAB code used to develop Figures 13.14 and 13.15 is given in
Appendix A. (Note: The MATLAB code given in Appendix A yields four different
plots with titles rather than two plots per figure as was done here to save space.
The student should experiment with the simulation parameters, especially the tone
frequency f1, and observe the results of the parameter changes.)

13.5.2 MATLAB Example 2

In this example we illustrate two aspects of the time-varying channel: frequency
selectivity and time variation. In the previous example the channel was allpass
or frequency nonselective (sometimes also referred to as a flat channel). We now
modify the system model so that the complex lowpass equivalent impulse response
has the form

h̃(τ, t) = ã1(t)δ(τ − τ1) + ã2(t)δ(τ − τ2) (13.79)

“TranterBook” — 2003/11/18 — 16:12 — page 521 — #539
�

�

�

�

�

�

�

�

Section 13.5. MATLAB Examples 521

It can be shown that this model is frequency selective by considering a time-invariant
version with

h̃(τ, t) = ã1δ(τ − τ1) + ã2δ(τ − τ2) (13.80)

which leads to the transfer function, with τ1 assumed equal to zero, given by

H(f) = ã1 + ã2 exp (−j2πfτ2) (13.81)

The transfer function given above has different values at different frequencies and
hence is frequency selective.

The complex lowpass equivalent output of the time-varying system given by
(13.79) is

ỹ(t) = ã1(t)x̃(t − τ1) + ã2(t − τ2)x̃(τ − τ2) (13.82)

If the input to the system is a BPSK signal, the time-varying aspect of the system
attenuates and phase rotates the BPSK signal as a function of time. The frequency
selective nature of the channel, which is due to the two delayed components of the
output [Equations (13.79) and (13.81)], manifests itself in the form of intersymbol
interference. Both of these effects are clearly illustrated in the simulation results
shown in Figure 13.16. These simulation results were obtained by executing the
simulation given in Appendix B with the following parameters: BPSK symbol rate
= 512 bits/s, sampling rate = 16 samples per bit, doppler bandwidth for ã1(t),

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20

Sample Index

S
ig

n
a

l
L

e
ve

l

0 50 100 150 200 250 300 350 400 450 500
-30

-20

-10

0

10

20

Sample Index

S
ig

n
a

l
L

e
ve

l

Figure 13.16 Effect of one (top) and two (bottom) time-varying components.

“TranterBook” — 2003/11/18 — 16:12 — page 522 — #540
�

�

�

�

�

�

�

�

522 Modeling and Simulation of Time-Varying Systems Chapter 13

ã2(t) = 16Hz, τ1 = 0, and τ2 = 8 samples (half the bit duration). In Figure 13.16
the top frame illustrates the effect of one time-varying component, and the bottom
frame illustrates the effect of two components. Only the first 500 samples are shown.
(Note: The program given in Appendix B also generates and displays the PSD of
the first component impules response. As in the previous example, the MATLAB
code given in Appendix B yields four different plots with titles rather than two plots
per figure as was done here to save space. The student should experiment with the
simulation parameters and observe the impact of parameter changes.)

13.6 Summary

Techniques for modeling and simulating linear time-varying systems were discussed
in this chapter. These techniques will be used in the next chapter for simulating
mobile communication channels.

Linear time-varying systems are usually characterized by a time-varying impulse
response h̃(τ, t), which is the response of the system measured at time t to an input
applied at time t − τ . The input-output relationship will be a convolution integral
in the time domain

ỹ(t) =
∫ ∞

−∞
h̃(τ, t)x̃(t − τ) dτ (13.83)

In the frequency domain the input-output relationship is given by

Ỹ (f) =
∫ ∞

−∞
H(f1, f − f1) df1 (13.84)

which explains the spectral spreading (sometimes referred to as the doppler spread)
that takes place in a time-varying system such as a mobile communication channel.

The convolution integral given in (13.83) can be approximated by a finite con-
volution, which leads to an FIR simulation model

ỹ(kTs) ∼= Ts

m∑
n=−m

h̃(nT, kTs)x̃(kTs − nT) (13.85)

with time-varying tap gains functions. In the context of mobile communication chan-
nels, the time variations will be modeled by complex Gaussian processes with a
given autocorrelation or power spectral density function. Sampled values of cor-
related Gaussian process can be generated by filtering an uncorrelated Gaussian
sequence with an appropriate filter.

Linear time-varying components introduce two different forms of distortion. The
first one is due to the time-varying nature of the response, and the second one is
due to the frequency-selective aspects of the system. Two simulation examples
were presented and illustrate the modeling and simulation approaches as well as
the effects of time-varying components on two different types of input signals: an
unmodulated tone to show the spectral spreading and a BPSK signal to show the
effects of the time-varying and frequency-selective aspects.

“TranterBook” — 2003/11/18 — 11:36 — page 523 — #541
�

�

�

�

�

�

�

�

13.7 Further Reading

The tapped delay line model for time-varying systems based on the sampling prin-
ciple was first derived by Kailath [1]. A general reference for time-varying systems
is the book by D’Angelo [2]. Additional details and examples of simulation models
may be found in [3].

13.8 References

1. T. Kailath, “Channel Characterization: Time-Variant Dispersive Channels,”
Lectures on Communication Systems, E. J. Baghdady, Editor, New York:
McGraw-Hill, 1961.

2. H. D’Angelo, Linear Time Varying Systems: Analysis and Synthesis, Boston:
Allyn and Bacon, 1970.

3. M. C. Jeruchim, P. B. Balaban, and K. S. Shanmugan, Simulation of Commu-
nication Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers,
2000.

13.9 Problems

13.1 Develop an approach (i.e., write a short paper outlining an approach) for
simulating a time-varying system whose behavior is described in the form of
an nth order differential equation whose coefficients are functions of time. For
example

d2y

dt2
+ g1(t)

(
dy

dt

)2

+ g2 |y(t)| = x(t)

13.2 Develop an approach (as in Problem 13.1 write a short paper outlining an
approach) for simulating a time-varying system in the frequency domain using
two-dimensional DFTs—assuming that the system can be represented in the
sampled time domain as an FIR approximation given in (13.70).

(a) First consider a deterministic model.

(b) How would you modify the simulation model if gn(t) are random processes?

13.3 The transmitted signal in a mobile communication system is an unmodulated
tone x(t) = cos(2πft) where f = f0 + fi. Let f0 = 1 GHz be the nominal
carrier and let fi = 512 Hz. Consider simulating the received signal (and its
spectrum) at the mobile over a time interval of 2 seconds during which the
mobile is moving toward the base station at a constant velocity of 40 miles
per hour, starting from a distance of 1 mile from the base station. Note: The
received signal can be written as

y(t) = a(t) cos [2π (fc + fi) (t − ∆(t))]

Section 13.9. Problems 523

“TranterBook” — 2003/11/18 — 16:12 — page 524 — #542
�

�

�

�

�

�

�

�

524 Modeling and Simulation of Time-Varying Systems Chapter 13

where

∆(t) = d(t)/c

and

a(t) = k/d2(t)

In the preceding expressions d(t) is the distance between the base station
and the mobile at time t, c is the velocity of light, ∆(t) is the propagation
delay, and a(t) is the attenuation of the signal at time t, which can be assumed
constant over a 2-second interval. Carry out this simulation using the complex
lowpass equivalent model. (The output “spectrum” is the magnitude squared
of the DFT.)

13.4 In Problem 13.3 assume now that the mobile accelerates steadily from 40 miles
per hour to 50 miles per hour over the 2-second interval. What happens to
the output spectrum?

13.5 Rework Problem 13.3 assuming that the mobile is on a busy highway and
its speed, measured at time intervals of 0.01 second, can increase or decrease
randomly from 50 mph by 1/10 mph with a probability of 1/2.

13.6 Fill in the details of the IIR filter for synthesizing the power spectral density
given in (13.76).

13.7 In many simulation problems involving time-varying systems, the power spec-
tral density for the random process model will be assumed to be uniform
(white) over the doppler bandwidth. Synthesize an FIR filter for generating
a complex Gaussian process with a flat power spectral density over a doppler
bandwidth of 64 Hz and repeat the simulations given in MATLAB Example 1.

13.8 Repeat Problem 13.7 with a doppler power spectral density that has a Gaus-
sian shape defined by

Seheh(f) = exp
(−f2/σ2

)
where σ = 64 Hz.

13.9 Resimulate MATLAB Example 1 with the two-tone input

x̃(t) = exp [j2π(128)t] + exp [j2π(512)t]

13.10 The system described in MATLAB Example 2 is frequency selective. Replace
the random binary input in this example with an input of the form

x̃(t) = exp [j2π(128)t] + exp [j2π(512)t]

and show via simulation that the two input tones are affected differently by
the time-varying system, thus demonstrating the frequency-selective nature
of the system. Compare the results with Problem 13.9.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 525 --- #543
�

�

�

�

�

�

�

�

Section 13.10. Appendix A: Code for MATLAB Example 1 525

13.10 Appendix A: Code for MATLAB Example 1

% File: c13_tiv1.m
%
% Set default parameters}
f1 = 512; % default signal frequency
bdoppler = 64; % default doppler sampling
fs = 8192; % default sampling frequency
tduration = 1; % default duration
%
ts = 1.0/fs; % sampling period
n = tduration*fs; % number of samples
t = ts*(0:n-1); % time vector
x1 = exp(i*2*pi*f1*t); % complex signal
zz = zeros(1,n);
%
% Generate Uncorrelated seq of Complex Gaussian Samples
z = randn(1,n) + i*randn(1,n);
%
% Filter the uncorrelated samples to generate correlated samples
coefft = exp(-bdoppler*2*pi*ts);
h = waitbar(0,‘Filtering Loop in Progress’);
for k =2:n

zz(k) = (ts*z(k)) + coefft*zz(k-1);
waitbar(k/n)

end
close(h)
y1 = x1.*zz; % filtered output of LTV system
%
% Plot the results in time domain and frequency domain
[psdzz,freq]=log_psd(zz,n,ts);
figure;
plot(freq,psdzz); grid;
ylabel(‘Impulse Response in dB’)
xlabel(‘Frequency’)
title(‘PSD of the Impulse Response’);
zzz=abs(zz.^2)/(mean(abs(zz.^2)));
figure;
plot(10*log10(zzz)); grid;
ylabel(‘Sq. Mag. of h(t) in dB’)
xlabel(‘Time Sample Index’)
title(‘Normalized Magnitude Square of the Impulse Response in dB’);
[psdx1,freq]=log_psd(x1,n,ts);
figure;
plot(freq,psdx1); grid;

“TranterBook” — 2003/11/18 — 16:12 — page 526 — #544
�

�

�

�

�

�

�

�

526 Modeling and Simulation of Time-Varying Systems Chapter 13

ylabel(‘PSD of Tone Input in dB’)
xlabel(‘Frequency’)
title(‘PSD of Tone Input to the LTV System’);
[psdy1,freq]=log_psd(y1,n,ts);
figure;
plot(freq,psdy1); grid;
ylabel(‘PSD of Output in dB’)
xlabel(‘Frequency’)
title(‘Spread Output of the LTV System’);
% End of script file.

13.10.1 Supporting Program

Program log psd.m is defined in Appendix A of Chapter 7.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 527 --- #545
�

�

�

�

�

�

�

�

Section 13.11. Appendix B: Code for MATLAB Example 2 527

13.11 Appendix B: Code for MATLAB Example 2

% File: c13_tiv2.m
%
% Set default parameters
symrate = 512;
nsamples = 16;
nsymbols = 128;
bdoppler = 16;
ndelay = 8;
%
n = nsymbols*nsamples;
ts = 1.0/(symrate*nsamples);
%
% Generate two uncorrelated seq of Complex Gaussian Samples
z1 = randn(1,n) + i*randn(1,n);
z2 = randn(1,n) + i*randn(1,n);
%
% Filter the two uncorrelated samples to generate correlated sequences
coefft = exp(-bdoppler*2*pi*ts);
zz1 = zeros(1,n);
zz2 = zeros(1,n);
for k = 2:n

zz1(k) = z1(k)+coefft*zz1(k-1);
zz2(k) = z2(k)+coefft*zz2(k-1);

end
%
% Generate a BPSK (random binry wavefrom and compute the output)
M = 2; % binary case
x1 = mpsk_pulses(M,nsymbols,nsamples);
y1 = x1.*zz1; % first output component
y2 = x1.*zz2; % second output component
y(1:ndelay) = y1(1:ndelay);
y(ndelay+1:n) = y1(ndelay+1:n)+y2(1:n-ndelay);
%
% Plot the results
[psdzz1,freq] = log_psd(zz1,n,ts);
figure; plot(freq,psdzz1); grid;
title(‘PSD of the First Component Impulse Response’);
nn = 0:255;
figure; plot(nn,imag(x1(1:256)),nn,real(y1(1:256))); grid;
title(‘Input and the First Component of the Output’);
xlabel(‘Sample Index’)
ylabel(‘Signal Level’)
figure; plot(nn,imag(x1(1:256)),nn,real(y(1:256))); grid;

“TranterBook” — 2003/11/18 — 16:12 — page 528 — #546
�

�

�

�

�

�

�

�

528 Modeling and Simulation of Time-Varying Systems Chapter 13

title(‘Input and the Total Output’)
xlabel(‘Sample Index’)
ylabel(‘Signal Level’)
% End of function file.

13.11.1 Supporting Routines

Program log psd.m is defined in Appendix A of Chapter 7.

13.11.2 mpsk pulses.m

% File: mpsk_pulses.m
function [x] = mpsk_pulses(M,nsymbols,nsamples)
% This function genrates a random MPSK complex NRZ waveform of
% length nsymbols; Each symbol is sampled at a rate of nsamples/bit
%
u = rand(1,nsymbols);
rinteger= round ((M*u)+0.5);
phase = pi/M+((rinteger-1)*(2*pi/M));
for m = 1:nsymbols

for n = 1:nsamples
index = (m-1)*nsamples + n;
x(1,index) = exp(i*phase(m));

end
end
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 529 — #547
�

�

�

�

�

�

�

�

Chapter 14

MODELING
AND SIMULATION
OF WAVEFORM CHANNELS

14.1 Introduction

Modern communication systems operate over a broad range of communication chan-
nels including twisted pairs of wires, coaxial cable, optical fibers, and wireless
channels. All practical channels introduce some distortion, noise, and interfer-
ence. Appropriate modulation, coding, and other signal-processing functions such
as equalization, are used to mitigate the degradation induced by the channel and
to produce a system that satisfies the throughput and quality of service objectives
while meeting the constraints on power, bandwidth, complexity, and cost. If the
channel is relatively benign (e.g., does not significantly degrade the signal), or is well
characterized, the design of the communication system is relatively straightforward.

What complicates the design is that many communication channels, such as
the mobile radio channel, introduce significant levels of interference, distortion, and
noise. The mobile radio channel is also time varying and undergoes fading. In
addition, some channels are so variable that they are difficult to characterize. Fur-
thermore, wireless communication systems, such as next-generation PCS, must be
designed to operate over radio channels all over the world, in a variety of envi-

529

“TranterBook” — 2003/11/18 — 16:12 — page 530 — #548
�

�

�

�

�

�

�

�

530 Modeling and Simulation of Waveform Channels Chapter 14

ronments from urban areas to hilly terrains, and under a wide variety of weather
conditions. While it is possible to build prototypes of a proposed system and field-
test the prototype in many locations around the globe, such an approach will be
very expensive and will not be feasible in the early stages of the system design
process when a number of candidate designs must be explored. The only feasible
approach is to create appropriate models for the channel, and base the initial design
on those models.

Given either deterministic or statistical models for communications channels, it
might be possible, at least in the initial stages of communication system design,
to use analytical approaches for evaluating the performance of a given design. For
example, if we can assume that the “fading” in a channel has a Rayleigh amplitude
probability density function, and the noise is additive Gaussian, the probability
of error for a binary communication system operating over this channel can be
expressed as

Pe = 1/2γb (14.1)

where γb is the “average” value of the signal-to-noise ratio (SNR) at the receiver
input. This expression can then be used to determine such things as the transmitter
power required to ensure a given error probability. However, when the system is
actually built, implementation effects such as nonideal filters and nonlinear ampli-
fiers must be considered. These effects are difficult to characterize analytically and,
in most cases, one must resort to simulation or to a combination of simulation and
analytical analysis. Thus, modeling and simulation play a central role in the design
of communication systems. These two topics are covered in this chapter with an
emphasis on simulation approaches and methodologies for wireless communication
channels.

14.1.1 Models of Communication Channels

While a communication channel represents a physical medium between the trans-
mitter and the receiver, the “channel model” is a representation of the input-output
relationship of the channel in mathematical or algorithmic form. This model may
be derived from measurements, or based on the theory of the physical propagation
phenomena. Measurement-based models lead to an empirical characterization of the
channel in the time or frequency domain, and often involve statistical descriptions in
the form of random variables or random processes. The parameters of the underly-
ing distributions and power spectral densities are usually estimated from measured
data. While measurement-based models instill a high degree of confidence in their
validity, and are often the most useful models for successful design, the resulting
empirical models often prove unwieldy and difficult to generalize unless extensive
measurements are collected over the appropriate environments. For example, it is
very difficult to use measurements taken in one urban location to characterize a
model for another urban location unless a substantial amount of data is collected
over a wide variety of urban locations, and the necessary underlying theory is avail-
able to justify extrapolating the model to the new location.

“TranterBook” — 2003/11/18 — 16:12 — page 531 — #549
�

�

�

�

�

�

�

�

Section 14.1. Introduction 531

Developing mathematical models for the propagation of signals over a transmis-
sion medium requires a good understanding of the underlying physical phenomena.
For example, to develop a model for an ionospheric radio channel, one must under-
stand the physics of radio-wave propagation. Similarly, a fundamental understand-
ing of optical sciences is needed to develop models for single mode and multimode
optical fibers. Communication engineers rely on experts in the physical sciences to
provide the fundamental models for different types of physical channels.

One of the challenges in channel modeling is the translation of a detailed physical
propagation model into a form that is suitable for simulation. Mathematical models,
from a physical perspective, might often be extremely detailed and may not be
in a form suitable for simulation. For example, the mathematical model for a
radio channel may take the form of Maxwell’s equations. While accurate, this
model must be simplified and converted to a convenient form, such as a transfer
function or impulse response, prior to using it for simulation. Fortunately, this is a
somewhat easier process than deriving fundamental physical models and specifying
the parameters of such models. Once a physical model has been derived, and the
parameter values specified, translating the physical model into a simulation model
(algorithm) is usually straightforward.

14.1.2 Simulation of Communication Channels

Physical communication channels such as wires, wave guides, free space, and optical
fibers often behave linearly. Some channels, such as the mobile radio channel, while
linear, may behave in a random time-varying manner. The simulation model of
these channels falls into one of the following two categories:

1. Transfer function models for time-invariant channels. Examples are wires,
free-space propagation, and optical fibers. In such models, the channel is
assumed to be static in nature (i.e., the channel has a time-invariant impulse
response), which provides a particular frequency response due to the fixed
delays within the channel. The transfer function of the time-invariant channel
is said to be “flat” if the applied message source has a bandwidth for which
the channel has a constant gain response. The channel is said to be “frequency
selective” if the applied modulated message source has a bandwidth over which
the channel has a significant gain variation.

2. Tapped delay line (TDL) models for time-varying channels. An important
example is the mobile radio channel. For these channel models, the channel
is assumed to vary over time. If the channel changes during the smallest time
interval of interest for an applied signal, the channel is said to be “fast fading.”
If the channel remains static for a large number of consecutive symbols of the
applied source, the channel is said to be “slow fading” and the channel can be
treated as in (1) above over the particular span of time for which the channel
is static.

Transfer function models can be simulated in either the time domain or frequency
domain using finite impulse response (FIR) or infinite impulse response (IIR) filters.

“TranterBook” — 2003/11/18 — 16:12 — page 532 — #550
�

�

�

�

�

�

�

�

532 Modeling and Simulation of Waveform Channels Chapter 14

Empirical models in the form of measured or synthesized impulse or frequency
responses are usually simulated using FIR techniques. Analytical expressions for
the transfer function are easier to simulate using IIR techniques. IIR and FIR filters
were discussed in detail in Chapter 5.

Simulation models for randomly time-varying (fading) channels take the form
of TDLs with tap gains and delays that are random processes. Given the random
process model for the underlying time variations (fading), the properties of the
tap gain process can be derived and simulated using the techniques discussed in
Chapter 13. If the channel is assumed to be slowly time varying, so that chan-
nel conditions do not change over many transmitted symbols, then we can use a
snapshot (i.e., static impulse response) of the channel for simulation. This may be
repeated as channel conditions change. By repeating the simulations for a large
number of channel conditions, we can infer system performance over longer periods
of time using performance measures, such as outage probabilities, as discussed in
Chapter 11.

14.1.3 Discrete Channel Models

The focus of this chapter is on waveform-level channel models, which are used to
represent the physical interactions between a transmitted waveform and the channel.
Waveform channel models are sampled at an appropriate sampling frequency. The
resulting samples are processed through the simulation model. Another technique,
which is often more efficient for some applications, is to represent the channel by a
finite number of states. As time evolves, the channel state changes in accordance
with a set of transition probabilities. The channel can then be defined by a Markov
chain. The resulting channel model most often takes the form of a hidden Markov
model (HMM). Assuming that the HMM is constructed correctly, simulations based
on the HMM allow the performance of a communication system to be accurately
characterized with minimum computational burden. Discrete channel models and
HMMs are the subject of the following chapter.

14.1.4 Methodology for Simulating
Communication System Performance

Simulating the performance of a communication system operating over a time-
invariant (fixed) channel is rather straightforward. The channel is simply treated
as another linear time-invariant (LTIV) block in the system. Time-varying channels,
on the other hand, require a number of special considerations. The methodology
used will depend on the objective of the simulation and whether the channel is
varying slowly or rapidly with respect to the signals and subsystems that are being
simulated. Another important factor is the relationship between the bandwidth of
the applied signal and the bandwidth of the channel. The complexity of a useful
channel model is a function of both the time and frequency characteristics of both
the source and the channel.

“TranterBook” — 2003/11/18 — 16:12 — page 533 — #551
�

�

�

�

�

�

�

�

Section 14.2. Wired and Guided Wave Channels 533

14.1.5 Outline of Chapter

The first part of this chapter is devoted to the development of models for com-
munication channels, starting with simple transfer function models for “wired” or
“guided” channels. These channels include twisted pairs, cables, waveguides, and
optical fibers. These channels are linear and time invariant and, therefore, a trans-
fer function or static impulse response model is sufficient. We then consider models
for free space radio channels that are linear but may be time varying.

The second part of this chapter deals with the simulation of communication
channels with the emphasis on the implemantation of TDL (tapped delay line) mod-
els for randomly time-varying channels. Three different TDL models of increasing
complexity and capabilities are developed.

We conclude the chapter with the description of a methodology for simulat-
ing the performance of communication systems operating over fading channels.
Throughout the chapter, near-earth and mobile communication channels will be
emphasized, since these channels present most of the challenges in the modeling
and simulation of channels, and also because of the current high level of interest in
wireless communications.

14.2 Wired and Guided Wave Channels

Electrical communication systems use a variety of conducting media such as twisted
pairs of wires and coaxial cable. These channels can be adequately characterized
by RLC circuit models, and the input-output signal transfer characteristics can
be modeled by a transfer function. Cable manufacturers often provide impedance
characteristics of the transmission line models for the cables, and it is easy to de-
rive transfer function models from this data. The transfer function is then used as
a simulation model. It is also easy to measure the frequency response of varying
lengths of cable and derive a transfer function model based on the resulting mea-
surements. In a large cable network it might be necessary to define the channel
using a number of random variables that characterize the parameters of a resulting
transfer function or static impulse response. The channel, in that instance, may be
treated as time invariant and, therefore, a time-varying model is not needed.

Waveguides and optical fibers can also be included in the broad category of
guided wave transmission media. While the mode of propagation might vary, chan-
nels in this category can be modeled as time-invariant linear systems characterized
by transfer functions.

Guided lightwave communication systems use optical fibers, while free-space
optical communication systems transmit light through the air. The most common
type of lightwave communication system uses either a single-mode or multimode
fiber cable as the channel, and has a binary digital source and a receiver that makes
a decision based on the energy received during each bit interval.

Besides attenuating the transmitted pulses, the optical fiber distorts or spreads
the transmitted pulses. There are two different distortion mechanisms: chromatic
dispersion and intermodal dispersion. Chromatic dispersion is a result of the dif-
ferences in the propagation velocities of different transmitted spectral components.

“TranterBook” — 2003/11/18 — 16:12 — page 534 — #552
�

�

�

�

�

�

�

�

534 Modeling and Simulation of Waveform Channels Chapter 14

Intermodal dispersion is seen in multimode fibers and results from a large number of
propagation paths traveling along the fiber and arriving at the detector input with
different delays. This is a multipath effect. Joints and splices in a fiber network
cause reflections that can be approximated as additional intermodal dispersion. The
multipath channel model was briefly introduced in Chapter 4 and will be studied
in more detail in Section 14.4. While the emphasis in Section 14.4 is on the fad-
ing radio channel, the material to be presented is applicable to a wide variety of
channels, including cables and optical fibers.

The relationship between the input and the output of a fiber can be described
by the lowpass equivalent transfer function [1, 2]

H(f) =
∫ ∞

−∞
S(λ)G(λ)Him(λ)Hc(λ, f)dλ (14.2)

where S(λ) is the source spectrum as a function of wavelength λ, G(λ) is the
frequency-selective gain of the fiber, Him(λ) is the intermodal dispersion, and
Hc(λ, f) is the chromatic dispersion [2]. The intermodal dispersion is

Him(f) =
1

σim

√
2π

exp
[(−σ2

im(2πf)2/2
)− j2πftd

]
(14.3)

where σim is the rms impulse response width and td is the fiber time delay. The
chromatic dispersion is

Hc(λ, f) = exp [−j2πflT (λ)] (14.4)

where l is the fiber length and T (λ) is the group delay of the fiber [2].
The source spectrum S(λ), the dispersion characteristics T (λ), and the loss L(λ)

are obtained from the manufacturer’s data sheets for the source and the fiber, and
are used to compute the transfer function by substituting them in (14.2) and carry-
ing out the integration numerically for different values of f . Several approximations
for S(λ) and T (λ) are used to simplify the computation of the transfer function [1,
2, 3]. For example, the source spectrum can be assumed to be a frequency impulse
for ideal sources. A Gaussian approximation with mean λ0 can be used for most
practical sources. The group delay function is often approximated by a parabolic
function in λ − λ0. Once the integral in (14.2) is evaluated, it is stored in tabu-
lar form, and the simulations are carried out using an FIR implementation for the
channel.

The model given in (14.2) is an input power to output power transfer function
model for the fiber, and is valid for use in direct detection lightwave communication
systems in which the source spectrum is very narrow compared to the modula-
tion bandwidth. For wideband systems, and for coherent optical communication
systems, the model is not valid. The reader is referred to the lightwave communica-
tions literature for appropriate transfer function models for these systems [1, 2, 3].

14.3 Radio Channels

Radio channels have been used for long-distance communications since the early
days of electrical communications starting with Marconi’s experiments in radio

“TranterBook” — 2003/11/18 — 16:12 — page 535 — #553
�

�

�

�

�

�

�

�

Section 14.3. Radio Channels 535

telegraphy. The propagation of radio waves through the atmosphere, including the
ionosphere, which extends several hundred kilometers above the surface of the earth,
is an extremely complex phenomenon. Atmospheric propagation takes on a wide
range of behaviors depending on many factors including the frequency and band-
width of the signal, the types of antennas used, the terrain between the transmit
and receive antennas (rural, urban, indoor, outdoor, etc.), and weather conditions
(clear air, rain, fog, etc.). Atmospheric scientists have devoted considerable effort to
the understanding and development of models that describe radio-wave propagation
through the atmosphere. Also, many measurement programs were carried out over
the past several decades to gather empirical propagation data for HF to microwave.
All of these efforts have led to a somewhat better understanding of how to model
radio-wave propagation through the atmosphere, and how to use these models to
aid in the analysis, design, and simulation of modern communication systems. The
literature on modeling radio channels is vast and any effort to summarize this liter-
ature in a few pages would be inadequate. Nevertheless, we will attempt to provide
the reader with a sampling of the various approaches to modeling and simulating
communication systems.

From a communication systems designer’s point of view, propagation models
fall into two categories: those that aid in the calculation of path losses and those
that aid in the modeling of signal distortion that may be due to multipath effects
or random variations in the propagation characteristics of the channel. While the
first category of models is used to establish the link power budgets and coverage
analysis during initial design, it is the latter class of models that aid in the detailed
design of communication systems. Hence, our focus will be on the second category
of models, with an emphasis on approaches to simulating them efficiently.

We begin our discussion of channel models with an “almost” free-space channel
that treats the region between the transmit and receive antennas as being free of
all objects that might absorb or reflect RF energy. It is also assumed that the
atmosphere behaves as a uniform and nonabsorbing medium, and that the earth
is infinitely far away from the propagation path. Such a model is, for example,
appropriate for satellite links.

In this idealized model, the channel simply attenuates the signal, and waveform
distortion does not occur. The attenuation is computed according to the free-space
propagation model defined by

Lf =
(

4πd

λ

)2

(14.5)

where λ is the wavelength of the transmitted signal and d is the distance between
the transmitter and receiving antennas, both of which are assumed to be omnidi-
rectional. The transmitter and receiver antenna gains are taken into account while
calculating the actual received power.

For most practical channels in which the signal propagates through the atmo-
sphere and near the ground, the free-space propagation channel assumption is
not adequate. The first effect that must be included is the atmosphere, which
causes absorption, refraction, and scattering. Absorption due to the atmosphere,

“TranterBook” — 2003/11/18 — 16:12 — page 536 — #554
�

�

�

�

�

�

�

�

536 Modeling and Simulation of Waveform Channels Chapter 14

when considered over narrow bandwidths, results in additional attenuation. How-
ever, over larger bandwidths, absorption is frequency dependent and can usually be
modeled by a transfer function. This filtering effect can be considered time invari-
ant, or at least quasi-static, since the channel is very slowly changing with respect
to the signal. Other atmospheric phenomena, such as phase distortion introduced
by the ionosphere, can also be modeled by a phase response that is slowly varying
or time invariant. Several examples of transfer function models used to characterize
certain types of atmospheric channels are described in the following paragraphs.

Other atmospheric effects (other than absorption) and the presence of ground
and other objects near the transmission path often lead to what is known as mul-
tipath propagation. Multipath propagation is the arrival of a signal over multiple
reflected and/or refracted paths from the transmitter to the receiver. These ef-
fects can also be time varying due to changes in atmospheric conditions or relative
motion of the transmitting and receiving antennas, as is the case in mobile com-
munications. The term scintillation, which originated in radio astronomy, is used
to describe time variations in channel characteristics due to physical changes in the
propagation medium, such as variations in the density of ions in the ionosphere
that reflect high frequency (HF or shortwave) radio waves. Multipath fading is the
terminology used in mobile communications to describe changes in channel condi-
tions and the resulting changes in the received signal characteristics. Models for
multipath fading channels will be covered in a later section of this chapter.

14.3.1 Tropospheric Channel

Tropospheric (non-ionospheric) communications use VHF (30 to 300 MHz) and
UHF (300 MHz to 3 GHz) frequency bands for communications over distances up
to several hundred kilometers. In these frequency bands, the oxygen and water
vapor present in the atmosphere absorb RF energy. The loss due to absorption is
dependent on the frequency of the RF wave as well as the atmospheric conditions,
particularly the relative humidity. A typical set of characteristics for propagation
losses due to atmospheric absorption is given in [4].

The frequency selective absorption characteristics of the atmosphere can be ap-
proximated by a transfer function of the form [4]

H(f) = H0 exp{j0.02096f
[
106 + N(f)

]
l} (14.6)

where N(f) is the complex refractivity of the atmosphere in parts per million, and
is given by

N(f) = N0 + D(f) + jN ′′(f) (14.7)

In (14.6) and (14.7) H0 is a constant, N0 is the frequency dependent refractivity,
D(f) is the refractive absorption, N ′′(f) is the absorption, and l is the distance
in km. These parameters are dependent on frequency and atmospheric conditions
such as temperature, barometric pressure, and relative humidity. Typical values are
tabulated in [4].

“TranterBook” — 2003/11/18 — 16:12 — page 537 — #555
�

�

�

�

�

�

�

�

Section 14.3. Radio Channels 537

Given the atmospheric conditions and the bandwidth occupied by the transmit-
ted signal, the transfer function can be computed empirically for various values of
frequency using (14.6) and (14.7). The lowpass equivalent transfer function can be
obtained by frequency translation, and the resulting channel model can be simulated
using FIR techniques.

14.3.2 Rain Effects on Radio Channels

Rain has a significant impact on microwave propagation at higher frequencies
(greater than 10 GHz), since the size of the rain drops is on the order of the
wavelength of the transmitted signal. Various techniques have been proposed in
the literature for modeling the effects of rain [5, 6]. The attenuation due to rainfall
is a function of the rate of rainfall and frequency. At higher frequencies and rain
rate, rain-induced attenuation, as well as depolarization, is much more significant.
Thus, attenuation increases as both rain rate and frequency increase. In addition,
there are resonant peaks in the attenuation characteristic that result in significantly
greater attenuation in the neighborhood of these peaks. Substantial resonant peaks
occur at 22 GHz and 60 GHz. The peak at 22 GHz is due to water vapor, and the
peak at 60 GHz is due to molecular oxygen. These effects are well documented [5].

Attenuation curves due to rainfall are usually computed for a given geographic
location using the statistics of the rain rates for that location. For satellite com-
munications, the attenuation is computed as a function of the elevation angle of
the ground station antenna (with respect to the horizon) and frequency. Lower
elevation means that there is more rain water in the transmission path and hence
the attenuation is higher. The effect of rainfall is typically computed for a given
outage probability, which is the fraction of the time that the link BER will exceed
an acceptable threshold value (usually 10−3 for voice communications and 10−6 for
data links).

Over relatively small bandwidths, the effects of rain can be accounted for by
simply including an additional attenuation term in the channel model. However,
as the bandwidth of the signal becomes larger, the attenuation varies over the
bandwidth, and a transfer function type model is required. The amplitude response
of the transfer function has a linear tilt [on a log (dB) scale] and the phase can be
assumed linear.

Free-space propagation channels at higher frequencies generally use highly direc-
tional antennas that have a particular polarization characteristic. When the carrier
frequency is such that the wavelength is much greater than the size of atmospheric
particles, and when there are no physical obstructions to induce multipath, it be-
comes possible to use antenna polarization to isolate channels. In communication
systems that use multiple orthogonal polarizations for different signals, the depo-
larizing effect of rain must be considered. Depolarization means that energy in
one polarization leaks into, or couples with, the energy in the orthogonal polariza-
tion. This produces cross-talk [6, 7, 8]. If the two signals that are transmitted on
orthogonal polarizations are

s̃i(t) = Ai(t) exp [jφi(t)] , i = 1, 2 (14.8)

“TranterBook” — 2003/11/18 — 16:12 — page 538 — #556
�

�

�

�

�

�

�

�

538 Modeling and Simulation of Waveform Channels Chapter 14

the simplest model for the two received signals with depolarization is

r̃1(t) = α11s̃1(t) + α12s̃2(t)
r̃2(t) = α21s̃1(t) + α22s̃2(t)

(14.9)

where the ratio 20 log (α11/α21) is a measure of the cross-polarization interference
(or XPI) on signal 1 from signal 2. While a variety of approximations are available in
the literature for analyzing the effects of XPI on analog and digital communication
systems, the need for simulation increases as the system departs from the ideal.

14.4 Multipath Fading Channels

14.4.1 Introduction

We now turn our attention to the modeling and simulation of multipath and motion-
induced fading, which are two of the most severe performance-limiting phenomena
that occur in wireless radio channels. In any wireless communication channel there
can be more than one path in which the signal can travel between the transmitter
and receiver antennas. The presence of multiple paths may be due to atmospheric
reflection or refraction, or reflections from buildings and other objects. Multipath
and/or fading may occur in all radio communication systems. These effects were
first observed and analyzed for HF troposcatter systems in the 1950s and 1960s
[9]. Much of the current interest is in the modeling and simulation of multipath
fading in mobile and indoor wireless communications in the 1 − 60 GHz frequency
range. Although the fading mechanisms may be different, the concepts of modeling,
analysis, and simulation are the same.

14.4.2 Example of a Multipath Fading Channel

To illustrate the basic approach to modeling fading channels, let us consider a
mobile communication channel in which there are two distinct paths (or rays) from
the mobile unit to a fixed base station, as illustrated in Figure 14.1. Although
Figure 14.1 shows only two paths, it is easily generalized to N paths. For the
N -path case the channel output (the input signal to the mobile receiver) is

y(t) =
N∑

n=1

an(t)x(t − τn(t)) (14.10)

where an(t) and τn(t) represent the attenuation and the propagation delay asso-
ciated with the nth multipath component, respectively. Note that the delays and
attenuations are shown as functions of time to indicate that, as the automobile
moves, the attenuations and delays, as well as the number of multipath compo-
nents, generally change as a function of time. In (14.10) the additional multipath
components are assumed to be caused by reflections from both natural features,
such as mountains, and manmade features, such as additional buildings. Further-
more, each multipath component or ray may be subjected to local scattering in
the vicinity of the mobile due the presence of objects such as signs, road surfaces,

“TranterBook” — 2003/11/18 — 16:12 — page 539 — #557
�

�

�

�

�

�

�

�

Section 14.4. Multipath Fading Channels 539

Base
station

Path 1

Mobile

Path 2

time t +αtime t

Figure 14.1 Example of a multipath fading channel.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

and trees located near the mobile. The total signal that arrives at the receiver is
made up of the sum of a large number of scattered components. These components
add vectorially with random phases and hence the resulting complex envelope can
be modeled as a complex Gaussian process by virtue of the central limit theorem.
Movement over small distances of the order of λ/2 (about 15 cm at 1 GHz) can
result in significant phase changes in the scattered components within a ray and
cause components that add constructively at one location to add destructively at a
location just a short distance away. This results in rapid fluctuations in the received
signal amplitude/power and this phenomenon is called small scale or fast fading.

It should be noted that the small-scale fading is caused by changes in phase
rather than by path attenuation, since the path lengths change by only a small
amount over small distances. On the other hand, if the mobile moves over a larger
distance and the path length increases from 1 km to 2 km, the received signal
strength will drop, since the attenuation will change significantly. Movement over
larger distances (� λ) and changes in terrain features affect attenuation and re-
ceived signal power slowly. This phenomenon is called large-scale or slow fading
and is modeled separately as discussed in the following sections of this chapter.

We have seen that the complex envelope of the receiver input due to a large
number of scattered components is a complex Gaussian process. For the case in
which this process is zero mean, the magnitude of the process is Rayleigh. If a
line-of-sight (LOS) component is present, the process becomes Ricean. The effect
of this will be demonstrated in Example 14.1.

“TranterBook” — 2003/11/18 — 16:12 — page 540 — #558
�

�

�

�

�

�

�

�

540 Modeling and Simulation of Waveform Channels Chapter 14

The definition of fast fading and slow fading are, to some extent, in the eye of
the beholder. However, when speaking about fast and slow fading we usually have
an underlying symbol rate in mind. Slow-fading channels are typically defined as
channels in which the received signal level is essentially constant over many symbols
or data frames. Fast fading typically means that the received signal strength changes
significantly over time intervals on the order of a symbol time. The definition of
fast fading and slow fading therefore depends upon the underlying symbol rate.

We now determine the complex envelope of the received signal. Assume that
the channel input (the transmitted signal) is a modulated signal of the form

x(t) = A(t) cos(2πfct + φ(t)) (14.11)

Since waveform simulation is usually accomplished using complex envelope signals,
we now determine the complex envelope for both x(t) and y(t).

The complex envelope of the transmitted signal is, by inspection,

x̃(t) = A(t) exp [φ(t)] (14.12)

Substituting (14.11) for x(t) in (14.10) gives

y(t) =
N∑

n=1

an(t)A(t − τn(t)) cos [2πfc(t − τn(t)) + φ(t − τn(t))] (14.13)

which can be written

y(t) =
N∑

n=1

an(t)A(t − τn(t))

· Re {exp [jφ(t − τn(t))] exp [−j2πfcτn(t)] exp(j2πfct)} (14.14)

Since an(t) and A(t) are both real, (14.14) can be written

y(t) = Re

{
N∑

n=1

an(t)A(t − τn(t)) exp [jφ(t − τn(t))]

· exp [−j2πfcτn(t)] exp(j2πfct)

}
(14.15)

From (14.12) we recognize that

A(t − τn(t)) exp [jφ(t − τn(t))] = x̃(t − τn(t)) (14.16)

so that

y(t) = Re

{
N∑

n=1

an(t)x̃(t − τn(t)) exp [−j2πfcτn(t)] exp(j2πfct)

}
(14.17)

“TranterBook” — 2003/11/18 — 16:12 — page 541 — #559
�

�

�

�

�

�

�

�

Section 14.4. Multipath Fading Channels 541

The complex path attenuation is defined as

ãn(t) = an(t) exp [−j2πfcτn(t)] (14.18)

so that

y(t) = Re

{
N∑

n=1

ãn(t)x̃(t − τn(t)) exp(j2πfct)

}
(14.19)

Thus, the complex envelope of the receiver input is

ỹ(t) =
N∑

n=1

ãn(t)x̃(t − τn(t)) (14.20)

The channel input-output relationship defined by (14.20) corresponds to a linear
time-varying (LTV) system with an impulse response

h̃(τ, t) =
N∑

n=1

ãn(t)δ(t − τn(t)) (14.21)

In (14.21), h̃(t, τ) is the impulse response of the channel measured at time t assuming
that the impulse is applied at time t− τ . Thus, τ represents the elapsed time or the
propagation delay. In the absence of movement or other changes in the transmission
medium, the input-output relationship is time invariant even though multipath is
present. In this case, the transmission delay associated with the nth propagation
path and the path attenuation are constant (the channel is fixed) and

ỹ(t) =
N∑

n=1

ãnx̃(t − τn) (14.22)

For the fixed-channel case, the channel can be represented in the time domain by
an impulse response of the form

h̃(τ) =
N∑

n=1

ãnδ(τ − τn) (14.23)

The corresponding representation in the frequency domain is

H(f) =
N∑

n=1

ãn exp(−j2πfτn) (14.24)

We see that for the time-invariant channel case, the channel simply acts as a filter
on the transmitted signal.

Example 14.1. In this example we simulate the BER performance of a QPSK
system operating over a fixed 3-ray multipath channel with AWGN, and compare
the BER performance with an identical system operating over an ideal AWGN
channel (no multipath). In order to simplify the simulation model we will make the
following assumptions:

“TranterBook” — 2003/11/18 — 16:12 — page 542 — #560
�

�

�

�

�

�

�

�

542 Modeling and Simulation of Waveform Channels Chapter 14

1. The channel has three paths consisting of an unfaded LOS path and two
Rayleigh components. The received power levels associated with each path,
and the differential delays between the three paths, are simulation parameters.

2. The Rayleigh fading in the channel affects only the amplitude of the trans-
mitted signal. The instantaneous phase is not affected.

3. The magnitude of the attenuation of each multipath component is constant
over a symbol interval and has independent values over adjacent intervals (no
doppler spectral shaping required).

4. No transmitter filtering is used, and the receiver model is an ideal integrate-
and-dump receiver.

The received signal for this example can be written as

ỹ(t) = a0x̃(t)︸ ︷︷ ︸
LOS

+ a1R1x̃(t)︸ ︷︷ ︸+

Rayleigh

a2R2x̃(t − τ)︸ ︷︷ ︸
Delayed Rayleigh

(14.25)

where R1 and R2 are two independent Rayleigh random variables representing the
attenuation of the two Rayleigh paths, and τ is the relative delay between the two
Rayleigh components. The Fourier transform of (14.25) is

Ỹ (f) = a0X̃(f) + a1R1X̃(f) + a2R2X̃(f) exp(−j2πfτ) (14.26)

which leads to the channel transfer function

H̃(f) = a0 + a1R1 + a2R2 exp(−j2πfτ) (14.27)

Clearly, if the product fτ is not negligible over the range of frequencies occupied
by the signal, the channel is frequency selective, which leads to delay spread and
ISI. The values of a0, a1, and a2 determine the relative power levels P0, P1, and P2

of the three multipath components.
Simulations were conducted for each of the six sets of parameter values given in

Table 14.1. For each scenario, the BER is evaluated using semianalytic estimation.
In Table 14.1, the delay is expressed in terms of the sampling period. Since the
simulation sampling frequency is 16 samples per symbol, τ = 8 corresponds to a
delay of one-half the sample period. (See Appendix for code.)

The simulation results for Scenarios 1 and 2 are illustrated in Figure 14.2. In
Scenario 1, only a line-of-sight component is present. There is no multipath for
Scenario 1 and this result provides the semianalytic estimation of the BER for a
QPSK system operating in an AWGN environment. This simulation serves to verify
the simulation methodology and provide baseline results representing an ideal QPSK
system. For comparison purposes, this result is displayed along with the BER results
for all five of the remaining scenarios. Table 14.1 shows that Scenario 2 results by
adding a Rayleigh fading component to the LOS component of Scenario 1. This
gives rise to a Ricean fading channel. Since τ = 0, Scenario 2 is flat fading (not

“TranterBook” — 2003/11/18 — 16:12 — page 543 — #561
�

�

�

�

�

�

�

�

Section 14.4. Multipath Fading Channels 543

Table 14.1 Scenarios for Fading Example

Scenario P0 P1 P2 τ (samples) Comments
1 1.0 0 0 0 Validation
2 1.0 0.2 0 0 Ricean flat fading
3 1.0 0 0.2 0 Ricean flat fading
4 1.0 0 0.2 8 Ricean frequency selective fading
5 0 1.0 0.2 0 Rayleigh flat fading
6 0 1.0 0.2 8 Rayleigh frequency selective fading

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

Figure 14.2 Scenario 1 (left-hand pane) and Scenario 2 (right-hand pane) illustrating
the calibration run and Ricean flat fading.

“TranterBook” — 2003/11/18 — 16:12 — page 544 — #562
�

�

�

�

�

�

�

�

544 Modeling and Simulation of Waveform Channels Chapter 14

frequency selective). Note the increase in BER compared to the baseline (no fading)
result given in Scenario 1.

The simulation results for Scenarios 3 and 4 are illustrated in Figure 14.3.
Scenario 3 is essentially equivalent to Scenario 2. The small difference is due to
the fact that the fading process is different from that used in Scenario 2 due to a
different initialization of the underlying random number generator. Scenario 4 is
the same as Scenario 3 except that the fading is now frequency selective. Note that
system performance is further degraded.

The simulation results for Scenarios 5 and 6 are illustrated in Figure 14.4. Note
that for both of these scenarios there is no line-of-sight component present at the
receiver input. Comparison of the Scenario 5 result with the preceding four results
shows that, even for the flat-fading scenario (left-hand pane), the performance is
worse than with any of the scenarios in which a line-of-sight component is present.
Scenario 6 is the same as Scenario 5 except that the fading is now frequency selective.
Note that system performace is further degraded. Rayleigh and Ricean channels
will be explored in greater detail in the following sections. �

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

Figure 14.3 Scenario 3 (left-hand pane) and Scenario 4 (right-hand pane) illustrating
Ricean flat fading and frequency selective fading.

“TranterBook” — 2003/11/18 — 16:12 — page 545 — #563
�

�

�

�

�

�

�

�

Section 14.4. Multipath Fading Channels 545

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

0 5 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

E
b
/N

0
 (dB)

P
ro

b
a

b
ili

ty
 o

f
E

rr
o

r

Figure 14.4 Scenario 5 (left-hand pane) and Scenario 6 (right-hand pane) illustrating
Rayleigh flat fading and frequency selective fading.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

14.4.3 Discrete Versus Diffused Multipath

The number of multipath components will vary depending on the type of channel.
In microwave communication links between fixed microwave towers using large di-
rectional antennas (narrow beams), the number of multipath components will be
small, whereas in an urban mobile communication system using omnidirectional an-
tennas, there may be a large number of multipath components caused by reflections
from buildings. The same will be true for indoor wireless communications where
signals can bounce off walls, furniture, and other surfaces.

There are some situations like troposcatter channels, or some mobile radio chan-
nels, where it is more appropriate to view the received signal as consisting of a
continuum of multipath components rather than as a collection of discrete com-
ponents. This situation is called diffused multipath. We will see later on in this
chapter that the diffused multipath channel can be approximated by a (sampled
version of) discrete multipath channel for simulation purposes.

“TranterBook” — 2003/11/18 — 16:12 — page 546 — #564
�

�

�

�

�

�

�

�

546 Modeling and Simulation of Waveform Channels Chapter 14

14.5 Modeling Multipath Fading Channels

The recent literature on communication systems contains a vast quantity of articles
dealing with the modeling and analysis of multipath fading channels, particularly
indoor wireless and outdoor mobile channels [10–15]. While a complete review of
the literature is outside the scope of this chapter, we will provide a brief review
of the modeling of outdoor mobile wireless channels leading to the development of
simulation techniques. These modeling and simulation techniques can be applied
to other multipath fading channels.

Modeling an outdoor mobile channel is usually carried out as a two-step process
which represents large-scale (macro) and small-scale (mirco) effects of multipath
and fading. As previously mentioned, large-scale fading represents attenuation or
path loss over a large area, and this phenomenon is affected by prominent terrain
features like hills, buildings, etc., between the transmitter and the receiver. The
receiver is often hidden or shadowed by such terrain features, and the statistics of
large-scale fading provide a way of computing the estimated signal power or path
loss as a function of distance. Small-scale fading deals with large dynamic variations
in the received signal amplitude and phase as a result of very small changes in the
spatial separation between the transmitter and the receiver.

There are three mechanisms that affect the quality of the received signal in a
mobile channel [13]: reflection, refraction, and scattering. Reflection occurs when
the radio wave impinges upon a large, smooth surface (water or large metallic
surfaces). Diffraction takes place when there is an obstruction in the radio path
between the transmitter and receiver causing secondary radio waves to form behind
the obstruction. This is called shadowing, and this phenomenon accounts for radio
waves reaching the receive antenna even though there is no direct or line-of-sight
path between the transmitter and the receiver. The third effect, scattering, results
from rough surfaces whose dimensions are of the order of the wavelength, which
causes the reflected energy to scatter in all directions.

While electromagnetic theory offers very complex models for these phenomena,
it is possible to use simpler statistical models for the input-output relationship in
a mobile channel. Specifically, the lowpass equivalent response of a mobile channel
can be modeled by a complex impulse response [12] having the form

h̃(τ, t) =

{[
k

dn
gsh (p(t))

]1/2
}

c̃(τ, p(t)), d > 1 km (14.28)

where the term in braces models the large-scale fading, and c̃(τ, p(t)) accounts for
the small-scale fading as a function of the position of p(t) at time t. The constant
K = −10 log10(k) is the median dB loss at a distance of 1 km. Since the reference
distance is 1 km, (14.28) is only valid for d > 1 km. Typically, K is of the order
of 87 dB at 900 MHz, d is the distance in meters between the transmitter and the
receiver, and the path loss exponent n has a value of 2 for free space (for most mobile
channels its value will range from 2 to 4, with higher values applying to obstructed
paths). The factor gsh(p(t)) accounts for shadowing due to buildings, tunnels, and
other obstructions at a given location p(t), and G = 10 log10(gsh(p(t))) is usually

“TranterBook” — 2003/11/18 — 16:12 — page 547 — #565
�

�

�

�

�

�

�

�

Section 14.6. Random Process Models 547

modeled as a Gaussian variable with a mean of 0 dB and a standard deviation of
6 to 12 dB depending upon the environment (this model is called the lognormal
shadowing model (see [13] for more details). It is a common practice to express the
path loss [the term in braces in (14.28)] as

L(d)dB = L(1 km)dB + 10n log(d) + Xσ (14.29)

where Xσ is a zero mean Gaussian variable with a standard deviation of 6 to 12
dB.

In (14.28), c̃(τ, p(t)) represents the complex lowpass equivalent impulse response
of the channel at position p(t), and the local multipath and fading that will result
from small spatial displacements around the location p(t). The path loss associated
with large-scale fading, represented by the term in braces in (14.28), as well as fading
due to shadowing, changes very slowly as a function of time at normal vehicular
speeds compared to the rate of change of c̃(τ, p(t)). Hence the channel attenuation
due to large-scale fading and shadowing may be treated as a constant within a
small local area, and the large-scale effect on system performance is reflected in
the average received signal. The dynamic behavior of receiver subsystems such as
tracking loops and equalizers, as well as the bit error rate of the system, will be
affected significantly by the small-scale behavior modeled by c̃(τ, p(t)). Hence much
of the effort in the modeling and simulation of mobile wireless channels is focused
on c̃(τ, p(t)). In the following discussion we will use c̃(τ, t) as a shorter notation for
c̃(τ, p(t)).

14.6 Random Process Models

A variety of models have been proposed for characterizing multipath fading chan-
nels, and almost all of them involve using random process models to characterize
fading (see [15] for an example). There are two classes of models for describing
multipath, the discrete multipath model (finite number of multipath components),
and the diffused multipath model (continuum of multipath components). In mobile
radio communications, the first model is often used for waveform-level simulation
of mobile radio channels, while the second model is used for troposcatter channels
having narrowband modulation. In both of these cases, the channel is modeled as
a linear time-varying system with a complex lowpass equivalent response c̃(τ, t). If
there are N discrete multipath components, the output of the channel consists of
the sum of N delayed and attenuated versions of the input. Thus

ỹ(t) =
N(t)∑
k=1

ãk (t) x̃ (t − τk (t)) (14.30)

The impulse response c̃(τ, t) is

c̃(τ, t) =
N(t)∑
k=1

ãk(t)δ(τ − τk(t)) (14.31)

“TranterBook” — 2003/11/18 — 16:12 — page 548 — #566
�

�

�

�

�

�

�

�

548 Modeling and Simulation of Waveform Channels Chapter 14

where N(t) is the number of multipath components, and ãk(t) and τk(t) are the
complex attenuation and the delay of the kth multipath at time t.

As previously mentioned, a multipath channel may be time invariant. However,
for all practical channels of interest, the channel may be characterized as time
varying (fading). Time variations arise for two reasons:

1. The environment is changing even though the transmitter and receiver are
fixed; examples are changes in the ionosphere, movement of foliage, and move-
ment of reflectors and scatterers.

2. The transmitter and the receiver are mobile even though the environment
might be static. Hence, in practical multipath channels, N , ak, and τk may
all be randomly time varying. An example is illustrated in Figure 14.5.

Random fluctuations in the received signal due to fading can be modeled by treating
c̃(τ, t) as a random process in t. If the received signal is made up of the sum of a
large number of scattered components in each path, the central limit theorem leads
to a model in which c̃(τ, t) can be represented as a complex Gaussian process in
t. At any time t, the probability density function of the real and imaginary parts
are Gaussian. This model implies that for each τ or τk, the ray is composed of a
large number of unresolvable components. Hence, c̃(τ, t) and ãk(t) are both complex
Gaussian processes in t.

If c̃(τ, t) has a zero mean, the envelope R = |c̃(τ, t)| has a Rayleigh probability
density function of the form

fR(r) =
r

σ2
exp

(
− r2

2σ2

)
, r > 0 (14.32)

where σ2 is the variance of the real and imaginary parts of c̃(τ, t).

Discrete
Multipath
Channel

(LTIV System)
Impulse response

~ ,c tτb g

Input Output

t1

t2

t3

t1 1+ τ t1 2+ τ t1 3+ τ

t t2 1 2 4+ +τ τ.....

t3 1+τ t3 2+τ

Figure 14.5 Example of a discrete multipath fading channel.

“TranterBook” — 2003/11/18 — 16:12 — page 549 — #567
�

�

�

�

�

�

�

�

Section 14.6. Random Process Models 549

If c̃(τ, t) has a nonzero mean, which implies the presence of a line-of-sight non-
faded path (referred to as a specular component), then R = |c̃(τ, t)| has a Ricean
probability density function of the form

fR(r) =
r

σ2
I0

(
Ar

σ2

)
exp

(
−r2 + A2

2σ2

)
, r > 0 (14.33)

where A is the nonzero mean of c̃(τ, t), and I0 (z) is the modified Bessel function
defined by

I0(z) =
1
2π

∫ 2π

0

exp(z cos(u)) du (14.34)

The ratio K = A2/σ2, referred to as the Ricean factor, is an indicator of the relative
power in the unfaded and faded components. Values of K � 1 indicate less severe
fading, whereas K
 1 indicates severe fading.

