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Preface

This book provides an overview and introduction to signal detection and
estimation. The book contains numerous examples solved in detail. Since some
material on signal detection could be very complex and require a lot of background
in engineering math, a chapter and various sections to cover such background are
included, so that one can easily understand the intended material. Probability
theory and stochastic processes are prerequisites to the fundamentals of signal
detection and parameter estimation. Consequently, Chapters 1, 2, and 3 carefully
cover these topics. Chapter 2 covers the different distributions that may arise in
radar and communication systems. The chapter is presented in such a way that one
may not need to use other references.

In a one-semester graduate course on “Signal Detection and Estimation,” the
material to cover should be:

Chapter 5 Statistical Decision Theory

Chapter 6 Parameter Estimation

Chapter 8 Representation of Signals

Chapter 9 The General Gaussian Problem
Chapter 10 Detection and Parameter Estimation

and perhaps part of Chapter 7 on filtering. The book can also be used in a two-
semester course on “Signal Detection and Estimation” covering in this case:
Chapters 5 to 8 for the first semester and then Chapters 9 to 12 for the second
semester.

Many graduate courses on the above concepts are given in two separate
courses; one on probability theory and random processes, and one on signal
detection and estimation. In this case, for the first graduate course on “Probability
Theory, Random Variables, and Stochastic Processes,” one may cover:

Chapter 1 Probability Concepts

Chapter 2 Distributions

Chapter 3 Random Processes

Chapter 4 Discrete-Time Random Process

XV
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and part of Chapter 7 on filtering, while Chapters 5, 6, 8, and 9 can be covered in
the course on “Signal Detection and Estimation” in the second semester. The
different distributions, which are many, can be discussed on a selective basis.

Chapters 3 and 4, and part of Chapter 7 on filtering, can also be studied in
detail for a graduate course on “Stochastic Processes.”

Chapters 11 and 12 are applications of some aspects of signal detection and
estimation, and hence they can be presented in a short graduate course, or in a
course of special topics.

The chapters on probability theory, random variables, and stochastic processes
contain numerous examples solved in detail, and hence they can be used for
undergraduate courses. In this case, Chapter 1 and part of Chapter 2 will be
covered in a one-semester course on “Probability and Random Variables.”.
Chapter 3 and part of Chapter 4 can be covered in a second semester course on
“Random Processes” for seniors. It is clear that different combinations of the
different chapters can used for the different intended courses.

Since the material is essential in many applications of radar, communications,
and signal processing, this book can be used as a reference by practicing engineers
and physicists. The detailed examples and the problems presented at the end of
each chapter make this book suitable for self-study and facilitate teaching a class.
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Chapter 1

Probability Concepts

1.1 INTRODUCTION

This book is primarily designed for the study of statistical signal detection and
parameter estimation. Such concepts require a good knowledge of the fundamental
notions on probability, random variables, and stochastic processes. In Chapter 1,
we present concepts on probability and random variables. In Chapter 2, we discuss
some important distributions that arise in many engineering applications such as
radar and communication systems. Probability theory is a prerequisite for Chapters
3 and 4, in which we cover stochastic processes and some applications. Similarly,
the fundamentals of stochastic processes will be essential for proper understanding
of the subsequent topics, which cover the fundamentals of signal detection and
parameter estimation. Some applications of adaptive thresholding radar constant
false alarm rate (CFAR) detection will be presented in Chapter 11. In Chapter 12,
we consider the concepts of adaptive CFAR detection using multiple sensors and
data fusion. This concept of adaptive thresholding CFAR detection will also be
introduced in spread spectrum communication systems.

We start this chapter with the set theory, since it provides the most
fundamental concepts in the theory of probability. We introduce the concepts of
random variables and probability distributions, statistical moments, two- and
higher-dimensional random variables, and the transformation of random variables.
We derive some basic results, to which we shall refer throughout the book, and
establish the notation to be used.

1.2 SETS AND PROBABILITY
1.2.1 Basic Definitions

A set may be defined as a collection of objects. The individual objects forming the
set are the “elements” of the set, or “members” of the set. In general, sets are
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denoted by capital letters as A4, B, C, and elements or particular members of the set
by lower case letters as a, b, c. If an element a “belongs” to or is a “member” of 4,
we write

ae A (1.1)
Otherwise, we say that a is not a member of 4 or does not belong to 4, and write
a¢ A (1.2)

A set can be described in three possible ways. The first is listing all the
members of the set. For example, 4 = {1, 2, 3, 4, 5, 6}. It can also be described in
words. For example, we say that A consists of integers between 1 and 6, inclusive.
Another method would be to describe the set in the form shown here.

A={a|a integer and 1Sa£6} (1.3)

The symbol | is read as “such that,” and the above expression is read in words as
“the set of all elements a, such that a is an integer between 1 and 6 inclusive.”

A set is said to be countable if its elements can be put in a one-to-one
correspondence with the integers 1, 2, 3, and so forth. Otherwise, it is called
uncountable.

A finite set has a number of elements equal to zero or some specified positive
integer. If the number is greater than any conceivable positive integer, then it is
considered infinite.

The set of all elements under consideration is called the universal set and is
denoted by U. The set containing no elements is called the empty set or null set and
is denoted by &.

Given two sets 4 and B, if every element in B is also an element of 4, then B
is a subset of A. This is denoted as

Bc4 (1.4)

and is read as “B is a subset of 4.” If at least one element in 4 is not in B, then B is
a proper subset of A, denoted by

Bc A (1.5)

On the other hand, if every element in B is in 4, and every element in 4 is in B, so
that B € 4 and 4 < B, then

A=B (1.6)
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If the sets 4 and B have no common element, then they are called disjoint or
mutually exclusive.

Example 1.1

In this example, we apply the definitions that we have just discussed above.
Consider the sets 4, B, C, D, and E as shown below.

A = {numbers that show in the upper face of a rolling die}

B= {x|x odd integer and 1 <x < 6}

C= {x|xrea1 and x > 1}

D=1{2,4,6,8,10}

E=1{1,3,5}
F={1,2,3,4,...}
G={0}

Solution

Note that the sets A and B can be written as 4 = {1, 2, 3,4, 5, 6} and B= {1, 3, 5}.
A, B, D, E, and G are countable and finite. C is uncountable and infinite. F' is
countable but infinite. Since the elements in A4 are the numbers that show in the
upper face of a rolling die, and if the problem under consideration (game of
chance) is the numbers on the upper face of the rolling die, then the set 4 is
actually the universal set U.

AcF,BcF,DcF,andEcF. BcAand Ec A. If BC E and E C B, then
E = B. D and E are mutually exclusive. Note that G is not the empty set but a set
with element zero. The empty set is a subset of all sets. If the universal set has n
elements, then there are 2" subsets. In the case of the rolling die, we have 28 =64
subsets.

1.2.2 Venn Diagrams and Some Laws

In order to provide a geometric intuition and a visual relationship between sets,
sets are represented by Venn diagrams. The universal set, U, is represented by a
rectangle, while the other sets are represented by circles or some geometrical
figures.

Union Set of all elements that are members of 4 or B or both, and is denoted as
AY B. This is shown in Figure 1.1.
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Figure 1.1 Union.

Intersection  Set of all elements that belong to both 4 and B, and is denoted as
AT B. This is shown in Figure 1.2.

Figure 1.2 Intersection.

Difference Set consisting of all elements in 4 that are not in B, and is denoted as
A—B. This is shown in Figure 1.3.

Figure 1.3 A-B.
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Complement The set composed of all members in U not in 4 is the complement
of 4, and is denoted as A. This is shown in Figure 1.4.

Figure 1.4 Complement of 4.

Partitions A group of mutually exclusive sets covering the entire universal set U
form a partition. This is shown in Figure 1.5.

Figure 1.5 Partitions.

Cartesian Product The Cartesian product of sets 4 and B, denoted AX B, is the
set of all ordered pairs where the first element of the pairs is taken from set 4 and
the second element from set B. That is, if set 4 = {ay, a», ..., a,} and set B = {b,
by, ..., by}, then the Cartesian product AxB = {(a1, by), (a1, by), ..., (a1, by), (ay,
by), (az, b)), ..., (ay, by), ..., (an, b1), (an, b2), ..., (an, by)}. It should be noted that
the Cartesian product 4Ax B is generally not equal to Bx 4.

Some Laws and Theorems

1. IfAand Baresets,then AY Band A1 B are sets.
2. There is only one set & and one universal set U, such that A YJ =4 and
Al U = A4 for any 4.
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3. Commutative laws: AYB=BY 4 and A1 B=BI A.
4. Associative laws: (4 Y B)YC =AY (BYC) and
(41 B)1 C=41 (B1 C).
5. Distributive laws: 4Y(BI C)=(4YB)I (4YC) and
Al (BYC)=(41 B)Y(4I C).
6. AYA=U and A1 A=0Q.
7. De Morgan’s laws: AYB=A1 B and A1 B=AYB.

If 4 = B, then A=B. If A =B and C = D, then AYC=BYD and
Al C=BI1 D.

9. A=A,

1.2.3 Basic Notions of Probability

Originally, the theory of probability was developed to serve as a model of games
of chance, such as rolling a die, spinning a roulette wheel, or dealing from a deck
of cards. Later, this theory developed to model scientific physical experiments.

In building the relationship between the set theory and the notion of
probability, we call the set of all possible distinct outcomes of interest in a
particular experiment as the sample space S. An event is a particular outcome or
a combination of outcomes. According to the set theory, the notion of an event is a
subset of the sample space.

If a basic experiment can lead to N mutually exclusive and equally likely
outcomes, and if N, is the possible outcomes in the occurrence of the event A4, then
the probability of the event 4 is defined by

N
probability of 4= TA (1.7

However, the most popular definition among engineers is a second definition
referred to as relative frequency. If an experiment is repeated n times under the
same conditions, and if n, is the number of occurrences of event A, then the
probability of 4, P( 4), is defined by

P(4)=lim 24 (1.8)

n—eo 1

Note that in the second definition, which is based on an experiment, the concept of
equally likely events is not necessary, but in practice » is really finite. Because of
its a priori nature, the concept of probability also has a subjective definition, that
is, the degree of confidence in a certain outcome of a particular experiment, or in a
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certain state in the sample space. Subjective theory of probability, as treated by
De Finetti [1], solves the lack of synthesis of the “relative frequency” limit and the
combinatory limitation of the “ratio of outcomes.”

We now formalize the concept of obtaining an outcome lying in a specified
subset 4 of the sample space S into a definition of probability.

Definition. Given the sample space S and an event 4, a probability function, P( -),
associates to the event 4 a real number such that
1. P(A4) >0 for every event 4;

2. PS)=1,
3. If there exist some countable events A, A, ..., A,, mutually exclusive
(A,-I 4; =, i¢j),then

P4, YA, YA YA,)=P(A4)+P(4,)+ A +P(4,).

Example 1.2

Consider the experiment of two six-sided dice, and that each die has its sides
marked 1 through 6. The sample space, S, in this case is

L) 1L2) 1L3) 1L,4) 1L5) (1e6)
2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
oo (31) (32) (3.3) (3.4) 3.5 (56)
(4,1) (4,2) (4,3) (4.4) (45 (4.6
(5,1) (5,2) (5,3) (5.4) (55) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Let the event A be “the sum is 7,” the event B is “one die shows an even number
and the other an odd number.” The events 4 and B are

A4={(1,6).(2.5).(,4).(4.3).(5.2). (6.1) }

2,1) (41) (6,1)
(1L2) (3.2) (52)
5 (2,3) (4,3) (6,3)
] ,4) (3,4) (5.4)
(2,5) (4,5) (6,5)
(L6) (3,6) (5,6)
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We can obtain the probability of events 4, B, A1 B, and A to be P(A) =6/36,

P(B)=18/36=1/2, P(41 B)=P(4)=1/6, and P(4)=30/36=5/6.
Example 1.2 illustrates the fact that counting plays an important role in

probability theory. However, as the number of possible outcomes becomes large,

the counting process becomes very difficult, and thus it may be necessary to divide
the counting into several steps, as illustrated in the following section.

1.2.4 Some Methods of Counting

One strategy of counting is breaking the task into a finite sequence of subtasks,
such that the number of ways of doing a particular task is not dependent on the
previous tasks in the sequence. Suppose that there are n; ways of doing step 1, and
for each way of step 1, there are n, ways of doing step 2. For each way to do step 1
and step 2, there are n; ways of doing step 3, and so on until step k. Then, the
number of ways to perform the procedure is 71, ... n;,. The classical example of
this principle is the number of ways to write a 5-digit word. The word is ————
—. We observe that there are n; = 26 ways for step 1, n, = 26 ways for step 2, and
so on, until we have the 5-letter word. The total number of such ways is 26° =
11,881,376 ways. Note that if no letter can be repeated, then for step 1 we have all
26 letters of the alphabet. Step 2, however, will have 25 ways, until step 5 with 7
= 22. The number of such words becomes now 26x25x24x23x22 = 7,893,600.
Suppose that we have now r distinct objects (particles) to be placed in # slots.
From Figure 1.6, we observe that we have r ways of placing the objects in the first
slot. After choosing the first object, there are »—1 ways of placing an object in the
second slot, and so on, until the rth slot, which will be filled in n—r+1 ways.
Thus, the total number of ways of arranging r» objects in n slots is
n(n—1)...(n—r+1). This is called permutations or arrangements of r objects

among » and denoted ,P,, which can be written as

(1.9)

Note that if » = n, that is, we have permutations of » distinct objects out of #,
then following the 1 is filled, w same reasoning as before, we have n ways to fill
slot 1. After slot ¢ have (n—1) ways to fill slot 2, and so on, until the nth slot

which can be filled in just one way. Then, ,P, = n(n—-1)(n-2) ... 1 = nl.

Figure 1.6 7 slots.
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Substitution of » = n in (1.9) means 0!=1, which is an adopted convention, and we
conclude that the permutations of 7 objects is n!.

Note that in the case just discussed above, the order in the arrangements of
objects is important. However, when the order is not relevant and the problem is
always counting the number of ways of choosing » objects out of n, we speak not
of permutations but of combinations. For example, if we have n=3 objects a, b,
and ¢, and we select » =2 objects without regard to the order, the possible cases
are ab, ac, and bc. Note that in this case ab and ba are the same combination. The
total number of combinations of » objects out of # is given by

n n!
UW (19

. C, also can be used. The numbers [HJ are called binomial
r

The notation [HJ= C
r

coefficients. It can easily be shown that

[:]:(ni,] (L11)
mz(n:iHn_lJ (1.12)

If the n objects are not all distinct, such that n, is of one type, n, of a second
type, and so on, until n; of a kth type, where n; +n, + K +n, , then, the number

and

of different permutations of these » objects is given by

nfn=n)fn=m=ny n—=ny—ny =K -n_, __m (1.13)
" " s My n!ny'K ny!

The numbers defined in (1.13) are known as multinomial coefficients, and they
may also be denoted as , P . We now solve some examples applying the

ntn,ny,, K, n

different strategies of counting.
Example 1.3 (Tree Diagram)

Urmn A contains five red balls and two white balls. Urn B contains three red balls
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and two white balls. An urn is selected at random, and two balls are drawn
successively without replacing the first drawn ball. Each urn is assumed to have
the same likelihood of selection.

(a) Draw the tree diagram.

(b) What is the probability of drawing two white balls?

Solution

(a) The experiment consists of selecting an urn and then drawing two balls from
the selected urn. Note also that the sample size changes after the first ball is drawn,
and thus the events are not independent. Since the sample size is small, we
introduce the concept of a tree diagram in this example. The whole experiment
with all possible outcomes is as shown in Figure 1.7, with R denoting drawing a
red ball and W drawing a white ball.

(b) We observe that two branches AWW and BWW marked by an * indicate the
possible cases of obtaining two white balls. Hence,

p(zw)=131+131 I AT,
276 254 42 20
Select urn Draw ball 1 Draw ball 2

AWW *

AWR

ARW

ARR

BWW *

BWR

BRW

BRR

Figure 1.7 Tree diagram.
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Example 1.4

An urn contains five red, three green, four blue, and two white balls. What is the
probability of selecting a sample size of six balls containing two red, one green,
two blue, and one white ball? In this case, the probability is given by

o

A box contains 10 black balls and 15 white balls. One ball at a time is drawn at
random, its color is noted, and the ball is then replaced in the box for the next
draw.
(a) Find the probability that the first white ball is drawn on the third draw.
(b) Find the probability that the second and third white balls are drawn on the
fifth and eighth draws, respectively.

=0.080

Example 1.5

Solution

(a) Note that the events are independent, since the ball is replaced in the box and
thus the sample space does not change. Let B denote drawing a black ball and W
drawing a white ball. The total number of balls in the sample space is 25. Hence,
we have

Istdraw — B

2nd draw — B

3rd draw — W
Thus,

88
(2 (5o

To illustrate the experiment that the second and third white balls are drawn on the
fifth and eighth draws, we do the following.

P(first white ball drawn in the 3rd draw )=



12 Signal Detection and Estimation

Ist draw
2nd draw . . (4) 4

1 W and 3B, there are four ways of obtaining this: =—=
3rd draw 1) 13
4th draw

Sth draw — W (the 2nd white)
6th draw — B
7th draw — B
8th draw — W (the 3rd white)

Note that the sixth and seventh draws would have to be a black ball. Thus,
computing the probability, we obtain

s ()| (B3] (&) |-ooome

1.2.5 Properties, Conditional Probability, and Bayes’ Rule

Now that we have defined the concept of probability, we can state some useful
properties.

Properties
1. For every event 4, its probability is between 0 and 1.
0<PUA)<1 (1.14)

2. The probability of the impossible event is zero.

P(@)=0 (1.15)
3. If 4 is the complement of 4, then
P(4)=1-P(4) (1.16)
4. If A and B are two events, then
P(AY B)= P(A)+ P(B)- P(A1 B) (1.17)

5.1f the sample space consists of »# mutually exclusive events such that
S=4,Y4, YA YA,,then
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P(S) = P(4) + P(4,) + A +P(4,) =1 (1.18)
Conditional Probability and Independent Events

Let 4 and B be two events, such that P(B) > 0. The probability of event B given
that event A4 has occurred is

P(A|B)=P(;—2)m (1.19)

P(A| B) is the probability that 4 will occur given that B has occurred, and is called

the conditional probability of A given B. However, if the occurrence of event B
has no effect on 4, we say that A and B are independent events. In this case,

P(4| B)=P(4) (1.20)
which is equivalent, after substitution of (1.20) in (1.19), to
P(41 B)= P(4) P(B) (1.21)
For any three events 4, 4,, 43, we have
P(A T 4,1 43)=P(4,)P(4y| 4)P(45] 4, 1 4;) (1.22)
If the three events are independent, then they must be pairwise independent
P{4,1 4;)=P(4)P(4;) i#j and i j=1,2,3 (1.23)
and
P(A T A, 1 Ay)=P(4,)P(4,)P(45) (1.24)

Note that both conditions (1.23) and (1.24) must be satisfied for 4;, 4,, and A3 to
be independent.

Bayes’ Rule

If we have n mutually exclusive events 4;, 4, ..., A,, the union of which is the
sample space S, S=4,YA4, Y K Y 4,, then for every event 4, Bayes’ rule says

that
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_P(A4,1 4)
P(A,JA)-W (1.25)
where
P(4, 1 4)=P(4,)P(4] 4,), k=1,2,K,n (1.26)

since P(A | A, )=P(4, | A)/ P(4,) , and the total probability of A is defined as
P(4)=P( 4] 4,)P(4,)+P(4] 4,) P(4,)+ K +P(4]4,)P(4,) (1.27)

Example 1.6

A digital communication source transmits symbols of 0s and Is independently,
with probability 0.6 and 0.4, respectively, through some noisy channel. At the
receiver, we obtain symbols of Os and 1s, but with the chance that any particular
symbol was garbled at the channel is 0.2. What is the probability of receiving a
zero?

Solution

Let the probability to transmit a 0 be P(0) = 0.6, and the probability to transmit a 1
be P(1) = 0.4. The probability that a particular symbol is garbled is 0.2; that is, the
probability to receive a 1 when a 0 is transmitted and the probability to receive a 0
when a 1 is transmitted is P(receive 0 | 1 transmitted) = P(receive 1 | 0 transmitted)
=0.2. Hence, the probability to receive a 0 is

P(receive a zero) = P(0 | 1) P(1) + P(0 | 0) P(0) = (0.2) (0.4) + (0.8) (0.6) = 0.56
Example 1.7

A ball is drawn at random from a box containing seven white balls, three red balls,

and six green balls.

(a) Determine the probability that the ball drawn is
(1) white, (2) red, (3) green, (4) not red, and (5) red or white.

(b) Three balls are drawn successively from the box instead of one. Find the
probability that they are drawn in the order red, white, and green, if each ball
is (1) replaced in the box before the next draw, and (2) not replaced.

Solution

Let W, R, and G denote the events of drawing a white ball, a red ball, and a green
ball. The total number of balls in the sample space is 7+ 3 + 6 = 16.



Probability Concepts 15

(@) 1. P(W)=17/16 = 0.4375
2. P(R)=3/16=10.1875
3. P(G)=6/16=3/8=0.375
4. P(R)=1-P(R) = 1-7/16 = 9/16 = 0.5625
5. P(red or white) = P(RYW )= P(R)+ P(W)-P(R1 W)

Since the events R and W are mutually exclusive, then P(RT W)=0, and

P(RYW):P(R)+P(W)=71—23=§=O.625

(b) In this case the order becomes a factor. Let the events R, W,, and G5 represent

“red on first draw,” “white on second draw,” and “green on third draw,”
respectively.

1. Since each ball is replaced before the next draw, the sample space does not
change, and thus the events are independent. From (1.24), we can write

P(RII w1 G3)=P(R1)P(W2|R1)P(G3|R1I Wz)
:P(R1)P(W2)P(G3)

1w

2. When the ball is not replaced in the box before the next draw, the sample
space changes, and the events are then dependent. Thus,

P(Rll W, 1 G3)=P(R1)P(W2|R1)P(G3|R1I Wz)

but P(7,| R )=7/(7+2+6)=7/15=0.467, and P(G;| R, 1 W,)=6/(6+2+6)
=3/7 = P(R, 1 W, 1 G;)=0.0375.

Example 1.8

In three urns, there are balls as shown in Table 1.1. An experiment consists of first
randomly selecting an urn, and then drawing a ball from the chosen urn. Each urn
is assumed to have the same likelihood of selection.
(a) What is the probability of drawing a white ball, given that Umn 4 is
selected?
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Table 1.1
Content of Urns 4, B, and C

Balls Urn A Urn B Urn C Totals
Red 5 3 6 14
Green 6 3 2 11
White 2 4 1 7
Totals 13 10 9 32

(b) If a white ball is drawn, what is the probability it came from Urn B?
Solution

(a) Given that Urn 4 is selected, we can write the probability of drawing a white
ball to be

P(1w| Um A)=%=0.1538

(b) In this case, we want to determine the conditional probability of selecting Urn
B, given that a white ball is drawn; that is, P(Urn B | 1W). Hence,

_ P(Umn BI W)

P(Um B| ) B007)

The conditional probability of drawing a white ball, given that Urn B is selected, is
given by

P(1W1 Um B)

P(1w| Um B)= (U B)

Thus, P(1W1 Um B )= P(1W|Um B }P(Um B)

P(1w|Um B)P(Um B)

= P(Um B| W)= P007)

where P(1W) is the total probability of drawing a white ball. Hence,
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P(1w)=P(1w| Um 4)P(Um 4)+ P(1W| Um B }P(Um B)

+P(1w|Um C )P(Um € AL L LN\ DS
133 103 93

P(1w| Um B)P(Urn B)=(4/10)(1/3)=0.133 and then P(Urmn B|1W )=0.6013

1.3 RANDOM VARIABLES

We define a random variable as a real function that maps the elements of the
sample space S into points of the real axis. Notice that the random variable is
neither random nor a variable, but is a function, and thus the name may be a little
misleading. The random variable is represented by a capital letter (X, ¥, Z, ...), and
any particular real value of the random variable is denoted by a lowercase letter (x,
¥, z, ...). Since we will make use of impulse functions and step functions in
characterizing random variables, we first introduce the concepts of impulse and
step functions, and then we present the three different types of random variables—
discrete, continuous, and mixed.

1.3.1 Step and Impulse Functions

The unit step function, shown in Figure 1.8, is defined as

1, x>
u(x)z{ - x=0 (1.28)
0, x<0

A step function of height 4 occurring at x = x, is denoted as

Au(x—x, )= 4, x2x (1.29)
0, x<x,
u(x)
A
1
0 >

Figure 1.8 Step function.
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A 5(x)
A
1
e ()
x x
0 Ax > 0 >
Figure 1.9 Rectangular pulse function. Figure 1.10 Unit impulse function.

Consider the rectangular function, shown in Figure 1.9, with area (4/Ax)Ax = A4.

In the limit as Ax — 0, the pulse width approaches 0 and the height goes to
infinity. However, the area remains constant and equals 1. Thus, the unit impulse
function (an impulse with unit area) is shown in Figure 1.10 and is denoted
by d(x). An impulse of area 4 occurring at x = x, is denoted by 43( x — x; ). Note
that the integral of the unit impulse function is the step function, and that the
impulse function is the derivative of the step function. An important property of
the impulse function is

oo

[ 48(x—xy) f(x)dx=4f(x,) (1.30)

—oo

1.3.2 Discrete Random Variables

If a random variable X can assume only a particular finite or counting infinite set
of values, xi, X5, ... , X, then X is said to be a discrete random variable. If we
associate each outcome x; with a number P(x;) = P(X = x;), called the probability of

X;, the number P(x;), sometimes denoted P; for simplicity, i = 1, 2, ... , must satisfy
the following conditions:

P(x;)>0 foralli (1.31)

and
> P(x;)=1 (1.32)

That is, the probability of each value that X can assume must be nonnegative, and
the sum of the probabilities over all of the different values must equal 1. If X'is a
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random variable, its distribution function or cumulative distribution function
(CDF) is defined as

Fy(x)=P(X <x) forallx (1.33)

The probability density function (PDF) of a discrete random variable that
assumes xi, X, ... , is P(x)), P(x»), ... , where P(x;) = P(X=x;), i =1, 2, .... If there
is more than one random variable, we denote the PDF of a particular variable X by
a subscript Xon P as Py (x).

Example 1.9

Consider the experiment of rolling two dice. Let X represent the total number that
shows up on the upper faces of the two dice. What is the probability that X is
between 4 and 6 inclusive? Determine P(X > 5). Sketch the probability density
function and the distribution function of X.

Solution

Since the possible events are mutually exclusive, P(4< X <6)=P(X =4)+
P(X =5)+P(X=6), where P(X=4)=1/12, P(X=5)=1/9, and
P(X =6)=5/36. Therefore, P(4< X <5)=12/36=0.3333. Hence, using (1.16)

P(x >5)=1-P(X <4)=1-[ P(Xx =2)+ P(X =3)+ P(X =4) |===0.8333

| w»n

The density function and distribution function of X are shown in Figures 1.11(a,
b), respectively.

fx(x) FXK)
Il |
36 35
i =t
i = u
af | | i}
36 I I 36 1 ] i 1 1 1 1
@ gl - U >

123456 78 910111213
(a) (b)
Figure 1.11 (a) Density function of X, and (b) distribution function of X.
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The density function of X is written as

fy(x)= 3—16 [8(x—2)+28(x—3)+38(x —4)+48(x —5)+58(x — 6)+68(x —7)
+58(x —8)+48(x—9)+38(x—10)+28(x —11)+8(x —12) ]
1.3.3 Continuous Random Variables
X is called a continuous random variable if its distribution function F (x) may be
represented as

Fy(x)=P(X <x)= [ fy() du (1.34)

where fy (x) is a probability density function. By definition, fy (x) must satisfy

fx(x)=0 forall x (1.35)

and

oo

[ fr(x) dx=1 (1.36)

fx (x) is often called the density function.
Example 1.10
(a) Find the constant ¢ such that the function

5 (x)_{cx, O<x<3
v (x)=

0, otherwise
is a density function.

(b) Compute P(1 <X <2).
(c) Find the distribution function Fy(x).

Solution

(a) fy(x) is a nonnegative function for the given range of x. For f(x) tobe a
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density function, we need to find the constant ¢, such that f ¢ x dx =1. Solving the
0

integral, we obtain ¢=2/9, and thus the density function f(x), shown in
Figure 1.12(a), is

7 () %x, O<x<3
x\X)=

0 , otherwise

2
(b) Pl<x<2)= j[ jxdx———03333
1

x2
(c) Fx JfX du—T for 0 <x <3, and Fy(x)=1 for x > 3. Thus, the

distribution functlon, shown in Figure 1.12(b), is

0, x<0
52

Fy(x)= 5 0<x<3
1, x=3

The density function can be obtained directly from the distribution function by
simply taking the derivative; that is,

d

fx(x )=EFX( x) (1.37)

Jx (x) Fy(x)

(b)

Figure 1.12 (a) Density function of XX, and (b) distribution function of X.
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where F (x)= Jf(u)du. This is a special case of Leibniz’s rule for

differentiation of an integral, which is

b(x) b(x)
4 Flu,x)du= I a—qu+F[b(x),x]db(x)—F[a(x),x]da—(x) (1.38)
dx .0 alx) ox dx dx

and thus,
d X
- [ f)du=f(x) (1.39)

1.3.4 Mixed Random Variables

The most important random variables that occur in practice are either discrete or
continuous. A mixed random variable, however, also may occur in some practical
problems. Its density function has both impulses representing probabilities of
possible values x;, x, ... , X,, and a continuous portion in some interval, say a < x
< b. A good way to illustrate the mixed random variable is to consider the half-
wave rectifier circuit shown in Figure 1.13(a), where X is a random variable with
the probability density function as shown in Figure 1.13(b).

X C) R y

o]

Area=1/2

> X
(b)
Figure 1.13 (a) Half-wave rectifier circuit, and (b) density function of X.
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The diode is assumed to be ideal. The output Y is related to the input X by the
equation

X, x>0
Y= (1.40)
0, x<0

0_
Thus, P(Y <0)=0,P(Y =0)= [ fy(x)dx=1/2, and P(0< Y < y)=P(0< X < )

—oco

for all y > 0. Hence, the density function is as shown in Figure 1.14. It is composed
of a discrete value at zero of 1/2 represented by the impulse, and a continuous
function for x > 0, such that the area under the curve is also 1/2 ; that is,

[ 7y dy=1=P(0<Y <) (1.41)
0

which satisfies condition (1.36), whereas

Ify(y)dy:%:P(0<Y<oo) (1.42)

+
o

1.4 MOMENTS
1.4.1 Expectations

An important concept in the theory of probability and statistics is the mathematical
expectation, or expected value, or mean value, or statistical average of a random

H)

1/2

a2 A

Area=1/2

Z ﬁ

,I

/I \«_ Same as f (x) forx>0
III \\\
L AN
Z

P v

Figure 1.14 Density tunction ot the output Y.
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variable X. The expected value of a random variable is denoted by E[X] or X or
m,. If X is a discrete random variable having values x;, x5, ... , Xx,, then the
expected value of X is defined to be

E[X]=YxP(X=x) =Y x P(x) (1.43)

where the sum is taken over all the appropriate values that X can assume.
Similarly, for a continuous random variable X with density function f, (x), the

expectation of X is defined to be
E[X]= [x fy(x)dx (1.44)

Example 1.11
Find the expected value of the points on the top face in tossing a fair die.

Solution

In tossing a fair die, each face shows up with a probability 1/6. Let X be the
points showing on the top face of the die. Then,

Ak {2 (ool

Example 1.12

Consider the random variable X with the distribution shown in Figure 1.15. Find

E[X].

fx (x)

1/4
41/8

1 1 1 1 > X

Figure 1.15 Density function of X.
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Solution

Using (1.44), the expected value of X'is
1y Lo 3
E[X]:Ix—dx+f x—dx+I x—dx=0
508 S04 8

Let X be a random variable. Then, the function g(X) is also a random variable,
and its expected value, E[g(X)], is

E[g(x)]= [ g(x) £y (x) dx (1.45)
Equation (1.45) is an important theorem that will be used throughout the book.
Properties
1. If ¢ is any constant, then

EleX]=c E[X] (1.46)

2. If the function g(X) =X",n=0,1, ..., then
Elg(x)]= E[X"]: [x" f(x) dx (1.47)

is called the nth moment of the random variable X about the origin. For n = 2, we
obtain the second moment of X. Because of its importance, the second moment of
X, defined as

E[X2]= sz fy(x)ax (1.48)

is called the mean-square value.
Another quantity of importance is the central moment about the mean. It is

called the variance, denoted Gi , and is defined as

o’ =E[(X—E[X])2]=E[X2]—(E[X] > (1.49)
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The quantity o, is called the standard deviation.

Example 1.13

Find the variance of the random variable given in Example 1.12.

Solution

The mean was found previously in Example 1.12 to be zero. From (1.48), the

mean square value is E[X2]=2 jx2(1/4)dx+_3[x2(1/8)dx =7/3 =2.3333.
0 1

Since the mean is zero, the mean square value is just the variance
62 =7/3=2.3333.

1.4.2 Moment Generating Function and Characteristic Function

The moment generating function (MGF) M, (f) of a random variable X is defined
by

Mx(t)=E[e’X] (1.50)

If X is a discrete random variable with probability distribution P(x;) = P(X = x,),
i=1,2, K ,then

M (t)=>e" Py(x) (1.51)

If X is a continuous random variable with density function f'y (x), then its MGF is

M (e)= [ f.(x)dx (1.52)
A “nice” advantage of the MGF is its ability to give the moments. Recall that the
McLaurin series of the function € is
2 3 n
e"=1+x+x2—'+x?+l{ +2 4K (1.53)

! n!

This is a convergent series. Thus, e* can be expressed in the series as
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M=l+tx+ (te)”
2!

3 n
R (1.54)

By using the fact that the expected value of the sum equals the sum of the expected
values, we can write the MGF as

Mx(f)=E[etX]=E l+t)(+(tX‘)2 +(t);)3 K +(fX')" LK
. n!
=1+tE[X] E[X2]+ [X3]+K +4E[Xn]+K (1.55)
n!

Since ¢ is considered as a constant with respect to the expectation operator, taking
the derivative of M, (f) with respect to ¢, we obtain

de(t)_M,

w0 elx e 2 2

J+ ﬁE[X3]+ K +”n”| : E[x" ]+ x

=E[x] +tE[X2]+—E[X3]+K+ E[X"]+K (1.56)

(n—

Setting ¢ = 0, all terms become zero except E[ X ]. We obtain
M. (0)=E[ x ] (1.57)

X

Similarly, taking the second derivative of M (t) with respect to ¢ and setting it
equal to zero, we obtain

M(0)=E[ x?] (1.58)
Continuing in this manner, we obtain all moments to be
MO0)=E[x"] n=12.. (1.59)

where M (" (¢) denotes the nth derivative of M, () with respect to .

