


Signal Detection and Estimation

Second Edition

TEAM LinG



For a listing of recent titles in the Artech House Radar Library,
turn to the back of this book.

DISCLAIMER OF WARRANTY

The technical descriptions, procedures, and computer programs in this book
have been developed with the greatest of care and they have been useful to the
author in a broad range of applications; however, they are provided as is, with-
out warranty of any kind. Artech House, Inc., and the author of the book titled
Signal Detection and Estimation, Second Edition, make no warranties, expressed
or implied, that the equations, programs, and procedures in this book or its
associated software are free of error, or are consistent with any particular stan-
dard of merchantability, or will meet your requirements for any particular appli-
cation. They should not be relied upon for solving a problem whose incorrect
solution could result in injury to a person or loss of property. Any use of the pro-
grams or procedures in such a manner is at the user’s own risk. The editors,
author, and publisher disclaim all liability for direct, incidental, or consequent
damages resulting from use of the programs or procedures in this book or the
associated software.



Signal Detection and Estimation

Second Edition

Mourad Barkat

a r t e c h h o u s e . c o m



Library of Congress Cataloging-in-Publication Data
Barkat, Mourad.

Signal detection and estimation/Mourad Barkat.—2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 1-58053-070-2
1. Signal detection.  2. Stochastic processes.  3. Estimation theory.  4. Radar.  I. Title.

TK5102.5.B338 2005
621.382'2—dc22 2005048031

British Library Cataloguing in Publication Data
Barkat, Mourad

Signal detection and estimation.—2nd ed.—(Artech House radar library)
1. Signal detection  2. Stochastic processes  3. Estimation theory
I. Title
621.3'822

ISBN-10: 1-58053-070-2

Cover design by Igor Valdman

© 2005 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording, or by any information storage and retrieval system, without permission in
writing from the publisher. All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-070-2

10 9 8 7 6 5 4 3 2 1



 
 
 
 

 
 
 

 
 
 

To my wife and my children 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

 

 
 
 
 

 
 
 

Contents 
 
 
Preface                      xv 
 
Acknowledgments                  xvii 
 
Chapter 1 Probability Concepts        1 

1.1  Introduction        1 
1.2  Sets and Probability        1 

1.2.1  Basic Definitions       1 
1.2.2  Venn Diagrams and Some Laws     3 
1.2.3  Basic Notions of Probability      6 
1.2.4  Some Methods of Counting      8 
1.2.5  Properties, Conditional Probability, and Bayes’ Rule          12 

1.3  Random Variables                   17 
1.3.1  Step and Impulse Functions                 17 
1.3.2  Discrete Random Variables                 18 
1.3.3  Continuous Random Variables                 20 
1.3.4  Mixed Random Variables                 22 

1.4  Moments                    23 
1.4.1  Expectations                   23 
1.4.2  Moment Generating Function and Characteristic Function 26 
1.4.3  Upper Bounds on Probabilities and Law of Large  
 Numbers                   29 

1.5  Two- and Higher-Dimensional Random Variables              31 
1.5.1  Conditional Distributions                 33 
1.5.2  Expectations and Correlations                 41 
1.5.3  Joint Characteristic Functions                 44 

1.6  Transformation of Random Variables                 48 
1.6.1  Functions of One Random Variable                49 
1.6.2  Functions of Two Random Variables                52 
1.6.3  Two Functions of Two Random Variables               59 

1.7  Summary                    65 
Problems                    65 

vii 



Signal Detection and Estimation 

 

viii

Reference                    73 
Selected Bibliography                   73 

 
Chapter 2 Distributions                    75 

2.1  Introduction                   75 
2.2  Discrete Random Variables                  75 

2.2.1  The Bernoulli, Binomial, and Multinomial Distributions    75 
2.2.2  The Geometric and Pascal Distributions                78 
2.2.3  The Hypergeometric Distribution                82 
2.2.4  The Poisson Distribution                 85 

2.3  Continuous Random Variables                 88 
2.3.1  The Uniform Distribution                 88 
2.3.2  The Normal Distribution                 89 
2.3.3  The Exponential and Laplace Distributions               96 
2.3.4  The Gamma and Beta Distributions                98 
2.3.5  The Chi-Square Distribution               101 
2.3.6  The Rayleigh, Rice, and Maxwell Distributions             106 
2.3.7  The Nakagami m-Distribution               115 
2.3.8  The Student’s t- and F-Distributions              115 
2.3.9  The Cauchy Distribution               120 

2.4  Some Special Distributions                121 
2.4.1  The Bivariate and Multivariate Gaussian Distributions     121 
2.4.2  The Weibull Distribution               129 
2.4.3  The Log-Normal Distribution               131 
2.4.4  The K-Distribution                132 
2.4.5  The Generalized Compound Distribution             135 

2.5  Summary                  136 
Problems                  137 
Reference                  139 
Selected Bibliography                 139 

 
Chapter 3 Random Processes                 141 

3.1  Introduction and Definitions                141 
3.2  Expectations                 145 
3.3  Properties of Correlation Functions               153 

3.3.1  Autocorrelation Function               153 
3.3.2  Cross-Correlation Function               153 
3.3.3  Wide-Sense Stationary                154 

3.4  Some Random Processes                156 
3.4.1  A Single Pulse of Known Shape but Random Amplitude         

             and Arrival Time                156 
3.4.2  Multiple Pulses                157 
3.4.3  Periodic Random Processes               158 
3.4.4  The Gaussian Process                161 
3.4.5  The Poisson Process                163 



Contents 

 

ix

3.4.6  The Bernoulli and Binomial Processes              166 
3.4.7  The Random Walk and Wiener Processes             168 
3.4.8 The Markov Process                172 

3.5  Power Spectral Density                174 
3.6  Linear Time-Invariant Systems               178 

3.6.1  Stochastic Signals                179 
3.6.2  Systems with Multiple Terminals              185 

3.7  Ergodicity                  186 
3.7.1  Ergodicity in the Mean               186 
3.7.2  Ergodicity in the Autocorrelation              187 
3.7.3  Ergodicity of the First-Order Distribution             188 
3.7.4  Ergodicity of Power Spectral Density              188 

3.8  Sampling Theorem                 189 
3.9  Continuity, Differentiation, and Integration              194 

 3.9.1  Continuity                 194 
 3.9.2  Differentiation                196 
 3.9.3  Integrals                 199 
 3.10  Hilbert Transform and Analytic Signals              201 
 3.11  Thermal Noise                 205 
 3.12  Summary                  211 
 Problems                  212 
 Selected Bibliography                 221 
 
Chapter 4 Discrete-Time Random Processes               223 

4.1  Introduction                 223 
4.2  Matrix and Linear Algebra                224 

4.2.1  Algebraic Matrix Operations               224 
4.2.2  Matrices with Special Forms               232 
4.2.3  Eigenvalues and Eigenvectors               236 

4.3  Definitions                  245 
4.4  AR, MA, and ARMA Random Processes              253 

4.4.1  AR Processes                 254 
4.4.2  MA Processes                262 
4.4.3  ARMA Processes                264 

4.5  Markov Chains                 266 
4.5.1  Discrete-Time Markov Chains               267 
4.5.2  Continuous-Time Markov Chains              276 

4.6  Summary                  284 
 Problems                  284 

References                  287 
 Selected Bibliography                 288 
  
Chapter 5 Statistical Decision Theory                289 

5.1  Introduction                 289 
5.2  Bayes’ Criterion                 291 



Signal Detection and Estimation 

 

x

5.2.1  Binary Hypothesis Testing               291 
5.2.2  M-ary Hypothesis Testing               303 

5.3  Minimax Criterion                 313 
5.4  Neyman-Pearson Criterion                317 
5.5  Composite Hypothesis Testing               326 

5.5.1  Θ  Random Variable                327 
5.5.2  θ Nonrandom and Unknown               329 

5.6  Sequential Detection                332 
5.7  Summary                  337 

 Problems                  338 
 Selected Bibliography                 343 
 
Chapter 6 Parameter Estimation                 345 

6.1  Introduction                 345 
6.2  Maximum Likelihood Estimation               346 
6.3  Generalized Likelihood Ratio Test               348 
6.4  Some Criteria for Good Estimators               353 
6.5  Bayes’ Estimation                 355 

6.5.1  Minimum Mean-Square Error Estimate              357 
6.5.2  Minimum Mean Absolute Value of Error Estimate           358 
6.5.3  Maximum A Posteriori Estimate              359 

6.6  Cramer-Rao Inequality                364 
6.7  Multiple Parameter Estimation               371 

6.7.1  θ Nonrandom                         371 
6.7.2  θ Random Vector                376 

6.8  Best Linear Unbiased Estimator               378 
6.8.1  One Parameter Linear Mean-Square Estimation             379 
6.8.2  θ Random Vector                381 
6.8.3  BLUE in White Gaussian Noise              383 

6.9  Least-Square Estimation                388 
6.10  Recursive Least-Square Estimator               391 
6.11  Summary                  393 

 Problems                  394 
 References                  398 
 Selected Bibliography                 398 
 
Chapter 7 Filtering                  399 

7.1  Introduction                 399 
7.2  Linear Transformation and Orthogonality Principle             400 
7.3  Wiener Filters                 409 

7.3.1  The Optimum Unrealizable Filter              410 
7.3.2  The Optimum Realizable Filter               416 

7.4  Discrete Wiener Filters                424 
7.4.1  Unrealizable Filter                425 
7.4.2  Realizable Filter                426 



Contents 

 

xi

7.5  Kalman Filter                 436 
7.5.1 Innovations                 437 
7.5.2 Prediction and Filtering               440 

7.6  Summary                  445 
 Problems                  445 
 References                  448 
 Selected Bibliography                 448 
 
Chapter 8 Representation of Signals                449 

8.1  Introduction                 449 
8.2  Orthogonal Functions                449 

8.2.1  Generalized Fourier Series               451 
8.2.2  Gram-Schmidt Orthogonalization Procedure             455 
8.2.3  Geometric Representation               458 
8.2.4  Fourier Series                463 

8.3  Linear Differential Operators and Integral Equations             466 
8.3.1  Green’s Function                470 
8.3.2  Integral Equations                471 
8.3.3  Matrix Analogy                479 

8.4  Representation of Random Processes               480 
8.4.1  The Gaussian Process                483 
8.4.2  Rational Power Spectral Densities              487 
8.4.3  The Wiener Process                492 
8.4.4  The White Noise Process               493 

8.5  Summary                  495 
 Problems                  496 
 References                  500 
 Selected Bibliography                 500 
 
Chapter 9 The General Gaussian Problem                503 

9.1  Introduction                 503 
9.2  Binary Detection                 503 
9.3  Same Covariance                 505 

9.3.1  Diagonal Covariance Matrix               508 
9.3.2  Nondiagonal Covariance Matrix              511 

9.4  Same Mean                 518 
9.4.1  Uncorrelated Signal Components and Equal Variances    519 
9.4.2  Uncorrelated Signal Components and Unequal  
 Variances                 522 

9.5  Same Mean and Symmetric Hypotheses              524 
9.5.1  Uncorrelated Signal Components and Equal Variances    526 
9.5.2  Uncorrelated Signal Components and Unequal  
 Variances                 528 

9.6  Summary                  529 
 Problems                  530 



Signal Detection and Estimation 

 

xii

Reference                  532 
 Selected Bibliography                 532 
 
Chapter 10 Detection and Parameter Estimation               533 

10.1    Introduction                 533 
10.2 Binary Detection                 534 

10.2.1  Simple Binary Detection               534 
10.2.2  General Binary Detection               543 

10.3 M-ary Detection                 556 
10.3.1  Correlation Receiver               557 
10.3.2  Matched Filter Receiver               567 

10.4 Linear Estimation                 572 
10.4.1  ML Estimation                573 
10.4.2  MAP Estimation                575 

10.5 Nonlinear Estimation                576 
10.5.1  ML Estimation                576 
10.5.2  MAP Estimation                579 

10.6 General Binary Detection with Unwanted Parameters             580 
10.6.1  Signals with Random Phase               583 
10.6.2  Signals with Random Phase and Amplitude             595 
10.6.3  Signals with Random Parameters              598 

10.7 Binary Detection in Colored Noise               606 
10.7.1  Karhunen-Loève Expansion Approach             607 
10.7.2  Whitening Approach               611 
10.7.3  Detection Performance               615 

10.8 Summary                 617 
Problems                  618 
Reference                  626 
Selected Bibliography                 626 

 
Chapter 11 Adaptive Thresholding CFAR Detection               627 

11.1 Introduction                 627 
11.2    Radar Elementary Concepts               629 

11.2.1  Range, Range Resolution, and Unambiguous Range   631 
11.2.2  Doppler Shift                633 

11.3 Principles of Adaptive CFAR Detection              634 
11.3.1  Target Models                640 
11.3.2  Review of Some CFAR Detectors              642 

11.4    Adaptive Thresholding in Code Acquisition of Direct- 
Sequence Spread Spectrum Signals                          648 
11.4.1  Pseudonoise or Direct Sequences              649 
11.4.2  Direct-Sequence Spread Spectrum Modulation            652 
11.4.3  Frequency-Hopped Spread Spectrum Modulation        655 
11.4.4  Synchronization of Spread Spectrum Systems             655 
11.4.5  Adaptive Thresholding with False Alarm Constraint   659 



Contents 

 

xiii

11.5 Summary                 660 
References                  661 

 
Chapter 12 Distributed CFAR Detection                665 

12.1  Introduction                 665 
12.2  Distributed CA-CFAR Detection               666 
12.3  Further Results                 670 
12.4  Summary                  671 
References                  672 

 
Appendix                    675 
 
About the Author                   683 
 
Index                    685 
 





 

 
 
 
 

 
 
 

Preface 
 
 
This book provides an overview and introduction to signal detection and 
estimation. The book contains numerous examples solved in detail. Since some 
material on signal detection could be very complex and require a lot of background 
in engineering math, a chapter and various sections to cover such background are 
included, so that one can easily understand the intended material. Probability 
theory and stochastic processes are prerequisites to the fundamentals of signal 
detection and parameter estimation. Consequently, Chapters 1, 2, and 3 carefully 
cover these topics. Chapter 2 covers the different distributions that may arise in 
radar and communication systems. The chapter is presented in such a way that one 
may not need to use other references. 

In a one-semester graduate course on “Signal Detection and Estimation,” the 
material to cover should be: 

 
  Chapter 5  Statistical Decision Theory 
  Chapter 6  Parameter Estimation 
  Chapter 8  Representation of Signals 

  Chapter 9  The General Gaussian Problem 
  Chapter 10  Detection and Parameter Estimation 
 

and perhaps part of Chapter 7 on filtering. The book can also be used in a two-
semester course on “Signal Detection and Estimation” covering in this case: 
Chapters 5 to 8 for the first semester and then Chapters 9 to 12 for the second 
semester. 

Many graduate courses on the above concepts are given in two separate 
courses; one on probability theory and random processes, and one on signal 
detection and estimation. In this case, for the first graduate course on “Probability 
Theory, Random Variables, and Stochastic Processes,” one may cover: 
 
  Chapter 1  Probability Concepts 
  Chapter 2  Distributions 
  Chapter 3  Random Processes 
  Chapter 4  Discrete-Time Random Process 

xv 



Signal Detection and Estimation xvi

and part of Chapter 7 on filtering, while Chapters 5, 6, 8, and 9 can be covered in 
the course on “Signal Detection and Estimation” in the second semester. The 
different distributions, which are many, can be discussed on a selective basis. 

Chapters 3 and 4, and part of Chapter 7 on filtering, can also be studied in 
detail for a graduate course on “Stochastic Processes.” 

Chapters 11 and 12 are applications of some aspects of signal detection and 
estimation, and hence they can be presented in a short graduate course, or in a 
course of special topics. 

The chapters on probability theory, random variables, and stochastic processes 
contain numerous examples solved in detail, and hence they can be used for 
undergraduate courses. In this case, Chapter 1 and part of Chapter 2 will be 
covered in a one-semester course on “Probability and Random Variables.”. 
Chapter 3 and part of Chapter 4 can be covered in a second semester course on 
“Random Processes” for seniors. It is clear that different combinations of the 
different chapters can used for the different intended courses. 

Since the material is essential in many applications of radar, communications, 
and signal processing, this book can be used as a reference by practicing engineers 
and physicists. The detailed examples and the problems presented at the end of 
each chapter make this book suitable for self-study and facilitate teaching a class. 
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Chapter 1 
 
 

Probability Concepts 
 
 
1.1 INTRODUCTION 
 
This book is primarily designed for the study of statistical signal detection and 
parameter estimation. Such concepts require a good knowledge of the fundamental 
notions on probability, random variables, and stochastic processes. In Chapter 1, 
we present concepts on probability and random variables. In Chapter 2, we discuss 
some important distributions that arise in many engineering applications such as 
radar and communication systems. Probability theory is a prerequisite for Chapters 
3 and 4, in which we cover stochastic processes and some applications. Similarly, 
the fundamentals of stochastic processes will be essential for proper understanding 
of the subsequent topics, which cover the fundamentals of signal detection and 
parameter estimation. Some applications of adaptive thresholding radar constant 
false alarm rate (CFAR) detection will be presented in Chapter 11. In Chapter 12, 
we consider the concepts of adaptive CFAR detection using multiple sensors and 
data fusion. This concept of adaptive thresholding CFAR detection will also be 
introduced in spread spectrum communication systems. 
 We start this chapter with the set theory, since it provides the most 
fundamental concepts in the theory of probability. We introduce the concepts of 
random variables and probability distributions, statistical moments, two- and 
higher-dimensional random variables, and the transformation of random variables. 
We derive some basic results, to which we shall refer throughout the book, and 
establish the notation to be used. 
 
 
1.2 SETS AND PROBABILITY 
 
1.2.1 Basic Definitions 
 
A set may be defined as a collection of objects. The individual objects forming the 
set are the “elements” of the set, or “members” of the set. In general, sets are 
aaaaaa 
 

1 
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denoted by capital letters as A, B, C, and elements or particular members of the set 
by lower case letters as a, b, c. If an element a “belongs” to or is a “member” of A, 
we write 

Aa∈              (1.1) 

Otherwise, we say that a is not a member of A or does not belong to A, and write 

Aa∉              (1.2) 

A set can be described in three possible ways. The first is listing all the 
members of the set. For example, A = {1, 2, 3, 4, 5, 6}. It can also be described in 
words. For example, we say that A consists of integers between 1 and 6, inclusive. 
Another method would be to describe the set in the form shown here. 

{ aaA = integer and  }61 ≤≤ a             (1.3) 

The symbol | is read as “such that,” and the above expression is read in words as 
“the set of all elements a, such that a is an integer between 1 and 6 inclusive.” 

A set is said to be countable if its elements can be put in a one-to-one 
correspondence with the integers 1, 2, 3, and so forth. Otherwise, it is called 
uncountable. 

A finite set has a number of elements equal to zero or some specified positive 
integer. If the number is greater than any conceivable positive integer, then it is 
considered infinite. 

The set of all elements under consideration is called the universal set and is 
denoted by U. The set containing no elements is called the empty set or null set and 
is denoted by ∅. 

Given two sets A and B, if every element in B is also an element of A, then B 
is a subset of A. This is denoted as 

AB ⊆              (1.4) 

and is read as “B is a subset of A.” If at least one element in A is not in B, then B is 
a proper subset of A, denoted by 

AB ⊂              (1.5) 

On the other hand, if every element in B is in A, and every element in A is in B, so 
that AB ⊆  and ,BA ⊆  then 

BA =              (1.6) 
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If the sets A and B have no common element, then they are called disjoint or 
mutually exclusive. 
 
Example 1.1 
 
In this example, we apply the definitions that we have just discussed above. 
Consider the sets A, B, C, D, and E as shown below. 

A = {numbers that show in the upper face of a rolling die} 

B = {xx odd integer and 1 ≤ x ≤ 6} 

C = {xx real and x ≥ 1} 

D = {2, 4, 6, 8, 10} 

E = {1, 3, 5} 

F = {1, 2, 3, 4, …} 

G = {0} 

 
Solution 
 
Note that the sets A and B can be written as A = {1, 2, 3, 4, 5, 6} and B = {1, 3, 5}. 
A, B, D, E, and G are countable and finite. C is uncountable and infinite. F is 
countable but infinite. Since the elements in A are the numbers that show in the 
upper face of a rolling die, and if the problem under consideration (game of 
chance) is the numbers on the upper face of the rolling die, then the set A is 
actually the universal set U.  

A ⊂ F, B ⊂ F, D ⊂ F, and E ⊂ F. B ⊂ A and E ⊂ A. If B ⊆ E and E ⊆ B, then 
.BE =  D and E are mutually exclusive. Note that G is not the empty set but a set 

with element zero. The empty set is a subset of all sets. If the universal set has n 
elements, then there are 2n subsets. In the case of the rolling die, we have 26 = 64 
subsets. 
 
1.2.2 Venn Diagrams and Some Laws 
 
In order to provide a geometric intuition and a visual relationship between sets, 
sets are represented by Venn diagrams. The universal set, U, is represented by a 
rectangle, while the other sets are represented by circles or some geometrical 
figures. 
 
Union   Set of all elements that are members of A or B or both, and is denoted as 

.BA Υ  This is shown in Figure 1.1. 
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Figure 1.1  Union. 

 Intersection   Set of all elements that belong to both A and B, and is denoted as 
.BA Ι  This is shown in Figure 1.2. 

 
 
 
 
 
 
 
 
 
Figure 1.2  Intersection. 

 Difference   Set consisting of all elements in A that are not in B, and is denoted as 
.BA−  This is shown in Figure 1.3. 

 
 
 
 
 
 
 
 
 
Figure 1.3  A−B. 

U

A B

U

A B

U

A B
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Complement   The set composed of all members in U not in A is the complement 
of A, and is denoted as .A  This is shown in Figure 1.4. 

 
 
 
 
 
 
 
 
Figure 1.4  Complement of A. 

Partitions   A group of mutually exclusive sets covering the entire universal set U 
form a partition. This is shown in Figure 1.5. 

 
 
 
 
 
 
 
 
Figure 1.5  Partitions. 

Cartesian Product   The Cartesian product of sets A and B, denoted BA× , is the 
set of all ordered pairs where the first element of the pairs is taken from set A and 
the second element from set B. That is, if set A = {a1, a2, …, an} and set B = {b1, 
b2, …, bm}, then the Cartesian product BA×  = {(a1, b1), (a1, b2), …, (a1, bm), (a2, 
b1), (a2, b2), …, (a2, bm), …, (an, b1), (an, b2), …, (an, bm)}. It should be noted that 
the Cartesian product BA×  is generally not equal to AB× . 
 
Some Laws and Theorems 
 
1. If A and B are sets, then BA Υ and BA Ι  are sets. 
2. There is only one set ∅ and one universal set U, such that AA =∅Υ  and 

AUA =Ι  for any A. 
 

A

U

C

U

A

B

A 
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3. Commutative laws: ABBA ΥΥ =  and .ABBA ΙΙ =  
4. Associative laws: ( ) ( )CBACBA ΥΥΥΥ =  and 
 ( ) ( )CBACBA ΙΙΙΙ = . 
5. Distributive laws: ( ) ( ) ( )CABACBA ΥΙΥΙΥ =  and  
 ( ) ( ) ( ).CABACBA ΙΥΙΥΙ =  

6. UAA =Υ  and .∅=AA Ι  

7. De Morgan’s laws: BABA ΙΥ =  and .BABA ΥΙ =  

8. If A = B, then .BA =  If A = B and C = D, then DBCA ΥΥ =  and 
.DBCA ΙΙ =  

9. .AA =  
 
1.2.3 Basic Notions of Probability 
 
Originally, the theory of probability was developed to serve as a model of games 
of chance, such as rolling a die, spinning a roulette wheel, or dealing from a deck 
of cards. Later, this theory developed to model scientific physical experiments. 
 In building the relationship between the set theory and the notion of 
probability, we call the set of all possible distinct outcomes of interest in a 
particular experiment as the sample space S. An event is a particular outcome or    
a combination of outcomes. According to the set theory, the notion of an event is a 
subset of the sample space.  
 If a basic experiment can lead to N mutually exclusive and equally likely 
outcomes, and if NA is the possible outcomes in the occurrence of the event A, then 
the probability of the event A is defined by 

N
N

A A=ofyprobabilit              (1.7) 

However, the most popular definition among engineers is a second definition 
referred to as relative frequency. If an experiment is repeated n times under the 
same conditions, and if nA is the number of occurrences of event A, then the 
probability of A, P( A ), is defined by 

( )
n

n
AP A

n ∞→
= lim              (1.8) 

Note that in the second definition, which is based on an experiment, the concept of 
equally likely events is not necessary, but in practice n is really finite. Because of 
its a priori nature, the concept of probability also has a subjective definition, that 
is, the degree of confidence in a certain outcome of a particular experiment, or in a 
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certain state in the sample space. Subjective theory of probability, as treated by  
De Finetti [1], solves the lack of synthesis of the “relative frequency” limit and the 
combinatory limitation of the “ratio of outcomes.” 
 We now formalize the concept of obtaining an outcome lying in a specified 
subset A of the sample space S into a definition of probability. 

Definition.  Given the sample space S and an event A, a probability function, P( ⋅ ), 
associates to the event A a real number such that 
1. P(A) ≥ 0 for every event A; 
2. P(S) = 1; 
3. If there exist some countable events A1, A2, …, An, mutually exclusive 

( )jiAA ji ≠∅= ,Ι , then 

( ) ( ) ( ) ( )nn APAPAPAAAP +++= ΛΥΛΥΥ 2121 . 

Example 1.2 
 
Consider the experiment of two six-sided dice, and that each die has its sides 
marked 1 through 6. The sample space, S, in this case is 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 





























=

6,65,64,63,62,61,6
6,55,54,53,52,51,5
6,45,44,43,42,41,4
6,35,34,33,32,31,3
6,25,24,23,22,21,2
6,15,14,13,12,11,1

S  

Let the event A be “the sum is 7,” the event B is “one die shows an even number 
and the other an odd number.” The events A and B are 

( ) ( ) ( ) ( ) ( ) ( ){ }1,6,2,5,3,4,4,3,5,2,6,1=A  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 





























=

6,56,36,1
5,65,45,2
4,54,34,1
3,63,43,2
2,52,32,1
1,61,41,2

B  
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We can obtain the probability of events A, B, BA Ι , and A  to be ( ) ,36/6=AP  

( ) ,2/136/18 ==BP  ( ) ( ) ,6/1== APBAP Ι  and ( ) 6/536/30 ==AP . 
 Example 1.2 illustrates the fact that counting plays an important role in 
probability theory. However, as the number of possible outcomes becomes large, 
the counting process becomes very difficult, and thus it may be necessary to divide 
the counting into several steps, as illustrated in the following section. 
 
1.2.4 Some Methods of Counting 
 
One strategy of counting is breaking the task into a finite sequence of subtasks, 
such that the number of ways of doing a particular task is not dependent on the 
previous tasks in the sequence. Suppose that there are n1 ways of doing step 1, and 
for each way of step 1, there are n2 ways of doing step 2. For each way to do step 1 
and step 2, there are n3 ways of doing step 3, and so on until step k. Then, the 
number of ways to perform the procedure is n1n2 … nk. The classical example of 
this principle is the number of ways to write a 5-digit word. The word is ─ ─ ─ ─ 
─. We observe that there are n1 = 26 ways for step 1, n2 = 26 ways for step 2, and 
so on, until we have the 5-letter word. The total number of such ways is 265 = 
11,881,376 ways. Note that if no letter can be repeated, then for step 1 we have all 
26 letters of the alphabet. Step 2, however, will have 25 ways, until step 5 with n5 

= 22. The number of such words becomes now 26×25×24×23×22 = 7,893,600. 
 Suppose that we have now r distinct objects (particles) to be placed in n slots. 
From Figure 1.6, we observe that we have r ways of placing the objects in the first 
slot. After choosing the first object, there are 1−r  ways of placing an object in the 
second slot, and so on, until the rth slot, which will be filled in 1+− rn  ways. 
Thus, the total number of ways of arranging r objects in n slots is 

)1( −nn … )1( +− rn . This is called permutations or arrangements of r objects 
among n and denoted nPr, which can be written as 

( )!
!
rn

n
Prn −

=              (1.9) 

Note that if r = n, that is, we have permutations of n distinct objects out of n, 
then following the 1 is filled, w same reasoning as before, we have n ways to fill 
slot 1. After slot e have )1( −n  ways to fill slot 2, and so on, until the nth slot 
which can be filled in just one way. Then, nPn  = n )2()1( −− nn … 1 = n!. 
substition 

1 2 ……….. n 
 

Figure 1.6  n slots. 
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Substitution of r = n in (1.9) means 0!=1, which is an adopted convention, and we 
conclude that the permutations of n objects is n!. 
 Note that in the case just discussed above, the order in the arrangements of 
objects is important. However, when the order is not relevant and the problem is 
always counting the number of ways of choosing r objects out of n, we speak not 
of permutations but of combinations. For example, if we have 3=n  objects a, b, 
and c, and we select 2=r  objects without regard to the order, the possible cases 
are ab, ac, and bc. Note that in this case ab and ba are the same combination. The 
total number of combinations of r objects out of n is given by 

( ) !!
!

rrn
n

r
n

−
=








           (1.10) 

The notation  rn C
r
n

=







 also can be used. The numbers  








r
n

 are called binomial 

coefficients. It can easily be shown that 

 







−

=







rn

n
r
n

           (1.11) 

and 








 −
+








−
−

=







r

n
r
n

r
n 1

1
1

          (1.12) 

 If the n objects are not all distinct, such that n1 is of one type, n2 of a second 
type, and so on, until nk of a kth type, where knnn +++ Κ21 , then, the number 
of different permutations of these n objects is given by 

   
!!!

!

211

221

3

21

2

1

1 kk

k

nnn
n

n
nnnn

n
nnn

n
nn

n
n

Κ
Κ

Λ =






 −−−−







 −−







 −









−

−    (1.13) 

The numbers defined in (1.13) are known as multinomial coefficients, and they 
may also be denoted as 

knnnn P ,,, 21 Κ . We now solve some examples applying the 
different strategies of counting. 
 
Example 1.3 (Tree Diagram) 
 
Urn A contains five red balls and two white balls. Urn B contains three red balls 
aaa 
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and two white balls. An urn is selected at random, and two balls are drawn 
successively without replacing the first drawn ball. Each urn is assumed to have 
the same likelihood of selection. 

(a) Draw the tree diagram. 
(b) What is the probability of drawing two white balls? 

 
Solution 
 
(a)  The experiment consists of selecting an urn and then drawing two balls from 
the selected urn. Note also that the sample size changes after the first ball is drawn, 
and thus the events are not independent. Since the sample size is small, we 
introduce the concept of a tree diagram in this example. The whole experiment 
with all possible outcomes is as shown in Figure 1.7, with R denoting drawing a 
red ball and W drawing a white ball. 
(b)  We observe that two branches AWW and BWW marked by an * indicate the 
possible cases of obtaining two white balls. Hence, 

( ) 0738.0
20
1

42
1

4
1

5
2

2
1

6
1

7
2

2
12 =+=+=WP  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7  Tree diagram. 

A 
 

1/2 

W 
1/6 

R 
5/6 

W 
2/6 

R 
4/6 

W 
2/7 

R 
5/7

W 
1/4 

R 
3/4 

W 
2/4 

R 
2/4 

W 
2/5 

R 

3/5 

B 
 

1/2 

AWW * 

AWR 

ARW

ARR 

BWW * 

BWR 

BRW

BRR 

Draw ball 1 Draw ball 2 Select urn 
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Example 1.4 
 
An urn contains five red, three green, four blue, and two white balls. What is the 
probability of selecting a sample size of six balls containing two red, one green, 
two blue, and one white ball? In this case, the probability is given by 

080.0

6
14

1
2

2
4

1
3

2
5

=











































 

Example 1.5 
 
A box contains 10 black balls and 15 white balls. One ball at a time is drawn at 
random, its color is noted, and the ball is then replaced in the box for the next 
draw. 

(a) Find the probability that the first white ball is drawn on the third draw. 
(b) Find the probability that the second and third white balls are drawn on the 

fifth and eighth draws, respectively. 
 
Solution 
 
(a) Note that the events are independent, since the ball is replaced in the box and 
thus the sample space does not change. Let B denote drawing a black ball and W 
drawing a white ball. The total number of balls in the sample space is 25. Hence, 
we have 

 1st draw  → B 
 2nd draw → B 
 3rd draw → W 
Thus,  

( )

096.0
25
15

25
10

1
25

1
25

1
25

1
15

1
10

1
10

drawrd3 in thedrawn  ball whitefirst 

2

=













=



















































=P
 

To illustrate the experiment that the second and third white balls are drawn on the 
fifth and eighth draws, we do the following. 
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









drawth 4
draw rd3
draw nd2

drawst 1

1W and 3B, there are four ways of obtaining this: 4
!3!1

!4
1
4

==







 

5th draw → W (the 2nd white) 
6th draw → B 
7th draw → B 
8th draw → W (the 3rd white) 

Note that the sixth and seventh draws would have to be a black ball. Thus, 
computing the probability, we obtain  

00206.0
30
15

30
10

30
15

30
10

30
154

23

=















































=P  

1.2.5 Properties, Conditional Probability, and Bayes’ Rule 
 
Now that we have defined the concept of probability, we can state some useful 
properties. 
 
Properties 
 
1.  For every event A, its probability is between 0 and 1. 

0 ≤ P(A) ≤ 1           (1.14) 

2.  The probability of the impossible event is zero. 

P(∅) = 0           (1.15) 

3.  If A  is the complement of A, then 

P( A ) = 1 – P(A)           (1.16) 

4.  If A and B are two events, then 

( ) ( ) ( )BAPBPAPBAP ΙΥ −+= )(           (1.17) 

5. If   the   sample   space   consists   of   n   mutually   exclusive  events  such  that 
nAAAS ΥΛΥΥ 21= , then 
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   1)()()()( 21   AP  A P A P SP n =+++= Λ          (1.18) 

Conditional Probability and Independent Events 
 
Let A and B be two events, such that P(B) ≥ 0. The probability of event B given 
that event A has occurred is 

 ( ) ( )
)(BP
BAPBAP Ι=            (1.19) 

( )BAP  is the probability that A will occur given that B has occurred, and is called 
the conditional probability of A given B. However, if the occurrence of event B 
has no effect on A, we say that A and B are independent events. In this case,  

   ( ) )(APBAP =            (1.20) 

which is equivalent, after substitution of (1.20) in (1.19), to 

( ) ( ) ( )BPAPBAP =Ι           (1.21) 

For any three events A1, A2, A3, we have 

( ) ( ) ( ) ( )213121321 AAAPAAPAPAAAP ΙΙΙ =          (1.22) 

If the three events are independent, then they must be pairwise independent 

( ) ( ) ( ) 3,2,1,and =≠= jijiAPAPAAP jiji Ι          (1.23) 

and 

( ) ( ) ( ) ( )321321 APAPAPAAAP =ΙΙ           (1.24) 

Note that both conditions (1.23) and (1.24) must be satisfied for A1, A2, and A3 to 
be independent. 
 
Bayes’ Rule 
 
If we have n mutually exclusive events A1, A2, …, An, the union of which is the 
sample space S, nAAAS ΥΚΥΥ 21= , then for every event A, Bayes’ rule says 
that 
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( ) ( )
( )AP

AAP
AAP k

k
Ι

=            (1.25) 

where 

                              ( ) ( ) ( ) nkAAPAPAAP kkk ,,2,1, ΚΙ ==          (1.26) 

since )(/)()( kkk APAAPAAP = , and the total probability of A is defined as 

       ( ) ( ) ( ) ( ) ( ) ( ) ( )nn APAAPAPAAPAPAAPAP +++= Κ2211     (1.27) 

Example 1.6 
 
A digital communication source transmits symbols of 0s and 1s independently, 
with probability 0.6 and 0.4, respectively, through some noisy channel. At the 
receiver, we obtain symbols of 0s and 1s, but with the chance that any particular 
symbol was garbled at the channel is 0.2. What is the probability of receiving a 
zero? 
 
Solution 
 
Let the probability to transmit a 0 be P(0) = 0.6, and the probability to transmit a 1 
be P(1) = 0.4.  The probability that a particular symbol is garbled is 0.2; that is, the 
probability to receive a 1 when a 0 is transmitted and the probability to receive a 0 
when a 1 is transmitted is P(receive 0 | 1 transmitted) = P(receive 1 | 0 transmitted) 
= 0.2.  Hence, the probability to receive a 0 is 

P(receive a zero) = P(0 | 1) P(1) + P(0 | 0) P(0) = (0.2) (0.4) + (0.8) (0.6) = 0.56 

Example 1.7 
 
A ball is drawn at random from a box containing seven white balls, three red balls, 
and six green balls. 
(a)  Determine the probability that the ball drawn is 
     (1) white, (2) red, (3) green, (4) not red, and (5) red or white. 
(b) Three balls are drawn successively from the box instead of one. Find the 

probability that they are drawn in the order red, white, and green, if each ball 
is (1) replaced in the box before the next draw, and (2) not replaced. 

 
Solution 

Let W, R, and G denote the events of drawing a white ball, a red ball, and a green 
ball. The total number of balls in the sample space is 7 + 3 + 6 = 16. 
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 (a)  1.  P(W) = 7/16 = 0.4375 

        2.  P(R) = 3/16 = 0.1875 

        3.  P(G) = 6/16 = 3/8 = 0.375 

        4.  ( ) ( )RPRP −=1  = 16/71−  = 9/16 = 0.5625 

        5.  P(red or white) = ( ) ( ) ( ) ( )WRPWPRPWRP ΙΥ −+=  

  Since the events R and W are mutually exclusive, then ( ) 0=WRP Ι , and  

( ) ( ) ( ) 625.0
8
5

16
37 ==+=+= WPRPWRP Υ  

(b)  In this case the order becomes a factor. Let the events R1, W2, and G3 represent 
“red on first draw,” “white on second draw,” and “green on third draw,” 
respectively. 
 

1.  Since each ball is replaced before the next draw, the sample space does not 
change, and thus the events are independent. From (1.24), we can write 

( ) ( ) ( ) ( )
( ) ( ) ( )

0308.0
8
3

16
7

16
3

321

213121321

=



















=

=
=

GPWPRP
WRGPRWPRPGWRP ΙΙΙ

 

2.  When the ball is not replaced in the box before the next draw, the sample 
space changes, and the events are then dependent. Thus,  

( ) ( ) ( ) ( )213121321 WRGPRWPRPGWRP ΙΙΙ =  

but ( ) ( ) ,467.015/7627712 ==++=RWP  and ( ) ( )6266213 ++=WRGP Ι  
7/3=  ( ) .0375.0321 =⇒ GWRP ΙΙ  

 
Example 1.8 
 
In three urns, there are balls as shown in Table 1.1. An experiment consists of first 
randomly selecting an urn, and then drawing a ball from the chosen urn. Each urn 
is assumed to have the same likelihood of selection. 

 (a) What is the probability of drawing a white ball, given that Urn A is 
selected? 
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Table 1.1 
Content of Urns A, B, and C 

Balls  Urn A Urn B Urn C Totals 
Red 

Green 

White 

5 

6 

2 

3 

3 

4 

6 

2 

1 

14 

11 

7 

Totals  13 10 9 32 

 (b) If a white ball is drawn, what is the probability it came from Urn B? 
 
Solution 
 
(a)  Given that Urn A is selected, we can write the probability of drawing a white 
ball to be  

( ) 1538.0
13
2Urn1 ==AWP  

(b) In this case, we want to determine the conditional probability of selecting Urn 
B, given that a white ball is drawn; that is, P(Urn B │ 1W). Hence, 

( ) ( )
( )WP

WBP
WBP

1
1Urn

1Urn
Ι

=  

The conditional probability of drawing a white ball, given that Urn B is selected, is 
given by  

( ) ( )
( )BP

BWP
BWP

Urn
Urn1

Urn1
Ι

=  

Thus, ( ) ( ) ( )BPBWPBWP UrnUrn1Urn1 =Ι  

( ) ( ) ( )
( )WP

BPBWP
WBP

1
UrnUrn1

1Urn =⇒  

where P(1W ) is the total probability of drawing a white ball. Hence, 
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( ) ( ) ( ) ( ) ( )

( ) ( ) 2217.0
3
1

9
1

3
1

10
4

3
1

13
2UrnUrn1

UrnUrn1UrnUrn11

=++=+

+=

CPCWP

BPBWPAPAWPWP
 

( ) ( ) 133.0)3/1()10/4(UrnUrn1 ==BPBWP  and then ( ) 6013.01Urn =WBP  
 
 
1.3 RANDOM VARIABLES 
 
We define a random variable as a real function that maps the elements of the 
sample space S into points of the real axis. Notice that the random variable is 
neither random nor a variable, but is a function, and thus the name may be a little 
misleading. The random variable is represented by a capital letter (X, Y, Z, …), and 
any particular real value of the random variable is denoted by a lowercase letter (x, 
y, z, …). Since we will make use of impulse functions and step functions in 
characterizing random variables, we first introduce the concepts of impulse and 
step functions, and then we present the three different types of random variables—
discrete, continuous, and mixed. 
 
1.3.1 Step and Impulse Functions 
 
The unit step function, shown in Figure 1.8, is defined as 

( )




<
≥

=
0,0
0,1

x
x

xu            (1.28) 

A step function of height A occurring at x = x0 is denoted as 

( )




<
≥

=−
0

0
0 ,0

,
xx
xxA

xxuA           (1.29) 

 

 
 
 
 
 
 
Figure 1.8  Step function. 

u(x) 

x 

1 

0 
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Figure 1.9  Rectangular pulse function.     Figure 1.10  Unit impulse function. 

Consider the rectangular function, shown in Figure 1.9, with area .)/( AxxA =∆∆  
In the limit as ∆x → 0, the pulse width approaches 0 and the height goes to 
infinity. However, the area remains constant and equals 1. Thus, the unit impulse 
function (an impulse with unit area) is shown in Figure 1.10 and is denoted 
by .)(xδ  An impulse of area A occurring at x = x0 is denoted by Aδ( x – x0 ). Note 
that the integral of the unit impulse function is the step function, and that the 
impulse function is the derivative of the step function. An important property of 
the impulse function is 

( ) ( ) ( )∫
∞

∞−

=−δ 00 xfAdxxfxxA           (1.30) 

1.3.2 Discrete Random Variables 
 
If a random variable X can assume only a particular finite or counting infinite set 
of values, x1, x2, … , xn, then X is said to be a discrete random variable. If we 
associate each outcome xi with a number P(xi) = P(X = xi), called the probability of 
xi, the number P(xi), sometimes denoted Pi for simplicity, i = 1, 2, … , must satisfy 
the following conditions: 

0)( ≥ixP   for all i           (1.31) 

and 

( ) 1
1

=∑
∞

=i
ixP            (1.32) 

That is, the probability of each value that X can assume must be nonnegative, and 
the sum of the probabilities over all of the different values must equal 1. If X is a 

∆x 
x 

x
A
∆

0 

δ(x) 

x 
0 

(1) 
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random variable, its distribution function or cumulative distribution function 
(CDF) is defined as 

( ) ( )xXPxFX ≤=   for all x          (1.33) 

The probability density function (PDF) of a discrete random variable that 
assumes x1, x2, … , is P(x1), P(x2), … , where P(xi) = P(X = xi), i = 1, 2, …. If there 
is more than one random variable, we denote the PDF of a particular variable X by 
a subscript X on P as )(xPX . 
 
Example 1.9 
 
Consider the experiment of rolling two dice. Let X represent the total number that 
shows up on the upper faces of the two dice. What is the probability that X is 
between 4 and 6 inclusive? Determine P(X ≥ 5). Sketch the probability density 
function and the distribution function of X. 
 
Solution 
 
Since the possible events are mutually exclusive, )64( ≤≤ XP = )4( =XP + 

)5( =XP + )6( =XP , where ( ) ,12/14 ==XP  ( ) ,9/15 ==XP  and 
( ) .36/56 ==XP  Therefore, ( ) .3333.036/1254 ==≤≤ XP  Hence, using (1.16) 

( ) ( ) ( ) ( ) ( )[ ] 8333.0
6
54321415 ===+=+=−=≤−=≥ XPXPXPXPXP  

The density function and distribution function of X are shown in Figures 1.11(a, 
b), respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.11  (a) Density function of X, and (b) distribution function of X. 

36
6

36
1

fX(x) 

x
1   2  3   4  5   6    7   8   9  10 11 12 13 

(a) 

FX(x) 

x 

≈
36
35

≈
≈

(b)

36
1

1

  1  2    3                11 12 
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The density function of X is written as 

( ) ( ) ( ) ( ) ( ) ( )[ ( )
( ) ( ) ( ) ( ) ( ) ]121121039485

76655443322
36
1

−δ+−δ+−δ+−δ+−δ+

−δ+−δ+−δ+−δ+−δ+−δ=

xxxxx

xxxxxxxf X  

1.3.3 Continuous Random Variables 
 
X is called a continuous random variable if its distribution function )(xFX  may be 
represented as 

( ) ( ) ( ) duufxXPxF
x

XX ∫
∞−

=≤=           (1.34) 

where )(xf X  is a probability density function. By definition, )(xf X  must satisfy 

fX (x) ≥ 0  for all x           (1.35) 

and 

( ) 1=∫
∞

∞−

dxxf X            (1.36) 

)(xf X  is often called the density function. 
 
Example 1.10 
 
(a) Find the constant c such that the function  

( )


 <<

=
otherwise,0

30, xxc
xf X  

is a density function. 
(b) Compute P(1 < X < 2). 
(c) Find the distribution function FX (x). 
 
Solution 

 
(a)  )(xf X  is a nonnegative function for the given range of x. For )(xf X  to be a 
aa 
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density function, we need to find the constant c, such that .1
3

0
∫ =dxxc  Solving the 

integral, we obtain 9/2=c , and thus the density function )(xf X , shown in 
Figure 1.12(a), is 

( )






 <<
=

otherwise,0

30,
9
2 xx

xf X  

(b) ( ) 3333.0
3
1

9
221

2

1
==






=<< ∫ dxxXP  

(c)  ( ) ( )
9

2

0

xduufxF
x

XX == ∫  for 0 ≤ x < 3, and 1)( =xFX  for x ≥ 3. Thus, the 

distribution function, shown in Figure 1.12(b), is 

( )














≥

<≤

<

=

3,1

30,
9

0,0

2

x

xx

x

xFX  

 The density function can be obtained directly from the distribution function by 
simply taking the derivative; that is, 

( ) ( )xF
dx
dxf XX =            (1.37) 

 
 
 
 
 
 
 
 
 
Figure 1.12  (a) Density function of X, and (b) distribution function of X. 
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where ( ) ( ) .∫
∞−

=
x

X duufxF  This is a special case of Leibniz’s rule for 

differentiation of an integral, which is 

( ) ( )[ ]
( )

( ) ( ) ( )[ ] ( )
dx

xdaxxaF
dx

xdbxxbFdu
x
FduxuF

dx
d xb

xa

xb

xa

,,,
)(

)(

−+
∂
∂= ∫∫    (1.38) 

and thus, 

( ) ( )xfduuf
dx
d x

a

=∫            (1.39) 

1.3.4 Mixed Random Variables 
 
The most important random variables that occur in practice are either discrete or 
continuous. A mixed random variable, however, also may occur in some practical 
problems. Its density function has both impulses representing probabilities of 
possible values x1, x2, … , xn, and a continuous portion in some interval, say a < x 
< b. A good way to illustrate the mixed random variable is to consider the half-
wave rectifier circuit shown in Figure 1.13(a), where X is a random variable with 
the probability density function as shown in Figure 1.13(b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13   (a)  Half-wave rectifier circuit, and (b)  density function of X. 
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The diode is assumed to be ideal. The output Y is related to the input X by the 
equation 





≤
>

=
0,0
0,

x
xX

Y            (1.40) 

Thus, ( ) 00 =<YP , ( ) 2/1)(0
0

=∫==
−

∞−
dxxfYP X , and ( ) )0(0 yXPyYP ≤≤=<<  

for all y > 0. Hence, the density function is as shown in Figure 1.14. It is composed 
of a discrete value at zero of 2/1  represented by the impulse, and a continuous 
function for x > 0, such that the area under the curve is also 2/1 ; that is, 

( )∫
∞

∞<≤==
0

01)( YPdyyfY           (1.41) 

which satisfies condition (1.36), whereas  

( ) ( )∫
∞

+

∞<<==
o

Y YPdyyf 0
2
1           (1.42) 

 
1.4 MOMENTS 
 
1.4.1 Expectations 
 
An important concept in the theory of probability and statistics is the mathematical 
expectation, or expected  value, or mean  value, or statistical  average  of a random 

 

  
 
 
 
 
 
 
 
 
Figure 1.14  Density function of the output Y. 

fY(y) 

(1/2)
Area = 1/2 

Same as ( )xf X  for x > 0 
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variable X. The expected value of a random variable is denoted by E[X] or X  or 
mx. If X is a discrete random variable having values x1, x2, … , xn, then the 
expected value of X is defined to be  

[ ] ( ) ( )∑ ∑===
x x

xPxxXPxXE           (1.43) 

where the sum is taken over all the appropriate values that X can assume. 
Similarly, for a continuous random variable X with density function ,)(xf X  the 
expectation of X is defined to be 

[ ] ( )∫
∞

∞−

= dxxfxXE X           (1.44) 

Example 1.11 
 
Find the expected value of the points on the top face in tossing a fair die. 
 
Solution 

In tossing a fair die, each face shows up with a probability .6/1  Let X be the 
points showing on the top face of the die. Then, 

[ ] 5.3
6
16

6
15

6
14

6
13

6
12

6
11 =






+






+






+






+






+






=XE  

Example 1.12 
 
Consider the random variable X with the distribution shown in Figure 1.15. Find 
E[X]. 

 

 
 
 
 
 
 
 
Figure 1.15  Density function of X. 
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Solution 
 
Using (1.44), the expected value of X is 

[ ] 0
8
1

4
1

8
1 3

1

1

1

1

3

=++= ∫∫∫
−

−

−

dxxdxxdxxXE  

 Let X be a random variable. Then, the function g(X) is also a random variable, 
and its expected value, E[g(X)], is 

( )[ ] ( ) ( )∫
∞

∞−

= dxxfxgXgE X           (1.45) 

Equation (1.45) is an important theorem that will be used throughout the book. 
 
Properties 
 
1.  If c is any constant, then 

[ ] [ ]XEcXcE =            (1.46) 

2.  If the function g(X) = X n, n = 0,1, … , then 

( )[ ] [ ] ( ) dxxfxXEXgE X
nn ∫

∞

∞−

==           (1.47) 

is called the nth moment of the random variable X about the origin. For n = 2, we 
obtain the second moment of X. Because of its importance, the second moment of 
X, defined as  

[ ] ( ) dxxfxXE X∫
∞

∞−

= 22           (1.48) 

is called the mean-square value. 
 Another quantity of importance is the central moment about the mean. It is 
called the variance, denoted 2

xσ , and is defined as 

[ ]( )[ ] [ ] [ ]( )2222 XEXEXEXEx −=−=σ          (1.49) 
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The quantity xσ  is called the standard deviation. 
 
Example 1.13 
 
Find the variance of the random variable given in Example 1.12. 
 
Solution 
 
The mean was found previously in Example 1.12 to be zero. From (1.48), the 

mean square value is [ ] ( ) ( ) 3/78/14/12
3

1

2
1

0

22 =











+= ∫∫ dxxdxxXE  .3333.2=  

Since the mean is zero, the mean square value is just the variance 
.3333.23/72 ==σ x  

 
1.4.2 Moment Generating Function and Characteristic Function 
 
The moment generating function (MGF) Mx (t) of a random variable X is defined 
by 

( ) [ ]tX
x eEtM =            (1.50) 

If X is a discrete random variable with probability distribution P(xi) = P(X = xi), 
Κ,2,1=i , then 

( ) ( )∑=
x

X
tx

x xPetM            (1.51) 

If X is a continuous random variable with density function ,)(xf X  then its MGF is 

( ) ( )dxxfetM x
tx

x ∫
∞

∞−

=            (1.52) 

A “nice” advantage of the MGF is its ability to give the moments. Recall that the 
McLaurin series of the function ex is 

  ΚΚ ++++++=
!!3!2

1
32

n
xxxxe

n
x           (1.53) 

This is a convergent series. Thus, etx can be expressed in the series as 
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    ( ) ( ) ( ) ΚΚ ++++++=
!!3!2

1
32

n
txtxtxtxe

n
tx          (1.54) 

By using the fact that the expected value of the sum equals the sum of the expected 
values, we can write the MGF as 

( ) [ ] ( ) ( ) ( )











++++++== ΚΚ

!!3!2
1

32

n
tXtXtXtXEeEtM

n
Xt

x  

  [ ] [ ] [ ] [ ] ΚΚ ++++++= n
n

XE
n
tXEtXEtXtE

!!3!2
1 3

3
2

2
   (1.55) 

Since t is considered as a constant with respect to the expectation operator, taking 
the derivative of Mx (t) with respect to t, we obtain 

( ) ( ) [ ] [ ] [ ] [ ] ΚΚ +++++=′=
−

n
n

x
x XE

n
tn

XEtXEtXEtM
dt

tdM
!!3

3
!2

2 1
3

2
2  

[ ] [ ] [ ] ( ) [ ] ΚΚ +
−

++++=
−

n
n

XE
n
tXEtXEtXE

!1!2

1
3

2
2    (1.56) 

Setting t = 0, all terms become zero except E[ X ]. We obtain 

( ) [ ]XEM x =′ 0            (1.57) 

Similarly, taking the second derivative of ( )tM x  with respect to t and setting it 
equal to zero, we obtain 

( ) [ ]20 XEM x =′′            (1.58) 

Continuing in this manner, we obtain all moments to be 

( ) [ ] …== ,,  n XEM nn
x 210)(           (1.59) 

where ( )tM n
x

)(  denotes the nth derivative of Mx (t) with respect to t. 
 If we let t = jω, where j is the complex imaginary unit, in the moment 
generating function, we obtain the characteristic function. Hence, the 
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characteristic function [ ]XjeE ω  and denoted )(Φ xx  is actually the Fourier 

transform of the density function fX (x). It follows that 

( ) [ ]Xj
x eE ω=ωΦ ( ) dxexf xj

X
ω

∞

∞−
∫=           (1.60) 

As before, differentiating )(Φ xx  n times with respect to ω and setting ω = 0 in the 
derivative, we obtain the nth moment of X to be 

[ ] ( ) ( )
0

Φ
=ω

ω
ω

−=
n

x
n

nn

d
d

jXE           (1.61) 

where 1−=j . An important role of the characteristic function is to give the 
density function of a random variable using the theory of Fourier transform. The 
inverse Fourier transform of the characteristic function is 

( ) ( ) ωω
π

= ∫
∞

∞−

ω dexf x
xj

X Φ
2
1           (1.62) 

 It is preferable to use the characteristic function over the moment generating 
function because it always exists, whereas the moment generating function may 
not exist. However, the moment generating function, because of the presence of 
the exponential term, may exist for a class of functions that is much wider. 
 If X is a discrete random variable, its characteristic function is defined as 

[ ] xmXEm ==10            (1.63) 

Example 1.14 
 
Find the characteristic function of the random variable X having density function 

( ) x
X exf 2

1
−

=  for all x. 
 
Solution 
 
From (1.60), the characteristic function is 

( ) ( ) ( ) 2
0

2
10

2
1

41
4

5.0
1

5.0
1Φ

ω+
=

ω−
+

ω+
=+=ω ∫∫

∞ −ω

∞−

ω

jj
dxeedxee

xxjxxj
x  
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1.4.3 Upper Bounds on Probabilities and Law of Large Numbers 
 
Often when the distributions are not completely specified but the mean and 
variance are known, we are interested in determining some bounds (upper or 
lower) on the probabilities. We present the Chernoff bound, which is supposed to 
be a “tighter” bound than the bound provided by the Tchebycheff inequality. 
 
Tchebycheff Inequality 
 
Let X be any random variable with mean mx and variance 2

xσ . Then, for ε > 0, the 
Tchebycheff inequality states that 

( )
2

2

ε
σ

≤ε≥− x
xmXP             (1.64) 

Choosing xk σ=ε , where k is a constant, we obtain  

( )
2

1
k

kmXP xx ≤σ≥−             (1.65) 

or equivalently, 

( )
2

2

k
kmXP x

x
σ

≤≥−             (1.66) 

Chernoff Bound 
 
Unlike the Tchebycheff bound, which involves the two sides of the probability 
density function, the Chernoff bound is applied to only one side of the density 
function, either in the interval (ε, ∞) or in the interval ( −∞ , ε). Define 





<
≥

=
ε,0
ε,1

X
X

Y              (1.67) 

The expected value of Y is 

    [ ] ( )ε1 ≥⋅= XPYE              (1.68) 

and for all t > 0, it must be true that 
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Xtt eeY ≤ε            (1.69) 

then, 

  [ ] [ ] [ ]Xttt eEYEeeYE ≤= εε           (1.70) 

Substituting (1.68) into (1.70) and rearranging terms, we obtain 

( ) [ ]Xtt eEeXP ε−≤ε≥           (1.71) 

The upper bound of (1.71) is the Chernoff bound. Note that in this case more 
knowledge about the distribution is required to be able to evaluate E[ et X ]. 

Similarly, if Y is defined to be in the interval (−∞, ε) such that 

          




ε<
ε≥

=
X
X

Y
,1
,0

           (1.72) 

The Chernoff bound is given by  

( ) [ ]tXt eEeXP ε−≤ε≤            (1.73) 

Law of Large Numbers 
 
Let X1, X2, … , Xn be n independent random variables, each having mean E[Xi] = 
mx and variance [ ] 2var xiX σ= , i = 1, 2, …, n. If Sn = X1 + X2 + … + Xn is the sum 
of the n independent random variables, then 

    0limlim 21 =







ε≥−=








ε≥−

+++
∞→∞→ x

n
nx

n
n

m
n

 S
Pm

n
  X   XX

P
Κ

   (1.74) 

provided that 

∞→→
σ

∑
∞

=
n

nn

x as0
1

2
          (1.75) 

This theorem can be proved using the Tchebycheff inequality, and is referred to as 
the weak law of large numbers. In words, this theorem states that the probability 
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that the arithmetic mean (which could be an estimate) differs from the true mean 
mx by more than ε (ε > 0) is zero as n goes to infinity. However, if the probability 

of [ ]xnn
mnS =

∞→
)(lim  equals one, we have the strong law of large numbers. 

 
 
1.5 TWO- AND HIGHER-DIMENSIONAL RANDOM VARIABLES 
 
In the previous sections, we developed the concept of random variables and other 
related topics, such as statistical averages, moment generating functions, and 
characteristic functions. 

Often, we are not interested in one random variable, but in the relationship 
between two or more random variables. We now generalize the above concepts to 
N random variables. We will mainly consider continuous random variables, since 
the appropriate modifications for the discrete or mixed cases are easily made by 
analogy. If X and Y are two continuous random variables, then we define the joint 
probability density function or simply the joint density function of X and Y by 

( ) 0, ≥yxf XY            (1.76) 

and  

( ) 1, =∫ ∫
∞

∞−

∞

∞−

dydxyxf XY           (1.77) 

Geometrically, ),( yxf XY  represents a surface, as shown in Figure 1.16. The 
total volume bounded by this surface and the xy-plane is unity, as given in    
(1.77). The probability that X lies between x1 and x2 and Y lies between y1 and y2, 
as shown in the shaded area of Figure 1.16, is given by  

( ) ( ) dydxyxfyYyxXxP
y

y

x

x
XY∫ ∫=<<<<

2

1

2

1

,, 2121          (1.78) 

The joint distribution of X and Y is the probability of the joint events 
{ }yYxX ≤≤ ,  given by 

   ( ) ( )yYxXPyxFXY ≤≤= ,, ( ) dvduvuf
y x

XY∫ ∫
∞− ∞−

= ,          (1.79) 
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Figure 1.16   Two-dimensional density function. 

The joint distribution ),( yxFXY  has the following properties: 

1.  ( ) 1,0 ≤≤ yxFXY  

2.  ( ) 1, =∞∞XYF   

3.  ( ) ( ) ( ) 0,,, =−∞=−∞=−∞−∞ yFxFF XYXYXY  

4.  ( ) ( ) ( ) 0,,, 1221 ≥−=≤≤< yxFyxFyYxXxP XYXY  

5.  ( ) ( ) ( ) 0,,, 1221 ≥−=≤<≤ yxFyxFyYyxXP XYXY  

6.  ( )2121 , yYyxXxP ≤<≤<  
        ( ) ( ) ( ) ( )11122122 ,,,, yxFyxFyxFyxF XYXYXYXY +−−=  

The joint density function can be obtained from the distribution function by 
taking the derivative of ),( yxFXY with respect to x and y to be 

    ( ) ( )yxF
yx

yxf XYXY ,,
2

∂∂
∂=           (1.80) 

 The marginal distribution function of X, )(xFX = P(X ≤ x), is obtained from 
(1.79) by integrating y over all possible values. Hence, 

fX,Y (x,y) 

x1       x2 

y

y2 

y 

x
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    ( ) ( ) dudvvufxF
x

XYX ∫ ∫
∞−

∞

∞−

= ,           (1.81) 

Similarly, the marginal distribution of Y is given by 

( ) ( ) dvduvufyF
y

XYY ∫ ∫
∞−

∞

∞−

= ,           (1.82) 

If we generalize the concepts of the distribution and density functions to n 
random variables X1, X2, … , Xn, then the joint probability distribution function is 

  ( ) ( )nnnXXX xXxXxXPxxxF
n

≤≤≤= ,,,,,, 22112121
ΚΚΚ         (1.83) 

and the joint probability density function is the nth derivative of  (1.83) to yield 

      ( ) ( )nXXX
n

n

nXXX xxxF
xxx

xxxf
nn

,,,,,, 21
21

21 2121
Κ

Κ
Κ ΚΚ ∂∂∂

∂=    (1.84) 

1.5.1 Conditional Distributions  
 
The marginal density functions of the random variables X and Y are obtained by 
taking the derivatives of the respective marginal distribution functions )(xFX  and 

)(yFY  given in (1.81) and (1.82).  Using the joint density function of X and Y, the 
marginal functions )(xf X  and )(yfY  are 

( ) ( ) dyyxfxf XYX ∫
∞

∞−

= ,           (1.85) 

( ) ( ) dxyxfyf XYY ∫
∞

∞−

= ,          (1.86) 

 Once the marginal distribution functions are known, it becomes simple to 
determine the conditional distribution functions.  In many practical problems, we 
are interested in the distribution of the random variable X given that the random 
variable Y assumes some specific value, or that the random variable Y is between 
some interval from y1 to y2. 

When the random variable assumes some specific value, we say that we have 
point conditioning. To clarify this concept, consider the conditional distribution 
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function of the random variable X given that yyYyy ∆∆ +≤<− , where ∆y is a 
small quantity. Hence, 

( )
( )

( )∫

∫ ∫
+

−

+

− ∞−=+≤<−
yy

yy
Y

yy

yy

x

XY

X

dvvf

dudvvuf

yyYyyxF
∆

∆

∆

∆

,

∆∆                (1.87) 

in the limit, as ∆y → 0 and for every y such that ,)(yfY  we have  

( )
( )

( )yf

duyuf
yYxF

Y

x

XY

X

∫
∞−==

,
            (1.88) 

where ),( yxf XY  is the joint density function of X and Y, and )(yfY is the 
marginal density function of Y. Differentiating both sides of (1.88) with respect to 
x, we obtain 

( ) ( )
( )yf

yxf
yYxf

Y

XY
X

,
==             (1.89) 

which can also be written as 

( ) ( )
( )yf

yxf
yxf

Y

XY
X

,
=             (1.90) 

Similarly, we can show that 

( ) ( )
( )xf

yxf
xyf

X

XY
Y

,
=              (1.91) 

In the interval conditioning, the random variable assumes some range of 
values. The conditional distribution function of X given that y1 < Y ≤ y2 is defined 
as 
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( )
( )

( )∫ ∫

∫ ∫
∞

∞−

∞−=≤<
2

1

2

1

,

,

21 y

y
XY

y

y

x

XY

X

dydxyxf

dyduyuf

yYyxF         (1.92a) 

 ( ) ( )

( )∫

−
=

2

1

12 ,,
y

y
Y

XYXY

dyyf

yxFyxF
       (1.92b) 

since ( ) ( )yfdxyxf YXY =∫
∞

∞−

,  is the marginal density function of Y. Again, 

differentiating both sides of (1.92a), we obtain 

( )
( )

( )∫

∫
=≤<

2

1

2

1

,

21 y

y
Y

y

y
XY

X

dyyf

dyyxf

yYyxf             (1.93) 

Similarly, the conditional density function of Y given that x1 < X ≤ x2 is given by 

( )
( )

( )∫

∫
=<<

2

1

2

1

,

21 x

x
X

x

x
XY

Y

dxxf

dxyxf

xXxyf             (1.94) 

where 

( ) ( ) ( )12

2

1

xFxFdxxf XX

x

x
X −=∫             (1.95) 

If X and Y are independent random variables, then the events { }xX ≤  and { }yY ≤  
are independent events for all x and y. This yields  

( ) ( ) ( )yYPxXPyYxXP ≤≤=≤≤ ,             (1.96) 

that is, 
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( ) ( ) ( )yFxFyxF YXYX =,             (1.97) 

Equivalently, 

  ( ) ( ) ( )yfxfyxf YXXY =,             (1.98) 

where )(xf X  and )(yfY are the marginal density functions of X and Y. If the 
joint distribution functions or the joint density functions cannot be written in a 
product form as given in (1.97) and (1.98), then the random variables X and Y are 
not independent. Note that if the random variables X and Y are independent, using 
(1.97) in (1.98) results in )()( xfyxf XYX =  and )()( yfxyf YXY = , as 

expected. 
The above results can be modified accordingly for discrete random variables. 

Suppose X and Y are both discrete random variables with values xi, i = 1, 2, ... , n, 
and yj, j = 1, 2, ... , m, having probabilities P(X = xi) = P(xi) = Pi, i = 1, 2, ... , n, and 
P(Y = yj) = P(yj) = Pj, j = 1, 2, ... , m, respectively. The joint probability of 
occurrence of xi and yj, denoted P(X = xi , Y = yj) = P(xi ,yj) = Pij, is given by 

        ( ) ( ) ( ) ( )ji

m

j

n

i
jiXY yyxxyxPyxf −δ−δ=∑ ∑

= =1 1
,,          (1.99) 

where )()( 00 yyxx −δ−δ  is the impulse function of volume (1) and occurring at 

0xx =  and y = y0, as shown in Figure 1.17. Note that we wrote 1 in parentheses to 
indicate that it represents a volume and not a height. Based on the following 
properties of the two-dimensional impulse function: 

1. ( ) ( ) ( ) ( )0000 ,, yxgAdydxyyxxAyxg =−δ−δ∫ ∫
∞

∞−

∞

∞−

 

 

 
 
 
 
 
 
 
Figure 1.17  Two-dimensional impulse function. 

 x 

 δ(x-x0)δ(y-y0)  
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2. ( ) ( ) ( ) ( ) ( )0000 ,, yyyxgAdxyyxxAyxg −δ=−δ−δ∫
∞

∞−

 

3. ( ) ( ) ( ) ( ) ( )0000 ,, xxyxgAdyyyxxAyxg −δ=−δ−δ∫
∞

∞−

 

we can show that the marginal density functions are  

    ( ) ( ) dyyxfxf iXYiX ∫
∞

∞−

= ,         (1.100) 

Substituting (1.99) into (1.100), and using the above properties of the two-
dimensional impulse function, we obtain 

( ) ( ) ( ) ( )∫ ∑ ∑
∞

∞− = =
−δ−δ=

n

i

m

j
jijiiX dyyyxxyxPxf

1 1
,  

 [ ] ( )imiii xxyxPyxPyxP −δ+++= ),(),(),( 21 Κ  
 ( ) ( )ii xxxP −δ=      (1.101) 

since ( ) ( )∑
=

=
m

j
iji xPyxP

1
, . Similarly, we can show that  

( ) ( ) ( )jjjY yyyPyf −δ=           (1.102) 

Note that )(xf X  will be all js in (1.99) to obtain 

( ) ( ) ( )j
m

j
jX yyyPxf −δ=∑

=1
          (1.103) 

and )(yfY  will be all is to give 

( ) ( ) ( )i

n

i
iY xxxPyf −δ=∑

=1
          (1.104) 

The conditional density function )( jX yyxf =|  is given by 
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  ( ) ( )
( )

( )i

n

i j

ji
jX xx

yP

yxP
yyxf −δ== ∑

=1

,
          (1.105) 

and the conditional distribution function, which is the integral of (1.105), becomes 

( ) ( )
( )

( )i

n

i j

ji
jX xxu

yP

yxP
yyxF −== ∑

=1

,
          (1.106) 

where )( ixxu −  is the unit step function, such that )( ixxu −  is one for x ≥ xi and 
zero otherwise. The derivative of the unit step function yields the unit impulse 
function, as discussed in Section 1.3.1. 
 
Example 1.15 
 
Let X and Y be two random variables with the joint density function  

( )




 ≤≤≤≤+=

otherwise,0

20and10,
3,

2 yx
yx

xyxf XY  

(a) Check that ( )yxf YX ,  is a density function. 

(b) Find the marginal density functions ( )xfX  and ( )yfY . 
(c) Compute ( ) ( )XYPXP <> ,2/1 , and ( )2/12/1 << XYP . 

 
Solution 
 
(a)  For ( )yxf XY ,  to be a density function, it must satisfy (1.76) and (1.77). The 
first is easily verified, while the second says that the integral over all possible 
values of x and y must be one. That is, 

1
6
1

3
1

3

2

0

2

0

1

0

2 =





 +=







 + ∫∫ ∫ dyydydx
xy

x  

(b)  The marginal density functions of X and Y are direct applications of (1.85) and 
(1.86). Thus, 

( ) 10for
3
22

3
2

2

0

2 <<+=






 += ∫ xxxdy
xy

xxf X  
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and 

( ) 20for
3
1

6
1

3

1

0

2 <<+=






 += ∫ yydx
xy

xyfY  

(c)  Computing the different probabilities, we have 

( ) 8333.0
6
5

3
22

2
1 1

2/1

1

2/1

2 ==





 +==






 > ∫ ∫ dxxxdxxfXP X  

( ) 2917.0
24
7

3

1

0 0

2 ==






 +=< ∫ ∫ dxdy
xy

xXYP
x

 







 <







 <<

=







<<

2
1

2
1,

2
1

2
1

2
1

XP

XYP
XYP  

We have already found ( )2/1>XP  to be 6/5 . Hence, ( ) =< 2/1XP  
( )2/11 >− XP 1667.06/1 == . We now need only find ( )2/1,2/1 << XYP , 

which is 

0260.0
192

5
32

1,
2
1 2

1
2
1

0 0

2 ==






 +=





 << ∫ ∫ dydx

xy
xXYP  

Hence, 

Table 1.2 
Joint Probabilities of X and Y 

 
 
 
 
 
 
 

X 

 Y 

 0 

 1 
 2 

1 2 

4/1

0 

4/1

4/1

8/1

8/1
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1563.0
32
5

61
1925

2
1

2
1 ===








<< XYP  

Example 1.16 
 
(X,Y) is a two-dimensional random variable with joint probability density function 
as shown in Table 1.2. 

(a) Sketch ( )yxf XY , . 
(b) Compute )1(Xf  and .)2(Yf  
(c) Are X and Y independent? 

 

Solution 
 
(a)  The joint density function ( )yxf XY ,  is shown in Figure 1.18. Note that 

( ) 1,, =∫ ∫
∞

∞−

∞

∞−

dydxyxf YX  

(b)  From (1.100), )1(Xf  is the sum of the probabilities at x = 1 along all y. We 
have  

( ) ( ) dyyff YXX ,11 ,∫
∞

∞−

= ( ) ( ) ( )1
2
11

4
11

4
1 −δ=−δ+−δ= xxx  

and )2(Yf  is the sum of the probabilities at y = 2 along all x. Hence, 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.18  Joint distribution of (X,Y). 

 1

 y 

x
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21 

 fX,Y (x,y) 
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( ) ( ) dxxff YXY 2,2 ,∫
∞

∞−

= ( ) ( ) ( )2
8
32

8
12

4
1 −δ=−δ+−δ= yyy  

(c)  X and Y are independent if P(xi , yj) = P(xi) p(yj) for all xi and yj. Note that we 
just need a counterexample to show that the above identity is not verified. Using 
the results of (b), we see that P(X = 1, Y = 2)= 4/1 , P(X = 1) = ,2/1  and P(Y = 2) 
= .8/3  Since P(X = 1, Y = 2) = 1/4 ≠ P(X = 1) P(Y = 2) = ,16/3  then X and Y are 
not independent. 
 
1.5.2 Expectations and Correlations 
 
We have seen in Section 1.4 that, if X is a continuous random variable having 
density function ,)(xf X  then the expected value of g(X), a function of the random 
variable X, is  

    ( )[ ] ( ) ( ) dxxfxgXgE X∫
∞

∞−

=         (1.107) 

This concept is easily generalized to functions of two random variables. In fact, if 
X and Y are two random variables with joint density function ),( yxf XY , then 

( )[ ] ( ) ( ) dydxyxfyxgYXgE XY ,,, ∫ ∫
∞

∞−

∞

∞−

=         (1.108) 

 If we have n functions of random variables g1(X,Y), g2(X,Y), … , gn(X,Y), then 

  ( ) ( ) ( )[ ]YXgYXgYXgE n ,,, 21 +++ Κ  
   ( )[ ] ( )[ ] ( )[ ]YXgEYXgEYXgE n ,,, 21 +++= Κ        (1.109) 

Hence, for the simple case of the sum of two random variables X and Y, the 
expected value of the sum of the random variables is the sum of the individual 
expected values. Specifically, 

[ ] [ ] [ ]YEXEYXE +=+          (1.110) 

The expected value of the product of the random variables of X and Y, E[XY], 
is known as the correlation, Rxy, between X and Y. The correlation between X and Y 
is actually a particular case of the joint moments defined to be 
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   [ ] ( ) dydxyxfyxYXEm XY
kk

k ∫ ∫
∞

∞−

∞

∞−

== ,λλ
λ        (1.111) 

 Note that the order of the moment is λ+= kn . The correlation xyR  is then 

the moment m11 of order 2 with 1=k  and 1=λ . It is also known as the second 
order moment. Note also that if k is zero or ℓ is zero, we obtain the expected value 
of a one-dimensional random variable defined in (1.43) 

            [ ] xmXEm ==10                                      (1.112) 

and 

[ ] ymYEm ==01          (1.113) 

where mx is the mean of the random variable X, and my is the mean of the random 
variable Y. 
 The general form of the central moment is given by 

( ) ( )[ ]λλ y
k

xk mYmXE −−=µ  

( ) ( ) ( ) dydxyxfmymx XYy
k

x ,λ−−= ∫ ∫
∞

∞−

∞

∞−

       (1.114) 

When 2=k  and 0=λ , or when 0=k  and 2=λ , we obtain the specific 
variances 2

xσ  and 2
yσ  of the random variables X and Y, respectively. Hence, 

22
20 ])[( xxmXE σ=−=µ          (1.115) 

and 

22
02 ])[( yymYE σ=−=µ        (1.116) 

 When X and Y are not independent, we often try to determine the “degree of 
relation” between X and Y by some meaningful parameter. This parameter is the 
correlation coefficient, defined as 

  
yx

yx
xy

mYmXE
σσ

−−
=ρ

)]()[(
        (1.117) 
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where xyρ  is the correlation coefficient between X and Y, xm  is the mean of X, 

ym  is the mean of Y, and xσ  and yσ  are the standard deviations of X and Y, 
respectively. The degree of correlation, which is the value of the coefficient ,ρ  is 
between 1−  and 1+  inclusive: 

11 ≤ρ≤−          (1.118) 

If X and Y are uncorrelated, then the expected value of the product of X and Y 
can be expressed as the product of expected values. That is, 

[ ] [ ] [ ]YEXEYXE =          (1.119) 

Observe that [ ] [ ]YEXERxy =  means that xyρ  in (1.117) is zero. The numerator 
of (1.117), given by 

)]()[( yxxy mYmXEC −−=         (1.120) 

and known as the covariance of X and Y, becomes equal to zero. Observe that the 
covariance corresponds to the second order central moment with 1== λk ; that is, 

.11 xyC=µ  The correlation coefficient can be written in terms of the covariance as 

yx

xy
xy

C
σσ

=ρ          (1.121) 

Note also that the variance of YX +  is the sum of the variances of X and Y; that 
is, 

[ ] [ ] [ ]YXYX varvarvar +=+          (1.122) 

or, 

222
yxyx σ+σ=σ +          (1.123) 

It should be noted that if the random variables X and Y are independent. They are 
also uncorrelated, but the inverse is not true. If 

[ ] 0=YXE          (1.124) 

we say that X and Y are orthogonal. 
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 When the random variables X and Y are not independent, we can define the 
conditional expectation of one random variable in terms of its conditional density 
function. The conditional expectation of X given that Y = y is defined as  

[ ] ( )dxyxfxyXE YX∫
∞

∞−

=         (1.125) 

It can also be easily shown that 

[ ]{ } [ ]XEYXEE =           (1.126) 

and  

[ ]{ } [ ]YEXYEE =           (1.127) 

where 

[ ] [ ] ( ) dyyfyXEYXE Y∫
∞

∞−

=  (1.128) 

Note that if X and Y are independent, then [ ] [ ]XEYXE =  and [ ] [ ]YEXYE = . 
In general, the expected value of a function of random variables X and Y, given 
that X equals some value x, is given by 

( )[ ] ( ) ( )dxxXyfyxgxXYXgE Y === ∫
∞

∞−

,,                (1.129) 

where ( ) ( ) ( )xfyxfxXyf XXYY ,== . Another important result is  

( )[ ]{ } ( )[ ]YXgEXYXgEE ,, =         (1.130) 

1.5.3 Joint Characteristic Functions 
 
We have seen in Section 1.4.2 that the characteristic functions and moment 
generating functions are functions that give moments of random variables.  We 
now extend the concept to more than one random variable. The joint characteristic 
function of two random variables X and Y is defined as 
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 ( ) ( )[ ] ( ) ( ) dxdyyxfeeE XY
yxjYXj

xy ,,Φ 2121
21 ∫ ∫

∞

∞−

∞

∞−

ω+ωω+ω ==ωω     (1.131) 

where 1ω  and 2ω  are real numbers. Thus, ( )21 ,Φ ωωxy  is the double Fourier 

transform of ( )yxf YX ,, . The inverse Fourier transform is then 

     ( )
( )

( ) ( ) 21212
,Φ

2
1, 21 ωωωω
π

= ∫ ∫
∞

∞−

∞

∞−

ω+ω− ddeyxf xy
yxj

XY      (1.132) 

The marginal characteristic functions are obtained by setting either 01 =ω  or 
02 =ω . Hence, 

( ) [ ] ( )11 Φ0,Φ 1 ω==ω ω
x

Xj
xy eE  (1.133) 

and  

( ) [ ] ( )22 Φ,0Φ 2 ω==ω ω
y

Yj
xy eE         (1.134) 

If )(Xg  is a function of X and )(Yh  is a function of Y, then )(Xg  and 
)(Yh are independent, provided that X and Y are independent. Consequently, the 

characteristic function of (X + Y) is the product of the individual characteristic 
functions of X and Y. That is, 

( ) ( )[ ] [ ] [ ] ( ) ( )ωω===ω ωω+ω
+ yx

YjXjYXj
yx eEeEeE ΦΦΦ        (1.135) 

The joint characteristic function also can be expressed in terms of the series to 
obtain the moments. Hence, 

 ( ) ( )[ ] ( ){ }










 ω+ω
==ωω ∑

∞

=

ω+ω

0

21
21 !

,Φ 21

n

n
YjXj

xy n
YXj

EeE  

 [ ] [ ]XYEXEmjmj yx 21
22

12
1

211 ωω−ω−ω+ω+=  

[ ] Λ+ω− 22
22

1 YE        (1.136) 
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The joint moments λkm  can be obtained from (1.136) to be  

     [ ] ( ) ( )
0

,Φ

2121

21

=ω=ωω∂ω∂

ωω∂
−==

+
+

λ

λ
λλ

λ k
xy

k
kk

k jYXEm      (1.137) 

which is the two-dimensional extension of expression of (1.61) found in Section 
1.4.2. 
 
Example 1.17 
 
Consider the two-dimensional random variable (X , Y) with joint density  

( )


 ≤≤≤

=
otherwise,0

10and,
,

yyxkxy
yxf XY  

Find  
(a) the constant k; 
(b) ( )yxf YX ; 

(c) [ ]yYXE = . 
 
Solution 
 
(a) To find the constant k, we solve the integral in (1.77). From Figure 1.19, we see 
that the integral we have to solve is  

∫ ∫ =⇒=
1

0 0

81 kdydxkxy
y

 

(b)  In order to use the definition of (1.90), we need to determine ( )yfY . 

 

 
 
 
 
 
 

Figure 1.19  Boundaries of ( )yxf XY , . 
0

 y 

x

 1 

y = x 

x < y 
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 -1  0 +1 
 x 

 y 

( ) 10for48 3

0

≤≤== ∫ yydxxyyf
y

Y  

Hence, 

( )






 ≤≤
=

otherwise,0

0for,
2

2
yx

y
x

yxf YX  

(c) [ ] ( ) ydx
y
xdxyxfxyYXE

y

YX 3
22

0
2

2
==== ∫∫

∞

∞−

. 

Example 1.18 
 
The probability density function of the two-dimensional random variable (X ,Y) in 
the area shown in Figure 1.20 is given by 

( ) 1for2, 22 ≤+
π

= yxyxf XY  

Find the correlation coefficient xyρ  between the random variables X and Y. 
 
Solution 
 
The expression of xyρ  is given by (1.117). Hence, we need to determine 

[ ] [ ] [ ] .and,,,, yxYEXEXYE σσ  Using (1.111), the expected value of XY is 

  
 
 
 
 
 

 
 
Figure 1.20  Domain of fXY (x , y). 
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where xyρ  is the correlation coefficient between X and Y, xm  is the mean of X, 

ym  is the mean of Y, and xσ  and yσ  are the standard deviations of X and Y, 
respectively. The degree of correlation, which is the value of the coefficient ,ρ  is 
between 1−  and 1+  inclusive: 

11 ≤ρ≤−          (1.118) 

If X and Y are uncorrelated, then the expected value of the product of X and Y 
can be expressed as the product of expected values. That is, 

[ ] [ ] [ ]YEXEYXE =          (1.119) 

Observe that [ ] [ ]YEXERxy =  means that xyρ  in (1.117) is zero. The numerator 
of (1.117), given by 

)]()[( yxxy mYmXEC −−=         (1.120) 

and known as the covariance of X and Y, becomes equal to zero. Observe that the 
covariance corresponds to the second order central moment with 1== λk ; that is, 

.11 xyC=µ  The correlation coefficient can be written in terms of the covariance as 

yx

xy
xy

C
σσ

=ρ          (1.121) 

Note also that the variance of YX +  is the sum of the variances of X and Y; that 
is, 

[ ] [ ] [ ]YXYX varvarvar +=+          (1.122) 

or, 

222
yxyx σ+σ=σ +          (1.123) 

It should be noted that if the random variables X and Y are independent. They are 
also uncorrelated, but the inverse is not true. If 

[ ] 0=YXE          (1.124) 

we say that X and Y are orthogonal. 



 Probability Concepts 

 

49

1.6.1 Functions of One Random Variable 
 
Consider the problem of determining the density function of a random variable Y, 
where Y is a function of X, Y = g(X), and the density function of X, ( )xfX , is 
known. We assume that the function y = g(x) is monotonically increasing and 
differentiable, as shown in Figure 1.21. The distribution function of Y in terms of X 
is 

       ( ) ( ) ( )[ ]ygXPyYPyFY
1−≤=≤=        (1.138) 

where ( )xg 1−  is the inverse transformation. Since we know the density function of 
X, we can then write 

         ( ) ( )
( )
∫

−

∞−

=
yg

XY dxxfyF
1

         (1.139) 

Differentiation of both sides of (1.139) yields 

           ( ) ( )[ ] ( )[ ]yg
dy
dygfyf XY

11 −−=         (1.140) 

If the function g were monotonically decreasing, we would have 

         ( ) ( )
( )
∫
∞

−

=
yg

XY dxxfyF
1

         (1.141) 

 
 
 
 
 
 
 
 

 
 
 
Figure 1.21  Monotone function of x. 

  y = g(x)

)(1 ygx −=
 x

 y
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and consequently, 

              ( ) ( )[ ] ( )[ ]yg
dy
dygfyf XY

11 −−−=         (1.142) 

In this case, the derivative of ( )[ ] dyygd 1− is negative. Combining both results of 

(1.140) and (1.142), the density function of Y is given by 

( ) ( )[ ] ( )[ ]








= −− yg
dy
dygfyf XY

11         (1.143) 

 This result can be generalized to the case where the function g(x) has many 
real roots ΚΚ ,,,, 21 nxxx , as shown in Figure 1.22. In this case, the density 
function of the random variable Y, Y = g(X), is 

( ) ( )
( )

( )
( )

( )
( ) ΛΛ ++++=

n

nXXX
Y xg

xf
xg
xf

xg
xf

yf
''' 2

2

1

1        (1.144) 

where ( )xfX  is the density function of X, and xi, i = 1, 2, … , is expressed in terms 
of y, and g′(x) is the derivative of g(x) with respect to x. This is known as the 
fundamental theorem. A special case of this fundamental theorem is when 

baXY += . The function y = g(x) = ax + b has one root ./)(1 bayx −=  The 
derivative of g(x) is just the constant a; g′(x) = a. Therefore, 

( ) ( )
( ) 






 −=

′
=

a
byf

axg
xfyf X

X
Y

1

1

1         (1.145) 

 

 

 

 

 
 
Figure 1.22  Function  y = g(x). 
 

 y = g(x)  y 

 x1                x2        x3   x
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Example 1.19 
 
Determine the density function of the random variable Y where ( ) ,2aXXgY ==  
given that a is positive and the density function of X is ( )xfX . 
 
Solution 
 
There are two ways of solving this problem. We either apply directly the 
fundamental theorem or use the formal derivation starting from the distribution 
function. We will try both methods and see if the results agree. 
Method 1.  As shown in Figure 1.23, we have two roots, ayx /1 −=  and 

ayx /2 += . 

( ) ( ) 









−≤−










≤=










+≤≤−=≤=

a
yXP

a
yXP

a
yX

a
yPyYPyFY  











−−










=

a
yF

a
yF XX  

Differentiation of both sides of the above relation yields 

( ) 0,
/2

1 >





















−+










= y

a
y

f
a
y

f
aya

yf XXY  

Method 2.  In this case, we use the fundamental theorem. We have two roots, and 
consequently the density function of Y is 

  

 

 

 
 
 
 
Figure 1.23   Function y = g(x) = ax2. 

 x1                       x2 

y 

 y = ax2

 x 
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( ) ( )
( )

( )
( )2

2

1

1

'' xg
xf

xg
xf

yf XX
Y +=  

where a x  x g' 2) ( = , ayx /1 −= , and ayx /2 += . Thus,  

( ) ( ) yaayaxg 2/2' 1 −=−= , and ( ) ( )ayaxg /2' 2 = ⇒= ya2  

( )
ya

a
yf

ya

a
yf

yf
XX

Y 22












+










−

=  

Both results agree. 
 
1.6.2 Functions of Two Random Variables 
 
We shall give some important results for some specific operations. The problem is 
to determine the density function of Z, where Z is a function of the random 
variables X and Y. That is,  

( )YXgZ ,=          (1.146) 

 The joint density function of (X, Y), ),,( yxf XY  is also known. Let Z be a 
random variable equal to the sum of two independent random variables X and Y, 

 Z = X + Y         (1.147) 

The density function of Z can be shown to be the convolution of the density 
functions of X and Y, 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

−=∗= dyyzfyfyfxfzf XYYXZ        (1.148) 

where * denotes convolution, and we used the fact that ),( yxf XY = 
)(xf X ),(yfY  since X and Y are independent. 

 
Example 1.20 
 
Find the density function of Z = X + Y, for X and Y independent. The density 
functions of X and Y for 0 ≤ x ≤ a, 0 ≤ y ≤ b, and a < b are shown in Figure 1.24. 
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Figure 1.24  Density functions of  (a) X and (b) Y. 

Solution 
 
It is much easier to solve convolutions graphically. For z < a, there is no overlap 
between the areas representing the density functions, as shown in Figure 1.25(a). 
This yields 0)( =zf Z  for z < 0. 
 For 0 ≤ z < a, we have an increasing area as z moves from 0 to a, as shown in 
Figure 1.25(b). Thus, 

( ) ∫ ==
z

Z ab
zdy

ba
zf

0

11  

 For a ≤ z < b, we have a constant area, as shown in Figure 1.25(c) ⇒  

( ) ∫
−

==
z

az
Z b

dy
ba

zf 111
 

 For b ≤ z < a + b, from Figure 1.25(d), we have 
 

( ) ∫
−

−+==
b

az
Z ab

zbady
ba

zf 11  

 For z ≥ a + b, there is no overlap between the two curves, and consequently 
0)( =zf Z  for z ≥ a + b ⇒  

 

 

(a) 

a 

a
1

fX (x) 

0
x 

b
1

b0 
y

(b)

fY (y) 
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Figure 1.25  (a–d) Areas of integration for convolution of X and Y. 

( )



















<+≥

+<≤−+

<≤

<≤

=

0or,0

,

,1

0,

zbaz

bazb
ab

zba

bza
b

az
ab
z

zf Z  

The density function of Z, )(zf Z , is shown in Figure 1.26. 

 

 
 
 
 
 
Figure 1.26  Density function of Z. 

 a        b           a + b

fZ (z) 

z
b
1

(c) 
b  0   z - a         z 

(d) 
0            z - a   b    z 

(a) 

b z = 0 z - a 

(b)

 b  z = 0  z   z - a 
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If X and Y are not independent, then 

( ) ( ) ( )∫∫
∞

∞−

∞

∞−

−=−= dxxzxfdyyyzfzf XYXYZ ,,        (1.149) 

If 

Z = X – Y          (1.150) 

then the density function of Z is 

( ) ( ) ( )∫∫
∞

∞−

∞

∞−

−=+= dxzxxfdyyyzfzf XYXYZ ,,        (1.151) 

If X and Y are independent, then the density function becomes 

( ) ( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

−=+= dxzxfxfdyyfyzfzf YXYXZ        (1.152) 

 We obtain similar results for other operations. We assume that the random 
variables X and Y are independent, with marginal density functions )(xf X  and 

.)(yfY  Let 

U = X Y          (1.153) 

Hence, we need to determine the density function )(ufU  in the region shown in 
Figure 1.27. For u > 0, the distribution function FU (u) is given by 

( ) ( ) ( ) ( ) ( )∫∫∫∫
∞

∞−∞−

∞
+=

y
u

XY

y
u

XYU dxxfdyyfdxxfdyyfuF
0

0

       (1.154) 

Taking the derivative of (1.154) with respect to u and using Leibniz’s rule, we 
obtain 

( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−








=






== dyyf

y
uf

y
dx

x
ufxf

xdu
udF

uf YXYX
U

U
11   (1.155) 
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dy 

dy 
dx 

dx 

 y 

x 

x
uy =

x
uy =

 
 
 
 
 
 
 
 
 

 

 

 

Figure 1.27  Domain of U = XY. 

The same results can be obtained for u < 0. If we now have 

Y
XV =          (1.156) 

then the region of integration is as shown in Figure 1.28. The distribution function 
)(vFV  is given by 

( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫
∞−

∞∞

∞−

+=
0

0 vy
XY

vy

XYV dxxfdyyfdxxfdyyfvF        (1.157) 

Differentiating )(vFV  with respect to v, we obtain 

 
 
 
 
 
 
 
 
 
 

Figure 1.28  Domain of V = X / Y. 

dy 

y 

x

x = yv 
dx 
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( ) ( ) ( ) ( ) ( )∫∫
∞−

∞
−=

0

0

dyyfyvfydyyfyvfyvf YXYXV  

 ( ) ( )∫
∞

∞−

= dyyfyvfy YX          (1.158) 

If 

M = max(X, Y)         (1.159) 

then the region corresponding to max (x, y) ≤ m is as shown in Figure 1.29. In this 
case, )(mFM  is given by 

( ) ( ) ( ) ( )mFmFmmFmF YXXYM == ,         (1.160) 

where )(mFX and )(mFY are the marginal distribution functions of the random 
variables X and Y, respectively. Hence, taking the derivative of )(mFM with 
respect to m, we obtain 

( ) ( ) ( ) ( ) ( )mFmfmfmFmf YXYXM +=         (1.161) 

If 

N = min(X, Y)         (1.162) 

then the region of min (x, y) ≤ n in the x–y plane is as shown in Figure 1.30. The 
distribution function )(nFN  of N is given by 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.29  Domain of M = max(x, y). 

x
m 

m 

y
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x

y

n

n

 
 
 
 
 
 
 
 
 
 
Figure 1.30  Domain of N = min(X,Y). 

( ) ( ) ( ) ( )nnFnFnFnF XYXYXYN ,,, −∞+∞=  
( ) ( ) ( ) ( )nFnFnFnF YXYX −+=         (1.163) 

where ),( yxFXY  is the joint distribution function of X and Y, and where the 
assumption of X and Y being independent is still maintained. Hence, taking the 
derivation of  (1.163) with respect to n, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )nFnfnfnFnfnfnf YXYXYXN −−+=  
   ( ) ( )[ ] ( ) ( )[ ]nFnfnFnf XYYX −+−= 11         (1.164) 

 If now the random variables X and Y are not statistically independent, then the 
density functions of U, V, M, and N are given by 

( ) dyy
y
uf

y
dx

x
uxf

x
uf XYXYU ∫∫

∞

∞−

∞

∞−








=






= ,1,1        (1.165) 

( ) ( ) dyyvyfyvf XYV ∫
∞

∞−

= ,         (1.166) 

( ) ( ) ( ) dxmxfdyymfmf
m

XY

m

XYM ∫∫
∞−∞−

+= ,,        (1.167) 

and 

( ) ( ) ( ) ( ) ( ) dxnxfdyynfnfnfnf
n

XY

n

XYYXN ∫∫
∞−∞−

−−+= ,,        (1.168) 
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Example 1.21 
 
Find the density function of U = XY, where X and Y are independent random 
variables with density functions 

( )


 ≤≤

=
otherwise,0

10,2 xx
xf X   and  ( )









≤≤

=

otherwise,0

10,
8

3 2
y

y

yfY  

Solution 
 
Using (1.155) and the given boundaries of x and y, we obtain 

( ) ( ) 20,2
4
3

8
3211

2/

2
2

≤≤−=





⋅⋅= ∫ uuudx

x
ux

x
uf

u
U  

1.6.3 Two Functions of Two Random Variables 
 
In this section, we extend the concept of the fundamental theorem of one function 
of a random variable to two functions of two random variables. Let 

    ( )2111 , XXgY =     and    ( )2122 , XXgY =        (1.169) 

where g1(X1 , X2) and g2(X1 , X2) are two functions of two random variables X1 and 
X2 with real values x1, x2. The joint density function of X1 and X2 is 

( )21 ,
21

xxf XX . Our aim is to obtain the joint distribution function ( )21 ,
21

xxF XX  

and the joint density function ( )21 ,
21

xxf XX  in terms of the functions y1 = g1(x1 , 

x2), y2 = g2(x1 , x2), and the joint density function ( )21 ,
21

xxf XX  of X1 and X2. The 
Jacobian of the transformation (x1 , x2) onto (y1 , y2) is given by  

( )

( ) ( )

( ) ( )
2

2

1

2

2

1

1

1

2

2

1

2

2

1

1

1

21
,,

,,

,

x
yxg

x
yxg

x
yxg

x
yxg

x
y

x
y

x
y

x
y

xxJ

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

=          (1.170) 

where │J(x1, x2)│ ≠ 0, and x∂∂ /  denotes partial derivative. This Jacobian 
),( 21 xxJ  is also denoted ( )2121 ,, xxyyJ  or ( ) ( )2121 ,, yyxx ∂∂ . Then, the 

density function ( )21 ,
21

yyf YY  can be shown to be  
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( ) ( )
( )21

21
21 ,

,
, 21

21 xxJ
xxf

yyf XX
YY =           (1.171) 

However, if the pairs (x11 , x21), (x12 , x22), … , (x1n , x2n) are all real solutions of 
equations y1 = g1(x1i , x2i) and y2 = g2(x1i , x2i), i = 1, 2, … , n (i.e., the n points in 
the x1–x2 plane map into one point in the 21 yy −  plane), then ( )21 ,

21
yyf YY  is 

given by  

 ( ) ( )
( )

( )
( )

( )
( )nn

nnXXXXXX
YY xxJ

xxf

xxJ

xxf

xxJ

xxf
yyf

21

21

2212

2212

2111

2111
21 ,

,

,

,

,

,
, 212121

21
+++= Κ (1.172a) 

  
( )

( ) ni
xxJ

xxfn

i iii

iiXX ,,2,1,
,

,

1 21

2121 Κ==∑
=

        (1.172b) 

Ji( x1i , x2i ), i = 1, 2, … , n, are the Jacobians evaluated at the ith root. The 
Jacobian of the inverse transformation is given by 

( )

2

2

1

2

2

1

1

1

21 ,

y
x

y
x

y
x

y
x

yyJ

∂
∂

∂
∂

∂
∂

∂
∂

=     (1.173) 

where J(y1, y2) can also be written as ( )2121 ,, yyxxJ or ( ) ( )2121 ,, xxyy ∂∂ . For 
the case of n real roots (x11 , x21), (x12 , x22), …, (x1n , x2n), the joint density function 
is then 

( ) ( ) ( )∑
=

−=
n

i
iiXXiYY xxfyyJyyf

1
21

1
2121 ,,,

2121
         (1.174) 

where the subscript i, i = 1, 2, … , n, indicates that the Jacobians are evaluated at 
the ith root, and that Ji(y1 , y2) is as defined in (1.173). The distribution function 

( )21 ,
21

yyF YY  is just 

( ) ( ) ( )∫∫=≤≤=
D

XXYY dxdxxxfyYyYPyyF 2121221121 ,,,
2121

           (1.175) 

where D denotes the region in the x1–x2 plane for which g1(x1, x2) ≤ y1 and 
2212 ),( yxxg ≤ . Note also that  
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( ) ( )
21

21
2

21
,

, 21

21 yy
yyF

yyf YY
YY ∂∂

∂
=           (1.176) 

Example 1.22 
 

Consider the standard example given in many references where 2
2

2
11 XXY +=  

and 212 / XXY = . The problem is to find the density function ( )21 ,
21

yyf YY  in 

terms of the given density function ( )21 ,
21

xxf XX . 
 
Solution 
 
We shall solve this example by giving more details to eliminate all ambiguities. 
From (1.170), we first need to determine the Jacobian of this transformation 

( ) 2
2

2
12111 , xxxxgy +==  and ( ) 212122 /, xxxxgy == , which is given by 

( ) ( ) ( )
( ) ( )2

1
2
1

2
1

2
1

2
2

2
1

2
2

2
1

2

2

1

2

1

2

2
2

2
1

2

2
2

2
1

1

21
11

1
,

xxxxx
x

x
x

x

xx

x

xx

x

xxJ
+

−
+









−=

−

++
=  

1

2
2

11

2
2

111
y

y
yy

y
+

−=−−=  

Thus, ( ) ./)1(, 1
2
221 yyxxJ +=  Solving for the roots of the two functions y1 and 

y2, we obtain 

( ) 2
1

2
1

2
1

2
1

2
2

12
1

2
2

12
1

2
22

1
2
2

2
11

1111 









+±=










+±=






















+=+=

y
x

x
x

x
x
x

xxxy  










 +
±=

2
2

2
2

1
1

y
y

x     ⇒    
( ) 2

1

12
2

21
1

+
±=

y

yy
x  

That is, we have two roots, ( ) 2
1

12
22111 += yyyx  and ( ) .1 2

1
2
22112 +−= yyyx  

Using the same approach to solve for x2, we obtain ( ) ;1 2
1

2
212 +±= yyx  that is, 



 Signal Detection and Estimation 

 

62 

 -1            0            1
x1 

x2 

   r
      θ

2
12 1 xx −=

( ) 2
1

12
2121 += yyx  and ( ) .1 2

1
2
2122 +−= yyx  Note that in reality we have four 

possible pairs (x1i , x2i), i = 1, 2, 3, 4, but we have to pair the plus signs together 
and the minus signs together, since y1 must be nonnegative to have real solutions. 
Hence, using (1.172a), the joint density function of Y1 and Y2 becomes 

( )

( ) ( ) ( ) ( )


















<

>
+

⋅































+

−

+

−+














++

=

0,0

0,
1

1
,

11
,

1

,

1

12
2

1

2
2

1

2
2

21

2
2

1

2
2

21

21

2
1

2
122

2
1

2
121

21

y

y
y

y

y

y

y

yyf
y

y

y

yyf

yyf

XXXX

YY  

Example 1.23 
 
Let (X1, X2) be a two-dimensional random variable with density function 

( ) π= /2, 2121
xxf XX  in the region shown in Figure 1.31. Define the 

transformation (R , Θ) with X1 = R cos Θ and X2 = R sin Θ. Determine the joint 
density function ( )θ,Θ rfR . 
 
Solution 
 
In this example, the goal is to use the Jacobian of the inverse transformation, 

1−J , given in (1.173), which could be sometimes confusing. Hence, 

 
 
 
 
 
 
 
 

Figure 1.31   Region of ( )2121 , xxf XX . 
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( ) ( ) rr
r
r

x
r

x

x
r
x

rJ =θ+θ=
θθ
θ−θ

=

θ∂
∂

∂
∂

θ∂
∂

∂
∂

=θ− 22

22

11

1 sincos
cossin
sincos

,  

since cos2 θ + sin2 θ = 1. Thus, using (1.174), the joint density function of (R , Θ) 
becomes 

( ) ( ) ( )21
1

Θ ,,,
21

xxfrJrf XXR θ=θ −  

  
π

= r2     for    0 ≤ r ≤ 1   and   0 ≤ θ ≤ π 

Note that the marginal density functions of R and Θ are easily obtained to be  

( ) ∫
π

≤≤=θ
π

=
0

10,22 rrdrrf R  

and 

( ) ∫ π≤θ≤
π

=
π

=θ
1

0
Θ 0,12 drrf  

R and Θ are independent random variables, since fRΘ (r , θ) = fR (r) fΘ (θ). 
 

 We now generalize the fundamental theorem to vectors of n random variables. 
Let X = (X1, X2, … , Xn) be an n-dimensional random variable of the continuous 
type, with joint probability density function fX (x1, x2, … , xn). Let Y1, Y2, … ,Yn be 
functions of random variables X1, X2, … , Xn, given by 

),,,(

),,,(
),,,(

21

2122

2111

nnn

n

n

X  X X g Y

X   X X g Y
X  X X g Y

…=

…=
…=

Μ
        (1.177) 

The functions gi(x1, x2, … , xn), i = 1, 2, … , n, are continuous, and have partial 
derivatives at all (x1, x2, … , xn). Then, the joint density function of the 
transformation is given by 
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 ),,,(
),,,(

1),,,( 21,,,
21

21,,, 2121 nXXX
n

nYYY xxxf
xxxJ

yyyf
nn

Κ
Κ

Κ ΚΚ =    (1.178) 

where the Jacobian ( ) ( ) ( )[ ]nnn xxxyyyJxxxJ ,,,/,,,,,, 212121 ΚΚΚ =  is 

defined as 

( )

n

nnn

n

n

n

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

xxxJ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

Λ

Μ

Λ

Λ

Κ

21

2

2

2

1

2

1

2

1

1

1

21 ,,,        (1.179) 

If the n-tuples (x11, x21, … , xn1), (x12, x22, … , xn2), … , (x1n, x2n, … , xnn) are 
solutions to 

( )
( )

( )nnn

n

n

yyygx

yyygx
yyygx

,,,

,,,
,,,

21
1

21
1

22

21
1

11

Κ

Μ

Κ
Κ

−

−

−

=

=
=

        (1.180) 

The Jacobian of the inverse transformation is given by 

n

nnn

n

n

n

n
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x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

y
x
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∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=



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Λ
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Κ
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       (1.181) 
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where ( ) ( )[ ] ( )nnn yyyJyyyxxxJ ,,,,,,/,,, 212121 ΚΚΚ =  and 
( ) 1

21 ,,, −
nxxxJ Κ ( )nyyyJ ,,, 21 Κ= . The joint density function 

( )nYYY yyyf
n

,,, 2121
ΚΚ  becomes 

( )nYYY yyyf
n

,,, 2121
ΚΚ ( ) ( )niiiXXX

n

i
ni xxxfyyyJ

n
,,,,,, 21

1

1
21 21

ΚΚ Κ∑
=

−=  

                (1.182) 

where again the subscript i, i = 1, 2, … , n, indicates that the Jacobians are 
evaluated at the ith root, and ),,,( 21 ni yyyJ Λ is as defined in (1.181). 
 