The channel is called a Rayleigh fading channel or a Ricean fading channel de-
pending on the pdf of | c̃(τ, t) |. Other distributions for | c̃(τ, t) | such as Nakagami
and Weibul are also possible [12]. Generalized probability density functions describ-
ing envelope statistics for a finite number of specular components, together with
diffuse multipath, have recently been developed [16]. In these results, Ricean and
Rayleigh fading are special cases. For discrete multipath channels, these pdfs apply
to | ãk(t) |. While the pdf of | c̃(τ, t) | describes the instantaneous value of the
complex impulse response, the temporal variations are modeled by either an appro-
priate autocorrelation function or power spectral density of the random process in
the t variable. We describe these models now.

14.6.1 Models for Temporal Variations
in the Channel Response (Fading)

The time-varying nature of the channel is mathematically modeled by treating c̃(τ, t)
as a wide sense stationary (WSS) random process in t with an autocorrelation
function

Rc̃c̃(τ1, τ2, α) = E {c̃∗(τ1, t)c̃(τ2, t + α)} (14.35)

In most multipath channels, the attenuation and phase shift associated with differ-
ent delays (i.e., paths) are assumed uncorrelated. This uncorrelated scattering (US)
assumption leads to

Rc̃c̃(τ1, τ2, α) = Rc̃c̃(τ1, α)δ(τ1 − τ2) (14.36)

Equation (14.36) embodies both the wide sense stationary and uncorrelated scat-
tering assumptions. It is often referred to as the WSSUS model for fading, and
was originally proposed by Bello [9]. This autocorrelation function is denoted by
Rc̃c̃(τ, α) and is given by

Rc̃c̃(τ, α) = E {c̃∗(τ, t)c̃(τ, t + α)} (14.37)

“TranterBook” — 2003/11/18 — 16:12 — page 550 — #568
�

�

�

�

�

�

�

�

550 Modeling and Simulation of Waveform Channels Chapter 14

By Fourier transforming the autocorrelation function we can obtain a frequency
domain model for fading in the form of a power spectral density as

S(τ, λ) = F {(Rc̃c̃(τ, α)} =
∫ ∞

−∞
Rc̃c̃(τ, α) exp(−j2πλα) dα (14.38)

The quantity S (τ, λ) is called the scattering function of the channel, and is a func-
tion of two variables, a time domain variable (delay) and a frequency domain vari-
able, which is called the doppler frequency variable. The scattering function pro-
vides a single measure of the average power output of the channel as a function of
delay and doppler frequency.

From the scattering function we can obtain the most important parameters of
the channel which impact the performance of a communication system operating
over the channel. We start with the “multipath intensity” profile, defined as

p(τ) = Rc̃c̃(τ, 0) = E
{
|c̃(τ, t)|2

}
(14.39)

which represents the average received power as a function of delay. Equation (14.39)
is commonly referred to as the power-delay profile [13]. It can be shown that p (τ)
is related to the scattering function via

p(τ) =
∫ ∞

−∞
S(τ, λ) dλ (14.40)

Another function that is useful for characterizing fading is the doppler power spec-
trum, which is derived from the scattering function according to

Sd(λ) =
∫ ∞

−∞
S(τ, λ) dτ (14.41)

The relationships between these functions are shown in Figure 14.6.
The multipath intensity profile is usually measured by probing the channel with

a wideband RF waveform where the modulating signal is a high-rate PN sequence.
By crosscorrelating the receiver output against delayed versions of the PN sequence
and measuring the average value of the correlator output, one can obtain the power
versus delay profile. Where measurements for mobile radio applications with a fixed
base station and mobile user are concerned, the power delay profile is measured in
short distance increments of fractions of a wavelength. The recorded power profile
is then averaged over 10 to 20 wavelengths in order to average out the effects
of Rayleigh fading. The correlation measurements made as a function of position,
i.e., the spatial autocorrelation function, can be converted to a temporal correlation
function by noting that ∆X = v∆t, where ∆X is the incremental spatial movement
of the mobile and v is the speed. Thus, the doppler spectrum can be obtained by
transforming the temporal correlation function for any vehicle speed.

14.6.2 Important Parameters

The scattering function, the multipath intensity profile, and the doppler spectrum
describe various aspects of a fading channel in detail. The two most important

“TranterBook” — 2003/11/18 — 16:12 — page 551 — #569
�

�

�

�

�

�

�

�

Section 14.6. Random Process Models 551

p τb g

τ
Tm

Power delay profile

P fb g

f

Frequency correlation function

f Tc m≈ 1/

S λb g

λ

Doppler power spectrum

s αb g

α

Time correlation function

Tc
Bd

Fourier
Transform

Fourier
Transform

Figure 14.6 Relationship between various parts of the scattering function.

parameters, however, for simulating a fading channel are the multipath spread and
the doppler bandwidth.

Multipath Spread

Important indicators of the severity of the multipath effect are the maximum delay
spread and the rms delay spread. The (maximum) delay spread which represents
the value Tmax of the delay beyond which the received power p (τ) is very small,
and the rms delay spread στ , is defined as

στ = [< τ2 > − < τ >2]1/2 (14.42)

where < x > denotes the time-average value of x and

< τk >=
∫

τkp(τ) dτ∫
p(τ) dτ

(14.43)

When the delay spread is of the order of, or greater than, the symbol duration in
a digital communication system, the delayed multipath components will arrive in
different symbol intervals and cause intersymbol interference, which can adversely
impact the BER performance. This is equivalent to the time-varying transfer func-
tion of a channel having a bandwidth less than the signal bandwidth. In this case,
the channel behaves as a bandlimiting filter and is said to be frequency selective.

“TranterBook” — 2003/11/18 — 16:12 — page 552 — #570
�

�

�

�

�

�

�

�

552 Modeling and Simulation of Waveform Channels Chapter 14

For a channel that is not frequency selective, the maximum delay spread is much
smaller than the symbol duration Ts

Tmax
 Ts or σT < 0.1Ts (14.44)

In the nonfrequency-selective case, all of the delayed multipath components arrive
within a short fraction of a symbol time. In this case, the channel can be modeled by
a single ray, and the input-output relationship can be expressed as a multiplication.
In other words

ỹ (t) = ã (t) x̃ (t) (14.45)

For a frequency-selective channel

Tmax � Ts or σT > 0.1Ts (14.46)

and the input-output relationship is the convolution

ỹ (t) = c̃ (τ, t) � x̃ (t) (14.47)

where �, as always, denotes convolution. While the delay spread (maximum or
rms) has a significant impact on the performance of a communications system, it
has been observed that the system performance is not very sensitive to the shape of
the multipath intensity profile p(τ). The most commonly assumed forms for p(τ)
are uniform and exponential.

Doppler Bandwidth

The doppler bandwidth, or the doppler spread, Bd, is the bandwidth of the doppler
spectrum Sd(λ) as defined by (14.41), and is an indicator of how fast the channel
characteristics are changing (fading) as a function of time. If Bd is of the order of
the signal bandwidth Bs (≈ 1/Ts), the channel characteristics are changing (fading)
at a rate comparable to the symbol rate, and the channel is said to be fast fading.
Otherwise the channel is said to be slow fading. Thus

Bd
 Bs ≈ 1/Ts (Slow fading channel)
Bd � Bs ≈ 1/Ts (Fast fading channel) (14.48)

If the channel is slow fading, then a snapshot approach can be used to simulate
the channel for performance estimation. Otherwise, the dynamic changes in the
channel conditions must be explicitly simulated.

14.7 Simulation Methodology

We now turn our attention to the simulation of multipath fading channels. We
will assume that either a discrete or diffused multipath model is specified and that
the models are WSSUS. The distributions, delay profile, and the doppler spectrum,
are assumed to be given. Furthermore, we will assume the fading to be Rayleigh
or Ricean, with an emphasis on Rayleigh fading, since the Ricean model can be
obtained from the Rayleigh model by adding a nonzero mean. We begin with the
diffused multipath channel.

“TranterBook” — 2003/11/18 — 16:12 — page 553 — #571
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 553

14.7.1 Simulation of Diffused Multipath Fading Channels

The diffused multipath channel is a linear time-varying system that is characterized
by a continuous, rather than discrete, time-varying impulse response c̃(τ, t). The
simulation model for an LTV system was derived in Chapter 13 and we repeat only
the essential steps here. Since the lowpass input to the channel can be assumed
to be bandlimited to a bandwidth B of the order r/2, where r is the symbol rate
(B ≈ r for the bandpass case), we can represent the lowpass input in terms of its
sampled values using the minimum sampling rate of r samples per second as

x̃(t − τ) =
∞∑

n=−∞
x̃(t − nT)

sin(2πB(τ − nT))
2πB(τ − nT)

(14.49)

where T = 1/r is the time between samples. Substituting the above representation
of x̃(t − τ) in the convolution integral

ỹ(t) =
∫ ∞

−∞
c̃(τ, t)x̃(t − τ) dτ (14.50)

we obtain

ỹ(τ) =
∫ ∞

−∞
c̃(τ, t)

{ ∞∑
n=−∞

x̃(t − nT)
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ

=
∞∑

n=−∞
x̃(t − nT)

∫ ∞

−∞
c̃(τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ (14.51)

Thus

ỹ(t) =
∞∑

n=−∞
x̃(t − nT)g̃n(t) (14.52)

where

g̃n(t) =
∫ ∞

−∞
c̃(τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ (14.53)

Simulation models for diffused multipath fading channels are derived from (14.52)
using two approximations. Truncating the sum in (14.52) so that only the terms
for which |n| ≤ m are included and approximating the integral in (14.53) as

g̃n(t) ≈ T c̃(nT, t) (14.54)

leads to the computationally efficient form

ỹ(t) =
∞∑

n=−∞
x̃(t − nT)g̃n(t) ≈

m∑
n=−m

x̃(t − nT)g̃n(t)

≈ T

m∑
n=−m

x̃(t − nT)c̃(nT, t) (14.55)

“TranterBook” — 2003/11/18 — 16:12 — page 554 — #572
�

�

�

�

�

�

�

�

554 Modeling and Simulation of Waveform Channels Chapter 14

• • • • • • T T T TT

~()y t

~()x t mT+

~ ()g tm−1
~ ()g t0

~ ()g tm

~ ()g tm− +1
~ ()g tm−

~()x t ~()x t mT−

Figure 14.7 TDL model for a diffused multipath channel with egn(t) = Tec(nT, T).

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Equation (14.55) can be implemented using a tapped delay line as shown in Fig-
ure 14.7.

For a Rayleigh fading channel, the tap gain processes g̃n(t) ≈ T c̃(nT, t) are
zero mean complex Gaussian processes. They will be uncorrelated because of the
WSSUS assumption. The power spectral density of each tap gain process is specified
by the doppler spectrum, and the variance σ2

n of the nth tap gain process is given
by

E
{
|g̃n(t)|2

}
≈ σ2

n = T 2E{|c̃(nT, t)|2} = T 2p(nT) (14.56)

and is obtained from the sampled values of the multipath intensity profile p(τ), an
example of which is shown in Figure 14.8, where the total number of taps is Tmax/T .

Special Cases

If the channel is time invariant, then c̃(τ, t) = c̃(τ), and the tap gains become
constants. Therefore

g̃n(t) = g̃n ≈ T c̃(nT) (14.57)

In other words, the tap gains are sampled values of the impulse response of the
LTIV system, and the tapped delay line model reduces to an FIR filter performing
time-domain convolution. If the channel is frequency nonselective, then there is
only one tap in the model, and ỹ(t) = x̃(t)g̃(t), where g̃(t) is either a Rayleigh or
Ricean process.

“TranterBook” — 2003/11/18 — 16:12 — page 555 — #573
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 555

p τ

σ n T p nT2 2=

T0 Tmax

τ
2T 3T 6T4T 5T

()

()

Figure 14.8 Sampled values of the power delay profile.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Sampling

An important aspect of the TDL model that deserves additional attention is the
sampling rate for simulations. The TDL model shown in Figure 6.8 was derived
with continuous time input x̃(t) and output ỹ(t). However, in simulation we use
sampled values of x̃(t) and output ỹ(t) which should be sampled at 8 to 32 times
the bandwidth, where the bandwidth includes the effect of spreading due to the
time-varying nature of the system as defined in Chapter 13. Note that the Nyquist
rate of 2B, B = r/2 was used to derive the TDL model, and the tap spacing
of T = 1/r will be much greater than Ts, where Ts is the sampling time for the
input and output waveforms. It is of course possible to derive a TDL model with
a smaller tap spacing (i.e., more samples per symbols), but such a model will be
computationally inefficient and does not necessarily improve the accuracy of the
simulation.

Generation of Tap Gain Processes

The tap gain processes are stationary random processes with Gaussian probabil-
ity density functions and arbitrary power spectral density functions. The simplest
model for the tap gain processes assume them to be uncorrelated, complex, zero
mean Gaussian processes with different variances but identical power spectral densi-
ties. In this case, the tap gain processes can be generated by filtering white Gaussian
processes, as shown in Figure 14.9.

The filter transfer function is chosen such that it produces the desired doppler
power spectral density. In other words, H(f) is chosen such that

Sg̃g̃(f) = Sd(f) = Sw̃w̃(f)
∣∣∣H̃(f)

∣∣∣2 =
∣∣∣H̃(f)

∣∣∣2 (14.58)

“TranterBook” — 2003/11/18 — 16:12 — page 556 — #574
�

�

�

�

�

�

�

�

556 Modeling and Simulation of Waveform Channels Chapter 14

Filter

H(f)
~

Input:
Unit variance,
Complex white
Gaussian process ~w(t)

Gain

Tap
Output

Tap Input ~x (t nT)−

σ n

~g(t) ~g (t)n

Figure 14.9 Generation of the nth tap gain process.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

where Sw̃w̃(f) is the power spectral density of the input white noise process, which
can be set equal to 1, and Sg̃g̃(f) is the specified doppler power spectral density of
the tap gain processes. The filter gain is chosen such that g̃(t) has a normalized
power of 1. The static gain σn in Figure 14.9 accounts for the different power levels
or variances for the different taps. If the power spectral density of the tap gains are
different, then different filters will be used for different taps.

Delay Power Profiles and Doppler Power Spectral Densities

As previously mentioned, the BER performance of a communication system is more
sensitive to the values of the rms and maximum delay spreads than to the shape of
the power delay profile. Therefore, simple profiles such as uniform or exponential
can be used for simulation. The delay profiles are normalized to have unit area (i.e.,
total normalized power, or the area under the locally averaged power delay profile,
is set equal to one). Thus ∫ Tm

0

p(τ)dt = 1 (14.59)

Typical rms delay spreads are given in Table 14.2.
The most commonly used models for doppler power spectral densities for mo-

bile applications assume that there are many multipath components, each having
different delays, and that all components have the same doppler spectrum. Each

Table 14.2 Typical rms Delay Spreads

Link Type Link
Distance rms Delay Spread

Troposcatter 100 Km milliseconds (10−3)
Outdoor Mobile 1 Km microseconds (10−6)

Indoor 10 m nanoseconds (10−9)

“TranterBook” — 2003/11/18 — 16:12 — page 557 — #575
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 557

multipath component (ray) is actually made up of a large number of simultaneously
arriving unresolvable multipath components, having angle of arrival with a uniform
angular distribution at the receive antenna. This channel model was used by Jakes
and others at Bell Laboratories to derive the first comprehensive mobile radio chan-
nel model for both doppler effects and amplitude fading effects [11]. The classical
Jakes’ doppler spectrum has the form, which was initially simulated in Chapter 7
(see Example 7.11),

Sd(f) = Sg̃ng̃n(f) =
K√

1 − (f/fd)2
, −fd ≤ f ≤ fd (14.60)

where fd = v/λ is the maximum doppler shift, v is the vehicle speed in meters
per second, and λ is the wavelength of the carrier. While the doppler spectrum
defined by (14.60) is appropriate for dense scattering environments like urban ar-
eas, a “Ricean spectrum” is recommended for rural environments in which there is
one strong direct line-of-sight path and hence Ricean fading. The Ricean doppler
spectrum has the form

Sd(f) = Sg̃ng̃n(f) =
0.41√

1 − (f/fd)2
+ 0.91δ(f ± 0.7fd), −fd ≤ f ≤ fd (14.61)

and is shown in Figure 14.10. Other spectral shapes used for the doppler power
spectral densities include Gaussian and uniform. Typical doppler bandwidths in
mobile applications at 1 GHz will range from 10 to 200 Hz.

There are several ways of implementing the doppler spectral shaping filter needed
to generate the tap gain processes in the TDL model for the channel when using
the model assumed by Jakes. An FIR filter in time domain is the most common
implementation, since doppler power spectral densities do not lend themselves easily
to implementation in recursive form. The generation of a Jakes spectrum using FIR
filtering techniques was illustrated in Chapter 7. A block processing model based
on frequency domain techniques is discussed in [13].

In generating the tap gain processes it should be noted that the bandwidth of
the tap gain processes for slowly time-varying channels will be very small compared

Ricean component
Jakes Spectrum
(continuous)

S fd ()

− f d 0 fd

f
0 7. fd−0 7. fd

Figure 14.10 Example of doppler power spectral densities.

“TranterBook” — 2003/11/18 — 16:12 — page 558 — #576
�

�

�

�

�

�

�

�

558 Modeling and Simulation of Waveform Channels Chapter 14

to the bandwidth of the signals that flow through them. In this case, the tap gain
filter should be designed and executed at a slower sampling rate. Interpolation can
be used at the output of the filter to produce denser samples at a rate consistent
with the sampling rate of the signal coming into the tap. Designing the filter at the
higher rate will lead to computational inefficiencies as well as stability problems.

Correlated Tap Gain Model

The approximation of the tap gain processes given in (14.53) and (14.54) by

g̃n (t) =
∫ ∞

−∞
c̃ (τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ ≈ T c̃ (nT, t) (14.62)

leads to uncorrelated tap gain functions. Without the approximation, the tap gain
functions will be correlated. It can be shown that the correlation between gn(t) and
gm(t) is given by

Rm,n(η) = E {g∗m(t)gn(t + η)}
=
∫

Rc̃c̃(τ, η) sinc(2Bτ − m) sinc(2Bτ − n)dτ (14.63)

where T = 1/2B is the tap spacing.
Generating a set of correlated random processes with arbitrary power spectral

density functions is very difficult. An approximation that simplifies this problem
somewhat makes the reasonable assumption that all tap gain functions have the
same power spectral density. Therefore, we assume that

S (τ, λ) = m (τ)Sd (λ) (14.64)

where S (τ, λ) is the scattering function, m(τ) is the normalized power delay power
profile, and Sd (λ) is the doppler spectrum. The solution to this case may be found
in [17].

An approach to solving the general problem has been recently proposed [18].
This method is based on fitting a vector ARMA model to the tap gain processes
and deriving the vector ARMA model from the given correlations and power spectral
densities. The procedure for fitting the vector ARMA model is very complex, and
it is not clear whether the extra work required can be justified in terms of the
improvement in accuracy.

14.7.2 Simulation of Discrete Multipath Fading Channels

Compared to the diffused multipath model, simulation of the discrete multipath
model is rather straightforward, at least conceptually. We must keep in mind that
since the channel is dynamic in both space and time, care must be used to avoid
aliasing [19]. The input-output relationship of a discrete multipath model is given by

ỹ(t) =
N(t)∑
k=1

ãk (t) x̃ (t − τk (t)) (14.65)

“TranterBook” — 2003/11/18 — 16:12 — page 559 — #577
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 559

where ãk(t) is the complex path attenuation as discussed in Section 14.4. In (14.65)
it can be assumed that the number of multipath components and the delay structure
will vary slowly compared to the variations in ãk(t). Hence the delays τk(t) can be
treated as constants over the duration of a simulation, and the preceding equation
can be written as

ỹ(t) =
N(t)∑
k=1

ãk (t) x̃ (t − τk) (14.66)

and implemented in block diagram form as shown in Figure 14.11.
In order to illustrate the basic approach for simulating discrete channel models

we assume that the model is specified in terms of probability distributions for the
number of components N , the delays, and the complex attenuations as a function of
the delays. A representation (snapshot) of the channel is then obtained as follows:

1. Draw a random number N to obtain the number of delays.

2. Draw a set of N random numbers from the distribution for delay values.

3. Draw a set of N attenuations based on the delay values.

This set of 3N random numbers represents a snapshot of the channel, which is
implemented as shown in Figure 14.11. In Figure 14.11 the initial delay is ∆1 = τ1.
The remaining delays ∆n, 2 ≤ n ≤ N , are differential delays defined by

∆n = τn − τn−1, 2 ≤ n ≤ N (14.67)

• • • • • •

~()y t

~()x t

~ ()a t1

~ ()()/a tN +1 2
~ ()a t2

~ ()a tN −1
~ ()a tN

∆ N −1∆2
∆ ()/N +1 2∆1 ∆ N

Figure 14.11 A variable delay TDL model for discrete multipath channels.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

“TranterBook” — 2003/11/18 — 16:12 — page 560 — #578
�

�

�

�

�

�

�

�

560 Modeling and Simulation of Waveform Channels Chapter 14

While the implementation shown in Figure 14.11 is rather straightforward, it
poses a problem when the delays differ by very small time offsets. Since everything
will be sampled, the tap spacings (i.e., the differential delays τn − τn−1) must be
expressed in terms of an integer number of sampling periods for simulation. Hence,
the sample time must be very small, smaller than the smallest differential delay.
This might lead to excessive sampling rates and an unacceptable computational
burden. We can avoid this problem by developing a TDL model with uniform tap
spacing following the approach used in the simulation of diffused multipath channels
in Section 14.7.1.

Uniformly Spaced TDL Model for Discrete Multipath Fading Channels

The tap gains of a uniformly spaced TDL model are given in (14.53) as

g̃n(t) =
∫ ∞

−∞
c̃(τ, t)

{
sin(2πB(τ − nT))

2πB(τ − nT)

}
dτ (14.68)

Substituting the impulse response of the discrete multipath channel, given by

c̃(τ, t) =
N∑

k=1

ãk (t) δ (τ − τk) (14.69)

in the preceding equation, we obtain the tap gains as

g̃n(t) =
N∑

k=1

ãk(t) sinc
(τk

T
− n
)

=
N∑

k=1

ãk(t) α (k, n) (14.70)

In (14.70)

α (k, n) = sinc
(τk

T
− n
)

(14.71)

Note that the envelope of α (k, n) decreases as |n| increases. Hence the number
of taps can be truncated to |n| ≤ m, where m is chosen to satisfy m � TmaxT .
For the case where the maximum delay spread Tmax will not exceed 3 or 4 symbol
times, the number of taps need not be greater than about 20 (−m < n < m ,
m = 10). The model now takes the form previously derived for the approximate
diffused multipath model illustrated in Figure 14.7.

The generation of the tap gains is illustrated in Figure 14.12. Note that the
generation of the tap gain processes for the discrete multipath model is straight-
forward compared to the generation of the tap gain processes for the diffused case.
We start with a set of N independent, zero-mean complex Gaussian white noise
processes, which are filtered to produce the appropriate doppler spectrum. These
are then scaled to produce the desired power profile, and are finally transformed
according to (14.70) to produce the tap gain processes. (Note that only two of the
N paths are shown in Figure 14.12.)

“TranterBook” — 2003/11/18 — 16:12 — page 561 — #579
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 561

w t1b g

w tN b g

σ 1

~a t1b g

~a tN b g

σ N

~g tm− b g

~g tmb g

Doppler
Filter

~ ,g t a t k nn k
k

N

b g b g b g=
=
∑ α

1
Doppler

Filter

Figure 14.12 Generation of the tap gain processes.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

To illustrate the calculation of the tap gain functions let us assume that

∆τ =
τ2 − τ1

T
= 0.5 (14.72)

The tap gain functions in this case are obtained by filtering two uncorrelated white
Gaussian noise processes and then transforming them to tap gain processes accord-
ing to (14.70) as

g̃−4(t)
g̃−3 (t)
g̃−2 (t)
g̃−1 (t)
g̃0 (t)
g̃1 (t)
g̃2 (t)
g̃3 (t)
g̃4(t)

=

sinc (0.0 + 4) sinc (0.5 + 3)
sinc (0.0 + 3) sinc (0.5 + 3)
sinc (0.0 + 2) sinc (0.5 + 2)
sinc (0.0 + 1) sinc (0.5 + 1)

sinc (0.0) sinc (0.5)
sinc (0.0 − 1) sinc (0.5 − 1)
sinc (0.0 − 2) sinc (0.5 − 2)
sinc (0.0 − 3) sinc (0.5 − 3)
sinc (0.0 − 4) sinc (0.5 − 4)

[
ã1 (t)
ã2 (t)

]
(14.73)

which is

g̃−4(t)
g̃−3 (t)
g̃−2 (t)
g̃−1 (t)
g̃0 (t)
g̃1 (t)
g̃2 (t)
g̃3 (t)
g̃4(t)

=

0.0 0.0707
0.0 −0.0910
0.0 0.1273
0.0 −0.2122
1.0 0.6366
0.0 0.6366
0.0 −0.2122
0.0 0.1273
0.0 −0.0909

[
ã1 (t)
ã2 (t)

]
(14.74)

“TranterBook” — 2003/11/18 — 16:12 — page 562 — #580
�

�

�

�

�

�

�

�

562 Modeling and Simulation of Waveform Channels Chapter 14

p τb g

τ 1 τ 2

τ

σ 2

σ 1

∆T
T

=
−τ τ2 1

T T∆b g

Figure 14.13 Simple two-ray model. (Note that ∆τ is normalized).

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

where ã1 and ã2 are defined in Figure 14.12. The preceding equation shows the
coefficients of the transformation for only 9 taps. We see that these coefficients will
be negligible for higher-order tap gains and, as a result, they can be ignored. The
TDL model is therefore truncated to 9 taps.

A simple two-ray model is often used to make preliminary performance predic-
tions for fading channels. Consider the power-delay profile illustrated in Figure
14.13. Parametric performance predictions can be made by varying the ratio of the
normalized delay spread ∆τ = (τ2 − τ1) /T , where T is the symbol duration and
the ratio of relative powers in the two paths (σ1/σ2)

2. If ∆τ
 0.1, then the two
paths can be combined and the model can be treated as frequency nonselective. If
∆τ > 0.1, there will be considerable intersymbol interference in the channel and it
is treated as frequency selective.

Example 14.2. In this example we consider the effect of fading due to doppler
on the transmission of a QPSK signal on a discrete multipath channel. The block
diagram is illustrated in Figure 14.14. The generation of the tap weights is shown
in Figure 14.14(a). The doppler filter is realized using the Jakes model defined by
(14.60) with K = 1 and fd = 100 Hz. The tap gain processes are uncorrelated
and Gaussian. The tap spacing is based on an RF bandwidth of 20 kHz (lowpass
equivalent bandwidth of 10 kHz). The tap weights are denoted tw1 and tw2. The
complex signal is multiplied by the complex tap weights. Both the complex QPSK
signal and the complex carrier are used as inputs. The carrier is defined by

c(t) = exp [j2π(1000)t] (14.75)

The delay of 8 samples corresponds to one-half of the symbol time. Additional
details are included in the MATLAB code for this example, which is given in Ap-
pendix B.

The simulation length is determined from a number of considerations. In order
to observe the spectra of the input and output for the complex exponential case,

“TranterBook” — 2003/11/18 — 16:12 — page 563 — #581
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 563

Doppler
Filter

Linear
Interpolator

tw1

1

y1x1 z1

Doppler
Filter

Linear
Interpolator

tw2

1 2/

y2x2 z2

(a) Generation of tap weights.

Delay
8 samples

tw2tw1

qpsk_output, cexp_out

output1, output3

qpsk_sig, cexp

output2, output4

(b) Processing of QPSK signal and carrier.

Figure 14.14 Block diagrams of simulated systems.

10 to 20 cycles of the complex exponential are needed. At the same time, in order
to capture the effects of the time-varying channel, we need to simulate the fading
process for about 5 to 10 times the reciprocal of the doppler bandwidth. These two
considerations lead to a simulation length of 1/20 second, or about 8,000 samples.

Executing the MATLAB program given in Appendix B generates the results
illustrated in Figures 14.15, 14.16, and 14.17. The input and output carrier signals
are shown in Figure 14.15. The input (top pane) is the tone at 1,000 Hz. The
output (bottom pane) illustrates the spectral spreading due to doppler. The direct
channel input and output are illustrated in Figure 14.16. The input signal (top
pane) has two levels as expected. The output signal (bottom pane) has more than

“TranterBook” — 2003/11/18 — 16:12 — page 564 — #582
�

�

�

�

�

�

�

�

564 Modeling and Simulation of Waveform Channels Chapter 14

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

P
S

D

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

Frequency (Hz)

P
S

D

Figure 14.15 Input (top pane) and output (bottom pane) power spectral densities. The
spectral spreading due to doppler is evident in the bottom pane.

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

Sample Index

D
ir

e
c

t
In

p
u

t

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Sample Index

D
ir

e
c

t
O

u
tp

u
t

Figure 14.16 Direct channel QPSK input and output.

“TranterBook” — 2003/11/18 — 16:12 — page 565 — #583
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 565

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

Sample Index

E
n

ve
lo

p
e

 M
a

g
n

it
u

d
e

Figure 14.17 Envelope of the complex exponential output.

two levels because of intersymbol interference. The envelope of the QPSK output
signal is illustrated in Figure 14.17. �

14.7.3 Examples of Discrete Multipath Fading Channel Models

In this section we present a number of examples of discrete multipath models that
are used to simulate the performance of wireless communication systems. The first
model that we present is the so-called Rummler’s model for terrestrial microwave
communication links between fixed antenna towers. This is a line-of-sight radio
channel with a very small number of multipath components because of the larger
directional antennas used in the system and the very benign properties of the tro-
pospheric channel used by LOS microwave radio. Larger antennas mean that the
field of view of the antenna is limited at very small angles of arrival which yields a
smaller number of multipath components. Also, since the antennas are fixed, the
only time variations in the channel characteristics are due to changes in the atmo-
spheric conditions. These variations can be considered very slow compared to the
channel bandwidths which will be of the order of tens of MHz. Hence Rummler’s
model is a multipath model with very slow fading.

The second set of examples that we present are for mobile radio channels. These
channels typically have a larger number of multipath components because of the use
of omnidirectional antennas which pick up a large number of reflections with widely
varying propagation delays, especially in urban areas. They will also experience
faster fading due to the the large number of multipath components that experience

“TranterBook” — 2003/11/18 — 16:12 — page 566 — #584
�

�

�

�

�

�

�

�

566 Modeling and Simulation of Waveform Channels Chapter 14

large carrier phase shifts over small distance changes and thus can combine destruc-
tively or constructively over small distances.

Rummler’s Model for LOS Terrestrial Microwave Channels

One of the most widely used models for terrestrial microwave links operating in the
frequency range of 4 − 6 GHz between fixed towers, was developed by Rummler
[20]. This model is based on a set of assumptions, and measured data is used to
obtain numerical values of the model parameters. Given the geometry of the link
and antenna parameters, Rummler hypothesized a three-ray model of the form

y(t) = x(t) + α x(t − τ1) + β x(t − τ2) (14.76)

where x(t) and y(t) are the bandpass input and output, respectively. In terms of
the complex envelopes, the model takes the form

ỹ(t) = x̃(t) + α exp(−j2πfcτ1)x̃(t − τ1) + β exp(−j2πfcτ2) x̃(t − τ2) (14.77)

and the lowpass equivalent transfer function of Rummler’s channel is given by

H(f) = 1 + α exp(−j2π(fc − f)τ1) + β exp(−j2π(fc − f)τ2) (14.78)

The first simplification of the model is based on the assumption that over the
bandwidth of interest (fc − f) τ1 << 1, and hence exp(−j2π(fc − f)τ1) ≈ 1 and

H(f) ≈ 1 + α + β exp(−j2π(fc − f)τ2) (14.79)

The next step is to assume that the “notch” frequency, where the magnitude of
the response is minimum, is fc + f0 in the bandpass case, and at f0 in the lowpass
model, so that the final form of the lowpass equivalent transfer function can be
written as

H(f) ≈ a[1 − b exp(−j2π(f0 − f)τ2)] (14.80)

where a = 1+α is the overall attenuation, and b = −β/ (1 + α) is a shape parameter.
The value of the delay parameter τ2, chosen to fit the measured data, has a value
of τ2 = τ = 6.3 ns. Note that this small time delay is only on the order of 2
meters of propagation delay, which is physically plausable and corresponds to typical
refractive path differences observed over tropospheric channels for LOS microwave
radio at 2–6 GHz.

The amplitude response of the Rummler model is

|H(f)|2 = a2[1 + b2 − 2b cos(2π(f − fo)τ)] (14.81)

and an example of the magnitude response is shown in Figure 14.18.
The parameters a and b are normalized and expressed in dB units as illustrated

in Table 14.3. Analysis of channel data yields exponential distributions for B1

“TranterBook” — 2003/11/18 — 16:12 — page 567 — #585
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 567

Channel BW

100500 150

−40 dB

−20 dB

 f (MHz)

= −20 110log ()b
Notch Depth

Figure 14.18 Example of the magnitude response of the Rummler channel.

Table 14.3 Parameters for Rummler Model

Minimum Phase Case (b < 1) Nonminimum Phase Case (b > 1)
A1 = 20 log10(a) A2 = −20 log10 (ab)

B1 = 20 log10 (1 − b) B2 = 10 log10 (1 − 1/b)

and B2 with means of 3.8 dB. Likewise, A1 and A2 are Gaussian with standard
deviations of 5 dB. The means are

µ = 24.6
(

B4 + 500
B4 + 800

)
where B = B1 for A1 and B = B2 for A2. The probability density function of
θ = 2πf0τ is shown in Figure 14.19.

In order to simulate a snapshot of the Rummler channel, we draw the following

fΘ ()θ

π / 2 π

π / 6

5 6π /

−π −π / 2 0 θ

Figure 14.19 Probability density function of θ.

“TranterBook” — 2003/11/18 — 16:12 — page 568 — #586
�

�

�

�

�

�

�

�

568 Modeling and Simulation of Waveform Channels Chapter 14

set of random numbers:

1. Draw a number U uniformly distributed in [0,1]. If U > 0.5, assume mini-
mum phase. If U < 0.5, assume nonminimum phase. (Minimum phase and
nonminimum phase fades are assumed equally likely.)

2. Draw an exponentially distributed random number for B1 or B2.

3. Draw a Gaussian random number for A1 or A2 using the value of B1 or B2.

4. Draw a random number for θ and set the notch frequency at f0 = θ/2πτ ,
τ = 6.3ns.

These parameters define a snapshot of the Rummler channel. Since the channel is
assumed to be slowly varying with respect to the symbol rate, a series of snapshots of
the channel is adequate for performance evaluation using a Monte Carlo simulation
for each snapshot produced by the model.

Models for Mobile Channels

Discrete channel models are also widely used for indoor and outdoor wireless chan-
nels. Many models are based on emperical data collected over a wide range of
environments [21, 22, 23]. Given the large number of both mathematical and em-
pirical models that have been proposed recently, the designer of a communication
system is faced with the difficult problem of choosing a representative set of channel
models that will represent the channels over which the communication system is to
operate satisfactorily. Fortunately, some guidance on the choice of which models
to use has been provided by international standards bodies that specify a set of
“representative” channels for analyzing and simulating the performance of different
types of communication systems. We present two examples below.

Discrete Channel Models for GSM Applications The Global System for Mobile
Communications (GSM) is a standard for mobile communications in the frequency
band from 1 to 2 GHz and uses 200 kHz RF channels for time-division multiplexed
communications [13, 24]. The symbol time in GSM is of the order of a few micro-
seconds.

The recommended GSM models are discrete models consisting of 12 rays (paths),
and are specified for three different scenarios: rural, hilly, and urban. For each
scenario, two models are specified. In addition to the 12-ray models, a simpler
set of models with 6 rays (paths) are also defined. The 12-ray and 6-ray models
for urban areas are given in Table 14.4 and Table 14.5, respectively. In addition
to these models, there is also a model specified for testing the performance of the
Viterbi equalizer used in GSM systems. This model is given in Table 14.6. All of
the relative powers are in dB, and (1) and (2) designate the two equivalent models.

It should be noted that the symbol time in the system is of the order of a
few microseconds, and some of the differential delays are of the order of 0.1µs,
which means that a sampling rate of 10 M samples/sec should be used in order
to represent these small delays. Another approach, as outlined in the preceding

“TranterBook” — 2003/11/18 — 16:12 — page 569 — #587
�

�

�

�

�

�

�

�

Section 14.7. Simulation Methodology 569

Table 14.4 Typical Profile for Urban Areas (12-ray model)

Ray
Relative
Time
(1) s

Relative
Time
(2) s

Average
Power
(1) dB

Average
Power
(2) dB

Dopp.
Spect.

1 0.0 0.0 -4.0 -4.0 Jakes
2 0.1 0.2 -3.0 -3.0 Jakes
3 0.3 0.4 0.0 0.0 Jakes
4 0.5 0.6 -2.6 -2.0 Jakes
5 0.8 0.8 -3.0 -3.0 Jakes
6 1.1 1.2 -5.0 -5.0 Jakes
7 1.3 1.4 -7.0 -7.0 Jakes
8 1.7 1.8 -5.0 -5.0 Jakes
9 2.3 2.4 -6.5 -6.0 Jakes
10 3.1 3.0 -8.6 -9.0 Jakes
11 3.2 3.2 -11.0 -11.0 Jakes
12 5.0 5.0 -10.0 -10.0 Jakes

Table 14.5 Reduced Profile for Urban Areas (6-ray model)

Ray
Relative
Time
(1) s

Relative
Time
(2) s

Average
Power
(1) dB

Average
Power
(2) dB

Dopp.
Spect.

1 0.0s 0.0s -3.0 -3.0 Jakes
2 0.2 0.2 0.5 0.0 Jakes
3 0.5 0.6 -2.0 -2.0 Jakes
4 1.6 1.6 -6.0 -6.0 Jakes
5 2.3 2.4 -8.0 -8.0 Jakes
6 5.0 5.0 -10.0 -10.0 Jakes

Table 14.6 Profile for Equalization Test

Ray Relative Time Average Power Doppler Spectrum
1 0.0s 0.0dB Jakes
2 3.2 0.0 Jakes
3 6.4 0.0 Jakes
4 9.6 0.0 Jakes
5 12.8 0.0 Jakes
6 16.0 0.0 Jakes

“TranterBook” — 2003/11/18 — 16:12 — page 570 — #588
�

�

�

�

�

�

�

�

570 Modeling and Simulation of Waveform Channels Chapter 14

Table 14.7 Parameters for a 3-Ray Outdoor Model for PCS

Environment τ1 (ns) τ2 (ns) τ3 (ns) Doppler Doppler BW
Pedestrian 0 1,500 14,500 Flat 12Hz
Wireless Loop 0 1,500 14,500 Gaussian 12Hz
Vehicular 0 1500 15,500 Jakes 180Hz

Table 14.8 Ray Strengths

Ray Power(dB)
1 0
2 -3
3 -6

Table 14.9 Parameters of PCS Indoor Model

Environment
Tap

Spacing
Number
of Taps

Doppler
Spectrum

Doppler
BW

Residential 50(ns) 2 Gaussian 3Hz
Office 50 4 Gaussian 3
Commercial 50 12 Flat 30

section, uses a symbol time spaced TDL (correlated tap gain functions) to reduce
the computational load.

Discrete Models for PCS Applications For PCS communication systems operat-
ing in the 2-GHz band, the standards bodies have agreed on a set of discrete models
for typical operating environments [25]. These models are summarized in Tables
14.7, 14.8, and 14.9. For the model given in Table 14.7, the ray strengths E

{
|ã|2
}

are given in Table 14.8.
It should be noted again that the differential delays of 50 ns (indoor model) are

very small compared to the symbol time of proposed PCS systems. Hence, either
the fading should be treated as frequency nonselective, or a bandlimited TDL model
with symbol time spacing should be used for simulations.

Discrete Multipath Channel Models for 3G Wideband CDMA Systems Cellular
communication systems are in their third generation of evolution, and the third gen-
eration systems (3G) will use wideband CDMA operating around 2 GHz. Examples
of the discrete channel models proposed for 3G systems are shown in Table 14.10
(Case 1: Indoor, Case 2: Indoor or Pedestrian, Case 3: Vehicular) [26].

“TranterBook” — 2003/11/18 — 16:12 — page 571 — #589
�

�

�

�

�

�

�

�

Section 14.8. Summary 571

Table 14.10 Parameters for 3G Wideband CDMA Channels

Case 1 (3 km/h) Case 2 (3 km/h) Case 3 (120 km/h)
Delay (ns) Power (dB) Delay (ns) Power (dB) Delay (ns) Power (dB)

0 0.0 0 0.0 0 0.0
244 -9.6 244 -12.5 244 -2.4
488 -35.5 488 -24.7 488 -6.5

732 -9.4
936 -12.7
1220 -13.3
1708 -15.4
1953 -25.4

14.7.4 Models for Indoor Wireless Channels

Fading characteristics of indoor wireless channels are very different from those of ve-
hicular channels due to differences in physical environments (dimensions, materials,
etc.) and propagation mechanisms. Outdoor vehicular environments are character-
ized by larger cells of the order of kilometers and a smaller number of multipath
components. Indoor environments, on the other hand, are characterized by smaller
dimensions (tens of meters) and a large number of multipath components due to
reflections from walls, tables, and other flat work surfaces. There are a number of
statistical models for indoor channels derived from measurements and, by and large,
the indoor models can be categorized as dense discrete multipath models with an
rms delay spread in the range of 30 to 300 ns with each component having Ricean
envelope statistics [23]. The path loss index typically varies from 1.8 to 4. Addi-
tional details of the indoor channel characteristics may be found in the references
[27–31]. The simulation techniques for indoor channels are the same as those we
have seen for other multipath channels. However, the small differential delays en-
countered in indoor situations might require the conversion of nonuniformly spaced
TDL models to uniformly spaced models as discussed in Section 14.7.2.

14.8 Summary

The overall performance of a communication system is significantly impacted by the
distortion, noise, and interference introduced by the communication channels over
which they operate. To assess communication system performance, and to design
and optimize the signal-processing operations in the transmitter and receiver, we
need simulation models for communication channels.

The simplest simulation model for a communication channel is the transfer func-
tion model, which can be used for time-invariant communication channels such as
optical fibers and electrical cables. Radio communication channels, on the other
hand, require more complex models to account for the multipath effect and the
time variations (fading) in the channel characteristics, especially in mobile channels.

“TranterBook” — 2003/11/18 — 16:12 — page 572 — #590
�

�

�

�

�

�

�

�

572 Modeling and Simulation of Waveform Channels Chapter 14

The simulation model for multipath fading channels has the structural form of a
tapped delay line with time-varying tap gains, which are modeled as stationary
random processes over observation intervals for which the stationarity assumption
applies. For mobile applications, fading in the communication channel is char-
acterized by complex Gaussian processes with appropriate power spectral density
functions. Sampled values of tap gain processes in the tapped delay line model are
generated by filtering uncorrelated Gaussian sequences with FIR filters which shape
the power spectral densities.

For most applications, the tap gains can be assumed to be uncorrelated. How-
ever, in some simulation cases, the tap gain processes in the simulation models will
be correlated. Generating a set of correlated tap gain processes is, in general, a
difficult problem. If the processes involved are Gaussian and have the same power
spectral densities, this problem is easily handled.

The literature on measurements of mobile and other radio channels is vast and
varied. For simulation purposes we often rely on statistical models derived from
measurements. Many examples of the models used for designing and evaluating the
performance of second- and third-generation mobile communication systems were
presented in this chapter. The reader can find additional models and details in the
references.

14.9 Further Reading

A vast amount of material has been published on the characterization and model-
ing of wireless channels and only the most fundamental material is included in this
chapter. Almost every issue of the IEEE Transactions on Wireless Communica-
tions, the IEEE Transactions on Communications, and the IEEE Transactions on
Antennas and Propagation contain new research results in this area. Good collec-
tions of papers are given in the double issue of the IEEE Journal on Selected Areas
in Communications cited below.

L. J. Greenstein et al., eds., “Channel and Propagation Models for Wireless System
Design I and II,” IEEE Journal on Selected Areas in Communications, Vol.
20, Nos. 3 and 6, April 2002 and August 2002.

The interested student is also referred to the recent book

H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Upper Saddle
River, NJ: Prentice Hall PTR, 2000.

14.10 References

1. A. F. Elrefaie, J. K. Townsend, M. B. Romeiser, and K. S. Shanmugan, “Com-
puter Simulation of Digital Lightwave Links,” IEEE Journal on Selected Areas
in Communications, Vol. 6, No. 1, January 1984, pp. 94–106.

“TranterBook” — 2003/11/18 — 16:12 — page 573 — #591
�

�

�

�

�

�

�

�

Section 14.10. References 573

2. D. G. Duff, “Computer-Aided Design of Digital Lightwave Systems,” IEEE
Journal on Selected Areas in Communications, Vol. 2, No. 1, January 1984,
pp. 171–185.

3. P. K. Cheo, Fiber Optic Devices and Systems, New York: Prentice Hall, 1985.

4. H. Liebe, “Modeling the Attenuation and Phase of Radio Waves in Air at
Frequencies Below 1000GHz,” Radio Science, Vol. 16, No. 6, 1981, pp. 1183–
1199.

5. R. K. Crane, “Prediction of Attenuation by Rain,” IEEE Transactions on
Communications, Vol. 28, No. 9, September 1980, pp. 1717–1773.

6. L. J. Ippolito, Radio Wave Propagation in Satellite Communications, New
York: Van Nostrand, 1986.

7. W. L. Flock, “Propagation Effects in Satellite Communications,” NASA Ref-
erence 1108, December 1983.

8. L. J. Ippolito et al., “Propagation Effects Handbook for Satellite Systems,”
NASA Reference 1082, June 1983.

9. P. A. Bello, “Characterization of Randomly Time-Variant Linear Channels,”
IEEE Transactions on Communication Systems, Vol. 11, No. 4, December
1963, pp. 360–393.

10. W. C. Y. Lee, Mobile Cellular Communications, New York: McGraw-Hill,
1989.

11. W. C. Jakes, ed., Microwave Mobile Communications, New York: Wiley, 1974.

12. B. Glance and L. J. Greenstein, “Frequency Selective Fading Effects in Digital
Mobile Radio with Diversity Combining,” IEEE Transactions on Communi-
cations, Vol. 31, No. 9, September 1993, pp. 1085–1094.

13. T. S. Rappaport, Wireless Communications, 2nd ed., New York: Prentice
Hall, 2002.

14. K. Phalaven and A. H. Leveque, Mobile Wireless Networks, New York: Wiley,
1995.

15. B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communications,”
Parts I and II, IEEE Communications Magazine, Vol. 35, July 1997, pp.
90–110.

16. G. D. Durgin, T. S. Rappaport, and D. A. deWolf, “New Analytical Models
and Probability Density Functions for Fading in Wireless Communications,”
IEEE Transactions on Communications, Vol. 50, No. 6, June 2002, pp.
1001–1015.

“TranterBook” — 2003/11/18 — 16:12 — page 574 — #592
�

�

�

�

�

�

�

�

574 Modeling and Simulation of Waveform Channels Chapter 14

17. S. A. Fetchel and H. Meyer, “A Novel Approach to Modeling and Efficient
Simulation of Fading Radio Channel,” Proceedings of the International Con-
ference on Communications, Geneva, May 1991, pp. 302–308.

18. W. Escalante, “Simulation of Fading Channels With Arbitrary Scattering
Functions,” M.S. Thesis, University of Kansas, 1996.

19. V. Fung, T. S. Rappaport, and B. Thoma, “Bit Error Simulation for pi/4
DQPSK Mobile Radio Communication Using Two-Ray and Measurement-
Based Impulse Response Models,” IEEE Journal on Selected Areas in Com-
munications, Vol. 11, No. 3, April 1993, pp. 393–405.

20. W. D. Rummler, R. P. Counts, and M. Lineger, “Multipath Fading Models
for Microwave Digital Radio,” IEEE Communications Magazine, Vol. 24, No.
11, 1986, pp. 30–42.

21. G. L. Turin et al., “A Statistical Model of Urban Multipath Propagation,”
IEEE Transactions on Vehicular Technology, Vol. 21, February 1972, pp. 1–9.

22. H. Hashemi, “The Indoor Radio Propagation Channel,” Proceedings of the
IEEE, Vol. 81, No. 7, July 1993, pp. 943–968.

23. T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical Channel Im-
pulse Response Models for Factory and Open Plan Building Radio Com-
muncations System Design,” IEEE Transactions on Communications, Vol.
39, No. 5, May 1991, pp. 794–806.

24. ETSI, “GSM Recommendations 05.05, Radio Transmission and Reception,”
Annex 3, 13–16, November, 1988.

25. ANSI J-STD-008, “Personal Station-Base Station Compatibility Requirements
for 1.8 to 2.0 GHz CDMA PCS,” March 1995.

26. 3GPP Website: A full set of specifications for UMTS release 99 is found on the
website www.3gpp.org; ftp://ftp.3gpp.org/Specs/December 99/21 series/.

27. A. A. M. Saleh and R. A. Valenzuela, “A Statistical Model for Indoor Multi-
path Propagation,” IEEE Journal on Selected Areas in Communication, Vol.
54, 1987, pp. 128–137.

28. T. S. Rappaport, “Characterization of UHF Multipath Radio Channels in
Factory Buildings,” IEEE Transactions on Antennas and Propagation, Vol.
37, 1989, pp. 1058–1069.

29. R. Ganesh and K. Phalavan, “Statistical Modeling and Computer Simulation
of Indoor Radio Channel,” Proceedings of the IEEE, Vol. 138, 1991, pp. 153–
161.

30. J. B. Anderson, T. S. Rappaport, and S. Yoshida, “Propagation Measurements
and Models for Wireless Communications,” IEEE Communications Magazine,
Vol. 33, January 1995, pp. 42–49.

“TranterBook” — 2003/11/18 — 16:12 — page 575 — #593
�

�

�

�

�

�

�

�

Section 14.11. Problems 575

31. S. C. Kim, H. L. Bertoni, and M. Stern, “Pulse Propagation Characteristics
at 2.4 GHz Inside Buildings,” IEEE Transactions on Vehicular Technology,
Vol. 45, August 1996, pp. 579–592.

14.11 Problems

14.1 The lowpass transfer function models used for many time-invariant commu-
nication channels have a linear tilt in the amplitude response (in dB)

|H(f)| = k1 + k2f dB (14.82)

and a quadratic phase response of the form

∠H(f) = g1f + g2f
2 (14.83)

Develop a MATLAB FIR filter model for this transfer function. The tilt in
dB/Hz, and the maximum linear and quadratic phase offsets at the band edge
are parameters of the model.

14.2 In simulating multipath fading channels it is important to calibrate the sim-
ulations. It is a common practice to normalize the power profile p(τ) and the
doppler spectrum S(λ) in order to have unit areas.

(a) Find the value of a for normalizing an exponential power profile of the
form

p(τ) = a exp
(−aτ2

)
(14.84)

(b) Find the value of K needed for normalizing the Jakes doppler spectrum.

(c) Find the area under the Ricean doppler spectrum defined by (14.61).

14.3 Simulate the impact of the linear amplitude tilt and the quadratic phase
distortion on a QPSK (LPE) signal with the following parameters: Symbol
rate = 1MS/sec, linear tilt = 2dB/MHz, parabolic phase shift = π/8 radians
at 1Mhz. No transmit filter; receive filter is an ideal integrate and dump
detector.

14.4 In order to validate the results of simulating the performance of a communica-
tion system operating over fading channels, we often compare the performance
of the simulated systems against similar systems operating over ideal AWGN
channels and/or over a Rayleigh fading channels with ideal phase references.
Compare the BER versus Eb/N0 performance of a QPSK system operating
over an AWGN channel with an integrate-and-dump receiver with a differen-
tial QPSK system over a Rayleigh fading channel with AWGN. The received
signal (bandpass case) is of the form

y(t) = Rk cos (2πfct + φk + θk) + n(t), kTs ≤ t ≤ (k + 1)Ts (14.85)

“TranterBook” — 2003/11/18 — 16:12 — page 576 — #594
�

�

�

�

�

�

�

�

576 Modeling and Simulation of Waveform Channels Chapter 14

where Ts is the symbol duration, n(t) represents the AWGN, and φk repre-
sents the differential QPSK modulation. In addition, Rk and θk represent the
amplitude and phase associated with the Rayleigh fading. Assume that Rk

and θk change slowly with respect to the symbol rate.

14.5 Create a MATLAB simulation model for any two of the GSM models given
in Section 14.8. Run BER simulations using the appropriate parameters of
the GSM system for vehicle speeds of 25 and 100 MPH. Assume ideal SQRC
filtering in the transmitter and receiver and ideal synchronization.

14.6 Develop an approach for generating sampled values of a set of correlated
Gaussian processes each having a different PSD.

14.7 Rerun the MATLAB simulation given in Example 14.1 for different power
levels and differential delays and compare the results.

14.8 Extend the simulation given in Example 14.1 to a 6-ray model, and run BER
simulations for different power profiles as follows (Assume flat fading.)

(a) Uniform power over the 6 rays

(b) Exponentially decreasing power profile over the 6 taps with the last tap
at 10 dB below the first ray

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 577 --- #595
�

�

�

�

�

�

�

�

Section 14.12. Appendix A: MATLAB Code for Example 14.1 577

14.12 Appendix A: MATLAB Code for Example 14.1

14.12.1 Main Program

% File: c14_threeray.m
%
% Default parameters
%
NN = 256; % number of symbols
tb = 0.5; % bit time
fs = 16; % samples/symbol
ebn0db = [1:2:14]; % Eb/N0 vector
%
% Establish QPSK signals
%
x = random_binary(NN,fs)+i*random_binary(NN,fs); % QPSK signal
%
% Input powers and delays
%
p0 = input(‘Enter P0 > ’);
p1 = input(‘Enter P1 > ’);
p2 = input(‘Enter P2 > ’);
delay = input(’Enter tau > ’);
delay0 = 0; delay1 = 0; delay2 = delay;
%
% Set up the Complex Gaussian (Rayleigh) gains
%
gain1 = sqrt(p1)*abs(randn(1,NN) + i*randn(1,NN));
gain2 = sqrt(p2)*abs(randn(1,NN) + i*randn(1,NN));
for k = 1:NN

for kk=1:fs
index=(k-1)*fs+kk;
ggain1(1,index)=gain1(1,k);
ggain2(1,index)=gain2(1,k);
end

end
y1 = x;
for k=1:delay2

y2(1,k) = y1(1,k)*sqrt(p0);
end
for k=(delay2+1):(NN*fs)

y2(1,k)= y1(1,k)*sqrt(p0) + ...
y1(1,k-delay1)*ggain1(1,k)+...
y1(1,k-delay2)*ggain2(1,k);

end
%

“TranterBook” — 2003/11/18 — 16:12 — page 578 — #596
�

�

�

�

�

�

�

�

578 Modeling and Simulation of Waveform Channels Chapter 14

% Matched filter
%
b = -ones(1,fs); b = b/fs; a = 1;
y = filter(b,a,y2);
%
% End of simulation
%
% Use the semianalytic BER estimator. The following sets
% up the semi analytic estimator. Find the maximum magnitude
% of the cross correlation and the corresponding lag.
%
[cor lags] = vxcorr(x,y);
cmax = max(max(abs(cor)));
nmax = find(abs(cor)==cmax);
timelag = lags(nmax);
corrmag = cmax;
theta = angle(cor(nmax))
y = y*exp(-i*theta); % derotate
%
% Noise BW calibration
%
hh = impz(b,a); ts = 1/16; nbw = (fs/2)*sum(hh.^2);
%
% Delay the input, and do BER estimation on the last 128 bits.
% Use middle sample. Make sure the index does not exceed number
% of input points. Eb should be computed at the receiver input.
%
index = (10*fs+8:fs:(NN-10)*fs+8);
xx = x(index);
yy = y(index-timelag+1);
[n1 n2] = size(y2); ny2=n1*n2;
eb = tb*sum(sum(abs(y2).^2))/ny2;
eb = eb/2;
[peideal,pesystem] = qpsk_berest(xx,yy,ebn0db,eb,tb,nbw);
figure
semilogy(ebn0db,peideal,‘b*-’,ebn0db,pesystem,‘r+-’)
xlabel(‘E_b/N_0 (dB)’); ylabel(‘Probability of Error’); grid
axis([0 14 10^(-10) 1])
% End of script file.

14.12.2 Supporting Functions

A number of the supporting functions for this exmple appeared previously and are
not given here. These are:

qpsk berest.m Given in Chapter 10, Appendix C.