If we let t = jw, where j is the complex imaginary unit, in the moment
generating function, we obtain the characteristic function. Hence, the
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characteristic function E[ej“’X] and denoted ®,(x) is actually the Fourier

transform of the density function fy (x). It follows that
(Dx(o))=E[ej‘”X] = [ fr(x)e’™ dx (1.60)

As before, differentiating @ . (x) n times with respect to ® and setting &= 0 in the
derivative, we obtain the nth moment of X to be

d"®
E[X”]:(—j)" _xn(w)|m=0 (1.61)
do

where \/7 =—1. An important role of the characteristic function is to give the

density function of a random variable using the theory of Fourier transform. The
inverse Fourier transform of the characteristic function is

fx (x):i T e ® () do (1.62)
2w 7

It is preferable to use the characteristic function over the moment generating
function because it always exists, whereas the moment generating function may
not exist. However, the moment generating function, because of the presence of
the exponential term, may exist for a class of functions that is much wider.

If X is a discrete random variable, its characteristic function is defined as

my = E[X]=m_ (1.63)
Example 1.14
Find the characteristic function of the random variable X having density function
‘5\ x|
fy(x)=e for all x.
Solution
From (1.60), the characteristic function is
0 1 o 1

L R 1 1 4
D (0)= [e/™ e?2 dx+|e/™e 2 dx= + =
(@) _L g 0.5+ j0) (0.5-jm) 1+4n>
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1.4.3 Upper Bounds on Probabilities and Law of Large Numbers

Often when the distributions are not completely specified but the mean and
variance are known, we are interested in determining some bounds (upper or
lower) on the probabilities. We present the Chernoff bound, which is supposed to
be a “tighter” bound than the bound provided by the Tchebycheff inequality.

Tchebycheff Inequality

Let X be any random variable with mean m, and variance 0)25 . Then, for € > 0, the

Tchebycheff inequality states that

= N

P(|x-m,|>e)< 2 (1.64)
€

Choosing €=k G, where k is a constant, we obtain

P(| X -m,|> ko, )ski2 (1.65)
or equivalently,
2
P(|x=m|>k )s:; (1.66)

Chernoff Bound

Unlike the Tchebycheff bound, which involves the two sides of the probability
density function, the Chernoff bound is applied to only one side of the density
function, either in the interval (g, o) or in the interval (—oo , €). Define

1, X2¢
Y= (1.67)
0, X<eg
The expected value of Yis
E[Y]=1-P(X 2¢) (1.68)

and for all ¢ > 0, it must be true that
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Ye® <e'X (1.69)

then,
E[Ye’g]zets Elr]< E[e’X] (1.70)
Substituting (1.68) into (1.70) and rearranging terms, we obtain
P(X>g)<e™ E[e“‘] (1.71)

The upper bound of (1.71) is the Chernoff bound. Note that in this case more

knowledge about the distribution is required to be able to evaluate E[ ¢'*].
Similarly, if Y is defined to be in the interval (—ee, €) such that
0, X=e¢
Y= (1.72)
1, X<e
The Chernoff bound is given by
P(X <e)<eE|e”] (1.73)
Law of Large Numbers
Let Xi, X5, ... , X, be n independent random variables, each having mean E[X;] =

m, and variance Var[X,-]:G)ZC, i=1,2,..,nIfS, =X+ X, + ... + X, is the sum
of the n independent random variables, then

X+ X, + K +X S
limP(| L= t—m, Z£J=limP[—”—mx zejzo (1.74)
n—yoco | n n—o0 n
provided that
oo G)ZC
>—= >0 as n—eo (1.75)
n=1 1

This theorem can be proved using the Tchebycheff inequality, and is referred to as
the weak law of large numbers. In words, this theorem states that the probability
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that the arithmetic mean (which could be an estimate) differs from the true mean
m, by more than € (¢ > 0) is zero as n goes to infinity. However, if the probability

of lim [ (S,/n)= mx] equals one, we have the strong law of large numbers.
n—soo

1.5 TWO- AND HIGHER-DIMENSIONAL RANDOM VARIABLES

In the previous sections, we developed the concept of random variables and other
related topics, such as statistical averages, moment generating functions, and
characteristic functions.

Often, we are not interested in one random variable, but in the relationship
between two or more random variables. We now generalize the above concepts to
N random variables. We will mainly consider continuous random variables, since
the appropriate modifications for the discrete or mixed cases are easily made by
analogy. If X and Y are two continuous random variables, then we define the joint
probability density function or simply the joint density function of X and Y by

Sy (x,9)20 (1.76)

and

oo oo

[ [ forGy)axdy =1 (1.77)

—oo —oo

Geometrically, fyy(x,») represents a surface, as shown in Figure 1.16. The

total volume bounded by this surface and the xy-plane is unity, as given in
(1.77). The probability that X lies between x; and x, and Y lies between y; and y;,
as shown in the shaded area of Figure 1.16, is given by

Y2 Xy
P(x1<X<x2,y1<Y<y2):I Iny(x,y)dxdy (1.78)

x5

The joint distribution of X and Y is the probability of the joint events
{x <x,¥ <y} given by

y o x

Fry(y)=P(X<x,¥<y)= [ [ fay(u,v)dudv (1.79)

—o00 —oo
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fir (i)
A y

—Px

Figure 1.16 Two-dimensional density function.

The joint distribution Fyy (x, y) has the following properties:
L 0<Fyy(x,y)<1

2. Fyy(oo,e0)=1

3. Fyy (remime0) = Fyy (k.me0) = Fyy (-0, 5) =0

4. Px, < X <xp,Y <y)=Fyy (x5, )= Fyy (x;, )20

5. P(X <x,y, <Y<y,)=Fyy(x,75)=Fyy(x,9,)20

6. Plx; <X <x,,y,<Y<y,)
=FXY(x2’y2)_FXY(x1:y2)_FXY(x25y1)+FXY(x1:yl)

The joint density function can be obtained from the distribution function by
taking the derivative of Fyy (x, y) with respect to x and y to be

2

—F . 1.80
PR o (%, ) (1.80)

fXY(an’)Z

The marginal distribution function of X, Fy (x)= P(X < x), is obtained from
(1.79) by integrating y over all possible values. Hence,
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X

Fy(x)= J‘ foy(u,v)dvdu (1.81)

Similarly, the marginal distribution of Y is given by

Y oo

Fy(y)= [ [ farlw.v)dudv (1.82)

—00 —oo

If we generalize the concepts of the distribution and density functions to »
random variables X, X, ... , X,, then the joint probability distribution function is

Fy vk x, (%,%.K ,x,)=P(X, <x,X,<x,,K, X, <x,)  (1.83)
and the joint probability density function is the nth derivative of (1.83) to yield

a n

szX‘ ok x, (x.x,K ,x,) (1.84)
1 2 n

leXZKX,,(xlﬂxDK "xn)

1.5.1 Conditional Distributions

The marginal density functions of the random variables X and Y are obtained by
taking the derivatives of the respective marginal distribution functions F (x) and

Fy(y) givenin (1.81) and (1.82). Using the joint density function of X and Y, the
marginal functions [y (x) and fy(y) are

@)= [ fa (. y)dy (1.85)
Sy 0)= [ far e p)ax (1.86)

Once the marginal distribution functions are known, it becomes simple to
determine the conditional distribution functions. In many practical problems, we
are interested in the distribution of the random variable X given that the random
variable Y assumes some specific value, or that the random variable Y is between
some interval from y, to y».

When the random variable assumes some specific value, we say that we have
point conditioning. To clarify this concept, consider the conditional distribution
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function of the random variable X given that y—Ay <Y < y+Ay, where Ay is a
small quantity. Hence,

y+Ay  x
J '[ Iyy (u, v) dudv

FX(x|y—Ay<YSy+Ay):y_Ay ;jAy (1.87)

[ £y () av

y=Ay

in the limit, as Ay — 0 and for every y such that f} (), we have

]fXY(Mry) du

Fylx[Y=y)==

e T e 1.88
fY(J’) ( )

where fyy(x,y) is the joint density function of X and Y, and fy(y)is the

marginal density function of Y. Differentiating both sides of (1.88) with respect to
X, we obtain

Filx] Y=y)=—‘f”(x’y) (1.89)
fy(y
which can also be written as
fXY(x’y)
TR, S R 1.90
Sl =200 (150
Similarly, we can show that
fXY('x’y) 1
=LA 7/ 91
fr(y]x) ey (1.91)

In the interval conditioning, the random variable assumes some range of
values. The conditional distribution function of X given that y; < Y <y, is defined
as
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Y2 ox
[ ] firlw,y)dudy

Pl <) 2 o
_[ Ifxy(x’y)dXdy
Yoo
:FXY(x,yz)—FXY(x’yl) (1.92b)
Y2
[ 1y )y

N

since 'f f XY(x, y)dx = fy(y) is the marginal density function of Y. Again,

—oo

differentiating both sides of (1.92a), we obtain

f Sy (x,y) dy
fx(xl y1<YS)’2):yly2— (1.93)
[ £r()ay

i

Similarly, the conditional density function of ¥ given that x; < X < x, is given by

_[ fXY(xry)dx

fy(y]x <X <x, )=x'xz— (1.94)
j [y (x)dx
where
IfX(x)dszX(xZ)_FX(xl) (1.95)

If X and Y are independent random variables, then the events {X < x} and {¥ < y}
are independent events for all x and y. This yields

P(X<x,Y<y)=P(Xx<x)P(Y<y) (1.96)

that is,
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FXY(X»Y):FX(X)FY(Y) (1.97)
Equivalently,

S (x5 y)=fx(x) fy(») (1.98)

where fy(x) and fy(») are the marginal density functions of X and Y. If the
joint distribution functions or the joint density functions cannot be written in a
product form as given in (1.97) and (1.98), then the random variables X and Y are
not independent. Note that if the random variables X and Y are independent, using

(1.97) in (1.98) results in fX‘y(x|y):fX(x) and fY‘X(y|x):fY(y), as

expected.
The above results can be modified accordingly for discrete random variables.
Suppose X and Y are both discrete random variables with values x;, i =1, 2, ... , n,

and y;,j =1, 2, ..., m, having probabilities P(X=x;) = P(x))= P;,i=1,2, ..., n,and
P(Y=y)=PQy)=PFP,j=1,2, .., m, respectively. The joint probability of
occurrence of x; and y;, denoted P(X =x; , Y =y,) = P(x; ;) = Py, is given by

ny(x,y)z P(xiﬂyj)s(x_xi)s(y_yj) (1.99)

n
J i=1
where &(x—x,)3(y—y,) is the impulse function of volume (1) and occurring at
x =x, and y = y,, as shown in Figure 1.17. Note that we wrote 1 in parentheses to

indicate that it represents a volume and not a height. Based on the following
properties of the two-dimensional impulse function:

oo oo

1. J jg(x,y)AS(x—xo)B(y—yO)dxdy=Ag(x0,y0)

e ——

8(x-x0)d(v-y0)

y

Figure 1.17 Two-dimensional impulse function.
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oo

2. [ gley) A8(x—x0)8(y—yy)dx=4g(xy. )8 y—vy)

—oco

3. [l ) A8(x—x0)8( y=yy)dv =4 g(x,v0)8(x—%,)

—oo

we can show that the marginal density functions are

oo

Fx(x)= [ for (e p) dy (1.100)

—oo

Substituting (1.99) into (1.100), and using the above properties of the two-
dimensional impulse function, we obtain

fX(xi): ]f Zn: i P(xi’yj)a(x_xi)s(y_yj)dy
P

LY+ P(x, p)+ K +P(x;,0,) 18(x—x;)
(x—x,) (1.101)

since i P( X5V ): P(x;). Similarly, we can show that
fily;)=P(y;)8(y-v;) (1.102)
Note that f (x) will be all js in (1.99) to obtain

Slx)= Z:l P(y;)8(y-y;) (1.103)

and fy () will be all is to give

£ )= P(x,)8(x-x,) (1.104)

i=1

The conditional density function fy (x|y=y;) is given by
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P(xi’yj)

=Py

and the conditional distribution function, which is the integral of (1.105), becomes

3(x—x;) (1.105)

FX(x|y=yj)=ZMu(x—xi) (1.106)
P(yj)

i=

where u (x—x;) is the unit step function, such that u (x—x;) is one for x > x; and

zero otherwise. The derivative of the unit step function yields the unit impulse
function, as discussed in Section 1.3.1.

Example 1.15

Let X and Y be two random variables with the joint density function

2, XY
+— 0<x<land 0<y<2
fxy(st’): o 3 ’ x an Y

0 , otherwise

(a) Check that fy (x, y) is a density function.
(b) Find the marginal density functions £ (x) and fy(y).
(¢) Compute P(X>1/2),P(Y<X),and P(Y<1/2| X <1/2).

Solution

(a) For fyy (x, y) to be a density function, it must satisfy (1.76) and (1.77). The

first is easily verified, while the second says that the integral over all possible
values of x and y must be one. That is,

21 2
!). .([ (x2+);—yjdxdyzj. (é+%yjdy=l

0

(b) The marginal density functions of X and Y are direct applications of (1.85) and
(1.86). Thus,

fX(x)z

O

(x2+];—y]dy=2x2+§x for O<x<l
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and
1 X 11
fY(Y)=I (xz +—yjdx=—y+— for O0<y<2
5 3 6 3
(c) Computing the different probabilities, we have

I k , 2 5
PlX>—|= de= [ |2x2+Zx |dx=2=0.8333
[ro3)= ] ehacn [ {2025 e)arsg

P(Y<X)=j

O — =

22+ gy dx = =02917
3 24

| | P(Y<;,X<;)
P[Y<E‘X<EJ:—1
Pl X <—
(<)
We have already found P(X >1/2) to be 5/6. Hence, P(X <1/2)

1-P(X >1/2)=1/6=0.1667. We now need only find P(Y<1/2,X <1/2),
which is

2

O =
S —yo|—

P Y<1,X<l = 2+ 22 ax dy=i=0.0260
2 3 192

Hence,

Table 1.2
Joint Probabilities of X and Y

X
Y 1 2
0 1/4 1/4
1 0 1/8
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P Y<l X<l =5/1£=i=0.1563
2 2 1/6 32

Example 1.16

(X.Y) is a two-dimensional random variable with joint probability density function
as shown in Table 1.2.

(a) Sketch fyy (x,v).
(b) Compute fy (1) and fy(2).
(c) Are X and Y independent?

Solution

(a) The joint density function fyy (x,y) is shown in Figure 1.18. Note that

T T fX,Y(xay)dxdyzl

—oc0 —oo

(b) From (1.100), fy (1) is the sum of the probabilities at x = 1 along all y. We
have

£e0= [fr (o) =281+ L 8e-1)= L 86-1)

and fy (2) is the sum of the probabilities at y = 2 along all x. Hence,

Sy (X.y)

Figure 1.18 Joint distribution of (X,Y).
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170)= [y (x2)ar =802} g oly=2)= Calr-2)

(c) X and Y are independent if P(x;, ;) = P(x;) p(y;) for all x; and y;. Note that we
just need a counterexample to show that the above identity is not verified. Using
the results of (b), we see that P(X=1,Y=2)=1/4,P(X=1)=1/2, and P(Y =2)
=3/8. Since PX=1,Y=2)=1/4#PX=1) P(Y=2)= 3/16, then X and Y are
not independent.

1.5.2 Expectations and Correlations

We have seen in Section 1.4 that, if X is a continuous random variable having
density function f (x), then the expected value of g(X), a function of the random
variable X is

Elg(x)]= Tg(x)fx (x) dx (1.107)

This concept is easily generalized to functions of two random variables. In fact, if
X and Y are two random variables with joint density function fyy (x,y), then

S

Elg,v)l= [ [ gley) fay (v y)dxdy (1.108)

If we have n functions of random variables g,(X,Y), g2(X.Y), ..., g.(X.Y), then

Elg,(X.Y)+g,(X.7)+K +g,(X,7)]
= Elg,(x,Y)]+ E[g, (x,Y)]+K +Elg, (X,Y)] (1.109)

Hence, for the simple case of the sum of two random variables X and Y, the
expected value of the sum of the random variables is the sum of the individual
expected values. Specifically,

E[X +Y]=E[X]+E[Y] (1.110)
The expected value of the product of the random variables of X and Y, E[XY],

is known as the correlation, R,,, between X and Y. The correlation between X and Y
is actually a particular case of the joint moments defined to be
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m = EXE M= [ x40 f () dxdy (L111)
Note that the order of the moment is n =k +A. The correlation ny is then

the moment m;, of order 2 with k=1 and A=1. It is also known as the second
order moment. Note also that if & is zero or £ is zero, we obtain the expected value
of a one-dimensional random variable defined in (1.43)

myy = E[X]=m (1.112)

X
and

my, = E[Y]=m, (1.113)

where m, is the mean of the random variable X, and m, is the mean of the random
variable Y.
The general form of the central moment is given by

K, =E[(X—mx )¢ (Y_my )x]

= Jl=m) =m, } fr (e, y)axdy (1.114)

e ——

When k=2 and A=0, or when k=0 and A=2, we obtain the specific

variances Gi and Gi of the random variables X and Y, respectively. Hence,

Hy =E[(X-m)*]=0" (1.115)

X

and
Wo = E[(Y =m,)*]=07, (1.116)

When X and Y are not independent, we often try to determine the “degree of
relation” between X and Y by some meaningful parameter. This parameter is the
correlation coefficient, defined as

_E(X-m,) (Y=m,)]
xy —

(1.117)

G.’C GV
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where p,, is the correlation coefficient between X and Y, p;  is the mean of X,
m, is the mean of ¥, and ¢, and © , are the standard deviations of X and Y,

respectively. The degree of correlation, which is the value of the coefficient p, is
between —1 and +1 inclusive:

—1<p<l (1.118)

If X and Y are uncorrelated, then the expected value of the product of X and Y
can be expressed as the product of expected values. That is,

E[xY]=E[X]E[Y] (1.119)

Observe that R, = E [X ]E[Y ] means that p,, in (1.117) is zero. The numerator
of (1.117), given by

Cy =E[(X—m,) (Y -m,)] (1.120)

and known as the covariance of X and Y, becomes equal to zero. Observe that the
covariance corresponds to the second order central moment with £ = A=1; that is,
iy, =C,,. The correlation coefficient can be written in terms of the covariance as

_ %
Py = (1.121)

c,0,

Note also that the variance of X +Y is the sum of the variances of X and Y; that
is,

Var[X + Y] = var[X]+ var[Y] (1.122)

or,

2

Gx+y

=c’+0? (1.123)
x »

It should be noted that if the random variables X and Y are independent. They are
also uncorrelated, but the inverse is not true. If

E[xY]=0 (1.124)

we say that X and Y are orthogonal.
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When the random variables X and Y are not independent, we can define the
conditional expectation of one random variable in terms of its conditional density
function. The conditional expectation of X given that ¥ =y is defined as

Elx]y]= Ix Sy ily) (1.125)

It can also be easily shown that

E{Ex|r]}=E[x] (1.126)
and
E{elv|x]}=El¥] (1.127)
where
E[x|v]= [ Elx|y] (v dv (1.128)
Note that if X and Y are independent, then E [X |Y ] and E [Y |X ]

In general, the expected value of a function of random Varlables X and 7, given
that X equals some value x, is given by

oo

Elg(x.v)| x =x]= [ glx.y) £y (y] X =x)dx (1.129)

—oo

where fy (y| X= x) = fyy (x, )/ fx (x). Another important result is
E{Elg(x,v)| x ]}=E[g (x,Y)] (1.130)

1.5.3 Joint Characteristic Functions

We have seen in Section 1.4.2 that the characteristic functions and moment
generating functions are functions that give moments of random variables. We
now extend the concept to more than one random variable. The joint characteristic
function of two random variables X and Y is defined as
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D, (©0.0,)=Ele /X2 [ ] erlonen) 1o y)ady (1131)
where o, and ®, are real numbers. Thus, @ xy((x)l ,0, ) is the double Fourier

transform of fy y (x,y). The inverse Fourier transform is then

oo

for er)=—— [ [e/@ )0 (0,0,)do do, (1.132)

The marginal characteristic functions are obtained by setting either ®; =0 or

®, =0. Hence,

D, (0 ,O)=E[ejm1X]=CI>x((x)1) (1.133)
and

(I>Xy(0,u)2)=E[e'i“’ZY]=(I>y((02) (1.134)

If g(X) is a function of X and A(Y) is a function of Y, then g(X) and
h(Y) are independent, provided that X and Y are independent. Consequently, the

characteristic function of (X + Y) is the product of the individual characteristic
functions of X' and Y. That is,

o, (@)=El =gl el z0 @, ) (13

The joint characteristic function also can be expressed in terms of the series to
obtain the moments. Hence,

o, X+o,7 )

(va(o‘)l ’('02):E[ej(le+jw2Y)]:E i {]( |
’ n=0 n:

=l+jo,m +jo,m,—Lof E[Xz]—oo1 o, E[XY]

—%w%E[Y2]+A (1.136)
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The joint moments m, can be obtained from (1.136) to be

ak+?x (ny ((1)1 b mz)

m :EXkYA:_./H—x
M‘ [ ] =) dwfowk 0 =0, =0

(1.137)
which is the two-dimensional extension of expression of (1.61) found in Section
1.4.2.

Example 1.17

Consider the two-dimensional random variable (X, ¥) with joint density

kxy , x<y and 0<y<l1
0 , otherwise

fxy(x,y)={

Find
(a) the constant k;
)y [ 2);

© Elx|v=y].
Solution

(a) To find the constant k, we solve the integral in (1.77). From Figure 1.19, we see
that the integral we have to solve is

!

kxy dxdy =1 = k=8

O —

(b) In order to use the definition of (1.90), we need to determine fy ().

» x

Figure 1.19 Boundaries of fXY(x,y) .
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v
fry)= J’Sxya'x=4y3 for 0<y<l
0

Hence,
2
—;C , for0<x<y
/ x|y (x| Y ) = Y
0 , otherwise

* y 2
© EWx|Y=yl= [ x fyy (| p)dx=] %dx%y.
—o 0

Example 1.18

The probability density function of the two-dimensional random variable (X ,Y) in
the area shown in Figure 1.20 is given by

Sxy (x,y)zz for x? +y? <l
T

Find the correlation coefficient p,, between the random variables X and Y.

Solution

The expression of p,, is given by (1.117). Hence, we need to determine
E[XY] , E[X], E[Y], 0,,and 0. Using (1.111), the expected value of XY is

y
A
1 0 T >

Figure 1.20 Domain of fyy (x, ).
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where p,, is the correlation coefficient between X and Y, p;  is the mean of X,
m, is the mean of ¥, and ¢, and © , are the standard deviations of X and Y,

respectively. The degree of correlation, which is the value of the coefficient p, is
between —1 and +1 inclusive:

—1<p<l (1.118)

If X and Y are uncorrelated, then the expected value of the product of X and Y
can be expressed as the product of expected values. That is,

E[xY]=E[X]E[Y] (1.119)

Observe that R, = E [X ]E[Y ] means that p,, in (1.117) is zero. The numerator
of (1.117), given by

Cy =E[(X—m,) (Y -m,)] (1.120)

and known as the covariance of X and Y, becomes equal to zero. Observe that the
covariance corresponds to the second order central moment with £ = A=1; that is,
iy, =C,,. The correlation coefficient can be written in terms of the covariance as

_ %
Py = (1.121)

c,0,

Note also that the variance of X +Y is the sum of the variances of X and Y; that
is,

Var[X + Y] = var[X]+ var[Y] (1.122)

or,

2

Gx+y

=c’+0? (1.123)
x »

It should be noted that if the random variables X and Y are independent. They are
also uncorrelated, but the inverse is not true. If

E[xY]=0 (1.124)

we say that X and Y are orthogonal.
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1.6.1 Functions of One Random Variable

Consider the problem of determining the density function of a random variable ¥,
where Y is a function of X, ¥ = g(X), and the density function of X, fy (x), is

known. We assume that the function y = g(x) is monotonically increasing and
differentiable, as shown in Figure 1.21. The distribution function of Y in terms of X
is

F)=P(r<y)= plx <) (1.139)
where g~ (x) is the inverse transformation. Since we know the density function of
X, we can then write

g
Fr(0)= [ fx (x)ax (1.139)

—oo

Differentiation of both sides of (1.139) yields
_ dJ[ _
1y 0)= £ [ 0] e 0] (1.140)

If the function g were monotonically decreasing, we would have

Fy ()= | fx (x)dx (1.141)
')
y
A

y=gx)

Figure 1.21 Monotone function of x.
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and consequently,

£ 0)= - £ g™ (y)]j—y [ )] (1.142)

In this case, the derivative of d[g - y)]/ dy is negative. Combining both results of
(1.140) and (1.142), the density function of Y is given by

H0) =l O] {j—y = (y)]} (1.143)

This result can be generalized to the case where the function g(x) has many
real roots x; ,x, ,K ,x,,K , as shown in Figure 1.22. In this case, the density

sy s

function of the random variable Y, Y = g(X), is

Sela) | Sfelx) o Sx(x) (1.144)

leg'(x)| |g'(x)] | &'(x,)|

fy(y)=

where fy (x) is the density function of X, and x;, i =1, 2, ..., is expressed in terms

of y, and g’(x) is the derivative of g(x) with respect to x. This is known as the
fundamental theorem. A special case of this fundamental theorem is when
Y =aX +b. The function y = g(x) = ax + b has one root x; =(y—a)/b. The

derivative of g(x) is just the constant a; g’(x) = a. Therefore,

fy(v)= S() =fo(y_b] (1.145)

Figure 1.22 Function y = g(x).
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Example 1.19

Determine the density function of the random variable Y where ¥ = g(X)=aX?,
given that a is positive and the density function of X is fy(x).

Solution
There are two ways of solving this problem. We either apply directly the

fundamental theorem or use the formal derivation starting from the distribution
function. We will try both methods and see if the results agree.

Method 1. As shown in Figure 1.23, we have two roots, x; =—/y/a and

X, =+y/a.

Fy(y)=P(YSy)=P(—\/%sxs+ f]zP(XS\/%]‘P[XS‘\/%J

Differentiation of both sides of the above relation yields

fy(y)=ﬁ{fx[\/%]+fx{—\/%H,yw

Method 2. In this case, we use the fundamental theorem. We have two roots, and
consequently the density function of Y is

foy S

|
|
1
1
|
!

X1

Figure 1.23 Function y = g(x) = ax’.
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_ fX(xl) n fx(xz)
|g'(x1)| |g'(x2)|

Sy (y)

where g'(x) = 2ax, x;, =—/y/a ,and x, =+4/y/a . Thus,

g'(x1)=20(—M)=—2 ay,and g'(x, )= Za(w/y/a)=2 ay =

== ar

Both results agree.

1.6.2 Functions of Two Random Variables

We shall give some important results for some specific operations. The problem is
to determine the density function of Z, where Z is a function of the random

variables X and Y. That is,

Z=g(X,Y) (1.146)

The joint density function of (X, Y), fyy(x,y), is also known. Let Z be a
random variable equal to the sum of two independent random variables X and Y,

Z=X+7Y (1.147)

The density function of Z can be shown to be the convolution of the density
functions of X'and Y,

oo

1) = 1@ 1y (0)= | /) fx(z=y)dy (1.148)

—oo

where * denotes convolution, and we used the fact that fy,(x,y)=
fx(x) fy(»), since X and Y are independent.

Example 1.20

Find the density function of Z = X + ¥, for X and Y independent. The density
functions of Xand Y for 0 <x<a, 0 <y <b, and a < b are shown in Figure 1.24.
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fie @) £ )
A A
1
¢ 1
b
— P x ; A

(a) (b)
Figure 1.24 Density functions of (a) X'and (b) Y.

Solution

It is much easier to solve convolutions graphically. For z < a, there is no overlap
between the areas representing the density functions, as shown in Figure 1.25(a).
This yields f,(z)=0 forz<0.

For 0 <z < a, we have an increasing area as z moves from 0 to @, as shown in
Figure 1.25(b). Thus,

11 1
f7(2)= I ;Zdy=z

For b <z <a+ b, from Figure 1.25(d), we have

b
11 a+b-z
Z)= — —d = —
S/ Z( ) ZL 2 b 'y ab
For z > a + b, there is no overlap between the two curves, and consequently
f7(2)=0forz>a+b =
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A A
z-a z=0 b > z-az=0z b
(@) (b)
A A
0 z-a z b > 0 z-a b
(c) (@)

=z ,0<5z<a
ab
% ,a<lz<b
fz(z)=
arb=z e cavh
ab
0 ,z2a+b or z<0

The density function of Z, f,(z), is shown in Figure 1.26.

J2(2)

1
T |

|

|
a b a+b > -
Figure 1.26 Density function of Z.
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If X and Y are not independent, then

2)= [ fulz=y.y)dv= | frylx,z—x)dx (1.149)
If
Z=X-Y (1.150)

then the density function of Z is

oo

fz(z)= J. fXY(Z+y=y)dy= I fXY(x,x—z)dx (1.151)

—oo —oo

If X and Y are independent, then the density function becomes

=

f2@)= [ fele+) 1y () dv= ij x) fy(x=z)dx  (1.152)

—oo

We obtain similar results for other operations. We assume that the random
variables X and Y are independent, with marginal density functions f (x) and

fy (»). Let
U=XY (1.153)

Hence, we need to determine the density function f;;(x) in the region shown in
Figure 1.27. For u > 0, the distribution function Fy, (1) is given by

Fo)=] 10y | 1e@dss [ 0y [ fyax (154

—oo

<R3

Taking the derivative of (1.154) with respect to u and using Leibniz’s rule, we
obtain

du

—oo

f;j(u)=dFU(”)=°f||fX( U j U £ 0)dy (1L153)
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Figure 1.27 Domain of U= XY.

The same results can be obtained for u < 0. If we now have

X
V== 1.156
v (1.156)

then the region of integration is as shown in Figure 1.28. The distribution function
Fy, (v) is given by

F0)=] 10V ] £eGdss [ £ 0)dv] feae (15T

0

Differentiating Fj, (v) with respect to v, we obtain

y

=

Figure 1.28 Domain of V'=X/Y.




Probability Concepts 57

oo

f)=] yfx(vy)fy(y)dy—f v fxy) fy () dy

0 —oo
= [ 2] /20y fr()ay (1.158)
If
M =max(X, ) (1.159)

then the region corresponding to max (x, y) < m is as shown in Figure 1.29. In this
case, F),(m) is given by

Fyy (m)= Fyy (m,m)=Fy (m) Fy (m) (1.160)

where F'y(m)and Fy(m) are the marginal distribution functions of the random
variables X and Y, respectively. Hence, taking the derivative of F),, (m)with

respect to m, we obtain
Saa (m)=Fy (m) fy (m)+ £y (m) Fy (m) (1.161)
If
N =min(X, Y) (1.162)

then the region of min (x, y) < n in the x—y plane is as shown in Figure 1.30. The
distribution function F), (n) of Nis given by

y
A

m

-

\

m

»X

A\

Figure 1.29 Domain of M = max(x, y).
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?n/

i

Figure 1.30 Domain of N =min(X,Y).

FN() FXY(n °°)+FXY(°°a )_FXY(”»")
= Fy(n)+ Fy(n)=Fy (n) Fy (n) (1.163)

where Fyy(x,y) is the joint distribution function of X and Y, and where the

assumption of X and Y being independent is still maintained. Hence, taking the
derivation of (1.163) with respect to n, we obtain

fX(”)+fy( ) (")fy(”)_fx(”)FY(”)
= fx ) [1=Fy () ]+ £y () [1= Fy (n)] (1.164)

fu(n)

If now the random variables X and Y are not statistically independent, then the
density functions of U, V, M, and N are given by

fu(u):Tlll [ ]dxj fxy[ Jy (1.165)

—oo

Ly )= [ | 2] far O, p)dy (1.166)

—oo

Sum)= [ fy(my)dy+ [ fyy(x,m)dx (1.167)

—oo —oo

and

n

Ful)= @) )= [ Fayn)dv= [ fo(wmde  (L168)

—oo —oo
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Example 1.21

Find the density function of U = XY, where X and Y are independent random
variables with density functions

3,2
2x, 0<x<1 % 0<y<l
fx(x)= ~and fy(y)=
0, otherwise
0 , otherwise

Solution
Using (1.155) and the given boundaries of x and y, we obtain

1 2
fuu)= J %2x§(%} dx=%u2(2—u), 0<u<2
ul/2

1.6.3 Two Functions of Two Random Variables

In this section, we extend the concept of the fundamental theorem of one function
of a random variable to two functions of two random variables. Let

Y, =g(X,,X,) and Y, =g,(X,,X;) (1.169)

where g;(X; , X;) and g»(X; , X3) are two functions of two random variables X; and
X, with real values x;, x,. The joint density function of X; and X, is
Sx, x, (x; ,x, ). Our aim is to obtain the joint distribution function F X, X, (x,x,)

and the joint density function fy (x,,x,) in terms of the functions y, = gi(x; ,
X2), V2 = @(x1 , X2), and the joint density function f X, X, (xl ,xz) of X; and X5. The

Jacobian of the transformation (x; , x,) onto (y; , 1) is given by

9y 9y | |9&(xy) 9gi(x,y)

dx;  ox, ox, ox,

J(x,,x, )= = (1.170)
9y, 9y, dg; (x,y) dgr(x,y)
dx;  ox, ox, ox,

where |J(x;, x)| # 0, and 9/0x denotes partial derivative. This Jacobian
J(x,,x,) is also denoted J(v,,v,/x;,x,) or 9(x;,x,)/d(y;,y,). Then, the

density function fy.y, (»,,,) can be shown to be
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f)(l)(2 (xl :xz)

1.171
(x5 )| (170

Sy, (J/1 Y2 )=

However, if the pairs (x1; , x21), (*12 5 X22), ... , (X1, , X2,) are all real solutions of
equations y; = g1(x1; , X2;) and y, = @2(x1; , x21), i =1, 2, ..., n (i.e., the n points in
the x;—x, plane map into one point in the y, —y, plane), then fy, (yy,y,) is

given by

fxl X, (‘xln > x2n)

fx, X, (x“ »le) f)(l X, (x12 =x22)

Ty, 01.32)= +K + (1.172a)
v |J X115%21 | |J(x12,x22 )| |J(xln’x2n)|
f x 9
—Z ”—12) i=1,2,K ,n (1.172b)
|J X1 > X4 )|
J( x5, x5 ), i =1,2, ..., n, are the Jacobians evaluated at the ith root. The
Jacobian of the inverse transformation is given by
dx; 0dx
dy, 9y,
Iy )= (1.173)
dx, dx,
dy, 9y,

where J(y,, y,) can also be written as J(x;, X, /y;, v, )or d(y,,v,)/d(x;,x,). For

the case of n real roots (X1 , X21), (X12 5 X22), - -, (X1 » X2,,), the joint density function
is then

n

fyly2 ()’1 ,)’2)22 |Ji()’1 :J’2)|71 lexz (xli ’x2i) (1.174)

i=1

where the subscript i, i = 1, 2, ... , n, indicates that the Jacobians are evaluated at
the ith root, and that Ji(y; , ,) is as defined in (1.173). The distribution function

Fyy, (J’1 =J’z) is just

Fyy, 01.02)=P(Y, <y, 7, Sy2)=” Sx x, (31 x5 ) dx, dx, (1.175)
D

where D denotes the region in the x;—x, plane for which gi(x;, x;) < y; and
g, (x;,x,) <y, . Note also that
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aszly2 (yl »yz)
0y19y,

Fry, 1.v2)= (1.176)

Example 1.22

Consider the standard example given in many references where ¥, =+ X + X3
and Y, =X, /X,. The problem is to find the density function fy., (y1,y,) in

terms of the given density function f y, (x,,%,).