 
1.7 SUMMARY 
 
In this chapter, we have introduced the concepts of sets, probabilities, random 
variables, and functions of random variables. In most cases, we limited the 
discussions to two random variables or two functions of two random variables, but 
the concepts can be extended to n random variables and/or n functions of n random 
variables. Due to the analogy between continuous random variables and discrete 
random variables, most mathematical developments were done for continuous 
functions. However, some points on discrete random variables were given in detail 
to clarify some fundamentals. In the next chapter, we present some probability 
distributions. 
 
 

PROBLEMS 
 
1.1 Determine which sets are finite and countable, or infinite and uncountable.  

A ={1, 2, 3, 4}, B = {x | x integer and x < 9}, C = {x | x real and 1 ≤ x < 3}, 
D = {2, 4, 7}, and E = {4, 7, 8, 9, 10}. 

 
1.2 Using the sets A, B, D, and E of Problem 1.1, determine the following sets: 

(a) BA Ι  
(b) EDBA ΥΥΥ  
(c) ( ) DEB ΙΥ  
(d) EB −  
(e) EDBA ΙΙΙ  

 
1.3 Let the universal set be U = {x | x integer and 0 ≤ x ≤ 12}. For the subsets of U 

given as A = {0, 1, 4, 6, 7, 9}, B = {x | x even}, and C = {x | x odd}, find 
(a) BA Ι  
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(b) ( ) CBA ΙΥ  

(c) CB Υ  
(d) AB −  
(e) ( ) ( )CABA ΥΙΥ  

(f) CA Ι  
(g) CB −  
(h) CB Ι  

 
1.4 Using Venn diagrams for the four sets A, B, C, and D within the universal set 

U, show the areas corresponding to the following sets 
(a) BA −  
(b) ( ) CBA ΙΥ  
(c) Ι Ι Ι DCBA  
(d) A  
(e) BA Ι  

 
1.5 Show that if BA ⊂  and CB ⊂ , then .CA ⊂  
 
1.6 Find all mutually exclusive sets defined in Problem 1.3. 
 
1.7 A ball is drawn at random from a box containing 10 red balls, 3 white balls, 

and 7 blue balls. Determine the probability that it is 
(a) red 
(b) white 
(c) blue 
(d) not red 
(e) red or white 

 
1.8 Assume that three balls are drawn successively from the box of Problem 1.7. 

Find the probability that they are drawn in the order blue, white, and red, if 
each ball is 
 (a) replaced before the next draw 
(b) not replaced 

 
1.9 In addition to Box 1 of Problem 1.7, we have another box, Box 2, containing 2 

red balls, 6 white balls, and 1 blue ball. One ball is drawn from each box. Find 
the probability that 
(a) both are red 
(b) both are white 
(c) one is white and one is blue 
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1.10 A small box, B1, contains 4 white balls and 2 black balls; another larger 
box, B2, contains 3 white balls and 5 black balls. We first select a box, then 
draw a ball from the selected box. The probability of selecting the larger 
box is twice that of the smaller box. Find the probability that 
(a) a black ball is drawn given box B2 
(b) a black ball is drawn given box B1 
(c) a black ball is drawn 
(d) a white ball is drawn 

 
1.11 Determine the probability of obtaining three 1s in four tosses of a fair die. 
 
1.12 In three urns are balls, as shown in Table P1.12. The urns are not of the 

same size, and thus the probability of selecting Urn A is 0.6, while the 
probability of selecting Urn B is 0.2. 
(a) Find the joint probability of selecting a white ball from Urn B. 
(b) Find the probability of drawing a green ball, given that Urn B has been 

selected. 
(c) Determine the conditional probability that a red ball is drawn from Urn 

C, P(Urn C│red ball). 

1.13 An urn contains 10 balls marked 0, 1, 2, … , 9. The experiment consists of 
drawing k balls at random with replacement. The probability of a ball being 
drawn at each drawing is 1/10, and the drawings are not related. Let A be 
the event in which neither ball 0 nor ball 1 appear in the sample, and let B 
be the event in which ball 1 does not appear in the sample but ball 2 does. 
Find 
(a) P(A) 
(b) P(B) 
(c) P(AB) 
(d) P(AΥB) 

Table P1.12 
Content of Urns 

 

 
 

Balls Urn A Urn B Urn C Totals

Red 
White 
Green 

Totals 

30 
50 

20 

30 
30 

40 

40 
20 

40 

100 
100 

100 

100 100 100 300 
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1.14 Consider the function 

( )
( )









<

≥−δ+
=

−

0,0

0,3
2
1

2
1

x

xxe
xf

x

X  

(a) Sketch fX (x) and verify that it represents a density function. 
(b) Calculate P(X = 1), P(X = 3), and P(X ≥ 1). 

 
1.15 Consider the random variable X given in Example 1.12. Find 

(a) the distribution function 
(b) the probability that | X | < 1 

 
1.16 The density function of the variable X is given by 

( )






 ≤≤−
=

otherwise,0

22,
4
1 x

xf X  

Determine  
(a) P( X ≤ x ) 
(b) P( │X│≤ 1 ) 
(c) the mean and variance  
(d) the characteristic function 

 
1.17 The random variable X has a density function 

( )







<≤−
≤<

=
otherwise,0

21,2
10,

xx
xx

xf X  

(a) What is the probability that ?2/33/1 << X  
(b) Find the mean and variance of X. 
(c) Obtain the moment generating function of X. 
(d) Obtain the mean of X from the moment generating function and 

compare it with the value obtained by direct application of the 
definition. 
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1.18 The random variable X has mean E[X] = 2/3 and density function 

( )




 ≤≤β+α=

otherwise,0
10,2 xxxf X  

(a) Find α and β. 
(b) Determine E[X2] and 2

xσ . 
 
1.19 The joint probability distribution of the two-dimensional discrete random 

variable (X,Y) is shown in Table P1.19. 
(a) Is E[XY] = E[X]E[Y]? 
(b) Are the random variables X and Y independent? Justify. 

 
1.20 The joint density function of two random variables X and Y is given by 

( ) ( )


 ≤≤≤≤+

=
otherwise,0

20and20,
,

yxyxk
yxf XY  

Find 
(a) k 
(b) The marginal density functions of X and Y 
(c) P(X < 1| Y < 1) 
(d) E[X], E[Y], E[XY], and xyρ  
(e) Are X and Y independent? 

 
1.21 The joint density function of the two random variables X and Y is 

( )


 <<<<

=
otherwise,0

40and51,
,

yxkxy
yxf XY  

Table P1.19 
Joint Probabilities of ( X, Y ) 

 

  Y 1−  0 +1

1−
 0 

+1

12/1
6/1

12/1

6/1
 0 

6/1

12/1

6/1
12/1

X 
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Find  
(a) The constant k 
(b) P(X ≥ 3, Y ≤ 2) and P(1 < X < 2, 2 < Y < 3) 
(c) P(1 < X < 2 | 2 < Y < 3) 
(d) E[X | Y = y] 

 
1.22 The joint density function of the two random variables X and Y is 

( )


 <<<<

=
otherwise,0

21and31,
,

yxkxy
yxf XY  

(a) What is the probability that X + Y < 3? 
(b) Are X and Y independent? 

 
1.23 The joint density function of two random variables X and Y is  

( )




 <<>=

otherwise,0
10and2,16, 3 yxyxf x

y

XY  

Find E[X] and E[Y], the means of X and Y, respectively. 
 
1.24 The density function of two independent random variables X and Y are 

( )




 ≥=

−

otherwise,0
0,2 2 xexf

x

X  ( )




 >=

−

otherwise,0
0,3 ykyeyf

y

Y  

Find 
(a) P(X + Y > 1) 
(b) P(1 < X < 2, Y ≥ 1) 
(c) P(1 < X < 2) 
(d) P(Y ≥ 1) 
(e) P(1 < X < 2 | Y ≥ 1) 

 
1.25 Find the density function of the random variable Y = 2X, where 

( )




 >=

−

otherwise,0
0,2 2 xexf

x

X  

Compute E[Y] in two ways: 
(a) Directly using fX (x) 
(b) Using the density function of Y 
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( ) ( )
21

21
2

21
,

, 21

21 yy
yyF

yyf YY
YY ∂∂

∂
=           (1.176) 

Example 1.22 
 

Consider the standard example given in many references where 2
2

2
11 XXY +=  

and 212 / XXY = . The problem is to find the density function ( )21 ,
21

yyf YY  in 

terms of the given density function ( )21 ,
21

xxf XX . 
 
Solution 
 
We shall solve this example by giving more details to eliminate all ambiguities. 
From (1.170), we first need to determine the Jacobian of this transformation 

( ) 2
2

2
12111 , xxxxgy +==  and ( ) 212122 /, xxxxgy == , which is given by 

( ) ( ) ( )
( ) ( )2

1
2
1

2
1

2
1

2
2

2
1

2
2

2
1

2

2

1

2

1

2

2
2

2
1

2

2
2

2
1

1

21
11

1
,

xxxxx
x

x
x

x

xx

x

xx

x

xxJ
+

−
+









−=

−

++
=  

1

2
2

11

2
2

111
y

y
yy

y
+

−=−−=  

Thus, ( ) ./)1(, 1
2
221 yyxxJ +=  Solving for the roots of the two functions y1 and 

y2, we obtain 

( ) 2
1

2
1

2
1

2
1

2
2

12
1

2
2

12
1

2
22

1
2
2

2
11

1111 









+±=










+±=






















+=+=

y
x

x
x

x
x
x

xxxy  










 +
±=

2
2

2
2

1
1

y
y

x     ⇒    
( ) 2

1

12
2

21
1

+
±=

y

yy
x  

That is, we have two roots, ( ) 2
1

12
22111 += yyyx  and ( ) .1 2

1
2
22112 +−= yyyx  

Using the same approach to solve for x2, we obtain ( ) ;1 2
1

2
212 +±= yyx  that is, 
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1.30 The joint probability density function of (X, Y) is given by 

( )


 ≤≤≤≤

=
otherwise,0

10and10,1
,

yx
yxf XY  

Find the probability density function of Z = XY. 
 
1.31 The joint density function of the two random variables X and Y is given by 

( ) β≤≤∞<≤
β
α= α− yxeyxf x

XY 0and,0,,  

where α and β are constants. 
(a) Find the marginal density fX (x) of X. 
(b) Find the marginal density fY (y) of Y. 
(c) Are X and Y statistically independent? Justify. 
(d) Determine the density function of Z such that Z = X + Y, and sketch it. 

 
1.32 Let X and Y be two independent random variables with exponential 

distributions given by 

( ) ( ) ( ) ( )yueyfxuexf y
Y

x
X

β−α− β=α= and  

where α > 0 and β > 0.  Determine the density function of Z = X/Y. 
 
1.33 The joint probability density function of the random variables X1 and X2 is 

given by 

( )


 ≤≤≤≤

=
otherwise,0

21and31,
, 2121

2121

xxxkx
xxf XX  

Let the random variables Y1 and Y2 be defined as 

11 XY =  and 2
212 XXY =  

(a) Determine the constant k. 
(b) Determine the joint density function ( )21,

21
yyf YY  and sketch the 

corresponding domain of definition. 
 
1.34 The joint density function of the random variables X1 and X2 is given by 
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( )
( )





 >>α=

+α−

otherwise,0
0,0,, 21

2

21

21

21

xxexxf
xx

XX  

(a) Show that X1 and X2 are independent. 
(b) Define Y1 = X1 + X2 and ./ 212 XXY =  Determine the joint density 

function ( )21,
21

yyf YY  of the transformation. 
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Chapter 2 
 
 

Distributions 
 
 
2.1 INTRODUCTION 
 
In the previous chapter, we have defined the concepts of probability, random 
variables, and statistical moments. In this chapter, we shall study some important 
distribution functions that are frequently encountered. Since these distributions 
have a wide range of applications, we shall study them in their general form, and 
in some cases, we give more details for particular applications. Some of the 
notions defined will be applied to these special distributions, which yield some 
standard results to be used later. In Sections 2.2 and 2.3, we present some discrete 
and continuous distribution functions, respectively. Special distribution functions 
will be presented in Section 2.4. 
 
 
2.2 DISCRETE RANDOM VARIABLES 
 
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 
 
The simplest distribution is one with only two possible events. For example, a coin 
is tossed, and the events are heads or tails, which must occur with some 
probability. Tossing the coin n times consists of a series of independent trials, each 
of which yields one of the two possible outcomes: heads or tails. These two 
possible outcomes are also referred to as “success” associated with the value 1 and 
“failure” associated with the value 0. Since all experiments are assumed to be 
identical, the outcome 1 occurs with probability p, whereas the outcome 0 occurs 
with probability p−1 , with 0 ≤ p ≤ 1. These are called the Bernoulli trials. 

A random variable X is said to have a Bernoulli distribution if for some p, 
10 ≤≤ p , its probability density function is given by 

( ) ( )




 =−=

−

otherwise,
1,0,

0
1 1 xppxP

xx

X              (2.1) 

75 
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)1( p−  is often denoted by q, such that 1=+ qp . Assume that in the experiment 
of tossing a coin n times, “heads” or “1” occurs in k trials, then “tails” or “0” 
occurs in )( kn −  trials. That is, we have 

43421
K

43421
K

timeskntimesk −

0000011111  

Note that the order of which comes first, 1 or 0, is not important. What matters is 
the k number of ones and )( kn −  number of zeros in the n trials. Hence, from 
Chapter 1, Section 1.2.4, the n objects (all the 1s and 0s) can be arranged in n! 
ways. The k 1s can be arranged in k! ways, whereas the )( kn −  0s can be arranged 
in )( kn −  ways. It follows that there are ( ) !!! kknn −  ways of arranging the k 1s 
and )( kn −  0s. Note that ( ) !!! kknn − is the binomial coefficient defined in (1.10). 
Hence, the probability of occurrence of k 1s is  

( )
knk qp

kkn
n −

− !!
!              (2.2) 

In summary, we say that the probability of observing exactly k successes in n 
independent Bernoulli trials yields the binomial distribution. The probability of 
success is p, and the probability of failure is pq −=1 . The random variable X is 
said to have a binomial distribution with parameters n and p if  

( ) K,2,1,0fortrialsin =







== − kqp

k
n

nkXP knk            (2.3) 

The PDF of the binomial random variable X is given by  

( ) ( )kxqp
k
n

xP knk
n

k
X −δ








= −

=
∑

0
            (2.4) 

where )( kx −δ  is the impulse function. The distribution function would be 

    ( ) ( ) ( )kxuqp
k
n

duuPxF knk
n

k

x

XX −







== −

=∞−
∑∫

0
           (2.5) 

where )( kxu −  is the step function, and the integral of the impulse function is just 
the unit step function. It should be noted that the binomial power expansion is 
given by 
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            ( ) ∑
=

−








=+

n

k

knkn qp
k
n

qp
0 ( )∑

=

−

−
=

n

k

knk qp
kkn

n

0 !!
!            (2.6) 

It can also easily be shown that the mean, variance, and characteristic function of 
X are given by 

[ ] pnXE =              (2.7) 

( ) qpnX =var              (2.8) 

and 

( ) ( ) nj
x qep +=ω ωΦ              (2.9) 

Example 2.1 
 
Consider the experiment of rolling a fair die 10 times. What is the probability of 
obtaining a “6” twice? 
 
Solution 
 
Note that the number of rolling a die is n = 10, and k = 2 is the number of a “6” 
showing on the top face of the die with probability 6/1=p . Hence, using (2.3), 
the probability of obtaining a “6” twice is  

( ) 2907.0
6
5

6
1

2
10

2
82

=























==XP  

Example 2.2 
 
A receiver receives a string of 0s and 1s transmitted from a certain source. The 
receiver uses a majority decision rule. In other words, if the receiver acquires three 
symbols and out of these three symbols two or three are zeros, it will decide that 
these symbols represent that a 0 was transmitted. The receiver is correct only 80% 
of the time. What is P(c), the probability of a correct decision, if the probabilities 
of receiving 0s and 1s are equally likely? 
 
Solution 
 
These are Bernoulli trials, with P(A) = p being the probability that event A occurs 
in a given trial. Define D as the event decide 0 or 1. P(D) = 0.8. The number of 
symbols received is n = 3. From (2.3), we have 
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( ) ( ) ( ) 008.08.018.0
0
3

decisionscorrect0 30 =−







=P  

( ) ( ) ( ) 096.08.018.0
1
3

decisioncorrect1 21 =−







=P  

( ) ( ) ( ) 384.08.018.0
2
3

decisionscorrect2 12 =−







=P  

( ) ( ) ( ) 512.08.018.0
3
3

decisionscorrect3 03 =−







=P  

Therefore, the probability of a correct decision is given by  

( ) ( ) ( ) 896.032 ==+== DPDPcP  

In the binomial distribution, the experiment is repeated n times but we only 
have two possible events. Suppose now that we still repeat the experiment n times 
independently, but for each experiment we have k mutually exclusive events 

kAAA ,,, 21 K . Let P(Ai) = Pi and suppose that Pi , i = 1, 2, … , k, remains 
constant for all n repetitions, and 121 =+++ kPPP K . Define the random 
variables kXXX ,,, 21 K , such that Xi = ni, i = 1, 2, … , k, is the number of 
times Ai occurs in n repetitions. Then, knnnn +++= K21 , and the joint 
probability that X1 = n1, X2 = n2, … , Xk = nk, is given by 

  ( ) kn
k

nn

k
kk PPP

nnn
nnXnXnXP K
K

K 21
21

21
2211 !!!

!,,, ====    (2.10) 

Note that the random variables kXXX ,,, 21 L  are not independent. A 
random variable ),,,( 21 kXXX L  with a distribution given as in (2.10) is said 
to have a multinomial distribution. 
 
2.2.2 The Geometric and Pascal Distributions 
 
Consider the experiment of tossing a coin as described earlier. The probability of 
occurrence of some event, say, heads or success, is P(A) = p, and the probability of 
nonoccurrence (or failure) is ( )AP  = p−1  = q. In the binomial distribution, we 
repeated the experiment n times, and we calculated the probability of occurrence 
of k successes out of n Bernoulli trials. The experiment now is a little different in 
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the sense that we continue tossing a coin until we obtain the event A (heads or 
success) for the first time, then the experiment stops. Hence, the number of trials n 
in the binomial distribution is fixed, while in this new experiment it is a random 
variable, since we do not know when we stop the experiment. We now define the 
geometric distribution. 

Let X be a random variable representing the repetitions of an experiment until 
the first occurrence of an event A at the kth trial. Hence, when X assumes the 
values 1, 2, … , 1−k , the results of the repetitions of the experiment are A . Then, 
the probability of occurrence of the event A for the first time at the kth trial X = k is 
given by 

   ( ) ( ) ( )
otherwise,

,2,1,0,
0
1 1 K=





 −===

− kppkPkXP
k

X          (2.11) 

The random variable X is said to have a geometric distribution given by (2.11) 
with 0 ≤ p ≤ 1 and qp =−1 . The mean of X is given by  

[ ] ( ) ∑=∑=∑ ==
∞

=

−∞

=

−∞

= 1

1

1

1

1 k

k

k

k

k
qkpqpkkXPkXE  

         ( ) ∑=∑=
∞

=

∞

= 11 k

kk

k
q

dq
dpq

dq
dp           (2.12) 

where d/dq denotes derivative, and the infinite series is known to converge to 

10for
1

1
1

<<
−

=∑
∞

=
q

q
q

k

k           (2.13) 

Hence, the mean of X becomes 

[ ]
( ) pq

p
qdq

dpXE 1
11

1
2 =

−
=








−

=           (2.14) 

Similarly, we can show that the variance of X is  

[ ] 2var
p
qX =            (2.15) 

The moment generating function of the geometric distribution can be shown to be 
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( )
tx

eq
p

tM
−

=
1

           (2.16) 

If we now consider the same experiment that gave us the geometric 
distribution, the experiment does not stop at the first occurrence of the event A, but 
when the event A occurs r times. In this case, at 1−= kX  trials, we have 1−r  
occurrences of the event A, and at ,rX =  the rth event occurs. Hence, 

( ) K,1,,
1
1

+=







−
−

== − rrkqp
r
k

kXP rkr          (2.17) 

X is said to have the Pascal distribution. Note that when r = 1 in (2.17), we obtain 
the geometrical distribution given in (2.11). Often, the Pascal distribution is 
referred to as the negative binomial distribution. In this case, we say we have x 
failures corresponding to 1−r  successes at the th)1( −k  trial. At the kth trial, we 
must have the rth success. Hence, the probability of x failures is given by 

      K,2,1,
1

)( =






 −+
== xqp

x
rx

xXP xr          (2.18) 

or, the probability of the rth success at the rxk +=  trial, knowing that at 
11 −+=− rxk  we have 1−r  successes, is 

    ( ) K,2,1,0,
1

1
=








−
−+

== xqp
r

rx
xXP xr          (2.19) 

Note that (2.18) is equivalent to (2.19), since 

  






 −+
=








−
−+

x
rx

r
rx 1

1
1

          (2.20) 

It should be noted that (2.17) also may be written as 

   ( ) ( ) K,2,1,0, =−






−
== xqp

x
r

xXP xr           (2.21) 

which yields that 
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     ( ) 1
0

==∑
∞

=x
xXP            (2.22) 

since 

     ( ) ( ) rr

x

x pqq
x
r −−

∞

=
=−=−







−
∑ 1

0
          (2.23) 

It is because of the negative exponent )( r−  in (2.23) that we call this distribution a 
negative binomial. It is important to observe that in (2.19) we are interested in the 
distribution of the number of trials required to get r successes with k = x + r, 
whereas in (2.18) we are interested in the number of failures. In other words, the 
distribution of (2.17) can be defined as Y = X + r, with X denoting the number of 
failures before the rth success. Hence,  
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 The means of X and Y can be shown to be 
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whereas the variances of X and Y are given by  
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The moment generating function of X can be obtained to be  
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whereas the moment generating function of Y can be shown to be  
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We conclude this section by giving the relationship between the binomial 
distribution and the Pascal distribution. If X is a binomial distribution as defined in 
(2.4), and Y is a Pascal distribution as defined in (2.17), then 

    ( ) ( )nYPrXP ≤=≥           (2.30) 

That is, if there are r or more successes in the first n trials, then the number of 
trials to obtain the first r successes is at most n. Also,  

     ( ) ( )nYPrXP >=<            (2.31) 

That is, if there are less than r successes in the first n trials, then we need at least n 
trials to obtain the first r successes. 
 
2.2.3 The Hypergeometric Distribution 
 
Suppose an urn containing N balls, r of which are white and the other rN −  balls 
are of other colors. The experiment consists of drawing n balls, where Nn ≤ . As 
each ball is drawn, its color is noted and replaced in the urn. A success is when a 
white ball is drawn. Let X be the random variable representing white balls drawn 
(successes) in n trials. Then, the probability of obtaining k successes in n trials is 
given by 
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since Nrp /=  and NrNpq /)(1 −=−= . This is called a sampling with 
replacement. If now, as each ball is drawn, its color is noted but it is not replaced 
in the urn, we have a sampling without replacement. In this case, the probability of 
obtaining k white balls (successes) in n trials is given by 
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 A discrete random variable having the distribution given in (2.33) is said to 
have a Hypergeometric distribution. Note that k cannot exceed n or r; that is, 
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 The mean and variance of the Hypergeometric distribution X can be shown to 
be  
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The mean-square value is also given by 
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Computing the probability of k white balls in n trials without replacement, 
given by (2.33), we have 
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 Let the proportion of white balls in the urn before any drawing be ,/ pNr =  
and the proportion of the other balls is qNrNp =−=− /)(1 . Then, (2.38) 
becomes 
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 The mean and variance in terms of the proportions p and q are given by 

     E[X] = n p           (2.40) 

and 
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When N goes to infinity (N very large compared to n), the mean and variance 
become 

E[X] = n p           (2.42) 

and 

var[X] = n p q           (2.43) 

whereas the probability of k successes in n trials without replacement given by 
(2.38) becomes 
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That is, we obtain the result given by (2.32), which is sampling with replacement. 
This makes sense intuitively, since for a very large N, drawing a ball without 
replacement does not affect the sample size, and the experiment is similar to 
drawing a ball with replacement. 
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Example 2.3 
 
An urn contains five white balls, three black balls, and three red balls. The 
experiment is to draw a ball and note its color. Find the probability of obtaining 
the third white ball in the seventh trial, knowing that the ball drawn is not replaced 
in the urn. 
 
Solution 
 
This is the hypergeometric distribution with N = 11 balls; r = 5 white balls, and 

6=− rN  other colors. The probability of obtaining k = 3 white balls (successes) 
in n = 7 trials is given by (2.33) to be  
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2.2.4 The Poisson Distribution 
 
In many applications we are concerned about the number of occurrences of an 
event in a given period of time t. Let the occurrence (or nonoccurrence) of the 
event in any interval be independent of its occurrence (nonoccurrence) in another 
interval. Furthermore, let the probability of occurrence of the event in a given 
period be the same, irrespective of the starting or ending of the period. Then we 
say that the distribution of X, the number of occurrences of the event in the time 
period t, is given by a Poisson distribution. Applications of such a random 
phenomenon may include the occurrence of the telephone traffic, random failures 
of equipment, disintegration of radioactive material, claims in an insurance 
company, or arrival of customers in a service facility. 
 Let X be a discrete random variable assuming values KK ,,,2,1,0 n  and 
having parameter λ, λ > 0. Then, if 
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then we say that X has a Poisson distribution. The probability density function and 
the cumulative distribution function are  
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and 
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where δ(x) and u(x) are the unit impulse function and the unit step function, 
respectively. 
 The mean and variance of X are equal and can be computed to be 
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while the mean-square value is λ+λ= 22 ][XE . It can also be shown that the 
moment generating function and characteristic function of the random variable X 
are  
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Example 2.4 
 
Let X and Y be two independent random variables having Poisson distributions 
with parameters λ1 and λ2, respectively. Show that the distribution of X + Y is a 
Poisson distribution, and determine its parameter. 
 
Solution 
 
For n > 0, the distribution of X + Y is given by 
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where we used the binomial expansion given in (2.6). Hence, the distribution of X 
+ Y is Poisson with parameter λ = λ1+λ2. 
 
 The Poisson distribution is an approximation of the binomial distribution as 
the number of trials goes to infinity (and, solving the limit, λ=np ). Consider a 
binomial distribution with parameters n and p. The probability of X = k in the 
binomial distribution is given by 
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with mean λ = np. Then, taking the limit as n → ∞ and assuming np /λ=  to be 
very small, we have 
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using the result that 
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since the term between the brackets goes to one. Note also, from Section 2.2.3, the 
hypergeometric distribution can be approximated to a binomial distribution, and 
thus to the Poisson distribution. 
 
 
2.3 CONTINUOUS RANDOM VARIABLES 
 
2.3.1 The Uniform Distribution 
 
A random variable X is said to be uniformly distributed on the interval from a to b, 
a < b, as shown in Figure 2.1, if its density function is given by 
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The distribution function of X, shown in Figure 2.2, is given by 

 
 
 
 
 
 
 
 
 
 
Figure 2.1  Uniform density function. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.2  Distribution function of the uniform random variable. 
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The mean, variance, and characteristic function of X are, respectively, 
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2.3.2 The Normal Distribution 
 
One of the most important continuous random variables of a probability 
distribution is the normal distribution. Often called the Gaussian distribution, it is 
shown in Figure 2.3. The density function is 
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where m and σ are, respectively, the mean and standard deviation of X and satisfy 

 
 
 
 
 
 
 
 
 
 
Figure 2.3  Normal density function. 
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Figure 2.4  Distribution function of the normal. 

the conditions ∞<<−∞ m  and .0>σ  The corresponding distribution function, as 
shown in Figure 2.4, is given by 
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 The distribution function can be determined in terms of the error function. 
The error function denoted by erf(⋅) is defined in many different ways in the 
literature. We define the error function as 
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Additional information on the error function and its tabulated values are given in 
the Appendix. Let σ−= /)( mxu in (2.61); then ,/ σ= dxdu  and the distribution 
function becomes 
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The values of I(x) are also tabulated in the Appendix. The distribution given in 
(2.64) can be rewritten as 
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Using the definition of the error function given in (2.63), the distribution function 
becomes 
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 We define the standard normal distribution as the normal distribution with 
mean m = 0 and variance σ2 = 1, denoted N(0,1), and expressed as 
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The corresponding distribution is given in (2.66) in terms of the error function. 
Other important results that we need to define are the complementary error 
function and the Q-function given by 
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0for )(1)( ≥−=− xxQ xQ             (2.72) 

Note that, using (2.67) and (2.70), the Q-function can be written in terms of the 
error function to be 
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Also note that  

             I(x) + Q(x) = 1            (2.74) 

and 
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In some books, Q(x) defined in (2.70) is denoted erfc*(x), while I(x) in (2.64) is 
denoted erfc*(x), and thus erf*(x) + erfc*(x) = 1 as in (2.74). 
 The moment generating function is known to be  
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whereas the characteristic function is 
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 The moments can be obtained from the characteristic function to be 
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 If the random variable is zero mean, the characteristic function is 
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Therefore, the moments are 
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Example 2.5 
 
Suppose that Y has the distribution N (m, σ2). We want to find the value of λ, such 
that P(Y > λ) = α, where α and λ are constants. 
 
Solution 
 
The probability of Y greater than λ is 
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We need to make a change of variables to obtain the standard normal.  Let 
σ−= 2)( myx ; then, dxdy σ= 2 , and the integral becomes 
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thus, [ ] .2)(erfc)2/1( σ−λ=α m  Or, letting ,)( dydxmyx σ=⇒σ−=  we 
obtain 
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We now give a numerical example to be able to use the tabulated Q-function or 
error function.  Suppose that m = 3, σ2 = 4, and λ = 4.  Then, 
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where X is the standard normal, and ( ) ( ) 6915.02/12/1 ==≤ IXP  is read directly 
from the table in the Appendix. We could have used the result found for α by just 
substituting the numerical values and using the error function defined in (2.63). 

If Y has a normal distribution with mean m and variance σ2, the probability for 
Y between a and b is  

     ( ) 


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=
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where X is the tabulated standard normal distribution defined in (2.64). Using the 
definition of the error function, P(a ≤ Y ≤ b) given in (2.81) becomes 
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For the numerical example above, where Y = N (3, 4), 
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In Chapter 1, we defined the law of large numbers. We now give the central 
limit theorem without proof, which essentially says that the sum of n independent 
random variables having the same density function approaches the normal density 
function as n increases. 
 
The Central Limit Theorem 
 
Let KK ,,,, 21 kXXX  be a sequence of independent and identically distributed 

.)d.i.(i  random variables; that is, the corresponding density functions, 
( )xf

kX , K,2,1=k , are the same. Let nn XXXS +++= K21 , the sum of n 

random variables, with a finite mean nmmmm +++= K21 , and variance 
22

2
2
1

2
nσ++σ+σ=σ K , where mk = E [Xk] and [ ]kk Xvar2 =σ , k = 1, 2, … , n. 

The density function of Sn, given by ( ) ( ) ( ) ( )xfxfxfxf
nn XXXS ∗∗∗= K

21
, 

approaches a normal distribution as n increases; that is, 

( ) ( )












σ

−
−

σπ
→

2

2

2 2
exp

2
1 mx

xf
nS          (2.82) 

If the sum Sn is normalized, such that ( ) ,1 σ−= ∑ =
n
k kkn mXS  then the 

distribution Sn approaches the standard normal distribution; that is, 

    ( ) 2

2

2
1

x

S exf
n

−

π
→            (2.83) 

In particular, if the means and the variances are equal, mmmm n ==== K21  

and 222
2

2
1 σ=σ==σ=σ nK , then Sn is N ( 0 , 1 ), and 
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
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
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n

n

K21limlim  

due
b

a

u

∫
−

π
→ 2

2

2
1            (2.84) 

This theorem is valid for all distributions, but we shall only discuss the binomial 
and Poisson distributions. For the binomial distribution, if the number of Bernoulli 
trials n is large, then the random variable U given by 
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npq

pnX
U

−
=            (2.85) 

where p is the probability of success, approaches the normal distribution; that is, 

dueb
qpn
pnU

aP
b

a

u
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∞→ π
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




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
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−
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2

2
1lim          (2.86) 

Similarly, since the Poisson distribution has mean λ and variance λ, and we 
showed in Section 2.2.4 that the parameter λ in the Poisson distribution is related 
to np in the binomial distribution (λ = np ), then 

duebXUaP
b

a

u

∫
−

∞→λ π
=








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


≤

λ

λ−
=≤ 2

2

2
1lim          (2.87) 

Although the normal distribution is the most important distribution, there are many 
applications in which the normal distribution would not be appropriate. We present 
the different distributions of interest. 
 
2.3.3 The Exponential and Laplace Distributions 
 
A random variable X has an exponential distribution with parameter β, β > 0, if its 
density function is given by 

 ( )
( )









∞+<<∞−≥

β=

−
β

−

otherwise,0

,,1
1

aaxe
xf

ax

X          (2.88) 

If we set a = 0 and β=α /1 , then fX (x), shown in Figure 2.5, becomes 

( )




 ≥α

=
α−

otherwise,0

0, xe
xf

x

X           (2.89) 

The mean and variance of X are  

                  E [X] = β =
α
1              (2.90) 
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Figure 2.5  Exponential density function. 

and  

              var [X] =
2

2 1
α

=β            (2.91) 

The moment generating function and characteristic function are 

  ( ) 1,
1

1 −β<
β−

=
−α
α

= t
tt

tM x           (2.92) 

and 

  ( )
ωβ−

=







α
ω

−=ω
−

j
j

x 1
11Φ

1

          (2.93) 

The Laplace density function is defined to be  

( ) ∞<<∞−>λ∞<<∞−










λ

−
−

λ
= mx

mx
xf X and,0,exp

2
1     (2.94) 

If we set the mean m = 0 and λ=α /1 , then the density function becomes 

( ) x
X exf α−α

=
2

           (2.95) 

and it is shown in Figure 2.6. The moment generating function and the 
characteristic function of the Laplace distribution defined in (2.94) are 
 

  fX (x) 

 x 

α 
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Figure 2.6  Laplace density function. 

       ( )
λ

<
λ−

=
1,

1 22
t

t
etM

tm

x           (2.96) 

and  

        ( )
221

Φ
ωλ+

=ω
ω− mj

x
e            (2.97) 

2.3.4 The Gamma and Beta Distributions 
 
In this section, we first describe the gamma function before we introduce the 
gamma and beta distributions. The gamma function, denoted by Γ, is defined as 

( ) ∫
∞

−−α >α=
0

1 0,Γ dxexx x           (2.98) 

The above improper integral converges for α > 0. Integrating by parts, using 
1−α=  xu  and , dxedv x−=  we obtain 

   ( ) ( ) ( ) ( )1Γ11Γ
0

2 −α−α=−α=α ∫
∞

−α− dxxe x          (2.99) 

Continuing in this manner and letting α be some positive integer, α = n, we obtain 

( ) ( ) ( ) ( ) ( )!11Γ21Γ −=−−= nnnn K         (2.100) 

 0 

fX (x) 

 x 

2
α  
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FX (x) 

x 
 

 α = 4 α = 2  α =1 

where ( ) .11Γ
0

== ∫
∞ − dxe x  Another important result about the gamma function is 

π==





 −

∞ −

∫ dxex x

0

2
1

2
1Γ         (2.101) 

Now, we are ready to define the Gamma distribution. A random variable X is 
said to have a Gamma distribution, or to be gamma distributed, as shown in Figure 
2.7, if its density function is given by 

( ) ( )









>

βα=
β

−
−α

α

otherwise,0

0,
Γ

1 1 xex
xf

x

X        (2.102) 

It is also denoted X ∼ G(α, β). The mean and variance are, respectively 

               E[X] = m = αβ          (2.103) 

and 

             var[X] = σ2 = αβ2         (2.104) 

while the moment generating function and characteristic function are 

  ( )
( )αβ−

=
t

tM x
1

1          (2.105) 

 

 
 
 
 
 
 
 
 
 
Figure 2.7  Gamma density function. 
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and 

           ( )
( )αβω−

=ω
j

x
1

1Φ          (2.106) 

Before defining the beta distribution, we define the beta function B(α, β), and 
give its relationship to the gamma function. The beta function is defined to be 

( ) ( ) 0and0,1,
1

0

11 >β>α−=βα ∫ −β−α duuuB  

  ( )∫
−β−α −=

1

0

1212 12 duuu          (2.107) 

The beta function is related to the gamma function by the following 

 ( ) ( ) ( )
( ) ( )αβ=

β+α
βα

=βα ,
Γ

ΓΓ
, BB         (2.108) 

The beta density function, shown in Figure 2.8, with parameters α and β, is 
defined to be 

( ) ( ) ( )








 >β>α<<−
βα=

−β−α

otherwise,0

0and0,10,1
,

1 11 xxx
Bxf X       (2.109) 

we write X ∼ B(α, β).  Using (2.108), the beta density function can be written as 

 
 
 
 
 
 
 
 
 
 

Figure 2.8  Beta density function; α = β = 2 and .)1(6)( xxxf X −=  

x 

 fX (x) 

0.5  1  0 

 1.5 
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    ( )
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=
−β−α

otherwise,0
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Γ 11 xxx
xf X     (2.110) 

Note that for the special case where α = β = 1, we obtain the uniform distribution 
for 0 < x < 1. The mean and variance of the beta distribution for α > 1 and β > 1 
are given by 

[ ]
β+α

α
=XE          (2.111) 

and 

[ ]
( ) ( )1

var
2 +β+αβ+α

αβ
=X         (2.112) 

whereas the moment generating function and characteristic function are given by  

( ) ( ) ( )∫ −β−α −
βα
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1
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11 1
,

1 dxxxe
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               (2.113) 

and 
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Φ
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x         (2.114) 

2.3.5 The Chi-Square Distribution 
 
The chi-square distribution is an important distribution function. It may be 
considered as a special case of the gamma distribution with α = n/2 and β = 2, 
where n is a positive integer. We say that a random variable X has a chi-square 
distribution with n degrees of freedom, denoted 2

nχ , if its density function is given 
by 

( ) ( )
( )






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 >
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−−

otherwise,0

0,
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1 2/12/
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It should be noted that the chi-square distribution, 2
nχ , represents the distribution 

of the random variable X, where 

    22
2

2
1 nXXXX +++= K          (2.116) 

and Xi , i = 1, 2, … , n, is the standard normal random variable N (0, 1) defined in 
(2.67); that is, mean zero and variance equal to one. The Xis are i. i. d. 
(independent and identically distributed). The mean and variance of the chi-square 
distribution are 

     [ ] [ ] nEXE n =χ= 2          (2.117) 

and 

 [ ] [ ] nX n 2varvar 2 =χ=         (2.118) 

The moment generating function and characteristic function are given by 

( )
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1
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−
= t

t
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nx         (2.119) 

and 

( )
( ) 2/21

1Φ
nx

j ω−
=ω         (2.120) 

If we suppose that the Xis are still zero mean but the variances are not normalized 

to one but equal to σ2; that is, [ ] 22 σ=iXE , i = 1, 2, … , n, then the density 

function of X is 

  ( ) ( )
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−

otherwise,0
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nxf

x
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nn
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whereas the characteristic function becomes 
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( )
( ) 2/221

1Φ
nx

j ωσ−
=ω         (2.122) 

The mean and variance are 

   [ ] 2σ= nXE          (2.123) 

and 

[ ] 42var σ= nX          (2.124) 

Thus, the second moment is .2][ 4242 σ+σ= nnXE  The distribution function is 
the integral of (2.121), yielding 
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( ) dueu
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Using the fact that 
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and m = n/2 an integer, we obtain the distribution function of X to be 

( ) 0,
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


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If we further assume that the Xis, ni ,,2,1 K= , in (2.116) are still 
independent normal variables but with mean E [Xi] = mi and variance σ2 = var [Xi], 

ni ,,2,1 K= , then, 

22
2

2
1 nXXXX +++= K         (2.128) 

is said to be a noncentral chi-square random variable with n degrees of freedom. 
The density function of X is given by 
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where λ, called the noncentrality parameter, is given by  

∑
=

=λ
n

i
im

1

2          (2.130) 

and ( )xIα  is the modified Bessel function of the first kind of order α 
[ 1)2/( −=α n  is not an integer], and may be written as 

 ( ) ( ) 0,
21Γ!

1 2
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The mean and variance of X are  

      E[X] =   nσ2 + λ          (2.132) 

and 

 var[X] = 2nσ4 + 4σ2 λ         (2.133) 

The moment generating function and characteristic function can be shown to be 

( )
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1
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and 
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j
nx        (2.135) 

The distribution function of the noncentral chi-square random variable with n 
degrees of freedom variable does not have a closed form expression. However, we 
shall study it in order to introduce the Q-function, which will be used later in the 
book. We have  
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If 2/nm =  is an integer, then 
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The generalized Marcum’s Q-function is defined as 
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Using the fact that  
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then the distribution function can be written as 

        ( )
( )

du
u

IeuxF m

um

x
X 














σ

λ







λσ

−= −
σ

λ+
−

−
∞

∫ 21
22

1

2

2

2
11        (2.140) 

Making the change of variables 22 / σ= uv  and 22 / σλ=a , then dudvv =σ 22 , 
and the distribution function becomes 
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Comparing (2.141) and (2.138), the distribution function is then given in terms of 
the Marcum’s Q-function to be 

                   ( ) 










σσ
λ

−=
xQxF mX ,1         (2.142) 



Signal Detection and Estimation 

 

106 

The noncentral chi-square random variable defined in (2.129) is sometimes called 
the noncentral gamma, while the normalized noncentral chi-square random 
variable )1( 2 =σ  is referred to as the noncentral chi-square. For us, we shall call 
it, as most authors do, the noncentral chi-square random variable. The density 
function of the normalized noncentral chi-square random variable is obtained 
directly from (2.129) to be 

              ( )
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( ) 0,
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24
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≥λ
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xxΙexxf n
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where 22
2

2
1 nXXXX +++= K , and the Xis, i = 1, 2, …, n, are independent 

normal random variables with mean E[Xi] = mi but have unit variance. The 
noncentrality parameter λ is as defined in (2.130). Note also that the chi-square 
random variable given by (2.115) is just the gamma random variable given by 
(2.102) with 0,2/ >=α nn  integer, and 2=β . This leads some authors to refer 
to the normalized noncentral chi-square random variable as the noncentral gamma 
random variable. 
 
2.3.6 The Rayleigh, Rice, and Maxwell Distributions 
 
The Rayleigh distribution, which is frequently used to model the statistics of 
signals, finds its application in many radar and communication problems.  Let 

2
2

2
1 XXX += , where X1 and X2 are statistically independent Gaussian random 

variables with mean zero and each having variance σ2.  Then, from (2.116), X has 
a chi-square distribution with n = 2 degrees of freedom.  Substituting n = 2 in 
(2.121), we obtain the probability density function of X to be 
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Now, define a new random variable 

                      2
2

2
1 XXXY +==          (2.145) 

This is a simple transformation of random variables with ( ) .XXgY ==  
Applying the fundamental theorem given in (1.144), we obtain 
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Y is said to have a Rayleigh distribution, as shown in Figure 2.9(a). The 
distribution function, as shown in Figure 2.9(b), is given by 
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It can be shown that the moment of order k of the Rayleigh distribution is given by 
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Thus, the mean and variance of Y are given by 
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since ( ) 2/2/3Γ π=  and 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 2.9  Rayleigh (a) density function and (b) distribution function. 

σ
602.0 

x 
σ 

fX (x) 

(a) 
σ 

1 

0.5 
0.393 

FX (x) 

(b) 

x 



Signal Detection and Estimation 

 

108 

                      [ ] 22

2
2var σ






 π

−=σ= yY         (2.150) 

The characteristic function is shown to be 
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where 1F1(a; b; x) is the confluent hypergeometric function, which is defined to be 

      ( ) ( ) ( )
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and 

            ( ) !12
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2
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0
11 kk

aeaF
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−
=






 − ∑

∞
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−         (2.153) 

Example 2.6 
 
Using the distribution function FX (x) = P(X ≤ x), determine the density function of 

(a) 2
2

2
1 XXX +=  

(b) 2
2

2
1 XXX +=  

where X1 and X2 are identical and independent normal density functions with mean 
zero and variance σ2. 
 
Solution 
 
(a)  The distribution function of X is  

( ) ( ) ( ) 0,, 212121
≥=≤= ∫∫ xdxdxxxfxXPxF

D
XXX  
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Figure 2.10  Region of .0,2

2
2
1 ≥≤+ xxXX  

where D is the domain with a definition of X1 and X2, which in this case is the 
surface in the circle of radius x , as shown in Figure 2.10. Hence,  

( ) ( )∫∫ 



 +−

πσ
=

D
X dxdxxxxF 21

2
2

2
12 2

1exp
2

1  

To solve the above integral, we make the transformation to polar coordinates by 
letting x1 = r cos θ and x2 = r sin θ such that dx1 dx2 = r dr dθ and .2

2
2
1

2 xxr +=  
Thus, 

( ) ∫∫ σ
−π

θ
πσ

=
x r

X drredxF
0

2
2

0
2

2

2
1 0,1 22 ≥−= σ

−
xe

x

 

The density function is 

( ) ( )









≥

σ==
σ

−

otherwise,0

0,
2

1 22
2

xe
dx

xdF
xf

x

X
X  

which corresponds to the chi-square distribution with n = 2 degrees of freedom, as 
given in (2.144). 

(b)  If 2
2

2
1 XXX += , then 

( ) ( )22
2

2
1

2
2

2
1 xXXPxXXPxFX ≤+=





 ≤+=  

x
x1 

x2 
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Figure 2.11  Region of .0,2
2

2
1 >≤+ xxXX  

The region of integration is the surface bounded by the circle as shown in Figure 
2.11, but the radius is x, and not x  as in Figure 2.10. Again making the 
transformation from Cartesian coordinates to polar coordinates, the distribution 
function FX (x) becomes 

( ) ∫∫ σ
−π

θ
πσ

=
x r

X drredxF
0

2
2

0
2

2

2
1 0,1 2

2

2 ≥−= σ
−

xe
x

 

while the density function is 

( )








≥

σ=
σ

−

otherwise,0

0,2

2

2
2

xex
xf

x

X  

which corresponds to the Rayleigh density function given in (2.146).  Recall that 
(2.146) was obtained using the fundamental theorem of transformation of random 
variables. 
 
Example 2.7 
 
Let X be a Rayleigh random variable with density function 

( )








≥

σ=
σ

−

otherwise,0

0,2

2

2
2

xex
xf

x

X  

x1 

x2 

x 
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Define ,2bXaY +=  where a and b are constants. Determine the variance of Y. 
 
Solution 
 

The variance of Y is [ ] [ ] [ ]YEYEY y
222var +=σ= . Hence, [ ] [ ]2bXaEYE +=  

][ 2XEba += , [ ] [ ]( )222 XEbaYE += [ ] [ ] ,2 22222 XEbXabEa ++=  and 

[ ] ( ) 



 +=

222 XbaEYE [ ] [ ] .2 4222 XEbXabEa ++=  Substituting for the 

expressions of [ ]2YE  and [ ]YE 2  in 2
yσ , we obtain  

[ ] [ ]{ }22422 XEXEby +=σ  

We know from (2.148) that [ ] ( ) )]2/(1[Γ2 22 kXE
k

k +σ= . Then, 

[ ] ( ) ,822 4224 σ=σ=XE  [ ] ,2 22 σ=XE  and the variance of Y becomes  

( ) 424422 448 σ=σ−σ=σ bby  

We now consider 2
2

2
1 XXR +=  but X1 and X2 independent Gaussian 

random variables with means mi , i = 1, 2, and each having a variance σ2. Note that 
in the definition of (2.145), X1 and X2 were zero mean, which gave 

2
2

2
1 XXX +=  as a Rayleigh distributed random variable, but now X1 and X2 

have means mi ≠ 0, i = 1, 2.  Hence, from (2.128), the distribution of 
2
2

2
1

2 XXR +=  is the noncentral chi-square random variable given in (2.129), 

with two (n = 2) degrees of freedom and noncentrality parameter 2
2

2
1 mm +=λ .  

The distribution function of TXXR =+= 2
2

2
1

2  is then 

                        ( )
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
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otherwise,0
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1
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2
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2
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t
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where, I0(x) is the zero-order modified Bessel function given by 

( )
( )∑∫

∞

=

π
θ =θ

π
=

0
22

22

0

cos
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!22
1

n
n

n
x

n
xdexI         (2.155) 

Since 2
2

2
1 XXTR +== , using the fundamental theorem (1.144) for the 

transformation of random variables, we obtain the Rice density function to be 

( )
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
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0,
20
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2

r
r

Ier
rf

r

R        (2.156) 

The Rician distribution with λ as a parameter is shown in Figure 2.12. The 
distribution function is known to be 

                                  ( )


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
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
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
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


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=
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0,,1 1 r
r

Q
rFR         (2.157) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12  Rice density function. 
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where Q1(a, b) is Marcum’s Q-function defined in (2.138), such that 

( )
( )

( ) 0,,
0

2
1

22

>>





= ∑

∞

=

+
−

ababI
b
aebaQ k

k

k

ba

       (2.158) 

Another special case is when n = 3. Then, 2
3

2
2

2
1 XXXX ++= , with X1, X2, 

and X3 Gaussian random variables, each with mean zero and variance σ2, is a chi-
square distribution with three degrees of freedom. The distribution of 

2
3

2
2

2
1 XXXY ++=  is known as the Maxwell’s distribution. It is shown in 

Figure 2.13, and is given by 

                  ( )
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πσ=
σ
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otherwise,0

0,21 2
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with mean  

        [ ]
π

σ==
22ymYE          (2.160) 

and variance  

                    [ ] 







π
−σ=σ=

83var 22
yY         (2.161) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13  Maxwell density function. 
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If we generalize the result in (2.159) to n random variables, then 
22

2
2
1 nXXXX +++= K , with Xi, i = 1, 2, … , n, statistically independent 

Gaussian random variables with means mi, i = 1, 2, … , n, and each having 
variance σ2, has the density function given by 
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In general, if 22
2

2
1 nXXXXY +++== K , then the density function is 

given by 
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and 22
2

2
1 nmmm +++=λ L , while the distribution function is given by 
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The moment of order k can be obtained to be  
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where ( )xF ;;11 βα  is the confluent hypergeometric function. 
 
2.3.7 The Nakagami m-Distribution 
 
The Nakagami m-distribution is used in communication systems to characterize 
the statistics of signals transmitted through multipath fading channels.  The density 
function is given by 

              ( ) ( )
v
xm

m
m

X ex
v
m

m
xf

2

12

Γ
2 −−






=         (2.166) 

where v is the mean-square value of X, defined as 

                     [ ]2XEv =          (2.167) 

and the parameter m is defined as 

                  
( )[ ] 2

1,
2

2
≥

−
= m

vXE

vm         (2.168) 

Notice that the parameter m is a ratio of moments and is referred to as a fading 
figure in communication systems. The moment of order k of X is given by 

                    [ ] ( )
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 +

=         (2.169) 

Observe that for m = 1, we obtain the Rayleigh density function given in (2.146).  
A plot of fX (x) with m as a parameter is shown in Figure 2.14. 

2.3.8 The Student’s t- and F-Distributions 
 
Let X be a Gaussian random variable with mean zero and variance unity X ∼ 
N )1,0( , and let Y be a chi-square random variable with n degrees of freedom Y 

∼ 2
nχ .  If X and Y are statistically independent, then 

                       
nY

XT
/

=          (2.170) 
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Figure 2.14  Nakagami m-density function. 

is said to have a t-distribution (or student’s t-distribution) with n degrees of 
freedom as shown in Figure 2.15, and is given by 

               ( )
( )

∞<<∞−









+

π







 +

=

+
−

t
n
t

nn

n

tf

n

T ,1
2/Γ

2
1Γ

2
1

2
       (2.171) 

The mean and variance of the t-distribution are  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
Figure 2.15  Student’s t-density function. 
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                  0][ == tmTE          (2.172) 

and  

            [ ]
2

var 2

−
=σ=

n
nT t      for n > 2       (2.173) 

The moment of order k is given by 
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The characteristic function can be shown to be 
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where Yn(x) [also denoted Nn(x)] is the Bessel function of the second kind. 
Assume now X does not have zero mean but equals to m [that is, X ∼ 

N ),( 2σm ], and Y is normalized so that 2/ σY  is the chi-square distribution with n 
degrees of freedom. Then T defined in (2.170) has a noncentral t-distribution with 
parameter (also called noncentrality parameter) σ=λ /m  and n degrees of 
freedom. The density function of the “normalized” noncentral t-distribution is 
given by  
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The mean and variance of T are given by 
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and 
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Let X and Y be two independent chi-square random variables with n1 and n2 
degrees of freedom, respectively.  Define U to be  

                
2

1
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U =           (2.179) 

Then, U is said to have an F-distribution, F (n1 , n2 ), with density function 
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The mean and variance of U are 
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while the moment of order k is given by 
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The characteristic function is given by 
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where M(a, b, x) is the Kummer’s confluent hypergeometric function given by 
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and 

                           ( ) ( ) ( ) ( )121 −+++= naaaaa n K                      (2.186) 

       ( ) 10 =a          (2.187) 

Let X be a normalized noncentral chi-square random variable with 
noncentrality parameter ∑ = σ=λ n

i im1
22 / and n1 degrees of freedom [i.e., 

,/1
2∑ = σ= n

i iXX  Xi ∼ N(mi , σ2), i = 1, 2, … , n], and Y a chi-square random 
variable with n2 degrees of freedom. Then, the random variable 
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is said to have a noncentral F-distribution with (n1, n2) degrees of freedom and a 
noncentrality parameter λ . The density function of the noncentral F-distribution 
defined in (2.188) can be shown to be 
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               (2.189) 

Note that if the noncentrality parameter is zero ( )0=λ  in (2.189), we obtain the 
central F-distribution F(n1, n2) defined in (2.180). The mean and variance of the 
noncentral F-distribution can be shown to be 
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and 

[ ]
( ) ( )

( ) ( ) ( ) 4,22
24

2
var 212

2
12

22
2
1

2
2 >



 λ+−+λ+

−−
= nnnn

nnn

n
Z  

               (2.191) 

2.3.9 The Cauchy Distribution 
 
A random variable X is said to have a Cauchy distribution with parameter α, 

∞≤α≤−∞ , and β, 0>β , if its probability density function is given by 
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It is denoted ),( βαC .  It can be shown that the mean of the Cauchy distribution 
with parameters β = 1 and α = 0 is zero, but the variance and moments of higher 
order do not exist.  The moment generating function does not exist, but the 
characteristic function can be shown to be 

         ( ) ωβ−αω=ω j
x eΦ          (2.193) 

Note that if α = 0 and β = 1, then the density function becomes 
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21

11
x

xf X
+π

=          (2.194) 

which is the student’s t-distribution defined in (2.171) with n = 1 degree of 
freedom. The sum of Cauchy random variables is Cauchy; that is, if 

nXXXX +++= L21  where Xk, k = 1, 2, …, n, is Cauchy with parameters αk 
and βk, k = 1, 2, … , n, then X is Cauchy with parameters α and β, such that 

nα++α+α=α K21 and nβ++β+β=β K21 . 
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2.4 SOME SPECIAL DISTRIBUTIONS 
 
2.4.1 The Bivariate and Multivariate Gaussian Distributions 
 
Because of the importance of the Gaussian distribution and its many applications, 
we extend the concepts developed earlier to the two-dimensional and n-
dimensional Gaussian distribution. Let X1 and X2 be two jointly Gaussian random 
variables with means E[X1] = m1 and E[X2] = m2, and variances 2

1σ  and 2
2σ . The 

bivariate Gaussian density function is defined as 

  ( )
2
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21
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ρ−σσπ
=xxf XX  
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 (2.195) 

where ρ is the correlation coefficient between X1 and X2.  The conditional 
probability density function ( )1212

xxf XX  is given by 
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where 
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               (2.197) 

The integrand in (2.197) is a Gaussian density function, with mean 
( ) ( )11122 / mxm −σσρ+=α  and variance ( )22

2 1 ρ−σ .  We observe from 
(2.196) that the conditional density function ( )1212

xxf XX  is also Gaussian, with 

mean α and variance ( )22
2 1 ρ−σ .  The conditional expectation of X2 given X1 = x1 

is 
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[ ] ( )11
1

2
2112 mxmxXXE −

σ
σ

ρ+=α==         (2.198) 

and 

 [ ] ( )22
2112 1var ρ−σ== xXX         (2.199) 

 In a similar manner, we can show that 
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is Gaussian, with mean ( ) ( )22211 / mxm −σσρ+=β  and variance ( )22
1 1 ρ−σ , 

and the conditional expectation of X1 given X2 = x2 is 

     [ ] ( )22
2

1
1221 mxmxXXE −

σ
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and 

     [ ] ( )22
1221 1var ρ−σ== xXX         (2.202) 

It follows that 
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2
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For the special case in which the means m1 = m2 = 0, we obtain 
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 The moment generating function and characteristic function of X1 and X2 are 
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and 
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The moments are obtained from the characteristic function to be  

   [ ] ( ) ( ) 021
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21 2121
,Φ =ω=ω

+ ωω
ω∂

∂
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∂
−= xxm
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mnmn jXXE        (2.207) 

Sometimes, it is easier to represent the joint density function and characteristic 
function in matrix form, especially when the number of random variables is greater 
than two.  Let C = C[X1, X2] denote the covariance matrix of the two random 
variables X1 and X2, 


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
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where ,σ  2
111 =c  211221 σρ σ cc == , and 2

222 σ  =c .  The correlation coefficient is 
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c
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The determinant of the covariance matrix C is 

( )22
2

2
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Consequently, 
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 Let ,][ 21
Txx=x  ,][ 21

Tωω=ω  and the mean vector ;][ 21
Tmm=m  

then the bivariate density function is 
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where T denotes matrix transpose. The characteristic function becomes 

  ( ) ( )



 +−=ωω ωωω TT

xx j mC
2
1exp,Φ 2121

 









ω+ωω−= ∑ ∑ ∑

= = =

2

1

2

1

2

12
1exp

k k
kkkk mjC

l
ll        (2.213) 

 When the correlation coefficient ρ = 0, the joint density function becomes 
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Since the joint density function is the product of the marginal density functions, 
then X1 and X2 are statistically independent.  This is an important characteristic of 
Gaussian random variables where uncorrelated random variables are necessarily 
independent. The characteristic function reduces to 
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that is, the joint characteristic function equals the product of the marginal 
characteristic functions when the random variables X1 and X2 are uncorrelated. 
 
The Standard Ellipse 
 
The standard ellipse of the bivariate Gaussian density function is obtained from 
(2.195) by setting the term between brackets in the exponent equal to 1, to yield 

( ) ( ) ( ) ( )
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Equation (2.216) represents the equation of an ellipse centered at x1 = m1 and x2 = 
m2. For simplicity, let m1 = m2 = 0. The ellipse is easily represented by assuming 
two  independent  random  variables  U  and  V  with  zero  mean,   and   respective 
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Figure 2.16  Ellipse centered at m1 = m2 = 0. 

variances 2
uσ  and 2

vσ . The standard ellipse, shown in Figure 2.16, is given by 
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The joint density function of U and V is 
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Applying a rotation by an angle θ to the uv-axes yields the coordinate system x1, x2 
given by 

       θsinθcos1 v u x −=          (2.219) 

       θcosθsin2 v u x +=          (2.220) 

The random variables X1 and X2 are obtained by the transformation of (2.219) and 
(2.220). Specifically, 

       θsinθcos1 V U X −=         (2.221) 

       θcosθsin2 V U X +=         (2.222) 
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u 
v 

uσ

uσ− 
vσ

vσ− 
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where 

[ ] [ ]θ+θθ−θ==σ 22222
1

2
1 sinsincos2cos VVUUEXE  

 [ ] [ ] θ+θ= 2222 sincos VEUE  

 θσ+θσ= 2222 sincos vu           (2.223) 

since E[U] = E[V] = E[X1] = E[X2] = 0. Note that θ is the angle at the major axis of 
the ellipse. Similarly, we can obtain 

θσ+θσ=σ 22222
2 cossin vu         (2.224) 

and the covariance between X1 and X2 to be 

[ ] ( ) ( )[ ]θcosθsinθsinθcos21 VUVUEXXE +−=  
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vu          (2.225) 

 The distributions of U and V are derived in a similar manner. Given the 
distributions of X1 and X2, we obtain 
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or 

2
2

2
1

212arctan
2
1

σ−σ

σσ
ρ=θ         (2.229) 

The above results can easily be generalized to n random variables. Let (X1, X2, …, 
Xn) be n jointly Gaussian random variables.  We define the means as 
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     E[Xk] = mk ,  k = 1, 2, …, n         (2.230) 

the covariances as 

     cjk = E[(Xj – mj) (Xk – Mk)],   j, k = 1, 2, …, n        (2.231) 

and the correlation coefficients as 

kkjj
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c
=ρ          (2.232) 

The variance of Xk is  

       [ ] 2var kkkk cX σ==          (2.233) 

Let the vectors X, x, and m be defined as 
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and the covariance matrix C as 
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The multivariate Gaussian density function is given by 
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The characteristic function corresponding to this n-dimensional joint density 
function is 
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If the correlation coefficient 0=ρ jk ,  j, k = 1, 2, …, n, then the covariance matrix 
becomes diagonal to yield 
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Note that the covariance matrix being diagonal is a necessary and sufficient 
condition for the random variables Xk, k = 1, 2, …, n, to be statistically 
independent. This will be shown later in detail. The inverse covariance matrix 

1−C  is also diagonal, and is given by 
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The joint probability density function becomes the product of the marginal density 
functions to yield 
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The joint characteristic function reduces to 
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Using the characteristic function, a closed form expression for the joint 
moments can be obtained.  Let X1, X2, … , X2n+1 be (2n + 1) zero-mean jointly 
Gaussian random variables.  Then, 
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where the summation is taken over all distinct pairs obtained by using each factor 
once. The number of ways to have such pairs is 
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 One of the most frequently used joint moments is the joint moment of order 
four (2n = 4). In this case, n = 2 and the number of ways to have the distinct pairs 
as defined in (2.243) is three. Hence, 

      [ ]4321 XXXXE  

      [ ] [ ] [ ] [ ] [ ] [ ]423141324321 XXEXXEXXEXXEXXEXXE ++=    (2.244) 

 In modern high resolution adaptive thresholding radar CFAR, the clutter (sea 
clutter, weather clutter, or land clutter) returns may not follow the Gaussian or 
Rayleigh model, since the amplitude distribution develops a “larger” tail, that may 
increase the false alarm rate.  Some distributions that occur in radar applications 
and may give a better model in representing the clutter are the Weibull, log-
normal, and K-distributions. 
 
2.4.2 The Weibull Distribution 
 
A random variable X is said to have a Weibull distribution, as shown in Figure 
2.17, if its probability density function is given by 
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Figure 2.17  Weibull density function. 

where a is referred to as the scale parameter and b is the shape parameter. Note 
that for b = 1, we obtain ( ) ax

X eaxf −= , x > 0, and a > 0, which is the exponential 
distribution given in (2.89).  When b = 2, the Weibull density function becomes 
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which is the Rayleigh density function defined in (2.146) with .2/1 2σ=a  The 
distribution function of the Weibull random variable X is then 
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The mean and variance of X are given by 
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while the moment of order k is 
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Many authors write the Weibull density function in the form 
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where in this case, b is the scale parameter and c is the shape parameter. Note that 
(2.251) is equivalent to (2.245) with ./1 cba =  When ,ln ZX =  the density 
function of fX (x) is said to have a log-Weibull distribution for the variable Z. 
 
2.4.3 The Log-Normal Distribution 
 
A random variable X is said to have a log-normal distribution if its density 
function is given by 
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where xm is the median of X and σ2 is the variance of the generating normal 
distribution.  A parameter commonly used to characterize the log-normal 
distribution is the mean-to-median ratio ρ given by 

         [ ]
mX
XE

=ρ          (2.253) 

Alternatively, the density function of the log-normal random variable X can be 
written as 
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The cumulative distribution function of X is 
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The mean and the variance of X are 
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while the moment of order k is 
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2.4.4 The K-Distribution 
 
The K-distribution has arisen mainly to represent radar sea clutter. A random 
variable X with probability density function 
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is said to have a K-distribution. Kν (x) is the modified Bessel function, b is the 
scale parameter, and ν is the shape parameter. It is known from radar detection 
that the K-distribution results from a function of two random variables given by 

          X = S T         (2.261) 
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where S, known as speckle, obeys a Rayleigh distribution given by 
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and T, known as texture, is a gamma distribution given by 
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The total probability density function fX (x) is also known in terms of conditional 
probabilities to be 
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where 

  ( ) 2

2

2
2 t

x

TX e
t

x
txf

−
=          (2.265) 

Substituting (2.265) and (2.263) into (2.264) and solving the integral, we obtain 
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The moment of order k is given by 
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From (2.261), it was shown by Anastassopoulos et al. [1] that when the 
distribution of the speckle S is a generalized gamma and the texture T is also a 
generalized gamma, the resulting distribution is referred to as the generalized K-
distribution, and is given by 
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where b is the scale parameter and Kν (x) is the modified Bessel function. The 
moment of order k is given by 
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It should be noted that when a = 2 and ν1 = 1 in (2.268), we obtain the  K-density 
function  given  in  (2.260).   Also,  if  we let ν1 = 1 and ν2 = 1/2, the generalized 
K-density function becomes 
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Using the fact that 
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and  
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we obtain the Weibull density function to be  
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with .2 /2 ab −=ρ  The moment of order k is 
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If again we set a = 2 in the Weibull density function given by (2.273), then we 
obtain the exponential distribution to be 
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and when we set a = 4 [in (2.273)], we obtain the Rayleigh density function to be 
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2.4.5 The Generalized Compound Distribution 
 
As the K-distribution, which is a compound distribution, the generalized 
compound distribution is used to represent radar clutter in more severe situations 
when the distortion of the speckle, usually represented by a Rayleigh density 
function, has a longer tail. In this case, the distribution of the speckle is the 
generalized gamma distribution, and the conditional density function is given by 
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whereas the density function of the speckle is 
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Thus, the total probability density function of the generalized compound 
distribution is given by 

( ) ( ) ( )∫
∞

=
0

dssfsxfxf SSXX  

( ) ( ) ds
s
x

b
ss

b
xaa aa

aa
a

a

∫
∞

−ν−ν
ν

−ν


















−






−

νν
=

0

1
1

21

21
12

1122

22

11

exp
ΓΓ

        (2.279) 

which does not have a closed form.  The mean of order k is shown to be 
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2.5 SUMMARY 
 
In this chapter, we defined some distributions and gave the relationships that may 
exist between them. We started describing the simplest distributions for discrete 
random variables; namely, Bernoulli and binomial distributions. Then we extended 
the results to multinomial and hypergeometric distributions. The Poisson 
distribution, which arises in many applications, was also presented in some detail. 
 In the second part, we presented some important continuous distributions, and 
we showed the possible relationships that may exist between them. Many 
distributions were presented in order to give a more or less complete view of these 
different distributions. Then we gave some special distributions that arise in many 
applications of radar and communication systems. These distributions were 
presented in some detail, since we will discuss their applications in Chapters 11 
and 12. 
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PROBLEMS 
 
2.1 A pair of dice is rolled six times. A success is when the sum of the top 

appearing faces is seven. 
(a) What is the probability that seven will appear twice? 
(b) What is the probability that seven will not appear at all? 

 
2.2 An urn contains 10 white balls, 4 black balls, and 5 red balls. The experiment 

is to draw a ball and note its color without replacement. Find the probability 
of obtaining the fourth white ball in the seventh trial. 

 
2.3 In a special training, a parachutist is expected to land in a specified zone 90% 

of the time. Ten of them jumped to land in the zone. 
(a) Find the probability that at least six of them will land in the specified 

zone. 
(b) Find the probability that none lands in the specified zone. 
(c) The training is considered successful if the probability that at least 70% 

of them land in the prescribed zone is 0.93.  Is the training successful? 
 
2.4 A random variable X is Poisson distributed with parameter λ and 

( ) 2.00 ==XP .  Calculate P(X > 2). 
 
2.5 The incoming calls to a particular station have a Poisson distribution with an 

intensity of 12 per hour.  What is the probability that: 
(a) More than 15 calls will come in any given hour? 
(b) No calls will arrive in a 15-minute break? 

 
2.6 A random variable X is Poisson distributed with ( ) ( )12 3

2 === XPXP .  

Calculate ( )0=XP  and ( )3=XP . 
 
2.7 A random variable X has the following exponential distribution with 

parameter α, 

( )




 >α

=
α−

otherwise,0
0, xexf

x

X  

Show that X has the “lack of memory property.” That is, show that  

( ) ( )2121 xXPxXxxXP ≥=>+≥  

 for x1, x2 positive. 
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2.8 Solve Problem 2.5, assuming that X has an exponential distribution. 
 
2.9 A random variable X is Gaussian with zero mean and variance unity. What is 

the probability that 
(a) 1>X ? 
(b) 1>X ? 

 
2.10 A random variable X has the distribution N(0, 1).  Find the probability that 

.3>X  
 
2.11 Two fair dice are thrown 200 times.  Let X = 7, the sum of the upper faces, 

denote a success. 
(a) Determine the probability of having success at least 20% of the time. 
(b) Use the central limit theorem to evaluate (a). 

 
2.12 Let ,10021 XXXXS k +++++= KK  where each Xk, k = 1, 2, …, 100, is 

a Poisson distributed random variable with parameter λ = 0.032. 
(a) Determine the probability of S greater than 5. 
(b) Use the central limit theorem to evaluate (a). 

 
2.13 Let X be a normal random variable with mean E[X] = 1 and variance σ2 = 2.  

Using tables, evaluate 
(a) ( )2>XP  
(b) ( )2.26.1 ≤≤ XP  

 
2.14 Let X be a random variable uniformly distributed between 1 and 6.  

Determine and sketch the density function fY (y) of XY /1= . 
 
2.15 Let X be a random variable uniformly distributed between 0 and 1.  Find 

and sketch the density function of 
(a) 2XY =  
(b) XeZ =  

 
2.16 Let X and Y be two independent standard normal random variables.  Find 

the density function of 
(a) YXZ =  

(b) YXW =  
 
2.17 X1 and X2 are two normal random variables with joint density function 
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 Let the transformation be 2
2

2
11 XXY +=  and 212 / XXY = . Determine 

( )11
yfY  and ( )22

yfY . 
 
2.18 Using the distribution function, show the density function of student’s t-

distribution given in (2.171). 
 
2.19 Show that the characteristic function of the Cauchy distributed random 

variable of (2.192) with α = 0 is given by 

( ) βω−=ω exΦ  

2.20 For the Weibull distribution, show that the mean and variance are as given 
by (2.248) and (2.249), respectively. 
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Chapter 3 
 
 

Random Processes 
 
 
3.1 INTRODUCTION AND DEFINITIONS 
 
A random process may be viewed as a collection of random variables, with time t 
as a parameter running through all real numbers. In Chapter 1, we defined a 
random variable as a mapping of the elements of the sample space S into points of 
the real axis. For random processes, the sample space would map into a family of 
time functions. Formally, we say a random process X(t) is a mapping of the 
elements of the sample space into functions of time. Each element of the sample 
space is associated with a time function as shown in Figure 3.1.  

Associating a time function to each element of the sample space results in a 
family of time functions called the ensemble. Hence, the ensemble is the set of 
sample functions with the associated probabilities. Observe that we are denoting 
the random process by X(t), and not X(t, ξ), where the dependence on ξ is omitted. 
A sample function is denoted by x(t). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1  Mapping of sample space into sample functions. 
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Figure 3.2 Density function of Θ. 

Example 3.1 
 
Consider a random process X(t) = A cos(ωt + Θ), where Θ is a random variable 
uniformly distributed between 0 and 2π, as shown in Figure 3.2. That is,     





 ≤≤

π=θ
otherwise,0

2θ0,
2
1

)(Θ
   

π
f  

some sample functions of this random process are shown in Figure 3.3. 
This variation in the sample functions of this particular process is due to the 

phase only. Such a random process, for which future values are predicted from 
knowledge of past ones, is said to be predictable or deterministic. In fact, fixing 
the phase to some particular value, π/4, the sample function (corresponding to the 
particular element ξk of the sample space) becomes a deterministic time function; 
that is, )]4/(cos[)( π+ω= tAtxk . 

 
 
 
 
 

 
 
    
 
 
 
 

Figure 3.3  Some sample functions of X (t).   

π2
1 

π2  0 
 θ 

)(Θ θf 
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When the parameter t is fixed to some instant t0, the random process X(t) 
becomes the random variable X(t0), and x(t0) would be a sample value of the 
random variable. In general, we are interested in four types of random processes, 
according to the characteristic of time t and the random variable X(t) = X at time t. 
They are: 

 
1.  Continuous-state and continuous-time.  In this case, both X(t) and t have a 
continuum of values. X(t) is said to be a continuous random process, and is as 
shown in Figure 3.4. 
 
2.  Discrete-state and continuous-time.  X(t) assumes a discrete set of values while 
time t is continuous. Such a process is referred to as a discrete random process, 
and is as shown in Figure 3.5. 
 
3.  Continuous-state and discrete-time.  X(t) assumes a continuum of values while t 
assumes a discrete set of values. Such a process is called a continuous random 
sequence, and is as shown in Figure 3.6. 

 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 

Figure 3.4 A continuous random process. 

X(t) 

 t 

Figure 3.5    A discrete random process. 

X(t) 

t 

            +     +     +            +     +     +     +                          t     

X(t) 

Figure 3.6   A continuous random sequence. 
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4.  Discrete-state and discrete-time.  Both X(t) and time t assume a discrete set of 
values. Such a process is referred to as a discrete random sequence, and is as 
shown in Figure 3.7. 
 

Fixing the time t, the random process X(t) becomes a random variable. In this 
case, the techniques we use with random variables apply. Consequently, we may 
characterize a random process by the first-order distribution as 

[ ]xtXPtxFX ≤= )();( 0              (3.1) 

or by the first-order density function as 

);();( txF
dx
dtxf XX =              (3.2) 

for all possible values of t. The second-order distribution function is the joint 
distribution of the two random variables X(t1) and X(t2) for each t1 and t2. This 
results in 

[ ]22112121 )(and)(),;,( xt XxtXPttxxFX ≤≤=             (3.3) 

while the second-order density function is 

),;,(),;,( 2121
21

2

2121 ttxxF
xx

ttxxf XX ∂∂
∂

=              (3.4) 

Normally, a complete probabilistic description of an arbitrary random process 
requires the specification of distributions of all orders given by 

 

Figure 3.7  A discrete random sequence. 

 t 

X(t) 
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[ ]nn xtXxtXxtXP ≤≤≤ )(,,)()( 2211 K ,            (3.5) 

or given by the nth order density function: 
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K

KK

21

2121,...,, ),,,,(
21

 
           (3.6) 

Fortunately, we are usually interested in processes that may possess some 
regularity so that they can be described more simply, and knowledge of the first- 
and second-order density functions may be sufficient to generate higher-order 
density functions. 
 
 
3.2 EXPECTATIONS 
 
In many problems of interest, only the first- and second-order statistics may be 
necessary to characterize a random process. Given a real random process X(t), its 
mean value function is 

   [ ] ∫
+∞

∞−

== dxtxfxtXEtm Xx ),()()(              (3.7) 

The autocorrelation function is defined to be 

[ ] ∫ ∫
+∞

∞−

+∞

∞−

== 212121212121 ),;,()()(),(
21

dxdxttxxfxxtXtXEttR XXxx           (3.8) 

When the autocorrelation function Rxx (t1, t2) of the random process X(t) varies 
only with the time difference 21 tt − , and the mean mx is constant, X(t) is said to 
be stationary in the wide-sense, or wide-sense stationary. In this case, the 
autocorrelation function is written as a function of one argument .21 tt −=τ  If we 
let t2 = t and t1 = t+τ, then the autocorrelation function, in terms of τ only, is 

)(),( τ=τ+ xxxx RttR              (3.9) 

A random process X(t) is strictly stationary or stationary in the strict sense if 
its statistics are unchanged by a time shift in the time origin. Note that a stationary 
process in the strict sense is stationary in a wide-sense, but not the opposite. The 
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condition for wide-sense stationary is weaker than the condition for the second-
order stationary because, for wide-sense stationary processes, only the second-
order statistics, the autocorrelation function, is constrained. 
 
Example 3.2 
 
Is the random process given in Example 3.1 wide-sense stationary? 
 
Solution 
 
For a random process to be stationary in the wide-sense, it must satisfy two 
conditions; namely, E[X(t)] = constant and )(),( τ=τ+ xxxx RttR . To compute the 
mean of X(t), we use the concept that 

[ ] ∫
+∞

∞−
Θ θθθ=Θ dfggE )()()(  

where in this case, ( ) ( ) π21θ and  θ) ωcos(θ Θ =+= ftAg in the interval between 0 
and 2π. Then  

[ ] ∫
π

=θ
π

θ+ω=
2

0
0

2
1)cos()( dtAtXE  

The autocorrelation function is 

[ ] { }

[ ])22cos()cos(
2

)(cos])(cos[)(),(
2

θ+ωτ+ω+ωτ=

θ+ωθ+τ+ω=τ+

tEA

tAtAEtXttXE

                             

 
 

where we have used the trigonometric identity  

cos a  cos b =
2
1 [cos )( ba − + cos (a + b)] 

The second term evaluates to zero. Thus, the autocorrelation function is 

)(cos
2

),(
2

τ=ωτ=τ+ xxxx RAttR  
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Since the mean is constant and the autocorrelation depends on τ only, X(t) is a 
wide-sense stationary process. 
 

When dealing with two random processes X(t) and Y(t), we say that they are 
jointly wide-sense stationary if each process is stationary in the wide-sense, and 

         [ ] )()()(),( τ=τ+=τ+ xyxy RtYtXEttR                       (3.10) 

Rxy (t1, t2) represents the cross-correlation function of X(t) and Y(t). We also define 
the covariance function ),( 21 ttCxx  and cross-covariance function 

),( 21 ttCxy between X(t) and Y(t) as 

  { })]()([)]()([),( 221121 tmtXtmtXEttC xxxx −−=          (3.11) 

and  

  { })]()([)]()([),( 221121 tmtYtmtXEttC yxxy −−=          (3.12) 

If Z(t) is a complex random process such that ,)()()( tjYtXtZ +=  the 
autocorrelation and autocovariance functions of Z(t) are 

          )]()([),( 2121 tZtZEttRzz
∗=            (3.13) 

and 

              { }{ } ])()()()([),( 221121
∗−−= tmtZtmtZEttC zzzz            (3.14) 

where∗ denotes a complex conjugate and )(tmz is the mean function of Z(t). The 
cross-correlation and cross-covariance functions between the complex random 
process Z(t) and another complex random process W(t), W(t) = U(t) + jV(t), is 

                 )]()([),( 2121 tWtZEttRzw
∗=           (3.15) 

and 

{ } ∗−−= )]()([)]()([),( 221121 tmtWtmtZEttC wzzw          (3.16) 
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Example 3.3 
 
Consider an experiment of tossing a coin in an infinite number of interval times. A 
sample function of the random process X(t) is defined as  





<≤−−
<≤−

=
toss at  tailsif  )1(   for         1
toss  at heads if )1(  for          1

)(
nthnTtTn
nthnTtTn  

tx  

where n takes all possible integer values. Is the process stationary in the wide-
sense? 
 
Solution 
 
For the process to be wide-sense stationary, it must be verified that it has a 
constant mean, and an autocorrelation function which is a function of τ only. 

 
Let P(H ) = P(head) and P(T ) = P(tail). Then, from Figure 3.8, 

 
 
Figure 3.8 Sample functions of X(t). 
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E[X(t)] = )()1()()1( TPHP −+ = 0
2
1)1(

2
1)1( =−+  

Since the mean is constant, the process may be wide-sense stationary. The mean-
square value is 

1)()1()()1()]([ 222 =−+= TPHPtXE  

We now consider the autocorrelation function 

[ ])()(),( 2121 tXtXEttRxx =  

We have two cases to consider. 
 
Case 1: t1 and t2 in the same tossing interval. 
 
In this case, (n – 1)T ≤ t1 , t2 ≤  nT. Hence, 

[ ] 1)]([)()(),( 2
2121 === tXEtXtXEttRxx  

Case 2: t1 and t2 in different tossing intervals. 
 
We have .for   1) (   and  )1( 21 kjkTtTkjTtTj ≠≤≤−≤≤−  Since successive 
tosses are statistically independent, X(t1) and X(t2) are also statistically 
independent. Therefore,  

[ ] [ ] [ ] 0)()()()(),( 212121 === tXEtXEtXtXEttRxx   

Since the autocorrelation function is not a function of one variable 21τ tt −= , the 
process X(t) is not stationary. This process is referred to as semirandom binary 
transmission. 
 
Example 3.4 
 
Consider the random process )Θ()( −= tXtY , where X(t) is the process of 
Example 3.3, and Θ is a random variable uniformly distributed over the interval 0 
to T. Θ is statistically independent of X(t). Is Y(t) stationary in the wide-sense? 
 
Solution 
 
A sample function of Y(t) is shown in Figure 3.9. As in the previous example, the 
mean of Y(t) is 
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Figure 3.9 Sample function of Y(t). 

[ ] ( ) ( ) 0)(1)(1)( =−+= TPHPtYE  

which is a constant. The autocorrelation function is given by 

[ ])()(),( 2121 tYtYEttR yy =  

We have a few possible cases. 
 
Case 1: Ttt >τ−=τ   and   21  
 
In this case, t1 and t2 are in different tossing intervals for each sample function, and 
hence Y(t1) and Y(t2) are statistically independent. Thus, 

[ ] [ ] [ ] 0)()()()(),( 212121 === tYEtYEtYtYEttR yy   

Case 2: T ≤τ   
 
In this case, t1 and t2 may or may not be in the same tossing interval. Let SI denote 
the event that t1 and t2 occur in the same interval, and cSI  (the complementary 
event of SI) be the event that t1 and t2 do not occur in the same interval. Thus, 

[ ]
[ ] [ ] )(|)()()(|)()(

)()(),(

2121

2121

cc

yy

SIPSItYtYESIPSItYtYE

tYtYEttR

                    +=

=
 

Example 3.2 has shown that [ ] 1|)()( 21 =SItYtYE  and .0]|)()([ 21 =cSItYtYE  
Hence, the autocorrelation function is just the probability that the event SI occurs. 
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Figure 3.10  One interval  for .0≤τ≤−T  

)(),( 21 SIPttRyy =  

The event SI occurs in two possible ways: t1 < t2 (τ < 0) and t2 < t1 (τ > 0). 
When t1 < t2, .0≤τ≤−T  The situation is best represented by the diagram of 

Figure 3.10 representing one interval only. t1 and t2 are in the same interval if 
θ+> nTt1  and t2 < ( n + 1)T + θ, which yields  

nTtTnt −<θ<−− 12 )1(  

Since Θ is uniformly distributed between 0 and T, then the probability that t1 and t2 
are in the same interval is 

     
T
τd

T
SIP

nTt

Tnt
+=∫ θ=

−

+−
11)(

1

2 )1(
 for 0≤τ≤−T  

Similarly, when t2 < t1 and t1 and t2 are in the same interval, we have t1 <( n + 1)T 
+ θ and t2 > nT + θ, which yields 

nTtTnt −<θ<+− 21 )1(  

and  

T 
T

SIP ≤≤−= τ0for τ1)(        

Therefore, the autocorrelation function of Y(t) is 









>

≤−
=

T

T
TttRyy

τ

τ
τ

 ,          0

 ,   1
),( 21  
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       nT         nT+θ                        (n+1)T                      (n+1)T+θ 
                                         t1                                                     t2 
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Figure 3.11 Autocorrelation function of Y(t). 

and is shown in Figure 3.11. Because both conditions (the mean is constant and the 
autocorrelation function is a function of τ only) are satisfied, the process Y(t) is 
wide-sense stationary. Y(t) is also referred to as random binary transmission. 
 
Example 3.5 
 
Let I(t) and Q(t) be two random processes such that 

I(t) = X cos ωt + Y sin ωt   and  Q(t) = Y cos ωt – X sin ωt 

where X and Y are zero mean and uncorrelated random variables. The mean-square 
values of X and Y are .]Y[E]X[E 222 σ==  Derive the cross-correlation function 
between the processes I(t) and Q(t). 
 
Solution 
 
The cross-correlation  function between I(t) and Q(t) is  

ttYEttXE

ttttXYE   
tXtYtYtXE

tQtIEttRiq

ωωτ+ω+ωωτ+ω−

ωωτ+ω−ωωτ+ω=
ω−ωωτ+ω+ωτ+ω=

τ+=τ+

cos)sin(][sin)cos(][

]sin)sin(cos)][cos([
}]sincos[)]sin()cos([{

)]()([),(

22                   

                
                   

 

Using trigonometric identities and the fact that X and Y are uncorrelated and zero 
mean (E[XY] = E[X] E[Y] = 0), we obtain 

ωτσ−=τ+ sin),( 2ttRiq  
 
 

                                                                                τ
        -T                                                   T 

Ryy  (τ) 
 
       1 
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3.3 PROPERTIES OF CORRELATION FUNCTIONS 
 
The autocorrelation and the cross-correlation functions introduced in the previous 
sections are very important concepts in understanding random processes. In this 
section, we study some of their properties that are most relevant, without giving 
any formal proof. 
 
3.3.1 Autocorrelation Function 
 
Some of the properties of the autocorrelation function are: 

     ),(),( 2112 ttRttR xxxx
∗=            (3.17) 

If X(t) is real, then the autocorrelation function is symmetric about the line t1 = t2 in 
the (t1, t2) plane; that is, 

                              ),(),( 2112 ttRttR xxxx =            (3.18) 

 The mean-square value function of a random process X(t) is always positive; 
That is, 

                0])([)]()([),( 2
1111 ≥== ∗ tXEtXtXEttRxx          (3.19) 

If X(t) is real, the mean-square value )]([ 2 tXE  is always nonnegative. 

    ),(),(),( 221121 ttRttRttR xxxxxy ≤              (3.20) 

This is known as Schwarz inequality, and can be written as 

                  ])([])([),( 2
2

2
1

2
21 tXEtXEttRxx ≤           (3.21) 

.    ∑∑
= =

∗ ≥
n

j

n

i
jixxji ttRaa

1 1
0),(             (3.22) 

for any set of constants ,  ,... ,  , 21 naaa  and any set of time instants .  ,...  ,  , 21 nttt  
Therefore, the autocorrelation function is a nonnegative definite function. 
 
3.3.2 Cross-Correlation Function 
 
Consider X(t) and Y(t) to be two random processes, then 
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     ),(),( 1221 ttRttR yxxy
∗=            (3.23) 

If the random processes X(t) and Y(t) are real, 

        ),(),( 1221 ttRttR yxxy =            (3.24) 

In general, Rxy (t1 , t2) and Ryx (t2 , t1) are not equal. 

           [ ] [ ]  )()(),( 2121 tYEtXEttRxy =  

    ])([])([),(),( 2
2

2
12211 tYEtXEttRttR yyxx =≤          (3.25) 

 
3.3.3 Wide-Sense Stationary 
 
We now consider the processes X(t) and Y(t) to be real and wide-sense stationary. 
 
 The autocorrelation function is an even function of τ, that is, 

                )()( τ=τ− xxxx RR            (3.26) 

             )]([)0( 2 tXERxx =             (3.27) 

Since X(t) is real, 

              0)]([)0( 222 ≥+σ== xxxx mtXER           (3.28) 

The autocorrelation function at τ = 0 is constant and is equal to the mean-square 
value. 

              )0()( xxxx RR ≤τ            (3.29) 

The maximum value of the autocorrelation function occurs at τ = 0 and it is 
nonnegative, as shown in Figure 3.12. 
 When X(t) has a dc component (or nonzero mean value), then )(τxxR has a 
constant component. This arises from the fact that two observations of a wide-
sense stationary process may become uncorrelated as τ approaches infinity. In this 
case, the covariance function goes to zero. That is, 
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Figure 3.12  A possible autocorrelation function. 

[ ][ ]{ }xxxx mtXmtXEC −−τ+=τ
∞→τ

)()()(lim  

                                             0)( 2 =−τ=    xxx mR                    (3.30) 

or 

              2)(lim xxx mR =τ
∞→τ

           (3.31) 

 If X(t) and Y(t) are jointly stationary in the wide-sense, similar properties can 
be obtained. That is,  

      )()( τ=τ−∗
yxxy RR           (3.32) 

              )0()0()(
2

yyxxxy RRR ≤τ           (3.33) 

      )0()0( ∗= yxxy RR            (3.34) 

 If X(t) and Y(t) are real random processes, then 

     
2

)0()0(
)( yyxx

xy
RR

R
+

≤τ           (3.35) 

 
 
 
 

Rxx (τ) 
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3.4 SOME RANDOM PROCESSES 
 
In this section, we shall study certain types of random processes that may 
characterize some applications. 
 
3.4.1 A Single Pulse of Known Shape but Random Amplitude and Arrival 

Time 
 
In radar and sonar applications, a return signal may be characterized as a random 
process consisting of a pulse with known shape, but with a random amplitude and 
random arrival time. The pulse may be expressed as 

      )( )( Θ−= tSAtX           (3.36) 

where A and Θ are statistically independent random variables, and s(t) is a 
deterministic function. A sample function may be represented, as shown in Figure 
3.13. The mean value function of this particular random process is given by 

   [ ] [ ])( )( Θ−= tSAEtXE            (3.37) 

Since A and Θ are statistically independent, we have 

  [ ] [ ] [ ] [ ] ∫
∞

∞
Θ θθθ−=Θ−=

-
)()( )( )( dftsAEtSEAEtXE           (3.38) 

The integral ∫
∞

∞−
Θ θθθ− dfts )()(  is simply the convolution of the pulse s(t) with the 

density function of Θ. Thus, 

   )()( ][)]([ θ∗= ΘftsAEtXE           (3.39) 

Similarly, the autocorrelation function is given by 

 
 
 
 
 
 
 
Figure 3.13   Pulse X(t). 
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  [ ] ∫
∞

∞−

θθθ−θ−= dftstsAEttRxx )()()(),( Θ21
2

21           (3.40) 

If the arrival time is known to be some fixed value θ0, then the mean and 
autocorrelation functions of X(t) become 

      [ ] [ ] )( )( 0θ−= tsAEtXE            (3.41) 

and 

       )()(][),( 0201
2

21 θ−θ−= tstsAEttRxx             (3.42) 

Another special case is that the arrival time may be uniformly distributed over 
the interval from 0 to T. The mean and autocorrelation functions are in this case 

        ∫ θθ−=
T

dts
T
AEtXE

0
)(][)]([           (3.43) 

and 

            ∫ θθ−θ−=
T

xx dtsts
T
AEttR

0
21

2

21 )()(][),(           (3.44) 

3.4.2 Multiple Pulses 
 
We now assume that we have a multiple pulse situation. This may be the case in 
radar applications for a multiple target environment. The random process X(t) can 
be expressed as 

        ∑
=

Θ−=
n

k
kk tSAtX

1
)()(            (3.45) 

where the 2n random variables Ak and Θk, k = 1, 2, …, n, are mutually and 
statistically independent. In addition, the amplitudes are independent of the phase 
shifts, and we assume that the Aks are identically distributed with density function 
fA(a), while the Θks are identically distributed with density function )(θΘf . We 
can easily obtain the mean and autocorrelation functions to be 
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])Θ([][)Θ()]([
11
∑∑
==
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




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k
kk

n

k
kk tSEAEtSAEtXE   

                            )]()(][[)()(][ ΘΘ θ∗=θθθ−= ∫
∞

∞−

ftsAEndftsAEn kk             (3.46) 

and 

∫

∑∑

∑∑

∞

∞−

= =

==

θθθ−θ−=

−−=


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






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  ∫∫
∞

∞−

∞

∞−

θθθ−θθθ−−+ dftsdftsAEnn k )()()()()][()( Θ2Θ1
22          (3.47) 

If the random variable Θ is uniformly distributed over the interval (0, T ), the mean 
and autocorrelation functions of X(t) become 

           θθ−= ∫
T  

k dts
T

AnEtXE
0

)(1][)]([           (3.48) 

and 

∫ θθ−θ−=
T

kxx dtsts
T

AnEttR
  

  
0

21
2

21 )()(1][),(  

     ∫∫ θθ−θθ−
−

+
TT

dtsdts
T

nn     2
 

0
2

0
12

)()(
)(

         (3.49) 

3.4.3 Periodic Random Processes 
 
The random process X(t) is said to be periodic with period T if all its sample 
functions are periodic with period T, except those sample functions that occur with 
probability zero. 
 



Random Processes 159

Theorem.  If the random process X(t) is stationary in the wide-sense, then the 
autocorrelation function is periodic with period T, if and only if X(t) is periodic 
with period T, and vice versa. 
 
Proof.  The first condition says that )()( τ=+τ xxxx RnTR  if X(t) is periodic. X(t) 
periodic means that )()( τ+=+τ+ tXnTtX . Then, 

 )()]()([)]()([)( τR tXτtXEtXnTtXEnTR xxxx =+=+τ+=+τ      (3.50) 

The second condition states that if the autocorrelation function is periodic, 
then ,)()( tXnTtX =+  where X(t) is wide-sense stationary. Consider 
Tchebycheff’s inequality, which states 

   
2

2

])([
k

kmtYP y
y

σ
≤>−            (3.51) 

where my and 2
yσ  are the mean and variance of the process Y(t), respectively, and 

k is a positive constant. 
Let Y(t) = X(t +T) – X(t). Then, the mean and variance of Y(t) are 

 0)]([)]([)]()([)]([ =−+=−+== tXETtXEtXTtXEtYEm y        (3.52) 

because X(t) is wide-sense stationary (mean is constant). Also, 

 
{ }

)]([)]()([2)]([

)]()([)]([

22

222

tXEtXTtXETtXE

tXTtXEtYEy

++−+=

−+==σ

      
  

                    )]()0([2)0()(2)0( TRR RTRR xxxxxxxxxx −=+−=          (3.53) 

The variance 2
yσ  is zero, due to the fact that the autocorrelation function is 

periodic with period T, and )()0( T R R xxxx = . Consequently, from Tchebycheff’s 
inequality, we have  

     tktXTtXP  allfor              0])()([ =>−+                   (3.54) 

Hence, X(t) must be periodic. 
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Corollary.  Let s(t) be a deterministic function and periodic with period T. The 
random process X(t), defined as )Θ()( −= tStX , where Θ is a random variable 
uniformly distributed over the interval (0, T ), is stationary in the wide-sense. 
 
Proof.  For X(t) to be wide-sense stationary, the mean E[X(t)] must be constant, 
and the autocorrelation function must be a function of the time difference τ. The 
mean value function of X(t) is 

  ∫∫ θθ−=θθθ−=
∞

∞−

T  
dts

T
  dftstXE

0
Θ )(1)()()]([             (3.55) 

We make a change of variable by letting .θ−= tu  Then, 

            constant)(1)(1)]([     
       

==−= ∫∫
−

− t

Tt

Tt

t
duus

T
duus

T
tXE          (3.56) 

since we are integrating a periodic function, s(t), over its period. Using the same 
reasoning, we can easily show that Rxx (t + τ , t) = Rxx (τ). 

The process X(t) is periodically stationary or cyclostationary with period T if 
its statistics are not changed by a shift of nT, n= ,,2,1     K±±  from the time 
origin. That is, 

 ),,;,,(),,;,,( 11,...,11,..., 11
nTtnTtxxfttxxf mmXXmmXX mm

++= KKKK  (3.57) 

for all integers n and m. 
X(t) is cyclostationary in the wide-sense with period T if its mean and 

autocorrelation functions are periodic with the same period T. That is, 

           )()( tmkTtm xx =+            (3.58) 

and 

           ),(),( 2121 ttRkTtkTtR xxxx =++                   (3.59) 

for all  t, t1, t2, and any integer k. 
 
Theorem.  If X(t) is a wide-sense cyclostationary process with period T, then the 
process )Θ()( −= tXtY , where Θ is uniformly distributed over the interval (0,T ), 
is wide-sense stationary. 
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The proof of this theorem is straightforward and similar to that of the previous 
theorem. Therefore, we will not show it. 
 
3.4.4 The Gaussian Process 
 
A random process X(t) is Gaussian if the random variables X(t1), X(t2), …, X(tn), 
are jointly Gaussian for all possible values of n and t1, t2, …, tn. Since the 
multivariate Gaussian random variable depends only on the mean vector and the 
covariance matrix of the n random variables, we observe that if X(t) is stationary in 
the wide-sense, it is also strictly stationary. 

If X(t) is a Gaussian random process applied to a linear time-invariant system 
with impulse response h(t), as shown in Figure 3.14, then the output process 

        ∫
∞

∞−

τττ−= dhtxtY )()()(            (3.60) 

is also Gaussian. Hence, the output process Y(t) will be completely specified, given 
the input process X(t) and the impulse response h(t). 
 
Example 3.6 
 
Let X(t), a wide-sense stationary, zero-mean Gaussian random process, be the 
input of a square law detector; that is, a nonlinear system without memory.  

(a) Verify that the output is no longer Gaussian.   
(b) Determine the autocorrelation function )(τyyR  of the output and its 

variance. 
 
Solution 
 
(a)  The system is shown in Figure 3.15. The density function of the input is 
 

22 σ2

π2
1)();( x

XX exftxf −==  

 
Using the result given in Example 1.19, the density function of the output is then  

 
 
 
 
 
Figure 3.14  Impulse response h(t). 
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Gaussian 

Y(t) 
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Figure 3.15  Square law detector. 
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and is shown in Figure 3.16. We observe that the output of the nonlinear system 
without memory is no longer Gaussian. 
 
(b) The autocorrelation function of the output )()( 2 tXtY = is given by 

)]()()()([)]()([)]()([),( 22 tXtXtXtXEtXtXEtYtYEttRyy τ+τ+=τ+=τ+=τ+  

Using the result given by (2.244), the autocorrelation function of the output 
process becomes 

{ } )(2)0()]()([2)]([)]([)( 22222 τ+=τ++τ+=τ xxxxyy RRtXtXEtXEtXER   

 
 
 
 
 
 
 
 
 
Figure 3.16  Density function of the output. 

X(t) )()( 2 tXtY =  
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Then, the mean-square value of Y(t) is { }222 )]([3)0()]([ tXERtYE yy ==  
2)]0([3 xxR= , but also .)0()]([)]([ 22 σ=== xxRtXEtYE  Hence, the variance of 

Y(t) is { } .2)]0([2)]([)]([ 42222 σ==−=σ xxy RtYEtYE  
 
Let the processes Y1(t) and Y2(t) be the outputs of two linear time-invariant 

systems with respective inputs X1(t) and X2(t). The processes Y1(t) and Y2(t) are 
jointly Gaussian, provided that X1(t) and X2(t) are jointly Gaussian. 
 
3.4.5 The Poisson Process 
 
The Poisson process is used for modeling situations, such as alpha particles 
emitted from a radioactive material, failure times of components of a system, 
people serviced at a post office, or telephone calls received in an office. These 
events can be described by a counting function X(t), t > 0, such that at time zero, 
X(0) = 0. A typical sample function of the Poisson process X(t), t > 0, which is a 
discrete-amplitude continuous-time process, is as shown in Figure 3.17. The 
process X(t) is said to be a Poisson process if it satisfies the following conditions: 
 
1.  X(t) is a nondecreasing  step function, as shown in Figure 3.17, with unit jumps 
(representing the events) at each time tk, and k is a finite and countable number. 
 
2.  For any time t1 and t2, t2 > t1, the number of events (or jumps) that occur in the 
interval t1 to t2 follow a Poisson distribution, such that 

        K,2,1,0  )],(exp[
!

)]([
])()([ 12

12
12 =−λ−

−λ
==−   ktt

k
tt

ktXtXP
k

     (3.61) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17  Sample function of a Poisson process. 
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3.  The number of events that occur in any interval of time t is independent of the 
number of events that occur in any other nonoverlapping interval; that is, X(t) is an 
independent increment process. Hence,  

     ... ke
k
t

ktXP t
k

,2,1,0,
!
)(

])([ =
λ

== λ−             (3.62) 

The Poisson process can also be defined using the concept of Poisson points. 
Let the instant at which the events occur be as depicted in Figure 3.18. We start 
observing the process at time t = 0. 

We say that the points Ti are Poisson points with parameter λt, provided the 
following properties are satisfied: 
 
1. The number of points Ti in an interval (t1, t2), denoted N(t1, t2), is a Poisson 
random variable. That is, the probability of k points in time 21 ttt −=  is  

!
)(

]),([ 21 k
te

kttNP
kt λ

==
λ−

          (3.63) 

λ is called the density or average arrival rate of the Poisson process. 
 
2. If the intervals ) ,( 21 tt and ),( 43 tt  are nonoverlapping, then the corresponding 
random variables ),( 21 ttN and ),( 43 ttN are independent.  
 

We define the Poisson process as 

     X(t) = N(0 , t)           (3.64) 

such that  

                                                    X(0) = 0           (3.65) 

          ... ke
k
t

ktXP t
k

,2,1,0,
!
)(

])([ =
λ

== λ−           (3.66) 

 
 

 
 
 

 
 
Figure 3.18  Possible occurring  times of particular events. 
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The first-order distribution of X(t) is  

      ])(0,  intervalin  points ofnumber  the[])([);( 1111111
xtPxtXPtxFX ≤=≤=   

                                      ∑
=

λ− λ
=

1
1

0

1

!
)(x

k

k
t

k
t

e              (3.67) 

Example 3.7 
 
Let ),0()( tNtX = be a Poisson process representing the number of events 
occurring in the interval (0, t). Suppose that the first event occurs at T1. Determine 

(a) .)( 11
tfT  

(b) The mean of T1 and the variance. 
 
Solution 
 

From (3.65), .
!
)(

]),0()([ t
k

e
k
t

ktNtXP λ−λ
===  

 
(a) The event T1 > t1 is equivalent to N(0 , t1) = 0, since the first event occurs at t1. 
Hence, 

0,]0),0([)( 1111
1 >===> λ−   tetNPtTP t  

The distribution function is then 

0,1)(1)()( 111111
1

1
>−=>−=≤= λ−   tetTPtTPtF t

T   

and the density function is  

0,
)(

)( 1
1

1
1

11

1
>λ=

∂

∂
= λ−   te

t

tF
tf tT

T  

Note that this is the exponential density function given in (2.88) with ./1 β=λ  
 
(b)  The mean of T1 is  

λ
=λ= ∫ λ− 1][

1
1

0
111

t
t dtetTE  
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while the variance is 2
1

2
11 ])[(][]var[ TETET −=  with 

./2][
0

2
1

2
1

2
1

1∫
∞

λ− λ=λ= dtetTE t  Hence, 

2221
112]var[
λ

=
λ

−
λ

=T  

3.4.6 The Bernoulli and Binomial Processes 
 
In Chapter 2, we defined the Bernoulli experiment as the “simplest” in the sense 
that only two outcomes are possible: heads or tails corresponding to one (success) 
or zero (fail) occurring with probabilities p and ,1 qp =−  respectively. We say 
X[n], n = 1, 2, … , is a Bernoulli process with parameter p if X[1], X[2], … , X[n] 
are independent and identically distributed Bernoulli random variables with 
parameters p. Note that the Bernoulli process is a discrete-time process, as shown 
in the typical sample function of Figure 3.19. The density function of the Bernoulli 
process is given by  

 ... nnxpnxqnxf nX ,2,1),1][(])[(])[(][ =−δ+δ=              (3.68) 

where )(⋅δ  is the unit impulse function. The second-order density function is given 
by  

)1][()][()][()1][(

)][()][()][],[(

2121

21
2

21][][ 21

−δδ+δ−δ+

δδ=

nxnxqpnxnxpq

nxnxqnxnxf nXnX

                                               

  
 

  ...,2,1,for)1][()1][( 2121
2         =−δ−δ+ n nnxnxp   

        (3.69) 

The corresponding possible pairs of outcomes are (X[n1] = 0, X[n2] = 0), 
( 1][ 1 =nX , X[n2] = 0), (X[n1] = 0, X[n2] = 1), and (X[n1] = 1, X[n2] = 1). Note also  

 
 
 
 
 
 
 
Figure 3.19  Bernoulli process. 
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that the sum of probabilities is one; that is, .1)(2 222 =+=++ qpqpqp  Higher-
order density functions can be obtained in the same manner.  