“TranterBook” — 2003/11/18 — 16:12 — page 579 — #597
�

�

�

�

�

�

�

�

Section 14.12. Appendix A: MATLAB Code for Example 14.1 579

vxcorr.m Given in Chapter 10, Appendix B.

random binary.m Given in Chapter 10, Appendix A.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 580 --- #598
�

�

�

�

�

�

�

�

580 Modeling and Simulation of Waveform Channels Chapter 14

14.13 Appendix B: MATLAB Code for Example 14.2

14.13.1 Main Program

% File: c14_Jakes.m
% This program builds up a two-tap TDL model and computes the output
% for the two inpput signal of interest.
% Generate tapweights
%
fd = 100; impw = jakes_filter(fd);
%
% Generate tap input processes and Run through doppler filter.
%
x1 = randn(1,256)+i*randn(1,256); y1 = filter(impw,1,x1);
x2 = randn(1,256)+i*randn(1,256); y2 = filter(impw,1,x2);
%
% Discard the first 128 points since the FIR filter transient
% Scale them for power and Interpolate weight values
% Interpolation factor =100 for the QPSK sampling rate of 160000/sec;
%
z1(1:128) = y1(129:256); z2(1:128) = y2(129:256);
z2 = sqrt(0.5)*z2; m = 100;
tw1 = linear_interp(z1,m); tw2 = linear_interp(z2,m);
%
% Generate QPSK signal and filter it.
%
nbits = 512; nsamples = 16; ntotal = 8192;
qpsk_sig = random_binary(nbits,nsamples)+i*random_binary...

(nbits,nsamples);
%
%Generate output of tap1 (size the vectors first).
%
input1 = qpsk_sig(1:8184); output1 = tw1(1:8184).*input1;
%
% Delay the input by eight samples (this is the delay specified
% in term of number of samples at the sampling rate of
% 16,000 samples/sec and generate the output of tap 2.
%
input2 = qpsk_sig(9:8192); output2 = tw2(9:8192).*input2;
%
% Add the two outptus and genrate overall output.
%
qpsk_output = output1+output2;
%
% Generate the 1000 Hz complex exponential and run it through the TDL
% model. This could be done at the higher sampling rate of 16,0000

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 581 --- #599
�

�

�

�

�

�

�

�

Section 14.13. Appendix B: MATLAB Code for Example 14.2 581

% samples per sec or at a lower rate. At the lower rate the tap
% spacing must be recomputed in number of samples at the lower rate.
% Also the interpolation of the tap gain functions must now be at
% the lower rate. In this example we will use the higher sampling rate.
%
ts = 1/160000; time = (ts:ts:8200*ts);
cexp = exp(2*pi*i*1000*time);
input1 = cexp(1:8184); output3 = tw1(1:8184).*input1;
input2 = cexp(9:8192); output4 = tw2(9:8192).*input2;
%
% Add the two outputs and genrate overall output.
%
cexp_out = output3+output4;
[psdcexp,freq,ptotal,pmax] = linear_psd(cexp(1:8184),8184,ts);
[psdcexp_out,freq,ptotal,pmax] = linear_psd(cexp_out(1:8184),8184,ts);
%
subplot(2,1,1)
plot(freq(4100:4180), psdcexp(4100:4180)); grid;
xlabel(‘Frequency (Hz)’); ylabel(‘PSD’)
subplot(2,1,2)
plot(freq(4100:4180), psdcexp_out(4100:4180),‘r’); grid;
xlabel(‘Frequency (Hz)’); ylabel(‘PSD’)
figure; subplot(2,1,1)
plot(real(qpsk_sig(501:1000)),‘r’); grid;
xlabel(‘Sample Index’); ylabel(‘Direct Input’);
axis([0 500 -2 2])
subplot(2,1,2)
plot(real(qpsk_output(501:1000)));grid;
xlabel(‘Sample Index’); ylabel(‘Direct Output’);
figure;
plot(abs(output3(3000:6000))); grid
xlabel(‘Sample Index’); ylabel(‘Envelope Magnitude’)
% End script file.

14.13.2 Supporting Functions

jakes filter.m

% File: Jakes_filter.m
function [impw] = jakes_filter(fd)
% FIR implementation of the Jakes filter (128 points)
n = 512; nn = 2*n; % nn is FFT block size
fs = 0:fd/64:fd; % sampling frequency = 16*fd
H = zeros(1,n); % initialize H(f)
for k=1:(n/8+1) % psd for k=1:65

jpsd(k)=1/((1-((fs(k))/fd)^2)^0.5);

“TranterBook” — 2003/11/18 — 16:12 — page 582 — #600
�

�

�

�

�

�

�

�

582 Modeling and Simulation of Waveform Channels Chapter 14

if(jpsd(k)) > 1000
jpsd(k)=1000;

end
H(k)=jpsd(k)^0.5; % first 65 points of H

end
for k=1:n % generate negative frequencies

H(n+k) = H(n+1-k);
end
[inv,time] = linear_fft(H,nn,fd/64); % inverse FFT
imp = real(inv(450:577)); % middle 128 points
impw = imp.*hanning(128)’; % apply hanning window
energy = sum(impw.^2); % compute energy
impw = impw/(energy^0.5); % normalize
% End of function file.

linear psd.m

% File: linear_psd.m
function [psd,freq,ptotal,pmax] = linear_psd(x,n,ts)
% This function takes the n time domain samples (real or complex)
% and finds the psd by taking (fft/n)^2. The two sided spectrum is
% produced by shifting the psd.
% NOTE: n must be an even number, preferably a power of 2.
for k=1:n

y(k) = 0.;
end
for k=1:n

freq (k) =(k-1-(n/2))/(n*ts);
y(k) = x(k)*((-1.0)^k);

end;
v = fft(y)/n; psd = abs (v).^2;
pmax = max(psd); ptotal = sum(psd)
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 583 — #601
�

�

�

�

�

�

�

�

Chapter 15

DISCRETE CHANNEL
MODELS

In this chapter we take a distinctly different approach to the problem of channel
modeling. In our previous work, the channel was defined in terms of the noise,
interference, and other disturbances that combine with the transmitted signal to
produce a distorted and noisy waveform at the input to the receiver. The transmit-
ted signal, as well as the noise, interference, and other channel disturbances, were all
represented by samples of waveforms. The result was a waveform-level simulation
that processed data on a sample-by-sample basis. We now consider partitioning
the system in a way that eliminates much of the need for simulating at the wave-
form level. The result is a discrete channel model in which simulations operate on
a symbol-by-symbol basis. The motivation for replacing a waveform-level channel
model by a discrete channel model is speed of simulation. We will see that the dis-
crete channel model is an abstraction of the physical (waveform) channel in which
the channel is completely characterized by a small set of parameters. Determining
these parameters constitutes an important part of the modeling process, and must
be accomplished through measurements made on the physical channel or through
the use of a single waveform-level simulation.

583

“TranterBook” — 2003/11/18 — 16:12 — page 584 — #602
�

�

�

�

�

�

�

�

584 Discrete Channel Models Chapter 15

15.1 Introduction

The basic model of a communication system, illustrated in Figure 15.1, typically
consists of a discrete data source, a channel coder for error control, a modulator
and transmitter, a channel, a receiver, and a decoder. Depending on the application
for the system and the detail of the simulation, other elements such as equalizers,
interleavers, deinterleavers, carrier synchronizers, and symbol synchronizers, may be
part of the system model. As we know, the modulator maps a symbol, or a sequence
of symbols, at the modulator input onto a waveform at the modulator output. The
waveform is subjected to a number of degrading effects in the channel. Among these
effects are noise, bandlimiting, interference, and fading. All of these effects can be
characterized by waveforms. The input to the receiver is also a waveform, which
is the transmitted waveform combined with the degrading effects of the channel.
The role of the receiver is to observe the input waveform over a symbol period, or
over a sequence of symbols, and determine the transmitted symbols. The channel
in this case is referred to as a waveform channel, since both the channel input
and the channel output are characterized as waveforms. It is important to note
that all system elements, with the exception of the channel, are characterized by
deterministic mappings. The channel performs a stochastic, or random, mapping
of the channel input to the channel output.

The terminology “discrete channel model” (DCM) is used to denote all the
elements of a communication system that lie between the two points A and B in the
system, where the input at point A is a vector of discrete symbols (input sequence),
denoted X = [x1, x2, · · · , xk, · · ·], and the output at B is another vector of discrete
symbols (output sequence), denoted Y = [y1, y2, · · · , yk, · · ·]. Usually, point A will

Discrete Channel Model

A

B

Data
Source Coder

Modulator
and

Transmitter

Waveform
Channel Receiver

Decoder di

di

^

Figure 15.1 Communication system with discrete channel model.

“TranterBook” — 2003/11/18 — 16:12 — page 585 — #603
�

�

�

�

�

�

�

�

Section 15.1. Introduction 585

be the output of the channel encoder or, equivalently, the modulator input, and
point B will be the input to the decoder as shown in Figure 15.1. Note that, with
the partitioning shown in Figure 15.1, the modulator and transmitter, the waveform
channel, and the receiver are part of the discrete channel model. The relationship
between the discrete channel input vector X and the output vector Y will be affected
by the system components, such as filters, and by the random disturbances induced
in the physical (waveform) channel. In a binary communication system with hard
decision receivers, the elements of both X and Y will be binary sequences. In the
case of soft-decision receivers, the elements of Y will be from an M -ary alphabet.
Transmission errors resulting from imperfections in the system elements between
points A and B in Figure 15.1, including the physical channel, will cause elements
of X and Y to be different, at least occasionally.

Discrete channel models describe the error-generation mechanism probabilisti-
cally. These models fall into two categories. The first class of these models, referred
to as “memoryless” channel models, are used to model the transmission errors or
the transitions from the channel input to the channel output under the assump-
tion that there is no temporal correlation in the transition mechanism. That is,
the input-output transition probabilities for the nth channel input symbol are not
affected by what happened to any other input symbol. Such models are applicable
to channels in which there is no inter-symbol interference (ISI) or fading, and the
noise is AWGN. In a hard decision binary system, this assumption implies that
bit errors are uncorrelated. Discrete channel models for memoryless channels are
usually trivial to derive.

The second and more interesting class of discrete models apply to situations in
which the transitions from the input symbols to the output symbols are temporally
correlated. In this case the probability of error for the nth symbol depends on
whether or not an error occurred in the transmission of previous symbols. The
fading channel commonly encountered in wireless communications is a good example
of a channel having correlated errors. Errors will tend to occur in bursts when the
radio channel is in a deep fade, and these channels are referred to as burst error
channels or channels with memory.

Discrete channel models are probabilistic models that are computationally more
efficient than waveform channel models. The increased efficiency comes from two
factors. Discrete models are simulated at the symbol rate, whereas waveform level
models are typically simulated at 8 to 16 times the symbol rate. This alone reduces
the computational burden by roughly an order of magnitude. While each individual
block is simulated in detail in a waveform-level model, there is a high level of
abstraction in the discrete channel model. This level of abstraction, as we will see,
further reduces the computational burden. These two factors may well contribute
to several orders of magnitude savings in the time required to execute a simulation.

In simple cases, discrete channel models can be derived analytically from the
models of the underlying components between the discrete channel input A and
the discrete channel output B. However, in most cases, discrete channel models are
derived from simulated or measured error patterns between the points A and B.
Discrete channel models are used to design and analyze the impact of components

“TranterBook” — 2003/11/18 — 16:12 — page 586 — #604
�

�

�

�

�

�

�

�

586 Discrete Channel Models Chapter 15

outside the portion of the system between points A and B. This includes, for
example, error control coders, source encoders, and interleavers.

Modeling discrete memoryless channels is a straightforward process. For exam-
ple, in the case of a discrete memoryless symmetric channel with binary input and
binary output, all we need to know to characterize the channel is a single number,
namely, the bit error probability. Simulation of this channel involves drawing a sin-
gle random number and comparing that number to a threshold in order to decide
whether or not a given bit will suffer a transmission error or be received without
error. Thus, in order to simulate the transmission of a million bits through a given
channel, all we have to do is generate a million independent uniformly distributed
random numbers and perform the required threshold comparisons. The entire sys-
tem represented by this channel is therefore simulated efficiently. (Compare this
with a waveform-level simulation, which involves generating millions of samples
representing the waveforms present in the system being simulated, and processing
these samples though all of the functional blocks in the system.)

Discrete channels with memory are more difficult to model. This temporally
correlated error generation mechanism is usually modeled by a discrete-time Markov
sequence [1, 2, 3, 4] in which a state model is used to characterize the various
states of the channel and a set of transition probabilities are used to capture the
progression of the channel states. Each state will also have associated with it a
set of input-to-output symbol transition probabilities. Thus, the model is now
more complex and requires more parameters than the uncorrelated channel. Model
structure and parameter values are estimated from either simulated or measured
error patterns. Simulation of the discrete channel consists of generating a random
number prior to the transmission of each symbol to determine the channel state, and
then drawing another random number to determine the input-to-output transition.
While the model and parameter estimation procedures are complex, simulation of
the Markov model is very efficient. We will elaborate on these ideas in the following
sections.

15.2 Discrete Memoryless Channel Models

In a discrete memoryless channel, the mapping of input to output is instantaneous
and is described by a set of transition probabilities. The simplest discrete memory-
less channel model is the binary symmetric channel (BSC), which is illustrated in
Figure 15.2(a). The input to the discrete channel is a sequence of binary symbols,
denoted by the vector X. The kth component of this vector, xk, corresponds to the
kth channel input, and pk corresponds to the probability of error on the kth symbol
transmission. For a memoryless channel, pk is independent of k, so the error on all
symbols is effected by the channel in the same manner. (If the channel has memory,
pk will, in general, be a function of pk−1.) A sequence of symbols of length M is
processed through the memoryless channel by invoking the channel model M times
in succession. For the kth symbol, a binary input of “0” is received correctly as “0”
with a probability 1 − pk, and incorrectly as “1” with an error probability of pk.
The kth channel output is denoted by yk and the M -symbol sequence of outputs is

“TranterBook” — 2003/11/18 — 16:12 — page 587 — #605
�

�

�

�

�

�

�

�

Section 15.2. Discrete Memoryless Channel Models 587

(b) General binary channel

1

1− β k

1−α k

β k

α k
00

1

xk yk

(a) Binary symmetric channel

1

pk

pk

1− pk

1− pk

00

1

yk xk

Figure 15.2 Binary channel models.

denoted by the vector Y. The channel is symmetric in that zeroes and ones are af-
fected by the channel in the same manner. Note that one consequence of symmetry
is that the error probability is independent of the transmitted symbol so that the
error source can be simulated separately from the information (data) source.

For a binary channel, the input-output relationship can be expressed as

Y = X⊕ E (15.1)

in which X and Y are the input and output data vectors, respectively, ⊕ denotes
the XOR operation, and E is the error vector. Specifically, E = {e1, e2, e3, · · · } is a
binary vector or sequence having elements {0, 1} in which ek = 0 denotes that the
kth element of X, xk, is received correctly (yk = xk), and ek = 1 denotes that the kth

element of X is received in error (yk 	= xk). The parameter defining the performance
of the binary symmetric channel model is the probability of error PE , which can be
easily estimated from measurements or from a system simulation performed at the
waveform level. Note that, for a binary system, the Monte Carlo estimate of the
error probability is the Hamming weight of the error vector E divided by N , the
number of elements in the vector E.1

Note that once pk is known, the error sequence corresponding to N transmitted
symbols can be generated by making N calls to a uniform random number generator
and comparing the random number to the threshold p. Specifically:

ek =
{

1,
0,

Uk ≤ pk

Uk > pk
(15.2)

where Uk denotes the number obtained from the kth call to the random number
generator. It is important to realize that the discrete channel model will not re-
produce the original error pattern used to originally determine p. It will, however,
reproduce a statistically equivalent error pattern. The simplicity of (15.2) illustrates

1Recall that the Hamming weight of a binary vector, consisting only of the elements “0” and
“1,” is equal to the number of binary ones in the vector.

“TranterBook” — 2003/11/18 — 16:12 — page 588 — #606
�

�

�

�

�

�

�

�

588 Discrete Channel Models Chapter 15

why substitution of a DCM for the portion of the system between points A and B
in Figure 15.1 results in a significant savings in computational complexity.

A slightly more complicated model for the binary channel is the binary nonsym-
metric channel model in which the probability of error may be different for zeroes
and ones, as in some optical communication systems. This model is illustrated in
Figure 15.2(b). This model is characterized by a set of four input-to-output transi-
tion probabilities, but only two of these probabilities, αk and βk, are independent.
The channel is nonsymmetric if αk 	= βk.

Extension of this model to the case in which the input and output belong to
an M -ary alphabet is straightforward and is shown in Figure 15.3 for M = 3. The
channel is characterized by a set of probabilities αij , i, j = 0, 1, 2, in which αij

represents the conditional probability

αij = Pr{output = j | input = i} (15.3)

If the set of probabilities αij are constant, and therefore independent of k, the kth

channel output depends only on the kth channel input. For this case, the model
shown in Figure 15.3 is memoryless. The transition probabilities are estimated
using a detailed waveform-level simulation in which the transitions from the ith

input to the jth output are counted. In these models, the transition probabilities
are estimated from simulated or measured data as

αij =
nij

Ni
(15.4)

where Ni is the number of occurrences of the ith input symbol, and nij is the number
of times the ith input symbol transitions to the jth output. Another example, shown
in Figure 15.4, is used for memoryless channels in which the output of the channel

α 31

α 23

α 21

α 12

α 11

α 22

α 32

0

α 13

2

1

0

1

2

Input Output

α 33

Figure 15.3 Discrete channel model with three inputs and three outputs.

“TranterBook” — 2003/11/18 — 16:12 — page 589 — #607
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 589

Input Output

0

1

2

3

0

1

α 11

α 24

Figure 15.4 Discrete channel model with two inputs and four outputs.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

is quantized to a different number of levels from the number of input levels, as in
soft decision decoding.

15.3 Markov Models for Discrete Channels with Memory

For channels with memory, the most commonly used model is the discrete-time,
finite-state Markov model (MM). There are several reasons for the popularity of
Markov models. These models are analytically tractable, their theory is well es-
tablished in the statistical literature, and they have been applied successfully to
a variety of important communication problems. Markov models have been used
to model the output of discrete information sources such as English text. (The
occurrence of a sequence of letters of the English alphabet in a typical passage can
be modeled as a Markov sequence.) Similarly, the sampled values of an audio or
video waveform can also be modeled by an MM. Markov modeling techniques are
directly applicable to the modeling and analysis of discrete communication chan-
nels [1]. Also, Markov models can be used to evaluate the capacity of a discrete
channel and for the design of optimal error control coding techniques. Markov
models have been successfully used to characterize fading channels in wireless com-
munication systems [5–10]. Most importantly, computationally efficient techniques
are available for estimating the parameters of Markov sequences from simulated or
measured error patterns. As an introduction to the Markov Model, we first consider
a simple two-state model. The results are then generalized to an N -state model.

15.3.1 Two-State Model

To set the stage for Markov channel models, consider a fading channel in which the
received signal strength is above an acceptable performance threshold part of the
time, and below the threshold during a deep fade. If we have interest only in the

“TranterBook” — 2003/11/18 — 16:12 — page 590 — #608
�

�

�

�

�

�

�

�

590 Discrete Channel Models Chapter 15

St

R
ec

ei
ve

r
In

pu
t S

ig
na

l L
ev

el

Good State

Bad State

PE =
−10 3

PE <
−10 3

PE >
−10 3

 t

Figure 15.5 Assumed receiver input signal level and two-state model.

“above threshold” or “below threshold” conditions, we can model the channel to
be in either one of the two states as shown in Figure 15.5. In Figure 15.5 we have
a good state, g, in which the system performance is acceptable (PE < 10−3) and a
bad state, b, in which the received signal level is so low that the probability of error
is unacceptably high (PE > 10−3).

Thus, in the simple two-state model shown in Figure 15.5, the states can be
represented by the set

S = {g, b} (15.5)

As time progresses, the channel goes from good state to bad state, and vice versa.
The rate of transition and the length of stay in each of the two states will depend
on the temporal correlation of the fading process. If time is measured in increments
of a symbol (bit) time, then we can construct a discrete channel model as follows.

At the beginning of each symbol (bit) interval, the channel is in one of the two
states. If the channel is in a good state, the probability of transmission error is
negligible. On the other hand, if the channel is in a bad state, the probability
of transmission error is unacceptably high. Prior to the transmission of each new
bit, the channel may change state or remain in the current state. This transition
between states takes place with a set of transition probabilities, aij . These are
conditional probabilities, and for the two-state model there are four probabilities of
interest. Let St and St+1 denote the state of the channel at time t and at time t+1,
respectively. (Note that t+1 represents time one increment greater than t, and not

“TranterBook” — 2003/11/18 — 16:12 — page 591 — #609
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 591

one second greater than t, so that t can be viewed as a discrete time index.) With
this notation, we define the four transition probabilities to be

agg(t) = Pr{St+1 = g |St = g}
agb(t) = Pr{St+1 = b |St = g}
abg(t) = Pr{St+1 = g |St = b}
abb(t) = Pr{St+1 = b |St = b} (15.6)

This can be represented by the state transition matrix

A(t) =
[

agg(t) agb(t)
abg(t) abb(t)

]
(15.7)

Note that since we are considering a two-state model, given that St = g, we must
have St+1 = g (the channel remains in the good state) or St+1 = b (the channel
transitions to the bad state). Thus, each row of the state transition matrix must
sum to 1. A graphical representation of the state transition diagram of the two-state
model is shown in Figure 15.6.

In the work to follow we will assume that the channel model is stationary and
therefore the state state transition matrix A(t) is fixed so that A(t) = A. However,
if a simulation is performed in which the initial state probability distribution Π0

is different from the steady-state distribution, some time is required for the state
distribution to evolve to the steady-state value Πss. The probability of finding the
model in a given state is of interest. Define Πt as the state probability distribution
at time t. Specifically:

Πt =
[

πt,g πt,b

]
(15.8)

in which πt,g and πt,b represent the probabilities of finding the channel in the good
state or in the bad state at time t, respectively.2 By definition of the state transition
matrix, the state distribution at time t + 1 is given by

Πt+1 = ΠtA (15.9)

Bad
State (b)

Good
State (g)

a tgg () a tbb ()

a tgb ()

a tbg ()

Figure 15.6 Two-state Markov model.

2Note that in this formulation we are not using t as a continuous variable but as a time index
that ranges over a set of integers.

“TranterBook” — 2003/11/18 — 16:12 — page 592 — #610
�

�

�

�

�

�

�

�

592 Discrete Channel Models Chapter 15

In a similar manner, the state distribution at time t + 2 is

Πt+2 = Πt+1A = (ΠtA)A = ΠtA
2 (15.10)

Thus, in general

Πt+k = ΠtA
k (15.11)

where Ak represents the k step transition matrix.
Most, but not all, Markov processes settle to a steady-state probability distribu-

tion as time evolves.3 Assuming that the Markov process converges to a steady-state
value distribution Πt+k = Πt for sufficiently large t and arbitrary k, it follows that

Πss = ΠssA
k =

[
πg πb

]
(15.12)

for arbitrary k. It is easily shown that for sufficiently large values of k, the rows
of Ak give Πss [1]. The convergence of Π0 to Πss is illustrated in the following
example.

Example 15.1. As a simple example let

A =
[

0.98 0.02
0.05 0.95

]
(15.13)

with the initial state distribution

Π0 =
[

0.50 0.50
]

(15.14)

The following MATLAB program illustrates the convergence of Π0 to Πss:

% File: c15 MMtransient.m
N = 100;
pie = zeros(N,2);
A = [0.98 0.02; 0.05 0.95];
pie(1,:) = [0.50 0.50];
for k=2:N

pie(k,:) = pie(k-1,:)*A;
end
kk = 1:N;
plot(kk,pie(:,1),‘k-’,kk,pie(:,2),‘k:’)
xlabel(‘Iteration’)
ylabel(‘Probability’)
text1 = [‘The steady-state probabilities are ’,...

num2str(pie(N,1)),‘ and ’ ,num2str(pie(N,2)),‘.’];
legend(‘State 1’,‘State 2’,2)
disp(text1)

3We have interest only in those process for which the state distribution converges to a steady-
state value.

“TranterBook” — 2003/11/18 — 16:12 — page 593 — #611
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 593

disp(‘ ’)
disp(‘The value of A^N is’); A^N
% End of script file.

Executing the program results in the script

� c15 MMtransient
The steady-state probabilities are 0.71412 and 0.28588.

The value of A^N is
ans =
0.7145 0.2855
0.7138 0.2862

We see that calculating the value of Πss iteratively using (15.9) and by raising A to a
high value gives, as expected, consistent results. The manner in which the probability
distribution converges to the steady-state value is shown in Figure 15.7. �

0 10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Iteration

P
ro

b
a

b
ili

ty

S tate 1
S tate 2

Figure 15.7 Convergence of the state probability distribution to the steady-state values.

“TranterBook” — 2003/11/18 — 16:12 — page 594 — #612
�

�

�

�

�

�

�

�

594 Discrete Channel Models Chapter 15

Before leaving the two-state model, we need to discuss the error generation
matrix, defined as

B =
[

Pr{C|g} Pr{C|b}
Pr{E|g} Pr{E|b}

]
(15.15)

in which “C” denotes that a correct decision is made and “E” denotes that an
error is made. By simple matrix multiplication it follows that the unconditional
probability of a correct decision PC and error PE are given by[

PC PE

]
= ΠssB

T (15.16)

where Πss is the steady-state state distribution matrix and BT is the transpose of
the error generation matrix B.

Note that, if all elements of B are nonzero, either state can produce an error
although the error probabilities may be quite different for different states. Thus,
upon observation of an error, the state that produced the error cannot be identified.
It is for this reason that we call the model “hidden.” These models are referred to
as hidden Markov models (HMMs).

Example 15.2. In this example, the simulation of the channel using the Markov
model is demonstrated and the system error probability is computed. Assume that
errors can be produced in either state where, obviously, the probability of error
in the good state will be much less than the error probability in the bad state.
Specifically we define the conditional error probabilities as

Pr{E|g} = 0.0005 (15.17)

and

Pr{E|b} = 0.1000 (15.18)

For these error probabilities, the error generation matrix B takes the form

B =
[

0.9995 0.9000
0.0005 0.1000

]
(15.19)

In addition, the Markov chain is defined by the transition matrix

A =
[

0.98 0.02
0.05 0.95

]
(15.20)

as in the previous example. The MATLAB program for simulating the channel is

% File: c15 hmm2.m
N = 100000; % number of iterations
state = ‘Good’; % initial state
A = [0.98 0.02; 0.05 0.95]; % state transition matrix
B = [0.0005 0.1000]; % second row of B

“TranterBook” — 2003/11/18 — 16:12 — page 595 — #613
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 595

out = zeros(1,N); % initialize matrix
errors = 0;
for i=1:N

error = 0; % initialize error counter
y = rand(1); % RV for state transition
err = rand(1); % RV for error given state
if state==‘Good’ % test for Good state

if y<A(1,1)
state=‘Good’; % remain in Good state
if err<B(1); % test for error

error = 1; % record an error
end

else
state=‘Bad ’; % transition to Bad state
if err<B(2); % test for error

error = 1; % record an error
end

end
else % state = Bad

if y<A(2,2);
state=‘Bad ’; % remain in Bad state
if err<B(2); % test for error

error = 1; % record an error
end

else
state=‘Good’; % transition to Good state
if err<B(1); % test for error

error = 1; % record an error
end

end
end
errors = errors + error; % increment error counter

end
PE = errors/N % calculate error probability
% End of script file.

Executing the program yields the following MATLAB result:

� c15 hmm2
PE =
0.0285

Thus, we have

PE = 0.0285 (15.21)

Note that PE computed in this manner is a random variable. We now “sanity-check”
this simulation result.

“TranterBook” — 2003/11/18 — 16:12 — page 596 — #614
�

�

�

�

�

�

�

�

596 Discrete Channel Models Chapter 15

From the previous example, the steady-state probabilities are

Πss =
[

0.7141 0.2859
]

(15.22)

From (15.16) we have

[
PC PE

]
=
[

0.7141 0.2859
] [0.9995 0.0005

0.9000 0.1000

]
(15.23)

This gives [
PC PE

]
=
[

0.9711 0.0289
]

(15.24)

which is very close (PE = 0.0289) to the value given by the simulation. Thus, the
simulation result appears reasonable. �

A more general version of the two-state Markov model can be constructed with
a larger number of states, with many good and bad states with varying degrees of
“goodness” or “badness” corresponding to increasingly more severity of fading and
or noise. The result is the N -state Markov model, which is a generalization of the
two-state model considered in this section.

15.3.2 N -state Markov Model

An N -state Markov (processes) model for a discrete communication channel is de-
fined by a number of parameters. The set of states S is denoted by

S = {1, 2, 3, · · · , N} (15.25)

and St, as before, denotes the state at time t. Thus, St ranges over the set S. We
have interest in the probability, Πt,i, that the Markov model will be in state i at
time t. We denote this as

Πt,i = Pr [St = i] , i = 1, 2, 3, · · · , N (15.26)

The transition probabilities, aij , denote the probability of going from state i at time
t (St = i) to state j at time t + 1 (St+1 = j). In equation form

aij = Pr [St+1 = j |St = i] , i, j = 1, 2, 3, · · ·N (15.27)

This transition normally takes place in a time increment equal to a bit or symbol du-
ration. Finally we have the input-to-output transition (error symbol) probabilities.
The error symbols for an M -ary symbol alphabet are denoted by the set

E = {e1, e2, e3, · · · , eM} (15.28)

For the familiar binary case

E = {0, 1} (15.29)

“TranterBook” — 2003/11/18 — 16:12 — page 597 — #615
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 597

where 0 denotes no error and 1 denotes an error. The probability that error symbol
ek occurs given that the model is in state i is denoted bi(ek). In equation form we
have

bi(ek) = Pr [ek |St = i] (15.30)

In binary hard decision applications, the parameters bi(ek) are represented by a
matrix having two rows and N columns, where N represents the number of states
in the model. Thus, the error generation matrix takes the form

B =
[

b11 b12 · · · b1i · · · b1N

b21 b22 · · · b2i · · · b2N

]
(15.31)

where b1i denotes the probability of a correct decision given that the model is in
state i, and b2i represents the probability of error given that the system is in state i.
With this formulation, note that the columns of B must sum to one. For nonbinary
applications, or binary soft-decision applications, the error generation matrix B will
have more than two rows.

These parameters define a discrete-time Markov process operating at a transition
rate equal to the symbol rate of the communication system, and the output of the
process consists of two sequences: the sequence of states {St}, and a sequence of
error symbols {Et}, where t is the time index that can be indexed over the integer
set {0, 1, 2, · · · }. Normally, only the input and the output of the channel and hence
the error sequence can be observed. The state sequence itself cannot be observed.
Hence the state sequence is “hidden” or not visible from external observations and
the Markov model is labeled as a hidden Markov model.

15.3.3 First-Order Markov Process

The Markov process of order m (or memory m), defined as the probability of the
state at time t + 1, St+1, is given by

Pr[St+1|St, St−1, ...] = Pr[St+1|St, St−1, ...St−m−1] (15.32)

which states that the probability is dependent upon the previous m states. For a
first-order Markov process, the probability of the state at time t + 1 is a function
only of the previous state. In other words:

Pr[St+1|St, St−1, ...] = Pr[St+1|St] (15.33)

For channel models we will use a first-order Markov model. For modeling data
sources, higher-order models may be required. As an example, modeling the symbol
sequences in an English-language text may require a second-order or third-order
Markov model, since the probability of occurrence of a given letter may depend on
the previous two or three letters.

15.3.4 Stationarity

Since stationarity is usually assumed in modeling the analog portion of the com-
munication channel, it is common to assume stationarity of the Markov model for

“TranterBook” — 2003/11/18 — 16:12 — page 598 — #616
�

�

�

�

�

�

�

�

598 Discrete Channel Models Chapter 15

discrete channels also. Stationarity implies that the parameters of the model, that
is, the probabilities Πt,i, aij(t), and bi(ek) do not depend on t. In this case, we have

Pr[St+1 = i] = Πi =
N∑

k=1

Pr[St = k] Pr[St+1 = i|St = k] =
N∑

k=1

πkaki,

i = 1, · · · , N (15.34)

where the terms aki are the elements in the ith column of the state transition matrix

A =

a11 a12 ... a1i · · · a1N

a21 a22 · · · a2i · · · a2N

...
...

. . .
...

. . .
...

aN1 aN2 ... aNi · · · aNN

 (15.35)

and Πk are the elements of the state probability distribution vector

Π =
[

π1 π2 · · · πN

]
(15.36)

As in the case of a two-state model, the n-stage transition matrix is given by An.
As was demonstrated in Example 15.1 for a two-state model, (15.34) along with the
constraint that

N∑
i=1

πi = 1 (15.37)

implies that the state probabilities, πi, are uniquely determined from the transition
probabilities, aij . Hence the Markov model is completely defined by the matrix A
of the state transition probabilities and B, where B is the matrix of the input-to-
output symbol transition (i.e., error) probabilities

B =

 b11 · · · b1N

...
. . .

...
bM1 · · · bMN

 (15.38)

as previously discussed.

15.3.5 Simulation of the Markov Model

Once the discrete Markov model is derived, simulation of the model is relatively
easy. We saw this in Example 15.2 for a two-state model, and the technique used
in Example 15.2 is now generalized for an N -state model.

Assume that the model is in state k at time t and that both the next state and
the corresponding component of the error vector, ek+1, is to be simulated. The first
step is to generate two uniformly distributed random variables, U1 and U2. The
first random variable, U1, is used to determine the new state. Given that the model

“TranterBook” — 2003/11/18 — 16:12 — page 599 — #617
�

�

�

�

�

�

�

�

Section 15.3. Markov Models for Discrete Channels with Memory 599

is in state k, the transition probabilities are defined by the kth row of the state
transition matrix A. The kth row of A is designated by the vector Ak where

Ak =
[

ak1 ak2 · · · aki ak,i+1 · · · akN

]
(15.39)

The cumulative probabilities associated with Ak are denoted βk and are given by

βk =
k∑

j=1

akj (15.40)

Note that the MATLAB library function cumsum maps the vector Ak into the a
vector having elements βk. The probability of making a transition from state k to
state i is, by definition, aki, and is given by

aki = βi − βi−1 (15.41)

This probability is represented by the shaded area in Figure 15.8(a).
After the new state is established, the next step is to determine whether or not

an error is made in the new state. In order to accomplish this, we compare the
second uniform random variable U2 with the threshold γ shown in Figure 15.8(b).
The probability of a correct decision is Pr{U2 < γ}, and the probability of error
is Pr {U2 > γ}, which is the shaded region in Figure 15.8(b). Since the current
state is i, the value of γ is given by the element b1i (row 1, column i) in the state
observation matrix B.

Pr Errorl q

0 1

1

f uU2 2()

u2

Pr Transition to state il q

0 1

1

f uU1 1()

u1

γ

β 2 β i−1 β iβ1

(a) Determination of transition probability

(b) Determination of error probability

Figure 15.8 Steps in the simulation of a Markov model.

“TranterBook” — 2003/11/18 — 16:12 — page 600 — #618
�

�

�

�

�

�

�

�

600 Discrete Channel Models Chapter 15

The implementation of the simulation procedure is realized using the following
MATLAB code:

u1 = rand(1); % get uniform RV 1
cum_sum = [0 cumsum(A(state,:))];
for i=1:total_states % loop to determine new state

if u1 > = cum_sum(i) & u1 < cum_sum(i+1);
state = i; % assign new state

end
end
state_seq(t) = state; % new state
u2 = rand(1); % get uniform RV 2
if u2 > B(1,state)

out(t) = 1; % record error
end

We now demonstrate this process in the following example.

Example 15.3. In this example, a binary sequence of length N = 20, 000 is
generated representing symbol errors on a channel. This error sequence is generated
using a three-state Markov model. If a given element in the sequence is a binary
“one,” a channel symbol error is recorded for the position corresponding to the given
element. A binary “zero” denotes that an error did not occur in the corresponding
position.

We assume that errors can occur in any of the three states. Specifically we
assume

Pr {E|S1} = 0.0010 (15.42)

Pr {E|S2} = 0.0500 (15.43)

and

Pr {E|S3} = 0.0100 (15.44)

which corresponds to the error probability matrix

B =
[

0.9990 0.9500 0.9900
0.0010 0.0500 0.0100

]
(15.45)

The state transition matrix for the Markov model is assumed to be

A =

 0.80 0.10 0.10
0.20 0.60 0.20
0.02 0.08 0.90

 (15.46)

We assume that the model is initially in state 1.
MATLAB code c15 errvector.m, for generating the error sequence, is given in

Appendix A. Execution of the program c15 errvector requires as input data the

“TranterBook” — 2003/11/18 — 16:12 — page 601 — #619
�

�

�

�

�

�

�

�

Section 15.4. Example HMMs—Gilbert and Fritchman Models 601

parameters N and the matrices B and A. The default values are N = 20, 000, and
the matrices B and A are defined by (15.45) and (15.46), respectively. The program
produces two outputs. These are the error vector out, which gives the error posi-
tions in a sequence of N transmissions, and the state sequence vector state seq,
which details the state transitions. The probability of finding the model in a given
state can be computed from the state sequence vector, and the simulated error
probability can be computed from the error vector. These calculations are carried
out in the MATLAB program c15 hmmtest.m. Execution of these two programs
using the default values produces the following output, in which the dialog relating
to the acceptance or rejection of default values is suppressed:

� c15 errvector
� c15 hmmtest
Simulation results:
The probability of State 1 is 0.2432.
The probability of State 2 is 0.1634.
The probability of State 3 is 0.5934.
The error probability is 0.01445.

Note that the simulated values given for the state probabilities and the error prob-
ability are random variables. The variance of these random variables is reduced by
increasing the length of the error vector.

A “sanity check” on the above values can be obtained by calculating the state
probabilities and the error probability directly from the matrices B and A. The
simple MATLAB code, together with the output, is as follows:

� A100 = A^100
A100 =
0.2353 0.1765 0.5882
0.2353 0.1765 0.5882
0.2353 0.1765 0.5882
� PE = B*A100’
PE =
0.9851 0.9851 0.9851
0.0149 0.0149 0.0149

Note that the theoretical state probabilities S1, S2, and S3 are 0.2353, 0.1765, and
0.5882, respectively, and that the theoretical error probability is 0.0149. These
obviously differ slightly from the simulated values, which, as previously mentioned,
are random variables. The variance of these random variables can obviously be
reduced, as the student should verify, by choosing a larger value of N . �

15.4 Example HMMs—Gilbert and Fritchman Models

The characterization of discrete channels using discrete-time, finite-state Markov
sequences has been proposed in the past by Gilbert, Fritchman, and others [11,
12]. The Gilbert model is a two-state model with a good error-free state, and a bad

“TranterBook” — 2003/11/18 — 16:12 — page 602 — #620
�

�

�

�

�

�

�

�

602 Discrete Channel Models Chapter 15

state with an error probability of p. This model was used by Gilbert to calculate the
capacity of a channel with burst errors. Parameters of the model can be estimated
from measured or simulated data using the procedures that will be explored in the
following section.

The Fritchman model, first proposed in 1967 [12], is now receiving considerable
attention, since the Fritchman model appears to be suitable for modeling burst
errors in mobile radio channels and also because it is relatively easy to estimate
the parameters of the Fritchman model from burst error distributions. For binary
channels, Fritchman’s framework divides the state space into k good states and
N − k bad states. The good states represent error-free transmissions, and the bad
states always produce a transmission error. Hence the entries in the B matrix are
zeros and ones and they need not be estimated. A Fritchman model with three
good states and one bad state is illustrated in Figure 15.9. This model has the
state transition matrix

A =

a11 0 0 a14

0 a22 0 a24

0 0 a33 a34

a41 a42 a43 a44

 (15.47)

The B matrix for this case takes the very simple form

B =
[

1 1 1 0
0 0 0 1

]
(15.48)

1 2 3 4

Good States (3)
Bad State (1)

a41

a44a33
a22a11

a14

a43

a42

a24

a34

Figure 15.9 Fritchman model with three good states and one bad state.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

“TranterBook” — 2003/11/18 — 16:12 — page 603 — #621
�

�

�

�

�

�

�

�

Section 15.4. Example HMMs—Gilbert and Fritchman Models 603

In general, the state transition matrix A for the Fritchmann model can be par-
titioned as

A =
[

Agg Agb

Abg Abb

]
(15.49)

where the submatrices represent the transition probabilities between various good
and bad states. For this model, it is possible to derive analytically the expressions for
burst error distributions in terms of the model parameters and use these expressions
to estimate the parameters of the model from empirical (measured or simulated)
burst error distributions.

Let O = {O1, O2, · · · , OT } be an error sequence with Ok = 1 indicating that the
kth transmitted bit suffered a transmission error, and Ok = 0 indicating error-free
transmission of the kth symbol. Also, let the notation (0m|1) denote the event of
observing m or more consecutive error-free transmissions following an error, and
(1m|0) represent the event of observing m or more consecutive errors following an
error-free transmission. Fritchman showed that the probabilities of occurrence of
these two events are given by the sum of weighted exponentials

Pr(0m|1) =
k∑

i=1

fiλ
m−1
i (15.50)

and

Pr(1m|0) =
N∑

i=k+1

fiλ
m−1
i (15.51)

where λi, i = 1, 2, · · · , k, and λi, i = k + 1, k + 2, · · · , N , are the eigenvalues of
AGG and ABB , respectively, and the corresponding values of fi are functions of
aij . From (15.50) and (15.51) we can obtain the probability of obtaining exactly m
zeros (or ones) as

Pr(0m−1|1) − Pr(0m|1) =
k∑

i=1

fiλ
m−2
i (1 − λ i) (15.52)

and

Pr(1m−1|0) − Pr(1m|0) =
N∑

i=k+1

fiλ
m−2
i (1 − λ i) (15.53)

The Fritchman model can be interpreted as equivalent to a Markov process with
a state transition probability matrix

Ã =
[

Λgg Agb

Abg Λbb

]
(15.54)

“TranterBook” — 2003/11/18 — 16:12 — page 604 — #622
�

�

�

�

�

�

�

�

604 Discrete Channel Models Chapter 15

where Λgg and Λbb are diagonal matrices given by

Λgg =

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk

 (15.55)

and

Λbb =

λk+1 0 · · · 0

0 λk+2 · · · 0
...

...
. . .

...
0 0 · · · λN

 (15.56)

Note that in this equivalent model there are no transitions within the set of k good
states and no transitions within the set of N − k bad states. Such transitions
are indistinguishable from the observed error sequence, since a transition from one
good state to another good state still produces no errors and the transition is not
observable from the output. This structure will be revisited when semi-Markov
models are considered in a later section.

The Fritchman model is not unique except when there is only one bad state.
This is so because, in the general case, the error-free run distribution Pr(0m|1) and
the error burst distribution Pr(1m|0) do not specify the statistical dependence of
the error-free runs and the error bursts. In the case of a single error state model,
as in Figure 15.9, Fritchman showed that [12]

Pr(0m|1) =
N−1∑
k=1

aNk(akk)m

akk
(15.57)

From (15.57) it can be seen that, in the case of a single error state model, the error-
free run uniquely specifies the 2(N − 1) model parameters. An empirical procedure
is used to fit an N − 1 mixture of exponentials as in (15.50) and (15.51) to the
(simulated or measured) error-free run distribution.

While Fritchman’s model is applicable to discrete channels with simple burst
error distributions, it may not be adequate to characterize very complex burst
error patterns that will require more than one error state in the model. In such
cases it will be very difficult to estimate the model parameters from the burst
error distributions alone. Fortunately, it is possible to find a maximum likelihood
estimate of the parameters using iterative techniques.

15.5 Estimation of Markov Model Parameters

The Markov model for a discrete channel is described by the N ×N state transition
matrix A and the M × N error probability generation matrix B. An iterative
procedure for estimating these parameters Γ = {A, B} from a given error sequence,

“TranterBook” — 2003/11/18 — 16:12 — page 605 — #623
�

�

�

�

�

�

�

�

Section 15.5. Estimation of Markov Model Parameters 605

obtained through simulation or measurement, O = {O1, , ..., Ot, ...OT } is based on
the Baum-Welch algorithm [13]. This iterative algorithm is designed to converge to
the maximum likelihood estimator of Γ = {A, B} that maximizes Pr(O|Γ).

The goal is to compute estimates of the elements of the state-transition matrix
A. These are given by

âi j =
expected number of transitions from i to j

expected number of transitions from i
(15.58)

We also require the estimates of the elements of the error generation matrix, which
are given by

b̂j(ek) =
expected number of times ek is emitted from state j

expected number of visits to state j
(15.59)

The calculations required to implement the Baum-Welch algorithm are described
in the following steps. In addition, the MATLAB program for implementing the
Baum-Welch algorithm is developed. Two versions of the MATLAB code for imple-
menting the detailed calculations are given. The first version, denoted the “basic
code,” contains a number of looping operations and is therefore inefficient. It is,
however, easier to relate the basic code to the defining equations. The second ver-
sion, denoted the “more efficient version,” eliminates some or all of the looping
operations in order to take advantage of MATLAB’s ability to implement vector
operations. It should be noted that in several instances the code is not fully vec-
torized. This was done in order to have more readable code. The version of the
Baum-Welch algorithm given in Appendix B was developed by combining the vec-
torized code segments.

Step 0: Start with an initial (assumed) model Γ = {A, B}.
Step 1: With Γ = {A, B} as the model, we first compute the “forward variables”

αt(i) = Pr[O1, O2, ...Ot, st = i |Γ] (15.60)

and the “backward variables”

βt = Pr[Ot+1, Ot+2 , ..., OT | st = i, Γ] (15.61)

for t = 1, 2, ..., T and i = 1, 2, .., N . Details of these calculations follow.

Forward variables Calculation of the forward variables involves three steps:
initialization, induction, and termination.
Initialization:

α1(i) = πibi(O1), i = 1, 2, ...N (15.62)

Induction:

α t+1(j) =

[
N∑

i=1

α t(i)aij

]
bj(Ot+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (15.63)

“TranterBook” — 2003/11/18 — 16:12 — page 606 — #624
�

�

�

�

�

�

�

�

606 Discrete Channel Models Chapter 15

Termination:

Pr[O |Γ] =
N∑

i=1

αT (i)βT (i) (15.64)

Note that
N∑

i=1

αT (i) =
N∑

i=1

Pr[O1, ..., OT , sT = i |Γ] = Pr[O |Γ] (15.65)

The basic MATLAB code for performing these calculations follows. (Note
the use of the scaling factor. The scaling factor is described in the fol-
lowing section.)

alpha = zeros(len,states); % memory allocation
for column = 1:states

alpha(1,column) = pye(1, column)*b(1, column);
hspace*50em% initialization
end
scale(1) = sum(alpha(1,:)); % normalizing factor
alpha(1,:) = alpha(1,:)/scale(1,:); % normalization
sum1 = 0;
for t = 1:(len - 1) % induction

for j = 1:states
for i = 1:states

inner sum = alpha(t,i)*p(i,j);
sum1 = sum1 + inner sum;

end
alpha(t+1,j) = sum1*b(out(t+1)+1,j);
sum1 = 0;

end
scale(t+1) = sum(alpha(t+1,:)); % normalizing factor
alpha(t+1,:) = alpha(t+1,:)/scale(t+1); % normalization

end

More efficient MATLAB code results by eliminating several of the loop-
ing operations. This yields

alpha = zeros(len,states); % memory allocation
alpha(1,:) = pye.*b(1,:); % initialization
scale(1) = sum(alpha(1,:)); % normalizing factor
alpha(1,:) = alpha(1,:)/scale(1); % normalization
for t = 1:len-1 % induction

alpha(t+1,:) = (alpha(t,:)*p).*b(out(t+1)+1,:);
scale(t+1) = sum(alpha(t+1,:)); % normalizing factor
alpha(t+1,:) = alpha(t+1,:)/scale(t+1); % normalization

end

“TranterBook” — 2003/11/18 — 16:12 — page 607 — #625
�

�

�

�

�

�

�

�

Section 15.5. Estimation of Markov Model Parameters 607

�

�

�

�

�

�

�

�

ai1

aij

a j2 ai2

aij

a j1

aiN
aN j

 i j j

α t N()

α t i()

α t ()2

α t ()1

b Oj t()+1 b Oj t()+1

State time t +1State time tState time t State time t +1

Figure 15.10 Parameter estimation for the HMM.

Source: M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

Backward variables Calculation of the backward variables involves two
steps: initialization and induction.

Initialization:

βT (i) = 1, i = 1, 2, ..., N (15.66)

Induction:

βt(i) =
N∑

j=1

βt+1(j)bj(Ot+1)aij ,

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (15.67)

The details of these calculations are illustrated in Figure 15.10. The ba-
sic MATLAB code for this segment follows:

beta = zeros(len, states); % memory allocation
beta(len,:) = 1/scale(len); % initialization and scaling
for t = (len-1):-1:1 % induction

for i = 1:states
for j = 1:states

inner sum = p(i,j)...
* b(out(t+1)+1,j) * beta(t+1,j);

sum2 = sum2 + inner sum;
end
beta(t,i) = sum2;

“TranterBook” — 2003/11/18 — 16:12 — page 608 — #626
�

�

�

�

�

�

�

�

608 Discrete Channel Models Chapter 15

sum2 = 0;
end
beta(t,:) = beta(t,:)/scale(t); % scaling

end

The more efficient (partially vectorized) version follows:

beta = zeros(len, states); % memory allocation
beta(len,:) = 1/scale(len); % initialization
for t = len-1:-1:1 % induction

beta(t,:) = (beta(t+1,:).*b(out(t+1)+1,:))...
*(p’)/scale(t);

end

Step 2: The next step is to compute γt(i) according to

γt(i) = Pr[st = i |O, Γ] =
αt(i)βt(i)
Pr[O |Γ]

; i = 1, 2, ..., N (15.68)

The basic MATLAB code for implementing this calculation follows:

gamma = zeros(len,states); % memory allocation
for i = 1:len
for j = 1:states
gamma(i,j) = alpha(i,j)*beta(i,j); % calculation of gamma

% variable
end
gamma(i,: = gamma(i,:)/sum(gamma(i.:));
end

We observe that we don’t need to keep all of these values in memory, since
they can be summed for the time indices. The following MATLAB code ex-
plains this further:

gamma sum = zeros(1,states); % memory allocation
for t = 1:len
gamma sum = gamma sum + alpha(t,:).*beta(t,:);
end

The quantity ξt(i, j) is defined by

ξt(i, j) = Pr[st = i, st+1 = j |O, Γ] =
αt(i)aijbj(Ot+1)βt+1(j)

Pr[O|Γ]
(15.69)

which can be calculated as follows:

“TranterBook” — 2003/11/18 — 16:12 — page 609 — #627
�

�

�

�

�

�

�

�

Section 15.5. Estimation of Markov Model Parameters 609

prob model given seq = zeros(1,len); % memory allocation
% for model

eta = zeros(states,states,len); % memory allocation for eta
for t = 1:len % start the loop

for i = 1:states
prob model given seq = zeros(1,len); % memory allocation
temp(i) = alpha(t,i)*beta(t,i);

end
prob model given seq(t) = sum(temp); % probability of model

end
for i = 1:states

for j = 1:states
for t = 1:(len-1)

eta(i,j,t)=((alpha(t,i)*p(i,j)...
*b(out(t+1)+1,j)*beta(t+1,j)));

end
end

end

Careful MATLAB programming indicates that we don’t need to save this vari-
able for all the time indices. Rather we can compute

eta = zeros(states,states); % memory allocation
sum eta = zeros(states,states) % memory allocation
for t = 1:(len-1)

for i = 1:states
eta(i,:)= ((alpha(t,i)*(p(i,:). ...

*(b(out(t+1)+1,:))).*beta(t+1,:)));
end
sum eta = sum eta + eta; % adds the values of eta

end

We now determine the new state state transition probability âij according to

âi j =
expected number of transitions from i to j

expected number of transitions from i
=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)
(15.70)

The basic MATLAB code is

for i = 1:states
for j = 1:states

p estimate(i,j) = sum(eta(i,j,:))/(sum(gamma(:,i))
-gamma(len,i));

end

“TranterBook” — 2003/11/18 — 16:12 — page 610 — #628
�

�

�

�

�

�

�

�

610 Discrete Channel Models Chapter 15

p estimate(i,:) = p estimate(i,:)/sum...
(p estimate(i,:)); % normalization

end

Alternatively:

for i = 1:states
for j = 1:states

p estimate(i,j) = sum eta(i,j)...
/(gamma sum(i)-alpha(len,i).*beta(len,i)...
/(sum(alpha(len,:).*beta(len,:))));

end
p estimate(i,:) = p estimate(i,:)/sum(p estimate(i,:));

end

Next, b̂j(ek), defined by

b̂j(ek) =
expected number of times ek is emitted from state j

expected number of visits to state j

=

T∑
t=1|Ot=ek

γt(j)

T∑
t=1

γt(j)
(15.71)

is computed. The basic MATLAB code is

for j = 1:states
i = find(out==0); % find indices of correct bits
for k = 1:length(i)

sum gamma = sum gamma +gamma(i(k),j);
end
b(1,j) = sum gamma/sum(gamma(:,j));
sum gamma = 0;

end
for j = 1:states

ii = find(out==1); % find the indices of errors
for k = 1:length(ii)

sum gamma = sum gamma +gamma(ii(k),j);
end
b(2,j) = sum gamma/sum(gamma(:,j));
sum gamma = 0;

end
for i = 1:states

b(:,i) = b(:,i)/sum(b(:,i));
end

“TranterBook” — 2003/11/18 — 16:12 — page 611 — #629
�

�

�

�

�

�

�

�

Section 15.5. Estimation of Markov Model Parameters 611

Using more efficient computations, the output symbol probability matrix can
be estimated as

out 0 = find(out == 0); % find correct bits indices
out 1 = find(out == 1); % find indices of errors
sum 0 = zeros(1,states);
sum 1 = zeros(1,states);
gamma sum = sum(gamma);
for i = 1:length(out 0)

sum 0 = sum 0 + gamma(out 0(i),:); % adds correct bits
end
for i = 1:length(out 1)

sum 1 = sum 1 + gamma(out 1(i),:); % adds error bits
end
for i = 1:states

for j = 1:2
if j == 1

b(j,i) = sum 0(i)/gamma sum(i);
% elements b correct bits

end
if j == 2

b(j,i) = sum 1(i)/gamma sum(i);
% elements b error bits

end
end

end
for i = 1:states

b(:,i) = b(:,i)/sum(b(:,i)); % normalize the b matrix
end

We can also compute

π̂i = (expected number of times in state Si at time t = 1)
= α1(i)β1(i) (15.72)

Step 3: Go back to Step 1 with the new values of Γ̂ =
{
Â, B̂, π̂

}
, or equivalently

Γ̂ = Γ, obtained in Step 2 and repeat until the desired level of convergence,
as discussed in a section to follow, is reached.

15.5.1 Scaling

The forward and backward vectors tend to zero exponentially for large data size
and must be scaled properly in order to prevent numerical underflow. The scaling

“TranterBook” — 2003/11/18 — 16:12 — page 612 — #630
�

�

�

�

�

�

�

�

612 Discrete Channel Models Chapter 15

constant, the use of which is implemented in the MATLAB code given in Appendix
B, is first defined as

Ct =
N∑

i=1

αt(i) (15.73)

The scaled values of αt(j), denoted αt(j), are given by

αt(j) = αt(j)/Ct (15.74)

This, of course, implies that

N∑
i=1

αt(i) = 1 (15.75)

The values of Ct are saved and used to scale the backward variables. The scaled
values of βt(i), denoted βt, are given by

βt(i) = βi(i)/Ct (15.76)

with the initialization

βT =
1

CT

where 1 denotes the column vector containing all ones. The gamma variable can
also be normalized if desired, but scaling the gamma variables is not necessary.
Turin [1] discusses scaling in more detail.

15.5.2 Convergence and Stopping Criteria

Since the Baum-Welch algorithm is iterative, the number of iterations to be per-
formed for a required level of model accuracy must be determnined. Perhaps the
best way to accomplish this is to display the estimates of A and B as the algorithm
is executing. If one desires each element of A and B to be accurate to a given
number of significant figures, execution of the algorithm is allowed to continue until
the elements of A and B no longer change, within the given accuracy, from itera-
tion to iteration. The algorithm is then terminated manually. This technique has
considerable appeal, since the level of accuracy is known. Also, based on previous
knowledge, one may simply perform a given number of iterations.