Solution

We shall solve this example by giving more details to eliminate all ambiguities.
From (1.170), we first need to determine the Jacobian of this transformation

Vi =g1(x1 ,xz)zﬂ xl2 +x§ and y, =g2(x1 ,x2)=x1 / x, , which is given by

S )| 8] () B L ——
l 1

L L
) T

11 y2+1
=y} o=
YN 1

Thus, | J(x; ,x, )| =(y3 +1)/y,. Solving for the roots of the two functions y, and

V», We obtain

1 2\ |2 2\2 2
ylz(x12+x§)2= xlz[l+x—§J :ix1[1+x—22J :ix1(1+%J
X X1 Y2

1

2

That is, we have two roots, x;; =y1y2/(y§ +1)% and x;, =—y», /(yf +1) .

1
Using the same approach to solve for x,, we obtain x, =+ y, / (y% +1) *; that is,
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1 1
Xo =y1/(y22 +1)2 and x,, =—y1/(y22 +1)2. Note that in reality we have four
possible pairs (xj; , x2), i = 1, 2, 3, 4, but we have to pair the plus signs together
and the minus signs together, since y; must be nonnegative to have real solutions.
Hence, using (1.172a), the joint density function of ¥; and ¥, becomes

Fex N2 N + fyx P4RY) N
o T 1o T
CLbze b3er) )bz B2 )
fY]YZ(J’l,yz): '2y—1, »>0
y; +1
0 , »<0
Example 1.23

Let (X;, X2) be a two-dimensional random variable with density function
fXIXZ(xl,xz)=2/n in the region shown in Figure 1.31. Define the

transformation (R , ®) with X; = R cos © and X, = R sin ©. Determine the joint
density function fre(r, 0).

Solution

In this example, the goal is to use the Jacobian of the inverse transformation,

| J ’1| , given in (1.173), which could be sometimes confusing. Hence,

Figure 1.31 Regionof fy y, (xl,xz) .
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dx; dx
or 006 0 —rsin®
|J71(7’,9)|= S e :(c0526+sin26)r:r
d0x, 0x, sin®  rcos0
or 96

since cos® O + sin? 0 = 1. Thus, using (1.174), the joint density function of (R , ©)
becomes

fR@(’”ae)=| g (’”’9)| f)(l)(2 (xl axz)

:2 for 0<r<1 and 0<O<Tm
i

Note that the marginal density functions of R and © are easily obtained to be
= 2r
frlr)= [ = do =2r, 0<r<i
0
and

fol0)= |

R and O are independent random variables, since fzo (¥, 0) =1z (¥) fo (0).

We now generalize the fundamental theorem to vectors of # random variables.

Let X = (X1, X3, ... , X,) be an n-dimensional random variable of the continuous
type, with joint probability density function fx (x1, xs, ... , x,). Let Y1, Y3, ... ,Y, be
functions of random variables X7, X5, ... , X, given by
=g X, Xy, ..., X))
Y, = g, (X, Xy, .., X))
1.177
v (1.177)
Yn = gn(Xls XZ’ cee Xn)
The functions gi(x|, x, ... , X,), i = 1, 2, ... , n, are continuous, and have partial
derivatives at all (x;, x5, ... , x,). Then, the joint density function of the

transformation is given by
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1

= X ,x ,K ,xn 1'178
) |J(x1,x2,K’xn)|fX1,X2,K,X”(1 ) ) ( )

fyl,yz,K,y” 1, 22.K Ly,

where the Jacobian J(x;,x,,K ,x,) = J[(yl,yz,K sy ) (g, %0, K L x, N s

defined as
Iy, 9y A dy
dx; dx, dx,
dy, 9y, A dy,
J(x,x,,K ,x, )=| 0% 9x; dx, (1.179)
M
oy, 9y, A oy,
dx, dx, dx,
If the n-tuples (x11, X21, ... 5 Xu1)s (¥12, X225 - 5 X2)s oo 5 (X1y X2my +-o 5 Xpy) QrE

solutions to

X =gf1(Y1,Y27K syn)
X, =g7 (1,2.K,y,)

1.180
M ( )
Xn =g,;1(y1,y2,K ayn)
The Jacobian of the inverse transformation is given by
ox, dx A dx,
Iy 9y, 9y,
axZ axZ aX2
X1, %,,K ,x A
J —K =0y 9y, v, (1.181)
y ’y 2 ’yn
1,2 M
dx, dJx, A ox,
dy; 9y, v,
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where (%0, K ox,) (01530, K oy, )=J (99 K L y,) and
|J(x1,x2,K,xn)| - :|J()/1’yzaKay,,)|. The joint density function
Srrky, (y1,72,K ,y, ) becomes

n

leYzKY,,(ylﬂ.VZ’K ’yn)zz |‘]i(y1’y2’K ’yn)rleleKX” (xli’XZi’K ’xni)

i=1

(1.182)

where again the subscript i, i = 1, 2, ... , n, indicates that the Jacobians are
evaluated at the ith root, and J,(y,,»,, A ,y,) s as defined in (1.181).

1.7 SUMMARY

In this chapter, we have introduced the concepts of sets, probabilities, random
variables, and functions of random variables. In most cases, we limited the
discussions to two random variables or two functions of two random variables, but
the concepts can be extended to » random variables and/or n functions of #» random
variables. Due to the analogy between continuous random variables and discrete
random variables, most mathematical developments were done for continuous
functions. However, some points on discrete random variables were given in detail
to clarify some fundamentals. In the next chapter, we present some probability
distributions.

PROBLEMS

1.1 Determine which sets are finite and countable, or infinite and uncountable.
A={1,2,3,4},B= {x|xintegerand x <9}, C= {x|xreal and 1 <x <3},
D={2,4,7},and E={4,7,8,9, 10}.

1.2 Using the sets 4, B, D, and E of Problem 1.1, determine the following sets:
(a) A1 B
(b) AYBYDYE
(¢) (BYE)I D
(d B-E
(e) A1 BI D1 E

1.3 Let the universal set be U= {x | x integer and 0 <x < 12}. For the subsets of U
givenas 4=1{0,1,4,6,7,9}, B= {x|x even}, and C = {x| x odd}, find
(a) Al B



66

1.4

1.5

1.6

1.7

1.8

1.9

Signal Detection and Estimation

(b) (4YB)I C

(c) BYC

(d B-4

(e) (AYB)I (4YC)
) A1 C

(9 B-C

(hy BI C

Using Venn diagrams for the four sets 4, B, C, and D within the universal set
U, show the areas corresponding to the following sets

(a) A-B

(b) (4YB)I C

(c) A1 BI C1 D

d 4

(e) A1 B

Show thatif Ac B and Bc C ,then Ac C.

Find all mutually exclusive sets defined in Problem 1.3.

A ball is drawn at random from a box containing 10 red balls, 3 white balls,
and 7 blue balls. Determine the probability that it is

(a) red

(b) white

(c) blue

(d) notred

(e) red or white

Assume that three balls are drawn successively from the box of Problem 1.7.
Find the probability that they are drawn in the order blue, white, and red, if
each ball is

(a) replaced before the next draw

(b) not replaced

In addition to Box 1 of Problem 1.7, we have another box, Box 2, containing 2
red balls, 6 white balls, and 1 blue ball. One ball is drawn from each box. Find
the probability that

(a) both are red

(b) both are white

(c) one is white and one is blue
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1.13
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A small box, B, contains 4 white balls and 2 black balls; another larger
box, B,, contains 3 white balls and 5 black balls. We first sclect a box, then
draw a ball from the selected box. The probability of selecting the larger
box is twice that of the smaller box. Find the probability that

(a) ablack ball is drawn given box B,

(b) ablack ball is drawn given box B,

(c) ablack ball is drawn

(d) a white ball is drawn

Determine the probability of obtaining three 1s in four tosses of a fair die.

In three urns are balls, as shown in Table P1.12. The urns are not of the

same size, and thus the probability of selecting Urn 4 is 0.6, while the

probability of selecting Urn B is 0.2.

(a) Find the joint probability of selecting a white ball from Urn B.

(b) Find the probability of drawing a green ball, given that Urn B has been
selected.

(c) Determine the conditional probability that a red ball is drawn from Urn
C, P(Urn C | red ball).

An urn contains 10 balls marked 0, 1, 2, ... , 9. The experiment consists of
drawing k balls at random with replacement. The probability of a ball being
drawn at each drawing is 1/10, and the drawings are not related. Let 4 be
the event in which neither ball 0 nor ball 1 appear in the sample, and let B
be the event in which ball 1 does not appear in the sample but ball 2 does.
Find

(a) P(4)
(b) P(B)
(c) P(4B)
(d) P(AYB)
Table P1.12
Content of Urns
Balls Urn A Urn B Urn C Totals
Red 30 30 40 100
White 50 30 20 100
Green 20 40 40 100

Totals 100 100 100 300
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Consider the function

1 1

—e ™ +=8(x-3), x>0
f)((x)z 2 2
0 , x<0

(a) Sketch fy (x) and verify that it represents a density function.
(b) Calculate P(X=1), P(X=3),and P(X > 1).

Consider the random variable X given in Example 1.12. Find
(a) the distribution function
(b) the probability that | X' | <1

The density function of the variable X is given by

1
—,—2<x<L2
4

fx (x)z

0, otherwise

Determine

(a) P(X<x)

(b) P(|x[<1)

(c) the mean and variance

(d) the characteristic function

The random variable X has a density function

x , 0<x<l1
fylx)= 42-x, 1<x<2
0 , otherwise

(a) What is the probability that 1/3 < X <3/2?

(b) Find the mean and variance of X.
(c) Obtain the moment generating function of X.

(d) Obtain the mean of X from the moment generating function and
compare it with the value obtained by direct application of the
definition.
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The random variable X has mean E[X] = 2/3 and density function

f.X(x)z{O(‘l'sz, 0<x<l1

0 , otherwise

(a) Find o and B.
(b) Determine E[X*] and Gi.

The joint probability distribution of the two-dimensional discrete random
variable (X,Y) is shown in Table P1.19.

(a) Is E[XY] = E[X]E[Y]?
(b) Are the random variables X and Y independent? Justify.

The joint density function of two random variables X and Y is given by

k(x+y), 0<x<2 and 0<y<2
Sxy (x’ y ) = .
0 , otherwise
Find
(a) k
(b) The marginal density functions of X and Y’
(c) PX<1|Y<1)
(d) E[X], E[Y], E[XY], and p,,
(e) Are X and Y independent?

The joint density function of the two random variables X and Y is

kxy, 1l<x<5 and O<y<4
0 , otherwise

Fxr(ey)= {

Table P1.19
Joint Probabilities of (X, V)

X
Y -1 0 +1
-1 1/12 1/6 1/12

0 1/6 0 1/6
+1 1/12 1/6 1/12
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1.23

1.24
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Find

(a) The constant &

(b) P(X>3,Y<2)and P(1 <X<2,2<Y<3)
() P(1<X<2|2<Y<3)

(d) E[X|Y=)y]

The joint density function of the two random variables X and Y is

kxy, 1<x<3 and l<y<2
0 , otherwise

frr(xy)= {

(a) What is the probability that X + ¥ < 3?
(b) Are X and Y independent?

The joint density function of two random variables X and Y is

16%, x>2 and O<y<l
Sy (6. )= '
o 0 , otherwise

Find E[X] and E[Y], the means of X and Y, respectively.

The density function of two independent random variables X and Y are

—2x -3y
e Aoy

0 , otherwise 0 , otherwise

Find

(a) PX+Y>1)

(b) P(1<X<2,Y>1)
() P(1<X<2)

(d PY=1)

() P(1<X<2|Y=1

Find the density function of the random variable Y = 2.X, where

—2x
fX(x):{Ze N x>0

0 , otherwise

Compute E[Y] in two ways:
(a) Directly using fy (x)
(b) Using the density function of ¥



Probability Concepts 61

aszly2 (yl »yz)
0y19y,

Fry, 1.v2)= (1.176)

Example 1.22

Consider the standard example given in many references where ¥, =+ X + X3
and Y, =X, /X,. The problem is to find the density function fy., (y1,y,) in

terms of the given density function f y, (x,,%,).

Solution

We shall solve this example by giving more details to eliminate all ambiguities.
From (1.170), we first need to determine the Jacobian of this transformation

Vi =g1(x1 ,xz)zﬂ xl2 +x§ and y, =g2(x1 ,x2)=x1 / x, , which is given by

S )| 8] () B L ——
l 1

L L
) T

11 y2+1
=y} o=
YN 1

Thus, | J(x; ,x, )| =(y3 +1)/y,. Solving for the roots of the two functions y, and

V», We obtain

1 2\ |2 2\2 2
ylz(x12+x§)2= xlz[l+x—§J :ix1[1+x—22J :ix1(1+%J
X X1 Y2

1

2

That is, we have two roots, x;; =y1y2/(y§ +1)% and x;, =—y», /(yf +1) .

1
Using the same approach to solve for x,, we obtain x, =+ y, / (y% +1) *; that is,
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1.30

1.31

1.32

1.33

1.34

Signal Detection and Estimation

The joint probability density function of (X, Y) is given by

I, 0<x<1 and 0<y<l1

0, otherwise

fxy(x,y)={

Find the probability density function of Z = XY.

The joint density function of the two random variables X and Y is given by
. o gy
fXY(x,y)=Ee , 0Sx<eo, and 0<y<P

where o and [ are constants.

(a) Find the marginal density fy (x) of X.

(b) Find the marginal density fy(y) of Y.

(c) Are X and Y statistically independent? Justify.

(d) Determine the density function of Z such that Z = X + Y, and sketch it.

Let X and Y be two independent random variables with exponential
distributions given by

fr(x)=0e™u(x) and  fy(v)=Be ™ uly)

where oo > 0 and § > 0. Determine the density function of Z= X/Y.

The joint probability density function of the random variables X, and .X; is
given by

kxyxy, 1<x <3 and 1<x,<2

0 , otherwise

f)(lxz (xl,xz )= {
Let the random variables Y; and Y, be defined as
Y,=X, and Y, = X, X;

(a) Determine the constant .
(b) Determine the joint density function fy., (»1,»,) and sketch the

corresponding domain of definition.

The joint density function of the random variables X; and X; is given by
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o2 o) x>0,x,>0

X|,Xy )=
f XIXZ(I 2) 0 , otherwise

(a) Show that X; and X, are independent.
(b) Define ¥, = X, + X; and Y, =X, /X,. Determine the joint density

function fy, (¥, v,) of the transformation.
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Chapter 2

Distributions

2.1 INTRODUCTION

In the previous chapter, we have defined the concepts of probability, random
variables, and statistical moments. In this chapter, we shall study some important
distribution functions that are frequently encountered. Since these distributions
have a wide range of applications, we shall study them in their general form, and
in some cases, we give more details for particular applications. Some of the
notions defined will be applied to these special distributions, which yield some
standard results to be used later. In Sections 2.2 and 2.3, we present some discrete
and continuous distribution functions, respectively. Special distribution functions
will be presented in Section 2.4.

2.2 DISCRETE RANDOM VARIABLES
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions

The simplest distribution is one with only two possible events. For example, a coin
is tossed, and the events are heads or tails, which must occur with some
probability. Tossing the coin # times consists of a series of independent trials, each
of which yields one of the two possible outcomes: heads or tails. These two
possible outcomes are also referred to as “success” associated with the value 1 and
“failure” associated with the value 0. Since all experiments are assumed to be
identical, the outcome 1 occurs with probability p, whereas the outcome 0 occurs
with probability 1— p, with 0 <p < 1. These are called the Bernoulli trials.

A random variable X is said to have a Bernoulli distribution if for some p,
0< p <1, its probability density function is given by

px(l_p)l—x’ x=0,l
P = 2.1
X (x) { 0 , otherwise @D

75
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(1- p) is often denoted by ¢, such that p+¢ =1. Assume that in the experiment

of tossing a coin n times, “heads” or “1” occurs in £ trials, then “tails” or “0”
occurs in (n—k) trials. That is, we have

111...11000...00
S —
k times n—k times

Note that the order of which comes first, 1 or 0, is not important. What matters is
the & number of ones and (n—k) number of zeros in the » trials. Hence, from

Chapter 1, Section 1.2.4, the n objects (all the 1s and 0s) can be arranged in n!
ways. The k& 1s can be arranged in k! ways, whereas the (n—k) Os can be arranged

in (n—k) ways. It follows that there are n!/ (n —k)!k! ways of arranging the k 1s
and (n—k) 0Os. Note that n!/(n—k)!k!is the binomial coefficient defined in (1.10).
Hence, the probability of occurrence of & 1s is

n! K nk
CEA R @2)

In summary, we say that the probability of observing exactly & successes in n
independent Bernoulli trials yields the binomial distribution. The probability of
success is p, and the probability of failure is ¢ =1— p . The random variable X is

said to have a binomial distribution with parameters n and p if
P( X =kin n trials)= (Zj prg"™* fork=0,1,2,... (2.3)

The PDF of the binomial random variable X is given by

n

Py(x)=3 ("jp"q"—k §(x—k) 2.4)

k=0 k

where 8(x—k) is the impulse function. The distribution function would be

Fy(x)= T Py (1) du = i (ijkq"_k u(x—k) (2.5)

—0 k=0

where u(x—k) is the step function, and the integral of the impulse function is just

the unit step function. It should be noted that the binomial power expansion is
given by
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PR - A R C n! k nk
(p+q) —;O(k]p q —;}—(n_k)!k!p q (2.6)

It can also easily be shown that the mean, variance, and characteristic function of
X are given by

E[X]=np (2.7)
var(X) = npg 2.8)
and
o, (0)=(pe’ +q)" 2.9)
Example 2.1

Consider the experiment of rolling a fair die 10 times. What is the probability of
obtaining a “6” twice?

Solution

Note that the number of rolling a die is n = 10, and k£ = 2 is the number of a “6”
showing on the top face of the die with probability p =1/6. Hence, using (2.3),
the probability of obtaining a “6” twice is

P(X=2)= (?J (%jz (gjg =0.2907

A receiver receives a string of Os and s transmitted from a certain source. The
receiver uses a majority decision rule. In other words, if the receiver acquires three
symbols and out of these three symbols two or three are zeros, it will decide that
these symbols represent that a 0 was transmitted. The receiver is correct only 80%
of the time. What is P(c), the probability of a correct decision, if the probabilities
of receiving Os and 1s are equally likely?

Example 2.2

Solution

These are Bernoulli trials, with P(4) = p being the probability that event 4 occurs
in a given trial. Define D as the event decide 0 or 1. P(D) = 0.8. The number of
symbols received is n = 3. From (2.3), we have
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P( 0 correct decisions )= (3] (0.8)0 (1- 0.8)3 =0.008
P(1correct decision )= @ (0.8) (1-0.8)* = 0.096
P(2 correct decisions )= @ (0.8)* (1-0.8)' =0.384

P( 3 correct decisions )= @j (0.8)3 (1- 0.8)0 =0.512

Therefore, the probability of a correct decision is given by
P(c)=P(D=2)+P(D=3)=0.896

In the binomial distribution, the experiment is repeated »n times but we only
have two possible events. Suppose now that we still repeat the experiment » times
independently, but for each experiment we have k& mutually exclusive events
Ay, 4,, ... ;A . Let P(4;) = P; and suppose that P, , i = 1, 2, ... , k, remains
constant for all n repetitions, and P +P, + ... + P, =1. Define the random
variables X, X,, ... ,X,, such that X; =n;, i =1, 2, ... , k, is the number of
times A; occurs in n repetitions. Then, n=n,+n, + ... +n,, and the joint
probability that X; = ny, X, = na, ... , X; = ny, is given by

!

P(Xl =n;,X,=ny,...., X} :nk):ﬁpl’ll P2”2 Pk”k (2.10)
nynyo ... /’lk.

Note that the random variables X,;,X,, ---,X, are not independent. A
random variable (X, X,, --- ,X};) with a distribution given as in (2.10) is said
to have a multinomial distribution.

2.2.2 The Geometric and Pascal Distributions

Consider the experiment of tossing a coin as described earlier. The probability of
occurrence of some event, say, heads or success, is P(4) = p, and the probability of

nonoccurrence (or failure) is P(Z) = 1-p = q. In the binomial distribution, we

repeated the experiment » times, and we calculated the probability of occurrence
of k successes out of n Bernoulli trials. The experiment now is a little different in
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the sense that we continue tossing a coin until we obtain the event 4 (heads or
success) for the first time, then the experiment stops. Hence, the number of trials n
in the binomial distribution is fixed, while in this new experiment it is a random
variable, since we do not know when we stop the experiment. We now define the
geometric distribution.

Let X be a random variable representing the repetitions of an experiment until
the first occurrence of an event A at the kth trial. Hence, when X assumes the

values 1, 2, ..., k—1, the results of the repetitions of the experiment are 4. Then,
the probability of occurrence of the event 4 for the first time at the kth trial X =k is
given by

k-1 _
P(sz)zPX(k):{(l_p) pr k=012, Q2.11)
0 ,  otherwise

The random variable X is said to have a geometric distribution given by (2.11)
with0 <p <1 and 1- p =¢. The mean of X is given by

> ¢ (2.12)

where d/dgq denotes derivative, and the infinite series is known to converge to

$gf = for 0<g<l (2.13)
k=1 l-q

Hence, the mean of X becomes

E[X]:;;%q(éj: p__1 (2.14)

Similarly, we can show that the variance of X is

Var[X]: iz (2.15)
p

The moment generating function of the geometric distribution can be shown to be
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M ()= (2.16)

If we now consider the same experiment that gave us the geometric
distribution, the experiment does not stop at the first occurrence of the event 4, but
when the event 4 occurs r times. In this case, at X =k —1 trials, we have r—1
occurrences of the event 4, and at X = r, the rth event occurs. Hence,

k-1

P(X:k)z(r_l

J p g, k=rr+l,. (2.17)

X is said to have the Pascal distribution. Note that when » =1 in (2.17), we obtain
the geometrical distribution given in (2.11). Often, the Pascal distribution is
referred to as the negative binomial distribution. In this case, we say we have x
failures corresponding to »—1 successes at the (k—1)th trial. At the kth trial, we

must have the rth success. Hence, the probability of x failures is given by
x+r—1
P(X:x):[ Jprqx, x=12,... (2.18)
X

or, the probability of the rth success at the k=x+r trial, knowing that at
k—1=x+r—-1 we have r—1 successes, is

x+r—1} ,
P(X =x)= p"q*,x=0,1,2,... (2.19)

r—1

Note that (2.18) is equivalent to (2.19), since

[x+r—lj (x+r—l]
= (2.20)
r—1 X

It should be noted that (2.17) also may be written as

P(sz):[_xr]pr (—q).x=0,1,2,... 2.21)

which yields that
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> P(x =x)=1 (2.22)

since

0

> (_xr] (—q) =(-q)" =p~ (2.23)

x=0

It is because of the negative exponent (—7) in (2.23) that we call this distribution a

negative binomial. It is important to observe that in (2.19) we are interested in the
distribution of the number of trials required to get r successes with k = x + r,
whereas in (2.18) we are interested in the number of failures. In other words, the
distribution of (2.17) can be defined as ¥ = X + r, with X denoting the number of
failures before the rth success. Hence,

r—1

P(Y =y)= (y

Jp’ @7, y=ror+l. (2.24)

The means of X and Y can be shown to be

E[x]= r% (2.25)
and
E[r]= E[x]+r :% (2.26)
whereas the variances of X and ¥ are given by
var[X]=var[y]=r % (2.27)

The moment generating function of X can be obtained to be

00 o0

M)=2 [H;_lj plgte =3, (_rj G

x=0 x=0 X

=p' i‘, (—Xr](_qe,)x =p" (1—qe’)" for ge' <1 (2.28)
x=0
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whereas the moment generating function of ¥ can be shown to be

t \
My(z)z{ pe ,} for ge' <1 (2.29)
l-ge

We conclude this section by giving the relationship between the binomial
distribution and the Pascal distribution. If X is a binomial distribution as defined in
(2.4), and Y is a Pascal distribution as defined in (2.17), then

P(X > r)=P(Y < n) (2.30)

That is, if there are » or more successes in the first » trials, then the number of
trials to obtain the first » successes is at most n. Also,

P(X <r)=P(Y>n) (2.31)

That is, if there are less than r successes in the first # trials, then we need at least n
trials to obtain the first » successes.

2.2.3 The Hypergeometric Distribution

Suppose an urn containing N balls, » of which are white and the other N —r balls
are of other colors. The experiment consists of drawing » balls, where n < N . As

each ball is drawn, its color is noted and replaced in the urn. A success is when a
white ball is drawn. Let X be the random variable representing white balls drawn
(successes) in n trials. Then, the probability of obtaining k successes in # trials is

given by
R ICE IEHE

since p=r/N and g=1-p=(N-r)/N. This is called a sampling with
replacement. If now, as each ball is drawn, its color is noted but it is not replaced

in the urn, we have a sampling without replacement. In this case, the probability of
obtaining k white balls (successes) in # trials is given by

P(X =k)= w
Y

k=0,1,2,... (2.33)
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A discrete random variable having the distribution given in (2.33) is said to
have a Hypergeometric distribution. Note that k cannot exceed n or r; that is,

k <min (n, r) (2.34)

The mean and variance of the Hypergeometric distribution X can be shown to

be
n
E[x]= ~7 (2.35)
and
nr
Var[X]—m(N—r) (N—I’l) (236)

The mean-square value is also given by

E|x?]= r(r__l) n(n—1)+n—]\}; 2.37)

Computing the probability of & white balls in n trials without replacement,
given by (2.33), we have

P(X = k)= (lrcj[]:—_lj _oor (N=r)! n!(N—n)!

(N] K(r=k) (n—k) (N=r—n+k)!  N!

=%r(r_1)...(r_k+1)(n_1k)! (N=r)(N=r=1). (N r—ntk+1)
1
NV (V)
n! (N—r)(N—r—l)...(N—r—n+k+1)
BT H A o S o

r

P
R
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Let the proportion of white balls in the urn before any drawing be r/ N = p,
and the proportion of the other balls is 1-p=(N—-r)/N =¢q. Then, (2.38)
becomes

(2.39)

The mean and variance in terms of the proportions p and ¢ are given by

E[X]=np (2.40)
and
r N—r N—n N-n
ar| X |[=n— = 2.41
varlX]=n— = = p g — (2.41)

When N goes to infinity (N very large compared to n), the mean and variance
become

EX]l=np (2.42)

and

var[X]=npq (2.43)

whereas the probability of k successes in n trials without replacement given by
(2.38) becomes

P(x :k):[n

k _n—k
2.44
k] P q (2.44)

That is, we obtain the result given by (2.32), which is sampling with replacement.
This makes sense intuitively, since for a very large N, drawing a ball without
replacement does not affect the sample size, and the experiment is similar to
drawing a ball with replacement.
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Example 2.3

An urn contains five white balls, three black balls, and three red balls. The
experiment is to draw a ball and note its color. Find the probability of obtaining
the third white ball in the seventh trial, knowing that the ball drawn is not replaced
in the urn.

Solution
This is the hypergeometric distribution with N = 11 balls; » = 5 white balls, and

N —r =6 other colors. The probability of obtaining £ = 3 white balls (successes)
in n =7 trials is given by (2.33) to be

P(X =3 white ballsin 7 trials) =

2.2.4 The Poisson Distribution

In many applications we are concerned about the number of occurrences of an
event in a given period of time z. Let the occurrence (or nonoccurrence) of the
event in any interval be independent of its occurrence (nonoccurrence) in another
interval. Furthermore, let the probability of occurrence of the event in a given
period be the same, irrespective of the starting or ending of the period. Then we
say that the distribution of X, the number of occurrences of the event in the time
period ¢, is given by a Poisson distribution. Applications of such a random
phenomenon may include the occurrence of the telephone traffic, random failures
of equipment, disintegration of radioactive material, claims in an insurance
company, or arrival of customers in a service facility.

Let X be a discrete random variable assuming values 0,1,2,...,n,... and

having parameter A, A > 0. Then, if

Y
P(X=k)=PX(k)= e xﬂ’ k=0,1,2,...,and A>0 (245)

0 , otherwise

then we say that X has a Poisson distribution. The probability density function and
the cumulative distribution function are

__}\’ao}\‘k

Py(k)=e™ > = 8(x—k) (2.46)
k=0 k!
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and
0 7\.k
Fylk)=e™ > = u(x—k) (2.47)

where 6(x) and u(x) are the unit impulse function and the unit step function,
respectively.
The mean and variance of X are equal and can be computed to be

E[X]=c2 =2 (2.48)

while the mean-square value is E[X2]=A%+A. It can also be shown that the

moment generating function and characteristic function of the random variable X
are

M (1)= exp[x(e’ —1)] (2.49)
and

D (r)= exp[)\(ejw —1)] (2.50)

Example 2.4

Let X and Y be two independent random variables having Poisson distributions
with parameters A; and A,, respectively. Show that the distribution of X + Yis a
Poisson distribution, and determine its parameter.

Solution

For n > 0, the distribution of X + Y'is given by

P(X+Y<n)= Zn:P(X:k,Y:n—k): Zn:P(X:k)P(an—k)
k=0 k=0
n )\‘k xn—k 1 2 (n
= R S B 2 —(?\.1+?\.2) - }\‘k }\‘n—k
,;)e 0w a-m n! kz_:‘)[kJ P2

(1,+1,) (7‘1 +7V2)n
n!

:e_
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where we used the binomial expansion given in (2.6). Hence, the distribution of X
+ Y is Poisson with parameter A = A +A,.

The Poisson distribution is an approximation of the binomial distribution as
the number of trials goes to infinity (and, solving the limit, np =21 ). Consider a

binomial distribution with parameters n and p. The probability of X = k in the
binomial distribution is given by

P(X =k)= ["

kjp" (1-p)"™* (2.51)

with mean A = np. Then, taking the limit as » — o and assuming p=A/n to be

very small, we have

N A IR AT R O A e
e (e e

using the result that

n
lim (1+ﬁj =e" (2.53)
n—»o0 n
then,
lim [1—&) —e (2.54)
n—o n
and

nsol\ k) n n—>o0 nk
k —
= lim e —Kl—lJ(l—zj...[l—k 1”
n—o0 n n n
k
_eh (2.55)
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since the term between the brackets goes to one. Note also, from Section 2.2.3, the
hypergeometric distribution can be approximated to a binomial distribution, and
thus to the Poisson distribution.

2.3 CONTINUOUS RANDOM VARIABLES

2.3.1 The Uniform Distribution

A random variable X is said to be uniformly distributed on the interval from a to b,
a < b, as shown in Figure 2.1, if its density function is given by

! , a<x<b
fx(x)=1 b-a (2.56)
0

,  otherwise

The distribution function of X, shown in Figure 2.2, is given by

Jx ()

v
=

Figure 2.1 Uniform density function.

[
v
=

Figure 2.2 Distribution function of the uniform random variable.
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0 , x<a
FX(x):P(XSx):IfX(u)duz Z_ , a<x<b
—o0 —a
1, x2b

The mean, variance, and characteristic function of X are, respectively,

E[X]:%(cwb)

> 1 2
:—b—
o =L
and
ejmb_ejwa
q) =
x(m) ]O)(b—a)

2.3.2 The Normal Distribution

89

(2.57)

(2.58)

(2.59)

(2.60)

One of the most important continuous random variables of a probability
distribution is the normal distribution. Often called the Gaussian distribution, it is

shown in Figure 2.3. The density function is

Y
fX(x):\/%Gexp{—%} for all x

2.61)

where m and o are, respectively, the mean and standard deviation of X and satisty

Figure 2.3 Normal density function.
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1
1
1
1
1
1
1
L
m-o m m+oc

Figure 2.4 Distribution function of the normal.

the conditions —co < m <o and & > 0. The corresponding distribution function, as
shown in Figure 2.4, is given by

Fy(x)=P(X <x)= T exp {— %} du (2.62)

The distribution function can be determined in terms of the error function.
The error function denoted by erf(-) is defined in many different ways in the
literature. We define the error function as

2

erf(x)= e™ du (2.63)

O —_—

2
Jn
Additional information on the error function and its tabulated values are given in
the Appendix. Let u =(x—m)/cin (2.61); then du =dx/c, and the distribution

function becomes

[e 2du=1(x) (2.64)

The values of I(x) are also tabulated in the Appendix. The distribution given in
(2.64) can be rewritten as
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2

- L]

Fy(x)=P(X <x

(2.65)

Using the definition of the error function given in (2.63), the distribution function
becomes

Fy(x)= %+%erf (ij (2.66)

We define the standard normal distribution as the normal distribution with
mean m = 0 and variance 6° = 1, denoted MO, 1), and expressed as

x2

' 2

e
Van

The corresponding distribution is given in (2.66) in terms of the error function.
Other important results that we need to define are the complementary error
function and the Q-function given by

fx(x)= (2.67)

erfo(x) = %T e™ du (2.68)
such that
erfe(x) = 1 — erfc(x) (2.69)
and
O(x)= J;_ﬁof e 2 du (2.70)
where
0(0)= % (2.71)

and
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O(-x)= 1-0(x) for x>0 (2.72)

Note that, using (2.67) and (2.70), the O-function can be written in terms of the
error function to be

O(x)= 1{1 erf(%” (2.73a)

:%erfc(%) (2.73b)

Also note that

I(x) + O(x) =1 (2.74)
and
O(x)2——¢ 2, forx>4 (2.75)
2n

In some books, O(x) defined in (2.70) is denoted erfc«(x), while /(x) in (2.64) is
denoted erfc+(x), and thus erfi(x) + erfc«(x) = 1 as in (2.74).
The moment generating function is known to be

M (t)= E[etx]: T fy(x)e™ dx= exp{mt+ GZZIZJ (2.76)

—00

whereas the characteristic function is

2 2
(Dx(m):E[ej“’X]:exp(jmm— 62(0 j (2.77)

The moments can be obtained from the characteristic function to be

1 4" n—2k GZk

E|lx" )= ® R e - 278
| ]j"dm" +(0llong n,;)zk'(n 2k)! 275

where
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n
E for neven
K= (2.78b)

n- for nodd

If the random variable is zero mean, the characteristic function is

1 2 2
) c’w? 1c'0* 1c%°

(o)) =e 2 =1- +— —-— +... 2.79
o(x)=e 2 4 3 8 2.79)

Therefore, the moments are

0 for nodd

Elx]= (/nzl)fzn/z or n oven (2.80)
n :

Example 2.5

Suppose that Y has the distribution %'(m, 6°). We want to find the value of A, such
that P(Y > A) = a,, where o and A are constants.