We define the Binomial (or counting) process as the sum of Bernoulli 
processes to be 

 ....  nnXXXnS ,2,1,0],[]1[]0[][ =+++=     K          (3.70) 

A typical sample function of the binomial process is shown in Figure 3.20. 
We observe that S[n] = k means that k of the Bernoulli variables equals one, 

while the remaining )( kn − equals zero. Hence, the probability of S[n] = k is given 
by 

   knk qp
k
n

knSP −








== )][(            (3.71) 

while the first-order density function of the binomial process is given by 

        ∑
=

− −δ







=

n

k

knk
nS knsqp

k
n

nsf
0

][ )][(])[(           (3.72) 

The Poisson process, which is a continuous time process, can be obtained from the 
discrete-time process under certain conditions: 
 
1.  Let the interval [0, t) be subdivided into n very small intervals, n large, of 
length ∆t, such that t = n∆t and only one point can occur in ∆t. 
 
2.  Each interval ∆t is a Bernoulli trial with a probability of a point occurring at 

tp ∆λ= . 

 
 
 

 
 
 
 
 

 
 
 
 
Figure 3.20  Binomial process. 
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3.   The Bernoulli trials are independent. 
 
Then, X(t) = N(0, t) is equivalent to the binomial process given by (3.70) with 
parameters  ttn ∆/=  and .∆tp λ=  In the limit, it can be shown that 

knk

t
n

t
n

tt
k
n

ktNtXp −

→∆
∞→

→∆
∞→

∆λ−∆







=== )1()(lim]),0()([lim

00

 

            , ...., ,   ke
k
λt

 λt
k

210,
!
)(

== −          (3.73) 

which is the Poisson distribution, and thus the density function is given by 

    ∑
∞

=

λ− =δ
λ

=
0

),0( ]),0([
!
)(

)],0([
k

t
k

tN ktne
k
t

tnf           (3.74) 

3.4.7 The Random Walk and Wiener Processes 
 
Consider again the experiment of tossing a fair coin n times every T seconds, such 
that t = nT, n = 1, 2, 3, … . After each tossing, we take a step of length ∆ to the 
right if heads show, or a step to the left if tails show. A typical sample function is 
shown in Figure 3.21. X(t) is referred to as the random walk.  

If k heads show up in the first n tosses, then we have k steps to the right and 
)( kn −  steps to the left, yielding 

            ∆)2(∆)(∆)(  nkknknTX −=−−=           (3.75) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.21 Random walk. 
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As k varies from 0 to n, X(nT) varies from –n∆ to +n∆. Since the coin is fair, then 
 p = q = .2/1  We can define X(nT) as 

   kXXXnTX +++= K21)(           (3.76) 

where Xk, k = 1, 2, …, n, is referred to as a symmetric Bernoulli random variable, 
since it assumes steps of +∆ with probability 2/1=p  and –∆ with probability 

.2/1=q  Hence, 

           
n
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          (3.77) 

and the density function of the random walk after n steps is 

  ∑
=

−−δ



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k
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1)]([          (3.78) 

If we now consider the experiment of independently tossing the same coin two 
times—the first one n1 times and the second one n2 times, the autocorrelation 
function of the random walk sequence is given by 

{ })]()()()[()]()([)( 1121212121
nXnXnXnXE nXnXE,nnR xx −+==                       

{ } { })]()()[()]([)]()()[()( 1211
2

1211
2 nXnXnXEnXE nXnXnXnXE −+=−+=  

        (3.79) 

Suppose n2 > n1, then X(n1) and [X(n2) – X(n1)] are independent random variables, 
because the number of heads in the first n1 tossing is independent of the number of 
heads in the (n1 + 1) tossing to n2 tossing. Consequently, if 4321 nnnn <≤< , the 
increments )()( 34 TnXTnX −  and )()( 32 TnXTnX −  are independent. The auto-
correlation function can be written as 

    )]()([)]([)]([),( 1211
2

2121
nXnXEnXEnXEnnR xx −+=          (3.80) 

but  

       ∑
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=−+=
1

1
1 0)∆(

2
1)∆(

2
1)]([

n

k
nXE           (3.81) 

and 
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        ∑
=

=−+=
1
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2
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2
1)]([

n

k
nnXE           (3.82) 

Hence 

                        2
121 ∆),(

21
nnnR xx =            (3.83) 

Similarly, if n1 > n2, the autocorrelation function is  

          2
221 ∆),(

21
nnnR xx =            (3.84) 

Combining (3.83) and (3.84), we obtain 

             ),min(∆),( 21
2

2121
nnnnR xx =           (3.85) 

The Wiener process, also called the Wiener-Levy process or Brownian motion, is a 
limiting form of the random walk as ∞→n  and 0→T , such that 

tnT
T
n

=
→
∞→

)(lim
0

and the variance remains finite and nonzero. The Wiener process 

W(t) is given by 

          )(lim)(
0

tXtW
T
n
→
∞→

=            (3.86) 

From the central limit theorem, the probability that X given in (3.76), 
nXXXX +++= K21  with Xk a symmetric binomial, takes k steps to the right 

is  
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
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
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22
∆)2(exp

2
1]∆)2()([ mnknknTXP          (3.87) 

where the mean m and the variance σ2 are as derived in (3.81) and (3.82), to yield 
m = E[X] = 0 and σ2 = var [X] = n∆2. Substituting for the values of m and σ2 in 
(3.87), after simplification, we obtain 
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At each step of the limiting process nT = t, and after setting ∆2  = αT to maintain 
the variance finite and w = (2k – n)∆, we obtain the first-order density function of 
the Wiener process to be 

          












α
−

απ
=

t
tw

t
twf tW 2

)(
exp

2
1)]([

2

)(           (3.89) 

A sample function of the Wiener process is shown in Figure 3.22. 
By analogy to the random walk process, the property of independent 

increments is maintained for the Wiener process. That is, if 4321 tttt <≤< , the 
increments  )()( 34 twtw −  and )()( 12 twtw −  are independent. 
 
Example 3.8 
 
Determine the autocorrelation function of the Wiener process. 
 
Solution 
 
Using the same approach as we did in determining the autocorrelation function of 
the random walk process, the autocorrelation function of the Wiener process is  

)]()([),( 2121 tWtWEttRww =  

in which we have two cases, t1 < t2 and t2 < t1. 
 
Case 1: t1 < t2 
 
Using the property of independence of increments, we can write  

)]()([)]([})]()()[({ 121121 tWtW EtWEtWtWtWE −=−  

           )]([)]()([ 1
2

21 tWEtWtWE −=  

                         )]([),( 1
2

21 tWEttRww −=          (3.90) 

 
 
 
 
 
  
Figure 3.22  Sample function of the Wiener process. 
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From (3.89), the Wiener process has a Gaussian distribution with mean zero and 
variance αt. Then, E[W(t1)] = 0 and (3.90) becomes  

11
2

21 )]([),( ttWEttRww  α==  

Case 2:  t2 < t1 
 
In the same manner, we can show that 

221 ),( tttRww α=  

Combining the results of Cases 1 and 2, we obtain the autocorrelation function of 
the Wiener process to be  
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),min(),(

ttt
ttt

tt ttRww          (3.91) 

3.4.8 The Markov Process 
 
A stochastic process X(t) is said to be a simple Markov process (or first-order 
Markov) if for any n and a sequence of increasing times  t1 < t2 < … < tn ,  we have 

)](|)([)](,),(|)([ 111 −− ≤=≤ nnnnnn tXxtXPtXtXxtXP K          (3.92) 

or equivalently, 

               )|(),...,,|( 1|121,...,,| 1121 −−− −−−
= nnXXnnnXXXX xxfxxxxf

nnnnn
          (3.93) 

Note that for the simplicity of notation we dropped the subscript tk. We observe 
that the value at tk depends only upon the previous value at .1−kt  The joint density 
function can be written as 

),,,(
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                            ),,,|(),|()|()( 121123121 xxxxfxxxfxxfxf nn KK −=   (3.94) 

Rewriting (3.94), if X(t) is a Markov process, then 

       ∏
=

−=
n

k
kkn xxfxfxxxf

2
1121 )|()(),,,( K                  (3.95) 
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which means that the process is completely determined by the first-order density 
function and the conditional density functions. Since the sequence of random 
variables Xn, Xn – 1, …, X1 is Markov, it follows from (3.95) that 

               ]|[],...,,|[ 1121 −−− = nnnnn XXEXXXXE                        (3.96) 

Also, the Markov process is Markov in reverse time; that is, 

      )|(),...,,|( 121 ++++ = nnknnnn xxfxxxxf          (3.97)  

If in a Markov process the present is known, then the past and future are 
independent; that is, for nkm <<  we have 

       )|()|()|,( knkmknm xxfxxfxxxf =           (3.98)  

A Markov process is said to be homogeneous if )|( 1 yXxXf nn == −  is invariant 
to a shift of the origin; that is, it depends on x and y but not n. However, the first-
order density function )( nX xf

n
 might depend on n. If the first-order density 

function does not depend on n, )()( xfxf
nn XnX = , but depends on x only, the 

Markov process is said to be stationary. In this case, )|( 1−nn xxf is invariant to a 
shift of the origin due to the homogeneity of the process, and thus the statistics of 
the process can be completely determined in terms of the second-order density 
function, which is given by 

   )()|(),( 11221 xfxxfxxf =           (3.99) 

Chapman-Kolmogorov Equation   For ,nkm <<  the conditional density function 
)|( mn xxf  can be expressed in terms of the conditional density functions 
)|( kn xxf  and )|( mk xxf  to be 

            ( ) ( )∫
∞

∞−

<<= nkmdxxxfxxfxxf kmkknmn , ||)|(        (3.100) 

When the Markov process takes a countable and finite discrete set of values, 
they are called Markov chains. Markov chains will be developed in more detail in 
the next chapter. 
 
 
 
 



Signal Detection and Estimation 
 

174

3.5 POWER SPECTRAL DENSITY 
 
Given a deterministic signal s(t), its Fourier transform (FT) is 

   ∫
∞

∞−

π−= dtetsfS fj t2)()(          (3.101) 

which exists if the integral converges. The function )( fS  is sometimes called the 
spectrum of s(t). In going from the time-domain description, s(t), to the frequency 
domain, ,)( fS  no information about the signal is lost. In other words, )( fS forms 
a complete description of s(t) and vice versa. Hence, the signal s(t) can be obtained 
from )( fS by just taking the inverse Fourier transform (IFT); that is, 

   ∫
∞

∞−

π+= dfefSts t f  j2)()(          (3.102) 

In dealing with random processes, the ensemble is assumed to exist for all 
time t. In general, the sample functions are not absolutely integrable. However, 
since we are still interested in the notion of spectrum, we proceed in a manner 
similar to that of deterministic signals with infinite energy. We define )(txT  as 
the sample function x(t), truncated between –T and T, of the random process X(t). 
That is, 



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=
otherwise        , 0 

),(
)(

  
      TtTtx

txT          (3.103) 

The truncated Fourier transform of the process X(t) is  
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The average power of xT (t) is  
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2
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=
T

T
Tave dttx

T
P         (3.105) 

Using Parseval’s theorem, which says that 
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   ∫ ∫
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= dffXdttx T
22 )()(         (3.106) 

the average power of xT (t) is 
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P T
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where the term TfX T 2)( 2 is the power spectral density of .)(txT  The ensemble 
average of PT  is given by 
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The power spectral density of the random process X(t) is defined to be 
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If X(t) is stationary in the wide-sense, the power spectral density )( fS xx can 
be expressed as the Fourier transform of the autocorrelation function Rxx (τ). That 
is, 
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Proof.  By definition, 
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where E[X(t1)X(t2)] = Rxx (t1, t2). Since this is a wide-sense stationary process, we 
would like to express the autocorrelation function in terms of the time difference 

21τ tt −= , and consequently, replace the double integral in t1 and t2 to one integral 
in τ. Let t2 = t and t1 = t2 + τ = t + τ. The region of integration in the t1 – t2 plane 
and τ−t  plane are shown in Figure 3.23. Let s1, s2, s3, and s4 denote the four sides 
of the square. From Figure 3.23, we see that the change of variables for the four 
sides will be  

Tts    tTs    Tts    tTs +=τ→−−=τ→−=τ→−=τ→ 14231221 ,,,  

It follows that 
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In the limit, as T approaches infinity, we conclude 

   ∫
∞

∞−

τπ− ττ= deRfS fj
xxxx

    2)()(          (3.113) 

provided that Rxx (τ) approaches zero at least at the rate τ1  with increasing τ. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23  Regions of integration for the autocorrelation function in (a) t1 – t2 plane and (b) τ−t  

plane. 
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Thus, the power spectral density of a wide-sense stationary process is the 
Fourier transform of its autocorrelation function. The inverse relationship, using 
the inverse Fourier transform, is  

   ∫
∞

∞−

τπ=τ dfefSR fj
xxxx

 2)()(         (3.114) 

(3.110) and (3.114) are sometimes called the Wiener-Khinchin relations. Note that 
the power spectral density is, from the definition, real, positive, and an even 
function of f. The autocorrelation is an even function of τ. 
 
Example 3.9 
 
Consider the random process )cos()( 0 Θ+ω= tAtX , where Θ is a random 
variable uniformly distributed over the interval (0, 2π), and A and ω0 are constants. 
Determine the power spectral density of this process. 
 
Solution 
 
Since X(t) is stationary in the wide sense with autocorrelation function 

)2cos()2/()( 0
2 τπ=τ fARxx  as shown in Example 3.2, then using (3.113), the 

power spectral density is  
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Cross-Spectral Densities 
 
Let X(t) and Y(t) be two jointly wide-sense stationary processes. Their cross-
spectral densities are defined as 

   ∫
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∞−

τπ− ττ= deRfS fj
xyxy

 2)()(         (3.115) 

and 
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By the Wiener-Khinchin relations, the cross-correlation functions )(τxyR  and 

)(τyxR  are just the respective inverse Fourier transforms of )( fS xy  and .)( fS yx  
From property (4) of Section 3.3.3, we have  

          )()( τ−=τ ∗
xyyx RR            (3.117) 

Consequently, their two cross-spectral densities are related by the following: 

          )()( fSfS xyyx
∗=          (3.118) 

It should be observed that, while the power spectral densities )( fS xx  and 
)( fS yy of the respective processes X(t) and Y(t) are always real, their cross-

spectral densities )( fS xy  and )( fS yx  may be complex. 
 
Example 3.10 
 
Consider the process )()( TtXtY −= ,where X(t) is a real wide-sense stationary 
process with autocorrelation function Rxx (τ) and power spectral density )( fS xx . T 
is a constant. Express the power spectral density )( fS xy  of the process Y(t) in 

terms of )( fS xx  . 
 
Solution 
 
The cross-correlation function )(τxyR  is given by  

)()]()([)]()([)( TRTtXtXEtYtXER xxxy +τ=−τ+=τ+=τ     

Hence, 

 fTj
xxxy efSfS π= 2)()(  

That is, the delay T appears in the exponent as a phase angle scaled by 2πf. 
 
 
3.6 LINEAR TIME-INVARIANT SYSTEMS 
 
A linear time-invariant system is characterized by its impulse response h(t), or by 
its system function ,)( fH  which is the Fourier transform of h(t). That is, 
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       ∫
∞

∞−

π−= dtethfH tfj  2)()(         (3.119) 

and 

        ∫
∞

∞−

π= dfefHth tfj  2)()(         (3.120) 

If x(t), the applied input signal to the linear time-invariant system, is deterministic 
as shown in Figure 3.24, the output signal is the convolution of x(t) and h(t), 
yielding 

          ∫
∞

∞−

τττ−=∗= dhtxthtxty )()()()()(         (3.121) 

is a sample function of the random process Y(t) corresponding to the sample 
function of the input process X(t). The time-domain expression for the output 
process is 

           )()()( fHfXfY =          (3.122) 

where )( fX  and )( fY  are the respective Fourier transforms of x(t) and y(t). 
The system is realizable, provided the impulse response is causal; that is, 

0)( =th  for t < 0. In this case, the convolution integral becomes 

            ∫∫
∞−

∞

ττ−τ=τττ−=
t     

dthx dhtxty )()()()()(
0

              (3.123) 

3.6.1 Stochastic Signals  
 
Consider the linear time-invariant system shown in Figure 3.24. The output signal  

 
 
 
 
 
 
Figure 3.24  Impulse response h(t). 

h(t) x(t) y(t) 
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)()( )()()( thtXtXthtY ∗=∗=   

                ∫∫
∞

∞−

∞

∞−

αα−α=ααα−= dthXdhtX )()()()(            (3.124) 

Mean Value Function 
 
The mean value function of the output process is given by 

         ∫∫
∞

∞−

∞

∞−

ααα−=ααα−= dhtmdhtXEtYE x )()()()]([)]([           (3.125) 

where )(tmx is the mean function of the process X(t). If X(t) is stationary in the 
wide-sense, 

   constant)()(  ==α− tmtm xx         (3.126) 

Then, the mean function )(tm y of the process Y(t) is  

   ∫
∞

∞−

αα== dhmtYEtm xy )()]([)(         (3.127) 

From (3.125), we recall that the system function evaluated at f = 0 is just the dc 

gain, and .)0()(∫
∞

∞−

=αα Hdh  Hence, 

               )0(Hmm xy =          (3.128) 

The Mean-Square Value 
 
The mean-square value of the output process signal is 

         











−−= ∫ ∫

∞ ∞

21212
0 0

1
2 )()()()()]([ dtdtththttXttXEtYE         (3.129) 

Simplifying (3.129), the mean-square value function becomes 
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212121
2 )()(),()]([ dtdtththttttRtYE xx    ∫ ∫

∞

∞−

∞

∞−

−−=  

     212121 )()(),( dtdttthtthttRxx    −−= ∫ ∫
∞

∞−

∞

∞−

             (3.130) 

Assuming X(t) is stationary in the wide-sense, and making the following change of 
variables 21   and tttt −=β−=α , the above result reduces to  

      βαβαβ−α= ∫ ∫
∞

∞−

∞

∞−

ddhhRtYE xx )()()()]([ 2         (3.131) 

which is independent of the time t. 
 
Cross-Correlation Function Between Input and Output 
 
Assume that the input process X(t) is wide-sense stationary. The cross-correlation 
function between the input and output is  

   )]()([),( tXtYEttRyx
∗τ+=τ+         (3.132) 

Using (3.124) in (3.132), and making a change of variables, the cross-correlation 
function can be rewritten as 

             )()()()(),( τ∗τ=ααα−τ=τ+ ∫
∞

∞−

hRdhRttR xxxxyx          (3.133) 

Observe that this result does not depend on t, and hence .)()( τ=τ+ yxyx RtR  
Similarly, it can be shown that the cross-correlation function between the input and 
output process signals is 

       )()()( τ−∗τ=τ hRR xxxy          (3.134) 

If the processes X(t) and Y(t) are jointly wide-sense stationary, their cross-spectral 
density is the Fourier transform of their cross-correlation function. Since a 
convolution in time domain is equivalent to a multiplication in frequency domain, 
taking the Fourier transform of (3.133) and (3.134), we obtain 

   )()()( fHfSfS xxyx  =          (3.135) 
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and  

   )()()( fHfSfS xxxy
∗=           (3.136) 

Autocorrelation Function and Spectrum of Output 
 
The autocorrelation function of the output process is  

   )]()([),( tYtYEttR yy τ+=τ+         (3.137) 

Using the fact that 

   ∫
∞

∞−

ααα−τ+=τ+ dhtXtY )()()(         (3.138) 

and 

         ∫
∞

∞−

βββ−= dhtXtY )()()(         (3.139) 

substituting (3.138) and (3.139) in (3.137), and making a change of 
variables )( β−=α , we obtain  

             )()()()()()()()( τ−∗τ∗τ=τ∗τ=τ−∗τ=τ hhRhRhRR xxxyyxyy            (3.140) 

Taking the Fourier transform of the above equations results in  

)()()()()()()()( fHfHfSfHfSfHfSfS xxxyyxyy
∗∗ ===   

        2)()( fHfS xx=        (3.141) 

Example 3.11 
 
A white noise process with autocorrelation function )()2/()( 0 τδ=τ NRxx  is 
applied to a filter with impulse response 







<
>≥α

=
α−

0, 0
0and0,)(

 t         
 α  t eth

t 
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Determine the autocorrelation function, ,)(τyyR  of the output process. 
 
Solution 
 
The problem can be solved in two ways. We can directly solve the convolution 
integral of (3.140), or obtain the power spectral density )( fS yy  using (3.141), and 

then take the inverse Fourier transform of .)( fS yy  We shall solve this problem 
using both methods. 
 
Method 1: For τ < 0, we have from Figure 3.25, 

αταλ
τ

∞−

ατ−αλ+
τ

∞−

λ−τα− =λα=λαα=τ−∗τ ∫∫ edeedeehh
2
α)()( 22)(       

For τ > 0, we have 

ατ−αλ

∞−

λ−τα− =λαα=τ−∗τ ∫ edeehh
2
α)()(

0
)(  

Hence, 










≥
α

≤τ
α

=τ−∗τ=τ
ατ−

ατ

0,
2

0,
2)()()(

τe

e
hhg

  

  
 

Consequently, 

 

 
 
 
 
Figure 3.25  Impulse response with τ as parameter. 
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








≥
α

≤
α

=τ∗τ=τ
ατ−

ατ

0,
4

0,
4)()()(
0

0

  τe
N

  τ e
N

gRR xxyy

 
 

or 

τα−α
=τ e

N
Ryy 4

)( 0  

Method 2: From (3.141), we see that we first need to determine the Fourier 
transform )( fH  of the impulse response h(t). Thus, 

α+
α

=α=α= ∫∫
∞

α+π−
∞

π−α−

πfj
dtedteefH t f jtfj

2
)(

0

)2(

0

2  t  

The magnitude of )( fH  squared is 

222

2
2

4
)(

α+π
α

=
f

fH  

while the output power spectral density is 

22

2
02 2
4

)()()(
α+ω

αα
==

NfHfSfS xxyy  

where ω = 2πf. Taking the inverse Fourier transform of ,)( fS yy  we obtain the 
autocorrelation function, shown in Figure 3.26, to be 

 
 
 
 
 

 
 
 
 
Figure 3.26  Autocorrelation function of Y (t). 
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4
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τα−α
=τ e

N
Ryy 4

)( 0  

The results of both Method 1 and Method 2 agree. 
 
3.6.2 Systems with Multiple Terminals 
 
Linear time-invariant systems may have more than one input and/or output. A 
simple case would be a system with one input and two outputs, as shown in Figure 
3.27. The relationship between the output processes Y(t) and Z(t) may be obtained 
from (3.141) as  

   )()()( 2
1 fSfHfS xxyy =          (3.142) 

and 

      0)(,
)(
)()()()()( 1

2

1

22
2 ≠== fH

fH
fHfSfSfHfS yyxxzz            (3.143) 

In a similar manner, we can obtain the cross-spectral densities of the random 
processes Y(t) and Z(t) to be 

  )()()()()()( 212 fHfHfSfHfSfS xxxyzy
∗==        (3.144) 

and 

  )()()()()()( 212 fHfHfSfHfSfS xxyxyz
∗∗ ==        (3.145) 

In time domain, we have 

              )()()()( 21 τ∗τ−∗τ=τ hhRR xxzy         (3.146) 

 
 
 
 
 
 
Figure 3.27  System with multiple terminals. 
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and 

             )()()()( 21 τ−∗τ∗τ=τ hhRR xxyz         (3.147) 

If Y(t) and Z(t) are orthogonal, then .0)()( =τ=τ yzzy RR  In this case, the system 
is said to be disjoint because their transfer functions do not overlap; that is, 

.0)()( 21 =fHfH  
 
 
3.7 ERGODICITY 
 
A random process X(t) is ergodic if all of its statistics can be determined (with 
probability one) from a sample function of the process. That is, the ensemble 
averages equal the corresponding time averages with probability one. This is a 
more restrictive process, as shown by the Venn diagrams of Figure 3.28. 

Usually, we are not interested in estimating all the ensemble averages of a 
random process, but rather we are concerned with weaker forms of ergodicity, 
such as ergodicity in the mean and ergodicity in the autocorrelation. 
 
3.7.1 Ergodicity in the Mean 
 
A random process X(t) is ergodic in the mean if the time-averaged mean value of a 
sample function x(t) is equal to the ensemble-averaged mean value function. That 
is, 

            ><= )( )]([ txtXE          (3.148) 

where the symbol >⋅<  denotes time-average, and < x(t) > is defined to be 

     ∫
−

∞→
=><

T

TT
dttx

T
tx )(

2
1lim )(         (3.149) 

 
 
 
 
 
 
 
 
 
Figure 3.28  Sets of different classes of processes. 
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The necessary and sufficient condition under which the process X(t) is ergodic in 
the mean is 

                  2)(
2
1lim x

T

T
xxT

mdR
T

=ττ∫
−

∞→
         (3.150) 

where mx  = E[X(t)] is the mean value of X(t). 
 
3.7.2 Ergodicity in the Autocorrelation 
 
The random process X(t) is ergodic in the autocorrelation if  

                 >τ+<=τ )()()( txtxRxx                        (3.151) 

>τ+< )()( txtx  denotes the time-averaged autocorrelation function of the sample 
function x(t), and is defined as  

                     ∫
−

∞→
τ+=>τ+<

T    

TT
dttxtx

T
 txtx )()(

2
1lim)()(        (3.152) 

The necessary and sufficient condition for ergodicity in the autocorrelation is 
that the random variables )()( tXtX τ+  and )()( α+α+τ+ tXtX  become 
uncorrelated for each τ as α approaches infinity. 
 
Example 3.12 
 
Consider the random process ,)Θ2cos()( +π= tfAtX c  where A and fc are 
constants, and Θ is a random variable uniformly distributed over the interval 

]π2,0[ . 
 
Solution 
 
It was shown in Example 3.2 that the mean and autocorrelation functions of X(t) 
are 0)]([ =tXE  and )τπ2cos()2/()τ( 2

cxx fAR = . Let the sample function of the 
process X(t) be 

   )2cos()( θ+π= tfAtx c   

The time-averaged mean and the time-averaged autocorrelation are  
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0)2cos(
2

lim)( =θ+π=>< ∫
−

∞→

T

T
cT

dttf
T
Atx

   
  

and 

)2cos(
2

)2cos(])(2cos[
2

lim)()(

2

2

τπ=

θ+πθ+τ+π=>τ+< ∫
−

∞→

c

T

T
ccT

fA

dttftf
T

Atxtx

                         

    

 

Hence, the process X(t) is ergodic in the mean and in the autocorrelation. 
 
3.7.3 Ergodicity of the First-Order Distribution 
 
Let X(t) be a stationary random process. Define the random process Y(t) as 





>
≤

=
t

t

xtX
xtX

tY
)(,0
)(,1

)(
    
     

          (3.153) 

We say that the random process X(t) is ergodic in the first-order distribution if 

   ∫
−

∞→
=

T    

TTX dtty
T

txF )(
2
1lim);(         (3.154) 

where FX (x ; t) = P[ X(t) ≤ x(t)] and y(t) is a sample function of the process Y(t). 
The necessary and sufficient condition under which the process is ergodic in 

the first-order distribution is that X(t + τ) and X(t) become statistically independent 
as τ approaches infinity. 
 
3.7.4 Ergodicity of Power Spectral Density 
 
A wide-sense stationary process X(t) is ergodic in power spectral density if, for 
any sample function x(t), 

           
2    

π2)(
2
1lim)( ∫

−

−

∞→
=

T

T

tfj

Txx dtetx
T

fS                (3.155) 

except for a set of sample functions that occur with zero probability. 
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3.8 SAMPLING THEOREM 
 
We first give a brief description of the sampling theorem for deterministic signals. 
Let g(t) be a bandlimited signal to a frequency fm Hz, where fm is the highest 
frequency such that its Fourier transform )( fG = 0 for mff > , as shown in 
Figure 3.29. Ideally, sampling the signal g(t) is multiplying it by )(tp  train of 
impulses, as shown in Figure 3.30, to yield 

         )()()( tptgtg s =          (3.156) 

where gs(t) is the sampled signal, as shown in Figure 3.31. Since the sampling 
function p(t) is periodic, it can be represented by its Fourier series to yield  

         ∑
∞

−∞=

π

=
n

T
t n  j

nectp
2

)(                       (3.157) 

where cn is the nth Fourier coefficient given by  

                     
T

dtet
T

dtetp
T

c
T

T

jT

T

j
n

1)(1)(1 2

2

22

2

2

=δ== ∫∫
−

π
−

−

π
−

T
t n  

T
t n  

              (3.158) 

 
 
 
 
 
 
 

(a)      (b) 

Figure 3.29  (a) Signal g(t), and (b) spectrum of g(t). 

         
 
 
 
 
 
 
 
Figure 3.30  Sampling function.      Figure 3.31 Sampled signal. 
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T/1  is the fundamental frequency of the periodic signal p(t), which is also the 
sampling frequency Tf s /1=  Hz. Substituting (3.157) and (3.158) in (3.156), we 
obtain  

          ∑
∞

−∞=

π=
n

tfnj
s

setg
T

tg   2)(1)(               (3.159) 

The spectrum of the sampled signal, from the definition of the Fourier transform, 
is given by 

            ∫ ∑ ∑
∞

∞−

∞

−∞=

∞

−∞=

−π− −==
n n

ss
t ff j

ss nffGfdtetgfG s )()( )(2       (3.160) 

and is shown in Figure 3.32. We observe that the original signal can be recovered 
by just using a lowpass filter as shown in dashed lines. We observe also that the 
sampling rate is at least 2fm per second. The minimum frequency, ms ff 2=  
samples per second, is called the Nyquist rate. Sampling with a frequency below 
the Nyquist rate results in aliasing error as shown in Figure 3.33, and the original 
signal cannot be recovered. We see from (3.157) that sampling introduces a 
scaling constant  of  ,/1 Tf s =   and  thus  to  remove it we select the filter to be of  

 
 
 
 
 
 
 

 
Figure 3.32  Spectrum of the sampled signal. 

 
 
 
 
 
 
 
 
 
Figure 3.33  Aliasing. 
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height T. Assuming the filter bandwidth is one-half the sampling frequency, the 
impulse response of the ideal lowpass filter with gain T is  

          ∫
−

==
2

2

2   sinc)(
s

s

f

f
s

tf πj tfdfeTth         (3.161) 

The output of the lowpass reconstruction filter is the sum of all output samples, as 
shown in Figure 3.34, to yield 
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where ,πsinπsinc xx/ x =  ,2/1 mfT =  and ( )mfng 2/  are samples of g(t) taken 
at K     nfnt m ,2,1,0 ,2/ ±±== .  
 
Theorem.   A bandlimited signal of finite energy with no frequency higher than fm 
Hz may be completely recovered from its samples taken at the rate of 2fm per 
second. 

If now X(t) is a wide-sense stationary random process with a bandlimited 
power spectrum density  such  that  0)( =fS xx   for  mff > ,  the inverse Fourier 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.34  Reconstructed signal. 

 g(t) 

Sample of g(t) 

(n – 2)T (n – 1)T  n T  (n +1)T 

 t 



Signal Detection and Estimation 
 

192

transform of )( fS xx  is just the autocorrelation function ,)(τxxR  and thus from 
(3.162), )(τxxR  can be expressed as  
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              (3.163) 

where ( )mxx fnR 2/  are samples of the autocorrelation function )(τxxR  taken at 
.,2,1,0   ,2/ K±±==τ   nfn m  The sampling representation of )( aRxx −τ , a an 

arbitrary constant, can be written in terms of the shifted sample sequence to yield 
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and making the change of variables τ – a to τ, we obtain  
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An analogous sampling theorem may be stated for random processes. 
 
Theorem.  Let X(t) be a wide-sense stationary random process bandlimited to the 
frequency ;),( mm ff−  that is, 0)( =fS xx  for .mff >  Then, 
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    (3.166)   

where mfT 2/1=  and ( )mfnX 2/  are samples of )(tX  taken at 
,2/ mfnt = .    n K,2,1,0 ±±=  

The samples ( )mfnX 2/ are in this case random variables, and the equality of 
(3.166) holds in the mean-square sense. That is, the mean-square value of the 
difference of the two sides of the equation is zero. Hence, we must show that, as 

,∞→n  
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Let 
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then, 
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Using (3.168), the first term of (3.169) may be written as  
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We also have from (3.165), with τ = 0 and a = t,  
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Hence, 

{ } 0)()](ˆ)([ * =−  tXtXtXE         (3.172) 

We now compute the second terms of (3.169), 
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−∞=






 −−=−

m
m

T
tmTXtXtXEtXtXtXE      sinc)()](ˆ)([)(ˆ)](ˆ)([ *  
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    





 −














 −−−−= ∑ ∑

∞

−∞=

∞

−∞=
m

T
tn

T
tmTnTRmTtR

m m
xxxx sincsinc)()(      (3.173) 

Using (3.164) with τ = t and a = mT, we have  

∑
∞

−∞=






 −−=−

n
xxxx n

T
tmTnTRmTtR   sinc)()(        (3.174) 

and hence, after substituting (3.174) in (3.173), we have 

{ } 0)(ˆ)](ˆ)([ * =−  tXtXtXE         (3.175) 

The results of (3.172) and (3.175) show that the equality of (3.166) holds in the 
mean-square sense. 
 
 
3.9 CONTINUITY, DIFFERENTIATION, AND INTEGRATION 
 
3.9.1 Continuity 
 
We know from calculus that a function )(xf is said to be continuous at a point 

0xx = , if )(xf is defined at x0, )(lim
0

xf
xx→

 is a real number, 

and .)()(lim 0
0

xfxf
xx

=
→

 Consequently, we say that a real deterministic function 

x(t) is continuous at a given point t0 if  

    )()(lim 0
0

txtx
tt

=
→

         (3.176) 

If t0 takes any real value, ,0 ∞<<−∞ t  then the function x(t) is said to be 
continuous. 

This concept of continuity can be extended to random processes, since a 
random process is a set of sample functions with associated probabilities, making 
the ensemble of the process. Hence, we say that the random process X(t) is 
continuous at a given point t0 if all sample functions are continuous at t0. That is,  

         0)]()(lim[ 0
0

=≠
→

tXtXP
tt

        (3.177) 

or 
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   1]at  continuous)([ 0 =ttXP             (3.178) 

This kind of continuity is called strict continuity. However, in many applications 
we are interested in a less “strong continuity” for many purposes, which is referred 
to as stochastic continuity. The most attractable stochastic continuity is continuity 
in the mean-square sense. 

A random process X(t) is called mean-square continuous (m. s. continuous), or 
continuous in the mean-square sense, if  

   0])()([lim 2

0
=−τ+

→τ
tXtXE         (3.179) 

Note that  

  )]()0([2lim])()([lim
0

2

0
τ−=−τ+

→τ→τ
xxxx RRtXtXE        (3.180) 

which is equal to zero if 

         )0()(lim
0 xxxx RR =τ

→τ
         (3.181) 

Hence, X(t) is continuous in the mean-square sense if and only if its 
autocorrelation function Rxx (τ) is continuous at τ = 0. 

Note that for real wide-sense stationary processes, the autocorrelation function 
)(τxxR  is an even function of τ as given by (3.26). Hence, the continuity at 

0τ = is violated for the three possible cases of Figure 3.35. 

 

 
 
 
 
 
 
 
 

 
       (a)               (b)             (c) 

 
Figure 3.35  Rxx (τ) not continuous at τ = 0: (a) isolated point, (b) vertical asymptote, and (c) impulse. 
 

Rxx (τ) 

 τ  τ 

Rxx (τ) 

 τ 

Rxx (τ) 
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Example 3.13 
 
Show that if the random process X(t) is mean-square continuous, then the mean 
E[X(t)] is continuous. 
 
Solution 
 
Knowing that X(t) is mean-square continuous, we can write 

)]()([])()([ 22 tXtXEtXtXE −τ+≥−τ+  

We have just shown that the left side of the above inequality goes to zero when 
0→τ  for X(t) to be mean-square continuous. Hence, )]()([2 tXtXE −τ+  goes to 

zero as ;0→τ  that is, 

   )]([)]([lim
0

tXEtXE =τ+
→τ

           (3.182) 

and the proof is complete. 
 

We can also show that if X(t) is mean-square continuous, then 

   )](lim[)]([lim
00

τ+=τ+
→τ→τ

tXEtXE         (3.183) 

that is, we can interchange the expectation and limiting operations. 
 
3.9.2 Differentiation 
 
Again, from calculus, if ε−ε+

→ε
/)]()([lim 110

xfxf  exists, then it is called the 

derivative of )(xf at x = x1. If the function is differentiable at a point ,1xx =  then 
it is continuous at x = x1. Similarly, the “ordinary derivative” of a random process 
X(t) is given by 

         
ε

ε−ε+
==

→ε

)()(
lim

)(
)('

0

XtX
dt

tdX
tX         (3.184) 

provided that all sample functions of X(t) are differentiable, which is too 
restrictive. Hence, we prefer talking about the derivative of a random process in 
the mean-square sense. We say that X(t) is mean-square differentiable if there 
exists a random process Y(t), such that 
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          0)()()(lim
2

0
=


















 −
ε

ε−ε+
→ε

tYXtX         (3.185) 

for every t. Y(t) is the mean-square derivative process of X(t) and is denoted 
)(' tX . 
Assuming )(' tX exists, the cross-correlation function between X(t) and 
)(' tX is given by 

ε
−ε+

=







ε
−ε+

=









ε
−ε+

==

→→

→ε

),(),(
lim

)()()()(
lim

)()(
lim)()](')([),(

2121
0ε

2121
0ε

22
012121'

ttRttRtXtXtXtX
E

tXtX
tXEtXtXEttR

xxxx

xx

             

   
 

          
2

21 ),(
t

ttRxx

∂
∂

=        (3.186) 

Similarly, we can also show that the cross-correlation function between )(' tX and 
X(t) is directly related to the autocorrelation function of X(t), such that  

   
1

21
21'

),(
),(

t
ttR

ttR xx
xx ∂

∂
=          (3.187) 

The autocorrelation function of )(' tX  can now be derived, 

ε
−ε+

=







ε
−ε+

=









ε
−ε+

==

→→

→ε

),(),(
lim

)(')()(')(
lim

)('
)()(

lim)](')('[),(

21'21'
0ε
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0ε

2
11

02121''

ttRttRtXtXtXtX
E

tX
tXtX

EtXtXEttR

xxxx

xx

       

 
 

                                   
1

21' ),(
t

ttRxx

∂
∂

=         (3.188) 

Substituting for the expression of ),( 21' ttRxx  given in (3.186), we obtain 
),( 21'' ttR xx  to be  

   
21

21
2

21''
),(

),(
tt

ttR
ttR xx

xx ∂∂
∂

=         (3.189) 
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If X(t) is stationary in the wide sense, then the mean is constant and the mean 
of )(' tX is zero; that is, 

0)]('[ =tXE                       (3.190) 

Also, )(),( 21 τ= xxxx RttR , where .21 tt −=τ  Noting that τ= ddt1  and 
τ−= ddt2 , (3.186), (3.187), and (3.189) can be rewritten as 

   )('
)(

)(' τ−=
τ
τ

−=τ xx
xx

xx R
d

dR
R         (3.191) 

     )('
)(

)(' τ=
τ
τ

=τ xx
xx

xx R
d

dR
R         (3.192) 

and  

                  )(
)( ''

2

2

'' τ−=
τ

τ
−= xx

xx
xx R

d
Rd

R              (3.193) 

At τ = 0, we have 

            { }
0

''2
'' )()]('[)0(

=τ
τ−== xxxx RtXER        (3.194) 

Equation (3.194) is valid assuming X(t) is mean-square differentiable. The above 
results can be generalized to higher-order derivatives to yield 

               











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m

m

n
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xx dt
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EttR mn
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21 ),(
∂∂

∂
=

+

         (3.195) 

and 

 











=

m
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yx dt
tYd
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tXd

EttR mn
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1

1
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)()(
),()()( mn
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mn
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ttR

21

21 ),(
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∂
=

+

       (3.196) 

where the superscripts in parentheses, (n) and (m), denote the derivatives of the nth 
order and mth order, respectively.  

If X(t) and Y(t) are jointly wide-sense stationary, then (3.195) and (3.196) 
become 
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              (3.197) 

and 

    )()1(
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)1()()()( )(
)()( τ−=
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                           (3.198) 

3.9.3 Integrals 
 
The Riemann integral of an ordinary function )(xf  is defined as 

         ∫ ∑
=∞→

=
b

a

n

k
kkn

xxfdxxf
1

∆)(lim)(          (3.199) 

where xk is an arbitrary point in the kth subinterval ∆xk , k = 1, 2, …, n. 
For a real random process X(t), the existence of the integral 

 ∫=
b

a
dttXI )(           (3.200) 

in the strict sense means existence as a Riemann integral for every sample function 
x(t). In this case, I is a random variable with sample values 

∫=
b

a
dttxi )(          (3.201) 

where x(t) is a sample function of X(t), and thus (3.201) may not necessarily exist 
for every sample function. We define the mean-square integral of the random 
process X(t) as 

    ∫ ∑
=∞→

==
b

a

n

k
kkn

ttXdttXI
1

∆)(lim)(          (3.202) 

The integral exists when 
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kkt

ttXIE
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         (3.203) 

In this case, the mean of I is given by 

  ∫ ∫∫ ==
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
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






=

b

a

b

a
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b
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dttmdttXEdttXEIE )()]([)(][        (3.204) 

the mean-square value is 

      ∫ ∫∫ ∫ =
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





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
= ∗

b

a

b

a
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b

a
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dtdtttRdtdttXtXEIE 21212121
2 ),()()(][        (3.205) 

and the variance is 

∫ ∫∫ ∫ −==σ=
b

a

b

a
xxxx

b

a

b

a
xxi tmtmdtdtttRdtdtttCI )()(),(),(]var[ 2121212121

2  

      (3.206) 

If X(t) is stationary, and we redefine I as a time average to be 

     ∫
−

=
T

T
dttX

T
I

    
)(

2
1          (3.207) 

Then, the variance I is  

∫ ∫
− −

−=σ=
T

T

T

T
xxi dtdtttC

T
I

       

21212
2 )(

4
1]var[         (3.208) 

Letting 21τ tt −= , and changing the double integral in t1 and t2 to one integral in τ 
as we did in Section 3.3, we have 

            ∫∫ ∫
−− −

τττ−=−
T

T
xx

T

T

T

T
xx dCTdtdtttC

2

2
2121 )()2()(    

       
       (3.209) 

Thus, the variance becomes 
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                 (3.210) 
 
 
3.10 HILBERT TRANSFORM AND ANALYTIC SIGNALS 
 
Consider a linear system whose transfer function is given by 

   




<
>−

=
0,
0,

)(
      f  j 
      fj

fH
 

         (3.211) 

Note that 1)( =jfH  for all frequencies; that is, it is an all-pass filter. The phase is 
given by 

        










<
π

>
π

−
==

0,
2

0,
2)()]([arg

f

f 
jfHjfH

       

   
         (3.212) 

The amplitude and phase responses of such a system, called a quadrature filter, are 
shown in Figure 3.36. The impulse response of this filter, shown in Figure 3.37, is 
given by 

    
t

th
π

=
1)(          (3.213) 

If x(t) is the input to the quadrature filter as shown in Figure 3.38, the output y(t) is 
called the Hilbert transform of x(t), H{x(t)}, and is given by 

 

 
 
 
 
 
 

 

Figure 3.36  Amplitude and phase response of a quadrature filter. 

 f  f 
 0  0 

 1 
 π/2 

 -π/2 

)( fH Phase of H ( f ) 
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Figure 3.37  Impulse response of a quadrature filter. 

 
 
 
 
 
Figure 3.38  Hilbert transform of  x(t). 

  == )(ˆ)( txty  H{x(t)} ∫
∞

∞− −
=∗= τ

τ
)τ(

π
1)()( d

t
x

thtx        (3.214) 

If now X(t), a wide-sense stationary random process, is the input of a 
quadrature filter with autocorrelation function )(τxxR  and power spectral density 

)( fS xx , then the output Y(t) is the Hilbert transform of X(t) defined by 

   ∫
∞

∞− −
== τ

τ
)τ(

π
1)(ˆ)( d

t
X

tXtY         (3.215) 

The power spectral density of the Hilbert transform of X(t) is  

  )()()()()( 2
ˆˆ fSfHfSfSfS xxxxxxyy ===        (3.216) 

Hence, the autocorrelation function of the Hilbert transform is  

)()(ˆˆ τ=τ xxxx RR          (3.217) 

From (3.135), the cross-spectral density is 

 t 

h(t) 

 0 

t
th

π
=

1)( x (t) =)(ty  H{x(t)}= )(ˆ tx   
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

<
>−

==
0,)(
0),(

)()()(ˆ ffjS
ffjS

fHfSfS
xx

xx
xxxx       

  
       (3.218) 

which is purely imaginary. Hence, using the cross-correlation function, we have by 
definition 

∫
∞

∞−

τπ− ττ= deRfS fj
xxxx

2
ˆˆ )()(                (3.219) 

  ∫∫
∞

∞−

∞

∞−

ττπτ−ττπτ= dfRjdfR xxxx   2sin)(2cos)( ˆˆ        (3.220) 

Since )(ˆ fS xx is purely imaginary, then 

   02cos)(ˆ =ττπτ∫
∞

∞−

dfR xx                 (3.221) 

The cosine is an even function, and thus )(ˆ τxxR  is odd, yielding  

          )()( ˆˆ τ−=τ− xxxx RR          (3.222) 

and 

0)0(ˆ =xxR          (3.223) 

Since )()()(ˆ fHfSfS xxxx =  and ),()()(ˆ fHfSfS xxxx
∗=  it also follows that 

    )(ˆ)(ˆ τ=τ xxxx RR          (3.224) 

and  

   )(ˆ)(ˆ)(ˆ τ−=τ−=τ xxxxxx RRR         (3.225) 

Finally, we observe that 1)()( −=jfHjfH . This implies that the Hilbert 
transform of a Hilbert transform is the negative of the original signal; that is, 

    )()(ˆ̂ tXtX −=          (3.226) 
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From (3.217) and (3.225), we can write 

   )(ˆ̂)()(ˆˆ τ−=τ=τ xxxxxx RRR         (3.227) 

Consider next a linear system whose transfer function is given by  

   




<
>

=
0,0
0,2

)(
f
f

fH
     
     

             (3.228) 

as shown in Figure 3.39.  The impulse response of this system is  

           
t
j

tth
π

+δ= )()(          (3.229) 

Such a system changes a real signal into a complex signal.  The transfer function 
can be rewritten as 

                        )(1)( fjQfH +=          (3.230) 

where )( fQ  is the transfer function of the quadrature filter. If a signal x(t) is 
applied to this system, as shown in Figure 3.40, the output y(t) is called the 
analytic signal associated with x(t). 

Similarly, the analytic process associated with X(t) is defined to be  

              )(ˆ)()(~)( tXjtXtXtY +==                          (3.231) 

 

 
 
 
Figure 3.39  Transfer function. 

 
 
 
 
 
Figure 3.40  System for analytic signal. 
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The autocorrelation function of Y(t) is  

 })](ˆ)([)](ˆ)({[)]()([)( tXjtXtXjtXEtYtYERyy −+τ+=τ+=τ ∗     

             )]()([)()( ˆˆˆˆ τ−τ+τ+τ= xxxxxxxx RRjRR         (3.232) 

Knowing )()( ˆˆ τ=τ xxxx RR  and ,)(ˆ)()( ˆˆ τ=τ−=τ xxxxxx RRR  the autocorrelation 
function of the analytic signal becomes 

          )](ˆ)([2)]()([2)()( ˆ~~ τ+τ=τ+τ=τ=τ xxxxxxxxyyxx RjRjRRRR       (3.233) 

Taking the Fourier transform of (3.233), we have  

)]()([2)()( ˆ~~ τ+τ== xxxxyyxx jSSfSfS         (3.234) 

Using (3.218), we obtain 

       


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>

==
0,0
0,)(4

)()(~~
f

  f fS
fSfS xx

xxxx                
 

        (3.235) 

We observe that the power spectral density of an analytic signal is zero for 
negative frequencies, and from (3.231) 

             =)(tX ℜe { })(~ tX          (3.236) 

that is, X(t) is the real part of the analytic signal.  From (3.233), 

   
2
1)( =τxxR  ℜe )}({ ~~ τxxR          (3.237) 

 
3.11 THERMAL NOISE 
 
Electrical noise arising from the random motion of electrons in conductors is 
referred to as thermal noise. It has been shown that the power spectral density of 
thermal noise voltage across the terminals of a resistor R is given by 

   
22

2
2)(

ω+α

α
= kTRfSnn          (3.238) 



Signal Detection and Estimation 
 

206

where 231038.1 −×=k  J/ K is the Boltzmann’s constant, and T is the absolute 
temperature in K. A plot of the power spectral density of thermal noise is shown in 
Figure 3.41. However, α is in the order 1014 rad/s or 1013 Hz =104 GHz, which is 
greater than most frequencies used in electronic circuit applications. Thus, 

1/)( 222 →ωω+α , and thermal noise is modeled as a white noise process with a 
flat spectrum of value 2kTR V2/Hz as shown in Figure 3.42. 

In addition, since the number of electrons in the resistor is very large, with 
statistically independent random motions, from the central limit theorem, thermal 
noise is modeled as Gaussian with zero mean. Hence, thermal noise voltage is a 
zero-mean white Gaussian process. The resistor can be modeled by the Thevenin’s 
equivalent circuit, consisting of a noiseless resistor in series with a noise voltage 
source, as shown in Figure 3.43(a) of mean-square value  

        kTRtVE n 4)]([ 2 =          (3.239)  

or by Norton’s equivalent circuit, consisting of a noiseless resistor in parallel with 
a noise current source, as shown in Figure 3.43(b), of mean-square value 

         kTGtIE n 4)]([ 2 =           (3.240) 

where RG /1=  is the conductance. The power spectral density of the noise source 
voltage or the noise source current are, respectively, 

 
 
 
 
 
 
 
 
 
 
Figure 3.41  Power spectral density of thermal noise. 

 

 
 
 
Figure 3.42  White noise spectrum. 
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         (a)              (b) 
Figure 3.43  Noisy resistors: (a) Thevenin’s equivalent circuit, and (b) Norton’s equivalent circuit. 

   zkTRfS
nnvv HV2)( 2=          (3.241) 

and 

              kTGfS
nnii 2)( =    A2/Hz        (3.242) 

Nyquist’s theorem.  Consider a passive RLC one-port network as shown in Figure 
3.44. The voltage at the terminal pair in v(t) and Z(jω) is the impedance seen 
looking into the port. Then, the power spectral density of the open-circuit noise 
voltage at the terminal pair due to all thermal noise sources is given by 

   kTfS
nnvv 2)( = ℜe{Z(jω)}             (3.243) 

or, the power spectral density of the short-circuit noise current is given by 

   kTfS
iivv 2)( = ℜe{Y(jω)}         (3.244) 

where )(/1)( ω=ω jZjY  is the network’s input admittance, and .2 fπ=ω  
 
Example 3.14 
 
Determine the power spectral density of the voltage v(t) at the terminal pair of the 
RC network shown in Figure 3.45 due to thermal noise generated in R, using: 

 
 
 
 
 

Figure 3.44  Passive RLC network. 
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Figure 3.45  RC network.                                                   Figure 3.46  Thevenin’s equivalent circuit. 

(a) Thevenin’s equivalent circuit. 
(b) Norton’s equivalent circuit. 
(c) Nyquist’s theorem. 

 
Solution 
  
(a) Using Thevenin’s equivalent circuit, the resulting circuit is shown in Figure 
3.46. The transfer function from the noise source is, by voltage divider, 

RCj
Cj

R

Cj
jH

ω1
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ω
1

ω
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)ω(
+

=
+

=  

It follows that  

( )2
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1
2)()()(

00 RC
kTRjHSfS

nnvvvv
ω+

=ωω=  

(b) Using Norton’s equivalent circuit, the resulting circuit is shown in Figure 3.47. 
The transfer function is in this case 

 

 
 
 
 
Figure 3.47  Norton’s equivalent circuit. 
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The power spectral density of the output voltage is then 
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2)()()(

00 RC
kTR

RC
R

R
kTjHSS

nniivv
ω+

=
ω+

=ωω=ω  

(c) The impedance seen looking into the terminal pair of the network is 

( ) ( )22 1111
)(

RC
RCj

RC
R

RCj
R

Cj
R

Cj
R

jH
ω+

ω
−

ω+
=

ω+
=

ω
+

ω
=ω  

From Nyquist’s theorem, the power spectral density of the resistor noise voltage 
source is  

kTS vv 2)(
00

=ω ℜe{ }
2)(1

2)(
RC

kTRjZ
ω+

=ω  

We observe that the three results of (a), (b), and (c) agree. 
 

Usually, the power spectral density of a white noise process is denoted  

∞<<∞−= f
N

fSnn ,
2

)( 0         (3.245) 

The autocorrelation function is then 

      )(
2

)( 0 τδ=τ
N

Rnn               (3.246) 

Since the bandwidth of real systems is finite, the integration (3.245) over a finite 
band of frequencies results in a finite average power. 
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Example 3.15  (Noise Equivalent Bandwidth) 
 
Suppose that the zero mean white Gaussian noise process with autocorrelation 
function )()2/()( 0 τδ=τ NRnn is applied to a linear time-invariant system with 
impulse response h(t). Determine the average noise power of the output process. 
 
Solution 
 
The power spectral density of the input white Gaussian noise is given by (3.245) to 
be ∞<<∞−= fNfSnn ,2/)( 0 . Using (3.141), the output noise power spectral 

density is 2
0 )()2/()( fHNfS = , where )( fH  is the transfer function of the 

system. The average power is then 

∫∫
∞∞

∞−

==
0

2
0

20 )()(
2

dffHNdffH
N

Pave         (3.247) 

which is finite if ∫
∞

∞−

dffH 2)( converges.  In such a situation, the concept of noise 

equivalent bandwidth is considered. To define the noise equivalent bandwidth, 
consider the same problem of Example 3.15, but the system’s function is an ideal 
lowpass filter of bandwidth B and zero-frequency response H(0). The average 
noise power at the output is then 

BHNP )0(2
00 =          (3.248) 

In equating (3.247) and (3.248), we obtain the noise equivalent bandwidth, Beq, 
which is defined to be  

        
)0(

)(

2
0

2

H

dffH
Beq

∫
∞

=          (3.249) 

Hence, the average noise power at the output of the linear time-invariant system, 
with a noise equivalent bandwidth Beq, and the input white noise process with 
power spectral density 2/0N , is given by 

      )0(2
0 HBNP eqave =          (3.250) 
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Figure 3.48  Noise equivalent bandwidth of a lowpass system. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.49  Noise equivalent bandwidth of a bandpass system. 

Note that the bandwidth Beq can be interpreted as the bandwidth of a linear time 
invariant system with a rectangular transfer function of zero-frequency  response 
H(0) and bandwidth B, as shown in Figure 3.48. If the system were bandpass, the 
noise equivalent bandwidth is as shown in Figure 3.49. 
 
 
3.12 SUMMARY 
 
In this chapter, we covered the fundamental concepts of random processes. After 
defining the random process, which was considered as a random variable 
(Chapters 1 and 2) with time as a running parameter, we gave the different 
properties of correlations and power spectral densities. We presented the different 
type of random processes; namely, the Gaussian process, the Poisson process, the 
Bernoulli and Binomial processes, the random walk and Winner processes, and a 
brief description of the Markov process. Markov processes will be developed in 
more detail in the next chapter on discrete time processes. The sampling theorem 
and the concepts of continuity, differentiation, and integration, which are well 

   f 
 B  -B  0 

2)( fH  

 Beq 

 Beq  Beq 

   f 

2)( fH  

 0   f0  - f0 
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known for deterministic signals, were developed for stochastic processes. Then, 
we defined the Hilbert transform of stochastic processes and the corresponding 
analytic process signals. We concluded the chapter with a discussion on thermal 
noise and noise equivalent bandwidth. Many examples were solved in some detail 
to remove the ambiguities that may occur.  
 
 

PROBLEMS 
 
3.1 Consider a random process X(t) defined by 

)Θcos()( 0 +ω= tAtX  

where A and ω0 are constants, and Θ is a random variable with probability 
density function 

   




 π

≤θ
π=θ

otherwise     ,0
8

 ,4
)(Θ

  

    
f  

(a)  Find the mean and autocorrelation functions. 
(b)  Is the process stationary? 

3.2 Let =)(ts




 <

=
otherwise,0

2
1,1

)rect(
t

t  

Define the process ,)()( 0TtStX −=  where T0 is a discrete random variable 
taking values 0 and 1 with equal probability.                  
(a)  Determine and sketch the distribution function .)0,( tX xF

t
               

(b)  Determine and sketch the autocorrelation function .),( 21 ttRxx  
 
3.3 Consider the random process defined in Problem 3.1.    

(a)  Is the process ergodic in the mean?      
(b)  Is the process ergodic in the autocorrelation? 

 
3.4 Consider the random process defined by ,)Θcos()( 0 +ω= tAtX  where A and 

ω0 are constants, and Θ is a random variable uniformly distributed over the 
interval (0, 2π). Let Y(t) be the random process defined as Y(t) = X 2(t).        
(a)  Find the autocorrelation function of Y(t).                 
(b)  Is Y(t) a stationary process? 
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3.5 Consider the random process defined by )( )( Θ+ω= tjAetX , where A is a 
random variable with density function  








≥

σ=
σ

−

 otherwise      ,               0

0 ,)(
2

2

2
2

  aea
af

a

A
    

σ2 is constant and Θ is a random variable uniformly distributed over the 
interval (0, 2π). A and Θ are statistically independent. Determine               
(a)  The mean function E[X(t)].                      
(b)  The autocorrelation function .),( 21 ttRxx  

 
3.6 Let X(t) and Y(t) be two statistically independent random processes with 

autocorrelation functions ωτ=τ τ− cos2)( 2eRxx  and .9)( 3 τ−+=τ eRyy  Let 

,)()()( tYtAXtZ +=  where A is a statistically independent random variable 
with mean 2 and variance 9. 
(a)  Determine )(τzzR , the autocorrelation function of .)(tZ                 
(b)  Compute the mean and variance of .)(tZ  

 
3.7 Let X(t) be the random process shown in Figure P3.7. The square wave is 

periodic with period T. The amplitude A is random with zero mean and 
variance σ2.  t0 is governed by a random variable T0, which is uniformly 
distributed over the interval (0, T). A and T0 are statistically independent. 
Determine the autocorrelation function Rxx (t1, t2). 

 
3.8 Let s(t) be the periodic deterministic waveform shown in Figure P3.8. Define 

the random process X(t) = S(t – T0), where T0 is a random variable uniformly 
distributed over the interval (0 , T). 
(a)  Find the autocorrelation function Rxx (t1, t2). Is the process X(t) stationary 

in the wide-sense?  

 
 
 
 
 
 
 
 
 

X(t) 

t 

T 

 t0

Figure P3.7  Random process X(t). 
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Figure P3.8  Deterministic signal s(t). 

(b)  Determine and sketch the distribution function  .)( tX xF
t

 

(c)  Determine and sketch the density function  .)( tX xf
t

 

(d)  Find E[X(t)], E[X 2(t)], and .2
txσ  

(e)  Find < x(t) > and < x2(t) >. 
 
3.9 Let X(t) be a random process with a typical sample function, as shown in 

Figure P3.9. The sample functions are constant during each second interval. 
Their values are governed by statistically independent random variables Ai, 

,...,2,1,0    ±±=i  and uniformly distributed over the interval [ 1− , 1).             
 (a) Determine the second-order density function .)2/3,2/1;0,0(Xf  
 (b) Let )Θ()( −= tXtY , where Θ is a uniformly distributed random variable 

over the interval [0, 1) and statistically independent of the Ais. Determine 
the second-order density function .)2/3,2/1;0,0(Yf  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure P3.9  A typical sample function of X(t). 
 
 
 
 

x(t) 
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 t 

   1 

  -1 

   1    0 

   2    3 
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Figure P3.10  System function for X(t). 

3.10 Let X(t) be a wide-sense stationary process with autocorrelation function  





 <−

=
otherwise        ,       0

1         , 1
)(

ττ
τxxR  

applied to the system shown in Figure P3.10. Determine and sketch the     
output autocorrelation function Ryy (τ). 

 
3.11 Let X(t) and Y(t) be two orthogonal processes with power spectral densities 





 <−

==
otherwise ,0

1,1
)()(

              
       ff

fSfS yyxx  

Define a new process Z(t) = Y(t) – X(t – 1). Determine and sketch the power 
spectral density .)( fS zz  

 
3.12 Let X(t),  a  zero-mean, wide-sense stationary real Gaussian random process 

with power spectral density f
xx eNfS α−= )2/()( 0 , be passed through the 

nonlinear memoryless cubic system given in Figure P3.12. Determine the 
mean-square value )]([ 2 tYE  of the output process in terms of N0 and α. 

 
 
 
 
 
Figure P3.12  Memoryless cubic system 
 

 

 Delay 1  X(t) 

Y(t)  

)()( 3 tXtY =
X(t) 

Y(t) 
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Figure P3.13  System function for X(t). 

3.13 Let X(t) be a random process with the triangular autocorrelation function 





 <ττ−

=τ
 otherwise,0

1,1
)(

       xxR  

If X(t) is applied to the system shown in Figure P3.13 with )1(δ)(1 −= tth   
and )2(δ)(2 −= tth , then determine and sketch the output autocorrelation 
function of the output Y(t). 

 
3.14 (a) Let N(t), a stationary process with power spectral density 

,)rect()( ffSnn =  be applied to the system shown in Figure P3.14(a). 
Determine and sketch the output power spectral density .)( fS yy  

(b) If the process N(t) is added  to two stationary processes U(t) and V(t) 
with cross-spectral density 





 <−

=
otherwise,0

2
1,

2
1

)(
          

 ff
fSuv  

as shown in Figure P3.14(b), then determine and sketch the cross-
spectral density .)( fS wz  Assume that the noise process is statistically 
independent of U(t) and V(t), and that U(t) and V(t) are zero mean. 

 
 
 
 
 

(a)     (b) 
Figure P3.14   (a) System function for N(t), and (b) system combining N(t),U(t), and V(t). 

X(t) 
Y(t)

h1(t) 

h2(t) 

N(t) Y(t) 

Delay 1 

W(t) 

Z(t) 

N(t) 

U(t) 

V(t) 
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3.15 Let X(t) be the input process to a linear system with impulse response  





 ≥

=
−

  otherwise,0
0,)(

       
 teth

t       

X(t) is stationary in the wide-sense with autocorrelation  function 





 ≤ττ−

=τ
otherwise,0

1,1
)(

             
        

xxR  

Determine the autocorrelation function of the output process Ryy (τ). 
 
3.16 The random process X(t) with autocorrelation function  

constant,)(     α=τ τα−eRxx  

is applied to the RC filter shown in Figure P3.16. Determine the output     
power spectral density .)( fS yy  

 
3.17  Let X(t) be the input process to the RLC network shown in Figure P3.17. X(t) 

is a wide-sense stationary process with mean 2)( =tmx  and autocorrelation 
function 

 
 
 
 

 
 
 
Figure P3.16 RC filter. 

 
 
 
 
 
 
 
 
Figure P3.17  RLC filter. 

Y(t)  X(t)  
R 

C 

L 

Output  Input  C 
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  τ−+=τ 24)( eRxx  

Find the mean my(t) of the output process and the output power spectral 
density .)( fS yy  

 
3.18 Let N(t) be a bandlimited white noise process with power spectral density  









>

≤
=

Bf

Bf
N

fSnn
,0 

,
2)(

0

    
 

where B denotes the highest frequency. Determine the sampling rates for 
which the noise samples will be uncorrelated. 

 
3.19 Let X(t) be a wide-sense stationary process with power spectral density  





 <−

=
otherwise,0

1,1
)(

           
    ff

fS xx  

and sampled at the Nyquist rate. 
(a) What is the interval between the samples? 
(b) Determine the correlation coefficient between the samples X(nT) and 

X[(n + 1)T]; n arbitrary. 
 
3.20 Let X(t) be a stationary random process with autocorrelation function Rxx (τ). 

Define the stochastic process 

∫ ττ=
t

dXtY
0

)()(  

Is the process Y(t) stationary, given that 

  τ−+=τ 24)( eRxx  

3.21 Let Y(t) be the process defined in Problem 3.20. Obtain the autocorrelation 
function of Y(t) when .)(2),( 2121 ttttRxx −δ=  

 
3.22 Let X(t) be a stationary, real, zero-mean Gaussian process with 

autocorrelation function as shown in Figure P3.22. The random variables Ia 
and Ib are obtained from the integration of the process X(t), such that  
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Figure P3.22  The autocorrelation function. 

∫=
1

0
)( dttXIa  and ,)(

3

2
∫= dttXIb  and the mean-square value of Ia is .3/2  

Determine 
(a) ][ 4

aIE  
(b) ][ ba IIE  

(c) Let ∫=
T

c dttXI
   

0
)(  with T >> 1 second.  Find the variance of Ic. 

 

3.23 Let ∫=
t

dXtY
   

0
τ)τ()( , where X(t) is a stationary random process with 

autocorrelation function .1)( 2 τ−+=τ eRxx  
(a)   Is the random process Y(t) stationary? 
(b)   Determine the autocorrelation function of Y(t) in terms of .)(τxxR  

 
3.24 Let X(t) be a zero-mean wide-sense stationary process with power spectral 

density  








≤−

=

otherwise,0 

,1
)(

        

c
cxx

ff
f
f

fS  

=)(ˆ tX H )}({ tX  is the Hilbert transform of X(t), and )(~ tX  is the 
corresponding analytic signal process. Determine whether the following 
statements are true, possibly true, or false. Justify your answer.   
(a) X(t) and )(~ tX are orthogonal processes. 

(b) j H )(~)}(~{ tXtX = . 

(c)  tfjetX 02)( π  is an analytic signal process. 

 1 

 -1  +1 
τ, seconds 

)(τxxR
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Figure P3.25  RLC network. 

(d) )].([2)](~[ 22 tXEtXE =  
 
3.25 (a)  Determine the power spectral density of V0(t) due to thermal noise for 

the RLC network shown in Figure P3.25.  
(b)  Use Nyquist’s theorem to verify the result found in (a). 

 
3.26 Consider the network shown in Figure P3.26.  For the noise voltage at the  

terminal pairs, determine 
(a)  The power spectral density.                   
(b)  The autocorrelation function.                   
(c) If KΩ11  =R , K4001 =T , KΩ22  =R , K3002 =T , and F10 10−=C , 

compute the root mean-square (rms) value. 
 
3.27 Consider the RL network shown in Figure P3.27.                 

(a)  Determine the power spectral density of the mesh current I(t) due to  
thermal noise. 

(b)  Check the result found in (a) using Nyquist’s theorm. 

 
 
 
 
 

 
 
Figure P3.26 RC network. 

 

 
 
 
Figure P3.27  RL network. 

R 

L C V0(t) 

+ 

_ 

R1(T1) C V0(t) 

+ 

_ 

R2(T2) 
L 

R 

I(t) L 



Random Processes 221

 

 
 
 
 
 
 
Figure P3.28  Linear system.             Figure P3.29  System function. 

3.28 Consider the system shown in Figure P3.28, with impulse .)()( tueth t−=  
The input random process is stationary with mean .xm  
(a) Determine the mean of the output process Y(t). 
(b) Determine the mean and variance of Y(t) if the input X(t) is a zero mean   

white noise process. 
 
3.29 Let N(t), a wide-sense stationary noise with power spectral density  

∞<<∞−= f
N

fSnn ,HzV
2

)( 20  

be applied to a linear filter with the system function shown in Figure P3.29.  
Determine the variance of the output filter Y(t). 
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Chapter 4 
 
 

Discrete-Time Random Processes 
 
 
4.1 INTRODUCTION 
 
In Chapter 3, we developed the concepts of continuous-time processes and 
described briefly the Markov process.  In this chapter, we consider another class of 
random processes; namely, the discrete-time stochastic processes. A discrete 
random process may be a uniformly sampled version of a continuous-time process.  
A discrete random process is a correspondence that maps the sample space into a 
discrete-domain-functional space; that is, a functional space whose member 
functions are defined in a discrete set (time samples). Hence, it is a collection or an 
ensemble of real or complex discrete sequences of time, also called realizations, 
and denoted )(nX .  Many authors use the notation .][~ nx  In our case, we keep 

)(nX  to be consistent with the notation )(tX  of a continuous-time random 
process. Note that for the convenience of notation, we normalize the time with 
respect to the sampling period. Hence, for a fixed n, )(nX represents a random 
variable. One particular ensemble is the discrete-time series or just time series, 
where, for example, the sequence X(n), ,)1( ,... ),1( +−− MnXnX  representing a 
time series, consists of the present observation )(nX  and past )1( −M  
observation at times .1,... ,2,1 +−−− Mnnn  In fact, many discrete-time random 
processes are best approximated by the time series model. In this case, the power 
spectral density is a function of the model parameters, and thus the selection of the 
appropriate model and the estimation of the model parameters are necessary. Such 
an approach is referred to as parametric. If )(nU  is an input driving sequences 
and )(nX  the output sequence, then a general model of the data may be given by 
the following linear difference equation 

    ∑ ∑
= =

−+−−=
p

k

q

k
knUkbknXkanX

1 0
)()()()()(            (4.1) 
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Computing the spectrum using the obtained model parameters is known as 
parametric spectrum estimation. The field of spectrum estimation is wide, and it is 
not the scope of this book. However, in discussing discrete-time random processes 
and their applications, we must introduce the autoregressive (AR) processes, the 
moving average (MA) processes, and the autoregressive moving average (ARMA) 
processes. In order to have a good grasp of these discrete processes and their 
applications for spectrum estimation, the fundamental concepts of matrix 
operations and linear algebra are a prerequisite, and thus they will be given in 
Section 4.2. Such mathematical concepts will also be needed for later chapters.  
We conclude the chapter with Markov chains. Markov chains are a special class of 
Markov processes with discrete states, but with both discrete and continuous times. 
Note that we present the continuous-time Markov chains in this chapter, which 
seems to follow logically, after presenting the essential concepts of discrete-time 
Markov chains, since these concepts must be used when presenting continuous-
time Markov chains. 
 
 
4.2 MATRIX AND LINEAR ALGEBRA 
 
In Chapter 2, we briefly used some concepts of matrices to do some operations. 
We now give, in this section, a review of the fundamentals of matrix and linear 
algebra. 
 
4.2.1 Algebraic Matrix Operations 
 
Matrices are defined as rectangular arrays of real or complex elements. The 
matrices are generally represented by capital boldface letters, whereas the elements 
of a matrix are denoted by lowercase letters. An m × n matrix A with elements aij, 

, , ,2 ,1 mi K=  and mj    ,,2,1 K=  is a matrix with m rows and n columns, as 
given by (4.2). 





















==

mnmm

n

n

aaa

aaa
aaa

L

MMMM

L

L

21

22221

11211

][  ΑΑ                      (4.2) 

A shorthand notation that is sometimes used in describing matrices is 

    ][ ija=A              (4.3) 

When m = n, the matrix is called a square matrix. If m = 1, the m × n matrix 
becomes a 1 × n row matrix called a row vector, given by  
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   ][ 11211 naaa L=a                           (4.4) 

whereas, if n = 1, the m × n matrix becomes an m × 1 column matrix called a 
column vector, given by 

    





















=

1

21

11

ma

a
a

M
a              (4.5) 

Two matrices A  and B  are said to be equal if ijij ba =  for all mi ,,2,1 K    =  and 

.  ,  ,2 ,1 nj K=  The sum and difference of two m × n matrices are performed on 
an element-by-element basis; that is, if  

            ABBAC +=+=              (4.6) 

and 

           ABBAD +−=−=              (4.7) 

then, 

    ijijij bac +=              (4.8) 

and 

    ijijij bad −=              (4.9) 

Note that A  and B  must be of the same dimensions. If α is a scalar, the 
multiplication of an m × n matrix A  by a scalar amounts to multiplying every 
element of A  by α; that is, 

    ija    α=α=α ΑΑ           (4.10) 

If A  is an m × n matrix and B  is a p × q matrix, the product  

    CAB =            (4.11) 
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is defined when A  and B  are conformable; that is, when the number of columns 
n of A  is equal to the number of rows p of ,B  n = p. The product is then given by 

    ∑
=

=
n

k
kjikij bac

1
           (4.12) 

C is an m × q matrix. The matrix multiplication, if defined, is in general not 
commutative; that is, 

    BAAB ≠            (4.13) 

Unlike scalar algebra, where the product ab = 0 means a = 0 or b = 0 or both, the 
matrix product 0=AB does not necessarily mean 0=A  or 0=B , where 0 is the 
null matrix. However, many operations related to associative and distributive laws 
are valid for matrix algebra; namely, 

   B ABA α α)(α +=+            (4.14) 

   CBACBA ++=++ )()(           (4.15) 

   CABBCA )()( =            (4.16) 

ACABCBA +=+ )(            (4.17) 

and 

CABAACB +=+ )(            (4.18) 

The identity matrix or unit matrix I  is an n × n square matrix all of whose 
elements are zero, except the elements aij, i = j, on the main diagonal, which are 
ones. 

The transpose of an m × n matrix A  is an n × m matrix obtained by 
interchanging each row with the column of A  of the same index number, such that  

             





















=

mnnn

m

m

T

aaa

aaa
aaa

L

MMMM

L

L

21

22212

12111

Α           (4.19) 

or 
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    ][ ji
T a=Α            (4.20) 

The superscript T indicates matrix transpose. It can be shown that 

   TTT BABA +=+ )(            (4.21)  

   TTT ABAB =)(             (4.22) 

and 

   TTTT ABCABC =)(            (4.23) 

the conjugate of A, written A  or ∗A , is the matrix obtained from A by changing 
all of its elements by their complex conjugate, such that  

    ][ ∗∗ = ijaΑ            (4.24) 

If all elements of A are real, then A* = A. If all elements are purely imaginary, then 
.AA −=∗  If the transpose of the conjugate of A is equal to A, then A is said to be 

a Hermitian matrix. The order of the two operations, conjugate and transpose, is 
irrelevant. We write 

   ∗∗ == )()( TTH AAA            (4.25) 

or 

    ][ ∗= ji
H aΑ            (4.26) 

or  

   























=

∗∗∗

∗∗∗

∗∗∗

mnnn

m

m

H

aaa

aaa
aaa

L

MMMM

L

L

21

22212

12111

Α           (4.27) 

The superscript H denotes Hermitian. If A is real, then AH = AT, and A is said to be 
symmetric. It can also be shown that 
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    HHH BABA +=+ )(            (4.28) 

and 

         HHH ABAB =)(            (4.29) 

We now show how to compute the determinant of an n × n square matrix. In order 
to write the general expression, we need to define the minors and cofactors. If 

1=n , ][ 11a=Α , and the determinant of A, denoted Α  or det(A), is 
.)det( 11a=Α  If  

2=n , 







=

2221

1211

aa
aa

Α , and 21122211
2221

1211)det( aaaa
aa
aa

−==Α .  If n = 3,  

   















=

333231

232221

131211

aaa
aaa
aaa

Α  

and 
 
 
 
 
 

   
3231

2221
13

3331

2321
12

3332

2322
11 aa

aa
a

aa
aa

a
aa
aa

a +−=              

   )(  )()( 312232211331233321123223332211 aaaaaaaaaaaaaaa −+−−−=  

If now A is an n × n matrix, the minor Mij is the determinant of the )1()1( −×− nn  
matrix, formed from A by crossing out the ith row and the jth column. For 
example, the minors M12, M22, and M32 for the 3 × 3 matrix above are, respectively, 

 
3331

2321
12 aa

aa
M = , 

3331

1311
22 aa

aa
M = , and 

2321

1311
32 aa

aa
M =  

Each element aij of the n × n matrix A has a cofactor Cij, which differs from 
the minor Mij by at most a sign change, such that 

            ij
ji

ij MC +−= )1(                   (4.30) 

333231

232221

131211

13

333231

232221

131211

12

333231

232221

131211

11)det(
aaa
aaa
aaa

a
aaa
aaa
aaa

a
aaa
aaa
aaa

a +−=Α  
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The general expression for the determinant of the n × n matrix A is given by  

          ∑ ∑
= =

+−==
n

j

n

j
ijij

ji
ijij MaCa

1 1
)1()Αdet(                  (4.31) 

Note that any choice of i for i = 1, 2, …, n, yields the same value for the 
determinant of A.  This form of computing the determinant of A by the evaluation 
of a string of )1()1( −×− nn determinants is called Laplace expansion. 

The inverse of an n × n square matrix A is 1−Α , such that 

         IAAAA == −− 11            (4.32) 

The inverse of A exists if the matrix A is nonsingular; that is, the determinant of A 
must be nonzero.  The matrix A is singular if and only if det(A) = 0.  The inverse 
of A can be given by 

             
)det(

1

Α
C

Α
T

=−            (4.33) 

where C is the n × n square matrix of cofactors of A.  CT is called the adjoint 
matrix of A, and is denoted Adj(A). If A, B, and the product AB are all 
nonsingular, it can be shown that 

         111)( −−− = ABAB            (4.34) 

and 

   )det()det()det(    ΒΑΑΒ =                    (4.35) 

We can now define the rank of A, denoted rA or rank(A), as being the size of 
the largest nonzero determinant that can be formed from the matrix A. Hence, if 
the n × n square matrix is nonsingular, its rank is n. The rank of the product of two 
(or more) matrices is smaller than or equal to the smallest rank of the individual 
matrices forming the product; that is, if rA and rB are the respective ranks of A and 
B, then the rank for C, rC, of C = AB is  

         ),min(0 BAC rrr ≤≤            (4.36) 

If A is an n × n square matrix, the trace of A, denoted )(tr Α , is the sum of all 
the diagonal elements of A given by  
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          ∑
=

=
n

i
iia

1
)(tr Α            (4.37) 

If A and B are conformable square matrices, then  

)( tr )(tr )(tr ΒΑΒΑ +=+           (4.38) 

and 

      )(tr )(tr ΒΑΑΒ =            (4.39) 

Some other useful formulas related to the determinant of an n × n matrix and 
its inverse are: 

             TT )()( 11 −− = ΑΑ            (4.40) 

             HH )()( 11 −− = ΑΑ            (4.41) 

              )det()det( ΑΑ =T            (4.42) 

             )(det)det( ΑΑ ∗=H            (4.43) 

           )det()det( ΑΑ nα=α           (4.44) 

where α is a constant, and 

              
)det(

1)det( 1

A
A =−            (4.45) 

Another useful formula that is frequently encountered in spectral analysis is the 
augmented matrix inversion lemma, which says 

         1111111 )()( −−−−−−− +−=+ DACBDABAABCDA          (4.46) 

where the matrix A is n × n, B is n × m, C is m × m, and D is m × n. The inverse of 
the augmented matrix )( BCDA+ and the inverse of 11 −− +CBDA  are assumed to 
exist. A special case of this lemma, known as the Woodbury’s identity, is when B 
is an n × 1 column vector denoted u, C is the unity scalar (a 1 × 1 matrix), and D is 
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a conjugate 1 × n row vector denoted .Hu  Then the inverse of the matrix A 
augmented with Hu u (a rank one matrix) is  

Auu
Au uAAu uA

H

H
H

+
−=+

−−
−−

1
)()(

)(
11

11            (4.47) 

The quadratic form Q associated with a matrix A is a real scalar quantity 
defined as  

∑∑
= =

==
n

i

n

j
jiij

T xxaQ
1 1

Axx           (4.48) 

where Tx ][ 21 nx ... x  x=  and A is an n × n square matrix with .jiij aa =  If A is 
Hermitian, then  

∑∑
= =

∗==
n

i

n

j
jiij

H xxaQ
1 1

Axx           (4.49) 

with ∗= ijji aa . 
For A Hermitian, it is positive semidefinite if and only if  

     0,0 ≠≥ xAxx H            (4.50) 

It is positive definite if  

     0,0 ≠> xx Ax H            (4.51) 

A is negative semidefinite if and only if  

0≤x Ax H            (4.52) 

It is negative definite if  

0<x Ax H            (4.53) 

However, if 0>x Ax H  for some x, and 0<x Ax H  for other x, then A is said to 
be indefinite. 
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4.2.2 Matrices with Special Forms 
 
We frequently encounter in many applications special matrices. An n × n square 
matrix  is said to be diagonal if all elements ji ≠ are zero, except the elements aij, 

,ji =  on the main diagonal. We write 



















=

nna

a
a

L

MMMM

L

L

00

00
00

12

11

Α ],,,[diag 2211 nnaaa K=          (4.54) 

We observe that the unit matrix is a special case of the diagonal matrix with aii = 1, 
i = 1, 2, … , n. 1−A  is also a diagonal matrix, given by  

      







=



























=−

nn

nn

aaa

a

a

a

1,,1,1diag

100

010

001

2211
22

11

1 K

L

MMMM

L

L

Α          (4.55) 

A block diagonal matrix is a square matrix that can be partitioned in nonzero 
square submatrices along the main diagonal, while the other submatrices are zero. 

  


















=

kΑ

Α
Α

Α

L

MMM

L

L

00

00
00

2

1

],....,,diag[ 21 kΑΑΑ=           (4.56) 

If all Ai, i = 1, 2, … , k, are nonsingular, then 

   ∏
=

=
k

i
i

1
)det()det( AA            (4.57) 

and 



Discrete-Time Random Processes 
 

233





















=

−

−

−

−

1

1
2

1
1

1

00

00
00

kΑ

Α
Α

Α

L

MMM

L

L

],...,,diag[ 11
2

1
1

−−−= kΑΑΑ           (4.58) 

A square matrix with all of its elements above the main diagonal equal to zero is 
called a lower triangular matrix, and is given by 

    


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

















=

nnnn aaa
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L
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L

L
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2221

11

0
00

L           (4.59) 

The determinant of any triangular matrix is the product of its diagonal elements, 
given by 

       ∏
=

=
n

i
iia

1
)det(L                   (4.60) 

The inverse of the lower triangular matrix is also a lower triangular matrix. If all 
the elements below the main diagonal are equal to zero, then we have an upper 
triangular matrix, given by 

    





















=

nn

n

n

a

aa
aaa

L

MMMM

L

L

00

0 222

11211

U           (4.61) 

with a determinant as given by (4.60). The inverse is also an upper triangular 
matrix. 
 An n × n square matrix A is said to be orthogonal if  

     TAA =−1            (4.62) 

That is, the columns (and rows) must be orthonormal. If ai is the ith column (or 
row), then orthogonality means 
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



≠
=

=
j i
j i

j
T
i        

         
aa

for  0
for1

          (4.63) 

If  

     HAA =−1            (4.64) 

then the n × n complex matrix A is said to be unitary; that is,  

    




≠
=

=
ji
ji

j
H
i          

          
aa

for0
for1

           (4.65) 

If  

     AA =−1            (4.66) 

then A is said to be an involutory matrix. An idempotent matrix is a particular case 
of a periodic matrix; that is, a square matrix such that the matrix power  

    K,3,2,1,1 == + kkk AA           (4.67) 

The matrix is said to have period k if k is the least such integer. If ,1=k  then 

AA =2 , and the matrix is called idempotent.  
 A persymmetric matrix is a matrix that is symmetric about its cross diagonal. 
To be able to see this definition clearly, let R be a 5 × 5 matrix, and then  
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












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


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aaaaa
aaaaa
aaaaa
aaaaa

R           (4.68) 

An n × n square matrix A is circulant if all of its rows are obtained from the n 
values {a1, a2, … , an} by introducing a shift to the right on the previous row to 
obtain 
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Α                   (4.69) 

A matrix having identical elements along any diagonal, such that 1−= jij aa  for all 

i and j, is said to be Toeplitz. If A is n × n, then 
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Α           (4.70) 

For example, if n = 4, we have 
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Α  

If in addition, ∗
− = kk aa , then A is said to be Hermitian Toeplitz. If the matrix is 

real, then kk aa =− , and A is said to be symmetric Toeplitz. 
 Another special matrix that we may encounter is the m × n Vandermonde 
matrix, which has the form 
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V           (4.71) 
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4.2.3 Eigenvalues and Eigenvectors 
 
In this section, we define eigenvalues and eigenvectors. We present methods of 
determining eigenvalues and eigenvectors, and some related properties.  
Eigenvalues and eigenvectors are extremely useful in many applications of signal 
processing and modern control theory. In the context of this book, eigenvalues and 
eigenvectors will be used in representing stochastic processes, and solving the 
general Gaussian problem, which will be covered in a later chapter. 
 We define a linear transformation or linear operation or linear mapping T 
from a vector space χ, called the domain, to a vector space y, called the range (or 
codomain), as a correspondence that assigns to every vector x in χ a vector T (x) in 
y , such that  

     T : χ→  y          (4.72) 

The transformation T is said to be linear if  

            )()()( 2121 xxx x TTT β+α=β+α           (4.73) 

where α and β are constants, and x1 and x2 are vectors in χ. 
 It can be shown that any equation involving a linear operator on a finite 
dimensional space can be converted into an equivalent matrix operator. If the 
transform T :v → v maps elements in ν into other elements in v, we can define T  
by a matrix A. 
 Using the above concept of the linear transformation, we are now ready to 
define the concept of eigenvalues and eigenvectors. An eigenvalue (or 
characteristic value) of a linear operator T on a vector space χ is a scalar λ, such 
that 

     xxA λ=            (4.74) 

for a nonzero vector x in v.  Every nonzero vector x satisfying the relation 
x x A λ=  is called an eigenvector of A associated with the eigenvalue λ.  The 

matrix representation of (4.74) is  

     0=λ− x IA )(            (4.75) 

where I is the identity matrix.  If the operator T  acts on a function space, then the 
eigenvectors associated with the eigenvalues are called eigenfunctions. 
 
 
 



Discrete-Time Random Processes 
 

237

Eigenvalues 
 
If A is an n × n matrix, a necessary condition for the n homogeneous equations in 
(4.75) to yield nonzero solutions is that the rank of the matrix (A – Iλ) must be less 
than n.  That is, the determinant 

     0λ =−  IA            (4.76) 

Equation (4.76) is called the characteristic equation of the matrix A (or of operator 
T represented by A). Expanding the determinant λIA− , we obtain an nth degree 
polynomial in λ, called, the characteristic polynomial of A, and is given by 

   λ−−=−λ=λ  IAAI nc )1()(  

                    01
2

2
1

1 cccc n
n

n
n

n +λ++λ+λ+λ= −
−

−
− K          (4.77) 

Solving for λ from the characteristic equation results in n roots (λ1, λ2, … , λn) if all 
roots are distinct.  Consequently, c(λ) can be written as 

              )())(()( 21 nc λ−λλ−λλ−λ=λ K           (4.78) 

However, if the roots are not distinct, then 1λ has multiplicity m1, 2λ  has 
multiplicity m2, and so on.  Then, 

   pm
p

mmc )()()()( 21
21 λ−λλ−λλ−λ=λ K           (4.79) 

where nmmm p =+++ K21 . 
 It should be noted that when all roots are distinct, the following relationships 
hold: 

            021 cn =λλλ= KΑ           (4.80) 

and  

             1
1

21 )1(λλλ)(tr −
+−=+++= n

n
n cKΑ          (4.81) 

Eigenvectors 
 
Once the eigenvalues are determined from the characteristic equation, we 
substitute for λ in (4.74) or (4.75), and solve for the corresponding vector x.  
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However, in determining λ, two possible cases arise: (1) all eigenvalues are 
distinct, and (2) some eigenvalues have multiplicity greater than one. 
 
1.  Case 1: All eigenvalues are distinct.  
 
The eigenvectors are solved for directly from (4.74) or (4.75). If xk is an 
eigenvector corresponding to the eigenvalues λk, then kxα  is also an eigenvector 
for any nonzero scalar α. Since all eigenvalues and their corresponding 
eigenvectors satisfy the equation 

     
M          

222

111

xAx
xAx

λ=
λ=

 

     nnn xAx λ=            (4.82) 

we can write that 

     ΛMAM =            (4.83) 

where the n × n matrix M is called the modal matrix, and defined by 

    ][ 21 nxxxM K=            (4.84) 

the rank of the matrix M is n, since the eigenvectors are linearly independent. Λ is 
a diagonal matrix defined by 
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

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





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





=

n
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1

λ000
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L

MMMMM

L

L

Λ ],,,diag[ 21 nλλλ= K          (4.85) 

Solving for  Λ from (4.83), we have  

     AMM 1−=Λ            (4.86) 

where 1−Μ  is the inverse matrix M. Equation (4.86) is known as the similarity 
transformation.  If the eigenvectors are orthogonal, then ,1 TMM =−  where T 
denotes transpose, and the matrix A is diagonalized by the orthogonal 
transformation 
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     AMM T=Λ            (4.87) 

Example 4.1 
 

(a) Find the eigenvalues and eigenvectors of the matrix A. 

















−
−
−

=
115
025
003

A  

(b) Find the characteristic polynomial of A. 
(c) Diagonalize A by the similarity transformation. 

 
Solution 
 
(a) The characteristic equation is ⇒=λ− 0IA  

( )( )( ) 01λ 2λ 3λ
λ115

0λ25
00λ3

=−−+=
−−

−−
−−

 

Thus, the eigenvalues are all distinct, with 2λ,3λ 21 =−= and 1λ3 = .  The 
eigenvectors x1, x2, and x3 are obtained by solving the equations 111 λ xxA = , 

222 λ xxA = , and 333 λ xxA = .  For λ = 3, we have  
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where [ ]cbaT =x . This results in three equations in three unknowns; that is, 

ccba
bba
aa

35
325
33

−=++−
−=+−
−=−

    
           

 

Solving the equations, we obtain a = b = c. Thus,  

[ ]1111 α=Tx  
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is the eigenvector and α is any constant. 
 Similarly, we solve for x2 and x3 to obtain 

[ ] [ ]110and100 32 == TT x                    x  

(b) The characteristic polynomial of A is ⇒−λ=λ AI)(c  

6λ7λ
1λ15

02λ5
003λ

)λ( 2 +−=
−−

−−
+

=c  

(c) Using the similarity transformation, AMM 1−=Λ , we have 
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Λ  

2.  Case 2:  All eigenvalues are not distinct.   
 
The corresponding eigenvectors may or may not be linearly independent.  If mi is 
the order of an eigenvalue, called algebraic multiplicity, then the corresponding 
number of independent vectors, iii mqq ≤, , is called geometric multiplicity or 
degeneracy. The value of qi is given by 

         iiii mqnq ≤≤λ−−= 1,)rank( ΙΑ           (4.88) 

 If ii mq = , then all eigenvectors associated with λi are independent and can 
be solved for as in Case 1. 
 If )1(  ,1 >= ii mq , then there is one eigenvector associated with λi. The other 
( )1−im  vectors are called generalized eigenvectors. A generalized eigenvector of 
rank k is a nonzero vector for which 
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          ( ) 0=λ− k
k

i xΙΑ            (4.89) 

and  

        ( ) 01
1 ≠λ− −
−

k
k

i xΙΑ            (4.90) 

The eigenvector x1 is found as before; that is, 

            ( ) 01 =λ− xΙΑ i            (4.91) 

whereas the remaining (mi – 1) generalized eigenvectors are found by 

( ) 12 xx ΙΑ =λ− i  
( )

M                
xx ΙΑ 23 =λ− i  

   
( )

M                
xx ΙΑ 1−=λ− jji  

            ( )
1−

=λ−
ii mmi xx ΙΑ           (4.92) 

If the modal matrix M is formed as before, then the mi – 1 eigenvectors are 
included, and the similarity transformation becomes 

     MJMΑ =            (4.93) 

or 

     AMMJ 1−=            (4.94) 

J is an n × n diagonal matrix, called the Jordan form, such that 

          ],,,diag[ 21 pJJJJ K=           (4.95) 

and 

   p...,,,i

i

i

i

i

i    
 

J 21,

0000
1000

0010
0001

=























λ
λ

λ
λ

=

L

L

MMMMMM

L

L

         (4.96) 
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Equation (4.96) says that each submatrix Ji, pi ,...,2,1   = , has the same eigenvalue 
along its main diagonal; ones for all elements in the diagonal above the main 
diagonal, and zeros for the rest of the elements. 
 If ii mq ≤≤1 , there may be more than one Jordan block for each eigenvector.  
Assume that we have a 6 × 6 square matrix, such that we have two eigenvalues λ1 

54321 λλλλλ( ==== ) of order 5, and λ6 of order 1, and q1 = 2. Then, we have 
two eigenvectors x1 and x2 and three generalized eigenvectors for λ1, and one 
eigenvector x6 for λ6. The generalized eigenvectors may be associated with x1 or 
with x2, or with both x1 and x2. That is, we may have two Jordan blocks of the 
form 

         







=
















=

1

1
2

1

1

1

1 λ0
1λ

,
λ00
1λ0
01λ

JJ                   (4.97) 

or 

         ]λ[,

λ000
1λ00
01λ0
001λ

12

1

1

1

1

1 =



















= JJ                  (4.98) 

or vice versa. The approach to determine the Jordan blocks will be shown by an 
example. Assume that we have the case of (4.97). Then, the corresponding 
generalized eigenvalues and eigenvectors are determined by 

0

0

=−
=−
=−
=−
=−

21

2121

11

1121

12131

)λ(
)λ(
)λ(
)λ(
)λ(

xIA
xxIA

xIA
xxIA
xxIA

 

            0=− 66 )λ( xIA            (4.99) 

The modal matrix M is  

    ][ 621213121 xxxxxxM =         (4.100) 

The similarity transformation is as given by (4.94), where J is  
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

























λ
λ

λ
λ

λ
λ

=

1

1

1

1

1

1

0
0
0
0
0

00000
0000

1000
0000
0010
0001

J         (4.101) 

 If we have the case of (4.98), then the corresponding generalized eigenvalues 
and eigenvectors are determined by 

1121

12131

13141

)(
)(
)(

xxIA
xxIA
xxIA

=λ−
=λ−
=λ−

 

  0=λ−  xIA 11 )(  
  0=λ− 21 )( xIA  

             0=λ− 66 )( xIA          (4.102) 

The modal and Jordan matrices are then given by 

           ][ 621413121 xxxxxxM =          (4.103) 

and 

      



























=

6

1

1

1

1

1

λ
0
0
0
0
0

00000
λ0000
0λ000
01λ00
001λ0
0001λ

J         (4.104) 

 From (4.50) to (4.53), we defined a method for determining the definiteness 
of a Hermitian matrix. We now give an alternative method in terms of eigenvalues. 
If all distinct eigenvalues 0λ >i , then the matrix is said to be positive definite. It 
is positive semidefinite if all eigenvalues 0λ ≥i . If all eigenvalues 0λ <i , then 
the matrix is said to be negative definite, and the matrix is negative semidefinite if 
all distinct 0λ ≤i . However, if some 0λ >i  and other 0λ <i , then the matrix is 
indefinite. 
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Example 4.2 
 

(a) Find the eigenvalues and eigenvectors of the matrix A. 



















−

=

1001
1311
0020
1003

A  

(b) Find the Jordan form by the transformation .1 AMMJ −=  
 
Solution 
 
(a) The characteristic equation is given by 0=λ− IA ; that is, 

( ) ( ) 032

1001
1311
0020
1003

3 =λ−λ−=

λ−−
λ−

λ−
λ−

 

Hence, two eigenvalues λ1 = 2 with algebraic multiplicity m1 = 3, and λ2 = 3 with 
multiplicity 12 =m . We need to determine the number of independent 
eigenvectors and generalized eigenvectors associated with λ1. The rank of 

.22 r==λ−
=λ

IA  Thus, q1 = n – r = 4 – 2 = 2; that is, we have two eigenvectors. 
Since m1 = 3, there is only m1 – q = 1 generalized eigenvector. Solving for x1 by 
using the four equations of 11 2xxA = , where ,][1

Td c ba =x  we obtain 
. dan  cbda −=−=  Since we have two eigenvectors corresponding to λ = 2, we let 

(a = 1, b = 0) to obtain ,]1001[1
T−=x  and (a = 0, b = 1) to obtain 

.]0110[2
T−=x  The generalized eigenvector x12 is given by 

112)2( xxIA =−  to yield .]1100[12
T−−=x  Similarly, we solve for x4 by 

using 44 3xxA =  to obtain .]0100[4
T=x  

 
(b) We form the modal matrix M as  
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

















−
−−

==

0011
1110
0100
0001

][ 42121     xxxxM  

Performing the operation AMMJ 1−= results in  



















=

3000
0200
0020
0012

J  

as expected. The inverse of M is  



















=−

1111
0010
1001
0001

1M  

 
 
4.3 DEFINITIONS 
 
A discrete-time random process or stochastic process )(nX  is a sequence of real 
or complex random variables defined for every integer n. The mean value function 
of the process )(nX is defined as 

              )()]([ nmnXE x=          (4.105) 

and the autocorrelation function is defined as  

    )]()([),( 2121 nXnXEnnrxx
∗=         (4.106) 

where n1 and n2 are two indices, and * denotes a complex conjugate. Note that we 
use the lowercase letter r to denote correlation. The covariance function is defined 
as  

  [ ][ ]{ }∗−−= )()()()(),( 111121 nmnXnmnXEnnc xxxx    

    )()(),( 2121 nmnmnnr xxxx
∗−=         (4.107) 
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If the process )(nX  is stationary in the wide sense, then the mean 

                   [ ] constant)(  =nXE                  (4.108) 

is independent of n, and the autocorrelation function 

            2)()(),( xxxxxxx mkckrknnr +==+         (4.109) 

depends only on the time difference or lag between the two samples nn =1 and 
knn +=2 . 

 Similarly, we say two processes )(nX  and )(nY  are jointly wide-sense 
stationary if each is individually wide-sense stationary, and their cross-correlation 
function is  

         ∗+==+ yxxyxyxy mmkckrknnr )()(),(         (4.110) 

where )(kcxy  is the cross-covariance function given by 

            { }∗−+−=+ ])([])([),( yxxy mknYmnXEknnc   ∗−= yxxy mmkr )(     (4.111) 

In light of correlation properties given in Chapter 3, we give the following useful 
properties for the autocorrelation and cross-covariance functions 

     )()0( krr xxxx ≥          (4.112) 

with )0(xxr  real and positive. 

     )()( krkr xxxx
∗=−          (4.113) 

     
2

)()0()0( krrr xyyyxx ≥         (4.114) 

and  

     )()( krkr yxxy
∗=−          (4.115) 
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 Let )(nX be a column vector of M functions of time )(nX , )1( −nX , … , 
)1( +−MnX , representing a wide-sense stationary discrete-time random process, 

such that 

           )]1(,),1(),([)( +−−= MnXnXnXnT    X K        (4.116) 

The correlation matrix of this process is defined as 

         [ ])()( nnE HXXRRXX ==         (4.117) 

where the superscript H denotes Hermitian. Substituting (4.116) in (4.117), we 
obtain a Hermitian Toeplitz autocorrelation matrix 

   


















−−

−−+
−−−

=

)0()2()1(

)]2([)0()1(
)]1([)1()0(

rMrMr

Mrrr
Mrrr

L

MMMM

L

L

R        (4.118) 

where we dropped the index x for the simplicity of notation. This matrix is positive 
semidefinite; that is, all the eigenvalues of the matrix are greater than or equal to 
zero. For any sequence a(n), we have 

         ∑ ∑∑
−

=

−

=

∗
−

=

∗ ≥−=












 1

0

1

0

21

0
0)()()()()(

M M

k
xx

M

k
krkaakXkaE

l

ll        (4.119) 

In the previous section, we gave some mathematical properties related to a matrix 
A, and its eigenvalues and eigenvectors. If the matrix represents a correlation 
matrix of a discrete-time stochastic process, from (4.118), this correlation matrix R 
is Hermitian Toeplitz and positive semidefinite.  This will give us some other 
useful properties.  
 
1. Let Mλλλ ,,, 21 K  be the distinct eigenvalues of the M × M correlation matrix 
R.  Then, all these eigenvalues are real and negative. 
 
2. Let Mvvv ,...,, 21  be the eigenvectors corresponding to the M distinct 
eigenvalues Mλλλ ,,, 21 K  of the M × M correlation matrix R. Then, the 
eigenvectors are linearly independent.  
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 The eigenvectors are linearly dependent, which means that there exist scalars 
Mααα ,,, 21 K , not all zero, such that 

     ∑
=

=
M

i
ii

1
0α v          (4.120) 

If no such scalars exist, then the eigenvectors are linearly independent. 
 
3. Let Mvvv ,...,, 21  be the eigenvectors corresponding to the M distinct 
eigenvalues Mλλλ ,,, 21 K  of the M × M correlation matrix R.  Then, the 
eigenvectors are orthogonal to each other; that is, 

           jij
H
i ≠= ,0vv          (4.121) 

If the eigenvectors are normalized to have unit length, then they are orthonormal; 
that is, 

          




≠
=

=
ji
ji

j
H
i ,0

,1
vv               (4.122) 

4. Let Mλλλ ,,, 21 K be the distinct eigenvalues of the correlation matrix R. Then, 

the eigenvalues of kR  are k
M

kk λλλ ,,, 21 K . 
 Note that for the special case where 1−=k , the eigenvalues of the inverse 
correlation matrix 1−R  are Mλλλ /1,...,/1,/1 21 . 
 
5. Let Mvvv ,...,, 21 be the eigenvectors corresponding to the M distinct 
eigenvalues  Mλλλ ,,, 21 K  of the M × M correlation matrix R. Let 

         ][ 321 Mvvvv K=V         (4.123) 

such that the eigenvectors are orthonormal as defined in (4.122). Then, from 
(4.83), 

     ΛVRV =          (4.124) 

where 

        ],...,,diag[ 2 Mλλλ= 1Λ         (4.125) 
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Since R is Hermitian,  

     HVV =−1          (4.126) 

The correlation matrix may then be diagonalized by the unitary similarity 
transformation 

               Λ=RVV H          (4.127)  

Postmultiplying both sides of (4.124) by 1−R and using (4.121), the correlation 
matrix R may be written as 

    ∑
=
λ==

M

i

H
iii

H

1
vvVVR Λ          (4.128) 

or 

    ∑
=

−−

λ
==

M

i

H
ii

i

H

1

11 1 vvVVR Λ         (4.129) 

The decomposition of the correlation matrix R in the form of (4.128) is known as 
the spectral theorem. 
 