Another commonly used method for determining convergence is to continue the
iterations until successive values of Pr

[
O |Γ] differ very little. (The Baum-Welch

algorithm is guaranteed to converge to a maximum likelihood solution. A proof of
this statement is given in [1].) The value of Pr

[
O |Γ] is determined in terms of the

scaling constant Ct in (15.73). Specifically

Pr
[
O |Γ] =

T∏
t=1

Ct (15.77)

“TranterBook” — 2003/11/18 — 16:12 — page 613 — #631
�

�

�

�

�

�

�

�

Section 15.5. Estimation of Markov Model Parameters 613

For T large, this number will be very small and is usually expressed as

log10 Pr
[
O |Γ] =

T∑
t=1

log10 Ct (15.78)

This is referred to as the log-likelihood ratio and is illustrated in Example 15.4.
It should be pointed out that the estimates of A and B, for a given set of data, are

not unique unless the initial estimates of A, B, and Π are specified. Since the error
vector is a function of both A and B, various combinations may produce statistically
equivalent results and a specific result will depend on the initial conditions.

15.5.3 Block Equivalent Markov Models

The Baum-Welch algorithm is one of many reestimation algorithms available for
the computation of model parameters based on an error vector. This error se-
quence could involve many thousands, or even millions, of symbols. Note that
long observation periods are required to accurately estimate small values of aij . In
communication systems, these small values are often critical for estimating system
performance. The computational burden associated with the Baum-Welch algo-
rithm is quite high when the error vector is long, since the forward and backward
variables are computed for each symbol in the given error sequence. In addition,
convergence is sometimes slow, which adds to the computational burden. For low
error probability applications, the error vector has long runs of zeros. In addition,
the error vector must contain a significant number of error events in order for the
error vector to accurately define the model. In these situations the Baum-Welch
algorithm is especially inefficient and faster algorithms are needed.

One method, proposed by Turin [14], for dealing with this problem, involves the
computation of the forward and backward variables using a block matrix version of
the form

A =
[

A00 A01

A10 A11

]
(15.79)

The relationship between the terms in the matrix defined by (15.79) are illustrated
in Figure 15.11. Note that the powers of submatrices involved in the computations
can be precomputed and reused in order to reduce the overall computational burden.

O: 0 0 0 0 1 1 1 0 00

Computation: π 0 A00

4
A10A01 A11

2

Figure 15.11 Computations for the sequence 0000011100 (Version 1).

“TranterBook” — 2003/11/18 — 16:12 — page 614 — #632
�

�

�

�

�

�

�

�

614 Discrete Channel Models Chapter 15

Another modification proposed by Sivaprakasam and Shanmugan [6] is based on
the fact that for a general Markov model there is a statistically equivalent Fitchman-
like model with k good states and N − k bad states and an A matrix having the
form

A =
[

Λ00 A01

A10 Λ11

]
(15.80)

where Λ00 and Λ11 are diagonal matrices. These models are often referred to as
block diagonal Markov models. With this model, the channel remains in the same
state during an error burst and changes state only at the end of a burst. As a result,
all variables are computed only at time steps involving the change of error symbol.
In other words, variables are computed at the beginning of each burst of errors
rather than once every symbol. With this modification, the computations take the
form illustrated in Figure 15.12. Note that the computations during long bursts
of ones and zeros now involve raising the power of a diagonal matrix rather than
raising the power of arbitrary matrices, and matrix multiplications occur only at
the transition from one burst to another. Thus, the computations are very efficient,
and long error bursts can be processed without excessive storage and computational
requirements.

Using this model we have interest only in the run lengths of zeros and ones. Thus,
the error vector can be placed in a very compact form. As a simple illustration,
consider an error sequence

E = [000001110000000000000011000000000000000000000100] (15.81)

The run-length vector corresponding to this error sequence can be written as

V = [051301412021102] (15.82)

The MATLAB routine c15 seglength.m, given in Appendix D, generates the run-
length vector defined by (15.83) from the error vector defined by (15.81).

The development of reestimation algorithms based on block equivalent Markov
models will not be discussed here. They have, however, been extensively studied in
the literature [1, 14, 15]. A MATLAB program, based on the work of Sivaprakasam
and Shanmugan [15] is given in Appendix C. An example illustrating the use of this
algorithm is presented in a following section.

O: 0 0 0 0 1 1 1 0 00

Computation: π 0 Λ00

4
A10A01 Λ11

2

Figure 15.12 Computations for the sequence 0000011100 (Version 2).

“TranterBook” — 2003/11/18 — 16:12 — page 615 — #633
�

�

�

�

�

�

�

�

Section 15.6. Two Examples 615

Irrespective of the algorithms used, the Markov model for a discrete channel
must be computed for different values of the parameters of the underlying physical
channel. If the underlying physical channel is changed in any way, the discrete
channel model must be reestimated. For example, if a discrete channel model is
developed for a given channel, then the Markov model must be developed from
measurements or waveform-level simulations for different values of the parameters
of the channel including S/N. Thus a parametrized set of Markov models for the
underlying channel can be developed and used for the design and analysis of error
control coders, interleavers, etc.

15.6 Two Examples

We conclude this chapter with two examples that demonstrate the determination
of a Markov channel and the determination of a semi-Markov model. The flow of
these examples is as follows:

1. In the first example (Example 15.4), the error vector generated in Example
15.3 is used as input to the Baum-Welch algorithm. The result is an estimated
channel model. The error probability and the run-length distribution resulting
from this model are determined and are then compared to the error probability
and run-length distribution of the original sequence generated in the first
example.

2. The second example (Example 15.5) is similar to the first example. The
essential difference is that a block equivalent semi-Markov model is used rather
than a Markov model. The motivation for using a semi-Markov model is that
the semi-Markov model leads to a substantial reduction in the time required
to derive the model from measured or simulated data.

Example 15.4. In this example we generate an error sequence of length N =
20,000 with a known two-state model defined by

A =
[

0.95 0.05
0.10 0.90

]
(15.83)

and

B =
[

0.95 0.50
0.05 0.50

]
(15.84)

The Baum-Welch algorithm is then used to estimate the model using the generated
error sequence. Note that we assume a three-state model when the Baum-Welch
model is applied. This may at first seem strange but, given simulation or measure-
ment data, the channel model that produced the data is not known. The MATLAB
dialog, with some of the nonessential dialog eliminated, is as follows:

“TranterBook” — 2003/11/18 — 16:12 — page 616 — #634
�

�

�

�

�

�

�

�

616 Discrete Channel Models Chapter 15

� c15 errvector
Accept default values?
Enter y for yes or n for no > n

Enter N, the number of points to be generated > 20000
Enter A, the state transition matrix > [0.95 0.05; 0.1 0.9]
Enter B, the error distribution matrx > [0.95 0.5; 0.05 0.5]

� out1 = out;
� c15 bwa(20,3,out)
Enter the initial state transition matrix P >

[0.9 0.05 0.05; 0.1 0.8 0.1; 0.1 0.2 0.7]
Enter the initial state probability vector pye > [0.3 0.3 0.4]
Enter the initial output symbol probability matrix...

B > [0.9 0.8.7; 0.1 0.2 0.3]

After one iteration we have4

Â1 =

 0.9051 0.0469 0.0481
0.0991 0.7931 0.1078
0.0895 0.1856 0.7249

 B̂1 =
[

0.9206 0.7462 0.5848
0.0794 0.2538 0.4152

]

Also, after 10 iterations, the estimated state transition matrix is

Â10 =

 0.9415 0.0300 0.0285
0.1157 0.7504 0.1340
0.0669 0.1382 0.7949

 B̂10 =
[

0.9547 0.6745 0.4257
0.0453 0.3255 0.5743

]

At the 20th iteration, which is the termination point, the estimated state transition
matrix is

Â20 =

 0.9437 0.0299 0.0263
0.1173 0.7425 0.1402
0.0663 0.1324 0.8013

 B̂20 =
[

0.9522 0.6637 0.4313
0.0478 0.3363 0.5687

]

The log likelihood function is illustrated in Figure 15.13. It can be seen that the
log likelihood function converges in about 10 iterations. Note that this conclusion
is consistent with the preceding computations of Ak and Bk for k = 10 and k = 20.
Note also that, as discussed previously, the likelihood numbers are very small.

We now generate a second sequence, out2, using the model estimated by the
Baum-Welch algorithm. This gives, with the dialog dealing with default values
suppressed:

4It should be mentioned that rerunning this program may result in estimates for A and B that
are different from the results given here, even though the same parameters and initial conditions
are used. The reason for this lies in the fact that the error vector, upon which the estimates of
A and B are based, is a sample function of a random process. In addition, the rows of bA and
the columns of bB may not sum to one when the elements of bA and bB are represented with finite
precision.

“TranterBook” — 2003/11/18 — 16:12 — page 617 — #635
�

�

�

�

�

�

�

�

Section 15.6. Two Examples 617

0 2 4 6 8 10 12 14 16 18 20
-4350

-4300

-4250

-4200

-4150

-4100

-4050

-4000

iterations

lo
g

 l
ik

e
lih

o
o

d

Figure 15.13 Log likelihood function for Example 15.4.

� a = [0.9437 0.0299 0.0263; 0.1173 0.7425 0.1402;...
0.0663 0.1324 0.8013];

� b = [0.9522 0.6637 0.4313; 0.0478 0.3363 0.5687];
� c15 errvector
Accept default values?
Enter y for yes or n for no > n

Enter N, the number of points to be generated > 20000
Enter A, the state transition matrix > a
Enter B, the error distribution matrix > b

� out2 = out;

In order to calculate and plot Pr{0m|1} for both out1 and out2, we execute the
following lines of MATLAB code:

� runcode1=c15 seglength(out1);
� runcode2=c15 seglength(out2);
� c15 intervals2(runcode1,runcode2)

This produces the plots illustrated in Figure 15.14. The top frame illustrates
Pr{0m|1} for the original data and the bottom frame illustrates Pr{0m|1} using
the data generated by the model estimated by the Baum-Welch algorithm.

“TranterBook” — 2003/11/18 — 16:12 — page 618 — #636
�

�

�

�

�

�

�

�

618 Discrete Channel Models Chapter 15

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

Original sequence- Length of intervals m

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

Regenerated sequence- Length of intervals m
Figure 15.14 Pr(0m|1) for the original data and the data resulting from the estimated
model.

There are a few obvious differences between the two plots illustrated in Figure
15.14, especially in the neighborhood of m = 10. Note, however, that the error
probabilities are given by

� p1 = sum(out1)/N
p1 =
0.0038
� p2 = sum(out2)/N
p2 =
0.0035 �

Example 15.5. In this final example, we consider a test case used by Sivaprakasam
and Shanmugan [6] to illustrate the block diagonal Markov model. Assume a three-
state model having two good states and one bad state, defined by5

5Note that A represents a physical channel and does not have a block diagonal form. The
estimated state transition matrix bA will have a block diagonal form.

“TranterBook” — 2003/11/18 — 16:12 — page 619 — #637
�

�

�

�

�

�

�

�

Section 15.6. Two Examples 619

A =

 0.90 0.02 0.08
0.10 0.50 0.40
0.10 0.20 0.70

 (15.85)

Since the good states are error-free and errors are always produced in the bad state,
the error observation matrix is defined by

B =
[

1 1 0
0 0 1

]
(15.86)

Note that this model is semi-hidden. If an error occurs, we know that the error
was generated by state 3. If, however, no error is generated, the state cannot be
identified.

First, we generate an error vector, having length 20,000, for the state transition
matrix A and the error observation matrix B. The appropriate MATLAB com-
mands, with the nonessential dialog supressed, follows:

� a1 = [0.90 0.02 0.08; 0.10 0.50 0.40; 0.10 0.20 0.70];
� b1 = [1 1 0; 0 0 1];
� c15 errvector
Accept default values?
Enter y for yes or n for no > n
Enter N, the number of points to be generated > 20000
Enter A, the state transition matrix > a1
Enter B, the error distribution matrix > b1
� out1 = out;
� runcode1 = c15 seglength(out1);
� [A matrix, pi est] = c15 semiMarkov(runcode1,100,[2 1])

Note that we must run c15 seglength prior to running c15 semiMarkov in order
to generate the run-length vector.

After 50 iterations, the estimate of the state transition matrix is

Â =

 0.9043 0.0 0.0957
0.0 0.4911 0.5089

0.1402 0.1515 0.7083

 (15.87)

Note that this is close to, but not exactly equal to, the result obtained by
Sivaprakasam and Shanmugan [6]. There are several explanations for the differ-
ences. First, the error vector upon which the estimated model is based is a sample
function of a stochastic process and, for practical purposes, no two error vectors
will be identical. Also, error vectors of different lengths will result in slightly dif-
ferent models. Finally, we fixed the number of iterations, and Sivaprakasam and
Shanmugan used a different stopping criteria.

The next step is to generate a second error vector based on the estimated model
and plot Pr{0m|1} for both the original error vector and for the error vector gen-
erated by the estimated model. This is accomplished using the following MAT-
LAB code:

“TranterBook” — 2003/11/18 — 16:12 — page 620 — #638
�

�

�

�

�

�

�

�

620 Discrete Channel Models Chapter 15

� a2 = [0.9043 0.0 0.0957; 0.0 0.4911 0.45089; 0.1402 0.1515 0.7083];
� b2 = [1 1 0; 0 0 1];
� c15 errvector
Accept default values?
Enter y for yes or n for no > n
Enter N, the number of points to be generated > 20000
Enter A, the state transition matrix > a2
Enter B, the error distribution matrix > b2
� out2 = out;
� runcode2 = c15 seglength(out2);
� intervals2(runcode1,runcode2);

The results are illustrated in Figure 15.15. Note that the results are in close agree-
ment even though the original model, defined by A, and the estimated model,
defined by Â, are quite different. Obviously we knew from the start of this problem
that A and Â would be different, since Â is constrained to have a block diago-
nal form.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

Original sequence- Length of intervals m

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

Regenerated sequence -Length of intervals m

Figure 15.15 Pr {0m|1} for Example 15.5.

“TranterBook” — 2003/11/18 — 16:12 — page 621 — #639
�

�

�

�

�

�

�

�

Section 15.7. Summary 621

It is also instructive to check the error probabilities. In order to accomplish this
we compute

� pe1 = sum(out1)/20000
pe1 =
0.3617
� pe2 = sum(out2)/20000
pe2 =
0.3538

Once again we have close agreement. �

15.7 Summary

The focus of this chapter was the development of discrete channel models. Dis-
crete channel models are attractive, since their use greatly reduces the computa-
tional complexity associated with the execution of a simulation. The parameters of
the model may be determined from either measured data or from the results of a
waveform-level simulation. Discrete channel models have found widespread use in
wireless communication systems, since they can be used to effectively model fading
channels. Discrete channel models are an abstraction of waveform-level models in
that they characterize the input-output characteristics of the channel but do not
model the physical functionality of the channel. It is through this abstraction that
the computational burden is reduced.

A two-state model was initially considered in order to establish the concept of
a state-transition matrix, the state distribution vector, and the error generation
matrix. Several different techniques for determining the steady-state distribution
matrix were considered. These concepts were then extended to the N -state model
including the development of a technique for efficiently simulating a channel based
on a discrete channel model.

We next considered the two-state Gilbert model and the N -state Fritchman
model as examples of a hidden Markov model. The Fritchman model is attractive
from a computational point of view, since the state-transition matrix contains a
large number of zeros (relatively sparse). The Fritchman model has also been shown
to effectively model the fading channel environments encountered in wireless com-
munication systems.

The heart of this chapter dealt with the development of discrete channel models
based on measured data or data obtained from a waveform-level simulation. The
basic tool used for parameter estimation is the Baum-Welch algorithm. The devel-
opment of the Baum-Welch algorithm was briefly outlined and the development of a
MATLAB implementation of the Baum-Welch algorithm was presented. Scaling to
prevent underflow was discussed, as was the block equivalent Markov model, which
can be estimated more efficiently than the general Markov model.

The chapter concluded with three examples summarizing techniques for estimat-
ing both Markov models and block-equivalent Markov models. The first example
focuses on the generation of an error vector given a Markov model. Validation of

“TranterBook” — 2003/11/18 — 16:12 — page 622 — #640
�

�

�

�

�

�

�

�

622 Discrete Channel Models Chapter 15

the result is based on the probability of state occupancy and the probability of
error. The second example uses the Baum-Welch algorithm to estimate a channel
model. Validation includes a comparison of the run-length statistic Pr{0m|1} for
both the original error vector and the error vector produced by the estimated model.
The third example is similar to the second example except that a block equivalent
Markov model is used. These three examples should serve as a guide to the use of
the tools developed in this chapter.

15.8 Further Reading

The development and use of Markov models for burst error channels (channels with
memory) are currently an active area of research and new papers appear frequently.
The interested reader may find recent articles on this topic in IEEE Transactions on
Communications, IEEE Transactions on Vehicular Technology, and other related
journals and conference proceedings. Markov models are also being developed for
burst errors at the higher layers of communication networks. For example, packet
errors at the transport layer in a network. The book by Turin [1] is recommended
as a comprehensive treatment of the subject.

15.9 References

1. W. Turin, Digital Transmission Systems: Performance, Analysis and Model-
ing, 2nd ed., New York: McGraw-Hill, 1999.

2. L. R. Rabiner and B. H. Juang, “An Introduction to Hidden Markov Models,”
IEEE ASSP Magazine, January 1986, pp. 4–16.

3. R. A. Howard, Dynamic Probabilistic Systems, Vol. I: Markov Models, New
York: Wiley, 1971.

4. R. A. Howard, Dynamic Probabilistic Systems, Vol. II: SemiMarkov and De-
cision Processes, New York: Wiley, 1971.

5. H. S. Wang and N. Moayeri, “Finite-State Markov Channels—A Useful Model
for Radio Communications Channels,” IEEE Transactions on Vehicular Tech-
nology, Vol. 44, February 1995, pp. 163–171.

6. S. Sivaprakasam and K. S. Shanmugan, “An Equivalent Model for Burst Er-
rors in Digital Channels,” IEEE Transactions on Communications, Vol. 43,
No. 2/3/4, February/March/April 1995, pp. 1347–1355.

7. H. S. Wang and P.-C. Chang, “On Verifying the First-Order Markovian As-
sumption for a Rayleigh Fading Channel Model,” IEEE Transactions on Ve-
hicular Technology, Vol. 45, May 1996, pp. 353–357.

8. W. Turin and R. van Nobelen, “Hidden Markov Modeling of Flat Fading
Channels,” IEEE Journal on Selected Areas in Communications, Vol. 16, No.
9, December 1998, pp. 1809–1817.

“TranterBook” — 2003/11/18 — 16:12 — page 623 — #641
�

�

�

�

�

�

�

�

Section 15.10. Problems 623

9. F. Babich, O. E. Kelly, and G. Lombardi, “Generalized Markov Modeling for
Flat Fading,” IEEE Transactions on Communications, Vol. 48, No. 4, April
2000, pp. 347–351.

10. M. Zorzi, R. R. Rao, and L. B. Milstein, “A Markov Model for Block Errors
on Fading Channels,” PIMRC ’96 Conference Record, October 1996.

11. E. N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell System Technical
Journal, Vol. 39, September 1960, pp. 1253–1266.

12. B. D. Fritchman, ‘‘A Binary Characterization Using Partitioned Markov Chains,’’
IEEE Transactions on Information Theory, Vol. IT-13, No. 2, April 1967,
pp. 221–227.

13. L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains,” Annals of Mathematical Statistics, Vol. 41, Issue 1, February 1970,
pp. 164–171.

14. W. Turin and M. M. Sondhi, “Modeling Error Sources in Digital Channels,”
IEEE Journal on Selected Areas in Communications, Vol. 11, No. 3, April
1993, pp. 340–347.

15.10 Problems

15.1 Assume that a binary symmetric channel is defined by the error probability
p = 10−2. Using the technique defined by (15.2), with pk independent of k,
simulate the transmission of N symbols through the channel for N = 100,
N = 1,000 and N = 10,000. In each case count the number of errors that
actually occur and calculate the BER resulting from the simulation. Repeat
this experiment ten times for each value of N . What do you conclude?

15.2 Rework Example 15.1 assuming that

Π0 =
[

0.1 0.9
]

15.3 Repeat the preceding problem assuming that the initial state probability
distribution

Π0 =
[

0.4 0.3 0.3
]

and the state transition matrix

A =

 0.8 0.15 0.05
0.25 0.7 0.05
0.1 0.1 0.8

“TranterBook” — 2003/11/18 — 16:12 — page 624 — #642
�

�

�

�

�

�

�

�

624 Discrete Channel Models Chapter 15

15.4 A Markov process has the state transition matrix

A =

 0.8 0.15 0.05
0.2 0.7 0.1
0 0.1 0.9

Determine the steady-state distribution Πss using the technique illustrated in
Example 15.1. Verify the result by raising A to a sufficiently high power.

15.5 We know that Πss can be determined by raising the state transition probability
matrix to a high power. As yet another method for solving this problem,
recognize that Πss = ΠssA implies that Πss is an eignvector of A. Using this
observation, develop a MATLAB program for determining Πss given the state
transition matrix A. Apply this technique to

A =

 0.8 0.1 0.1
0.2 0.6 0.2
0.1 0.2 0.7

15.6 Develop a MATLAB program to generate a Markov sequence based on the
state transition matrix

A =

 0.8 0.15 0.05
0.2 0.7 0.1
0 0.1 0.9

Assuming that the system is initially in state 1, generate 200 state transitions
and develop a figure that illustrates the state of the channel for each time
step. Next generate 40,000 state transitions and, from the simulation results,
compute the steady-state probabilities of each state. Verify the result by
computing Ak for sufficiently large k.

15.7 Consider the channel model illustrated in Figure 15.16. The probability of
error given that the channel is in the good state is 0 and the probability of
error given that the channel is in the bad state is 1.

Bad
State (b)

Good
State (g)

q p

1− q

1− p

Figure 15.16 Channel model for Problem 15.7.

“TranterBook” — 2003/11/18 — 16:12 — page 625 — #643
�

�

�

�

�

�

�

�

Section 15.10. Problems 625

(a) Generate a 10,000-bit sequence with p = 0.01 and q = 0.99. Construct
a histogram of the burst length and the inter-error gap (error-free run)
distributions.

(b) Discuss how p and q can be estimated emperically from a histogram of
(simulated) burst length and inter-error gap distributions. Estimate p
and q.

(c) Use the Baum-Welch algorithm to estimate p and q. Compare with the
empirical estimates obtained from the histograms.

15.8 Develop a figure similar to Figure 15.9 for the Fritchman model

A =

a11 0 0 a14 a15

0 a22 0 a24 a25

0 0 a33 a34 a35

a41 a42 a43 a44 0
a51 a52 a53 0 a55

15.9 Generalize c15 hmmtest.m for a N -state model.

15.10 Rework Example 15.4 by estimating a two-state model. Compare the esti-
mated model with the original two-state model. Plot the estimated parame-
ters as a function of the number of iterations up to 20 iterations. Discuss the
convergence.

15.11 Rework Example 15.4 using, as initial conditions to the Baum-Welch algo-
rithm, the matrices A and B that were used to generate the original error
vector. Discuss the convergence.

15.12 Rework Example 15.4 with N = 4, 3, and 2, where N is the number of states
in the stimated model. Compare the likelihood metric after convergence is
reached. Use as input to the Baum-Welch algorithm the data generated by
the two-state model used in Example 15.2. Work this problem several times
using different initial conditions for the Baum-Welch algorithm and discuss
the results.

15.13 Modify the Baum-Welch algorithm given in Appendix A (c15 bwa.m) so that
one does not have to enter initial guesses for the matrices A, B, and π. Make
the elements of A and B random but reasonable. (For example, the on-
diagonal elements of the A matrix are typically larger than the off-diagonal
terms.) For the initial π matrix make all values equal. Test your resulting
program by reworking Example 15.4 several times. What do you observe?

15.14 Modify the MATLAB code for Example 15.4 so that the CPU time spent in
the model estimation algorithm can be measured. After this is accomplished,
rework Example 15.4 for error vectors having length N = 20,000 and 100,000.
Compare the times required to estimate the model. Also compare the error
probabilities.

“TranterBook” — 2003/11/18 — 16:12 — page 626 — #644
�

�

�

�

�

�

�

�

626 Discrete Channel Models Chapter 15

15.15 Rework Example 15.5 assuming two good states and two bad states.

15.16 Assume that a discrete channel is defined by the state transition matrix

A =

0.990 0.001 0.003 0.006
0.120 0.600 0.180 0.100
0.150 0.200 0.500 0.150
0.040 0.030 0.130 0.800

Determine an equivalent block diagonal Markov model having two good states
and two bad states. (Note: This channel model represents another test case
presented by Sivaprakasam and Shanmugan [6]. The student should compare
the result with that found by Sivaprakasam and Shanmugan.)

“TranterBook” — 2003/11/18 — 16:12 — page 627 — #645
�

�

�

�

�

�

�

�

Section 15.11. Appendix A: Error Vector Generation 627

15.11 Appendix A: Error Vector Generation

15.11.1 Program: c15 errvector.m

% File: c15_errvector.m
disp(‘ ’)
disp(‘Default values are:’)
N = 20000 % default N
A = [0.8 0.1 0.1; 0.2 0.6 0.2; 0.02 0.08 0.90] % default A
B = [0.999 0.95 0.99; 0.001 0.05 0.01] % default B
disp(‘ ’)
disp(‘Accept default values?’)
dtype = input(‘Enter y for yes or n for no > ’,‘s’);
if dtype == ‘n’

N = input(‘ Enter N, the number of points to be generated > ’);
A = input(‘ Enter A, the state transition matrix > ’);
B = input(‘ Enter B, the error distribution matrix > ’);

end
state = 1; % initial state
total_states = size(A,1);
out = zeros(1,N); % initialize error vector
state_seq = zeros(1,N); % initialize state sequence
h = waitbar(0,‘Calculating Error Vector’);
%
ran_b = rand(1); % get random number
if ran_b>B(1,state) % test for error

out(1) = 1; % record error
end
state_seq(1) = state; % record state
for t=2:N

u1 = rand(1); % get random number
cum_sum = [0 cumsum(A(state,:))];
for i=1:total_states % loop to determine new state

if u1 >= cum_sum(i) & u1 < cum_sum(i+1);
state = i; % assign new state

end
end
state_seq(t) = state; % new record state
u2 = rand(1); % get random number
if u2 > B(1,state)}

out(t) = 1; % record error
end

waitbar(t/N)
end
close(h)
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 628 — #646
�

�

�

�

�

�

�

�

628 Discrete Channel Models Chapter 15

15.11.2 Program: c15 hmmtest.m

Note: This program is for a three-state model. It is easily generalized for an arbi-
trary number of states.

% File: c15_hmmtest.m
pe = sum(out)/N;
state_sum = zeros(1,total_states);
for k=1:N

if state_seq(k)==1
state_sum(1)=state_sum(1)+1;

end
if state_seq(k)==2

state_sum(2)=state_sum(2)+1;
end
if state_seq(k)==3

state_sum(3)=state_sum(3)+1;
end

end
a = [‘The probability of State 1 is ’,num2str(state_sum(1)/N),‘.’];
b = [‘The probability of State 2 is ’,num2str(state_sum(2)/N),‘.’];
c = [‘The probability of State 3 is ’,num2str(state_sum(3)/N),‘.’];
d = [‘The error probability is ’,num2str(pe),‘.’];
disp(‘Simulation results:’)
disp(a) % display probability of state 1
disp(b) % display probability of state 2
disp(c) % display probability of state 3
disp(d) % display error probability
% End script file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 629 --- #647
�

�

�

�

�

�

�

�

Section 15.12. Appendix B: The Baum-Welch Algorithm 629

15.12 Appendix B: The Baum-Welch Algorithm

% File: c15_bwa.m
function [p, pye, b] = c15_bwa(iterations,states,out);
len = length(out);
p = input(‘Enter the initial state transition matrix P > ’);
pye = input(‘Enter the initial state probability vector pye >’);
b = input(‘Enter the initial output symbol probability matrix B > ’);
alpha=zeros(len,states); beta=zeros(len,states);
eta=zeros(states,states); gamma=zeros(1,states); scale=zeros(len,1);
log_likelihood = zeros(1,iterations);
iplot = 1; % plot switch
%
p % display initial p
pye % display initial pye
%
pye_rec = zeros(states,1);
pye_rec(:,1) = pye’;
sum_gamma = 0;
sum_eta = 0;
%
for cycle = 1:iterations

cycle % display iteration index
%
% alpha generation
%
alpha(1,:) = pye.*b(1,:);
scale(1) = sum(alpha(1,:));
alpha(1,:) = alpha(1,:)/scale(1);
for t = 2:len

alpha(t,:) = (alpha(t-1,:)*p).*b(out(t)+1,:);
scale(t) = sum(alpha(t,:));
alpha(t,:) = alpha(t,:)/scale(t);

end
%
% beta generation
%
beta(len,:) = 1/scale(len);
for t = len-1:-1:1

beta(t,:) = (beta(t+1,:).*b(out(t+1)+1,:))*(p’)/scale(t);
end
%
% eta generation
%
sum_eta = zeros(states);

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 630 --- #648
�

�

�

�

�

�

�

�

630 Discrete Channel Models Chapter 15

for t = 1:len-1
for i = 1:states

eta(i,:) = ...
((alpha(t,i)*(p(i,:).*(b(out(t+1)+1,:))). ...

*beta(t+1,:)))...
/sum(alpha(t,:).*beta(t,:));

end
sum_eta = sum_eta + eta;

end
%
% gamma generation
%
gamma_sum = zeros(1,states);
for t = 1:len

gamma_sum = gamma_sum + alpha(t,:).*beta(t,:);
end
%
% calculate and display the log_likelihood function
%
loglikelihood = sum(log10(scale));
log_likelihood(cycle) = loglikelihood;
loglikelihood % display result
%
% Re-estimation of the intial state probability vector pye
%
pye(1,:) = alpha(1,:).*beta(1,:)/sum(alpha(1,:).*beta(1,:));
%
pye % display pye
%
pye_rec(:,cycle+1) = pye’; % Save for plot
%
% Re-estimation of the state transition matrix P
%
for i = 1:states

for j = 1:states
p_estimate(i,j) = ...

sum_eta(i,j)/(gamma_sum(i)-alpha(len,i). ...
*beta(len,i)...

/(sum(alpha(len,:).*beta(len,:))));
end

p_estimate(i,:) = p_estimate(i,:)/sum(p_estimate(i,:));
end
%
p = p_estimate % display p
%

“TranterBook” — 2003/11/18 — 16:12 — page 631 — #649
�

�

�

�

�

�

�

�

Section 15.12. Appendix B: The Baum-Welch Algorithm 631

% Re-estimation of output symbol probability matrix B
%
out_0 = find(out == 0);
out_1 = find(out == 1);
sum_0 = zeros(1,states);
sum_1 = zeros(1,states);
for i = 1:length(out_0)

sum_0 = sum_0 + alpha(out_0(i),:).*beta(out_0(i),:)...
/sum(alpha(out_0(i),:).*beta(out_0(i),:));

end
for i = 1:length(out_1)

sum_1 = sum_1 + alpha(out_1(i),:).*beta(out_1(i),:)...
/sum(alpha(out_1(i),:).*beta(out_1(i),:));

end
for i = 1:states

for j = 1:2
if j == 1

b(j,i) = sum_0(i)/gamma_sum(i);
end
if j == 2

b(j,i) = sum_1(i)/gamma_sum(i);
end

end
end
for i = 1:states

b(:,i) = b(:,i)/sum(b(:,i));
end
b % display b

end
if iplot==1

plot(1:iterations,log_likelihood)
xlabel(‘iterations’)
ylabel(‘log likelihood’)

end
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 632 --- #650
�

�

�

�

�

�

�

�

632 Discrete Channel Models Chapter 15

15.13 Appendix C: The Semi-Hidden Markov Model

% File: c15_semiMarkov.m
function [A_matrix, pi_est] = c15_semiMarkov(runlength,cycles,...

partition)
% runlength = runlength code
% cycles = number of iterations
% partition = 1 by 2 vector = [good states, bad states]
%
[symbols len_symbols] = size(runlength); % gets size of runlength

% vector
m = runlength(1,:); % the first bit received is error free
u = runlength(2,:); % arbitrary number of elements
C = len_symbols; % total length of runlength vector
%
A = cell(length(partition)); % a 2x2 array only 2 symbols
pye = rand(1,sum(partition)); % initialize the initial state vector
pye = pye(1,:)/sum(pye(1,:)); % normalize
pi_u1 = pye(1:partition(1));
%
% initialize A matrix
%
A = cell(partition); % allocate memeory for the A matrix
A00 = diag(1 - abs(randn(partition(1),1)/1000)); % initialize A00

% matrix
A10 = rand(partition(2),partition(1)); % initialize A10

% matrix
A01 = rand(partition(1),partition(2)); % initialize the

% A01 matrix
A11 = diag(1 - abs(randn(partition(2),1)/1000)); % initialize A11

% matrix
A{1,1} = A00; A{1,2} = A01; A{2,1} = A10; A{2,2} = A11;
A_matrix = [A{1,1} A{1,2};A{2,1} A{2,2}]; % cell-array in

% matrix form
%
for i = 1:sum(partition)

A_matrix(i,:) = A_matrix(i,:)/sum(A_matrix(i,:)); % normalize the
% A matrix

end
A_matrix;
%
A{1} = A_matrix(1:partition(1),1:partition(1));
A{2} = A_matrix(partition(1)+1:partition(1)+partition(2),1:...

partition(1));
A{3} = A_matrix(1:partition(1),partition(1)+1:partition(1)...

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 633 --- #651
�

�

�

�

�

�

�

�

Section 15.13. Appendix C: The Semi-Hidden Markov Model 633

+partition(2));
A{4} = A_matrix(partition(1)+1:partition(1)+...

partition(2),partition(1)+1:partition(1)+partition(2));
%
for iterations = 1:cycles

%
% alpha generation
%
alpha{1} = pi_u1*(A{u(1)+1,u(1)+1}.^(m(1)-1)); scale(1)= ...

sum(alpha{1});
alpha{1}= alpha{1}/scale(1); % normalization
for c = 2:C

alpha{c}= alpha{c-1}*A{u(c-1)+1,u(c)+1}*A{u(c)+1,...
u(c)+1}^(m(c)-1);

scale(c)= sum(alpha{c}); % scaling factor
alpha{c}= alpha{c}/scale(c); % normalize alpha

end;
%
% beta generation
%
beta{C}= ones(partition(u(C)+1),1)/scale(C); % last element of

% beta
for(c= C-1:-1:1)

beta{c}= A{u(c)+1,u(c+1)+1}*(A{u(c+1)+1,u(c+1)+1}...
^(m(c+1)-1))*beta{c+1}/scale(c);

end;
%
% gamma generation
%
Gamma{1} = alpha{1}.*beta{1}’;
Gamma{2} = alpha{2}.*beta{2}’;
%
sum_Tii_00s = diag(zeros(partition(1),1)); % initialization

% of A00
sum_Tii_11s = diag(zeros(partition(2),1)); % initialization

% of A11
sum_Tij_01s = zeros(partition(1),partition(2)); % initialization

% of A01
sum_Tij_10s = zeros(partition(2),partition(1)); % initialization

% of A10
%
% re-estimation for the A00 matrix
%
for c=1:2:C-1

if (c == 1)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 634 --- #652
�

�

�

�

�

�

�

�

634 Discrete Channel Models Chapter 15

Tii_00s = diag((m(1)-1)*(pi_u1)’.*(diag(A{u(1)+1,...
u(1)+1}).^(m(1)-1)).*beta{1});

else
Tii_00s = diag((m(c)-1)*((alpha{c-1}*A{u(c-1)+1,...

u(c)+1})’.*(diag(A{u(c)+1,u(c)+1}^(m(c)-1)))). ...
*beta{c});

end
sum_Tii_00s = sum_Tii_00s + Tii_00s; % sum elements

% of A00
end
%
% re-estimation for the A11 matrix
%
for c=2:2:C-1

Tii_11s = diag((m(c)-1)*((alpha{c-1}*A{u(c-1)+1,u(c)+1})’...
.*(diag(A{u(c)+1,u(c)+1}^(m(c)-1)))).*beta{c});

sum_Tii_11s = sum_Tii_11s + Tii_11s; % sum elements
% of A11

end
%
% re-estimation for the A01 matrix
%
for c=1:2:C-1

Tij_01s = (alpha{c}’*((A{u(c+1)+1,u(c+1)+1}^(m(c+1)-1))...
*beta{c+1})’).*A{u(c)+1,u(c+1)+1};

sum_Tij_01s = sum_Tij_01s + Tij_01s; % sum elements
% of A01

end
%
% re-estimation for the A10 matrix
%
for c=2:2:C-1
Tij_10s = (alpha{c}’*((A{u(c+1)+1,u(c+1)+1}^(m(c+1)-1))...

*beta{c+1})’).*A{u(c)+1,u(c+1)+1};
sum_Tij_10s = sum_Tij_10s + Tij_10s; % sums elements of A10

end
%
A_matrix = [sum_Tii_00s sum_Tij_01s; sum_Tij_10s sum_Tii_11s];
%
for i = 1:sum(partition)

A_matrix(i,:) = A_matrix(i,:)/sum(A_matrix(i,:)); % normalize
% A

end
%
A{1} = A_matrix(1:partition(1),1:partition(1));

“TranterBook” — 2003/11/18 — 16:12 — page 635 — #653
�

�

�

�

�

�

�

�

Section 15.13. Appendix C: The Semi-Hidden Markov Model 635

A{2} = A_matrix(partition(1)+1:partition(1)+partition(2),1:...
partition(1));

A{3} = A_matrix(1:partition(1),partition(1)+1:partition(1)...
+partition(2));

A{4} = A_matrix(partition(1)+1:partition(1)+partition(2),...
partition(1)+1:partition(1)+partition(2));

%
pi_est = [Gamma{1} Gamma{2}]; % re-estimated initial state vector
pi_est = pi_est/sum(pi_est); % normalized initial state vector
pi_rec(iterations,:) = pi_est;
pi_u1 = pi_est(1:partition(1));
iterations % display current iteration
A_matrix % display estimated A matrix

end
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 636 — #654
�

�

�

�

�

�

�

�

636 Discrete Channel Models Chapter 15

15.14 Appendix D: Run-Length Code Generation

% File: c15_seglength.m
function runcode=c15_seglength(errvect)
% Produces a two-row matrix of error intervals and error-free
% intervals. Row 1 specifies the interval length and row 2
% specifies the interval class (error(1) or no error(0)).
%
len = length(errvect); % length of input vector
j = 1; % initialize index of m
count = 1; % initialize counter
for i=1:(len-1)

if errvect(i+1) == errvect(i); % compare elements
count = count+1; % on match increment count

else
m(j) = count; % record count
j = j+1; % increment index of m
count = 1; % reset counter

end
end
%
runcode = zeros(2,length(m)); % allocate memory
runcode(1,:) = m; % assign counts to row 1
%
if errvect(1)==0

runcode(2,2:2:length(m)) = 1; % even index error count
else

runcode(2,1:2:length(m)) = 1; % odd index error count
end
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 637 --- #655
�

�

�

�

�

�

�

�

Section 15.15. Appendix E: Determination of Error-Free Distribution 637

15.15 Appendix E: Determination of Error-Free Distribution

In this appendix two MATLAB programs are given for determing a plotting the
error-free distribution. The first program is designed for a single data file, and the
second program is for the comparison of two data files.

15.15.1 c15 intervals1.m

% File: c15_intervals1.m
function [] = c15_Intervals1(r1);
start = find(r1(2,:)==0); % index of first

% interval
maxLength_1 = max(r1(1,start(1):2:length(r1))); % maximum length

% of interval
interval_1 = r1(1,start(1):2:length(r1)); % get the intervals
for i = 1:maxLength_1

rec_1(i) = length(find(interval_1>=i)); % record the
% intervals

end
int1out = rec_1/max(rec_1);
figure;
plot(1:maxLength_1,int1out)
grid;
ylabel(‘Pr(0m|1)’);
xlabel(‘Length of intervals m’);
% End of function file.

15.15.2 c15 intervals2.m

% File: c15_intervals2.m
function [] = c15_intervals2(r1,r2);
start1 = find(r1(2,:)==0); % index of first

% interval
maxLength_1 = max(r1(1,start1(1):2:length(r1))); % maximum length

% of interval
interval_1 = r1(1,start1(1):2:length(r1)); % get the

% intervals
for i = 1:maxLength_1

rec_1(i) = length(find(interval_1>=i)); % record the
% intervals

end
start2 = find(r2(2,:)==0); % index of first

% interval
maxLength_2 = max(r2(1,start2(1):2:length(r2))); % maximum length

% of interval
interval_2 = r2(1,start2(1):2:length(r2)); % get the

% intervals

“TranterBook” — 2003/11/18 — 16:12 — page 638 — #656
�

�

�

�

�

�

�

�

638 Discrete Channel Models Chapter 15

for i = 1:maxLength_2
rec_2(i) = length(find(interval_2>=i)); % record the

% intervals
end
subplot(2,1,1)
plot(1:maxLength_1,rec_1/max(rec_1))
v = axis;
grid;
ylabel(‘Pr(0m|1)’);
xlabel(‘Original sequence - Length of intervals m’);
subplot(2,1,2)
plot(1:maxLength_2,rec_2/max(rec_2))
axis([v])
grid;
ylabel(‘Pr(0m|1)’);
xlabel(‘Regenerated sequence - Length of intervals m’);
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 639 — #657
�

�

�

�

�

�

�

�

Chapter 16

EFFICIENT SIMULATION
TECHNIQUES

The basic Monte Carlo (MC) technique was examined in Chapter 9 and, in Chap-
ter 10, the Monte Carlo technique was applied to several simple communications
systems. In both Chapters 9 and 10 we saw that the Monte Carlo method, while
applicable to all systems without regard to architecture or complexity, has one very
significant drawback. The fundamental problem with the Monte Carlo method is
that the time required to execute a simulation and obtain a reliable estimate of
system performance is often very long. In some cases the required run time may be
so long that use of the Monte Carlo method is not practical.

The semianalytic (SA) technique was introduced in Chapter 10. While the
SA technique yields simulations that execute very rapidly, application of the SA
technique is restricted to situations in which the pdf of the sufficient statistic, upon
which symbol decisions are based, is known. In many simulations this statistic is
not known, and the SA technique cannot be applied.

In this chapter we take a very brief look at simulation techniques aimed at
overcoming the lengthy run-time requirements of the Monte Carlo method. The
three methods considered here are quite different. The first of these methods,
tail extrapolation, involves curve fitting to MC simulation results. The second
technique is based on estimating the pdf of a decision metric through the application
of moment methods. The third method to be addressed, importance sampling,

639

“TranterBook” — 2003/11/18 — 16:12 — page 640 — #658
�

�

�

�

�

�

�

�

640 Efficient Simulation Techniques Chapter 16

involves biasing the channel noise in a way that forces more decision errors to be
made. Importance sampling is a variance reduction technique that provides an
estimate of the BER to be obtained that has a smaller variance than the estimate
provided by an MC simulation of equivalent execution time. The application of
variance reduction techniques essentially involves a tradeoff between analysis and
computer run time. A number of these techniques have been investigated and the
search for efficient simulation techniques remains an area of active research.

Of the three techniques presented in this chapter, importance sampling has
received the most attention and appears to be the most generally applicable. We
therefore consider importance sampling in more detail than the other two simulation
methods. The effective application of any of these methods (especially importance
sampling) requires considerable analytical skill. This chapter should be considered
only a brief introduction to these topics. The interested student should consult the
research literature on this subject. A few key references are given at the end of this
chapter.

16.1 Tail Extrapolation

The first technique we consider is tail extrapolation [1, 2]. This method is applied
by executing a number of Monte Carlo simulations using Eb/N0 values for which
reliable simulation results can be obtained with reasonable run times. These results
are then extrapolated to values of Eb/N0 where Monte Carlo simulations are not
practical. Of course, one must be extremely careful not to extrapolate into regions
of Eb/N0 where extrapolation is not justified. An example for an assumed system
is illustrated in Figure 16.1. For A < Eb/N0 < B, reliable values of the error prob-
ability can be computed with reasonable run times using Monte Carlo simulation.
This yields points 1, 2, 3, and 4. For our system of interest, extrapolation is valid
for B < Eb/N0 < C, and therefore point 5, although extrapolated, is valid. Contin-
uing extrapolation gives point 6. However, our example system exhibits a floor on
the probability of error and, as a result, extrapolation of the simulated values into
the region for which Eb/N0 > C is not valid. Therefore, point 6 is not valid. One
must be very careful about extrapolating results into regions where experemental
or simulated results are not available.

Suppose we know, or are willing to assume, that the pdf of the decision metric
is a Gaussian random variable. For this case the probability of symbol error will be
given by Q

(√
g (Eb/N0)

)
, where Q(x) is the Gaussian Q-function and g(Eb/N0) is a

function of Eb/N0 determined by system parameters such as the modulation format.
We see that fitting simulated points to a Gaussian Q-function (such as points 1, 2,
3, and 4 in Figure 16.1) may allow for accurate performance extrapolation to higher
values of Eb/N0.

As a more general example, assume that the decision metric is not strictly
Gaussian but may be approximated by a pdf of a generalized exponential class.

“TranterBook” — 2003/11/18 — 16:12 — page 641 — #659
�

�

�

�

�

�

�

�

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Si
m

ul
at

ed
 v

al
ue

s

V
al

id
 I

nt
er

po
la

te
d

V
al

ue

In
va

lid
 I

nt
er

po
la

te
d

V
al

ue

A
B

C

Probability of Error

E
N

b
/

0

2

3

4

5

6

1

T
ru

e
“u

no
bs

er
ve

d”
sy

st
em

 p
er

fo
rm

an
ce

F
ig

u
re

1
6
.1

V
a
li
d

a
n
d

in
va

li
d

u
se

s
o
f
ta

il
ex

tr
a
p
o
la

ti
o
n
.

641

“TranterBook” — 2003/11/18 — 16:12 — page 642 — #660
�

�

�

�

�

�

�

�

642 Efficient Simulation Techniques Chapter 16

This class of pdfs is defined by the expression

fX(x|v, σ, m) =
v

σΓ(1/v)
√

8
exp

[
−
∣∣∣∣x − m

σ
√

2

∣∣∣∣v] (16.1)

where Γ(·) denotes the gamma function, m is the mean of X , v is the mode, and σ
is a parameter related to the spreading of the pdf about the mean. The parameter
σ is, of course, the standard deviation of X for ν = 2, since a Gaussian pdf results
for v = 2. A Laplacian pdf results for v = 1. If we assume that the mean is zero,
one can show that at for large values of T (error threshold) [1]∫ ∞

T

fX(x|v, σ)dx ≈ exp
[
−
(

T

σ
√

2

)v]
(16.2)

The left-hand side of (16.2) is the BER of the system when we use a threshold of T

and, therefore we write the left side as P̂e(T). Taking the logarithm of (16.2) twice,
we see that

ln
[
− ln

(
P̂e(T)

)]
≈ v ln

(
T

σ
√

2

)
(16.3)

or

ln
[
− ln

(
P̂e(T)

)]
≈ v ln

(
T√
2

)
− v ln (σ) (16.4)

Now suppose we run M MC simulations using a variety of thresholds, T1,T2...TM .
The BER for each of these thresholds is estimated yielding P̂e(T1), P̂e(T2), · · · , P̂e(TM).
The plot of ln

[
− ln

(
P̂e(T)

)]
as a function of ln

(
T/

√
2
)

should be a straight line,
determined using linear regression, with y intercept −v ln (σ) and slope v. This is
illustrated in Figure 16.2. The mode v is determined from the slope. Once v is
known, σ is determined from the y intercept yi according to

σ = exp(−yi/σ) (16.5)

Once v and σ have been determined, (16.2) can be used as an estimator of the BER
of the system. Tail extrapolation can be extended to other pdfs. This technique
will be accurate if the analyst is skilled, or lucky, enough to select an appropriate
family of pdfs for a given system.

16.2 pdf Estimators

We know that the error probability of a digital communications system can be
written in the form

PE =
∫ ∞

T

fV (v) dv (16.6)

“TranterBook” — 2003/11/18 — 16:12 — page 643 — #661
�

�

�

�

�

�

�

�

y
v

i
=
−

ln
(

)
σ

1

In
te

rp
ol

at
ed

V
al

ue

M
ea

su
re

d
V

al
ue

s

y

T 5

v

T 3
T 4

T 2
T 1

T
ln

T 2

F HG
I KJ

F
ig

u
re

1
6
.2

T
a
il

ex
tr

a
p
o
la

ti
o
n

p
ro

ce
d
u
re

.

643

“TranterBook” — 2003/11/18 — 16:12 — page 644 — #662
�

�

�

�

�

�

�

�

644 Efficient Simulation Techniques Chapter 16

where T is the error threshold (values of X > T result in errors) and fV (v) is
the pdf of the decision statistic. One technique for estimating the BER is to first
estimate the pdf and then evaluate the integral defined in (16.6) using numerical
integration. An intuitive way of accomplishing this is to form a histogram of the
data representing the values of V . In order to be useful the histogram must have
a sufficient number of bins for V > T to allow the integration defined by (16.6)
to be carried out with the required accuracy. In addition, as we saw in Chapter
8, the histogram is a biased estimator for finite data size N . Fortunately there
are alternatives to the histogram method. The two most popular techniques for
estimating the pdf from a data set x[n] are the Gram-Charlier series [3, 4] and the
Parzen series [4].

The Gram-Charlier series approximates a pdf in the form

f̂Y (y) =
1√

2πσv

exp
[
−y2

2

] N∑
k=0

CkHk (y) (16.7)

where Hk(·) represents the Chebyshev-Hermite polynomials and Ck denotes the
series coefficients. In writing (16.7) we have made, for mathematical simplicity, the
assumption that X is a zero-mean unit-variance random variable. The Chebyshev-
Hermite polynomials are defined by the recursion relationship

Hk(y) = yHk−1(y) − (k − 1)Hk−2(y), k ≥ 2 (16.8)

in which H0(y) = 1 and H1(y) = y. Given the Chebyshev-Hermite polynomials,
the coefficients can be calculated from

Ck =
1
k!

∫ ∞

−∞
Hk(y)fY (y)dy (16.9)

Note that even though fY (y) is unknown, (16.9) can be evaluated in terms of the
moments of Y . If the random variable of interest Y is not a zero-mean unit-variance
variable, we can apply the transformation

Z =
Y − µy

σy
(16.10)

where µy and σy represent the mean and standard deviation of Y , respectively.
Under this transformation Z becomes a zero-mean unit variance random variable
so that (16.7) can be applied directly with Y replaced by Z.

The Gram-Charlier series provides a good approximation to the target pdf in the
neighborhood of the mean but usually provides a poor approximation in the tails of
the pdf. Unfortunately, for BER estimation it is the tails of the pdf that are of inter-
est. The Gram-Charlier series has a number of other difficulties. The Gram-Charlier
approximation is not asymptotically unbiased and does not uniformly converge to
the target pdf as more terms are added. Also, for a finite number of terms, N , the
approximation defined by (16.7) is not a true pdf and may even be negative for
particular values of y. Despite these shortcomings, the Gram-Charlier series is a
useful pdf estimator for many applications.

“TranterBook” — 2003/11/18 — 16:12 — page 645 — #663
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 645

The natural estimator for the moments of a random variable producing a data
sequence x[n] is given by

E
{
Xk
}

= lim
N→∞

[
1
N

N∑
n=1

xk[n]

]
(16.11)

In practice of course, the data size N must be finite. For finite N , this estimator,
unfortunately, has no optimality properties. It is, however, usually a consistent
estimator and therefore satisfactory performance can be expected for sufficiently
large N [5].

The shortcomings of the Gram-Charlier series can at least be partially overcome
through the use of the Parzen pdf estimator. The Parzen estimator takes the form

f̂V (v) =
1

Nh(N)

N∑
k=1

g

(
v − vk

h(N)

)
(16.12)

The choices for g(x) and h(N) are somewhat arbitrary but reasonable choices that
work well in many applications are [4]

g(x) =
1√
2π

exp
(
−x2

2

)
(16.13)

and

h(N) =
1√
N

(16.14)

In (16.12) N is the size of the data set, the function g(·) is a weighting function,
and h(N) is a smoothing factor. Although the Parzen estimator is biased for finite
N , it can be shown that if h(N) → 0 as N → ∞ and Nh(N) → ∞ as N → ∞,
the Parzen estimator is asymptotically unbiased. Clearly, the smoothing function
defined by (16.14) satisfies these requirements. It can also be shown that the Parzen
estimator is consistent.

Both the Gram-Charlier and the Parzen techniques have been successfully ap-
plied to a number of problems. A recent paper explores the use of both of these
techniques for estimating the BER of a digital communications system operating in
a variety of environments. These include the AWGN channel, AWGN with cochan-
nel interference, and AWGN plus multipath [6].

16.3 Importance Sampling

As we saw in Chapters 9 and 10, MC simulations perform a random experiment a
large number of times, N , and count the number of outcomes, NA, denoting some
event, A, of interest. One can estimate the probability of event A using the equation

Pr(A) = lim
N→∞

NA

N
(16.15)

“TranterBook” — 2003/11/18 — 16:12 — page 646 — #664
�

�

�

�

�

�

�

�

646 Efficient Simulation Techniques Chapter 16

Assuming that NA denotes the number of errors in the transmission of N sym-
bols, high-performance communication systems yield values of NA many orders of
magnitude smaller than N . The brief discussion of confidence intervals in Chapter
9 showed that to generate a reliable estimator, we require NA to be at least 10,
and preferably 100. In many situations the requirement for large NA can lead to
very long simulation execution times. This is especially true when the BER of a
communication system is low. If the BER is small, a simulated demodulation error
is a rare (low probability) but important event. The goal of importance sampling
is to alter the simulation in a controlled way, in order to increase the number of
these important or rare events while still enabling the determination of the correct
probability of demodulation error. This requires a change in (16.15). Importance
sampling falls into a class of simulation methodologies known as variance reduction
techniques. The goal of variance reduction techniques is to develop an unbiased
estimator which exhibits a reduced variance and/or a reduced simulation execution
time as compared to a Monte Carlo simulation.

Before beginning our discussion of importance sampling, it is important to point
out that a detailed description of importance sampling is well beyond the scope of
this introductory text. Rather than treating this subject in depth, we instead
consider the estimation of the area of a geometrical shape in a way that makes
use of the fundamental concepts of importance sampling. This is followed by an
example of importance sampling applied to a communications system.

In Chapter 9 the subject of Monte Carlo simulation was introduced by devel-
oping an estimator for the area of a two-dimensional shape. (Recall that this led
to an estimator for the value of π.) In this chapter we again consider an estimator
for the area of a two-dimensional shape (an ellipse in this case) in a way that pro-
vides insight into the importance sampling simulation technique. At the end of this
section a simple communications system simulation is presented. This introduction
hopefully makes the basic literature on importance sampling more understandable
to the reader. One wishing to apply importance sampling to a practical communi-
cations system will need to become familiar with the basic literature. A suggested
list of papers is given at the end of this chapter.

16.3.1 Area of an Ellipse

Suppose one wishes to use Monte Carlo simulations to estimate the area of an ellipse
in the (x, y) plane. In particular, let us examine the problem of finding the area of
an ellipse which has a major axis in the x direction of length 2

√
2, and a minor axis

of length 2.

Monte Carlo Estimators Revisited

The specified ellipse contains all points (x, y) such that

x2 + 2y2 < 2 (16.16)

“TranterBook” — 2003/11/18 — 16:12 — page 647 — #665
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 647

The area of the ellipse, Ae, is

Ae =
∫ 1

y=−1

∫ √
2−2y2

x=−
√

2−2y2
dxdy = π

√
2 ∼= 4.443 (16.17)

By rewriting the integral, we can put the problem in a form better suited for Monte
Carlo integration and for demonstrating importance sampling. The first step is to
represent the limits of the integral by a function in the integrand. This is accom-
plished by defining an indicator function, he(x, y), such that

he(x, y) =
{

1,
0,

x2 + 2y2 ≤ 2 (inside the ellipse)
x2 + 2y2 > 2 (outside the ellipse) (16.18)

This gives

Ae =
∫ ∞

−∞

∫ ∞

−∞
he(x, y) dxdy (16.19)

We next define a bounding area that contains the ellipse and has an area easy
to calculate. The area of this bounding area is denoted Abound. Multiplying the
integrand by unity in the form Abound/Abound gives

Ae =
∫ ∞

−∞

∫ ∞

−∞
he(x, y)Abound

1
Abound

dxdy (16.20)

The next step is to define a pair of random variables (X, Y) that are uniformly
distributed over Abound. The pdf for this pair of random variables is

fXY (x, y) =
{

1/Abound,
arbitrary,

he(x, y) = 1
he(x, y) = 0 (16.21)

Combining (16.20) and (16.21) gives

Ae = Abound

∫ ∞

−∞

∫ ∞

−∞
he(x, y)fXY (x, y) dxdy (16.22)

As in Chapter 9, the estimator for the area of the ellipse is

Âe = Abound

(
Ne

N

)
(16.23)

where N denotes the number of points generated within the bounding area, and Ne

denotes the number of points falling inside the ellipse.