Solution

The probability of ¥ greater than A is

P >2)= jﬂgexp[ ! <y_m)2}dy

We need to make a change of variables to obtain the standard normal. Let
x=(y- m)/ V2o ; then, dy = V2 dx , and the integral becomes

1

NP

=P(y>n)= e dx

N | —
eI
T8
3

=

(e}

thus, a=(1/2) erfc[(k—m)/\/z 0] . Or, letting x=(y—m)/oc= dx=ocdy, we
obtain
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Py >1)= T e_2dx=Q(7‘_’"j:1—1(7‘_mj

(&) ()

We now give a numerical example to be able to use the tabulated Q-function or
error function. Suppose that m =3, 6> =4, and A =4. Then,

P(Y>4)=1—P[X= Yom _d=m_ 4‘3j

6 o 2

= l—P[Xﬁéj = 1—[(%) =1-0.6915=10.3085

where X is the standard normal, and P(X <1/2)=I(1/ 2) =0.6915 is read directly

from the table in the Appendix. We could have used the result found for a by just
substituting the numerical values and using the error function defined in (2.63).

If ¥ has a normal distribution with mean m and variance o, the probability for
Y between a and b is

c c c
b—-m a—m b—-m a—m
) () ) o

where X is the tabulated standard normal distribution defined in (2.64). Using the
definition of the error function, P(a < Y < b) given in (2.81) becomes

e[l of 22 ({2

For the numerical example above, where Y = W (3, 4),

P(2<Y<5)="P 273 Y-3 523
2 2 2

- (_%<X31j:P(X31)_P(X<_%}

= 1(1)—1[—%) =0.8413-0.3085 = 0.5328

P(aSYSb)zP(a_m SY—me—mJ
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In Chapter 1, we defined the law of large numbers. We now give the central
limit theorem without proof, which essentially says that the sum of n independent
random variables having the same density function approaches the normal density
function as n increases.

The Central Limit Theorem

Let X,,X,,...,X,... be asequence of independent and identically distributed
(i.i.d.) random variables; that is, the corresponding density functions,
Sx, (x),k=1,2,..., are the same. Let S, =X, +X, +...+.X,, the sum of n

random variables, with a finite mean m=m; +m, +...+m,, and variance

6% =6] +063+... +c2, where m; = E [X;] and Gizvar[Xk],k ,2,..,

The density function of S, given by fg (x)=1 X, (x)* Sx, (x) e * fx (x)
approaches a normal distribution as # increases; that is,

L e LT
fs (x) > Ton o exp{ o } (2.82)

If the sum S, is normalized, such that S, 222:1()(  — My )/cs, then the

distribution S, approaches the standard normal distribution; that is,

)CZ
1 —
fs (x)> e 2 (2.83)
! A 27
In particular, if the means and the variances are equal, m; =m, = ... =m, =m
and 612 =c§ = .. :0,21 =c?,then S, is N(O0,1),and

. P{as (X, =m)+ (X, =)t o+ (X, —m)

r}l_l)lalopla< G\/_ } lim 0\/7

r

This theorem is valid for all distributions, but we shall only discuss the binomial
and Poisson distributions. For the binomial distribution, if the number of Bernoulli
trials # is large, then the random variable U given by

I e 2 du (2.84)
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_X-np

Vnpq

where p is the probability of success, approaches the normal distribution; that is,

U (2.85)

1,!2

2 dy (2.86)

lim P{aﬁ v-npr

1 -
L T ]Jz_J

Similarly, since the Poisson distribution has mean A and variance A, and we
showed in Section 2.2.4 that the parameter A in the Poisson distribution is related
to np in the binomial distribution (A = np ), then

X=X

poh
<h|=—— 2 d 2.8
ﬁ<] zn_‘[e u (2.87)

Although the normal distribution is the most important distribution, there are many
applications in which the normal distribution would not be appropriate. We present
the different distributions of interest.

lim P[a <U =
A—0

2.3.3 The Exponential and Laplace Distributions

A random variable X has an exponential distribution with parameter 3, p > 0, if its
density function is given by

—e P , XZ2a,-0<a<+o

fy(x)=1B (2.88)

0 , otherwise

If weseta=0and o =1/, then fy (x), shown in Figure 2.5, becomes

fx(x)= (2.89)

0 , otherwise

The mean and variance of X are

E[X]:ﬁ:E (2.90)
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S (x)
A

Figure 2.5 Exponential density function.

and

and

The Laplace density function is defined to be

fX(x):Lexp _|x—m| —o<x<mw, A>0,and —o<m< o
2h A

If we set the mean m = 0 and o =1/, then the density function becomes

frx(x)= % e M

97

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

and it is shown in Figure 2.6. The moment generating function and the

characteristic function of the Laplace distribution defined in (2.94) are
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S ()
A
o
2
X
0 >
Figure 2.6 Laplace density function.
e™! 1
M. (t)= , |t]<— 2.96
A= |rl<5; (2.96)
and
e—jmu)
o (0)= -5 2.97)
X() 1422 ©°

2.3.4 The Gamma and Beta Distributions

In this section, we first describe the gamma function before we introduce the
gamma and beta distributions. The gamma function, denoted by I, is defined as

F(x)z.[ x* e dy, a>0 (2.98)
0

The above improper integral converges for o > 0. Integrating by parts, using
u = x*" and dv =e™* dx, we obtain

F(@)=(a-1)] e 2 dv=(a-1)T (1) (2.99)

Continuing in this manner and letting o be some positive integer, o = n, we obtain

[(n)=(n-1)(n-2)...7(1)=(n-1)! (2.100)
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where I’ (1) = L;D e "dx =1. Another important result about the gamma function is

w _1
F(1]=J x 2 e_xdx=x/;
2) %

(2.101)

Now, we are ready to define the Gamma distribution. A random variable X is
said to have a Gamma distribution, or to be gamma distributed, as shown in Figure

2.7, if its density function is given by

fo(0)={T@p”

0 , otherwise

It is also denoted X ~ G(a, B). The mean and variance are, respectively
E[X]=m=op
and
var[X] = 6* = aff’
while the moment generating function and characteristic function are

1

T

Figure 2.7 Gamma density function.

(2.102)

(2.103)

(2.104)

(2.105)
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and

o, (0)=——— (2.106)

(1- jBo)*

Before defining the beta distribution, we define the beta function B(a., ), and
give its relationship to the gamma function. The beta function is defined to be

Blo.p)=[ u®" (1-u)"" du, 0.>0 and p>0

<)

zzj u?e! (1—u2)ﬁ_ldu (2.107)
0

The beta function is related to the gamma function by the following

Clo)r) B(p, o) (2.108)

BB~ o p)

The beta density function, shown in Figure 2.8, with parameters o and B, is
defined to be

LI (1-x)P", 0<x<1, >0 and $>0

f(x)=1 BlesB) (2.109)

0 , otherwise

we write X ~ B(a, B). Using (2.108), the beta density function can be written as

T e

0

o

Figure 2.8 Beta density function; a = =2and fy(x)=6x(l-x).
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T(a+B) o )bl
fx(x)z F(O()F(B) X (1 x) , O0<x<lLa>0,and >0 2.110)
0 , otherwise

Note that for the special case where a. = 3 = 1, we obtain the uniform distribution
for 0 <x < 1. The mean and variance of the beta distribution for o > 1 and § > 1
are given by

E[x]= (2.111)

and

op
(o+B)* (a+p+1)

var [X]: (2.112)

whereas the moment generating function and characteristic function are given by

M=~ e e g =3 Tlark)Tarp)

B(a,B) prt F(k+1) F(a+[3+k)F(0L)
(2.113)
and
& 'co)k F((x+k)F(0c+B)
q)X((D): kg‘) F](k+1) F(a+B+k)F(cx) @114

2.3.5 The Chi-Square Distribution

The chi-square distribution is an important distribution function. It may be
considered as a special case of the gamma distribution with o = n/2 and B = 2,
where 7 is a positive integer. We say that a random variable X has a chi-square

distribution with n degrees of freedom, denoted xi , if its density function is given
by

1 (/21 x2S
fe(x)=12""7T(n/2) 2.115)

0 , otherwise
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It should be noted that the chi-square distribution, xﬁ , represents the distribution
of the random variable X, where

X=X}+X5+ .. +X; (2.116)

and X;,i=1,2, ..., n, is the standard normal random variable & (0, 1) defined in
(2.67); that is, mean zero and variance equal to one. The Xis are i. i. d.
(independent and identically distributed). The mean and variance of the chi-square
distribution are

E[X]:E[X§]=n (2.117)
and
Var[X]zvar[xfl]:bl (2.118)

The moment generating function and characteristic function are given by

Mx(t):; for t<% (2.119)

(1_2t)n/2
and

@x(m)=; (2.120)

(1- j20)"?
If we suppose that the X;s are still zero mean but the variances are not normalized
to one but equal to o’; that is, E[X,-Z]:GZ, i=1,2, ..., n, then the density
function of X is
1 X
x (/2H1 202 , x>0

fy(x)=40"2""T(n/2) (2.121)

0 , otherwise

whereas the characteristic function becomes
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®,(0)= ————— (2.122)
The mean and variance are
E [X] =no? (2.123)
and
var[X]=2nc* (2.124)

Thus, the second moment is E[X ?]=2nc* + n’c*. The distribution function is
the integral of (2.121), yielding

u

T 1 (/21 207
Fylx)=| ———u"" e 2% du (2.125)
x) { c"2"21(n/2)
Using the fact that
I _ m & oml x*
_[u'"ew‘dxz e ) ————, x>0anda>0 (2.126)
o ™ = k' ok

and m = n/2 an integer, we obtain the distribution function of X to be

I k

Fy(x)=1-¢ 2 mzli = x>0 (2.127)

X K\ 262 )" - '
k=0 -

If we further assume that the Xs, i=1,2,...,n, in (2.116) are still

independent normal variables but with mean E [X;] = m; and variance ¢* = var [X]],
i=1,2,...,n,then,

X=X}+X}+ ... +X}? (2.128)

is said to be a noncentral chi-square random variable with n degrees of freedom.
The density function of X is given by
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fX(x)

o

=2 (x+2)

- Jxn

_ 1 ij“ e 2 [MXIM 150 (2129
262 (A 5*1 2

where A, called the noncentrality parameter, is given by

A=Y m} (2.130)

i=1

and Ia(x) is the modified Bessel function of the first kind of order o

[a=(n/2)—1 is not an integer], and may be written as

w | )2
I,(x)= ,; m(gj , x>0 (2.131)
The mean and variance of X are
E[X]= nc’+ A (2.132)
and
var[X] = 2nc* + 46* (2.133)

The moment generating function and characteristic function can be shown to be

1 At 1
M _(t)= ex] , t<— 2.134
«(6) 2] p[l_mz] : (2.134)
and
@X(m)=;/2 exp sz (2.135)
(1— jchz)n - j20c

The distribution function of the noncentral chi-square random variable with »
degrees of freedom variable does not have a closed form expression. However, we
shall study it in order to introduce the Q-function, which will be used later in the
book. We have



Distributions 105

n-2 (u+7»)
X - N Au
Fy(x)=] L(EJ Yo @ g, 1 du (2.136)
0 2
If m=n/2 is an integer, then

. m-1 _(u+k)
Fy(x)=] ! (ﬁj P e 2 1m_1[”}””Jdu (2.137)

(¢

The generalized Marcum’s Q-function is defined as

(x)ml _!x2+ a? ’
e

2 1, (ax)dx (2.138)

Qm(a,b)zof X

a

Using the fact that

ij(x)dx:1=] Slw)du+ [ fy(u)du (2.139)
0 0 X

then the distribution function can be written as

© m-1 7(u+7»)
Fy(x)=1-] ! (ﬂj P 2 1m_1(”MJdu (2.140)

262\ A c?

Making the change of variables v? =u/c? and a® =A/c?, then2vo?dv =du,
and the distribution function becomes

v+ a? )

0 m-1  _
Fy(x)=1- jv(lj e > I, (av)du (2.141)
\/;/c a

Comparing (2.141) and (2.138), the distribution function is then given in terms of
the Marcum’s QO-function to be

Fy(x)=1-0, {gﬂ} (2.142)

(¢
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The noncentral chi-square random variable defined in (2.129) is sometimes called
the noncentral gamma, while the normalized noncentral chi-square random

variable (62 = 1) is referred to as the noncentral chi-square. For us, we shall call

it, as most authors do, the noncentral chi-square random variable. The density
function of the normalized noncentral chi-square random variable is obtained
directly from (2.129) to be

=2 ()

fX(x)=%(%j4 e 2 1, (rx)xz0 (2.143)
2

where X = X7+ X5+ ... + X

., and the Xis, i = 1, 2, ..., n, are independent
normal random variables with mean E[X;] = m; but have unit variance. The
noncentrality parameter A is as defined in (2.130). Note also that the chi-square
random variable given by (2.115) is just the gamma random variable given by
(2.102) with oo =n/2, n>0 integer, and =2 . This leads some authors to refer
to the normalized noncentral chi-square random variable as the noncentral gamma
random variable.

2.3.6 The Rayleigh, Rice, and Maxwell Distributions

The Rayleigh distribution, which is frequently used to model the statistics of
signals, finds its application in many radar and communication problems. Let

X=X 12 +X 22 , where X; and X, are statistically independent Gaussian random

variables with mean zero and each having variance 6>. Then, from (2.116), X has
a chi-square distribution with n = 2 degrees of freedom. Substituting n = 2 in
(2.121), we obtain the probability density function of X to be

! exp| — * x>0
oz T ) (2.144)

2
0 , otherwise

Now, define a new random variable

Y =X =X+ X2 (2.145)

This is a simple transformation of random variables with ¥ =g(X)= Jx.
Applying the fundamental theorem given in (1.144), we obtain
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Lzexp— y2 , =0
c 20

0 , otherwise

(2.146)

Y is said to have a Rayleigh distribution, as shown in Figure 2.9(a). The
distribution function, as shown in Figure 2.9(b), is given by

62
Fy(y)={1—¢ 2 y20 (2.147)

0 , otherwise

It can be shown that the moment of order & of the Rayleigh distribution is given by
. k
E[Yk]=(2 62)2 r(1+5j (2.148)

Thus, the mean and variance of Y are given by

E[Y]zﬁcl“(%jzc I (2.149)

2

since T'(3/2)=+/n/2 and

S (x)
A

0.602

0.5
0.393

v

(2) (b)

Figure 2.9 Rayleigh (a) density function and (b) distribution function.
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var[Y]=o2 = (2 —gj 2 (2.150)

The characteristic function is shown to be

o _r
(I)y((u):f Lze 207 gioy dy
b O
v v
= I%e 2% COS Oy dy+j_[%e 20 sin oy dy
00 00

2
1 1 2 2 . TT 2 e
= FlL=;——»" c" |+ 1,—oocs e 2 2.151
1 1( ) ) ) J ) ( )

where |Fi(a; b; x) is the confluent hypergeometric function, which is defined to be

2 T(a+k)0 () x*
Fila; b; x)= —<-— ,b#0,-1,-2,... 2.152
1Filas :.x) ,E) [(@)T(b+k) ! ” (2.152)
and
1 & a*
Fll,—;—a|=¢e"" — 2.153
! 1(’2’ a] ¢ ,é) 2k-1k! (2.133)
Example 2.6

Using the distribution function Fy(x) = P(X < x), determine the density function of
(@ X = X7 +X;

(b) X =4/ X! +X;

where X and X; are identical and independent normal density functions with mean
zero and variance ”.

Solution

(a) The distribution function of X is

FX()C):P(XS)C)z_[_[fxlx2 (xl,xz)dxl dx,, x20
D
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» X|

Figure 2.10 Region of X12 +X22 <x,x20.

where D is the domain with a definition of X; and X,, which in this case is the

surface in the circle of radius \/; , as shown in Figure 2.10. Hence,

0=l

exp{——(x1 + x5 )} dx, dx,
2n6?

To solve the above integral, we make the transformation to polar coordinates by
letting x; = r cos 0 and x, = 7 sin 0 such that dx; dx, = r dr dO and P2 = x12 + x%.
Thus,

0 , otherwise

which corresponds to the chi-square distribution with n = 2 degrees of freedom, as
given in (2.144).

(b) If X =X+ X3, then
Fy(x)= P(JXIZ + X} < x) = P(Xlz + X1 < xz)
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» Xi

Figure 2.11 Region of \}Xlz + X22 <x, x>0.

The region of integration is the surface bounded by the circle as shown in Figure

2.11, but the radius is x, and not Jx asin Figure 2.10. Again making the
transformation from Cartesian coordinates to polar coordinates, the distribution
function Fy(x) becomes

2

1 2n x x

FX(x): . jdejre_g dr :1_e_§’ x=0
0 0

while the density function is

0 , otherwise

which corresponds to the Rayleigh density function given in (2.146). Recall that
(2.146) was obtained using the fundamental theorem of transformation of random
variables.

Example 2.7
Let X be a Rayleigh random variable with density function

X2

X 52
Lo x>0

fX(x): c?

0 , otherwise
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Define Y = a+bX 2, where a and b are constants. Determine the variance of Y.

Solution

The variance of ¥ is var[Y]=o? = £ |+ E2[v]. Hence, E[Y]=Ela+bx?]

—a+bEX?],  E[Y]=(a+bE[x?]) =a? +2abE[x? ] 0262 [x?],  and
E[YZ]:E[(HbXZ)Z} = a® +2abE[X2 |+ 2 E[X*] . Substituting for the

expressions of E [Y 2] and E? [Y ] in Gi , we obtain

o) =b2{E[X4]+E2[X2]}

k
We know from (2.148) that E[Xk ]: (202 )5 1+ (k/2)]. Then,

E[X4]: 2(262 )2 = 864, E[X2 ]: 202, and the variance of Y becomes
o2 =b*(8c* 4o )= 4b2c*

We now consider R=+ X2 +X} but X; and X, independent Gaussian

random variables with means m; , i = 1, 2, and each having a variance o”. Note that
in the definition of (2.145), X; and X, were zero mean, which gave

X=4X 12 +X 22 as a Rayleigh distributed random variable, but now X; and X,

have means m; = 0, i = 1, 2. Hence, from (2.128), the distribution of
R*=X 12 +X 22 is the noncentral chi-square random variable given in (2.129),

with two (n = 2) degrees of freedom and noncentrality parameter A = ml2 +m§.

The distribution function of R* = X 12 +X 22 =T isthen

(n+1)
- 2 1[7\.1‘
! 2o 10[ J 1>0

fr6)=120" ‘ (2.154)

0 , otherwise
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where, Iy(x) is the zero-order modified Bessel function given by

1 27 0 x2n
I,(x)=— [e*=% q0=y — 2.155
0 (x) 275 E[e y;) 22;1 (n ')2 ( )

Since R=+T = VX 12 +X 22 , using the fundamental theorem (1.144) for the
transformation of random variables, we obtain the Rice density function to be

_ 2+
A 20° Io[ﬂr],rzo

2

- (2.156)

0 , otherwise

The Rician distribution with A as a parameter is shown in Figure 2.12. The
distribution function is known to be

1—Ql[£,—r], r>0
Fr(r)= G o© (2.157)

0 , otherwise

Ja(r)
A

A =0 (Rayleigh)

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2.12 Rice density function.
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where Q(a, b) is Marcum’s Q-function defined in (2.138), such that

_(a2+b2)

o k
0,(a,b)=e 2 z[%j I,(ab), b>a>0 (2.158)
k=0

Another special case is when n = 3. Then, X = X12 +X22 + X32 , with X7, X5,

and X; Gaussian random variables, each with mean zero and variance o7, is a chi-
square distribution with three degrees of freedom. The distribution of

Y=y X2 +X?+ X7 is known as the Maxwell’s distribution. 1t is shown in
Figure 2.13, and is given by

=1 Vz b ¢ (2.159)

0 , otherwise

with mean

E[y]=m, :zcﬁ (2.160)
T

and variance

Var[Y]zci =02(3——j (2.161)

oV2

Figure 2.13 Maxwell density function.
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If we generalize the result in (2.159) to » random variables, then
X:X12+X22+...+X,,2, with X;, i = 1, 2, ... , n, statistically independent
Gaussian random variables with means m,;, i = 1, 2, ... , n, and each having
variance o°, has the density function given by

1 _ 2
x" e 2° x>0

fr)=1,52" o F(n/2) (2.162)

0 , otherwise

In general, if ¥ = VX = \/ X 12 +X 22 +...+X ,f , then the density function is
given by

v exp > ¥20
c (2.163)

1 ; {_(yzﬂvq I {ﬁy

0 , otherwise

and A = ml2 + m% + o+ m,zl , while the distribution function is given by

Fy(y)=P(Y£y)=P(X12 + X3+ + X} Syz)

- I_Q’”(T’EJ’ y=0 (2.164)

0 , otherwise

The moment of order k£ can be obtained to be

(*+2)
o0 o0 - 7\‘
_ J‘yk+le 262 Io[x/_J’de
0

i FB(n+k)} i N
oo 2 AR . y>0  (2.165)
r 2 2262
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where | F| (cx; B; x) is the confluent hypergeometric function.

2.3.7 The Nakagami m-Distribution

The Nakagami m-distribution is used in communication systems to characterize
the statistics of signals transmitted through multipath fading channels. The density
function is given by

[y (x)= ﬁ(%} X le (2.166)

where v is the mean-square value of X, defined as
v=E[x?] (2.167)
and the parameter m is defined as

, m>— (2.168)

Notice that the parameter m is a ratio of moments and is referred to as a fading
figure in communication systems. The moment of order k of X is given by

Elxt]= M(sz (2.169)

F(m) m

Observe that for m = 1, we obtain the Rayleigh density function given in (2.146).
A plot of fy(x) with m as a parameter is shown in Figure 2.14.

2.3.8 The Student’s - and F-Distributions

Let X be a Gaussian random variable with mean zero and variance unity X ~
N(0,1), and let ¥ be a chi-square random variable with n degrees of freedom Y

~ xﬁ . If Xand Y are statistically independent, then

X

JY/n

T= (2.170)



116 Signal Detection and Estimation

Jlx)
A
1.5
| m=3
m=73/4
m =1 (Rayleigh)
0.5 m=1/2
x
0 1 2

Figure 2.14 Nakagami m-density function.

is said to have a t-distribution (or student’s t-distribution) with n degrees of
freedom as shown in Figure 2.15, and is given by

<>——F(nz+lj AN

frlt)= 1+— , —O<t<w (2.171)
nnT(n/2) n

The mean and variance of the ¢-distribution are

fr (0
0.4 ‘

0.2

S 3 2 -1 0 1 2 3 4

Figure 2.15 Student’s #-density function.
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E[T]=m, =0 (2.172)

and

var[T]=o? = forn>2 (2.173)

n—
The moment of order & is given by
r(k;ljr(n;kj i
k| n?, k<n and keven
£lrt]- T(1/2)T(n/2) (2.174)

0 , k<n and k odd

The characteristic function can be shown to be

@,(@)=m [%]2 Yi%j (2.175)

where Y,(x) [also denoted N,(x)] is the Bessel function of the second kind.
Assume now X does not have zero mean but equals to m [that is, X ~
N(m, 62) ], and Y is normalized so that ¥ /c? is the chi-square distribution with n

degrees of freedom. Then T defined in (2.170) has a noncentral t-distribution with
parameter (also called noncentrality parameter) L=m/c and n degrees of
freedom. The density function of the “normalized” noncentral z-distribution is
given by

n 22 k
n? e 2 & k(22 )2 (n+k+lj
= r r (2.176)
1) JrT(n/2) (nﬂz)% ,; k! (n+tzj 2

The mean and variance of T are given by

F(n—l]
E[T]zx—zg, n>0 (2.177)

F(n/Z)
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and

var[T] =

) 2
n(-n )_&{M} a2 (@I78)

n-2 2 | T(n/2)

Let X and Y be two independent chi-square random variables with n; and n,
degrees of freedom, respectively. Define U to be

X
u=Xim (2.179)
Y/n,
Then, U is said to have an F-distribution, F (n, , n, ), with density function
pfmEm) n
2 ) o wn .
= n*n? ———mm | u> .
fulw) T(n, /2)T(ny/2) ' 2 s (2.180)
(n2 +n u) 2
0 , u<0
The mean and variance of U are
E[U]=m, =—2— | n,>2 (2.181)
ny, —k
and
2 2 n, (n1+n2—2)
var[U]=0o? = ny >4 (2.182)

n ("2 ‘4) ("2 ‘2)2 ’

while the moment of order £ is given by

: r(”zukjr[";—kj
k| e
v ]_( j ST (2.183)

n

The characteristic function is given by

q)u(m):M(n—l,—n—z,—jn—zmu] (2.184)
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where M(a, b, x) is the Kummer’s confluent hypergeometric function given by

M(a,b,x):1+ab—x+((6;))22j + +(é))'; );' b (2.185)

and
(a),=a(a+1)(a+2)...(a+n-1) (2.186)
(a), =1 (2.187)

Let X be a normalized noncentral chi-square random variable with

noncentrality parameter ﬁ :Z; ml2 /o?and n, degrees of freedom [i.c.,

X = Z:’ZIXI- /6%, X;~ Nm; , 0'2), i=1,2,...,n], and Y a chi-square random

variable with n, degrees of freedom. Then, the random variable

_X/n

7=
Y/n,

(2.188)

is said to have a noncentral F-distribution with (n, n,) degrees of freedom and a

noncentrality parameter VA . The density function of the noncentral F-distribution
defined in (2.188) can be shown to be

z
[(n, /2)
k
(nl+n2 ) [”M/XZJ
T +k 2
fZ(Z;nlanZ’\/x): i 2 250
k=0 kir(nl+kj (nlz+n2)nl;n2 g
0 , z<0
(2.189)

Note that if the noncentrality parameter is zero (ﬁ = 0) in (2.189), we obtain the

central F-distribution F(n,, n,) defined in (2.180). The mean and variance of the
noncentral F-distribution can be shown to be
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ny (i, ++7)

E[Z]:m , Ny >2 (2190)

and

Var[Z]: 2n) {(nl+ﬁ)z+(n2—2)(nl+2ﬁ)} , Ny >4

ni (ny =4)(ny -2)°
(2.191)

2.3.9 The Cauchy Distribution

A random variable X is said to have a Cauchy distribution with parameter o,
—w<a<oo,andf, B>0, if its probability density function is given by

) -1
LN PO el B B B S
fX(x)—nﬁ[H( 5 J} o) (2.192)

It is denoted C(a,B). It can be shown that the mean of the Cauchy distribution

with parameters B = 1 and o = 0 is zero, but the variance and moments of higher
order do not exist. The moment generating function does not exist, but the
characteristic function can be shown to be

@ ()= e/l (2.193)
Note that if o = 0 and B = 1, then the density function becomes

f)((x):l 1

T l+x2

(2.194)

which is the student’s #-distribution defined in (2.171) with n = 1 degree of
freedom. The sum of Cauchy random variables is Cauchy; that is, if
X=X,+X,+---+X, where X;, k=1, 2, ..., n, is Cauchy with parameters oy
and By, k=1, 2, ... , n, then X is Cauchy with parameters o and B, such that
a=0;+a,+...4+0a,and B=B;, +B, +...+B,,.
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2.4 SOME SPECIAL DISTRIBUTIONS
2.4.1 The Bivariate and Multivariate Gaussian Distributions

Because of the importance of the Gaussian distribution and its many applications,
we extend the concepts developed earlier to the two-dimensional and n-
dimensional Gaussian distribution. Let X; and X, be two jointly Gaussian random

variables with means E[X;] = m; and E[X;] = m,, and variances 612 and c%. The
bivariate Gaussian density function is defined as

1
leXz(xlaxZ): 2
216, 0, 41-p
2 2
B 1 : (xl—lznl) +(x2_2”2) _zp(xl_ml)(xz_mZ) (2.195)
2(1-p°) Ioh c; 01 0,

where p is the correlation coefficient between X; and X,. The conditional
probability density function f x| X, (x2| xl) is given by

f)(l)(2 (xl axz)

1 Xy —a
= 7% | (2.196)
Ix, (x) o, y1-p? 27 exp{ 203 (I—PZJ

fxz\x1 (x2|x1):

where

00

fXI (xl ): _[fxlxz (xl,xz)dxz

= ! exp{—(xl_ml)zj ! Texp[——(xz_a)z 1dx
o, \2r 208 Joyip? J2m e | 20301 "

(2.197)

The integrand in (2.197) is a Gaussian density function, with mean
o =m, +p(c52 /csl)(x1 —ml) and variance o3 (l—pz). We observe from
(2.196) that the conditional density function f | X, <x2| xl) is also Gaussian, with

mean o and variance G% (1 - p2 ) The conditional expectation of X, given X| = x;
is



122 Signal Detection and Estimation

E[X2|X1:xl]:oc:m2+p(;—2(xl —m) (2.198)
1
and

varlX, | X, =x,|= 02 (1-p?) (2.199)

In a similar manner, we can show that

S S S el U
fxlxz(ﬂxz)‘mm ﬁ"{ 207 (1-p?)

} (2.200)

is Gaussian, with mean 3 =m, + p(cs1 /o, )(x2 —mz) and variance o} (l—p2 ),
and the conditional expectation of X; given X; = x; is

E[X1|X2:xz]:B:ml+p:—l(x2—m2) (2.201)
2
and

varlX, | X, = x,|= o2 (1-p?) (2.202)

It follows that
E[X§ | X, =x, ]: var[X2 | X, = xl] ~E? [Xz | X, =x, ] (2.203)

For the special case in which the means m; = m, = 0, we obtain

Elx | X =x]=03 (1-p) -’ (‘;—2]2% (2.204)
1

The moment generating function and characteristic function of X; and X; are

o0 0

Hx+t)x
=J je” “leXZ(xl,xz)dxl dx,

—00 —00

Mxlxz (tl ’ t2 ): E[ethlHZXZ ]

1
:exp{mltl + myt, +5(012 1t +631 +2pG, Gyt 1y )} (2.205)
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and

q)xlx2 (0)1’0)2): E[ej(m1X1+m2Xz)] _ I J' e/ (@11 +0;%7) fX,Xz (x1,%,) dx; dx,
1l 2 o2 2 9 .
:exp[—z(cl 0] +0; ®, +2Pp G, G, ®; O,)+ ] (mloo1 +m2m2)

(2.206)

The moments are obtained from the characteristic function to be

i S\n+m an am
E[XﬁXSn]:(_J) + o O (©1,02)| 60,0 (2.207)
1 2

Sometimes, it is easier to represent the joint density function and characteristic
function in matrix form, especially when the number of random variables is greater
than two. Let C = C[X;, X;] denote the covariance matrix of the two random
variables X; and X5,

2
c G,0
C:|:011 C]zj| _ 1 p 12 2 (2.208)
PG00, )

where ¢, 2(512, Cy=cCp =p0o,0,,and cy :cg. The correlation coefficient is

2 P96,

p= (2.209)
VEi €22 0192
The determinant of the covariance matrix C is
2 2 2
|c|=02 o3 (1-p) (2.210)
Consequently,
1 o2 -po,c
cl=—| 7 21 : 2.211)
| c | —p0,0, O

Let x =[x, xz]T, o=[o, o)z]T, and the mean vector m =[m, mZ]T;
then the bivariate density function is
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[xx, (xl,x2)=2n;|c|exp{—% (" -m™)c (x—m)]} 2.212)

where T denotes matrix transpose. The characteristic function becomes

(Dxlxz (0)1,0)2): exp{—%(wT Cm+jmT m)}

2

1 2 2 )
:exp(——z ZCk(o)km/ +]ka0)kJ (2.213)
2o A k=1

When the correlation coefficient p = 0, the joint density function becomes

P e R R |

= fx, (%) fx,(x2) (2.214)

f)(l)(2 (xlsxz):

Since the joint density function is the product of the marginal density functions,
then X; and X, are statistically independent. This is an important characteristic of
Gaussian random variables where uncorrelated random variables are necessarily
independent. The characteristic function reduces to

1
0,1, (0100:)=exp{ = [0 o303 b smo 40,

=0, (0,)0, (0,) (2.215)

that is, the joint characteristic function equals the product of the marginal
characteristic functions when the random variables X; and X, are uncorrelated.