6. Let Mλλλ ,,, 21 L be the distinct eigenvalues of the M × M correlation matrix 
R. Then, from (4.83) and (4.128), 

    ∑
=

=λ=
M

H
i

1
)(tr )(tr 

i
RVVR         (4.130) 

 The Fourier transform of a sequence )(krxx  is  

            π<ω=ω ∑
∞

−∞=

ω− ,)()(
k

kj
xxxx ekrS         (4.131) 

where fπ=ω 2 is the angular frequency. Since the sequence under consideration is 
the autocorrelation function, its Fourier transform is then the power spectral 
density or power spectrum. Note that for l  integer, 
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 )()()()2( 2)2( ω===π+ω ∑∑
∞

−∞=

πω−ω−
∞

−∞=

π+ω−
xx

k

kjkj
xx

k

kj
xxxx SeekrekrS lll   (4.132) 

since 12 =πω− lkje . Hence, the power spectrum is a periodic function with period 
2π. 
 It is known that the Fourier series of a periodic signal, v(t), in exponential 
form is given by 

             ∑
∞

−∞=

ω=
k

tjk
k evtv 0)(          (4.133) 

By analogy with (4.133) and (4.131), we note that ω−  is analogous to t, ω0 is one, 
and )(krxx  is analogous to vk. Therefore, )(krxx  can be interpreted as the Fourier 
coefficient of )(ωxxS  to yield  

    ∫
π

π−

ω− ωω
π

= deSkr kj
xxxx )(

2
1)(         (4.134) 

Equations (4.131) and (4.134) form the Wiener-Khinchin relations for discrete-
time processes. The mean-square value, which represents the average power in the 
discrete-time random process, is 

   [ ] ∫∫
−

π

π−

=ωω
π

==
2/

2/

2 )()(
2
1)()0(

f

f
xxxxxx dffSdSnXEr        (4.135) 

The power spectrum )(ωxxS  is real, since 

)]()([),()( knXnXEknnrkr xxxx −=−=− ∗  

     )()]()([ krnXknXE xx
∗∗ =−=         (4.136) 

 Similarly, the cross-power spectrum is defined as 

    ∑
∞

−∞=

ω−=ω
k

kj
xyxy ekrS )()(          (4.137) 

 For more results on the cross-correlation functions and cross-spectrum, 
consider a discrete-time linear system with impulse response h(n), a wide-sense 
aaa 
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Figure 4.1  Discrete linear system. 

stationary input )(nX , and an output )(nY , as shown in Figure 4.1. Then, the 
cross-correlation functions )(krxy  and )(kryx  are given by 

∑∑
∞

−∞=

∞

−∞=
−=∗=−=∗=

ll

llll )()()()()()()()()( khrkhkrkrhkrkhkr xxxxxxxxxy  

               (4.138) 

and  

       ∑
∞

−∞=

∗∗ −=∗−=
l

ll )()()()()( krhkrkhkr xxxxyx        (4.139) 

The autocorrelation function of the output process is given by 

       )()()()()()( krkhkhkrkhkr xxyxyy ∗−∗=∗= ∗        (4.140) 

The corresponding cross-spectrum densities are 

    ∑
∞

−∞=

ω−=ω
k

kj
xyxy ekrS )()(          (4.141) 

    ∑
∞

−∞=

ω−=ω
k

kj
yxyx ekrS )()(          (4.142) 

Taking the Z-transform of (4.138), (4.139), and (4.140), we obtain 

    )()()( ZSZHZS xxxy =          (4.143) 

    )(1)( ZS
Z

HZS xxyx 






=
∗

∗         (4.144) 

 
h(n) 

)(nX )(nY
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and 

              )(1)()( ZS
Z

HZHZS xxyy 






=
∗

∗         (4.145) 

where, H(Z) is the bilateral Z-transform of h(n), also denoted Z{h(n)}, and is given 
by 

          ∑
∞

−∞=

−=
n

nZnhZH )()(          (4.146) 

The frequency response )( ωjeH  of the filter can be deduced from the discrete 
Fourier transform H(Z) when evaluated on the unit circle in the z-plane. For h(n) 
real, ( ) ( )ZHZH /1/1 =∗∗ , and the output spectral density is then 

    )ω()()ω(
2ω

xx
j

yy SeHS =               (4.147) 

Example 4.3 
 
Consider the system given in Figure 4.1.  Determine the power spectrum of the 
output if the input process )(nX  is a stationary white noise process. 
 
Solution 
 

)(nX  is a white noise process  if  

   [ ]




≠
=

=∗

21

21
21 ,0

),(
)()(

nn
nnnI

nXnXE         (4.148) 

The autocorrelation function of the white noise process is  

    )()(),( 12121 nnnInnrxx −δ=         (4.149) 

where 

    




≠
=

=−δ
21

21
12 ,0

,1
)(

nn
nn

nn
 

        (4.150) 
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Since the white noise process is stationary, let  

    =σ= 2)( nnI constant         (4.151) 

The autocorrelation function becomes  

    )()(),( 2 kkrknnr nxxxx δσ==+         (4.152) 

where δ(k) is the impulse function given by 

          




≠
=

=δ
0,0
0,1

)(
k
k

k          (4.153) 

The power spectrum of the input white noise process is  

              2σ)ω( nxxS =          (4.154) 

By definition, the Z-transform of the autocorrelation function is  

    ∑
∞

−∞=

−=
k

k
xxxx ZkrZS )()(          (4.155) 

and thus, the power spectrum of the output is  

   
2ω22ω )(σ)ω()()ω( j

nxx
j

yy eHSeHS ==         (4.156) 

 
 
4.4 AR, MA, AND ARMA RANDOM PROCESSES 
 
In the previous section, we gave the definitions and properties related to the 
different correlations and power spectral densities of a stationary discrete-time 
stochastic process. Determining the power spectral density of a random process is 
essential in spectrum estimation because the power spectral density provides 
important information about the structure of the random process. Such information 
can then be used for different applications, such as modeling, prediction, or 
filtering of the observed signal, as will be seen in a later chapter. The 
nonparametric approach of spectrum estimation is determined by the transform 
relationship between the power spectral density and the autocorrelation function, 
which is the second-order statistics of the random process. However, in the 
parametric approach, a time series model for the random process is assumed, and 
thus, the power spectral density is a function of the model parameters, which must 
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be determined or estimated. We now consider the modeling of such random 
sequences.  Consider the system shown in Figure 4.1, with input being the white 
noise process. The output sequence can be described by a parametric model; that 
is, the spectrum of the output sequence can be expressed in terms of the parameters 
of the model considered. Hence, it is necessary to have an appropriate parametric 
model, and estimate the model parameters. The models considered most frequently 
are the AR processes, the MA processes, and ARMA processes. 
 
4.4.1 AR Processes 
 
An AR process is represented by the following input-output difference equation. 

         ∑∑
==

+−ω=+−−=
p

k
k

p

k
k neknXneknXanX

11
)()()()()(        (4.157) 

where )(nX  is the observed real random sequences, ak, k = 1, 2, … , p, are 
constants called parameters, such that kk a−=ω ; e[n] is a sequence of 
independent and identically distributed zero-mean Gaussian random variables with 
an unknown variance 2σ n ; and p is the order of the filter. The sequence is referred 
to as a pth order autoregressive model and is abbreviated AR(p). Note that the term 
“autoregressive” stems from the fact that )(nX , the present value of the process, 
given by 

      )()()2()1()( 21 nepnXanXanXanX p +−−−−−−−= K        (4.158) 

is a finite linear combination of )1( −nX , )2( −nX , … , )( pnX − , the past 
values of the process, and an error term e(n). The Z-transform of (4.158) is given 
by 

   )()1)(( 2
2

1
1 ZEZaZaZaZX p

p =++++ −−− K        (4.159) 

where X(Z) is the Z-transform of )(nX , E(Z) is the Z-transform of e(n), and  

        Z pkZXZknX k ,...,2,1),()]([     ==− −         (4.160) 

The pulse transfer function of the all-zero filter is given by 

    ∑
=

−+==
p

k

k
k Za

ZX
ZE

ZH
1

1
)(
)(

)(         (4.161) 
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Figure 4.2  Realization of an AR(p) filter. 

The realization of such a filter, obtained directly from (4.159), is shown in Figure 
4.2. However, when the input is the white noise process e(n), and )(nX is the 
output random sequence, the corresponding AR(p) filter is an all-pole filter with 
transfer function  

∑∑
=

−

=

− −

=

+

=
p

k

k
k

p

k

k
k ZZa

ZH

11
ω1

1

1

1)(         (4.162) 

The realization of the filter is as shown in Figure 4.3. In order to study the AR(p) 
process )(nX , we need to determine the mean, autocorrelation function, 
correlation coefficients, and of course the power spectral density, which will be a 
function of the parameters of the model. The process is assumed to be stationary.  
Thus, the mean of )(nX , as defined in (4.158), is given by 

        [ ] ∑∑
==

−−=







+−−==

p

k
k

p

k
kx pnXEaneknXaEmnXE

11
)]([)()()(        (4.163) 

since the white noise process is zero-mean 0)]([ =neE . To obtain a general form 
with  pk =   for of all the terms to be determined,  we shall first compute them for 
 

   Z -1

   Z -1

   Z -1

)1( −nX 

)2( −nX 

)( pnX − 

 a1 

 a2 

 ap 

Σ )(ne)(nX 
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Figure 4.3  All-pole AR(p) filter. 

p = 1, the first-order process, and p = 2, the second-order process, and then deduce 
easily the desired general form. 
 
AR(1) process 
 
For p = 1, the first-order process is  

)()1()( 1 nenXanX +−−=         (4.164) 

The first-order mean is then 

      xx manXaEmnXE 11 )]1([)]([ −=−−==        (4.165) 

to yield 

     0=xm    for   01 ≠a          (4.166) 

The corresponding variance is 

{ })]()1([)]()1([)]()([ 11
2 nenXanenXaEnXnXEx

∗∗∗ +−−+−−==σ    

               )]()1(2)()1([ 1
222

1 nenXanenXaE −−+−=         (4.167) 

Z -1

Z -1

Z -1

)(nX

)1( −nX

)2( −nX

)( pnX −

 -a1 

 -a2 

 -ap 

Σ )(ne 



Discrete-Time Random Processes 
 

257

The initial condition )0(X  is assumed to be Gaussian with mean zero, 
0)]0([ =XE , and uncorrelated, thus independent, of the Gaussian noise process.  

Therefore, 0)]()1([ =− nenXE  and the variance of the AR(1) process 

is 222
1

2 σσσ nxx a += , or  

2
1

2
2

1
σ

σ
a
n

x
−

=          (4.168) 

Since the variance of the process must be finite and nonnegative, the constant 
2
1a must be less than one; that is,  

11 1 +<<− a          (4.169) 

The autocorrelation function of the AR(1) process is given by 

{ } 1,)1()()]()1([)]()([)( 11 ≥−−=−+−−=−= kkraknXnenXaEknXnXEkr xxxx  
              (4.170) 

By direct substitution for ...,2,1   k =  in (4.170), we can see that 

  2
1

2
1 1

)1()0()1()( x
k

x
kk

xx
kk

xx arakr σω=σ−=−=        (4.171) 

The autocorrelation coefficient of the process is defined by 

        )(1)1(
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The power spectrum of the output process in terms of the input noise process is 
)()()( 2 fSfHfS eexx = , where )( fSee  is the power spectrum defined in 

(4.154). The transfer function is given by (4.162), and hence with kjeZ ω=  and 
1=k , we have 

πω,
1

1)(
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1
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+

=
− j
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and 
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2
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where fπ=ω 2 .  Thus, the power spectrum of the AR(1) process is  
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where the value of 2σ n  is obtained directly from (4.168). 
 
AR(2) process 
 
The second-order AR process is given by 

       )()2()1()( 21 nenXanXanX +−−−−=         (4.176) 

The mean of this process is  

xxxx maamamamnXE )()]([ 2121 +−=−−==        (4.177) 

and thus, 

     0=xm   if  121 ≠+ aa                (4.178) 

The variance is  

{ })()]()2()1([)]()([ 21
2 nXnenXanXaEnXnXEx   +−−−−==σ ∗  

    2
21 )2()1( nxxxx rara σ+−−=         (4.179) 

Substituting for 2)( xkxx kr σρ=  in (4.179), we obtain 22
22

2
11

2 σσρσρσ nxxx aa +−−= . 
Then the variance is 
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2
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σ
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n
x ++
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which is finite for 12211 −≠ρ+ρ aa , and nonnegative for 

1ρρ 2211 −>+ aa         (4.181)  
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The autocorrelation function is  

{ })()]()2()1([)]()([)( 21 knXnenXanXaEknXnXEkrxx −+−−−−=−=   
       )2()1( 21 −−−−= krakra xxxx         (4.182) 

To obtain the constants a1 and a2, we need two equations. Hence, substituting in 
(4.182) for k = 1 and k = 2, we have for k = 1 

)1()0()1( 21 −−−= xxxxxx rarar         (4.183) 

Since the process is stationary, )1()1( −= xxxx rr  and )0(2
xxx r=σ . After 

substitution in (4.183), we have 
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where 
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For k = 2, we have 
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where 
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Substituting (4.185) and (4.187) in (4.180), we obtain 
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which is finite if   
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and positive if 
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The transfer function is, from (4.162), in this case 
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and the power spectrum of the AR(2) process is then 
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AR(p) Process 
 
We are now ready to determine the general expressions of the AR(p) process, 
which is given by 

∑
=
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p

k
k neknXanX

1
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with mean  

        ∑
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k
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and variance 
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In order to determine completely the power spectrum 
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we need the estimates of the AR coefficients, and the noise variance 2σ n . 

Multiplying both sides of (4.193) by 0),( ≥−∗ llnX , and taking the expectation 
operator, we obtain 
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k
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The second term )]()([ l−∗ nXneE  is zero for 0>l , since the terms )( l−nX  are 

zero-mean and independent of the noise e(n). For 0=l , we have the variance 2σ n .  
The first term of (4.197) is the autocorrelation function of the AR process to obtain 
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        (4.198) 

This set of equations can be expressed, using kk a−=ω , in matrix form to yield 
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    (4.199) 

This set of equations (4.199) is called the Yule-Walker equations, which may be 
expressed as 

    ωRr =           (4.200) 

or 

    aRr =−          (4.201) 
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The parameters a and ω are the solutions given by 

rRa 1−−=          (4.202) 

or 

rR 1−=ω          (4.203) 

with the vectors 

   [ ]p
T aaa ,,, 21 K=a         (4.204) 

and 

   [ ]p
T ωωω= ,,, 21 Kω         (4.205) 

and noise variance 

   ∑
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k
xxkxxn krar
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2 )()0(          (4.206) 

4.4.2 MA Processes 
 
The MA process is described by 

   ∑
=

∗∗∗∗ −=−++−+=
q

k
kq knebqnebnebnebnX

0
10 )()()1()()( K       (4.207) 

where b0, b1, b2, … , bq, are constants called the MA parameters, such that 

∑
=

=
q

k
kb

0
1 , and e(n) is the input white noise process.  The filter representing the 

MA process is shown in Figure 4.4. We can write (4.207) with new parameters 
(new bks), such that 

            )()1()1()()( 11 qnebnebnebnenX q −++−+−+= K        (4.208) 

such that the new 01 =b and 0≠kb  for qk ,...,2,1   = . Note that we maintain the 
notation “b” to be consistent with the notation of (4.1). Taking the Z-transform of 
(4.208) and solving for H(Z), we obtain the all-zero filter given by 
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Figure 4.4  Moving average filter of order q. 
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with transfer function 
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The mean of the process is 
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since the white noise process is zero-mean and stationary. The variance is 
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The autocorrelation function can be calculated to be 
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and so on, until qk = .  The general form can then be deduced to be 
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Hence, the power spectral density, which is just the Fourier transform of (4.214), 
can be shown to be 
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4.4.3 ARMA Processes 
 
An ARMA process for the time series )(nX  is given by 

)()1()()()1()( 11 qnebnebnepnXanXanX qp −++−+=−++−+ ∗∗∗ KK  
      (4.216) 

or 
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Taking the Z-transform of (4.217), and solving for the pulse transfer function, we 
obtain 

       

∑

∑

=

−

=

−

+

+
=

p

k

k
k

q

Za

Zb
ZH

1

1

1

1
)( l

l
l

        (4.218) 

which is a filter with both poles and zeros, as shown in Figure 4.5, since it is a 
combination of AR and MA processes. The order of the ARMA process is (p, q). 

The autocorrelation function of the ARMA (p, q) process, assuming p > q, is 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5  ARMA filter of order (p, q) with p > q. 
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but 
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Substituting (4.220) and (4.221) in (4.219), the autocorrelation function reduces to 
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while the power spectral density of the ARMA (p, q) process can be shown to be  
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4.5 MARKOV CHAINS 
 
In Section 3.4.8, we defined the concept of Markov processes. When the Markov 
process is discrete-valued (discrete state), it is called a Markov chain. To describe 
a Markov chain, consider a finite set of states },...,,{ 21 NSSSS = . The process 
starts in one of these states and moves successively from one state to another.  The 
move from one state to another is called a step. If the chain is a state Si, it moves to 
a state Sj in a step with a probability Pij, called transition probability.  

The Markov chain is then a discrete state, but may have a discrete or a 
continuous time. Both cases will be considered in this section. 
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4.5.1 Discrete-Time Markov Chains 
 
A discrete-time Markov chain must satisfy the following Markov property: 

])0(,,)2(,)1(|)([ 021 xXxnXxnXxnXP nnn ==−=−= −− K  
   = ])1(|)([ 1−=−= nn xnXxnXP          (4.224) 

where we have assumed that the random sequence takes a finite, countable set of 
values. The values of the process are the states of the process, and the conditional 
probabilities are the transition probabilities between the states, defined in the 
introduction of this section. If X(n) = i, we say that the chain is in the “ith state at 
the nth step,” and write 

         K,2,1),(])([  === jnpjnXP j         (4.225) 

Since the evolution of the chain is described by the transition probability, when we 
say that the system is in state j at time tm, given that it is in state i at time tn, we 
write 

          ),(])(|)([ mnPinXjmXP ij===         (4.226) 

Using Bayes’ rule, we can write 

    ])([])(|)([])(,)([ inXPinXjmXPinXjmXP ======        (4.227) 

or, using the new notation  

        )(),(])(,)([ nPmnPinXjmXP iij===         (4.228) 

Assuming that the finite number of states is N, these probabilities must satisfy 

∑
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and 
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The total probability is 
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In matrix form, the transition matrix or stochastic matrix P (n, m) can be written as 
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The entries ,, ,2 ,1,, NjiPij K=  are the transition probabilities that the Markov 
chain, starting in state Si, will be in state Sj. The initial state matrix is 

WPP ==)0( , denoted as Π  in other books. 
The column vector 
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is called the state distribution vector, with p(1) representing the starting 
distribution. Note that the stochastic matrix P has nonnegative entries, Pij  > 0, and 

the sum across each row is equal to one, ∑
=

=
N

j
ijP

1
1 , which is (4.230). Hence, 

(4.231) can be written as 

)(),()( nmnm PPP =          (4.234) 

Homogeneous Chain  
 
A Markov chain is called homogeneous if the transition probabilities depend only 
on the difference between states; that is,  

)|()|()( 11 iXjXPiXjXPmP mnmnij ====== ++        (4.235) 

or 
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)(),( nmmn −= PP          (4.236) 

If ,1=m  

      ijijnn PPiXjXPiXjXP =======+ )1()|()|( 011        (4.237) 

Substituting (4.236) in (4.234), we obtain 

)1()1()()()( PPPPP −=−= mnnmm         (4.238) 

where PP =)1( is the one-step transition matrix. Hence, by direct substitution in 
(4.238), we have 
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  nnnn PPPPP ==−= )1()1()1()(          (4.239) 

We observe that the n-step transition matrix (the matrix of n-step transition 
probabilities) P(n) is 

     nnn PPP == )1()(          (4.240) 

Observe that the entry n
ijP  of the matrix nP is the probability that the Markov 

chain, starting in state Si, will be in state Sj after n steps, and PP =)1(  is the one-
step transition matrix with elements )]1([ ijP . When the matrix P(n) is independent 
of n and the chain is homogeneous, it is then stationary.  This implies that 

PPP == )1()(n  for all n. A “good” way to represent a Markov chain is the state 
transition diagram, which we will show by an example.  
 
Example 4.4 
 
Consider the transition matrix P given by 
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P  
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Figure 4.6  State transition diagram. 

The state transition diagram is shown in Figure 4.6. We see, for example, that the 
probability in going from state S1 to state S2 is ,2.012 =P the probability in going 
from state S2 to state S3 is 5.023 =P , and so on. Using (4.239), we have 
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As n increases, we reach the situation where the probabilities that the chain is 
in states S1, S2, and S3 are 0.26, 0.18, and 0.56, respectively, no matter where the 
chain started.  This type of Markov chain is called a regular Markov chain. 

In general, by definition, if a set of numbers Nωωω ,,, 21 K  exists, such that 
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we say that the steady state probabilities for the chain exist. In this case, the chain 
is said to be regular (as shown in the previous example), and W is called the 
stationary distribution matrix for the Markov chain, with entries 

,,...,2,1, Njj     =ω  such that 

∑
=

=ω
N

i
i

1
1          (4.242) 

and 

        0ω >i       for all i         (4.243) 

We also observe from Example 4.4 that a homogeneous Markov chain reaches a 
steady state probability after many transitions. That is,  
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       WPPP ===
∞→∞→∞→

n

n

n

nn
n lim)1(lim)(lim               (4.244) 

Theorem.  Let P be the transition matrix of a Markov chain, and let )0(TT pp =  
be the row probability vector representing the starting distribution of the chain.  
Then, the probability that the chain is in state Si after n steps is the ith entry in the 
vector, given by 

nT n Ppp T=)(          (4.245) 

The important conclusion to draw from this theorem is that the random evolution 
of the chain is determined by the transition matrix P and the initial distribution 
vector )0(p . Equation (4.245) is just the deduction of the general form given by  

      nmmn Ppp )()( =+          (4.246) 

The proof of (4.246) is straightforward.  
 
Example 4.5 
 
Suppose that we have the same distribution matrix as given in Example 4.4.  Let 

[ ] [ ])0()0()0(35.025.020.0)0( 321 pppT === Tpp  be the probability 
vector representing the starting distribution.  Using the previous theorem and the 
results of Example 4.4, we can compute the distribution of the states after n steps 
to be  

[ ] [ ]
[ ] [ ]
[ ]

[ ]

[ ]

[ ] [ ])20()20()20(56.018.026.0)20(

56.018.026.0)12(

56.018.026.0)10(

564.01815.02545.0)3(

)2()2()2(565.019.0245.0)2(

)1()1()1(225.0225.0225.0)1(

321
20

12

10

3
321

2
321

ppp

ppp

ppp

TT

TT

TT

TT

TT

TT

===

==

==

==

===

===

Ppp

Ppp

Ppp

Ppp

Ppp

Ppp

M

M

MM

 

We observe that as n becomes large, we reach a steady state value. Hence, we say 
that if 
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[ ]N
T

n

T

n
n ωωω==

∞→∞→
K21lim)(lim Ppp       (4.247) 

is a constant distribution, then the column vector ][ 21 N
T ωωω= Kp  is 

called the steady state distribution vector. 
 
Example 4.6 
 
Consider the Markov chain given by the two-state transition diagram of Figure 4.7. 
Then, 









=

55.045.0
35.065.0

P  

Computing the different powers of P, we obtain 









=








=








=









=








=








=

4375.05625.0
4375.05625.0

,
4375.05625.0
4375.05625.0

,
4377.05623.0
4374.05626.0

  
4384.05616.0
4368.05632.0

,
442.0558.0
434.0566.0

         ,
46.054.0
42.058.0

765

432

PPP

PPP
 

If 







==

7.0
3.0

)0( pp  and 







==

55.045.0
35.064.0

)1( PP , then  

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]4375.05625.0)7(

4375.05625.0)6(

4376.05624.0)5(

4379.05621.0)4(

4396.05604.0)3(

448.0552.0)2(

49.051.0)1(

6
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==
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Ppp

Ppp

Ppp

Ppp
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TT
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TT

 

 
 
 
 

Figure 4.7  State transition for Example 4.6. 
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We observe that as WP →∞→ nn , , such that the steady state matrix is 









ωω
ωω

==
21

21WP n  

with 5625.0ω1 =  and 4375.0ω2 = . Also, [ ]21)( ωω=→= TnTn pPpp , 
with 5625.0ω1 =  and 4375.0ω2 = , is the steady state (stationary) distribution 
vector.  

We now give the Chapman-Kolmogorov equation, which relates long-term 
development to short-term development. 
 
Chapman-Kolmogorov Equation 
 
For a homogeneous discrete-time Markov chain with 321 nnn << , 

      ∑ −−=−
k

kjikij nnPnnPnnP )()()( 231213        (4.248) 

In other words,  

   ∑=+
k

kjikij nPmPnmP )()()(         (4.249) 

where ])()([)( inXjnmXPmPij ==+= .  Hence,  

       )()()( nmnm PPP =+         (4.250) 

or 

)()()( 231213 nnnnnn −−=− PPP        (4.251) 

Classification of Chains 
 
In describing the relation between the states of a Markov chain, we say Si  
communicates with Sj, denoted ji SS → , if the chain may visit state Sj starting 

from Si with a positive probability. That is, ji SS → , if 0)( >mPij  for some 

0≥m . If in addition, state Sj communicates with state Si, ij SS → , then we say 

that Si and Sj intercommunicate, and write ji SS ↔ . A state Si is called persistent 
or recurrent if  
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         1)1  somefor    ( 0 ==≥= iXniXΡ n         (4.252) 

which means that the probability of an eventual return to state Si , having started 
from i, is one. The state may be visited many times. The state Si of a Markov chain 
is called absorbing if it is impossible to leave it (i.e., 1=iiP ). If this probability is 
strictly less than one, then the state Si is called transient. Hence, every state is 
either transient or recurrent. The Markov chain is absorbing if it has a least one 
absorbing state, and it is possible to go to an absorbing state from every state (not 
necessarily in one step). To clarify these concepts, consider the Markov chain 
shown in Figure 4.8. For example, S1 and S5 are transient states, and S2, S4, and S6 
are recurrent states. We do not have an absorbing state, since we can leave any of 
the states we reach, and thus the chain is not absorbing. 

A persistent state is said to be null if and only if  

0)(lim =
∞→

nPiin
         (4.253) 

in this case, 

           jnPijn
 allfor      0)(lim =

∞→
        (4.254) 

A set of states is called irreducible if the states intercommunicate )( ji SS ↔  for 
all i and j in the set. For example, states S2 and S3 constitute an irreducible set, and 
so do states S4 and S5 and states S3 and S6. 

The number of transitions required for the first return to a state Si in an 
irreducible set is a random variable known as the recurrence time. If Pii (k) may be 
nonzero k = d, 2d, 3d, …, with d an integer greater than one, then the irreducible 
set is called periodic. If d = 1, the set is called ergodic; that is, it is persistent, 
nonnull and aperiodic. Note that the Markov chain is called an ergodic chain if it is 
possible to go from every state to every state (not necessarily in one move). The 
period of states S4 and S5 of the previous example is two, and thus the set is 
periodic. 

 
 
 
 
 

 
 
 
Figure 4.8 Markov chain. 

S1 S2 S3

S4 S5 S6
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4.5.2 Continuous-Time Markov Chains 
 
Let X(t), 0≥t , be a continuous-time random Markov chain with finite discrete 
states S1, S2, … , SN . By continuous time, we mean that the continuous transition 
allows changes of states to occur at any instant of time in the continuous time.  The 
transition from state Si to state Sj )( ji SS ↔ , ji ≠ , occurs in a very small time 
∆t. ∆t is so small that only one transition is possible.  The conditional probability 
that the transition from Si to Sj occurs in the next ∆t is λij ∆t. The values of λij, 

ji ≠ , are called the transition probability rates. For homogeneous Markov chains, 
λij are positive constants. The transition probability function is  

])(|)([)( itXjtXPPij ==τ+=τ         (4.255) 

with 

∑
=

=τ
N

j
ijP

1
1)(          (4.256) 

since the system will definitely make a transition from state i to any other state in 
the chain, and 





≠
=

=δ=
→ ji

ji
tP ijijt ,0

,1
)∆(lim

0∆

 
         (4.257) 

for )(τijP to be continuous. Hence, the probability that the system makes a 
transition from state Si to another state in the chain in a time interval ∆t is 

         ttP
N

ji
i

ijij ∆λ)∆(
1
∑
≠
=

=          (4.258) 

We observe that the transition intensities can be defined in terms of the derivatives 
of the transition probability functions evaluated at τ = 0 to yield 

    ji
Pij

ij ≠
τ∂

τ∂
=λ

=τ

  ,
)(

0

        (4.259) 

Note that the transition from state Si to state Si )( ii SS → is interpreted as the 
system remaining in state Si, and thus λij is undefined in this case. However, taking 
the derivative of both sides of (4.256), we have 
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∑
=

=λ
N

j
ij

1
0          (4.260) 

or 

∑
≠
=
λ−=λ

N

ji
j

ijii
1

         (4.261) 

From (4.258), the probability that the system remains in the same state is  

       ttP
N

ji
i

ijii ∆λ1)∆(
1
∑
≠
=

−=          (4.262) 

Using (4.261) in (4.262), we can write that  

         ttP iiii ∆1)∆( λ+=          (4.263) 

In order to find the state probabilities, we first give the Chapman-Kolmogorov 
equation for transition probabilities.   
 
Chapman-Kolmogorov Equation  
 
For a Markov chain, the transition probabilities must satisfy the Chapman-
Kolmogorov equation for τ<≤ t0 , given by 

∑
=

−τ=τ
N

k
kjikij tPtPP

1
)()()(         (4.264) 

Let })({)( ii StXPtp == be the probability that the system is in state Si.  The 

state distribution vector is the column vector [ ])()()()( 21 tptptpt N
T K=p , 

and ∑
=

=
N

i
i tp

1
1)( , since the system must be in some state Si at time t. In the limit, 

as ∞→t , the probability that the system is in a transient state is zero, and the 
state distribution vector p(t) becomes the steady state vector p.   

From (4.255), we have 

      ∑
=

===τ+==τ+
N

i
itXPitXjtXPjtXP

1
])([])(|)([])([          (4.265) 
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and using the Markov property, we can write  

∑
=

τ=τ
N

i
iijj pPp

1
)0()()(          (4.266) 

           ∑∑
≠
=

≠
=

∆−∆=−∆+
N

jk
k

jjk

N

ji
i

iijjj tptPtptPtpttp
11

)()()()()()(        (4.267) 

Substituting  (4.258) in (4.267), we obtain the N – 1 equations given by 

      ∑∑
≠
=

≠
=

λ+
















λ−=+
N

ji
i

ij

N

ji
i

jijj ttpttp
11

∆∆1)∆(        (4.268) 

The Nth equation is obtained from ∑
=

=
N

j
j tp

1
1)( .  Hence, rearranging terms and 

letting 0∆ →t , we obtain 

          ∑∑
≠
=

≠
=

λ−λ=
N

jk
k

jkj

N

ji
i

iij
j tptp

dt
tdp

11
)()(

)(
        (4.269) 

Using (4.263), the set of equations for the N-state Markov chain is then given by 

=







dt

tdp
dt

tdp
dt

tdp N )()()( 21 L  

   [ ]























λλλ

λλλ
λλλ

NNNN

N

N

N tptptp

L

MMM

L

L

K

21

22221

11211

21 )()()(      (4.270) 

In matrix form, 

Λ)()(' tt pp =        (4.271a) 

where 



Discrete-Time Random Processes 
 

279

    







=

dt
tdp

dt
tdp

dt
tdp

t N )()()(
)(' 21 Lp       (4.271b) 

[ ])()()()( 21 tptptpt NK=p       (4.271c) 

and 





















λλλ

λλλ
λλλ

=

NNNN

N

N

L

MMMM

L

L

21

22221

11211

Λ       (4.271d) 

Solving the system of equations in (4.271), we obtain the steady state probabilities. 
If the Markov process X(t) is stationary, then == jj ptp )(  constant, and from 
(4.269) and (4.261), the set of equations to solve is 

          














=

λ=λ

∑

∑

=

≠
=

N

j
j

N

ji
i

iijjjj

p

pp

1

1

1

         (4.27 2) 

Birth-Death Process 
 
A birth-death process with intensities )1(λ +ii  and )1( −λ ii  is a Markov chain taking 
values 0, 1, 2, … , and having changes equal to +1 or 1− , such that 













−−=

+−≠=

=

=

−

+

iiii

ij

iiii

iiii

db

iiij

Sd

Sb

λ

1,,10λ

)rate  departureor  ,at   ratedeath   (  λ

 )rate arrivalor  ,at   ratebirth   (  λ

)1(

)1(

       (4.273) 

The state diagram of this process is shown in Figure 4.9. Thus,  

tdntXnttXP
tbntXnttXP

n

n

∆]1)(|)∆([
∆]1)(|)∆([

1

1

+

−

=+==+
=−==+

 

   tdbntXnttXP nn ∆)(1])(|)∆([ +−===+        (4.274) 
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Figure 4.9  Birth-death process. 

Using the notation )(])([ ttpnttXP n ∆+==∆+ , and using (4.274), we have  

      )(])(1[)()()()( 1111 tptdbttdtpttpbttp nnnnnnnn ∆+−+∆+∆=∆+ ++−−    (4.275) 

Since ttpttptp nntn ∆/)]()∆([lim)('
0∆

−+=
→

, then 





=+−=
≥++−= ++−−

0,)()()('
1,)()()()()('

11000

1111

ntpdtpbtp
ntpdtpdbtpbtp nnnnnnnn

  
  

        (4.276) 

where we used the fact that 0)(1 =− tp  and 00 =d . To determine the steady state 
probabilities, we set 0)(' =tp n and solve the set of homogeneous equations 

      0)( 1111 =++− ++−− nnnnnnn pdpdbpb       (4.277a) 

    01100 =+− pdpb        (4.277b) 

and using  

    ∑
=

=
N

k
kp

0
1         (4.278) 

Hence, from (4.277b) 

0
1

0
1 p

d
b

p =          (4.279) 

For n = 1, 

0)( 2211100 =++− pdpdbpb         (4.280) 

Solving (4.280), we obtain 

 b0  bn -1

 dn 

 Sn  Sn - 1  S1  S2 S0 

 d1  d2 

 b1 
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1
2

1
2 p

d
b

p =          (4.281) 

Using the value of p1 from (2.279), we obtain 

    0
12

01
2 p

dd
bb

p =          (4.282) 

Continuing in this manner, we obtain the general form of pn to be  

       0
121

1210
1

1

1 p
dddd

bbbb
p

d
b

p
nn

nn
n

n

n
n

−

−−
−

−

− ==
K

K
        (4.283) 

From (4.278), ∑
=

=+
N

k
kpp

1
0 1 , and using (4.283), we obtain 

∑∏
=

−

= +








+

=
N

k

k

d
b

p

1

1

0 1

0

1

1

l l

l

         (4.284) 

If we assume that the birth λ=nb  and death µ=nd  are constants, then the 
system of equations to give the steady state probabilities is obtained from (4.277) 
to be 





=µ+λ−
=µ+µ+λ−λ +−

0
0)(

10

11

pp
ppp nnn

  
  

        (4.285) 

Solving the equations in (4.285) [or using (4.283)], we obtain 

0pp
n

n 







µ
λ

=        (4.286a) 

and using 110 =+ pp , we have 

λ+µ
µ

=0p        (4.286b) 
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Figure 4.10   Two-state random waveform. 

Example 4.7 
 
Let X(t) be a random waveform with two states, 0 and 1, as shown in Figure 4.10. 
The intensities of transitions from state 0 to state 1 and  from state 1 to state 0 are 
λ01 and λ10, respectively. The probability to go from state Si to state Sj, i, j = 0, 1, is 

tij∆λ . Determine 
(a) P0(t) the probability that the system is in state S0 for 0≥t . 
(b) P0(t) and P1(t) if P0(0) = 1. 
(c) The steady values of P0 and P1. 
(d) The probability that the first transition after a time t will be from S1 to S0. 

(e) The probability of a transition, )(TP , occurring in (t, t + ∆t), t large. 
 
Solution 
 
(a) For the simplicity of notation, let b=λ 01  and d=λ10 . The state diagram of 
this system is shown in Figure 4.11. Using (4. 270), we have  

[ ] [ ] 







−

−
=

dd
bb

tptptptp  )()()(')(' 1010  

or 







=+

−=

1)()(

)()(
)(

10

01
0

tptp

tbptdp
dt

tdp
 

Substituting for )(1)( 01 tptp −= , we obtain the differential equation 

 
 
 
 

Figure 4.11  State diagram for Example 4.7. 
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dbdtp
dt

tdp
++−= ])[(

)(
0

0  

Solving the differential equation, we obtain the state distribution vector with 








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+




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−= +−
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0,)0()(
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t
db

de
db

dptp tdb

 

where )]0()0([)0( 10 ppT =p . A plot of )(0 tp  is given in Figure 4.12. We 
observe that this is the birth-death process. 
 
(b) If 1)0(0 =p , then 0)0(1)0( 01 =−= pp . Thus, after substitution we obtain 

db
de

db
btp

db
de

db
btp

tdb

tdb

+
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+
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)(
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)(
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(c) As t becomes large, the steady-state values are 

00 )(lim p
db

dtp
t

=
+

=
∞→

 and 11 )(lim p
db

btp
t

=
+

=
∞→

 

Note that solving the birth-death process equations given by 




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=−
1

0

10

01

pp
bpdp

 

 
 
 
 
 
 
 
 
 

Figure 4.12  Plot of  p0(t). 

 0 

db
dp
+

>)0( 

db
dp
+

<)0(

 t 

db
d
+

)(0 tp

)0(p



Signal Detection and Estimation 284

with dµb ==λ   and results in 

db
dp
+

=0   and  
db

bp
+

=1  

which agrees with the result obtained using the limits. 
 
(d) A transition from S1 to S0 means that the system is in state S1. Hence, the 
probability is 

db
bp
+

=1  

(e) The probability of a transition T occurring is 

10110001 )()|()()|()( tpdtpbSPSSPSPSSPTP ∆+∆=+=  

where )|( ij SSP is the probability of going from state Si to state Sj. For t large, we 
are in steady state, and thus using the result of (c), we obtain 

bd
tdbTP

+
∆

=
2)(  

 
 
4.6 SUMMARY 
 
In this chapter, we presented discrete-time stochastic processes, namely, the AR, 
MA, and ARMA processes, and Markov chains. In order to understand the 
concepts of the AR, MA, and ARMA processes, we first gave a review of matrix 
operations and linear algebra. We showed how these processes are generated and 
how the parameters for the correlation functions and power spectrum are 
computed.  Due to the importance of the autocorrelation function, we developed its 
properties in some detail. This is the realm of parametric spectrum estimation. 
Spectrum estimation can be very well developed, which is beyond the scope of this 
book. Then we presented Markov chains. We defined Markov chains and gave a 
few examples to illustrate the concepts introduced. 
 
 

PROBLEMS 
 
4.1 Find the eigenvalues, the eigenvectors, and the Jordan form by the similarity 

transformation of the matrix A. 
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Figure 4.9  Birth-death process. 

Using the notation )(])([ ttpnttXP n ∆+==∆+ , and using (4.274), we have  

      )(])(1[)()()()( 1111 tptdbttdtpttpbttp nnnnnnnn ∆+−+∆+∆=∆+ ++−−    (4.275) 

Since ttpttptp nntn ∆/)]()∆([lim)('
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, then 
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        (4.276) 

where we used the fact that 0)(1 =− tp  and 00 =d . To determine the steady state 
probabilities, we set 0)(' =tp n and solve the set of homogeneous equations 

      0)( 1111 =++− ++−− nnnnnnn pdpdbpb       (4.277a) 

    01100 =+− pdpb        (4.277b) 

and using  

    ∑
=

=
N

k
kp

0
1         (4.278) 

Hence, from (4.277b) 

0
1

0
1 p

d
b

p =          (4.279) 

For n = 1, 

0)( 2211100 =++− pdpdbpb         (4.280) 

Solving (4.280), we obtain 

 b0  bn -1

 dn 

 Sn  Sn - 1  S1  S2 S0 

 d1  d2 

 b1 
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







=

53
35

A  

4.8 Consider the second-order difference equation of the AR process. 
(a) Obtain the characteristic equation and draw the model. 
(b) Determine the possible poles, and specify the stability region in terms of 

the AR parameters. 
 
4.9 The autocorrelation function of the AR(2) process given in Problem 4.8 is  

0,0)2()1()( 21 >=−+−+ kkrakrakr xxxxxx  

(a) Use Yule-Walker equations to obtain the weights 1ω  and 2ω  in terms of 
the correlations )0(xxr , )1(xxr , and )2(xxr . 

(b) Obtain expressions for )1(xxr  and )2(xxr  in terms of the AR parameters  

1a  and 2a . 
 
4.10 Consider the discrete-time Markov chain with the following transition 

matrix 



















=

1000
2/14/104/1

002/12/1
002/13/1

P  

Draw the state diagram and classify the states. 
 
4.11 Suppose that a discrete communication source generates one of the three 

symbols, 1, 2, and 3. The generation of symbols obeys a homogeneous 
Markov chain, given by the following transition matrix, 
















=

4.03.03.0
4.02.04.0
2.03.05.0

P  

The initial distribution vector is [ ]4.03.03.0)0( =Tp  
(a) Draw the state diagram. 
(b) Determine the n-step transition matrix, n large. 
(c) Determine the state probabilities after n steps. 
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4.12 In the land of Oz , the weather changes a lot [1]. For example, if they have a 
nice (N) day, they may easily have rain (R) or snow (S) on the next day. 
Suppose that the weather can be modeled as a Markov chain, whose 
transition probability matrix is given by 

















5.025.025.0
5.005.0

25.025.05.0

S
N
R

S   N    R  

 

(a) Draw the state diagram. 
(b) Compute ,)2(P  ,)3(P  ,)4(P  ,)5(P  and ,)6(  P  and comment on the 

results. 
(c) If [ ]1.02.07.0)0( =Tp , then find the steady state distribution 

vector. 
 
4.13 Consider a two-state discrete-time Markov chain with probability transition 

matrix  









−

−
==

bb
aa

1
1

)1( PP  

(a) Draw the state diagram. 
(b) Verify by induction the limiting state probabilities given by [2] 





















+
−−+

+
−−−

+
−−−

+
−−+

=

ba
baaa

ba
baab

ba
baaa

ba
baab

n
nn

nn

)1()1(

)1()1(

)(P  

(c) Find the limiting state probabilities for the special cases when 
0== ba  and .1== ba  

 
 

References 
 

[1] Kemeny, J. G., J. L. Snell, and G. L. Thompson, Introduction to Finite Mathematics, Englewood 
Cliffs, NJ: Prentice Hall, 1974. 

[2] Shanmugan, K. S., and A. M. Breipohl, Random Signals: Detection, Estimation and Data 
Analysis, New York: John Wiley and Sons, 1988. 



Signal Detection and Estimation 288

Selected Bibliography 
 
Brogan, W. L., Modern Control Theory, New York: Quantum Publishing, 1974. 

Dorny, C. N., A Vector Space Approach to Models and Optimization, Huntington, NY: Robert E. 
Krieger Publishing Company, 1980. 

Gallagher, R. G., Information Theory and Reliable Communications, New York: John Wiley and Sons, 
1968. 

Grimmett, G. R., and D. R. Stirzaker, Probability and Random Process, Oxford, England: Clarendon 
Press, 1982. 

Grinstead, C. M., and J. L. Snell, Introduction to Probability, Providence, RI: American Mathematical 
Society, 1997, and on-line textbook 2004. 

Haykin, S., Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice Hall, 1986. 

Kay, S. M., Modern Spectral Estimation; Theory and Application, Englewood Cliffs, NJ: Prentice Hall, 
1988. 

Madisetti, V. K., and D. B. Williams, (eds.), Digital Signal Processing, Boca Raton, FL: CRC Press, 
1999. 

Marple, Jr., S. L., Digital Spectral Analysis, Englewood Cliffs, NJ: Prentice Hall, 1987. 

Papoulis, A., Probability, Random Variables, and Stochastic Processes, New York: McGraw-Hill, 
1991. 

Shanmugan, K. S., and A. M. Breipohl, Random Signals: Detection, Estimation and Data Analysis, 
New York: John Wiley and Sons, 1988. 

Stark, H., and J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers, 
Englewood Cliffs, NJ: Prentice Hall, 1986. 

Ziemer, R. E., W. H. Trander, and D. R. Fannin, Signal and Systems: Continuous and Discrete, New 
York: Macmillan, 1983.  
 
 



 

 
 
 
 

Chapter 5 
 
 

Statistical Decision Theory 
 
 
5.1 INTRODUCTION 
 
In our daily life, we are constantly making decisions. Given some hypotheses, a 
criterion is selected, upon which a decision has to be made. For example, in 
engineering, when there is a radar signal detection problem, the returned signal is 
observed and a decision is made as to whether a target is present or absent. In a 
digital communication system, a string of zeros and ones may be transmitted over 
some medium. At the receiver, the received signals representing the zeros and ones 
are corrupted in the medium by some additive noise and by the receiver noise. The 
receiver does not know which signal represents a zero and which signal represents 
a one, but must make a decision as to whether the received signals represent zeros 
or ones. The process that the receiver undertakes in selecting a decision rule falls 
under the theory of signal detection. 

The situation above may be described by a source emitting two possible 
outputs at various instants of time. The outputs are referred to as hypotheses. The 
null hypothesis H0 represents a zero (target not present) while the alternate 
hypothesis H1 represents a one (target present), as shown in Figure 5.1. 

Each hypothesis corresponds to one or more observations that are represented 
by random variables. Based on the observation values of these random variables, 
the receiver decides which hypothesis (H0 or H1) is true. Assume that the receiver 
is to make a decision based on a single observation of the received signal. The 
range of values that the random variable Y takes constitutes the observation space 
Z. The observation space is partitioned into two regions Z0 and Z1, such that if Y 
lies 

 
 
 
 

Figure 5.1  Source for binary hypothesis. 
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Figure 5.2  Decision regions. 

lies in Z0, the receiver decides in favor of H0; while if Y lies in Z1, the receiver 
decides in favor of H1, as shown in Figure 5.2. The observation space Z is the 
union of Z0 and Z1; that is,  

10 ZZZ U=              (5.1) 

The probability density functions of Y corresponding to each hypothesis are 
)|( 0| 0

Hyf HY  and )|( 1| 1
Hyf HY , where y is a particular value of the random 

variable Y. 
Each time a decision is made, based on some criterion, for this binary 

hypothesis testing problem, four possible cases can occur: 
 
1. Decide H0 when H0 is true. 
2. Decide H0 when H1 is true. 
3. Decide H1 when H0 is true. 
4. Decide H1 when H1 is true. 
 
Observe that for cases (1) and (4), the receiver makes a correct decision, while for 
cases (2) and (3), the receiver makes an error. From radar nomenclature, case (2) is 
called miss, case (3) a false alarm, and case (4) a detection. 

In this chapter, we develop the basic principles needed for solving decision 
problems. The observations are represented by random variables. Extension of 
these results to time-varying waveforms will be studied in later chapters. 

In the next sections, we study some of the criteria that are used in decision 
theory, and the conditions under which these criteria are useful. 
 
 

 
Source 

decide H1 

decide H0 

Z1 

Z0 

Z0 

)|( 0| 0
Hyf HY  

)|( 1| 1
Hyf HY  
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5.2 BAYES’ CRITERION 
 
5.2.1 Binary Hypothesis Testing 
 
In using Bayes’ criterion, two assumptions are made. First, the probability of 
occurrence of the two source outputs is known. They are the a priori probabilities 

)( 0HP  and )( 1HP . )( 0HP  is the probability of occurrence of hypothesis H0, 
while )( 1HP is the probability of occurrence of hypothesis H1. Denoting the a 
priori probabilities )( 0HP and )( 1HP by P0 and P1 respectively, and since either 
hypothesis H0 or H1 will always occur, we have 

110 =+ PP              (5.2) 

The second assumption is that a cost is assigned to each possible decision. The 
cost is due to the fact that some action will be taken based on a decision made. The 
consequences of one decision are different from the consequences of another. For 
example, in a radar detection problem, the consequences of miss are not the same 
as the consequences of false alarm. If we let ,1,0  i    ,Di = where 0D  denotes 
“decide H0” and 1D  denotes “decide H1,” we can define ,1,0,,  ji  Cij =  as the cost 

associated with the decision ,iD  given that the true hypothesis is .jH  That is,  

    1,0,true),,(decide)cost (incurring          == jiHDPCP jiij            (5.3) 

In particular, the costs for this binary hypothesis testing problem are 00C for 
case (1), 01C for case (2), 10C  for case (3), and 11C  for case (4). The goal in 
Bayes’ criterion is to determine the decision rule so that the average cost ][CE , 
also known as risk ℜ, is minimized. The operation ][CE denotes expected value. It 
is also assumed that the cost of making a wrong decision is greater than the cost of 
making a correct decision. That is, 

1101 CC >            (5.4a) 

and 

0010 CC >            (5.4b) 

Given ),( ji HDP , the joint probability that we decide Di, and that the hypothesis 
Hj is true, the average cost is 
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ℜ = ][CE ),(),(),(),( 1111011010010000 HDPCHDPCHDPCHDPC +++=  (5.5) 

From Bayes’ rule, we have 

         )()|(),( jjiji HPHDPHDP =             (5.6) 

The conditional density functions ,1,0,),|(   =jiHDP ji in terms of the regions 
shown in Figure 5.2, are 

∫=≡
0 0

)|(true)|(decide)|( 0|0000 Z HY dyHyfHHPHDP               (5.7) 

∫=≡
0 1

)|( true)|(decide)|( 1|1010 Z HY dyHyfHHPHDP              (5.8) 

∫=≡
1 0

)|(  true)|(decide)|( 0|0101 Z HY dyHyfHHPHDP             (5.9) 

and  

 ∫=≡
1 1

)|(true)|(decide)|( 1|1111 Z HY dyHyfHHPHDP             (5.10) 

The probabilities )|( 10 HDP , )|( 01 HDP , and ),( 11 HDP  represent the 
probability of miss, MP , the probability of false alarm, FP , and the probability of 
detection, DP , respectively. We also observe that 

DM PP −=1            (5.11) 

and  

        FPHDP −=1)|( 00            (5.12) 

Consequently, the probability of a correct decision is given by 

)()|()()|(
),(),()(decision)(correct 

111000

1100

HPHDPHPHDP
HDPHDPcPP

+=
+==

                               
 

       10)1( PPPP DF +−=            (5.13) 

and the probability of error is given by 
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)()|()()|(
),(),()((error)

001110

0110

HPHDPHPHDP
HDPHDPPP
+=

+=ε=
                         

 

   01 PPPP FM +=            (5.14) 

A plot of the probability density function of the cost, )(ccP , is illustrated in Figure 
5.3. The average cost now becomes 

ℜ = ][CE 111010101000 )1()1( PPCPPCPPCPPC DFDF ++−+−=    (5.15) 

In terms of the decision regions defined in (5.7) to (5.9), the average cost is  

∫∫ +=ℜ
0 10 0

)|()|( 1|0110|000 Z HYZ HY dyHyfCPdyHyfCP  

           ∫∫ ++
1 11 0

)|()|( 1|1110|100 Z HYZ HY dyHyfCPdyHyfCP          (5.16) 

Using (5.1) and the fact that  

       ∫∫ ==
Z HYZ HY dyHyfdyHyf 1)|()|( 1|0| 10

         (5.17) 

it follows that 

          ∫∫ =−=
01

1,0,)|(1)|( || Z jHYZ jHY jdyHyfdyHyf
jj

         (5.18) 

where ,1,0),|(|  j Hyf jHY j
= is the probability density function of Y corresponding 

to each hypothesis. Substituting for (5.18) in (5.16), we obtain 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.3  Density function of cost. 

C00 C10 C11  C01 

C 

)1(0 FPP −  FPP0  )1(1 DPP −  
DPP1  

)(CCP  

 0 
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∫ −−−+

+=ℜ

0 01
)]}|()([)]|()({[ 0|001001|11011

111100

Z HYHY dyHyfCCPHyfCCP

CPCP
 

                (5.19) 

We observe that the quantity 111100 CPCP +  is constant, independent of how we 
assign points in the observation space, and that the only variable quantity is the 
region of integration Z0. From (5.4a, b), the terms inside the brackets of (5.19) 
[ )|()( 1|11011 1

HyfCCP HY− and ])|()( 0|00100 0
HyfCCP HY− , are both positive. 

Consequently, the risk is minimized by selecting the decision region Z0 to include 
only those points of Y for which the second term is larger, and hence the integrand 
is negative. Specifically, we assign to the region Z0 those points for which 

)|()( 1|11011 1
HyfCCP HY− < )|()( 0|00100 0

HyfCCP HY−          (5.20) 

All values for which the second term is greater will be excluded from Z0 and 
assigned to Z1.  The values for which the two terms are equal do not affect the risk, 
and can be assigned to either Z0 or Z1. Consequently, we say if 

)|()( 1|11011 1
HyfCCP HY− > )|()( 0|00100 0

HyfCCP HY−          (5.21) 

then we decide H1. Otherwise, we decide H0. Hence, the decision rule resulting 
from the Bayes’ criterion is 

)(
)(

)|(

)|(

11011

00100

0

1

0|

1|

0

1

CCP
CCP

H

H

Hyf

Hyf

HY

HY

−
−

<
>           (5.22) 

The ratio of )|( 1| 1
Hyf HY  over )|( 0| 0

Hyf HY  is called the likelihood ratio and is 

denoted )(Λ y . That is, 

   
)|(

)|(
)(Λ

0|

1|

0

1

Hyf

Hyf
y

HY

HY=            (5.23) 

It should be noted that if we have K observations, for example, K samples of a 
received waveform, Y1, Y1, … , Yk, based on which we make the decision, the 
likelihood ratio can be expressed as 
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)|(

)|(
)(Λ

0|

1|

0

1

Hf

Hf

H

H

y
y

y
Y

Y=            (5.24) 

where Y, the received vector, is  

     ][ 21 K
T YYY K=Y           (5.25) 

The likelihood statistic )(Λ Y is a random variable since it is a function of the 
random variable Y. 

The threshold is  

        
)(
)(

η
11011

00100

CCP
CCP

−
−

=            (5.26) 

Therefore, Bayes’ criterion, which minimizes the average cost, results in the 
likelihood ratio test 

η)(Λ

0

1

H

H

<
>y            (5.27) 

An important observation is that the likelihood ratio test is performed by 
simply processing the receiving vector to yield the likelihood ratio and comparing 
it with the threshold. Thus, in practical situations where the a priori probabilities 
and the cost may change, only the threshold changes, but the computation of 
likelihood ratio is not affected. 

Because the natural logarithm is a monotonically increasing function as shown 
in Figure 5.4, and since the likelihood ratio )(Λ y and the threshold η are 
nonnegative, an equivalent decision rule to (5.27) is 

ηln)(Λln

0

1

H

H

<
>y            (5.28) 

We note that if we select the cost of an error to be one and the cost of a correct 
decision to be zero; that is, 

11001 == CC          (5.29a) 
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Figure 5.4  Natural logarithmic function. 

and 

01100 == CC          (5.29b) 

then the risk function of (5.15) reduces to 

)(01 ε=+=ℜ PPPPP FM            (5.30) 

Thus, in this case, minimizing the average cost is equivalent to minimizing the 
probability of error. Receivers for such cost assignment are called minimum 
probability of error receivers. The threshold reduces to 

1

0η
P
P

=             (5.31) 

If the a priori probabilities are equal, η is equal to one, and the log likelihood ratio 
test uses a zero threshold. 
 
Example 5.1 
 
In a digital communication system, consider a source whose output under 
hypothesis H1 is a constant voltage of value m, while its output under H0 is zero. 
The received signal is corrupted by N, an additive white Gaussian noise of zero 
mean, and variance .2σ  

(a) Set up the likelihood ratio test and determine the decision regions. 
(b) Calculate the probability of false alarm and probability of detection. 

 
 

 x 

 y = ln x 
 y 
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Solution 
 
(a) The received signals under each hypothesis are  

NYH
NmYH

  =
+=

:
:

0

1  

where the noise N is Gaussian with zero mean and variance .2σ  Under hypothesis 
H0, 












σ
−

σπ
== 20 2

exp
2
1)()|(

2

0|
y

nfHyf NHY  

Under hypothesis H1, the mean of Y is mNmEYE =+= ][][ , since .0][ =NE  The 
variance of Y is 

( ) 2222 ][][])[(]var[]var[ σ==+−+=+= NEnmENmENmY  

Hence, 

( )












σ

−
−

σπ
=

2

2

1| 2
1exp

2
1)|(

1

myHyf HY  

The likelihood ratio test is 












σ

−
−==

2

2

0|

1|

2
2exp

)|(

)|(
)(Λ

0

1 ymm
Hyf

Hyf
y

HY

HY  

Taking the natural logarithm on both sides of the above equation, the likelihood 
ratio test becomes 

ηln
σ2σ

)(Λln

0

1

2

2

2

H

H
mymy <

>−=  

Rearranging terms, an equivalent test is 
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γ
2

ηlnσ 2

0

1

=+<
> m

m
H

H

y  

That is, the received observation is compared with the threshold γ. The decision 
regions are as shown in Figure 5.5. 
 
(b) The probabilities of false alarm and detection are 

∫ 






σ
γ

=






σ
γ

=
σπ

==
∞

γ
∗

σ
−

erfc
2
1true)|(decide 2

2

2
01 QdyeHHPP

y

F  

where 

∫
∞ −

=
α

2

2

π2
1)α( dueQ

u

 

and denoted ( )⋅∗erfc  in some books. 

( )

∫
∞ −

−







 −
===

γ

σ2
11 σ

γ
σπ2

1true)|(decide 2

2

m
QdyeHHPP

my

D  

Example 5.2 
 
Suppose that the receiver of Example 5.1 takes K samples, Y1, Y2, … , YK. The 
noise samples are independent Gaussian random variables, each with mean zero 
and variance 2σ . Obtain the optimum decision rule. 

 
 
 
 
 
 
 
 
 
Figure 5.5  Decision regions. 

 0  m 
 γ  H1  H0 

 y 

 PF 

 PD 

)|( 1| 1
Hyf HY  )|( 0| 0

Hyf HY  
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Solution 
 
The received signal under hypothesis H0 and H1 is 

KkNYH
KkNmYH

k

k

,...,2,1,:
,...,2,1,:

0

1

==
=+=

 

Under hypothesis H0, 












σ
−

σπ
==

2

2

0|
2

exp
2
1)()|(

0

k
kNkHY

y
yfHyf

kk
 

Under hypothesis H1, the kth received sample is a Gaussian random variable with 
mean m and variance 2σ . Thus, 













σ

−
−

σπ
=−=

2

2

1|
2

)(
exp

2
1)()|(

1

my
myfHyf k

kNkHY kk
 

From (5.24), we need )|(and)|( 0|1| 0
Hf    Hf HH1

yy YY . Since the noise samples 
are statistically independent, the joint density function of the K samples is the 
product of the individual density functions. This yields 

∏
=

−
=

K

k

y

H

k

eHf
1

σ2
0|

2

2

0 σπ2
1)|( yY   and  ∏

=

−
−

=
K

k

my

H

k

eHf
1

σ2
)(

1|
2

2

1 σπ2
1)|( yY  

where∏ denotes product. Using the fact that ∑=∏ k kxek kx
e , the likelihood 

ratio test is 

( )












σ
−

σ
=













σ

−
−

σ
= ∑∑∑

===

K

k
k

K

k

k
K

k

k Kmymmyy

1
2

2

2
1

2

2

1
2

2

2
exp

2
)(

2
expΛ y  

Taking the natural logarithm of both sides, the likelihood ratio test becomes 

( ) ∑
=

<
>−=

K

k
k

H

H
Kmym

1

0

1

2

2

2
ηln

σ2σ
Λln y  
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Rearranging terms, an equivalent test is 

2
ηlnσ

1

2

0

1

Km
m

H

H

y
K

k
k +<

>∑
=

 

That is, the receiver adds the K samples and compares them to the threshold 

2
ηlnσ 2 Km

m
+ . 

 
Sufficient Statistic 
 
A statistic is any random variable that can be computed from observed data. Let T 
be the value of a statistic given by )(xtT = . Let 'T be the value of another 
statistic, with T and 'T  having a joint density function given by ( )θ|, yxf . Then, 

( ) ( ) ( )θ,|θ|θ|, ' xyfxfyxf TT=           (5.32) 

where ( )θ|xfT  is the probability density function of T, and ( )θ,|' xyfT  is the 
conditional density function of 'T , given xT = . Note that in (5.32), we have used 
the fact that ( ) )|()( and ABPAPBAP = . Assume the conditional density function 

( )θ,|' xyfT  does not involve θ. Then, if T is known, the conditional density 
function of 'T  does not depend on θ, and 'T  is not relevant in the decision making 
problem. This can be shown to be the case of all 'T  for all data. Consequently, T  
summarizes all data of the experiment relevant to θ, and is called a sufficient 

statistic. From Example 5.2, we observe that only knowledge of the sum ∑
=

K

k
ky

1
is 

relevant in making a decision about Y. Hence, ∑
=

=
K

k
kYT

1
)(Y  is a sufficient 

statistic. 
 
Example 5.3 
 
Consider the situation where the samples KYYY      ,...,, 21 are independent random 
variables, each having a Bernoulli distribution with parameter p. Assume that the 
test statistic is 
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∑
=

=
K

k
KYT

1
)(Y  

Is )(YT a sufficient statistic? 
 
Solution 
 
From (2.1), a random variable Y is said to have a Bernoulli distribution with 
parameter p if 

( ) 1,0,1),( 1    =−= − ypppyf yy
Y  

where 10 ≤≤ p . Since the random variables KYYY      ,...,, 21  are statistically 
independent, the joint density function is given by 

( ) ( ) ( )

( ) ∑−
∑

=

−−−=

=
= −

−−−

K

k
k

K

k
k

KK

yK
y

yyyyyy

pp

pppppppf

1
1

2211

1

]1[]1][1[),( 111

   

yY K

 

That is, the joint density function of the sample values does not involve the 

parameter p, and depends only on the sum ∑
=

=
K

k
kyT

1
.)( y  Hence, ∑

=
=

K

k
kYT

1
)(Y is 

a sufficient statistic. 
 
Example 5.4 
 
Consider the problem where the conditional density functions under each 
hypothesis are 











−=

2
0

2

0|
σ2

exp
σπ2

1)|(
0

y
Hyf HY   and  











σ
−

σπ
=

2
1

2

1|
2

exp
2
1)|(

1

y
Hyf HY  

where 2
0

2
1 σσ > . 

(a) Determine the decision rule. 
(b) Assuming we have K independent observations, what would the decision 

rule be? 
 
Solution 
 
(a) Applying the likelihood ratio test given in (5.23), we obtain  
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η<
>












σ
−

σπ












σ
−

σπ
=

0

1

2
0

2

0

2
1

2

1

2
exp

2
1

2
exp

2
1

)(Λ

H

H

y

y

y   or  η<
>























σ
−

σσ
σ

0

1

2
1

2
0

2

1

0 11
2

exp

H

H
y

 

Taking the logarithm on both sides, we have 

η<
>












σ
−

σ
+

σ
σ

ln11
2

ln

0

1

2
1

2
0

2

1

0

H

H
y

  or  γ=
σ
ησ

σ−σ

σσ
<
>

1

0
2
0

2
1

2
1

2
0

0

1

2 ln
2

H

H

y  

2)( YYT =  is the sufficient statistic, and hence the test can be written as 

γ)(

0

1

H

H

yT <
>  

(b) Since the random variables KYYY      ,...,, 21  are independent, the joint density 
function is simply the product of the individual densities. That is,  

∏
=

−

=
K

k

y

H

k

eHf
1

σ2

0
0|

2
0

2

0 σπ2
1)|( yY   and  ∏

=

−

=
K

k

y

H

k

eHf
1

σ2

1
1|

2
1

2

1 σπ2
1)|( yY  

Substituting in (5.24) and taking the logarithm, we have 

ηln
σ
σ

ln
σ
1

σ
1

2
1

0

1

1

0

1

2
2
1

2
0

H

H

Ky
K

k
k <

>+









− ∑

=
 or γ

σ
σ

lnηln
σσ
σσ2

1

0
2
0

2
1

2
1

2
0

0

1

1

2 =







−

−<
>∑

=
K

H

H

y
K

k
k  

The sufficient statistic is ∑
=

=
K

k
kYT

1

2)(Y , and the test can be written as 
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γ)(

0

1

1

2

H

H

yT
K

k
k <

>= ∑
=

y  

Note that if ,2
0

2
1 σ<σ  then 2

0
2
1 σ−σ  is negative and the inequality is reversed; that 

is, 

γ<
>

1

0

)(

H

H

T y  

5.2.2 M-ary Hypothesis Testing 
 
In the previous section, we considered the choice between two hypotheses, H0 and 
H1. We now consider the choice of one hypothesis among M 
hypotheses, 110 ,,, −MHHH K , each time an experiment is conducted. Since any 

one of the M decisions can be made, there are 2M possible alternatives. Bayes’ 
criterion assigns a cost to each alternative. To the ijth alternative, which is the 
decision Di given hypothesis Hj, the cost Cij, )1(,...,1,0, −= Mji  , is assigned. In 
addition to the hypotheses 110 ,,, −MHHH K , we assign the a priori probabilities 

110 ,,, −MPPP K , respectively. The goal is to minimize the risk defined as 

∑ ∑
−

=

−

=
=ℜ

1

1

1

1
)|(

M

i

M

j
jiijj HDPCP           (5.33) 

Using the fact that 

∫=
i jZ jHji dHfHDP yyY )|()|( |           (5.34) 

the average cost becomes 

∑ ∑ ∫
−

=

−

=
=ℜ

1

0

1

0
| )|(

M

i

M

j
Z jHijj

i j
dHfCP yyY          (5.35) 

The observation space Z is now divided into M subspaces, 110 ,,, −MZZZ K , such 
that 
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110 −= MZZZZ UKUU            (5.36) 

In order to find the decision surfaces so that ℜ is minimized, we rewrite (5.35) as 

      ∑ ∫∑ ∑ ∫
−

=

−

=

−

≠
=

+=ℜ
1

1
|

1

0

1

0
| )|()|(

M

i
Z iHiii

M

i

M

ij
j

Z jHijj
i ii j

dHfCPdHfCP yyyy YY      (5.37) 

because ∫ =
Z jH dHf

j
1)|(| yyY ,and the surface U

1

0

−

≠
=

−=
M

ij
j

ji ZZZ . Substituting in 

(5.37), the risk becomes 

        ( )∑ ∫ ∑ ∑
−

=

−

≠
=

−

=
+−=ℜ

1

1

1

0

1

0
| )|(

M

i
Z

M

ij
j

M

i
iiijHjjijj

i j
CPdHfCCP yyY          (5.38) 

Using the same reasoning as before, we observe that the second term of (5.38) is 
fixed, while the first term determines the cost for the selected decision regions. 
Hence, the small integral value yields selection of the hypothesis for which  

     ( )∑
−

≠
=

−=
1

0
| )|()(

M

ij
j

jHjjijji HfCCPI
j

yy Y           (5.39) 

is minimum. 
Defining the likelihood ratio ,1,...,2,1),(Λ −= Mii     y as  

                   1,...,2,1,
)|(

)|(
)(Λ

0|

|

0

−== Mi
Hf

Hf

H

iH
i

i    
y
y

y
Y

Y          (5.40) 

and the term )( yiJ as 

            ∑
−

=
−==

1

10|
)(Λ)(

)|(
)(

)(
0

M

j
jjjijj

H

i
i CCP

Hf
I

J y
y
y

y
Y

         (5.41) 

the decision rule is to choose the hypothesis for which (5.41) is minimum. 
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MAP Criterion  
 
In communication problems, it is common to have the costs 

1,...,2,1,0 −== MiCii            (5.42a) 

and 

        1,...,1,0,and,1 −=≠= MjijiCij              (5.42b) 

In this case, minimizing the risk is equivalent to minimizing the probability of 
error. After substitution, (5.41) becomes 

)()]|(1[)()|()|()()(
1

0

1

0
| yYyYyy YYY fHPfHPHfHPI i

M

ji
j

j

M

j
jHji j

−=== ∑∑
−

≠
=

−

=
 

                (5.43) 

Minimizing (5.43) is equivalent to maximizing )|( YiHP , which is the a 
posteriori probability of hypothesis Hi, given the observation vector y. If in 
addition, the a priori probabilities are equal 

     pHPHPHP M ==== − )()()( 121 K           (5.44) 

Equation (5.43) becomes 

    )]|(1[)|()(
1

0
| Yyy Y i

M

ij
j

jHi HPpHfpI
j

−== ∑
−

≠
=

         (5.45) 

We observe that in this decision rule, the receiver computes the a posteriori 
probabilities 1,...,2,1,0),|( −= MiHP i    Y , and decides in favor of the hypothesis 
corresponding to the largest a posteriori probability. Such a minimum probability 
of error receiver is also referred to as the Maximum a posteriori probability (MAP) 
receiver. 

For simplicity, let 3=M and the observation space be 210 ZZZZ UU= . 
From (5.35), we obtain 
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∫∫

∫∫

∫∫

∫∫

++

++

++

+=ℜ

0 22 2

2 10 1

1 12 0

1 00 0

)|()|(

)|()|(

)|()|(

)|()|(

2|0222|222

1|2111|011

1|1110|200

0|1000|000

Z HZ H

Z HZ H

Z HZ H

Z HZ H

dHfCPdHfCP

dHfCPdHfCP

dHfCPdHfCP

dHfCPdHfCP

yyyy       

yyyy       

yyyy       

yyyy

YY

YY

YY

YY

 

          ∫+
1 2

)|( 2|122 Z H dHfCP yyY             (5.46) 

Note that 

∫∫ ∑
=

≠

−

ij
j

j ii i ZZ iHZ iHY dHfdyHyf yyY )|()|( ||  

   ∑∫
≠

=−=

ij
j

Z iH
j i

jidHf 2,1,0,)|(1 |    y,yY        (5.47) 

Substituting (5.47) for the terms involving 221100  and,, CCC  in (5.46), we obtain 

∫

∫
−+−+

−+−+

++=ℜ

1 20

0 12

)]|()()|()([

)]|()()|()([

2|221220|00100

1|110112|22022

222111000

Z HH

Z HH

dHfCCPHfCCP

dHfCCPHfCCP

CPCPCP

yyy       

yyy       

YY

YY  

       ∫ −+−+
2 10

)]|()()|()([ 1|112110|00200Z HH dHfCCPHfCCP yyy YY       (5.48) 

We define )(and ),(),( 210 y  yy III as 

        )|()()|()()( 1|110112|220220 12
HfCCPHfCCPI HH yyy YY −+−=       (5.49a) 

        )|()()|()()( 2|221220|001001 20
HfCCPHfCCPI HH yyy YY −+−=     (5.49b) 

and 

        )|()()|()()( 1|112110|002002 10
HfCCPHfCCPI HH yyy YY −+−=       (5.49c) 

To minimize ℜ, we assign values of Y to the region having the smallest integrands 
in (5.48), since )(and ),(),( 210 y  yy III are nonnegative. Consequently, 
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{ })( and)()(| 2100 y yyy IIIZ <=  

{ })(and)()(| 2011 y  yyy IIIZ <=  

and 

{ })(and)()(| 1022 y  yyy IIIZ <=  

where | denotes “such that.” From (5.40), the likelihood ratios )(Λ and )(Λ 21 yy  
are 

)|(

)|(
)(Λ

0|

1|
1

0

1

Hf

Hf

H

H

y
y

y
Y

Y=          (5.50a) 

and 

)|(

)|(
)(Λ

0|

2|
2

0

2

Hf

Hf

H

H

y
y

y
Y

Y=          (5.50b) 

In order to incorporate the likelihood ratios into the decision rule, we use the 
following equivalent test 

)(

or

or

)( 1

20

21

0 y

  

  

y I

HH

HH

I <
>          (5.51a) 

)(

or

or

)( 2

10

21

0 y

  

  

y I

HH

HH

I <
>          (5.51b) 

and 

)(

or

or

)( 2

10

20

1 y

  

  

y I

HH

HH

I <
>          (5.51c) 
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Substituting (5.49) and (5.50) into (5.51), we obtain the test 

       )(Λ)()(

or

or

)(Λ)( 20212200100

20

21

111011 y

  

  

y CCPCCP

HH

HH

CCP −+−<
>−    (5.52a) 

       )(Λ)()(

or

or

)(Λ)( 10121100200

10

21

222022 y

  

  

y CCPCCP

HH

HH

CCP −+−<
>−   (5.52b) 

and 

       )(Λ)()(

or

or

)(Λ)( 11121110200

10

20

222122 y

  

  

y CCPCCP

HH

HH

CCP −+−<
>−    (5.52c) 

Because 3=M , there are only two likelihood ratios and the decision space is two-
dimensional, as shown in Figure 5.6. 

For the costs  

          0221100 === CCC         (5.53a) 

jiCij ≠=  ,1          (5.53b) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.6  Decision space for M = 3. 

Decide H0 
Decide H1 

Decide H2 

)(Λ1 y

)(Λ 2 y
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It is easier to observe, in this case of 3=M , that minimizing the risk is equivalent 
to minimizing the probability of error, and the decision rule reduces to 

     
1

0

20

21

1

or

or

)(Λ
P
P

HH

HH

  

  

y <
>          (5.54a) 

     
2

0

10

21

2

or

or

)(Λ
P
P

HH

HH

  

  

y <
>          (5.54b) 

and 

 )(Λ

or

or

)(Λ 1
2

1

10

20

2 y

  

  

y
P
P

HH

HH

<
>        (5.54c) 

The resulting decision regions are shown in Figure 5.7(a). The overall decision 
space is given in Figure 5.7(b). 

Taking the logarithm of both sides of (5.54a–c), we obtain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)     (b) 

Figure 5.7  Decision space for :3=M  (a) resulting decision regions and (b) overall decision space. 

 H0 

 H1 

 H2 

)(Λ1 y  

)(Λ2 y

10 / PP  

21 / PP  

 H2 or H0 
 H2 or H1 
 

)(Λ 1 y

)(Λ2 y  

20 / PP  

 H1 or H2 
 H1 or H0 
 

 H1 or H2 
 H1 or H0 
 

 H2 or H1 
 H2 or H0 
 

 H0 or H1 

 H0 or H2 

10 / PP  
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1

0

20

21

1 ln

or

or

)(Λln
P
P

HH

HH

  

  

y <
>         (5.55a) 

   
2

0

10

21

2 ln

or

or

)(Λln
P
P

HH

HH

  

  

y <
>         (5.55b) 

and 

)(Λln

or

or

)(Λln 1
2

1

10

20

2 y

  

  

y
P
P

HH

HH

<
>        (5.55c) 

The decision space in the −− )(Λln)(Λln 21 yy plane is shown in Figure 5.8. 
We observe that the decision space now consists of the entire plane. 

Furthermore, substituting (5.50) in (5.54), dividing by )( yYf  and using 
),()|( BPBAP  we obtain the following decision rule 

          )|(

or

or

)|( 0

20

21

1 y

  

  

y HP

HH

HH

HP <
>         (5.56a) 

 
 
 
 
 
 
 
 
 
 
Figure 5.8  Decision space using logarithm for .3=M  

Decide H0 

Decide H1

Decide H2

)(Λln 1 y

)(Λln 2 y  

10 /ln PP

20 /ln PP  
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          )|(

or

or

)|( 0

10

21

2 y

  

  

y HP

HH

HH

HP <
>         (5.56b) 

and 

         )|(

or

or

)|( 1

10

20

2 y

  

  

y HP

HH

HH

HP <
>         (5.56c) 

Hence, this form shows clearly that the decision amounts to computing the a 
posteriori probabilities )|(and),|(),|( 210 y  yy HPHPHP , and then selecting the 
hypothesis corresponding to the largest. 
 
Example 5.5 
 
A ternary communication system transmits one of the three amplitude 
signals{ }3,2,1   with equal probabilities. The independent received signal samples 
under each hypothesis are 

KkNYH
KkNYH
KkNYH

k

k

k

,...,2,1,3:
,...,2,1,2:
,...,2,1,1:

3

2

1

  
  
  

=+=
=+=
=+=

 

The additive noise N is Gaussian with mean zero and variance 2σ . The costs are 
3,2,1,,for1and0       =≠== jijiCC ijii . Determine the decision regions. 

 
Solution 
 
Since the observation samples are independent, the conditional density function of 
the observation Y under each hypothesis 3,2,1,     =jH j  is 

( )

( ) 







−

σ
−

πσ
=









−

σ
−

σπ
=

∑

∏

=

=

K

k
jkK

jk

K

k
jH

my

myHf
j

1

2
22/2

2
2

1
|

2
1exp

)2(
1

2
1exp

2
1)|(

                       

yY
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( )







−

σ
+

σ
−

πσ
= ∑∑

==

K

k
jjk

K

k
kK

mmyy
1

2
2

1

2
22/2

2
2

1
2

1exp
)2(

1    

The decision rule is to choose the hypothesis for which )|(| jH Hf
j

yY is 

maximum.  Rewriting )|(| jH Hf
j

yY  

( )







−

σ









σ
−

πσ
= ∑∑

==

K

k
jjk

K

k
kKjH mmyyHf

j
1

2
2

1

2
22/2| 2

2
1exp

2
1exp

)2(
1)|( yY  

we observe that we choose the hypothesis Hj, for which  

( )∑ ∑
= =

−=−
K

k

K

k
jjkjjk mmy

K
mmy

1 1

22 22  

is maximum. That is, we choose the maximum of  

∑∑ ∑
== =

−−−
K

k
k

K

k

K

k
kk y

K
y

K
y

K 11 1
96and,44,122  

where the means 3 and , 2 ,1 321 === mmm correspond to hypotheses H1, H2, 
and H3, respectively. If 

∑∑
==

−>−
K

k
k

K

k
k y

K
y

K 11
4412  

we choose H1 for the region 

2
31

1
<∑

=

K

k
ky

K
 

and so on for all terms. We observe that the test statistic is ∑
=

=
K

k
kYKT

1
)/1()(Y , 

which is just the sample mean. Hence, the decision regions are given by 

3

2

1

choose5.2)(
choose5.2)(5.1
choose5.1)(

HT
HT
HT

   y         
  y
   y         

>
≤<
≤
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A plot of conditional density functions showing the decision regions is shown in 
Figure 5.9. 
 
 
5.3 MINIMAX CRITERION 
 
The Bayes’ criterion assigns costs to decisions and assumes knowledge of the a 
priori probabilities. In many situations, we may not have enough information about 
the a priori probabilities and consequently, the Bayes’ criterion cannot be used. 
One approach would be to select a value of P1, the a priori probability of H1, for 
which the risk is maximum, and then minimize that risk function. This principle of 
minimizing the maximum average cost for the selected P1 is referred to as minimax 
criterion. 

From (5.2), we have  

10 1 PP −=            (5.57) 

substituting (5.2) in (5.15), we obtain the risk function in terms of P1 as 

    ])()()[()1( 00101101001111000 FMFF PCCPCCCCPPCPC −−−+−++−=ℜ  
        (5.58) 

Assuming a fixed value of P1, ]1,0[1  ∈P , we can design a Bayes’ test. These 
decision regions are then determined, as are the probabilities of false alarm, PF, 
and miss, PM. The test results in 

( )
)(

))(1(
Λ

11011

00101

0

1

CCP
CCP

H

H

y
−
−−

<
>           (5.59) 

 
 
 
 
 
 
 
 
 
Figure 5.9  Conditional density functions and decision regions. 

 0  3 
T( y) 

)|( 1| 1
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As P1 varies, the decision regions change, resulting in a nonoptimum decision rule. 
This in turn causes a variation in the average cost, which would be larger than the 
Bayes’ costs. The two extreme cases are when P1 is zero or one. If P1 is zero, then 
the threshold is infinity and the decision rule is  

( ) ∞<
>

0

1

Λ

H

H

y            (5.60) 

H0 is always true. The observation is Z0, and the resulting probability of false 
alarm and probability of miss are 

∫ ==
1 0

0)|( 0|Z HYF dyHyfP           (5.61) 

and 

∫ ==
0 1

1)|( 1|Z HYM dyHyfP           (5.62) 

Substituting for the values of MF PPP    and,,1  in (5.58), we obtain that the risk is 

00C=ℜ            (5.63) 

Similarly, when 11 =P , the threshold of (5.59) is zero and the new decision rule is 

( ) 0Λ

0

1

H

H

y <
>            (5.64) 

Since ( )yΛ is nonnegative, we always decide H1. Hence, 1=FP and 0=MP .  The 
resulting risk is  

11C=ℜ             (5.65) 

If ∗= 11 PP  such that ),1,0(1  ∈∗P  then the risk as a function of P1 is as shown in 
Figure 5.10. From (5.58), we see that the risk ℜ  is linear in terms of P1, and the 
Bayes’ test for  ∗= 11 PP   gives the minimum risk  .minℜ   The tangent to  minℜ   is 
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Figure 5.10  Risk as function of P1. 

horizontal, and )( 1P∗ℜ  at ∗= 11 PP  represents the maximum cost. Observe that 
the Bayes’ curve must be concave downward. Thus, the average cost will not 
exceed )( 1

∗∗ℜ P . Taking the derivative of ℜ with respect to P1 and setting it equal 
to zero, we obtain the minimax equation to be 

0)()()( 001011010011 =−−−+− FM PCCPCCCC          (5.66) 

If the cost of a correct decision is zero )0( 1100 == CC , then the minimax equation 

for ∗= 11 PP reduces to 

          FM PCPC 1001 =            (5.67) 

Furthermore, if the cost of a wrong decision is one )1( 1001 == CC , then the 
probability of false alarm equals the probability of miss. That is, 

MF PP =            (5.68) 

and the minimax cost is 

     MFMF PPPPPPPP 1011 )1( +=+−=ℜ           (5.69) 

which is the average probability of error. 
 
Example 5.6 
 
Consider the problem of Example 5.1. Calculate the minimum probability of error 
when: 

Minimax risk 

P1 
 1  0 

ℜ  

 C00 

 C11 

∗
1P  

)( 1
∗∗ PR  
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(a)   .10 PP =  
(b)   P0 and P1 are unknown. 

 
Solution 
 
(a)  From Example 5.1, we found that the decision rule is  

γ
2

ηlnσ 2

0

1

=+<
> m

m
H

H

y  

Given 2/110 == PP , the probability of error is ))(2/1()( MF PPP +=ε , where 








=






= ∗ σ
γerfc

σ
γQPF  

and  








 −
=







 −
−=−=

σ
γ

σ
γ

11
m

Q
m

QPP DM  

(b) In this case, the optimum threshold ∗γ  is obtained when MF PP =  as given in 
(5.68). Hence,  


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or the threshold ∗γ  is 2/m=γ∗ . Consequently, the average probability of error is 







=






=+=+= ∗ σ2

erfc
σ2

)()ε( 1010
mmQPPPPPPPP MMF  

In order to compare the results of (b) and (a), we normalize the standard 
deviation of the observation in (a) to one. Let σ/' yy = , and since 1η = , the 
decision rule becomes 
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Let σ/α m= , and the decision rule reduces to 

2
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H

H
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>  

The probability of false alarm and probability of detection are given by 
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α
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α
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
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



 α
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




 α−
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=
π
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2
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and thus ( ) ( )2/2/11 α=α−−=−= QQPP DM . The average probability of error 
is ( ) ( )[ ] ( ) ( )σ=α=α+α=ε 2/2/2/2/)2/1()( mQQQQP . Therefore, both results 
obtained in (a) and (b) are the same. 
 
 
5.4 NEYMAN-PEARSON CRITERION 
 
In the previous sections, we have seen that for the Bayes’ criterion we require 
knowledge of the a priori probabilities and cost assignments for each possible 
decision. Then we have studied the minimax criterion, which is useful in situations 
where knowledge of the a priori probabilities is not possible. In many other 
physical situations, such as radar detection, it is very difficult to assign realistic 
costs and a priori probabilities. To overcome this difficulty, we use the conditional 
probabilities of false alarm, PF, and detection PD. The Neyman-Pearson test 
requires that PF be fixed to some value α while PD is maximized. 
Since DM PP −=1 , maximizing PD is equivalent to minimizing PM. 

In order to minimize PM (maximize PD) subject to the constraint that α=FP , 
we use the calculus of extrema, and form the objective function J to be  
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     )( α−λ+= FM PPJ            (5.70) 

where )0( ≥λλ  is the Lagrange multiplier. We note that given the observation 
space Z, there are many decision regions Z1 for which .α=FP  The question is to 
determine those decision regions for which PM is minimum. Consequently, we 
rewrite the objective function J in terms of the decision region to obtain 





 α−λ+= ∫∫

1 00 1
)|()|( 0|1| Z HYZ HY dyHyfdyHyfJ          (5.71) 

Using (5.1), (5.71) can be rewritten as 





 α−λ+= ∫∫

0 00 1
)|()|( 0|1| Z HYZ HY dyHyfdyHyfJ  

  ∫ λ−+α−λ=
0 01

)]|()|([)1( 0|1|Z HYHY dyHyfHyf          (5.72) 

Hence, J is minimized when values for which )|()|( 0|1| 01
HyfHyf HYHY >  are 

assigned to the decision region Z1. The decision rule is, therefore, 

( ) λ
)|(

)|(
Λ

0

1

0|

1|

0

1

H

H

Hyf

Hyf
y

HY

HY

<
>=           (5.73) 

The threshold η derived from the Bayes’ criterion is equivalent to λ, the Lagrange 
multiplier in the Neyman-Pearson (N-P) test for which the probability of false 
alarm is fixed to the value α. If we define the conditional density of Λ  given that 
H0 is true as )|λ( 0|Λ 0

Hf H , then α=FP  may be rewritten as 

∫∫
∞

λ

λλ== dHyfdyHyfP HyZ HYF ]|)([)|( 0)|(Λ0| 01 0
         (5.74) 

The test is called most powerful of level α if its probability of rejecting H0 is α. 
 
Example 5.7 
 
Consider the binary hypothesis problem with received conditional probabilities 
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1for
)1(2

1)|(
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≤
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= −
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ye
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Hyf y
HY       and  






=

2
1rect

2
1)|( 1| 1

Hyf HY  

The hypotheses H0 and H1 are equally likely. 
(a) Find the decision regions for which the probability of error is minimum. 
(b) Calculate the minimum probability of error. 
(c) Find the decision rule based on the Neyman-Pearson criterion, such that 

the probability of false alarm is constrained to be .5.0=FP  
(d) Calculate the probability of detection for the given constraint of PF in (b). 

 
Solution 
 
(a) The minimum probability of error receiver requires that 01100 == CC  and 

11001 == CC . Since the a priori probabilities are equal, the likelihood ratio test 
reduces to  

( ) 1
)|(

)|(
Λ

0

1

0|

1|

0

1

H

H

Hyf

Hyf
y

HY

HY

<
>=  

That is, we choose the hypothesis for which ,1,0),|(|   =jHyf jHY j
 is maximum. 

The decision regions are as shown in Figure 5.11. 
Note that we decide H1 for 1459.0and 459.01 ≤≤−≤≤− yy  , and we decide 

H0 for .459.0459.0 <<− y  
 
(b) The probability of error is MF PPPPP 10)ε( += , where 

 
 
 
 
 
 
 
 

 
Figure 5.11   Decision regions for Example 5.7. 
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418.0
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and ( )( )[ ] 459.02/1459.02true)| (decide 10 ===  HHPPM . Thus, the probability 
of error is 4385.0)459.0418.0()2/1()( =+=εP . 
 
(c) In using the Neyman-Pearson criterion, we have 
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PF  is as shown in Figure 5.12(a). Hence, )|( 01 HDPPF =  

38.05.0
)1(2

1 1

1
1 =⇒=














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− γ
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dyedye
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yy  is the threshold.  

 
(d) The probability of detection, as shown in Figure 5.12(b), 
is [ ] 62.0)2/1)(38.01(2 =−=DP . 

 
 
 
 
 
 
 
 
       (a)               (b) 
 
Figure 5.12   Regions showing: (a) PF and (b) PD. 
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Receiver Operating Characteristic 
 
A plot of the probability of detection, PD, versus the probability of false alarm with 
the threshold as a parameter is referred to as receiver operating characteristic 
(ROC) curves. We note that the ROC depends on the conditional density function 
of the observed signal under each hypothesis, that is, ,1,0),|(|   =jHyf jHY j

and 

not on the assigned costs, or the a priori probabilities. We shall explain the concept 
of the ROC through an example. From Example 5.2, the decision rule was shown 
to be 

2
ηlnσ)(

2
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1
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m

H

H

yT
K

k
k +<

>= ∑
=

y  

We observe that the sufficient statistic )(YT is Gaussian. Calculating the mean and 
variance of the sufficient statistic under each hypothesis, we obtain 

0|]|)([
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



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Y  

Hence, to obtain a unit variance under each hypothesis, we need to normalize the 
test statistic by σK  to yield ,1]|)(var[]|)(var[ 01 == HTHT YY 1]|)([ 0 =HTE Y , 

and σ= /]|)([ 1 mKHTE Y . For the variance of )(YT  under H0 equal to one, the 
distance between the two means is defined as 

d ≜ 01 mm −            (5.75) 
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where m0 and m1 are the means under hypothesis H0 and H1, respectively. That is, 
σ= /mKd . It should be noted that  

0

0
2

22

2

2
2

σσ N
S

K
mKKmd ===  

can be thought of as a signal-to-noise ratio, where the signal power is 
22

0 mKS = and the noise power is .σ 2
0 KN =  The conditional density functions 

of the statistic under hypotheses H0 and H1 are  

2
0|

2

0 π2
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HT eHtf −=   and  2)(
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2
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The decision rule becomes 
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The probabilities of false alarm and detection are 
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The conditional density functions ,1,0),|(|    =jHyf jHY j
and the probabilities of 

detection and false alarm are as shown in Figure 5.13. 
Varying the threshold γ, the areas representing PD and PF  vary. The 

corresponding ROC curves are shown in Figure 5.14. We observe that as d 
increases, the probability of detection increases for a given probability of false 
alarm. However, the threshold remains constant for a fixed PF even as d increases. 
Thus, d gives a measure of the hypothesis testing, and therefore it is also called the 
detection parameter. 
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Figure 5.13  Decision regions showing PD and PF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14  ROC with d as a parameter. 

The two extreme points on the ROC for 1== DF PP  and 0== DF PP  are 
easily verified. Since both the Neyman-Pearson receiver and the Bayes’ receiver 
employ the likelihood ratio test, and since )(Λ y is a random variable, PD and PF 
may be rewritten as 

∫
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and 

∫
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)(Λ y  is a ratio of two negative quantities, )|( 1| 1
Hyf HY  and )|( 0| 0

Hyf HY , and 

thus takes values from zero to infinity. When the threshold η is zero ( 0η =  
corresponds to 00 =P ), hypothesis H1 is always true, and thus 1== FD PP . 
When the threshold η is infinity ( ∞→η  corresponds to 01 =P ), hypothesis H0 is 
always true, and thus .0== FD PP  This is clearly depicted in Figure 5.14. 

The slope of the ROC at a particular point on the curve represents the 
threshold η for the Neyman-Pearson test to achieve DP  and FP  at that point. 
Taking the derivative of (5.76) and (5.77) with respect to η, we have 

)|η(λ)|λ(
ηη 1|Λ

η
1|Λ 11

HfdHf
d
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∞

         (5.78) 

and 
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η
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d
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         (5.79) 

Also, 

∫∫
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η

0|Λ
η

1|Λ1 λ]|)(λ[)(Λλ]|)(λ[]|η)(Λ[)η(
01

dHyfydHyfHyPP HHD  

                (5.80) 

Taking the derivative of the above equation with respect to η , we obtain  

      )|( 0| 1
Hf

d
dP

H
D ηη−=
η Λ           (5.81) 

Combining (5.78), (5.79), and (5.80) results in 

η
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)|η(

0|Λ

1|Λ

0

1 =
Hf

Hf

H

H           (5.82) 

and 

       η=
F

D

DP
dP

           (5.83) 
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In the Bayes’ criterion, the threshold η is determined by the a priori 
probabilities and costs. Consequently, the probability of detection, PD, and the 
probability of false alarm, PF, are determined on the point of the ROC curve at 
which the tangent has a slope of η. 

The minimax equation represents a straight line in the FD PP − plane starting 
at the point 1and0 == FD PP , and crosses the ROC curve. The slope of the 
tangent of the intersection with the ROC is the threshold η. 
 
Example 5.8 
 
Consider a problem with the following conditional density functions 




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  yeHyf
y
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Plot the ROC. 
 
Solution 
 
The ROC is a plot of PD, the probability of detection, versus PF, the probability of 
false alarm, with the threshold η as a parameter. The likelihood ratio is  
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Taking the logarithm and rearranging terms, the decision rule becomes 

γ
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From the Neyman-Pearson test, the probability of detection and probability of 
false alarm are 

αγ
γ

0

α
11 1α)|( −− −=== ∫ edyeHDPP y

D   and  γ
γ

0
01 1)|( −− −=== ∫ edyeHDPP y
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Note that taking the derivative of PD and PF with respect to the threshold γ, and 
substituting in (5.83), we obtain the threshold η; that is, 

ηγ γ)1α( == −−e
dP
dP

F

D  

A plot of the ROC with α as a parameter is shown in Figure 5.15. 
 
 
5.5 COMPOSITE HYPOTHESIS TESTING 
 
In the simple hypothesis testing problem previously considered, the parameters 
characterizing a hypothesis were all known. In many situations, the parameters 
characterizing a hypothesis may not be known. In this case, the hypothesis is 
called a composite hypothesis. 
 
Example 5.9 
 
Consider the situation where the observations under each hypothesis are given by 

NYH
NmYH

  =
+=

:
:

0

1  

where N denotes a white Gaussian noise of zero mean and variance ,2σ  and m is 
unknown. Then, we say that H0 is a simple hypothesis, and H1 a composite 
hypothesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15  ROC of Example 5.8. 
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Figure 5.16  Block diagram showing composite hypothesis. 

In the previous sections, we developed the theory of designing good tests for 
simple hypotheses. We now consider tests for composite hypotheses. The situation 
may be best described by the following block diagram of Figure 5.16. 

Each hypothesis is characterized by a set of K parameters, such that 

][ 21 K
T θθθ= Kθ            (5.84) 

Two cases will be considered. First,Θ may be a random variable with known 
density functions )|( 1| 1

Hf H θΘ and )|( 0| 0
Hf H θΘ . Second, θ may not be a random 

variable but still an unknown constant. 
 
5.5.1 Θ  Random Variable 
 
If Θ  is a random variable with known density functions, )|( 1| 1

Hf H θΘ and 

)|( 0| 0
Hf H θΘ , then the decision is obtained by using the Bayes’ criterion and 

minimizing the risk. The analysis is as before. In order to apply the likelihood ratio 
test, we need )|( 1| 1

Hf H yY  and )|( 0| 0
Hf H yY . They are readily obtained by 

averaging over all possible values ofΘ . That is, 

1,0)|(),|()|( |,||   ,yy YY == ∫ jdHfHfHf jHjHjH jjj
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The likelihood ratio becomes 
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Example 5.10 
 
Consider the problem of Example 5.9, where the constant m, now denoted M, is a 
Gaussian random variable with mean zero and variance 2

mσ . Determine the 
optimum decision rule. 
 

Transition 
probabilities Source 

Observation 
space 

 
Decision  

H0 

H1 
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Solution 
 
Using (5.86), the optimum decision rule can be directly obtained from the 
likelihood ratio test. Hence, 
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Note that only H1 is a composite hypothesis, and consequently the numerator of 
)Λ(y  is integrated over M. Since the actual value of M is not important, M is 

referred to as the “unwanted parameter.” The numerator of )Λ(y , denoted )(yN , 
is 
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Completing the square in the exponent, )(yN becomes 
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Because the integral 
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The likelihood ratio test reduces to 
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Taking the natural logarithm on both sides and simplifying the expression, we 
obtain 
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We observe that exact knowledge of “the unwanted parameter” m is not important 
because it does not appear in the decision rule. 
 
5.5.2 θ  Nonrandom and Unknown 
 
If θ  is not a random variable but still unknown, the Bayes’ test is no longer 
applicable, since θ  does not have a probability density function over which 

,1,0),,|(,Θ|   =θ jHyf jHY j
can be averaged, and consequently the risk cannot be 

determined. Instead, we use the Neyman-Pearson test. In this case, we maximize 
the probability of detection, PD, while the probability of false alarm, PF, is fixed, 
given that the assumed value θ is the true value. 

Performing this test for several values of θ results in a plot of PD versus θ , 
known as the power function. A test that maximizes the probability of detection as 
mentioned above for all possible values of θ  is referred to as a uniformly most 
powerful (UMP) test. Hence, a UMP test maximizes the probability of detection 
irrespective of the values of θ . 

If H0 is a simple hypothesis and H1 is a composite hypothesis, then the test is 
called UMP (of level α) if it is the most powerful of level α. 
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Example 5.11 
 
Consider the problem of Example 5.9, where m is a positive constant. Determine 
the optimum decision rule. 
 
Solution 
 
The conditional density functions under hypotheses H0 and H1 are 
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The exact value of m is not known, but it is known to be positive. Assuming a 
value of m, the likelihood ratio test is given by 
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Simplifying the likelihood ratio test and taking the natural logarithm, we obtain 
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Note that the threshold η is determined from the specified value of the 
probability of false alarm PF. In fact, knowledge of η is not necessary to determine 

1γ . Assuming 1γ , as shown in Figure 5.17, we have 
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Once 1γ  is determined, the application of the likelihood ratio test  
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Figure 5.17  Threshold 1γ  for composite hypothesis. 
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does not require any knowledge of m. That is, a best test can be completely 
designed independently of m. Hence, a UMP test exists. 

Similarly, if m were unknown but negative, the likelihood ratio test reduces to 
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2γ  is determined from the specified probability of false alarm to be 
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Again, a UMP test exists, since application of the likelihood ratio test is 
independent of m. It should be noted that the probability of detection for both 
cases, 0<m  and 0>m , cannot be evaluated because the exact value of m is not 
known. Nevertheless, the test is optimum for all possible positive or negative 
values of m. 

Note that the test designed for positive m is not the same for negative m. 
Consequently, if m were unknown and takes all possible values, positive and 
negative, a UMP test does not exist. We know from the definition that a UMP test 
exists if it is optimum for all possible values of m. In this case, the test designed 
for positive (negative) m is not optimum for negative (positive) m. This requires 

 0  m 
 y 

)|( 1| 1
Hyf HY  )|( 0| 0

Hyf HY  
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that different tests are to be used, which will be discussed in the coming chapter 
after we cover maximum likelihood estimation (MLE). 
 
 
5.6 SEQUENTIAL DETECTION 
 
In the previous sections, we considered the theory of hypothesis testing, such that 
the number of observations on which the test was based was fixed. In many 
practical situations, observations may be taken in a sequential manner so that the 
test is performed after each observation. Each time an observation is taken, one of 
the three possible decisions is made: 
 
1. Decide H1 
2. Decide H0 
3. Not enough information to decide in favor of either H1 or H0. 
 
If decisions (1) or (2) are made, the hypothesis testing procedure stops. Otherwise, 
an additional observation is taken, and the test is performed again. This process 
continues until a decision is made either in favor of H1 or H0. Note that the number 
of observation K is not fixed, but is a random variable. 

The test to be performed after each observation is to compute the likelihood 
ratio and compare it to two thresholds, 0η  and 1η . Such a test that makes one of 
the three possible decisions mentioned above after the kth observation is referred 
to as sequential likelihood ratio test. 

Let ,,...,2,1, KkYk     =  represent the kth observation sample of the vector KY  
defined as 

][ 21 K
T
K YYY K=Y            (5.87) 

The likelihood ratio based on the first K observations is 
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To compute the likelihood ratio of (5.88), we need to know the joint density 
function of these K observations. For simplicity, we assume that the observations 
are identically distributed, and are taken independently. The likelihood ratio can be 
written as a product of K likelihood ratios to obtain 
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The goal is to determine 0η  and 1η  in terms of PF, the probability of false 
alarm, and PM, the probability of a miss. We set 

α=FP             (5.90) 

and 

β=MP             (5.91) 

and perform the following test. If 

1η)Λ( ≥Ky            (5.92) 

we decide in favor of H1. If  

0η)Λ( ≤Ky            (5.93) 

we decide in favor of H0. Otherwise, if  

        10 η)Λ(η << Ky            (5.94) 

we take an additional observation and perform another test. The probability of 
detection, PD, in terms of the integral over the observation space is 

       ∫==
1 1

)|(true)|(decide 1|11 Z KKHD dHfHHPP
K

yy    Y          (5.95) 

Using (5.88), PD can be written as 

      ∫=
1 0

)|()Λ( 0|Z KKHKD dHfP
K
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The decision in favor of H1 means that 1η)Λ( ≥Ky . Hence, substituting (5.92) for 
(5.96), we obtain the inequality 
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Note that the integral 

α==∫ FZ KKH PdHf
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and since ,β11 −=−= MD PP  (5.97) reduces to 

αηβ1 1≥−            (5.99) 

or, the threshold η1 is  

α
β1

η1
−

≤          (5.100) 

Similarly, it can be shown that the threshold η0 is  

α1
β

η0 −
≥          (5.101) 

At this stage, some important questions need to be investigated and answered. 
What is the probability that the procedure never terminates? What are some of the 
properties of the distribution of the random variable K? In particular, what is the 
expected value of this sample size K? 

To answer such questions, it is much easier to use the log likelihood function. 
Taking the natural logarithm of (5.94), we obtain 
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Let the kth term, ,,... ,2 ,1 Kk =  of the above sum be denoted as 
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then, (5.102) becomes 

110 ln)()()(ln η<++++<η Kk yLyLyL KK        (5.104) 

The sum may be written in a recursive relation as 

)()()( 1 KKK yLLL += −yy       (5.105a) 

where 
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In order to calculate ][KE , the average number of observations under each 
hypothesis, we assume that the test terminates in K observations with probability 
one. This assumption implies that )( KL y  takes on two possible values, 0ηln  and 

1ηln . If hypothesis H1 is true, a detection is declared when 1ηln)( ≥KL y  with 
probability β11 −=−= MD PP . A miss occurs when 0ηln)( ≤KL y  with 
probability β=MP . Hence, the expected value of )( KL y  under hypothesis H1 is 

        101 ηln)β1(ηlnβ]|)([ −+=HLE Ky         (5.106) 

Following the same reasoning, the expected value of )( KL y  under hypothesis 
H0 is 

      010 ηln)α1(ηlnα]|)([ −+=HLE Ky         (5.107) 

Let B be a random variable taking binary numbers zero and one such that 
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that is, Bk depends on the observations ,1,...,2,1, −= KkYk      and not YK. Rewriting 
the log-likelihood ratio in terms of the random variable B, we obtain 
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Since the observations are independent and identically distributed, we have 
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where 
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The sum in (5.110a) is just 
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Substituting (5.111) and (5.110b) into (5.106), we obtain 

( ) 0111 ηlnα1ηlnα]|[]|)([ −+=HKEHyLE        (5.112) 

or 
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Similarly, the expected value of K under hypothesis H0 can be expected to be 
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To answer the question that the process terminates with probability one, we 
need to show that 

0)(lim =≥
∞→

kKP
k

        (5.115) 

which is straightforward. Furthermore, it can be shown that the expected value of 
the number of the observations K under each hypothesis is minimum for the 
specified values of PF and PM. 
 
Example 5.12 
 
Suppose that the receiver of Example 5.2 takes K observations sequentially. Let 
the variance 1σ 2 =  and mean 1=m . Determine 

(a) The decision rule such that β1.0α ==== MF PP . 
(b) The expected value of K under each hypothesis. 

 
Solution 
 
(a) The definition of the decision rule is expressed in (5.92), (5.93), and (5.94). 
Consequently, we need to solve for the likelihood ratio at the kth stage and for the 
thresholds 0η  and 1η . Substituting for 1σ 2 =  and 1=m  in the likelihood ratio of 
Example 5.2, we obtain the likelihood ratio at the kth stage to be 
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The log likelihood ratio is just 
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From (5.100) and (5.101), the two thresholds are 

197.2ηln and 197.2ηln 01 −==    

Hence, the decision rule in terms of the log-likelihood ratio is: 
 

If 197.2)( ≥KL y , decide H1. 
If 197.2)( −≤KL y , decide H0. 
If 197.2)(197.2 ≤≤− KL y , take an additional observation 1+K  and perform 
another test. 

 
(b) The expected values of K under hypotheses H1 and H0 are given by (5.113) and 
(5.114), respectively. We observe that we need to obtain [ ]1|)( HyLE  and 
[ ]0|)( HyLE . Assuming that the observations are identical, we have 
[ ] 2/1)2/1(1|)( 1 =−=HyLE  and [ ] 2/1)2/1(0|)( 0 −=−=HyLE . Substituting 

for the values of [ ]1|)( HYLE  and [ ]0|)( HYLE  in (5.113) and (5.114), we obtain 
515.3]|[ 1 =HKE  and 515.3]|[ 0 =HKE . That is, we need four samples to 

obtain the performance specified by 1.0== MF PP . 
 