Selecting Bounding Boxes for MC Simulations

One can show that the estimator defined by (16.23) is consistent and unbiased
provided the bounding area fully encloses the ellipse. This is illustrated in the
following example.

Example 16.1. As a simple example, N = 500 points in a square box, centered
on the origin, are generated. The area of the ellipse is estimated using (16.23) with

“TranterBook” — 2003/11/18 — 16:12 — page 648 — #666
�

�

�

�

�

�

�

�

648 Efficient Simulation Techniques Chapter 16

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

X

Y

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

Samples Processed

A
re

a
 E

s
ti

m
a

te

Figure 16.3 Area estimation process for N = 100.

three different box sizes; Abound = 4, 8, and 100. The upper half of Figure 16.3
shows the sample points generated in this simulation with Abound = 100 (10 units
on a side), and the lower half of Figure 16.3 shows the running estimate of the area,
along with the theoretically calculated value. It is clear from Figure 16.3 that we
need more than 500 samples in this simulation to generate an accurate estimate of
the ellipse area.

Next, let us examine the effect of changing the area of the bounding box. Setting
Aboound = 8 dramatically improves the convergence properties of the estimator. As
a result, estimated area is within a few percent of the correct value after only 100
samples. Based on this observation we are tempted to conclude that the smaller
the bounding box, the faster the estimator will converge. This is correct, to a
point. Note, however, that when Abound = 4, the estimator quickly converges, but
to an incorrect value. The estimator is biased, since the bounding box no longer
includes the entire ellipse. If the bounding box were to continue to shrink, the
rate of convergence would continue to improve at the cost of increased bias and
ultimately we would simply be finding the area of the bounding box and not the
area of the ellipse. The convergence properties for Abound = 100, 8, and 4 are
illustrated Figure 16.4.

“TranterBook” — 2003/11/18 — 16:12 — page 649 — #667
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 649

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

Num ber of Samples

A
re

a
 E

st
im

a
te

100

8

4

Figure 16.4 Demonstration of convergence for different bounding areas.

The effect of the bounding box size can be predicted from (16.23). The relative
precision of the ratio Ne/N increases with Ne. In other words, we wish to have as
many points as possible inside the ellipse, leading us to select small boxes. However,
the MC estimator will become biased if the box fails to fully enclose the entire
ellipse, leading to an optimal box size of Abound = 8, which is the smallest square
that encloses the ellipse. The challenge is to find estimators that both converge
quickly and are unbiased. �

Optimal Bounding Regions

We saw in the previous section that a two-dimensional MC simulation will generate
random points over some region of the (x, y) plane. To make the estimator converge
quickly, we would like the region used by the MC estimator to be as small as possible,
while still ensuring that the area of interest is fully enclosed. For simplicity, we
initially assume that the bounding region is a rectangle. However, there is nothing
in the development of the estimation algorithm that requires this. The algorithm
is applicable for any bounding region of known area. Consider, for example, a
bounding rectangle. The smallest rectangle that includes the ellipse has an area of

“TranterBook” — 2003/11/18 — 16:12 — page 650 — #668
�

�

�

�

�

�

�

�

650 Efficient Simulation Techniques Chapter 16

4
√

2. Since this is less than the area of the smallest bounding square, the estimator
based on a rectangular bounding region will converge faster than the estimator
based on a square bounding region.

We now extend the search for a superior bounding box to higher-order polygons.
We can find polygons that enclose the ellipse and have areas even smaller than
4
√

2. It will become increasingly difficult to calculate the area of the bounding
polygon analytically and will also become increasingly difficult to generate points
uniformly distributed within the polygon. There is typically a point of diminishing
returns, where the saving in computer execution time does not justify the additional
analytical difficulties. The ultimate bounding region is simply the ellipse itself. In
this case, Abound = Ae, and every randomly generated point will fall inside the
ellipse. Thus, Ne = N. Equation (16.23) indicates that such a simulation will be
extremely efficient and will produce the exact answer after a single random point
has been generated. Of course, in this limiting case there is no need to perform the
simulation, since Ae must to be determined analytically before the simulation code
can be developed. This, of course, eliminates the need for the simulation.

One of the dangers of making highly efficient simulations is that a small cal-
culation error may cause part of the ellipse to fall outside the bounding region,
generating a biased estimator. If one did not know the correct answer, it would be
impossible to detect the bias by simply observing the simulation results.

In summary, when using a uniform pdf in MC simulations, one should:

1. Determine the area of the bounding region analytically.

2. Prove analytically that the bounding region fully encloses the area of interest.

3. Find an algorithm for efficiently generating uniformly distributed points within
the bounding region.

4. Minimize the area of the bounding region, given constraints 1, 2, and 3.

5. Run the simulation long enough to observe a large number of samples in the
ellipse.

These concerns and requirements are quite easy to understand for this simple prob-
lem. They will reappear in the following sections in more complicated simulation
strategies, and the mathematical complexities will tend to make them more difficult
to visualize and appreciate.

Nonuniform pdfs and Weighting Functions

To this point we have considered only the basic Monte Carlo algorithm. Recall
from Chapter 9 that in Monte Carlo simulations we have two counters, a sample
counter and an event counter. The sample counter is incremented each time the
underlying random experiment, such as generating a sample and testing to see if it
falls in an area of interest, is performed. The event counter is incremented each time
an event of interest, such as a sample falling within a given area occurs. Counters
are usually incremented by adding the number one to the counter contents. We

“TranterBook” — 2003/11/18 — 16:12 — page 651 — #669
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 651

now show that, by adding a weight wi to the event counter rather than the number
one, the necessity for having a uniform distribution across the area of interest is
removed. The concept of incrementing by weights rather than by integers is central
to the application of importance sampling methodology to BER estimation.

Previously in (16.19) we multiplied the integrand by unity in the form Abound/
Abound to yield (16.20). A more general estimator is formed by multiplying the
integrand in (16.19) by a two-dimensional weighting function divided by itself,
w(x, y)/w(x, y). As before, we replace 1/w(x, y) by a pdf. Specifically

fXY (x, y) =
{

1/w(x, y),
arbitrary,

he(x, y) = 1
he(x, y) = 0

This gives

Ae =
∫ ∞

−∞

∫ ∞

−∞
he(x, y)w(x, y)fX,Y (x, y) dxdy (16.24)

This is the more general form of (16.22), where fXY (x, y) can be any pdf that is
nonzero within the ellipse. The area estimator corresponding to (16.24) is

Âe =
1
N

N∑
i=1

he(xi, yi)w(xi, yi) (16.25)

where random vectors (xi, yi) are IID (independent and identically distributed)
with pdf fXY (x, y). This is a generalization of the previous result, since for the
uniform case the reciprocal of the pdf, that is, the weighting function, was the
constant Abound for all points inside the ellipse. Equation (16.25) allows us to use
nearly any pdf in our simulation and includes the uniform pdf as a special case.
The variance and bias of the estimator will be a function of the pdf selected for the
simulation.

To avoid estimator bias, the uniform pdf had to include the entire ellipse. In
other words, the uniform pdf could not be zero over any finite area inside the
ellipse. This same condition applies here. One can show that the area estimator
will be unbiased provided fXY (x, y) > 0 for all points inside the ellipse. Since many
common pdfs are nonzero over the entire (x, y) plane, it is not difficult to generate
unbiased estimators. Minimizing the variance is a more difficult problem since the
convergence rate of the simulation is a rather complex function of the pdf. The
following example provides insight into this problem.

Example 16.2. In this example we restrict our attention to Gaussian pdfs, and
investigate the convergence rate for three different standard deviations, namely,
σ = 10, σ = 1, and σ = 0.2. Figure 16.5 shows the result with σ = 10. (Note the
original 5×5 box. The ellipse is obscured by the sampling points.) When σ is large,
the pdf inside the ellipse is small but nearly constant. Thus, relatively large weight
is assigned to each sample falling in the ellipse. Several large jumps followed by
intervals with a hyperbolic (1/N) decay rate can be seen. The area estimate slowly
converges to the correct value, in much the same way as a uniform pdf and a large
bounding area.

“TranterBook” — 2003/11/18 — 16:12 — page 652 — #670
�

�

�

�

�

�

�

�

652 Efficient Simulation Techniques Chapter 16

-15 -10 -5 0 5 10
-10

-5

0

5

10

15

x

y

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Samples Processed

A
re

a
 E

st
im

a
te

Figure 16.5 Estimator performance with Gaussian sampling and σ = 10.

We next consider the case in which σ = 1. For this case the standard deviation
is close to the dimensions of the ellipse and, as a result, the convergence rate is
much more rapid. A large number of samples fall inside the ellipse, and each is
assigned a relatively small weight. This case roughly corresponds to the uniform
pdf when the bounding area is just slightly larger than the ellipse. This result is
shown in Figure 16.6.

Perhaps the most interesting case is when σ is small compared to the dimensions
of the ellipse. Nearly all of the points in the sample simulation fall inside the ellipse,
most very close to the origin. However, at sample 153, the Gaussian random number
generator produces a sample near the edge of the ellipse. Because the pdf for this
sample is so small, it is assigned a phenomenally large weight, 1.3874 × 1016 in
this case, and the large weight causes the area estimate to suddenly increase by
many orders of magnitude. The resulting behavior is shown in Figure 16.7. We
call this point an extreme event because it is an extremely rare, but extremely
important, event. Since the estimate is unbiased, the extreme event is required to
offset the effect an initially low estimate. The only way that the estimator can be
unbiased is to run the simulation long enough to see many extreme events. This
will typically require far more processor time than any of the methods mentioned to

“TranterBook” — 2003/11/18 — 16:12 — page 653 — #671
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 653

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

x

y

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

Samples Processed

A
re

a
 E

s
ti

m
a

te

Figure 16.6 Estimator performance with Gaussian sampling and σ = 1.

date. This simulation is somewhat similar to the uniform case when the bounding
area was smaller than the ellipse. In the uniform sampling case a biased estimate
was produced. In this new case in which Gaussian sampling is used the estimator
is unbiased, but only because of the presence of extreme events. If one terminates
the simulation prior to the occurrence of the first extreme event or shortly after
the occurrence of an early (small N) extreme event, very misleading results will
be obtained from the simulation. Note that in all three cases the estimator Ne/N
considered here is unbiased. However, it may require an unreasonable amount of
computer time to average out the extreme events.

The effect of extreme event behavior is familiar to us from past studies. As
a simple example, assume that a digital communications system has a BER of
10−6. Also assume that an MC simulation is performed and the first 99 transmitted
symbols are received without error. The BER estimator P̂E = Ne/N will produce
zero for 1 ≤ N ≤ 99, a value that is clearly too small. If symbol number 100 in the
simulation is received in error (an extreme event), the value of P̂E jumps from zero
to 10−2, which is a value four orders of magnitude too large. If a long span of correct
decisions follows this error, P̂E will decrease as 1/N for N > 100. This behavior
will continue until the next error occurs. This is essentially the same behavior

“TranterBook” — 2003/11/18 — 16:12 — page 654 — #672
�

�

�

�

�

�

�

�

654 Efficient Simulation Techniques Chapter 16

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5

x

y

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15
x 10

15

Samples Processed

A
re

a
 E

s
ti

m
a

te

Figure 16.7 Estimator performance with Gaussian sampling and σ = 0.15.

observed in Figure 16.7, with the only difference being that the error in Figure 16.7
is multiplied by a large weight wi. Note that extreme events occurring early in a
simulation run have a more pronounced effect than extreme events occurring later
in a simulation run.

All three simulations used the same random number seed. All three estimators
are unbiased and consistent, but the mode of convergence varies widely. These
modes are summarized in Table 16.1. �

Table 16.1 Convergence Modes

Standard Deviation, σ Number of Samples
in Ellipse

Mode of
Convergence

Too small Nearly all Slow (exhibits
extreme events)

Appropriate Between 10% and 90% Rapid
Too large Very few Slow

“TranterBook” — 2003/11/18 — 16:12 — page 655 — #673
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 655

In this very simple example, there are a variety of methods for predicting the
mode of convergence. The scatter diagrams indicate when the pdf covers too little
of the ellipse or too much of the plane. Another clear indicator is the weighting
function. Ideally the weighting function should be small over the entire area of the
ellipse. If enough data is collected, the estimates and samples of the error functions
also clearly indicate the modes. Ideally, one would like to establish confidence
intervals for these estimators. This is difficult because the estimates no longer have
a binomial distribution. The Gaussian approximation can be used if a sufficiently
large number of symbols are processed. The number of samples required for the
approximation to be accurate will depend on the convergence mode. When the
convergence is rapid, only a few hundred samples may be necessary. The slowly
converging estimators are similar to the uniform case, and a few hundred points
inside the ellipse are necessary. In the last case, many hundred extreme events
would need to be observed before the Gaussian approximation could be applied.

16.3.2 Sensitivity to the pdf

Finding the area of an ellipse is a deterministic problem. The random variables used
in the MC simulation are strictly artificial, and do not model any physical device or
signal. Most physical communication systems are subject to random perturbations
and process random data. The first inclination is to develop a simulation that uses
the same noise source pdf as the physical system. However, as we will show, this is
not necessary. The simulation can use a biased noise source, having a different pdf
than the one used in the physical system. For example, suppose a physical system
generates a jointly Gaussian pair of random variables (x, y) having the pdf

fphy(x, y) =
1

2πσxσy

√
1 − r2

exp
[
− 1

2(1 − r2)

(
x2

σ2
x

− 2rxy

σxσy
+

x2

σ2
y

)]
(16.26)

which σx and σy are the standard deviations of X and Y , respectively, and r
represents the correlation coefficient. The probability that a pair of random variables
falls inside the ellipse described earlier is

Be =
∫ 1

y=−1

∫ √
2−2y2

x=−
√

2−2y2
fphy(x, y) dxdy

=
∫ ∞

−∞

∫ ∞

−∞
he(x, y)fphy(x, y) dxdy (16.27)

This expression is difficult to evaluate. A simple MC solution to this problem would
be to use the sum

B̂e =
1
N

N∑
i=1

he(xi, yi) =
Ne

N
(16.28)

where the random vectors (xi, yi) are IID with pdf fphy(x, y). Suppose we did not
have a random number generator that would produce fphy(x, y), but we did have

“TranterBook” — 2003/11/18 — 16:12 — page 656 — #674
�

�

�

�

�

�

�

�

656 Efficient Simulation Techniques Chapter 16

a random number generator to produce samples with the distribution fsim(x, y).
We can still solve the problem using Monte Carlo techniques. As in the previous
section, we begin by multiplying the integrand of (16.27) by unity in the form
of w(x, y)/w(x, y). Unlike the earlier development, the weighting function is now
defined as

w(x, y) =
{

fphy(x, y)/fsim(x, y),
arbitrary,

he(x, y) = 1
he(x, y) = 0 (16.29)

Substituting (16.29) into (16.27) gives

Be =
∫ ∞

−∞

∫ ∞

−∞
he(x, y)w(x, y)fsim(x, y) dxdy (16.30)

which can be approximated by the sum

B̂e =
1
N

N∑
i=1

he(xi, yi)w(x, y) (16.31)

The random vectors (xi, yi) are IID with pdf fsim(x, y). As with the previous prob-
lem, one must be concerned about the bias, consistency, and convergence mode of
this estimator. It is easy to show that when fsim(x, y) > 0 for all points where
he(x, y)fphy(x, y) > 0, the estimate will be unbiased. One can also show that this
ensures that the estimate is consistent. As in the simpler problem, the mode of con-
vergence may be slow, fast, or very slow because of the existence of exteme events.
The mode will depend on the weighting function w(x, y) = fphy(x, y)/fsim(x, y)
inside the ellipse. Convergence rates are summarized in Table 16.2.

Table 16.2 Summary of Convergence Rates

PDFs Inside Ellipse Weighting Function
Inside Ellipse

Rate of Convergence

fsim(x, y) = fphy(x, y) w(x, y) = 1 Same as simple MC
fsim(x, y) > fphy(x, y) w(x, y) < 1 Faster than simple MC
fsim(x, y) < fphy(x, y) w(x, y) > 1 Slower than simple MC

16.3.3 A Final Twist

Before applying the ellipse area estimation problem to a communications system,
we need to add one final twist. The channel generates noise, but this noise may
be altered by the receiver into a new distribution with an unknown pdf. We need
to find the probability that samples generated by this new pdf fall in the region of
interest. Working only with two-dimensional pdfs for now, assume that the channel
generates the physical noise, (x, y), with pdf fphy(x, y). These random variables are
fed to a receiver, which applies operator g(x, y) = (α, β). This new set of random

“TranterBook” — 2003/11/18 — 16:12 — page 657 — #675
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 657

variables has pdf frec(α, β). The probability the random variables (α, β) falls into
some region of interest, such as the ellipse, is

Be =
∫ ∞

−∞

∫ ∞

−∞
he(α, β)frec(α, β) dαdβ (16.32)

The complexity of g may make it impractical to calculate frec(α, β) from fphy(x, y).
The MC simulation of this problem will be

B̂e =
1
N

N∑
i=1

he(αi, βi) (16.33)

where (αi, βi) has pdf frec(α, β). It is possible to run this simulation even though
we do not know how to calculate frec(α, β). If we generate random vectors (xi,
yi) with pdf fphy(x, y) and then pass each sample vector through function g, the
resulting vector (αi, βi) will have pdf frec(α, β). A more descriptive way of writing
(16.33) is

B̂e =
1
N

N∑
i=1

he(g(xi, yi)) (16.34)

Suppose we now alter fphy(x, y) to fbias(x, y). This will cause frec(α, β) to change
to frec−bias(α, β). To remove the effects of this bias from the MC estimate, we need
to calculate a weighting function

w(αi, βi) =
frec(αi, βi)

frec−bias(αi, βi)
=

fphy(xi, yi)
fbias(xi, yi)

(16.35)

where (αi, βi) = g(xi, yi). This weighting function can be used to alter (16.34) to
create

B̂e =
1
N

N∑
i=1

w(g(xi, yi))he(g(xi, yi)) (16.36)

which can be shown to be a consistent and unbiased estimate.

16.3.4 The Communication Problem

The geometric problem of finding the area of an ellipse can be mapped to the
problem of finding the BER of a communication system. The two sets of random
variables (x, y) and (α, β) represent the channel noise waveform and the decision
metric, respectively. In the communications system problem, the channel noise often
has far more than two dimensions, even though the decision metric may have only
one dimension. These two pairs of random variables were related by operator g(·),
which represents the receiver. The ellipse of the geometric problem now corresponds
to the values of the decision metric which causes the receiver to have a demodulation
error. Finding the BER of the system is equivalent to finding the probability of a

“TranterBook” — 2003/11/18 — 16:12 — page 658 — #676
�

�

�

�

�

�

�

�

658 Efficient Simulation Techniques Chapter 16

randomly generated sample falling inside the ellipse in the geometric problem. We
will bias the channel noise in order to increase the frequency of error events, and
calculate a weighting function

wi =
fphy(ni)
fbias(ni)

(16.37)

The BER estimator is

P̂E =
1
N

N∑
i=1

w(ni)he(g(xi, yi)) (16.38)

In the geometric problem, we ensured an unbiased estimator by making sure that
the bounding region included the entire ellipse. The equivalent requirement here is
simply that all values of the decision metric can be generated. It is not difficult to
satisfy this requirement. The rate of convergence in the geometric problem depends
on how we select the variance of the noise source that establishes the sampling
points. If a large number of samples fall outside the ellipse, the convergence rate
is slow. If we generate almost no samples outside the ellipse, the convergence is
again slow because of extreme events. We ideally desire a mix of samples both
inside and outside the ellipse. In the communication system problem, we ideally
want a mix of decision metric values both in the error region and in the error-free
region. Too many samples in either region will cause the convergence rate to be
very slow. Figure 16.8 illustrates the system with the additional functions required
to implement importance sampling represented by heavy lines.

Data
Source Transmitter Channel Receiver Compare

Delay

di

�di

ei

Noise, Distortion, Interference, etc.

Biasing
Function

Weighting
Function

Added for
Importance
Sampling

wi

1

N
•∑ b g �PE

Figure 16.8 System simulation with importance sampling.

“TranterBook” — 2003/11/18 — 16:12 — page 659 — #677
�

�

�

�

�

�

�

�

Section 16.3. Importance Sampling 659

16.3.5 Conventional and Improved Importance Sampling

There are a variety of methods for biasing the noise when applying importance
sampling. The two the most common methods are called Conventional Importance
Sampling (CIS) and Improved Importance Sampling (IIS). In CIS one simply in-
creases the variance of the channel noise, which is equivalent to operating the system
at a lower signal-to-noise ratio (SNR). In IIS the mean of the noise is altered rather
than the variance. For a comparison of these two techniques and examples illustrat-
ing their application to communications systems, the interested student is referred
to the literature. (See the Further Reading section.)

Example 16.3. In this example we consider CIS applied to the differential QPSK
system previously considered in Chapter 10. The MATLAB script for running a
CIS simulation follows:

% File: c16 CISQPSK.m
Eb = 20:2:32; No = -50; % Eb and Noin dBm
ChannelAttenuation = 70; % channel attenuation in dB
EbNodB = (Eb-ChannelAttenuation)-No; % Eb/No in dB
EbNo = 10.(EbNodB./10); % Eb/No in linear units
BER T = 0.5*erfc(sqrt(EbNo)); % BER (theoretical)
N = ones(size(BER T))*2000; % set N=2000 for all runs
CISBias = 1+(EbNo/20); % set CIS bias
BER CIS = zeros(size(Eb)); % initialize BER vector
for k=1:length(Eb) % main loop starts here

BER CIS(k) = c16 CISQPSKrun(N(k),Eb(k),...
No,ChannelAttenuation,0,0,0,0,CISBias(k));

disp([‘Simulation ’,num2str(k*100/length(Eb)),‘% Complete’]);
end
semilogy(EbNodB,BER CIS,‘o’,EbNodB,2*BER T,‘-’)
xlabel(‘Eb/No (dB)’); ylabel(‘BER’); grid;
% End of script file.

This script sets the bias for the CIS simulation and then calls the function listed in
Appendix A. This function is nearly identical to the Monte Carlo simulation of the
QPSK system considered in Chapter 10. The only difference is that the channel
noise is biased by increasing the noise variance.

The BER estimator in the example is defined by (16.38). A sample output from
this simulation is shown in Figure 16.9. The circles in this figure represent the
CIS estimates of the BER, while the solid curve is the theoretical performance. At
first glance there appears to be some significant errors in the measurements at high
SNR. However, these results are based only on 1,000 demodulated symbols. Using
conventional MC simulations it would be impractical to measure any BER less than
approximately 10−3. However, from the results of the CIS simulation we are able
to get some idea of the BER for error rates approaching 10−8. �

“TranterBook” — 2003/11/18 — 16:12 — page 660 — #678
�

�

�

�

�

�

�

�

660 Efficient Simulation Techniques Chapter 16

0 2 4 6 8 10 12
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Eb/No (dB)

B
E

R

Figure 16.9 Sample CIS simulation result.

16.4 Summary

This chapter focused on alternatives to the Monte Carlo simulation method for the
determination of the BER in a digital communications system. The search for alter-
native simulation methodologies is motivated by the lengthy execution times often
encountered with Monte Carlo methods, especially when the BER is small. Three
techniques were briefly discussed. These were tail extrapolation, pdf estimation,
and importance sampling. The successful application of any of these techniques re-
quires considerable analytical skill. The material presented in this chapter should be
considered only a high-level overview and the student wishing to pursue an in-depth
understanding of these methods will wish to consult the literature.

16.5 Further Reading

The topics covered in this chapter are also covered in

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Press, 2000.

“TranterBook” — 2003/11/18 — 16:12 — page 661 — #679
�

�

�

�

�

�

�

�

Section 16.5. Further Reading 661

A very large number of papers have been written on the subject of importance
sampling. A partial reading list consists of the following:

P. Smith, M. Shafi, and G. Hongshen, “Quick Simulation: A Review of Importance
Sampling Techniques in Communications Systems,” IEEE Journal on Selected
Areas in Communications, Vol. 15, No. 4, May 1997, pp. 597–613.

M. C. Jeruchim, “Techniques for Estimating the Bit Error Rate in the Simula-
tion of Digital Communication Systems,” IEEE Journal on Selected Areas
Communications, Vol. 2, No. 1, January 1984, pp. 153–170.

R. J. Wolfe, M. C. Jeruchim, and P. M. Hahn, “On Optimum and Suboptimum
Biasing Procedures for Importance Sampling in Communication Simulation,”
IEEE Transactions on Communications, Vol. 38, No. 5, May 1990, pp. 639–
647.

K. S. Shanmugan and P. Balaban, “A Modified Monte Carlo Simulation Technique
for the Evaluation of Error Rate in Digital Communication Systems,” IEEE
Transactions on Communications, Vol. 28, No. 11, November 1980, pp.
1916–1924.

M. C. Jeruchim, “On the Application of Importance Sampling to the Simulation
of Digital Satellite Multihop Links,” IEEE Transactions on Communications,
Vol. 32, No. 10, October 1984, pp. 1088–1092.

B. R. Davis, “An Improved Importance Sampling Method for Digital Communica-
tion System Simulations,” IEEE Transactions on Communications, Vol. 34,
No. 7, July 1986, pp. 715–719.

P. M. Hahn and M. C. Jeruchim, “Development in the Theory and Application of
Importance Sampling,” IEEE Transactions on Communications, Vol. 35, No.
7, July 1987, pp. 706–714.

Q. Wang and V. Bhargava, “On the Application of Importance Sampling to
BER Estimation in the Simulation of Digital Communication Systems,” IEEE
Transactions on Communications, Vol. 35, No. 11, November 1987, pp. 1231–
1233.

D. Lu and K. Yao, “Improved Importance Sampling Technique for Efficient Sim-
ulation of Digital Communication Systems,” IEEE Journal on Selected Areas
in Communications, Vol. 6, No. 1, January 1988, pp. 67–75.

M. C. Jeruchim, P. M. Han, K. P. Smyntek, and R. T. Ray, “An Experimen-
tal Investigation of Conventional and Efficient Importance Sampling,” IEEE
Transactions on Communications, Vol. 37, No. 6, June 1989, pp. 578–587.

D. Remondo, R. Srinivasan, V. Nicola, and W. Van Etten, “Adaptive Importance
Sampling for Performance Evaluation and Parameter Optimization of Com-
munication Systems,” IEEE Transactions on Communications, Vol. 48, No.
4, April 2000, pp. 557–565.

“TranterBook” — 2003/11/18 — 16:12 — page 662 — #680
�

�

�

�

�

�

�

�

662 Efficient Simulation Techniques Chapter 16

J. Porath and T. Aulin, “Improved Technique for Quick Error Rate Estimation of
Multi-Dimensional Communication Schemes,” IEE Proceedings—Communica-
tions, Vol. 146, No. 6, December 1999, pp. 343–346.

16.6 References

1. S. B. Weinstein, “Estimation of Small Probabilities by Linearization of the
Tail of a Probability Distribution Function,” IEEE Transactions on Commu-
nications Technology, Vol. 19, No. 6, 1971, pp. 1149–1155.

2. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communi-
cation Systems, 2nd ed., New York: Kluwer Academic/Plenum Press, 2000.

3. K. S. Miller, Engineering Mathematics, New York: Dover Publications, 1956.

4. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation
and Data Analysis, New York: Wiley, 1988.

5. S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. 1: Estimation
Theory, Upper Saddle River, NJ: Prentice Hall, 1993.

6. J. D. Laster, J. H. Reed, and W. H. Tranter, “Bit Error Rate Estimators Using
Probability Density Function Estimators,” IEEE Transactions on Vehicular
Technology, Vol. 52, No. 1, January 2003, pp. 260–267.

16.7 Problems

16.1 Assume that the conditional error probability, conditioned on the transmission
of a binary 0, for a binary digital communications system can be expressed

PE|0 =
∫ ∞

0

v

σΓ(1/v)
√

8
exp

[
−
∣∣∣∣x − m

σ
√

2

∣∣∣∣v] dx

where we assume that m is negative. Show that PE|0 can be expresssed in
terms of a incomplete gamma function Γ(a, x) where

Γ(a, x) =
∫ ∞

x

ta−1 exp(−t) dt

By choosing m appropriately, and assuming that PE|0 = PE|0, plot the system
error probability for v = 1.9, 2, and 2.1. (Note: MATLAB contains a routine
for computing the incomplete gamma function.)

16.2 Using the recursion relationship for the Chebyshev-Hermite polynomials, eval-
uate Hk(y) for 2 ≤ k ≤ 6. Using these results determine the Gram-Charlier
series coefficients Ck for 0 ≤ k ≤ 6.

“TranterBook” — 2003/11/18 — 16:12 — page 663 — #681
�

�

�

�

�

�

�

�

Section 16.7. Problems 663

16.3 A three-dimensional surface is defined by the equation

z2 < −x2 − 2y2 + 16

find the volume enclosed by this surface using Monte Carlo simulation. For
each iteration of the MC simulation, generate three independent, identically
distributed, uniform random numbers, ranging from -10 to +10. How many
points did you need to generate before you became 90% confident that your
error was less than 1%?

16.4 Repeat Problem 16.3, but allow the x, y, and z points to cover different ranges.
How many points did you need to generate before you became 90% confident
that your error was less than 1%?

16.5 Repeat Problem 16.3, but use a three-dimensional, jointly Gaussian pdf for
x, y, and z. What are the optimal values for mean and variance for each of
the three marginal pdfs?

16.6 Suppose you wish to estimate the area of a two-dimensional ellipse, using
Monte Carlo simulation and a jointly Gaussian pdf. Would you always select
uncorrelated random variables, or would there be times when it would help
to have them correlated?

16.7 Water dripping from a faucet hits a the bottom of a sink with a jointly Gaus-
sian pdf (zero mean, standard deviation 0.1 in both directions, correlation
coefficient is zero). There is a circular drain in the sink, centered at the ori-
gin, of radius 0.1. Using Monte Carlo simulation, estimate what fraction of
the drops hit the drain.

16.8 Repeat Problem 16.7, but in the simulation use a jointly Gaussian pdf that
has a standard deviation of 0.2 in both directions. The physical problem has
not changed—you will be using a different pdf in the simulation than you
observe in the physical world.

16.9 Write a simulation that implements an MSK transmitter, AWGN channel, and
matched filter receiver. Perform a Monte Carlo simulation for this system to
determine the SNR required to achieve a BER of 10−2.

16.10 Repeat Problem 16.9, but use importance sampling. Bias the noise by altering
it’s variance. What is the optimal amount to alter the variance, and how much
execution time does this save you?

16.11 Repeat Problem 16.10, but bias the noise by adding a constant. What is the
best constant to add and how much simulation time does this save you?

16.12 Write a simulation that implements an OQPSK transmitter. Place a bandpass
filter on the transmitter output to limit the transmitted signal to the main
lobe. Create two adjacent channels, which are also OQPSK transmitters
limited to the main lobe. Place the adjacent channels as close as possible to

“TranterBook” — 2003/11/18 — 16:12 — page 664 — #682
�

�

�

�

�

�

�

�

664 Efficient Simulation Techniques Chapter 16

the desired channel, without allowing the spectra to overlap. Pass the signals
through an AWGN channel, and a matched filter receiver. If the interfering
signals are not present, set the BER of the system to 10−3. Use MC simulation
to estimate the BER when the interfering signals are equal in power to the
desired signal.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 665 --- #683
�

�

�

�

�

�

�

�

Section 16.8. Appendix A: MATLAB Code for Example 16.3 665

16.8 Appendix A: MATLAB Code for Example 16.3

% file: c16_CISQPSKrun.m
function BER_CIS=CISQPSKrun(N,Eb,No,ChanAtt,...

TimingBias,TimingJitter,PhaseBias,PhaseJitter,CISBias)
fs = 1e+6; % sampling rate (samples/second)
SymRate = 1e+5; % symbol rate (symbols/second)
Ts = 1/fs; % sampling period
TSym = 1/SymRate; % symbol period
SampPerSym=fs/SymRate; % samples per symbol
SymToSend = N; % symbols to be transmitted
ChanBW = 4.99e+5; % bandwidth of channel (Hz)
CISWeightIntegrator = 1; % importance sampling weight
CISWeightIntegratorOld = 1; % importance sampling weight
MeanCarrierPhaseError = PhaseBias; % mean of carrier phase
StdCarrierPhaseError = PhaseJitter; % std dev of phase error
MeanSymbolSyncError = TimingBias; % mean symbol sync error
StdSymbolSyncError = TimingJitter; % std dev symbol sync error
ChanGain = 10^(-ChanAtt/20); % channel gain (linear units)
TxBitClock = Ts/2; % Tx clock period
RxBitClock = Ts/2; % Rx clock period
TxSymSent = 1; RxSymDemod = 0; % Tx and Rx symbol counters
%
RxNoiseStd = sqrt((10^((No-30)/10))*(fs/2)); % std dev of noise
TxSigAmp = sqrt(10^((Eb-30)/10)*SymRate); % signal amplitude
probe1 = zeros((SymToSend+1)*SampPerSym,1); % probe 1 memory
probe2 = zeros((SymToSend+1)*SampPerSym,1); % probe 2 memory
probe1counter = 1; probe2counter = 1; % initialize probes
%
% Buffers that contain the transmitted and received data.
%
[unused,SourceBitsI] = random_binary(SymToSend,1);
[unused,SourceBitsQ] = random_binary(SymToSend,1);
%
% Differentially encode the transmitted data.
%
TxBitsI = SourceBitsI*0; TxBitsQ = SourceBitsQ*0;
for k=2:length(TxBitsI)

TxBitsI(k) = or(and(not(xor(SourceBitsI(k),SourceBitsQ(k))),...
xor(SourceBitsI(k),TxBitsI(k-1))), ...
and(xor(SourceBitsI(k),SourceBitsQ(k)),...
xor(SourceBitsQ(k),TxBitsQ(k-1))));

TxBitsQ(k) = or(and(not(xor(SourceBitsI(k),SourceBitsQ(k))),...
xor(SourceBitsQ(k),TxBitsQ(k-1))), ...
and(xor(SourceBitsI(k),SourceBitsQ(k)),...

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 666 --- #684
�

�

�

�

�

�

�

�

666 Efficient Simulation Techniques Chapter 16

xor(SourceBitsI(k),TxBitsI(k-1))));
end;
%
% Make a complex data stream of the I and Q bits.
%
TxBits = ((TxBitsI*2)-1)+(sqrt(-1)*((TxBitsQ*2)-1));
%
% Initialize transmitter and the receiver integrate and dump filter.
%
RxIntegrator = 0; TxBitClock = 2*TSym;
%
% Design the channel filter and state array if needed.
%
[b,a] = butter(2,ChanBW/(fs/2));
b = [1]; a = [1]; % bypass filter
[junk,FilterState] = filter(b,a,0);
%
% Loop once for each sample.
%
while TxSymSent < SymToSend

%
% Update transmitter clock. Get new data bits if required.
%
TxBitClock = TxBitClock+Ts;
if TxBitClock > TSym

TxSymSent = TxSymSent+1; % get new bit
%
% We don’t want the clock to increase to infinity so
% subtract off an integer number of Tb seconds.
%
TxBitClock = mod(TxBitClock,TSym);
%
% Get the new bit and appropriately.
%
TxOutput = TxBits(TxSymSent)*TxSigAmp;

end
[Rx,FilterState] = filter(b,a,TxOutput,FilterState);
%
% Add white Gaussian noise to the signal.
% First create unbiased (Monte Carlo) noise and then bias.
%
UnbiasedNoise = RxNoiseStd*(randn(1,1)+sqrt(-1)*randn(1,1));
BiasedNoise = CISBias*UnbiasedNoise;
%
% Calculate the CIS weight for this particular noise sample.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 667 --- #685
�

�

�

�

�

�

�

�

Section 16.8. Appendix A: MATLAB Code for Example 16.3 667

%
CISWeight = cgpdf(BiasedNoise,0,RxNoiseStd)./...

cgpdf(BiasedNoise,0,CISBias*RxNoiseStd);
%
% Since we are using white noise, the total CIS weight will be
% the product of the individuals CIS weights.
%
CISWeightIntegrator = CISWeightIntegrator*CISWeight;
Rx = (ChanGain*Rx)+BiasedNoise;
%
% Phase rotation due to receiver carrier synchronization error.
%
PhaseRotation = exp(sqrt(-1)*2*pi*(MeanCarrierPhaseError+...

(randn(1,1)*StdCarrierPhaseError))/360);
Rx = Rx*PhaseRotation;
probe1(probe1counter) = Rx; probe1counter = probe1counter+1;
%
% Update the Integrate and Dump Filter at the receiver.
%
RxIntegrator = RxIntegrator+Rx;
probe2(probe2counter) = RxIntegrator;...

probe2counter=probe2counter+1;
%
% Update the receiver clock, to see if it is time to
% sample and dump the integrator.
%
RxBitClock = RxBitClock+Ts;
RxTSym = TSym*(1+MeanSymbolSyncError+...

(StdSymbolSyncError*randn(1,1)));
if RxBitClock > RxTSym

RxSymDemod = RxSymDemod+1;
RxBitsI(RxSymDemod) = round(sign(real(RxIntegrator))+1)/2;
RxBitsQ(RxSymDemod) = round(sign(imag(RxIntegrator))+1)/2;
RxBitsCISWeight(RxSymDemod) = ...

CISWeightIntegrator*CISWeightIntegratorOld;
%
% Reset clock and dump the integrator.
%
RxBitClock = RxBitClock-TSym; RxIntegrator = 0;
CISWeightIntegratorOld = CISWeightIntegrator;
CISWeightIntegrator = 1;

end
end
%
% Implement differential decoder.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 668 --- #686
�

�

�

�

�

�

�

�

668 Efficient Simulation Techniques Chapter 16

%
SinkBitsI = SourceBitsI*0;
SinkBitsQ = SourceBitsQ*0;
for k=2:RxSymDemod

SinkBitsI(k) = or(and(not(xor(RxBitsI(k),RxBitsQ(k))),...
xor(RxBitsI(k),RxBitsI(k-1))),...
and(xor(RxBitsI(k),RxBitsQ(k)),...
xor(RxBitsQ(k),RxBitsQ(k-1))));

SinkBitsQ(k) = or(and(not(xor(RxBitsI(k),RxBitsQ(k))),...
xor(RxBitsQ(k),RxBitsQ(k-1))),...
and(xor(RxBitsI(k),RxBitsQ(k)),...
xor(RxBitsI(k),RxBitsI(k-1))));

end;
%
% Look for best time delay between input and output, 100 bits.
%
[C,Lags] = vxcorr(SourceBitsI(10:110),SinkBitsI(10:110));
[MaxC,LocMaxC] = max(C);
BestLag = Lags(LocMaxC);
%
% Adjust time delay to match best lag.
%
if BestLag > 0

SourceBitsI = SourceBitsI(BestLag+1:length(SourceBitsI));
SourceBitsQ = SourceBitsQ(BestLag+1:length(SourceBitsQ));
RxBitsCISWeight = ...

RxBitsCISWeight(BestLag+1:length(RxBitsCISWeight));
elseif BestLag < 0

SinkBitsI = SinkBitsI(-BestLag+1:length(SinkBitsI));
SinkBitsQ = SinkBitsQ(-BestLag+1:length(SinkBitsQ));
RxBitsCISWeight = ...

RxBitsCISWeight(-BestLag+1:length(RxBitsCISWeight));
end
%
% Make all arrays the same length.
%
TotalBits = min(length(SourceBitsI),length(SinkBitsI));
TotalBits = TotalBits-20;
SourceBitsI = SourceBitsI(10:TotalBits);
SourceBitsQ = SourceBitsQ(10:TotalBits);
SinkBitsI = SinkBitsI(10:TotalBits);
SinkBitsQ = SinkBitsQ(10:TotalBits);
RxBitsCISWeight = RxBitsCISWeight(10:TotalBits);
%
% Find the number error events and the BER.

“TranterBook” — 2003/11/18 — 16:12 — page 669 — #687
�

�

�

�

�

�

�

�

Section 16.8. Appendix A: MATLAB Code for Example 16.3 669

%
IErrors = SourceBitsI ^= SinkBitsI;
QErrors = SourceBitsQ ^= SinkBitsQ;
BER_CIS = ...

sum(IErrors.*RxBitsCISWeight)+sum(QErrors.*RxBitsCISWeight);
BER_CIS = BER_CIS/(2*length(SourceBitsI));
% End of function file.

16.8.1 Supporting Routines

The program random binary.m is given in Chapter 10, Appendix A. The program
vxcorr.m is given in Chapter 10, Appendix B.

cgpdf.m

function value = cgpdf(x,mean,sigma)
variance=sigma.^2;
value=(exp((((real(x)-mean).^2)+((imag(x)-mean).^2))/...

(-2*variance)))/(2*pi*variance);
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 670 — #688
�

�

�

�

�

�

�

�

“TranterBook” — 2003/11/18 — 16:12 — page 671 — #689
�

�

�

�

�

�

�

�

Chapter 17

CASE STUDY: SIMULATION
OF A CELLULAR
RADIO SYSTEM

17.1 Introduction

A wide variety of wireless communication systems have been developed to provide
access to the communications infrastructure for mobile or fixed users in a myr-
iad of operating environments. Most of today’s wireless systems are based on the
cellular radio concept. Cellular communication systems allow a large number of
mobile users to seamlessly and simultaneously communicate to wireless modems
at fixed base stations using a limited amount of radio frequency (RF) spectrum.
The RF transmissions received at the base stations from each mobile are translated
to baseband, or to a wideband microwave link, and relayed to mobile switching
centers (MSCs), which connect the mobile transmissions with the Public Switched
Telephone Network (PSTN). Similarly, communications from the PSTN are sent
to the base station, where they are transmitted to the mobile. Cellular systems
employ either frequency division multiple access (FDMA), time division multiple
access (TDMA), code division multiple access (CDMA), or spatial division multiple
access (SDMA) [1, 2].

671

“TranterBook” — 2003/11/18 — 16:12 — page 672 — #690
�

�

�

�

�

�

�

�

672 Case Study: Simulation of a Cellular Radio System Chapter 17

Wireless communication links experience hostile physical channel characteris-
tics, such as time-varying multipath and shadowing due to large objects in the
propagation path. In addition, the performance of wireless cellular systems tends
to be limited by interference from other users, and for that reason, it is important
to have accurate techniques for modeling interference. These complex channel con-
ditions are difficult to describe with a simple analytical model, although several
models do provide analytical tractability with reasonable agreement to measured
channel data [3, 4]. However, even when the channel is modeled in an analytically
elegant manner, in the vast majority of situations it is still difficult or impossible
to construct analytical solutions for link performance when error control coding,
equalization, diversity, and network models are factored into the link model. Simu-
lation approaches, therefore, are usually required when analyzing the performance
of cellular communication links.

Like wireless links, the system performance of a cellular radio system is most ef-
fectively modeled using simulation, due to the difficulty in modeling a large number
of random events over time and space. These random events, such as the location
of users, the number of simultaneous users in the system, the propagation condi-
tions, interference and power level settings of each user, and the traffic demands
of each user, combine together to impact the overall performance seen by a typical
user in the cellular system. The aforementioned variables are just a small sampling
of the many key physical mechanisms that dictate the instantaneous performance
of a particular user at any time within the system. The term cellular radio sys-
tem, therefore, refers to the entire population of mobile users and base stations
throughout the geographic service area, as opposed to a single link that connects a
single mobile user to a single base station. To design for a particular system-level
performance, such as the likelihood of a particular user having acceptable service
throughout the system, it is necessary to consider the complexity of multiple users
that are simultaneously using the system throughout the coverage area. Thus, sim-
ulation is needed to consider the multi-user effects upon any of the individual links
between the mobile and the base station.

The link performance is a small-scale phenomenon, which deals with the instan-
taneous changes in the channel over a small local area, or small time duration, over
which the average received power is assumed constant [1]. Such assumptions are
sensible in the design of error control codes, equalizers, and other components that
serve to mitigate the transient effects created by the channel. However, in order to
determine the overall system performance of a large number of users spread over a
wide geographic area, it is necessary to incorporate large-scale effects such as the
statistical behavior of interference and signal levels experienced by individual users
over large distances, while ignoring the transient channel characteristics. One may
think of link-level simulation as being a vernier adjustment on the performance of
a communication system, and the system-level simulation as being a coarse, yet
important, approximation of the overall level of quality that any user could expect
at any time.

Cellular systems achieve high capacity (e.g., serve a large number of users) by al-
lowing the mobile stations to share, or reuse a communication channel in different

“TranterBook” — 2003/11/18 — 16:12 — page 673 — #691
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 673

regions of the geographic service area. Channel reuse leads to co-channel inter-
ference among users sharing the same channel, which is recognized as one of the
major limiting factors of performance and capacity of a cellular system. An appro-
priate understanding of the effects of co-channel interference on the capacity and
performance is therefore required when deploying cellular systems, or when ana-
lyzing and designing system methodologies that mitigate the undesired effects of
co-channel interference. These effects are strongly dependent on system aspects of
the communication system, such as the number of users sharing the channel and
their locations. Other aspects, more related to the propagation channel, such as
path loss, shadow fading (or shadowing), and antenna radiation patterns are also
important in the context of system performance, since these effects also vary with
the locations of particular users. In this chapter, we will discuss the application of
system-level simulation in the analysis of the performance of a cellular communica-
tion system under the effects of co-channel interference. We will analyze a simple
multiple-user cellular system, including the antenna and propagation effects of a
typical system. Despite the simplicity of the example system considered in this
chapter, the analysis presented can easily be extended to include other features of
a cellular system.

17.2 Cellular Radio System

17.2.1 System-Level Description

Cellular systems provide wireless coverage over a geographic service area by divid-
ing the geographic area into segments called cells as shown in Figure 17.1. The
available frequency spectrum is also divided into a number of channels with a group
of channels assigned to each cell. Base stations located in each cell are equipped
with wireless modems that can communicate with mobile users. Radio frequency
channels used in the transmission direction from the base station to the mobile are
referred to as forward channels, while channels used in the direction from the mo-
bile to the base station are referred to as reverse channels. The forward and reverse

Base station

MSC PSTN

RF or
baseband
backhaul

Reverse channel

Forward
channel

Mobile

Cell

Figure 17.1 Basic architecture of a cellular communications system.

“TranterBook” — 2003/11/18 — 16:12 — page 674 — #692
�

�

�

�

�

�

�

�

674 Case Study: Simulation of a Cellular Radio System Chapter 17

channels together identify a duplex cellular channel. When frequency division duplex
(FDD) is used, the forward and reverse channels are split in frequency. Alterna-
tively, when time division duplex (TDD) is used, the forward and reverse channels
are on the same frequency, but use different time slots for transmission.

High-capacity cellular systems employ frequency reuse among cells. This re-
quires that co-channel cells (cells sharing the same frequency) are sufficiently far
apart from each other to mitigate co-channel interference. Channel reuse is imple-
mented by covering the geographic service area with clusters of N cells, as shown
in Figure 17.2, where N is known as the cluster size.

The RF spectrum available for the geographic service area is assigned to each
cluster, such that cells within a cluster do not share any channel [1]. If M channels
make up the entire spectrum available for the service area, and if the distribution of
users is uniform over the service area, then each cell is assigned M/N channels. As
the clusters are replicated over the service area, the reuse of channels leads to tiers of
co-channel cells, and co-channel interference will result from the propagation of RF
energy between co-channel base stations and mobile users. Co-channel interference
in a cellular system occurs when, for example, a mobile simultaneously receives
signals from the base station in its own cell, as well as from co-channel base stations
in nearby cells from adjacent tiers. In this instance, one co-channel forward link
(base station to mobile transmission) is the desired signal, and the other co-channel
signals received by the mobile form the total co-channel interference at the receiver.
The power level of the co-channel interference is closely related to the separation
distances among co-channel cells. If we model the cells with a hexagonal shape, as

First tier of
co-channel

cells

Second tier of
co-channel

cells

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

C

B
A

A
B

C

Cluster size N=3

Reuse
distance D3

Cells labeled
“A” share the
same channels

Figure 17.2 Cell clustering: Depiction of a three-cell reuse pattern.

“TranterBook” — 2003/11/18 — 16:12 — page 675 — #693
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 675

in Figure 17.2, the minimum distance between the center of two co-channel cells,
called the reuse distance DN , is

DN =
√

3NR (17.1)

where R is the maximum radius of the cell (the hexagon is inscribed within the
radius). Therefore, we can immediately see from Figure 17.2 that a small cluster
size (small reuse distance DN), leads to high interference among co-channel cells.

The level of co-channel interference received within a given cell is also dependent
on the number of active co-channel cells at any instant of time. As mentioned before,
co-channel cells are grouped into tiers with respect to a particular cell of interest.
The number of co-channel cells in a given tier depends on the tier order and the
geometry adopted to represent the shape of a cell (e.g., the coverage area of an
individual base station). For the classic hexagonal shape, the closest co-channel
cells are located in the first tier and there are six co-channel cells. The second
tier consists of 12 co-channel cells, the third, 18, and so on. The total co-channel
interference is, therefore, the sum of the co-channel interference signals transmitted
from all co-channel cells of all tiers. However, co-channel cells belonging to the first
tier have a stronger influence on the total interference, since they are closer to the
cell where the interference is measured.

Co-channel interference is recognized as one of the major factors that limits
the capacity and link quality of a wireless communications system and plays an
important role in the tradeoff between system capacity (large-scale system issue)
and link quality (small-scale issue). For example, one approach for achieving high
capacity (large number of users), without increasing the bandwidth of the RF spec-
trum allocated to the system, is to reduce the channel reuse distance by reducing
the cluster size N of a cellular system [1]. However, reduction in the cluster size
increases co-channel interference, which degrades the link quality.

The level of interference within a cellular system at any time is random and must
be simulated by modeling both the RF propagation environment between cells and
the position location of the mobile users. In addition, the traffic statistics of each
user and the type of channel allocation scheme at the base stations determine the
instantaneous interference level and the capacity of the system.

The effects of co-channel interference can be estimated by the signal-to-
interference ratio (SIR) of the communication link, defined as the ratio of the
power of the desired signal S, to the power of the total interference signal, I. Since
both power levels S and I are random variables due to RF propagation effects, user
mobility and traffic variation, the SIR is also a random variable. Consequently, the
severity of the effects of co-channel interference on system performance is frequently
analyzed in terms of the system outage probability, defined in this particular case
as the probability that SIR is below a given threshold SIR0. This is

Poutage = Pr[SIR < SIR0] =
∫ SIR0

0

pSIR(x) dx (17.2)

where pSIR(x) is the probability density function (pdf) of the SIR. Note the dis-
tinction between the definition of a link outage probability, that classifies an outage

“TranterBook” — 2003/11/18 — 16:12 — page 676 — #694
�

�

�

�

�

�

�

�

676 Case Study: Simulation of a Cellular Radio System Chapter 17

based on a particular bit error rate (BER) or Eb/N0 threshold for acceptable voice
performance, and the system outage probability that considers a particular SIR
threshold for acceptable mobile performance of a typical user.

Analytical approaches for estimating the outage probability in a cellular system,
as discussed in Chapter 11, require tractable models for the RF propagation effects,
user mobility, and traffic variation, in order to obtain an expression for pSIR(x).
Unfortunately, it is very difficult to use analytical models for these effects, due to
their complex relationship to the received signal level. Therefore, the estimation of
the outage probability in a cellular system usually relies on simulation, which offers
flexibility in the analysis. In this chapter, we present a simple example of a simula-
tion of a cellular communication system, with the emphasis on the system aspects
of the communication system, including multi-user performance, traffic engineering,
and channel reuse. In order to conduct a system-level simulation, a number of as-
pects of the individual communication links must be considered. These include the
channel model, the antenna radiation pattern, and the relationship between Eb/N0

(e.g., the SIR) and the acceptable performance.
In order to simulate a cellular system, we must mathematically model the in-

dividual components of the system. In the next section, the models of the system
components to be simulated will be discussed.

17.2.2 Modeling a Cellular Communication System

This section treats several aspects of a cellular communication system that will be
useful when developing a simulation model for a system to be investigated.

Trunking and Grade of Service

We begin by discussing some important issues related to the capability of a cellular
radio system to provide service to a large number of users. Like fixed telephone
systems, cellular radio systems rely on the trunking concept to provide communi-
cation service for a large number of users, employing a limited resource that, in
the cellular communications case, is the available RF spectrum or the number of
available channels. The use of trunking techniques is possible due to the statistical
behavior of users, described mainly by the following two aspects:

1. A single user accesses the system, that is, requests a call, on a random ba-
sis during a period of time, and the interval τ between two consecutive call
requests from the same user, follows an exponential distribution. Thus the
underlying pdf is

pτ (τ) = λu exp (−λuτ) (17.3)

where λu is the average number of call requests per unit time (calls per time)
made by a single user. If we consider a population of U users, the distribution
of the time interval between two consecutive call requests, made by any two
users, is also exponential. The average number of call requests is λ = Uλu.

“TranterBook” — 2003/11/18 — 16:12 — page 677 — #695
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 677

2. The call duration is also a random variable that follows an exponential distri-
bution, such that short calls are more likely to occur than long calls. Denoting
the duration of a call by s, the pdf of s is

fS(s) = µ exp (−µs) (17.4)

where 1/µ = H is the average call duration (units of time).

Based on this statistical behavior, a large number of users can share a relatively
small number of channels in a pool of channels. For each base station in a cellular
system, a pool of C trunked channels is made available to all users that are within
the coverage area of the base station. Since a single user does not require access
to the cellular system at all times, channels can be allocated to users on a per call
basis. Once the call is terminated, the channel returns to the pool of available
channels. However, one can intuitively expect that a single user may not always
be allowed to establish radio communication with its serving base station because
of a lack of available radio channels at the base station. In this case, all channels
would be busy serving calls placed by other users, and the call request is blocked.
Based on the statistical behavior of the users, the number of channels available
in the pool, and certain characteristics of the trunked system, we can determine
the probability that a user will have its call request blocked due to a lack of idle
channels. This probability, usually called blocking probability, is a measure of the
“grade of service” of a trunked system. The statistical behavior of a single user
can be summarized by the traffic Au generated by that user, given in Erlangs and
defined as

Au = λu H (17.5)

For a system containing U users, the total offered traffic in Erlangs is

A = UAu = λ H (17.6)

An important characteristic of the trunked system that dictates the quality of the
service offered to the users concerns how the system handles blocked calls. There
are two basic strategies. In the first strategy, call requests that do not find available
free channels are blocked and cleared. In this case the trunked system is referred to
as blocked calls cleared. In the second strategy, blocked calls are held in a queue and
served as soon as a channel becomes available. Trunked systems using this strategy
are called blocked calls delayed. We will focus our attention on the blocked calls
cleared trunked system, since this type of system is more often found in practice.

We therefore assume that blocked calls are cleared. In addition, the following
assumptions are made:

• Call arrivals are memoryless. In other words, any user, including the users
that had previous calls blocked, can request a call at any time.

“TranterBook” — 2003/11/18 — 16:12 — page 678 — #696
�

�

�

�

�

�

�

�

678 Case Study: Simulation of a Cellular Radio System Chapter 17

• There are an infinite number of users.

• There are C trunked channels available in the pool.

Under these conditions the probability PB that a call is blocked is given by the
Erlang B formula. The Erlang B formula relates the number of trunked channels
C, the blocking probability PB and traffic A, which can be either the offered traffic
or the carried traffic. In the former case, PB is the blocking probability experienced
by the population of users that generates the traffic A, offered to a trunked system
with C channels. In the later case, A is the maximum carried traffic by a trunked
system containing C channels at blocking probability PB . The carried traffic by
a trunked system is also a measure of the capacity of the system. The Erlang B
formula is

PB =
AC/C!
C∑

k=0

Ak/k!
(17.7)

Given the offered traffic and the number of trunked channels, the blocking proba-
bility can be computed using the following MATLAB code

function erb = erlang_b(A,c)
% A = offered traffic in Erlangs.
% c = number of trunked channels.
num = A^c;
sum = 0;
for k=0:c

kfact = prod(1:k);
term = (A^k)/kfact;
sum = sum + term;

end
cfact = prod(1:c);
den = cfact*sum;
erb = num/den;

Figure 17.3 shows the Erlang B chart with the number of trunked channels as a
parameter. The number of trunked channels, C, is given across the top of the
chart. The complete MATLAB program used to compute Figure 17.3 is given in
Appendix A. The code listed in Appendix A makes repeated calls to the previously
listed function erlang b(A,c). Given the Erlang B formula, the effects of the
cluster size of a cellular radio system on the capacity of the system, in terms of the
number of users, can be evaluated.