The Standard Ellipse

The standard ellipse of the bivariate Gaussian density function is obtained from
(2.195) by setting the term between brackets in the exponent equal to 1, to yield

(x, —m, )’ + (xy —m, ) _2p(xl —my)(xy _mZ):l (2.216)
012 G% Gl 62

Equation (2.216) represents the equation of an ellipse centered at x; = m, and x, =
m,. For simplicity, let m; = m, = 0. The ellipse is easily represented by assuming
two independent random variables U and V with zero mean, and respective
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—O

» X

u

Figure 2.16 Ellipse centered at m; = m, = 0.

variances ci and 63 . The standard ellipse, shown in Figure 2.16, is given by

2 2
=1 (2.217)
G, O,

The joint density function of U and V'is

1 1 u? V2
R — — X —_ — 4+ — 2218
Jov (u v) 2no, o, p{ 2 (02 c? J] ( )

u v

Applying a rotation by an angle 0 to the uv-axes yields the coordinate system x;, x,
given by

X, = ucosf-vsind (2.219)
X, = usinf+vcosf (2.220)

The random variables X; and X, are obtained by the transformation of (2.219) and
(2.220). Specifically,

X, = Ucos0-V sinb (2.221)

X, = Usinb+V cos (2.222)
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where
o7 =E[X12]:E[U2 cos> 0—2UV cosOsinO+V? sin” O ]
=E[U2]cos2 9+E[V2]Si1’12 0
265 cos? 6+6§ sin” 0 (2.223)

since E[U] = E[V] = E[X;] = E[X5] = 0. Note that 0 is the angle at the major axis of
the ellipse. Similarly, we can obtain

G% = 65 sin’ 6+6§ cos” 0 (2.224)
and the covariance between X; and X, to be
E[XIXZ]: E[(U cos 0V sin0) (U sin 0+ ¥ cose)]
= (ci —Gi)sinG cos 0 (2.225)

The distributions of U and V are derived in a similar manner. Given the
distributions of X; and X,, we obtain

2 2 2 2
» Ojcos”0-c;sin” 6

> = (2.226)

cos” 0—sin” 0
ol = o3 cosi 0o 2sin2 0 (2.227)

cos” B—sin” 0

El X, X
p:M:l O1_% Jian20, 0-+% 43T (2.228)
G, 0, 2o, o 4 4
or

0= 1 arctan Zpﬂ (2.229)

2 oi -0

The above results can easily be generalized to n random variables. Let (X, X, ...,
X,) be n jointly Gaussian random variables. We define the means as
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E[Xk]:mk, k= 1,2, N
the covariances as
o =E[(X;—m) (X —Mp)], j,k=1,2,..,n

and the correlation coefficients as

Pjk =
Cji Chk

The variance of X} is
var[ X =y = o}

Let the vectors X, x, and m be defined as

X, X m

X, X2 m;
X = , X= , m=

Xn x}'l mn

C11 Cn2 Cln
€1 €2 Con
C =
L Ci Cn2 Coun
- 5 _
S P12 01 0, P1n ©1 0,
2
| P21926; 02 P21 020,
2
| Pn1%4,01 Pn26,02 Ohn ]

The multivariate Gaussian density function is given by

127

(2.230)

(2.231)

(2.232)

(2.233)

(2.234)

(2.235)
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fx(x)= ;exp{— %[(xT —m” ) (x - m)]} (2.236)

(r)z yC]

The characteristic function corresponding to this n-dimensional joint density
function is

(I)x(m):E[ej“’X] :exp(—%mT Co+jm’ mj

j=lk=1 k=1

1 n n . n
=exp(-522 Cp® ;0 +j > my o)kj (2.237)

If the correlation coefficient p 4 =0, j,k=1,2, ..., n, then the covariance matrix
becomes diagonal to yield

c; O 0
2
c=| 0 ° 0 (2.238)
0 0 o2

Note that the covariance matrix being diagonal is a necessary and sufficient
condition for the random variables X, & = 1, 2,

..., n, to be statistically
independent. This will be shown later in detail. The inverse covariance matrix

C! is also diagonal, and is given by

-2

o) 0 - 0
-2
c'=| ¢ o 0 (2.239)
0 0 G2

The joint probability density function becomes the product of the marginal density
functions to yield

n

— 2 n
Ix(x)=T1 1 exp{— L, ";") } =T1/x, () (2.240)
k=1 Oy 27 2 k=1

Sk

The joint characteristic function reduces to
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n n

d)x(m)zl_[exp(—%ciu),%+jmk(ok] =[1o., (o) (2.241)
k=1 k=1

Using the characteristic function, a closed form expression for the joint
moments can be obtained. Let X, X;, ... , Xp,+1 be (2n + 1) zero-mean jointly
Gaussian random variables. Then,

0 , (2n+1) odd
ELX Xo o Kot 150 [TE[ X, 4, | @nv) even 224D

Jj#k

where the summation is taken over all distinct pairs obtained by using each factor
once. The number of ways to have such pairs is

(2n)! =1-3-5-...-(2n-1) (2.243)

One of the most frequently used joint moments is the joint moment of order
four (2n = 4). In this case, n = 2 and the number of ways to have the distinct pairs
as defined in (2.243) is three. Hence,

E[X, X, X3X,]
= E[x, X, ) EX X, 1+ E[XG XG ) ELX [+ B G [ X, ] (2.244)

In modern high resolution adaptive thresholding radar CFAR, the clutter (sea
clutter, weather clutter, or land clutter) returns may not follow the Gaussian or
Rayleigh model, since the amplitude distribution develops a “larger” tail, that may
increase the false alarm rate. Some distributions that occur in radar applications
and may give a better model in representing the clutter are the Weibull, log-
normal, and K-distributions.

2.4.2 The Weibull Distribution

A random variable X is said to have a Weibull distribution, as shown in Figure
2.17, if its probability density function is given by

b-1 —axb
fX(x):{abx e , x>0,a>0,and >0 (2.245)

0 , otherwise
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Fx(x)
A

exponential

b=1
Rayleigh b3
b=2

1 1 1 : X
0.4 0.8 1.2

Figure 2.17 Weibull density function.

where a is referred to as the scale parameter and b is the shape parameter. Note
that for b = 1, we obtain fy (x) =qae ™ ,x>0,and a > 0, which is the exponential
distribution given in (2.89). When b = 2, the Weibull density function becomes

ax

2
fx(x): 2axe , x>Oa.nd a>0 (2.246)
0 , otherwise

which is the Rayleigh density function defined in (2.146) with a=1/2c?. The
distribution function of the Weibull random variable X is then

—axb
FX(x): l-e , x>0,a>0,and >0 (2.247)
0 , otherwise
The mean and variance of X are given by
- 1
E[X]za T I+ (2.248)

and

var|X|= a% {r (1 +%j - {r (1 +%ﬂ2} (2.249)

while the moment of order £ is
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_*
E[Xk ]: a b r(p%j (2.250)

Many authors write the Weibull density function in the form

c—1 c
cC| X X
f)((x): Z[Z) exp{—[zj }, x>0,a>0,b>0,and ¢>0 (2.251)

0 , otherwise

where in this case, b is the scale parameter and c is the shape parameter. Note that
(2.251) is equivalent to (2.245) with a=1/b°. When X =In Z, the density
function of fy (x) is said to have a log-Weibull distribution for the variable Z.

2.4.3 The Log-Normal Distribution

A random variable X is said to have a log-normal distribution if its density
function is given by

In? al
1 . X, >0
Xp| ——— |, x2=
@)= ro P 24 (2.252)
0 , otherwise

where x,, is the median of X and o is the variance of the generating normal
distribution. A parameter commonly used to characterize the log-normal
distribution is the mean-to-median ratio p given by

(2.253)

Alternatively, the density function of the log-normal random variable X can be
written as

(2.254)

fx(x)= \/ﬂc

, otherwise
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The cumulative distribution function of X is

Fy(x)= % [1+erf(u)] (2.255)
where
- 1{1] (2.256)
\/E G X '
The mean and the variance of X are
o2
E[X]=x,, exp[TJ (2.257)
and
var[X]=x2 e (e"2 —1) (2.258)
while the moment of order £ is
k2 o2
E[xt]=xt exp[ 20 j (2.259)

2.4.4 The K-Distribution

The K-distribution has arisen mainly to represent radar sea clutter. A random
variable X with probability density function

4 (xY" 2
Sx(x)= br(v)(Zj Ky (;x) , %20 (2.260)
0

, otherwise

is said to have a K-distribution. K, (x) is the modified Bessel function, b is the
scale parameter, and v is the shape parameter. It is known from radar detection
that the K-distribution results from a function of two random variables given by

X=ST (2.261)
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where S, known as speckle, obeys a Rayleigh distribution given by
2
fs(s)=2se™, 5>0 (2.262)
and 7, known as texture, is a gamma distribution given by

t2

frl)=—2— e ¥ (2.263)

The total probability density function fy (x) is also known in terms of conditional
probabilities to be

Fe@)=[ i (el 0) 77 () e (2.264)
0

where

2

2

2 —
S olr)= t—zx e ! (2.265)

Substituting (2.265) and (2.263) into (2.264) and solving the integral, we obtain

x? 12

N S e I £ NN
fX(x)—_([tze va(v)t e v dt bl“(v)(bj Kv_l(bxj (2.266)

[\

The moment of order £ is given by
F(v + /;jl“(l + ;Cj
E[x*]=p*

From (2.261), it was shown by Anastassopoulos et al. [1] that when the
distribution of the speckle S is a generalized gamma and the texture 7 is also a
generalized gamma, the resulting distribution is referred to as the generalized K-
distribution, and is given by

(2.267)
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2a x %(V'WZH x %
Y K 2= >0
fX(x;a’bavl3V2): br(Vl)F(Vz)[bj VITv2 [bj ’ o

0 , otherwise
(2.268)

where b is the scale parameter and K, (x) is the modified Bessel function. The
moment of order £ is given by

F(vl + k]r(vz + kj
B a a (2.269)

| e

It should be noted that when a = 2 and v; = 1 in (2.268), we obtain the K-density
function given in (2.260). Also, if we let vi =1 and v, = 1/2, the generalized
K-density function becomes

3a a
2_0@4 X 2[2)2 %20
fy(x)=1 pT/2) b =1\ (2.270)
0 , otherwise
Using the fact that
K (x)=-Kk ,(x), n=0,1,2,... (2.271)
n+5 —-n——
and
Ik ()= = e (2.272)
2x 5 2x

we obtain the Weibull density function to be



Distributions 135

ZGRE b
e exp| —| — , x>0

fy(xp,b)=1 2p\p p (2.273)
0 , otherwise

with p =527/ The moment of order k is

E[Xk]: p* r(1+ 2kj (2.274)

a

If again we set @ = 2 in the Weibull density function given by (2.273), then we
obtain the exponential distribution to be

1
1 ——x

i Ze P , x>0
fx@)=1p (2275)
0 , otherwise

and when we set a = 4 [in (2.273)], we obtain the Rayleigh density function to be

frx)= %(gjexpl{g ] w0 (2.276)

0 , otherwise

2.4.5 The Generalized Compound Distribution

As the K-distribution, which is a compound distribution, the generalized
compound distribution is used to represent radar clutter in more severe situations
when the distortion of the speckle, usually represented by a Rayleigh density
function, has a longer tail. In this case, the distribution of the speckle is the
generalized gamma distribution, and the conditional density function is given by

ayv-1 a,
_4 X _[x >0
x5l 5)= SF(VI)(SJ ex{ [sj ] ' (2.277)

0 , otherwise
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whereas the density function of the speckle is

P
= exp| —| — , §>0
fs(s)=1 bT(v2)\b b (2.278)

0 , otherwise

Thus, the total probability density function of the generalized compound
distribution is given by

fX<x>:]0°f“(x|s>fs<s>ds

_aja, x@vi! T gava—avi-l o _[ijaz _(fjal ds  (2.279)
“T0,)r0s) 5o T G |

which does not have a closed form. The mean of order £ is shown to be

(2.280)

2.5 SUMMARY

In this chapter, we defined some distributions and gave the relationships that may
exist between them. We started describing the simplest distributions for discrete
random variables; namely, Bernoulli and binomial distributions. Then we extended
the results to multinomial and hypergeometric distributions. The Poisson
distribution, which arises in many applications, was also presented in some detail.

In the second part, we presented some important continuous distributions, and
we showed the possible relationships that may exist between them. Many
distributions were presented in order to give a more or less complete view of these
different distributions. Then we gave some special distributions that arise in many
applications of radar and communication systems. These distributions were
presented in some detail, since we will discuss their applications in Chapters 11
and 12.



2.1

2.2

2.3

2.4

2.5

2.6

2.7

Distributions 137

PROBLEMS

A pair of dice is rolled six times. A success is when the sum of the top
appearing faces is seven.

(a) What is the probability that seven will appear twice?

(b) What is the probability that seven will not appear at all?

An urn contains 10 white balls, 4 black balls, and 5 red balls. The experiment
is to draw a ball and note its color without replacement. Find the probability
of obtaining the fourth white ball in the seventh trial.

In a special training, a parachutist is expected to land in a specified zone 90%

of the time. Ten of them jumped to land in the zone.

(a) Find the probability that at least six of them will land in the specified
zone.

(b) Find the probability that none lands in the specified zone.

(¢) The training is considered successful if the probability that at least 70%
of them land in the prescribed zone is 0.93. Is the training successful?

A random variable X is Poisson distributed with parameter A and
P(X =0)=0.2. Calculate P(X > 2).

The incoming calls to a particular station have a Poisson distribution with an
intensity of 12 per hour. What is the probability that:

(a) More than 15 calls will come in any given hour?

(b) No calls will arrive in a 15-minute break?

A random variable X is Poisson distributed with P(X :2):%P(X =1).
Calculate P(X =0) and P(X =3).

A random variable X has the following exponential distribution with
parameter a,

fX(x):{oce_ , x>0

0 , otherwise
Show that X has the “lack of memory property.” That is, show that
P(X > x, +x,) X >x)=P(X > x,)

for x,, x, positive.
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2.8 Solve Problem 2.5, assuming that X has an exponential distribution.

2.9 A random variable X is Gaussian with zero mean and variance unity. What is
the probability that

@@ |x|>1?
b)) X>1?

2.10 A random variable X has the distribution MO0, 1). Find the probability that
X >3.

2.11 Two fair dice are thrown 200 times. Let X = 7, the sum of the upper faces,
denote a success.
(a) Determine the probability of having success at least 20% of the time.
(b) Use the central limit theorem to evaluate (a).

212 Let S=X,+X,+...+ X, +...+ Xy, where each X, k=1, 2, ..., 100, is

a Poisson distributed random variable with parameter A = 0.032.
(a) Determine the probability of S greater than 5.
(b) Use the central limit theorem to evaluate (a).

2.13 Let X be a normal random variable with mean E[X] = 1 and variance ¢*= 2.
Using tables, evaluate
(a) P(X>2)
(b) PL.6<X<22)

2,14 Let X be a random variable uniformly distributed between 1 and 6.
Determine and sketch the density function fy(y) of Y =1/ X .

2.15 Let X be a random variable uniformly distributed between 0 and 1. Find
and sketch the density function of

(a) Y=x"?
(b) Z=¢"

2.16 Let X and Y be two independent standard normal random variables. Find
the density function of

@ Z=Xx/|Y|
® =[]/l

2.17 X, and X, are two normal random variables with joint density function
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1
leXz(xl’XZ): o2 exp| — 752

Let the transformation be ¥, =4/ X 12 +X 22 and Y, = X,/ X,. Determine
le (Jﬁ) and fY2 ()’2)~

2.18 Using the distribution function, show the density function of student’s z-
distribution given in (2.171).

2.19 Show that the characteristic function of the Cauchy distributed random
variable of (2.192) with a = 0 is given by

D, (0)=eP

2.20 For the Weibull distribution, show that the mean and variance are as given
by (2.248) and (2.249), respectively.
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Chapter 3

Random Processes

3.1 INTRODUCTION AND DEFINITIONS

A random process may be viewed as a collection of random variables, with time ¢
as a parameter running through all real numbers. In Chapter 1, we defined a
random variable as a mapping of the elements of the sample space S into points of
the real axis. For random processes, the sample space would map into a family of
time functions. Formally, we say a random process X(#) is a mapping of the
elements of the sample space into functions of time. Each element of the sample
space is associated with a time function as shown in Figure 3.1.

Associating a time function to each element of the sample space results in a
family of time functions called the ensemble. Hence, the ensemble is the set of
sample functions with the associated probabilities. Observe that we are denoting
the random process by X(¢), and not X(z, §), where the dependence on & is omitted.
A sample function is denoted by x(7).

xi()

Figure 3.1 Mapping of sample space into sample functions.

141
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Figure 3.2 Density function of .

Example 3.1

Consider a random process X(¢) = A cos(ot + ®), where ® is a random variable
uniformly distributed between 0 and 27, as shown in Figure 3.2. That is,

1

fo(®)=12n"
0 , otherwise

0<0<2rm

some sample functions of this random process are shown in Figure 3.3.

This variation in the sample functions of this particular process is due to the
phase only. Such a random process, for which future values are predicted from
knowledge of past ones, is said to be predictable or deterministic. In fact, fixing
the phase to some particular value, /4, the sample function (corresponding to the
particular element &, of the sample space) becomes a deterministic time function,
that is, x; (f) = A cos[wt +(n/4)].

>
D

v

Figure 3.3 Some sample functions of X ().
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X(t)

f\%r’\[’”\ o,

¥/ VAL IRV AR

Figure 3.4 A continuous random process.

When the parameter ¢ is fixed to some instant #,, the random process X(?)
becomes the random variable X(#,), and x(#) would be a sample value of the
random variable. In general, we are interested in four types of random processes,
according to the characteristic of time ¢ and the random variable X(¢) = X at time .
They are:

1. Continuous-state and continuous-time. In this case, both X(¢) and ¢ have a
continuum of values. X(¢) is said to be a continuous random process, and is as
shown in Figure 3.4.

2. Discrete-state and continuous-time. X(t) assumes a discrete set of values while
time ¢ is continuous. Such a process is referred to as a discrete random process,
and is as shown in Figure 3.5.

3. Continuous-state and discrete-time. X(f) assumes a continuum of values while ¢
assumes a discrete set of values. Such a process is called a continuous random
sequence, and is as shown in Figure 3.6.

X(0)
A

Figure 3.5 A discrete random process.

X9

v

Figure 3.6 A continuous random sequence.
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X(0)
A

-o--

c-e--e1-

¢
i
v

R,

Figure 3.7 A discrete random sequence.

4. Discrete-state and discrete-time. Both X(¢) and time 7 assume a discrete set of
values. Such a process is referred to as a discrete random sequence, and is as
shown in Figure 3.7.

Fixing the time ¢, the random process X(¢) becomes a random variable. In this

case, the techniques we use with random variables apply. Consequently, we may
characterize a random process by the first-order distribution as

Fy (x;t) = P[X (ty) < x] 3.1

or by the first-order density function as
d
Sy (0)=—Fy(x;1) (3.2)
dx

for all possible values of 7. The second-order distribution function is the joint
distribution of the two random variables X(¢#;) and X(z,) for each # and #,. This
results in

Fy(x1,%y3t1,1,) = P[X(#)) < x; and X(1,) < x, ] (3.3)

while the second-order density function is

2

0
S (x5x0581 1) =——— Fy (x1,X531;,1,) (34
0Ox,0x,

Normally, a complete probabilistic description of an arbitrary random process
requires the specification of distributions of all orders given by
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Fy xyoox, (X15X0, oo X500, o 1, =

PlX(1))<x,X(t))< xy, ... , X(1,)<x,] (3.5)

or given by the nth order density function:

Sxox,x, (X1 X0s oo X000, 08, =
6"Fx1,x2,.“,x,, (X5 X0 wees X 0,0, oee 5 E,)
(3.6)
0x,0x, ...0x,

Fortunately, we are usually interested in processes that may possess some
regularity so that they can be described more simply, and knowledge of the first-
and second-order density functions may be sufficient to generate higher-order
density functions.

3.2 EXPECTATIONS

In many problems of interest, only the first- and second-order statistics may be
necessary to characterize a random process. Given a real random process X(?), its
mean value function is

+00
m, (6)= E[X(0)]= [ x [y (x, )dx (3.7)
The autocorrelation function is defined to be
+00 400
R (1),1,) = E[X (1) X (1,)]= J. JXIXZfXIXZ (x1,x 551y, 15 )dx,dx, 3.8)

When the autocorrelation function R, (1, £;) of the random process X(¢) varies
only with the time difference |t1 - t2|, and the mean m, is constant, X(¢) is said to

be stationary in the wide-sense, or wide-sense stationary. In this case, the
autocorrelation function is written as a function of one argument t=1¢, —¢,. If we

let t, = t and #, = t+1, then the autocorrelation function, in terms of t only, is
R. (t+7,0)=R, (1) (3.9)
A random process X(¢) is strictly stationary or stationary in the strict sense if

its statistics are unchanged by a time shift in the time origin. Note that a stationary
process in the strict sense is stationary in a wide-sense, but not the opposite. The
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condition for wide-sense stationary is weaker than the condition for the second-
order stationary because, for wide-sense stationary processes, only the second-
order statistics, the autocorrelation function, is constrained.

Example 3.2

Is the random process given in Example 3.1 wide-sense stationary?

Solution

For a random process to be stationary in the wide-sense, it must satisfy two
conditions; namely, E[X(#)] = constant and R (¢+1,t) =R, (7). To compute the

mean of X(f), we use the concept that
+00
E[2(©)]= [ 2(0) /o (6)d0

where in this case, g(0)= 4 cos(w+0) and fu(0)=1/27 in the interval between 0
and 2m. Then

2n
E[X(0)]= J‘Acos((nt+6)Ld9 =0
0 2n

The autocorrelation function is
E[X(t+1,0)X(t)]= E{4 cos[(t + 1)+ 0] 4 cos (ot + 0)}

2
= AT E[cos((m) +cos(2ot + ot + 26)]

where we have used the trigonometric identity
1
cosa cosb :E [cos (a—b) + cos (a + b)]

The second term evaluates to zero. Thus, the autocorrelation function is

42
R, (t+1,1)= 7005 ot=R_ (1)
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Since the mean is constant and the autocorrelation depends on t only, X(?) is a
wide-sense stationary process.

When dealing with two random processes X(#) and Y(¢), we say that they are
Jjointly wide-sense stationary if each process is stationary in the wide-sense, and

R, (t+7,0)= E[X(t+D)Y()]= R, (1) (3.10)
R, (t1, 1) represents the cross-correlation function of X(#) and ¥(#). We also define

the covariance function C,.(f,f,) and cross-covariance function
C,,(t,t,) between X(¥) and Y(?) as

Co(ty,1y) = E{[X (1)) —m (][ X(t5) —m ()] } (3.11)

and
Coy (t151) = E{[X(8)) = m, (¢ (6) = m, (t5)] ] (3.12)

If Z(f) is a complex random process such that Z(¢)= X(¢)+ jY(¢), the
autocorrelation and autocovariance functions of Z(¢) are

R..(ty,ty) = E[Z(t))Z" (,)] (3.13)
and
C.(ty.19) = ENZ(0y) = m_ (1)}{Z(1) = m. (1)} ] (3.14)
where * denotes a complex conjugate and m, (¢) is the mean function of Z(#). The
cross-correlation and cross-covariance functions between the complex random
process Z(¢) and another complex random process W(¢), W(t) = U(¢) + jI(¢), is

R, (11, 1)) = E[Z(t )W (t,)] (3.15)

and

C.o 1) = E{[Z(t)) = m. (e )0V (12) —m,, ()] | (3.16)
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Example 3.3

Consider an experiment of tossing a coin in an infinite number of interval times. A
sample function of the random process X(¢) is defined as

0 1 for (n—1)T <t <nT if heads at nth toss
x =
-1 for (n—-DT <t<nT if tails at nth toss

where n takes all possible integer values. Is the process stationary in the wide-
sense?

Solution

For the process to be wide-sense stationary, it must be verified that it has a
constant mean, and an autocorrelation function which is a function of t only.

Let P(H ) = P(head) and P(T ) = P(tail). Then, from Figure 3.8,

X(1)
A
+1
3T 2T -T T 37|
; } »
2T 4T
_ 1 -1
X(®)
A
+1
31 2T -T T 3T
t } »
2T 4T
+1 L

Figure 3.8 Sample functions of X(7).
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E[X(t)] = ()\P(H)+(~1)P(T)= (1>%+<-1)% 0o

Since the mean is constant, the process may be wide-sense stationary. The mean-
square value is

E[X* (0] = () P(H) +(=)* P(T) =1
We now consider the autocorrelation function
Ry (1y.12) = E[X (1) X (1,)]
We have two cases to consider.

Case 1: t| and t, in the same tossing interval.

In this case, (n — 1)T<t,, < nT. Hence,
R, (t,t,) = E[X (1) X (6,)]= E[X* ()] =1
Case 2: t| and t, in different tossing intervals.

We have (j—1)T <t <jT and (k—1)T <t, <kT for j#k. Since successive

tosses are statistically independent, X(#;) and X(#,) are also statistically
independent. Therefore,

R (ty,15) = E[X (1) X (1)]= E[X (1)) E[X (1,)] = 0

Since the autocorrelation function is not a function of one variable t=¢, —¢,, the

process X(f) is not stationary. This process is referred to as semirandom binary
transmission.

Example 3.4

Consider the random process Y(¢)= X(t—®), where X(¢) is the process of

Example 3.3, and © is a random variable uniformly distributed over the interval 0
to 7. O is statistically independent of X(7). Is Y(f) stationary in the wide-sense?

Solution

A sample function of Y(¢) is shown in Figure 3.9. As in the previous example, the
mean of Y(¢) is
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()
A

+1

2T

Figure 3.9 Sample function of Y(?).

E[x()]=0)P(H)+(-1)P(T1) =0
which is a constant. The autocorrelation function is given by
R, (t),t5) = E[y@e)r(t,)]
We have a few possible cases.
Case l: t=t,—t, and |‘C| >T

In this case, #; and ¢, are in different tossing intervals for each sample function, and
hence Y(#,) and Y(¢,) are statistically independent. Thus,

R, (t,ty) = E[Y(tl )Y(lz)]: E[Y(tl )]E[Y(tz)]: 0
Case 2: |’C| <T

In this case, #; and t, may or may not be in the same tossing interval. Let S/ denote

the event that ¢, and #, occur in the same interval, and ST¢ (the complementary
event of ST) be the event that #; and #, do not occur in the same interval. Thus,

R,y (ty,1) = E[Y(1))Y ()]
= E[Y(1,)Y(t,)| SI| P(ST) + E[Y(tl Y (t,y)|SI¢ ]P(S[“)

Example 3.2 has shown that E[Y(s,)Y(t,)|SI|=1 and E[Y(s,)Y(ty)|SI¢]=0.
Hence, the autocorrelation function is just the probability that the event S/ occurs.
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| ‘ | >
! (n+t)T I (n+1)7+0
t 2]

nT nT+0

Figure 3.10 One interval for -7 < 1t < 0.

Ry, (t1,15) = P(SI)

The event ST occurs in two possible ways: #; <t (t <0) and £, < ¢, (t > 0).
When ¢, < t,, —T <t <0. The situation is best represented by the diagram of

Figure 3.10 representing one interval only. #; and #, are in the same interval if
t; >nT+0 and , < (n + 1)T + 0, which yields

t,—(m-1DT <6<t —nT

Since O is uniformly distributed between 0 and 7, then the probability that 7, and #,
are in the same interval is

t,—nT
PSD= [ ~d0=1+4% for  -T<1<0
ty—(n )T T

Similarly, when #, <t and ¢, and #, are in the same interval, we have #; <(n + 1)T
+ 0 and t, > nT + 0, which yields

t—(m+DT <0<t, —nT

and
P(SI):I—% for 0<t<T

Therefore, the autocorrelation function of ¥(¢) is

1—H . |T|ST
Ry, (1) =

0 s |r|>T
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Ry (7)
A
1

-T T

Figure 3.11 Autocorrelation function of ¥(z).

and is shown in Figure 3.11. Because both conditions (the mean is constant and the
autocorrelation function is a function of t only) are satisfied, the process Y(?) is
wide-sense stationary. Y(?) is also referred to as random binary transmission.
Example 3.5

Let I(f) and Q(f) be two random processes such that

I(f)=Xcos ot + Ysinwt and Q(f) =Y cos of — X sin of

where X and Y are zero mean and uncorrelated random variables. The mean-square
values of X and Y are E[X?]=E[Y?]=o". Derive the cross-correlation function
between the processes /(¢) and Q(f).

Solution
The cross-correlation function between /(f) and Q(?) is

Ry, (t+7,0) = E[1(t+1)0(1)]
= E{[X cos(wt + ®1) + Y sin(wt + @t)][Y cos ®f — X sin o]}
= E[ XY ][cos(wt + ®T) cos of —sin(®? + ®T) sin 7]
— E[X *]cos(wf + o) sin of + E[Y ? ]sin(wf + o) cos of

Using trigonometric identities and the fact that X and Y are uncorrelated and zero
mean (E[XY] = E[X] E[Y] = 0), we obtain

R, (t+1,10)= —o2 sinort
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3.3 PROPERTIES OF CORRELATION FUNCTIONS

The autocorrelation and the cross-correlation functions introduced in the previous
sections are very important concepts in understanding random processes. In this
section, we study some of their properties that are most relevant, without giving
any formal proof.

3.3.1 Autocorrelation Function

Some of the properties of the autocorrelation function are:

R, (t5,1)) =Ry (1;,1y) (3.17)

If X(?) is real, then the autocorrelation function is symmetric about the line #, =, in
the (¢, ) plane; that is,

R, (ty,t) =R, (1,1;) (3.18)

The mean-square value function of a random process X(¢) is always positive;
That is,

Ry (t1,1,) = ELX (1) X " (1)1 = E[|X ()12 0 (3.19)

If X(7) is real, the mean-square value E[X *(7)] is always nonnegative.

ny(tlat2)|S\/Rxx(thtl)Rxx(tZﬂtZ) (3.20)

This is known as Schwarz inequality, and can be written as

2 2 2
IR (11 15)|” < EX () JEX (12)] ] (3:21)
ZZQia;RXX(ti,tj)ZO (3.22)
j=li=1

for any set of constants a;, a,,..., a,, and any set of time instants ¢,, t,, ..., t,.

Therefore, the autocorrelation function is a nonnegative definite function.
3.3.2 Cross-Correlation Function

Consider X(¢) and Y(¢) to be two random processes, then
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ny(tl9t2):R;x(t23tl) (323)
If the random processes X(¢) and Y(¥) are real,
Ry, (t,t;) =R (t5,1) (3.24)

In general, R,, (¢, , ;) and R, (%, t,) are not equal.

Ry (1) = [ELX @) E[Y 2,)] |

< Rt R (0,10) = ENX @O IEY )T (3:25)

3.3.3 Wide-Sense Stationary
We now consider the processes X(7) and Y(?) to be real and wide-sense stationary.

The autocorrelation function is an even function of 1, that is,

Ry (-1)=R (1) (3.26)
R.(0) = E[|X|* (1)] (3.27)

Since X(?) is real,
R (0)=E[X*()]=c2+m> >0 (3.28)

The autocorrelation function at T = 0 is constant and is equal to the mean-square
value.

R (D] < R,.(0) (329)

The maximum value of the autocorrelation function occurs at t = 0 and it is
nonnegative, as shown in Figure 3.12.

When X(#) has a dc component (or nonzero mean value), then R, (t)has a
constant component. This arises from the fact that two observations of a wide-

sense stationary process may become uncorrelated as t approaches infinity. In this
case, the covariance function goes to zero. That is,
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R (7)

b £

FTONT

Figure 3.12 A possible autocorrelation function.

lim C,, (1) = E{[X(t+ ) —m, |[X () —m]}

=R _(1)-m>=0 (3.30)
or
lim R, (v) =|m, |’ (3.31)
T—>0

If X(¢) and Y(¢) are jointly stationary in the wide-sense, similar properties can
be obtained. That is,

R}, ()= R, (D) (3:32)
Ry @[ <R, OR,,(0) (3.33)
R,,(0)= R;x 0) (3.34)

If X(¥) and Y(¢) are real random processes, then

R (0)+R,,(0)
2

R, (r)| < (3.35)
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3.4 SOME RANDOM PROCESSES

In this section, we shall study certain types of random processes that may
characterize some applications.

3.4.1 A Single Pulse of Known Shape but Random Amplitude and Arrival
Time

In radar and sonar applications, a return signal may be characterized as a random

process consisting of a pulse with known shape, but with a random amplitude and
random arrival time. The pulse may be expressed as

Xt)=A4St-0) (3.36)
where 4 and @ are statistically independent random variables, and s(f) is a
deterministic function. A sample function may be represented, as shown in Figure
3.13. The mean value function of this particular random process is given by
E[X(1)|=E[4S(1-0)] (3.37)
Since 4 and O are statistically independent, we have

E[X(0)]= E[A] E[S(t - ©)] = E[4] [ s(t-0) fo (6)dO (3.38)

-0

The integral I s(t—0) f5(0)dO is simply the convolution of the pulse s(f) with the

—00

density function of ®. Thus,
E[X ()] = E[4]s(t)* [ (0) (3.39)

Similarly, the autocorrelation function is given by

X(t)

J

0

Figure 3.13 Pulse X(?).
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R (t;,ty) = E[A2 ]j s(t; —0) s(t, —0) fo (0)d0 (3.40)

—0

If the arrival time is known to be some fixed value 6,, then the mean and
autocorrelation functions of X(#) become

E[X(1)]= E[4]s(:-0,) (3.41)
and
R (t,,t;) = E[47]s(t, —=0,) s(t; —0,) (3.42)

Another special case is that the arrival time may be uniformly distributed over
the interval from 0 to 7. The mean and autocorrelation functions are in this case

T
E[X()]= # [ s(—0)do (3.43)
0
and
E[A4)* ©
Ry(tr12) == [ 52, -0) s(t, —0)d0 (3.44)
0

3.4.2 Multiple Pulses

We now assume that we have a multiple pulse situation. This may be the case in
radar applications for a multiple target environment. The random process X(#) can
be expressed as

X(t)zZAkS(t—G)k) (3.45)
k=1
where the 2n random variables 4, and @, £k = 1, 2, ..., n, are mutually and

statistically independent. In addition, the amplitudes are independent of the phase
shifts, and we assume that the A;s are identically distributed with density function
fa(a), while the ©;s are identically distributed with density function fg(0). We

can easily obtain the mean and autocorrelation functions to be
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k=1

= n E[4;] [ 5(t=0) /o (0)d0 = n E[ 4, 1[5(1)* fo (6)] (3.46)

—00

E[X(D)]= |:ZAkS(t ®k):| ZEAk [S(t-0,)]

and
R (t).15) {EZA,CSUI ~0,)>4,5(, —@,-)}
k=1 Jj=1

E[S(t; —0;)S(t, -0 ;)]

T M:

= nE[4} ] f s(t, ) s(t, —6) fo (8)d0

—00

+(n? =n) (E[4,1)° [s(t; —0) [ (0)dO [s(t,—0)fo(0)d0  (3.47)

—0 —00

If the random variable O is uniformly distributed over the interval (0, 7'), the mean
and autocorrelation functions of X(7) become

T
E[X ()] = nE[ A, ]% [ st~ 0)a0 (3.48)
0

and

T
Rect151) = nELAR 1 [ (6, ~0)s(t, ~0)d0
0

T
+( = - [ s(2,—0)d0 j s(t, —0)do (3.49)
0

3.4.3 Periodic Random Processes

The random process X() is said to be periodic with period 7 if all its sample
functions are periodic with period 7, except those sample functions that occur with
probability zero.
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Theorem. 1If the random process X(¢) is stationary in the wide-sense, then the
autocorrelation function is periodic with period 7, if and only if X{(#) is periodic
with period 7, and vice versa.

Proof. The first condition says that R (t+nrT) =R, (1) if X(¢) is periodic. X(¢)
periodic means that X (¢+t+n7T)= X(¢+1). Then,

R, (t+nT)=E[X(t+1+nT)X ()] = E[X(t+7)X(1)] =R, (z) (3.50)

The second condition states that if the autocorrelation function is periodic,
then X (¢t +nT)= X(t), where X(f) is wide-sense stationary. Consider

Tchebycheff’s inequality, which states

o
P[|Y(t)—my| > k] < - (3.51)

where m, and Gi are the mean and variance of the process Y(f), respectively, and

k is a positive constant.
Let Y(¢) = X(t +T) — X(¢). Then, the mean and variance of Y(¢) are

m, =E[Y®)]=E[X({t+T)-X(®)]=E[X({+T)]-E[X[®)]=0 (3.52)
because X(¢) is wide-sense stationary (mean is constant). Also,

o) =E[Y?(1)]= E{[X(t+T)—X(z)]2 }
= E[X2(t+T)]-2E[X(t+T)X(0)]+ E[X *(1)]
=R (0)=2R (T)+ R (0) =2[R,(0)— R (T)] (3.53)

The variance ci is zero, due to the fact that the autocorrelation function is

periodic with period T, and R . (0) = R, (7). Consequently, from Tchebycheff’s
inequality, we have

PX(t+T)-X(1)>k]=0 for allt (3.54)

Hence, X(¢) must be periodic.
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Corollary. Let s(t) be a deterministic function and periodic with period 7. The
random process X(¢), defined as X (¢) = S(¢—®), where © is a random variable

uniformly distributed over the interval (0, T"), is stationary in the wide-sense.