 
5.7 SUMMARY 
 
In this chapter, we have developed the basic concepts of hypothesis testing. First, 
we studied the Bayes’ criterion, which assumes knowledge of the a priori 
probability of each hypothesis, and the cost assignment of each possible decision. 
The average cost, known as the risk function, was minimized to obtain the 
optimum decision rule. The Bayes’ criterion was considered for the simple binary 
hypothesis testing and the M-ary hypothesis testing. The minimax criterion, which 
minimizes the average cost for a selected a priori probability, P1, was studied in 
Section 5.3. The minimax criterion applies to situations where the a priori 
probabilities are not known, even though realistic cost assignments to the various 
decisions are possible. In cases where realistic cost assignments are not possible 
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and the a priori probabilities are not known, we considered the Neyman-Pearson 
approach. In the Neyman-Pearson criterion, the probability of detection (miss) is 
maximized (minimized), while the probability of false alarm is fixed to a 
designated value. The receiver operating characteristic, which is a plot of the 
probability of detection versus the probability of false alarm, was useful in 
analyzing the performance of detectors based on the Neyman-Pearson approach. 

In Section 5.5, we studied the composite hypothesis testing problem. A 
composite hypothesis is characterized by an unknown parameter. When the 
parameter was a random variable with a known density function, we applied the 
likelihood ratio test by averaging the conditional density function corresponding to 
the hypotheses, over all possible values of the parameter. However, if the 
parameter were not random but still unknown, then the Bayes’ test was no longer 
applicable, and instead we used the Neyman-Pearson test. Furthermore, when it 
was possible to apply the Neyman-Pearson test to all possible values of the 
parameter, a uniformly most powerful test was said to exist. Otherwise, a different 
approach that estimates the parameter should be considered. This will be described 
in the next chapter. We concluded this chapter with a brief section on sequential 
detection. 
 
 

PROBLEMS 
 
5.1 Consider the hypothesis testing problem in which 
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(a) Set up the likelihood ratio test and determine the decision regions. 
(b) Find the minimum probability of error when 

(1) 2/10 =P  (2) 2/30 =P  (3) .3/10 =P  
 
5.2 Consider the hypothesis testing problem in which 
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(a) Set up the likelihood ratio test and determine the decision regions. 
(b) Calculate PF, the probability of false alarm, and PM, the probability of 

miss. 
 
5.3 A binary communication system transmits polar signals of values 

AA +−   and  under hypotheses H0 and H1, respectively. The received signal is 
corrupted by an additive Gaussian noise with zero mean and variance .2σ  
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(a) Determine the optimum decision rule for minimum probability of error. 
(b) Study the decision rule for 3/01 PP = , 10 PP = , and .3/5 01 PP =  

 
5.4 A ternary communication system transmits one of the three signals, 

Ats −=)(1 , 0)(0 =ts , and Ats +=)(2 , with equal probabilities under 
hypotheses H0, H1, and H2, respectively. The received signal is corrupted by 
an additive zero mean Gaussian noise with variance .2σ  Find  
(a) The optimum decision rule (draw the decision regions) assuming 

minimum probability of error criterion. 
(b) The minimum probability of error. 

 
5.5 Consider the following binary hypothesis testing problem 
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where S and N are statistically independent random variables with probability 
density functions 
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(a) Set up the likelihood ratio test and determine the decision regions when  
(1) 4/1=η   (2) 1η =  (3) 2η = . 

(b) Find the probability of false alarm and the probability of detection for the 
three values of η in part (a). 

(c) Sketch the ROC. 
 
5.6 The output of a receiver consists of a signal voltage S and a noise voltage N. 

The joint density function of the signal and noise is given by 

0
0

0and0,),()( Nnse
N

nsfNSP s
SN ≤≤∞<≤

α
== α−   I  

(a) Obtain )(and)( nfsf NS   , the marginal density functions of the signal and 
noise voltages. 

(b) Show that they are statistically independent. 
(c) Find the density function of sum voltage NSY +=  and sketch it. 
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(d) Suppose now that )(and)( nfsf NS   correspond to the conditional density 
functions under H1 and H0, respectively; that is, )()|( 1| 1

sfHYf SHY =  

and )()|( 0| 0
nfHYf NHY = . For 20 =N and 1α = , obtain the optimum 

decision rule assuming minimum probability of error criterion. 
(e) Find the minimum probability of error for 3/01 PP = , 01 PP = , and 

3/2 01 PP = . 
 
5.7 The conditional density functions corresponding to the hypotheses H1 and H0 

are given by 
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2
1)|( 1| 1

 

(a) Find the likelihood ratio and determine the decision regions. 
(b) Find the probability of false alarm and the probability of detection 

assuming minimum probability of error and 3/20 =P . 
(c) Discuss the performance of the minimax text for the cost assignments as 

in part (b). 
(d) Determine the decision rule based on the Neyman-Pearson test for a 

probability of false alarm of 0.2. 
 
5.8 In a binary hypothesis problem, the observed random variable under each 

hypothesis is 
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where .1and0 10 == mm      
(a) Find the decision rule for minimum probability of error and 10 PP = . 
(b) Find the decision rule for a Neyman-Pearson test if .005.0=FP  
(c) Find PD based on the test of (b). 

 
5.9 Consider the binary hypothesis testing problem where we are given K 

independent observations. 

KkNmYH kk ,,2,1,:1 K  =+=  
KkNYH kk ,,2,1,:0 K    ==  
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where m is a constant, and Nk is a zero mean Gaussian random variable with 
variance .2σ  
(a) Compute the likelihood ratio. 
(b) Obtain the decision rule in terms of the sufficient statistic and the 

threshold γ. 
 
5.10 Repeat Problem 5.9, assuming that m is zero and the variances of 

,,,2 ,1 , KkN k K=  under H1 and H0 are 2
1σ  and 2

0σ ( ),σσ 01 >  
respectively. 

 
5.11 Consider Problem 5.10. 

(a) Obtain an expression for the probabilities of false alarm and miss for 
.1=K  

(b) Plot the ROC if .2σ2σ 2
0

2
1 ==  

(c) Determine the threshold for the minimax criterion, assuming 
01100 == CC  and .1001 CC =  

 
5.12 The conditional density function of the observed random variable under 

each hypothesis is 
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(a) Find the decision rule (draw the decision regions), assuming minimum 
probability of error criterion and equal a priori probabilities. 

(b) Determine the decision regions, assuming 

2,0:

1,1:
1,0:

222

111

000

=σ=

=σ=
=σ=

mH

mH
mH

 

(c) Calculate the minimum probability of error for the assumptions of (b). 
 
5.13 Consider Problem 5.9 where m, now denoted M, is not a constant, but a zero 

mean Gaussian random variable with variance 2
mσ . M and 

,,,1  , KkN k K=  are statistically independent. Determine the optimum 
decision rule. 
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5.14 Consider the following hypothesis testing problem 
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where Mk and Nk, ,,,2,1 Kk K = are statistically independent zero mean 

Gaussian random variables. Their respective variances are 2
mσ  and 2

nσ , 

where 2
nσ  is normalized to one, but 2

mσ  is unknown. Does a UMP test 
exist? 

 
5.15 Consider the following composite hypothesis testing problem. The 

observations are [ ] ,,,, 21
T

KYYY K=Y  where ,,,2 ,1, KkYk K=  are 

independent Gaussian random variables with a known variance .1σ 2 = The 
mean ,1 ,0  , =jm j  under each hypothesis is 

0:
0,:

00

11

=
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mH
mmmH

 

(a) Does a UMP test exist? 
(b) If 05.0=FP  and 11 =m , using a most powerful test, find the smallest 

value of K that will guarantee a power greater than 0.9. 
 
5.16 Consider the situation where the conditional density functions under each 

hypothesis are 
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It is known that the signal components under each hypothesis are 
statistically independent, 0θ  is a constant equal to 10, and 01 θθ > . Find a 
UMP test of level 05.0α =  and .21=K  
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Chapter 6 
 
 

Parameter Estimation 
 
 
6.1 INTRODUCTION 
 
In Chapter 5, we considered the problem of detection theory, where the receiver 
receives a noisy version of a signal and decides which hypothesis is true among 
the M possible hypotheses. In the binary case, the receiver had to decide between 
the null hypothesis H0 and the alternate hypothesis H1. 

In this chapter, we assume that the receiver has made a decision in favor of the 
true hypothesis, but some parameter associated with the signal may not be known.  
The goal is to estimate those parameters in an optimum fashion based on a finite 
number of samples of the signal. 

Let KYYY ,...,, 21  be K independent and identically distributed samples of a 
random variable Y, with some density function depending on an unknown 
parameter θ. Let Kyyy ,...,, 21  be the corresponding values of samples 

KYYY ,...,, 21  and ),...,,( 21 KYYYg , a function (a statistic) of the samples used to 
estimate the parameter θ. We call 

),...,,(ˆ
21 KYYYg=θ                   (6.1) 

the estimator of θ.  The value that the statistic assumes is called the estimate of θ 
and is equal to ),...,,(ˆ

21 Kyyyg=θ . In order to avoid any confusion between a 

random variable and its value, it should be noted that θ̂ , the estimate of θ, is 
actually ),...,,( 21 KYYYg . Consequently, when we speak of the mean of θ̂ , ]θ̂[E , 
we are actually referring to )],...,,([ 21 KYYYgE . 

The parameter to be estimated may be random or nonrandom. The estimation 
of random parameters is known as the Bayes’ estimation, while the estimation of 
nonrandom parameters is referred to as the maximum likelihood estimation 
(MLE). 

 
345 
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In Section 6.2, we present the maximum likelihood estimator, then we use this 
estimator to compute the likelihood ratio test.  This is called the generalized 
likelihood ratio test. In Section 6.4, we present the criteria for a “good” estimator. 
When the parameter to be estimated is a random variable, we use the Bayes’ 
estimation. Specifically, we study the minimum mean-square estimation, the 
minimum mean absolute value of error estimation, and the maximum a posteriori 
estimation. The Cramer-Rao lower bound on the estimator is presented in Section 
6.6. Then, we generalize the above concepts to multiple parameter estimation. 
Based on the fact that sometimes it is not possible to determine the optimum 
mean-square estimate, even if it exists, we present the best linear unbiased 
estimator, which is a suboptimum solution, and discuss the conditions under which 
it becomes optimum. In Section 6.9, we present the least-square estimation, which 
is different than the above-mentioned methods, in the sense that it is not based on 
an unbiased estimator with minimum variance, but rather on minimizing the 
squared difference between the observed data and the signal data. We conclude the 
chapter with a brief section on recursive least-square estimation for real-time 
applications.  
 
 
6.2 MAXIMUM LIKELIHOOD ESTIMATION 
 
As mentioned in the previous function, the procedure commonly used to estimate 
nonrandom parameters is the maximum likelihood (ML) estimation. Let 

KYYY ,...,, 21  be K observations of the random variable Y, with sample values 

Kyyy ,...,, 21 . These random variables are independent and identically 
distributed. Let )|(|Θ θyYf  denote the conditional density function of the random 
variable Y. Note that the density function of Y depends on the parameter θ , 

Θ∈θ , which needs to be estimated. The likelihood function, ),θ(L is  

∏
=

θ=θ=θ=θ
K

k
kYKYY yffyyyfL

kK
1

|Θ|Θ21|Θ,..., )|()|()|,,,()(
1

yYK      (6.2) 

The value θ̂  that maximizes the likelihood function is called the maximum 
likelihood estimator of θ. In order to maximize the likelihood function, standard 
techniques of calculus may be used.  Because the logarithmic function xln  is a 
monotonically increasing function of x, as was shown in Chapter 5, maximizing 

)θ(L  is equivalent to maximizing )θ(ln L . Hence, it can be shown that a 

necessary but not sufficient condition to obtain the ML estimate θ̂  is to solve the 
likelihood equation. 

    0)θ|(ln
θ |Θ =
∂
∂ yYf                   (6.3) 
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Invariance Property.  Let )θ(L  be the likelihood function of θ and )θ(g  be a one-

to-one function of θ ; that is, if 2121 )()( θ=θ⇔θ=θ gg . If θ̂  is an MLE of θ, 

then )θ̂(g  is an MLE of )θ(g . 
 
Example 6.1 
 
In Example 5.2, the received signal under hypotheses H1 and H0 was 

KkNYH
KkNmYH
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,...,2,1,:

0

1

==
=+=

 

(a) Assuming the constant m is not known, obtain the ML estimate mlm̂  of 
the mean. 

(b) Suppose now that the mean m is known, but the variance 2σ  is unknown. 
Obtain the MLE of 2σθ = . 

 
Solution 
 
Detection theory (Chapter 5) was used to determine which of the two hypotheses 
was true. In this chapter of estimation theory, we assume that H1 is true. However, 
a parameter is not known and needs to be estimated using MLE. 
 
(a) The parameter θ̂  to be determined in this example is mlm̂ , where the 
mean Mm∈ . Since the samples are independent and identically distributed, the 
likelihood function, using (6.2), is 
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Taking the logarithm on both sides, we obtain 
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The ML estimate is obtained by solving the likelihood equation, as shown in (6.3). 
Hence, 
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(b)  The likelihood function is 
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Taking the logarithm, we obtain 
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Observe that maximizing )σ(ln 2L  with respect to 2σ  is equivalent to minimizing  
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Using the invariance property, it is easier to differentiate )σ( 2g  with respect to σ 

to obtain mlσ̂  the MLE of σ, instead of 2σ̂ml  the MLE of .2σ  Hence, 
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Consequently, the MLE of 2σ  is ( ) .)/1(ˆ
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6.3 GENERALIZED LIKELIHOOD RATIO TEST 
 
In Example 5.9, we solved the hypothesis testing problem where the alternative 
hypothesis was composite.  The parameter m under hypothesis H1 was unknown, 
although it was known that m was either positive or negative.  When m was 
positive only (negative only), a UMP test existed and the decision rule was 
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for positive m, and 
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for negative m. Since the test designed for positive m was not the same as the test 
designed for negative m, we concluded that a UMP test did not exist for all 
possible values of m; that is, positive and negative. This requires that different tests 
be used. One approach is to use the concepts developed in Section 6.2. That is, we 
use the required data to estimate θ, as though hypothesis H1 is true. Then, we use 
these estimates in the likelihood ratio test as if they are the correct values. There 
are many ways to estimate θ, as will be shown in this chapter. If the estimates used 
are the maximum likelihood estimates, then the result is called the generalized 
likelihood ratio test and is given by 
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1θ  and 0θ  are the unknown parameters to be estimated under hypotheses 1H  
and 0H , respectively. 
 
Example 6.2 
Consider the problem of Example 5.9, where m is an unknown parameter. Obtain 
the generalized likelihood ratio test and compare it to the optimum Neyman-
Pearson test. 
 
Solution 
 
Since the K observations are independent, the conditional density functions under 
both hypotheses 01 and HH  are 
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where m is an unknown parameter. Since hypothesis H0 does not contain m (H0 is 
simple), the estimation procedure is applicable to hypothesis H1 only. From the 
likelihood equation given by (6.3), the ML estimate of m under H1 is given by 

0
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Substituting for ),|( 1,| 1
Hmf HM yY in the above equation, we have  
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The details are given in Example 6.1.  The likelihood ratio test becomes 
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Substituting for the obtained value of m̂  in the above expression, and simplifying 
after taking the logarithm, the test becomes 
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k
kyK  is nonnegative, the decision will always be H1 if η is 

less then one ( ηln  negative) or η is set equal to one. Consequently, η can always 
be chosen greater than or equal to one. Thus, an equivalent test is 
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where 0γ1 ≥ . Equivalently, we can use the test 
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The decision regions are shown in Figure 6.1. 
Given the desired probability of false alarm, the value of 1γ  can be 

determined. Before we can get an expression for FP , the probability of false 
alarm, we need to determine the density function of Z. Since 
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the mean and variance of Y under hypothesis H0 are zero and ,2σ  respectively. All 
the observations are Gaussian and statistically independent. Thus, the 

density.function of ∑
=

=
K

k
kYZ

1
1  is Gaussian with mean zero and variance .2σK  

Consequently, Z is Gaussian with mean zero and variance .2σ  That is, 
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The probability of false alarm, from Figure 6.2, is 

 

 
 
Figure 6.1  Decision regions of the generalized likelihood ratio test. 
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Figure 6.2  Density function of Z under H0. 
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We observe that we are able to determine the value 1γ from the derived 
probability of false alarm without any knowledge of m. However, the probability 
of detection cannot be determined without m, but can be evaluated with m as a 

parameter. Under hypothesis H1, ∑
=

=
K

k
YZ

1
11  is Gaussian with mean Km and 

variance .2σK  Hence, the density function of Z is Gaussian with mean mK and 
variance .2σ  That is, 
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The probability of detection for a given value of m, from Figure 6.3, is  
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Figure 6.3  Density function of Z under H1. 

In Figure 3.31 of [1], it is shown that the generalized likelihood ratio test performs 
nearly as well as the Neyman-Pearson test. 
 
 
6.4 SOME CRITERIA FOR GOOD ESTIMATORS 
 
Since the estimator θ̂  is a random variable and may assume more than one value, 
some characteristics of a “good” estimate need to be determined. 
 
Unbiased Estimate   We say θ̂  is an unbiased estimator for θ if  

θ]θ̂[ =E   for all θ                  (6.5) 

Bias of Estimator   Let  

)θ(θ]θ̂[ bE +=                   (6.6) 

1. If )θ(b does not depend on ])([ bb =θθ , we say that the estimator θ̂ has a 

known bias. That is, ( )b−θ̂  is an unbiased estimate. 
 
2. When bb ≠)θ( , an unbiased estimate cannot be obtained, since θ is unknown. 
In this case, we say that the estimator has an unknown bias. 
 

When the parameter θ to be estimated satisfies (6.5) and is not random (i.e., 
there is no a priori probability distribution for θ), it is sometimes referred to as 
absolutely unbiased. 
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The fact that the estimator is unbiased, which means that the average value of 
the estimate is close to the true value, does not necessarily guarantee that the 
estimator is “good.” This is easily seen by the conditional density function of the 
estimator shown in Figure 6.4. We observe that even though the estimate is 
unbiased, sizable errors are likely to occur, since the variance of the estimate is 
large. However, if the variance is small, the variability of the estimator about its 
expected value is also small. Consequently, the variability of the estimator is close 
to the true value, since the estimate is unbiased, which is a desired feature. Hence, 
we say that the second measure of quality of the estimate is to have a small 
variance. 
 
Unbiased Minimum Variance   θ̂  is a minimum variance and unbiased (MVU) 
estimate of θ if, for all estimates θ′  such that θ]θ[ =′E , we have ]θvar[]θ̂var[ ′≤  

for all .θ′  That is, θ̂  has the smallest variance among all unbiased estimates of θ. 
 
Consistent Estimate   θ̂  is a consistent estimate of the parameter θ, based on K 
observed samples, if 

       ( ) 0allfor0ˆlim >ε=ε>θ−θ
∞→

P
K

                 (6.7) 

where ( )⋅P  denotes probability. 
Applying the above definition to verify the consistency of an estimate is not 

simple. The following theorem is used instead. 
 
Theorem.  Let θ̂  be an unbiased estimator of θ based on K observed samples.  If 

θ]θ̂[lim =
∞→

E
K

                   (6.8) 

 

 

 

 
 

Figure 6.4  Density function of the unbiased estimator θ̂ . 
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and if 

0]θ̂[varlim =
∞→

E
K

                  (6.9) 

then θ̂  is a consistent estimator of θ. 
 
Example 6.3 
 

(a) Verify if the estimator mlm̂  of Example 6.1 is an unbiased estimate of m. 

(b) Is the estimator 2σ̂ml  unbiased? 
 
Solution 
 
(a) The estimator mlm̂  is unbiased if mmE ml =]ˆ[ .  After substitution, we obtain 
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Hence, mlm̂  is unbiased. 

(b) The estimator 2σ̂ml  is unbiased if .]ˆ[ 22 σ=σmlE  That is,  
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Hence, 2σ̂ml  is unbiased. 
 
 
 
 
6.5 BAYES’ ESTIMATION 
 
In the Bayes’ estimation, we assign a cost )ˆ,( θθC  to all pairs )ˆ,( θθ . The cost is a 

nonnegative real value function of the two random variables θ and θ̂ . As in the 
Bayes’ detection, the risk function is defined to be the average value of the cost; 
that is, 

])ˆ,([ θθ=ℜ CE                 (6.10) 
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The goal is to minimize the risk function in order to obtain θ̂ , which is the 
optimum estimate. In many problems, only the error θ~  between the estimate and 
the true value is of interest; that is, 

θ̂θθ~ −=                  (6.11) 

Consequently, we will only consider costs which are a function of the error.  Three 
cases will be studied, and their corresponding sketches are shown in Figure 6.5. 
 
1. Squared error 

           2)θ̂θ()θ̂,θ( −=C                 (6.12) 

2. Absolute value of error 

             θ−θ=θθ ˆ)ˆ,(C                 (6.13) 

3. Uniform cost function 
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C                 (6.14) 

The unknown parameter is assumed to be a continuous random variable with 
density function )θ(Θf . The risk function can then be expressed as  

 
 
 
 
 
 
 
 
 

     (a)         (b)          (c) 

Figure 6.5  Cost functions: (a) squared error, (b) absolute value of error, and (c) uniform. 
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    ∫ ∫
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θθθθ=θθ=ℜ yyY ddfE )()ˆ,()]ˆ,([ Θ, ,CC                (6.15) 

Note that we take the cost average over all possible values of θ and Y, where Y is 
the vector [ ] .21

T
KYYY K  We now find the estimator for the three cost 

functions considered. 
 
6.5.1 Minimum Mean-Square Error Estimate 
 
The estimator that minimizes the risk function for the cost given in (6.12) is 
referred to as a minimum mean-square estimate (MMSE). The corresponding risk 
function is denoted by msℜ . We have 
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Using (1.91), the risk function can be rewritten as  
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Since the density function )( yYf  is nonnegative, minimizing msℜ  is equivalent 
to minimizing the expression in brackets of the above equation. Hence, taking the 
derivative with respect to θ̂  and setting it equal to zero, we have 
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Using Leibniz’s rule given in (1.38), we obtain 

]|θ[θ)θ(θθ̂ Θ| yy Y Edfms == ∫
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That is, the minimum mean-square estimate msθ̂  represents the conditional mean 

of θ given Y. It can easily be shown that the second derivative with respect to msθ̂  
is positive-definite, which corresponds to a unique minimum of ,msℜ  and is given 
by 
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The conditional variance of θ given Y is 
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Hence, msℜ  is just the conditional variance of θ given Y, averaged over all 
possible values of Y. This estimation procedure using the squared error criterion is 
sometimes referred to as a minimum variance (MV) of error estimation. 
 
6.5.2 Minimum Mean Absolute Value of Error Estimate 
 
In this case, the cost function is given by (6.13), and the risk is 
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Using the same arguments as in Section 6.5.1, the risk can be minimized by 
minimizing the integral in brackets, which is given by 
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Differentiating (6.23) with respect to θ̂ , and setting the result equal to zero, we 
obtain 
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That is, the estimate absθ̂ is just the median of the conditional density function 
)θ(Θ| yY |f . This estimate is also known as the minimum mean absolute value of 

error (MAVE) estimate, and thus maveabs θ̂θ̂ ≡ . 
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6.5.3 Maximum A Posteriori Estimate 
 
For the uniform cost function given by (6.14), the Bayes’ risk becomes 
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where 
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[ ]⋅P  denotes probability. Hence, the risk unfℜ  is minimized by maximizing 

(6.26). Note that in maximizing (6.26) (minimizing unfℜ ), we are searching for 

the estimate θ̂ , which minimizes )θ(Θ| yY |f . This is called the maximum a 

posteriori estimate (MAP), mapθ̂ , which is defined as 
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Using the logarithm, which is a monotonically increasing function, (6.27) becomes 
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Equation (6.28) is called the MAP equation. This is a necessary but not sufficient 
condition, since )θ(Θ| yY |f  may have several local maxima. Using the Bayes’ rule 
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and the fact that 
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then the MAP equation may be rewritten as 
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We always assume that ∆ is sufficiently small, so that the estimate mapθ̂  is given 
by the MAP equation. That is, the cost function shown in Figure 6.5 may be 
defined as  

)θ̂,θ(δ1)θ,θ̂( −=C                 (6.32) 

Example 6.4 
 
Consider the problem where the observed samples are 

KkNMY kk ,...,2,1, =+=  

M and Nk are statistically independent Gaussian random variables with zero mean 
and variance 2σ . Find msm̂ , mapm̂ , and mavem̂ . 
 
 
Solution 
 
From (6.19), the estimate msm̂ is the conditional mean of m given Y. The density 
function )|(| yY mf M  is expressed as 
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and the marginal density function )( yYf  is 
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Note that )|(| yY mf M  is a function of m, but that )( yYf  is a constant with y as a 
parameter needed to maintain the area under the conditional density function equal 
to one. That is, 
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Expanding the exponent, we have 
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The last two terms in the exponent do not involve m, and can be absorbed in the 
multiplicative constant to obtain 
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where .1+σ=σ Km  By inspection, the conditional mean is 
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According to (6.20), msℜ  is given by 
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Hence, since 1)( =∫
∞

∞−

yyY df , then 22 σ)(σ mmms df ==ℜ ∫
∞
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yyY . 

The MAP estimate is obtained using (6.28) and (6.29). Taking the logarithm 
of )|(| yY mf M , we have 
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That is, .ˆˆ msmap mm =  We could have obtained this result directly by inspection, 

since we have shown that )|(| yY mf M  is Gaussian. Consequently, the maximum 
of )|(| yY mf M  occurs at its mean value. 

Using the fact that the Gaussian density function is symmetric, and that mavem̂  
is the median of the conditional density function )|(| yY mf M , we conclude  
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From (6.31), if θ is assumed to be random with 0)θ(Θ =f  for ∞<<−∞ θ , then 
the ML estimate can then be considered to be a special case of the MAP estimate. 
Such a density function for θ connotes zero a priori information about θ. 
Furthermore, the MAP estimate of a Gaussian distributed parameter is equivalent 
to the ML estimate as the variance increases; that is, the distribution of the 
parameter to be estimated tends to be uniform. In general, for a symmetric 
distribution centered at the maximum, as shown Figure 6.6(a), the mean, mode, 
and median are identical. If the distribution of the parameter is uniform, then the 
MAP, the MMSE, and the MAVE estimates are identical. In Figure 6.6(b), we 
illustrate the different estimates when the density function is not symmetric. Recall 
that the median is the value of y for which 2/1)()( =≥=≤ yYPyYP , while the 
mode is the value that has the greatest probability of occurring. 
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                 (a)                        (b) 

Figure 6.6  Density functions showing relations to MAP, MAVE, and MMSE estimates: 
(a) symmetric pdf, and (b) nonsymmetric pdf. (From: [2]. © 2000 John Wiley and Sons, Inc. 
Reprinted with permission.) 

Example 6.5 
` 
Find ,ˆmsx  the minimum mean-square error, and mapx̂ , the maximum a posteriori 
estimators, of X from the observation .NXY +=  X and N are random variables 
with density functions 
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Solution 
 
The estimate mapx̂  maximizes the density function ).|(| yxf YX  Since the 

conditional probability density function is xn
XY eXyf −−= )2/1()|(| , the 

probability density function of Y is 
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The a posteriori density function is, from (6.29), given by 
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)|(| yxf YX  is zero except when 0=x  and 1=x . The above expression is 

maximized when xn −  is minimized. Since x can take only two values, but must 
be close to n, we have 
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The mean-square error estimate is the mean of the a posteriori density 
function as given by (6.19). Hence,  
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and we see that mapx̂  is not identical to .ˆmsx  
 
 
6.6 CRAMER-RAO INEQUALITY 
 
From the MAP equation of (6.31), if we set the density function of θ to zero, for 
all θ, we obtain the likelihood equation of (6.3). That is, the ML estimate can be 
considered as a special case of the MAP estimate. In this case, to check whether 
the estimate is “good,” we need to compute its bias and error variance and 
determine its consistency. It may be very difficult to obtain an expression for the 
error variance. In this case, the “goodness” of the estimator is studied in terms of a 
lower bound on the error variance. This bound is known as the Cramer-Rao 
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bound. The Cramer-Rao bound of a constant parameter is given by the following 
theorem. 
 
Theorem.  Let the vector T

KYYY ],...,,[ 21=Y  represent K observations, and θ̂  be 
the unbiased estimator of θ. Then 
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where 

         












θ∂

θ∂
−=






















θ∂

θ∂
2
Θ|

22
Θ| )|(ln)|(ln yy YY f

E
f

E                (6.34) 

Proof.   For an unbiased estimator θ̂ , we have 

θ]θ|θ̂[ =E                               (6.35) 

Therefore, 
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Differentiating (6.36) with respect to θ, we obtain 
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The second integral is equal to one. Using the fact that 
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where )(xg  is a function of x, we can express θ/)θ|(Θ| ∂∂ yYf  as  
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Substituting (6.39) into (6.37), we obtain 
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The Schwarz inequality states that 
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where )(and)( tytx  are two functions of t. Equality holds if and only if 
)()( tcxty = , with c a constant. Rewriting (6.39) in order to use the Schwarz 

inequality, we have 
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The first integral between brackets is actually ].|)ˆvar[( θθ−θ  Hence, the 
inequality becomes 
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which proves (6.33). 
We now prove (6.34), which says that the Cramer-Rao bound can be 

expressed in a different form. We know that 
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Differentiating both sides of the equation with respect to θ results in 
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Rewriting (6.46) and using (6.38), we have 
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Differentiating again with respect to θ, we obtain 
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Substituting (6.47) for the second term of the second integral of (6.48), and 
rearranging terms yields 

            





















θ∂

θ∂
−=













θ∂

θ∂ 2
Θ|

2
Θ|

2 )|(ln)|(ln yy YY f
E

f
E                (6.49) 

which is the same as (6.34), and the proof of the theorem is complete. 
An important observation about (6.43) is that equality holds if and only if 
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Any unbiased estimator that satisfies the equality in the Cramer-Rao inequality of 
(6.33) is said to be an efficient estimator. 

If an efficient estimator exists, it can easily be shown that it equals the ML 
estimate. The ML equation is given by 
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Using (6.50), provided that an efficient estimate exists, we have 
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which equals zero when .ˆˆ
mlθ=θ  

 
Example 6.6 
 
Consider K observations, such that 

KkNmY kk ,,2,1, K=+=  

where m is unknown and Nks are statistically independent zero mean Gaussian 
random variables with unknown variance .2σ  

(a) Find the estimates 2σ̂andm̂  for 2σandm , respectively. 
(b) Is m̂  an efficient estimator? 
(c) Find the conditional variance of the error ].|)ˆvar[( mmm −  

 
Solution 
 
(a) Using (6.2), we can determine m̂  and 2σ̂  simultaneously. The conditional 

density function of Y given 2and σm  is 
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Taking the logarithm, we have 
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We take the derivative of the above equation with respect to 2and σm  to obtain 
two equations in two unknowns. That is, 
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and 

( )
∑
=

=
−

+−=
∂

∂ K

k

k myKmf

1
4

2

22

2
0

σ2σ2σ
)σ,|(ln yY  

Solving for mlm̂  and 2ˆ mlσ  simultaneously, we obtain 
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(b) mlm̂  is an unbiased estimator since 
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To check if the estimator is efficient, we use (6.50) to obtain 

∑ ∑
= =









−

σ
=

σ

−
=

∂
σ∂ K

k

K

k
k

k my
K

Kmy
m

mf

1 1
22

2 1),|(ln yY  

where .ˆ)/1(ˆand/)(
1

2 ∑
=

==σ=
K

k
mlk myKmKmc  Hence, the estimator is 

efficient. 
 
(c) To determine the conditional variance of error, we use (6.33) and (6.34). 
Taking the derivative of the likelihood equation with respect to m, we obtain 
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Cramer-Rao Inequality for a Random Parameter 
 
We suppose that θ is a random parameter, such that the joint density function 

)θ|(Θ| yYf  of the observation vector Y and the parameter θ are known. Then, 
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Equality of (6.53) holds if and only if  

   )ˆ(),(ln , θ−θ=θ
θ∂
∂ cf yY Θ                 (6.55) 

where c is independent of Y and θ. Furthermore, the lower bound of (6.53) is 
achieved with equality if and if )|θ(|θ yYf  is Gaussian. 

It also can be shown that if the lower bound on the nonrandom parameter of 
(6.34) is denoted J and if the lower bound on the random parameter of (6.54) is 
denoted L, then 
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Next, we present the generalization of the Cramer-Rao bound for a vector 
parameter on multiple parameter estimation for both random and nonrandom 
parameters. 
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6.7 MULTIPLE PARAMETER ESTIMATION 
 
In many radar and communication applications, it may be necessary to examine 
several parameters simultaneously. For example, in a radar application, a problem 
may be to estimate the range and velocity of a target; while in a communication 
application, the problem may be to estimate the amplitude, arrival time, and a 
carrier frequency of a received signal. Therefore, we can now extend the parameter 
estimation concepts to multiple parameters. The vector to be estimated may be 
random (in this case we use the Bayes’ estimation) or nonrandom (in this case we 
use the maximum likelihood estimation). 
 
6.7.1 θ Nonrandom 
 
In this case, the vector θ is 

[ ]TKθθθ= K21θ                 (6.57) 

Then, (6.3) becomes the following set of simultaneous likelihood equations 
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   0),,,|,,,(ln 2121 =θθθ
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∂
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K

yyyf KKθ|Y                (6.58) 

In order to write (6.58) in a more compact form, we define the partial derivative 
column vector by 

T

K

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∂
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∂

=∇ L
21
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This operation is generally applied to row vectors only. That is, if 
][ 21 n

T XXX K=X , then 
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The ML equation is then 

0θ
θθθ =∇

=Θ )(ˆ| )]|([ln
yY y

ml
f     (6.60) 

We saw in Section 6.4 that a measure of quality of the estimate is the bias. The 
conditional mean of the estimate given by (6.6) becomes 

)(]|)(ˆ[ θθθθ by +=E      (6.61) 

If the bias vector 0θ =)(b , that is, each component of the bias vector is zero for 
any θ, then the estimate is said to be unbiased. We note that 

θθθθθθθ −==−= )](ˆ[)](~[]|))(~[()( yyyb EEE                (6.62) 

A second measure of quality of the estimate is the conditional variance of the 
error. For multiple parameters, the corresponding conditional covariance matrix of 
the error is 

]|)~~()~~[(~ θθθθθ T
b

T
bE −−=C                 (6.63) 

where bθ
~  is the bias vector given by 

   )(]|)(~[~ θθθθ by == Eb                 (6.64) 

Note that C~  is a KK ×  matrix. The ijth element is  

            ]|)~()~[(~ θbjjbiiij E θ−θθ−θ=C                 (6.65) 

while the ith diagonal element is the conditional variance given by 
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]|))(ˆvar[(]|~var[~]~var[ θθ iiiiii C θ−θ=θ==σ y                (6.66) 

Cramer-Rao Bound 
 
The extension of the Cramer-Rao bound is given by the following theorem. 
 
Theorem.   If θ̂  is any absolutely unbiased estimator of θ based on the observation 
vector Y, then the covariance of the error in the estimator is bounded by the 
inverse, assuming it exists, of the Fisher information matrix J. 

1]|)ˆ)(ˆ[( −≥−− Jθθθθθ TE                 (6.67) 
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1−J  is the inverse matrix of the Fisher information matrix. Equality holds only if 
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The derivatives 2
Θ|

2
Θ| /)|(and/)|( θθθθ ∂∂∂∂ yy YY ff  are assumed to exist and 

to be absolutely integrable. The Fisher information matrix is defined as 

             [ ]{ } [ ]{ }[ ]θθθ θθ |)|y(ln)|y(lnJ |Y|Y
TffE ΘΘ ∇∇=   (6.70) 

which can also be rewritten as 

        [ ]{ }[ ]θθθθ |)|y(lnJ |Y
TfE Θ∇∇−=                (6.71) 

For simplicity, we give the conditional variance on the error 
Kiiii ,,2,1,θθ̂θ~ K=−= , which is bounded by the inequality 
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θ~                (6.72) 

iiJ  is the ith diagonal element in the KK ×  square matrix 1−J . The ijth element 
of J  in (6.70) is given by 
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whereas the ijth element of (6.71) is given by 
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Proof.  One way to prove the above theorem without resorting to excessive matrix 
operation is the following. Since the estimations are unbiased (the expected value 
of each estimator is the true value), we can write 

      iii dfE θ)|()(θ̂]|)(θ̂[ | == ∫
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or 
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Differentiating both sides of (6.76) with respect to jθ , we have 
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Using (6.38) for the integral, and the fact that jθ∂θ∂ /i  is the Kronecker ijδ  
(unity for ji = , and zero otherwise), (6.77) can be rewritten as 
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Consider the case when 1=j , and define the 1+K  dimensional vector X (K 
is the number of parameters to be estimated) as 
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Note that the mean values of the components of X are all zero.  The first term is 
zero because the estimate is unbiased, while the other terms are zero in light of 
(6.35), which can be written as 
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The covariance matrix of X is then  
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or in partitioned form, 
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Since the covariance matrix is nonnegative definite, and consequently its 
determinant is nonnegative definite, the determinant of (6.81) is given by 
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From (4.30), we observe that (6.83) can be written in terms of the cofactor J11. 
Hence, 
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Assuming that the Fisher matrix J is nonsingular, we have 

    0cofactorσ][ 11
2
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i
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or 

    iiJ
J
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J
112

θ~
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which is the desired result given in (6.72). 
 
6.7.2 θ  Random Vector 
 
In the Bayes’ estimation, we minimize the cost function )](ˆ,[ yθθC . Consider now 
the extension of the mean-square error criterion and the MAP criterion for multiple 
parameters estimation. 
 
Mean-Square Estimation 
 
In this case, the cost function is the sum of the squares of the error samples given 
by 
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The risk is 
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Substituting (6.87) in (6.88) and using the Bayes’ rule, the risk becomes 
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As before, minimizing the risk is equivalent to minimizing the expression in the 
brackets of (6.89). Each term between the brackets is positive, and thus the 
minimization is done term-by-term. From (6.19), the ith term )(θ̂ yi  is minimized 
for 

∫
∞
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= θyθYΘ dfimsi )|(θ)(θ̂ |y                 (6.90) 

In vector form, the MMSE is given by 
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It can be shown that the mean-square estimation commutes over a linear 
transformation to yield 

 )(ˆ)(ˆ yDy msms θφ =                 (6.92) 

where D is an KL× matrix. 
 
MAP Estimation 
 
From (6.28), the MAP estimate mapθ̂  is obtained by minimizing )|(| yY θΘf . 
Generalizing the result to the estimation of multiple parameters estimation, we 
obtain the following set of MAP equations: 
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Using (6.59), the MAP equation can be written in a single vector to be 
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Cramer-Rao Bound 
 
The covariance matrix of the error of any unbiased estimator θ̂  of θ  is bounded 
below by the inverse of the Fisher information matrix, L, and is given by 

        
L
1

≥−− ])ˆ)(ˆ[( TE θθθθ                 (6.95) 

where 

     












∂

∂
−= ),(ln ,2

2
θ

θ
Θ yL YfE                 (6.96) 

Note that the equality holds if and only if 
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where c is independent of Yandθ . If the conditional density function 
)|(| θΘ yYf  is Gaussian, the lower bound of (6.95) is achieved with equality. 

The information matrix L can be written in terms of J as 
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6.8 BEST LINEAR UNBIASED ESTIMATOR 
 
In many practical problems, it may be not possible to determine the MMSE 
estimators of a random or an unknown parameter, even if it exists. For example, 
we do not know the probability density function of the data, but we know the first-
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order and second-order moments of it. In this case, the methods developed in 
estimating the parameters and determining the Cramer-Rao lower bound cannot be 
applied. However, we still would like to obtain a reasonable (suboptimum) or 
“best” estimator, in the sense that it is unbiased and has a minimum variance, 
usually called MVU estimator. To do so, we limit the estimator to be a linear 
function of the data, and thus it becomes possible to obtain an explicit expression 
for the best linear unbiased estimator (BLUE). 

We first give the one parameter linear minimum mean-square estimation to 
present the fundamental concepts, and then generalize them to multiple 
parameters. 
 
6.8.1 One Parameter Linear Mean-Square Estimation 
 
The linear minimum-square estimate of a random parameter θ  is given by 

baYlms +=θ̂      (6.99) 

The corresponding risk function is  
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Following the same procedure as we did in Section 6.5.1, we observe that 
minimizing the risk involves finding the constants a and b, so that lmsℜ  is 
minimum. Hence, taking the derivatives of lmsℜ  with respect to a and b and 
setting them equal to zero, we have 
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and 
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Using (1.45) and (1.108), (6.101) and (6.102) can be rewritten as 

][θ][][ 2 YEYbEYaE =+               (6.103) 
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and 

      ][][ θ=+ EbYaE                (6.104) 

We have two equations in two unknowns.  Solving for a and b, we obtain 
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Knowing that the correlation coefficient Yθρ is given by 
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with ][],[ YEmEm y =θ=θ , ,)[( 2
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and 

       
y

yy mmb
σ
σ

ρ−= θ
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The optimal cost function can be obtained to be 

      )1( 22
ylms θθ ρ−σ=ℜ                (6.110) 

It can be shown that if the joint density function )θ,(Θ, yfY is Gaussian, then 
the conditional mean ]|θ[ yE is linear in the observation data, and thus the 
minimum mean-square estimate is linear. In addition, we usually assume for 
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convenience that the parameter θ and the observation Y have zero means.  In this 
case, lmsθ̂  is unbiased, and is given by 

yCC yyblue
1−

θ=θ                (6.111) 

where ][/1and][ 21 YECYEC yyy =θ= −
θ . We now can generalize the result of 

(6.111) for multiple parameter estimation. 
 
6.8.2 θ Random Vector 
 
If now θ is a random vector parameter and θ and Y are assumed to have zero 
means, then it can be shown that the BLUE that minimizes the mean-square error 
(variance minimum) is given by 

         YCC YYY
1ˆ −= θθblue               (6.112) 

and the mean-square error is 

  θθθθθθ YYYY CCCC 1])ˆ()ˆ([ −−=−− T
blueblueE θθ              (6.113) 

YYC  is the covariance matrix of the observation vector Y, 1−
YYC  is its inverse, and 

YCθ  is the cross-covariance matrix between Y and θ. Note that the mean and 
covariance of the data are unknown, and the means of Y and θ are assumed to be 
zero, and thus the linear mean-square estimator is unbiased. 
 
Proof.   We now give a derivation of the result given in (6.112). Since θ̂  is 
restricted to be a linear estimator for Y, that is a linear function of the data, then θ̂  
can be written as 

  DY=θ̂                (6.114) 

The problem is to select the matrix D so that the mean-square given by (6.113) is 
minimized. Equation (6.113) is called the matrix-valued squared error loss 
function. Substituting (6.114) into (6.113), we have 

    ])()([])ˆ()ˆ([ TT EE DYDY −−=−− θθθθθθ              (6.115) 

Using the fact that 
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     ])ˆ()ˆ([tr])ˆ()ˆ([ TT EE θθθθθθθθ −−=−−              (6.116) 

then, (6.115) becomes 
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 ]tr[ TT DDCDCDCC YYYY +−−= θθθθ         (6.117) 
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 θθθθ YYYYYYYY CCCDCDCDDC 1−+−−= TT           (6.118) 

Using (6.118), we can write 

])()(tr[])ˆ()ˆ([ 1111
θθθθθθθθ YYYYYYYYYYYYYY CCCCCDCCCDC −−−− −−−+=−− TE

                    (6.119) 

We observe that the gain matrix D appears only in the second term on the right-
hand side of (6.119). Thus, each diagonal element in the matrix 

])ˆ()ˆ([ TE θθθθ −−  is minimized when D is given by 

1−= YYY CCD θ                (6.120) 

Substituting (6.120) in (6.114), we have 

      YCC YYY
1ˆˆ −== θθθ blue               (6.121) 

and the proof is complete. 
Note that if Y and θ are not zero mean, such that YmY =][E  and ,][ θθ m=E  

then 

bAY +=lmsθ̂               (6.122) 

where the matrix A and the vector b are given by 

           { } { } Y
1

YY CCYYYYYYA θθθ −−
=−−= ][][][][][][
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and 

][][ YAb EE −= θ                (6.124) 

By direct substitution, we obtain 

)(ˆ 1
YYYY mYCCm −+= −

θθθblue               (6.125) 

The BLUE given in (6.121) has several properties of interest: 

YCY θθ =]ˆ[ T
blueE               (6.126) 

blueblue

T
blueblueE θθθθθθ ˆˆ
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blueblue

T
blueblueE θθθθθθθθ ˆˆ])ˆ)(ˆ[( CC −=−−               (6.128) 

0])ˆ[( =− T
blueE Yθθ               (6.129) 

0]ˆ)ˆ[( =− T
blueblueE θθθ               (6.130) 

We observe that property (6.129) means that the error in the estimate is orthogonal 
to the data Y, while property (6.130) means that the error in the estimate is 
orthogonal to the estimator blueθ̂ . This concept of orthogonality is an important 
result, which will be developed and used extensively in the next chapter on 
filtering. 
 
6.8.3 BLUE in White Gaussian Noise 
 
Consider the general problem of estimating a random vector with N parameters 
(denoted as the N-dimensional vectors θ), to be estimated from K observations 
(denoted as the K-dimensional vector Y), in white Gaussian noise.  The parameters 
θ and measurements Y are assumed to be related by the so-called linear model 

NHY += θ                (6.131) 

H is a NK × known mapping matrix, Y is the 1×K observed random vector, θ is 
an 1×N random vector to be estimated, and N is a 1×K vector representing errors 
in the measurement (noise). Assuming that θ and N have zero means, then Y has 
zero mean.  The covariance matrix of Y is 
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   NNNNYY CHCHCHHCNHNHC +++=++= TTT
θθθθθθ ]))([(     (6.132) 

while the cross-covariance matrix of Y and θ is  

      θθθθ NY CHCC +=               (6.133) 

Substituting (6.132) and (6.133) in (6.121), we obtain the BLUE estimate of θ to 
be  

     YCHCHCHHCCHC NNNNN
1]][[ˆ −++++= TTT

blue θθθθθθθθ        (6.134) 

with error covariance matrix 

)(~~ NCHCCC θθθθθθθ +−= T  

)()( 1
θθθθθθθ NNNNN CHCCHCHCHHC ++++⋅ −TT       (6.135) 

When θ and N are uncorrelated, which is the usual assumed case, ,C N 0=θ  and 
the BLUE of θ reduces to 

        YCHHCHC NN
1)(ˆ −+= TT

θθθθθ              (6.136) 

while the error matrix becomes 

θθθθθθθθθθ HCCHHCHCCC NN
1~~ )( −+−= TT             (6.137) 

Using the matrix inversion lemma given in Chapter 4, and after some matrix 
operation, we have 

      YCHC NN
1~~

~ −= T
blue θθθ             (6.138a) 

where 

     111~~ )( −−− += HCHCC NN
T

θθθθ             (6.138b) 

If no a priori information about θ is available, and thus if 1−
θθC  is assumed zero, the 

BLUE of θ̂  is given by 
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YCHHCH NNNN
111 )(ˆ −−−= TTθ               (6.139) 

Note that in these results, we only assumed that θ is a random parameter.  
Consider now the problem of estimating the unknown vector θ, but which is 
constrained to be a linear function of the data (measurements). 
 
The Estimator as a Linear Function of Data 
 
In this case, we require 

      ∑
=

=+=
K

k
kkik MibYa

1
,,2,1,ˆ Kθ               (6.140) 

or, in matrix form 

bAY +=θ̂                (6.141) 

where A is an KM ×  matrix, and Y and b are 1×K  vectors. In order for θ̂  to be 
unbiased, we must have 

θθθ =]|ˆ[E                (6.142) 

Hence, 

      θθθθθθ =+=++=+=+ bAHbNHAbYAbAY ]|[]|[]|[ EEE       (6.143) 

only if 

  IAH =              (6.144a) 

and 

   0=b              (6.144b) 

The BLUE estimate is then given by 

  YCHHCH NNNN
111 )(ˆ −−−= TTθ               (6.145) 

Therefore, with the noise Gaussian in the linear model, we can state the 
following result given by the Gauss-Markov theorem. 
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Gauss-Markov Theorem.  If the data is of the general linear model form 

NHY += θ                (6.146) 

where H is a known MK ×  matrix, θ  is an 1×M  vector of parameters to be 
estimated, and N  is a 1×K noise vector with mean zero and covariance matrix 

NNC , then the BLUE of θ  that minimizes the mean-square error is 

YCHHCH NNNN
111 )(ˆ −−−= TTθ               (6.147) 

with error covariance matrix 

       11
ˆˆ )(]|)ˆ)(ˆ[( −−=−−= HCHC NN

TT
blueblueE θθθθθθθ              (6.148) 

The minimum variance of kθ̂ is then 

kk
T

k ])[(]ˆvar[ 11 −−= HCH NNθ               (6.149) 

Example 6.7 
 
Consider the problem of Example 6.2 where 

KkNAY kk ,,2,1, K=+=  

where kN  is a zero mean white noise. Find the BLUE of M if: 

(a) The variance of KkN k ,,2,1, K=  is .σ 2  

(b) The noise components are correlated with variance .,,2,1,σ 2 Kkk K=  
 
Solution 
 
(a) The estimator is constrained to be a linear function of the data.  Let  

∑
=

==
K

kjkk MjYAA
1

,,2,1,ˆ
k

K  

where the Ajks are the weighting coefficients to be determined. From (6.147), the 
BLUE is given by 

YCHHCH NNNN
111 )(ˆ −−−= TTA  
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where 

][][][ kkkkkk AEHNAHEYE =+=  

Since Ak must be unbiased, then kk AAE =][ , 1=kH , and thus .1=H  
Substituting, we have 

∑∑
==

−
−

=







σσ=









σ









σ
=

K

k
k

K

k
k

TT y
K

yKA
11

212
2

1

2
1)(11ˆ IyI 111  

Hence, we observe that the BLUE is the sample mean independently of the 
probability density function of the data, while the minimum variance is 

K
A

TT

2

2

1 1
1

)(
1]ˆvar[ σ

=

σ

==
−

11 IHCH NN

 

(b) In this case, the variance matrix is 























σ

σ
σ

=

2

2
2

2
1

00

00
00

KL

MMMM

L

L

NNC  

After substitution, the BLUE is 

∑

∑

=

=

σ

σ
=

K

k k

K

k
k

k

y
A

0
2

1
2

1

1

ˆ  

while the minimum variance is 

∑
= σ

=
K

k k

A

0
2

1
1)ˆvar(  
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6.9 LEAST-SQUARE ESTIMATION 
 
In studying parameter estimation in the previous sections, our criteria were to find 
a “good” estimator that was unbiased and had minimum variance. In the least-
square estimation, the criterion is only to minimize the squared difference between 
the given data (signal plus noise) and the assumed signal data. 

Suppose we want to estimate M parameters, denoting the M-dimensional 
vector θ, from the K measurements, denoting the K-dimensional vector Y 
with MK ≥ . The relation between the parameters θ and the observed data Y is 
given by the linear model 

    NHY += θ                (6.150) 

where H is a known ( )MK ×  matrix, and N is the unknown ( )1×K  error vector 
that occurs in the measurement of θ. 

The least-square estimator (LSE) of θ chooses the values that make θHX =  
closest to the observed data Y.  Hence, we minimize  

θθ+θ−θ−=

θ−θ−=−=θ ∑
=

HHYHHYYY

HYHY

TTTTTT

T
K

k
kk XYJ )()()()(

1

2

 

        θθθ HHHYYY TTTT +−= 2           (6.151) 

Note that θHY T  is a scalar. Taking the first-order partial derivative of the cost 
function )(θJ  with respect to θ  (i.e., the gradient) and setting it equal to zero, we 
obtain the set of linear equations 

0θ
θ
θ

=+−=
∂

∂ HHYH TTJ
22

)(
              (6.152) 

and the LSE is found to be 

YHHH TT
ls

1)(ˆ −=θ               (6.153) 

Note that the second-order partial derivative is 

HH TJ
=

∂

∂
2

2 )(
θ
θ

              (6.154) 
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This matrix is positive-definite as long as H is assumed to be of full rank to 
guarantee the inversion of HH T . Thus, the solution (6.153) is unique and 
minimizes )(θJ . The equations 

YHHH TT =θ               (6.155) 

to be solved for lsθθ ˆˆ =  are referred to as the normal equations. 

We observe that the error in the estimator lsθ̂  is a linear function of the 
measurement errors N, since 

lsθ
~ ≜ ( ) ( ) ][ˆ 11

NHHHHYHHH +−=−=−
−−

θθθθθ TTTT
ls  

        ( ) ( ) NHHHHHHH TTTT 11 −−
−θ−θ=  

      ( ) NHHH TT 1−
−=                (6.156) 

The minimum least-square minJ  can be shown, after some matrix operation, to be  

YHHHHYYYHYHY TTTTT
lsJJ 1

min )()ˆ()ˆ()ˆ( −−=θ−θ−=θ=  

             )ˆ( θHYY −= T              (6.157) 

Generalization of the Least-Square Problem 
 
The least-square cost function can be generalized by introducing a KK ×  positive 
definite weighting matrix W to yield  

)()()( θθθ HYWHY −−= TJ            (6.158) 

The elements of the weighting can be chosen to emphasize specific values of the 
data that are more reliable for the estimate θ̂ . 

The general form of the least-square estimator can be shown to be 

     WYHWHH TT 1)(ˆ −=θ               (6.159) 

while its minimum least-square error is 

    YWHWHHWHWY ])([ 1
min

TTTJ −−=              (6.160) 

The error covariance matrix becomes 
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        11 )()( −−= WHHWRWHHWHHC NN
TTT              (6.161) 

where RNN is a known positive-definite covariance matrix given by 

][ TE NNRNN =               (6.162) 

since 0=][NE  (i.e., NNNN CR = ). 

If the measurement errors N are uncorrelated and have identical variance ,σ 2  
then IR 2σ= ; and if  ,σ 2 IW =  then (6.159) reduces to (6.153). That is, a 
constant scaling has no effect on the estimate. 

It can also be shown that the least-square estimator and the linear minimum 
mean-square estimator are identical when the weighting matrix W is chosen as 

1−= RW                (6.163) 

that is, the inverse of the measurement noise covariance matrix. 
 
Example 6.8 
 
Consider again the problem of Example 6.5 with KkNAY kk ,,2,1, K=+= . 

From (6.153), the least-square estimate is YHHH TTA 1)(ˆ −= . H is the )1( ×K  

column matrix denoted [ ]111 K=T1 . Hence, 

∑
=

− ==
K

k
k

TT Y
K

A
1

1 1)(ˆ Y111  

which is the sample mean. Observe that for this simple operation, instead of 
applying a derived result, we could have started by writing the least-square cost 

function ∑
=

−=
K

k
k AyAJ

1

2)()( , then differentiating )(AJ  with respect to A, setting 

the result equal to zero, and solving for lsAA ˆˆ = . 
 
Example 6.9 
 
Suppose that three measurements of signal )2/exp(θ ksk = , where θ is the 
parameter to be estimated, are given by ,5.11 =y  ,32 =y  and .53 =y  Find the 
least-square estimate of θ. 
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Solution 
 
The data can be put in the form, NHY += θ  given by (6.150).  Substituting for 
the values of k, we have 

3

2

1

θ482.45
θ718.23
θ648.15.1

N
N
N

+=
+=
+=

 

where T]535.1[=y  is a realization of Y, ,]482.4718.2648.1[ T=H  and 
][ 321 NNN=N  a realization of N. The least-square estimate is given by 

yHHH TT
ls

1)(θ̂ −=  

where 192.30
3

1

2 == ∑
=k

k
T HHH , and ∑

=
==

3

1
036.30

k
kk

T YHyH . Hence, 

995.0)(θ̂
3

1

2

3

11 ===

∑

∑

=

=−

k
k

k
kk

TT
ls

H

YH
yHHH  

 
 
6.10 RECURSIVE LEAST-SQUARE ESTIMATOR 
 
In real time estimation problems (filtering), it is necessary to write the estimator 
θ̂ in a recursive form for efficiency. For example, consider a situation where an 

estimate θ̂  is determined based on some data KY . If new data 1+KY  is to be 
processed after having determined an estimate based on the data KY , it is best to 
use the old solution along with the new data to determine the new least-square 
estimator. It is clear that discarding the estimate based on the data KY  and 
restarting the computation for a solution is inefficient. This procedure of 
determining the least-square estimate from an estimate based on KY  and the new 
data 1+KY  is referred to as sequential least-square estimation, or more commonly 
recursive least-square (RLS) estimation. 

Consider the problem of estimating θ from the data vectors MZ  given by the 
linear model 
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MMM UHZ += θ             (6.164a) 

where 

[ ]TMM YYYZ K21=            (6.164b) 

is an )1( +MK  collection of vectors MYYY ,,, 21 K , since each vector 
,,,2,1, Mkk K=Y  is a )1( +K  vector, 

[ ]TMM NNNU K21=            (6.164c) 

is an )1( +MK  error vector, and 

[ ]TMM hhhH K21=            (6.164d) 

is an )( nMK ×  mapping matrix relating MZ  to the )1( ×n  parameter vector θ  to 
be estimated. 

It can be shown that the RLS estimator is given by 

]ˆ[ˆˆ
11 −− −+= MMMMMM θθθ HUV              (6.165) 

where 

1−= MM
T
MM RH CV UU               (6.166) 

C  is the error covariance matrix given by 





















==
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M
T
M

M
T

T
MME

RRR

RRR
RRR

UUCUU

K

MOMM

K

K

21

22212

111211

][              (6.167) 

and 

iji
T
jiE δ][ RNN =               (6.168) 
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The covariance matrix of the individual noise vector N is iiR ≜ iR . Equation 

(6.170) indicates that the estimator Mθ̂  based on MZ  is formed as a linear 

combination of 1
ˆ

−Mθ  and a correction term ]ˆ[ 1−− MMMM θHUV . 
If θ  were a random variable, it can be shown that the generalization of the 

recursive least-square estimation leads to the Kalman filter [3]. In the next chapter 
on filtering, we present an introduction to Kalman filtering.  
 
 
6.11 SUMMARY 
 
In this chapter, we have developed the concept of parameter estimation. We used 
the maximum likelihood estimation to estimate nonrandom parameters. We first 
obtained the likelihood function in terms of the parameters to be estimated. Then, 
we maximized the likelihood function to obtain the estimator, which resulted from 
solving the likelihood equation. We linked this chapter to the previous one by 
presenting the generalized likelihood ratio test in Section 6.3. In the generalized 
likelihood ratio test, we used the maximum likelihood estimate of the unknown 
parameter in the composite hypothesis as its true value and then performed the 
likelihood ratio test. This was an alternative to the case where UMP tests did not 
exist. Measuring criteria for the estimator, such as bias and consistency, were 
presented to determine the quality of the estimator. 

When the parameter to be estimated was a random variable, we used Bayes’ 
estimation. In Bayes’ estimation, we minimized the risk, which is a function of 
error between the estimate and the true value. Three cases were considered; the 
squared error, the absolute value error, and the uniform cost function. It was 
shown that the minimum mean-square error represents the conditional mean of the 
parameter (associated with the observation random variable) to be estimated. The 
resulting minimum risk was the conditional variance. In the absolute value error 
case, the estimate turned out to be the median of the conditional density function 
of the parameter to be estimated, given the observation random variable. 

For the uniform Bayes’ cost, the estimator was actually the solution of the 
MAP equation. In comparing the ML estimate and MAP estimate, it was observed 
that the ML estimate was a special case of the MAP estimate and is obtained by 
setting to zero the density function of the parameter to be estimated in the MAP 
equation. In order to measure the “goodness” of the estimator, the Cramer-Rao 
bound was given as an alternate way to measure the error variance, since an 
expression for the error variance was difficult to obtain. The above results were 
generalized to multiple parameter estimation in Section 6.7. 

Then, we presented linear mean-square estimation for situations where it may 
have been difficult to find the MMSE, even if existed. We defined the BLUE in 
the sense that the mean-square value is minimized. We verified that for a joint 
Gaussian density function of the observation and the parameter to be estimated, the 
linear mean-square estimator is the optimum MMSE. An introduction to least-
square estimation was presented. We noted that least-square estimation was not 
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based on the criteria of the unbiased and minimum variance estimator, but rather 
on minimizing the squared difference between the given data and the assumed 
signal data. We concluded the chapter with a brief section on recursive least-
square estimation. 
 
 

PROBLEMS 
 
6.1 Let KYYY ,,, 21 K  be the observed random variables, such that  

KkZbxaY kkk ,,2,1, K=++=  

The constants ,,,2,1, Kkxk K=  are known, while the constants a and b are 
not known. The random variables ,,,2,1, KkZ k K=  are statistically 

independent, each with zero mean and variance 2σ  known.  Obtain the ML 
estimate of (a, b). 

 
6.2 Let Y be a Gaussian random variable with mean zero and variance .σ 2  

(a) Obtain the ML estimates of σ  and .σ 2  
(b) Are the estimates efficient? 

 
6.3 Let Y1 and Y2 be two statistically independent Gaussian random variables, 

such that mYEmYE 3][,][ 21 == , and 1]var[]var[ 21 == YY ; m is unknown. 
(a) Obtain the ML estimates of m. 
(b) If the estimator of m is of the form 2111 YbYa + , determine a1 and a2, so 

that the estimator is unbiased.  
 
6.4 The observation sample of the envelope of a received signal is given by the 

following exponential distribution 

Kk
y

yf k
kkY ,,2,1,

θ
exp

θ
1)( K=








−=  

θ is an unknown parameter and the observations are statistically independent. 
(a) Obtain the ML estimate of θ. 
(b) Is the estimator unbiased? 
(c) Determine the lower bound on the estimator. 
(d) Is the estimator consistent?  
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6.5 Let the observation Y satisfy the binomial law, such that the density function 
of Y is 

knn
Y pp

k
n

yf −−







= )1()(  

(a) Find an unbiased estimate for p. 
(b) Is the estimate consistent? 

 
6.6 Obtain the ML estimates of the mean m and variance 2σ  for the independent 

observations KYYY ,,, 21 K , such that 

( )
Kk

my
yf k

kYk
,,2,1,

σ2
exp

σπ2
1)(

2

2

K=










 −
−=  

6.7 Let x be an unknown deterministic parameter that can have any value in the 
interval ]1,1[− . Suppose we take two observations of x with independent 

samples of zero-mean Gaussian noise, and with variance 2σ  superimposed on 
each of the observations. 
(a) Obtain the ML estimate of x. 
(b) Is mlx̂  unbiased? 

 
6.8 Let KYYY ,,, 21 K be K independent observed random variables, each having a 

Poisson distribution given by 

.,,2,1,0,
!

)|(|Θ Kky
y

eyf k
k

y

kY

k

k
K=≥

θ
=θ θ−  

The parameter θ is unknown. 
(a) Obtain the ML estimate of θ. 
(b) Verify that the estimator is unbiased and determine the lower bound. 

 
6.9 Let KYYY ,,, 21 K  be K independent and identically distributed observations.  

The observations are uniformly distributed between θ+θ− and , where θ is 
an unknown parameter to be estimated. 
(a)   Obtain the MLE of θ. 
(b)   How is the estimator unbiased? 
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6.10 Let KYYY ,,, 21 K  be K independent variables with pYP k == )1(  and 
pYP k −== 1)0( , where 10, <≤ pp  is unknown. 

(a) Obtain the ML estimate. 
(b) Determine the lower bound on the variance of the estimator, assuming 

that the estimator is unbiased. 
 
6.11 Find msx̂ , the minimum mean-square error, and mapx̂ , the maximum a 

posteriori estimators, of X from the observations 

NXY +=  

X and N are random variables with density functions  

)]1(δ)1(δ[
2
1)( ++−= xxxf X   and  





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




σ
−
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2

2

2
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2
1)( xnf N  

6.12 The conditional density function of the observed random variable Y given a 
random parameter X is given by 







<
>≥

=
−

0,0
0and0,)|(| y

xyxexyf
xy

XY  

The a priori probability density function of X is 









<

≥
α
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1

x

xex
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r

X  

where α is a parameter, r is a positive integer, and )Γ(r  is the gamma 
function. 
(a) Obtain the a priori mean and variance of X. 
(b) For Y given, 

1. Obtain the minimum mean-square error estimate of X. 
2. What is the variance of this estimate? 

(c) Suppose we take K independent observations of ,,,2,1, KkYk K= such 
that 







<
>≥

=
−

0,0
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k
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kXY y
xyxexyf
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1. Determine the minimum mean-square error estimate of X. 
2. What is the variance of this estimate? 

(d) Verify if the MAP estimate equals the MMSE estimate. 
 
6.13 Consider the problem where the observation is given by NXY += ln , 

where X is the parameter to be estimated .  X is uniformly distributed over 
the interval ],1,0[  and N has an exponential distribution given by 





 ≥

=
−

otherwise,0
0,)( nenf

n

N  

Obtain 
(a) The mean-square estimate, msx̂ . 
(b) The MAP estimate, mapx̂ . 

(c) The MAVE estimate, mavex̂ . 
 
6.14 The observation Y is given by NXY += , where X and N are two random 

variables.  N is normal with mean one and variance 2σ , and X is uniformly 
distributed over the interval [0, 2]. Determine the MAP estimate of the 
parameter X. 

 
6.15 Show that the mean-square estimation ]|[ˆ yθθ Ems =  commutes over a 

linear transformation. 
 
6.16 Suppose that the joint density function of the observation Y and the 

parameter θ is Gaussian. The means θand mm y  are assumed to be zero. θ 
can then be expressed as a linear form of the data. Determine an expression 
for the conditional density )|(θΘ| yf Y . 

 
6.17 Consider the problem of estimating a parameter θ from one observation Y.  

Then, NY += θ , where θ and the noise N are statistically independent with  

( )


 ≤≤

=θ
otherwise,0

1θ0,1
Θf   and  





 ≤≤

=
otherwise,0

20,
2)(

nn
nf N  

Determine blueθ̂ , the best linear unbiased estimate of θ. 
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Chapter 7 
 
 

Filtering  
 
 
7.1 INTRODUCTION 
 
In Chapter 6, we developed techniques for estimating random and nonrandom 
parameters. We also studied measures to determine the “goodness” of the 
estimates. In many applications, the goal was to estimate a signal waveform from a 
noisy version of the signal in an “optimal” manner. 

In this chapter, we assume that the received signal is corrupted by an additive 
noise. We would like to extract the desired signal from the received signal based 
on the linear minimum mean-square error criterion. The received process signal, 
Y(t), is observed over some interval of time ],[ fi ttt∈ , where ti, denotes initial 

time and tf denotes final time. The problem is to determine )(ˆ tY , a linear estimate 

of Y(t). When t is outside the interval, we talk about prediction. If itt < , then )(ˆ tY  

is a backward predictor. If ftt > , then )(ˆ tY  is a forward predictor. When 

],[ fi ttt∈ , the problem is referred to as smoothing. The process of extracting the 
information-carrying signal S(t) from the observed signal Y(t), where 

)()()( tNtStY +=  and N(t) is a noise process, is called filtering. In Section 7.2, we 
define the linear transformation and present some related theorems in some detail. 
Recall that this concept was introduced and used in the previous chapter without 
any formal proof. The orthogonality principle theorem will be discussed in some 
detail, and we also show how it is used in different problems. 

In Section 7.3, we discuss the problem of filtering by deriving the impulse 
response of the system for both realizable and unrealizable filters, continuous and 
discrete, using spectral factorization. Then, we derive a realizable discrete 
optimum Wiener filter of a transversal filter with an impulse response of finite 
duration using the “mean-square method.” We conclude the chapter with a section 
on Kalman filtering. 
 
 
 

399 
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7.2 LINEAR TRANSFORMATION AND ORTHOGONALITY PRINCIPLE 
 
The estimate to be determined )(ˆ tY  is a linear transformation of the received 
signal )(tY . In this section, we present some useful properties about linear 
transformations and discuss an important theorem known as “the orthogonality 
principle” before deriving the estimation rule. The estimate may be written as 

[ ])()(ˆ tYLtY =              (7.1) 

where the operator [ ]⋅L denotes linear transformation. The estimation rule is based 
on the minimum mean-square error. Hence, defining the error as 

         )(ˆ)()(ε tYtYt −=              (7.2) 

we would like to derive the estimation rule [ ]⋅L , so that the mean-square error 

  [ ] 



 −=ε

22 )(ˆ)()( tYtYEtE             (7.3) 

is minimized. 
By definition, a transformation [ ]⋅L  is linear provided that 

[ ] [ ])([)]()()( 22112211 tYLatYLatYatYaL +=+            (7.4) 

for all constants a1 and a2 and processes )(1 tY  and )(2 tY . The difference 
transformation is also linear. That is, if [ ]⋅1L  and [ ]⋅2L  are two linear 
transformations, such that 

           [ ] [ ] [ ])()()()( 21211122111 tYLatYLatYatYaL +=+            (7.5) 

and 

           [ ] [ ] [ ])()()()( 22212122112 tYLatYLatYatYaL +=+            (7.6) 

then the difference transformation 

          [ ] [ ] [ ]⋅−⋅=⋅ 12 LLL              (7.7) 

is linear. The proof is straightforward by direct substitutions of (7.5) and (7.6) in 
(7.7). For a linear transformation, it can be shown that 
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        [ ]{ } [ ]{ }⋅=⋅ ELLE              (7.8) 

where the operator [ ]⋅E denotes expectation. 

If )(tZ  is a process orthogonal to )ξ(Y  for all ξ  in the interval [ ]fi tt , , 

then any linear transformation on )ξ(Y  is also orthogonal to )(tZ  in the interval 

[ ]fi tt ,∈ξ . To prove this statement, we start from the definition that )ξ(Y  is 

orthogonal to )(tZ  in the given interval; that is, 

             [ ] [ ]fi tttZYE ,for0)()( ∈ξ=ξ ∗             (7.9) 

Let [ ])(ξYL  be a linear transformation of )ξ(Y . Since linear operations and 
expectations are interchangeable as given in (7.8), we have  

[ ]{ } [ ]{ })()()()( tZYLEtZYLE ∗∗ ξ=ξ  

          [ ]{ } [ ]fi tttZYEL ,for0)()( ∈ξ=ξ= ∗          (7.10) 

which proves that the linear transformation of )ξ(Y  is orthogonal to )(tZ . 
 
Theorem.   Orthogonality Principle 
 
The linear transformation [ ]⋅L  is the minimum mean-square error estimate if and 

only if the error )(ε t  is orthogonal to )(ξY [ ]fi tt ,for ∈ξ . 

 
Proof.  Let all processes )(and),(),( tNtStY , where )()()( tNtStY += , be real 

and stationary. Consider the linear transformation [ ] [ ] ξ=ξ⋅ allfor)(ˆ)(, 11 tSYLL , 

such that the mean-square error [ ] )(ˆ)()(,)( 1
2
1 tStSttE −=εε  is minimum. That is, 

[ ] )(ˆ)(1 tSYL =ξ            (7.11) 

is the optimum estimator, and the mean-square error is 
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[ ] [ ]{ }[ ] 0)()()( 2
1

2
1 =ξ−=ε= YLtSEtEem           (7.12) 

Consider the linear transformation [ ] [ ] ξ=ξ⋅ allfor)(ˆ)(, 22 tSYLL , such that the 

error )(2 tε , where )(ˆ)()(2 tStSt −=ε  is orthogonal to the data )(ξY  for all ξ. 
That is, 

        [ ] [ ]{ } 0)()(ˆ)()()(2 =−=ε tYtStSEtYtE          (7.13) 

The error )(ε1 t  can then be expressed in terms of )(ε 2 t  as 

[ ] [ ] [ ]{ } [ ])()()()()()()( 12211 ξ−ξ−ξ+=ξ−=ε YLYLYLtSYLtSt  
       [ ] [ ] [ ])()()()()( 2122 ξ+ε=ξ−ξ+ε= YLtYLYLt           (7.14) 

where the difference transformation [ ] [ ] [ ]⋅−⋅=⋅ 12 LLL  is linear as given by (7.7). 
Substituting (7.14) into (7.12), the linear mean-square error using the optimum 
estimator becomes 

[ ]{ } [ ]{ }[ ]2
2

2
1 )()(])()([ ξ+ε=ξ−= YLtEYLtSEem  

 [ ] [ ]{ } [ ]{ }[ ]2
2

2
2 )()()(2)( ξ+ξε+ε= YLEYLtEtE          (7.15) 

Since )(ε 2 t  is orthogonal to the data, )(ε 2 t  is also orthogonal to [ ])(ξYL  as 
shown in (7.9). Thus, 

       [ ]{ } 0)()(2 =ξε YLtE            (7.16) 

and the minimum mean-square error reduces to  

          [ ] [ ]{ }[ ]22
2 )()( ξ+ε= YLEtEem           (7.17) 

where [ ])(2
2 tE ε  is the mean-square error with [ ]⋅2L  as the estimator. Therefore, 
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[ ] [ ]{ }[ ] [ ])()()( 2
2

22
2 tEYLEtEem ε=ξ+ε=           (7.18) 

if and only if the nonnegative quantity [ ]{ }[ ]2)(ξYLE  is zero. That is,  

  0][][][ 12 =⋅−⋅=⋅ LLL            (7.19) 

Hence, this proves our theorem, which says that the linear transformation for 
which the error is orthogonal to data results in the minimum mean-square error 
linear estimator and vice versa. 

We now derive a simple expression for me , the minimum mean-square error, 
using the fact that the error is orthogonal to the data, which is given by 

    [ ] 0)()(ˆ)( =








ξ− YtStSE           (7.20) 

Substituting (7.9) into (7.20), the above expression becomes 

           [ ]{ } [ ][ ] 0)()()( =ξξ− YLYLtSE            (7.21) 

Consequently, the minimum mean-square error reduces to 

    [ ]{ }[ ])()()( tSYLtSEem ξ−=           (7.22) 

Example 7.1 
 
Let the observation process be )()()( tNtStY += , where )(tS  and )(tN  are zero 
mean wide-sense stationary processes. Obtain an estimate of )(tS  in terms of the 
present value of )(tY , and determine the minimum mean-square error. 
 
Solution 
 
In this case, the problem is to estimate the constant a, such that the estimate )(ˆ tS  
is given by 

)()(ˆ taYtS =  
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The linear minimum mean-square error estimator results in the requirement that 
the error )(ˆ)()(ε tStSt −=  be orthogonal to the observed data ).(tY  That is, 

[ ]{ } [ ]{ } [ ] [ ]
0)0()0(

)()()()()()()()(ˆ)( 2

=−=

−=−=−

yysy aRR

tYaEtYtSEtYtaYtSEtYtStSE
 

Solving for a, we obtain 

)0(
)0(

yy

sy

R
R

a =  

The minimum mean-square error is given by 

[ ]{ } [ ]{ } [ ] [ ]

)0()0(

)()()()()()()()(ˆ)( 2

ysss

m

aRR

tStYaEtSEtStaYtSEtStStSEe

−=

−=−=−=
 

Substituting for the value of a and noting that )0()0( yssy RR = , the minimum 
mean-square error becomes  

)0(
)0()0()0(

)0(
)0(

22

yy

syyyss

yy

sy
ssm R

RRR
R

R
Re

−
=−=  

If, in addition, the signal and noise processes are statistically independent, then 

[ ] [ ]{ } )0()()()()()()0( sssy RtNtStSEtYtSER =+==  

since [ ] [ ] [ ] 0)()()()( == tNEtSEtNtSE . Also, 

[ ][ ]{ } )0()0()()()()()0( nnssyy RRtNtStNtSER +=++=  

Therefore, 

)0()0(
)0(

nnss

ss

RR
R

a
+

=  

and 
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)0(
)0()0(

)0()0(
nn

nnss

nnss
m aR

RR
RR

e =
+

=  

It should be noted that if the processes were not zero mean, then the estimator 
must solve for the constants a and b, such that  

btaYtS += )()(ˆ  

Example 7.2   (Interpolation) 
 
Estimate )(tY  in the time interval [ ]Tt ,0∈  given )0(Y  and )(TY . Determine the 
minimum mean-square error. 
 
Solution 
 
The problem of estimating a signal at any instant in an interval of time, given the 
values of the signal at the end of the interval, is known as interpolation.  Using a 
linear estimator, the estimate )(ˆ tY  may be written as 

)()0()(ˆ TbYaYtY +=  

where a and b are constants to be determined.  Since we require that the error be 
orthogonal to the data, we have  

[ ]{ } 0)0()()0()( =−− YTbYaYtYE  

[ ]{ } 0)()()0()( =−− TYTbYaYtYE  

It follows that  

)()0()( TbRaRtR yyyyyy +=  

)0()()( yyyyyy bRTaRtTR +=−  

We have two equations in two unknowns.  Solving for a and b, we obtain 

)()0(

)()()()0(
22 TRR

tTRTRtRR
a

yyyy

yyyyyyyy

−

−−
=  

and 



Signal Detection and Estimation 406

)()0(

)()()()0(
22 TRR

TRtRtTRR
b

yyyy

yyyyyyyy

−

−−
=  

The minimum mean-square error is 

[ ]{ } )()()0()()()0()( TtbRtaRRtYTbYaYtYEe yyyyyym −−−=−−=  

where a and b are as given above. 
 We observe that if 2/Tt = , then 

)()0(
)2/(

TRR
TR

ba
yyyy

yy

+
==   and  )2/()()0( TRbaRe yyyym +−=  

Example 7.3   (The Yule-Walker Equations)  
 
We now consider the problem where we are given K random variables, 

KYYY ,,, 21 K , and we need to determine the linear minimum mean-square error 

estimator for the random variables S. Since the estimator is linear, the estimate Ŝ  
is given by 

                 KK YaYaYaS +++= K2211
ˆ           (7.23) 

From the orthogonality principle, the mean-square error is minimum if and only if 
the constants Kaaa ,,, 21 K  are chosen so that the error is orthogonal to the data.  
That is, 

        [ ] KkYYaYaYaSE kKK ,,2,1,0)( 2211 KK ==−−−−        (7.24a) 

or 

   [ ] [ ] [ ] [ ] 02211 =−−−− kKKkkk YYEaYYEaYYEaSYE K ,  Kk ,,2,1 K=     (7.24b) 

Defining  

     [ ] kk RSYE 0=          (7.25a) 

     [ ] jkkj RYYE =          (7.25b) 
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we obtain, from (7.24), the following set of K equations in K unknowns, known as 
the Yule-Walker equations, as discussed in Chapter 4. 

011122111 RRaRaRa KK =+++ K  

  
MMMMM

K 022222211 RRaRaRa KK =+++
 

          KKKKKK RRaRaRa 02211 =+++ K           (7.26) 

The solution yields the constants Kaaa ,,, 21 K . In matrix form, (7.26) can be 
written as 

     0RRa =          (7.27a) 

where 

    





















=

KKKK

K

K

RRR

RRR
RRR

K

MMMM

K

K

21

22221

11211

R         (7.27b) 

        [ ]TKaaa K21=a         (7.27c) 

and 

    [ ]TKRRR 002010 K=R         (7.27d) 

Since ,,,2,1,, KkjRR kjjk K==  in the Yule-Walker equations, the coefficients 
are obtained from (7.27) to be  

     0
1RRa −=            (7.28) 

Note that the data correlation matrix is given by 

     [ ]TE YYRR YY ==         (7.29a) 

where TY denotes the transpose of Y and 
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    [ ]TKYYY K21=Y          (7.29b) 

The estimator is simply the inner product of a and Y; that is,  

               aYYa TTS ==ˆ            (7.30) 

Geometrically, Ŝ  is the projection of S onto the surface spanned by .,,, 21 KYYY K  
This is illustrated in Figure 7.1 for .2=K  

The mean-square vector is  

         [ ] [ ] [ ] RaaaYYaSSS TTTT EEE === ˆˆ 2          (7.31) 

Similarly, we can determine the minimum mean-square error to be  

[ ] [ ]SYaYaYaSESSSEe KKm )()ˆ( 2211 −−−−=−= K  

       KK RaRaRaR 002201100 −−−−= K          (7.32) 

where ][ 2
00 SER = . In matrix form, the minimum mean-square error is expressed 

as  

000 RaT
m Re −=           (7.33) 

substituting for (7.28) in (7.33), we have 

0
1

00000
1

00 )()( RRRRRR TTT
m RRe −− −=−=          (7.34) 

 
 
 
 
 
 
 
 
 
 
 
Figure 7.1  Projection of S onto plane spanned by Y1 and Y2. 

 S 

 Y1 

 Y2 

Ŝ 
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When the data has a nonzero mean vector, we add a constant to the estimate given 
by (7.23), which becomes 

KK YaYaYaaS ++++= K22110
ˆ           (7.35) 

Following the above procedure, we obtain the set of )1( +K equations 

    SKK mamama =+++ K110  

     
MMMM

K 00111101 RaRaRam KK =+++
 

      KKKKKK RaRaRam 0110 =+++ K           (7.36) 

where [ ]SEms
ˆ=  and [ ].kk YEm =  

 
 
7.3 WIENER FILTERS 
 
We now consider the case where the data is not a finite number of random 
variables as in the previous examples, but rather a random process, )ξ(X , 
observed over an interval of time ],[ξ fi tt∈ . The goal is to estimate another 

process, )(tY , by a linear function of )ξ(X , such that 

       ∫=
f

i

t

t

dXhtY ξ)ξ()ξ()(ˆ            (7.37) 

The weighting function )ξ(h  is to be determined based on the minimum mean-
square error criterion. The orthogonality principle requires that the error 

)(ˆ)()(ε tYtYt −=  be orthogonal to observed data )ξ(X  during the interval 
],[ξ fi tt∈ . Hence, 

           ],[,0)()(),()( fi

t

t

ttXdXhtYE
f

i

∈λ=












λ











ξξλξ− ∫          (7.38) 

Assuming that the processes are stationary, in which case the filter used is time-
invariant, (7.38) becomes 
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],[,)()()( fi

t

t
xxyx ttdhRtR

f

i

∈λξξλ−ξ=λ− ∫          (7.39) 

Solving the integral equation of (7.39) results in the desired weighting function 
)ξ(h . 
The minimum mean-square error is  
























ξξξ−= ∫ )()()()( tYdXhtYEe

f

i

t

t
m          (7.40) 

or 

ξξ−ξ−= ∫ dtRhRe
f

i

t

t
yxyym )()()0(           (7.41) 

7.3.1 The Optimum Unrealizable Filter 
 
We now let )()()( tNtStY += , where )(tS  is the desired signal to be estimated 
from the data )(tY  for all time t. That is, we wish to obtain the optimum linear 
time-invariant filter, such that the mean-square error estimate of )(tS  is minimum. 
We assume all processes to be stationary, real, and zero mean.  The system is 
required to be time-invariant, and consequently the desired estimate may be 
expressed as 

         ∫
∞

∞−

−= ξ)ξ()ξ()(ˆ dYthtS           (7.42) 

Note that in this case, the filter is not constrained to be realizable since we do 
not require a causal system. The impulse response )ξ( −th  may be zero for ξ<t . 
This filtering problem can be represented by the block diagram of Figure 7.2. 

 
 
 
 
 
Figure 7.2  Filtering S(t). 
 

h(t)  
Not causal 

)(ˆ)(ˆ tStY = )()()( tNtStY += 
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The orthogonality principle requires that 

λ=












λ











ξξ−ξ− ∫

∞

∞−

allfor0)()()()( YdtYhtSE          (7.43) 

That is,  

        ∫
∞

∞−

ξξλ−ξ−=λ− dhtRtR yysy )()()(           (7.44) 

Let τλ =−t , then (7.44) becomes 

)()()()()( τ∗τ=ξξξ−τ=τ ∫
∞

∞−

hRdhRR yyyysy           (7.45) 

where ∗  denotes convolution. It is easier to solve the above equation in frequency 
domain. Taking the Fourier transform of (7.45), we obtain 

)()()( fHfSfS yysy =            (7.46) 

or 

     
)(
)(

)(
fS
fS

fH
yy

sy=            (7.47) 

The minimum mean-square error is given by 

         ∫∫
∞

∞−

∞

∞−

ξξξ−=























ξξξ−−= dhRRtSdhtYtSEe syssm )()()0()()()()(       (7.48a) 

where 

      
0

)]()([)()(
=τ

∞

∞−

τ∗τ−=ξξξ∫ hRdhR sysy         (7.48b) 

Expressing the error of (7.48) in terms of the power spectral density, we obtain 
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           ∫
∞

∞−

−−= dffHfSfSe syssm )]()()([           (7.49) 

Substituting (7.47) in (7.49), the error becomes 

       ∫
∞

∞− 









 −
−= df

fS
fSfS

fSe
yy

sysy
ssm )(

)()(
)(           (7.50) 

If )(tS  and )(tN  are statistically independent, then 

0)]([)]([)]()([ == tNEtSEtNtSE           (7.51) 

since they are zero-mean. It follows that 

)()()( fSfSfS nnssyy +=           (7.52) 

        )()( fSfS sssy =            (7.53) 

Therefore, the transfer function )( fH  is 

       
)()(

)(
)(
)(

)(
fSfS

fS
fS
fS

fH
nnss

ss

yy

sy

+
==           (7.54) 

The resulting minimum mean-square error in this case is 

∫∫
∞

∞−

∞

∞− +
=













+
−= df

fSfS
fSfS

df
fSfS

fS
fSe

nnss

nnss

nnss

ss
ssm )()(

)()(
)()(

)(
)(

2
         (7.55) 

We note that if the power spectral densities )( fS ss  and )( fSnn  do not 
overlap, then 

             
0)(when0)(
0)(when0)(

≠=
≠=

fSfS
fSfS

ssnn

nnss

 
            (7.56) 

The transfer function )( fH  becomes  
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



≠
≠

=
0)(thatsuchfor0
0)(thatsuchfor1

)(
fSf
fSf

fH
nn

ss           (7.57) 

For these power spectral densities of )( fS ss  and )( fSnn , which are 
nonoverlapping, the product )()( fSfS nnss  is zero, and thus the minimum mean-
square error is zero. 
 
Example 7.4 
 
Let the observation process for all time t be )()()( tNtStY += . 

(a) Obtain the linear mean-square error of )(' tS , the derivative of )(tS . 
(b) Determine the impulse response )(th  given that 

2ατ−= eRss ,  0)( =τsnR ,  and  )()( τδ=τ kRnn  

Solution 
 
(a)  The linear mean-square error estimate of )(' tS  is given by 

∫
∞

∞−

ξξξ−= dhtYtS )()()('ˆ  

Since the error is orthogonal to the data, we have 

ξ=












ξ











ααα−− ∫

∞

∞−

allfor0)()()()('ˆ YdhtYtSE  

or, ∫
∞

∞−

ααξ−α−=ξ− dhtRtR yyys )()()(' . Let ξτ −= t , then 

∫
∞

∞−

τααα−τ=τ allfor)()()(' dhRR yyys  

Taking the Fourier transform of the above expression, we obtain 

)()()( fHfSfSfj yysy =   or  
)(
)(

)(
fS
fS

fjfH
yy

sy=  
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Figure 7.3  Filter for estimating )('ˆ tS . 

Hence, the optimum filter for estimating )(' tS  is a cascade of two systems; the 
first system has a transfer function )(/)( fSfS yysy , while the second system is a 
differentiator as shown in Figure 7.3. 
 
(b) Using (7.52) and (7.53), we have )()()( τ+τ=τ nnssyy RRR  and 

)()( τ=τ sssy RR , since 0)( =τsnR . Consequently, the transfer function becomes 

)()(
)(

)(
fSfS

fS
fjfH

nnss

ss

+
=  

We need to determine )( fS ss  from )(τssR . The Fourier transform of the 
autocorrelation function )(τssR  is 












α
π

−
α
π

=τ= ∫
∞

∞−

τπ−ατ−
22

2 exp)(
2 fdeefS fj

ss  

where we have used the fact that 

0forexp)]2(exp[
2

2 >








 −π
=++−∫

∞

∞−

a
a

acb
a

dxcbxax  

The transfer function becomes 

)(

exp11

exp1

exp

exp

)(
22

22

22

22

fGfj
f

k

f
k

fj

kf

f

fjfH =












α
π

−
α
π

+












α
π

−
α
π

=

+










α
π

−
α
π












α
π

−
α
π

=  

where 

)(
)(

fS
fS

yy

sy 
)()()( tNtStY +=

  jf 
)(ˆ tS )('ˆ tS 
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










α
π

−
α
π

+












α
π

−
α
π

=
22

22

exp11

exp1

)(
f

k

f
k

fG  

Thus, dttdgth /)()( = , where )(tg  is the inverse Fourier transform of )( fG . It 
can be shown that the impulse response )(th  is given by 

∑
∞

=











α
−











α
π

−
π

α
=

1

2

2/3

2/3
exp11)1(2)(

n

n
n

n
t

kn
tth  

The above series converges, provided that .1/)/1( <απk  
 
Example 7.5 
 
(a) Determine the optimum unrealizable filter )(th  of the observation process 

)()()( tNtStY += . )(tS  and )(tN  are uncorrelated with autocorrelation 
functions 

τα−=τ eRss )(  and )(
2

)( 0 τδ=τ
N

Rnn  

(b) Calculate the minimum-mean-square error. 
 
Solution 
 
(a)  The transfer function )( fH  is given by (7.54), where )( fS ss  and )( fSnn  

are the Fourier transforms of )(τssR  and )(τnnR , respectively. Hence,  

222
0

222

222

42/)]4/(2[
)4/(2

)(
fb

a
Nf

f
fH

π+
=

+π+αα

π+αα
=  

where 0/4 Na α=  and )./4( 0
22 Nb α+α=  It follows that 
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Figure 7.4  Filter )(th for Example 7.5. 
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From the plot of )(th  shown in Figure 7.4, we observe that the impulse response 
)(th  is noncausal and thus nonrealizable.  

 
(b)  The minimum mean-square error is given by (7.55). Substituting for )( fS ss  
and )( fSnn  and solving the integral, we obtain the minimum mean-square error to 
be 

0

2 4
N

b
em

α
+α

α
=

α
=  

7.3.2 The Optimum Realizable Filter 
 
In the previous section, we solved for the optimum unrealizable filter to extract the 
desired signal from the observation process )()()( tNtStY += . We now consider 
the same problem with the constraint that the filter )(th  is realizable; that is, 

0for0)( <= tth . The system representing the problem is shown in Figure 7.5. 

 
 
 
 
Figure 7.5  Optimum realizable filter. 

b
a
2

 

 t 
 0 

h(t) 

h(t) 
causal 

)()()( tNtStY += )(ˆ tS 
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We assume that the signal process )(tY  is known only up to the present 
moment t. Therefore, the estimate of )(tS  is  

    ∫ ∫
∞−

∞

ξξξ−=ξξξ−=
t

dhtYdYthtS
0

)()()()()(ˆ          (7.58) 

The linear mean-square estimation requires that )(th  be chosen so that the mean-
square error is minimum. From the orthogonality principle, we have  

tttYdhtYtSE ≤=























ξξξ−− ∫

∞

'allfor0)'()()()(
0

         (7.59) 

The impulse response of the realizable filter satisfies the integral equation 

∫
∞

ξξ−ξ−=−
0

)()'()'( dhttRttR yysy           (7.60) 

Let ;' τ=− tt  then the integral equation becomes 

0allfor)()()(
0

≥τξξξ−τ=τ ∫
∞

dhRR yysy          (7.61) 

Equation (7.61) is called the Wiener-Hopf integral equation. Furthermore, the 
mean-square error of the estimate reduces to 

   ∫∫
∞∞

ξξξ−=























ξξξ−−=

00

)()()0()()()()( dhRRtSdhtYtSEe syssm     (7.62) 

The solution to the Wiener-Hopf integral equation is not as easy as in the case 
of the unrealizable filter, since the integral is valid for positive τ only. Equation 
(7.61) can be written as 

        0,)()()( ≥τξξξ−τ=τ ∫
∞

∞−

dhRR yysy           (7.63) 

It can be shown that the choice of the above integral for negative τ is not arbitrary 
when the additional constraint )ξ(h  causal is imposed. Moreover, 



Signal Detection and Estimation 418

      0),()()( <ττ≠ξξξ−τ∫
∞

∞−
syyy RdhR           (7.64) 

Consequently, we cannot obtain the impulse response of the optimum realizable 
filter by simply using the frequency domain approach, as we did with the 
unrealizable filter. 

To obtain an integral equation valid for all ,, ∞<τ<∞−τ  we combine (7.63) 
and (7.64), which results in  

ττ=τ−ξξξ−τ∫
∞

∞−

allfor)()()()( aRdhR syyy          (7.65) 

where )τ(a  is zero for τ positive, and  

∫
∞

∞−

+ <= 0,)()( 2 ττ τπ dfefAa fj           (7.66) 

Assume that the power spectral density )( fS yy  is a rational function and can be 
factored into 

)()()( fSfSfS yyyyyy
−+=            (7.67) 

)( fS yy
+  and its conjugate )( fS yy

−  are called the spectral factorizations of 

)( fS yy . )( fS yy
+  has all its poles and zeros in the left half-plane (LHP) of the S-

plan ( fjs π=ωω= 2, ), whereas )( fS yy
−  has all its poles and zeros in the right 

half-plane (RHP). Taking the Fourier transform of (7.65), we have 

)()()()( fAfSfHfS syyy =−           (7.68) 

or 

       )()()()()( fAfSfHfSfS syyyyy =−−+           (7.69) 

Dividing (7.69) by )( fS yy
− , we obtain 
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)(

)(
)(

)(
)()(

fS
fA

fS

fS
fHfS

yyyy

sy
yy −−
+ =−           (7.70) 

Note that since )( fS yy
+  and )( fH  have all their poles in the LHP, the product 

)()( fHfS yy
+  has its poles in the LHP, and consequently the corresponding time 

function is zero for 0τ < . Since )( fS yy
−  has its zeros in the RHP and )( fA  has 

all its poles in the RHP, the quotient )(/)( fSfA yy
−  has all its poles in the RHP. 

Consequently, the corresponding time function is zero for 0τ > . The ratio 
)(/)( fSfS yysy

−  has poles in the LHP and RHP. Thus, its corresponding time 

function is valid for all τ. Splitting the poles and zeros, the ratio )(/)( fSfS yysy
−  

may be expressed as 
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−− 






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
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yy

sy

yy

sy

sy

sy           (7.71) 

+− )](/)([ fSfS yysy  has all its poles and zeros in the LHP, whereas 
−− )](/)([ fSfS yysy  has all its poles and zeros in the RHP. Substituting (7.71) into 

(7.70), we obtain 

        
434214342143421

4434421

RHPRHPLHP
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)(
)(
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)(

)(
)()(
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fS
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fS
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−          (7.72) 

Define  

+

−
+


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








=

)(
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)(

fS

fS
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yy

sy ,  
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


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
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


=
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)(
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fS

fS
fB

yy

sy           (7.73) 

Equating the terms marked by LHP (all poles in LHP) in (7.72), we have 

   0)()()( =− ++ fBfHfS yy           (7.74) 

or, the transfer function )( fH  is 



Signal Detection and Estimation 420

)(
)(

)(
fS
fB

fH
yy
+

+

=            (7.75) 

All poles of )( fH  are in LHP, and consequently the filter response )(th  is zero 
for t negative, and thus it is realizable. Therefore, the optimum filter is 

∫
∞

∞−

π
+

+

= dfe
fS
fB

th ftj

yy

2

)(
)(

)(            (7.76) 

The corresponding minimum mean-square error is obtained by substituting for 
(7.75) into (7.62) and taking the Fourier transform, which results in 

df
fS
fB

fSfSe
yy

syssm ∫
∞

∞−
+

+












−−=

)(
)(

)()(          (7.77) 

Example 7.6 
 
Consider the problem where the signal )(tS  and the noise )(tN  are uncorrelated, 

and with autocorrelation functions τα−=τ eRss )(  and ).()2/()( 0 τδ=τ NRnn  For 
simplicity, assume 12/0 ==α N . 

(a) Obtain the optimum realizable filter. 
(b) Calculate the minimum mean-square error. 

 
Solution 
 
(a) The optimum realizable filter is given by (7.76), where )( fB +  and )( fS yy

+  

are defined in (7.73a) and (7.67), respectively. Since )(tS  and )(tN  are 
uncorrelated, the power spectral density of )(tY  is as given by (7.52). Hence, 

)()()( fSfSfS nnssyy += , where 

1)(and
41

1)(
22

=
π+

= fS
f

fS nnss  

Substituting for the expressions of )( fS ss  and )( fSnn , we obtain 
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1
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1
41

1)(
2

2

22

22

22 −

−
=

π+

π+
=+

π+
=

p
p

f
f

f
fS yy  

where .2 fjp π=  In order to differentiate between S denoting the power spectral 
density and P the Laplace transform, we denote the Laplace transform by 

.2 fjp π=  Consequently, 

)()(
)1)(1(

)2)(2(
1
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)(
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2
pSpS

pp
pp

p
p

pS yyyyyy
−+=
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=
−

−
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where 

1
2)(

+
+

=+

p
ppS yy   and  

1
2)(

−
−

=−

p
ppS yy  

We need to determine the cross-spectral density )( fS sy . From (7.53), we have 

)41/(1)()( 22 ffSfS sssy π+== , or in the Laplace domain )2( fjp π=  

)1)(1(
1

1
1)()(

2 −+
−

=
−

−
==

ppp
pSpS sssy  

Hence, from (7.71), 
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Now that we have )( pB +  and )( pS yy
+ , we substitute in (7.75) to obtain 

2
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or, )]22/(1)][21/(1[)( +π+= fjfH . Taking the inverse Laplace transform of 
)( pH , we obtain the optimum realizable filter )(th to be 
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)(
21

1)( 2 tueth t−

+
=  

where )(tu  is the unit step function. 
 
(b) The minimum mean-square error is given by (7.62) to be 

∫
∞

ξξξ−=
0

)()()0( dhRRe syssm . From part (a), we found that )()( pSpS syss =  

)1/(1 2 −−= p . Taking the inverse Laplace transform, we have  

τ−=τ=τ eRR syss 2
1)()(  

Substituting for the expression of 2/1)0( =ssR  and )(τsyR  into me , we obtain  

2)21(2
1

2
1

+
−=me  

Example 7.7 
 
Let )()()( tNtStY += , where the signals )(tS  and )(tN  are statistically 
independent with zero mean and autocorrelation functions 

τ−τ− +τδ=τ=τ eReR nnss 2)()(and)(  

(a) Find the optimum unrealizable filter. 
(b) Find the optimum realizable filter. 

 
Solution 
 
(a) The optimum unrealizable filter is given by (7.47) to be  

)(
)(

)(
fS
fS

fH
yy

sy=  

where )()( fSfS sssy =  and )()()( fSfSfS nnssyy += , since the signal and noise 

are uncorrelated and zero mean. Hence, ),()41/(1)( 22 fSffS syss =π+=  



Filtering 423 

)],41/(2[1)( 22 ffSnn π++=  and ).41/()44()( 2222 fffS yy π+π+=  

Substituting into the expression of )( fH , we obtain 
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(b)  The optimum realizable filter is given by (7.75). First, we factor )( fS yy  into 

)( fS yy
+  and )( fS yy

− . Then, 
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Also, 
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where )]1(3/[1)( +=+ ppB  and )]2(3/[1)( −−=− ppB . The transfer function of 
the realizable filter is 
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Taking the inverse Laplace transform of )( pH , we obtain the Wiener filter to be 
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7.4 DISCRETE WIENER FILTERS 
 
We now consider the filtering problem where the observed signal is a discrete 
random sequence, and the goal is to estimate another random sequence. The 
incoming sequence composed of the signal sequence K,2,1,0,)( =nnS  and the 
additive noise sequence K,2,1,0,)( =nnN , enter a linear discrete-time filter with 
impulse response denoted by the sequences K,2,1,0,)( =nnh , as shown in 
Figure 7.6. 

We assume that the sequences )(nS  and )(nN  are uncorrelated zero mean 

random variables. We wish to find )(ˆ nS , the minimum linear mean-square error 

estimator. The estimate )(ˆ nS  may be expressed as the correlation sum of the 
sequences )(nY  and )(nh , and is given by 

∑
∞

−∞=
−=

k
knYkhnS )()()(ˆ            (7.78) 

or 

∑
∞

=
−=

0
)()()(ˆ

k
knYkhnS            (7.79) 

 
 
 
 
 
 
Figure 7.6  Filtering the sequences ).(nS  

)(ˆ nS h(n) 
Discrete-time 
linear filter

)(nY

)(nN 

)(nS 
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Equation (7.78) indicates that all data )(nY  is available for all n. The sequence is 
not finite, and thus the filter is not realizable. Equation (7.79) indicates that only 
present and past values of Y are used in estimating )(nS . Thus, we have a finite 
sequence, and the filter is causal or realizable. 
 
7.4.1 Unrealizable Filter 
 
In this case, the estimator is given by (7.78). The criterion used to determine the 
filter sequence )(nh is the mean-square error and is given by 

          [ ]{ }2)(ˆ)( nSnSE −            (7.80) 

The mean-square error is minimized by applying the orthogonality principle. Thus, 

mmnYknYkhnSE
k

allfor)()()()(












−







−− ∑

∞

−∞=
         (7.81) 

or 

        ∑
∞

−∞=
−=

k
yysy mkmRkhmR allfor)()()(        (7.82a) 

where 

[ ])()()( mnYnSEmRsy −=         (7.82b) 

and  

[ ])()()( mYnYEmnRyy =−         (7.82c) 

We define the Fourier transform of a discrete sequence K,2,1,0),( ±±=kkf , as 

     ∑
∞

−∞=

−=
k

kjj ekfeF ωω )()(           (7.83) 

where .2 fπ=ω  Making the change of variable fjez π2= , (7.82) becomes 
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         ∑
∞

−∞=

−=
k

kzkfzF )()(            (7.84) 

Note that the trajectory of ωjez =  is the unit circle on the Z-plane. )( ωjeF  is 
periodic with period π2 , and hence the spectrum is usually plotted for 

]π,π[ω −∈ or [ ]2/1,2/1−∈f . Taking the Z-transform of (7.82), we obtain 

      )()()( zSzHzS yysy =            (7.85) 

or 

           
)(
)(

)(
zS
zS

zH
yy

sy=            (7.86) 

The resulting mean-square error is 

∑
∞

−∞=
−−=

k
ysssm kRkhRe )()()0(           (7.87) 

7.4.2 Realizable Filter 
 
In this case, the filter is causal, and the estimator is given by (7.79) to be 

     ∑
∞

=
−=

0
)()()(ˆ

k
knYkhnS            (7.88) 

Assuming a linear filter with an impulse response of finite duration, single 
input, and single output, the filter can conceptually be realized as shown in Figure 
7.7. 

Applying the orthogonality principle, we obtain the discrete version of the 
Wiener-Hopf equation given by 

∑
∞

=
−=

0
)()()(

k
yysy kmRkhmR           (7.89) 

where )(mRsy  and )( kmRyy − are as defined in (7.82b) and (7.82c), respectively. 

Let the spectral density )(zS yy  be 
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Figure 7.7  Realization of a digital filter. 

      ∑
∞

−∞=

−=
k

k
yyyy zkRzS )()(           (7.90) 

Following a similar procedure as in the continuous case, we first factor )(zS yy  
into 

        )()()( zSzSzS yyyyyy
−+=           (7.91) 

such that the poles and zeros of )(zS yy  inside the circle 1<z  are assigned to 

)(zS yy
+ , whereas the poles and zeros in the region 1>z  are assigned to )(zS yy

− . 

Consequently, )(zS yy
+  is analytic inside the unit circle, and )(zS yy

−  is analytic in 

1>z . Dividing (7.91) by )(zS yy
− , and applying partial fraction expansion, we 

obtain  
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where +⋅][ denotes poles and zeros inside 1<z , and −⋅][ denotes poles and zeros 

in 1>z . Let  

)(nY 

)0(h 

1−Z 1−Z 1−Z

 ∑   

)1( +− MnY )( MnY −)2( −nY)1( −nY 

)1(h 
)1( −Mh )(Mh

)(ˆ nS 
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The optimum causal filter is 

         

+

−+−

+












==

)(

)(

)(
1

)(
)()(

zS

zS

zSzS
zBzH

yy

sy

yyyy

          (7.94) 

We see that the optimum discrete realizable filter is a cascade of two filters as 
shown in Figure 7.8. The mean-square error is 

∑
∞

=
−=

0
)()()0(

k
syssm kRkhRe           (7.95) 

Example 7.8 
 
Consider the problem where the received sequence is )()()( nNnSnY += . The 
signal sequence )(nS  is stationary and zero mean with power spectrum 

ω−
=ω

cos45
2)( j

ss eS  

The noise sequence )(nN  is independent of the signal sequence )(nS , and has 

power spectrum 1)( =ωj
nn eS . 