Example 17.1. Consider a cellular system where 400 pairs of forward and reverse
channels are available for the entire system. Each cell has a radius of 5 km, and
the base stations are equipped with omnidirectional antennas that are assumed to
be located at the center of each cell. Assume that each user generates a traffic of
0.02 Erlang and that a cluster size N = 7 is used. Assuming that the distribution

“TranterBook” — 2003/11/18 — 16:12 — page 679 — #697
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 679

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

Offered traffic (Erlangs)

B
lo

ck
in

g
pr

ob
ab

ili
ty

C=1 C=2 3 4 5 1012 20 30 50 100

Figure 17.3 Blocking probability given by the Erlang B formula.

of users is uniform over the service area, each cell is allocated NC = 400/7 ≈ 57
channels. If we further assume that blocked calls are cleared and that a blocking
probability PB = 0.02 is acceptable, the maximum traffic AC carried by each cell
is given by Erlang B formula. The result is

AC = 46.8 Erlangs per cell

The number of users supported per cell is easily computed. Since Au = 0.02 Erlang
per user, the number of users supported per cell is

U =
AC

Au
= 2340 users per cell

Now reduce the cluster size to N = 3 without changing the coverage area of each
cell. Each cell will now be allocated NC = 400/3 = 133 channels at PB = 0.02.
This gives

AC = 120.1 Erlangs per cell

for the maximum carried traffic per cell. This gives

U =
AC

Au
=

120.1
0.02

= 6005 users per cell

“TranterBook” — 2003/11/18 — 16:12 — page 680 — #698
�

�

�

�

�

�

�

�

680 Case Study: Simulation of a Cellular Radio System Chapter 17

We see that we achieve higher capacity by reducing the cluster size due to increased
reuse and trunking efficiency. However, co-channel cells are closer to each other in
cluster size N = 3 than in cluster size N = 7. Using (17.1) we have

D3 = 15 km

for N = 3 and

D7 = 22.9 km

for N = 7. We intuitively see that the level of interference will be higher in cluster
size N = 3 than in cluster size N = 7. Therefore, cluster size N = 3 will present a
lower link quality. �

Channel Model

When analyzing the performance of a cellular system, it is very important to ac-
curately model the effects of the radio propagation on the received signal, as those
effects are very often among the major sources of system performance degrada-
tion. As discussed in Chapter 14, the statistical characterization of the received
signals (both desired and interference signals) involves mainly two propagation ef-
fects: small-scale fading, induced by multipath over a local area, and shadowing
(large-scale fading), induced by random attenuators of the local mean signal, such
as trees, buildings, and terrain [1]. Measurements have shown that the local mean
signal level in a wireless communications system [5, 6] can be accurately modeled as
a lognormal random variable. When expressed in decibel units, the local mean sig-
nal level follows a normal variation and is characterized by an area mean value and
standard deviation, both in dB. The area mean value is a function of the transmitter
to receiver separation (T-R) distance, transmitter power levels, and antenna gains,
while the shadowing standard deviation depends on the physical environment. In
the general case of system design or simulation, the effects of small-scale fading and
shadowing must be taken into consideration, although in some cases, shadowing of
the desired and interference signals is the main source of performance degradation.
For example, spatial diversity, spread spectrum, and coding and interleaving tech-
niques have been extensively employed to combat the effects of small-scale fading
[1], such that received signals are mainly dependent on large-scale channel varia-
tions. In the analysis presented here, we assume, for simplicity, that the small-scale
fading effects are averaged out and only shadowing and path loss are considered.
However, the effects of small-scale fading can be easily incorporated in the analysis.

Assuming that the effects of small-scale fading are averaged out, the local mean
power level of the desired or individual interference signal, denoted generically here
by ρ, undergoes lognormal variation. In dBW, the local mean power level can be
modeled as [1]

X = 10 log10 ρ = mX + χ dBW (17.8)

where mX is the area mean power level in dBW (or, alternatively, average large-scale
propagation path loss in dB) and χ is a zero-mean normally distributed random

“TranterBook” — 2003/11/18 — 16:12 — page 681 — #699
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 681

variable in dB with standard deviation σX , also in dB, due to the shadowing caused
by large obstacles [1]. The area mean power mX is usually modeled as a function
of the T-R separation d, path loss exponent γ, transmitted power PT in dBW, and
transmitter and receiver antenna gains GT and GR, both in dB. Specifically

mX = PT + GT (θT , φT) + GR(θR, φR) − 10Kγ log10 d dBW (17.9)

The constant K in (17.9) comprises all terms that do not change in the model. The
angles θT and φT are the elevation and azimuth angles of departure of the signal
transmitted toward the receiver, while θR and φR are the elevation and azimuth
angles of arrival of the signals impinging on the receiving antenna. Angles θT , φT ,
θR, and φR depend on the relative locations of the base station and the mobile
antennas.

Example 17.2. Consider that a mobile station is receiving a signal from a base
station as depicted in Figure 17.4(a). The T-R separation is d = 1,200 meters. Let
us assume that the communication link between the base station and mobile occurs
through line of sight. Assuming the coordinate systems shown in the figure and

 y
z

x y
z

x
hMS = 1.5 m

Base Station

Mobile

hBS = 30 m

(a)

z

x

Base Station Mobile

d = 1200 m

(c)

z

x
Tθ

Rθ y

x

 y

x

1000 m

T-R separation
d = 1200 m

Base
Station

Mobile

(b)

663.3 m RφTφ

Figure 17.4 Angles of departure and arrival.

“TranterBook” — 2003/11/18 — 16:12 — page 682 — #700
�

�

�

�

�

�

�

�

682 Case Study: Simulation of a Cellular Radio System Chapter 17

using simple geometry, we can determine the azimuth angle of the signal transmitted
by the base station [see Figure 17.4(b)]:

φT = cos
(

663.3
1200

)
= 56.4◦

Likewise, the azimuth angle of the signal impinging on the mobile antenna, accord-
ing to the coordinate system adopted, is

φR = 236.4◦

Suppose that the base station antenna is 30 meters high, and that the user holds
the mobile telephone 1.5 meters above the ground, as also shown in the figure.
Using again simple geometry, the elevation angle of the signal transmitted by the
base station toward the mobile is

θT = 180◦ − tan
(

1200
30 − 1.5

)
= 91.6◦

Likewise for the elevation angle of the signal arriving at the mobile antenna, we
have

θR ≈ 88.4◦

�
We see that the azimuth and elevation angles depend on the relative locations

of the transmitter and receiver antennas, and the coordinate system used, as well.
In the simulation of cellular systems, the coordinate systems adopted to specify all
angles and distances must be carefully defined [11].

Another important conclusion from the preceding example is that, for macro-
cellular systems, where the cell radius is larger than 1 km and, consequently, T-R
separations are much larger than the difference between the heights of the base
station and mobile antennas, we can assume that

θT ≈ θR ≈ 90◦ (17.10)

and omit both θT and θR in (17.9). This gives

GT (θT , φT) ⇒ GT (φT)
GR(θR, φR) ⇒ GR(φR) (17.11)

Sectorized Cells

Cellular communication systems often use several sectorized antennas at the base
station, in order to reduce the co-channel interference. Each sectorized antenna
radiates within a specified sector of the cell, and each sector is allocated a subset
of the set of channels available for the cell. Therefore, due to the directivity of the

“TranterBook” — 2003/11/18 — 16:12 — page 683 — #701
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 683

base station antennas, the total co-channel interference impinging on the receiver
antenna (at the base station or mobile) is reduced, as illustrated in the next example.

Example 17.3. Consider a cellular system with the base stations equipped with
sectorized antennas on both links. Assume a beamwidth BW = 120◦ and that the
front-to-back ratio of the sectorized antennas is infinity, so that no power is radiated
out of the beamwidth. Also assume that cluster size N = 4 is used. Considering
first the forward link, the number of interfering base stations in the first tier reduces
from six to only two (base stations at Cells 5 and 6), as shown in Figure 17.5, due
to the directivity of the base station antennas. On the reverse link, the number of
co-channel mobiles in the first tier interfering with the base station at the center
cell also drops from six to two (mobiles at Cells 2 and 3). Therefore, sectoring is
an effective way for reducing co-channel interference. It is clear that the amount
of reduction in co-channel interference depends on the beamwidth of the sectorized
antenna and the cluster size used. �

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Center
Cell

Sector 1

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Center
Cell

Cluster Size N=4

Forward Link Reverse Link

Figure 17.5 Sectorized antennas on both the forward and reverse links.

Actual sectorized antennas used in practice have a finite front-to-back ratio. As
a result, the number of co-channel interference signals from co-channel cells in the
first tier would still be six, but some of them will be very weak, since they are
attenuated by the front-to-back ratio. Also, sectorized antennas commonly found
in practice have beamwidths of 120◦ (three sectors), or 60◦ (six sectors).

Total Co-Channel Interference

Based on the assumption that the received individual interference signals are af-
fected by shadowing and path loss only, the total co-channel interference is modeled

“TranterBook” — 2003/11/18 — 16:12 — page 684 — #702
�

�

�

�

�

�

�

�

684 Case Study: Simulation of a Cellular Radio System Chapter 17

as a composition of interference signals, whose local mean power levels follow log-
normal variations. It is usually assumed that the phase shift observed in each
individual interference signal varies significantly due to scattering, such that we can
assume that the phases are random and thus signals add incoherently (e.g., their
powers add) when averaged over the local area. Therefore, the total co-channel
interference I received at a given location is modeled as the sum of lognormally
distributed signals. Thus

I =
k∑

i=1

Ii, (17.12)

where Ii, when expressed in decibel units, is modeled as in (17.8).
It is well accepted that the distribution of the sum of lognormal random vari-

ables can be approximated by another lognormal distribution [7, 8, 9], and several
methods have been proposed for computing the mean value and standard deviation,
in dB, of the resulting lognormal distribution. The two most popular techniques,
as discussed in Appendix C, are Wilkinson’s method [7] and Schwartz and Yeh’s
method [8]. Once we know the distributions of the individual co-channel interfer-
ence signals Ii, or in other words, the means mIi and standard deviations σIi of Ii,
we can compute the mean mI and standard deviation σI of the total interference
I, by using Wilkinson’s method or Schwartz and Yeh’s method.

Effects of Sectoring

Since we now know how to compute the total co-channel interference, let us analyze
more closely the effects of sectoring on capacity and link quality of a cellular system.
We have seen that cell sectoring reduces co-channel interference, but at the expense
of a reduction in trunking efficiency which, in turn, reduces the total traffic carried
by the cell. Each sector of the cell will be allocated a subset of the set of channels
allocated to the cell. From traffic theory, we know that when a pool of channels
is partitioned into subsets of channels, the sum of the maximum traffic carried by
the subsets is always lower than the maximum traffic carried by the whole pool of
channels.

Example 17.4. Consider an AMPS (Advanced Mobile Phone System) cellular
system using a cluster size of N = 4. In addition, assume that 395 pairs of forward
and reverse traffic channels are available. In this example the maximum traffic
carried by each cell and the co-channel interference will be estimated. Two different
configurations will be considered: (1) omnidirectional antennas at the base station
and (2) sectorized antennas at the base station. Only the forward link will be
analyzed.

1. For onmidirectional antennas, base stations will radiate in all directions with
equal strength. They will interfere with and will receive interference from all
co-channel cells. Considering only the first tier of co-channel cells, the total
co-channel interference received at a given mobile is the sum of all co-channel
interference signals, as shown in Figure 17.6(a). Based on this figure, we can

“TranterBook” — 2003/11/18 — 16:12 — page 685 — #703
�

�

�

�

�

�

�

�

C

el
l 1

C
el

l 2

C
el

l 3

C
el

l 4

C
el

l 5

C
el

l 6

I 5
 I 6

 d 5d 6

Se
ct

or
 1

Se

ct
or

 2

Se
ct

or
 3

C
el

l 1

C
el

l 2

C
el

l 3

C
el

l 4

C
el

l 5

C
el

l 6

I 1

I 2

I 3

I 4

I 5
 I 6

d 1

d 2

d 3

d 4

d 5

d 6

(a
)

O
m

ni
di

re
ct

io
na

l c
el

ls
(b

)
Se

ct
or

iz
ed

 c
el

ls

F
ig

u
re

1
7
.6

C
el

lu
la

r
sy

st
em

w
it

h
o
m

n
id

ir
ec

ti
o
n
a
l
a
n
d

se
ct

o
ri
ze

d
b
a
se

st
a
ti

o
n

a
n
te

n
n
a
s.

685

“TranterBook” — 2003/11/18 — 16:12 — page 686 — #704
�

�

�

�

�

�

�

�

686 Case Study: Simulation of a Cellular Radio System Chapter 17

compute the area mean SIR at a mobile located at the boundary of the cell.
This is a worst-case situation and is given by

SIRmean = mS − mI dB (17.13)

where mS is the area mean power of the desired signal and mI is the area
mean power of the total interference (note that both are expressed in dB
which explains the substraction). In order to compute mS and mI , we will
use (17.9) and (17.12), assuming for simplicity, that the mobile antenna is
omnidirectical (GR(θR, φR) = 0 dB), K = 1, and all base stations transmit
the same power level PT = 0 dBW. Therefore

mS = −10 log10 R (17.14)

and

mI = 10 log10

(
6∑

i=1

10(−10γ log10 di)/10

)
(17.15)

where R is the cell radius, γ is the path loss exponent, and di, i = 1, · · · , 6,
are the T-R separations. Using the geometry of cluster size N = 4, assuming
that R = 1,000 and γ = 4, we can show that

d1 = d4 = 3605.55 m (17.16)
d2 = d3 = 2645.75 m (17.17)

and

d5 = d6 = 4358.90 m (17.18)

Therefore

mS = −120.0 dBW (17.19)

and

mI = −132.35 dBW (17.20)

which gives the result

SIRomni
mean = 12.35 dB (17.21)

For the traffic analysis, we again assume N = 4 and also assume that the
distribution of users is uniform over the cell area. Each cell is allocated NC =
395/4 ∼= 98 channels. Assuming that blocked calls are cleared and that the
blocking probability is PB = 0.02, the maximum traffic carried per cell is,
from the Erlang B formula

Aomni
C = 86.0 Erlangs per cell (17.22)

If a single user generates 0.02 Erlang of traffic, the omnidirectional cell can
support up to 86.0/0.02 ∼= 4,300 users at a blocking probability of PB = 0.02.

“TranterBook” — 2003/11/18 — 16:12 — page 687 — #705
�

�

�

�

�

�

�

�

Section 17.2. Cellular Radio System 687

2. We now assume that 120◦ sectoring is used (three sectors per cell) as shown
in Figure 17.6(b). In order to analyze the co-channel interference the same
approach used in part 1 is applied. We assume an idealized antenna with an
infinite front-to-back ratio so that only Cells 5 and 6 interfere with the center
cell. Therefore, the number of interfering co-channel cells in this idealized
example drops from six (all co-channel cells in the first tier) to only two, and

mI = 10 log10

(
10(−10γ log10 d5)/10 + 10(−10γ log10 d6)/10

)
= −142.57 dBW (17.23)

and

mS = −120.0 dBW (17.24)

Finally

SIRsect
mean = 22.6 dB (17.25)

For the capacity traffic analysis, we recognize that each sector is allocated
NS = 395/(4× 3) ∼= 33 channels. The maximum traffic carried by each sector
is, assuming a blocking probability of PB = 0.02, given by

Asect
S = 23.7 Erlangs per sector (17.26)

For a three-sector cell this number is multiplied by three. Therefore:

Asect
C = 71.1 Erlangs per cell (17.27)

Again assuming that each user generates 0.02 Erlang of traffic, the sectorized
cell with three sectors can support up to 71.1/0.02 ∼= 3,550 users at a blocking
probability of PB = 0.02.

We see from these results that a link quality improvement of approximately 10
dB (∆SIR = 22.56 − 12.35 = 10.21 dB) is achieved by using sectoring, compared
with the omnidirectional case. However, this link quality improvement is achieved at
the expense of trunking efficiency, so that the total traffic carried per cell is reduced
from 86.0 Erlangs per cell with the omnidirectional antenna to 71.1 Erlangs per cell
with sectoring. After sectoring N can be reduced if desired. �

In the preceding example, the signal-to-interference ratio was computed for the
worst-case situation, since the mobile was assumed to be located at the cell bound-
ary. It is obvious that at locations closer to the serving base station, the SIR will
be higher. Another limitation of the simplified analysis presented in the preceding
example is that the effects of shadowing were not considered. When we consider
both the spatial distribution of mobiles and the effects of shadowing, SIR becomes
a random variable, as we discussed before. The performance of the cellular sys-
tem must then be measured through the outage probability, defined in (17.2) as the
probability that SIR is below a minimum acceptable level SIR0.

“TranterBook” — 2003/11/18 — 16:12 — page 688 — #706
�

�

�

�

�

�

�

�

688 Case Study: Simulation of a Cellular Radio System Chapter 17

In the next section, the methodology for simulating a simple cellular system is
presented, taking into consideration both the user spatial distribution and shadow-
ing effects on the received signals. The results of the simulation will be the SIR
statistics, that will give us an estimate of the performance of the system. Despite
the simplicity of the simulation, the methodology presented can be viewed as the
core part of more complex simulations, such as those described by Cardieri and
Rappaport [10, 11].

17.3 Simulation Methodology

The simulation procedure consists of modeling a snapshot of the location of mobile
stations. At each snapshot, the statistics (mean value and variance) of the SIR at
a given base station (reverse link) and mobile station (forward link) are computed,
taking into account user locations and propagation conditions. Several snapshots
are simulated, in order to generate a sufficiently large sample set so that statistically
valid results are achieved. Figure 17.7 shows the flowchart of the procedure. In
the following sections, we describe some aspects of the simulation. Other aspects
will be described subsequently, together with the steps required to simulate one
snapshot of the system.

17.3.1 The Simulation

We will consider only the first tier of co-channel cells. The number of sectors in each
cell is a simulation parameter and can be chosen among: (1) one, or omnidirectional
antennas, (2) three, or 120◦ sectoring, and (3) six, or 60◦ sectoring. The gain of
the sectorized antenna is assumed to be constant within the sector and equal to 0
dB, as shown in Figure 17.8. The sectorized antennas have a finite front-to-back
ratio of B dB, which is a simulation parameter. For 120◦ sectoring, the radiation
patterns of the sectorized antennas for Sector 1 are modeled as

G
(1)
T (φ) = G

(1)
R (φ) =

{
0 dB, − π/3 < φ ≤ π/3

B dB, otherwise (17.28)

The radiation pattern for Sectors 2 and 3 are obtained by rotating G
(1)
T (φ) and

G
(1)
R (φ) 120◦ and 240◦, respectively. For 60◦ sectoring, we have

G
(1)
T (φ) = G

(1)
R (φ) =

{
0 dB, 0 < φ ≤ π/3

B dB, otherwise (17.29)

The radiation pattern for Sectors 2 through 6 are obtained by appropriate rotation of
G

(1)
T (φ) and G

(1)
R (φ) by 60◦. Both forward link and reverse link base station antennas

are assumed to be identical. Mobile antennas are assumed to be omnidirectional
antennas on both forward and reverse links.

The channel model includes both path loss and lognormal shadowing. The path
loss exponent and the standard deviation of the lognormal shadowing are simulation
parameters. The simulation consists of the following two major steps:

“TranterBook” — 2003/11/18 — 16:12 — page 689 — #707
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 689

Define the system to be simulated.

One mobile is placed within each cell.

Distances between mobiles and base stations
are computed.

Mean value and standard deviation of all signals
received at the base station located at the center

cell are computed.

Mean and standard deviation of SIR on
both links are determined.

Samples of SIR on both links are
determined (two approaches).

Repeat M times
until statistics have

converged or the
specified number of

outage events are
reached.

Snapshot

Increment outage
statistics counter.

Check if SIR
exceeds outage

threshold.

Figure 17.7 Flowchart to estimate the SIR and outage in a cellular system using Monte
Carlo simulation.

Front-to-back

ratio

BW = 120o

Front-to-back
ratio

BW = 60o

φ

Figure 17.8 Model for sectorized antenna for 120◦ and 60◦ sectoring.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 690 --- #708
�

�

�

�

�

�

�

�

690 Case Study: Simulation of a Cellular Radio System Chapter 17

• Definition of the target system to be simulated

• Generation of snapshots of mobile locations and computation of the SIR

These are discussed in the following sections.

Definition of the Target System to Be Simulated

Here we define the propagation characteristics (channel parameters) and the loca-
tion of the co-channel cells.

Propagation characteristics (channel parameters). The parameters that define
the channel characteristics consist of the following:

• Cell radius R

• Path loss exponent (γ)

• Standard deviation in decibel units of lognormal shadowing (σ)

• Base station transmission power level (PT,BS)

• Mobile station transmission power level (PT,MS)

• Number of sectors per cell

• Front-to-back ratio of sectorized antennas

• Number of snapshots to be simulated (M)

This part of the simulation can be implemented using the MATLAB code given
in Appendix B. The complete simulation program presented in this section can be
assembled by appending the code segments appearing later in this section to the
MATLAB code given in Appendix B.

Locations of co-channel cells. For convenience, we will adopt both the rectangu-
lar and polar coordinate systems to represent the locations of the base stations and
mobiles in our simulation. The base stations will be located at the center of the
corresponding cells. The base station at the center cell, where the co-channel inter-
ference will be measured, will be located at the center of the coordinate systems.
The locations of the co-channel cells depend on the cluster size N of the cellular
system and the cell radius R. For the first tier, all co-channel cells are located
on a circumference of radius D =

√
3NR centered at the center cell, and equally

distant from each other, as indicated in Figure 17.9. Also indicated in this figure
is the angle θN (see Table 17.1), which determines the angular location of the first
co-channel cell. Using simple geometry, we can show that, for cluster size N , the
location of the ith co-channel cell, using vector notation, is

xBSi x̂ + yBSi ŷ =
√

3N R {cos[θN + (i − 1)π/6] x̂
+ sin[θN + (i − 1)π/6] ŷ} (17.30)

where x̂ and ŷ are the unit vectors in the direction of axes x and y, respectively.
An example of the implementation of this part of the simulation is as follows:

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 691 --- #709
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 691

D = R
N = 1

D = 3R

N = 3

D

N = 4

D

N=7

Nθ

Nθ

Nθ

Nθ

Figure 17.9 Location of co-channel cells or N = 1, N = 3, N = 4, and N = 7.

Table 17.1 Relationship between N, R, and θN in Figure 17.9

cluster size N D θN

1 R π/6

3 3R 0

4 2
√

3R π/6

7
√

21R arctan
(
2/

√
3
)

“TranterBook” — 2003/11/18 — 16:12 — page 692 — #710
�

�

�

�

�

�

�

�

692 Case Study: Simulation of a Cellular Radio System Chapter 17

% Location of base stations (center cell is located at x = 0, y = 0)
% Location (angular) of the center cell of each cluster in the
% first tier.
theta_N = [pi/6 0 pi/6 asin(1/(2*sqrt(7)))];
% Angular distance between the center cells of all 6 clusters in
% first tier.
theta = pi/3*[0:5]’;
aux_1 = [1 0 2 3 0 0 4];
ind = aux_1(cluster_size);
% Location [x,y] of the center cells of all clusters in the
% first tier.
bs_position = [sqrt(3*cluster_size)*r_cell*cos(theta + ...

theta_N(ind)) sqrt(3*cluster_size)*r_cell*sin(theta + ...
theta_N(ind))];

Note that, in this MATLAB program segment, bs position(i,1) and bs position
(i,2) correspond to the components in the directions x̂ and ŷ, respectively, of the
vector representing the location of the ith base station.

Generation of Snapshots of Mobiles’ Locations and Computation of SIR

In this part of the simulation, the actual Monte Carlo evaluation is performed.
Snapshots of the locations of the mobiles sharing the same channel are generated,
and for each snapshot, the statistics of SIR are computed. This part of the simula-
tion is performed M times.

Step 1: A mobile is placed within each cell. The mobiles are assumed to be
uniformly distributed over the cell area. As mentioned before, the sectors of a
given cell are allocated different sets of channels. Therefore, co-channel interference
occurs only among sectors allocated the same set of channels. In our simulation,
the mobiles at the center cell and at the co-channel cells are assumed to be located
within the same sector in their cells. Using a polar coordinate system, the location
of the ith mobile within its cell can be described by the distance ri between the
mobile and its serving base station, and the angle βi between a reference and the
direction of propagation between the mobile and its base station (see Figure 17.10).
Note that βi and ri are defined with respect to the coordinate system centered at
the base station of the ith cell. Since the distribution of the mobile location is
uniform over the cell area, βi is uniformly distributed over the range [0, 2π], and
the distance r follows the pdf

fRi(ri) = 2ri/R2, 0 ≤ ri ≤ R. (17.31)

Note that, for simplicity, the cell is assumed to be circular in the simulation.
The sector used in a particular snapshot is chosen randomly, with equal proba-

bilities of choosing any sector:

120◦ sectoring ⇒ Pr{sector i is chosen} = 1/3, i = 1, 2, 3.

60◦ sectoring ⇒ Pr{sector i is chosen} = 1/6, i = 1, · · · , 6.

“TranterBook” — 2003/11/18 — 16:12 — page 693 — #711
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 693

ri

yi

xi

r0

x

y

Base Station

Mobile

Co-channel cell
Cell under test

Base Station Mobile
iBSx

iα

,
f

I id
,

r
I id

iθ

0β

iβ

Figure 17.10 Representation of mobile location.

Once the sector is chosen, the angles βi can be determined, noting that βi is uni-
formly distributed over the chosen sector:

120◦ sectoring ⇒ (2s − 3)π/3 < βi ≤ (2s − 1)π/3
60◦ sectoring ⇒ (s − 1)π/3 < βi ≤ sπ/3,

where s is the sector selected (s = {1, 2, 3}, for 120◦ sectoring and s = {1, · · · , 6},
for 60◦ sectoring). Figure 17.11 shows an example of a snapshot for 120◦ sectoring,
where the mobiles are located in Sector 1. This part of the simulation can be
implemented as shown in the following MATLAB code:

% Determination of the sector to simulated in this snapshot
%
% --- Select (randomly) a sector ---
sector = unidrnd(num_sectors(sec));
%
% --- Place the desired mobile within the select sector ---
des_user_beta = rand(1)*phi_BW(sec) + phi_center(sector,sec);
des_user_r = sqrt(rand(1).*(r_cell^2));
%
% --- Place co-channel mobiles within the selected sector of
% co-channel cells---
co_ch_user_beta = rand(6,1)*phi_BW(sec) + phi_center(sector,sec);
co_ch_user_r = sqrt(rand(6,1))*(r_cell);

“TranterBook” — 2003/11/18 — 16:12 — page 694 — #712
�

�

�

�

�

�

�

�

694 Case Study: Simulation of a Cellular Radio System Chapter 17

Center
Cell

 r0

r1

r2 r3
r4

r5

r6

6β

5β

4β
3β

2β

1β

0β

Figure 17.11 Snapshot for 120◦ sectoring with mobiles assumed to be in Sector 1.

The (x,y) location of the the desired and co-channel mobiles are computed accord-
ing to

des_user_position = des_user_r*[cos(des_user_beta) ...
sin(des_user_beta)];

co_ch_user_position = [co_ch_user_r.*cos(co_ch_user_beta) ...
co_ch_user_r.*sin(co_ch_user_beta)] + bs_position;

The next step is to determine the distances between the co-channel mobiles to
the base station at the center cell (to be used to compute the mean values of the
interference signals on the reverse link) and the distances between the mobile at
the center cell and the co-channel base stations (to be used to determine the mean
values of the interference signals on the forward link).

Step 2: Determination of the distances between mobiles and base stations.
Since we are interested in computing the co-channel interference at the base station
and mobile in the center cell, we need to determine the following:

• The location of the co-channel mobile stations with respect to the base station
at the center cell: Using vector notation, the location of the ith mobile station
with respect to the base station at the center cell is (see Figure 17.10)

dr
I,i (cos αi x̂ + sin αi ŷ) = ri (cosβi x̂ + sinβi ŷ)

+ (xBSi x̂ + yBSi ŷ). (17.32)

“TranterBook” — 2003/11/18 — 16:12 — page 695 — #713
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 695

The term dr
I,i is the T-R separation between the base station at the center

cell and the ith mobile, and αi is the angle of arrival of the signal from the
ith mobile, impinging on the base station antenna. Therefore, dr

I,i and αi are
the length and direction of the vector given by the right hand side of (17.32).

• The location of the mobile station at the center cell with respect to the ith

co-channel base station: Again using vector notation, we have (see Figure
17.10)

df
I,i (cos θi x̂ + sin θi ŷ) = r0 (cosβ0 x̂ + sin β0 ŷ)

− (xBSi x̂ + yBSi ŷ), (17.33)

where df
I,i is the T-R separation between the ith base station and the mobile

at the center cell, and θi is the angle of departure of the signal transmitted
by the ith base station toward the mobile at the center cell.

Step 3: Determination of the statistics of SIR on both links. In this step, three
different approaches for computing the statistics of SIR will be presented. In all
three approaches, the lognormal variation of the received signals will be taken into
account. This requires the mean value of the desired and interference signals.

• Mean value and standard deviation in dB of each signal

1. Desired signals: Using (17.9), the mean values in decibel units of the
desired signals on the forward and reverse link are

mf
S = PT,BS − 10γ log10 r0 dBW (17.34)

and

mr
S = PT,MS − 10γ log10 r0 dBW (17.35)

respectively. Note that the base station antenna gains on both links in
these expression are set to 0 dB, since the mobile is located within the
sector of the base station. Also, the mobile antenna gains on both links
are set to 0 dB, since we are assuming omnidirectional antennas. The
standard deviations of the desired signals are equal to the shadowing
standard deviation. Thus

σf
S = σr

S = σ

2. Interference signals: The determination of the mean values of the total
interference signals on both links is more involved. As we mentioned
before, the total co-channel interference on both links is modeled as the
sum of the individual co-channel interference signals. This gives

If =
∑

i

If
i (17.36)

“TranterBook” — 2003/11/18 — 16:12 — page 696 — #714
�

�

�

�

�

�

�

�

696 Case Study: Simulation of a Cellular Radio System Chapter 17

and

Ir =
∑

i

Ir
i (17.37)

for the forward and reverse links, respectively. Figure 17.12 shows an ex-
ample snapshot for 120◦ sectoring. Six co-channel cells are simulated but,
for clarity, only signals from co-channel Cells 1 and 4 are shown. Since
shadowing effects and path loss are taken into account in this model, the
total interference signals If and Ir are the sum of the lognormally dis-
tributed signals If

i and Ir
i , respectively. As discussed before, we assume

that both If and Ir are lognormally distributed. The mean and standard
deviation, in dB, of If and Ir are functions of the means and standard
deviations of the individual interference signals and can be computed
using Wilkinson’s or Schwartz and Yeh’s methods, as discussed in Ap-
pendix C. The mean values, in dBW, of If

i and Ir
i can be determined

using (17.9). This gives

mf
I,i = PT,BS + GT,i(φT,i) − 10γ log10 df

I,i dBW (17.38)

Center cell

Cell 1

Cell 4

Forward link

Reverse link

,1Rφ

,4Tφ

,1Tφ

4
fI

1
fI

1
rI

4
rI

,4Rφ

Figure 17.12 Example of a snapshot for 120◦ sectoring.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 697 --- #715
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 697

and

mr
I,i = PT,MS + GR,0(φR,i) − 10γ log10 dr

I,i dBW (17.39)

The antennas gains GT,i(φT,i) and GR,0(φR,i) depend on the relative
positions of the mobiles and follow the description given in (17.28) and
(17.29). Note that we are assuming omnidirectional antennas at the
mobiles on both links. The standard deviations of the interference signals
are equal to the shadowing standard deviation σ

σf
I,i = σr

I,i = σ (all cells) (17.40)

Once the means and standard deviations of all co-channel signals have
been determined, we apply Wilkinson’s or Schwartz and Yeh’s method
(see Appendix C) to compute the means mf

I and mr
I , and standard de-

viations σf
I and σr

I , in dB, of the total co-channel interference on both
links. The computation of the moments of the signals on the forward
link is carried out using the following MATLAB code:

% --- DESIRED USER ---
m_S_fwd = P_BS - 10*K*n_path*log10(des_user_r);
%
% --- CO-CHANNEL USERS ---
% --- Location of desired mobile with respect to
% co-channel cells ---
aux_01 = ((des_user_position(1) - bs_position(:,1))+ ...

sqrt(-1)*(des_user_position(2) - bs_position(:,2)));
beta_fwd = angle(aux_01);
d_I_fwd = abs(aux_01);
% --- Computation of antenna gain at co-channel cells
clear gain_fwd
for k = 1:n_co_ch_users

if (beta_fwd(k) >= ...
sector_min(sector,sec)) & (beta_fwd(k) < ...

sector_max(sector,sec))
gain_fwd(k) = in_beam;

else
gain_fwd(k) = out_beam;

end
end
% --- Computation of mean value and standard deviation ---
m_I_fwd = P_BS - 10*K*n_path*log10(d_I_fwd) + gain_fwd.’;
sigma_I_fwd = sigma_int*ones(length(m_I_fwd),1);
[m_I_total_fwd, sigma_I_total_fwd] = ...

wilkinson(m_I_fwd,sigma_I_fwd,corr_fwd);

In a similar manner, the computation of the moments of the signals on
the reverse link is carried out using the following MATLAB code:

“TranterBook” — 2003/11/18 — 16:12 — page 698 — #716
�

�

�

�

�

�

�

�

698 Case Study: Simulation of a Cellular Radio System Chapter 17

% --- DESIRED USER ---
m_S_rev = P_MS - 10*K*n_path*log10(des_user_r);
%
% --- CO-CHANNEL USERS ---
% --- Location of co-channel users ---
aux_02 = (co_ch_user_position(:,1) + ...

sqrt(-1)*co_ch_user_position(:,2));
beta_rev = angle(aux_02);
d_I_rev = abs(aux_02);
%
% --- Computation of antenna gain at center cell
clear gain_rev
for k = 1:n_co_ch_users

if (beta_rev(k) >= ...
sector_min(sector,sec)) & (beta_rev(k) < ...

sector_max(sector,sec))
gain_rev(k) = in_beam;

else
gain_rev(k) = out_beam;

end
end

% --- Computation of mean value and standard deviation ---
m_I_rev = P_MS - 10*K*n_path*log10(d_I_rev) + gain_rev.’;
sigma_I_rev = sigma_int*ones(length(m_I_rev),1);
[m_I_total_rev, sigma_I_total_rev] = ...

wilkinson(m_I_rev,sigma_I_rev,corr_rev);

Note that in this example, we use Wilkinson’s method for computing the
mean and standard deviation of the total interference [10]. The MAT-
LAB code for implementing Wilkinson’s method is given in Appendix D.

• Steps for computing the statistics of SIR

1. Step 1: Computation of mean and standard deviation of SIR: In this
approach, we compute the means mf

SIR and mr
SIR, and standard devia-

tions σf
SIR and σr

SIR of the SIR, expressed in dB, on both the forward
and reverse links. These moments will be used to compute the outage
and reliability probabilities, as described later. Since the desired signal
and the total co-channel interference are normal random variables, when
expressed in dB, the signal to interference ratio SIR, in dB, is also a
normal variable. For the forward link, SIRf is given by

SIRf = Sf
dB − If

dB (17.41)

with mean and standard deviation, in dB, given by

mf
SIR = mf

S − mf
I (17.42)

“TranterBook” — 2003/11/18 — 16:12 — page 699 — #717
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 699

and

σf
SIR =

√
(σf

S)2 + (σf
I)2 (17.43)

Equations (17.41), (17.42), and (17.43) are also used for the reverse link.
The results of this step are mf

SIR, σf
SIR, mr

SIR, and σr
SIR. The MATLAB

code for this portion of the simulation follows:

m_SIR_fwd(i) = m_S_fwd - m_I_total_fwd;
sigma_SIR_fwd(i) = sqrt(sigma_S^2 + sigma_I_total_fwd^2 -...

2*corr_fwd*sigma_S*sigma_I_total_fwd);
m_SIR_rev(i) = m_S_rev - m_I_total_rev;
sigma_SIR_rev(i) = sqrt(sigma_S^2 + sigma_I_total_rev^2 -...

2*corr_rev*sigma_S*sigma_I_total_rev);

Note that, at this point in the simulation we start collecting the simu-
lation results. In Step 1 we save the means and standard deviations in
arrays controlled by index i.

2. Step 2, Method A: Sampling the SIR using the mean and standard devi-
ation of SIR: Since we know the means mf

SIR and mr
SIR, and standard

deviations σf
SIR and σr

SIR of SIR on both links from Step 1, we can
sample the normal random processes SIRf and SIRr. Therefore, each
snapshot will be associated with samples of SIR on each link, denoted by
SIRf

2A and SIRr
2A. These samples are the result of sampling a normal

random process with mean mSIR and standard deviation σSIR. The re-
sults of Step 2, Method A, are values for SIRf

2A and SIRr
2A as defined

by the following MATLAB code.

SIR_fwd_2(i) = normrnd(m_SIR_fwd(i),sigma_SIR_fwd(i));
SIR_rev_2(i) = normrnd(m_SIR_rev(i),sigma_SIR_rev(i));

3. Step 2, Method B: Sampling SIR using the mean and standard deviation
of the desired and individual interference signals: To this point, we have
assumed that the total co-channel interference, modeled as the sum of
individual co-channel interference signals, is lognormally distributed, or
normally distributed when expressed in dB. In Step 2, Method B, we do
not make any assumption regarding the distribution of the total inter-
ference. A sample of each signal received at the mobile (forward link)
and base station (reverse link) at the center cell is determined, assuming
that the signals, expressed in dB, are normally distributed having mo-
ments Sf , Sr, If

i , and Ir
i . The total interference signals on each link is

computed as

If = 10 log10

(
6∑

i=1

10If
i /10

)
(17.44)

“TranterBook” — 2003/11/18 — 16:12 — page 700 — #718
�

�

�

�

�

�

�

�

700 Case Study: Simulation of a Cellular Radio System Chapter 17

and

Ir = 10 log10

(
6∑

i=1

10Ir
i /10

)
(17.45)

The samples of SIR on both links, denoted by SIRf
2B and SIRr

2B, are
given by

SIRf
2B = Sf − If (17.46)

and

SIRr
2B = Sr − Ir (17.47)

These are computed using the following MATLAB code:

des_sig_spl_fwd = normrnd(m_S_fwd,sigma_S);
int_sig_spl_fwd = normrnd(m_I_fwd,sigma_I_fwd);
tot_int_sig_spl_fwd = 10*log10(sum(10.^...

(int_sig_spl_fwd/10)));
SIR_spl_fwd_2B(i) = des_sig_spl_fwd - tot_int_sig_spl_fwd;
des_sig_spl_rev = normrnd(m_S_rev,sigma_S);
int_sig_spl_rev = normrnd(m_I_rev,sigma_I_rev);
tot_int_sig_spl_rev = 10*log10(sum(10.^...

(int_sig_spl_rev/10)));
SIR_spl_rev_2B(i) = des_sig_spl_rev - tot_int_sig_spl_rev;

At this point, we have completed the processing of one snapshot. The other
M −1 snapshots needed to complete the overall simulation are processed generating
collections of length M of the following:

• From Step 1: mean values mf
SIR and mr

SIR, and standard deviations σf
SIR

and σr
SIR of SIR on each link

• From Step 2, Method A: samples of SIR on both links, SIRf
2A and SIRr

2A

• From Step 2, Method B: samples of SIR on both links, SIRf
2B and SIRr

2B

17.3.2 Processing the Simulation Results

By processing the results of the simulation, we can estimate the performance of
the overall cellular system, in terms of outage probability and other performance
indicators. In this section, we will present examples of simulation results compar-
ing the performance of cellular systems operating under the following six different
configurations:

• Cluster size N = 4 and omnidirectional base station antennas

• Cluster size N = 4 and 120◦ sectoring

“TranterBook” — 2003/11/18 — 16:12 — page 701 — #719
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 701

• Cluster size N = 4 and 60◦ sectoring

• Cluster size N = 7 and omnidirectional base station antennas

• Cluster size N = 7 and 120◦ sectoring

• Cluster size N = 7 and 60◦ sectoring

The sectorized antennas at the base stations have a front-to-back ratio of 30 dB.
The shadowing standard deviation is set to 8 dB, and the path loss exponent is
assumed to be γ = 4. In order to obtain statistically valid results, 1,000 snapshots
are simulated.

Outage Probability

The mean and standard deviation of SIR, expressed in dB, were computed for each
snapshot in the simulation using Step 1. These moments correspond to the SIR
measured at the mobile and base station at the center cell for a specific snapshot
of locations of the co-channel mobiles. Therefore, we can compute the outage
probability of the cellular system, at the mobile and base station, for a given specific
situation. In a previous section outage probability was defined. It is repeated here
for convenience:

Poutage(SIR0) = Pr[SIR < SIR0]

=

SIR0∫
0

1√
2π σSIR

exp
[−(x − mSIR)2

2σ2
SIR

]
dx

= 1 − Q

(
SIR0 − mSIR

σSIR

)
(17.48)

where Q(·) is the Gaussian Q-function. Therefore, by using the mean and standard
deviation computed at each snapshot, from Step 1 in the simulation, we obtain a
sample of outage probability. The average outage probability of the cellular system
simulated, denoted as Poutage(SIR0), is then computed by averaging the samples
of outage probabilities Poutage(SIR0), computed for each snapshot. The average
outage probability is often referred to as area-averaged outage probability, since
each element in the averaging process corresponds to a location in the cell area. The
average outage probabilities at different thresholds, computed using the results from
Step 1 for cluster size N = 7 and 120◦ sectoring, are shown in Figure 17.13. The
average outage probabilities for cluster size N = 7 and 120◦ sectoring, computed
from the results of Step 2, Methods A and B, are also shown in Figure 17.13.

The average outage probability can also be computed using the results from
Step 2, Methods A or B. This provides a collection of samples of SIR on both
links. Based on these collections, we can estimate the probability density functions
of the area-averaged SIR, computing first the histograms of the collections. For
example, Figure 17.14 shows the histograms of the samples of area-averaged SIR
obtained from Step 2, Method A. These histrograms approximate the actual pdf

“TranterBook” — 2003/11/18 — 16:12 — page 702 — #720
�

�

�

�

�

�

�

�

702 Case Study: Simulation of a Cellular Radio System Chapter 17

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

O
ut

ag
e

pr
ob

ab
ili

ty
 (

%
)

Forward Link Threshold SIR0 (dB)

Step 1
Step 2,A
Step 2,B

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

O
ut

ag
e

pr
ob

ab
ili

ty
 (

%
)

Reverse Link Threshold SIR0 (dB)

Step 1
Step 2,A
Step 2,B

Figure 17.13 Average outage probability on both forward and reverse links using the
methods described (cluster size N = 7, 120◦ sectoring, σ = 8dB, and γ = 4).

of the area-averaged SIR. Using the histogram, we can then estimate the average
outage probabilities on both links.

We can now compare the performance of all six configurations simulated. Figure
17.15 shows the average outage probability of each configuration, using Step 1 on
the forward link. As expected, sectoring improves the performance of a cellular
system, that is, reduces the probability that the SIR drops below a given threshold.
For example, a system using cluster size N = 7 and three sectors per cell performs
better, in terms of link quality, than a system using cluster size N = 7, but with
omnidirectional antennas. The outage probability at SIR0 = 18 dB (which is the
threshold usually used in AMPS) in the former system is 15%, versus an outage
probability of 35% in the later system.

However, sectoring degrades the capacity of the system, in terms of the max-
imum carried traffic. As an illustration, Table 17.2 shows the carried traffic per
cell for each configuration used, together with the corresponding outage probability
at SIR0 = 18 dB, obtained from Figure 17.15. The carried traffic was computed
assuming that there are 395 channels available for the whole system and that a

“TranterBook” — 2003/11/18 — 16:12 — page 703 — #721
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 703

-50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

F
re

qu
en

cy
 o

f
oc

cu
re

nc
es

Forward Link Threshold SIR0 (dB)
-50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

F
re

qu
en

cy
 o

f
oc

cu
re

nc
es

Reverse Link Threshold SIR0 (dB)

Figure 17.14 Histogram of SIR samples obtained using Approach 2 for both forward
and reverse links using the Step 2, Method A (cluster size N = 7, 120◦ sectoring, σ = 8dB,
and γ = 4).

blocking probability of 0.02 is acceptable. We clearly see the tradeoff between ca-
pacity and link quality. As the capacity improves, the link quality degrades.

System Performance over the Cell Area

The average outage probability, as discussed and computed in the preceding sec-
tion, tells us about the performance of the cellular system averaged over the cell
area. As a consequence of the averaging operation, the existence of a high outage
probability (undesirable) at a given location may be compensated by a low outage
probability at another location. Sometimes, in performance analysis, it is desirable
to have a measure of the percentage of the cell area where the performance of the
system (outage probability) is acceptable or is not acceptable. This measure can
be computed from the simulation results.

“TranterBook” — 2003/11/18 — 16:12 — page 704 — #722
�

�

�

�

�

�

�

�

704 Case Study: Simulation of a Cellular Radio System Chapter 17

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Threshold SIR0 (dB)

O
ut

ag
e

pr
ob

ab
ili

ty
 (

%
)

Sector 60o

Sector 120o

OMNI
N = 7
N = 4

Figure 17.15 Average outage probability on forward link for all configurations.

Table 17.2 Carried Traffic per Cell and Outage Probability

Antenna Cluster Size N = 4 Cluster Size N = 7
Omni 86.0 Erlangs @ Poutage = 0.52 45.9 Erlangs @ Poutage = 0.35

3-sector 71.2 Erlangs @ Poutage = 0.22 34.5 Erlangs @ Poutage = 0.15
6-sector 59.0 Erlangs @ Poutage = 0.13 26.1 Erlangs @ Poutage = 0.07

“TranterBook” — 2003/11/18 — 16:12 — page 705 — #723
�

�

�

�

�

�

�

�

Section 17.3. Simulation Methodology 705

The reliability probability Prelia(SIR0)is defined as the probability that SIR is
larger than a given threshold SIR0. Therefore, at a given location, we have

Prelia(SIR0) = Pr[SIR > SIR0]

= Q

(
SIR0 − mSIR

σSIR

)
= 1 − Poutage(SIR0) (17.49)

Let us now assume that the performance of the system is considered acceptable if
the reliability probability Prelia(SIR0) at a given threshold SIR0 is larger than a
threshold Pmin. Then, using the computed values of Prelia(SIR0), we can estimate
the percentage of the cell area where the system performance is acceptable (i.e.,
where Prelia(SIR0) > Pmin holds) by computing

Parea(SIR0) =
number of locations where Prelia(SIR0) > Pmin

total number of locations
(17.50)

Note that the computation of Parea(SIR0) is only possible using the results of Step
1 in the simulation, since the mean and standard deviation of SIR are required.
Figure 17.16 shows the percentage of the cell area where Prelia(SIR0) > 0.75 holds
on the forward link for all configurations that were simulated.

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Threshold SIR0 (dB)

P
er

ce
nt

ag
e

of
 c

el
l a

re
a

(%
)

Sector 60o

Sector 120o

OMNI
N = 7
N = 4

Figure 17.16 Percentage of the cell area where Prelia (SIR0) > 0.75 holds on the forward
link for all configurations simulated (σ = 8, γ = 4).

“TranterBook” — 2003/11/18 — 16:12 — page 706 — #724
�

�

�

�

�

�

�

�

706 Case Study: Simulation of a Cellular Radio System Chapter 17

17.4 Summary

This chapter provided a fundamental overview of the key factors involved in simu-
lating the overall performance of a wireless communication system. Several design
parameters, such as cellular frequency reuse (cluster size), blocking probability, av-
erage signal-to-interference ratio, and antenna beamwidth all impact the overall
system performance of a wireless system. Furthermore, these design parameters are
all interrelated, and often are used to make tradeoffs in system performance. For
example, a smaller cellular cluster size increases the available channel capacity of a
system, but increases the interference level of each user. Likewise, sectoring lowers
the co-channel interference, yet decreases system capacity. Simulation is needed
to explore the impact of various tradeoffs, and the diminishing returns offered by
various system design strategies. The level of co-channel interference offered by the
undesired users sets the operating noise floor as seen by a particular mobile user at a
particular location, and this chapter illustrated how to properly model and simulate
the effect of system design parameters across a mobile communication system. The
simulation strategy is to create a Monte Carlo analysis of many snapshots of system
performance seen by many mobile users operating in random locations, whereby the
collection of snapshots are used to build statistics of operating performance over the
desired coverage areas. System simulation requires careful modeling of the spatial
effects of users, the specified antenna patterns, the assignment of radio channels
over space, and the appropriate large-scale interference levels over that space. This
chapter provided examples and methodologies to successfully account for these key
issues for the design and simulation of wireless communication systems.

17.5 Further Reading

Over the past several years a number of textbooks have been developed that cover
the basic concepts of cellular radio systems at varying levels of detail. A sampling
of these includes the following:

T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall, 2002.

G. L. Stuber, Principles of Mobile Communication, Boston: Kluwer, 1996.

W. C. Y. Lee, Mobile Cellular Communication: Analog and Digital Systems, 2nd
ed., New York: McGraw-Hill, 1995.

W. C. Y. Lee, Mobile Communications Engineering: Theory and Applications, 2nd
ed., New York: McGraw-Hill, 1998.

V. K. Garg and J. E. Wilkes, Wireless and Personal Communications Systems,
Upper Saddle River, NJ: Prentice Hall, 1996.

In addition to the above listed books, a number of other books are available that
treat specific topics within the broader area of cellular and mobile communications.
Although this list is growing rapidly, representative examples available at the cur-
rent time include the following:

“TranterBook” — 2003/11/18 — 16:12 — page 707 — #725
�

�

�

�

�

�

�

�

Section 17.6. References 707

H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Upper Saddle
River, NJ: Prentice Hall, 2000.

V. K. Garg and J. E. Wilkes, Principles and Applications of GSM, Upper Saddle
River, NJ: Prentice Hall, 1999.

J. C. Liberti, Jr. and T. S. Rappaport, Smart Antennas for Wireless Communica-
tions: IS-95 and Third Generation CDMA Applications, Upper Saddle River,
NJ: Prentice Hall, 1999.

B. Pattan, Satellite-Based Cellular Communications, New York: McGraw-Hill,
1998.

B. Pattan, Robust Modulation Methods & Smart Antennas in Wireless Communi-
cations, Upper Saddle River, NJ: Prentice Hall, 2000.

17.6 References

1. T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall, 2002.

2. J. C. Liberti Jr. and T. S. Rappaport, Smart Antennas for Wireless Com-
munications: IS-95 and Third Generation CDMA Applications, Upper Saddle
River, NJ: Prentice Hall, 1999.

3. A. A. M. Saleh and R. A. Valenzuela, “A Statistical Model for Indoor Mul-
tipath Propagation,” IEEE Journal on Selected Areas on Communications,
Vol. JSAC-5, No. 2, February 1987, pp. 128–137.

4. T. S. Rappaport et al., “Statistical Channel Impulse Response Models for Fac-
tory and Open Plan Building Radio Communication System Design,” IEEE
Transactions on Communications, Vol. COM-39, No. 5, May 1991, pp. 794–
806.

5. D. C. Cox, R. Morris, and A. Norris, “800 MHz Attenuation Measured in and
Around Suburban Houses,” AT&T Bell Laboratories Technical Journal, Vol.
673, No. 6, July-August 1984.

6. H. Hashemi, “The Indoor Radio Propagation Channel,” Proceedings of the
IEEE, Vol. 81, No. 7, July 1993, pp. 943–968.

7. A. A. Abu-Dayya and N. C. Beaulieu, “Outage Probabilities in the Pres-
ence of Correlated Log-Normal Interferers,” IEEE Transactions on Vehicular
Technology, Vol. 43, No. 1, February 1994, pp. 164–173.

8. S. C. Schwartz and Y. S. Yeh, “On the Distribution Function and Moments
of Power Sums with Lognormal Interferers,” Bell System Technical Journal,
Vol. 61, September 1982, pp. 1441–1462.

“TranterBook” — 2003/11/18 — 16:12 — page 708 — #726
�

�

�

�

�

�

�

�

708 Case Study: Simulation of a Cellular Radio System Chapter 17

9. L. F. Fenton, “The Sum of Log-Normal Probability Distributions in Scatter
Transmission Systems,” IRE Transactions on Communications Systems, Vol.
CS-8, March 1960, pp. 57–67.

10. P. Cardieri and T. S. Rappaport, “Statistical Analysis of Co-Channel Inter-
ference in Wireless Communications Systems,” Wireless Communications and
Mobile Computing, Vol. 1, No. 1, January-March 2001, pp. 111–121.

11. P. Cardieri and T. S. Rappaport, “Application of Narrow-Beam Antennas
and Fractional Loading Factor in Cellular Communication Systems,” IEEE
Transactions on Vehicular Technology, Vol. 50, No. 2, March 2001, pp. 1–11.

17.7 Problems

17.1 Determine the smallest allowable physical distance between the centers of
co-channel cells if N = 4 reuse is used, and each cell has a radius of 2 km.

17.2 What would the proper cellular reuse factor be if the minimum distance in
Problem 17.1 was designed for 6 km?

17.3 Using your answer in Problem 17.2, how many channels would be assigned to
each cell assuming that the authorized spectrum was 20 MHz in bandwidth,
and each duplex channel used 100 kHz forward link and 100 kHz reverse link?

17.4 Assume the signal to interference ratio SIR follows a Gaussian distribution
with mean 30 dB and standard deviation 10 dB. Compute the outage proba-
bility at SIR0 = 17 dB.

17.5 Derive the Erlang B expression given in (17.7).

17.6 Execute the MATLAB script given in Appendix A to validate that it repro-
duces the Erlang B blocking probability shown in Figure 17.3.

17.7 Assume that the allocated spectrum for a cellular system is 25 MHz in band-
width, for a single link, and that each channel uses 200 kHz. Also, assume
that 50% of the users generate a traffic of 0.25 Erlang/user, while the other
50% generate 0.02 Erlang/user. For cluster sizes N = 3, 4, and 7, compute
the maximum number of users per cell, at blocking probability 0.02.

17.8 Sectoring offers improvement in interference, but creates capacity loss due to
trunking. This is shown in Example 17.4 in the text. Rework Example 17.4
for the following cellular architectures: (a) cluster size N = 3, with 3 sectors
per cell; (b) cluster size N = 3, with 6 sectors per cell.

17.9 Using a Gaussian random number generator to represent independent lognor-
mal shadowing about the distance-dependent mean path loss, estimate the
mean and standard deviation of SIR at points A, B, and C indicated in Fig-
ure 17.17. Also, compute the outage probability at SIR0 = 17 dB at all three

“TranterBook” — 2003/11/18 — 16:12 — page 709 — #727
�

�

�

�

�

�

�

�

Section 17.7. Problems 709

1000 m

2000 m

4,000 m

D = 6000 m

Interfering
Base Station

Serving
Base Station

AB C

Figure 17.17 Serving and interfering base stations in Problem 17.9.

locations. Assume path loss exponent γ = 3.5 and shadowing with stan-
dard deviation 8 dB. Both base stations transmit at 10 W and are equipped
with omnidirectional antennas. Assume that the T-R separation distances are
much larger than the base station antenna height. Compare your simulation
results with analytical results.

17.10 Using Wilkinson’s method compute the mean and standard deviation for the
sum of two uncorrelated lognormal signals (see Figure 17.18). Assume the
first signal has a mean of −50 dBm, and the second has a mean of −45 dBm.
Assume both signals have the same standard deviation of 7 dB.