Proof. For X(¢) to be wide-sense stationary, the mean E[X(#)] must be constant,
and the autocorrelation function must be a function of the time difference t. The
mean value function of X(¢) is

© T
ELX()]= [s(t=0)fo(0)d0 = % [ s(t—0)d0 (3.55)
0

We make a change of variable by letting u =7 —0. Then,

t-T

E[X(t)]= —% Is(u)du =% s(u)du = constant (3.56)
1 =T

since we are integrating a periodic function, s(f), over its period. Using the same
reasoning, we can easily show that R, (t + 1, ) = R (7).

The process X(¢) is periodically stationary or cyclostationary with period T if
its statistics are not changed by a shift of n7, n=+1,+2, ..., from the time

origin. That is,

le """" X (xl,...,xm;tl,...,tm)Zle Xm(xl,...,xm;l‘l+}’lT,...,tm+nT) (3.57)

.....

for all integers »n and m.
X(?) is cyclostationary in the wide-sense with period T if its mean and
autocorrelation functions are periodic with the same period 7. That is,

m, (t+kT)=m,(t) (3.58)
and
R, (t +kT,t, +kT)=R . (t,t5) (3.59)
for all ¢, 1), t,, and any integer k.

Theorem. 1f X(t) is a wide-sense cyclostationary process with period 7, then the
process Y(¢) = X(¢—®), where © is uniformly distributed over the interval (0,7),

is wide-sense stationary.
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The proof of this theorem is straightforward and similar to that of the previous
theorem. Therefore, we will not show it.

3.4.4 The Gaussian Process

A random process X(¢) is Gaussian if the random variables X(#,), X(t,), ..., X(¢,),
are jointly Gaussian for all possible values of n and ¢, t,, ..., ,. Since the
multivariate Gaussian random variable depends only on the mean vector and the
covariance matrix of the » random variables, we observe that if X(¢) is stationary in
the wide-sense, it is also strictly stationary.

If X(?) is a Gaussian random process applied to a linear time-invariant system
with impulse response /(f), as shown in Figure 3.14, then the output process

o0

Y(6)= [x(t=1)h(v)dx (3.60)

—0

is also Gaussian. Hence, the output process Y(#) will be completely specified, given
the input process X(¢) and the impulse response A(?).

Example 3.6
Let X(#), a wide-sense stationary, zero-mean Gaussian random process, be the
input of a square law detector; that is, a nonlinear system without memory.

(a) Verify that the output is no longer Gaussian.
(b) Determine the autocorrelation function R, (t) of the output and its

variance.
Solution

(a) The system is shown in Figure 3.15. The density function of the input is

1 2252
Fx(in)= fx () =—p=e /2

Using the result given in Example 1.19, the density function of the output is then

X(%) Linear system L » Y
Gaussian h(?) Gaussian

Figure 3.14 Impulse response 4(%).
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y
A
xo P r(=x’@
» X
Figure 3.15 Square law detector.
L e vl , y=20
Syt =fy () =12
0 , otherwise

and is shown in Figure 3.16. We observe that the output of the nonlinear system
without memory is no longer Gaussian.

(b) The autocorrelation function of the output Y (¢) = X 2(t)is given by
R, (t+t,0)=E[Y(+DY(0)]= E[X?(t+D)X* ()] = E[X(t+D)X(+1)X ()X ()]

Using the result given by (2.244), the autocorrelation function of the output
process becomes

R, (1) = ELX? (1 + DELX > (01+ 2{E[X (1 + DX (O]} = RZ, (0)+ 2R} (1)

D)

ol

Figure 3.16 Density function of the output.
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Then, the mean-square value of Y(¢) is E[Y*(¢)]= R, (0)= 3{E[X2 (t)]}2
=3[R, (0)]*, but also E[Y()]= E[X*(t)]=R,, (0)=0c". Hence, the variance of
Y(t)is o3 = E[Y* (O]1-{E[Y ()]} = 2[R, (0)]* =20*.

Let the processes Yi(¢) and Y,(¢) be the outputs of two linear time-invariant
systems with respective inputs X;(f) and X5(f). The processes Yi(¢) and Y,(¢) are
jointly Gaussian, provided that X;(f) and X(¢) are jointly Gaussian.

3.4.5 The Poisson Process

The Poisson process is used for modeling situations, such as alpha particles
emitted from a radioactive material, failure times of components of a system,
people serviced at a post office, or telephone calls received in an office. These
events can be described by a counting function X(¢), ¢ > 0, such that at time zero,
X(0) = 0. A typical sample function of the Poisson process X(¢), ¢ > 0, which is a
discrete-amplitude continuous-time process, is as shown in Figure 3.17. The
process X(7) is said to be a Poisson process if it satisfies the following conditions:

1. X(¢) is a nondecreasing step function, as shown in Figure 3.17, with unit jumps
(representing the events) at each time #;, and £ is a finite and countable number.

2. For any time ¢, and t,, t, > t;, the number of events (or jumps) that occur in the
interval ¢, to ¢, follow a Poisson distribution, such that

k
P[X(tz)—X(tl):k]:wexp[ﬁu(tz—11)], k=0,1,2,... (3.61)

v

4 2] 4] 1y ts

Figure 3.17 Sample function of a Poisson process.
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3. The number of events that occur in any interval of time ¢ is independent of the
number of events that occur in any other nonoverlapping interval; that is, X(¢) is an
independent increment process. Hence,

k
P[X(t):k]:%e-“, k=0,1,2,.. (3.62)

The Poisson process can also be defined using the concept of Poisson points.
Let the instant at which the events occur be as depicted in Figure 3.18. We start
observing the process at time ¢ = 0.

We say that the points 7; are Poisson points with parameter Af, provided the
following properties are satisfied:

1. The number of points 7; in an interval (¢, £,), denoted N(¢, t,), is a Poisson
random variable. That is, the probability of k points in time ¢ =¢, —¢, is

e*}\,l (7\1) k

PIN(¢,t,) =k]= T

(3.63)

A is called the density or average arrival rate of the Poisson process.

2. If the intervals (¢,,¢,) and (¢5,¢,) are nonoverlapping, then the corresponding

random variables N(¢,,t,) and N(¢;,¢,) are independent.

We define the Poisson process as

X(6)= N, ) (3.64)
such that
X(0)=0 (3.65)
k
P[X(t):k]z(%e*“, k=0,1,2,.. (3.66)
‘ . . : : p lime

| 4 153 t 1y

Figure 3.18 Possible occurring times of particular events.
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The first-order distribution of X(7) is
Fy (x51,) = PLX(t,) < x,] = P[the number of points in interval (0,7,) <x,]
e an)* (3.67)
k=0 k!
Example 3.7

Let X(#)=N(0,f)be a Poisson process representing the number of events
occurring in the interval (0, £). Suppose that the first event occurs at 7;. Determine

@) fr, ).

(b) The mean of T; and the variance.

Solution

(M)

k
e M.
k!

From (3.65), P[X(¢)= N(0,7) = k] =

(a) The event T; > ¢; is equivalent to N(0 , ¢;) = 0, since the first event occurs at ¢;.
Hence,

P(Ty >t,)=P[N(0,t,)=0]=¢™*", ;>0
The distribution function is then
Fr(t)=P(T, <t))=1-P(Ty >t))=1-¢ 7, £, >0

and the density function is

OFy (1)

e 1 >0

Jr ()=

Note that this is the exponential density function given in (2.88) with A =1/f.

(b) The mean of 77 is

4
E[Ty]=[t,e™ dt, = 1
0 A
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while the variance is var[T,]= E[T{* 1- (E[T}])* with

E[T12]= Itlzke_m‘ dt, = 2/2%. Hence,
0

2 1 1
varlly]=—-—=—
22 a2 2

3.4.6 The Bernoulli and Binomial Processes

In Chapter 2, we defined the Bernoulli experiment as the “simplest” in the sense
that only two outcomes are possible: heads or tails corresponding to one (success)
or zero (fail) occurring with probabilities p and 1—p =¢, respectively. We say

X[nl,n=1,2, ..., 1s a Bernoulli process with parameter p if X[1], X[2], ... , X[n]
are independent and identically distributed Bernoulli random variables with
parameters p. Note that the Bernoulli process is a discrete-time process, as shown
in the typical sample function of Figure 3.19. The density function of the Bernoulli
process is given by

Sxp (xn]) = g 8(x[n]) + p &(x[n]-1), n=1, 2, ... (3.68)

where d(-) is the unit impulse function. The second-order density function is given
by

Fxtmixing (6l 1. xIny 1) = ¢28(xm, 1) 8(x{n,])
+ pq 8(x{n;]-1) 8(x[n, 1) +gp 8(x[n; 1) 8(x[n, ]-1)
+p28(xn, 1-1)8(x[n,1-1) for n;,n, =1,2,...
(3.69)

The corresponding possible pairs of outcomes are (X[n;] = 0, X[n,] = 0),

(X[n1=1, X[ns] = 0), (X[n;] = 0, X[n2] = 1), and (X[n;] = 1, X[n2] = 1). Note also

X[n]

LN - ] L[] [ ]
i o -+ * * » 1
0 1 2 3 4 5 6 8

Figure 3.19 Bernoulli process.
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that the sum of probabilities is one; that is, p>+2pg+¢> =(p+q)* =1. Higher-

order density functions can be obtained in the same manner.
We define the Binomial (or counting) process as the sum of Bernoulli
processes to be

S[n]= X[0]+ X[1]+...+ X[n], n=0, 1, 2, .... (3.70)

A typical sample function of the binomial process is shown in Figure 3.20.
We observe that S[n] = k means that k of the Bernoulli variables equals one,
while the remaining (n — k) equals zero. Hence, the probability of S[n] = & is given

by

P(S[n)=k) = [ij"q"" (3.71)

while the first-order density function of the binomial process is given by
(") &k nk
FstmGInD =2, [ ka q" " d(s[n]—k) (3.72)
k=0
The Poisson process, which is a continuous time process, can be obtained from the

discrete-time process under certain conditions:

1. Let the interval [0, ¢) be subdivided into n very small intervals, n large, of
length At¢, such that ¢ = nAt and only one point can occur in At.

2. Each interval Atz is a Bernoulli trial with a probability of a point occurring at
p=AAL.

S[n]
A
4 {--ccmm - *------ @------- 1]
3 ------------------------------------ E 3
I e -
e ®------ .
- 1 » n
0 1 2 3 4 5 6 7 8

Figure 3.20 Binomial process.
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3. The Bernoulli trials are independent.
Then, X(¢) = N(0, ) is equivalent to the binomial process given by (3.70) with

parameters n=¢/At and p =AAt. In the limit, it can be shown that

lim p[X(t) = N(0,7) = k] = lim (ZJ(At)k (1-2rA0)"*

At—0 At—0

k
= %e-“, k=0,1,2, .. (3.73)

which is the Poisson distribution, and thus the density function is given by

(M )

Frion[n(0.0]= i M 8[n(0,1) = k] (3.74)

3.4.7 The Random Walk and Wiener Processes

Consider again the experiment of tossing a fair coin » times every 7 seconds, such
that t =nT, n=1, 2, 3, ... . After each tossing, we take a step of length A to the
right if heads show, or a step to the left if tails show. A typical sample function is
shown in Figure 3.21. X(?) is referred to as the random walk.

If k heads show up in the first n tosses, then we have & steps to the right and
(n—k) steps to the left, yielding

X(nT)=kA—(n—k)A=2k-n)A (3.75)
X()
A
3Ab---mmmeeee
tail
2Af------
A head
0 + + + + + +—»t=nT
T 2T T 4T 5T 6T T 8T or 10T
A frm e
DA e —

Figure 3.21 Random walk.
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As k varies from 0 to n, X(nT) varies from —nA to +nA. Since the coin is fair, then
p=q=1/2. We can define X(nT) as

XnT)=X,+X,+ ... +X; (3.76)

where X, k=1, 2, ..., n, is referred to as a symmetric Bernoulli random variable,
since it assumes steps of +A with probability p=1/2 and —A with probability

g =1/2. Hence,

k n—k
ny 1 1 ni 1

and the density function of the random walk after » steps is

n

Sxry[x(nT)] = Z[ j—S x(nT)—(2k—n)A] (3.78)

If we now consider the experiment of independently tossing the same coin two
times—the first one »; times and the second one n, times, the autocorrelation
function of the random walk sequence is given by

R, (n.ny)=E[X(n))X(n))] = E{X(n))[X(ny)+X(n))— X (n)]}

= EP () + X ()X (1) = X ()]} = ELX 2 ()] + E{X () [ X () — X ()]}
(3.79)

Suppose n, > ny, then X(n,) and [X(n,) — X(n,)] are independent random variables,
because the number of heads in the first n; tossing is independent of the number of
heads in the (n; + 1) tossing to n, tossing. Consequently, if n; <n, <n; <ny, the
increments X (n,7)—X(n3T) and X(n,T)—X(n;T) are independent. The auto-

correlation function can be written as

R, (n,ny)=E[X?(n)]+E[X(n)]E[X(ny)— X(n))] (3.80)
but
E[X(n)]= 2%(A)+%(—A) =0 (3.81)
k=1

and
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< | 1 2 2
ELX2(n)] = ZE += (8 =i (3.82)
Hence
R, (n,ny)=mA (3.83)

Similarly, if n, > n,, the autocorrelation function is
R, (n,ny)=n,A? (3.84)
Combining (3.83) and (3.84), we obtain
Ry, (ny,ny) = A? min(ny, ny) (3.85)

The Wiener process, also called the Wiener-Levy process or Brownian motion, is a

limiting form of the random walk as n—>o and 7 —0, such that
lim(nT) =t and the variance remains finite and nonzero. The Wiener process
n—>0
T—0

W(f) is given by

W ()= lim X(¢) (3.86)
730

From the central limit theorem, the probability that X given in (3.76),
X=X,+X,+ ... +X, with X; a symmetric binomial, takes k steps to the right
is

P[X(nT) = (2k —n)A] ~ .

exp{_(Zk "”)A"m} (3.87)
20

1
V2o

where the mean m and the variance o are as derived in (3.81) and (3.82), to yield
m = E[X] = 0 and o* = var [X] = nA%. Substituting for the values of m and c* in
(3.87), after simplification, we obtain

2
PLX(nT) = (2 — n)A] ~ — exp{— (2k —m) } (3.88)

V2mnA 2n
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At each step of the limiting process nT = ¢, and after setting A*> = o.T to maintain
the variance finite and w = (2k — n)A, we obtain the first-order density function of
the Wiener process to be

_ 1 W)
Swow®]= N eXp{ Sl } (3.89)

A sample function of the Wiener process is shown in Figure 3.22.
By analogy to the random walk process, the property of independent
increments is maintained for the Wiener process. That is, if ¢, <¢, <¢; <t,, the

increments w(t,)—w(t;) and w(¢,)—w(t,) are independent.

Example 3.8
Determine the autocorrelation function of the Wiener process.
Solution

Using the same approach as we did in determining the autocorrelation function of
the random walk process, the autocorrelation function of the Wiener process is

R, (81, t5) = E[W ()W (t,)]
in which we have two cases, #; <t and t, < .
Casel: ;1 <t
Using the property of independence of increments, we can write

E{W@)W(ty)=W(t)]} =EW )] EIW (@) -W ()]
= E[W (t,)W (t3)]- EDV > (1,)]
=R, (t1,1,)— EDW*(1))] (3.90)

w(f)

Lf”“\ SR Lay
| T o

Figure 3.22 Sample function of the Wiener process.
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From (3.89), the Wiener process has a Gaussian distribution with mean zero and
variance o. Then, E[W(z,)] = 0 and (3.90) becomes

Ry (t1512) = EIW* (1)) = a1ty
Case2: <t
In the same manner, we can show that
R, (t,ty)=at,

Combining the results of Cases 1 and 2, we obtain the autocorrelation function of
the Wiener process to be

at,, 1 <t

wa(tl,tz):(x mln(tl,tz):{ (3.91)

at,, 1 <t

3.4.8 The Markov Process

A stochastic process X(f) is said to be a simple Markov process (or first-order
Markov) if for any n and a sequence of increasing times ¢, <#, <...<t,, we have

P[X(tn)sxn |X(tn—l)’ aX(tl)]:P[X(tn)sxn |X(tn—1)] (392)
or equivalently,

fx,,\xn,l,xn,z,.“,xl (%, [ X1 X, 05 e X)) :fX,,\X (x, [ X,21) (3.93)

n-1

Note that for the simplicity of notation we dropped the subscript #. We observe
that the value at # depends only upon the previous value at #,_;. The joint density

function can be written as

_ S(x,x0) f(x,%5,x3)  f(x,%5,...,%,)

SO0 ) = L) ) T )
=SS [ x) f (g [ X0, x0) . f O, [ X050 X0, X)) (3.94)

Rewriting (3.94), if X(¢) is a Markov process, then

F 1T eesxy) = L] L/ G 50 (3.95)
k=2
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which means that the process is completely determined by the first-order density
function and the conditional density functions. Since the sequence of random
variables X, X, _1, ..., Xj is Markov, it follows from (3.95) that

EX,|X,, X0, . X]]1=E[X, | X,,] (3.96)

n—-1»

Also, the Markov process is Markov in reverse time; that is,

f('xn |xn+lﬂxn+2’ ’xn+k) = f(xn | xn+1) (397)

If in a Markov process the present is known, then the past and future are
independent; that is, for m < k <n we have

f(xnz7xn |xk) :f(xm |xk)f(xn |xk) (398)

A Markov process is said to be homogeneous if f(X, =x|X,_, =y) is invariant
to a shift of the origin; that is, it depends on x and y but not n. However, the first-
order density function fy (x,) might depend on n. If the first-order density
function does not depend on n, fy (x,)=fy (x), but depends on x only, the

Markov process is said to be stationary. In this case, f(x, | x,_;)1is invariant to a

shift of the origin due to the homogeneity of the process, and thus the statistics of
the process can be completely determined in terms of the second-order density
function, which is given by

Sxrsx0) = (g | 20) f(x1) (3.99)

Chapman-Kolmogorov Equation For m < k <n, the conditional density function
f(x,|x,) can be expressed in terms of the conditional density functions

£, |x;) and f(x; | x,,) tobe

SO 1 xa) = [ S 12 ) (g | x, ) dy,  m<k<n (3.100)

When the Markov process takes a countable and finite discrete set of values,
they are called Markov chains. Markov chains will be developed in more detail in
the next chapter.
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3.5 POWER SPECTRAL DENSITY

Given a deterministic signal s(¢), its Fourier transform (FT) is

S(f)= Ts(r)e‘ﬂ“ﬁdt (3.101)

—00

which exists if the integral converges. The function S(f) is sometimes called the
spectrum of s(¢). In going from the time-domain description, s(¢), to the frequency
domain, S(f), no information about the signal is lost. In other words, S(f) forms
a complete description of s(¢) and vice versa. Hence, the signal s(¢) can be obtained
from S(f) by just taking the inverse Fourier transform (IFT); that is,

s(f) = TS( et s (3.102)

In dealing with random processes, the ensemble is assumed to exist for all
time 7. In general, the sample functions are not absolutely integrable. However,
since we are still interested in the notion of spectrum, we proceed in a manner
similar to that of deterministic signals with infinite energy. We define x,(¢) as

the sample function x(#), truncated between —7 and 7, of the random process X(7).
That is,

0 x(t), -T<t<T (3.103)
X = .
g 0, otherwise
The truncated Fourier transform of the process X(?) is
T . ® .
Xp ()= [xp @ dt="[x()e >/ dt (3.104)
-T -0
The average power of x7(?) is
1 {,
Pave 25:[]367- (t)dt (3105)

Using Parseval’s theorem, which says that
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j x2(¢)dt = f X7 ( f)| df (3.106)

—00

the average power of xr(f) is

- 2
p=| %df (3.107)

where the term |X r(f )|2 / 2T is the power spectral density of x; (¢). The ensemble
average of Py is given by

E[P]= jE[' Tz(; )| } (3.108)

—0

The power spectral density of the random process X(?) is defined to be
2
. Xr(f)
Sxx(f)=}g5[% (3.109)

If X(¥) is stationary in the wide-sense, the power spectral density S,.(f)can

be expressed as the Fourier transform of the autocorrelation function R,, (7). That
s,

Su()= [Ro(@e ™ ar (3.110)
Proof. By definition,
X T o T .
| T(f)| E|:% IXT(fl)e_Jzn/tldfl J‘XT(Z‘z)e“znﬂzdlz}
-T -T

T T
E X(t)e 2Vhar [ X(t,)et? ™ dr
{ZT JT (1) I_IT (1) 2

T
j E[X(t)X(ty)] e 2™ ) gr dr, (3.111)

lT
B
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where E[X(#))X(%,)] = R.. (41, t,). Since this is a wide-sense stationary process, we

would like to express the autocorrelation function in terms of the time

difference

tT=t —t,, and consequently, replace the double integral in ¢, and #, to one integral

int. Lett, =tand t, = t, + T =t + 1. The region of integration in the #; — £, plane
and 7 -t plane are shown in Figure 3.23. Let sy, 55, 53, and s4 denote the four sides
of the square. From Figure 3.23, we see that the change of variables for the four

sides will be

Sl—)T:T_tz, Sz—)T:tl_T, 53—)T:_T_t2, S4—>T:t1+T

It follows that

2
Xe (7| 1 P L .
El—" |=— [R._()e /| [R._(v)e/*™dt it

2T 2T w (1) _jT = ()

+_
2T 5 Tt
o1
= .[ R, (v)e /2™ 1—ﬂ dr
Sr 2T

In the limit, as T approaches infinity, we conclude

Sxx (f) = TRxx (T) e—janrdT

—00

0 T
! ij(r)eﬂ“ﬁ{ | Rxx(r)ej“ﬁdt}dr

(3.112)

(3.113)

provided that R, (t) approaches zero at least at the rate l/ |‘E| with increasing .

A A
S2 T
T
S ‘§ \
T T { T 2T
» ¢ t +—» 15
27T -T
S3
-T
T o
(a) (b)

Figure 3.23 Regions of integration for the autocorrelation function in (a) #, — #, plane and (b) t—1

plane.



Random Processes 177

Thus, the power spectral density of a wide-sense stationary process is the
Fourier transform of its autocorrelation function. The inverse relationship, using
the inverse Fourier transform, is

R (1) = TSxx(f)eﬂ“ﬁdf (3.114)

(3.110) and (3.114) are sometimes called the Wiener-Khinchin relations. Note that
the power spectral density is, from the definition, real, positive, and an even
function of /. The autocorrelation is an even function of t.

Example 3.9

Consider the random process X ()= Acos(wyt+®), where ® is a random

variable uniformly distributed over the interval (0, 27), and 4 and ®, are constants.
Determine the power spectral density of this process.

Solution

Since X(f) is stationary in the wide sense with autocorrelation function
R, (r):(A2 /2)cos(2nfyt) as shown in Example 3.2, then using (3.113), the
power spectral density is

© 42 o A2 2 ~ .
S.(H= J.Tcos(27tfor)eﬁ“/Tdr:T J[e R2r=1)e 4 o= i2m (0 e

42
:T[S(f_fo)+6(f+fo)]

Cross-Spectral Densities

Let X(¢) and Y(¢) be two jointly wide-sense stationary processes. Their cross-
spectral densities are defined as

Sy ()= [Ry(@e (3.115)
and

S ()= TRyx(r)e’””ﬁdr (3.116)

—0
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By the Wiener-Khinchin relations, the cross-correlation functions R, (t) and
R, (1) are just the respective inverse Fourier transforms of S,, (/) and S . (f).

From property (4) of Section 3.3.3, we have

R, (1)= R:y (-7) (3.117)
Consequently, their two cross-spectral densities are related by the following:

S (f)=85(f) (3.118)

It should be observed that, while the power spectral densities S, (f) and
S, (f) of the respective processes X(7) and Y(¢) are always real, their cross-

spectral densities S, (/) and S, (f) may be complex.

Example 3.10

Consider the process Y(t) = X(¢—T) ,where X(¢) is a real wide-sense stationary
process with autocorrelation function R,, (t) and power spectral density S .. (f). T

is a constant. Express the power spectral density S,,(f) of the process ¥(?) in

terms of S, (f) .

Solution

The cross-correlation function R, (t) is given by
R, ()=E[X(+D)YO)]=E[X(E+DX(E-T)]=R, (t+T)
Hence,
Sy () =S (e
That is, the delay T appears in the exponent as a phase angle scaled by 2mf.

3.6 LINEAR TIME-INVARIANT SYSTEMS

A linear time-invariant system is characterized by its impulse response h(t), or by
its system function H(f), which is the Fourier transform of 4(#). That is,
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H(f)= Th(t)e*f“f’dt (3.119)

—0

and
h(t) = TH(f)e-f“ffdf (3.120)

If x(¢), the applied input signal to the linear time-invariant system, is deterministic
as shown in Figure 3.24, the output signal is the convolution of x(¢) and A(%),
yielding

0

y(t)=x(t)*h(t) = jx(t —1)h(t)dr (3.121)

is a sample function of the random process Y(¢) corresponding to the sample

function of the input process X(#). The time-domain expression for the output
process is

Y(f)=X(NHH) (3.122)

where X (f) and Y(f) are the respective Fourier transforms of x(¢) and (7).

The system is realizable, provided the impulse response is causal; that is,
h(t) =0 for ¢ <0. In this case, the convolution integral becomes

()= Tx(t ~Dh(vdi= | tx(r)h(t -1)dt (3.123)
0 —o0

3.6.1 Stochastic Signals

Consider the linear time-invariant system shown in Figure 3.24. The output signal

1) PR A ()

Figure 3.24 Impulse response 4(%).
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Y(¢) = h(t) * X () = X (£) * h(t)

= TX(I —a)h(a)do = TX(a)h(t —o)da (3.124)

—00 —0o0
Mean Value Function

The mean value function of the output process is given by

E[Y()]= jE[X(t—a)]h(a)da = j m (1 — o) h(o)do (3.125)

—00 —00

where m  (¢)1is the mean function of the process X(¢). If X(¢) is stationary in the
wide-sense,

m, (t—a)=m,(¢)=constant (3.126)
Then, the mean function m (¢) of the process ¥(7) is

m, (1) = E[Y ()] = m, Th(a)da (3.127)

—00

From (3.125), we recall that the system function evaluated at f'= 0 is just the dc

gain, and [ h(a)da. = H(0). Hence,

m, =m H(0) (3.128)

The Mean-Square Value

The mean-square value of the output process signal is
E[Y?()]= j j X(t—1))X (1 —1,)h(t, Yh(t, )dt,dt, (3.129)

Simplifying (3.129), the mean-square value function becomes
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o o0

EY )= [ [Ro(—t,0=1,) hty) h(ty) dtydt,
= T ]ORXX(tl,tz)h(z—tl)h(t—tz)dzldtz (3.130)

Assuming X(¥) is stationary in the wide-sense, and making the following change of
variables oo =¢—¢, and  =¢—t,, the above result reduces to

EY? ()= [ [ R (a=p)h(c)h()dodp (3.131)
which is independent of the time #.

Cross-Correlation Function Between Input and Output

Assume that the input process X(¢) is wide-sense stationary. The cross-correlation
function between the input and output is

R, (t+t,0)=E[Y(t+ D)X " (1)] (3.132)

Using (3.124) in (3.132), and making a change of variables, the cross-correlation
function can be rewritten as

R, (t+1,0)= j R, (t—a)h(a)do =R (7)*h(T) (3.133)
Observe that this result does not depend on 7, and hence R, (f+71)=R,, (7).

Similarly, it can be shown that the cross-correlation function between the input and
output process signals is

R, (1) =R, (D) *h(-7) (3.134)

If the processes X(¢) and Y(¥) are jointly wide-sense stationary, their cross-spectral
density is the Fourier transform of their cross-correlation function. Since a
convolution in time domain is equivalent to a multiplication in frequency domain,
taking the Fourier transform of (3.133) and (3.134), we obtain

S () =S (SIHS) (3.135)
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and
Sy () =S () H (1) (3.136)

Autocorrelation Function and Spectrum of Output

The autocorrelation function of the output process is

R, (t+7,6)= E[Y(t+ DY ()] (3.137)
Using the fact that
Y(t+71)= TX(t +1—a)h(o)do: (3.138)
and
Y(r) = T X(t~B)h(B)dp (3.139)

substituting (3.138) and (3.139) in (3.137), and making a change of
variables (o. = —f) , we obtain

R, (D) =R ()*h(-1)= R, (1) *h(1) = R, (1) * h(1) * h(~T) (3.140)
Taking the Fourier transform of the above equations results in

S () =S (NH ()=S,(NH) =S (NHH" (/)
=S (NH| (3.141)
Example 3.11

A white noise process with autocorrelation function R . (t)=(N,/2)5(t) is
applied to a filter with impulse response

-t >
h(t) = ae ', t>20and a>0
0 , t<0
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Determine the autocorrelation function, R, (1), of the output process.

Solution

The problem can be solved in two ways. We can directly solve the convolution
integral of (3.140), or obtain the power spectral density S, (/) using (3.141), and

then take the inverse Fourier transform of S, (f). We shall solve this problem

using both methods.

Method 1: For 1t <0, we have from Figure 3.25,

WE D) = [ae Do e dh=ote ™ [ = e

—0

For t > 0, we have

0
h(t)*h(-1) = I ae M e gy, = %e"‘“

—00

Hence,
%e‘“ ,T<0
g(v) = h(v)* h(-1) =
—e ¥, 20
Consequently,
h(?) h(-2)
h(t+7) H(#2) h(z2)
h(t-1)
»! »
-1 0 A >0 <0

Figure 3.25 Impulse response with t as parameter.
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%em , T<0
Ry, () =R, (1)*g(1) =
NO(X -t
e, 120
or
No@ ol
R, ()=——¢

Method 2: From (3.141), we see that we first need to determine the Fourier
transform H(f) of the impulse response /(). Thus,

(04

H(f)=[ae e dt=o eV ®igp=— =
-] e

0 0
The magnitude of H(f) squared is

|H(f)|2 _0‘—2
- 47:2f2+ot2

while the output power spectral density is

Nya 202
4 o*+a’

S, () =SuNH| =

where @ = 2nf. Taking the inverse Fourier transform of §,,(f), we obtain the

autocorrelation function, shown in Figure 3.26, to be

v
a

Figure 3.26 Autocorrelation function of Y (7).
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No@ -l
R, ()=——¢e

The results of both Method 1 and Method 2 agree.

3.6.2 Systems with Multiple Terminals

Linear time-invariant systems may have more than one input and/or output. A
simple case would be a system with one input and two outputs, as shown in Figure

3.27. The relationship between the output processes Y(f) and Z(f) may be obtained
from (3.141) as

S, () =[H (N Se() (3.142)

and

2
S () =|H () Su(f) = Syy(f)m‘ » Hi(f)#0 (3.143)

H,(f)

In a similar manner, we can obtain the cross-spectral densities of the random
processes Y(¢) and Z(?) to be

S,(f) =S, (NHL(f) =S (NH (H,(f) (3.144)
and
S,.() =8, (NH () =S (NH (/H(f) (3.145)

In time domain, we have

R, (1) =R, (D) *h (-1)*h,(7) (3.146)
Y0) o mpn PO
X(t) X()
" > ) e

Figure 3.27 System with multiple terminals.
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and

R, (1) =R, (D) * Iy (V) *hy (—1) (3.147)

If ¥(¢) and Z(¢) are orthogonal, then R_,(t) =R, (1) =0. In this case, the system

is said to be disjoint because their transfer functions do not overlap; that is,

H(f)H,(f)=0.

3.7 ERGODICITY

A random process X(¢) is ergodic if all of its statistics can be determined (with
probability one) from a sample function of the process. That is, the ensemble
averages equal the corresponding time averages with probability one. This is a
more restrictive process, as shown by the Venn diagrams of Figure 3.28.

Usually, we are not interested in estimating all the ensemble averages of a
random process, but rather we are concerned with weaker forms of ergodicity,
such as ergodicity in the mean and ergodicity in the autocorrelation.

3.7.1 Ergodicity in the Mean

A random process X(?) is ergodic in the mean if the time-averaged mean value of a
sample function x(?) is equal to the ensemble-averaged mean value function. That
is,

E[X(0)] =< x(t) > (3.148)

where the symbol <-> denotes time-average, and < x(¢) > is defined to be

1 T
<x(t) >= lim — | x(t)dt 3.149
® anT_IT“ (3.149)

Collection of all
possible processes

wide-sense stationary

strictly stationary

Figure 3.28 Sets of different classes of processes.
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The necessary and sufficient condition under which the process X(¢) is ergodic in
the mean is

T

lim —— R (v)dt=m? (3.150)
T—w 2T r

where m, = E[X(¢)] is the mean value of X(¢).
3.7.2 Ergodicity in the Autocorrelation
The random process X(¢) is ergodic in the autocorrelation if

R, (1) =< x(t+1)x(t) > (3.151)

< x(t+71)x(¢) > denotes the time-averaged autocorrelation function of the sample
function x(¢), and is defined as

T
<x(t+0)x() >= lim % _ij(t +0)x(t)dt (3.152)

The necessary and sufficient condition for ergodicity in the autocorrelation is
that the random wvariables X(+71)X(f) and X(t+t+0a)X(t+a) become

uncorrelated for each t as a approaches infinity.
Example 3.12

Consider the random process X (¢)= Acos(2nf,t+®), where 4 and f. are

constants, and ® is a random variable uniformly distributed over the interval
[0,2x].

Solution

It was shown in Example 3.2 that the mean and autocorrelation functions of X(¢)
are E[X(#)]=0 and R, (1) = (4%/2) cos(2nf, 7). Let the sample function of the
process X(7) be

x(t) = Acos(2nf, .t +0)

The time-averaged mean and the time-averaged autocorrelation are
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g T
<x(t)>=lim — |cos(2nf.t+0)dt =0
Q) T%sz_L (2nf.1+0)

and

2 T
<x(t+1)x(1) >= lim j—T [ cos[2nf, (t+71) + 0] cos(2nf, ¢ + O)dt
—o r

e
=—cos(2nf, 1)
2
Hence, the process X(7) is ergodic in the mean and in the autocorrelation.
3.7.3 Ergodicity of the First-Order Distribution

Let X(¢) be a stationary random process. Define the random process Y(7) as

yay=1 XO=x (3.153)
0, X(1)>x, '

We say that the random process X(?) is ergodic in the first-order distribution if
17
Fy(x;t)=lim — t)dt 3.154
Xu>&ﬂyo (3.154)

where Fy(x ; t) = P[ X(f) £ x(¢)] and y(¢) is a sample function of the process Y(¢).

The necessary and sufficient condition under which the process is ergodic in
the first-order distribution is that X(¢ + t) and X{(#) become statistically independent
as T approaches infinity.