(a) Obtain the realizable filter. 
(b) Find the unrealizable filter. 

 
Solution 
 
(a) Since the signal and noise sequences are independent, then 

)()( ωω = j
ss

j
sy eSeS  

 

 
Figure 7.8  Wiener filter. 
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Making the change of variables ωjez = , we have 1)( =zSnn  
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Dividing )(zS sy  by )(zS yy
− , we obtain 
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where ).5.0/(186.0)( −=+ zzB  Using (7.94), the optimum realizable filter is  
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or 

K,2,1,0,)314.0(186.0)( == nnh n  

(b)  The optimum unrealizable filter is given by (7.86) to be  
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sy  

Note that the pole at 186.3=z  outside the unit circle makes this filter unstable, 
and thus unrealizable in real time. 
 
The method described above in solving the Wiener-Hopf equation is called 
spectral factorization. Another approach to obtain the Wiener filter is based on the  
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Figure 7.9  Canonical form of a Wiener filter. 

least-square principle discussed in the previous chapter. We minimize the error 
)(ne  between the actual output and the desired output, as shown in Figure 7.9. 

 
Mean-Square Method 
 
Consider the linear transversal filter with 1−M  delays as shown in Figure 7.10. 
Note that the tap weights )1(,),1(),0( −Mhhh K  of Figure 7.7 are now denoted 

∗
−

∗∗ ωωω 110 ,,, MK , respectively. Since in many practical situations such as 
communications, radar, and sonar, the information carrying signal may be 
complex, we assume the general case that the time series 

)1(,),1(),( +−− MnYnYnY K  is complex valued. Following the approach 
developed by Haykin [1], the filter output is then given by the convolution sum 

∑
−

=

∗ −=
1

0
)(ω)(ˆ

M

k
k knYnS                                     (7.96) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 7.10  Transversal filter. 
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Since the estimation error is  

)(ˆ)()( nSnSne −=                                           (7.97) 

the goal is to minimize the cost function  

[ ])()()( neneE ∗=ωC                                       (7.98) 

which yields the optimum linear filter in the mean-square sense. Let the weight 
vector ω be 

T
M ][ 121 −ωωω= Kω                               (7.99) 

and the input vector )(nY  be 

TMnYnYnYn )]()1()([)( −−= KY                   (7.100) 

Then, in matrix form, 

)()(ˆ nnS H Yω=∗                                       (7.101) 

where H denotes the Hermitian transpose and 

ω)()(ˆ nnS HY=∗                                       (7.102) 

Substituting (7.101) and (7.102) into (7.98), the cost function becomes 

[ ][ ]{ }ωωω )(Y)()(Y)()( nnSnnSE HH −−= ∗C  

      [ ] [ ] [ ] [ ]ωωωω )(Y)()()()()()()( nnEnnSEnSnEnSnSE HHHH YYY +−−= ∗∗  

      (7.103) 

Assuming S(n) has zero mean and variance ,2
sσ  then 

[ ])()(ˆ2 nSnSEs
∗=σ                                  (7.104) 
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The cross-correlation vector between the input sequence and the desired signal is 

)}()]1()1()({[)]()([ nSMnYnYnYEnSnE ∗∗ +−−== KYRYS  
        )]1()1()0([ −= Mrrr ysysys K                                               (7.105) 

where )( ⋅ysr  is the cross-correlation between )( ⋅y  and )( ⋅S . The 
autocorrelation matrix of the input sequence is given by 

     [ ])()(R YY nnE HYY=  





















+−+−

−−
−

=

)0()2()1(

)2()0()1(
)1()1()0(

yyyyyy

yyyyyy

yyyyyy

rMrMr

Mrrr
Mrrr

K

MMMM

K

K

             (7.106) 

Note again that we use the lowercase letter r to represent the correlation elements 
of a matrix or a vector and the subscript capital to denote matrix. 

After substitution of (7.104), (7.105), and (7.106) in (7.103), the cost function 
can be written as 

ωωωωω YYYY RRR H
s

HH
ss +−−= 2σ)(C                        (7.107) 

The cost function is a second-order function of a weight vector, ω and thus the 
dependence of the cost function on the weights 110 ,,, −ωωω MK , can be visualized 
as a bowl-shaped surface with a unique minimum. This surface is referred to as the 
error performance surface of the filter. The minimum-mean-square error values 
for which the filter operates at the minimum point of the error performance surface 
yields the optimum weight vector 0ω . Hence, we need to take the derivative of 
(7.107) with respect to the vector ω. Before giving the optimum weight vector, we 
need to show the differentiation with respect to a vector. 
 
Differentiation with Respect to a Vector 
 
Let g be a scalar-value function of a 1×K vector ω with elements  

     Kkjba kkk ,,2,1, K=+=ω          (7.108) 

The derivative of g with respect to the vector ω is defined as 
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
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
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
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∂
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∂
∂
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∂
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∂
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=

KK b
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a
g

b
gj

a
g

b
g

j
a
g

d
dg

M

22

11

ω
         (7.109) 

Example 7.9 

 
This example has been reprinted from [1] with permission by Pearson Education. 
Given the scalar g, a 1×K  vector c, and a KK ×  matrix Q, determine the 
derivative ω∂∂ /g  for  

(a) ωHg c=  

(b) cHg ω=  

(c) ωω QHg = . 
 
Solution 
 
(a) ωHg c=  can be written in expanded form as 

∑ ∑
= =

∗∗ +==
K

k

K

k
kkkkk jbaccg

1 1
)(ω  

Taking the derivative with respect to kk ba and , respectively, we have  

Kkc
a
g

k
k

,,2,1, K==
∂
∂ ∗  

and 

Kkjc
b
g

k
k

,,2,1, K==
∂
∂ ∗  

Substituting in (7.109), we obtain  
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0ω
ω

=
∂
∂ )( Hg c          (7.110) 

(b) Similarly, cHg ω=  can be written as 

∑ ∑
= =

∗ −==
K

k

K

k
kkkkk jbaccg

1 1
)(ω  

Hence, 

Kkc
a
g

k
k

,,2,1, K==
∂
∂  

Kkjc
b
g

k
k

,,2,1, K=−=
∂
∂  

After substitution, we have 

        cc 2)( == H

d
d ω
ω

         (7.111) 

(c) In this case ωω QHg = . Let ωHQc =1  be a constant; then .1 Qc HH ω=  
Therefore,  

0ω
ωω

== )( 1c
d
d

d
dg

 

11 2)( cc == H

d
d

d
dg ω

ωω
 

Summing both results, we obtain 

ωωω
ωω

QQ 2)( == H

d
d

d
dg

        (7.112) 

Now, taking the derivative of the cost function given in (7.103) with respect to ω, 
and using (7.110), (7.111), and (7.112), we obtain 
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0=+−=
∂

∂
ω

ω
ω

YYY RR 22
)(

s
C

        (7.113) 

or 

sYYY RR =ω          (7.114) 

Equation (7.114) is the Wiener-Hopf equation in the discrete form, and is called 
the normal equation. Solving (7.114), we obtain the optimum weight vector to be 

sYYY RR 1
0

−=ω          (7.115) 

Note that from the principle of orthogonality (i.e., the error is orthogonal to 
the data), we have 

[ ] 0=∗ )()( 0 nenE Y         (7.116) 

where )(0 ne∗  is the estimate error resulting from the use of the optimum filter and 
is given by 

    00 )()()( ωnnSne HY−= ∗∗         (7.117) 

It can be shown that  

[ ] 0)()(ˆ
0 =∗ nenSE         (7.118) 

which means that the estimate at the output of the optimum filter and the 
estimation error )(0 ne  are also orthogonal as shown in Figure 7.11. This is why 
the Wiener-Hopf equations in discrete form are also referred to as normal 
equations. 

 
 
 
 
 
Figure 7.11  Error orthogonal to filter output .Ŝ  
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The minimum mean-square error is given by  

        s
H
ss

H
ssme YYYYY RRRR 12

0
2 σσ −−=−= ω         (7.119) 

or 

  ∑
−

=

∗−=
1

0
0

2 )(ωσ
M

k
ysksm kre          (7.120) 

Assuming that the desired response )(nS and the input sequence )(nY have zero 
means, the minimum mean-square error is  

2
ˆ

2 σσ ssme −=          (7.121) 
 
 
7.5 KALMAN  FILTER 
 
In this section, we present the optimum Kalman filter. We consider the state model 
approach. In this case, filtering means estimating the state vector at the present 
time based upon past observed data. Prediction is estimating the state vector at a 
future time. Since it can be shown that the filtered estimate of the state vector is 
related to the one-step prediction of the state, we first develop the concept of 
prediction, and then derive the equations for the filtered state. 

We shall state the problem for the scalar case and then generalize it to the 
vector case. We follow this approach for all necessary steps in order to understand 
the resulting general equations. We assume the state model or signal model 

)()1()(Φ)( nWnSnnS +−=         (7.122) 

where )(nS  is a zero mean Gaussian sequence and )(Φ n  is a series of known 
constants. The additive random noise disturbance is also Gaussian and white with 
variance )(nQ  [or )(σ 2 nw ]. 

The observation )(nY  is modeled as 

    )()()()( nNnSnHnY +=         (7.123) 

where )(nH  is a measurement relating the state )(nS  to the observation )(nY , 

and )(nN  is a zero mean white Gaussian noise with variance )(nR  [or )(σ 2 nn ]. 
The corresponding state vector model is of the form  
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)()1()()( nnnn WSS +−=Φ         (7.124) 

where )(nS  is the 1×m  state vector, )(nΦ  is an mm×  known state transition 
matrix, and )(nW  is an 1×m  noise vector. We assume that the vector random 
sequence )(nS  is zero mean Gaussian, and the noise vector process )(nW  is also 
zero mean and white with autocorrelation 

       




≠
=

=
kn
knn

knE T

,0
),(

)]()([
Q

WW         (7.125) 

Let )(nY be the 1×p  observation vector consisting of a Gaussian random 
sequence. The observation can be modeled as 

   )()()()( nnnn NSHY +=         (7.126) 

where )(nH is a mp×  measurement matrix relating the state vector to the 
observation vector, and )(nN  is a known 1×p  measurement error. )(nN  is a 
Gaussian zero mean white noise sequence with autocorrelation  

         [ ]




≠
=

=
kn
knn

knE T

,0
),(R

)()( NN         (7.127) 

In order to obtain the Kalman filter state, )(ˆ nS , we first solve for )1(ˆ +nS , the 
one-step linear predictor, using the concept of innovations. 
 
7.5.1 Innovations 
 
In this section, we first present the concept of innovations for random variables 
and give some important properties. The results, which will then be generalized to 
random vectors, will be used to solve for Kalman filter. Let )(,),2(),1( nYYY K  be 
a sequence of zero mean Gaussian random variables. The innovation process )(nV  
represents the new information, which is not carried from the observed data 

)1(,),2(),1( −nYYY K , to obtain the predicted estimate )(ˆ nY  of the observed 

random variables. Specifically, let )1(ˆ −nS  be the linear minimum mean-square 
estimate of a random variable )1( −nS  based on the observation data 

)1(,),2(),1( −nYYY K . Suppose that we take an additional observation )(nY  and 

desire to obtain )(ˆ nS  the estimate of ).(nS  In order to avoid redoing the 
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computations from the beginning for )1(ˆ −nS , it is more efficient to use the 

previous estimate )1(ˆ −nS  based on the )1( −n  observation random variables 

)1(,),2(),1( −nYYY K , and compute )(ˆ nS  recursively based on the n random 
variables; )1(,),2(),1( −nYYY K  and the additional new observation variable 

)(nY . We define 

KK ,2,1)],1(,),2(),1(|[ˆ)()( =−−= nnYYYnYnYnV        (7.128) 

where )(nV  denotes the innovation process and )]1(,),2(),1(|[ˆ −nYYYnY K  is 
the estimate of )(nY  based on the )1( −n  observations, )1(,),2(),1( −nYYY K . 
We see form (7.128) that because )(nV  represents a new information measure in 
the observation variable )(nY , it is referred to as “innovation.” 

The innovation )(nV  has several important properties as follows.  
 
1. The innovation )(nV  associated with the observation )(nY  is orthogonal to 
the past variables, )1(,),2(),1( −nYYY K ; that is,  

      1,,2,1,0)]()([ −== nkkYnVE K         (7.129) 

This is simply the principle of orthogonality. 
 
2. The innovations nkkV ,,2,1,)( K= , are orthogonal to each other; that is, 

  [ ] nkkVnVE ≠= ,0)()(         (7.130) 

3. There is a one-to-one correspondence between the observed data 
)}(,),2(),1({ nYYY K  and innovations )}(,),2(),1({ nVVV K , in the sense that one 

sequence may be obtained from the other without any loss of information. That is, 

{ })(,),2(),1( nYYY K ↔ { })(,),2(),1( nVVV L        (7.131) 

Using property (3), )(ˆ nS  is the minimum mean-square estimate of )(nS  based on 

the observations )(,),2(),1( nYYY K . Equivalently, )(ˆ nS  is the minimum mean-
square estimate of )(nS  given the innovations ).(,),2(),1( nVVV K  Hence, 

defining the estimate )(ˆ nS  as a linear combination of the innovations 
),(,),2(),1( nVVV K  we have  
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        ∑
=

=
n

k
k kVbnS

1
)()(ˆ        (7.132a) 

                )()(
1

1
nVbkVb n

n

k
k += ∑

−

=
      (7.132b) 

Using property (2) and the fact that bk is chosen so that the minimum mean-square 
value of the error )(ˆ)( nSnS −  is minimized, we obtain 

           [ ]
[ ]

nk
kVE

kVnSEbk ,,2,1,
)(

)()(
2

K==         (7.133) 

Recognizing that the estimate ∑
−

=
=−

1

1
)()1(ˆ

n

k
k kVbnS , we observe that the estimate 

)(ˆ nS  based on the n observations, )(,),2(),1( nYYY K , is related to the estimate 

)1(ˆ −nS  based on the )1( −n  observations, )1(,),2(),1( −nYYY K , by the 
following recursive rule 

)()1(ˆ)(ˆ nVbnSnS n+−=          (7.134) 

where the constant bn is given by 

          [ ]
[ ])(

)()(
2 nVE

nVnSEbn =          (7.135) 

Generalizing the results given in (7.128), (7.129), and (7.130) to random vectors, 
we obtain 

KK ,2,1)],1(,),2(),1(|[ˆ)()( =−−= nnnnn YYYYYV        (7.136) 

      [ ] 1,,2,1,)()( −== nkknE T K0YV         (7.137) 

and 

[ ] nkknE T ≠= ,)()( 0VV         (7.138) 



Signal Detection and Estimation 440

7.5.2 Prediction and Filtering  
 
The optimum linear mean-square error one-step predictor based on the Gaussian 
assumptions is given by 

      [ ])(,),2(),1(|)1()1(ˆ nYYYnSEnS K+=+        (7.139) 

The goal is to write )1(ˆ +nS  in a recursive form. Since there is a one-to-one 
correspondence between the set of observation vectors and the set representing the 
innovations [property (3)], then 

   [ ])(,),2(),1(|)1()1(ˆ nVVVnSEnS K+=+        (7.140) 

)1(ˆ +nS  is also a linear combination of the innovations, and thus  

∑
=

=+
n

k
k kVanS

1
)()1(ˆ         (7.141) 

where ak is a constant to be determined. Since the error is orthogonal to the 
observations (innovations), we have 

[ ] nkkVnSnSE ,,2,1,0)()1(ˆ)1( K==








+−+        (7.142) 

Substituting (7.141) in (7.142), we obtain 

[ ]
[ ])(

)()1(
2 kVE

a
kVnSE k=+         (7.143) 

or 

     
[ ]
[ ])(

)()1(

2 kVE

kVnSE
ak

+
=          (7.144) 

Substituting for the value of ka  in (7.141) and using the state model 
)()()1(Φ)1( nWnSnnS ++=+ , we obtain 



Filtering 441 

          [ ]{ }
[ ]∑

=

+++
=+

n

k
kV

kVE

kVnWnSnEnS
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kVE
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)()1()(
)(

)()()1(Φ    (7.145) 

Note that the second term of (7.145) is zero because )1( +nW  is zero mean and 
statistically independent of )(kS  and )(kN , and thus independent of )(kY  and 

)(kV , since )(kV  is a linear combination of the observations 
nkkY ,,2,1,)( K= . Hence, (7.145) becomes 
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n

k
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kVE

kVnSEnnS
1 2
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)()()1()1(ˆ Φ        (7.146a) 

[ ]
[ ]

[ ]
[ ]



















++= ∑
−

=
)(

)(

)()()(
)(

)()()1(
2

1

1 2
nV

nVE

nVnSEkV
kVE

kVnSEn
n

k
Φ   (7.146b) 

Using (7.132a) and (7.133), (7.146b) becomes 

        )]()(ˆ)[1(Φ)1(ˆ nVbnSnnS n++=+         (7.147) 

Note that using properties (1) and (3), we observe that 

        [ ] )(ˆ)(,),2(),1(|)( nSnVVVnYE =K         (7.148) 

where )(ˆ nS  is the linear minimum MSE estimator of )(nS , and thus 

          )(ˆ)()( nSnYnV −=          (7.149) 

Defining  

)1(Φ
)()(
+

=
n

ndnk          (7.150) 
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and using (7.149) and (7.150) in (7.146), after some mathematical manipulation, 
we obtain 

[ ])()()(ˆ)1()1(ˆ nVnknSnnS ++=+ Φ       (7.151a) 

             [ ]{ })()()(ˆ)(1)1( nYnknSnkn +−+=Φ      (7.151b) 

Equation (7.151) indicates that the optimum prediction is a linear combination of 
the previous best estimator )(ˆ nS  and the innovation )(ˆ)()( nSnYnV −=  of )(nY . 

We now need to determine )(nk , which is unknown. To do so, we use the 
estimation error  

         )(ˆ)()(~ nSnSnS −=          (7.152) 

and define 

           [ ])(~)( 2 nSEnP =          (7.153) 

Substituting (7.152) in (7.153), and then using (7.149), (7.122), and the 
orthogonality principle, after some back-and-forth substitutions we obtain 

[ ]{ } )1()()()()(1)1()1( 222 +++++=+ nQnRnknPnknnP Φ        (7.154) 

That is, )1( +nP  is the error at stage 1+n  using all previous observations until 
stage n.  Minimizing (7.154) with respect to )(nk , we obtain 

         
)()(

)()(
nRnP

nPnk
+

=          (7.155) 

which is referred to as Kalman filter gain. Again, by back substitutions, it can be 
shown that  [2] 

)1()()](1)[1(Φ)1( 2 ++−+=+ nQnPnknnP         (7.156) 

In summary, to start the algorithm at 1=n , we need the observation )1(Y , 

and to assume some initial values for )1(P  and )1(Ŝ . The usual practical 

assumptions are 0)1(ˆ =S , )1(σ)1( 2
wP =  [ )1(σ)1( 2

nP = ]. We first calculate )(nk  
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using (7.155). Then, we revise )(ˆ nS  based on the innovation (new information) 
due to the measurement )(nY , so that we can project to the next stage using 

)1(Φ +n . Then we apply (7.156). 
We can now generalize the above concepts to the vector Kalman filter by 

giving the main results only. The optimum linear mean-square error one-step 
predictor is 

     [ ])(,),2(),1(|)1()1(ˆ nnEn YYYSS K+=+        (7.157) 

Using (7.136), and the fact that there is a one-to-one correspondence between the 
set of the observation vectors and the set representing the innovations process, we 
can write that 

    ∑
=

=+
n

k
kknn

1
)(),()1(ˆ VAS         (7.158) 

where ),( knA  is an pm×  matrix to be determined. 
In accordance with the orthogonality principle, we have, 

             [ ]{ } nknnnE ,,2,1)()1(ˆ)1( K==+−+ 0VSS        (7.159) 

Substituting (7.158) in (7.159) and simplifying, we obtain  

[ ] [ ] )(),()()(),()()1( llllll VVCAVVAVS nEnnE TT ==+        (7.160) 

where )(lVVC  is the correlation matrix of the innovations process. Solving for 
),( lnA  and substituting in (7.159), the predictor state becomes  

[ ]∑
∞

=

−+=+
1

1 )()()()1()1(ˆ
k

T kkknEn VCVSS VV        (7.161) 

Upgrading (7.124) to )1( +n  and substituting into (7.161), we have 

[ ] [ ] nkknEnknE TT ,,2,1,0,)()()1()()1( K=+=+ VSVS Φ      (7.162) 

where we have used the fact that  
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        [ ] 0=)()( nkE TWY          (7.163) 

and the fact that the innovations depend on the observation vectors. Substituting 
(7.162) into (7.161), and after some manipulations, the predictor state becomes 

            )()()(ˆ)1()1(ˆ nnnnn VKSS ++=+ Φ         (7.164) 

where )(nK  is an pm ×  matrix called the predictor gain matrix, and defined as 

        [ ] )()()(S)1()( 1 nnnEnn T −+= VVCVK Φ        (7.165) 

Equations (7.164) and (7.165) can be simplified further for computational 
purposes. If we define 

          )(ˆ)()(~ nnn SSS −=          (7.166) 

and 

       [ ])(~)(~)( nnEn TSSP =         (7.167) 

where )(~ nS  is called the predicted state-error vector and )(nP  is the predicted 
state-error correlation matrix, then it can be shown that  [3] 

      )()()()1()( 1 nnnnn T −+= VVCHPK Φ         (7.168) 

It can also be shown that )(nP  can be updated recursively as 

[ ] [ ]Tnnnnnnnn )()()1()()()()1()1( HKPHKP −+−+=+ ΦΦ  

     )()()()( nnnn TKRKQ ++          (7.169) 

and that the filter state is  

       )()()1(ˆ)()(ˆ nnnnn VVCKSS +−=Φ         (7.170) 
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where )(nK  is an mm×  matrix called the filter gain matrix, and is given by 

       )()()( nnn PK Φ=          (7.171) 

Equation (7.169) can be decomposed into a pair of coupled equations to constitute 
the Ricatti difference equations. 
 
Relationship Between Kalman and Wiener Filters 
 
The Kalman filter can also be derived for continuous time. If all signal processes 
considered are stationary, the measurement noise is white and uncorrelated with 
the signal, and the observation interval is semi-infinite, then the Kalman filter 
reduces to the Wiener filter. That is, both Kalman and Wiener filters lead to the 
same result in estimating a stationary process. 

In discrete time, the Kalman filter, which is an optimum recursive filter based 
on the concept of innovations, has the ability to consider nonstationary processes; 
whereas the Wiener filter, which is an optimum nonrecursive filter, does not. 
 
 
7.6 SUMMARY 
 
In this chapter, we have covered the concept of filtering. We first presented the 
orthogonality principle theorem, the definition of linear transformations, and 
related theorems. Realizable and unrealizable Wiener filters for continuous-time 
were presented in Section 7.4. To obtain the linear mean-square error realizable 
filter, we needed to solve the Wiener-Hopf integral equation. An approach called 
spectral factorization using Laplace transform to solve the Wiener-Hopf equation 
was shown. Then, we extended the concept of the Wiener filter to discrete-time. 
For a realizable discrete Wiener filter, we considered a transversal filter with an 
impulse response of finite duration. We used the “mean-square approach” and 
solved for the optimum weights. We concluded this chapter with a section about 
Kalman filtering. Since vector Kalman filter development can be “heavy,” we gave 
more details for the scalar case only.  
 
 

PROBLEMS 
 
7.1 Let the observation process be ).()()( tNtStY +=  The signal process )(tS  

and the zero mean white noise process )(tN  are uncorrelated with power 
spectral densities 

2
)(and

2
2)( 0

222

N
fS

f
fS nnss =

π+α

α
=  
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(a) Obtain the optimum unrealizable linear filter for estimating the delayed 
signal ).( 0ttS −  

(b) Compute the minimum mean-square error. 
 
7.2 Let the observation process be )()()( tNtStY += . The signal process )(tS  

and the zero mean noise process )(tN  are uncorrelated with autocorrelations 
τ−=τ 5.0)( eRss  and )()( τδ=τnnR . 

(a) Find the optimum unrealizable filter. 
(b) Obtain the optimum realizable filter. 
(c) Compute the minimum mean-square error for both filters and compare 

the results. 
 
7.3 Let the observation process be )()()( 1 tNtStY += .The signal process )(tS  

and the zero mean noise process )(1 tN  are uncorrelated. The autocorrelation 

function of )(1 tN  is τ−=τ eR nn )(
11

. Assume that the signal )(tS  is given by 

the expression )()()(' 2 tNtStS =+  for t positive. )(' tS  denotes the derivative 
of )(tS  with respect to t. )(2 tN  is a white Gaussian noise with power 
spectral density 2. Determine the Wiener filter if the processes )(1 tN  and 

)(2 tN  are independent. 
 
7.4 Let the observation process be )()()( tNtStY += , for ξ≤<−∞ t . The signal 

process )(tS and the noise process )(tN are uncorrelated with power spectral 
densities 

2
1)(and

41
1)(

2
=

π+
= fS

f
fS nnss  

Obtain the optimum linear filter to estimate )(' tS ; )(' tS is the derivative of 
the signal )(tS  with respect to t. 

 
7.5 Let the observation process be )()()( tNtStY += . The signal process )(tS  

and the zero mean noise process )(tN  are uncorrelated with autocorrelation 
functions 

τ−τ−
=τ=τ eReR nnss 6

7)(and
3
5)( 2

1
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Obtain the optimum linear filter to estimate .0,)( >+ ααtS  
 
7.6 Let )()()( nNnSnY +=  be the received sequence. The signal sequence )(nS  

and the noise sequence )(nN  are zero mean and independent with 
autocorrelation functions 





≠
=

=
−

=
0,0
0,1

)(and
)4/1(1

2/1)(
n
n

nRnR nn

n

ss  

(a) Obtain the optimum realizable filter. 
(b) Compute the mean-square error. 

 
7.7 Let )()()( nNnSnY +=  represent the received sequence. The signal sequence 

)(nS  and the noise sequence )(nN  are zero mean and independent with 
autocorrelation functions 





≠
=

==
0,0
0,1

)(and
2

1)(
n
n

nRnR nnnss  

(a) Obtain the optimum realizable filter. 
(b) Compute the mean-square error. 

 
7.8 Consider the Wiener filter consisting of a transversal filter with two delays, as 

shown in Figure P7.8, with 1ω0 = , correlations matrix 







=

1.15.0
5.01.1

YYR  

 
 
 
 
 
 
 
 
 
 
 

Figure P7.8  Wiener filter. 

)(nY 
1−Z 1−Z

 ∑   

)2( −nY)1( −nY

2
ω

1
ω

0
ω 

 ∑   S(n) 
)(ne

+
)(ˆ nS 
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and 







−

=
4458.0

5272.0
SYR  

(a) Determine the optimum weights. 
(b) Determine the minimum mean-square error me if the signal variance is 

0.9486. 
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Chapter 8 
 
 

Representation of Signals  
 
 
8.1 INTRODUCTION 
 
In this chapter, we study some mathematical principles that will be very useful to 
us in order to understand the next two chapters. First, we define the meaning of 
orthogonal functions, which are used to represent deterministic signals in a series 
expansion known as the generalized Fourier series. We use the Gram-Schmidt 
procedure to transform a set of M linear dependent or independent functions into a 
set of K, MK ≤ , orthogonal functions. We also discuss geometric representation 
of signals in the signal space, which can be used to determine decision regions in 
M-ary detection of signals in noise, as be will be seen later. Then, integral 
equations are studied. The relation between integral equations and their 
corresponding linear differential equations are established through Green’s 
function or the kernel. In solving integral equations, we present an approach by 
which we obtain the eigenfunctions and eigenvalues from the linear differential 
equation. In Section 8.4, we discuss the series representation of random processes 
by orthogonal functions known as Karhunen-Loève expansion. Specifically, we 
consider processes with rational power spectral densities, the Wiener process, and 
the white Gaussian noise process. 
 
 
8.2 ORTHOGONAL FUNCTIONS 
 
From vector analysis, we say that two vectors X and Y are orthogonal 
(perpendicular) if their dot or inner product is zero. That is, 

0=⋅YX              (8.1) 

Let X and Y be two vectors in ℜK, such that T
Kxxx ][ 21 K=X and 

.][ 21
T

Kyyy K=Y  Then 
 
 

449 
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KK yxyxyx +++=⋅ K2211YX             (8.2) 

The distance ),( yxd between the points x and y is given by  

       22
22

2
11 )()()(),( KK xyxyxyyxd −++−+−= K            (8.3) 

The length or norm of the vector X, denoted X , is defined by 

         22
2

2
1 Kxxx +++=⋅= KXXX             (8.4) 

If the length 1=X , we say that X is a normalized vector. Geometrically, (8.1) 

says that the angle θ between the vectors X and Y is .90o  For an arbitrary angle θ 
between the two vectors X and Y, θ is defined by 

YX
YX ⋅

=θcos              (8.5) 

We now generalize the above concepts to continuous functions of time. Let 
{ } K,2,1,)( =ktsk , be a set of deterministic functions with finite energies defined 
over the interval ],0[ Tt∈ . Let kE  denote the energy of )(tsk . Then, 

        ∫ ∞<=
T

kk dttsE
   

0

2)(             (8.6) 

The norm of )(tsk , K,2,1=k , can be written as 

     
2
1

0

2 )()(











= ∫

T

kk dttsts              (8.7) 

Geometrically, (8.7) represents the square root of the area under the curve )(2 tsk .  
The “distance” between the two signals )(tsk  and )(ts j  is 

      
2
1

0

2)]()([)()(












−=− ∫
T

jkjk dttstststs             (8.8) 
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We say that the set of functions (signals), { } K,2,1,)( =ktsk , are orthogonal when 

 jkdttsts
T

jk ≠=∫ ,0)()(
0

             (8.9) 

A set of functions { } K,2,1,)( =φ ktk , are orthonormal if  





≠
=

=δ=φφ∫ jk
jk

dttt kj

T

jk if0
if1

)()(
0

          (8.10) 

where kjδ is the Kronecker’s delta function. Note that the set of functions 

{ } K,2,1,)( =φ ktk , is normalized. 
 
8.2.1 Generalized Fourier Series 
 
Let )(ts  be a deterministic signal with finite energy E and observed over the 
interval ],0[ Tt∈ . Given an orthonormal set of functions { } K,2,1,)( =φ ktk , for 
the specified time ],0[ Tt∈ , it may be possible to represent the signal )(ts  as a 
linear combination of functions K,2,1),( =φ ktk , as 

KK +φ++φ+φ= )()()()( 2211 tstststs kk ∑
∞

=
φ=

1
)(

k
kk ts          (8.11) 

Assuming the series of (8.11) converges to )(ts , then  

 ∫ φ=
T

kk dtttss
0

)()(            (8.12) 

where we have used the fact that ∫ δ=φφ
T

kjjk dttt
0

)()( . In this case, the 

coefficients K,2,1, =ksk , are called the generalized Fourier coefficients. The 
series in (8.11) with the coefficients as given by (8.12) is called the generalized 
Fourier series. 

If there exists a set of orthonormal functions { } ,,,2,1,)( Kktk K=φ  such that 
the signal )(ts  may be expressed as 
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         ∑
=

φ=
K

k
kk tsts

1
)()(            (8.13) 

where sk is as given by (8.12), then the set of orthonormal functions 
{ } ,,,2,1,)( Kktk K=φ  is said to be complete. 

Consider the finite sum )(tsK , such that 

      ∑
=

φ=
K

k
kkK tsts

1
)()(            (8.14) 

where )(tsK  is an approximation to the signal )(ts  observed over the interval 
],0[ Tt∈ . In general, it is practical to only use a finite number of terms K. The 

goal is to select the coefficients ks  such that the mean-square error is minimum. 
We define the error )(ε tK  as 

        )()()(ε tstst KK −=            (8.15) 

and its corresponding energy as 

            ∫ ε=ε

T

KK dttE
0

2 )(            (8.16) 

The mean-square error is 

     ∫ ε=>< ε

T

KK dtt
T

tE
0

22 )(1)(           (8.17) 

where >⋅<  denotes time average. We observe from (8.16) and (8.17) that 
minimizing the mean-square error is equivalent to minimizing the energy. Hence, 

∫ ∑ 







φ−=

=
ε

T K

k
kkK dttstsE

0

2

1
)()(           (8.18) 

Differentiating (8.18) with respect to ks , we obtain  
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dtttsts
ds

dE
j

T K

k
kk

k

K )()()(2
0 1

φ







φ−−= ∫ ∑

=

ε ∑ ∫∫
=

φφ+φ−=
K

k

T

jkk

T

j dtttsdttts
1 00

)()(2)()(2

                (8.19) 

Setting (8.19) equal to zero and using (8.10), the coefficients of ks  are given by 

           ∫ φ=
T

kk dtttss
0

)()(            (8.20) 

Note that the second derivative 2/ 22 =ε kk dsEd  is positive, and thus the 
coefficients Kksk ,,2,1, K= , minimize the energy or the mean-square error. The 
set { })(tkφ  forms a complete orthonormal set in the interval ].,0[ T  That is, 

0])()([lim 2

0
=−∫∞→

dttsts
T

KK
          (8.21) 

or 

       )()(.m.i.l tstsK
K

=
∞→

           (8.22) 

Equation (8.22) is read as the limit in the mean of )(tsK  as ∞→K  equals )(ts , 
or )(tsK  converges in the mean to )(ts  as ∞→K . Substituting the result of 
(8.20) in (8.18) and solving for ,KEε  we obtain  

         ∫ ∑ ∑
= =

ε −=−=
T K

k

K

k
kkK sEsdttsE

0 1 1

222 )(           (8.23) 

We observe that KEε  is minimum when the set of orthonormal signals { }kφ  is 
complete. That is, 

       ∫ ∑
∞

=
ε ==

T

k
kK sdttsE

0 1

22 )(           (8.24) 

2
ks  may be interpreted as the energy of the signal in the kth component. Equation 

(8.24) is referred to as Parseval’s identity for orthonormal series of functions. The 
set of orthonormal functions  { })(tkφ   over the interval  ],0[ T   can be obtained by  
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Figure 8.1  Correlation operation for generating the set of coefficients { }.ks  

using the Gram-Schmidt orthogonalization procedure, which will be given in 
Section 8.2.2. The coefficients ,,,2,1, Kksk K=  may be determined by a 
correlation operation as shown in Figure 8.1. An equivalent operation is filtering. 
The signal )(ts  is passed through a set of linear filters, matched filters, with 
impulse response )()( τ−φ=τ Th kk , and the outputs of the matched filters are 
then observed at time Tt = . This is shown in Figure 8.2. Due to the importance of 
matched filters, we will study them in some detail in Chapter 10. 

Let the output of the kth channel be ).(Tyk  The output of the kth filter is  

∫∫ ττ+−φτ=ττ−τ=
T

k

T

kk dtTsdthsty
00

)()()()()(          (8.25) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2  Filtering operation for generating the set of coefficients { }.ks  

t=T

)( tTK −φ 

s(t)

)(1 tT −φ 

)(2 tT −φ 

 s1 

 sK 

 s2 

∫
T

0
 

 s(t) 

 s1 

)(1 tφ  

∫
T

0
  s2 

)(2 tφ  

 

 

 

 

 

 

 
 

)(tKφ  

∫
T

0
  sK 
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Sampling )(tyk  at time Tt = , we obtain 

         k

T

k

T

kk sdsdTTsty =ττφτ=ττ+−φτ= ∫∫
00

)()()()()(          (8.26) 

8.2.2 Gram-Schmidt Orthogonalization Procedure 
 
Given a set of M signals ,,,2,1),( Mktsk K=  we would like to represent these 
signals as a linear combination of K orthonormal basis functions, .MK ≤  The 
signals )(,),(),( 21 tststs MK  are real-valued, and each is of duration T. From 
(8.13), we may represent these energy signals in the form 

        
Mm
Kk

Tt
tsts

K

j
jkjm

,,2,1
,,2,1

0
)()(

1 K

K

=
=

≤≤
φ= ∑

=
         (8.27) 

where the coefficients ,,,2,1, Kjskj K=  of the signal )(tsk  are defined by 

     ∫ =φ=
T

jkkj Kjkdtttss
0

,,2,1,)()( K           (8.28) 

The orthonormal functions ,,,2,1),( Kjtj K=φ  are as defined in (8.10). That is, 

.)()(
0

kjj

T

k dttt δ=φφ∫  The orthogonalization procedure is as follows. 

 
1. Normalize the first signal )(1 ts  to obtain ).(1 tφ  That is, 

1

1

0

2
1

1
1

)(

)(
E
s

dtts

s
t

T
==φ

∫

          (8.29) 

where 1E  is the energy of ).(1 ts  Thus, 

)()()( 111111 tstEts φ=φ=           (8.30) 

where the coefficient .111 Es =  
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2. Using the signal )(2 ts , we compute the projection of )(1 tφ  onto )(2 ts , 
which is 

         ∫ φ=
T

dtttss
0

1221 )()(            (8.31) 

We then subtract )(121 ts φ  from )(2 ts  to yield 

)()()( 12122 tststf φ−=            (8.32) 

which is orthogonal to )(1 tφ  over the interval .0 Tt ≤≤  )(2 tφ  is obtained by 
normalizing );(2 tf  that is, 

      
2
212

1212

0

2
2

2
2

)()(

)(

)(
)(

sE

tsts

dttf

tf
t

T −

φ−
==φ

∫

          (8.33) 

where 2E  is the energy of the signal ).(2 ts  Note that from (8.33), ∫ =φ
T

dtt
0

2
2 1)(  

and .0)()(
0

12∫ =φφ
T

dttt  That is, )(1 tφ  and )(2 tφ  are orthonormal. 

 
3. Continuing in this manner, we can determine all K  )( MK ≤  orthonormal 
functions to be 

      

∫

=φ
T

k

k
k

dttf

tf
t

0

2 )(

)(
)(            (8.34) 

where 

∑
−

=
φ−=

1

1
)()(

k

j
jkjkk tsstf            (8.35) 

and the coefficients ,1,,2,1, −= kjskj K  are defined by 
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   ∫ φ=
T

jkkj dtttss
0

)()(            (8.36) 

If all M signals )(,),(),( 21 tststs MK  are independent, (i.e., no signal is a linear 
combination of the other), then the dimensionality K of the signal space is equal to 
M. 
 
Modified Gram-Schmidt 
 
The proposed Gram-Schmidt procedure defined in (8.34), (8.35), and (8.36) is 
referred to as the classical Gram-Schmidt (CGS) procedure. The concept of 
subtracting away the components in the direction of )(,),(),( 121 ttt k−φφφ K  is 
sometimes numerically unstable. A slight modification in the algorithm makes it 
stable and efficient. This modification yields the modified Gram-Schmidt (MGS) 
procedure. For simplicity, we show only the first two steps. We compute the 
projection of )(tsk  onto ).(,),(),( 121 ttt k−φφφ K  We start with )(11 tsk φ  and 

subtract it immediately. That is, we are left with a new function )(1 tsk , such that 

)()()()( 11
1 ttststs kkk φ−=            (8.37) 

where 1ks is as defined in (8.36). Then, we project )(1 tsk  instead of the original 
signal )(tsk  onto )(2 tφ  and subtract that projection. That is, 

)()()()( 221
12 ttststs kk φ−=           (8.38) 

where 

     ∫ φ=
T

k dtttss
0

2
11

21 )()(            (8.39) 

and the power 2 on )(tsk  denotes a superscript. Observe that this is identical in 
principle to the classical Gram-Schmidt procedure, which projects )(tsk  onto both 

)(1 tφ  and )(2 tφ  to yield ).(tf k  Substituting (8.37) and (8.39) into (8.38), we 
obtain 

[ ] [ ]{ })()()()()()()( 211211
2 ttststtststs kkkkk φφ−φ−φ−=  

  )()()()( 2211 tftststs kkkk =φ−φ−=           (8.40) 
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since .0)()(
0

21∫ =φφ
T

dttt  

 
8.2.3 Geometric Representation 
 
In order to have a geometric interpretation of the signals, we write the M signals 
by their corresponding vectors of coefficients. That is, the M signal vectors are 

[ ] Mksss T
kKkkk ,,2,121 KK ==s          (8.41) 

The vectors ,,,2,1, Mksk K=  may be visualized as M points in a K-dimensional 
Euclidean space. The K mutually perpendicular axes are labeled 

).(,),(),( 21 ttt Kφφφ K  This K-dimensional Euclidean space is referred to as the 
signal space. 

Using (8.4), we say that the inner product of the vector ks  with itself, which 
is the norm of ,ks  is 

∑
=

==
K

j
kjkkk s

1

22 ),( sss            (8.42) 

Since the K orthonormal functions form a complete set, (8.42) also represents the 
energy of signal )(tsk  as shown in the previous section. Thus, 

∑
=

=
K

j
kjk sE

1

2            (8.43) 

From (8.3), (8.41), and (8.43), the Euclidean distance between the points 
represented by the signal vectors ks  and js  can be written as 

∑ ∫
=

−=−=−
K

i

T

jkjikijk dttstsss
1 0

2222
)]()([)(ss          (8.44) 

The correlation coefficient between the signals )(tsk  and )(ts j  is defined by 

     
jk

j
T
k

jk

K

i
jiki

jk

T K

i
iji

K

i
iki

jk

T

jk

kj
EE

ss

EE

dtss

EE

dttsts
s

ss

ss
==









φ








φ

==
∑∫ ∑∑∫
=== 10 110

)()(
      (8.45) 
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where ks  is given in (8.41), and js  is 

[ ]T
jKjjj sss K21=s           (8.46) 

Example 8.1 
 
Consider the signals )(and),(),(),( 4321 tstststs  as shown in Figure 8.3. Use the 
Gram-Schmidt procedure to determine the orthonormal basis functions for 

4,3,2,1),( =ktsk . 
 
Solution 
 
From (8.29), the first function )(1 tφ  is 








≤≤==φ

otherwise,0
3

0,3)(

1

1
1

Tt
T

E
ts

 

where 3/)1(
3/

0

2
1 TdtE

T
== ∫ . To find )(2 tφ , we first use (8.31) to determine 21s ; 

that is, 3/)()(
0

1221 Tdtttss
T

=φ= ∫ . From (8.32), )(2 tf  is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.3  Set of signals )}({ tsk . 

s1(t) s2(t)

s3(t) s4(t)
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



 ≤≤

=φ−=
otherwise,0

3
2

3
,1

)()()( 12122

TtT
tststf  

Normalizing )(2 tf , we have  








≤≤==φ

∫ otherwise,0
3

2
3

,3

)(

)(
)(

0

2
2

2
2

TtT
T

dttf

tf
t

T
 

We use (8.35) and (8.36) to find the coefficients 3231 and ss ; that is, 

∫ =φ=
T

dtttss
0

1331 0)()(  and ∫ =φ=
T

dtttss
0

2332 0)()( . Thus, ),()( 33 tstf =  and the 

normalized signal )(3 tφ is  








≤≤==φ

otherwise,0
3

2,3)(
)(

3

3
3

TtT
T

E

ts
t  

We observe that )()()( 324 tststs −= is a linear combination of ).(and)( 32 tsts  
The complete set of orthonormal functions is )(and),(),( 321 ttt φφφ ; that is, the 
dimensionality is .3=K  The basis functions are shown in Figure 8.4.  
 
Example 8.2 
 

(a) Find a set of orthonormal basis functions that can be used to represent the 
signals shown in Figure 8.5. 

 
 
 
 
 
 
  
Figure 8.4  Orthonormal basis functions )}({ tkφ . 

)(1 tφ  )(2 tφ  )(3 tφ  
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3
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   t 
T T T 
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Figure 8.5  Signal set for Example 8.2. 

(b) Find the vector corresponding to each signal for the orthonormal basis set 
found in (a), and sketch the location of each signal in the signal space. 

 
Solution 
 
(a) In this example, we are not going to do a formal mathematical derivation as we 
did in the previous one, but instead we solve it by inspection. We see that the 
given waveforms can be decomposed into two basis functions ),(and)( 21 tt φφ  as 
shown in Figure 8.6. 

Since )(and)( 21 tt φφ must have unit energy, we have ∫ ==
1

0

2 1)( dtAtE  or 

3=A . 
 
(b) The signal vectors are  









=

3
1,

3
1

1s ,  






 −
=

3
1,

3
1

2s ,  






 −
=

3
1,

3
1

3s ,  and  






 −−
=

3
1,

3
1

4s  

Thus, the signal space is as shown in Figure 8.7. 

 

 
 
 
 
 
Figure 8.6  Basis functions for Example 8.2 
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Figure 8.7  Signal space for Example 8.2. 

Example 8.3 
 
Consider the three possible functions 

Tt
k

T
tkEtk ≤≤

=
=

0
3,2,1

,2cos)( πφ  

(a) Does φk constitute an orthonormal set? 
(b) What geometric figure does the vector sk , ,3,2,1=k  form in the signal 

space? 
 
Solution 
 
(a) To check for orthogonality, 

jk

T
jkt

jk
T

T
jkt

jk
TE

dt
T

jkt
dt

T
jktE

dt
T

tj
T

tkEdttt

TT

TT

T T

jkjk

≠=




















 +π
+π

+






 +π
−π

=











 +π
+

−π
=

ππ
=φφ=φφ

∫∫

∫ ∫

for,0

)(2sin
)(2

)(2sin
)(22

)(2
cos

)(2
cos

2

2
cos2cos)()(),(

00

2

00

2

0 0

2

 

1φ  

1S  

2S  

3S  

4S  

3
1  

3
1

−  

3
1  

2φ  

3
1

−  
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Figure 8.8  Signal space for Example 8.3. 

If jk = , we have .2/)/2cos(),( 2

0

2 TEdtTtkE
T

kk =π=φφ ∫  Hence, φ constitutes 

an orthonormal set. 
 
(b)  The signal vectors for the set of signals )}({ tsk  are 

]001[1 =s ,  ]010[2 =s ,  ]100[3 =s ,  and  ]111[4 =s  

as shown in Figure 8.8. 
 
8.2.4 Fourier Series  
 
If the signal is periodic with period 0T , such that  

          K,2,1),()( 0 ±±=+= kkTtsts           (8.47) 

it can be represented by an infinite set of orthonormal functions made of sines and 
cosines. This is the most common representation of a signal by a set of 
orthonormal functions and is known as the Fourier series. The trigonometric form 
of the series is 

∑∑
∞

=

∞

=
ω+ω+=

1
0

1
00 sincos)(

k
k

k
k tkbtkaats           (8.48) 

where 00 2/2 fT π=π=ω , 00 /1 Tf = , and ,0a  ,ka  and kb  are the Fourier 
coefficients given by 

1φ

2φ

1S

2S

3S

4S

3φ 

2

2
2
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        ∫=
0

)(1

0
0 T

dtts
T

a            (8.49) 

∫=
0

0
0

ωcos)(2
Tk dttkts

T
a           (8.50) 

and 

∫=
0

0
0

ωsin)(2
Tk dttkts

T
b           (8.51) 

∫ ⋅
0

)(
T

dt  denotes integration over any period. 

Let the normalized set of functions of sines and cosines and a constant term be 

        K,2,1,,sin2,cos2,1
0

0
0

00

=












ωω jktj
T

tk
TT

         (8.52) 

From (8.11) and (8.12), the generalized Fourier series of (8.52) corresponding to 
the signal )(ts  with respect to the orthonormal set is  

∑ ∫∫
∞

= 




ωω+=

1
0

00
0

00 00

cos2)(cos21)(1)(
00

k

TT

tdtk
T

tstk
T

dt
T

ts
T

ts  






ωω+ ∫ tdtk

T
tstk

T

T

0
00

0
0

sin2)(sin2 0

         (8.53) 

Hence, the generalized Fourier series (8.53) is the series (8.48), and the 
generalized Fourier coefficients ks  of (8.12) are the coefficients (8.49), (8.50), and 
(8.51). This correspondence can be rewritten as 

∑ ∫∫
∞

= 




ωω+=

1
0

0
0

000
cos)(cos2)(1)(

00

k

TT

dttktstk
T

dtts
T

ts  






ωω+ ∫ tdtktstk

T

0
0

0 sin)(sin
0

         (8.54) 
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which confirms that the Fourier series, which consists of sines and cosines as the 
orthonormal set of functions, represents a periodic signal with period 0T  for all t. 
Note also that the constant term 0a  in the series is the average value of )(ts  over 
the period 0T . 

Since the Fourier series is well known, we give only a brief discussion. 
Another useful form of the Fourier series is the exponential or complex form, 
which is given by 

              ∑
∞

−∞=
=

k

tjk
k ects 0ω)(           (8.55) 

where 

∫ == −

0

0 ,2,1,)(1 ω

0
T

tjk
k kdtets

T
c K          (8.56) 

kc  is the complex number, which is written in polar form as  

nj
kk ecc θ=            (8.57) 

K,2,1,0, ±±=kck , is the amplitude spectrum of )(ts . When )(ts  is a real 
signal, 

            keccc kkk
θ−∗

− ==           (8.58) 

and  

 kk cc =−            (8.59) 

That is, the amplitude spectrum of real signals is even. The phase spectrum is the 
set of numbers of K,2,1,0, ±±=θ kk . For )(ts  real, 

kk θθ =−            (8.60) 

and thus the phase spectrum is odd. The relationship between the trigonometric 
and complex form depends on the different ways we write the trigonometric 
Fourier series. If 
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∑
∞

=
++=

1
00 )θωcos()(

k
kk tkAAts         (8.61a) 

then 

        00 cA = ,  kk cA 2=          (8.61b) 

If  

∑∑
∞

=

∞

=
++=

1
0

1
00 ωcosωcos)(

k
k

k
k tkbtkaats           (8.62) 

then 

00 ca = ,  { }kk cea ℜ= 2 , { }kk cmb ℑ−= 2           (8.63) 

where { }⋅ℜe  and { }⋅ℑm  denote the real part and imaginary part, respectively. 
Note that 

      







−= −

k

k
k a

b1tanθ            (8.64) 

All three forms of the Fourier series are then equivalent. 
 
 
8.3 LINEAR DIFFERENTIAL OPERATORS AND INTEGRAL 

EQUATIONS 
 
In the representation of signals, we frequently encounter integral equations, as will 
be seen in upcoming sections and chapters. In this section, we give the 
mathematical foundations for their solutions by using their inverse: the linear 
differential equations. We establish the relationship and the approach to solve 
them through the use of the kernel (Green’s function), and the use of 
eigenfunctions and eigenvalues. A brief analogy to matrix operation also will be 
given. 

From spectral analysis of differential systems, let f be a function in the space 
),0(2 TC of twice continuously differentiable functions in the interval ],0[ T . Then 

''f−  will be in the space of continuous functions ),0( TC  [or ),0(0 TC ]. Consider 
the following linear differential equation 
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φ=− ''f          (8.65a) 

with boundary conditions  

21 )(,)0( α=α= Tff          (8.65b) 

The ordinary solution to differential equations will be to solve the equation 
φ=− ''f  while ignoring the boundary conditions. Then, we apply the boundary 

conditions to eliminate the arbitrary constants in the solution. However, if we 
consider the operator 2D−  as being restricted throughout the entire solution 
process to act only on functions that satisfy the boundary conditions, then the 
computed constants in the solution of the differential equation are not arbitrary 
anymore. Rather, they are unknown specific functions of the boundary values 

21 αandα . We define the differential operator in modeling systems as 
22 ),0(),0(: ℜ×→ TT CCT , where 2ℜ is the set of a couple of real numbers such 

as 

  fT ≜ )](),0(,''[ Tfff−           (8.66) 

and where ≜ denotes definition.  The system of equations in (8.65) can be written 
as 

),,( 21 ααφ=fT            (8.67) 

The goal is to find an explicit expression for the inverse operator 1−T , such that 

)2,1,(1 ααφ−= Tf . To do so, we decompose the differential system (8.65) into 

two functions, one function df  involving the distributed input, and the other 
function bf  involving only the boundary conditions. Hence, we have 

        0)()0(with'' === Tfff ddd φ           (8.68) 

and 

       21
'' )(,)0(with0 αα === Tfff bbb          (8.69) 

The superposition of the solutions of (8.68) and (8.69) yields a unique solution f to 
(8.65). For the purpose of performing inverse operations, we define the modified 
differential operator fb dd TT by),0(: Cv → ≜ fD2−  for all f in v, where v is 
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the subspace of functions in ),0(2 bC  satisfying the homogeneous boundary 
conditions 0)()0( == Tff . Then, 

φ=dd fT            (8.70) 

includes the boundary conditions in the definition of the operator. Similarly, the 
differential system (8.69) can be expressed in terms of the modified operator 

22: ℜ→PbT  by fbT ≜ )](),0([ Tff for all f in 2P , where 2P is the space of 
functions of the form 21)( ctctf += . Note that 0)('' =tf  ⇒  1)(' ctf =  ⇒  

21)( ctctf += . Hence, (8.69) can be expressed in terms of the operator bT  as a 
two-dimensional equation including the differential equation and the boundary 
conditions to yield 

)α,α( 21=bb fT             (8.71) 

Hence, the solution of (8.65) is  

           ),,()( 21
1

21
11 ααφ=αα+φ=+= −−− TTT bdbd fff          (8.72) 

Since dT  is a differential operator, its inverse 1−
dT  is then an integrator, and df  is 

given by  

∫ ≤≤φ=φ= −
T

dd Ttudtttukttf
0

1 ,0,)(),())(()( T          (8.73) 

The kernel function ),( tuk  is also referred to as Green’s function for the 
differential system (8.65). Note that )(tf d  must satisfy the differential system 
(8.68). Hence, substituting (8.73) in (8.68) yields  

         )()(
),(

)(),()(
0 0

2

2

2

2
'' tduu

dt
tukd

duutuk
dt
dtf

T T

d φ=φ−=φ=−=− ∫ ∫      (8.74) 

with  

∫ =φ=
T

d duuukf
0

0)(),0()0(         (8.75a) 

and  
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∫ =φ=
T

d duuuTkTf
0

0)(),()(         (8.75b) 

(8.74) and (8.75) are satisfied for all φ  continuous if and only if  

0),(),0(),(
),(

2

2
==−δ=− uTkukut

dt
tukd

         (8.76) 

We can do the same operations to obtain the solution of (8.69) to be  

221121
1 ),( ρα+ρα=αα= −

bbf T           (8.77) 

where 21 ρandρ  are functions in 2P , known as the boundary kernel for the 
differential system (8.65). It can be shown that 

0=)(ρ)(ρ=)( ''
22

''
11

'' tttfb αα           (8.78) 

with 

12211 α)0(ρα)0(ρα)0( =+=bf         (8.79a) 

and  

22211 α)(ρα)(ρα)( =+= TTTfb         (8.79b) 

for all 21 αandα , and thus, the boundary kernel )(ρ t must obey  

     0=)(ρ,1=)0(ρ,0=)(ρ 11
''

1 Tt         (8.80a) 

and 

     1=)(ρ,0=)0(ρ,0=)(ρ 22
''
2 Tt         (8.80b) 

Having 11 and −−
bd TT , we combine the two inverses to obtain the complete 

solution of )(tφ  to be 

   ∫ ρα+ρα+φ=φ
T

ttduutukt
0

2211 )()()(),()(           (8.81) 
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8.3.1 Green’s Function 
 
Green’s function of a differential system is also known as the kernel function. 
Green’s function associated with (8.65) for ],0[ Tt∈  must satisfy the differential 
equation and the boundary conditions, and thus it must satisfy 

        
0),1(),0(

,0
,)(

),(
2

2

==
<<

−δ=−
tkuk

Ttu
ut

dt
tukd

         (8.82) 

as was shown following the procedure developed by Dorny [1]. We now show how 
we solve (8.82) in Figure 8.9. Integrating (8.82) and permitting the value of 1c  to 
depend upon the point u at which the unit impulse is applied, we have 

          




<<+
<<

=−
Ttuuc
utuc

dt
tudk

,1)(
0,)(),(

1

1           (8.83) 

which is shown in Figure 8.10. The integration of dttudk /),(−  yields a continuity 
of ),( tuk−  at u, such that  





≤≤−+++
≤≤+

=−
Ttuutucucuuc
utuctuc

tuk
),](1)([)()(

0,)()(
),(

121

21          (8.84) 

and is shown in Figure 8.11. Thus, the function ),( tuk  exists and is unique. It is 
explicitly given by 

          










≤<
−

<≤
−

=
Ttu

T
tTu

ut
T

uTt

tuk
,

)(

0,)(

),(           (8.85) 

 
 
 
 
 
 
 
Figure 8.9  Graph representing (8.82).                               Figure 8.10  Graph representing (8.83). 
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Figure 8.11  Graph representing (8.84).                             Figure 8.12  Green’s function. 

and is shown in Figure 8.12. If 1=T , then ),( tuk  reduces to 

        




≤<−
<≤−

=
1),1(

0),1(
),(

tutu
utut

tuk            (8.86) 

Similarly, solving for the boundary kernel )(ρ t  associated with (8.65), we 
obtain 

T
tTt −

=)(ρ1 , 
T
tt =ρ )(2            (8.87) 

Substituting (8.85) and (8.87) in (8.81), we obtain the complete solution of )(tφ to 
be 

∫ ρα+ρα+φ=φ
T

ttduutukt
0

2211 )()()(),()(  

       
T
t

T
tTduu

T
tuT

duu
T

utT T

t

T

21
0

)(
)(

)(
)(

α+
−

α+φ
−

+φ
−

= ∫∫          (8.88) 

In general, Green’s function cannot be determined by direct integration 
techniques when the system is not as simple as the second order we just treated. A 
different approach would be to use the eigenfunction expansion, which is to be 
developed in the next section on integral equations. 
 
8.3.2 Integral Equations 
 
Consider the nonhomogeneous linear equation defined over the interval ],0[ Tt∈  
and given by 

 T 
 u 

 0 

 c2 +(c1+1)T-
 c2 

 c1u+c2 

),( tuk−

 t 

 T  u 
 t 

 0 

),( tuk

T
uuT )( −  
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     β=φα=φ=+
φ

)(,)0(,0)(
)(

2

2
Ttf

dt
td

          (8.89) 

The forcing function, )(tf , and the boundary values, )(and)0( Tφφ , are known. 
The general solution to (8.89) is of the form 

β+α−+=φ ∫ )1()(),()(
0

tduuftukt
T

          (8.90) 

where the kernel ),( tuk  is Green’s function. Note that in comparing (8.90) with 
(8.89), we observe that 

T
21 αα

α
−

=            (8.91) 

and 

     1αβ =            (8.92) 

If the boundary values are zero, 0)()0( =φ=φ T , then (8.90) becomes 

          ∫=φ
T

duuftukt
0

)(),()(            (8.93) 

An integral equation is an equation having the form 

    Tttftduutuk
T

≤≤=λφ−φ∫ 0),()()(),(
0

          (8.94) 

Given the kernel ),( tuk , the nonhomogeneous term )(tf , and the eigenvalue λ, 
we would like to determine the unknown function )(tφ , and study its dependence 
on the function )(tf  and the eigenvalue λ. 

The integral equation in (8.94) is known as the Fredholm equation of the 
second kind when 0λ ≠ , and as the Fredholm equation of the first kind when 

0λ = . When the function )(tf  is zero, we have the eigenvalue problem 

∫ ≤≤λφ=φ
T

Tttduutuk
0

0),()(),(           (8.95) 
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For simplicity and without loss of generality, if 1=T , then the nonhomogeneous 
linear differential equation becomes 

          
0)1()0(

10
,0)(

)(
2

2

=φ=φ
<<

=+
φ t

tf
dt

td           (8.96) 

Using eigenfunction expansion, the associated eigenproblem is given by 

     
0)1()0(

10
,0)(

)(
2

2

=φ=φ
<<

=λφ+
φ t

t
dt

td            (8.97) 

The nontrivial solutions ]0)([ ≠φ t  to the boundary value problem of (8.97) are 
called eigenfunctions. The corresponding values of λ  are known as eigenvalues. 
Before developing the solution, we first give some important properties of integral 
equations that will be used in solving the eigenproblem. 
 
Properties 
 
1. There exists at least one square integrable function )(tφ  corresponding to a 
definite eigenvalue )0( ≠λλ that satisfies (8.95). 
 
2. If the eigenfunction )(tkφ  is a solution, then )(tc kφ , with c a constant, is also 
a solution. This means that we can normalize the eigenfunction. 
 
3. An eigenvalue may be associated with more than one independent 
eigenfunction. 
 
4. If )(and)( 21 tt φφ  are two eigenfunctions corresponding to the same 
eigenvalue λ , then )(and)( 2211 tctc φφ , where 21 and cc  are constants, are also 
eigenfunctions corresponding to the same eigenvalue λ . 
 
5. Let jk λλ and  be any two distinct eigenvalues with corresponding 

eigenfunctions )(and)( tt jk φφ . Then, )(and)( tt jk φφ  are orthogonal. Since 

)(and)( tt jk φφ  are the eigenfunctions corresponding to jk λλ and )( jk λ≠λ , 
then 

∫ φ=φλ
T

kkk duuutkt
0

)(),()(           (8.98) 
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and 

∫ φ=φλ
T

jjj duuutkt
0

)(),()(           (8.99) 

It follows that  

∫ ∫ ∫











φ

λ
φ=φφ

T T T

j
j

kjk dtdututktdttt
0 0 0

)(),(1)()()(        (8.100) 

Interchanging the integrations and noting that ),(),( tukutk = , we have 












φφ

λ
=φφ ∫∫∫ dttuktduudttt

T

k

T

j
j

j

T

k ),()()(1)()(
000

       (8.101) 

From the definition of the integral equation, the integral in brackets is )(tkkφλ . 
Hence, 

         ∫∫ φφ
λ
λ

=φφ
T

jk
j

k
j

T

k duuudttt
00

)()()()(       (8.102a) 

or 

0)()()(
0

=φφλ−λ ∫
T

jkjk dttt       (8.102b) 

Since jk λ≠λ , then 0)()(
0

=φφ∫
T

jk dttt , and we conclude that the eigenfunctions 

)(and)( tt jk φφ  are orthogonal. 
 
6. Because the kernel ),( utk is nonnegative-definite, it can be expressed in the 
Fourier series expansion to yield  

     ∑
∞

=
≤≤φφλ=

1
,0)()(),(

k
jkk Tututtuk         (8.103) 

This is known as Mercer’s formula. 
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Now, solving (8.97) and imposing the boundary conditions, we obtain the 
nontrivial solutions 

K,2,1,sin)( =π=φ ktktk         (8.104) 

corresponding to the eigenvalues 

     K,2,1,22 =π=λ kkk         (8.105) 

The eigenfunctions corresponding to different eigenvalues are orthogonal; that is, 

∫ ≠=ππ
1

0

for0)sin()sin( jkdttjtk         (8.106) 

Note that (8.97) is a problem of the type of (8.96), with the forcing function 
)(=)( ttf λφ . Since the “solution” of (8.96) is given by (8.93), it becomes  

           ∫ <<φλ=φ
1

0

10,)(),()( tduutukt         (8.107) 

The function )(tφ  appears in both sides of (8.107); that is, we really have not 
solved for )(tφ , but we have shown that the nonhomogeneous linear equation 
(8.97) is equivalent to the integral equation (8.95). The boundary conditions are 
incorporated in the integral equation through its Green’s function, known as kernel 

),( tuk . Hence, we write 

       ∫ <<φλ=φ
1

0

10,)(),()( tduutukt         (8.108) 

Example 8.4 
 
Consider a differential system of the form 

10),()(
)(

≤≤=φ+
φ

ttft
dt

td
 

  α=φ=φ )1()0(  

Determine the kernel ),( tuk . 
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Solution 
 
A solution to the homogeneous equation 

0=)(+
)(

t
dt

td
φ

φ
 

is t
h cet −=φ )( . We guess a solution for ),( tuk  to be 







≤≤

≤≤
=

−

−

1,

0,
),(

2

1

tuec

utec
tuk

t

t

 

In this case, the kernel satisfies )(/),( utdttudk −δ= , and hence at ut =  we have 

121 =+− −− uu ecec . From the boundary conditions, we have 01
21 =+ −ecc . 

Solving for 21 and cc , we obtain 

121

1

1
1

and
1 −

−

−

−

+
=

+
=

e
ec

e
ec

uu
 

Consequently, the kernel is 











≤≤
+

≤≤
+

−
=

−

−

−

−−−

1,
1

0,
1),(

1

1

1

tu
e

e

ut
e

e

tuk
tu

tu

 

 
Example 8.5 
 
Consider the homogeneous eigenvalue problem .0=λφ−φK  Let the associated 
eigenproblem be given by the following homogeneous differential equation  

0)1()0('
10

0)(
)(

2

2

=φ=φ
<<

=λφ+
φ t

t
dt

td  

(a) Determine the kernel and write the corresponding integral equation. 
(b) Find the eigenvalues and eigenfunctions. 
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Solution 
 
(a)  Let )(tφ ′′  denote 22 /)( dttd φ , and )(' tφ  denote dttd /)(φ . Integrating the 
differential equation with respect to t, we have 

∫ =φλ+φ−φ
t

duut
0

0)()0(')('  

Integrating again results in  

∫ =φ−λ+φ−φ−φ
t

duuuttt
0

0)()()0(')0()(  

Applying the boundary conditions, 0=)0('φ  yields 

∫ =φ−λ+φ−φ
t

duuutt
0

0)()()0()(  

To determine )0(φ  in the above equation, we apply the boundary condition 
0=)1(φ  at 1=t ; that is, 

∫ =φ−λ+φ−φ
1

0

0)()1()0()1( duuu   or  ∫ φ−λ=φ
1

0

)()1()0( duuu  

Substituting for )0(φ  into )(tφ , we have  

∫∫∫

∫∫

φ−λ−











φ−+φ−λ=

φ−λ−φ−λ=φ

t

t

t

t

duuutduuuduuu

duuutduuut

0

1

0

0

1

0

)()()()1()()1(

)()()()1()(

 

 ∫∫∫ φλ=φ−λ+φ−λ=
1

0

1

00

)(),()()1()()1( duutukduuuduuu
t

 

where the kernel ),( tuk  is  



Signal Detection and Estimation 478





≤≤−
≤≤−

=
1,1

0,1
),(

utu
utt

tuk  

(b) From the homogeneous differential equation 0=)('+)('' tt λφφ , we have the 
general solution 

tBtAt λλφ sin+cos=)(  

The derivative of )(tφ is  

tBtAt λλ+λλ−=φ cossin)('  

Applying the boundary condition, 0)(' =φ t  ⇒  0)0(' =λ−=φ B . Since 0≠λ  
⇒  0=B , then tAt λφ cos=)( . 

Applying the other boundary condition, φ 0)1( =  yields 

K,2,1,
2

)12(0cos)1( =
π

−=λ⇒=λ=φ kkA  

Hence, the eigenvalues are 

K,2,1,
4
)12( 22

=
π−

=λ kk
k  

and the corresponding eigenfunctions are 

10,
2

)12cos()( ≤≤
π

−=φ ttkAt  

but ∫ =φ
1

0

2 1)( dtt  ⇒  2=A . Therefore, the nonzero eigenvalues and the 

corresponding normalized eigenfunctions are 

4
)12( 22 π−

=λ
k

k   and  
K,2,1

10
,

2
)12cos(2)(

=
≤≤π

−=φ
k

t
tktk  
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8.3.3 Matrix Analogy 
 
A differential equation with an appropriate set of boundary conditions is analogous 
to a square matrix equation. In order to remove any abstractness from the 
differential operators and their inverses, we explore this analogy by considering a 
simple example. Let A be a 22×  square matrix, and yx and  two column vectors, 
such that yAx =  









=

















2

1

2

1

2221

1211

y
y

x
x

aa
aa

 

and yAx 1−=  
















 −
=









2

1

1121

1222

2

1

)det(
1

y
y

aa
aa

x
x

  A
 

21122211)det( aaaa −=A . The element of x can be expressed as 

)(
)det(

1
2121221 yayax −=

A
 and )(

)det(
1

2111212 yayax +=
A

 

In general form, for an nn×  matrix, we have 

∑
=

− ==
n

j
jiji niyx

1

1 ,,2,1,)( KA         (8.109) 

We observe that the inverse matrix is analogous to the integral equation (inverse 
differential equation). The symbol ( )ij1−A  represents the elements in row i and 

column j of the nn×  matrix 1−A , as clearly shown by the example of the 22×  
matrix. Hence, the form (8.109) (of yAx 1−= ) is the discrete analog for the 

integral equation ∫ φ=φ
T

d duutukt
0

)(),()(  of (8.73). The kernel ),( tuk  is the 

analogue of the inverse matrix 1−A . If we compare (8.103) to (8.81), the analogy 
is not very clear, because the true analog of 1−A  is the pair of kernel functions 

),( tuk  and )(ρ t . 



Signal Detection and Estimation 480

Based on the above discussion, to determine the eigenvalues for which the 
integral equation of (8.95) has no trivial solution, we must solve the eigenvalue 
problem 

0Φ =− )λ( IK          (8.110) 

where K is a symmetric nonnegative definite matrix representing the 
transformation operator. 

In summary, from Section 4.3, if an operator T is invertible and xTx λ= , then 
xxT )/1(1 λ=− . That is, the eigenvectors of 1and −TT  are identical and 

correspond to the reciprocal eigenvalues. We have seen that a differential system T 
is invertible if and only if the trivial solution 0λ =  is not an eigenvalue of T, and 
thus the kernel of T does not exist. Invertible differential equations come in pairs, 
the integral equation and the inverse. Hence, we use the integral form to obtain any 
information about the eigenfunctions and the solutions of equations. However, 
integral equations are difficult to solve. We thus return to the differential form and 
standard differential equation techniques to determine the eigenfunctions, as we 
have shown in Example 8.5. 
 
 
8.4 REPRESENTATION OF RANDOM PROCESSES 
 
In Section 8.2, we represented deterministic finite energy signals in terms of an 
orthogonal series expansion. We now extend this concept to random processes. 

Let )(tX  be a random process to be represented by a complete set of 
orthonormal functions )}({ tkφ  specified over the interval [0,T]. That is, we write  

∑
=∞→

φ=
K

k
kkk

tXtX
1

)(lim)(          (8.111) 

where the random variable kX  is given by 

      ∫ φ=
T

kk dtttXX
0

)()(          (8.112) 

The above ordinary limit is not practical, since it requires that all sample functions 
of the random process satisfy (8.111), which is not possible. Instead, we use a little 
more relaxed type of the convergence, which is the mean-square convergence. 
That is, we require 



Representation of Signals 481 

           0)()(lim
2

1
=





















φ−∑

=∞→

K

k
kkK

tXtXE         (8.113) 

Equivalently, we say 

∑
=∞→

φ=
K

k
kkK

tXtX
1

)(lim)(          (8.114) 

Since it is generally easier to solve problems in which the random variables 
are uncorrelated, we would select the set )}({ tkφ , such that the coefficients 

,,,2,1, KkX k K=  are uncorrelated provided that 

        kjkjk XXE δλ=][          (8.115) 

Substituting (8.112) into (8.115), we obtain  












φφ= ∫∫

T

j

T

kjk duuuXdtttXEXXE
00

)()()()(][  

    kjk

T

jxx

T

k duuutKdtt δλ=φφ= ∫∫
00

)(),()(        (8.116) 

where )]()([),( uXtXEutK xx =  is the autocovariance function of )(tX . Equation 
(8.116) is satisfied if 

∫ φλ=φ
T

jjjxx tduuutK
0

)()(),(         (8.117) 

Equation (8.117) is the homogenous linear integral equation as defined in the 
previous section, and the autocovariance function represents the kernel. The kernel 

),( utK xx  can always be expanded in the series  

TutututK k
k

kkxx ≤≤φφλ= ∑
∞

=
,0),()(),(

1
        (8.118) 

where the convergence is uniform for Tut ≤≤ ,0 . This is Mercer’s theorem. 
To compute the discussion on the properties of the integral equations given in 

the previous section, we add the following properties. 



Signal Detection and Estimation 482

1. If ),( utK xx  is positive-definite, the eigenfunctions form a complete 
orthonormal set. If ),( utK xx  is not positive-definite, the eigenfunctions cannot 
form a complete orthonormal set. In such a situation, the eigenfunctions are 
augmented with additional orthonormal functions to complete the rest. These 
additional functions are referred to as eigenfunctions with zero eigenvalues. 
 
2. The mean energy of the random process )(tX  in the interval ),0( T  is the 
infinite sum of the eigenvalues; that is, 

∑∫∫
∞

=
λ==













100

2 ),()(
k

k

T

xx

T
dtttKdttXE         (8.119) 

We have 












φφ=












∫ ∑∑∫

∞

=

∞

=

T

j k
kjkj

T
dtttXXEdttXE

0 1 10

2 )()()(  

         ∑∑∑ ∫
∞

=

∞

=

∞

=
=φφ=

1

2

1 1 0

][)()(][
k

k
j k

T

kjkj XEdtttXXE        (8.120) 

Assuming )(tX is zero mean, we can use (8.115), and thus (8.120) reduces to 

        ∑∫∫
∞

=
λ==













100

2 ),()(
k

k

T

xx

T
dtttKdttXE         (8.121) 

Karhunen-Loève Expansion 
 
The series expansion of )(tX  

         ∑
=

φ=
K

k
kk tXtX

1
)()(          (8.122) 

is known as the Karhunen-Loève expansion. We now show the mean-square 
convergence for this series representation. We define the error )(ε tK  as 

       




















φ−=ε ∑

=

2

1
)()()(

K

k
kkK tXtXEt         (8.123) 
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Expanding )(ε tK , we have 

)()()()(2)(

)()()()(2)()(

1 0

1 11

2

tduuuXtXEtK

ttXXtXtXtXEt

k

K

k

T

kxx

K

j

K

k
kjkj

K

k
kkK

φ























φ−=












φφ+φ−=ε

∑ ∫

∑∑∑

=

= ==
 

∑∑
= =

φφ+
K

j

K

k
kjkj ttXXE

1 1
)()(][         (8.124) 

Using the fact that jkkkj XXE δλ=][  and )()(),(
0

tduuutK
T

kkkxx∫ φλ=φ , 

results in 

    ∑
=

φλ−=ε
K

k
kkxxK tttKt

1

2 )(),()(         (8.125) 

From Mercer’s theorem, we have  

∑
∞

=
φφλ=

1
)()(),(

k
kkkxx ututK         (8.126) 

or 

      ∑
∞

=
φλ=

1

2 )(),(
k

kkxx tttK         (8.127) 

Hence, 

0)(lim =ε
∞→

tKK
         (8.128) 

and the series converges in the mean-square sense. 
 
8.4.1 The Gaussian Process 
 
In Chapters 3 and 4, we presented the Gaussian random variable and Gaussian 
random process. The definition of the Gaussian process was deduced from the 
property of jointly Gaussian random variables. We now give a formal definition of 
the Gaussian process and some of the properties that follow from the definition, 
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while using the new concept of orthogonal functions and the Karhunen-Loève 
expansion that we have just developed in this chapter. 

Recall that K random variables KXXX ,,, 21 K  are jointly Gaussian, if 

∑
=

=
K

k
kkYgY

1
         (8.129) 

is a Gaussian random variable for all possible finite kg . If the number of the 

random variables K is infinite, then the mean-square value of Y, ][ 2YE , must be 
finite. 
 
Definition.  A random process )(tX defined over some interval ],[ fi TT with mean 

value function )(tmx  and covariance function ),( utK xx  is said to be Gaussian if 
and only if the random variable 

∫=
f

i

T

T

duuxugY )()(         (8.130) 

is Gaussian for all possible functions )(ug , such that .][ 2 ∞<YE  
 
Properties 
 
1.  For any set of times nttt ,,, 21 K  in the interval ],[ fi TT , the random variables 

)(,),(),( 21 ntXtXtX K  are jointly Gaussian random variables. 
 
Proof.   Let )(tX  be a Gaussian random process, and let  

          ∑
=

−δ=
n

k
kk tugug

1
)()(         (8.131) 

Then, from (8.127), the random variable 

    ∫ ∑ ∫ ∑
= =

=−δ==
f

i

f

i

T

T

n

k

T

T

n

k
kkkk txgdutuuxgduuxugY

1 1
)()()()()(        (8.132) 

is a Gaussian random variable for any set kg , and )( ktX  is a random variable 
corresponding  to  the  sampling  instants  nktk ,,2,1, K= .   Hence,   the   random 
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variables )(,),(),( 21 ntXtXtX K  are jointly Gaussian variables. 
 
2.  If )(tX  is a Gaussian random process applied to a linear system with impulse 
response ),( uth , then the output )(tY is also a Gaussian process. 
 
Proof.   The output )(tY  is given by 

          ∫ <<=
f

i

T

T

TtTduuxuthtY 21,)(),()(         (8.133) 

where the interval ],[ 21 TT  is the range over which )(tY  is defined. From (8.130), 
)(tY is a Gaussian random variable. The goal is to show that any linear function of 
)(tY  is Gaussian. Hence, let 

∫=
T

T
y dttytgZ

1

)()(         (8.134) 

where )(tg y  is any arbitrary function, such that ∞<][ 2ZE . Substituting (8.133) 
in (8.134), we obtain 

∫ ∫=
2

1

)(),()(
T

T

T

T
y

f

i

dudtuxuthtgZ         (8.135) 

Integrating first with respect to t, we have 

∫ ∫∫ =











=

f

i

f

i

fT

T

T

T

T

T
y duuguxdudtuthtguxZ )()(),()()(

1

       (8.136) 

since the integral between brackets is )(ug . Since )(tX  is a Gaussian random 
process in the interval ],[ fi TT , then Z is a Gaussian random variable for every 

choice of )(ug , and )(tY  is a Gaussian random process for every )(tg y . 
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3.  If  

          ∫=
f

i

T

T

duuxugY )()(11          (8.137) 

and 

          ∫=
f

i

T

T

duuxugY )()(22         (8.138) 

where )(uX  is a Gaussian random process, then 1Y  and 2Y  are jointly Gaussian. 
 
Proof.   Let Y be a linear combination of 1Y  and 2Y .  Then, 

          2211 YcYcY +=          (8.139) 

where 1c  and 2c  are constants. Substituting (8.137) and (8.138) in (8.139), we 
have  

∫ +=
f

i

T

T

duuxugcugcY )()]()([ 2211         (8.140) 

which is, from (8.129) and (8.130), a Gaussian random variable for all possible 1c  
and 2c . Thus, 1Y  and 2Y  are jointly Gaussian. 
 
4.  Let )(tjφ  and )(tkφ  be two orthonormalizing eigenfunctions in the interval 

],[ fi TTt∈  of 

∫ φ=φλ
f

i

T

T
jxxjj duuutKt )(),()(         (8.141) 

where ),( utK xx  is the kernel.  If  

           ∫ φ=
f

i

T

T
jj duuxuX )()(         (8.142) 
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and 

           ∫ φ=
f

i

T

T
kk duuxuX )()(         (8.143) 

then jX  and kjX k ≠, , are statistically independent Gaussian random variables. 
 
Proof.  From property (3), jX  and kX  are jointly Gaussian random variables. 

From (8.115), kjkkj XXE δλ=][ , which means that jX  and kX  are uncorrelated 
random variables. Since the random variables are Gaussian, they are also 
statistically independent. In this case, the density function kX  is given by 

    












λ
−

−
πλ

=
k

kk

k
kX

mx
xf

k 2
)(

exp
2

1)(
2

        (8.144) 

where kλ  is the corresponding eigenvalue and km  is the mean given by  

∫ φ==
f

i

T

T
kxkk dtttmXEm )()(][         (8.145) 

Observe that property (4) is the base of the characterization of a Gaussian random 
process into a Karhunen-Loève expansion; that is, in a series of countably infinite 
sets of the statistically independent Gaussian random variables, as was shown in 
the previous section. 
 
8.4.2 Rational Power Spectral Densities 
 
Let )(tX  be a zero mean wide-sense stationary process with a rational power 
spectrum density of the form 

        
)(
)(

)(
2

2

ω

ω
=ω

D
N

S xx          (8.146) 

where .2 fπ=ω  )(ωxxS  is an even function of ω, and forms a Fourier transform 
pair with autocorrelation function )(τxxR , which is equal to the autocovariance 
function, since .0)]([ =tXE  Thus,  
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)()]([)( 2 τ==τ xxxx KtXER         (8.147) 

and 

∫
∞

∞−

ωω
π

= dStXE xx )(
2
1)]([ 2         (8.148) 

Let )( 2ωN  be a polynomial of degree q  in 2ω , and )( 2ωD  be a polynomial of 

degree r  in 2ω , where rq < , since the mean-square value )]([ 2 tXE  is assumed 
finite. 

For a rational function of the form given in (8.146), the solution to the integral 
equation can always be obtained from the corresponding linear differential 
equation with constant coefficients. The integral equation is  

∫ ≤≤φ−=λφ
T

xx TtduuutKt
0

0,)()()(        (8.149) 

Since φ is zero outside the interval ],0[ T , (8.149) can be written as  

∫
∞

∞−

∞<<∞−φ−=λφ tduuutKt xx ,)()()(        (8.150) 

Taking the Fourier transform, we have  

)(Φ
)(
)(

)(Φ)()(Φ
2

2
ω

ω

ω
=ωω=ωλ j

D
N

jSj xx         (8.151) 

or 

     0)(Φ)]()([ 22 =ωω−ωλ jND         (8.152) 

Let ω= jp , then 22 ω−=p . Substituting in (8.152), we have 

0)(Φ)]()([ 22 =−−−λ pPNPD         (8.153) 

where p can be implemented as an operator, and thus (8.153) can be transformed 
into a homogeneous linear differential equation, such that p denotes dtd / . Since 
the polynomial in (8.153) is of degree ,2r  there are r2 homogeneous solutions 
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denoted as rkt
kh 2,,2,1,)( K=φ , for every eigenvalue λ. Once we obtain 

rkt
kh 2,,2,1,)( L=φ , we form 

          ∑
=

φ=φ
r

k
hk tct

k

2

1
)()(          (8.154) 

where ck is a constant, and then substitute into the original integral equation to 
determine λ and kc , as shown in Example 8.4. 
 
Example 8.6 
 
Let )(tX  be a zero mean wide-sense stationary process with power spectrum 
density 

ω
α+ω

ασ
=ω allfor2)(

22

2

xxS  

2and σα  are constants. 
(a) Obtain the differential equation. 
(b) Determine the eigenvalues λ. 

 
Solution 
 
(a) The autocorrelation function is given by τα−σ=τ eRxx

2)( . Observe that 
2)0( σ=xxR , which is the variance of )(tX , since it is zero mean. Assuming a 

symmetric observation interval, the integral equation is 

∫∫
−

−−

−

φσ=φ=λφ
T

T

ut
T

T
xx duueduuutKt )()(),()( 2  

since )()( τ=τ xxxx KR , where ut −=τ . The above expression can be rewritten as 

∫∫ φσ+φσ=λφ −α−

−

−α−
T

t

tu
t

T

ut duueduuet )()()( )(2)(2  

Differentiating with respect to t, we obtain  
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∫∫ φσα+φσα−=
φ

λ −α−

−

−α−
T

t

tu
t

T

ut duueduue
dt

td
)()(

)( )(2)(2  

Differentiating again results in 

)()(2)()(2

)()(2)(
)(

22222

)(222)(22
2

2

ttduuet

duuetduue
dt

td

T

T

ut

T

t

tu
t

T

ut

λφα+φασ−=φσα+φασ−=

φσα+φασ−φσα=
φ

λ

∫

∫∫

−

−α−

−α−

−

−α−

 

or 

0)(2)( 22

2

2
=φ











α
σ

−λ
λ
α

−
φ t

dt
td  

(b)  Since the eigenvalues must be nonnegative, we have four cases: 

(1) 0=λ           (2) 
α
σ

<λ<
220           (3) 

α
σ

=λ
22           (4) 

α
σ

>λ
22  

Case (1).   0=λ . The differential equation is 0)(2 2 =φασ− t . Since 02 ≠ασ , 
we only have the trivial solution 0)( =φ t , and thus 0=λ  is not an eigenvalue. 
 
Case (2).  ασ<λ< /20 2 . Let )]/2(/[)/( 222 ασ−λλα=β  ⇒  ∞<β< 20 , and 

the differential equation becomes 0)(]/)([ 222 =φβ+φ tdttd . This has a general 

solution of the form tjtj ecect β−β +=φ 21)( , where 21 and cc  are constants to be 
determined. Substituting for )(tφ  in the integral equation and integrating, we 
obtain 












β+α
+

β−α
σ−











β−α
+

β+α
σ−









β+α

+
β−α

σ+







β−α

+
β+α

σ=+λ

β+α−β−α−
α

β−α−β+α−
α

β−ββ−β

j
ec

j
ec

e
j

ec
j

ec
e

jj
ec

jj
ececec

TjTj
t

TjTj
t

tjtjtjtj

)(
2

)(
12

)(
2

)(
12

2
2

2
121

1111)(

 

By inspection of the above expression, we have 
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0
)(

2
)(

1 =
β−α

+
β+α

β−α−β+α−

j
ec

j
ec jTj

,    0
)(

2
)(

1 =
β+α

+
β−α

β+α−β−α−

j
ec

j
ec jTj

, 









β−α

+
β+α

σ=λ
jj

cc 112
11 ,  and  








β+α

+
β−α

σ=λ
jj

cc 112
22  

Solving for 21 and,, ccλ , we obtain the eigenvalue )(2 222 β+αασ=λ  and 
2
2

2
1 cc =  ⇒  21 cc =  or 21 cc −= . 

When 21 cc = , the kth eigenfunction is )()( 1
tjtj

k
kk eect β−β +=φ  

tA kk β= cos . Since ∫
−

=φ
T

T
k t 1)(2 , we can solve for kA  as 

)]2/2(sin1[/1 kkk TTA ββ+= . It should be noted that when 21 cc = , we have 
TjTj ejej β−β β+α−=β+α )()(  or βα=β /)/tan( T . The values of β satisfying the 

above equation can be determined graphically, as shown in Figure 3.8 of Van 
Trees [2]. 

When 21 cc −= , we follow the same procedure as before to obtain 

,sin)( tBt kkk β=φ  where )]2/2(sin1[/1 kkk TTB ββ−=  and βα−=β /tan T . 

 
Case (3).   ασ=λ /2 2 .  In this case, the differential equation becomes  

212

2
)(0

)( ctct
dt

td
+=φ⇒=

φ  

Substituting for )(tφ  into the integral equation to determine the constants 

21 and cc , we obtain )]/1([21 α−= Tcc  and )]/1([21 α−−= Tcc . For α≠ /1T  

⇒  021 == cc  we only have the trivial solution 0)( =φ t , and ασ=λ /2 2  is not 
an eigenvalue. 
 
Case (4).   ./2 2 ασ>λ  Let )]/2()[/( 22 ασ−λλα=γ  ⇒  .0 22 α<γ<  For 

α<γ , the differential equation is 0)(]/)([ 22 =γφ−φ tdttd , which has the 

solution tt ecect γ−γ +=φ 21)( . As in Case (2), we obtain 
Tecc γγαγα 2

12 )]/()[(/ −+−=  and .)]/()[(/ 2
12

Tecc γγ+αγ−α−=  No solution 

satisfies this equation, and hence ασ>λ /2 2  is not an eigenvalue. 
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8.4.3 The Wiener Process 
 
In Chapter 3, we showed how the Wiener process (a nonstationary process) is 
obtained from the random walk. In this section, we derive the eigenvalues and the 
corresponding eigenfunctions of the Wiener process in order to write the 
Karhunen-Loève expansion. 

Let )(tX  be the Wiener process. To determine the covariance function 
)]()([),( uXtXEutK xx = , consider the increments )()( uXtX −  and )0()( XtX − , 

where 0>≥ ut . Since )()0()( uXXuX =− , then )()( uXtX −  and )(uX  are 
statistically independent. Consequently, 

  0),()]([)]()([)}()]()({[ 2 =α−=−=− uutKuXEuXtXEuXuXtXE xx     (8.155) 

since .0)]([ =tXE  Hence, 

utuutK xx ≥α= ,),(          (8.156) 

Similarly, for 0>≥ tu , we obtain 

tututK xx ≥α= ,),(          (8.157) 

The covariance function of the Wiener process is 

     




≤α
≤α

=α=
utt
tuu

tuutK xx ,
,

),min(),(         (8.158) 

To solve for the eigenfunctions, we use the integral equation 

         ∫ ∫∫ φα+φα=φ=λφ
T T

t

t

xx duutduuuduuutKt
0 0

)()()(),()(        (8.159) 

Differentiating twice with respect to t, and using Leibniz’s rule, we obtain the 
differential equation 

         0)(
)(

2

2
=αφ+

φ
λ t

dt
td

        (8.160) 

We have two cases:  (1)  0=λ   and  (2)  .0>λ  
 
Case (1).   0=λ .  In this case 0)( =φ t , which is the trivial solution. 
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Case (2).   0>λ .  Let λα=β /2 . Then the differential equation is 

         0)(
)( 2

2

2
=φβ+

φ
t

dt
td

         (8.161) 

where 

      tjtj ecect β−β +=φ 21)(          (8.162) 

Substituting into the integral equation and solving for kλ  and )(tkφ , we obtain 

22

2

)]2/1([ −π

α
=

β
α

=λ
k

T

k
k         (8.163) 

where )]2/1()[/( −π=β kTk , and the normalized )(tkφ  is  

Tttk
TT

tk ≤≤













 −

π
=φ 0,

2
1sin2)(         (8.164) 

Therefore, the Karhunen-Loève expansion of the Wiener process is 

           ∑∑
∞

=

∞

=














 −

π
=φ=

11 2
1sin2)()(

k
k

k
kk tk

TT
XtXtX        (8.165) 

where the mean-square value of the coefficient kX  is  

    
2

2
2

)]2/1([
][

π−

α
=λ=

k
TXE kk         (8.166) 

8.4.4 The White Noise Process 
 
The white noise process can be derived from the Wiener process. Let 2σ=α  and 
the K-term approximation of the Wiener process )(tX  be )(tX K . That is, 

        ∑
=








 π






 −=

K

k
kK t

T
k

T
XtX

1 2
1sin2)(         (8.167) 
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Taking the derivative )(tX K  with respect to t, we obtain 

∑∑
==








 π






 −=







 π






 −

π






 −=

K

k
k

K

k
k

K t
T

k
T

Wt
T

k
TT

kX
dt

tdX

11 2
1cos2

2
1cos2

2
1)(

 

              (8.168) 

where 

         
T

kXW kk
π







 −=

2
1          (8.169) 

and 

        kWE k allfor][ 22 σ=         (8.170) 

Note also that the functions { }tTkTtk )/()]2/1([cos/2)( π−=φ  are 
orthonormal in the observation interval ],0[ T  and are possible eigenfunctions to 
the derivative process. 

To show that the set of functions { })(tkφ  are eigenfunctions for the 
approximate integral equation corresponding to the white noise process, we need 
to define the white Gaussian noise process. 
 
Definition.  A white Gaussian process is a Gaussian process with covariance 
function given by 

)(2 ut −δσ          (8.171) 

where δ  is the data function. The coefficients along each of the coordinate 
functions are statistically independent Gaussian random variables with variance 

2σ . 
 

Now considering the derivative of the covariance function of the Wiener 
process, we have 

[ ] ),()()()()(),(
22

'' utK
ut

uXtXE
utdu

udX
dt

tdXEutK xxxx ∂∂
∂

=
∂∂
∂

=




=  

   )()],min([ 22
2

uttu
ut

−δσ=σ
∂∂
∂

=      (8.172) 
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The corresponding integral equation is 

            )()()()( 2

0

2 tduuutt
T

φσ=φ−δσ=λφ ∫         (8.173) 

and hence the integral equation is satisfied for any set of orthonormal functions 
{ })(tkφ . In addition, we observe that 

           kk allfor2σ=λ         (8.174) 

Note that the energy over the interval ],0[ T  is not finite as ∞→K , since  

        ∞→σ=λ ∑∑
∞

=

∞

= 1

2

1 kk
k          (8.175) 

Therefore, this derivative process is not realizable. Nevertheless, one possible 
representation, which is not unique, is 

∑
∞

=







 π






 −==

1 2
1cos2)(

)(
k

k t
T

k
T

W
dt

tdX
tW         (8.176) 

 
 
8.5 SUMMARY 
 
In this chapter, we have shown how a deterministic signal can be represented in a 
series expansion of orthonormal functions. In doing this, we needed to cover the 
fundamental mathematical concepts of orthogonal functions and generalized 
Fourier series. Then, we used the Gram-Schmidt orthogonalization procedure to 
show how a set of dependent or independent functions can be decomposed into 
another set of orthonormal and independent functions. 

We also showed how a random process can be represented by an orthonormal 
series expansion, known as the Karhunen-Loève expansion. Specific processes 
such as the rational power spectral densities, the Wiener process, and the white 
noise process were considered. We showed how the white Gaussian noise process 
can be derived from the Wiener process. This required solving for the eigenvalues 
and eigenvectors of linear transformations. We discussed Green’s function and 
showed how integral equations can be reduced to linear differential equations in 
order to solve for the eigenvalues and their corresponding eigenfunctions. 

The mathematical concepts covered, such as solving for eigenvalues and 
eigenvectors/eigenfunctions, matrix diagonalization, and series representation of 
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signals will be useful to us in the next two chapters, which deal with the general 
Gaussian problem and detection in noise. 
 
 

PROBLEMS 
 
8.1 (a)  Is the set of functions  

K,2,1,cos2,1
=



















 π kt

T
k

TT
 

orthonormal in the interval ],0[ T ? 
(b) Using the fact that the functions in (a) are orthonormal on the interval 

],0[ T , show that the set 

K,2,1,cos1,
2
1

=














 π kt

T
k

TT
 

is orthonormal on the interval ],[ TT− . 
 
8.2 Let 1)(1 =ts  and tts =)(2  be defined on the interval ]1,1[− . 

(a) Are )(1 ts  and )(2 ts  orthogonal in the given interval? 

(b) Determine the constants βα and , such that 2
3 1)( ttts β+α+=  is 

orthogonal to both )(1 ts  and )(2 ts  in the given interval. 
 
8.3 (a)  Find a set of orthonormal basis functions for the set of signals shown in 

Figure P8.3. 
(b) Find the vector corresponding to each signal for the orthonormal basis set 

found in (a), and sketch the signal constellation. 

 
 
 
 
 
 
 
 
 
 
Figure P8.3  Set of signals. 

 t t t 

1 1 

-1-1 -1 

-2-2

2

 T 
T  T 2

T  

2
T  

2
T  

)(1 ts  )(2 ts  )(3 ts  
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8.4 Show by substitution that  

∫
π

π−

θθ−θ=φ dtnjt )]sin(exp[)(  

is a solution of  

0)(
)( 2

=φ









−+







 φ
t

t
nt

dt
td

t
dt
d  

8.5 Find the kernel for the differential system 

10,)()(
)(

≤≤=φ+
φ

ttut
dt

td
 

   )1(0)0( φ==φ′  

8.6 Consider the integral equation 2/0,)(),()(
2/

0

π≤≤φ=λφ ∫
π

tudutukt , where 





>
<

=
tut
tuu

tuk
,
,

),( . Find all eigenvalues and eigenfunctions in the interval 

[ ]2/,0 π . 
 

8.7 Consider the integral equation ∫ ≤≤φ=λφ
T

Ttduutukt
0

0,)(),()( ,where 





>−
<−

=
tuuT
tutT

tuk
,
,

),( . Determine the eigenvalues and eigenfunctions in the 

interval ].,0[ T  
 
8.8 Determine the eigenvalues and eigenfunctions for the linear differential 

equation 

0)()0(
0

0
)()(

2

2

=φ=φ
≤≤

=
φ

ω+
φ

T
Tt

dt
td

n
dt

td  

Assume )(tφ  is continuous, such that 1)0(')0(' =+φ−−φ uu  and 
0sin ≠ωTn . 
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8.9 As in Problem 8.8, find the solution ),( utk  of 0/)( 22 =dttkd  that has the 
properties 0),(),0( == uTkuk , where ),( utk  is continuous, and 

1),0(),0( =+−− uukuuk tt  Tut ≤≤ ,0for . 
 
8.10 If ),( utk  is the solution of Problem 8.9 and )(tφ  is any twice continuously 

differentiable function, then show that 

∫ φ−=φ
T

tduuutk
dt

d

0
2

2
)()(),(  

and ∫ =φ
T

duuutk
0

0)(),(  at Tt and0= . Thus, the solution of the differential 

equation (if it exists) 

0)()0(,0)(
)(

2

2
=φ=φ=λφ+

φ
Tt

dt
td

 

is also a solution to the integral equation ∫ φλ=φ
T

dttutkt
0

)(),()( . 

 
8.11 Verify that the kernel ),(),( tukutk =  for both Problems 8.8 and 8.9. 
 
8.12 The differential equation of Problem 8.9 has twice continuously 

differentiable solutions only when ( ){ }2/ Tnn π=λ∈λ . The corresponding 

orthonormal set of solutions is )]/sin(/2)([ TtnTtn π=φ . Calculate the 
coefficients in the expansion 

∑
∞

=
φ=

1
)()(),(

n
nn tucutk  

Show from the solution of Problem 8.11, represented as ),( uth , that  

∫ φλ=φ
T

duuutht
0

)(),()(  

is a solution of 
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0)()0(,0)(])[()('' 2 =φ=φ=φλ+ω+φ Ttnt  

8.13 Show from the solution of Problem 8.8, represented as ),( uth , that 

∫ φλ=φ
T

duuutht
0

)(),()(  

is a solution of  

0)()0(,0)(])[(
)( 2

2
=φ=φ=φλ+ω+

φ
Ttn

dt
td

 

Use the integral equation to obtain )(ucn  in ∑
∞

=
φ=

1
)()(),(

n
nn tucuth . Note 

that { })(tnφ  is the set of functions of Problem 8.12, and 

[ ].)()/( 22 ω−π=λ∈λ mTnn  

 
8.14 Consider the integral equation 

tduuutkt allfor)(),()( ∫
∞

∞−

φ=λφ  

where 












−

−+
−









 +

−
=

2

2222

2 1
2exp

2
exp

1

1),(
s

stuutut

s
utk  

and 10, << ss , is fixed. Show that 2/2
)( tet −=φ  is an eigenfunction 

corresponding to the eigenvalue π=λ . 
 
8.15 Determine the integral equation corresponding to the following second-

order linear differential equation  

0)(
)(

2

2
=λφ+

φ
t

dt
td
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where λ is constant, 0/)( 0 =φ
=tdttd , and 0)( 1 =φ

=tt . 
 
8.16 Consider the integral equation with the following corresponding linear 

differential equation  

Ttt
dt

td
≤≤=λφ+

φ
0,0)(

)(
2

2
 

    0)0(,0)1(')1( =φ=φ+αφ  

where α is a positive constant. Determine all eigenvalues and 
eigenfunctions. 

 
8.17 Determine all eigenvalues and eigenfunctions for the integral equation with 

the corresponding linear differential equation 

0)(')0('
0

,0)(
)(

2

2

=φ=φ
≤≤

=λφ+
φ

T
Tt

t
dt

td
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Chapter 9 
 
 

The General Gaussian Problem 
 
 
9.1 INTRODUCTION 
 
In Chapter 2, we discussed the Gaussian random variable. In Sections 3.4.4 and 
8.4.1, we discussed Gaussian random processes. Due to the wide use of the 
Gaussian process, we formulate the general Gaussian problem in Section 9.2. In 
Section 9.3, we cover the general Gaussian problem with equal covariance matrix 
under either hypothesis H1 or H0. For nondiagonal covariance matrices, we use an 
orthogonal transformation into a new coordinate system so that the matrix is 
diagonalized. In Section 9.4, we also solve the general Gaussian binary hypothesis 
problems but with mean vectors equal under both hypotheses. In Section 9.5, we 
consider symmetric hypotheses and obtain the likelihood ratio test (LRT). 
 
 
9.2 BINARY DETECTION 
 
In this section, we formulate the general Gaussian problem for binary hypothesis 
testing. Consider the hypotheses 

          
NY
NXY

+=
+=

:
:

0

1

H
H

             (9.1) 

where the vector observation Y, the signal vector X, and the noise vector N are 
given by 



















=

KY

Y
Y

M
2

1

Y , 


















=

KX

X
X

M
2

1

X , 


















=

KN

N
N

M
2

1

N            (9.2) 
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The noise components are Gaussian random variables. By definition, a hypothesis 
testing problem is called a general Gaussian problem if the conditional density 
function )|(| jH Hf

j
yY  for all j is a Gaussian density function. Similarly, an 

estimation problem is called a general Gaussian problem if the conditional density 
function )|(| θΘ yYf  has a Gaussian density for all θ, where θ is the parameter to 
be estimated. 

Consider the binary hypothesis testing problem given in (9.1). Let the mean 
vectors m1 and m2 under hypotheses H1 and H2, respectively, be 

]|[ 11 HE Ym =            (9.3a) 

and 

]|[ 00 HE Ym =            (9.3b) 

The covariance matrices under each hypothesis are given by 

           ]|))([( 1111 HE TmYmYC −−=           (9.4a) 

and 

           ]|))([( 0000 HE TmYmYC −−=           (9.4b) 

In Chapter 5, we have seen that applying the Bayes’ criterion to the binary 
hypothesis problem resulted in the likelihood ratio test; that is, 

η<
>=

0

1

0|

1|

)|(

)|(
)Λ(

0

1

H

H

Hf

Hf

H

H

y
y

y
Y

Y             (9.5) 

where  

1,0,)()(
2
1exp

)2(

1)|y( 1
2/12/

|Y =



 −−−

π
= − jHf j

T
j

j
K

jH j
myCmy

C
 

          (9.6) 

Substituting (9.6) into (9.5) yields 
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          η<
>





 −−−





 −−−

=
−

−

0

1

0
1

00
2/1

1

1
1

11
2/1

0

)()(
2
1exp

)()(
2
1exp

)Λ(

H

H

T

T

myCmyC

myCmyC
y            (9.7) 

Taking the logarithm on both sides of the above equation, an equivalent test is 

    γ<
>−−−−− −−

0

1

1
1

110
1

00 )()(
2
1)()(

2
1

H

H
TT myCmymyCmy          (9.8a) 

where 

)ln(ln
2
1ln 01 CC −+η=γ           (9.8b) 

Thus, the likelihood ratio test reduces to the difference of two quadratic forms. The 
evaluation of such difference depends on several constraints on the mean vectors 
and covariance matrices under each hypothesis. 
 
 
9.3 SAME COVARIANCE 
 
In this case, we assume the covariance matrices C1 and C0 under both hypotheses 
H1 and H0 are the same; that is, 

CCC == 01              (9.9) 

Substituting (9.9) into (9.8a), the LRT can be written as 

   γ<
>−−−−− −−

0

1

1
1

10
1

0 )()(
2
1)()(

2
1

H

H
TT myCmymyCmy          (9.10) 

Expanding the above expression, we obtain 

yCmmCmmCyyCm 1
10

1
00

11
0 2

1
2
1

2
1

2
1 −−−− ++−− TTTT  
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  γ<
>−+ −−

0

1

1
1

11
1

2
1

2
1

H

H
TT mCmmCy       (9.11) 

Using the fact that the inverse covariance matrix 1−C  is symmetric, that is 
T)( 11 −− = CC , and the fact that the transpose of the scalar is equal to itself, that is 

1,0,)()( 1111 ==== −−−− jT
j

TT
j

T
j

T
j

T yCmyCmmCymCy     (9.12) 

Equation (9.11) reduces to the following test 

       γ<
>−+− −−−−

0

1

1
1

10
1

0
1

0
1

1 2
1

2
1

H

H
TTTT mCmmCmyCmyCm          (9.13) 

Rearranging terms, an equivalent test is 

  1

0

1

1
01 )( γ<

>− −

H

H
TT yCmm          (9.14a) 

where 

            )(
2
1

0
1

01
1

11 mCmmCm −− −+γ=γ TT         (9.14b) 

Note that all terms in y are on one side, and the others are on the other side. Hence, 
the sufficient statistic )( yT  is 

     yCmmy 1
01 )()( −−= TTT           (9.15) 

Let the difference mean vector be 

01 mmm −=∆            (9.16) 

Substituting (9.16) into (9.14a), the LRT becomes 
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       1

0

1

11 ∆∆)( γ<
>== −−

H

H

T TT mCyyCmy           (9.17) 

We observe that )( yT  is a linear combination of jointly Gaussian random 
variables, and hence, by definition, it is a Gaussian random variable. Therefore, we 
only need to find the mean and variance of the sufficient statistic under each 
hypothesis, and perform the test in (9.17) against the threshold 1γ  to determine the 
performance of this test. The mean and variance of )( yT  are given by 

]|[]|[]|)([ 11
j

T
j

T
j HEHEHTE YCmYCmY −− == ∆∆  

1,0,∆ 1 == − jj
T mCm            (9.18) 

and 

}|])[()]({[

}|][]{[

}|]{[

}|)]|)([)({(]|)(var[

11

1111

211

2

j
T
j

T
j

T

j
T
j

T
j

TT

jj
TT

jjj

HE

HE

HE

HHTETEHT

mCmYmYCm
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∆∆
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           mCmYmYCm ∆∆ 11 ]|)()[( −− −−= j
T
j

T
j

T HE          (9.19) 

Using (9.4) and (9.9), the conditional variance of the sufficient statistic becomes 

           mCmmCCCmY ∆∆∆∆ 111]|)(var[ −−− == TT
jHT          (9.20) 

since ICC =−1  is the identity matrix. Note that the variance is independent of any 
hypothesis. The performance of this test is affected by the choice C, which we will 
study next. 