Resultant signal

2 ()s t1()s t

Figure 17.18 Illustration for Problem 17.10.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 710 --- #728
�

�

�

�

�

�

�

�

710 Case Study: Simulation of a Cellular Radio System Chapter 17

17.8 Appendix A: Program for Generating
the Erlang B Chart

% File: c17_erlangb.m
C_1 = [1:10];
A_1 = linspace(0.1,10,50);
C_2 = [12:2:20];
A_2 = linspace(3,20,50);
C_3 = [30:10:100];
A_3 = linspace(13,120,50);
for i = 1:length(C_1)

for j = 1:length(A_1)
p_1(j,i) = erlang_b(A_1(j),C_1(i));

end
end
for i = 1:length(C_2)

for j = 1:length(A_2)
p_2(j,i) = erlang_b(A_2(j),C_2(i));

end
end
for i = 1:length(C_3)

for j = 1:length(A_3)
p_3(j,i) = erlang_b(A_3(j),C_3(i));

end
end
%
% The following code plots the results.
x1 = [.1 .1 .2 .2 .3 .3 .4 .4 .5 .5 .6 .6 .7 .7 .8 .8 .9 .9];
y1 = 10.^[-4 1 1 -4 -4 1 1 -4 -4 1 1 -4 -4 1 1 -4 -4 -1];
y2 = [.1 .1 .2 .2 .3 .3 .4 .4 .5 .5 .6 .6 .7 .7 .8 .8 .9 .9];
x2 = 10.^[-1 3 3 -1 -1 3 3 -1 -1 3 3 -1 -1 3 3 -1 -1 3];
loglog(A_1,p_1,‘k-’,A_2,p_2,‘k-’,A_3,p_3,‘k-’,...
x1,y1,‘k:’,10*x1,y1,‘k:’,...
100*x1,y1,‘k:’,1000*x1,y1,‘k:’,...
x2,y2,‘k:’,x2,0.1*y2,‘k:’,x2,0.01*y2,‘k:’);

xlabel(‘Offered traffic (Erlangs)’)
ylabel(‘Blocking probability’)
axis([0.1 120 0.001 0.1])
text(.115, .115,‘C=1’)
text(.6, .115,‘C=2’)
text(1.18, .115,‘3’)
text(2, .115,‘4’)
text(2.8, .115,‘5’)
text(7, .115,‘10’)
text(9, .115,‘12’)

“TranterBook” — 2003/11/18 — 16:12 — page 711 — #729
�

�

�

�

�

�

�

�

Section 17.8. Appendix A: Program for Generating the Erlang B Chart 711

text(17, .115,‘20’)
text(27, .115,‘30’)
text(45, .115,‘50’)
text(100, .115,‘100’)
% End of script file.

The preceding MATLAB program makes the function call erlang b(A,c). The
code for erlang b(A,c) is listed in Section 17.2.2.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 712 --- #730
�

�

�

�

�

�

�

�

712 Case Study: Simulation of a Cellular Radio System Chapter 17

17.9 Appendix B: Initialization Code for Simulation

The code that follows is the initialization code for the cellular simulation. The
overall simulation can be developed by adding the code segments given in Section
17.3 to this initialization code.

% ===== Pre-defined simulation parameters ==========================
r_cell = 1000; % cell radius (in meters)
n_co_ch_users = 6; % number of co-channel users
P_BS = 0; % BS transmitter power (in dBW)
P_MS = 0; % MS transmitter power (in dBW)
corr_fwd = 0.0; % correlation coefficient - forward link
corr_rev = 0.0; % correlation coefficient - reverse link
K = 1; % constant in the link equation
in_beam = 0; % maximum gain of sectorized antennas (in dB)
%
% --- Limits (angles) of each sector ---
sector_min = zeros(6,3);
sector_max = zeros(6,3);
sector_min(:,1) = (pi/3)*[-3:2]’;
sector_min([1:3],2) = pi/3*[-3 -1 1]’;
sector_min(1,3) = -pi;
sector_max(:,1) = sector_min(:,1) + pi/3;
sector_max([1:3],2) = sector_min([1:3],2) + 2*pi/3;
sector_max(1,3) = pi;
%
% --- Center of each sector ----
phi_center = zeros(6,3);
phi_center(:,1) = (pi/3)*[-3:2]’;
phi_center([1:3],2) = (pi/3)*[-3 -1 1]’;
%
% --- Beamwidth of each sector ---
phi_BW = [1 2 6]*pi/3;
%
% --- Number of sectors -----
num_sectors = [6 3 1];
%
% ===== User Inputs ===
num_snapshots = input(‘Number of snapshots = ’);
cluster_size = input(‘Cluster size (3, 4 or 7) = ’);
n_path = input(‘Path loss exponent = ’);
sigma_int = input(‘Shadowing std deviation - interference (dB) = ’);
sigma_S = input(‘Shadowing std deviation - desired signal (dB) = ’);
sec = input(‘Sectorization...

(1=>60 degree, 2=>120 degree, 3=>omni). enter: ’);
ftb = input(‘Front-to-back ratio of the BS antennas (dB) = ’);

“TranterBook” — 2003/11/18 — 16:12 — page 713 — #731
�

�

�

�

�

�

�

�

Section 17.9. Appendix B: Initialization Code for Simulation 713

out_beam = in_beam - ftb;
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 714 — #732
�

�

�

�

�

�

�

�

714 Case Study: Simulation of a Cellular Radio System Chapter 17

17.10 Appendix C: Modeling Co-Channel Interference

Consider the situation in which N interference signals arrive at a receiver from N co-
channel transmitters. Assuming that the effects of small-scale fading are averaged
out, the local mean power level Ii of the ith signal undergoes lognormal variation.
Using decibel units, the local mean power level can be modeled as [1, 2]

Xi = 10 log10 Ii = mXi + χi dBW (17.51)

where mXi is the area mean power (or, alternatively, average large-scale propagation
path loss) and χi is a zero-mean normally distributed RV in dB with standard
deviation σXi , also in dB, due to the shadowing caused by large obstacles [1, 2]. The
area mean mXi is usually modeled as a function of the T-R separation distance di,
the path loss exponent n, the transmitted power PT,i in dBm, and the transmitter
and receiver antenna gains GT,i and GR,i, both in dB. This gives

mXi = PT,i + GT,i + GR,i − 10n log10 di dBW (17.52)

Under the reasonable assumption that the individual signals Ii add incoherently,
the total interference signal is modeled as the sum of N lognormally distributed
signals

I =
N∑

i=1

Ii (17.53)

The distribution of I is an important consideration for modeling the impact of
multiple interferers, and thus dictates the resulting total interference at a receiver.
Multiple transmitters, displaced throughout a geographic area, may each provide
different levels of interference, based on the particular physical distances to the
receiver. Thus, the effects of shadowing upon each interfering signal and the sum
of the interference at the receiver from all interfering signals must be considered
to determine an accurate interference level at any particular location. Note that,
depending on the strength of the particular individual interferers, the resulting
composite interference level may vary widely, and if each interferer produces a
random signal level, the composite signal level will also be random. It is well
accepted that the distribution of I can be approximated by another lognormal
distribution [7–10], or, equivalently, that

X = 10 log10 I (17.54)

follows a normal distribution. Assuming that the sum I is lognormally distributed,
Wilkinson’s method [9] and and Schwartz and Yeh’s method [8] allow for the com-
putation of the mean mX and standard deviation σX of X .

In the derivation of these two methods, it is convenient to use the natural log-
arithm instead of the base 10 logarithm to define the normal RV that corresponds
to a lognormal RV. Thus, we define the normal RV Yi as

Yi = ln Ii (17.55)

“TranterBook” — 2003/11/18 — 16:12 — page 715 — #733
�

�

�

�

�

�

�

�

Section 17.10. Appendix C: Modeling Co-Channel Interference 715

with mean value mYi and standard deviation σYi given, respectively, by

mYi = λ mXi and σYi = λ σXi (17.56)

where λ = ln(10)/10. Note that Yi = λXi.
Using (17.53) and (17.55) and recalling that we are approximating the distribu-

tion of I by a lognormal distribution, we have

I = eY1 + eY2 + · · · + eYN ≈ eZ = 10X/10 (17.57)

where Z (in logarithmic units) and X (in dB) are normally distributed, and Z = λX .
Either Wilkinson’s method or Schwartz and Yeh’s method can then be used to
compute the mean value and standard deviation of Z (mZ and σZ) or X (mX and
σX) from the mean values and standard deviations of the summands Yi, as shown
subsequently.

For generality, it is useful to assume that the individual signals Ii may be corre-
lated to each other. This correlation may be due to the fact that there is a common
physical obstruction that induces shadowing loss for particular propagation paths,
such as vegetation or building structures. Therefore, even signals coming from dif-
ferent directions may be attenuated by the same obstacles, leading to correlation
among the received signals. To consider the correlated interference signals case, let
us define the correlation coefficient rYi,Yj of Yi and Yj by

rYi,Yj =
E{(Yi − mYi)(Yj − mYj)}

σYi σYj

(17.58)

Since Yi is simply a scaled version of Xi, it follows that rYi,Yj is the correlation
coefficient of Xi and Xj.

17.10.1 Wilkinson’s Method

According to Wilkinson’s method, the mean value and standard deviation of Z in
(17.57) are found by matching the first and second moments of I with those of
I1 + I2 + · · · + IN . For the first moment, we have

E{eZ} = E{eY1 + eY2 + · · · + eYN} (17.59)

The moments in (17.59) are evaluated by observing that, for a normal RV u with
mean value mu and variance σ2

u, and any integer l, it turns out that [14]

E{elu} = exp(lmu +
1
2
l2σ2

u) (17.60)

where l denotes the moment order for the normal random variable u. Therefore, to
evaluate the first moment of exp(Z) where the random variable Z is assumed to be
Gaussian, we see that

E{eZ} = exp(mZ + σ2
Z/2) (17.61)

“TranterBook” — 2003/11/18 — 16:12 — page 716 — #734
�

�

�

�

�

�

�

�

716 Case Study: Simulation of a Cellular Radio System Chapter 17

and

E{eY1 + eY2 + · · · + eYN} =
N∑

i=1

exp(mYi + σ2
Yi

/2) (17.62)

Using (17.61) and (17.62) in (17.59), we have

u1 = exp(mZ + σ2
Z/2) =

N∑
i=1

exp(mYi + σ2
Yi

/2) (17.63)

The summation in (17.63) is a function of the mean values mYi and standard de-
viations σYi of the summands Yi, which are assumed to be known either through
measurement or through the use of a propagation model.

Matching the second moments of I and I1 + I2 + · · · + IN , we have

E{e2Z} = E{(eY1 + eY2 + · · · + eYN)2} (17.64)

Using again the property (17.60) in both sides of (17.64), we obtain

u2 = exp(2mZ + 2σ2
Z) (17.65)

which is

u2 =
N∑

i=1

exp(2mYi + 2σ2
Yi

) + 2
N−1∑
i=1

N∑
j=i+1

exp(mYi + mYj)

· exp
[
1
2
(σ2

Yi
+ σ2

Yj
+ 2rYi,Yj σYiσYj)

]
(17.66)

Equation (17.66) can be evaluated using the mean values mYi , standard deviations
σYi and correlation coefficients rYi,Yj .

Equations (17.63) and (17.66) form a system of equations with unknowns mZ

and σZ . By solving this system of equations, and using Z = λX , we finally obtain

mX = (1/λ)(2 lnu1 − 1
2

ln u2) (17.67)

σX = (1/λ)
√

ln u2 − 2 ln u1 (17.68)

Therefore, Wilkinson’s method consists of computing the terms u1 and u2 using
(17.63) and (17.66), applying the means, standard deviations, and correlation co-
efficients of the summands, and solving the system of equations defined by (17.67)
and (17.68). An important feature of Wilkinson’s method is that the assumption
of
∑

i Ii being lognormally distributed is actually used in the computation of mX

and σX . The MATLAB program for Wilkinson’s method is given in Appendix D.

“TranterBook” — 2003/11/18 — 16:12 — page 717 — #735
�

�

�

�

�

�

�

�

Section 17.10. Appendix C: Modeling Co-Channel Interference 717

17.10.2 Schwartz and Yeh’s Method

Schwartz and Yeh proposed a method based on the exact computation of the mean
value mX and standard deviation σX of the sum of N = 2 lognormal RVs. For
N > 2, a recursive approach is used, approximating the sum of two lognormal RVs
by another lognormal RV, and computing the mean and standard deviation of the
sum. The details of this method are not included here. The interested student is
referred to the literature [8, 10].

“TranterBook” — 2003/11/18 — 16:12 — page 718 — #736
�

�

�

�

�

�

�

�

718 Case Study: Simulation of a Cellular Radio System Chapter 17

17.11 Appendix D: MATLAB Code for Wilkinson’s Method

% File: wilkinson.m
function [m_out,std_out] = wilkinson(m_x,std_x,r)
% this function computes the mean and standard deviation
% of the sum of two lognormal RV’s
% Input and ouput values are in dB.
lambda = 0.1*log(10);
m_x_cmp = m_x;
v_x_cmp = std_x.^2;
m_y = lambda*m_x_cmp;
v_y = (lambda^2)*v_x_cmp;
u_1 = 0;
for i = 1:length(m_y)

u_1 = u_1 + exp(m_y(i) + v_y(i)/2);
end
a = 0;
for i = 1:length(m_y)

a = a + exp(2*m_y(i) + 2*v_y(i));
end
b = 0;
for i = 1:length(m_y)-1

for j = i+1:length(m_y)
b = b + exp(m_y(i) + m_y(j))*...
exp(0.5*(v_y(i) + v_y(j) + ...
2*r*sqrt(v_y(i))*sqrt(v_y(j))));

end
end
u_2 = a + 2*b;
% mean and variance or the variable Z, which is normal
% in natural units
m_z = 2*log(u_1) - 0.5*log(u_2);
std_z = sqrt(log(u_2) - 2*log(u_1));
% mean and variance of the variable X, which is normal in dB.
g = 10*log10(exp(1));
m_out = g*m_z;
std_out = g*std_z;
% End of function file.

“TranterBook” — 2003/11/18 — 16:12 — page 719 — #737
�

�

�

�

�

�

�

�

Chapter 18

TWO EXAMPLE
SIMULATIONS

We conclude our study of simulation techniques and methodology by presenting
two very different examples. The first example is a simulation of a CDMA system
operating in a multipath/fading environment. Thermal noise and interference are
also included in the simulation model. A number of performance results can be
generated by the simulation model. These include the bit error rate (BER) as
a function of the thermal noise level (PE versus Eb/N0), BER as a function of
the spreading factor (spread-spectrum processing gain), and BER as a function of
the number of interfering signals. Even though the system presented here is more
complex than those presented in previous chapters, a number of simplifications are
made so that the MATLAB code can be executed with a reasonable runtime. If
desired, the simplifications can be removed and the resulting simulations can be
coded in a compiled language for faster execution. Thus, this example can serve as
a template for more advanced investigations. Monte Carlo simulation is used for
this first example.

The second example is a multichannel (FDM) satellite communications system.
A nonlinear power amplifier is assumed, and the purpose of the simulation is to
evaluate the effect of the nonlinearity on the performance of the system. This second
simulation makes use of the semianalytic simulation technique. Since semianalytic

719

“TranterBook” — 2003/11/18 — 16:12 — page 720 — #738
�

�

�

�

�

�

�

�

720 Two Example Simulations Chapter 18

simulations typically execute much faster than Monte Carlo simulations, simplifying
the simulation model is not as important as in the CDMA example.

18.1 A Code-Division Multiple Access System

The code-division multiple access (CDMA) simulator emulates a simple CDMA
communications link. CDMA systems are widely deployed, and also serve as build-
ing blocks for more advanced systems. They are described in detail in the literature
[1, 2]. A block diagram of the simulation model is illustrated in Figure 18.1. The
simulation includes the effects of Additive White Gaussian Noise (AWGN), specular
multipath, and Multiple Access Interference (MAI). Using this simulation, one can
estimate the BER as a function of the bit energy to noise spectral density ratio
(Eb/N0), the number of interferers (NoI), and the spreading factor (SF). One may
apply any specular multipath channel provided that the channel has no more than
five multipath components.

18.1.1 The System

Unlike FDMA (frequency division multiple access) or TDMA (time division multiple
access), which separate wireless users by assigning different frequency bands or
time slots, respectively, CDMA separates users through the assignment of different
signature (code) sequences. Accordingly, a particular CDMA system will have at
its disposal a signature sequence set consisting of a collection of pseudo-random
sequences. This collection of sequences must have low cross-correlation properties;
that is, the inner product of any two sequences in this collection must be small.
This is necessary so that the receiver can accept the signal from a desired wireless
user while rejecting the signals from the other (undesired) co-channel wireless users.
In addition, each sequence in this collection must have correlation properties that
allow the multipath effects commonly found in wireless channels to be exploited
through the use of RAKE receivers or through space-time reception techniques.

The CDMA system assigns each user a specific signature sequence from the
signature sequence set. This signature sequence is used to generate a spreading
waveform, whose symbol rate (hereafter called the chip rate) is much higher than
the symbol rate of the information-bearing signal (hereafter called the symbol rate).
The ratio of the chip rate to the symbol rate is called the spreading factor or
processing gain. Spreading factors typically range from values as low as 8 to values
as high as 512.

CDMA systems typically use direct sequence spread spectrum techniques. The
information-bearing waveform is modulated (multiplied) by the user’s spreading
waveform to produce a spread spectrum signal, which is then radiated into the
channel. At the channel output, the receiver (we assume a simple correlation re-
ceiver) correlates the incoming signal with the user’s spreading (signature) wave-
form. This accomplishes two tasks. It allows the user’s information-bearing sig-
nal (the desired signal) to pass through the correlation receiver, and it rejects the
information-bearing signals (interference) of all other users.

“TranterBook” — 2003/11/18 — 16:12 — page 721 — #739
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 721

Despread
Received

Signal

Detect
Despread
Signal

Compare
Detected

Symbols with
Desired Symbols

Compute BER and
Error Run Vector

Generate Additive
White Gaussian

Noise

Combine Desired,
Interfering, and
Noise Signals

Generate
Signature
Sequence

Generate
BPSK

Symbols

Spread
Symbols

Apply
Multipath
Channel

Generate
Signature
Sequence

Generate
BPSK

Symbols

Spread
Symbols

Apply
Multipath
Channel

Compute
HMM

Desired User

Interfering Users

Different
Program

Figure 18.1 Methodology for CDMA example.

In order to create a computationally efficient simulation of a CDMA communi-
cations link, the following simplifications/assumptions are incorporated:

1. Perfect power control is assumed, and each signal is assumed to arrive at the
receiver with equal average power.

2. The signature/spreading sequence for the desired signal is a PN-sequence, as
discussed in Chapter 7. Accordingly, the allowable spreading factors must be
equal to 2R − 1, where R is a positive integer.

“TranterBook” — 2003/11/18 — 16:12 — page 722 — #740
�

�

�

�

�

�

�

�

722 Two Example Simulations Chapter 18

3. The signature/spreading sequence used for each MAI signal is the same PN-
sequence. However, the PN-sequence is shifted in a circular fashion so as to
achieve the desired correlation properties. It is important to note that, even
though these desired correlation properties are guaranteed in an AWGN chan-
nel, it is possible to lose these correlation properties in a specular multipath
channel, as modeled here, since the desired and interfering signals are sepa-
rated in time by an integer number of chips. There is a small probability that
these delays may equal the multipath delays, resulting in pessimistic results
when simultaneously simulating interference and multipath.

4. Binary phase shift keying modulation is assumed and pulse shaping is neglected.

5. The multipath channel exhibits Rayleigh fading on each multipath component
with the exception of the line-of-sight component, which is not faded. The
interfering signals do not exhibit fading.

6. The delays of each multipath component are limited to integer multiples of
the chip duration.

7. The desired signal and all MAI signals are chip synchronized at the receiver.

8. The receiver is a simple correlation receiver. No rake receiver is used.

Neglecting the detailed modeling of the pulse shape and the corresponding matched
filters at the receiver has a dramatic effect on the speed at which the simulation
executes, since the underlying waveforms in the system can be executed at one
sample per chip. Reasonable results will be obtained if zero-ISI pulse shapes (e.g.,
root raised cosine pulse shape) are used in the system.1

In a practical application, channel measurements would be used to determine a
power-delay profile, and the simulation would be executed using a suitable approxi-
mation to the measured power-delay profile. This ensures that the simulation model
accurately characterizes the environment in which the wireless system is deployed.
In this simulation, however, it is important to note that a delay profile is explicitly
specified and the power profile is computed so that a given Ricean K-factor is satis-
fied. The motivation for doing this lies in the fact that students of communication
theory have some understanding of the relationship between system performance
and the Ricean K-factor. For example, for K large, system performance is essen-
tially equivalent to performance in an additive Gaussian noise environment. For
K ∼= 0, the environment is Rayleigh fading and can be flat fading or frequency
selective fading depending on the number of multipath components and the delays
associated with those components. Analytical solutions for the BER exist for both
of these limiting situations [3], and these solutions serve as sanity checks for the
simulation results.

1At the time of this writing, a detailed simulation of the wideband CDMA
(WCDMA) uplink and downlink standards, which does not contain these resrtic-
tions, can be downloaded from the Virginia Tech MPRG web site. The URL is
http://www.mprg.org/research/wcdma/wcdmasim.php.

“TranterBook” — 2003/11/18 — 16:12 — page 723 — #741
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 723

For this simulation, the multipath delay profile is simply a vector of integers,
where each integer represents the delay of each multipath component in terms of the
chip periods, which is the symbol period divided by the spreading factor. The sim-
ulation assumes that the first element in this vector corresponds to the line-of-sight
(LOS) component and that the remaining elements correspond to the scattered
(multipath) components. The length of this vector is determined by the total num-
ber of received components (the LOS component plus the scattered components).

After the delay profile and the Ricean K-factor is specified, a power profile is
calculated so that the specified K-factor is realized. The resulting power profile,
along with the delay profile, can be displayed by the postprocessor if desired. One
may also modify the simulation code to support the input of both a delay and power
profile. Such a modification is a straightforward endeavor.

We now examine the manner in which the power profile is determined so that
the specified Ricean K-factor is satisfied. The average amplitude of each scattered
component is produced via a random number generator, having outputs uniformly
distributed between 0 and 1. Let

Ascat =
[

α1 α2 · · · αM−1

]
(18.1)

denote the average amplitude of each scattered component. Note that M is the
total number of multipath components (M − 1 scattered signals plus the line-of-
sight component). One can then compute the average scattered energy, which is
given by

Escat =
M−1∑
i=1

α2
i (18.2)

The average energy in the LOS component is computed as

ELOS = KEscat (18.3)

where K is the Ricean K-factor. The average amplitude of the LOS component is
then

αLOS =
√

ELOS (18.4)

The average amplitude profile is obtained by adding αLOS to the vector for the
scattered components Ascat. The resulting vector is then normalized so that the
strongest multipath component has a value of 1.0. Thus:

A =

[
αLOS α1 α2 · · · αM−1

]
max

{[
αLOS α1 α2 · · · αM−1

]}
=
[

aLOS a1 a2 · · · aM−1

]
(18.5)

The power profile is then obtained by squaring the elements in A. Therefore:

P =
[

a2
LOS a2

1 a2
2 · · · a2

M−1

]
(18.6)

“TranterBook” — 2003/11/18 — 16:12 — page 724 — #742
�

�

�

�

�

�

�

�

724 Two Example Simulations Chapter 18

Clearly, for cases where K > 1, the LOS component will be the strongest received
component, and aLOS = 1.0. However, for the case in which K ≤ 1, the situation is
not as clear. In such a case, the average scattered energy exceeds the average energy
in the LOS component. However, the average scattered energy, Escat, may be spread
across several multipath components. In such situations, the LOS component may,
or may not, be the strongest multipath component. Displaying the power profile
will, of course, allow the user to identify the strongest received component.

Once the delay profile and the amplitude (power) profile are specified, the chan-
nel model is determined. The channel model is illustrated in Figure 18.2. The
Rayleigh random process generator is illustrated in Figure 18.3 and is implemented
as discussed in Chapter 7. Two independent Gaussian random variables, xd[n] and
xq[n], are generated and filtered to produce yd[n] and yq[n]. The filter type in
the Rayleigh process generator is arbitrary and was chosen to be a fourth-order
Chebyshev filter with 0.5 dB passband ripple and a bandwidth equal to the doppler
frequency. The magnitude,

√
y2

d[n] + y2
q [n], is a Rayleigh random variable.

The simulation also requires the specification of the Eb/N0 parameter. This
parameter determines the ratio of the average bit energy in the strongest multipath
component (the LOS component for K > 1) to the thermal noise energy, that
is, Eb/N0. Note that the average power of the strongest multipath component
will be normalized to unity. Accordingly, the simulation scales the energy of the
white Gaussian (thermal) noise so that average Eb/N0 in the strongest multipath
component equals the Eb/N0 parameter

18.1.2 The Simulation Program

The example CDMA simulation has a block serial structure in which blocks of 1,000
symbols are serially processed. As discussed in Chapter 10, the block serial structure
is used for computational efficiency. The simulation is completely contained in the
function c18 cdmasim. It is invoked by the MATLAB call

[BER, Errors] = c18 cdmasim(N, SF, EbNo, NoI, MPathDelay, KfactordB) (18.7)

The MATLAB code for the function c18 cdmasim is given in Appendix A. The
preceding line of MATLAB code fully defines the main simulation program (the
simulation engine). To this is added a preprocessor and a postprocessor. For our
application, these are combined into a single program. An example preproces-
sor/postprocessor is also given in Appendix A. These should be viewed only as
examples, and the student is encouraged to experiment with these and customize
them as desired.

The input parameters are defined in Table 18.1. It is important to observe the
restrictions. Note that these restrictions apply to each call to the simulator. One
may certainly develop a preprocessor in which a given parameter is iterated over a
range of values.

“TranterBook” — 2003/11/18 — 16:12 — page 725 — #743
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 725

Rayleigh
Process

Generator

Receiver Input
Co-channel Interference

Noise

LOS
Component

Transmitted Signal (Baseband)

τ M −1
τ 2τ 1 τ LOS = 0

aLOS

a1

Rayleigh
Process

Generator
a2

Rayleigh
Process

Generator
aM −1

Delay
Profile

Amplitude
Profile

Figure 18.2 Channel model for CDMA example.

Bivariate
Gaussian

Noise
Generator

Lowpass
Filter

()⋅

Rayleigh
Random Process

y nq[]x nq[]

y nd []x nd []

Figure 18.3 Rayleigh random process generator.

“TranterBook” — 2003/11/18 — 16:12 — page 726 — #744
�

�

�

�

�

�

�

�

726 Two Example Simulations Chapter 18

Table 18.1 CDMA System Input Parameters

Parameter Type Description Restrictions
N Scalar Number of symbols

simulated
None

SF Scalar Spreading factor SF = 2n, n ≤ 12
Eb/N0 Scalar Ratio of bit energy to

noise PSD
None

NoI Scalar Number of Interferers 0 ≤ NoI ≤ SF−1
MPathDelay Vector Multipath delay profile Vector of monotonically

increasing non-negative
integers

KfactordB Scalar Ricean K-factor in dB None

18.1.3 Example Simulations

Baseline Validation

In order to ensure that the simulation is properly calibrated, the CDMA simulator
was first executed with a Ricean K-factor of 100 dB. This K-factor is sufficiently
large to ensure that, even though a very small level of multipath is present, the
scattered power is sufficiently attenuated to make the approximation that all of
the received power is in the LOS component. Thus, the only degrading effect is
Gaussian noise and, as a result, the error probability for the system is

PE = Q

(√
2Eb

N0

)
(18.8)

The simulation was performed with N = 200,000 symbols processed for each value
of Eb/N0. The value of Eb/N0 was varied from 0 to 8 dB in 1-dB steps. The
MATLAB dialog for the simulation run is

>> c18_cdmacal
Enter number of symbols to be processed > 200000
Enter Eb/No vector > 0:8

The results are given in Table 18.2 and in Figure 18.4. The number of errors
occurring for each value of Eb/N0 are given in Table 18.2. This data is particu-
larly important in a calibration run to ensure that a sufficient number of errors

Table 18.2 Error Counts for Calibration Run

Eb/N0 (dB) 0 1 2 3 4 5 6 7 8
Errors 15773 11347 7583 4516 2416 1169 475 159 53

“TranterBook” — 2003/11/18 — 16:12 — page 727 — #745
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 727

0 1 2 3 4 5 6 7 8
10

-4

10
-3

10
-2

10
-1

E
b
/N

0
 in dB

P
ro

ba
bi

lit
y

 o
f

S
ym

bo
l E

rr
or

Figure 18.4 Result of calibration run.

are obtained at each value of Eb/N0 to provide sufficient statistical reliability. The
probability of error PE as a function of Eb/N0 is given in Figure 18.4. The solid
line gives the theoretical result described by (18.8) and the simulation results are
indicated by the plus signs at integer values of Eb/N0. It can be seen that accurate
results are achieved except, perhaps, for Eb/N0 = 8 dB. Table 18.2 indicates that
the error probability for Eb/N0 = 8 dB is based on 53 errors, which is small com-
pared to the number of errors occurring at other values of Eb/N0. The MATLAB
preprocessor code is given in Appendix B (c18 cdmacal.m).

Performance as a Function of Eb/N0 and the Ricean K-factor

This example generates the BER as a function of both Eb/N0 and the Ricean
K-factor. Thus, two of the variables given in Table 18.1 must be iterated. Specif-
ically, Eb/N0 is stepped from 0 dB to 10 dB in 1-dB steps. Three values of the
Ricean K-factor are used; −20 dB, 0 dB, and 20 dB. The processor/postprocessor
(c18 cdmaex1.m) used to generate these results is given in Appendix B. The follow-
ing dialog is used:

“TranterBook” — 2003/11/18 — 16:12 — page 728 — #746
�

�

�

�

�

�

�

�

728 Two Example Simulations Chapter 18

>> c18_cdmaex1
Enter number of symbols to be processed > 100000
Enter Eb/No vector > 0:10
Enter KfatordB vector > [-20 0 20]

Executing the program yields the results illustrated in Figure 18.5. The top curve
in Figure 18.5 corresponds to a K-factor of −20 dB (K = 0.01), which produces
a result closely approximating Rayleigh fading. The bottom curve in Figure 18.5
corresponds to a K-factor of 20 dB (K = 100), which produces a result closely
approximating performance in a Gaussian noise environment. Results for both large
K and K ∼= 0 can be derived analytically [3] and used to verify the simulation. The
middle curve corresponds to a K-factor of 0 dB (K = 1) and is usually derived
using simulation. Note that the middle curve (K = 1) is less smooth than the
other curves. This is due to the time-varying nature of the channel, which is most
pronounced for intermediate values of K, where the power in the LOS component
and the total scattered power are approximately equal. Very long simulations are
required to smooth out these temporal variations.

0 1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 in dB

P
ro

ba
bi

lit
y

of
 S

ym
bo

l E
rr

or

Figure 18.5 Error probability as a function of Eb/N0 with the Ricean K-factor as a
parameter. (K = 100 (bottom curve), K = 1 (middle curve, and K = 0.01 (top curve))

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 729 --- #747
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 729

There are many other possibilities for making interesting investigations. The
interested student should develop a preprocessor that allows one to study the effect
of the spreading factor for a given delay profile and at a given Eb/N0. This should
be done at several different values of Eb/N0 and for several different delay profiles.
A similar study can be conducted by varying the number of interferers.

It is clear from the preceding paragraph that a number of meaningful simulations
can be generated using this simplified CDMA simulation. As the simplifications are
removed, more parameters are introduced into the simulation model. Running
parametric studies on systems having a large number of parameters generates a
huge amount of data, all of which must be analyzed before a “best” design can be
selected. As a result, the simulation study must be organized carefully so that the
data created by the various simulations can be “mined” in a way that supports
the design by identifying the most critical parameters and acceptable ranges for
these parameters. The process of organizing multiple simulations and mining the
data created by these simulations is not covered in this book. This is, however, an
important topic and should receive attention prior to beginning a detailed simulation
study in which many different simulations are conducted.

18.1.4 Development of Markov Models

Figure 18.1 shows the generation of a hidden Markov model (HMM) for the CDMA
system. This is easily accomplished using the tools discussed in Chapter 15. In
order to determine and evaluate the HMM, three different MATLAB programs are
developed. (The semi-Markov model is used in order to reduce the computational
burden.) The first of these programs executes the CDMA simulation and determines
the semi-Markov model. The second program generates an error vector based on the
state transition matrix of the semi-Markov model. In addition, the bit error rates
based on the CDMA system, the bit error rate predicted by the semi-Markov model,
and the bit error rate based on an error sequence generated by the semi-Markov
model are compared. The third program compares the error vectors created by the
original simulation and by the semi-Markov model. Both the statistical quantity
Pr {0m|1} and a histogram of the error-free run lengths are used in this comparison.
These three programs are now examined.

Program 1: c18 cdmahmm1.m

In this program the parameters of the CDMA simulation are defined and the simu-
lation is executed. As shown in (18.7), two outputs are generated by the simulation.
These are the bit error rate BER and the run-length error vector required for de-
termining the Markov model, which is denoted ErrorRun. Here we generate the
semi-Markov model for the channel operated at K = 1 (0 dB) and an Eb/N0 of 5
dB. The MATLAB program follows:

% File: c18_cdmahmm1.m
N = 100000;
EoNdB = 5; EbNo = 10^(EoNdB/10); % specify Eb/No and Eb/No in dB
KdB = 0; SF = 7; NoI = 0; % specify parameters

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 730 --- #748
�

�

�

�

�

�

�

�

730 Two Example Simulations Chapter 18

MPathDelay = [0 3 4]; % specify multipath delay
%
% Run CDMA simulation.
%
[BER,ErrorRun] = c18_cdmasim(N,SF,EbNo,NoI,MPathDelay,KdB);
%
% Develop runlength vector in required form.
%
lenER = length(ErrorRun);
row2 = zeros(1,lenER);
row2(2:2:lenER)=1;
runcode1(1,:) = ErrorRun; runcode1(2,:) = row2;
%
% Generate semi-Markov model.
%
[A_matrix, pi_est] = c15_semiMarkov(runcode1,50,[2 1]);
save cdmadata1 N BER ErrorRun A_matrix runcode1
% End of script file.

Executing the first program, c18 cdmahmm1, provides the semi-Markov model based
on 50 iterations. This result is

Â =

 0.9494 0 0.0506
0 0.9714 0.0286

0.2251 0.7419 0.0330

 (18.9)

Note that a number of variables are saved to disk. These variables are required
in the other two programs and are saved so that the other two programs can be
executed at a later date.

Program 2: c18 cdmahmm2.m

In the second program, an error vector is generated by processing a sequence of
symbols through the channel represented by the semi-Markov model generated by
the preceding program. In addition, the probability of error is generated using
three techniques. The first bit error probability is generated by the original CDMA
simulation. The second bit error probability is the BER predicted by the semi-
Markov model (raising Â to a high power as described in Chapter 15). The third
bit error probability is determined by counting the errors resulting from passing
a large number of symbols (25,000 in this case) through the semi-Markov channel
model. The MATLAB program follows:

% File: c18_cdmahmm2.m
load cdmadata1 % load data from c18_cdmahmm1
NN = 25000 % number of points to be used
[out] = c18_errvector(A_matrix,NN); % generate error vector
%

“TranterBook” — 2003/11/18 — 16:12 — page 731 — #749
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 731

% Compute and display three error probabilities.
%
pe2 = A_matrix^100;
pe2 = pe2(1,3);
pe3 = sum(out/NN);
a = [‘ The predicted error probabilities for the CDMA system:’];
b = [‘ From the original simulation PE = ’,num2str(BER),‘.’];
c = [‘ Predicted from the semi-Markov model PE = ’,num2str(pe2),‘.’];
d = [‘ From the reconstructed error vector ’,num2str(pe3),‘.’];
%
disp(a)
disp(b) % display PE from simulation
disp(c) % display PE predicted from semi-Markov model
disp(d) % display PE from reconstructed error vecor
save cdmadata2 out
% End of script file.

The error vector based on the HMM is generated by the function c18 errvector,
which is essentially identical to c15 errvector, which was originally discussed in
Chapter 15. The program c18 errvector is given in Appendix C. The only dif-
ferences between c18 errvector and c15 errvector is that c18 errvector is a
function rather than a script and that it generates the error vector for a specific
state transition matrix. Executing the second program, c18 cdmahmm2, provides
the following results:

>> c18_cdmahmm2
NN =

25000
The predicted error probabilities for the CDMA system:

From the original simulation PE = 0.03185.
Predicted from the semi-Markov model PE = 0.032054.
From the reconstructed error vector 0.03204.

We see that the three error probabilities agree closely. It should also be noted that
the error probabilities agree with the point given on Figure 18.5 for K = 1 (middle
curve) and Eb/N0 = 5 dB.

Program 3: c18 cdmahmm3

The third program allows comparison of the original error sequence generated by the
CDMA simulation and the error sequence generated by the semi-Markov model. We
use two comparisons. The first of these is to plot Pr {0m|1} for both error sequences,
as was done in Chapter 15. The second method of comparison is the histogram of
the error-free runs for both sequences. The MATLAB code for accomplishing this
follows:

“TranterBook” — 2003/11/18 — 16:12 — page 732 — #750
�

�

�

�

�

�

�

�

732 Two Example Simulations Chapter 18

% File: c18_cdmahmm3.m
load cdmadata1 % load data from c18_cdmahmm1
load cdmadata2 % load data from c18_cdmahmm2
runcode2 = c15_seglength(out);
c15_intervals2(runcode1,runcode2) % display intervals
%
% Build histograms.
%
aa1 = runcode1(1,:);
efd1 = aa1(1:2:length(aa1));
aa2 = runcode2(1,:);
efd2 = aa2(1:2:length(aa2));
figure
subplot(2,1,1)
[N,x] = hist(efd1,20);
%hist(efd1,x)
bar(x,N,1)
xlabel(‘Histogram Bin’)
ylabel(‘Number of Samples’)
subplot(2,1,2)
hist(efd2,x);
xlabel(‘Histogram Bin’)
ylabel(‘Number of Samples’)
% End of script file.

Executing the program yields the interval display illustrated in Figure 18.6, and the
histograms of the error-free run lengths illustrated in Figure 18.7. In both of these
figures, the results from the CDMA system simulation are shown in the top frame,
and the results from the semi-Markov model are shown in the bottom frame. Both
figures show reasonably good agreement. In Figure 18.7 note the difference in the
scaling for the bar heights. This difference in scaling results because the CDMA
simulation was performed for 100,000 symbols, and in testing the semi-Markov
model, 25,000 symbols were used. Thus, the scale difference is four.

There are several reasons for the differences in the top and bottom frames in
Figures 18.6 and 18.7. First, the HMM must be an accurate representation of the
original channel. This requires that the data sequence upon which the model is
derived be sufficiently long, and that a sufficient number of iterations in deriving
the model be performed, in order to ensure that convergence is reached. Also, an
appropriate number of states must be used. In addition, once the model is derived
it must be tested by processing a sufficient number of symbols in order to obtain
statistically reliable results. These concerns are typically addressed by performing
experiments such as those discussed here.

“TranterBook” — 2003/11/18 — 16:12 — page 733 — #751
�

�

�

�

�

�

�

�

Section 18.1. A Code-Division Multiple Access System 733

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

O riginal sequence - Length of intervals m

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

P
r(

0
m

|1
)

Regenerated sequence - Length of intervals m
Figure 18.6 Pr {0m|1} for original error vector (top frame) and Pr {0m|1} for the recon-
structed error vector (bottom frame).

0 50 100 150 200 250 300
0

500

1000

1500

His togram Bin

N
u

m
b

er
 o

f
S

a
m

p
le

s

0 50 100 150 200 250 300
0

100

200

300

His togram Bin

N
u

m
be

r
of

 S
a

m
p

le
s

Figure 18.7 Histogram of error-free run for original error vector (top frame) and for the
reconstructed error vector (bottom frame).

“TranterBook” — 2003/11/18 — 16:12 — page 734 — #752
�

�

�

�

�

�

�

�

734 Two Example Simulations Chapter 18

18.2 FDM System with a Nonlinear Satellite Transponder

The primary objective of this example is to examine a simulation study that il-
lustrates several important modeling and simulation techniques. Important con-
cepts illustrated in this example include the lowpass representation of FDM signals,
AM/AM and AM/PM nonlinear models for high-power amplifiers, and semianalytic
BER estimation.

18.2.1 System Description and Simulation Objectives

The system being simulated in this example is a communication link in a satellite
data network consisting of 48 ground stations sending high-speed data to eight
regional data centers. Each data center processes six channels of data, referred to
as an FDM group. The modulation format used for each channel is QPSK at a
symbol rate of 8 Msymbols/second. The signal is filtered by a square root raised
cosine (SQRC) filter2 with a roll-off factor of 20%, amplified by a linear power
amplifier and transmitted in the uplink to the satellite. The 48 ground stations
in the network access the satellite using an FDMA scheme in which each ground
station is assigned a different carrier frequency by the network controller. Carriers
are separated by a guard band of 400 KHz, and the carrier spacing is 10 MHz. The
frequency plan for the 48-channel transponder is illustrated in Figure 18.8.

All 48 uplink signals are received by a single uplink antenna at the satellite. The
received signal at the satellite can be expressed as

x(t) =
48∑

i=1

ai(t − τi) cos [2πfi(t − τi) + φi(t − τi)] (18.10)

NW Control
(10 MHz)

Command and
Telemetry
(10 MHz)

…
f43 f48f6

f2f1

FDM Group 8 (60 MHz)
Carrier Spacing = 10 MHz

FDM Group 1 (60 MHz)
Carrier Spacing = 10 MHz

Figure 18.8 Frequency plan for a 48-channel transponder system.

2See Example 5.9. Note that the input symbols are represented by a sequence of impulses.

“TranterBook” — 2003/11/18 — 16:12 — page 735 — #753
�

�

�

�

�

�

�

�

Section 18.2. FDM System with a Nonlinear Satellite Transponder 735

which can be written

x(t) = Re

{
48∑

i=1

ai(t − τi) exp [jφ(t − τi)]

· exp (−j2πfiτi) exp [j2π(fi − f0)t] exp (j2πf0t)

}
(18.11)

where f0 is the reference frequency used to define the overall complex envelope.
The lowpass complex envelope from the ith ground station is the complex baseband
(QPSK) signal ai(t) exp [jφi(t)]. It is transmitted at carrier frequency fi. The
uplink transmitter for the ith ground station is illustrated in Figure 18.9. The time
delay, τi, represents the propagation delays of the ith channel uplink. The lowpass
complex envelope of x(t) is, from (18.11),

x̃(t) =
48∑

i=1

ai(t − τi) exp [jφ(t − τi)] exp (j2πfiτi) exp [j2π(fi − f0)t] (18.12)

The uplink signals are filtered by the input filters on the satellite, as shown
in Figure 18.10, to form eight FDM groups, as shown in the frequency plan (Fig-
ure 18.8). Each group is amplified by a high-power traveling wave tube amplifier
(TWTA). The amplified signals are filtered again to remove out-of-band spectral
regrowth and intermodulation (IM) products. Each carrier group is then transmit-
ted from the satellite to the regional data centers via eight downlink spot beams,
with each beam directed toward a regional center.

In order to provide maximum power in the downlink, the TWT amplifiers are
operated close to saturation. However, since six FDM carriers are amplified by
each TWTA, intermodulation (IM) distortion will have a significant impact on the
BER performance in the downlink. Adjacent channel interference (ACI) is another
factor that affects link performance. The goal of this study is to simulate one of
the downlinks (consisting of one group of 6 FDM carriers) from the satellite to
the regional data center and assess the impact of thermal noise, IM distortion,
intersymbol interference (ISI) introduced by the filters, and ACI on the downlink
performance.

Binary
Source

QPSK
 Modulator

SQRC
Filter

Amplifier

exp ()j f f kTi s2 0π −

Figure 18.9 The ith transmitter (uplink).

“TranterBook” — 2003/11/18 — 16:12 — page 736 — #754
�

�

�

�

�

�

�

�

48
 u

pl
in

k
FD

M
 S

ig
na

ls

Fi
lte

r
1

F
D

M
 G

ro
up

 1

Fi
lte

r
8

F
D

M
 G

ro
up

 8

Fi
lte

r
2

F
D

M
 G

ro
up

 2

Fi
lte

r
1

Fi
lte

r
2

Fi
lte

r
8

T
W

T
A

 1

T
W

T
A

 2

T
W

T
A

 8

…

D
ow

n
li

nk
 s

po
t b

ea
m

s
to

 r
eg

io
na

l c
en

te
rs

F
ig

u
re

1
8
.1

0
D

et
a
il
s

o
f
sa

te
ll
it

e
tr

a
n
sp

o
n
d
er

.

736

“TranterBook” — 2003/11/18 — 16:12 — page 737 — #755
�

�

�

�

�

�

�

�

Section 18.2. FDM System with a Nonlinear Satellite Transponder 737

18.2.2 The Overall Simulation Model

The simulation model is illustrated in Figure 18.11. The FDM signal is generated
by mapping six random binary bit streams into QPSK symbols and modulating
them at appropriate carrier frequencies. The initial steps in creating the simulation
model for this example are the following:

1. Time and frequency scaling: The symbol rate is scaled by 8(106), that is, the
symbol rate is normalized to 1 symbol/second so that all rates and frequencies

QPSK Impulse
Sequence

SQRC Filter

Modulator 1
fc = f1

…SQRC Filter

Modulator 2
fc = f2

SQRC Filter

Modulator 6
fc = f6

IMUX Filter

High-Power Amplifier (TWT Model)

OMUX Filter

Impulse to
Pulse

Conversion

SQRC Filter

Timing and
Phase Estimator

Semianalytic
BER Estimator

Estimated BER as a
Function of Eb / N0

exp − j kf Ts2 1π

x
y

QPSK Impulse
Sequence

QPSK Impulse
Sequence

()

Figure 18.11 Simulation model for satellite communications system.

“TranterBook” — 2003/11/18 — 16:12 — page 738 — #756
�

�

�

�

�

�

�

�

738 Two Example Simulations Chapter 18

can be specified in units of Hz rather than MHz, and time units are in seconds
rather than microseconds.

2. Reference frequency for lowpass equivalent representation: Lowpass equiva-
lent representations of the signals and system elements are used in this sim-
ulation. The six FDM carriers are spaced by ∆f = 1.25 Hz. For simulation
purposes we will use a reference frequency of zero corresponding to the center
frequency of the six carrier groups so that the carrier frequencies (offsets) in
the lowpass equivalent representation will be

f1 = ∆f/2,
f2 = ∆f + (∆f/2),
f3 = 2∆f + (∆f/2),

f4 = −f1

f5 = −f2

f6 = −f3

(18.13)

This is illustrated in Figure 18.12.

3. Sampling rate: The sampling rate is chosen on the basis of the overall band-
width of the lowpass equivalent representation shown in Figure 18.12, which
is 3.75 Hz. Hence, a sampling rate of 16 × 3.75 = 60 will be adequate. Since
the symbol rate is 1 symbol/second for each QPSK source, a sampling rate of
64 samples per symbol is chosen for all the simulations.

4. BER estimation method: Since the noise in the downlink is additive and
Gaussian, and the receiver is linear, we can use a semianalytic estimator for
this example. The semianalytic QPSK BER estimator discussed in Chapter
10 is used.

5. Simulation length: With semianalytic error rate estimation, the simulation
length is determined by the number of symbols needed to simulate ISI and
adjacent channel interference. Since the filters are SQRC, ISI is mainly due
to the input and output multiplexing filters which are fairly wideband with
near ideal frequency response. Hence it is not necessary to simulate a very
long input sequence. We choose a simulation length of 512 symbols, with the
first 256 symbols used for calibration purposes, and the last 256 symbols used
for semianalytic BER estimation.

With these overall simulation parameter values established, we now turn our atten-
tion to the simulation models for the transmitter, the filters, the nonlinear amplifier,
the demodulator, and the semianalytic estimator.

18.2.3 Uplink FDM Signal Generation

The group of six FDM carriers arriving in the uplink from six different ground
stations can be modeled as coming from a single ground station, with arbitrary
delays and phases associated with each carrier. The signals representing the traffic
are generated by mapping the data symbols from each ground station to a QPSK
constellation, filtering it through an SQRC filter, and modulating the filter output
with the appropriate carrier frequency. The SQRC filters are implemented in the

“TranterBook” — 2003/11/18 — 16:12 — page 739 — #757
�

�

�

�

�

�

�

�

 f
(H

z)

0.
62

5
3.

75
-3

.7
5

-0
.6

25
1.

87
-1

.8
7

3.
12

-3
.1

2
0

f 3
f 1

f 4
f 6

f 2
f 5

F
ig

u
re

1
8
.1

2
L
ow

p
a
ss

eq
u
iv

a
le

n
t

re
p
re

se
n
ta

ti
o
n

o
f
th

e
si

x
F
D

M
ca

rr
ie

rs
.

739

“TranterBook” — 2003/11/18 — 16:12 — page 740 — #758
�

�

�

�

�

�

�

�

740 Two Example Simulations Chapter 18

time domain as FIR filters using a sampled and truncated version of the impulse
response given by

hR(t) = (8β)
cos [(R + 2β)πt] + (8βt)−1 sin [(R + 2β)πt]

(π
√

R)[1 − (8βt)2]
(18.14)

with R = 1 and β = 0.2. The impulse response is truncated to a duration of eight
symbols. Since the filters are implemented using the impulse response, the input to
the filters are impulse sequences rather than pulse sequences.

The six filtered signals that form an FDM group are modulated and added to
create the uplink FDM signal. A phase offset and time delay is introduced for each
of the six carriers to represent the random propagation delays from different ground
stations to the satellite. These operations can be summarized as:

1. The kth QPSK signal is defined as

sk[n] =
N∑

m=1

(Akm + jBkm) δ

(
n

fs
− kTs − τk

)
(18.15)

where Akm and Bkm are the direct and quadrature components of the kth

input, 1 ≤ k ≤ 6, Ts is the symbol time, τk is a time delay, N is the total
number of symbols in the sequence, and fs is the sampling frequency.

2. The kth filtered signal is defined as

xk[n] = sk[n] � p[n] (18.16)

where p[n] is the impulse response of the root raised cosine filter, as defined
by (18.14), and � denotes convolution.

3. The kth modulated signal is defined by

yk[n] = ak � xk[n] � exp
[
j

(
2πnfk

fs
+ θk

)]
(18.17)

where ak and fk are the amplitude and frequency of the kth carrier, respec-
tively, and θk represents a random phase offset.

4. The FDM signal is defined by

z[n] =
6∑

k=1

yk[n] (18.18)

18.2.4 Satellite Transponder Model

The satellite transponder consists of an input multiplex (IMUX) filter that isolates
each of the eight carrier groups, a TWT amplifier for each six-carrier FDM group,
and an output multiplex (OMUX) filter. There is also a frequency translation

“TranterBook” — 2003/11/18 — 16:12 — page 741 — #759
�

�

�

�

�

�

�

�

Section 18.2. FDM System with a Nonlinear Satellite Transponder 741

operation that takes place in the satellite since the uplink and downlink frequencies
are usually different. We will assume this frequency translation to be ideal. For
this simulation, the IMUX and OMUX filters are implemented using fourth-order
Butterworth filters having a 3-dB bandwidth of 4 Hz. The ISI introduced by these
filters is minimal. The TWT amplifier is modeled as an AM-to-AM and AM-to-PM
memoryless nonlinearity with unit gain as discussed in Chapter 12. The AM-to-
AM and AM-to-PM characteristics are assumed to be given in table form. The
“backoff” is the only parameter of the model.

18.2.5 Receiver Model and Semianalytic BER Estimator

The six carriers in each FDM group are demodulated individually at the receiver in
the ground station at each of the regional centers. We are interested in estimating
the BER for one of the FDM carriers, and the demodulation of any of the six
carriers can be accomplished by a frequency translation operation followed by SQRC
filtering as shown in Figure 18.13. For demodulation and detection purposes, it is
necessary to have timing and phase reference. While these functions are normally
performed by the synchronization subsystems in the receiver, we are not explicitly
simulating these functional blocks in this example. Synchronization is assumed to
be perfect.

The impact of ISI introduced by the filters and the effects of the nonlinear
amplifier, including IM distortion and downlink noise, can be estimated using a
semianalytic error rate estimator, since the receiver is linear and the downlink noise
is additive and Gaussian at the receiver input. A number of calibration operations
need to be completed prior to estimating the error rate as a function of the downlink
Eb/N0. These operations include:

1. Estimating Eb at the receiver input for each carrier

2. Cross-correlating the input and output waveforms and estimating timing and
phase offsets from the cross-correlation function

FDM Signal (LPE)

Baseband
SQRC
Filter

Sample
and

Decide

Down link AWGN

exp − j f kTi s2π()

Figure 18.13 Receiver model at the downlink ground station.

“TranterBook” — 2003/11/18 — 16:12 — page 742 — #760
�

�

�

�

�

�

�

�

742 Two Example Simulations Chapter 18

3. Estimating the noise bandwidth of the receiver by injecting an impulse at the
receiver input, and squaring and adding the values of the impulse response to
obtain the noise bandwidth designed by (10.12)

4. Delaying the input waveform appropriately prior to error rate estimation

18.2.6 Simulation Results

In this section we present simulation results illustrating the effects of nonlinear
distortion and additive Gaussian noise on the BER performance of the FDM system.
The simulation program is given in Appendix D. The purpose of the simulation is
to illustrate the combined effect of the nonlinear TWT model, ACI, and additive
noise. The simulation products include plots of the power spectral density (PSD)
at the input and output of the TWT model, the signal constellation illustrating
the effects of the nonlinearity, and the BER due to nonlinear distortion and noise.
(Since semianalytic BER estimation is used, the point scattering observed in the
signal constellation is due to the nonlinearity, ACI, and filtering. Noise effects are
not included in the signal constellation.) Only two simulation results are examined
here in detail. By changing the carrier amplitudes, spacing, and the TWT input
backoff, the interested student can easily examine a number of interesting effects.

Baseline Validation

It is obviously important to “sanity check” the baseline simulation so that the
individual functional blocks in the simulation model and the overall methodology are
validated. In all subsequent simulations, the models and the methodology remain
the same and only the parameter values are changed. Thus, the baseline validation
simulation establishes the credibility for all subsequent simulations. This can easily
be accomplished by executing the simulation for a single channel and ensuring that
the TWT model is operated in the linear region. By setting

ak =
{

1,
0,

k = 1
k = 2, 3, 4, 5, 6 (18.19)

we ensure that ACI does not occur. By operating with an input backoff of −20 dB
we ensure that nonlinear distortion within the bandwidth of the Channel 1 signal
is negligible. Thus, the only significant degrading effect is additive Gaussian noise,
and the result for this case is well-known. (Note that the small amount of ISI
induced by the IMUX and OMUX filters is not considered significant.)

The PSD at the input and output of the TWT model, operating at −20 dB
backoff, is illustrated in Figure 18.14. The fact that only one channel is active
is obvious. Also, spectral spreading due to intermodulation is negligible, which
illustrates that the TWT is operating in a region that is very nearly linear.

The signal constellation, without the effects of noise, is illustrated in the left-
hand frame in Figure 18.15. Note that there is some slight scattering of the signal
points, illustrating that there is a very small residual nonlinear effect and/or ISI
present. The signal points in the signal constellation are used to generate the BER

“TranterBook” — 2003/11/18 — 16:12 — page 743 — #761
�

�

�

�

�

�

�

�

Section 18.2. FDM System with a Nonlinear Satellite Transponder 743

-10 -8 -6 -4 -2 0 2 4 6 8 10
-40

-30

-20

-10

0
PSD of the TW TA input

P
S

D

-10 -8 -6 -4 -2 0 2 4 6 8 10
-40

-30

-20

-10

0
PSD of the TW TA output

P
S

D

Figure 18.14 PSD at input and output of the TWT model (input backoff is −20 dB.

-0.2 0 0.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Direct Sample

Q
u

a
d

ra
tu

re
 S

a
m

p
le

0 2 4 6 8
10

-4

10
-3

10
-2

10
-1

E
b
/N

0

B
it

 E
rr

o
r

R
a

te

Ideal
System

Figure 18.15 Signal constellation due to nonlinear effects, and BER due to noise.

“TranterBook” — 2003/11/18 — 16:12 — page 744 — #762
�

�

�

�

�

�

�

�

744 Two Example Simulations Chapter 18

performance, which is illustrated in the right-hand frame of Figure 18.15. Note
that the difference between the simulation result and the ideal (theoretical) result
is negligible. Thus, the baseline simulation is validated.

Nonlinear and Noise Effects −5 FDM Carriers

In this simulation, the amplitude of Carrier 5 is set equal to zero, with all other
carrier amplitudes set equal to one. (Carrier 5 is chosen in order to produce a
spectrum with a gap and, also, to ensure that those channels yielding the most
significant ACI to Channel 1 are active.) The input backoff of the TWT is set equal
to −5 dB in order to dramatically illustrate the nonlinear operation of the TWT
model. In other words, we use the parameters

ak =
{

0,
1,

k = 5
k = 1, 2, 3, 4, 6 (18.20)

and

ibo = −5 (18.21)

The computed spectra at the input and output of the TWT are illustrated in Figure
18.16. Note the gap in the input PSD at the spectral position defined by f5. The
PSD at of the TWT output shows that this portion of the spectrum is partially filled
in due to the intermodulation distortion caused by the nonlinearity. This “filling
in” is called spectral regrowth, and is a major source of error in a FDM system
operating with a nonlinearity. The interested student should rerun the simulation
with a TWT input backoff of −20 dB, where the TWT operates as a nearly linear
amplifier, and show that the spectral regrowth is greatly diminished.