3.7.4 Ergodicity of Power Spectral Density

A wide-sense stationary process X(f) is ergodic in power spectral density if, for
any sample function x(?),

T 2

[x(eye™7> " dt
-T

. 1
Sxx(f):}grgoﬁ (3.155)

except for a set of sample functions that occur with zero probability.
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3.8 SAMPLING THEOREM

We first give a brief description of the sampling theorem for deterministic signals.
Let g(f) be a bandlimited signal to a frequency f,, Hz, where f,, is the highest

frequency such that its Fourier transform G(f)= 0 for | f | > f,.» as shown in

Figure 3.29. Ideally, sampling the signal g(f) is multiplying it by p(¢) train of
impulses, as shown in Figure 3.30, to yield

g, ) =g)p() (3.156)

where g(¢) is the sampled signal, as shown in Figure 3.31. Since the sampling
function p(?) is periodic, it can be represented by its Fourier series to yield

Jj2nnt

p) = icne T (3.157)

n=—o0

where ¢, is the nth Fourier coefficient given by

7/2 7,2nnt T/2 7,2nnt

c, :l I p(t)e ! T dl‘:l I 8(1‘)6 ’ T dt:l (3158)
r -T/2 T -T/2 T
20 o
1
/-\/
» ! >
(@ (d)

Figure 3.29 (a) Signal g(¢), and (b) spectrum of g(7).

p()

|

Figure 3.30 Sampling function. Figure 3.31 Sampled signal.

]
—>e
[ ]
!
)
(]
v

0
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1/T is the fundamental frequency of the periodic signal p(f), which is also the
sampling frequency f, =1/T Hz. Substituting (3.157) and (3.158) in (3.156), we
obtain

g,(0) =% f‘,g(t)e’2 mafst (3.159)

n=—0w

The spectrum of the sampled signal, from the definition of the Fourier transform,
is given by

G, =fsT Y g@e U di= £, Y G nf)  (3.160)

—o0 N=—00 n=—oo

and is shown in Figure 3.32. We observe that the original signal can be recovered
by just using a lowpass filter as shown in dashed lines. We observe also that the
sampling rate is at least 2f,, per second. The minimum frequency, f, =2f,
samples per second, is called the Nyquist rate. Sampling with a frequency below
the Nyquist rate results in aliasing error as shown in Figure 3.33, and the original
signal cannot be recovered. We see from (3.157) that sampling introduces a
scaling constant of f, =1/7, and thus to remove it we select the filter to be of

iy e O 7 2

Figure 3.32 Spectrum of the sampled signal.

Gi(f)
A

aliasing

Figure 3.33 Aliasing.
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height 7. Assuming the filter bandwidth is one-half the sampling frequency, the
impulse response of the ideal lowpass filter with gain 7 is

L2
h)=T [e/?™'df =sinc f,t (3.161)
-1,/

The output of the lowpass reconstruction filter is the sum of all output samples, as
shown in Figure 3.34, to yield

. n
sin2nf,, | t———
& . t & n 2fm
gt)= Z g(nT)sinc F—n = z g Y (3.162)
e . 2nf, | t— "
2fﬂl

where sinc x =sinnx/nx, T=1/2f,, and g(n/ 2 fm) are samples of g(f) taken
att=n/2f,,n=0, £1, £2, ....

n=—00

Theorem. A bandlimited signal of finite energy with no frequency higher than f,,
Hz may be completely recovered from its samples taken at the rate of 2f,, per
second.

If now X(¥) is a wide-sense stationary random process with a bandlimited

power spectrum density such that S . (f)=0 for | f | > f,,, the inverse Fourier

/ Sample of g(7)

v

(n-2)T (n—-DT nT (n+1)T

Figure 3.34 Reconstructed signal.
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transform of S, (f) is just the autocorrelation function R (t), and thus from
(3.162), R, (1) can be expressed as

. n

. . sm27tfm(r—2f ]
R.(9)=Y Rxx(nT)sinc(l—nj: 3 Rxx[ L j "
T 2f, n

anm(t—z ]

where R (n/2 fm) are samples of the autocorrelation function R, (t) taken at

n=—x n=—0

(3.163)

t=n/2f,, n=0, £1, £2,.... The sampling representation of R, .(t—a), @ an
arbitrary constant, can be written in terms of the shifted sample sequence to yield

R, (t—a)= i R, (nT —a)sinc (%—nj (3.164)

n=—x

and making the change of variables T — a to T, we obtain

R,(= Y R, (nT—a)sinc(T;a

—nj (3.165)

An analogous sampling theorem may be stated for random processes.

Theorem. Let X(f) be a wide-sense stationary random process bandlimited to the
frequency (~f,,, f,,); thatis, S, .(f)=0 for |f|> f,,. Then,

sin2nfm(t— u j
( " j 2/m (3.166)

2w ) fm( 2fJ

where 7T =1/2f, and X(n/me) are samples of X(¢f) taken at
t=n/2f,, n=0,£1, £2, ...

The samples X (n 12fm )are in this case random variables, and the equality of

X(@)= Z X(nT)smc[ j Z X

n=—0 n=—00

(3.166) holds in the mean-square sense. That is, the mean-square value of the

difference of the two sides of the equation is zero. Hence, we must show that, as
n—> oo,
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. sin2nfm(t—2n J
E X(t)— Z X( n j fm
n=o \ 2/ 2nf, i~

m 2fm

2

=0

Let

sin 2mf,, [t - Z;I"m ]

X0=3Y X(nT)sinc(%—njz > X( L J

n=—o0 n=-wo 2fm

n
2nf, [t— 2 J

then,
s ro-xof’ |- lixo - xowe o -5 o)
— E|Lx()- X01 X" @) - E{LX(0- X 01 X (1) |

Using (3.168), the first term of (3.169) may be written as

E{lX(0) - X01X 0)}= Ry (0)~ 3 Ry (nT ~1)sine (%—nj

n=—00

We also have from (3.165), witht=0and a = ¢,

Ry ()= 3 R, (nTf)sinc [%—n}

n=—00

Hence,
E{lx()- X1 (0}=0

We now compute the second terms of (3.169),

E{[X(t)—)?(z)]f(*(t) }: i E{[X(t)—f((t)]X(mT)}sinc (%—m}

m=—o0

193

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)
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= d R (t—mT)— i Rxx(nT—mT)sinc[%—nﬂsinc[%—m} (3.173)

m=— m=—00

Using (3.164) with t = f and @ = mT, we have
R, (t-mT)=Y Rxx(nT—mT)sinc[%—nj (3.174)

and hence, after substituting (3.174) in (3.173), we have
E{[X(t) ~ X)X (1) }: 0 (3.175)

The results of (3.172) and (3.175) show that the equality of (3.166) holds in the
mean-square sense.

3.9 CONTINUITY, DIFFERENTIATION, AND INTEGRATION
3.9.1 Continuity

We know from calculus that a function f(x)is said to be continuous at a point

x=xq, 1iff(x)is defined at x, lim f(x) is a real number,
X—>Xg

and lim f(x)= S (x0) Consequently, we say that a real deterministic function
X=X,

x(?) is continuous at a given point t if

lim x(¢) = x(t,) (3.176)

If #, takes any real value, —oo <7, <o, then the function x(f) is said to be

COntinuous.

This concept of continuity can be extended to random processes, since a
random process is a set of sample functions with associated probabilities, making
the ensemble of the process. Hence, we say that the random process X(¢) is
continuous at a given point f if all sample functions are continuous at #y. That is,

Pllim X (£) = X (t,)] =0 (3.177)

or
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P[X(t) continuous at ;] =1 (3.178)

This kind of continuity is called strict continuity. However, in many applications
we are interested in a less “strong continuity” for many purposes, which is referred
to as stochastic continuity. The most attractable stochastic continuity is continuity
in the mean-square sense.

A random process X(?) is called mean-square continuous (m. s. continuous), or
continuous in the mean-square sense, if

lim E[[X(t+1)- X’ 1=0 (3.179)
T—>
Note that
lim E[| X (t+71) - X(0)] ?1=1lim 2[R, (0)— R, (v)] (3.180)
0 =0
which is equal to zero if
limR_ (1) =R, (0) (3.181)
=0 .

Hence, X(#) is continuous in the mean-square sense if and only if its
autocorrelation function R,, (1) is continuous at t = 0.

Note that for real wide-sense stationary processes, the autocorrelation function
R, () is an even function of t as given by (3.26). Hence, the continuity at

T = 01is violated for the three possible cases of Figure 3.35.

R (1) R (1) Ry (1)

T o o T

(@ (®) / (© \\

Figure 3.35 R,,(t) not continuous at T = 0: (a) isolated point, (b) vertical asymptote, and (c) impulse.
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Example 3.13

Show that if the random process X(#) is mean-square continuous, then the mean
E[X(?)] is continuous.

Solution

Knowing that X(¢) is mean-square continuous, we can write
E[X(+0-X 0] 12 E*[X(t+ 1)~ X(0)]

We have just shown that the left side of the above inequality goes to zero when
T — 0 for X(¢) to be mean-square continuous. Hence, E 2 [X(+71)—X(¢)] goes to
zero as T — 0; that is,

lim E[X (1 +7)] = E[X(1)] (3.182)

and the proof is complete.
We can also show that if X(¢) is mean-square continuous, then

lim ELX(¢+ 1) = E[lim X (¢ +7)] (3.183)

that is, we can interchange the expectation and limiting operations.
3.9.2 Differentiation

Again, from calculus, if ling[ f(x;+€)—f(x;)]/e exists, then it is called the
e

derivative of f(x)atx = x;. If the function is differentiable at a point x = x;, then

it is continuous at x = x;. Similarly, the “ordinary derivative” of a random process
X(¢) is given by

dX(0) _ . X(+e)-X(©)

X'(t)=
® dt -0 I

(3.184)

provided that al/l sample functions of X(f) are differentiable, which is too
restrictive. Hence, we prefer talking about the derivative of a random process in
the mean-square sense. We say that X(f) is mean-square differentiable if there
exists a random process Y(¢), such that
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2
lim{{w— Y(t)} } ~0 (3.185)
e

e—>0

for every t. Y(¢) is the mean-square derivative process of X(f) and is denoted
X'().
Assuming X'(¢) exists, the cross-correlation function between X(¢) and

X'(¢) is given by

Ryo(ty.12) = ELX (1) X' (1)] = E{X(zl lim 2259 _X(h)}

im Rxx(tl’t2 +8)_Rxx(t1’t2)

— lim E{X(tl)X(tz +8)-X(t )X(tz)}: i
£—0 £ £—0 €
_ aRxx(tl’tZ) (3 186)
ot, '

Similarly, we can also show that the cross-correlation function between X'(¢) and
X(?) is directly related to the autocorrelation function of X(¢), such that

OR .. (t,t5)

3.187
N (3.187)

Rx'x (tl ’tz) =

The autocorrelation function of X'(¢) can now be derived,

X(t +e)—X(4)
m—
€

Ryp(ty.1y) = ELX' (1)) X' (1)]= E[gg 0 X'(t, )}

R (t +&,t) =R, . (2,15)

_ limE[X(tl +e)X'(1,) - X)X (tz)} ~ lim
£—>0 € e—>0 €
_ORe(tly) (3.188)
ot '

Substituting for the expression of R, .(¢,¢,) given in (3.186), we obtain
Rx'x'(tlstZ) to be

aszx(tl’tz)

3.189

Rx'x'(t15t2):
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If X(¢) is stationary in the wide sense, then the mean is constant and the mean
of X'(t) is zero; that is,

E[X'(1)]=0 (3.190)

Also, R, (t,t;)=R,. (1), where 1=t —t,. Noting that dt =dt and
dty =—dt, (3.186), (3.187), and (3.189) can be rewritten as

R (1) = ——dR;x ©_ -R' (1) (3.191)
Ro@=LD g o) (3.192)
dr
and
2
Ryp =- LR (o) (3.193)
dt
At 1 =0, we have
R..(0)= E{[X' O] }: -R., (‘E)L:O (3.194)

Equation (3.194) is valid assuming X(#) is mean-square differentiable. The above
results can be generalized to higher-order derivatives to yield

d"X(t,)d"X(ty) | 0""R..(1,t;5)
R o (t1,1)=E f‘) ,52 = T (3.195)
dt| dt} ot]' ot}
and
an(t ) de(t ) al‘terRx (tl,tz)
R o (11, 1)) = B| —— 2 =22 | = 2 (3.196)
dt| dt} ot ot}

where the superscripts in parentheses, (n) and (m), denote the derivatives of the nth
order and mth order, respectively.

If X(#) and Y(¢) are jointly wide-sense stationary, then (3.195) and (3.196)
become
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= (D" R (@)

n m dn+mR
R o om (T) = E{d X(+) d X(t)} =" AR

dtn dt m d'l: n+m
(3.197)
and
d"X(t+71) d"Y(t L, AR (D) e
R oo (1) = E{ (tro) & V0 } ey Ty R (g
* dt’ dt" dz""
(3.198)
3.9.3 Integrals
The Riemann integral of an ordinary function f(x) is defined as
b n
_[f(x)dx: lim > f(x;)A x; (3.199)
o n—® 7
where x; is an arbitrary point in the kth subinterval Ax, , k=1,2, ..., n.
For a real random process X(¥), the existence of the integral
b
I=[X (@)t (3.200)

in the strict sense means existence as a Riemann integral for every sample function
x(?). In this case, / is a random variable with sample values

b
i=[x(t)dt (3.201)

where x(f) is a sample function of X(7), and thus (3.201) may not necessarily exist
for every sample function. We define the mean-square integral of the random
process X(¢) as

b n
I=[X(0)dt=Tim Y. X(t,)At, (3.202)
" n—o 7

The integral exists when
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2
lim E{I ZX(tk)Atk ]zO (3.203)
At —>0 k=1
In this case, the mean of / is given by
b b b
E[l]= E{ | X(t)dt} = [ ELx ()t = [ m (D)t (3.204)

the mean-square value is

b b bb
E[I*]= E{J. [x@Hx @, )dtldtz} = [[ R (t).1,)dt,dt, (3.205)

aa aa

and the variance is

bb bb
var[l]=o7 = [ [ Co (ty,t2)dtydty = [ [ Ry (ty,65)dtydty —m (t)m, (t5)

aa aa
(3.206)
If X(7) is stationary, and we redefine / as a time average to be
j X(t)dt (3.207)
Then, the variance I is
var[[]=o? = j j C..(t; —t,)dt,dt, (3.208)

4T2 o

Letting T=1¢, —t,, and changing the double integral in ¢#, and #, to one integral in ©
as we did in Section 3.3, we have

T T 2T
[ [Culti—ty)dnd, = [QT -t C(v) dr (3.209)
T -T =27

Thus, the variance becomes
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2T 2T
var[I]=o? L [ (1—ﬂJcm(r)dr=i | [I—MJ[RM(I)—mi]dT

2T 5 2T 2T 5 2T
(3.210)
3.10 HILBERT TRANSFORM AND ANALYTIC SIGNALS
Consider a linear system whose transfer function is given by
-7, >0
H(f)={ s (3.211)
Jj. f<0
Note that |H ( jf)| =1 for all frequencies; that is, it is an all-pass filter. The phase is
given by
_ga f >0
arg[H(jNH1=/H(jf) = (3.212)
I
5 , f <0

The amplitude and phase responses of such a system, called a quadrature filter, are
shown in Figure 3.36. The impulse response of this filter, shown in Figure 3.37, is
given by

h(t) = % (3.213)

If x(2) is the input to the quadrature filter as shown in Figure 3.38, the output y(?) is
called the Hilbert transform of x(¢), #{x(f)}, and is given by

|H() Phase of H (f)
A A
1
/2
> >/
0 4 0
-m/2

Figure 3.36 Amplitude and phase response of a quadrature filter.
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@)
A

Figure 3.37 Impulse response of a quadrature filter.

N h(t):it () = Hix(D}= &)
1

Figure 3.38 Hilbert transform of x(¢).

Y(t) = X(t) = Hix(t)} :x(t)*h(t)zi [ %dr (3.214)

—00

If now X(f), a wide-sense stationary random process, is the input of a
quadrature filter with autocorrelation function R, (t) and power spectral density

S, (f), then the output ¥(¢) is the Hilbert transform of X(¥) defined by

X

r—1

Y(t):f((t)=%j

—00

dt (3.215)

The power spectral density of the Hilbert transform of X(?) is

2
S () =Sx(N) =S (NHU)| =S, () (3.216)
Hence, the autocorrelation function of the Hilbert transform is
Ry(1) =R, (1) (3.217)

From (3.135), the cross-spectral density is
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_ijx(f)7 f>0
S. =S H(f)= 3.218
() =S (HH(Sf) {ijx(f) <0 ( )

which is purely imaginary. Hence, using the cross-correlation function, we have by
definition

Self)= [ Ry (e ode (3219)
= TR;:X (t)cos2nfrdr—j TR;(X (t)sin 2w ft dt (3.220)

Since S;, (f)is purely imaginary, then

OJ?R)EX(I)COSZTCﬁdr:O (3.221)

The cosine is an even function, and thus R;, (t) is odd, yielding
Ry (-1)=—R;, (1) (3.222)
and
R; (0)=0 (3.223)
Since S; (f)=S. (/HH(f) and S ;(f) =S, (/)H"(f), it also follows that
Ry (1) =R, (1) (3.224)
and
R (=R (-0 =R\, (1) (3.225)

Finally, we observe that H(jf)H(jf)=-1. This implies that the Hilbert
transform of a Hilbert transform is the negative of the original signal; that is,

X() =-X(t) (3.226)
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From (3.217) and (3.225), we can write

Rig (D) =Ry (1) =Ry (0 (3.227)
Consider next a linear system whose transfer function is given by

2, >0

H(f)= {o £<0 (3.228)

as shown in Figure 3.39. The impulse response of this system is
h(t) = 5(1) + it (3.229)
T

Such a system changes a real signal into a complex signal. The transfer function
can be rewritten as

H(f) =1+ jO(f) (3.230)

where Q(f) is the transfer function of the quadrature filter. If a signal x(¢) is

applied to this system, as shown in Figure 3.40, the output )(¢) is called the
analytic signal associated with x(7).
Similarly, the analytic process associated with X(¢) is defined to be

Y()=X(1) = X (1) + jX(2) (3.231)

Figure 3.39 Transfer function.

x(t)—b h(t) = 8(t)+it ——> y(¢) = X(¢) = x(¢) + jx(¢)
TC

Figure 3.40 System for analytic signal.
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The autocorrelation function of Y(?) is

R, () =E[Y(t+1) Y ()] = E{[X(t+7)+ X(O)] [X(0)- jX ()]}
=R (D + Rz (D) + J[R3 (1) — Ry (1)] (3.232)

Knowing R . (1) =Ry (t) and Ry (1)=-R;(1)= R « (1), the autocorrelation
function of the analytic signal becomes

Rz (V) =R,, (1) = 2[R, (1) + jR; (D] = 2[R, () + jR, ()] (3.233)
Taking the Fourier transform of (3.233), we have
S ()=8,, (/) =2S (D) + jS; ()] (3.234)
Using (3.218), we obtain

48 D, 0
S;;(f)=Sm(f)={O wl/) Jf: . (3.235)

We observe that the power spectral density of an analytic signal is zero for
negative frequencies, and from (3.231)

X(1)=Re X (1)) (3.236)

that is, X(?) is the real part of the analytic signal. From (3.233),

R..(1)= % Re {R (1)} (3.237)

3.11 THERMAL NOISE

Electrical noise arising from the random motion of electrons in conductors is
referred to as thermal noise. It has been shown that the power spectral density of
thermal noise voltage across the terminals of a resistor R is given by

2

a
S (f) = 2UTR—*—
a”+0m

(3.238)
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where &k =1.38x10"2* J/ K is the Boltzmann’s constant, and T is the absolute
temperature in K. A plot of the power spectral density of thermal noise is shown in
Figure 3.41. However, a. is in the order 10" rad/s or 10" Hz =10* GHz, which is
greater than most frequencies used in electronic circuit applications. Thus,
(oc2 +o? )/ ®? —> 1, and thermal noise is modeled as a white noise process with a
flat spectrum of value 2kTR V*/Hz as shown in Figure 3.42.

In addition, since the number of electrons in the resistor is very large, with
statistically independent random motions, from the central limit theorem, thermal
noise is modeled as Gaussian with zero mean. Hence, thermal noise voltage is a
zero-mean white Gaussian process. The resistor can be modeled by the Thevenin’s
equivalent circuit, consisting of a noiseless resistor in series with a noise voltage
source, as shown in Figure 3.43(a) of mean-square value

E[V ()] = 4kTR (3.239)

or by Norton’s equivalent circuit, consisting of a noiseless resistor in parallel with
a noise current source, as shown in Figure 3.43(b), of mean-square value

E[I2 (1) = 4kTG (3.240)

where G =1/ R is the conductance. The power spectral density of the noise source
voltage or the noise source current are, respectively,

Sun (1)

2kTR

v
~

-0 0 o

Figure 3.41 Power spectral density of thermal noise.

S (f)
A

2kTR

Figure 3.42 White noise spectrum.
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(a) (b)

Figure 3.43 Noisy resistors: (a) Thevenin’s equivalent circuit, and (b) Norton’s equivalent circuit.

S,, (f)=2kTR V*/H:z (3.241)

and

S, (f)=2kTG A’MHz (3.242)

Nyquist’s theorem. Consider a passive RLC one-port network as shown in Figure
3.44. The voltage at the terminal pair in v(¢) and Z(jo) is the impedance seen
looking into the port. Then, the power spectral density of the open-circuit noise
voltage at the terminal pair due to al/l thermal noise sources is given by

S, v, (f)=2kT Re{Z(jw)} (3.243)
or, the power spectral density of the short-circuit noise current is given by

Sy, (f) =2kT Re{Y(jw)} (3.244)
where Y(jo)=1/Z(jo) is the network’s input admittance, and © = 27f".

Example 3.14

Determine the power spectral density of the voltage v(¢) at the terminal pair of the
RC network shown in Figure 3.45 due to thermal noise generated in R, using:

RLC

Figure 3.44 Passive RLC network.
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VN([)
RCIR ) € 0
R
—_ @
Figure 3.45 RC network. Figure 3.46 Thevenin’s equivalent circuit.

(a) Thevenin’s equivalent circuit.
(b) Norton’s equivalent circuit.
(c) Nyquist’s theorem.

Solution

(a) Using Thevenin’s equivalent circuit, the resulting circuit is shown in Figure
3.46. The transfer function from the noise source is, by voltage divider,

1
H(jo) = joC 3 1
S T 14 joRC
R+——
joC

It follows that

2kTR

S, ()= Sup, @GO =20
()

(b) Using Norton’s equivalent circuit, the resulting circuit is shown in Figure 3.47.
The transfer function is in this case

I ’D R C 1~ vl

Figure 3.47 Norton’s equivalent circuit.
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R
H(jo) = joC R
S T T 14 joRC
R+
joC

The power spectral density of the output voltage is then

2T R 2kIR
R 1+(wRC)  1+(wRC)

Sy, (@ =S, , (|H(jo)|" =

(c) The impedance seen looking into the terminal pair of the network is

R
H(jo) = joC _ R _ R y ®RC
pe L 1+jORC 14(0RC)* ~ 1+(eRC)

joC

From Nyquist’s theorem, the power spectral density of the resistor noise voltage
source is

2kTR
S, (@) =2kT Re{Z(jo)} = k—z

o 1+ (®RC)
We observe that the three results of (a), (b), and (c) agree.

Usually, the power spectral density of a white noise process is denoted

N,

S,m(f)=7°, —0< f <o (3.245)
The autocorrelation function is then
N
R, (1) = 70 8(1) (3.246)

Since the bandwidth of real systems is finite, the integration (3.245) over a finite
band of frequencies results in a finite average power.
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Example 3.15 (Noise Equivalent Bandwidth)

Suppose that the zero mean white Gaussian noise process with autocorrelation
function R, (t) =(N,/2)3(t)is applied to a linear time-invariant system with
impulse response /4(#). Determine the average noise power of the output process.

Solution

The power spectral density of the input white Gaussian noise is given by (3.245) to
be §,,(f)=N,/2,—w< f <. Using (3.141), the output noise power spectral

density is S(f)=(N, /2)|H(f)2 , where H(f) is the transfer function of the

system. The average power is then

N, % «
Pae == [JHG df = No [JHO] df (3.247)
% !

which is finite if _[ |H f )|2 df converges. In such a situation, the concept of noise
equivalent bandwidth is considered. To define the noise equivalent bandwidth,
consider the same problem of Example 3.15, but the system’s function is an ideal
lowpass filter of bandwidth B and zero-frequency response H(0). The average
noise power at the output is then

Py =NyH?*(0)B (3.248)

In equating (3.247) and (3.248), we obtain the noise equivalent bandwidth, B,,,
which is defined to be

o0

[l af

= (3.249)

eq H 2 (0)

Hence, the average noise power at the output of the linear time-invariant system,
with a noise equivalent bandwidth B,,, and the input white noise process with
power spectral density N, /2, is given by

Py =NoB.,H?(0) (3.250)
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|7

-B 0 B
5By —»

Figure 3.48 Noise equivalent bandwidth of a lowpass system.

|7

—t——
-fo Jo
<35, —» <—3B., —»

Figure 3.49 Noise equivalent bandwidth of a bandpass system.

Note that the bandwidth B,, can be interpreted as the bandwidth of a linear time
invariant system with a rectangular transfer function of zero-frequency response
H(0) and bandwidth B, as shown in Figure 3.48. If the system were bandpass, the
noise equivalent bandwidth is as shown in Figure 3.49.

3.12 SUMMARY

In this chapter, we covered the fundamental concepts of random processes. After
defining the random process, which was considered as a random variable
(Chapters 1 and 2) with time as a running parameter, we gave the different
properties of correlations and power spectral densities. We presented the different
type of random processes; namely, the Gaussian process, the Poisson process, the
Bernoulli and Binomial processes, the random walk and Winner processes, and a
brief description of the Markov process. Markov processes will be developed in
more detail in the next chapter on discrete time processes. The sampling theorem
and the concepts of continuity, differentiation, and integration, which are well
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known for deterministic signals, were developed for stochastic processes. Then,
we defined the Hilbert transform of stochastic processes and the corresponding
analytic process signals. We concluded the chapter with a discussion on thermal
noise and noise equivalent bandwidth. Many examples were solved in some detail
to remove the ambiguities that may occur.

PROBLEMS

3.1 Consider a random process X(¢) defined by

3.2 Let s(t) = rect(t) =

33

34

X (t) = Acos(wyt +0)

where 4 and @, are constants, and ® is a random variable with probability
density function

4 o< =
fo®) =17’ -8

0, otherwise

(a) Find the mean and autocorrelation functions.
(b) Is the process stationary?

L,

1
f|<—
2

0, otherwise

Define the process X(t)=S(t—1,), where T, is a discrete random variable
taking values 0 and 1 with equal probability.
(a) Determine and sketch the distribution function Fy (x,,0).

(b) Determine and sketch the autocorrelation function R, (¢;,7,).

Consider the random process defined in Problem 3.1.
(a) Is the process ergodic in the mean?
(b) Is the process ergodic in the autocorrelation?

Consider the random process defined by X (¢) = A cos(w,? +®), where 4 and

®, are constants, and @ is a random variable uniformly distributed over the
interval (0, 2m). Let ¥(7) be the random process defined as Y(£) = X ().
(a) Find the autocorrelation function of ¥(7).

(b) Is Y(¢) a stationary process?
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3.6

3.7

3.8

Figure P3.7 Random process X(?).
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Consider the random process defined by X (1) = Ae’ (©*0) " where 4 is a
random variable with density function

a2

a 5,2

20 >0

— e az
Sa(@)=4 52 ’

0 ,  otherwise

o® is constant and © is a random variable uniformly distributed over the
interval (0, 2m). 4 and O are statistically independent. Determine

(a) The mean function E[X(?)].

(b) The autocorrelation function R, (¢,,¢,).

Let X(f) and Y(r) be two statistically independent random processes with

autocorrelation functions R (1) = 2¢ 4% cos ot and R (D =9+ eI Let

Z(t)=AX()+Y(t), where A4 is a statistically independent random variable

with mean 2 and variance 9.
(a) Determine R, (1), the autocorrelation function of Z(¢).

(b) Compute the mean and variance of Z(¢).

Let X(¢) be the random process shown in Figure P3.7. The square wave is
periodic with period 7. The amplitude 4 is random with zero mean and
variance c°. 1, is governed by a random variable Tj, which is uniformly
distributed over the interval (0, 7). 4 and T, are statistically independent.
Determine the autocorrelation function R, (¢, t).

Let s(¢) be the periodic deterministic waveform shown in Figure P3.8. Define

the random process X(¢) = S(¢ — T), where T} is a random variable uniformly

distributed over the interval (0, 7).

(a) Find the autocorrelation function R, (¢, t,). Is the process X(¢) stationary
in the wide-sense?

X(%)

v

< 1P

e 7
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s(2)
/\ ‘ /\
T T T -+ T T T - g T
-7 0o T T s
4 4

Figure P3.8 Deterministic signal s(7).

(b) Determine and sketch the distribution function Fy (x,).
(c) Determine and sketch the density function [ (x,).

(d) Find E[X(9)], E[X*(f)], and szc, .

(e) Find <x(f) > and < x*(r) >.

3.9 Let X(¢) be a random process with a typical sample function, as shown in
Figure P3.9. The sample functions are constant during each second interval.
Their values are governed by statistically independent random variables 4,
i=0,+1,%2,..., and uniformly distributed over the interval [ -1, 1).

(a) Determine the second-order density function f(0,0; 1/2, 3/2).
(b) Let Y(¢) = X(¢—0), where O is a uniformly distributed random variable

over the interval [0, 1) and statistically independent of the 4;s. Determine
the second-order density function f} (0,0; 1/2, 3/2).

Figure P3.9 A typical sample function of X(7).
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X

\ 4

Delay 1

y
D (0]

Figure P3.10 System function for X(7).

3.10

3.11

3.12

Let X(¢) be a wide-sense stationary process with autocorrelation function

1—|T|, |T|<1

0o |, otherwise

applied to the system shown in Figure P3.10. Determine and sketch the
output autocorrelation function R, (7).

Let X(#) and Y(¢) be two orthogonal processes with power spectral densities

s |f|<l

S otherwise

1-
Sxx(f)=5yy(f)={0 4

Define a new process Z(f) = Y(f) — X(t — 1). Determine and sketch the power
spectral density S, (f).

Let X(¢), a zero-mean, wide-sense stationary real Gaussian random process
with power spectral density S,.(f)=(N,/ 2)e_u‘f | , be passed through the
nonlinear memoryless cubic system given in Figure P3.12. Determine the
mean-square value E[Y % ()] of the output process in terms of Ny and c.

Xm—» Y =X(t) Y0

Figure P3.12 Memoryless cubic system
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Figure P3.13 System function for X(7).
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h(?)

X(@)
?—» Y(1)

ha(?)

3.13 Let X(¢) be a random process with the triangular autocorrelation function

3.14

N(P)

r|<l

>

1—|r
R.XX (T) = 0

, otherwise

If X(¢) is applied to the system shown in Figure P3.13 with A, () =6(¢ —1)
and £, (¢) =93(t—2), then determine and sketch the output autocorrelation
function of the output Y(¢).

(@)

(b)

Let N(f), a stationary process with power spectral density
S, (f)=rect(f), be applied to the system shown in Figure P3.14(a).

Determine and sketch the output power spectral density S, (f).

If the process N(?) is added to two stationary processes U(f) and V(¢)
with cross-spectral density

1
Sw(f)=42

1
11, <1

0 , otherwise

as shown in Figure P3.14(b), then determine and sketch the cross-
spectral density S,,. (f). Assume that the noise process is statistically

independent of U(¥) and V(¢), and that U(¢) and V(¢) are zero mean.

Delay 1 N@©)

Y(7) 4
§—> 90 ;(} > ()

(1) —DEB—b Z(1)

@ (b)

Figure P3.14 (a) System function for N(¢), and (b) system combining N(¢),U(¥), and V(f).
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3.15 Let X(?) be the input process to a linear system with impulse response

h(t):{e_’, t>0

0 , otherwise
X(¥) is stationary in the wide-sense with autocorrelation function

l—|r|, |r|£1

0o otherwise

Determine the autocorrelation function of the output process R, (1).

3.16 The random process X(#) with autocorrelation function
R.(v)= el , o constant

is applied to the RC filter shown in Figure P3.16. Determine the output
power spectral density S, (f).

3.17 Let X(?) be the input process to the RLC network shown in Figure P3.17. X(¢)
is a wide-sense stationary process with mean m, (f) =2 and autocorrelation

function

Input C~ Output

[ )

Figure P3.16 RC filter.

X cCT~ Y@

Figure P3.17 RLC filter.
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R. . (v)=4+ eiz‘r‘

Find the mean m,(f) of the output process and the output power spectral
density S, (f).

3.18 Let N(¢) be a bandlimited white noise process with power spectral density

No <B
Sm(f)=17 2 - s
0 . |f]>B

where B denotes the highest frequency. Determine the sampling rates for
which the noise samples will be uncorrelated.

3.19 Let X(¢) be a wide-sense stationary process with power spectral density

=71, <1
0 , otherwise

Sxx(f)z{

and sampled at the Nyquist rate.
(a) What is the interval between the samples?
(b) Determine the correlation coefficient between the samples X(n7) and

X[(n + INT]; n arbitrary.

3.20 Let X(?) be a stationary random process with autocorrelation function R, (7).
Define the stochastic process

Y(@t)= jX('c)dt
0

Is the process Y(f) stationary, given that

R, (t)=4+e

3.21 Let Y(?) be the process defined in Problem 3.20. Obtain the autocorrelation
function of Y(f) when R (#;,t,)=28(¢; —1,).

3.22 Let X(f) be a stationary, real, zero-mean Gaussian process with
autocorrelation function as shown in Figure P3.22. The random variables /,
and /, are obtained from the integration of the process X{(¥), such that
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Ry (D)

1

» T, seconds
-1 +1

Figure P3.22 The autocorrelation function.

3.23

3.24

1 3

1, :IX(t)dt and [, = _[X(t)dt, and the mean-square value of 7, is 2/3.
0 2

Determine

(@) E[I;]

(d) E[1,1,]
T

(c) Let I, = J X (t)dt with T>> 1 second. Find the variance of ..
0

t

Let Y(¢) = .[X (t)dt , where X(7) is a stationary random process with
0

autocorrelation function R, (1) =1+ e

(a) Is the random process Y(¢) stationary?
(b) Determine the autocorrelation function of Y(¢) in terms of R (7).

Let X(¢) be a zero-mean wide-sense stationary process with power spectral
density

i
Su(N=1 f.~

0 , otherwise

= 1.

X ) =H{X ()} is the Hilbert transform of X{(#), and X (1) is the
corresponding analytic signal process. Determine whether the following
statements are true, possibly true, or false. Justify your answer.

(a) X(¢) and X (¢) are orthogonal processes.
() jH X0} =X().

(¢) X(t)e/*™ is an analytic signal process.
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L C == Vo(f)

Figure P3.25 RLC network.

3.25

3.26

3.27

(d) E[X*()]=2E[X*(1)].

(a) Determine the power spectral density of V(f) due to thermal noise for
the RLC network shown in Figure P3.25.
(b) Use Nyquist’s theorem to verify the result found in (a).