In (5.75), we defined the detection parameter when the variance was 
normalized to one. When the variance is not normalized to one, the equivalent 
definition of the detection parameter d is  

         2d ≜
]|)(var[

]}|)([|)([{

0

2
01

HT
HTEHTE

Y
YY −

          (9.21) 

Substituting (9.18) and (9.20) in (9.21), we obtain 
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mCm
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mCmmCm
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∆∆
∆∆ T

T

TT
d =

−
=

2
012 )(

         (9.22) 

Hence, for this case of an equal variance matrix, the performance of the system is 
determined by the quadratic form of 2d . We now study the different cases for the 
covariance matrix. 
 
9.3.1 Diagonal Covariance Matrix 
 
Let the covariance matrix C be diagonal and given by 
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
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KK

MMMMM

K

K

C           (9.23) 

This means that the components KkYk ,,2,1, K= , are statistically independent. 
Two possible cases may arise. The variances of the components are either (1) 
equal and in this case 222

2
2
1 σ=σ==σ=σ KK , or (2) unequal and in this case 

22
2

2
1 Kσ≠≠σ≠σ K . 

 
Equal Variance   In this case, the covariance matrix is given by 

           IC 2

2

2

2
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000
000
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
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
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


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
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          (9.24) 

that is, 

     






≠
=σ

=−−
kj
kjmYmYE kkjj ,0

,)])([(
2

          (9.25) 

The inverse covariance matrix is IC )/1( 21 σ=− . Substituting in (9.15), the 
sufficient statistic is 
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         ymy TT ∆
2

1)(
σ

=            (9.26) 

which is simply the dot product between the mean difference vector m∆  and the 
observation vector Y. The corresponding detection parameter is simply 

    
2

2

1

2
22

2 )(∆1)(1
σ

=
σ

=
σ

== ∑
=

m
mmmCm

∆
∆∆∆∆

K

k
k

TT md        (9.27) 

where m∆  is the magnitude of the vector m∆ . Hence, 

       
σ

−
=

σ
= 01 mmm∆

d            (9.28) 

is the distance between the two mean value vectors divided by the standard 
deviation of the observation KkYk ,,2,1, K=  as shown in Figure 9.1 [1]. 
 
Unequal Variance   In this case, the covariance matrix is as given in (9.23), where 

.21 Kσ≠≠σ≠σ K  The inverse covariance matrix is given by 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 9.1  Mean value vectors. (From: [1]. © 1968 John Wiley and Sons, Inc. Reprinted  

with permission.) 

0m 1m

m∆ 
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Consequently, after substitution into (9.15), the sufficient statistic becomes  

∑
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It follows that 
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Making a change of variables, let 

k

k
k

y
y

σ
=′            (9.32) 

Then, KkYk ,,2,1, K=  is Gaussian with mean kkm σ/  and variance one. The 
corresponding mean difference vector is 

         
T

K

Kmmm

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The detection parameter becomes  
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or 

        01 mmm ′−′=′= ∆d           (9.35) 

That is, it can be interpreted as the distance between the mean value vectors in the 
new coordinate system. The sufficient statistic is 

myymy ′′=′′=′′=
σσ

= ∑∑
==

∆)()∆(∆
∆

)(
11

TT
K

k
kk

K

k k

k

k

k ym
ym

T          (9.36) 

9.3.2 Nondiagonal Covariance Matrix 
 
In general, the covariance matrix C will not be a diagonal matrix, and thus the 
components of the received random vector Y are not statistically independent. In 
order to make the components independent, we need to find a new coordinate 
system in which the transformed components are independent. That is, the 
covariance matrix in the new coordinate system must be diagonal. 

The concept of diagonalizing a matrix, which can be done by the similarity 
transformation, was presented in Chapter 4 and now can be used. Let the new 
coordinate system have coordinate axes denoted by the set of orthonormal vectors 
{ } .,,2,1, Kkk K=Φ  Let Y be the original observation vector and Y ′  its 
transformed vector in the new coordinate system. The vector Y ′  also has K 
components, where the kth component, denoted kY ′ , is just the projection of the 
observation vector Y onto the coordinate kΦ  of the new system. This geometric 
interpretation mathematically represents the dot product between the vector Y and 
the vector kΦ . That is, 

k
TT

kkY ΦΦ YY ==′           (9.37) 

Assuming we have a three-dimentional vector, the transformation of the vector Y 
into 'Y  in the new coordinate system may be as shown in Figure 9.2. The mean of 

'Y  in the new coordinate system is  

           ΦΦΦΦ TTTT EEE mmYYYm ====′=′ ][][][          (9.38) 

The covariance matrix of Y ′  is diagonal since the components in this new 
coordinate system are now statistically independent; that is, 

jkkkkjj mYmYE δλ=−′−′ )])([(           (9.39) 
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Figure 9.2  New coordinate system representing transformation of vector Y into .Y ′  

where ][ kk YEm = , and jkδ  is the Kronecker delta function. Using the fact that 

k
TT

kkY ΦΦ YY ==′  and k
TT

kkm ΦΦ mm == , (9.39) can be written as 

          jkkk
TTT

jE δλ=−− ]))(([ ΦΦ mYmY          (9.40) 

or 

            jkkk
T
j δλ=ΦΦ C            (9.41) 

Hence, (9.41) is only true when 

kkk ΦΦ λ=C            (9.42) 

since  

jkk
T
j δ=ΦΦ            (9.43) 

Consequently, the solution reduces to solving the eigenproblem 

 ΦΦ λ=C            (9.44) 

or 

1φ  

 y1 

 y2 

 y3 

 y y′  

 y1 

2φ  

3φ  
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0)( =λ− ΦIC            (9.45) 

The solution to the homogeneous equations of (9.45) was studied in detail in 
Chapter 8. That is, we first obtain the nonzero eigenvalues from the equation 

0=λ− IC . Then, using (9.44), we solve the set of K equations in K unknowns to 
obtain the eigenvectors Kkk ,,2,1,Φ K= , corresponding to the eigenvalues 

Kkk ,,2,1, K=λ . The eigenvectors are linearly independent. We form the modal 
matrix M given by 

    ][ 21 KΦΦΦ L=M           (9.46) 

and then use the similarity transformation to diagonalize the covariance matrix C. 
We obtain 
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It should also be noted that since the covariance matrix C is real and symmetric, 
the inverse of the modal matrix M equals its transpose ( )TMM =−1 . Thus, the 
orthogonal transformation can be used to diagonalize C. The vector 'y  in the new 
coordinate system is given by 

yMy T=′            (9.48) 

or 

yMy ′=            (9.49) 

The above transformation corresponds to a rotation, and hence the norm of y ′  in 
the new system is equal to the norm of y in the original system. 

Now, we can apply the LRT to the binary hypothesis problem in the new 
coordinate system. The sufficient statistic is still of the form given in (9.15). Let 

01 and mm  be the mean vectors in the original coordinate system under 

01 and HH , respectively, such that 
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The transformed mean vectors are given by (9.38). Hence, the transformed mean 
difference vector 01 mmm ′−′=′∆  is  
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where W is a KK ×  matrix with the vectors KkT
k ,,2,1, K=Φ . That is, 

1−== MMW T  and hence, 

  mMmWm ′=′= − ∆∆∆ 1            (9.52) 

Substituting (9.48) and (9.52) into (9.15), the sufficient statistic in the new 
coordinate system becomes 

yMCMmyMCmMymCy ′′=′′==′ −−− 111 )()()()( TTTT ∆∆∆  

              yMCMm ′′= −− 11)( T∆            (9.53) 

Using (9.47), the sufficient statistic reduces to 
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Example 9.1 
 
Consider the binary hypothesis problem with specifications 
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Obtain the sufficient statistic in the new coordinate system for which the 
components of the observation vector are independent. 
 
Solution 
 
For the components of Y to be independent, the covariance matrix C in the new 
coordinate system must be diagonal. This can be achieved using the orthogonal 
transformation. First, we solve for the eigenvalues of C using  

5625.04375.23
15.025.0

5.015.0
25.05.01

0 23 +λ−λ+λ−=
λ−

λ−
λ−

⇒=λ− IC  

Therefore, 8431.1and,75.0,4069.0 321 =λ=λ=λ . To obtain the first 
eigenvector 1Φ , we solve 
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Solving for 131211 and,, φφφ , we obtain 
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Similarly, we solve for 32 and ΦΦ , using 222 ΦΦ λ=C  and 333 ΦΦ λ=C , to 
obtain 
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Hence, the modal matrix M is 
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






























−

−
=

















′
′
′

=′

13

12

11

3

2

1

1

5418.06426.05418.0
7071.00000.07071.0
4544.07662.04544.0

m
m
m

m
m
m

m  

Therefore, the sufficient statistic is 
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Example 9.2 

Consider the problem of Example 9.1, but 0== 0,2 mK , and 







ρ

ρ
=

1
1

C . 

 
Solution 
 
Following the same procedure as in Example 9.1, we solve for the eigenvalues 
using 0=λ− IC . That is, 
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012
1

1 22 =ρ−+λ−λ=
λ−ρ

ρλ−
 

Thus, ρ+=λ 11  and ρ−=λ 12 . To obtain the eigenvector 1Φ , we have 
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Solving for 1211 and φφ , such that 12
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2
1111 =φ+φ=ΦΦT , we obtain the 

normalized eigenvector [ ] .2/12/1Φ1
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The observation vector 'y  in the new coordinate system is 
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Similarly, the mean vector 1m ′  is  
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The difference mean vector is 101∆ mmmm ′=′−′=′ . Therefore, the sufficient 
statistic is given by 
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9.4 SAME MEAN 
 
In the previous section, the constraint was that the covariance matrices under both 
hypotheses were the same. Now, we consider the case with the constraint that the 
mean vectors under both hypotheses are equal. That is, 

mmm == 01            (9.56) 

Substituting (9.56) into the LRT given in (9.8), we obtain  
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T myCCmy           (9.57) 

Note that the mean vector m of the test in (9.57) does not affect the decision as to 
which hypothesis is true. Consequently, for simplicity and without loss of 
generality, let 0=m . The LRT reduces to 

2
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1
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1
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Furthermore, assume that this binary hypothesis problem can be characterized 
by 
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That is, we only have noise under hypothesis H0, while under hypothesis H1 we 
have signal plus noise. The signal and noise components are assumed to be 
statistically independent. In addition, the noise components are uncorrelated with 
equal variances Kkn ,,2,1,2 K=σ . Thus, the noise components under hypothesis 
H0 are a multivariate Gaussian with variance matrix 

0
2 CIC =σ= nn            (9.60) 

If the signal components are assumed to be independent of each other, then the 
covariance matrix sC  is diagonal. The signal components are also a multivariate 
Gaussian with covariance matrix sC . Since the signal and noise components are 
independent, the covariance matrix 1C  under hypothesis H1 is 

ICCCC 2
1 nsns σ+=+=           (9.61) 

Substituting (9.60) and (9.61) into (9.58), the LRT becomes 
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We note that the LRT can be further reduced depending on the structure of the 
signal covariance matrix, which we consider next. 
 
9.4.1 Uncorrelated Signal Components and Equal Variances 
 
In this case, we assume that the signal components are uncorrelated and identically 
distributed. Thus, the covariance matrix is diagonal with equal diagonal elements 

2
sσ ; that is, 

IC 2
ss σ=            (9.63) 

Consequently, the LRT reduces to 
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where γ=γ 22 , and γ is given in (9.8b). Simplifying (9.64) further, we obtain the 
equivalent test 

        3
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k
ky            (9.65) 

where 2
2222

3 ]/)([ γσσ+σσ=γ snsn . Hence, the sufficient statistic is ∑
=

=
K

k
kyT

1

2)( y . 

Since Yk is independent and an identically distributed Gaussian random variable, 
22

1
2

1)( KYYYT +++= KY  is a chi-square random variable with K degrees of 
freedom, as was shown in Chapter 2. Consequently, we can carry the test further, 
and obtain an expression for DP , the probability of detection, and FP , the 
probability of false alarm. Note that once we obtain DP  and FP , we can plot the 
receiver operating characteristics. 

Using the concept of transformation of random variables developed in Chapter 
1, the density function of the random variable 2XY = , where X is Gaussian with 
mean zero and variance 2σ , is 

( )








>









σ

σ
=

σ
−

otherwise,0

0,
2

1
2/1Γ

2/1
)(

222
1

2

2
yeyyf

y

Y          (9.66) 

where, from (2.102), .2and2/1 2σ=β=α  Hence, the mean and the variance of Y 

are 2][ σ=αβ=YE  and .2]var[ 42 σ=βα=Y  From (2.106), the characteristic 

function of 2XY = is 

α
ω

βω−
==ω

)1(
1][)(Φ
j

eEj Xj
x           (9.67) 

Generalizing the result in (9.67) to KYYYY +++= K21 , the sum of K 
independent random variables, we obtain 

][][][][][)(Φ 2121 )( KK YjYjYjYYYjYj
y eEeEeEeEeEj ωωω+++ωω ===ω KK  
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         =
( ) KK j

jjj yyy α++α+αβω−
=ωωω

K
K

2121 1
1)(Φ)(Φ)(Φ          (9.68) 

and hence the density function of Y is  

          ( )







>








βα++α+α

β
=

β
−α++α+α

otherwise,0

0,
Γ

/1
)(

21

21
ye

y
yf

y

KY

KK

K        (9.69) 

Using 22and2/1 σ=β=α , we obtain the density function of the sufficient 
statistic to be  

    ( )







>

σ=
σ

−−

otherwise,0

0,
2/Γ2

1
)(

22
1

2
2/

yey
Kyf

yK

KKY          (9.70) 

Note that the variance 2σ  of KkYk ,,2,1, K= , denotes 2
nσ under hypothesis H0 

and )( 22
ns σ+σ  under hypothesis H1. That is, the density function of the sufficient 

statistic )( yT  under each hypothesis is  

( )








>

σ=
σ

−−

otherwise,0

0,
2/Γ2

1
)|(

2
0

0

21
2

0
2/0|

tet
KHtf

tK

KKHT              (9.71) 

( )








>

σ=
σ

−−

otherwise,0

0,
2/Γ2

1
)|(

2
1

1

21
2

1
2/1|

tet
KHtf

tK

KKHT               (9.72) 

where 22
0 nσ=σ  and 222

1 ns σ+σ=σ . Knowing the conditional density functions 
)|( 1| 1

Htf HT  and )|( 0| 0
Htf HT , we can obtain expressions for .and FD PP  From 

(9.65), the probabilities of detection and false alarm are 
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( ) ∫∫

∞

γ

σ
−−∞

γ σ
==

3

2
0

3

0

21
2

0
2/0|

2/Γ2
1)|( dtet

K
dtHtfP

tK

KKHTF          (9.73) 

and 

     
( ) ∫∫

∞

γ

σ
−−∞

γ σ
==

3

2
1

3

1

21
2

1
2/1|

2/Γ2
1)|( dtet

K
dtHtfP

tK

KKHTD          (9.74) 

9.4.2 Uncorrelated Signal Components and Unequal Variances 
 
In this case, we assume that the signal components are uncorrelated, and thus the 
covariance matrix sC  is diagonal. We also assume that the variances of the 
different components are not equal; that is, 























σ

σ

σ

=

2

2

2

00

00
00

2

1

Ks

s

s

s

K

MMMM

K

K

C           (9.75) 

From the LRT in (9.62), let the term in brackets be denoted H; that is, 

12
2

)(1 −σ+−
σ

= ICIH ns
n

           (9.76) 

Substituting (9.75) into (9.76) and rearranging terms, the H matrix reduces to 



































σ+σσ

σ

σ+σσ

σ

σ+σσ

σ

=

)(
00

0
)(

0

00
)(

222

2

222

2

222

2

2

2

1

1

nsn

s

nsn

s

nsn

s

K

KL

MMMM

L

L

H          (9.77) 
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and consequently, the LRT becomes  

∑
=

γ<
>

σ+σ

σ

σ
==

K

k
k

ns

s

n

T

H

H

yT
k

k

1
2

0

1

2
22

2

2 )(
1)( yHyy          (9.78) 

We observe that the above expression is not as simple as the one in the 
previous section, and consequently it may not be easy to obtain expressions for 

DP  and FP . 
 
Remark.  If the signal components are not independent, and thus the signal 
covariance matrix is not diagonal, we can diagonalize the matrix using an 
orthogonal transformation, following the procedure given in Section 9.3.2. 
 
Example 9.3 
 
Consider the binary hypothesis problem 

2,1,:
2,1,:

0

1

==
=+=

kNYH
kNSYH

kk

kkk  

where the noise components are zero mean and uncorrelated Gaussian random 
variables with variance 2,1,2 =σ kn . The signal components are also independent 

and zero mean with variance 2,1,2 =σ ks . The signal and noise components are 
independent. Obtain: 

(a) the optimum decision rule. 
(b) expressions for the probabilities of detection and false alarm. 

 
 
Solution 
 
(a)  This is the case where the noise components are independent and identically 
distributed, and the signal components are also independent and identically 
distributed. Both covariance matrices sC  and nC  of the signal and noise are 
diagonal. The optimum decision rule is given by (9.65) to be 

3

0

1

2
2

2
1)( γ<

>+=

H

H

yyT y  
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where { } 2
2222

3 /)]([ γσσ+σσ=γ nnsn , γ=γ 22 , and )ln)(ln2/1(ln 01 CC −+η=γ . 
The covariance matrices 1C  and 0C  under hypotheses H1 and H0 are 













σ+σ
σ+σ

=+= 22

22

1 0
0

ns

ns
ns CCC   and  













σ
σ

== 2

2

0 0
0

n

n
nCC  

Rearranging terms, the decision rule becomes 

32

22

2

222

0

1

2
2

2
1 lnln

)(
2)( γ=











σ

σ+σ
+η

σ

σ+σσ
<
>+=

s

ns

s

nsn

H

H

yyT y  

Consequently, the sufficient statistic is 2
2

2
1)( yyT +=y . 

 
(b)  Using the results derived in (9.71) and (9.72), the conditional probability 
density function of the sufficient statistic under each hypothesis is  








>











σ
−

σ=

otherwise,0

0,
2

exp
2

1
)|( 2

0
2
00| 0

tt
Htf HT  








>











σ
−

σ=

otherwise,0

0,
2

exp
2

1
)|( 2

1
2
11| 1

tt
Htf HT  

where 22
0 nσ=σ  and 222

1 ns σ+σ=σ . Consequently, the probability of detection and 
probability of false alarm are 

2
1

3

3

2
1 22

2
12

1 σ

γ
−∞

γ

σ
−

∫ =
σ

= edteP
t

D   and  
2
0

3

3

2
0 22

2
02

1 σ

γ
−∞

γ

σ
−

∫ =
σ

= edteP
t

F  

 
 
9.5 SAME MEAN AND SYMMETRIC HYPOTHESES 
 
Consider the binary symmetric hypothesis problem given by 
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H1  :  KKKkNY
KkNSY

kk

kkk

2,),2(),1(,
,,2,1,

K

K

++==
=+=

 

H0  :  KKKkNSY
KkNY

kkk

kk

2,),2(),1(,
,,2,1,

K

K

++=+=
==

           (9.79) 

We assume, as before, that the mean vectors 0== 01 mm  and that the noise 

components are uncorrelated with variance 2
nσ . Thus, the noise covariance matrix 

is IC 2
nn σ= . Let sC  denote the signal covariance matrix. Then, the KK 22 ×  

covariance matrices 10 and CC  under hypotheses 10 and HH , respectively, can 
be partitioned into KK ×  submatrices. That is, 

        
















σ

σ+
=















 +
=

I

IC

C

CC
C

2

2

1

n

ns

n

ns

0

0

0

0
         (9.80) 

and 

           
















σ+

σ
=

















+
=

IC

I

CC

C
C

2

2

0

ns

n

ns

n

0

0

0

0
         (9.81) 

Let the difference of the inverse covariance matrices of 10 and CC  be denoted by 

        1
1

1
0

1 −−− −= CCC∆            (9.82) 

Thus, 





















σ

σ+
−























σ+

σ
=

−

−

−

I

IC

IC

I

C

2

12

12

2

1

1

)(

)(

1

n

ns

ns

n

0

0

0

0

∆  
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





















σ
−σ+

σ+−
σ

=
−

−

IIC

ICI

2
12

12
2

1)(

)(1

n
ns

ns
n

0

0

         (9.83) 

Partitioning the 12 ×K  vector Y into two 1×K  vectors such that 
















=

2

1

Y

Y
Y            (9.84) 

and substituting (9.84) and (9.83) into (9.58), the LRT becomes 




















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
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−
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2
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      2
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>












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−σ++


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




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


σ+−

σ
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H

H

n
ns

T
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n

T yIICyyICIy  

               (9.85) 

Again, depending on the structure of the signal covariance matrix sC , the above 
expression may be reduced as in the previous section. 
 
9.5.1 Uncorrelated Signal Components and Equal Variances 
 
In order to carry the test in (9.85) further, let the signal components be 
uncorrelated and identically distributed. That is, 

IC 2
ss σ=            (9.86) 

Substituting the above value of the signal covariance matrix into (9.85), the LRT 
test is obtained to be  



The General Gaussian Problem 527 

22
122

21
122

21
1)()(1)( yIIIyyIIIyy













σ
−σ+σ+












σ+σ−

σ
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n
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T
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n

TT  

    2
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1

2211222

2
)(

)(
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>−
σ+σσ

σ
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H

H
TT

nsn

s yyyyI            (9.87) 

or 

3

0

1
2

1

2

1

2)( γ<
>−= ∑∑

+==
H

H

yyT
K

Kk
k

K

k
ky           (9.88) 

where 3γ  is defined in (9.65). 
We can have more insight into this problem by assuming that we have a 

minimum probability of error criterion, and that both hypotheses are equally likely. 
Thus, the threshold η  equals one, and 2γ  and 3γ  become zero. We observe that 
the determinants of both covariance matrices are equal ( )01 CC = , since the 
hypotheses are symmetrical. Consequently, the LRT reduces to  

∑∑
+==

=<
>=

K

Kk
k

K

k
k Ty

H

H

yT
2

1
0

2

1

0

1

2
1 )()( yy           (9.89) 

The probability of error is defined as 

   )]|()|([
2
1)()|()()|()( 101100 HPHPHPHPHPHPP ε+ε=ε+ε=ε      (9.90) 

Since the test is symmetrical with respect to both hypotheses, we have 

      )|()|( 10 HPHP ε=ε            (9.91) 

Thus, the probability of error is just 

)|()|()|()|()( 10110100 HTTPHPHTTPHPP <=ε=<=ε=ε        (9.92) 
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Figure 9.3  Regions of integration for ).(εP  

From Figure 9.3, we see that the probability of error is given by 

∫ ∫
∞

=ε=ε
0 0

100010

1

01
)|,()|()(

t

TT dtdtHttfHPP  

         ∫ ∫
∞ ∞

=ε=
0

101011
1

01
)|,()|(

t
TT dtdtHttfHP          (9.93) 

From (9.70), )(1 YT  and )(2 YT  are statistically independent and chi-square 
distributed, and thus 

2
1

1

1

21
2

1
1

2/1
)2/Γ(2

1)( σ
−−

σ
=

tn

KKT et
K

tf          (9.94) 

2
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0

21
2

0
0

2/0
)2/Γ(2

1)( σ
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σ
=

tn

KKT et
K

tf          (9.95) 

where 22
0 nσ=σ  and 222

1 ns σ+σ=σ . Substituting (9.94) and (9.95) into (9.93) and 
solving the integral, it can be shown that the probability of error reduces to 
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2)(          (9.96) 

9.5.2 Uncorrelated Signal Components and Unequal Variances 
 
In this case, we assume that the signal components are uncorrelated but their 
corresponding variances are not equal. That is, the signal covariance matrix is still 
diagonal but with unequal elements. Thus, we have 

 t0 

 t1 
t1= t0 

)|( 0HP ε  

)|( 1HP ε  
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









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
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Substituting (9.97) into (9.82) and rearranging terms, we obtain 
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




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                (9.98) 

It follows that the test (9.85) becomes 
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ky            (9.99) 

This expression is too complicated to proceed any further with the test. 
 
 
9.6 SUMMARY 
 
In this chapter we have discussed the general Gaussian problem. We considered 
the binary hypothesis problem. Due to the characteristics of the Gaussian process 
and Gaussian random variables, the general Gaussian problem was considered in 
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terms of the covariance matrices and mean vectors under each hypothesis. First, 
we considered the case of an equal covariance matrix for both hypotheses. The 
noise samples were always assumed uncorrelated and thus statistically independent 
with equal variances. The signal components considered, however, were either 
independent or not independent. When the signal components were independent 
and of equal variance, the problem was relatively simple, since the covariance 
matrix is diagonal with equal value elements. When the signal component 
variances were not equal, the expressions were more difficult, and in this case we 
were able to solve for the sufficient statistic only. 

In the case when the covariance matrices are general, we transformed the 
problem from one coordinate system into another coordinate system, such that the 
covariance matrix is diagonal. We solved for the eigenvalues and eigenvectors, 
and then used an orthogonal transformation to diagonalize the covariance matrix. 
In Sections 9.4 and 9.5, we considered the case of equal mean vectors and obtained 
the LRT. 
 
 

PROBLEMS 
 
9.1 For the binary hypothesis problem with 0=0m , let the covariance matrix C 

be 

(a) 







=

12/1
2/11

C       (b) 







=

11.0
1.01

C       (c) 







=

19.0
9.01

C  

Determine the LRT for the three cases above. 
 
9.2 Repeat Problem 9.1, assuming that the covariance matrix C is 









=

29.0
9.01

C  

9.3 Consider the binary hypothesis problem 

2,1,:
2,1,:

1

1

==
=+=

kNYH
kNSYH

kk

kkk  

where the noise components are zero mean and uncorrelated Gaussian random 
variables with variances 2,1,12 ==σ kn . The signal components are also 

independent and zero mean with variances 2,1,22 ==σ ks . The signal and 
noise components are independent. 
(a) Obtain the optimum decision rule. 
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(b) Determine the minimum probability of error for 2/1)()( 10 == HPHP . 
 
9.4 Repeat Problem 9.3 with 4,3,2,1=k . 
 
9.5 Plot the receiver operating characteristics of Problem 9.3 with the ratio 

22 / ns σσ  as a parameter. 
 
9.6 Consider Problem 9.3 with signal covariance matrix  













σ
σ

= 2

2

0
0

s

s
sC  

Design an optimum test. 
 
9.7 Consider the symmetrical binary hypothesis problem  

H1  :  4,3,
2,1,

==
=+=

kNY
kNSY

kk

kkk  

H0  :  4,3,
2,1,

=+=
==

kNSY
kNY

kkk

kk  

Let the mean vectors under each hypothesis be zero for both hypotheses 0H  
and 1H . The noise components are identically distributed Gaussian random 
variance with variance 1. The signal components are also independent and 
identically distributed with variance 2. The signal and noise components are 
independent. 
(a) Design an optimum test. 
(b) Determine the probability of error assuming minimum probability of error 

criterion and 2/110 == PP . 
 
9.8 Repeat Problem 9.1 if the covariance matrix is given by  

(a) 















=

11.05.0
1.019.0
5.09.01

C   (b) 


















=

18.06.02.0
8.018.06.0
6.08.018.0
2.06.08.01

C  
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Chapter 10 
 
 

Detection and Parameter Estimation 
 
 
10.1 INTRODUCTION 
 
In Chapters 1 and 3, we presented the fundamentals of probability theory and 
stochastic processes. In Chapters 5 and 6, we developed the basic principles 
needed for solving decision and estimation problems. The observations considered 
were represented by random variables. In Chapter 7, we presented the 
orthogonality principle and its application in the optimum linear mean-square 
estimation. In Chapter 8, we presented some mathematical principles, such as 
Gram-Schmidt orthogonalization procedure, diagonalization of a matrix and 
similarity transformation, integral equations, and generalized Fourier series. The 
concept of generalized Fourier series was then used to represent random processes 
by an orthogonal series expansion, referred to as the Karhunen-Loève expansion. 
Chapter 8 gave us the basic mathematical background for Chapters 9 and 10. In 
Chapter 9, we covered the general detection Gaussian problem. 

In this chapter, we extend the concepts of decision and estimation problems to 
time varying waveforms. If a signal is transmitted, then the received waveform is 
composed of the transmitted signal and an additive noise process. If no signal is 
transmitted, then the received waveform is noise only. The goal is to design an 
optimum receiver (detector) according to some criterion. In Section 10.2, we 
discuss the general and simple binary detection of known signals corrupted by an 
additive white Gaussian noise process with mean zero and power spectral density 

.2/0N  The received waveforms are observed over the interval of time ],0[ Tt∈ . 
In Section 10.3, we extend the concepts of binary detection to M-ary detection. In 
Section 10.4, we assume that the received signals in the presence of the additive 
white Gaussian noise process have some unknown parameters, which need to be 
estimated. Some linear estimation techniques are used to estimate these unknown 
parameters, which may be either random or nonrandom. Nonlinear estimation is 
presented in Section 10.5. In Section 10.6, we consider the general binary 
detection with unwanted parameters in additive white Gaussian noise. In this case 
the  received  waveform  is  not  completely  known  a  priori,   as  in  the  previous 
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sections. The unknown parameters of the signal are referred to as unwanted 
parameters. We consider signals with random phase. We obtain the sufficient 
statistic and solve for the probabilities of detection and false alarm through an 
example showing all steps. We show how the incoherent matched filter is used for 
this type of application. Then, we consider signals with two random parameters, 
the phase and amplitude. Other cases, such as signals with random frequency, 
signals with different random phases, frequency shift keying signals with Rayleigh 
fading, and signal with random time of arrival that may arise in radar and 
communication applications are also discussed. 

We conclude this chapter with a section on detection in colored noise. 
Specifically, we consider the general binary detection in nonwhite Gaussian noise. 
Two different approaches, using Karhunen-Loève expansion and whitening, are 
suggested to solve this problem. 
 
 
10.2 BINARY DETECTION 
 
In a binary communication problem, the transmitter may send a deterministic 
signal )(0 ts  under the null hypothesis H0, or a deterministic signal )(1 ts  under 
the alternate hypothesis H1. At the receiver, the signal is corrupted by )(tW , which 
is an additive white Gaussian noise process. Assume that the additive noise is zero 
mean and has a double-sided power spectral density of .2/0N  The goal is to 
design an optimum receiver that observes the received signal )(tY  over the 
interval ],0[ Tt∈ , and then decides whether hypothesis H0 or hypothesis H1 is 
true. 
 
10.2.1 Simple Binary Detection 
 
In a simple binary detection problem, the transmitted signal under hypothesis H1 is 

)(ts , and no signal is transmitted under the null hypothesis H0. At the receiver, we 
have 

        
TttWtYH
TttWtstYH

≤≤=
≤≤+=

0),()(:
0),()()(:

0

1           (10.1) 

Note that the signal is a continuous time function. In order to obtain a set of 
countable random variables so that we may apply the concepts developed in 
Chapter 5, we need to take K samples, where K may be infinite. However, in 
Chapter 8, we saw that a continuous time signal may be represented by Karhunen-
Loève expansion using a set of K complete orthonormal functions. The 
coefficients in the series expansion are the desired set of random variables. 

The energy of the known deterministic signal is  
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∫=
T

dttsE
0

2 )(            (10.2) 

Thus, let the first normalized function )(1 tφ  be  

E
tst )()(1 =φ            (10.3) 

or 

)()( 1 tEts φ=            (10.4) 

Consequently, the first coefficient in the Karhunen-Loève expansion of )(tY  is 
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where 1W  is the first coefficient in the series expansion of )(tW . T )()( tWts + he 
rest of the coefficients K,3,2, =kYk , are obtained by using arbitrary orthogonal 

functions K,3,2, =φ kk . φk orthogonal to )(1 tφ  









=φφ∫

T

k dttt
0

1 0)()( . Thus, 
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=
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0

0
1

)()(:

)()()(:

          (10.6) 

Since )(tW  is a Gaussian process, the random variables K,3,2, =kWk , are 
Gaussian. We observe from (10.6) that the coefficients K,3,2, =kYk , are 
coefficients of a white Gaussian process (Wk), and do not depend on which 
hypothesis is true. Only the coefficient 1Y  depends on the hypotheses H1 and H0. 

We need to find a sufficient statistic for this infinite number of random 
variables in order to make a decision as to which hypothesis is true. Since the 
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coefficients jW  and kjWk ≠, , of Karhunen-Loève expansion are uncorrelated, 
that is, 

     [ ] [ ] [ ] kjWWEHWWEHWWE kjkjkj ≠=== ,0|| 10          (10.7) 

and are jointly Gaussian, they are statistically independent. Thus, all 
K,3,2, =kYk , are statistically independent of 1Y  and have no effect on the 

decision. Hence, the sufficient statistic is only 1Y ; that is, 

1)( YT =Y            (10.8) 

We learn from (10.8) that the infinite observation space has been reduced to a one-
dimensional decision space. Thus, the equivalent problem to (10.1) is 

         
110

111

:
:

WYH
WEYH

=
+=            (10.9) 

where 1W  is Gaussian, with means 

       [ ] [ ] [ ]∫∫ =φ=
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10111 0)()()()(||     (10.10) 

and variances 

[ ] [ ]

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
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


φφ== ∫ ∫

T T
dtduuWtWutEHWEHWE

0 0
110

2
11

2
1 )()()()(||  

     [ ]∫ ∫ φφ=
T T

dtduuWtWEut
0 0

11 )()()()(         (10.11) 

The power spectral density of )(tW is 2/0N  for all frequency f, and thus its 
autocorrelation function ),( utRww  is 

          [ ] ),()(
2

),()()( 0 utCut
N

utRuWtWE wwww =−δ==        (10.12) 
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where ),( utCww  is the covariance function. Substituting (10.12) into (10.11), we 
obtain the variance of 1W  to be 

[ ]
2

)(
2

)()()(
2

0

0

2
1

0

0 0
11

02
1

N
dtt

N
dtduutut

N
WE

TT T
=φ=−δφφ= ∫∫ ∫        (10.13) 

We observe that the problem given by (10.9) is the same as the one solved in 
Example 5.1, with Em =  and 2/0

2 N=σ . Consequently, the optimum 
decision rule is 

γ=+η<
>=

2
ln

2
)( 0

0

1

1
E

E

N

H

H

yyT         (10.14) 

The detection parameter is given by 

      2d ≜ [ ] [ ]{ }
[ ] 00

2
01 2

|)(var

|)(|)(
N

E
HYT

HYTEHYTE
=

−
       (10.15) 

The probabilities of detection and false alarm are then 

         








 −γ
=

0
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N
EQPD          (10.16) 

and 








 γ
=

0

2
N

QPF          (10.17) 

where ( )⋅Q  is the Q-function, also denoted ( )⋅∗erfc  in many other books. Thus, 
the only factors affecting the performance of such a receiver are the signal energy 
E and the noise power spectral density 2/0N . From Chapter 8, we note that the 
optimum receiver is either a correlation receiver or a matched filter receiver. The 
receivers are illustrated in Figures 10.1 and 10.2.  

Note that the impulse response ( )th of the matched filter is 
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Figure 10.1  Correlation receiver. 

 
Figure 10.2  Matched filter receiver . 



 ≤≤−φ

=
otherwise,0
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)( 1 TttT
th         (10.18) 

We now derive the optimum receiver without resorting to the concept of 
sufficient statistics. Given a complete set { })(tkφ  of K orthonormal functions, the 
Karhunen-Loève expansion of the received process )(tY is  

∑
=

≤≤φ=
K

k
kk TttYtY

1
0),()(         (10.19) 

where 

          ∫ =φ=
T

kk KkdtttYY
0

,,2,1,)()( K         (10.20) 

The observation vector is T
kYYY ][ 21 K=Y . Under hypothesis H0, kY  is 

expressed as 

   ∫ =φ=
T

kkk WdtttWY
0

)()(         (10.21) 

while under hypothesis H1, kY  is 
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)()()()()()()(    (10.22) 

kY  indicates Gaussian random variables, and thus we only need to find the means 
and variances under each hypothesis to have a complete description of the 
conditional density functions. The means and variances of kY are 

     [ ] [ ] 0| 0 == kk WEHYE         (10.23) 

[ ] [ ] kkkk sWsEHYE =+=1|         (10.24) 
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and 
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RHWEHsYEHY wwkkkk ===−=      (10.26) 

Since uncorrelated Gaussian random variables are statistically independent, the 
conditional density functions are 

∏
= 










 −
−

π
=

K

k

kk
H N

sy

N
Hf

1 0

2

0
1|

)(
exp1)|(

1
yY        (10.27) 

and 
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From (8.11), (8.22), and (8.24), we have 

)(lim)( tsts KK ∞→
=          (10.29) 

where  

∑
=

φ=
K

k
kkK tsts

1
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Consequently, the likelihood ratio is 
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where )](Λ[ tyK  is the K-term likelihood ratio. Taking the logarithm and 
simplifying, (10.31) may be rewritten as 
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where 
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and 
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The likelihood ratio, letting ∞→K , is  
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and the decision rule is given by  

       [ ] η<
> ln)(Λln
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ty          (10.36) 

Substituting (10.2) into (10.4), and then into (10.36), we obtain 
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Since )()( 1 tEts φ= , the test reduces to 

0

0

1

0
1

0
ln)()(2

N
E

H

H

dttty
N

E T
+η<

>φ∫         (10.38) 

or 
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        (10.39) 

which is the optimum receiver derived earlier in (10.14) using the sufficient 
statistic. 
 
Example 10.1 
 
Consider the digital communication system shown in Figure 10.3. The information 
source is binary, and produces zeros and ones with equal probability. The 
communication system uses amplitude shift keying (ASK) so that the received 
signals under hypotheses H1 and H0 are 

TttWtYH
TttWtAstYH

≤≤=
≤≤+=

0),()(:
0),()()(:

0

1  

 
 
 
 

 
Figure 10.3  Digital communication system. 

Source Channel Receiver 

W(t) 
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The attenuation A produced by the communication channel is a Gaussian random 
variable with mean zero and variance 2

aσ . The signal )(ts  is deterministic with 
energy E, and )(tW is an additive white Gaussian noise with mean zero and power 
spectral density 2/0N . Determine the optimum receiver assuming minimum 
probability of error criterion. 
 
Solution 
 
From (10.3), the first normalized function )(1 tφ  is Etst /)()(1 =φ . Following 
the same procedure described from (10.3) to (10.9), the problem reduces to  
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convolution of two Gaussian density functions is Gaussian with mean  
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since the random variables A and W1 are independent and each with mean zero. 
Thus, the conditional density function under hypothesis 1H  is 
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Applying the likelihood ratio test, we have 
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Taking the logarithm and rearranging terms, an equivalent test is  
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For minimum probability of error, 01100 == CC  and 11001 == CC , we have 
1/)(/)( 101101100100 ==−−=η PPCCPCCP , since the hypotheses are equally 

likely. Thus, 0ln =η , and the optimum decision rule becomes 
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The sufficient statistic is 2
1)( yT =y , and the optimum receiver is as shown in 

Figure 10.4. 
 
10.2.2 General Binary Detection  
 
In this case, the transmitter sends the signal )(1 ts  under hypothesis H1 and )(0 ts  
under hypothesis H0. At the receiver, we have 
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Figure 10.4  Optimum receiver for Example 10.1. 
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Let the signal )(0 ts  and )(1 ts  have energies 
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and correlation coefficient 11, ≤ρ≤−ρ , such that  
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Following the same procedure as in the previous section, we use the Gram-
Schmidt orthogonalization procedure to obtain a complete set of orthonormal 
functions. The first basis function is  
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The second basis function )(2 tφ orthogonal to )(1 tφ  is 
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where 
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and 
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Substituting (10.44) into (10.47), we obtain 
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The remaining K,4,3),( =φ ktk , needed to complete the orthonormal set can be 
selected from any set orthogonal to )(1 tφ  and )(2 tφ . In terms of the basis 
functions, )(1 ts  and )(0 ts  are 
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        



 φρ−+φρ= )()1()()( 2

2
0100 tEtEts        (10.52) 

The general binary hypothesis problem is now given by 
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To obtain the random variables K,2,1, =kYk , we need to determine Karhunen-
Loève coefficients of )(tY . Thus,  
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since 0)()(
0

21 =φφ∫
T

dttt  and 1)(
0

2
1 =φ∫

T
dtt . Also,  

[ ]













φ






 +



 φρ−+φρ

φ+φφ=φ

=

∫

∫∫∫

dtttWtEtEH

dtttWdtttEdtttYH

Y
T

TTT

)()()()1()(:

)()()()()()(:

2
0

2
2

0100

0
2

0
2112

0
1

2    (10.56) 
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The random variable Yk for 2>k  is not dependent on the choice of the 
hypotheses, and thus it has no effect on the decision. It is 
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Since Wk, K,2,1=k , is a coefficient of Karhunen-Loève expansion of the white 
Gaussian process with mean zero and power spectral density 2/0N , it is a 
statistically independent Gaussian random variable with mean zero and variance 

2/0N . 
The equivalent problem to (10.40) is now two dimensional, and is given by  
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In vector form, the received vector Y and the signal vectors 1s  and 0s  are 
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Y1 and Y2 are statistically independent Gaussian random variables with mean 
vector 1m  under hypothesis H1, and mean vector 0m  under hypothesis H0, given 
by 
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Since the components of Y are uncorrelated, the covariance matrix of Y under each  
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hypothesis is diagonal and is given by 
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Thus, using the results in (9.14a) for diagonal equal covariances, the decision rule 
is 
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Since 1−C  is also diagonal, the decision rule reduces to 
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The sufficient statistic is 

     ( )01)( mmyy −= TT          (10.68) 

Substituting (10.59) to (10.61) in (10.68), the sufficient statistic can be written as 
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Figure 10.5  Optimum receiver for general binary detection. 

The optimum correlation receiver is shown in Figure 10.5. 
This optimum receiver can be implemented in terms of a single correlator. 

Substituting for the values of )(1 tφ  and )(2 tφ  in (10.69), we have 
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where 
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The decision in this case is 
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Figure 10.6  Optimum receiver for general binary detection problem with one correlator. 

The corresponding optimum receiver is shown in Figure 10.6. 
We now study the performance of this detector. Since the sufficient statistic is 

Gaussian, we only need to solve for the means and variances under each 
hypothesis to have a complete description of the conditional density functions. 
Solving for the means, we have 
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The variances are 
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The performance index, after substitution of (10.75) and (10.76), is given by 
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Therefore, the probability of detection is 
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where 
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The probability of false alarm is 
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We get more insight into the performance of this system by assuming that the 
hypotheses are equally likely, and by using minimum probability of error criterion. 
In this case, 

( )011 2
1 EE −=γ          (10.81) 

Define the constant  

      0101 2 EEEE ρ−+=α         (10.82) 

Substituting (10.81) and (10.82) into (10.79) and (10.80), and rearranging terms, 
we obtain  
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and 
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Since the probability of miss DM PP −=1 , then the probability of error is 
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We observe that the probability of error decreases as α increases, while 0N  is 
fixed. Thus, from (10.82), the optimum system is obtained when the correlation 
coefficient 1−=ρ . In this case, )()( 01 tsts −= , and we say that the signals are 
antipodal. If, in addition, the signal energies are equal, EEE == 10 , then the 
likelihood ratio test is 
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Substituting for the values of )(1 tφ  and )(2 tφ in terms of )(1 ts  and )(0 ts  into 
(10.85) and simplifying, an equivalent test is 
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Figure 10.7  Optimum receiver representing (10.88). 

The corresponding receiver is shown in Figure 10.7. The decision rule of (10.88) 
means that the receiver chooses the signal that has the largest correlation 
coefficient with the received one. 
 
Example 10.2 
 
Consider a communication system with binary transmission during each duration 

bbT ωπ= /2  seconds. The transmitted signal under each hypothesis is  
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11  

The hypotheses are equally likely. During transmission, the channel superimposes 
on the signals a white Gaussian noise process with mean zero and power spectral 
density .2/0N  Determine the optimum receiver and calculate the probability of 
error. Assume minimum probability of error criterion. 
 
Solution 
 
The received signal is characterized by 

b

b
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We observe that the signals )(1 ts  and )(0 ts  are orthogonal with energies 
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Thus, the orthonormal basis functions are 
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Using (10.54) and (10.56), we obtain the equivalent decision problem 
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Correspondingly, the coefficients of the signal vectors 1s  and 0s  are  












=

01
Es  and 








=

E
0

0s  

Applying the decision rule of (10.67), we have 
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where ηln  is zero, since we are using minimum probability of error criterion and 

10 PP = . Substituting for the values of y , 1s , and 0s , the test reduces to  
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To determine the probability of error, we need to solve for the mean and 
variance of the sufficient statistic 21)( YYT −=Y . Since 1Y  and 2Y  are 
uncorrelated Gaussian random variables, 21)( YYT −=Y  is also Gaussian with 
means 
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[ ] [ ] 001 |)Y(var|)Y(var NHTHT ==  

The conditional density functions of the sufficient statistic are 
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The probability of error in this case is 
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The optimum receiver is shown in Figure 10.8. 
 
 
10.3 M-ARY DETECTION 
 
We now generalize the concepts developed for binary hypothesis to M hypotheses. 
In this case, the decision space consists of, at most, )1( −M  dimensions. 

 
Figure 10.8  Optimum receiver for Example 10.2. 
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10.3.1 Correlation Receiver 
 
The problem may be characterized as follows 

Mk
Tt

tWtstYH kk ,,2,1
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),()()(:
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+=         (10.89) 

where )(tsk  is a known deterministic signal with energy kE , such that 
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T

kk MkdttsE
0

2 ,,2,1,)( K         (10.90) 

and )(tW  is an additive white Gaussian noise process with mean zero and power 
spectral density 2/0N , or of covariance (autocorrelation) function 
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The M signals may be dependent and correlated with autocorrelation coefficients 
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As before, we need to find a set of orthonormal basis functions in order to expand 
the received process )(tY ; that is )(tW  into the Karhunen-Loève expansion, since 

).,(),( utCutC wwyy =  
Using the Gram-Schmidt orthogonalization procedure, we can find a set of K 

basis functions, MK ≤ , if only K signals { })(tsk  are linearly independent out of 
the original M signals. Once the complete set of K orthonormal functions 
{ } ,,,2,1,)( Kjtj K=φ  are obtained, we generalize the corresponding coefficients 
by 
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From (10.29), the signals ,,,2,1),( Mktsk K=  may be written as 
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where kjs  is as defined in (8.36). Substituting (10.94) into (10.23), the equivalent 
M-ary decision problem becomes 
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We observe that Yk is a statistically independent Gaussian random variable with 
variance 2/0N , and that only the first K terms affect the decision, since for 

Kk >  the coefficients are kW , irrespective of the hypothesis considered. That is, 
we have reduced the decision space to MKK ≤, . The mean of the first K 
coefficients under each hypothesis is 

[ ]
Kk
Mj

smHYE kjkjjk ,,2,1
,,2,1

,|
K

K

=
=

==         (10.96) 

whereas, for Kk > , the mean is  

     [ ] [ ] 0| == kkk WEHYE         (10.97) 

From (5.56), we have seen that the optimum decision is based on the 
computation of the a posteriori probability ).|( YjHP  A decision is made in favor 
of the hypothesis corresponding to the largest a posteriori probability. Since the set 
of K statistically independent random variables is described by the joint density 
function 
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and the a posteriori probability on which the decision is based is given by  
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the sufficient statistic can be expressed as 

MjHfPT jHjj j
,,2,1),|()( | K== yy Y       (10.100) 

Note that )( yYf , which is the denominator of (10.99), is common to all signals, 
and hence it does not affect the decision and need not be included in the 
computation. Substituting (10.98) into (10.100) and taking the logarithm, an 
equivalent sufficient statistic is 
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The 1 of )(1 yjT  is a superscript. From (10.99) and (10.97), the signal vector is 
equal to the mean vector. That is, 
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We observe that if the hypotheses are equally likely, MPj /1=  for all j, then 

(10.100) means to compute )|(| jH Hf
j

yY  and select the maximum. That is, the 

MAP criterion is reduced to the ML criterion. The sufficient statistic reduces to 
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where 
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   [ ]MTNT jj ln)()( 1
0

2 += yy       (10.105) 

and 2 of )(2 yjT  is a superscript. In other words, the receiver decides in favor of 
the signal that maximizes the metric. Dropping the minus sign in (10.104) means 

that the receiver computes ∑
=

−
K

k
kjk sy

1

2)(  and decides in favor of the signal with 

the smallest distance. 
The computation of the decision random variables given by the sufficient 

statistic in (10.105) can be simplified if the signals transmitted have equal energy. 
The equivalent sufficient statistic is (see Problem 10.11) 
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where the 3 of )(3 yjT  is a superscript. The optimum receiver computes the 
decision variables from (10.106) and decides in favor of one. This receiver is 
referred to as the “largest of ” receiver and is shown in Figure 10.9. 
 
Probability of Error of M-Orthogonal Signals 
 
We have seen that when all hypotheses are equally likely and when all signals 
have equal energy E, the optimum receiver is the “largest of” receiver, as shown in 

 
Figure 10.9  “Largest of ” receiver. 
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Figure 10.9, which computes the sufficient statistics given in (10.106) and decides 
in favor of the hypothesis with the largest .jT  The probability of error is given by 

( ) ( ) ( ) ( )MM HPPHPPHPPP ||| 2211 ε++ε+ε=ε K      (10.107) 

Assuming H1 is true, it is easier to calculate )(εP  using the complement. Thus, 

         ( ) ( )11 |,,3,2,all11 HMkTTPPP kc K=<−=−=ε      (10.108) 

where cP  is the probability of a correct decision. A correct decision for H1 means 
that the receiver decides H1 )1allfor( 1 ≠> kTT k  when H1 is transmitted. 

Since the variables MkYk ,,2,1, K= , are Gaussian and uncorrelated, the 
sufficient statistics are also Gaussian and uncorrelated, and thus statistically 
independent. They are given by 

[ ]




=
=+

=+= ∫ MkW
kWE

dttWtstsT
k

T

kk ,,3,2,
1,

)()()( 1

0
1

K
     (10.109) 

The mean and variance for MkTk ,,2,1, K= , under hypothesis H1 are 

       [ ]




=
=

=
Mk

kE
HTE k ,,3,2,0

1,
| 1

K
      (10.110) 

and  

[ ] k
N

HTk allfor
2

|var 0
1 =       (10.111) 

Hence, the conditional density functions of the sufficient statistics are 

( )










 −
−

π
=

0

2
1

0
11| exp1)|(

11 N
Et

N
Htf HT       (10.112) 

and 

      Mk
N
t

N
Htf k

kHTk
,,3,2,exp1)|(

0

2

0
1| 1

K=









−

π
=      (10.113) 
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The probability of error is given by  

cPP −=ε 1)(        (10.114) 

where cP  is given by 

     ( )111312 |,,, HTTTTTTPP Mc <<<= K  
          ( ) ( ) ( )11113112 ||| HTTPHTTPHTTP M <<<= K      (10.115) 

Given a value of the random variable 1T , we have 

( )
1

1|11

1

1
)|(|,,3,2,
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∞− 






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


==< ∫
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kkHTk dtHtfHMktTP
k

K      (10.116) 

Averaging all possible values of 1T , the probability of a correct decision is 

         1
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Thus, )(εP  is obtained to be 
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∫      (10.118) 

Example 10.3 
 
A signal source generates the following waveforms 

Tttts

Tttts

Tttts

c

c

c

≤≤





 π

−ω=

≤≤





 π

+ω=

≤≤ω=

0,
3

2cos)(

0,
3

2cos)(

0,cos)(

3

2

1

 

where Tc /2π=ω . During transmission, the channel superimposes on the signal a 
Gaussian noise with mean zero and power spectral density .2/0N  Determine the 
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optimum receiver, and show the decision regions on the signal space. Assume that 
the signals are equally likely and minimum probability of error criterion. 
 
Solution 
 
We observe that the three signals )(1 ts , )(2 ts , and )(3 ts  have equal energy 

2/TE = . Let the first basis function be 

Ttt
TE

ts
c ≤≤ω==φ 0,cos2)(1

1  

Using trigonometric identities, )(2 ts  and )(3 ts  can be written as 

( ) ( ) 





 π

ω−





 π

ω=





 π

+ω=
3

2sinsin
3

2coscos
3

2cos)(2 tttts ccc  

( ) ( ) 





 π

ω+





 π

ω=





 π

−ω=
3

2sinsin
3

2coscos
3

2cos)(3 tttts ccc  

where ( ) 2/13/2cos −=π  and ( ) 2/33/2sin =π . By inspection, 2=k  
orthonormal functions are needed to span the signal set. Hence,  

Ttt
T

t c ≤≤ω=φ 0,cos2)(1  

Ttt
T

t c ≤≤ω=φ 0,sin2)(2  

The optimum receiver is the “largest of ” receiver, as shown in Figure 10.10. In 
terms of the basis functions, the signal set { })(tsk  may be expressed as 

)(
2

)( 11 tTts φ=  

)(
2

3
2
1)(

22
1)( 212 tTtTts φ−φ−=  

)(
2

3
2
1)(

22
1)( 213 tTtTts φ+φ−=  
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Figure 10.10  Optimum receiver for Example 10.3. 

The signal constellation and the decision regions are shown in Figure 10.11. 
 
Example 10.4  
 
Consider the problem given in Example 10.3, assuming the signal set  

4,3,2,1
0

,
2

)1(sin
=

≤≤




 π

−+ω=
k

Tt
ktAs ck  

Solution 
 
Using trigonometric identities, )(tsk  can be written as  

 
 
Figure 10.11  Decision regions for Example 10.3. 
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( ) ( ) 4,3,2,1,
2

1sin)cos(
2

1cos)sin()( =



 π

−ω+



 π

−ω= kktAktAts cck  

or tAtstAtstAtstAts cccc ω−=ω−=ω=ω= cos)(and,sin)(,cos)(,sin)( 4321  

The signals have equal energy 2/2TAE = . By inspection, 2=K  orthonormal 
functions are needed to span the signal set { } 4,3,2,1,)( =ktsk . Thus, we have 

Ttt
T

tt
T

t cc ≤≤ω=φω=φ 0forsin2)(andcos2)( 21  

Again, since the signals have equal energy and are equally likely, the optimum 
receiver is the “largest of ” receiver, and the decision regions, which are based on 
the “nearest neighbor” rule, are shown in Figure 10.12. 

Note that a rotation of the signal set does not affect the probability of error. 
For convenience, let the new signal set be as shown in Figure 10.13. Assuming 
that the signal )(1 ts  is transmitted, the probability of error is 

( ) ( )11 |quadrantfirstoutsidefalls| HPHP Y=ε  

Due to symmetry and the fact that ,4,3,2,1for4/1 == jPj  

( ) ( ) ( ) ( ) ( )ε=ε=ε=ε=ε PHPHPHPHP 4321 ||||  

Y1 and Y2 are statistically independent Gaussian random variables with means 

 
Figure 10.12  Decision space for Example 10.4. 
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Figure 10.13  Signal set for Example 10.4 after rotation. 
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10.3.2 Matched Filter Receiver  
 
The sufficient statistic given by (10.101) in the previous section using a correlation 
receiver can also be obtained using a matched filter. The matched filter is a 
particularly important topic in detection theory either for communication or radar 
applications. The output signal-to-noise ratio (SNR) is an efficient measure of the 
system. Instead of using a bank of K correlators, as shown in Figure 10.9, we use 
K matched filters, as shown in Figure 10.14. The impulse responses of the K filters 
are 

Kk
Tt

tTth kk ,,2,1
0

),()(
K=

≤≤
−φ=       (10.119) 

where { })(tkφ  form the set of basis functions.  
If )(ts  is the input to a linear filter with impulse response )(th , as shown in 

Figure 10.15, the output )(ty  is just the convolution of )(ts  and )(th  to yield 

 
Figure 10.14  Matched filter receiver. 

 
 
Figure 10.15  Linear filter. 
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      ∫
∞

∞−

ττ−τ= dthsty )()()(       (10.120) 

If )(th  is as given by (10.119), the resulting filter output is 

∫
∞

∞−

ττ+−φτ= dtTsty )()()(       (10.121) 

Sampling at Tt = , we obtain  

             ∫∫ ττφτ=ττφτ=
∞

∞−

T
dsdsTy

0
)()()()()(       (10.122) 

since )(tφ  is zero outside the interval .0 Tt ≤≤  A filter whose impulse response 
)()( tTsth −=  is a time-reversed and delayed version of a signal )(ts , ,0 Tt ≤≤  

is said to be matched to the signal )(ts . Correspondingly, the optimum receiver 
shown in Figure 10.14 is referred to as the matched filter receiver, since the K 
matched filters are matched to the basis functions{ })(tkφ  and generate the 
observation variables .,,, 21 KYYY K  

 
Maximization of Output Signal-to-Noise Ratio 
 
Consider the system shown in Figure 10.16 with a known input )(ts , impulse 
response )(th , and an additive white Gaussian noise )(tW  of mean zero and 
power spectral density .2/0N  The input is 

TttWtstX ≤≤+= 0),()()(       (10.123) 

The resulting output )(tY of the linear filter may be expressed as  

  
Figure 10.16  System for derivation of matched filter. 
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         )()()( 0 tWtstY +=        (10.124) 

where )(0 ts and )(tW  are produced by the signal and noise components of the 
input )(tX , respectively. The largest output signal-to-noise ratio is defined at the 
sampling time Tt =  as 

     
[ ]
[ ])(

)(
SNR

2

2
0

0
2

tWE

Ts
dout ==       (10.125) 

Note that the denominator of (10.125) is actually the variance of the noise. We 
now show that maximization of the SNR occurs when the filter is matched to the 
input known signal )(ts . 

Let )( fS  and )( fH  denote the Fourier transforms of )(ts  and )(th , 
respectively. Then, )(0 ts can be written in terms of the inverse Fourier transform 
to be 

dfefHfSts tfj∫
∞

∞−

π= 2
0 )()()(       (10.126) 

At sampling time Tt = , we may write 

     
2

22
0 )()()( ∫

∞

∞−

π= dfefHfSTs Tfj       (10.127) 

Evaluating the output average power of noise, we have 

[ ] ∫∫
∞

∞−

∞

∞−

== dffH
N

dffStWE ww
202 )(

2
)()(

00
     (10.128) 

Substituting (10.127) and (10.128) into (10.125), we obtain  

     

∫

∫
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N
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Using the Schwarz inequality for the numerator of (10.129), we have  

    ∫∫∫
∞

∞−

∞

∞−

∞

∞−

π ≤ dffHdffSdfefHfS Tfj 22
2

2 )()()()(      (10.130) 

The output SNR becomes  

∫
∞

∞−

≤= dffS
N

dout
2

0
0

2 )(2SNR       (10.131) 

We observe that the right-hand side of (10.131) does not depend on the transfer 
function )( fH  of the filter, but depends only on the signal energy and noise 
power spectral density. Hence, the signal-to-noise ratio in (10.131) is maximum 
when equality holds; that is, we choose )()( fHfH opt=  so that 

∫
∞

∞−

= dffS
N

2

0
max0 )(2]SNR[       (10.132) 

Again, using the Schwarz inequality, the optimum value of the transfer function is 
defined as 

Tfj
opt efSfH π−∗= 2)()(        (10.133) 

where )( fS ∗  is the complex conjugate of the Fourier transform of the input signal 

)(ts . For a real valued signal, )()( fSfS −=∗  and the impulse response of the 
optimum filter (10.133) is then 

      )()()( )(2 tTsdtefSth tTfj
opt −=−= −π−

∞

∞−
∫      (10.134) 

which is a time-reversed and delayed version of the input signal )(ts , and thus 
matched to the input signal. 
 
Example 10.5 
 
Let )(1 ts  and )(2 ts  be two signals as shown in Figure 10.17, which are used to 
transmit a binary sequence. 

(a) Sketch the matched filters. 
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Figure 10.17  Signals s1(t) and s2(t) for Example 10.5.  

(b) Determine and sketch the response to )(2 ts  of the matched filter. 
 
Solution 
 
(a) The matched filters to the signals s1(t) and s2(t) are )()( 11 tTsth −=  and 

)()( 22 tTsth −= , as shown in Figure 10.18. 
 
(b) The output to the input )(2 ts  is ).()()( 222 thtsty ∗=  Solving the convolution, 
we obtain 
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Figure 10.18  Matched filters to s1(t) and s2(t).  
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Figure 10.19  Response y2(t) of matched filter. 

which is shown in Figure 10.19. We observe that the maximum of the response is 
at the sampling time Tt = . 
 
 
10.4 LINEAR ESTIMATION  
 
In Chapter 6, we studied some techniques for parameter estimation in some 
optimum way, based on a finite number of samples of the signal. In this section, 
we consider parameter estimation of the signal, but in the presence of an additive 
white Gaussian noise process with mean zero and power spectral density .2/0N  
The received waveform is of the form 

TttWtstY ≤≤+θ= 0),(),()(        (10.135) 

where θ  is the unknown parameter to be estimated and )(ts  is a deterministic 
signal with energy E. The parameter θ  may be either random or nonrandom. If it 
is random, we use Bayes estimation; otherwise, we use the maximum likelihood 
estimation. We assume that ),( θts , which is a mapping of the parameter θ  into a 
time function, is linear. That is, the superposition principle holds, such that 

),(),(),( 2121 θ+θ=θ+θ tststs       (10.136) 

The estimator of the above-mentioned problem is linear, as will be shown later, 
and thus we refer to the problem as a linear estimation problem. 

Systems that use linear mappings are known as linear signaling or linear 
modulation systems. For such signaling, the received waveform may be expressed 
as 

TttWtstY ≤≤+θ= 0),()()(       (10.137) 

We now consider the cases where the parameter is nonrandom and random. 
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10.4.1 ML Estimation 
 
In this case, θ  is a nonrandom parameter. )(tY  may be expressed in a series of 
orthonormal functions, such that 

       ∑
=∞→

φ=
K

k
kkK

tYtY
1

)(lim)(       (10.138) 

where 

           ∫ φ=
T

kk dtttYY
0

)()(        (10.139) 

and the function φk forms a complete set of orthonormal functions. Thus, the first 
basis function is 

E
tst )()(1 =φ        (10.140) 

Substituting (10.140) into (10.139), with 1>k , we obtain 

         [ ]∫ =φ+φθ=
T

kkk WdtttWtEY
0

1 )()()(       (10.141) 

which does not depend on the parameter to be estimated, whereas 

[ ]∫ +θ=φ+φθ=
T

WEdtttWtEY
0

1111 )()()(      (10.142) 

depends on θ . Consequently, 1Y  is a sufficient statistic. 1Y  is a Gaussian random 

variable with mean Eθ  and variance 2/0N . 
The likelihood function is 

       ( )

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




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

 θ−
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π
=θ=θ

0

2
1

0
1|Θ exp1)|()(

1 N
Ey

N
yfL Y      (10.143) 

We know, from (6.3), that the ML estimate θ̂  is obtained by solving the likelihood 
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equation. That is, 

   
( ) ( ) 02ln
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00
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N
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NL     (10.144) 

or 

E
Y

ml
1ˆ =θ        (10.145) 

Therefore, this optimum estimator is a correlation of the received signal with the 
signal )(ts  normalized as shown in Figure 10.20. 

To check if an estimate is “good,” we need to compute its bias, error variance 
or Cramer-Rao bound, and determine its consistency. We observe that mlθ̂  is 

unbiased since EYE θ=][ 1 , and thus from (10.145)  

[ ] [ ] θ==θ 11
1)(ˆ YE
E

YE ml       (10.146) 

For an unbiased estimate, the variance of the error is equal to the lower bound of 
the Cramer-Rao inequality, provided it is efficient. Using (6.50) and (10.144), we 
have 

( ) 







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θ∂

θ∂

E

y
N

EEy
N

EyfY 1

0
1

0

1|Θ 22)|(ln
1  

                [ ]
ml

yc θ=θθ−θθ= ˆ1 )(ˆ)(      (10.147) 

which means that ]ˆvar[ θ−θml  equals the lower bound of the Cramer-Rao 
inequality given in (6.33). 

 

 

Figure 10.20  Optimum ML estimator. 
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10.4.2 MAP Estimation 
 
Following the same procedure as in Section 10.4.1, we obtain the sufficient 
statistic 1Y . However, since θ  is now assumed to be a random variable, the MAP 
estimate is obtained by solving the MAP equation in (6.31). Assume that θ  is 
Gaussian with mean zero and variance 2

θσ ; that is, 












σ

θ
−

σπ
=θ

θθ
2

2

Θ
2

exp
2

1)(f       (10.148) 

The MAP equation is  

( ) 02)(ln)|(ln)|(ln
21

0

Θ1|Θ1Θ| 11 =
σ

θ
+θ−=

θ∂
θ∂

+
θ∂

θ∂
=

θ∂

θ∂

θ

Ey
N

Efyfyf YY  

            (10.149) 

Solving for θ , we obtain the MAP estimate to be  

( ) ( ) mlmap Y
NE

NE
Y θα=

σ+
=θ

θ

ˆ
/1/2

/2
)( 1

2
0

0
1      (10.150) 

where 

( ) ( )2
0

0

/1/2

/2

θσ+
=α

NE

NE
      (10.151) 

It is easily shown that the mean-square error of the MAP estimate is equal to the 
lower bound of the Cramer-Rao inequality; that is,  
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θ∂
−=θ−θ

θ

θ      (10.152) 

The optimum MAP estimator is shown in Figure 10.21. 
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Figure 10.21  Optimum MAP estimator. 

10.5 NONLINEAR ESTIMATION 
 
The function ),( θts  is now a nonlinear function in θ . Again, θ  may be random 
or nonrandom. 
 
10.5.1 ML Estimation 
 
Let { })(tkφ  be a set of K orthonormal basis functions. Since we require an infinite 
number of basis functions to represent )(tY , we approximate the received signal 

)(tY  as 

∑
=

φ=
K

k
kk tYtY

1
)()(       (10.153) 

where 

∫ φ=
T

kk dtttYY
0

)()(       (10.154) 

Substituting (10.135) into (10.154), we have 

[ ] ∫∫∫ φ+φθ=φ+θ=
T

k

T

k

T

kk dtttWdtttsdtttWtsY
000

)()()(),()()(),(  

     KkWs kk ,,2,1,)( K=+θ=         (10.155) 

where 

        ∫ φθ=θ
T

kk dtttss
0

)(),()(       (10.156) 

E
α 

y1 

mapθ̂  ∫
T

0

 
y(t) 

)(1 tφ  
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The Yk is a statistically independent Gaussian random variable with mean )(θks  
and variance 2/0N . Thus, the likelihood function, from (6.2), is 

     
( )

[ ]
∏
= 









 θ−
−

π
=θ=θ

K

k

kk
K N

sy

N
fL

1 0

2

2/
0

|ΘY
)(

exp1)|y()(      (10.157) 

As ∞→K , (10.157) is not well defined. In fact, 

    




<π∞
>π

=θ=
∞→ 1for

1for0
)|(lim

0

0
|Θ N

N
f

K
yY       (10.158) 

Since the likelihood function is not affected if it is divided by any function that 
does not depend on θ , we avoid the convergence difficulty of (10.156) by 
dividing )(θL  by 

∏
= 











−

π
=

K

k

k

N
y

N
f

1 0

2

0

exp1)( yY       (10.159) 

Consequently, we define ],[Λ θ′ y  as 

],[Λ θ′ y ≜ 







θ−θ=

θ
∑∑
==

K

k
k

K

k
kk s

N
sy

Nf
f

1

2

010

|Θ )(1)(2exp
)(

)|(
y
y

Y

Y      (10.160) 

The ML estimate is the value of θ  for which ],[Λ θYk  is maximum. Using 
Parseval’s theorem and the fact that )()(lim tytykK

=
∞→

 and ),(),(lim θ=θ
∞→

tstskK
, 

we obtain 

dttstysy
TK

k
kkK

),()()(lim
01

θ=θ ∫∑
=∞→

      (10.161) 

and  

∫∑ θ=θ
=∞→

TK

k
kK

dttss
0

2

1

2 ),()(lim       (10.162) 
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Using (10.161) and (10.162), and taking the logarithm as ∞→K , the likelihood 
function is 

           ∫∫ θ−θ=θ′
TT

dtts
N

dttstY
N

tY
0

2

000
),(1),()(2]),([Λln      (10.163) 

To obtain the ML estimate mlθ̂ , which maximizes the likelihood function, we 
differentiate (10.163) with respect to θ  and set the result equal to zero. We find 
that the ML estimate θ̂  is the solution to the equation 

[ ]∫ =
θ∂

θ∂
θ−

T
dt

ts
tstY

0
0ˆ

)ˆ,(
)ˆ,()(       (10.164) 

Since mlθ̂  is an unbiased estimate, it can be shown that the error variance from the 
inequality 

∫ 





θ∂
θ∂

≥θ−θ
T

dt
ts

N
tY

0

2
0

),(
2

})]([ˆvar{       (10.165) 

equals the lower bound of the Cramer-Rao if and only if, as ,∞→K  

[ ] [ ]{ }θ−θθ=
θ∂

θ′∂
)(ˆ)(

),(Λln
tYc

tY       (10.166) 

Example 10.6 
 
Consider a known signal of the form 

TttfAts cc ≤≤θ+π=θ 0),2sin(),(  

where the amplitude cA , the frequency cf , Tkc /π=ω , and the integer k are 
known. We wish to estimate the unknown phase θ . 
 
Solution 
 
The ML estimate mlθ̂  is the solution to (10.164). That is,  
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[ ] 0)ˆ2cos()ˆ2(sin)(
0

=θ+πθ+π−∫ dttftfAtY c

T

cc  

or 

0)ˆ2cos()(
0

=θ+π∫ dttftY c

T
 

since 0)ˆ2cos()ˆ2sin(
0

=θ+πθ+π∫ dttftfA c

T

cc . Using trigonometric identities, we 

can express the above integral as 

0)2sin()(ˆsin)2cos()(ˆcos
00

=πθ−πθ ∫∫
T

c

T

c dttftYdttftY  

Solving for θ̂ , we obtain the ML estimate to be 

∫

∫

π

π

=θ −
T

c

T

c

dttftY

dttftY

0

01

)2sin()(

)2cos()(
tanˆ  

10.5.2 MAP Estimation 
 
Now Θ  is a random variable with density function )(Θ θf . Following the same 

approach as in Section 10.5.1, and using the fact that mapθ̂  is that value of θ  for 

which the conditional density function )|(Θ| yY θf  is maximum, 

[ ]
θ∂

θ′∂
=θ

),(Λlnˆ tY
map  

         [ ]∫ θ
θ

+
θ∂
θ∂

θ−=
T

f
d
ddt

ts
tstY

N 0
Θ

0
)(ln

),(
),()(2      (10.167) 

If θ  is Gaussian with mean zero and variance 2
θσ , then 

2
Θ //)(ln θσθ−=θθ dfd , and the MAP estimate becomes 
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          [ ]∫ θ∂
θ∂

θ−
σ

=θ θ
T

map dt
ts

tstY
N 00

2 ),(
),()(

2ˆ      (10.168) 

 
 
10.6 GENERAL BINARY DETECTION WITH UNWANTED 

PARAMETERS 
 
In this section, we consider the general binary detection of signals in an additive 
white Gaussian noise process with mean zero and power spectral density .2/0N  
However, the received waveform is not completely known in advance as in the 
previous section, where we assumed that the only uncertainties were due to 
additive white Gaussian noise. These signals, which are not completely known in 
advance, arise in many applications due to factors such as fading, random phase in 
an echo pulse, and so on. The unknown parameters of the signal are known as 
unwanted parameters. 

Consider the general binary detection problem where the received signal 
under hypotheses H1 and H0 is given by 

TttWtstYH
TttWtstYH

≤≤+=
≤≤+=

0),(),()(:
0),(),()(:

000

111

θ
θ

      (10.169) 

where 1θ  and 0θ  are the unknown random vectors. Note that if 1θ  and 0θ  are 
known, the signals ),( 11 θts  and ),( 00 θts  are deterministics, and thus they are 
completely specified. 

The unknown parameter 1,0, =jjθ , may be either random or nonrandom. In 

our case, we assume that 1,0, =jjθ , is a random vector with a known a priori 
density function. That is, the joint density function of the components of 

1,0, =jjθ , is known. The approach to solve this problem is to obtain a set of K 

orthonormal functions { })(tkφ , approximate )(tY  with the K-term series 
expansion, and let ∞→K . We form the K-term approximate to the likelihood 
ratio, and let ∞→K  to obtain 

     [ ] [ ]
)|(

)|(
)(Λlim)(Λ

0|

1|

0

1

Hf

Hf
tYtY

H

H
KK y

y

Y

Y==
∞→

     (10.170) 

where 
      111|1|

1
111

)|,()|( θθ
θ

Θ dHfHf HH ∫ χ= yy Y,Y  

111|11, )|(),|(
11

1
11

θθθ ΘΘ
θ

dHfHf HH∫ χ= y|Y     (10.171) 
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and  

000|0|
0

000
)|,()|( θθ

θ
Θ dHfHf HH ∫ χ= yy Y,Y  

  000|00, )|(),|(
00

0
00

θθθ ΘΘ
θ

dHfHf HH∫ χ= y|Y     (10.172) 

where 1,0, =χ j
jθ , denotes the space of the parameter jθ . 

We now solve for 1,0),,|(,| =jHf jjH jj
θΘ yY , under the given conditions. 

Let 

      ∑
=

φ=
K

k
kkK tYtY

1
)()(        (10.173) 

where 

  ∫ φ=
T

kkk dttYY
0

)(        (10.174) 

The observation vector is 

[ ]TKK YYY K21Y =       (10.175) 

Substituting (10.169) into (10.174), we obtain that kY  under hypothesis H1  is 

kk

T

k

T

kk WsdtttWdtttsY +=φ+φ= ∫∫ 1
00

11 )()()(),( θ      (10.176) 

while under hypothesis H0 is 

kk

T

k

T

kk WsdtttWdtttsY +=φ+φ= ∫∫ 0
00

00 )()()(),( θ      (10.177) 

Given 1,0, =jjθ , Yk is a statistically independent Gaussian random variable with 
means 

       [ ] 111 ,| kk sHYE =θ        (10.178) 
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       [ ] 000 ,| kk sHYE =θ        (10.179) 

and variances 

        [ ] [ ]
2

,|var,|var 0
0011

N
HYHY kk == θθ      (10.180) 

Thus, the conditional density functions are 

∏
= 










 −
−

π
=

K

k

kk
H N

sy

N
Hf

1 0

2
1

0
11,|

)(
exp1),|(

11
θΘ yY      (10.181) 

∏
= 










 −
−

π
=

K

k

kk
H N

sy

N
Hf

1 0

2
0

0
10,|

)(
exp1),|(

10
θΘ yY     (10.182) 

We observe that )]([ tYkΛ  is the ratio of (10.181) and (10.182). In the limit as 
∞→K , the terms in the exponent of (10.181) and (10.182), which can be 

approximated as summations, become 

    [ ]∫∑ −=−
=∞→

TK

k
kkK

dttstysy
0

2
11

1

2
1 ),()()(lim θ      (10.183) 

and  

    [ ]∫∑ −=−
=∞→

TK

k
kkK

dttstysy
0

2
00

1

2
0 ),()()(lim θ      (10.184) 

Substituting (10.183) and (10.184) into (10.171) and (10.172), respectively, we 
obtain 

[ ] 1
0

2
11

0
11|1| ),()(1exp)|()|(

1
111

θθθ
θ

Θ ddttsty
N

HfHf
T

HH












−−= ∫∫ χyY  

    (10.185) 

and 
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[ ] 0
0

2
00

0
00|0| ),()(1exp)|()|(

000
θθθ

0θ
Θ ddttsty

N
HfHf

T

HH












−−= ∫∫ χyY  

    (10.186) 

Hence, the likelihood ratio is the ratio of (10.185) and (10.186) to yield 

  

[ ]

[ ] 0
0

2
00

0
00|

1
0

2
11

0
11|

),()(1exp)|(

),()(1exp)|(

)](Λ[

0
00

1
11

θθθ

θθθ

θ

θ

Θ

Θ

ddttsty
N

Hf

ddttsty
N

Hf

tY
T

H

T

H













−−













−−

=

∫∫

∫∫

χ

χ

   (10.187) 

10.6.1 Signals with Random Phase 
 
We assume that the uncertainty in the received signal is due to a random phase 
angle, which is probably the most common random signal parameter. Let the two 
hypotheses be characterized by 

TttWtYH
TttWtAtYH c

≤≤=
≤≤++ω=

0),()(:
0),(Θ)cos()(:

0

1      (10.188) 

where the amplitude A and frequency fπ=ω 2  are assumed to be known. The 
phase Θ is a random variable having an a priori density function 





 π≤θ≤π−

π=θ
otherwise,0

,
2
1

)(Θf       (10.189) 

We observe that Θ)cos(),(1 +ω=θ tAts  and .0)(0 =ts  The goal is to design a 
receiver that chooses between the two signals )(1 ts  or ).(0 ts  Since ,0),(0 =θts  
the denominator of the likelihood ratio given by (10.186) becomes 

θθ

θθ

θ

θ

Θ

Θ

dHfdtty
N

ddtty
N

Hf

H

T

T

H

∫∫

∫∫

χ

χ












−=












−

)|()(1exp

)(1exp)|(

0|
0

2

0

0

2

0
0|

0
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       =











− ∫

T
dtty

N 0

2

0
)(1exp       (10.190) 

because 1)|( 0| 0
=∫ χ θθ

θ
Θ dHf H . Substituting (10.190) into (10.187) and 

simplifying, the resulting likelihood ratio is 

( )











−θθ= ∫∫∫

π

π−

TT
dtts

N
dttsty

N
dfty

0

2
1

00
1

0
Θ θ),(1θ),()(2exp)](Λ[   (10.191) 

Solving for the integral between brackets, we obtain 

2
)(cos

2

0

22 TAdttA
T

c =θ+ω∫     (10.192a) 

and 

        ∫∫ θ+ω=
T

c

T
dtttyAdttsty

00
1 )cos()()()(  

∫∫ ωθ−ωθ=
T

c

T

c dtttyAdtttyA
00

)sin()(sin)cos()(cos    (10.192b) 

where we have used  

θω−θω=θ+ω sin)sin(cos)cos()cos( ttt ccc    (10.192c) 

For convenience, define the quantities  

        ∫ ω=
T

cc dtttyy
0

cos)(     (10.193a) 

and 

      ∫ ω=
T

cs dtttyy
0

sin)(      (10.193b) 

Substituting (10.192) and (10.193) into (10.191), we have  
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( ) θ







θ−θ

π









−= ∫

π

π−

dyy
N

A
N

TAty sc sincos2exp
2
1

2
exp)](Λ[

00

2
 

 = 







+










− 22

0
0

0

2 2
2

exp sc yy
N

AI
N

TA        (10.194) 

where ( )⋅0I  is the modified Bessel function given by 






 +=+

π ∫
π

π−

22
0]sincosexp[

2
1 baIdxxbxa      (10.195) 

The likelihood ratio test is then 

η<
>









+










−=

0

1

22

0
0

0

2 2
2

exp)](Λ[

H

H

yy
N

AI
N

TAty sc      (10.196) 

Taking the natural logarithm, an equivalent test is 

12
0

0

1

22

0
01

2
ln2ln)( γ=+η<

>








+=

TA
N

H

H

yy
N

AIyT sc      (10.197) 

The optimum receiver computes only the sufficient statistic )(1 yT . A possible 
realization is shown in Figure 10.22. 

The Bessel function )(0 xI  is a monotonically increasing function of x. 
Recognizing that the plus sign is associated with the square root, the decision may 
be taken on x or 2x . Removing the square root blocks, an equivalent sufficient 
statistic is 

( ) 2

0

1

22
2 )( γ<

>+=

H

H

yyyT sc        (10.198) 

and the alternate realization of the optimum receiver is shown in Figure 10.23. 
 



 Signal Detection and Estimation 586

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.22  An optimum receiver for the problem stated in (10.188). 

 
Figure 10.23  Simplified form of the optimum receiver. 

Note that in deriving the decision rule, we kept cy  and sy  as defined in (10.193a) 
and (10.193b) to show how the quadrature components are used in the decision 
process. If we now use polar transformations 

θ=
θ=

sin
cos

ry
ry

s

c        (10.199) 

such that )/(tan 1
sc yy−=θ , (10.194) becomes 

yc 

ys 

∫
T

0

 

∫
T
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tcωcos  

tcωsin  

)(2 yT+ 

( )2⋅  

( )2⋅  
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∫
T
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tcωsin  

∫
T
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0

2
N
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0

2
N

A ( )2⋅  

+ ⋅ ( )⋅0ln I 1
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1
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>

H
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H0 

( )2⋅  

yc 

ys 
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          

















−= r

N
AI

N
TAtY

0
0

0

2 2
2

exp)]([Λ       (10.200) 

This is a “nice” result [1], that will be used in the next section on signals with 
random phase and amplitude. 
 
Incoherent Matched Filter 
 
We now show that the optimum receiver can be implemented in terms of a 
bandpass filter followed by an envelope detector and a sampler. The combination 
of the matched filter and envelop detector is often called an incoherent matched 
filter. We observe that by substituting (10.193) in (10.198), the decision rule can 
be written explicitly as 

     2

2

12

0

2

0
2 )(sin)()(cos)()( γ<

>












ω+












ω= ∫∫

H

H

ttyttyyT
T

c

T

c      (10.201) 

which is the known quadrature receiver shown in Figure 10.24. 
We have shown in the previous section that a correlator filter is equivalent to a 

matched filter having an impulse response TttTsth ≤≤−= 0,)()( , followed by a 
sampler at Tt = . The incoming signals are in this case tcωcos  and tcωsin , 

Tt ≤≤0 . Hence, the equivalent quadrature receiver is as shown in Figure 10.25. 

 
 
Figure 10.24  Quadrature receiver. 

H1 

H0 

∫
T

0

 

∫
T

0
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tcωsin  

2

0

1

2 )( γ<
>

H

H

yT + 

( )2⋅  

( )2⋅  

y(t) 
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Figure 10.25  Quadrature receiver using matched filters. 

The impulse response of a bandpass filter can be written as 

)](cos[)()( ttthth LcL φ+ω=       (10.202) 

where )(thL is the lowpass representation of )(th . That is, it is very slowly 
varying compared to tcωcos . The phase )(tLφ  is also very slowly varying 
compared to tcωcos , and it can be shown that setting it equal to zero will not 
make any difference. Hence, the bandpass filter becomes 

{ }tj
LcL

cethetthth ωℜ=ω= )(cos)()(      (10.203) 

If the input to the bandpass filter is )(ts , then the output at time T is  

     dttTtThtsdttstThTy c

T

cL

T
)cos()()()()()(

00
ω−ω−=−= ∫∫      (10.204) 

Expanding the cosine, we obtain 

∫∫ ω−ω+ω−ω=
T

cLc

T

cLc dtttThtsTdtttThtsTTy
00

sin)()(sincos)()(cos)(  

)(sin)(cos TyTTyT sccc ω+ω=         (10.205) 

where 

Tt
tTyh c

≤≤

−ω=

0
)(cos)(1 ( )2⋅  

( )2⋅  

y(t) 

Tt
tTyh c

≤≤
−ω=

0
)(sin)(2 

+ 2

0

1

2 )( γ<
>

H

H

yT 
H1 

H0 
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











−ℜ=ω−= ∫∫ ω
T

tj
L

T

cLc dtetThtsedtttThtsTy c

00

)()(cos)()()(      (10.206a) 

and 

         












−ℑ=ω−= ∫∫ ω
T

tj
L

T

cLs dtetThtsmdtttThtsTy c

00

)()(sin)()()(       (10.206b) 

Equation (10.203) can be written in terms of the amplitude and phase as 

     )](cos[)()()( 22 ttTyTyTy csc φ+ω+=     (10.207a) 

where 

     
)(
)(

tan)( 1

Ty
Ty

t
c

s−−=φ      (10.207b) 

Let Z be given by  

    ∫ ω−=
T

tj
L dtetThtsZ c

0
)()(       (10.208) 

Then, { } { }ZmZeZ 22 ℑ+ℜ= .  We conclude that 

∫ ω−==+
T

tj
Lcs dtetThtsZTyTy c

0

22 )()()()(      (10.209) 

That is, )()( 22 TyTy cs +  is the envelope of the response at time T and can be 
obtained by the incoherent matched filter shown in Figure 10.26. 

 
 
Figure 10.26  Incoherent matched filter. 
 

Bandpass filter 
h(t) 

Envelope 
detector 

)(ts )(ty
Tt = 

)()( 22 TyTy sc + 
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Suppose now that our signal is TtttAts c ≤≤θ+ω= 0,)cos()()(1 , and the 
amplitude variation )(tA  is slow compared to tcωcos . By definition, 













ℜ=ω= ∫∫ ω
T

tj
T

cc dtetAtyedtttAtyy c

00

)()(cos)()(    (10.210a) 

and 













ℑ=ω= ∫∫ ω
T

tj
T

cs dtetAtymdtttAtyy c

00

)()(sin)()(    (10.210b) 

It follows that  

∫ ω=+
T

tj
sc dtetAtyyy c

0

22 )()(       (10.211) 

In comparing (10.211) and (10.209), we observe that )()( 22 TyTy sc +  is identical 

to 22
sc yy +  when )()( tThtA L −=  or )()( tTAthL −= . That is, when the 

impulse response of the bandpass filter has the envelope matched to the amplitude 
of the signal, the output of the bandpass filter at time T is  









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=
c

s
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y
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Hence, the sufficient statistic is the output of the envelope detector at time .Tt =  
 
Example 10.7 
 
Given the problem in (10.188), and assuming Θ  uniformly distributed over the 
interval ],[ ππ− , determine 

(a) the probability of false alarm. 
(b) the probability of detection. 

 
Solution 
 
(a)  We found that the optimum receiver is the quadrature receiver with sufficient 
statistic 22)( sc yyyT += , with yc and ys as defined in (10.193). )(tW  is a white 
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Gaussian noise with mean zero and power spectral density 2/0N . Under H0, 
)()( tWtY = , and the probability of false alarm is given by  

[ ] [ ]0
22

0 ||)( HYYPHyTPP scF γ>+=γ>=  

From (8.130), yc and ys are Gaussian random variables, and thus we need only 
determine the means and variances. We observe that 
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Also,  

[ ] [ ] [ ]

4
2cos

44
cos

2

cos)(cos
2

cos)()(cos||var

0

0

00

0

20

0 0

0

0 0
0

2
0

TN
dtt

NTN
dtt

N

dudtuutt
N

dudtuuWtWtEHYEHY

T

c

T

c

T T

cc

T T

cccc

≈ω+=ω=

ω−δω=

ωω==

∫∫

∫ ∫

∫ ∫

 

since the integral of the double frequency term is negligible. In a similar manner, 
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We now show that Yc and Ys are approximately uncorrelated 
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since, again, the integral of the double frequency term is negligible. Hence, the 
joint density function of Yc and Ys is 


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with 4/0
2 TN=σ . The probability of false alarm is given by 
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where D is the region in the yc-ys plane outside the circle of radius γ , as shown 
in Figure 10.27. 

Using polar coordinates, we have α= cosryc , α= sinrys , 222
sc yyr += , 

)/(tan 12
cs yy−=α , and α= rdrddydy sc . Hence, 
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(b)   Assuming θ  is known, the probability of detection is given by  

[ ] [ ]1
22

1| |,|)()( HYYPHyTPPP scDD γ>+=θγ>=θ=θ  

Under hypothesis H1, )(Θ)cos()( tWtAtY c ++ω= . Thus, 
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c
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00
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Figure 10.27  Region D in the yc-ys plane. 
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Since [ ] 0)( =tWE , then 

[ ] [ ]∫∫ θ+ω+θ=ωθ+ω=θ
T

c
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1 )2cos(
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Once again, the double frequency term is negligible, and thus 

[ ] θ=θ cos
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Similarly, it can be shown that  

[ ] θ=θ sin
2
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ATHYE s   and  [ ] [ ]
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In addition, Yc and Ys are jointly Gaussian and statistically independent under the 
assumption that θ  is known. Hence, 
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The probability of detection is then  
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Using polar coordinates, as in (a) with α= cosryc  and α= sinrys , then 
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Expanding the exponent, )(θDP  becomes 
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where 
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We observe that )(θDP  is no longer a function of θ , and thus it does not matter 
whether or not θ  is known. It follows that DD PP =θ)( . Defining  
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2
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σ
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This is Marcum’s Q-function, where 
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It does not have a closed form, but the integral is evaluated numerically and 
tabulated. Thus, 
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
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Since )2/exp( 2σγ−=FP , 22/ln σγ−=FP , and the threshold becomes 

FPln2 2σ−=γ . Hence, the probability of detection also can be written as 

)ln2,( FD PdQP −= , and the ROC can be plotted as shown in Figure 10.28. 
 
10.6.2 Signals with Random Phase and Amplitude 
 
In many applications, both the signal amplitude and phase may be random. The 
received hypotheses are 

      
TttWtYH
TttWtStYH

≤≤=
≤≤+=

0),()(:
0),()()(:

0

1       (10.218) 

where Θ)+cos(=)( tAtS cω . The amplitude A and the phase Θ are random 
variables, even through they are assumed constant during an observation time 
interval ],0[ T . The a priori distributions of the amplitude and phase are assumed 
to be known. )(tW  is the white Gaussian noise with mean zero and power spectral 
density 2/0N . Using (10.170) and (10.171), the decision rule is 

 
 
Figure 10.28  ROC for problem (10.188) with random phase. 
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where the vector 1θ  represents the unknown parameters a and 1θ ; that is, 
),(1 θ= aθ . Since the random variables A and Θ are assumed independent, the 

likelihood ratio becomes 

   [ ]
)|(

θ)θ()(),θ,|(
)(Λ

0|

Θ1,Θ,|

0

11∫ ∫
Hf

dadfafHaf
ty

H

A AHA

y

y

Y

YΘ=      (10.220) 

Defining the conditional likelihood ratio as 
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the likelihood ratio is 

   [ ] [ ]∫= A A daaf|a )(ΛΛ yy       (10.222) 

Using the result obtained in (10.200), the conditional likelihood ratio is then 
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Assume Θ is uniformly distributed over the interval ]2,0[ π  and the amplitude 
A has a Rayleigh density function given by 
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This is called a slow Rayleigh fading, since the channel is considered constant over 
the signaling interval T. Substituting (10.223) and (10.224) in (10.222) and solving 
the integral, the likelihood ratio is then 
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Taking the natural logarithm on both sides of (10.225) and rearranging terms, the 
decision rule is  
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and 

22
sc yyr +=      (10.227b) 

Hence, the optimum receiver is the matched (or correlation) filter followed by an 
envelope detector, as shown in Figure 10.29. 

 
Figure 10.29  Optimum receiver for a slow Rayleigh fading channel. 
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The probability of false alarm is given in (10.213) to be  
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since 4/0
2 TN=σ . For a given value of aA = , the probability of detection is  

∫ )()(=
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where )(aPD  is given by (10.214). Substituting (10.214) and (10.224) in (10.229) 
and solving the integral, we obtain 
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where )/( 2
00 TNN aσ+=β . The average signal energy, for a given signal level 
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where 2/2TAE = . The probability of detection then becomes  

         ( ) avEN
N

FD PP += 0

0
       (10.232) 

10.6.3 Signals with Random Parameters 
 
Once the fundamental concepts of binary detection with unwanted parameters are 
understood, we can apply them to the many radar or communication situations that 
may arise. After we treated in detail the detection of signals with random phase, 
and random amplitude and phase, we can now give the procedure of some other 
applications. 
 
Signals with Random Frequency 
 
This is a typical radar application where the frequency of the echo signal of a 
moving target may differ from the frequency of the transmitted signal by a 
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frequency df  known as Doppler frequency. The problem may be defined as 
follows 
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1      (10.233) 

where the phase is uniformly distributed. The signal amplitude and time of arrival 
are assumed to be known, while the frequency is a random variable uniformly 
distributed over the interval ],[ hωωl  with density function )(wfW . fπ=ω 2  and 

lω  and hω denote the lowest and the highest possible frequencies. )(tW  is the 
additive Gaussian noise with mean zero and power spectral density 2/0N . 

Using the approach developed by Whalen [1], from (10.200), the conditional 
likelihood ratio is  
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while the average likelihood function is 
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To solve the integral (10.235), the density function is approximated by a discrete 
density function, such that  
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where  
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Hence, the likelihood function is 
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)(|ΛΛ yy       (10.238) 

and the optimum receiver may be as shown in Figure 10.30. 
 
Signals with Random Frequency and Rayleigh Fading Amplitude 
 
This is the same problem as the one defined in (10.231), while the amplitude has 
the density function as given by (10.224). The conditional likelihood ratio is then 
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Using the discrete approximation (10.226), the likelihood ratio is then 

 
 
Figure 10.30  Optimum receiver for signals with random frequency. (From: [1]. © 1971 Elsevier. 

Reprinted with permission.) 
 

∑ 

)(0 ⋅I

)(0 ⋅I

)(0 ⋅I

0

2
N

A 

0

2
N

A 

0

2
N

A 

Matched 
filter 
ω1 

Envelope  
detector  

Matched 
filter 
ω2 

Envelope  
detector  

Matched 
filter 
ωK 

Envelope  
detector  

γ<
>

0

1

H

H

 
y(t) 

r1

r2

rK

 H1 

 H0 



Detection and Parameter Estimation 601 

[ ] [ ] ( ) 











+
σ

ω
+

=ωωω= ∑∫
=

2

00

2

10

0 2exp)()(|ΛΛ k
av

K

k
k

av
W r

ENN
p

EN
N

dfyy  

            (10.240) 

The optimum receiver is shown in Figure 10.31. 
 
Signals with Different Random Phases 
 
This is known as the binary frequency shift keying (FSK) in communications. One 
of two frequencies is transmitted with an equal probability. At the receiver, we 
have 
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Where 

       )Θcos()( 11 +ω= tAtS     (10.242a) 

 

 
 
Figure 10.31  Optimum receiver for signals with random frequency and Rayleigh fading amplitude; 
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       )Φcos()( 00 +ω= tAtS     (10.242b) 

The random phases Θ  and Φ  are statistically independent and uniformly 
distributed over the interval ]2,0[ π . From (10.187), the likelihood ratio is 
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We follow the same approach as we did for signals with random phase in Section 
10.6.1, but in this case, we develop both the numerator and denominator of 
(10.243) to obtain 
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where 2
1

2
11 sc yyr += , θ= cos11 ry c , θ= sin11 ry s , 2

0
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φ= cos00 ry c , and φ= sin00 ry s . The likelihood ratio test is then 
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In communications problems, we are interested in the minimum probability of 
error, and thus 01100 == CC  and 10110 == CC . If 2/110 == PP , then 1=η , 
and the decision rule is  
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or equivalently 

    0

0

1

1 r

H

H

r <
>        (10.247) 

The corresponding optimum receiver is shown in Figure 10.32. 
The probability of error can be shown to be  
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where 2/2TAE =  is the signal energy. 
 
FSK Signals with Rayleigh Fading 
 
Due to multipath, the Rayleigh amplitude is often assumed in communication 
systems. Applying the Rayleigh fading model to FSK signals, the received signals 
are modeled as given by (10.241), with )cos()( 11 θ+ω= tAtS  and 

)cos()( 02 φ+ω= tBtS . )(1 tS  and )(2 tS  are transmitted with equal probabilities. 
Assuming slowly fading channel, the density functions of A and B are given by 
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Figure 10.32  Noncoherent receiver for binary FSK signals. 
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and 


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The random phases Θ  and Φ  are statistically independent and uniformly 
distributed over the interval ]2,0[ π . )(tW  is the white Gaussian noise with mean 
zero and power spectral density 2/0N . In this case, the likelihood ratio is  

        [ ]
∫ ∫
∫ ∫

Φ Φ0,Φ,|

Θ Θ1,Θ,|

)()(),,|(

θ)θ()(),θ,|(
Λ

0

1

B BHB

A AHA

ddbfbfHbf

ddafafHaf

φφφ
=

y

y
y

Y

Y
     (10.250) 

Solving for the decision rule after substitution, we obtain 
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Taking the natural logarithm, the decision rule becomes 
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where 
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Assuming minimum probability of error, the decision rule becomes  
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The optimum receiver is the same as the one shown in Figure 10.32. The 
probability of error can be shown to be 

  
avE

N
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N
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+
=
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=ε

22
)( 0

2
0

0       (10.254) 

where avE  is the average signal energy given by (10.231), and 2/2TAE =  is the 
signal energy over the interval T for a given signal level. 
 
Signals with Random Time of Arrival 
 
In this case, the received hypotheses are 
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       (10.255) 

where TttAts c ≤≤θ+ω= 0,)cos()( , and the arrival time τ  has a density 
function )(Τ τf  for τ  defined in Kτ≤τ≤0 . The conditional likelihood is then 
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where 

       22)( sc yyTr +=+τ      (10.257a) 
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The likelihood ratio test is  
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and the optimum receiver is as shown in Figure 10.33. 
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Figure 10.33  Optimum receiver for signals with random time of arrival. 

If the arrival time Kτ≤τ≤0 is divided in K discrete times ,,,2,1, Kkk K=τ  
then, by analogy to the random frequency case, the optimum receiver is as shown 
in Figure 10.34. 
 
 
10.7 BINARY DETECTION IN COLORED NOISE 
 
In the previous sections, we assumed that the additive Gaussian noise is zero mean 
and white. However, in many applications this assumption is not valid. We now 
consider detection of signals in nonwhite Gaussian noise. Consequently, the power  

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.34  Optimum receiver for signals with discrete random time of arrival. (From: [1]. © 1971 

Elsevier. Reprinted with permission.) 
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spectral density is not constant in the filter bandwidth. The noise samples are no 
longer uncorrelated, and thus they are statistically dependent. One way to deal 
with this problem is to extend to colored Gaussian noise the concepts using 
Karhunen-Loève expansion for white Gaussian noise. Another way may be to use 
some preliminary processing for the noise (referred to as whitening) to make the 
colored noise white, and then use the Karhunen-Loève expansion. 

The problem under consideration is to design a receiver to test for the general 
binary detection given by 

        
TttNtstYH
TttNtstYH

≤≤+=
≤≤+=

0),()()(:
0),()()(:

00

11       (10.259) 

where )(tY  is the received waveform, )(1 ts  and )(0 ts  are known deterministic 
signals, and )(tN  is the additive colored Gaussian with mean zero and covariance 
function ),( utCnn . 
 
10.7.1  Karhunen-Loève Expansion Approach 
 
The solution to the binary detection problem with Gaussian noise was relatively 
simple, since the coefficients of the Karhunen-Loève expansion generated by any 
set of orthonormal basis function resulted in independent samples. The coefficients 

KYYY ,,, 21 K  were statistically independent Gaussian random variables, and thus 

the likelihood function was the joint probability density function of these 
coefficients in the limit as ∞→K . The goal is still to generate uncorrelated 
coefficients from the likelihood ratio and obtain the decision rule. That is, the 
corresponding orthonormal functions and eigenfunctions satisfy the integral 
equation 

TtfduufutC kk

T
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      (10.260) 

where kλ  is the eigenvalue. This means that the coefficients  
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and 

∫=
T

kk dttftNN
0

)()(       (10.263) 

are obtained by the correlation operation and are uncorrelated. The noise 
components are uncorrelated Gaussian random variables with zero mean, such that 

[ ] [ ]∫ ==
T

kk dttNEtfNE
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and 

[ ] jkkkj NNE δλ=       (10.265) 

as shown in Section 8.5. The series expansion of noise is  
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Karhunen-Loève coefficients under hypotheses H1 and  H0 are  

       kkk NsYH += 11 :        (10.267) 

and 

       kkk NsYH += 00 :       (10.268) 

with means 

[ ] kk sHYE 11| =        (10.269) 

and 

[ ] kk sHYE 00| =        (10.270) 

and variances 

[ ] [ ] kkk HYHY λ== 01 |var|var       (10.271) 
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Since the coefficients ,,,2,1, KkYk K=  are statistically independent under each 
hypothesis, the conditional density functions are given by 
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Consequently, the K-term approximation of the likelihood ratio is 
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Taking the logarithm, we obtain  
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Letting ∞→K , the log-likelihood ratio is 
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Substituting (10.259) and (10.260) in (10.274), we obtain the likelihood ratio in 
terms of the correlation to be 
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Substituting (10.278) and (10.279) into (10.277), the log-likelihood ratio test 
becomes 
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or 
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where 
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Hence, from (10.280), we see that the receiver for detection of signals in colored 
noise can be interpreted as a correlation detector, as shown in Figure 10.35. To 
build such a receiver, we need to determine )(1 th  and )(0 th . Substituting (10.278) 
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Figure 10.35  Correlation receiver for signals in colored noise. 
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and similarly, 
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That is, )(1 th  and )(0 th  are solutions to the integral equations in (10.283) and 
(10.284), respectively. 
 
10.7.2 Whitening Approach 
 
Another approach to detect signals in colored noise is to do a preliminary 
processing of the colored noise. The received signal is passed through a linear 
time-invariant filter, such that the noise at the output of the filter is white, as 
shown in Figure 10.36. 

The process of converting colored noise to white noise is referred to as 
whitening. Once the noise is white, the problem becomes a detection of a known 
signal in additive white Gaussian noise, which we have covered in the previous 
sections. 
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Figure 10.36  Whitening filter. 

We now solve the binary detection problem in colored noise. The output of 
the whitening filter under hypothesis H1 is given by 
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under hypothesis H0, )(tY ′  is 
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Since )(tN ′  is the white Gaussian noise, its covariance function is given by  

       ),( uthw  
y(t) y′(t) 
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       TututuNtNEutC nn ≤≤−δ=′′=′′ ,0),()]()([),(      (10.290) 

where we have assumed 20 =N . Thus, we have reduced the problem to general 
binary detection in white Gaussian noise. The equivalent problem is summarized 
as follows: 

   
)()()(:
)()()(:

00

11

tNtstYH
tNtstYH

′+′=′
′+′=′

      (10.291) 

This problem was solved in Section 10.2.2. Thus, by analogy to (10.71) and 
(10.72), the decision rule can be written as 
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Note that )(ty ′ , )(1 ts′ , and )(0 ts′  are given in (10.285a), (10.286), and (10.289), 
respectively, in terms of the original signals )(ty , )(1 ts , and )(0 ts . Rewriting 
(10.292) and (10.293) in terms of the original signals, we obtain 
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which can be implemented as shown in Figure 10.37. 
Again, construction of the receiver requires knowledge of the impulse 

response ),( uthw , which can be obtained by substituting (10.287) into (10.290). 
We have 
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Figure 10.37  Receiver for colored noise using whitening. 
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The solution to the integral equation in (10.295) yields ),( wthw . 
Another way to define the integral equation is in terms of the function 

),( baQ . In some applications, we may need to express the colored noise as the 
sum of two components, such as 

           )()()( tNtNtN c ′+=       (10.296) 

where )(tN c  is not known. In this case, the function ),( baQ  is useful in obtaining 

the minimum mean-square error, )(ˆ tN c  of )(tN c . We define  
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In order to write the integral equation in terms of ),( baQ , we multiply both sides 
of (10.295) by ),( vthw , and integrate with respect to t to obtain 
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Substituting (10.297) into (10.298c) results in 
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From (10.298a) and (10.299), we deduce that 
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which means that given the covariance function ),( baCnn , we solve (10.300) to 
yield ),( aQnn v . 
 