The effects of ISI, ACI, noise, and distortion due to the TWT is illustrated in
Figure 18.17. The signal constellation, illustrating the point scattering primarily
due to nonlinear effects resulting from the small backoff used in the TWT model,
is illustrated in the left-hand frame of Figure 18.17. These signal points are used
by the semianalytic BER estimator to determine the BER for the overall system,
which is illustrated in the left-hand frame of Figure 18.17. The degrading impact
of the nonlinearity on the BER can clearly be seen.

18.2.7 Summary and Conclusions

In this example we presented an end-to-end simulation study of a complex commu-
nication system. The example illustrates several fundamental principles in modeling
and simulation, including the lowpass equivalent representation of FDM signals, the
simulation of nonlinearities, semianalytic BER estimation, verification of the cal-
ibration of the simulation, and the overall methodology of simulating a nonlinear
multichannel system. We also illustrated a systematic approach to building confi-
dence in the simulation results by starting with a baseline simulation of a near ideal
version of the system, and then including transmission impairments one at a time,
and comparing the incremental as well as overall performance degradations at each
step with the results obtained in the previous step.

“TranterBook” — 2003/11/18 — 16:12 — page 745 — #763
�

�

�

�

�

�

�

�

Section 18.2. FDM System with a Nonlinear Satellite Transponder 745

-10 -8 -6 -4 -2 0 2 4 6 8 10
-40

-30

-20

-10

0
PSD of the TW TA input

P
S

D

-10 -8 -6 -4 -2 0 2 4 6 8 10
-40

-30

-20

-10

0
PSD of the TW TA output

P
S

D

Figure 18.16 PSDs at the input and output of the TWT model (the input backoff is
−5 dB).

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Direc t Sample

Q
ua

dr
at

ur
e

S
am

pl
e

0 2 4 6 8
10

-4

10
-3

10
-2

10
-1

E
b
/N

0

B
it

 E
rr

o
r

R
a

te

Ideal
System

Figure 18.17 BER and signal constellation (input backoff = −5 dB and, for the signal
constellation, Eb/N0 = 8 dB).

“TranterBook” — 2003/11/18 — 16:12 — page 746 — #764
�

�

�

�

�

�

�

�

746 Two Example Simulations Chapter 18

We hope that this example provided the reader with a better “feel” for how to
approach a complex simulation problem.

18.3 References

1. A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Read-
ing, MA: Addison-Wesley, 1995.

2. R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication, 2nd
ed., Upper Saddle River, NJ: Prentice Hall, 2001.

3. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

“TranterBook” — 2003/11/18 — 16:12 — page 747 — #765
�

�

�

�

�

�

�

�

Section 18.4. Appendix A: MATLAB Code for CDMA Example 747

18.4 Appendix A: MATLAB Code for CDMA Example

% File: c18 cdmasim.m
function [BER,ErrorRun]=c18 cdmasim(N,SF,EbNo,...

NumInterferers,MPathDelay,Kfactor dB)
rand(‘state’,sum(100*clock)); randn(‘state’,sum(100*clock));
NIterate = 1e3; % default block size
NumberOfIterations = ceil(N/NIterate);
ErrorState = 0; ErrorRun = []; RunCount = 1; % itialize
Kfactor = 10^(Kfactor dB/10); % linear units
EbNolinear = 10^(EbNo/10); % linear units
MPathComponents = length(MPathDelay);
%
% Determine amplitude in multipath components and store as
% vector. Determine the total power in all the scattered components.
% Determine LOS component.
%
MPathAmp(2:MPathComponents) = rand(MPathComponents-1,1);
ScatPower = MPathAmp*MPathAmp.’;
MPathAmp(1) = sqrt(ScatPower*Kfactor); % LOS component.
%
% Determine which component has the largest energy (amplitude).
% Normalize vector so that strongest component has unit amplitude.
%
[fee MaxComponent] = max(MPathAmp); MPathAmp = MPathAmp/fee;
%
% Design IIR filter for fading signal.
%
FilterOrder = 4; Ripple = 0.5; BW = 0.01; % filter parameters
[b,a] = cheby1(FilterOrder,Ripple,BW); % 4th order fitler
%
% Error checking.
%
if NumInterferers > (SF-1)

error([‘NumInterferers must not exceed ’,int2str(SF-1),‘.’])
end
if length(MPathDelay) ~= length(MPathAmp)

error(‘MPathDelay and MPathAmp must have the same length.’)
end
if min(MPathDelay) < 0

error(‘MPathDelay must not have negative components.’)
end
fee = diff(MPathDelay);
if min(fee) <= 0

“TranterBook” — 2003/11/18 — 16:12 — page 748 — #766
�

�

�

�

�

�

�

�

748 Two Example Simulations Chapter 18

error(‘MPathDelay must be monotonically increasing.’)
end
clear fee
%
% End Error Checking.
%
% Generate spreading sequences. The spreading sequences for
% the interferers are shifted versions of the desired sequence
% with a shift offset.
%
DesiredSequence = MSequence(SF+1); % desired signal
offset = fix(length(DesiredSequence)/(NumInterferers+1));
M = length(DesiredSequence);
for k=1:NumInterferers

InterfererSequence(k,:) = [DesiredSequence(M-(k-1)*offset:M) ...
DesiredSequence(1:M-1-(k-1)*offset)];

end
%
% The simulation loop begins here.
%
zf = zeros(FilterOrder,MPathComponents);
for cnt=1:NumberOfIterations

%
% Generate and spread symbols for dsired and interfering users.
%
DesiredSymbols = sign(rand(1,NIterate)-0.5);
InterferingSymbols = sign(rand(NumInterferers,NIterate)-0.5);
DesiredChips = reshape(DesiredSequence.’*DesiredSymbols,1,...

M*NIterate);
for k=1:NumInterferers

InterferingChips(k,:) = reshape(InterfererSequence(k,:).’*...
InterferingSymbols (k,:),1,M*NIterate);

end
%
% Generate noise.
%
NoiseAmplitude = sqrt(SF/(2*EbNolinear));
MaxDelay = max(MPathDelay);
DesiredNoise = NoiseAmplitude*randn(1,M*NIterate+MaxDelay);
%
% Apply multipath.
%
MPathLinAmp = MPathAmp;
MPathComponents = length(MPathDelay);
DesiredMPathSignal = zeros(1,M*NIterate+MaxDelay);

“TranterBook” — 2003/11/18 — 16:12 — page 749 — #767
�

�

�

�

�

�

�

�

Section 18.4. Appendix A: MATLAB Code for CDMA Example 749

if NumInterferers > 0,
InterferingMPathSignal = ...

zeros(NumInterferers,M*NIterate+MaxDelay);
for k=1:MPathComponents

index = 1+MPathDelay(k):NIterate*M+MPathDelay(k);
InterferingMPathSignal(:,index) = ...

InterferingMPathSignal(:,index) + ...
MPathLinAmp(k)*InterferingChips;

end
end
for k=1:MPathComponents

if k==1, fading = ones(1,M*NIterate);
else

fading = randn(size(DesiredSymbols))+...
j*randn(size(DesiredSymbols));

[fading zf(:,k)] = filter(b,a,fading,zf(:,k));
fading = interp(fading,SF);
fading = abs(fading/sqrt(mean(fading.*conj(fading))));

end
if k == MaxComponent

fadesign = sign(fading);
end
faa(k,:) = MPathLinAmp(k)*fading;
index = 1+MPathDelay(k):NIterate*M+MPathDelay(k);
DesiredMPathSignal(index) = ...

DesiredMPathSignal(index)+...
(MPathLinAmp(k)*fading).*DesiredChips;

end
%
% Add intererence and noise.
%
if NumInterferers > 0

IncomingSignal = DesiredMPathSignal+...
sum(InterferingMPathSignal,1)+DesiredNoise;

else
IncomingSignal = DesiredMPathSignal+DesiredNoise;

end
%
% Receive and detect incoming signal.
%
index = 1+MPathDelay(MaxComponent):M*NIterate+...

MPathDelay(MaxComponent);
IncomingChips = reshape(fadesign.*...

IncomingSignal(index),M,NIterate);
DespreadSymbols = DesiredSequence*IncomingChips;

“TranterBook” — 2003/11/18 — 16:12 — page 750 — #768
�

�

�

�

�

�

�

�

750 Two Example Simulations Chapter 18

DetectedSymbols = sign(DespreadSymbols);
%
% Compute Bit Error Rate
%
ErrorVector = 0.5*abs(DetectedSymbols-DesiredSymbols);
ErrorsIterate(cnt) = sum(ErrorVector);
BERIterate(cnt) = ErrorsIterate(cnt)/NIterate;
for k=1:NIterate

if (ErrorVector(k) == 0) & (ErrorState == 0)
RunCount = RunCount+1;

elseif (ErrorVector(k) == 0) & (ErrorState == 1)
ErrorRun = [ErrorRun RunCount];
RunCount = 1; ErrorState = 0;

elseif (ErrorVector(k) == 1) & (ErrorState == 0)
ErrorRun = [ErrorRun RunCount];
RunCount = 1; ErrorState = 1;

elseif (ErrorVector(k) == 1) & (ErrorState == 1)
RunCount = RunCount+1;

else
s1 = sprintf(’ErrorVector(%d)=%d, ...

ErrorState=%d! Unexpected Condition!’);
error(s1);

end
end

end
Errors = sum(ErrorsIterate); BER = mean(BERIterate);
ErrorRun = [ErrorRun RunCount];
% End of function file.

18.4.1 Supporting Functions

MSquence.m

% File: MSequence.m
function Sequence=MSequence(SF)
SFlog2=log2(SF);
if rem(SFlog2,1) ~= 0, error(’SF must be an integer power of 2’); end
switch SFlog2
case 3

R = 3; instate = zeros(1,3); instate(R) = 1;
N = 2^R-1; generator = [0 1 3];

case 4
R = 4; instate = zeros(1,4); instate(R) = 1;
N = 2^R-1; generator = [0 1 4];

case 5

“TranterBook” — 2003/11/18 — 16:12 — page 751 — #769
�

�

�

�

�

�

�

�

Section 18.4. Appendix A: MATLAB Code for CDMA Example 751

R = 5; instate = zeros(1,5); instate(R) = 1;
N = 2^R-1; generator = [0 2 5];

case 6
R = 6; instate = zeros(1,6); instate(R) = 1;
N = 2^R-1; generator = [0 1 6];

case 7
R = 7; instate = zeros(1,7); instate(R) = 1;
N = 2^R-1; generator = [0 3 7];

case 8
R = 8; instate = zeros(1,8); instate(R) = 1;
N = 2^R-1; generator = [0 2 3 4 8];

case 9
R = 9; instate = zeros(1,9); instate(R) = 1;
N = 2^R-1; generator=[0 4 9];

case 10
R = 10; instate=zeros(1,10); instate(R) = 1;
N = 2^R-1; generator = [0 3 10];

case 11
R = 11; instate = zeros(1,11); instate(R) = 1;
N = 2^R-1; generator = [0 2 11];

case 12
R = 12; instate = zeros(1,12); instate(R) = 1;
N = 2^R-1; generator = [0 1 4 6 12];

otherwise
error(’SF must be a power of 2, >= at 8 and <= 2^12.’)

end
[Sequence,Outstate] = ...

LinearFeedbackShiftRegister(R,generator,instate,N);
Sequence = 1 - 2*Sequence;
% End of function file.

LinearFeedbackShiftRegiater,m

%File: LinearFeedbackShiftRegister.m
function [y,outstate]=...

LinearFeedbackShiftRegister(R,generator,instate,N)
if max(generator) > R

error([’The degree of the generator polynomial, ’,...
int2str(max(generator)),’, cannot exceed R, ’,int2str(R),’.’]);

end
if length(instate) > R

error([’The length of the input state vector, ’,...
int2str(length(instate)),’, cannot exceed R, ’,int2str(R),’.’]);

end

“TranterBook” — 2003/11/18 — 16:12 — page 752 — #770
�

�

�

�

�

�

�

�

752 Two Example Simulations Chapter 18

a = sort(generator); P = length(generator); M = length(instate)+1;
for k=1:N

fee = instate((generator(2)));
for q=3:P

fee = bitxor(fee,instate(generator(q)));
end
instate = [fee instate]; y(k) = instate(1); instate(M) = [];

end
outstate = instate;
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 753 --- #771
�

�

�

�

�

�

�

�

Section 18.5. Appendix B: Preprocessors for CDMA Application 753

18.5 Appendix B: Preprocessors for CDMA Application

18.5.1 Validation Run

% File: c18_cdmacal.m
N = input(‘Enter number of symbols to be processed > ’);
EoN = input(‘Enter Eb/No vector > ’);
SF = 7;
NoI = 0;
MPathDelay = [0 3 4];
KfactordB = 100;
len_EoN = length(EoN);
BER = zeros(1,len_EoN);
h = waitbar(0,‘Calibration Run’);
for j=1:len_EoN

EbNo = EoN(j);
[BER(j),ErrorRun] = c18_cdmasim(N,SF,EbNo,NoI,MPathDelay,...

KfactordB);
waitbar(j/len_EoN)

end
close(h)
z = 10.^(EoN/10);
BERT = q(sqrt(2*z));
semilogy(EoN,BER,‘+k’,EoN,BERT,‘-’)
xlabel(‘E_b/N_0 in dB’)
ylabel(‘Probability of Symbol Error’)
grid
% End of script file.

18.5.2 Study Illustrating the Effect of the Ricean K-Factor

% File: c18_cdmaK.m
N = input(‘Enter number of symbols to be processed > ’);
EoN = input(‘Enter Eb/No vector > ’);
KdB = input(‘Enter KfatordB vector > ’);
SF = 7;
NumInterferers = 0;
MPathDelay = [0 3 4];
len_EoN = length(EoN);
len_KdB = length(KdB);
BER = zeros(len_KdB,len_EoN);
for i=1:len_KdB

KfactordB = KdB(i);
for j=1:len_EoN

EbNo = EoN(j);
[BER(i,j),ErrorRun] = ...

c18_cdmasim(N,SF,EbNo,NumInterferers,MPathDelay,...

“TranterBook” — 2003/11/18 — 16:12 — page 754 — #772
�

�

�

�

�

�

�

�

754 Two Example Simulations Chapter 18

KfactordB);
display = [‘KfactordB = ’,num2str(KfactordB),...

‘ Eb/No = ’,num2str(EbNo),‘.’];
disp(display)

end
end
semilogy(EoN,BER)
xlabel(‘E_b/N_0 in dB’)
ylabel(‘Probability of Symbol Error’)
grid
% End of script file.

“TranterBook” — 2003/11/18 — 16:12 — page 755 — #773
�

�

�

�

�

�

�

�

Section 18.6. Appendix C: MATLAB Function c18 errvector.m 755

18.6 Appendix C: MATLAB Function c18 errvector.m

% File: c18_errvector.m
function [out] = c18_errvector(A_matrix,NN)
A = A_matrix;
B = [1 1 0; 0 0 1];
state = 1; % initial state
total_states = size(A,1);
out = zeros(1,NN); % initialize error vector
state_seq = zeros(1,NN); % initialize state sequence
h = waitbar(0,‘Calculating Error Vector’);
%
u2 = rand(1); % get random number
if u2>B(1,state) % test for error

out(1) = 1; % record error
end
state_seq(1) = state; % record state
for t=2:NN

u1 = rand(1); % get random number
cum_sum = [0 cumsum(A(state,:))];
for i=1:total_states % loop to determine new state

if u1>=cum_sum(i) & u1<cum_sum(i+1);
state = i; % assign new state

end
end
state_seq(t) = state; % new record state
u2 = rand(1); % get random number
if u2>B(1,state)

out(t) = 1; % record error
end
waitbar(t/NN)

end
close(h)
% End of function file.

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 756 --- #774
�

�

�

�

�

�

�

�

756 Two Example Simulations Chapter 18

18.7 Appendix D: MATLAB Code
for Satellite FDM Example

% File: c18_nlsat.m
%
% Frequently adjusted parameters
%
a1 = 1.0; a2 = 1.0; a3 = 1.0; % carrier amplitudes
a4 = 1.0; a5 = 0.0; a6 = 1.0; % carrier amplitudes
ibo = -5; % TWT input backoff in dB
%
% Default parameters
%
R = 1; tsymbol = 1/R; % symbol rate/time
df = 1.244; % carrier spacing
beta = 0.2; % beta
nsamples = 64; % samples/symbol
nsymbols = 256; % total symbols
ncorr = 64; % symbols for correlation
nstart = 64; % BER start (symbol #)
ebn0db = 0:1:8; % ebno vector in dB
%
tb = tsymbol/2; fs = nsamples*R; ts = 1/fs;
%
% Set up frequency, delays, and phase offsets
% for the six FDM signals.
%
f1 = (df/2); f2 = f1+df; f3 = f2+df; f4=-f1; f5=-f2; f6=-f3;
delay1 = 0; delay2 = 8; delay3 = 16;
delay4 = 32; delay5 = 40; delay6 = 50;
phase1 = 0.0; phase2 = pi/64; phase3 = pi/32;
phase4 = pi/48; phase5 = pi/16; phase6 = pi/40;
omega1 = 2*pi*f1; omega2 = 2*pi*f2; omega3 = 2*pi*f3;
omega4 = -omega1; omega5 = -omega2; omega6 = -omega3;
%
% Begin Simulation
%
% Carrier 1 is demodulated, so set it up first.
% Genereate the first QPSK impulse sequence and convert to NRZ.
% Note that in vector x, the first nsample/2-1 samples are zero.
%
M = 4; % QPSK
[xin1] = mpsk_impulses(M,nsymbols,nsamples); % QPSK impulse is

% middle sample
b = ones(1,nsamples);

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 757 --- #775
�

�

�

�

�

�

�

�

Section 18.7. Appendix D: MATLAB Code for Satellite FDM Example 757

x = filter(b,1,xin1); % NRZ QPSK waveform
% samples

nduration = 8; % duration of impw in
% symbols

[imp1,impw] = sqrc_time(R,beta,nsamples,nduration);
txout1 = filter(imp1,1,xin1); % SQRC filtered

% Chanel 1 signal
%
% Generate 5 other QPSK impulse sequences
%
[xin2] = mpsk_impulses(M,nsymbols,nsamples);
[xin3] = mpsk_impulses(M,nsymbols,nsamples);
[xin4] = mpsk_impulses(M,nsymbols,nsamples);
[xin5] = mpsk_impulses(M,nsymbols,nsamples);
[xin6] = mpsk_impulses(M,nsymbols,nsamples);
%
% Stagger inputs to make unsynchronized
% to minimize envelope transitions
%
[xin2] = delayr1(xin2,delay2);
[xin3] = delayr1(xin3,delay3);
[xin4] = delayr1(xin4,delay4);
[xin5] = delayr1(xin5,delay5);
[xin6] = delayr1(xin6,delay6);
%
% SQRC filter the five symbol waveforms
%
txout2 = filter(imp1,1,xin2);
txout3 = filter(imp1,1,xin3);
txout4 = filter(imp1,1,xin4);
txout5 = filter(imp1,1,xin5);
txout6 = filter(imp1,1,xin6);
%
% Modulate all six carriers and generate txout
%
KNN = 1:nsymbols*nsamples;
txout1 = a1*txout1.*exp(i*omega1*KNN*ts)*exp(i*phase1);
txout2 = a2*txout2.*exp(i*omega2*KNN*ts)*exp(i*phase2);
txout3 = a3*txout3.*exp(i*omega3*KNN*ts)*exp(i*phase3);
txout4 = a4*txout4.*exp(i*omega4*KNN*ts)*exp(i*phase4);
txout5 = a5*txout5.*exp(i*omega5*KNN*ts)*exp(i*phase5);
txout6 = a6*txout6.*exp(i*omega6*KNN*ts)*exp(i*phase6);
txout = txout1+txout2+txout3+txout4+txout5+txout6;
%
% Input MUX filter (Normalized BW = 4.5 Hz)

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 758 --- #776
�

�

�

�

�

�

�

�

758 Two Example Simulations Chapter 18

%
[bmi ami] = butter(4,4.5/(fs/2));
imuxout = filter(bmi,ami,txout);
%
% TWTA Model
%
run(‘twt_data1’); twtdata = data; % Get TWTA Data
ampout = twt_model(imuxout,twtdata,ibo); % TWT model
%
% Output MUX filter (Normalized BW = 4.5 Hz)
%
[bmo amo] = butter(4,4.5/(fs/2));
omuxout = filter(bmo,amo,ampout);
%
% Plot (if desired) TWTA input and output PSD
%
psdflag = 1; % omit psd calculation?
if psdflag==1

nfft = (nsymbols/2)*nsamples;nmax=nsymbols*nsamples;
temp(1:nfft) = imuxout(nfft+1:nmax);
[logpsd,freq,ptotal,pmax] = log_psd(temp,4096,ts);
figure;subplot(2,1,1);
plot(freq,logpsd); axis([-10 10 -40 0]);
title(‘PSD of the TWTA input’); ylabel(‘PSD’); grid;
temp(1:nfft) = ampout(nfft+1:nmax);
[logpsd,freq,ptotal,pmax] = log_psd(temp,4096,ts);
subplot(2,1,2)
plot(freq,logpsd); axis([-10 10 -40 0]);
title(‘PSD of the TWTA output’); ylabel(‘PSD’); grid;

end
%
% Compute eb at the input to the RX filter for a single carrier
%
[n1 n2] = size(omuxout); nxx=n1*n2;
eb = 0.5*tb*sum(sum(abs(omuxout).^2))/nxx;
%
% Compute eb for one carrier only
%
eb = eb*(a1*a1)/(a1*a1+a2*a2+a3*a3+a4*a4+a5*a5+a6*a6)
%
% Demodulate: Frequency shift the first carrier
%
ydemod = omuxout.*exp(-i*omega1*KNN*ts);
%
% Receive SQRC filter

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 759 --- #777
�

�

�

�

�

�

�

�

Section 18.7. Appendix D: MATLAB Code for Satellite FDM Example 759

%
nduration = 16;
[imp2,impw] = sqrc_freq_nosinc(R,beta,nsamples,nduration);
y = filter(imp2,1,ydemod);
%
% Simulation is complete.
%
% Set up BER estimator.
%
hh = impz(imp2,1); ts=1/fs;
nbw = (fs/2)*sum(abs(hh).^2) % noise BW of the receiver
corlength = ncorr*nsamples;
%
% Find the maximum magnitude of the cross correlation
% and find the lag corresponding to it.
%
[cor lags] = vxcorr(x(1:corlength),y(1:corlength));
cmax = max(max(abs(cor))); nmax = find(abs(cor)==cmax);
timelag = -lags(nmax); corrmag = cmax; theta = -angle(cor(nmax));
%
y = y*exp(-i*theta); % derotate
%
% Delay the input, and do BER estimation starting with nstart.
% Make sure the index does not exceed number of input points.
% eb is the true (real) signal power computed at the RX input.
% Decision time is the mid sample in each bit + timing_offset.
%
maxindex = nsymbols*nsamples-(3*nsamples/2)-timelag;
%
% Index is the array of pointers to mid points of each symbol
% Start BER estimation at nstart (skip the first few symbols).
%
index = ((nstart)*nsamples+(nsamples/2):nsamples:maxindex);
%
timelag1 = timelag+(nsamples/2); % middle sample decision statistics
xx = x(index); % first symbol in x is first

% nsample/2
yy = y(index+timelag1+1);
%
% QPSK BER estimation
%
[peideal,pesystem] = qpsk_berest(xx,yy,ebn0db,eb,tb,nbw);
%
% Plot results
%

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 760 --- #778
�

�

�

�

�

�

�

�

760 Two Example Simulations Chapter 18

figure; subplot(1,2,1)
yscale = 1.5*max(real(yy));
plot(yy,‘+’)
xlabel(‘Direct Sample’); ylabel(‘Quadrature Sample’); grid;
axis([-yscale yscale -yscale yscale])
subplot(1,2,2)
semilogy(ebn0db,peideal,‘-.’,ebn0db,pesystem); grid;
xlabel(‘E_b/N_0’); ylabel(‘Bit Error Rate’)
legend(‘Ideal’,‘System’)
% End of script file.

18.7.1 Supporting Functions

A number of the supporting functions for this exmple appeared previously and are
not given here. These are:

Program qpsk berest.m is defined in Appendix D of Chapter 10.

Program log psd.m is defined in Appendix A of Chapter 7.

Program vxcoor.m is defined in Appendix B of Chapter 10.

mpsk impulses.m

function [x]=mpsk_impulses(M,nsymbols,nsamples)
% This function generates a random complex MPSK impulse sequence
% nsymbols in length. Each symbol is sampled at a rate of
% nsamples/bit. All samples except the ‘middle’ sample within a
% symbol interval are zero.
u = rand(1,nsymbols);
rinteger = round((M*u)+0.5);
phase = pi/M+((rinteger-1)*(2*pi/M));
x = zeros(1,nsymbols*nsamples);
for m=1:nsymbols

index = (m-1)*nsamples + round(nsamples/2);
x(1,index) = exp(i*phase(m));

end
% End of function file.

sqrc time.m

% File: sqrc_time.m
function [imp,impw] = sqrc_time(R,beta,nsamples,nsymbols)
%
%
% This function provides the impulse response for
% an FIR implementation of the sqrc filter
% ****** This version does not include a 1/sinc ******

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 761 --- #779
�

�

�

�

�

�

�

�

Section 18.7. Appendix D: MATLAB Code for Satellite FDM Example 761

% R is the symbol rate; 0<beta<1; beta is normalized by R/2
% nsamples is the number of samples per symbol
% nsymboles is the duration of the impulse response in symbols
% Impulse response extends from -nsymbols/2 to +nsymbols/2
%
beta = beta*(R/2);
a = R+(2*beta); b = R-(2*beta);
length1 = fix(nsamples*nsymbols/2);
ts = (1/R)/nsamples;
time = [-length1*ts:ts:(length1-1)*ts] + 0.00000013;
n = length(time); w = hanning(n);
term1 = a*pi*time; term2 = b*pi*time;
cos1 = cos(a*pi*time); sin1 = sin(b*pi*time);
denominator = (pi*sqrt(R))*((1-((8*beta*time).^2)));
for k=1:n

numerator = (8*beta*(cos1(k)))+(sin1(k)/time(k));
if(denominator(k)==0)

imp(k) = 1;
else

imp(k) = numerator/denominator(k);
end
impw(k) = imp(k)*w(k);

end
yy = sum(impw.^2);
impw = impw/(yy^0.5);
impw = impw/sqrt(nsamples);
yy = sum(imp.^2);
imp = imp/(yy^0.5);
imp = imp/sqrt(nsamples);
% End of function file.

sqrc freq nosinc.m

% File: sqrc_freq_nosinc.m
function [imp,impw] = sqrc_freq_nosinc(R,beta,nsamples,nsymbols)
% This function computes the impulse response of an SQRC
% filter using a frequency domain/ifft approach; It includes a
% 1/sinc; R = symbol rate; 0<beta<1
% nsamples = number of samples per symbol
% nsymbols = total duration of the impulse responce in symbols
% Number of points in the impulse response = nsymbols*nsamples
% R = 1; nsymbols = 16; nsamples = 32; beta = 0.25
%
n = nsamples*nsymbols; fs = R*nsamples; df = fs/n;
a = ((1-beta)*0.5*R); b = ((1+beta)*0.5*R);
%

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 762 --- #780
�

�

�

�

�

�

�

�

762 Two Example Simulations Chapter 18

% Fill up the transfer function array with zeros upto fs/2
% Compute and store the values of sqrc up to R
%
H = (zeros(1,n));
for k=1:(n/2)+1

f = (k-1)*df;
if(beta==0)

beta=0.0000001;
end
H(k) = cos((pi/(2*beta*R))*(f-a));
if f < a

H(k) = 1;
end
if f>=b

H(k) = 0;
end

end
%
% Fold the negative frequency components to [fs/2/to fs]
%
H((n/2)+2:1:n) = H((n/2):-1:2);
%
%Take inverse fft
%
[impc,time] = linear_fft(H,n,df);
imp = real(impc);
window = hanning(n)’;
impw = imp.*window;
yy = sum(impw.^2);
impw = impw/(yy^0.5);
impw = impw/sqrt(nsamples);
yy = sum(imp.^2);
imp = imp/(yy^0.5);
imp = imp/sqrt(nsamples);
% End of function file.

delayr1.m

function [xout] = delayr1(xin,ndelay)
n = max(max(size(xin)));
if (ndelay==0)

xout = xin;
else

xx = zeros(1,ndelay);
xout = [xx xin(1,1:n-ndelay)];

end

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 763 --- #781
�

�

�

�

�

�

�

�

Section 18.7. Appendix D: MATLAB Code for Satellite FDM Example 763

% End of function file.

twt model.m

% File: twt_model.m
function [y] = twt_model(x,twtdata,ibo)
% ibo is a negative value in db indicating the operating point
% ibo = -3db implies that the input POWER is attenuated by 1/2
% When the input power = pave, output power is maximum (=1)
% Normalized input power = (pinstantaneous/pave)*optn_real
%
pwrin = twtdata(:,1); pwrout = twtdata(:,2); phaseout = twtdata(:,3);
n = length(x); ibo_real = 10^(ibo/10);}
%
% Find the average input power and the instantaneous input power
% Normalize the instantaneous input power by the average power.
%
instpwr = 0.5*(abs(x).^2);
avepwr = mean(instpwr);
instpwr = instpwr*(ibo_real/avepwr);
%
% Compute output power and phase
%
outpwr = interp1(pwrin,pwrout,instpwr);
outmag = sqrt(2*outpwr);
outphase = (pi/180)*interp1(pwrin,phaseout,instpwr);
%
% Compute complex envelope of the output
%
y = outmag.*exp(sqrt(-1)*(outphase+angle(x)));
% End of function file.

twtdata1.m

% File: twt_data1.m
% x in a vector of input complex envelope values
% y is a vector of output complex envelope values
% First column is input power in real values (real power)
% Second column is real output power;
% Third column is phase offset in degrees.
% Data is assumed to be increasing order of input power
% First entry should be input power = 0.0, output power = 0.0
% Last entry should be well beyond the max value of the input
% signal power.
%
data=[

‘‘TranterBook’’ --- 2003/11/18 --- 16:12 --- page 764 --- #782
�

�

�

�

�

�

�

�

764 Two Example Simulations Chapter 18

0.0000 0.0000 32.8510
0.0110 0.0500 32.8510
0.0120 0.0560 32.7570
0.0140 0.0630 32.6540
0.0150 0.0700 32.4840
0.0170 0.0790 32.3210
0.0190 0.0880 32.1930
0.0220 0.0980 31.9740
0.0250 0.1100 31.5650
0.0280 0.1230 31.2160
0.0310 0.1370 30.8170
0.0350 0.1520 30.4400
0.0390 0.1690 30.0840
0.0440 0.1890 29.6240
0.0500 0.2100 29.1450
0.0560 0.2330 28.6350
0.0630 0.2570 28.0410
0.0700 0.2840 27.3180
0.0790 0.3130 26.3990
0.0890 0.3440 25.6150
0.1000 0.3770 24.8700
0.1120 0.4130 23.9820
0.1250 0.4510 23.0500
0.1410 0.4910 22.0380
0.1580 0.5320 21.0060
0.1770 0.5730 19.9700
0.1990 0.6150 18.6400
0.2230 0.6570 17.3930
0.2510 0.6970 16.0620
0.2820 0.7370 14.8880
0.3160 0.7770 13.5740
0.3540 0.8130 12.2540
0.3980 0.8480 11.0110
0.4460 0.8770 9.7070
0.5010 0.9050 8.3830
0.5620 0.9320 6.9150
0.6300 0.9510 5.4690
0.7070 0.9700 4.1550
0.7950 0.9810 2.8770
0.8910 0.9920 1.4660
1.0000 1.0000 0.0000
1.1220 0.9980 -1.5710
1.2580 0.9980 -3.0480
1.4120 0.9890 -4.7500
1.5840 0.9820 -6.5670

“TranterBook” — 2003/11/18 — 16:12 — page 765 — #783
�

�

�

�

�

�

�

�

Section 18.7. Appendix D: MATLAB Code for Satellite FDM Example 765

1.7780 0.9760 -8.3850
1.9950 0.9700 -10.2020
2.2480 0.9630 -12.0190
2.5110 0.9570 -13.8360
2.8120 0.9510 -15.6530
3.1620 0.9450 -17.4710
3.5480 0.9380 -19.2880
3.9810 0.9320 -21.1050
4.4660 0.9260 -22.9220
5.0110 0.9200 -24.7390
5.6230 0.9140 -26.5570];
% End of data file.

“TranterBook” — 2003/11/18 — 16:12 — page 766 — #784
�

�

�

�

�

�

�

�

766

“TranterBook” — 2003/11/18 — 16:12 — page 767 — #785
�

�

�

�

�

�

�

�

INDEX

Absorption, 535
Acquisition, 204
Adjacent channel interference, 735
Advanced mobile phone system, 684,

701
A-level specifications, 21
AM/AM conversion, 455-463, 734, 741
AM/PM conversion, 455-463, 734, 741
Analog computer, 223
Analytically intractable system, 7-8
Analytically tedious system, 5-7
Analytically tractable system, 3-5
Analytical model, 220-222
Area-averaged SIR, 701
Assembled block diagram, 449, 476
AWGN channel, 3, 354-366

Back annotation, 38
Backoff (input and output), 459
Backward variable, 605
Bandpass sampling theorem, 62
Bandwidth expansion, 44, 450, 499
Baseband nonlinearity, 452-455
Base station, 671, 673
Baum-Welch algorithm

backward variable, 605, 607
convergence, 612
forward variable, 605
overview, 605-615
scaling, 611-612
stopping criteria, 612

BCH codes, 341
Bhattachayya bound, 335
Biased noise, 655

Bilinear z-transform digital filter, 145,
157-163

Binomial distribution, 355-358
Block coding, 330-333
Blocked calls, 677
Blocking probability, 677
Block processing, 45
Bottom up design, 19
BOXCAR window, 317
Box-Muller algorithm, 274
Buffons needle, 351
Burst errors, 602

Calibration, 51
Cellular radio

channel model, 680-682
cochannel interference, 683-684
grade of service, 676-680
outage probability, 701-704
overview, 671-673
sectoring, 682-688
simulation, 688-701
system level description, 673-676
trunking, 676-701

Channel
AWGN, 3, 354-366
covariance matrix, 432
fading, 531, 539, 549
fast fading, 531, 539, 552, 565
flat fading, 542, 543
free-space propagation, 535, 537
frequency selective, 531, 542-545,

551
guided wave, 532

767

“TranterBook” — 2003/11/18 — 16:12 — page 768 — #786
�

�

�

�

�

�

�

�

768 Index

Channel (continued)
HF troposcatter, 538
indoor wireless, 541
ionospheric radio, 651
large-scale fading, 539-546
mobile radio, 531, 565
optical fiber, 531,532
outdoor wireless, 546
quasi-static, 423, 432
radio, 532-538
slow fading, 423, 531, 539, 552,

565
small-scale fading, 539, 546
time invariant, 531
time varying, 531
tropospheric, 536, 547, 565
waveform, 426, 429
waveguide, 532
wired, 532

Channel model
binary nonsymmetric, 588
binary symmetric, 586
block equivalent, 613-615
diffused multipath, 532, 545,

547-566
discrete multipath, 545, 547-566
discrete time, 583-622
free-space propagation, 535, 537
Fritchman, 602-604
Gilbert, 601
GSM, 568
hidden Markov, 532, 594, 721,

729-733
indoor wireless, 570-571
Jakes, 557, 562
lognormal shadowing, 547
Markov, 589-621
M-ary, 588
measurement based, 530
memoryless, 586
mobile radio, 568-570
multipath, 131-132, 536, 538-545,

547, 565-568
N-ray, 538-545
N-state, 596-597

PCS, 568
random process, 532, 537-552
Rayleigh fading, 542-545, 548, 722
Ricean fading, 542-545, 548-549
Rummler, 565-568
semi-Markov, 615
tapped delay line, 531, 560-565
terrestrial microwave (LOS), 566
transfer function, 531
two ray multipath, 131-132, 422
two state, 589-596
uncorrelated scattering, 549
wideband CDMA, 570
wide-sense stationary, 549

Channel reuse, 673-674
Characteristic polynomial, 214
Chebyshev-Hermite polynomial, 644
Chebyshev transform, 456
Chip rate, 720
Chromatic dispersion, 533-534
Cochannel interference, 673-675, 684
Code division multiple access, 671,

720-733
Coding (error control), 329-336
Communication theory, 8
Complex attenuation, 132
Complex envelope, 95-117
Computable graph, 151
Computational deadlock, 222
Computer-aided design, 165-167,

184-186
Computer science, 10
Conditioning, 35, 38-40
Confidence intervals, 371-374
Congruence algorithms

linear, 248-252
mixed, 249-251
multiplicative, 251

Connection vector, 285-286
Consistent estimator, 349
Conventional importance sampling, 659
Convolutional code, 333-337, 421
Correlated random number generation,

272-282
Correlation coefficient, 277

“TranterBook” — 2003/11/18 — 16:12 — page 769 — #787
�

�

�

�

�

�

�

�

Index 769

Co-simulation, 38
Costas PLL, 234
Cross polarization, 538
CSMP, 223
Cycle slipping, 202, 220

Damping factor, 214
Data sources, 3
Data window, 317
deBruijn sequence, 286, 405
Decimation, 78
Delay estimation, 325
Depolarization, 537
Describing function, 456
Design parameters, 25
Deterministic simulation, 14
Differential equations, 223-229
Differential QPSK, 379, 384-392
Diffused multipath, 545, 547, 553-558
Digital signal processing, 8
Direct form II structure, 148-149
Direct sequence spread spectrum, 720
Discrete multipath, 545, 547, 558-566
Distortionless signal, 323
Doppler, 281, 499
Doppler filter, 518
Doppler frequency, 550
Doppler power spectrum, 550, 554,

556-558
Doppler shift, 505
Doppler spread, 552
Doppler spreading, 505
Downsampling, 78
Duplex channel, 674
Durbin-Watson test, 253-256

End-of-life predictions, 23
Energy, 111
Ensemble, 15, 245
Equivalent noise bandwidth, 293
Equivalent noise source, 397
Equivalent processes, 48
Ergodic process, 15, 244-248
Erlang, 677
Erlang B formula, 678
Error generation matrix, 594, 597

Error sources, 167, 220-223
Estimation theory, 10, 18
Estimator

coded error probability, 330-336
consistent, 10, 18, 349
convergence, 370
delay, 325
gain, 325
histogram (pdf), 309-315
Markov parameters, 604-615
Monte Carlo, 347, 349-350
periodogram, 316-322
pi, 351-354
power spectral density, 316-322
signal-to-noise ratio, 323-329
unbiased, 10, 18

Event, 348
Excess bandwidth, 513
Explicit solution techniques, 479
Extreme event, 652
Eye diagrams, 307-312

Fading channel, 531, 549
FDM group, 734, 740
Filter

bilinear z-transform, 145, 157-163
computer-aided design, 165-167,

184-186
design from amplitude response,

170-177
design from impulse response,

177-180
direct form II, 148-149
finite duration impulse response

(FIR), 145, 154, 180-188, 531
frequency sampling, 145, 147
impulse invariant, 145
infinite duration impulse response

(IIR), 145-147, 155-167, 531
Jakes, 168
raised cosine, 178-179
square root raised cosine, 431
step invariant, 145, 156-157
synthesis, 147
transposed direct form II, 148-153

“TranterBook” — 2003/11/18 — 16:12 — page 770 — #788
�

�

�

�

�

�

�

�

770 Index

Filter (continued)
zero ISI, 103
zonal, 448, 451, 453-456

First-order Markov process, 597
Fixed-point arithmetic, 66-69
Flat fading, 542
Floating point arithmetic, 69-70
Forward channel, 673
Forward variable, 605
Free-space propagation channel, 535
Frequency dividers, 201
Frequency division duplex, 674
Frequency-division multiple access, 671,

720
Frequency-domain simulation, 45
Frequency multipliers, 201
Frequency sampling, 145
Frequency selective channel, 531
Frequency selective-fading, 542-545
Frequency-shift keying (FSK), 4, 364
Frequency synthesis, 201
Full period generator, 249
Full response signaling, 394

Gain estimation, 325
Gaussian

approximation, 48
Q-function, 15

Gaussian random number generation
Box-Muller algorithm, 274
correlated, 222-282
polar method, 275
sum of uniform method, 270
uncorrelated, 269-277
Ziggert algorithm, 277

Generalized exponential pdf, 640
Golay code, 330
Grade of service, 676-680
Gram-Charlier series, 644
Gray code, 102

Hamming code, 330
Hamming weight, 587
Hamming window, 170, 175, 318
Hard decision, 421, 585
Hard-limiter, 128

Hardware description language, 26
HF troposcatter, 538
Hidden Markov model, 729
Hierarchical representation, 35
High power amplifier, 448
Hilbert transform, 134
Histogram, 264-265, 309-315

Implicit solution techniques, 480-483
Importance sampling, 356, 639, 640,

645-659
Improved importance sampling, 659
Impulse function sampling, 58
Indicator function, 647
Indoor wireless channel, 546, 570-571
Infinite duration impulse response (IIR)

digital filter, 145, 146-147,
155-167

In-line estimation, 33
In-sequence calculation, 150
Integration (See numerical integration)
Intermodal dispersion, 533-534
Intermodulation distortion, 464-468
Interpolation, 74-78, 451
Intersymbol interference, 6, 380, 585
Intrinsic parameters, 215
Inverse transform method, 259
Ionospheric radio channel, 531
Irrelevance (theorem of), 362

Jacobian matrix, 486
Jakes doppler spectrum, 557
Jakes filter, 168, 281

Kaiser window, 170

Laplacian pdf, 642
Large-scale effects, 672
Large-scale fading, 539, 680
Lewis, Goodman, and Miller algorithm,

256
Limit cycle, 229
Limiter model, 452
Linear bandpass systems, 118-125
Linear congruence, 248-252
Linear predictive coding, 421

“TranterBook” — 2003/11/18 — 16:12 — page 771 — #789
�

�

�

�

�

�

�

�

Index 771

Linear system theory, 8
Line-of-sight propagation, 539
Link budget, 20
Lognormal shadowing model, 547
Lowpass complex envelope, 95-117
Lowpass random signals, 61
Lowpass sampling theorem, 61

MATLAB, 27
Maxwells equations, 531
Memory, 44
Memoryless nonlinearity, 448, 451-468,

741
Memoryless system, 3
Mixed congruence, 249-251
Mobile radio channel, 531, 565, 568-

570
Mobile switching center, 671, 673
Model

analytical, 11
behavioral, 11, 37
block, 41
library, 23
linear, 42
lowpass equivalent, 42
nonlinear, 42
reentrant, 44
simulation, 11

Moment method, 438
Monte Carlo

estimation, 347, 349-350
integration, 366-367
simulation, 348, 359-367

Monte Carlo estimators, 646-647
Monte Carlo simulation, 379-392, 433
Monte Carlo technique, 15
Multicarrier models, 462-468
Multicarrier signals, 125-128, 464-468
Multichannel satellite communications,

719, 734-746
Multipath, 533, 538-545, 546-547
Multipath profile, 550
Multipath propagation, 536
Multipath spread, 552
Multiple access interference, 720-721

Multirate sampling, 43, 46, 49

Nakagami process, 549
Natural frequency, 214
Newton-Raphson method, 482-483, 486
Nonlinear feedback loop, 451
Nonlinear satellite transponder, 734
Nonlinear systems

AM/AM and AM/PM, 458-461
bandpass, 453-455
baseband, 128-130, 452-453
intermodulation distortion,

464-468
memory effects, 468-475
memoryless, 451-468
multicarrier, 462-468
Pozas model, 470-472
Salehs model, 460, 466, 467, 472
sampling rate, 451
Volterra series model, 475
with memory, 468-475

Number theory, 10
Numerical analysis, 9
Numerical integration

accuracy, 483-484
Adam Bashworth, 480, 484
Adams Moulton, 481, 484
Euler, 479, 484, 486-487
Runge Kutta, 480
stability, 483-485
trapezoidal, 163-166, 202, 481, 484

Nyquist frequency, 68

Offered traffic, 677
Optical fiber channel, 531
Optimal bounding region, 649
Optimum receiver, 4
Outage probability, 33, 423-425, 498,

532, 537, 675-676, 687, 701
Outdoor wireless channel, 546
Overlap and add FFT, 169, 450

Pairwise error, 103
Parameterization, 46
Parks-McClellan algorithm, 184
Partitioning, 35, 38-40

“TranterBook” — 2003/11/18 — 16:12 — page 772 — #790
�

�

�

�

�

�

�

�

772 Index

Parzen estimator, 645
Path loss exponent, 546
PCS channel model, 568
PDF estimator, 642-645
Perfect code, 330
Performance estimation, 49
Periodogram, 316-322
Phase-Locked Loop, 201-223

acquisition time, 17, 204
bandwidth, 212
basic model, 202-204
characteristic polynomial, 214
Costas, 234-235
cycle slipping, 16, 220
damping factor, 16, 214
defined, 16, 201-210
differential equation solutions,

486-487
dynamic behavior, 211
first order, 210-214
linear model, 208-210, 214
lock range, 212
loop filter, 216-218
models, 204-210
natural frequency, 16, 214
nonlinear phase model, 206-208
operating point, 211
phase detector, 204, 205
phase-plane, 211-212, 220, 228
second order, 214-215, 226
signal-flow graph, 217-218
simulation error Sources, 220-223
simulation example, 216-223,

225-229
transfer function, 208-210
transport delay, 234

Phase-Shift Keying (PSK), 4, 18,
361-364, 380-384, 394, 398,
400, 722

Pi (estimator of), 351-354, 369
Pi/4 DQPSK, 304-312
PN sequence generators, 283-290
Polar method, 275
Postprocessor, 215-216, 220, 303-338,

724

Power, 111
Power control, 721
Power-delay profile, 550, 556-558, 722
Pozas model, 470-472
Predictor-corrector techniques, 481-482,

486
Preprocessor, 215, 220, 724, 727
Prewarping, 158
Primitive element, 251
Primitive polynomial, 286
Probability theory, 9
Processing gain, 74, 720
Propagation delay, 538
Proper function, 216
Pseudonoise (PN) sequence, 244, 721
Pseudo-random sequence, 244
Public switched telephone network, 671,

673

QPSK, 400-404, 734
QSM channel model, 568
Quadrature amplitude modulation (QAM),

440
Quantizing, 55, 65-71
Quasi-static approximation, 44
Quasi-static channel, 40

Radio channel, 532-538
Raised cosine filter, 178-179
Random experiment, 348
Random number generator, 10, 243

Lewis, Goodman, and Miller, 256
linear congruential, 248-252
minimum standard, 256-258
PN sequences, 283-290
testing, 252-256
uniform, 248-258
Wichmann-Hill, 256-257
with arbitrary pdf, 258-269
with arbitrary pdf and PSD,

282-283
with arbitrary PSD, 278-282
with Gaussian pdf, 269-276

Random process models, 532, 547-552
Rayleigh fading, 542-545, 548, 722
Reconstruction, 71-72

“TranterBook” — 2003/11/18 — 16:12 — page 773 — #791
�

�

�

�

�

�

�

�

Index 773

Rectangular window, 170
Refraction, 546
Rejection method, 264-269
Relative frequency, 348
Reliability probability, 705
Reuse distance, 675
Reverse channel, 673
Ricean factor, 549, 722-723, 727
Ricean process, 539, 542, 549
Ricean spectrum, 557
Rummler channel model, 565-568

Salehs model, 460, 466-467, 472
Sample function, 15, 245
Sampling

bandpass theorem, 62
decimation, 78
direct/quadrature signals, 62
downsampling, 78
for simulation, 83-87
impulse function, 58
interpolation, 74-78
lowpass random signals, 61
lowpass theorem, 56-61
reconstruction, 71-72
upsampling, 74-78

Satellite communications, 7, 537
Satellite transponder, 740
Scattering, 538, 546, 548
Scattering function, 550, 558
Scatterplots, 252, 307-312
Scheduling, 46
Schwartz and Yehs method, 684,

696-697, 714, 717
Sectorizing, 682-684
Seed

number, 249
vector, 258

Semianalytic BER estimation
for PSK, 398-399
for QPSK, 400-404, 734-746

Semianalytic estimation, 542
Semianalytic simulation, 7, 379, 393-

405, 434-438
Semi-Markov model, 729

Settle time, 150, 215
Shadowing, 546, 672-673, 680
Signal-flow graph, 217-218
Signal processing, 290-293
Signal-to-interference ratio, 675
Signal-to-Noise ratio, 115-117
Signal-to-Noise ratio estimation,

323-329
Simulation architecture, 215
Simulation engine, 215-216
Simulation methodology, 31-52
Simulation model, 216-218
Simulation parameters, 25
Simulation theory, 2
SIMULINK, 23, 451
Sinusoidal phase detector, 204
Small-scale fading, 539, 680
Smoothing factor, 645
Soft decision, 589, 597
Soft limiter, 458
Software packages, 23
Sondhi algorithm, 282-283
Spatial division multiple access, 671
Spectral regrowth, 744
Spectral spreading, 450, 512
Spreading code, 72
Spreading factor, 720
Spread-spectrum system, 72-74
Spurious components, 448
Square root raised cosine filter, 168,

179-180, 431, 734, 738
State probability, 591
State transaction matrix, 591, 598
State variable, 149
State vector forms, 476-479
Stationary Markov process, 598
Stationary process, 244-248
Step invariant digital filter, 145,

156-157
Stochastic process theory, 9
Stochastic simulation, 9, 15, 17-19
Sufficient statistic, 639
Swept-power measurement, 459, 470
Synchronization, 201, 423
System-level specifications, 21

“TranterBook” — 2003/11/18 — 16:12 — page 774 — #792
�

�

�

�

�

�

�

�

774 Index

System parameters, 215

Tail extrapolation, 640-642
Tap gain processes, 555
Tapped delay line, 154, 515-518
Terrestrial microwave channel (LOS),

566
Time-division multiple access, 671, 720
Time-division multiplex, 674
Time-domain simulation, 45
Time-invariance, 40, 44
Time-invariant channel, 531
Time-invariant system, 118-122
Time-varying multipath, 672
Time-varying systems, 130-132

bandwidth expansion, 599
examples, 598-599
frequency-domain description,

503-505
MATLAB examples, 518-522
properties, 505-511
random process models, 511-514
simulation models, 515-518
tapped delay line model, 515-518
time-domain description, 500-503

Top-down design, 19
TOPSIM, 223
Tracking, 204
Transfer function models, 531
Transport delay, 234
Transposed direct form II filter, 148
Transversed delay line, 145, 154
Trapezoidal integration, 163-166, 202,

481

Traveling wave tube amplifier, 735, 740
Tropospheric channel, 536, 547, 565
Trunking, 676-680
Two-ray model, 231

Unbiased estimator, 349
Uncorrelated scattering, 549
Uniform random number generators,

248-258
Upsampling, 74-78

Validation, 33
Variance reduction, 28, 51, 640, 646
Viterbi equalizer, 568
Voice-quality metric, 423, 441
Volterra series, 475

Waveform plots, 307-312
Weibul process, 549
Weighting functions, 650-655
White noise, 3
Wichmann-Hill algorithm, 256-257
Wideband CDMA, 570
Wilkinsons method, 684, 696-698,

714-716
Window function, 170
Wireless communications, 671

Yule-Walker equations, 279

Zero ISI filter, 103
Ziggert algorithm, 277
Zonal filter, 448, 451, 453-456

“TranterBook” — 2003/11/18 — 16:12 — page 775 — #793
�

�

�

�

�

�

�

�

ABOUT THE AUTHORS

William H. Tranter

William H. Tranter received the Ph.D. degree from the University of Alabama
in 1970. He joined Virginia Tech in July 1997 and serves as the Bradley Professor
of Communications and as Director of the Mobile and Portable Radio Research
Group. Prior to coming to Virginia Tech, he served for twenty-six years at the

775

“TranterBook” — 2003/11/18 — 16:12 — page 776 — #794
�

�

�

�

�

�

�

�

776 About the Authors

University of Missouri–Rolla (UMR), most recently as the Schlumberger Professor
of Electrical Engineering. In 1996, he was a visiting Erskine Fellow at Canterbury
University in Christchurch, New Zealand. Dr. Tranter is the co-author of two
classic textbooks in communications and signal processing, Principles of Commu-
nications: Systems, Modulation, and Noise, 5th edition (Wiley, 2001), and Signals
and Systems: Continuous and Discrete, 4th edition (Prentice Hall 1998). He has
received numerous awards for outstanding research and service contributions, in-
cluding the IEEE Centennial Medal, the IEEE Third Millennium Medal, the IEEE
Communications Society Donald W. McLellan Meritorious Service Award, and the
IEEE Communications Society Exemplary Publications Award. He also received
a number of teaching awards from the University of Missouri–Rolla and from Tau
Beta Pi and IEEE. He has served as Editor-in-Chief of the IEEE Journal on Selected
Areas in Communications and as Director of Journals for the IEEE Communica-
tions Society. He currently serves a Vice President–Technical Activities of the IEEE
Communications Society. He was elected a Fellow of the IEEE in 1985.

K. Sam Shanmugan

K. Sam Shanmugan received the Ph.D. degree from Oklahoma State Univer-
sity, Stillwater, in Electrical Engineering. He is currently the SBC Professor of
Telecommunication in the Electrical Engineering and Computer Science Depart-
ment at the University of Kansas. Dr. Shanmugan’s current research interests are
in the areas of wireless communications and computer-aided modeling and
analysis of communication systems. Dr. Shanmugan is the author of over 100 pub-
lications in the above areas and is the author/co-author of three books, Digital and
Analog Communication Systems (Wiley, 1979), Random Signals: Detection Estima-
tion and Data Analysis (Wiley, 1988), and Simulation of Communication Systems,
2nd edition (Kluewer Academic Press, 2000). From 1985 to 1995 Dr. Shanmugan
served in a number of leadership positions in the industry: President of STA*R cor-
poration (1985–88), Senior Vice President of Comdisco Systems (1988–93), General

“TranterBook” — 2003/11/18 — 16:12 — page 777 — #795
�

�

�

�

�

�

�

�

About the Authors 777

Manager of the Alta Group of Cadence Design Systems (1994–95), and Chief Tech-
nical Officer of Systems and Networks (1995–96). During this time he led the
development and commercialization of modeling and simulation software for the
design of communication systems (BOSS-Block Oriented Systems Simulator) and
networks (BONeS-Block Oriented Network Simulator). Dr. Shanmugan was elected
a Fellow of the IEEE in 1985 for his contributions to the area of computer-aided
design of communication systems. He is also the recipient of many teaching and
research awards at the University of Kansas.

Theodore S. Rappaport

Theodore S. Rappaport received the Ph.D. degree from Purdue University in
1987, and was a faculty member at Virginia Tech from 1988–2002. There, he
founded the Mobile and Portable Radio Research Group and served as the James S.
Tucker Professor of Engineering. In 2002, he joined the ECE faculty at the Univer-
sity of Texas in Austin where he founded the Wireless Networking and Communi-
cations Group (WNCG). Dr. Rappaport has 30 patents issued or pending and has
authored, co-authored, and co-edited numerous books in the wireless field, including
the popular textbooks Wireless Communications: Principles & Practice (Prentice-
Hall, 1996, 2002), and Smart Antennas for Wireless Communications: IS-95 and
Third Generation CDMA Applications (Prentice Hall, 1999). He was a recipient
of the 1999 Stephen O. Rice Prize Paper Award from the IEEE Communications
Society, and the 2002 ASEE Frederick E. Terman outstanding educator award. Rap-
paport has founded two successful high-tech companies, and is presently Chairman
and CEO of Wireless Valley Communications, Inc., a leading software simulation
and measurement product company that provides solutions for in-building wireless
network deployment and management.

“TranterBook” — 2003/11/18 — 16:12 — page 778 — #796
�

�

�

�

�

�

�

�

778 About the Authors

Kurt L. Kosbar

Kurt L. Kosbar is an associate professor of electrical and computer engineering at
the University of Missouri–Rolla. He received B.S. degrees in electrical engineering
and computer engineering from Oakland University, and M.S. and Ph.D. degrees in
electrical engineering from the University of Southern California. While performing
his graduate work at USC, Dr. Kosbar was employed by Hughes Aircraft Company,
Space and Communications Group, as a staff engineer. Dr. Kosbar was a Fulbright
fellow at the Technical University of Gdansk, is a member of the IEEE, and has
been inducted into the Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi honor
societies.