10.7.3 Detection Performance 
 
In this section, we study how the colored noise affects the performance. Recall that 
for binary detection in white noise, the decision rule, from (10.71), (10.72), and 
(10.73), was 
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Using the whitening approach, the nonwhite noise )(tN  is transformed into white 
noise )(tN ′  with 20 =N . The received waveform )(tY  is transformed into )(tY ′ , 
and the transmitted signals )(1 ts  and )(0 ts  are transformed into )(1 ts′  and )(0 ts′ , 
respectively. Assuming minimum probability of error criterion and that the 
hypotheses are equally likely, the test may be expressed as  
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The sufficient statistic )(YT ′  is Gaussian with means 
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and 
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The variances under hypotheses 1H  and 0H  are the same. The expression is 
cumbersome. However, it can be shown to have a value of twice the mean of T 
under 1H . Denote this variance by 2σ , and then the probability of error is  
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where σ  is given by (10.303). The calculation of (10.305) is involved. However, 
we observe that the probability of error is a function of the signal’s shape, unlike 
the case of detection in white noise, where the performance was a function of the 
signal-to-noise ratio only. Consequently, to minimize the probability of error, we 
need to find the signals shape. We also see from (10.305) that the probability of 
error is minimized if σ  is maximized, subject to the constraint that the energy is 
fixed to a value E. Hence, we form the objective function J and solve the equation 

EJ λ−σ= 2        (10.306) 

where λ  is the Lagrange multiplier and E is given by 
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The solution of (10.306) results in the optimum signal’s shape, which is obtained 
to be 

    Tttsts ≤≤−= 0),()( 01       (10.308) 

That is, we have optimum performance when the correlation coefficient 1−=ρ , 
which is the same result obtained for binary detection in white Gaussian noise. 
 
 
10.8 SUMMARY 
 
In this chapter, we have discussed the problem of detection of signal waveforms 
and parameter estimation of signals in the presence of additive noise. We first 
covered binary and M-ary detection. The approach adopted was to decompose the 
signal waveform into a set of K independent random variables, and write the signal 
in Karhunen-Loève expansion. The coefficients of Karhunen-Loève expansion are 
in a sense samples of the received signal. Since the additive noise was white and 
Gaussian, the coefficients of the Karhunen-Loève expansion were uncorrelated 
and jointly Gaussian. Consequently, the problem was reduced to an equivalent 
decision problem, as developed in Chapter 5. 

In Sections 10.4 and 10.5, we assumed that the received signals may contain 
some unknown parameters that needed to be estimated. Linear and nonlinear 
estimation were considered. When the parameter to be estimated was nonrandom, 
we used maximum likelihood estimation. The maximum a posteriori estimation 
was used for a random parameter. The “goodness” of the estimation techniques 
was studied as well. 

The general binary detection with unknown parameters was presented in 
Section 10.6. Again using Karhunen-Loève coefficients, we obtained the 
aproximated K-term likelihood ratio, and then we let ∞→K  to obtain the 
likelihood ratio. This approach of obtaining a K-term approximation of Karhunen-
Loève coefficients and letting ∞→K  was also used in solving for the parameter-
estimates discussed in Sections 10.4 and 10.5. Specifically, we considered signals 
with random phase, and derived the incoherent matched filter. Then, we 
considered signals with random phase and amplitude. In Section 10.6.3, we treated 
examples of signals with random parameters, such as signals with random 
frequency, signals with random frequency and Rayleigh fading amplitude, signals 
with different random phases, FSK signals with Rayleigh fading, and signals with 
random time of arrival. 

We concluded the chapter with a section on binary detection in colored noise. 
Since the noise was not white anymore, the generated Karhunen-Loève 
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coefficients were no longer uncorrelated. In solving this problem, we first used the 
K-term approximation from Karhunen-Loève coefficients. However, due to the 
nature of noise, some integral equations needed to be solved in order to design the 
optimum receiver. The second approach used to solve this problem was whitening. 
That is, we did a preliminary processing by passing the received signal through a 
linear time-invariant system, such that the noise at the output of the filter was 
white. Once the noise became white, the techniques developed earlier for binary 
detection were then used to obtain the optimum receiver. A brief study on the 
performance of detection of signals in colored noise was also presented. 
 
 

PROBLEMS 
 
10.1 A signal source generates signals as shown in Figure P10.1. The signals are 

expressed as )rect()2cos()(1 ttts π= , )rect()]3/2(2cos[)(2 ttts π+π= , and 
)rect()]3/2(2cos[)(3 ttts π−π= . 

(a) Describe a correlation receiver for these signals. 
(b) Draw the corresponding decision regions on a signal space. 

 
10.2 A rectangular pulse of known amplitude A is transmitted starting at time 

instant t0 with probability 2/1 . The duration T of the pulse is a random 
variable uniformly distributed over the interval ],[ 21 TT . The additive noise 
to the pulse is white Gaussian with mean zero and variance .2/0N  
(a) Determine the likelihood ratio. 
(b) Describe the likelihood ratio receiver. 

 
10.3 Consider the general binary detection problem  

TttWtstYH
TttWtstYH

≤≤+=
≤≤+=

0),()()(:
0),()()(:

00

11  

 
Figure P10.1  Signal set. 
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Figure P10.3  Signal set. 

where )(1 ts  and )(0 ts are as shown in Figure P10.3, and )(tW  is a white 
Gaussian noise with mean zero and power spectral density .2/0N  
(a) Determine the probability of error, assuming minimum probability of 

error criterion and 2/1)()( 10 == HPHP . 
(b) Draw a block diagram of the optimum receiver 

 
10.4 In a binary detection problem, the transmitted signal under hypothesis 1H  

is either )(1 ts  or )(2 ts , with respective probabilities 1P  and .2P  Assume 
2/121 == PP , and )(1 ts  and )(2 ts  orthogonal over the observation time 

],0[ Tt∈ . No signal is transmitted under hypothesis 0H . The additive 
noise is white Gaussian with mean zero and power spectral density .2/0N  
(a) Obtain the optimum decision rule, assuming minimum probability of 

error criterion and 2/1)()( 10 == HPHP . 
(b) Draw a block diagram of the optimum receiver. 

 
10.5 Consider the binary detection problem  

20),()()(:
20),()()(:

00

11

≤≤+=
≤≤+=

ttWtstYH
ttWtstYH

 

where tetsts −=−= )()( 01 , and )(tW  is an additive white Gaussian noise 
with mean zero and covariance function ).()2/(),( 0 utNutCww −δ=  
(a) Determine the probability of error, assuming minimum probability of 

error criterion. 
(b) Draw a block diagram of the optimum receiver. 

 
10.6 A binary transmission uses two signaling waveforms )(1 ts  and )(2 ts , such 

that 

)(1 ts )(0 ts

T 
T

A A

A−

t t 
4

3T 
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



 ≤≤

π
=

otherwise,0

0,sin
)(1

Ttt
Tts   and  





 ≤≤

π
=

otherwise,0

0,2sin
)(2

Ttt
Tts  

)(1 ts  and )(2 ts  are transmitted with equal probability. The additive noise 
during transmission is white Gaussian with mean zero and power spectral 
density .2/0N  Determine the minimum probability of error at the receiver. 

 
10.7 A binary transmission is constructed from two orthogonal signals )(1 ts  and 

)(2 ts , Tt ≤≤0 , with energies 11 =E  and 5.02 =E , respectively. The 
additive noise is white Gaussian with mean zero and power spectral density 
0.5. )(1 ts  and )(2 ts  are transmitted with equal a priori probabilities. 
(a) Determine the achievable probability of error. 
(b) Determine the minimum signal energy to achieve the same error 

performance. 
 
10.8 Consider the following binary detection problem. At the receiver, we have 

TttWtYH
TttWtsEtYH

≤≤=
≤≤+=

0),()(:
0),()()(:

0

1  

The additive noise is Gaussian with mean zero and power spectral density 
2/0N . However, when a signal is transmitted, it can be either )(1 ts  or 

)(2 ts , which occur with probabilities 1P  and 2P , respectively. )(1 ts  and 
)(2 ts  are orthogonal over the observation interval, and have energies 1E  

and 2E , respectively. Determine the decision rule that minimizes the 
probability of error. 

 
10.9 Let )(1 tφ , )(2 tφ , and )(3 tφ  be three orthonormal functions over the 

interval ],0[ T . Define 7,,2,1,0),( K=ktsk , as  

)]()()([)( 3210 tttAts φ+φ+φ=         )]()()([)( 3214 tttAts φ+φ+φ−=  
)]()()([)( 3211 tttAts φ−φ+φ=         )]()()([)( 3215 tttAts φ−φ+φ−=  
)]()()([)( 3212 tttAts φ+φ−φ=         )]()()([)( 3216 tttAts φ+φ−φ−=  
)]()()([)( 3213 tttAts φ−φ−φ=         )]()()([)( 3217 tttAts φ−φ−φ−=  

The signals 7,,2,1,0),( K=ktsk , are transmitted with equal a priori 
probabilities, and the received signal is given by 
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TttWtstY i ≤≤+= 0),()()(  

where )(tW  is the white Gaussian noise with mean zero and power spectral 
density .2/0N  
(a) Determine A, such that the energy of )(tsk  is equal to E. 
(b) Determine the receiver for minimum probability of error criterion. 
(c) Show the decision regions. 
(d) Find the minimum probability of error. 

 
10.10 During transmission of 16 quadrature amplitude modulated signals, an 

additive white Gaussian noise with mean zero and power spectral density 
2/0N  is superimposed on the signals. The signal space is shown in Figure 

P10.10. The signal points are spaced d units apart. They are given by 

16,,2,1

22),()()( 21

K=

≤≤
−

φ+φ=

k

TtT
tbtats kkk  

where tfTt 01 2cos/2)( π=φ  and tfTt 02 2sin/2)( π=φ  
Assume minimum probability of error criterion. 
(a) Draw a block diagram of the optimum receiver. 
(b) Show the decision regions in the signal space. 
(c) Determine the probability of error. 

 
Figure P10.10  Signal set. 
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10.11 Starting from (10.104), derive the expression in (10.106). 
 
10.12 Consider the situation where the received signal is given by  

TttWtYH
TttWtAstYH

≤≤=
≤≤+=

0),()(:
0),()()(:

0

1  

Let A be an unknown constant and )(tW  be a white Gaussian noise process 
with mean zero and power spectral density .2/0N  Design the optimum 
receiver, assuming minimum probability of error criterion. 
 

10.13 Consider the estimation problem 

TttWtstY ≤≤+θ= 0),(),()(  

where )()/1(),( tsts θ=θ . θ  is an unknown constant, whereas )(ts  is a 
known signal with energy E. )(tW  is a white Gaussian noise with mean 

zero and covariance function )()2/(),( 0 utNutCww −δ= . Determine mlθ̂ , 
the maximum likelihood estimate of θ . 

 
10.14 Consider Problem 10.13, where θ  is now a Gaussian random variable with 

mean zero and variance 2
θσ . Determine the equation for which a solution is 

mapθ̂ , the maximum a posteriori estimate of θ , and show that this equation 

also gives mlθ̂  as the variance ∞→σθ
2 . 

 
10.15 Assume the received signal is given by 

)()cos()( tWtAtY c +θ+ω=  

where θ  is an unknown constant, and )(tW  is the white Gaussian noise 
with mean zero and power spectral density 2/0N . 
(a) Determine the likelihood equation satisfied by the maximum likelihood 

estimate for θ̂ . Assume the integral involving the double frequency 
terms is zero. 

(b) Assuming mlθ̂  unbiased, and apply the Cramer-Rao inequality to 

obtain a bound for ]ˆvar[ mlθ  when 1)/( 0
2 <<NTA ; that is, when the 

signal-to-noise ratio is very small. 
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Figure P10.16  Signals )(1 ts  and ).(2 ts  

10.16 Let )(1 ts  and )(2 ts  be the signals shown in Figure P10.16. 
(a) Specify the matched filter for each of the signals shown. 
(b) Sketch the filter output as a function of time when the signal matched 

to it is the input. 
(c) Sketch the output of the filter matched to )(2 ts  when the input is 

)(1 ts . 
 
10.17 Consider the general binary detection with 








≤≤

=

otherwise,0
2

0,2
)(1

Tt
Tts   and  








≤≤

=

otherwise,0
2

,2
)(2

TtT
Tts  

over an additive white Gaussian noise channel. The noise is assumed to 
have zero mean with power spectral density .2/0N  
(a) Determine the matched filters. 
(b) Draw the responses (noise-free) of the matched filters. 
(c) Compute the SNR at the output of the matched filters. 

 
10.18 Consider a digital communications system with a source using On-Off 

signaling. The channel superimposes on the transmitted signal an additive 

t 

)(1 ts 

1.0 

1 2 3 4 5 6 7 

t 

)(2 ts 

0.5 

1 2 3 4 5 6 7 

-0.5 
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white Gaussian noise process with mean zero and power spectral density 
2/0N . The received waveforms are given by 

TttWtYH
TttWtAtYH c

≤≤=
≤≤++ω=

0),()(:
0),()Θcos()(:

0

1  

where the amplitude A and the phase Θ are independent random variables 
with known density functions. Assume that Tnc /2 π=ω  where n is an 
integer, Θ is uniformly distributed over the interval ]2,0[ π , and A is 
Rayleigh distributed with density function 








≥











σ
−

σ=

otherwise,0

0,
2

exp
)( 2

2
aaa

af aaA  

The signal Tttts c ≤≤ω= 0,cos)(1 , has energy E. 
(a) Determine the optimum decision rule. 
(b) Draw a block diagram of the optimum receiver. 

 
10.19 Consider the problem of signals with random phase and amplitude given in 

Section 10.6.2. Using the Neyman-Pearson test, determine the probability of 
detection for a specified probability of false alarm. The random variables Θ 
and A are assumed to be statistically independent, with Θ uniformly 
distributed over the interval ]2,0[ π  and A Rayleigh distributed. 

 
10.20 Consider the estimation problem 

TttNtstY ≤≤+θ= 0),(),()(  

where )(tN  is a nonwhite Gaussian noise with mean zero and covariance 
function 

),(),(),( utCutCutC
ccnnnnnn += ′′  

where )()2/(),( 0 utNutC nn −δ=′′ . The received waveform is passed 
through a correlation operation to yield 

KkNsY kkk ,,2,1,)( K=+θ=  
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such that  

∫ φθ=θ
T

kk dtttss
0

)(),()(  

and KkN k ,,2,1, K= , are random variables. Kktk ,,2,1),( K=φ , are 
eigenfunctions corresponding to Kkk ,,2,1, K=λ , associated with the 
covariance function ),( utC

ccnn . In the limit as ∞→K , we have 

∑∑
=∞→=∞→

φ+φθ=
K

k
kkK

K

k
kkK

tNtstY
11

)(lim)()(lim)(  

(a) Determine the mean and variance of the Karhunen-Loève coefficients 
Nk. 

(b) Are the noise components K,2,1, =kN k , statistically independent? 
(c) If )(tY  is passed through a whitening filter to obtain 

∑∑
=∞→=∞→

φθ′+φθ′=

≤≤′+θ′=′
K

k
kkK

K

k
kkK

tNts

TttNtstY

11
)()(lim)()(lim

0),(),()(
 

determine the mean and variance of the white noise component Nk. 
 
10.21 Consider a noise process, such that WtN =)(1  in the interval ],0[ Tt∈ . W 

is Gaussian with mean zero and variance 2
wσ . 

(a) Can )(1 tN  be whitened in the given interval? Explain. 
(b) Repeat (a) assuming that another independent noise process )(2 tN  is 

superimposed on )(1 tN , such that the new noise process is 

TttNtNtN ≤≤+= 0),()()( 21  

and the covariance function of )(2 tN  is 

Tutut
N

utC nn ≤≤−δ= ,0,)(
2

),( 0
22
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Chapter 11 
 
 

Adaptive Thresholding CFAR Detection 
 
 
11.1 INTRODUCTION 
 
In signal detection, the basic goal is to derive the optimum receiver structure based 
on some criterion that is determined by the application. Such optimal (ideal) 
detectors require an essentially complete statistical description of the input signals 
and noise. In practice, this information may not be available a priori, and the 
statistics of the input data may also vary with time. These constraints lead to the 
consideration of other (nonoptimal) detectors. 

In practical radar signal detection systems, the problem is to automatically 
detect a target in thermal noise plus clutter. Clutter is the term applied to any 
unwanted radar signal from scatterers that are not of interest to the radar user [1]. 
Examples of unwanted echoes, or clutter, in radar signal detection are reflections 
from terrain, sea, rain, birds, insects, chaff, and so on. Chaff consisting of dipole 
reflectors, usually metallic, is dropped from aircrafts to mask the real target from 
the radar. Due to the development of Doppler processing, it is now mainly used for 
slow moving targets [2]. Since the environment in which a radar operates depends 
on factors such as weather conditions and the physical location of operation, the 
returned signals are statistically nonstationary, with unknown variance at the 
receiver input. Thus, the ideal detector using a fixed threshold is extremely 
sensitive to the total noise (thermal noise plus clutter) variance. In fact, a small 
increase in the total noise power results in a corresponding increase of several 
orders of magnitude in the probability of false alarm. For a single pulse detection, 
it can be shown that the probability of false alarm is given by [3] 












σ

γ
−=

2

2

2
expFP           (11.1) 

where γ is the threshold level and 2σ  is the total noise variance. Let 
dFP  be the 

design  probability  of  false  alarm  based on a  known  variance  2
dσ .  For  a fixed 
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threshold γ, the probability of false alarm in terms of the noise level and design 
probability of false alarm is obtained from (11.1) as  

( ) 22 / σσ= d
dFF PP            (11.2) 

The subscript d denotes design value. As illustrated in Figure 11.1, for a design 
probability of false alarm of 610− , an increase of only 3 dB in the noise power 
causes the actual probability of false alarm to increase by more than 1,000, which 
is intolerable for data processing, either by a computer or by a human operator. 
Therefore, adaptive threshold techniques are needed to maintain a CFAR. The 
receiver is desired to achieve CFAR and maximum probability of detection of the 
target. 

In order to appreciate the practical aspects of adaptive thresholding detection, 
we first give a brief description of radar principles. It should be noted that radar 
concepts can be very involved, and many books are written in that sense. Thus, we 
only give the necessary fundamentals to be able to understand adaptive 
thresholding CFAR detection. Then, we discuss some of the adaptive CFAR 
techniques. We also introduce the concept of adaptive CFAR detection in mobile 
communications. In particular, we consider applications of adaptive CFAR 
detection in code division multiple access (CDMA), and thus we must also give a 
brief description of spread spectrum communication systems. Again, we present 
only the necessary fundamentals to be able to appreciate the applications and 
possible future developments. 
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Figure 11.1 Effect of the noise power increase on the probability of false alarm for a fixed threshold; 
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11.2 RADAR ELEMENTARY CONCEPTS  
 
Radar is derived from the initials of the phrase RAdio Detection And Ranging. 
Radar is an electromagnetic system used for the detection and location of objects 
(or targets). It achieves these two purposes by transmitting an electromagnetic 
energy and then extracting the necessary information about the target from the 
returned echo signal, as shown in Figure 11.2. This information is drawn from the 
changes observed in the signal parameters. The range, or distance, is determined 
from the measurements of the time taken for the radar signal to travel to the target 
and back (time delay). The direction, or angular location, of the target relative to 
the radar is found with a directive antenna. The shift in the carrier frequency of the 
received echo signal caused by a moving target (Doppler effect) yields information 
on the range rate or velocity, and also may be used to distinguish moving targets 
from stationary objects. Thus, from the measurements of these parameters with 
time, the radar can derive the track, or trajectory, of a moving target, and predict 
its future location. 

In general, the transmitter and the receiver are in the same location. This is 
called a monostatic radar. This particular system shares a single antenna between 
the transmitter and the receiver ( ),0 21 RRRb == via a waveguide called the 
duplexer [4]. A simplified block diagram of a modern monostatic radar is shown in 
Figure 11.3. 

The major blocks—the modulator, the transmitter, the receiver, the signal 
processor, the data processor, and the display—and their functions are now briefly 
described [5]. 
 
The Modulator   Upon reception of each timing pulse, the modulator produces a 
high-pulse direct current and supplies it to the transmitter. 
 
The Transmitter   The transmitter is a high-power oscillator. It generates a high-
peak power coherent train of pulses to illuminate the target. 

 
Figure 11.2  Basic radar scene. 
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Figure 11.3  Signal and data processing in a modern pulse radar system. 

The Receiver   Typically, the receiver is of a superheterodyne type. It provides 
frequency conversion (to a lower frequency called intermediate frequency, IF), 
interference rejection, and low-noise amplification. Noise reduction is an 
important consideration in radar receiver design, and it is accomplished by a 
matched filter that maximizes the SNR at the output. 
 
Signal Processor   This device processes the target echoes and interfering signals 
to increase the signal-to-interference ratio. The operations may be pulse 
compression, Doppler range clutter suppression techniques, and CFAR processing. 
This is the part that will be developed in detail. However, we say briefly that the 
CFAR circuit keeps the rate of occurrence of false decisions (alarms) due to 
background noise and clutter at a constant and relatively low rate. This prevents 
saturation of the system and/or user. It estimates the noise and clutter level from a 
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number of range, Doppler, and/or azimuth cells to allow the threshold to be set 
correctly. 
 
Data Processor   It provides the target measurements in range, angle (azimuth and 
elevation), radial velocity, and possibly the target signature. 
 
Display  The output is generally conveyed to a display to visualize the 
information contained in the target echo signal in a form suitable for operator 
action and interpretation. The plan position indicator (PPI) is the usual display 
employed in the radar receiver, and it indicates the range and azimuth of a detected 
target. 
 

When the transmitter and the receiver are in separate locations ( 0≠bR ), this 
is called a bistatic radar. In this case, the ranges 1R and 2R  may not be the same. 
A multistatic radar is a radar with one transmitting antenna, but many receiving 
stations, all in a network. Most radars nowadays are active and of pulse type; that 
is, the radars have a transmitter, and the signal transmitted is a pulse. 
 
11.2.1 Range, Range Resolution, and Unambiguous Range 
 
When a pulse is transmitted, the radar clock begins counting the time. The time 
taken for the pulse to travel to the target and return is called the time delay, dτ . 
The range of the target is given by 

     
2

dc
R

τ
=            (11.3) 

where c is velocity of light 8103×=c m/s. Since radar signals propagate in real 
atmosphere and not a vacuum, c is actually the velocity of propagation given by 

8109979.2 ×=c m/s. The factor 2 appears in the denominator of (11.3) because of 
the two-way travel of the pulse to the target and back. 

If the time delay between the echoes from two targets is equal to or greater 
than the pulse duration, then two separate echoes are observed, as shown in Figure 
11.4(a, b), respectively. In this case, the targets are resolvable. However, if the 
time delay is less than a pulse duration, the targets are not resolvable, as shown in 
Figure 11.4(c). Instead of seeing two targets, we see one large one. Hence, the 
range resolution between the two targets is [2]  

      
2

∆ τ
=

cR            (11.4) 

 



 Signal Detection and Estimation 632

 
Figure 11.4  Returned target echoes: (a) τd = τ , (b) τd  > τ, and  (c) τd < τ. 

The radar receiver samples the output every τ seconds, and thus each sample 
represents a distance R∆ , called range gate or range bin. For example, if the radar 
pulse duration is µs1=τ  and we desire a receiver output every m150  in range, 
we would use a 1-MHz A/D sampler. 

The rate at which pulses are transmitted is called pulse repetition frequency 
(PRF), pf , and it is determined by the maximum at which the targets are 
expected, such that 

max2R
cf p ≤            (11.5) 

That is, in transmitting multiple pulses, the limit occurs when the second pulse is 
transmitted before the first one has completed its two-way trip to the target and 
back. This maximum range is called the unambiguous range, also denoted .uR  For 
example, if we use a pulse repetition frequency of kHz,1=pf  the maximum 

range is km1502/max =≤ pfcR . If we now want to survey this range with a 

higher PRF of Hz,k5.1  which has an maxR  of km,100  the echo of the first pulse 
may be confused with the echo of the second one, as shown in Figure 11.5. We 
observe that target A at km30  is within the unambiguous range. However, target 
B at km130  could be the echo of the first pulse at ,km130  or the echo of the 
second pulse at .km30  

A typical radar transmits a series of N pulses. The pulse width τ, the interpulse 
period T, and the transmission duty cycle ,/ Tτ  as shown in Figure 11.6, are 
constant throughout the transmission of all N pulses [6]. T is called the pulse 
repetition interval (PRI) and is the inverse of the pulse repetition frequency, 

./1 pfT =   The  N  transmitted  pulses are coherent; that is, they are  in-phase, and 

Target 1 Target 1 Target 2 Target 2 

(a) (b)

(c)

Target 1 Target 2
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Figure 11.5  Illustration of ambiguous range. 

 
Figure 11.6  Coherent pulse train. 

the set of N coherent pulses transmitted during the time interval T is called a 
coherent pulse-train. The time spanned by the coherent pulse-train is called a 
coherent processing interval (CPI). 
 
11.2.2 Doppler Shift 
 
An accurate way of measuring the speed of a target is the use of Doppler 
frequency shift, which is the difference between the received frequency and the 
transmitted frequency caused by the motion of the target. In this case, a coherent 
system is needed, in the sense that the transmitter and the receiver oscillators are 
phase locked, in order to detect any difference in the echo signal. Thus, 

trd fff −=            (11.6) 

where df  is Doppler frequency, rf  is the receiver frequency, and tf  is the 
transmitter frequency. Doppler frequency is given in terms of rv , the radial 
component of the target speed toward the radar, by 

λ
= r

df
v2

  Hz           (11.7) 

where cr <<v , c is the speed of light, and the wavelength λ is given by 

T 

 τ 
N pulses ≡ CPI 

0=t 
pf

t 1
= 

pf
t 2
= 

km30 
km50 km100=uR 

A B
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tf
c

=λ             (11.8) 

For fixed objects, df  equals zero. 
 
 
11.3 PRINCIPLES OF ADAPTIVE CFAR DETECTION 
 
The input signal at the radar receiver, when a target is present, is an attenuated 
randomly phase-shifted version of the transmitted pulse in noise. A typical radar 
processor for a single-range cell sums the K samples of the matched filter output 
and compares the sum to a fixed threshold, as shown in Figure 11.7. When the 
transmitted pulse is embedded in white Gaussian, the clutter return signal envelope 
is Rayleigh distributed [7]. The optimum Neyman-Pearson detector, for this case, 
is shown in Figure 11.8, where )(ty  denotes the received signal and cω  the 
carrier angular frequency. From Figure 11.1, we saw that a small increase in noise 
power causes the probability of false alarm to increase intolerably. Hence, when 
the noise variance is not known, and in order to regulate the false alarm 
probability, Finn and Johnson [8] proposed the use of a reference channel, from 
which an estimate of the noise environment can be obtained, and upon which the 
decision  threshold  is adapted.  The radar  uses the range cells surrounding the cell 

 
Figure 11.7  A scheme for a fixed threshold radar detection. 

 
Figure 11.8  Optimum receiver, square realization. 
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under test as reference cells, as shown in Figure 11.9. The detector proposed in [8] 
is the cell-averaging constant false alarm (CA-CFAR), where the adaptive 
threshold is obtained from the arithmetic mean of the reference cells. For a 
homogeneous background noise, and independent and identically distributed 
reference cells outputs, the arithmetic is the maximum likelihood estimate. This 
means that the detection threshold is designed to adapt to changes in the 
environment. These noise observations are obtained by sampling in range and 
Doppler, as shown in Figure 11.10. The bandwidth of each Doppler, (bandpass) 
filter  is  equal  to  the bandwidth  of  the  transmitted  rectangular  pulse  B,  where  

 
Figure 11.9  A scheme for an adaptive threshold radar detection. 

 
Figure 11.10  Range and Doppler sampling  process. 
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τ= /1B  and τ is the transmitted pulse width. The output of each square-law 
detector is sampled every τ seconds, which corresponds to a range interval of 

2/τc . Hence, each sample can be considered as the output of a range-Doppler 
resolution cell with dimensions τ in time and τ/1  in frequency [9]. Therefore, we 
obtain a matrix of range and Doppler resolution cells, as shown in Figure 11.11. 
For simplicity and without loss of generality, we show the CA-CFAR detector in 
Figure 11.12 for range cells only and for a specific Doppler frequency. 

We now describe the system in more detail. The output from the square-law 
detector is fed into a tapped delay line forming the reference cells. To avoid any 
signal  energy  spill  from  the  test  into directly  adjacent  range  cells, which  may  

 
Figure 11.11  Matrix of range and Doppler cells. 

 
 
Figure 11.12  Cell averaging CFAR detector. 
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affect the clutter power estimate, the adjacent cells, called guard cells, are 
completely ignored. Each resolution cell is tested separately in order to make a 
decision for the whole range of the radar. We assume that the cell under test is the 
one in the middle. The statistics of the reference windows U and V are obtained 
from the sum of the 2/N  leading cells and 2/N  lagging cells, respectively. 
Thus, a total of N noise samples are used to estimate the background environment. 
The reference windows U and V are combined to obtain the estimate of the clutter 
power level Z. To maintain the probability of false alarm, FP , at the desired value, 
the adaptive threshold is multiplied by a scaling factor called the threshold 
multiplier T. The product TZ  is the resulting adaptive threshold. The output Y  
from the test cell (center tap) is then compared with the threshold in order to make 
a decision. 

We assume that the target model at the test cell, called the primary target, is a 
slowly fluctuating target of Swerling Case 1. The signal-to-noise ratio of the target 
is denoted S. We further assume that the total background noise is white Gaussian. 
Since both the noise and Rayleigh targets have Gaussian quadrature components, 
the output of the square-law detector has an exponential probability density 
function [2]. If the noise variance is 2σ , then the conditional density function of 
the output of the test cell is given by 
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The hypothesis 0H  represents the case of noise alone, while hypothesis 1H  
represents the noise plus target signal case. 

The probability of detection is given by 
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where Z is the estimated homogeneous background noise power level, )(zf Z  is 
the density function of Z, and ][ ⋅ZE  is the expected value over all values of z. 
Substituting (11.9) into (11.10) and solving the integral, we obtain 
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where ( )⋅ZM  denotes the MGF of the random variable Z. We can obtain the 
probability of false alarm in a similar way, or by setting the target SNR, S, to zero 
to obtain 
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Hence, for a design probability FP , the threshold multiplier T can be computed 
from (11.12). For the CA-CFAR detector, the reference window is 
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with ,,,2,1, NiX i K=  independent and identically distributed random variables. 
From Chapter 2, the gamma density function ),( βαG  given in (2.98) is  
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If we set ,1=α  we obtain the exponential distribution ),1( βG  with density 
function 
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which is equivalent to )|(| iHY Hyf
i

 given in (11.9), with 22σ=β  under 

hypothesis 0H , and )1(2 2 S+σ=β  under hypothesis 1H . Thus, using (11.15), 

the probability of false alarm of the distribution )2,( 2σNG  is  
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The threshold multiplier is then 
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Replacing 22/ σT  by )]1(2/[ 2 ST +σ , the probability of detection is [10, 11] 
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For this homogeneous clutter background, the detection performance of the 
CA-CFAR detector is optimum in the sense that its probability of detection 
approaches, that of the (ideal) Neyman-Pearson detector as the number of 
reference cells becomes infinite. Hence, there is an inherent loss in the probability 
of detection of the adaptive CFAR detector when compared to the Neyman-
Pearson detector. 

In general, the CFAR loss in the design, while computing the scale factor T, is 
a function of the background noise assumed, the design probability of false alarm, 
and the reference window size N [12, 13]. It is also a function of the CFAR 
algorithm adopted, as we will see. This gives an idea about the many CFAR 
processors we can have for different applications. In fact, hundreds of papers were 
published to deal with the different applications. Thus, we can only give a rough 
sketch showing the evolution and variety of classes of CFAR problems. 

Note also in deriving expressions for the probabilities of detection and false 
alarm, we assumed a target model of Swerling Case 1, which we did not define. 
This means that other targets may be considered depending on the application. 
Before giving the definitions of target models in the next section, it should be 
noted that there are different types of radar targets. The simplest target that we are 
considering is the point target, but there are other types of targets. A point target is 
one whose largest physical dimension is small relative to the range cell )2/( τc  of 
the transmitted pulse [4]. Such targets may be many aircrafts, satellites, small 
boats, people and animals, and land vehicles. These targets are small enough so 
that no significant “smearing” or spreading in time occurs in the received pulses. 
Larger targets that can cause spreading in the received pulses, such as large 
buildings, ships, and some aircraft, are called extended targets. Still larger targets 
are called distributed targets. In this latter case, there is a class of targets called 
area targets, which represents targets such as forests, oceans, and mountains. 
Another class of targets, representing targets such as rain, snow, fog, smoke, and 
chaff, is called volume targets. 
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11.3.1 Target Models 
 
When a target is present, the amplitude of the signal at the receiver depends on the 
target radar cross section (RCS), which is the effective scattering area of a target as 
seen by the radar. In general, the target RCS fluctuates because targets consist of 
many scattering elements, and returns from each scattering element vary. The 
effect of the fluctuation is to require a higher signal-to-noise ratio for high 
probability of detection, and lower values for low probability of detection than 
those required with nonfluctuating signals. In addition, returns from the same 
scattering element are functions of the illumination angle, the frequency and 
polarization of the transmitted wave, the target motion and vibration, and the 
kinematics associated with the radar itself [1, 2, 4, 12–15]. Target RCS 
fluctuations are often modeled according to the four Swerling target cases, 
Swerling case 1 to 4. These fluctuating models assume that the target RCS 
fluctuation follows either a Rayleigh or one-dominant-plus Rayleigh distribution 
with scan-to-scan or pulse-to pulse statistical independence. 

A scan is when the antenna main beam of the radar makes one complete 
search of a surveillance region, as shown in Figure 11.13. When the antenna’s 
main beam crosses a target, the radar receives a group of N pulses within a 
resolution angle of the surveillance region. If the reflected target amplitude is 
constant over the entire time it takes to observe a resolution angle, as the antenna 
returns to again search the area containing the target, the RCS may have changed. 
This slow fluctuation of the radar reflected target amplitude from a pulse-group to 
a pulse-group, but not within a group, is called scan-to-scan fluctuation. However, 
when the radar-reflected target amplitude is fast enough so that it can be 
considered independent for each pulse within the group of N-pulses, this 
fluctuation is called pulse-to-pulse. The four Swerling cases are defined as follows. 

 
 
Figure 11.13  A radar scan. 
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Swerling Case 1   In this case, the returned signal power per pulse on any one scan 
is assumed to be constant, but these echo pulses are independent (uncorrelated) 
from scan to scan. A returned signal of this type is then a scan-to-scan fluctuation. 
The envelope of the entire pulse-train is a single Rayleigh-distributed independent 
random variable given by 
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where sm  is the average cross section (average of RCS or signal-to-noise power 
ratio S) over all target fluctuations. 
 
Swerling Case 2   In this case, the fluctuations are more rapid than in Case 1, and 
are assumed to be independent from pulse-to-pulse instead of from scan-to-scan. 
This is pulse-to-pulse fluctuation. The probability density function for the target 
cross section is the same as given in (11.20). 
 
Swerling Case 3   In this case, the fluctuations are scan-to-scan as in Case 1, but 
the probability density function is given by 
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Swerling Case 4   In this case, the fluctuations are pulse-to-pulse as in Case 2, but 
the probability density function is given by (11.21). 
 

Note that in Cases 1 and 2, the targets are assumed to be composed of a large 
number of independent scatterers, none of which dominates (e.g., large aircraft). 
Cases 3 and 4 represent targets that have a single dominant nonfluctuating 
scatterer, together with other smaller independent scatterers (e.g., missiles). 
Observe that Cases 1 and 2 targets produce signals whose envelopes are Rayleigh 
distributed, while Cases 3 and 4 targets produce signals whose envelopes are chi-
squared distributed. 
 
Swerling Case 5   Often, nonfluctuating targets are said to have Swerling Case 5 or 
Swerling Case 0. In this case, the received signal amplitude is assumed unknown, 
and there is no amplitude (or RCS) fluctuation. 
 

Swerling Cases 1 to 4 are the models most commonly used, even though other 
models have been developed. They are summarized in the chi-square target models 
family by [13] 
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where )!1()(Γ −= kk , 22 2/ σ= AS  is the target signal-to-noise power ratio (radar 
cross section), sm  is the average signal-to-noise ratio (mean cross section), 

]var[/2 Smk s= , 2σ  is the noise variance, and A is the signal amplitude. Table 
11.1 shows the different Swerling target models for different values of k. 
 
11.3.2 Review of Some CFAR Detectors 
 
There are three main approaches to the CFAR problem: the adaptive threshold 
processor, the nonparametric processor, and the nonlinear receiver approach. The 
adaptive threshold processor is the one most commonly used, because it provides 
the lowest CFAR loss when the actual environment closely matches the design 
environment. Of the hundreds of papers published in this field, we shall mention 
only a few to give a sketch of the advance of this rich field up to the actual interest 
when using high-resolution radars. 

A real environment in which a radar operates cannot be described by a single 
clutter model. We refer to homogeneous clutter in situations where the outputs of 
the range cells are identically distributed and statistically independent. In a 
nonhomogeneous background, the adaptive threshold setting is seriously affected, 
resulting in a degradation of the performance. 
 
Clutter Edge 
 
This model is defined to describe situations where there is a transition in the clutter 
power  distribution.  The transition is not relatively smooth,  and it is assumed  that 

Table 11.1 
Different Cases to Which Swerling Models Apply 
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the total noise power as a function of range can be represented by the step 
function, as shown in Figure 11.14. This may represent the boundary of a 
precipitation area. Two cases may be encountered in this severe clutter 
environment. In the first case, the cell under test is in the clear, but a group of 
reference cells are immersed in the clutter. This results in a higher adaptive 
threshold, and the probabilities of detection and false alarm are reduced. This is 
also known as the masking effect. In the second case, if the cell under test is 
immersed in the clutter but some of the reference cells are in the clear region, the 
threshold is relatively low, and the probability of false alarm increases intolerably. 
Hansen and Sawyers [16] proposed the greatest-of-selection logic in cell averaging 
constant false-alarm rate detector (GO-CFAR) to control the increase in the 
probability of false alarm. In the GO-CFAR detector, the estimate of the noise 
level in the cell under test is selected to be the maximum of U and V, 

),max( VUX = , where U and V are the sums of the outputs of the leading and 
lagging cells, respectively. If one or more interfering targets are present, Weiss 
[17] has shown that the GO-CFAR detector performs poorly, and suggested the 
use of the smallest-of-selection logic in cell averaging constant false-alarm rate 
detector (SO-CFAR). In the SO-CFAR detector, the minimum of U and V, 

),min( VUX = , is selected to represent the noise level estimate in the cell under 
test. The SO-CFAR detector was first proposed by Trunk [18] while studying the 
target resolution of some adaptive threshold detectors. We can intuitively see that 
the SO-CFAR detector performs well for the case shown in Figure 11.14(a). 
 
Homogeneous Background Plus Interfering Targets 
 
This model is defined to describe situations where the clutter background is 
composed of homogeneous white Gaussian noise plus interfering targets. The 
targets appear as spikes in individual range cells. These interfering targets may fall 
in either the leading or lagging reference cells, or in both leading and lagging 
range cells at the same time [19]. 

When interfering targets lie in the reference cells of the target under 
consideration,  the  primary  target,  the  threshold  is  raised  and  the  detection  of 

Figure 11.14  Model of a clutter edge, test cell in (a) clear and (b) clutter. N0 = noise power, 
     C0 = clutter power. 
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the primary target is seriously degraded. This is known as the capture effect. With 
the threshold too high, some targets may be undetected, as illustrated in Figure 
11.15. On the other hand, if the threshold is not high enough, as illustrated in 
Figure 11.16, the number of false alarms due to noise spikes increases. To alleviate 
such problems, much research work has been proposed in the literature. Rickard 
and Dillard [20] proposed the censored mean level detector (CMLD), in which 
target samples are censored and the noise level estimate is obtained from the 
remaining noise samples. Ritcey [21] studied the performance of the CMLD for a 
fixed number of interfering Swerling Case 2 targets. Gandhi and Kassam [22] 
proposed the trimmed mean level CFAR (TM-CFAR) detector, that implements 
trimmed averaging after ordering the samples in the window. When the number of 
interfering targets is not known a priori, Barkat et al. [23] proposed the generalized 
censored mean level detector (GCMLD), in which the number of interfering 
targets is determined and their corresponding samples are then sampled. In the 
censored mean level detector, the outputs of the range cells are ranked in 
ascending  order  according  to  their  magnitude  to  yield  the  N-ordered samples 

 
Figure 11.15  Threshold too high. 

 
Figure 11.16  Threshold not high enough. 
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)()1()()2()1( NNk XXXXX ≤≤≤≤≤≤ −KK        (11.23) 

Then, a censoring algorithm is applied according to the application. Rohling [24] 
proposed the order-statistic CFAR (OS-CFAR) detector which chooses one 
ordered sample to represent the noise level estimate in the cell under test. The kth 
ordered sample value, )(kX , selected as the test statistic Z, is multiplied by the 
scale factor T to achieve the desired probability of false alarm, and then a decision 
is made by comparing the output of the cell under test Y with the adaptive 
threshold TZ. The value suggested in [24] to represent a good background estimate 
for typical radar applications in Gaussian noise is 4/3Nk = . The calculations of 
the probabilities of detection and false alarm are relatively simple, and that makes 
the OS-CFAR detector a relatively more popular detector. The probability density 
function of the kth ranked sample in a Gaussian homogeneous background is given 
by [11, 24, 25] 
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and )(zF  is the corresponding distribution function given by 
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Substituting (11.25) and (11.26) in (11.24), we obtain 
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Using (11.12), the probability of false alarm is then 
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Replacing T by )1/( ST +  in (11.28), we obtain the probability of detection to be  
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Clutter Edge and Spikes 
 
This model describes the most general case in which there is not only a transition 
in the clutter power distribution, but also interfering targets, as illustrated in Figure 
11.17. Himonas and Barkat [26] proposed the generalized two-level censored 
mean level detector (GTL-CMLD), which uses an automatic censoring algorithm 
of the unwanted samples when both interfering targets and extended clutter are 
present in the reference window of the cell under test. Khalighi and Bastani [27] 
presented another variation called the AEXGO-LOG processor. 

Many papers were published using different variations of the above detectors 
for specific environments. For example, El-Mashade [28] studied the performance 
of the mean-level CFAR processor in multiple target environments when using M-
correlated sweeps. In [29], an intelligent CFAR processor based on data variability 
was proposed. In [30], they considered an automatic censoring approach based 
also on ordered data variability, and proposed an automatic censoring CFAR 
detector for nonhomogeneous environments. 
 
Non-Gaussian Noise 
 
Non-Gaussian distributions have been considered since the beginning of adaptive 
thresholding techniques to represent certain types of clutter, such as sea clutter, 
land clutter, and weather clutter. The log-normal, Weibull, and gamma 
distributions have been used to represent envelope-detected non-Gaussian clutter 
distributions. In recent years, the K-distribution has been used mostly to model the  

 
Figure 11.17  Sample clutter power distribution when clutter edge and spikes appear in the reference  

     range cells; N0 = thermal noise power, C0 = clutter power. 
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sea clutter [31–41]. The most important characteristic of the K-distribution is its 
ability to take into account the correlation properties of the sea echo. This ability is 
a result of the fact that the K-distribution is a compound distribution made up of a 
Rayleigh distributed component termed “speckle,” whose mean level component 
varies slowly in time according to a chi-distribution, as discussed in Chapter 2. 
This is equivalent to modulating the square law detected speckle S with a gamma 
distributed power modulation process τ, referred to as “texture.” A characteristic of 
all non-Gaussian distributions used in radar detection is their having a much longer 
“tail” than the Gaussian distribution. Thus, the optimum detectors used assuming a 
Gaussian background are no longer optimum, resulting in a significant increase in 
the probability of false alarm. If the threshold is raised to maintain a constant false 
alarm rate, then the probability of detection is seriously reduced. Thus, better 
signal processors are needed to obtain a high performance. 
 
High-Resolution Radars 
 
In early studies, the resolution capabilities of radars were relatively low, and the 
Gaussian representation of the background noise (that is, the amplitude is Rayleigh 
distributed) was a good statistical representation. Optimal detection approaches as 
discussed in the previous chapter were considered. As the resolution capabilities of 
radar systems improved, it was believed that the radar would intercept less clutter, 
and thus improve the detection performance. However, the detection performance 
did not improve, but rather the radar system was plagued by target-like “spikes” 
that gave rise to an intolerable increase in the false alarm rate [42]. It was then 
observed that the noise statistic was no longer Gaussian, as it was assumed. Hence, 
new clutter models were needed to reduce the effects of spikes to improve the 
detection performance. Studies showed that “good” distributions to represent spiky 
non-Gaussian clutter possess “longer tails,” such as the Weibull distribution, log-
normal distribution, and K-distribution, which are two parameter distributions. 
Anastassopoulos et al. [43] showed that these distribution models are special cases 
of the compound-Gaussian model. In Chapter 2, we discussed the different cases 
obtained from the compound-Gaussian model. There is a lot of research ongoing to 
improve detection performances while controlling the false alarm rate. Gini et al. 
[44] published a list of almost 700 references on radar signal processing, which 
comprises more than 120 papers on CFAR detection. In [45], a review of some 
CFAR detection techniques in radar systems was presented. Another reference is 
the paper published by Shnidman [46] on a generalized radar clutter model. 
Recently, Conte et al. [47] presented a statistical compatibility of real clutter data 
with the compound Gaussian model. 

The literature on CFAR detection is very rich. I apologize to the many authors 
who contributed in this field but were not cited explicitly. 
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11.4 ADAPTIVE THRESHOLDING IN CODE ACQUISITION OF 
DIRECT-SEQUENCE SPREAD SPECTRUM SIGNALS 

 
The concept of adaptive thresholding CFAR in digital communication systems 
started to appear in the literature in the last seven years. The basic CFAR operation 
is the same but the philosophy and approach are completely different. In the 
previous section, we introduced the concept of adaptive thresholding. We needed 
to give a very brief description of some radar principles, so that we can understand 
the application and its philosophy. Similarly in this section, we first present a brief 
description of spread spectrum signals in digital communication systems and then 
show how adaptive thresholding techniques are applied.  

Spread spectrum communication signals have been used in military systems 
for decades because of their ability to reject interference. The interference can be 
unintentional when another transmitter tries to transmit simultaneously through the 
channel, or intentional when a hostile transmitter attempts to jam the transmission. 
By definition, for a communication system to be considered spread spectrum, it 
must satisfy two conditions. First, the bandwidth of the transmitted data must be 
much greater than the message bandwidth. Second, the system spreading is 
accomplished before transmission by some function (e.g., code or a PN sequence) 
that is independent of the message but known to the receiver. This same code is 
then used at the receiver to despread the signal so that the original data may be 
recovered. Thus, synchronization between the PN sequence generated at the 
receiver and the PN sequence used in the transmitted signal is necessary for 
demodulation. This may be achieved by sending a fixed PN sequence that the 
receiver will recognize in the presence of interference. After the time 
synchronization is established, transmission of information may commence. 

The two main modulating techniques in spread spectrum communication 
systems are direct-sequence (DS) or pseudonoise (PN) spread spectrum, and 
frequency-hop (FH) spread spectrum. Direct-sequence and pseudonoise are used 
interchangeably, with no distinction between them. In direct-sequence spread 
spectrum technique, a pseudorandom or a pseudonoise sequence, which is a noise-
like spreading code, is used to transform the narrowband data sequence into a 
wideband sequence. Then, the resulting wideband signal undergoes a second 
modulation using phase shift keying (PSK) techniques. In frequency-hopping 
spread spectrum, the information sequence bandwidth is still widened by a 
pseudonoise sequence but with a changing carrier frequency. A typical spread 
spectrum digital communication system is shown in Figure 11.18. 

Spread spectrum signals appear like random noise, which makes them 
difficult to demodulate by receivers other than the intended ones, or even difficult 
to detect in the presence of background noise. Thus, spread spectrum systems are 
not useful in combating white noise, but have important applications such as 
antijam capabilities and interference rejection.  

Interference arises also in multiple access communication, in which a number 
of independent users share a common  channel.  The conventional  way  to provide 
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Figure 11.18  Typical spread spectrum system. 

multiple access communication uses frequency division multiple access (FDMA) 
or time division multiple access (TDMA) communication. In FDMA, each user is 
assigned a particular frequency channel, which presents a fraction of the channel 
bandwidth until system capacity is reached, when the whole bandwidth is used. In 
TDMA, the channel time-bandwidth is apportioned into fixed time slots. Each user 
is assigned a particular time slot until capacity is reached, when all time slots are 
used. A more efficient way to accomplish multiple access communications is code 
division multiple access (CDMA). In CDMA, each user is assigned a particular 
code, which is either a PN sequence or a frequency-hopping pattern, to perform the 
spread spectrum modulation. Since each user has its own code, the receiver can 
recover the transmitted signal by knowing the code used by the transmitter. 
However, each code used must be approximately orthogonal to all other codes; 
that is, it must have low cross-correlation. 

CDMA offers secure communication privacy, due to the fact that the 
messages intended for one user may not be decodable by other users because they 
may not know the proper codes. In addition, as the number of users increases 
beyond a certain threshold, a gradual degradation in the performance is tolerated, 
and thus CDMA can accommodate more users. Because of its low power level, the 
spread spectrum signal may be hidden in the background noise, and in this case it 
is called “covert.” It has a low probability of being detected and is called a low-
probability of intercept (LPI) signal. Because of the above advantages, DS-CDMA 
became in the late 1980s increasingly of interest in cellular type communications 
for commercial purposes [48]. Next, we present the pseudonoise sequence. 
 
11.4.1 Pseudonoise or Direct Sequences 
 
The most widely used PN sequences are the maximum length sequences, which are 
coded sequences of 1s and 0s with certain autocorrelation properties. They have 
long  periods,  and are simply generated  by  a  linear  feedback  shift  register.  An 
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m-sequence is periodic with period (length) 12 −= mN  bits, and is generated by a 
shift register of length m, which uses m flip-flops, as shown in Figure 11.19. Some 
properties of the maximum length sequences are as follows [49]. 

1.  Balance Property   Each period of the sequences contains 12 −m  ones and 
12 1 −−m  zeros; that is, the number of ones is always one more than the number of 

zeros. 

2.  Run Property   Among the runs (subsequences of identical symbols) of ones or 
zeros in each period of a maximum-length sequence, one-half of runs of each kind 
are of length one, one-fourth are of length two, one-eighth are of length three, and 
so forth, as long as these fractions have a meaningful number of runs. The total 
number of runs is .2/)1( +m  

3.  Correlation Property  The autocorrelation function of a maximum-length 
sequence is periodic and binary valued. 
 
Example 11.1 
 
Consider the =m 3 -stage feedback shift register shown in Figure 11.20. The 
systematic code generated is of length 7123 =−=N , as shown in Table 11.2. 
Assuming that the initial state of the shift register is 100, the successive states will 
be 100, 110, 111, 011, 101, 010, 001, 100, ….  

 
Figure 11.19  Maximum-length PN code generator. 

 
Figure 11.20  Three-stage (m = 3) feedback shift register. 
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Note that the choice of 100 as an initial state is arbitrary. Any other choice 
from the six possible states would result in a shifted version of this cyclic code, as 
shown in Table 11.2. The state 000 results in the catastrophic cyclic code. 

The output sequence is the code K43421
7

00111010}{
=

=
N

nc . Note that we have four 

runs: 00, 111, 0, and 1. Two of the runs (one-half of the total) are of length one, 
and one run (one-quarter of the total) is of length two.  

In terms of the levels 1−  and 1+ , let zero represent 1− , and thus the output 
sequence is as shown in Figure 11.21. The small time increments representing the 
duration of binary symbols 0 or 1 in the sequence are commonly referred to as 
chips, and denoted cT , and N is the length of one period of the sequence. The 
autocorrelation function is given by 

Table 11.2 
Maximum-Length Shift Register Codes for m = 3 

 

 

 
 
Figure 11.21  Periodic binary PN sequence. 
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000   0000000 
001   1001110 
010   0100111 
011   1101001 
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where l  is any integer. The autocorrelation function is shown in Figure 11.22. 
Note that the autocorrelation function is periodic and binary valued. 
 
11.4.2 Direct-Sequence Spread Spectrum Modulation 
 
One way of widening the bandwidth of the information-bearing signal is by 
modulation of the PN sequence on the spread spectrum carrier, which can be 
binary phase-shift keying (BPSK), as shown in Figure 11.23. First, the binary 
message )(tm  and the PN sequence )(tp  are applied to a product modulator, as 
shown in Figure 11.24(a). The assumed sequences )(tm  and )(tp  are represented 
in their polar forms, as shown in Figures 11.24(b, c). Note the duration of a 
rectangular pulse cb MTT = , where M is an integer representing the number of 
chips per information bit.  Therefore,  it also represents  the number of phase shifts 

 
 
Figure 11.22  Autocorrelation function of PN sequence. 

 
Figure 11.23  Direct-sequence transmitter. 
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Figure 11.24  Simplified spread spectrum transmitter and waveforms. 

that occur in the transmitted signal during the bit duration bT . Since the 
information sequence )(tm  is narrowband and the PN sequence is wideband, the 
product signal )(ts  will have a spectrum nearly the same as the PN sequence. That 
is, the spectrum of the transmitted signal is widened by the PN sequence, which is 
a spreading code. Thus, the transmitted signal is  

)()()( tptmts =          (11.31) 

The transmitted signal is corrupted by some additive interference )(ti , as shown in 
Figure 11.25(a). The received signal )(ty is 

 
Figure 11.25  Spread spectrum model: (a) channel and (b) receiver. 

m(t) 

p(t) 

s(t) 

PN sequence p(t) 

s(t) 

 t 

 t 

 t 

+1 

+1 

+1 

-1 

-1 

-1 

 0 

 0 

 0 

Tb 

(a) 

(b) 

(c) 

(d) 

Message m(t) 

s(t) 

i(t) 

y(t) ∑ 
y(t) 

p(t) 

z(t) Lowpass 
filter 

(a) (b) 



 Signal Detection and Estimation 654

)()()()()()( titptmtitsty +=+=         (11.32) 

To recover the original information sequence )(tm , the receiver signal is applied 
to a synchronous demodulator, which is a multiplier followed by a lowpass filter, 
as shown in Figure 11.25(b). The resulting demodulated signal is 

        )()()()()()()()()()( 2 titptmtitptptmtptytz +=+==        (11.33) 

since 1)(2 =tp  for all t. Thus, we obtain the original narrowband message )(tm  
plus a wideband term ).()( titp  The filter reduces significantly the power of the 
interference. This is just to illustrate the baseband transmission and reception. In 
reality, the message is transmitted over a bandpass channel with a carrier 
frequency cf , as illustrated in Figure 11.23. Thus, for direct-sequence binary 
phase-shift keying (DS/BPSK) transmission, the transmitted signal is  

   )](cos[)( ttAts c θ+ω=          (11.34) 

where cc fπ=ω 2  is the carrier frequency, and the phase )(tθ  is given by the truth 
table in Table 11.3. The general model of a direct-sequence spread spectrum 
phase-shift keying system is shown in Figure 11.26. 

Table 11.3 
Truth Table for Phase θ(t) 

 

  
Figure 11.26  Conceptual model of DS/BPSK system. 
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11.4.3 Frequency-Hopped Spread Spectrum Modulation 
 
In an FH spread spectrum communications system, the frequency is constant 
during each time chip but changes from chip to chip, as illustrated in Figure 11.27. 
The bandwidth is thus subdivided into a large number of contiguous frequency 
slots. The modulation of FH systems is commonly binary or M-ary frequency shift 
keying (FH/FSK or FH/MFSK) [50, 51]. A block diagram of an FH/MFSK 
transmitter and noncoherent receiver is shown in Figure 11.28. 
 
11.4.4 Synchronization of Spread Spectrum Systems 
 
For both DS and FH spread spectrum systems, time synchronization of the local 
code generated at the receiver and the code embedded in the receiving signal is 
done in two phases. The initial synchronization, called acquisition, consists of 
bringing the two spreading signals into coarse alignment with one another within 
one chip interval cT . Hence, the problem of acquisition is one of searching 
through a region of time and frequency in order to synchronize the received spread 
spectrum signal with the locally generated spreading signal. Once the received 
spectrum signal is acquired in the acquisition phase, then the second phase, called 
tracking, performs a fine synchronization within a small fraction of a chip, and 
maintains the PN code generator at the receiver in synchronism with the incoming 
signal while the demodulator is in progress. The usual way for establishing initial 
synchronization is for the transmitter to send a known pseudorandom data 
sequence to the receiver, and thus the initial synchronization may be viewed as 
establishing a time synchronization between the transmitter clock and the receiver 
clock. There is an initial timing uncertainty between the transmitter and the 
receiver for the following reasons [52]. 
 
1.  Uncertainty in the range between the transmitter and the receiver, which 
translates into uncertainty in the amount of propagation delay. 

 

Figure 11.27  Frequency-hopping signal. 
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Figure 11.28  Block diagram of an FH/MFSK spread spectrum system. 

2.  Relative clock instabilities between the transmitter and the receiver, which 
results in phase differences between the transmitter and the receiver spreading 
signals. 
 
3.  Uncertainty of the receiver’s relative velocity with respect to the transmitter, 
which translates into uncertainty in a Doppler frequency offset value of the 
incoming signal. 
 
4.  Relative oscillator instabilities between the transmitter and the receiver, which 
results in frequency offset between the incoming signal and the locally generated 
signal. 
 

Note that most acquisition schemes utilize noncoherent detection because the 
spreading process typically takes place before carrier synchronization, and thus the 
carrier phase is unknown at this point. Acquisition can be realized in principle by a 
filter matched to the spreading code or cross-correlation, which are optimum 
methods. 
 
 

 
Encoder 

M-ary FSK 
modulator 

Bandpass 
filter 

Frequency synthesizer 

PN sequence generator 

Channel 

Mixer 

M-ary FSK 
demodulator 

 
Decoder 

Estimate of binary 
information 

sequence 

Mixer 

Bandpass 
filter 

Frequency synthesizer 

Local PN sequence 
generator 

Binary information 
 

 sequence 



Adaptive Thresholding CFAR Detection 657 

Serial Search 
 
A popular strategy for the acquisition of direct-sequence spread spectrum signals is 
the use of a sliding correlator, as shown in Figure 11.29. This single correlator 
searches serially for the correct phase of the DS code signal. 

The incoming PN signal is correlated with the locally generated PN signal in 
discrete time instants, usually in time intervals of .2/cT  In order to test 
synchronism at each time instant, the cross-correlation is performed over fixed 
intervals of cNT , called search dwell time. The correlator output signal is 
compared to a preset threshold. If the output is below the threshold, the phase of 
the locally generated reference code signal is advanced in time by a fraction 
(usually one-half) of a chip, and the correlation process is repeated. These 
operations are performed until a signal is detected; that is, when the threshold is 
exceeded. In this case, the PN code is assumed to have been acquired, the phase-
incrementing process of the local reference code is inhibited, and the tracking 
phase is initiated. 

If N chips are examined during each correlation, the maximum time 
required— ( )

maxacqT —for a fully serial DS search, assuming increments of 2/cT , 
is  

( ) ccacq TNNT 2
max

=         (11.35) 

where cN  chips is the time uncertainty between the local reference code and the 
receiver code (searched region). The mean acquisition time can be shown, for 

2/cc TN >> , to be [52] 

)(
)1)(2(

cc
D

FD
acq TNN

P
KPP

T
+−

=         (11.36) 

 
 
Figure 11.29  A sliding correlator for DS serial search acquisition. 
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where DP  is the probability of detection, FP  is the probability of false alarm, and 
)1( >>KKNTc  the time interval needed to verify a detection. 

A similar process may also be used for frequency-hopping signals. In this 
case, the problem is to search for the correct hopping pattern of the FH signal. 
 
Parallel Search 
 
Consider the direct-sequence parallel search acquisition shown in Figure 11.30. 
We observe that the incoming signal is correlated with the locally generated code 
and its delayed versions with one-half chip )2/( cT  apart. If the time uncertainty 
between the local code and the received code is cN  chips, then we need cN2  
correlators to make a complete parallel search in a single search time. The locally 
generated code corresponding to the correlator with the largest output is chosen. 
As the number of chips N increases, the probability of choosing the incorrect code 
alignment (synchronization error) decreases, and the maximum acquisition time 
given by 

( ) cacq NTT =
max

         (11.37) 

increases.  Thus, N is chosen as a compromise between the acquisition time and 
the error probability of synchronization. The mean acquisition time is [52] 

D

c
acq P

NT
T =          (11.38) 

 
Figure 11.30  Correlator for DS parallel search acquisition. 
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The number of correlators can be large, which makes this parallel acquisition less 
attractive. Other approaches or combinations have been proposed in the literature. 
 
11.4.5 Adaptive Thresholding with False Alarm Constraint 
 
Threshold setting plays an important role in the performance of the system, since it 
is the base for the decision of synchronization. Several methods for setting the 
threshold have been published in the literature. In the last seven years, the concept 
of adaptive CFAR thresholding has been introduced. Consider a single dwell serial 
search scheme with a noncoherent detection, as shown in Figure 11.31. This 
system consists of a single adaptive detector with a correlation tap size N. The 
adaptive detector consists of two blocks. The first block is the conventional 
noncoherent matched filter (MF) detector, as shown in Figure 11.32. The second 
block illustrates the adaptive CFAR operation for the decision process. Figure 
11.33 illustrates the overall operation in some detail. The received PN signal plus 
noise and any interference are arriving at the input of the adaptive detector. If the 
adaptive detector declares that the present cell is the correct one, the tracking loop 
is activated, and the relative time delay of the local PN signal is retarded by ∆Tc, 
where Tc is the chip time, to examine the next cell. The whole testing procedure is 
repeated. Usually, the value of ∆ is 0.25, 0.5, or 1. On the other hand, if the adaptiv 

 

 
 
 
 
 
 
 
 
Figure 11.31  Adaptive serial search acquisition scheme. 

 
 
 
 
 
 
 
 
 
 
Figure 11.32  I-Q noncoherent matched filter. 
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Figure 11.33  Block diagram of adaptive detector. 

adaptive detector declares H0, the phases of the two codes (incoming and local) are 
automatically adjusted to the next offset position, and the test is repeated. 

For the adaptive operation of the decision processor, the threshold value of the 
comparator in the adaptive detector is adapted in accordance with the magnitude of 
the incoming signals. Accordingly, the outputs of the correlator are serially fed 
into a shift register of length M + 1. The first register, denoted as Y, stores the 
output of the multiplication of the power of the incoming signal with the value of 
the partial correlation between the local and incoming PN sequences. The 
following M registers, denoted by Xj, j = 1, 2, …, M, and called reference 
windows, store the output of the previous M phases. Note that the data stored in 
the register forming the reference window is like the radar reference window in 
CFAR adaptive thresholding. A selection logic is then used to set the threshold 
based on a fixed probability of false alarm. 

Note that the first register stores the output of the test phase. This is a 
fundamental difference from radar CFAR detection. However, the operations of 
thresholding are the same, and thus much research can be pursued in this field. 
Linatti [53], while studying threshold principles in code acquisition of direct 
sequence spread spectrum signals, showed that better performances may be 
obtained using CFAR criterion under certain conditions. Different CFAR 
algorithms have been suggested in the literature [54–58], and the results look 
promising. 
 
 
11.5 SUMMARY 
 
In this chapter, we considered applications of adaptive CFAR thresholding in radar 
systems and code division multiple access communication systems. We first 
showed the need of adaptive thresholding CFAR in radar automatic detection due 
to the nonstationary nature of signals. Then, we presented briefly the simplified 
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basic concepts of radar systems. The theory of radar systems can be very involved, 
but we presented only the necessary steps that lead us to understand the principles 
of automatic detection. The cell-averaging CFAR detector was then presented in 
some detail, since it is the first detector presented in adaptive thresholding CFAR 
detection. Different detectors were then discussed to show the evolution of 
adaptive CFAR detection in different environments. The OS-CFAR detector was 
also presented in some detail. The literature in this field is very rich, and thus we 
had to limit ourselves to only a few papers.  

In Section 11.3, we briefly described spread spectrum communication 
systems. Then, we presented the concepts of adaptive thresholding CFAR applied 
to spread spectrum communication systems, which started to appear in the 
literature in the last few years. We showed how the philosophy of radar adaptive 
thresholding is different from spread spectrum communications adaptive 
thresholding, but the operations of computing the adaptive threshold and the scale 
parameter for a CFAR are the same. 
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Chapter 12 
 
 

Distributed CFAR Detection 
 
 
12.1 INTRODUCTION 
 
The concept of employing multiple sensors with data fusion is widely used in 
surveillance systems. For a large area of coverage and/or a large number of targets 
under consideration, a number of geographically separated receivers may be used 
to monitor the same volume in space, as shown in Figure 12.1. In such space 
diversity systems, complete observations can be transmitted by the sensors to a 
central processor for data processing. Diversity systems are more robust and more 
reliable than single sensor systems. However, the enhanced performance of these 
systems is essentially derived from the diversity of the system configuration, at the 
expense of a required large communication bandwidth between the local receivers 
and 

 
Figure 12.1  Distributed sensor system with central computation. 
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and the central processor. Thus, due to the constraints on the bandwidth of the 
communication channels, distributed signal processing with a data fusion center is 
preferred in many situations. In such distributed detection systems, some 
processing of the signal is done at each sensor, which then sends partial results 
(compressed data) to the central processor, or in the context of distributed 
detection, to the data fusion center, as shown in Figure 12.2. These partial results 
are combined according to a suitable data fusion rule to yield the desired global 
result. In our case, the partial results are decisions from the individual detectors, 

NiDi ,,2,1, K= , where }1,0{∈iD . The values of Di are combined to yield a 
final decision, D0, which may again be zero or one. 

A lot of work on distributed detection using a fixed threshold has been 
reported in the literature, for example [1–11]. When the target is embedded in 
nonstationary clutter and noise, adaptive thresholding techniques are used.  
 
 
12.2 DISTRIBUTED CA-CFAR DETECTION  
 
The theory of distributed CA-CFAR detection was first developed by Barkat and 
Varshney [12, 13]. They considered the problem of detecting a Swerling target 
model I, embedded in a white Gaussian noise of unknown level. For a given target 
SNR common to all local detectors and a known fusion rule at the data fusion 
center, they obtained the optimum threshold multipliers of the individual detectors 
and derived an expression for the probability of detection at the data fusion center. 

The probability of detection, 
iDP , for detector i, ,,,2,1 Ni K=  is given by  

 
Figure 12.2  Distributed sensor system with data fusion. 
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where iT  is the threshold multiplier at the CA-CFAR detector i, ,,,2,1 Ni K=  

and ( )i
Z zP i  denotes the probability density function of the adaptive threshold at 

the ith CA-CFAR detector. Also,  
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Since the noise samples for each CA-CFAR detector are identically distributed, the 
probability of detection of the individual detectors can be written, from the 
previous chapter, as  
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The goal is to maximize the overall probability of detection while keeping the 
overall probability of false alarm constant. To do this, we use the calculus of 
extrema and form the objective function 

       ( ) ( ) ( )[ ]α−λ+= NFNDN TTTPTTTSPTTTJ ,,,,,,,,,, 212121 KKK       (12.4) 

where α is the desired false alarm probability at the data fusion center, λ is the 
Lagrange multiplier, and NiTi ,,2,1, K= , is the threshold multiplier at each 
detector. To maximize ( )ND TTTSP ,,,, 21 K , subject to the constraint that 

( )NF TTTP ,,, 21 K  is a constant, we must maximize the objective function 
),,,( 21 NTTTJ K . We set the derivative of ( )NTTTJ ,,, 21 K  with respect to 

NiTi ,,2,1, K= , equal to zero, and solve the following system of N nonlinear 
equations in N unknowns. 
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Once the threshold multipliers, ,,,2,1, NiTi K=  are obtained, all the values 
of

iFP  are fixed and the optimum DP  results. Now, we give specific results for the 
“AND” and “OR” fusion rules. We also find the optimum threshold multipliers so 
as to maximize DP  while FP  is maintained at the desired value. 
 
AND Fusion Rule 
 
In this case, the global probabilities of detection and false alarm, in terms of the 
local ones, are 

∏
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Substituting (12.8) and (12.9) into (12.4), the objective function is 
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Taking the derivative of ),,,( 21 NTTTJ K  with respect to ,,,2,1, NiTi K=  and 
setting it equal to zero, we obtain 
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The threshold multiplier, T, can be obtained by solving the above set of coupled 
nonlinear equations along with the constraint 
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OR Fusion Rule 
 
In this case, we have 

∏
=

=
N

i
MM i

PP
1

         (12.13) 

and  

          ( )∏
=

−−=
N

i
FF i

PP
1

11         (12.14) 

where MP  is the probability of miss, and recall that DM PP −=1 . The objective 
function then becomes 
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Note that in this case we have to minimize ),,,,( 21 NTTTJ K  since we are 
minimizing the overall probability of a miss, which is equivalent to maximizing 

DP  at the data fusion center as defined by (12.4). Taking the derivative of the 
objective function with respect to ,,,2,1, NjT j K=  and setting it equal to zero, 
we obtain 
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Hence, we obtain a system of coupled equations. Then, we use the following 
constraint  
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to solve for the unknown threshold multipliers recursively. 
 
 
12.3 FURTHER RESULTS 
 
In [14], Elias-Fusté et al. extended the work in [12] to N receivers using cell-
averaging and order statistic CFAR. They considered a “k out of N” fusion rule at 
the data fusion center, and solved for the optimum thresholds of the local receivers 
by maximizing the overall probability of detection, while the global probability of 
false alarm is maintained constant. Then, they assumed that the local receivers are 
based on identical ordered statistics CFAR for a multiple target situation. Recall in 
OS-CFAR detection, an order number of the estimating cell is used to represent 
the background level. The problem of nonidentical OS-CFAR local detectors was 
considered in [15]. For a given set of ordered number cells, ,,,2,1, Niki K=  they 
form the objective function at the data fusion center, which is given by 

    ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]NNDNN kTkTkTPkTkTkTJ ,,,,,,,,,,,, 22112211 KK =  
    ( ) ( ) ( )[ ]{ }α−λ+ NNF kTkTkTP ,,,,,, 2211 K  
          (12.18) 

Subject to the constraint that the overall desired probability of false alarm at the 
data fusion center is α, λ is again a Lagrange multiplier. Then, they obtain the 
optimum threshold multipliers NTTT ,,, 21 K , by solving the set of nonlinear 
equations  
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for the constraint  

     ( ) ( ) ( )[ ] α=NNF kTkTkTP ,,,,,, 2211 K         (12.20) 

The corresponding objective functions for the AND and OR fusion rules are, 
respectively, given by 
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and 
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Further results based on decentralized cell-averaging CFAR detection and 
decentralized order statistic CFAR detection were developed by Blum et al. [16, 
17]. In [18], different target models were considered. 

Non-Gaussian clutter such as the Weibull distribution or the distribution K 
were considered in [19–21]. The literature is very rich, and further developments 
can be found in [22–32]. 

Again, I apologize to the many authors who contributed in this field and were 
not cited explicitly. As discussed in the previous chapters, high-resolution radars 
and different topologies with embedded systems may be considered for this quest 
of better detection performances. 
 
 
12.4 SUMMARY 
 
In this chapter, we introduced the concept of adaptive thresholding CFAR using 
multiple sensors and data fusion. We showed how the problem is formulated and 
gave the necessary steps to obtain the optimum scale factors using the AND and 
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OR fusion rules at the data fusion center. Other approaches using OS-CFAR 
detection were also discussed. Then, we presented some papers that enriched this 
concept of adaptive CFAR detection with multiple sensors and data fusion, for 
non-Gaussian clutter environments, and under different constraints. 
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The density function of the Gaussian, also called normal, distribution is given by 

( ) ( )












σ

−
−

σπ
=

2

2

2
exp

2
1 mxxf X    for all x            (A.1) 

where m and σ are the mean and standard deviation of X, respectively, and satisfy 
the conditions ∞<<−∞ m  and 0>σ . The corresponding distribution function is 
given by 

   ( ) ( ) ( ) dumuxXPxF
x

X ∫
∞− 












σ

−
−

σπ
=≤=

2

2

2
exp

2
1

              (A.2) 

 The distribution function can be determined in terms of the error function as  

( ) 







+=

2
erf

2
1

2
1 xxFX                         (A.3) 

where 

  ( ) ∫ −

π
=

x
u duex

0

22erf               (A.4) 

Letting σ−= /)( mxu in (A.1), then  

)(xI ≜ ( ) ( ) ∫
∞−

−

π
≤=

x u

X duexXPxF 2

2

2
1                        (A.5) 

where 
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( ) 2

2

2
1

x

X exf
−

π
=               (A.6) 

is the standard normal distribution with mean m = 0 and variance σ2 = 1, and also 
denoted N(0,1). Tabulated values of )(xI  and )erf(x  are given in Tables A.1 [1] 
and A.2 [2], respectively. 

 Other  important results are the complementary error function and the Q-
function given by 

( ) ∫
∞

−

π
=

x

u duex
22erfc                         (A.7) 

such that  

erfc(x) = 1 – erfc(x)              (A.8) 

and 

( ) ∫
∞ −

π
=

x

u

duexQ 2

2

2
1                         (A.9) 

where 

  ( )
2
10 =Q                        (A.10) 

and 

0for )(1)( ≥−=− xxQ xQ             (A.11) 

The Q-function can be written in terms of the error function to be 

          ( )



















−=

2
erf1

2
1 xxQ 








=

2
erfc

2
1 x                      (A.12) 

Also note that  

                            I(x) + Q(x) = 1                                 (A.13) 
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and 

      ( ) 2

2

2
1

x

e
x

xQ
−

π
≅ ,   for x > 4           (A.14) 

In some books, Q(x) defined in (A.9) is denoted erfc*(x), while I(x) in (A.5) is 
denoted erfc*(x), and thus erf*(x) + erfc*(x) = 1, as in (A.13). 
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Table A.1 Values of the Standard Normal Distribution Function 

)(xI ≜ )(
2
1 2/2

xXPdue
x

u ≤=
π

∫
∞−

−  

4641.04681.04721.04761.04801.04840.04880.04920.04960.05000.00.0
4247.04286.04325.04364.04404.04443.04483.04522.04562.04602.01.0
3859.03897.03936.03974.04013.04052.04090.04129.04168.04207.02.0
3483.03520.03557.03594.03632.03669.03707.03745.03783.03821.03.0
3121.03156.03192.03228.03264.03300.03336.03372.03409.03446.04.0
2776.02810.02843.02877.02912.02946.02981.03015.03050.03085.05.0
2451.02483.02514.02546.02578.02611.02643.02676.02709.02743.06.0
2148.02177.02206.02236.02266.02297.02327.02358.02389.02420.07.0
1867.01894.01922.01949.01977.02005.02033.02061.02090.02119.08.0
1611.01635.01660.01685.01711.01736.01762.01788.01814.01841.09.0
1379.01401.01423.01446.01469.01492.01515.01539.01562.01587.00.1
1170.01190.01210.01230.01251.01271.01292.01314.01335.01357.01.1
0985.01003.01020.01038.01056.01075.01093.01112.01131.01151.02.1
0823.00838.00853.00869.00885.00901.00918.00934.00951.00968.03.1
0681.00694.00708.00722.00735.00749.00764.00778.00793.00808.04.1
0559.00570.00582.00594.00606.00618.00630.00643.00655.00668.05.1
0455.00465.00475.00485.00495.00505.00516.00526.00537.00548.06.1
0367.00375.00384.00392.00401.00409.00418.00427.00436.00446.07.1
0294.00300.00307.00314.00322.00329.00336.00344.00352.00359.08.1
0233.00238.00244.00250.00256.00262.00268.00274.00281.00287.09.1
0183.00188.00192.00197.00202.00207.00212.00217.00222.00228.00.2
0143.00146.00150.00154.00158.00162.00166.00170.00174.00179.01.2
0110.00113.00116.00119.00122.00126.00129.00132.00136.00139.02.2
0084.00087.00089.00091.00094.00096.00099.00102.00104.00107.03.2
0064.00066.00068.00069.00071.00073.00075.00078.00080.00082.04.2
0048.00049.00051.00052.00054.00055.00057.00059.00060.00062.05.2
0036.00037.00038.00039.00040.00041.00043.00044.00045.00047.06.2
0026.00027.00028.00029.00030.00031.00032.00033.00034.00035.07.2
0019.00020.00021.00021.00022.00023.00023.00024.00025.00026.08.2
0014.00014.00015.00015.00016.00016.00017.00017.00018.00019.09.2

0000.00001.00001.00002.00002.00003.00005.00007.00010.00013.00.3

9876543210

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−

x
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Table A.1  (continued) Values of the Standard Normal Distribution Function 

)(xI ≜ )(
2
1 2/2

xXPdue
x

u ≤=
π

∫
∞−

−  

0000.19999.09999.09998.09998.09997.09995.09993.09990.09987.00.3

9986.09986.09985.09985.09984.09984.09983.09982.09982.09981.09.2
9981.09980.09979.09979.09978.09977.09977.09976.09975.09974.08.2
9974.09973.09972.09971.09970.09969.09968.09967.09966.09965.07.2
9964.09963.09962.09961.09960.09959.09957.09956.09955.09953.06.2
9952.09951.09949.09948.09946.09945.09943.09941.09940.09938.05.2
9936.09934.09932.09931.09929.09927.09925.09922.09920.09918.04.2
9916.09913.09911.09909.09906.09904.09901.09898.09896.09893.03.2
9890.09887.09884.09881.09878.09874.09871.09868.09864.09861.02.2
9857.09854.09850.09846.09842.09838.09834.09830.09826.09821.01.2
9817.09812.09808.09803.09798.09793.09788.09783.09778.09772.00.2
9767.09762.09756.09750.09744.09738.09732.09726.09719.09713.09.1
9706.09700.09693.09686.09678.09671.09664.09656.09648.09641.08.1
9633.09625.09616.09608.09599.09591.09582.09573.09564.09554.07.1
9545.09535.09525.09515.09505.09495.09484.09474.09463.09452.06.1
9441.09430.09418.09406.09394.09382.09370.09357.09345.09332.05.1
9319.09306.09292.09278.09265.09251.09236.09222.09207.09192.04.1
9177.09162.09147.09131.09115.09099.09082.09066.09049.09032.03.1
9015.08997.08980.08962.08944.08925.08907.08888.08869.08849.02.1
8830.08810.08790.08770.08749.08729.08708.08686.08665.08643.01.1
8621.08599.08577.08554.08531.08508.08485.08461.08438.08413.00.1
8389.08365.08340.08315.08289.08264.08238.08212.08186.08159.09.0
8133.08106.08078.08051.08023.07995.07967.07939.07910.07881.08.0
7852.07823.07794.07764.07734.07703.07673.07642.07611.07580.07.0
7549.07517.07486.07454.07422.07389.07357.07324.07291.07257.06.0
7224.07190.07157.07123.07088.07054.07019.06985.06950.06915.05.0
6879.06844.06808.06772.06736.06700.06664.06628.06591.06554.04.0
6517.06480.06443.06406.06368.06331.06293.06255.06217.06179.03.0
6141.06103.06064.06026.05987.05948.05910.05871.05832.05793.02.0
5753.05714.05675.05636.05596.05557.05517.05478.05438.05398.01.0
5359.05319.05279.05239.05199.05160.05120.05080.05040.05000.00.0

9876543210x
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Table A.2   Error Function 

( ) ∫
π

= −
x

u duex
0

22erf  

84270.000.171116.075.052050.050.027633.025.0
83851.099.070468.074.051167.049.026570.024.0
83423.098.069810.073.050275.048.025502.023.0
82987.097.069143.072.049375.047.024430.022.0
82542.096.068467.071.048466.046.023352.021.0
82089.095.067780.070.047548.045.022270.020.0
81627.094.067084.069.046623.044.021184.019.0
81156.093.066378.068.045689.043.020094.018.0
80677.092.065663.067.044747.042.018999.017.0
80188.091.064938.066.043797.041.017901.016.0
79691.090.064203.065.042839.040.016800.015.0
79184.089.063459.064.041874.039.015695.014.0
78669.088.062705.063.040901.038.014587.013.0
78144.087.061941.062.039921.037.013476.012.0
77610.086.061168.061.038933.036.012362.011.0
77067.085.060386.060.037938.035.011246.010.0
76514.084.059594.059.036836.034.010128.009.0
75952.083.058792.058.035928.033.009007.008.0
75381.082.057982.057.034913.032.007885.007.0
74800.081.057162.056.033891.031.006762.006.0
74210.080.056332.055.032863.030.005637.005.0
73610.079.055494.054.031828.029.004511.004.0
73001.078.054646.053.030788.028.003384.003.0
72382.077.053790.052.029742.027.002256.002.0
71754.076.052924.051.028690.026.001128.001.0
71116.075.052050.050.027633.025.000000.000.0

)erf()erf()erf()erf( xxxxxxxx
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Table A.2  (continued)   Error Function 

( ) ∫
π

= −
x

u duex
0

22erf  

99532.000.298667.075.196611.050.192290.025.1
99511.099.1
99489.098.1
99466.097.1
99442.096.1
99418.095.1
99392.094.1
99366.093.1
99338.092.1
99308.091.1
99279.090.1
99247.089.1
99216.088.1
99182.087.1
99147.086.1
99111.085.1
99074.084.1
99035.083.1
98994.082.1
98952.081.1
98909.080.1
98864.079.1
98817.078.1
98769.077.1
98719.076.1
98667.075.1

)erf(

98613.074.1
98558.073.1
98500.072.1
98441.071.1
98379.070.1
98315.069.1
98249.068.1
98181.067.1
98110.066.1
98038.065.1
97962.064.1
97884.063.1
97804.062.1
97721.061.1
97635.060.1
97546.059.1
97455.058.1
97360.057.1
97263.056.1
97162.055.1
97059.054.1
96952.053.1
96841.052.1
96728.051.1
96611.050.1

)erf(

96490.049.1
96365.048.1
96237.047.1
96105.046.1
95970.045.1
95830.044.1
95686.043.1
95530.042.1
95385.041.1
95229.040.1
95067.039.1
94902.038.1
94731.037.1
94556.036.1
94376.035.1
94191.034.1
94002.033.1
93807.032.1
93606.031.1
93401.030.1
93190.029.1
92973.028.1
92751.027.1
92524.026.1
92290.025.1

)erf(

92051.024.1
91805.023.1
91553.022.1
91296.021.1
91031.020.1
90761.019.1
90484.018.1
90200.017.1
98910.016.1
89612.015.1
89308.014.1
88997.013.1
88679.012.1
88353.011.1
88021.010.1
87680.009.1
87333.008.1
86977.007.1
86614.006.1
86244.005.1
85685.004.1
85478.003.1
85084.002.1
84681.001.1
84270.000.1

)erf( xxxxxxxx

 

 

 





 
 
 
 

 
 
 

About the Author 
 
 
Mourad Barkat received a B.S. with high honors, magna cum laude, and an M.S. 
and a Ph.D. in electrical engineering from Syracuse University in 1981, 1983, and 
1987, respectively. 

From 1987 to 1991, he was with the Department of Electrical Engineering at 
the State University of New York, SUNY, at Strong Brook. He is currently a 
professor in the Department of Electronics, University of Constantine, Algeria. 

Dr. Barkat is a well-published author and a senior member of the IEEE. He is 
also a member of the Tau Beta Pi and Eta Kappa Nu Honor Societies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

683 





 

685 

 
 
 
 

Index 
 
 
Absolute error cost function, 358–59 
Adaptive  

CFAR detection, 628, 634–39,  
642–68, 659 

distributed CFAR detection,  
665–71 

threshold, 628, 634–39, 659 
Adjoint matrix, 229 
Alarm, probability of false alarm,  

290, 292 
Algebraic multiplicity of eigenvalues, 240–43 
Aliasing error, 190–91 
All-pass filter, 201 
All-pole filter, 255 
All-zero filter, 254 
Alternative hypothesis, 289 
Amplitude random, 155–57 
Amplitude estimation, random phase, 595–98 
Amplitude spectrum, 465 
Antipodal signals, 552 
AND rule, 668 
A posteriori density, 359 
A posteriori estimate, maximum,  

359–60 
A priori probability, 291 
Approach 

Gaussian process sampling, 189–94 
Karhunen-Loève, 607–10 
whitening, 611–17 

Approximation 
of binomial, 87 
of distributions, 30 
of Gaussian, 30 
of Poisson, 87 
of hypergeometric, 88 

AR process, 254–62 
autocorrelation, 261–62 

order 1, 256–58 
order 2, 258–60 
order p, 260–62 

power spectral density, 261 
Yule-Walker equation, 261, 406–9 

ARMA process, 264–66 
 
 

 
 
 
 

 
 
 
ASK, 600 
Associativity, 6, 226 
Augmented matrix inversion lemma,  

230 
Autocorrelation, 41 

coefficients, 42–43 
ergodicity, 187–90 
function, 146, 153 
of bandlimited white noise, 205–8 
matrix, 247 
properties, 153–54 
stationary, wide sense, 154–55 
stationary, strict, 145 
time average, 186 

Autocovariance, 43 
Average cost, 291–94 
Average value, 23–24 

of probability, 6–7 
 
Backward prediction, 345 
Bandlimited white noise, 205–7 
Bandpass process, 210 
Bandwith 

definition, 210 
effective, 209–10 
of noise, 205–6 

Basis orthonormal, 455–56 
Bayes 

cost, 291–94 
criterion, 291–94 
M hypothesis, 303–13 

 two hypothesis, 291–96 
 estimation of nonrandom  
 parameters, 346–47 

estimation of random parameters, 346– 
60 

risk, 292 
rule, 14 

 composite hypotheses, 326 
Bernoulli distribution, 75–76 
Best linear unbiased estimator, 378–79 
Beta distribution, 98 
Beta function, 98 
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Bessel function, 104 
Bias 

absolutely, 353 
known, 353 
unknown, 353 

Biased estimation, 354 
Cramer-Rao bound, 363–64, 373–76 

Binary 
colored Gaussian noise, 606 
detection, 286–96, 534–41 
detection in colored noise, 606–17 
general detection, 541–53 
simple binary hypothesis tests, 289–90 

Binary transmission 
random, 148–50 
semirandom, 147 

Binomial distribution, 75 
Birth-death process, 279–82 
Bivariate Gaussian, 121–23 
Boltzman’s constant, 206 
Bound 

Chernoff, 29–30 
Cramer-Rao, 310–12 
erfc, 90, 681–82 
lower bound on variance, 311 
mean square estimation error, 364 
Tchebycheff, 29 

Boundary conditions, 467–79 
Boundary kernel, 467 
Brownian motion, 170–71 
 
Capture effect, 644 
CDMA, 649, 652–54 
CFAR, 635–39 

loss, 639 
Canonical form, 429 
Cauchy distribution, 120 
Causal system, 179 
Chapman-Kolmogorov equation, 173, 274, 

277 
Central limit theorem, 95–96 
Characteristic equation 

of a matrix, 237 
Characteristic function, 28 

of beta distribution, 100–1 
of binomial distribution, 75–76 
of bivariate Gaussian, 121–22 
of Cauchy distribution, 120 
of chi-squared distribution, 106 
of exponential distribution, 96–97 
of F distribution, 118 
of gamma distribution, 98 
of Gaussian distribution, 93 
of Laplace distribution, 98 
of multivariate Gaussian, 128 
of noncentral chi-square, 103 
of Poisson distribution, 85 

of Rayleigh distribution, 106 
of student’s t, 115 
of uniform distribution, 88 

Characteristic polynomial, 237 
Chip, 651 
Chi-square distribution, 101–6 
Cofactors, 23–24 
Conformability, 225 
Combinatorial analysis, 9 
Commutativity, 6 
Complement error function, 89 
Complement of an event, 5 
Complete orthonormal (CON) set, 453–54 
Composite hypothesis, 326 
Consistent estimator, 354 
Continuity, 194–95 
Continuous 
 Gaussian process, 161 
 random variable, 20 
Convergence 
 mean square, 452–54, 480–81 
Correlation, 41 
 coefficient, 42 

matrix, 248 
 receiver, 538, 557–62 
Cost function 
 absolute error, 356 
 squared-error, 356 
 uniform, 356 
Covariance, 43 
Covariance matrix, 123, 127 

of error, 372–73 
Convolution, 52–53 
Cramer-Rao inequality, 365–68 
Criterion 
 Bayes, 291–96 
 MAP, 305, 377 
 maximum likelihood, 345 
 mean square, 376–77 

minimax, 313–15 
 Neyman-Pearson, 317–18 
Cramer-Rao 
 bound, 363, 370, 373–74 
 inequality, 364–65, 370 
Cross 
 correlation function, 153–54 
 covariance, 147 
 power spectrum, 177–78 
Cumulative distribution, 18, 20 
Cyclostationary, 160 
 
Data extractor, 631 
Decision regions, 290 
Delta function, 18, 36 
De Morgan’s laws, 6 
Density function 
 Bernoulli, 75 
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 beta, 100 
 binomial, 76–77 
 bivariate Gaussian, 121 
 Cauchy, 120 
 chi-square, 101 
 exponential, 96 
 F, 118 
 gamma, 98 
 Gaussian, 89 
 Generalized compound, 135 
 geometric, 78–79 
 hypergeometric, 82–84 
 joint, 31 
 K, 132–33 
 Laplace, 97 
 lognormal, 131 
 marginal, 36–37,  
 Maxwell, 113 
 multinomial, 78 
 multivariate Gaussian, 128 
 Nagakami m, 115 
 Normal, see Gaussian 
 Pascal, 80 
 Poisson, 85 
 Rayleigh, 106 
 Rice, 112 
 student’s t, 115 
 uniform, 88 
 Weibull, 129 
Dependence and independence, 13–14 
Detection 
 binary, 291–96, 534–53 
 CFAR, 634–41, 659–60 
 distributed CA-CFAR, 666–70 
 in colored noise, 607–17 
 M-ary, 303–11, 556–62 
 sequential, 332–36 
Deterministic, 142 
Difference of sets, 4 
Differential equations, 466–75 
Differentiation of vectors, 432–34 
Discrete 
 Fourier transform, 252, 264 
 random variable, 18–19 
 time random process, 223–24, 245 
Discrete Wiener filter, 423–35 
Display, 631 
Distributed detection, 665–70 
Distributivity, 6 
Domain, 236 
 
Echelon, 17 
Efficent estimate, 367 
Effective bandwidth, 210–11 
Eigenfunction, 236, 473 
Eigenspace, 236 
Eigenvalue, 236–37, 473 

Eigenvectors, 236–38 
Ellipse, 124–27 
Empty set, 2 
Energy, 450 
 inner product, 450 
 norm, 450 
 signal, 450 
Ensemble, 2, 141 
Enumeration methods 
 combinations, 8 
 multiplication principle, 9 
 permutations, 8 
Ergodicity 
 in the autocorrelation, 187 
 of the first-order distribution, 188 
 in the mean, 186–87 
 of power spectral density, 188 
Error 
 absolute error cost function, 356 
 bound, 29–30, 311 
 function, 90 
 function complementary, 91 
 mean square, 452, 480–83 
 minimum criterion, 295–96 
Estimation, 
 Bayes, 354–56 
 best linear estimate, 378–85 
 biased, 353 
 least-square estimation, 388–90 
 maximum a posteriori, 359–60 
 maximum likelihood, 346 
 linear mean square, 377–78 
 minimum mean square, 357 
 minimum variance, 354 
 minimum mean absolute value of error,  

357 
recursive least square, 391–93 

Estimator 
 consistent, 354–55 
 efficient, 367 
 linear, 377–78 
Euclidean space, 461 
Events 
 impossible, 12 
 independent, 13 
 mutually exclusive, 12 
Expected value, 23–24 
Exponential distribution, 96 
 characteristic function, 98 
 
Fading channel, 596, 603–5 
Fading figure, 116 
False alarm probability, 292 
FDMA, 649 
F distribution, 118 
Filter 
 causal, 416–19 
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 Kalmam, 437–46 
 matched, 453–54, 587–90 
 order, 254 
 whitening, 611–15 
 Wiener, 410–36 
Fisher information matrix, 373–77 
Fourier coefficients, 451, 463–66 
Fourier series, 463–66 
Fourier transforms, 27, 174 
Fredholm integral equations, 472 
FSK signals with Rayleigh fading, 603–5 
Fundamental theorem, 50, 58–60 
Fusion center, 666 
Fusion rule, 666, 668–79 
 
Gamma 
 distribution, 99 
 function, 98 
Gauss-Markov theorem, 385 
Gaussian 
 characteristic function, 93 
 density, 89 
 bivariate, 123–24 
 multivariate, 127 
 process, 483–87 
General binary detection, 543–53 
General Gaussian problem, 503 
Generalized compound distribution, 135 
Generalized eigenvector, 240–41 
Generalized Fourier series, 451 
Generalized likelihood ratio test, 348–49 
Generation of coefficients, 453–58 
Geometric distribution, 78–79 
Gram-Schmidt orthogonalization, 456–57 
Green’s function, 469–71 
Guard cells, 636 
 
Hilbert transform, 201–5 
Homogeneous Markov chain, 268 
Hypergeometric distribution, 82–84 
Hypothesis 
 alternative, 289 
 binary, 291 
 composite, 326 
 M-ary, 303–11 
 null, 289 
 simple, 289 
 symmetric, 525 
 
Impulse function, 18, 36 
Incoherent matched filter, 587–90 
Independent 
 events, 35 
 increment process, 164, 171 
 random variables, 35 
Inequality 
 Cramer-Rao, 364–65 

Tchebycheff, 29 
 Schwarz, 153, 366 
Inner product, 449 
Innovations, 437–39 
Integral equation, 471–75 
 eigenvalue problem, 471–75 
 Fredholm, 472 
 Random process, 199–201, 480–83 
Interpolation, 404–5 
Intersection of sets, 4 
Inverse Fourier transform, 28, 174 
Inversion lemma matrix, 384 
 
Jacobian of transformation, 59–60, 63–64 
Joint characteristic function, 44–45 
 independent, 45 
Joint density, 30–32 
Joint distribution, 32 
Jointly wide sense stationary, 147 
Jordan block, 241 
 
K distribution, 132–33 
Kalman filtering, 435–44 
Kalman gain, 441 
Karhunen-Loève approach, 534–39, 544–53, 

607–11 
Karhunen-Loève expansion, 480–83 
Kernel, 469–71 
Kronecker delta function, 12 
Kummer’s confluent hypergeometric function, 

119 
 
Lack of memory property, 136 
Law of large numbers, 30 
Lagrange multiplier, 318, 617, 663 
Laplace distribution, 97 
Laplace transform, 421 
Laplace expansion of determinants, 229 
Largest of receiver, 567 
Leibniz’s rule, 21, 357 
Likelihood 
 equation, 346 

function, 346 
 maximum likelihood estimate, 346–47 
 ratio conditional, 596 
 ratio, 294 
 ratio test, 295 
 statistic, 295 
l. i. m., 453 
Linear 
 combination, 248 
 estimation, 377–82, 573–75 
 independence, 248 
 mean-square estimator, 377–78 
 model, 383 

prediction, 439 
system, 178–79 
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transformation, 236, 400–3 
Local detectors, 666 
Log likelihood 

function, 346 
ratio, 296 

Log-normal distribution, 131 
 
MAP, 359–60 
Marginal 

density, 33 
distribution, 32 

Masking effect, 644 
Matched filter receiver, 454, 537–38, 567 
Marcum’s Q-function, 105 
Markov chains 

absorbing, 275 
ergodic, 275 
homogeneous, 268 
regular, 271 
stationary, 269 

Markov random process, 172–73 
birth-death, 279–80 

Markov sequence state diagram, 270 
Matched filter, 454, 587–90 
Matrix 

adjoint, 229 
block diagonal, 232 
circulant, 234–35 
cofactor, 228 
column, 225 
conjugate, 227 
definition, 224 
determinant, 228 
Hermitian, 227 
Hermitian Toeplitz, 235 
idempotent, 234 
identity, 226 
indefinite, 231, 243 
involutory, 234 
minor, 228 
modal, 238 
nonsingular, 229 
periodic, 234 
positive-definite, 231, 243 
positive-semidefinite, 231, 243 
negative-definite, 231, 243 
negative-semidefinite, 231, 243 
null, 226 
orthogonal, 233–34 
rank, 229 
row, 224 
square, 224 
symmetric, 227 
symmetric Toeplitz, 235 
Toeplitz, 235 
transpose, 225 
triangular, 233 

unitary, 226 
Vandermonde, 235 

Matrix inversion lemma, 230 
Maximum a posteriori estimation, 359 
Maximum likelihood estimation, 346 
Maximization of SNR, 568–70 
Maxwell distribution, 113 
McLaurin series, 26 
Mean, 23 
Mean square 

convergence, 452–54, 480–83 
definition, 25 
error, 452 
estimation, 376 
value, 25 

Mercer’s theorem, 474–81 
Memoryless nonlinear system, 161 
Minimax 

criterion, 313–15 
equation, 315 
risk function, 313 

Minimum 
error probability, 296, 315, 452 
mean-square estimate, 357–58 

Miss probability, 290 
Mixed distribution, 22 
Model 

AR, 254–62 
ARMA, 264–66 
MA, 262–64 

Modified Bessel function, 104–12 
Modified Gram-Schmidt, 457 
Modulator, 629 
Moment 

generating function, 26 
nth, 27 

Most powerful test, 318 
Multinomial coefficients, 9 
Multinomial distribution, 79–80 
Multivariate Gaussian distribution, 128 
Mutually exclusive, 6 
 
Nagakami m-distribution, 115 
Neyman-Pearson criterion, 317–18 
Noise equivalent bandwidth, 210–11 
Noncentral distribution 

chi-square, 102–5 
F distribution, 118 
t distribution, 116 

Noncentrality parameter, 103 
Nonlinear estimation, 576–78 
Normal distribution, see Gaussian 
Normal equations, 389 
Norton’s equivalent circuit, 207 
Null hypothesis, 289 
Nyquist rate, 190 
Nyquist theorem, 207 
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Objective function, 318, 617 
Observation space, 290 
Optimum receiver, 538, 549–50, 560 
OR fusion rule, 669–70 
Order statistic, 645 
Orthogonal 

functions, 450–51 
random variables, 43 

Orthogonality principle, 400 
Orthonormal 

basis, 455 
function, 451 

 
Pairwise disjoint sets, 7 
Pairwise independent events, 7 
Parametric model, 223–26 
Parallel topology, 665–66 
Parseval’s identity of orthonormal functions, 

453 
Parseval’s theorem, 174 
Pascal distribution, 80 
Periodic process, 158–61 
Phase spectrum, 465 
Plan position indicator, 631 
Poisson 
 distribution, 85 
 process, 161–65 
Positive 
 definite, 232, 244 
 semidefinite, 232, 243 
Power function, 329 
Power spectral density, 174 
Prediction filter, 429–30, 440–45 
Predictor 
 gain, 443 
Prewhitening filter, 611–13 
Probability density function, 18, 20 
Probability distribution function, see density 

functions 
PSK, binary, 652, 654 
Pulse response, 251 
Pulse-to-pulse, 640 
Pulse transfer function, 254 
 
Quadratic filter, 201 
Quadratic form, 231 
Quadratic receiver, 587 
Q-function, 91–92 
 
Radar 

area target, 639 
bistatic, 631 
coherent processing interval, 634 
coherent pulse train, 633 
cross section, 640 
Doppler frequency shift, 633 
distributed target, 639 

extended target, 639 
monostatic, 629 
multistatic, 631 
point target, 639 
pulse repetition frequency, 632 
pulse repetition interval, 632 
range bin, 632 
target range, 631 
time delay, 631 
unambiguous range, 631 
volume target, 639 
wavelength, 634 

Random process 
Bernoulli, 166–67 
binomial,  167–68 
continuous-time, 143 
cyclostationary, 160 
Gaussian, 161, 463–87 
Markov, 172–73 
periodic, 158–61 
point, 164 
Poisson, 162–64 
Random walk, 168–69 
strict sense stationary, 145 
white noise, 205–6 
wide-sense stationary, 145, 154 
Wiener, 168–69,  

Random variable, 17–18 
 continuous, 20 

discrete, 18–19 
 mixed, 22–23 
 two-dimensional, 31–37 
Random walk, 168 
Rank order, 645 
Rayleigh fading, 596–98 
Rayleigh distribution, 106 
Realizable filter, 416–19 
Receiver operating characteristic, 321–24 
Resolution cell, 636 
Ricatti difference equation, 444 
Rice distribution, 112 
Rieman integral, 199 
Risk function, 291–92 
ROC, 331–34 
 
Sample space, 6 
Sampling theorem  

deterministic, 189–91 
stochastic, 192–94 

Scan, 640 
scan-to-scan, 640 

Schwarz inequality, 153, 365 
Sequence PN, 650–53 
Sequential detection, 331–36 
Sequential likelihood ratio test, 332 
Set 
 complement, 5 
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 countable, 2 
 difference, 4 
 disjoint, 3 
 empty, 2 
 finite, 2 
 infinite, 2 
 intersection, 4 
 mutually exclusive, 3 
 null, 2 
 partitions, 5 
 subset, 2 
 uncountable, 2 
 union, 3 
 universal, 2 
Signal space, 458 
Signals with random amplitude, 595–98 
Signals with random frequency, 598-600 
Signals with random phase, 583–90 
Signals with random time of arrival, 605–6 
Sliding correlator, 657 
Space, observation, 290 
Spectral density 
 rational, 487–89 
 theorem, 247 
Spectral factorization, 417–19 
Square-error cost function, 356 
Square-law detector, 586 
State distribution vector, 268 
State transition matrix, 267, 436 
State vector, 436 
Stationary process 
 cyclostationary, 160 
 jointly wide-sense stationary, 147 
 strict sense, 145 
 wide-sense, 145, 154 
Statistically independent 
 random variables, 35 
 random process, 149 
Strong law of large numbers, 30 
Student’s t distribution, 115 
Sufficient statistics, 300 
Superposition principle, 572 
Swerling targets, 641–42 
Synchronization, 655 
 
t distribution, 116 
Target models, 640 
Tests, Bayes 
 binary hypothesis, 291–96 
 generalized likelihood ratio, 348–49 
 likelihood ratio, 291 

maximum a posteriori probability, 309– 
10 

 M hypothesis, 303–11 
 minimax, 313–15 
 Neyman-Pearson, 317–18 
 UMP, 329 

Tchebycheff inequality, 29 
TDMA, 649 
Thermal noise, 205–6 
Thevenin’s equivalent circuit, 207 
Time autocorrelation, 187 
Time average, 186 
Total probability, 14 
Transition probability, 267 
Transition probability rate, 276 
Transition matrix, 268 
Transmitter, 629 
Trace of matrix, 229–30 
Tracking, 655 
Transformation 

linear, 400–13 
of random variable, 48–60 
orthogonal, 238 
similarity, 238 

Threshold 
adaptive, 637 
fix, 295–96 
multiplier, 637 

 
Unbiased estimates, 353 
Unbiased minimum variance, 354 
Uncorrelated random processes, 154 
Uncorrelated random variables, 42 
Uncorrelated signal components, 508, 519–23,  

526–29 
Uniform cost function, 356 
Uniform distribution, 88 
Uniformly most powerful (UMP), 329 
Unit matrix, 227 
Unknown bias, 353 
Unrealizable filters, 410–13, 425–26 
Unwanted parameter, 580 
 
Vandermonde matrix, 236 
Variance, 25 

lower bound, 364 
of error estimation minimum, 357 
minimum unbiased, 354 
sum of random variables, 43 

Vector 
eigenvector, 237–39 
inner product, 225 
norm, 450 
orthogonal, 248 
state distribution, 268 

Venn diagram, 4–5 
 
Wald’s sequential test, 332–36 
Weak law of large numbers, 30 
Weibull distribution, 129 
White noise, 205–6, 252–53 
White noise process, 493–95 
Whitening approach, 611–13 
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Whitening filter, 614 
Wide-sense stationary, 143 
Wiener filter, 409–35 
Wiener-Hopf integral equation, 416, 426 
Wiener-Kinchin relation, 177, 250 
Wiener-Levy process, 170–71 
Woodbury’s identity, 230–31 
 
Yule-Walker equation, 261, 405–8 
 
Z-transform, 251–52 