Consider the network shown in Figure P3.26. For the noise voltage at the
terminal pairs, determine

(a) The power spectral density.

(b) The autocorrelation function.

(c) If R, =1KQ, T; =400K ,R, =2KQ, T, =300K , and C=10"""F,
compute the root mean-square (7ms) value.

Consider the RL network shown in Figure P3.27.

(a) Determine the power spectral density of the mesh current /(f) due to
thermal noise.

(b) Check the result found in (a) using Nyquist’s theorm.

Ry(T>)

R(Ty) § T

WA ot
Cl

Figure P3.26 RC network.

L 1(1)

Figure P3.27 RL network.
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|H ()|
K
X0
h(t) ——» Y
>/
-B 0 +B
Figure P3.28 Linear system. Figure P3.29 System function.

3.28 Consider the system shown in Figure P3.28, with impulse A(f) = e "u(?).
The input random process is stationary with mean m .

(a) Determine the mean of the output process Y(¥).
(b) Determine the mean and variance of Y(¢) if the input X(¢) is a zero mean
white noise process.

3.29 Let N(f), a wide-sense stationary noise with power spectral density
N,
S, (f) =TOV2/HZ, —0< f<m

be applied to a linear filter with the system function shown in Figure P3.29.
Determine the variance of the output filter ¥(7).
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Chapter 4

Discrete-Time Random Processes

4.1 INTRODUCTION

In Chapter 3, we developed the concepts of continuous-time processes and
described briefly the Markov process. In this chapter, we consider another class of
random processes; namely, the discrete-time stochastic processes. A discrete
random process may be a uniformly sampled version of a continuous-time process.
A discrete random process is a correspondence that maps the sample space into a
discrete-domain-functional space; that is, a functional space whose member
functions are defined in a discrete set (time samples). Hence, it is a collection or an
ensemble of real or complex discrete sequences of time, also called realizations,
and denoted X(n). Many authors use the notation X[n]. In our case, we keep

X(n) to be consistent with the notation X(¢#) of a continuous-time random

process. Note that for the convenience of notation, we normalize the time with
respect to the sampling period. Hence, for a fixed n, X(n) represents a random

variable. One particular ensemble is the discrete-time series or just time series,
where, for example, the sequence X(n), X(n-1), ..., X(n—M +1), representing a
time series, consists of the present observation X(n) and past (M —1)
observation at times n—1,n—2,... ,n—M +1. In fact, many discrete-time random
processes are best approximated by the time series model. In this case, the power
spectral density is a function of the model parameters, and thus the selection of the
appropriate model and the estimation of the model parameters are necessary. Such
an approach is referred to as parametric. If U(n) is an input driving sequences
and X(n) the output sequence, then a general model of the data may be given by
the following linear difference equation

X(n)= —f a(k) X(n—k)+ Zq:b(k)U(n—k) 4.1
k=1 k=0

223
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Computing the spectrum using the obtained model parameters is known as
parametric spectrum estimation. The field of spectrum estimation is wide, and it is
not the scope of this book. However, in discussing discrete-time random processes
and their applications, we must introduce the autoregressive (AR) processes, the
moving average (MA) processes, and the autoregressive moving average (ARMA)
processes. In order to have a good grasp of these discrete processes and their
applications for spectrum estimation, the fundamental concepts of matrix
operations and linear algebra are a prerequisite, and thus they will be given in
Section 4.2. Such mathematical concepts will also be needed for later chapters.
We conclude the chapter with Markov chains. Markov chains are a special class of
Markov processes with discrete states, but with both discrete and continuous times.
Note that we present the continuous-time Markov chains in this chapter, which
seems to follow logically, after presenting the essential concepts of discrete-time
Markov chains, since these concepts must be used when presenting continuous-
time Markov chains.

4.2 MATRIX AND LINEAR ALGEBRA

In Chapter 2, we briefly used some concepts of matrices to do some operations.
We now give, in this section, a review of the fundamentals of matrix and linear
algebra.

4.2.1 Algebraic Matrix Operations

Matrices are defined as rectangular arrays of real or complex elements. The

matrices are generally represented by capital boldface letters, whereas the elements
of a matrix are denoted by lowercase letters. An m x n matrix 4 with elements a;,

i=1,2,...,m, and j=1,2,... ,m is a matrix with m rows and n columns, as
given by (4.2).
an  ap A1n
dp Ay o dyy
A=[A]=| . . (4.2)
Aml Am2 Ayn

A shorthand notation that is sometimes used in describing matrices is

A=[a;] (4.3)

When m = n, the matrix is called a square matrix. If m = 1, the m x n matrix
becomes a 1 x n row matrix called a row vector, given by
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a=[a;, ap - a,] 4.4

whereas, if n = 1, the m x n matrix becomes an m x 1 column matrix called a
column vector, given by

an
ansn
a=| 4.5)
Al
Two matrices 4 and B are said to be equal if a; = bij forall i=1, 2, ...,m and

j=L2, ..., n. The sum and difference of two m x n matrices are performed on
an element-by-element basis; that is, if

C=A+B=B+A4 (4.6)
and
D=A-B=-B+4A4 4.7
then,
cp=a; + bij (4.8)
and
dj=a; —by; (4.9)

Note that 4 and B must be of the same dimensions. If o is a scalar, the
multiplication of an m x n matrix A4 by a scalar amounts to multiplying every
element of A4 by a; that is,

aA=Aa=a a; (4.10)

If A isanm x n matrix and B is a p x g matrix, the product

AB=C (4.11)



226 Signal Detection and Estimation

is defined when 4 and B are conformable; that is, when the number of columns
n of A is equal to the number of rows p of B, n = p. The product is then given by

k=1

C is an m x g matrix. The matrix multiplication, if defined, is in general not
commutative; that is,

AB + BA (4.13)

Unlike scalar algebra, where the product ab = 0 means a = 0 or b = 0 or both, the
matrix product AB =0 does not necessarily mean 4 =0 or B =0, where 0 is the
null matrix. However, many operations related to associative and distributive laws
are valid for matrix algebra; namely,

a(A+B)=aA+aB (4.14)
A+(B+C)=(A+B)+C (4.15)
A(BC)=(AB)C (4.16)
A(B+C)= AB+ AC (4.17)

and
(B+C)A=BA+CA (4.18)

The identity matrix or unit matrix I is an n x n square matrix all of whose
elements are zero, except the elements a;, i = j, on the main diagonal, which are
ones.

The transpose of an m x n matrix A is an n x m matrix obtained by
interchanging each row with the column of A of the same index number, such that

app  dp a1

r app dxp Am2
A = . (4.19)

ay, a, A

or
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AT =[a,] (4.20)

The superscript T indicates matrix transpose. It can be shown that

(A+B) =A" + BT 4.21)

(4B)" =B" A" (4.22)
and

(4BC)" =c"B" 4" (4.23)

the conjugate of A, written A or A", is the matrix obtained from A by changing
all of its elements by their complex conjugate, such that

A" =[a}] (4.24)

If all elements of A are real, then A" = A. If all elements are purely imaginary, then
A" =—A. If the transpose of the conjugate of A4 is equal to A, then A is said to be

a Hermitian matrix. The order of the two operations, conjugate and transpose, is
irrelevant. We write

AT =" ="y (4.25)
or
A1 :[a;] (4.26)
or
01*1 a;1 a:u
u a;kz a;z a:ﬂ
A7 = | . (4.27)
ap Ay, v Ay,

The superscript H denotes Hermitian. If 4 is real, then A” = A7, and A is said to be
symmetric. It can also be shown that



228 Signal Detection and Estimation

(A4+B)" = 4" + B (4.28)
and
(AB)" = B" 4" (4.29)

We now show how to compute the determinant of an n x n square matrix. In order
to write the general expression, we need to define the minors and cofactors. If

n=1, A=[a;;], and the determinant of A, denoted |A| or det(A4), is

i dp
:allazz _a12a21. Ifn_3,

n:2’ ‘,£1:|:all a12:|,and det(A):

dr dxp

and

-~ --4p3 Qr1---Gyo--- 43 Arr---drp---43

det(A) = ay|dyy  ayn  ay|—aplay ayp  ap|tapslay axn (ZX]

431 Az 43 431 dy 43 ay) a4z di
|4 ap dy a3 ay dx
=ay —day +ag3

sz dsz3 a3 4z asz;  dz

=ay(anasyy —ayayn)—ay,(ayas; —aypas) +a3(ayasn —arpas)

If now A is an n x n matrix, the minor My is the determinant of the (n—1)x(n—1)

matrix, formed from A4 by crossing out the ith row and the jth column. For
example, the minors M1,, My, and M3, for the 3 x 3 matrix above are, respectively,

azp a3 app ags ayp ags
My, = , My = ,and My, =

asy  dsz asz;  dsz az; Ay

Each element a;; of the n x n matrix 4 has a cofactor Cy, which differs from
the minor M;; by at most a sign change, such that

C; = (-n"/ M (4.30)
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The general expression for the determinant of the # x n matrix A4 is given by

det(A) =" a,C; => (-1)"/a; M, (4.31)
j=1 j=1

Note that any choice of i for i = 1, 2, ..., n, yields the same value for the
determinant of 4. This form of computing the determinant of 4 by the evaluation
of a string of (n—1)x(n—1) determinants is called Laplace expansion.

The inverse of an n x n square matrix A is A", such that
AA ' =Aa=1 (4.32)

The inverse of A exists if the matrix A4 is nonsingular; that is, the determinant of A
must be nonzero. The matrix A4 is singular if and only if det(4) = 0. The inverse
of A can be given by

o, cT

" det(A) (433)

where C is the n x n square matrix of cofactors of 4. C” is called the adjoint
matrix of A, and is denoted Adj(A4). If A, B, and the product AB are all
nonsingular, it can be shown that

(4B)' =B'4™! (4.34)
and
det(AB ) = det(A ) det(B) (4.35)

We can now define the rank of A, denoted r, or rank(A4), as being the size of
the largest nonzero determinant that can be formed from the matrix 4. Hence, if
the n x n square matrix is nonsingular, its rank is n. The rank of the product of two
(or more) matrices is smaller than or equal to the smallest rank of the individual
matrices forming the product; that is, if r, and 7 are the respective ranks of 4 and
B, then the rank for C, r¢c, of C=AB is

0<r, <min(r,, ry) (4.36)

If A is an n x n square matrix, the trace of A, denoted tr (A4) , is the sum of all
the diagonal elements of 4 given by



230 Signal Detection and Estimation
tr (A)zZaii (4.37)
i=1
If A and B are conformable square matrices, then
tr(A+B)=tr(A)+tr (B) (4.38)
and

tr (AB) = tr (BA) (4.39)

Some other useful formulas related to the determinant of an » x n matrix and
its inverse are:

A" =™’ (4.40)
AT = (4.41)
det(A”) = det(A) (4.42)
det(A™) = det™ (4) (4.43)
det(ow A) = 0" det(A) (4.44)
where a is a constant, and
det(4™) = D (4.45)

Another useful formula that is frequently encountered in spectral analysis is the
augmented matrix inversion lemma, which says

(A+BCD) ' =47 —A'B(DAT'B+C )" D4 (4.46)

where the matrix A is n x n, Bis n x m, C is m x m, and D is m x n. The inverse of
the augmented matrix (A4 +BCD)and the inverse of DA™ B+C ™" are assumed to

exist. A special case of this lemma, known as the Woodbury'’s identity, is when B
is an n x 1 column vector denoted u, C is the unity scalar (a 1 x 1 matrix), and D is
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a conjugate 1 x n row vector denoted u’. Then the inverse of the matrix A4

augmented with u u'” (a rank one matrix) is

Awy @4

(A+uu™ =47 =
1+u” Au

(4.47)

The quadratic form Q associated with a matrix A4 is a real scalar quantity
defined as

O=x"Ax=)Y a;x;x, (4.48)

i=1 j=I

where x =[x, X, .. x,]7 and 4 is an n x n square matrix with a;=a;. IfAis

n

Hermitian, then

n n

O=x"dx=3 > a;x/x, (4.49)

i=l j=1

. *
with a; =a; .

For A Hermitian, it is positive semidefinite if and only if
xTAx>0, x=0 (4.50)
It is positive definite if
xTA4x>0, x#0 4.51)
A is negative semidefinite if and only if
xTAx<o0 (4.52)
It is negative definite if
xTa4x<0 (4.53)

However, if x4 x>0 for some x, and x4 x <0 for other x, then A is said to
be indefinite.
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4.2.2 Matrices with Special Forms

We frequently encounter in many applications special matrices. An n x n square
matrix is said to be diagonal if all elements i # j are zero, except the elements a;;,

i = j, on the main diagonal. We write

ap; 0 0
0 ayp '

A= . :dlag[allgazz,...,a’m] (454)
0 0 a

nn

We observe that the unit matrix is a special case of the diagonal matrix with a; = 1,

i=1,2,...,n. A isalsoa diagonal matrix, given by
1 0 0
an
0 ! 0 1 1
A7l = do =diag| —,—,...,— (4.55)
%2 : ay dn Apn
' 1
0 0 —_—
L a’”’l i

A block diagonal matrix is a square matrix that can be partitioned in nonzero
square submatrices along the main diagonal, while the other submatrices are zero.

A4, ;0 0
0 E-;‘i;s 0 .

A=| . L | =diagld), Ay, A ] (4.56)
0 0 A,

IfallA4;,i=1,2, ...,k are nonsingular, then

det(A) = ﬁ det(A4,) (4.57)

i=1

and
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A0 0
RIS
A7 = 0 A2 0 = diaglA]", A", . AL'] (4.58)
0 0 A

A square matrix with all of its elements above the main diagonal equal to zero is
called a lower triangular matrix, and is given by

a; 0 0
ay ap - 0

L=| | . (4.59)
an (%) Ay

The determinant of any triangular matrix is the product of its diagonal elements,
given by

det(L) = H a; (4.60)
i=1

The inverse of the lower triangular matrix is also a lower triangular matrix. If all
the elements below the main diagonal are equal to zero, then we have an upper
triangular matrix, given by

ayp A o 4
0 ay - ay,

Uu=| . . (4.61)
0 0 a

nn

with a determinant as given by (4.60). The inverse is also an upper triangular
matrix.
An n x n square matrix A is said to be orthogonal if

Al =4 (4.62)

That is, the columns (and rows) must be orthonormal. If «; is the ith column (or
row), then orthogonality means
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T 1 for i=j
a;a;= (4.63)
Tl0 for i#
If
At =41 (4.64)

then the n x n complex matrix A is said to be unitary; that is,

U for iz
ala, = or=J (4.65)
710 for iz
If
Al=4 (4.66)

then A is said to be an involutory matrix. An idempotent matrix is a particular case
of a periodic matrix; that is, a square matrix such that the matrix power

A=A k=123, (4.67)

The matrix is said to have period k if k is the least such integer. If k =1, then

A% = A, and the matrix is called idempotent.
A persymmetric matrix is a matrix that is symmetric about its cross diagonal.
To be able to see this definition clearly, let R be a 5 x 5 matrix, and then

R=\a3 a3 1,0’3'3/ dy a3 (4.68)

An n x n square matrix A is circulant if all of its rows are obtained from the n
values {ai, as, ... , a,} by introducing a shift to the right on the previous row to
obtain
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a ay a
a, ap a,
A= . . . (4.69)

A matrix having identical elements along any diagonal, such that a; =a;_, for all

i and j, is said to be Toeplitz. If A is n x n, then

al a_2 a_3 e a

a, ap a,

A=|9 d2 4 Loag (4.70)
. . a,
a, as a, a;

For example, if n = 4, we have

akl\\ a«Z\ a~3\ a4

a, a a, a

N 1 2 43

A=
aAz\ a~1 Ql a2
as a_, a,  a

If in addition, a_, = ay , then A4 is said to be Hermitian Toeplitz. If the matrix is
real, then a_, = a, , and A is said to be symmetric Toeplitz.

Another special matrix that we may encounter is the m x n Vandermonde
matrix, which has the form

1 1 1
a a, ay
2 2 2

4.71)
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4.2.3 Eigenvalues and Eigenvectors

In this section, we define eigenvalues and eigenvectors. We present methods of
determining eigenvalues and eigenvectors, and some related properties.
Eigenvalues and eigenvectors are extremely useful in many applications of signal
processing and modern control theory. In the context of this book, eigenvalues and
eigenvectors will be used in representing stochastic processes, and solving the
general Gaussian problem, which will be covered in a later chapter.

We define a linear transformation or linear operation or linear mapping T
from a vector space y, called the domain, to a vector space Y, called the range (or
codomain), as a correspondence that assigns to every vector x in x a vector 7(x) in
Y, such that

T:—> Yy 4.72)
The transformation 7 is said to be linear if
T(ax;+Bx,)=aT(x)+BT(x,) (4.73)

where o and 3 are constants, and x; and x;, are vectors in .

It can be shown that any equation involving a linear operator on a finite
dimensional space can be converted into an equivalent matrix operator. If the
transform 77v — v maps elements in v into other elements in v, we can define T
by a matrix A4.

Using the above concept of the linear transformation, we are now ready to
define the concept of eigenvalues and eigenvectors. An eigenvalue (or
characteristic value) of a linear operator T on a vector space y is a scalar A, such
that

Ax=Ax (4.74)

for a nonzero vector x in v. Every nonzero vector x satisfying the relation
Ax=A\x is called an eigenvector of A associated with the eigenvalue A. The
matrix representation of (4.74) is

(A-TXi)x=0 (4.75)

where I is the identity matrix. If the operator 7 acts on a function space, then the
eigenvectors associated with the eigenvalues are called eigenfunctions.
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Eigenvalues
If A is an n x n matrix, a necessary condition for the » homogeneous equations in

(4.75) to yield nonzero solutions is that the rank of the matrix (4 — IA) must be less
than n. That is, the determinant

|[4-12=0 (4.76)

Equation (4.76) is called the characteristic equation of the matrix A (or of operator
T represented by A). Expanding the determinant |A —H| , we obtain an nth degree

polynomial in A, called, the characteristic polynomial of A, and is given by

c(M) =]\ - A|=(-1)"|4-T]

=N e, N e, N L e +c (4.77)

Solving for A from the characteristic equation results in #n roots (A, Ay, ... , A,,) if all
roots are distinct. Consequently, ¢(A) can be written as

() =A=2)h=Ay)...(h=1,) (4.78)

However, if the roots are not distinct, then A,has multiplicity m;, A, has
multiplicity m,, and so on. Then,

()= (k=2 )" (A=2y)" (=2 )" (4.79)

where m; +m, +...+m, =n.

It should be noted that when all roots are distinct, the following relationships
hold:

|4]=%%, .0, =c (4.80)
and
tr(A)=A+hy+ ... +4, =(=1)""¢, (4.81)

Eigenvectors

Once the eigenvalues are determined from the characteristic equation, we
substitute for A in (4.74) or (4.75), and solve for the corresponding vector x.
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However, in determining A, two possible cases arise: (1) all eigenvalues are
distinct, and (2) some eigenvalues have multiplicity greater than one.

1. Case I: All eigenvalues are distinct.

The eigenvectors are solved for directly from (4.74) or (4.75). If x; is an
eigenvector corresponding to the eigenvalues A4, then ox; is also an eigenvector

for any nonzero scalar o. Since all eigenvalues and their corresponding
eigenvectors satisfy the equation

Ax; =k x;

Ax, =h,x,

Ax, :.knxn (4.82)
we can write that

AM = MA (4.83)

where the n x n matrix M is called the modal matrix, and defined by
M =[x, ix,}i...ix,] (4.84)

the rank of the matrix M is n, since the eigenvectors are linearly independent. A is
a diagonal matrix defined by

A, 0 0 - 0
0 2, 0 )
A=l 7 =diag[h;,2,,..., 0, ] (4.85)
0 0 0 - A,
Solving for A from (4.83), we have
A=M"'AM (4.86)

where M~ is the inverse matrix M. Equation (4.86) is known as the similarity
transformation. If the eigenvectors are orthogonal, then M ™' =M7”, where T

denotes transpose, and the matrix A4 is diagonalized by the orthogonal
transformation
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A=M"AM (4.87)
Example 4.1

(a) Find the eigenvalues and eigenvectors of the matrix A4.

-3 0 0
A=|-5 2 0
-5 11

(b) Find the characteristic polynomial of A.
(c) Diagonalize A by the similarity transformation.

Solution

(a) The characteristic equation is |A - IK| =0=>

-3-2 0 0
-5 2-% 0 |=(x+3)(x-2)(r-1)=0
-5 1 1=\

Thus, the eigenvalues are all distinct, with A, =-3,A, =2and A;=1. The
eigenvectors X, X,, and x; are obtained by solving the equations A4 x; =i,x,
Ax, =Ah,x,,and Ax; =k;x5. For A=3, we have

-3 0 0)a a
-5 2 0|b|=-3b
-5 1 1|¢ c

where x” =[a b ¢]. This results in three equations in three unknowns; that is,

—3a =-3a
—S5a+2b =-3b
—Sa+b+c =-3¢

Solving the equations, we obtain @ = b = ¢. Thus,

xl =afl 1 1]
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is the eigenvector and o is any constant.
Similarly, we solve for x, and x; to obtain

xi =0 o 1] and  xI'=[0 1 1]

(b) The characteristic polynomial of 4 is ¢(A) = |XI - A| =

A+3 0 0
cM)=|-5 r=2 0 |=22-7r+6
-5 1 -l

(¢) Using the similarity transformation, A = M ™' AM , we have

1 00 1 0 0
M=1 0 1|l=>M0 -1 1
111 -1 1 0
and
1 0 0f-3 0 offt 0 0] [-3 0 0] [», O O
A=]0 -1 1{-5 2 0|1 0 1|=/0 2 0|=[{0 A, O
-1 1 0f-5 1 11 1 1 1l [0 0 2

2. Case 2: All eigenvalues are not distinct.

The corresponding eigenvectors may or may not be linearly independent. If m; is
the order of an eigenvalue, called algebraic multiplicity, then the corresponding
number of independent vectors, ¢q,,q; <m;, is called geometric multiplicity or

degeneracy. The value of g; is given by
g; =n—rank(A-1IA;), 1<q; <m (4.88)

If g, =m;, then all eigenvectors associated with A; are independent and can
be solved for as in Case 1.

If g; =1, (m; >1), then there is one eigenvector associated with A,. The other
(mi —1) vectors are called generalized eigenvectors. A generalized eigenvector of
rank k is a nonzero vector for which
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(A=2,1) x, =0 (4.89)
and
(A= 0) %, %0 (4.90)
The eigenvector x; is found as before; that is,
(A=%T)x, =0 (4.91)
whereas the remaining (m; — 1) generalized eigenvectors are found by

(A_mi)xz =X
(A—Iki)x3 =X

(A—Iki)xj =X
(4-1.;)x, =x, (4.92)
If the modal matrix M is formed as before, then the m; _ | eigenvectors are

included, and the similarity transformation becomes

AM =MJ (4.93)
or

J=M"'AM (4.94)

J is an n x n diagonal matrix, called the Jordan form, such that

J =diaglJ,,J,,....J ] (4.95)
and
A 10 0 0]
0 A 1o 0
Jo=[ i i i i i=l2.,p (4.96)
0 0 0 A 1
[0 0 0 0 A
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Equation (4.96) says that each submatrix J;, i =1, 2, ..., p, has the same eigenvalue
along its main diagonal; ones for all elements in the diagonal above the main
diagonal, and zeros for the rest of the elements.

If 1<¢q,; < m,, there may be more than one Jordan block for each eigenvector.

Assume that we have a 6 x 6 square matrix, such that we have two eigenvalues A,
(M =Ay =A3 =hy =Ls) of order 5, and A4 of order 1, and ¢g; = 2. Then, we have
two eigenvectors x; and x, and three generalized eigenvectors for A;, and one
eigenvector xg for A¢. The generalized eigenvectors may be associated with x; or
with x,, or with both x; and x,. That is, we may have two Jordan blocks of the
form

A 100
A1
Jio=|0 x 1| J,= (4.97)
0 A
0 0 A
or
A 1 0 0
o Jy =[] (4.98)
"o 0 a, 1| T2 '
0 0 0 2

or vice versa. The approach to determine the Jordan blocks will be shown by an
example. Assume that we have the case of (4.97). Then, the corresponding
generalized eigenvalues and eigenvectors are determined by

(A=1ry)x)5 = x5
(A=1h))xp, = x,

(A=Ir))x; =0
(A=1ry)x; = x5
(A=D\)x, =0
(A-Thg)x, =0 (4.99)
The modal matrix M is
M =[x x5} %3 %) Xy | %] (4.100)

The similarity transformation is as given by (4.94), where J is
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Mo 10 | 0 0 0
0 % 1 | 0 0 0
00 2 | 0 0 0

J=| (4.101)
00 0 [ 1 Jo
00 0 | 0 % |0
0.0 0 0 0 |n

If we have the case of (4.98), then the corresponding generalized eigenvalues
and eigenvectors are determined by

(A=1Tr))x14 = x5
(A=1hy)x5 =X

(A—=1k)x,, = x,
(A=Ir))x; =0
(A-I.)x, =0
(A-1Thg)xs=0 (4.102)

The modal and Jordan matrices are then given by

M =[x {x),} X3 1% %) | X] (4.103)
and
2 1 0 0 | 0 0]
0 x L 0 | 0 0
0 0 & 1 | 0 0
J = (4.104)
00 0 % | 0 0
00 0 0 | |oO
0 0 0 0 0 |%g

From (4.50) to (4.53), we defined a method for determining the definiteness
of a Hermitian matrix. We now give an alternative method in terms of eigenvalues.
If all distinct eigenvalues A; >0, then the matrix is said to be positive definite. It
is positive semidefinite if all eigenvalues A; > 0. If all eigenvalues A; <0, then
the matrix is said to be negative definite, and the matrix is negative semidefinite if
all distinct A; <0 . However, if some A, >0 and other A; <0, then the matrix is

indefinite.
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Example 4.2

(a) Find the eigenvalues and eigenvectors of the matrix A.

0 01
0 200
A=
I 1 31
-1 0 0 1

(b) Find the Jordan form by the transformationJ = M ~' AM.
Solution

(a) The characteristic equation is given by|A - M| =0; that is,

=(2-2f(3-2)=0

Hence, two eigenvalues A, = 2 with algebraic multiplicity m; = 3, and A, = 3 with
multiplicity m, =1. We need to determine the number of independent

eigenvectors and generalized eigenvectors associated with A;. The rank of
|A _D‘|x=2 =2=r. Thus, g;=n—r=4-2 = 2; that is, we have two eigenvectors.
Since m; = 3, there is only m; — g = 1 generalized eigenvector. Solving for x| by
using the four equations of A4x; =2x,;, where x, =[a b ¢ d]", we obtain

a =-d and b =—c. Since we have two eigenvectors corresponding to A = 2, we let
(@=1,b=0)to obtain x,=[1 0 0 —1]", and (@ = 0, b = 1) to obtain
x,=[0 1 -1 0]". The generalized eigenvector x;, is given by
(A-2I)x;, =x; toyield x;, =[0 0 -1 —11". Similarly, we solve for x; by

using A x, =3x, to obtain x, =[0 0 1 0]".

(b) We form the modal matrix M as
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1 0 0 0

L 0 0 1 0

M =[x X151 %51 %,]= 0 -1 -1 1
-1 1 0 0

Performing the operation J = M ' AM results in

2 1,00

S0 200

0 0,250

00 0:3

as expected. The inverse of M is

1 000
4 [1 001
M=o 100
1 1 11

4.3 DEFINITIONS

A discrete-time random process or stochastic process X(n) is a sequence of real

or complex random variables defined for every integer n. The mean value function
of the process X (n) is defined as

E[X(n)]=m,(n) (4.105)
and the autocorrelation function is defined as
rxx(”l!”Z):E[X(nl)X*(nz)] (4106)

where n, and n, are two indices, and * denotes a complex conjugate. Note that we
use the lowercase letter r to denote correlation. The covariance function is defined
as

e (myny) = E{ X () = m, (n))][X ()= m ()] |
=1y (ny,ny)—m (n))m} (ny) (4.107)
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If the process X (n) is stationary in the wide sense, then the mean
E[X (n)]= constant (4.108)
is independent of », and the autocorrelation function
ro(mn+k)y=r_(k)y=c,, (k)+|mx|2 (4.109)

depends only on the time difference or lag between the two samples n; =n and
n, =n+k.
Similarly, we say two processes X(n) and Y(n) are jointly wide-sense

stationary if each is individually wide-sense stationary, and their cross-correlation
function is

rxy(n,n-i-k):rxy(k):cxy(k)—i-mxm; (4.110)
where ¢, (k) is the cross-covariance function given by
¢y (mn+k) = E\LX(0)=m J[¥(n+I)=m T | =r, (k) =m,m’  (4.111)

In light of correlation properties given in Chapter 3, we give the following useful
properties for the autocorrelation and cross-covariance functions

Fee (0) = [ (0| (4.112)
with 7., (0) real and positive.

P (2h) = 1 (K) 4.113)

Fee (07, (0) 2|y ()| (4.114)

and

ry (k) =1y (k) (4.115)



Discrete-Time Random Processes 247

Let X(n)be a column vector of M functions of time X(n), X(n-1), ...,
X(n—M +1), representing a wide-sense stationary discrete-time random process,
such that

XT(n)=[X(n), X(n—-1),..., X(n—M +1)] (4.116)

The correlation matrix of this process is defined as
Ryy =R= E[X(n)XH (n)] (4.117)

where the superscript H denotes Hermitian. Substituting (4.116) in (4.117), we
obtain a Hermitian Toeplitz autocorrelation matrix

#(0) r(-1) e r[—=(M -1)]
i F(Tl) r(:O) r[—(A{ -2)] (4.118)
I”(M—l) I”(M_z) I"(O)

where we dropped the index x for the simplicity of notation. This matrix is positive
semidefinite; that is, all the eigenvalues of the matrix are greater than or equal to
zero. For any sequence a(n), we have

2

M-1 M-1 M-1
E|Saxm)| |=3 Sa*Datk)yr, ((-k)=0 (4.119)
k=0 =0 k=0

In the previous section, we gave some mathematical properties related to a matrix
A, and its eigenvalues and eigenvectors. If the matrix represents a correlation
matrix of a discrete-time stochastic process, from (4.118), this correlation matrix R
is Hermitian Toeplitz and positive semidefinite. This will give us some other
useful properties.

1. Let A,A,,..., A, be the distinct eigenvalues of the M x M correlation matrix
R. Then, all these eigenvalues are real and negative.

2. Let v,,v,,...,v, be the eigenvectors corresponding to the M distinct
eigenvalues A,A,,...,A, of the M x M correlation matrix R. Then, the
eigenvectors are linearly independent.
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The eigenvectors are linearly dependent, which means that there exist scalars
0y, 0y,...,0, , not all zero, such that

o, =0 (4.120)

If no such scalars exist, then the eigenvectors are /inearly independent.

3. Let v,,v,,..,v, be the eigenvectors corresponding to the M distinct
eigenvalues A;,A,,...,A;, of the M x M correlation matrix R. Then, the
eigenvectors are orthogonal to each other; that is,

v.Hv.:() , 1#] (4121)

If the eigenvectors are normalized to have unit length, then they are orthonormal,
that is,

vy :{ (4.122)

4. Let A, A,,...,A,, be the distinct eigenvalues of the correlation matrix R. Then,

the eigenvalues of R* are k’f,kk yeee ,k’jw .
Note that for the special case wherek =—1, the eigenvalues of the inverse

correlation matrix R~ are L/, 1 kg, U Ay,

5. Let wv;,v,,..,v;,be the eigenvectors corresponding to the M distinct

eigenvalues A;,A,,...,A,, of the M x M correlation matrix R. Let

V=[vivyivsioivyl (4.123)

such that the eigenvectors are orthonormal as defined in (4.122). Then, from
(4.83),

RV =VA (4.124)
where

A =diag[h;, hqy s Ay ] (4.125)
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Since R is Hermitian,
yl=pt (4.126)

The correlation matrix may then be diagonalized by the wunitary similarity
transformation

VIRV =A (4.127)

Postmultiplying both sides of (4.124) by R 'and using (4.121), the correlation
matrix R may be written as

M
R=VAV" =X p v/ (4.128)
i=1
or
1 EEDTE 1 U
R =VAV zzx—vivi (4.129)
i=1 Vi

The decomposition of the correlation matrix R in the form of (4.128) is known as
the spectral theorem.

6. Let A, Ay, -+, A, be the distinct eigenvalues of the M x M correlation matrix

R. Then, from (4.83) and (4.128),

tr(R)=%}.,- =tr(VIRV) (4.130)

i=l1

The Fourier transform of a sequence r,, (k) is
S(@)= Y ra(k)e™, Jof<n (4.131)
k=—0

where @ = 27f is the angular frequency. Since the sequence under consideration is

the autocorrelation function, its Fourier transform is then the power spectral
density or power spectrum. Note that for ¢ integer,
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S (@+20m)y= > r (k)e /OMk = zr (k)e k=0 — g (@) (4.132)
fk=—0

. w2kl . .. . . .
since e /“?™ =1 . Hence, the power spectrum is a periodic function with period

27.
It is known that the Fourier series of a periodic signal, v(¢), in exponential
form is given by

wt)= > v el (4.133)

k=—0

By analogy with (4.133) and (4.131), we note that —® is analogous to ¢, ®y is one,
and r,, (k) is analogous to v;. Therefore, 7, (k) can be interpreted as the Fourier

coefficient of S, (®) to yield
ro (k)= 1 [S o (@e ™ do (4.134)
: 2n 150

Equations (4.131) and (4.134) form the Wiener-Khinchin relations for discrete-
time processes. The mean-square value, which represents the average power in the
discrete-time random process, is

y

r (0) = E[|X< )|] —Iswm)dw— [S.(Hdf (4133
—f2

The power spectrum S, () is real, since

F (K) = 1 (0, =) = ELX () X" (n— k)]
= E[X" (1~ D)X ()] = rs, (k) (4.136)

Similarly, the cross-power spectrum is defined as

S (@)= irxy (k)e 7k (4.137)

k=—0

For more results on the cross-correlation functions and cross-spectrum,
consider a discrete-time linear system with impulse response /(n), a wide-sense
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X(n)
h(n)

Figure 4.1 Discrete linear system.

Y(n)
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stationary input X (n), and an output Y(n), as shown in Figure 4.1. Then, the

cross-correlation functions r,, (k) and r,, (k) are given by

Py (k) = hik)* e (k) = i h(O)r (k=) = 1 (k) * h(k) = irxx (O)h(k—1)

/=—o0 f=—o0

and

F (k) = h* (k)7 (k) = S (O (k—0)

(=—0
The autocorrelation function of the output process is given by
1oy (6 = ) %1, (6) = ) (=) # 7 ()

The corresponding cross-spectrum densities are

S (@) = irxy (k)e 7ok

k=—x0

S (@)= Y r, (ke ™
k=—0

Taking the Z-transform of (4.138), (4.139), and (4.140), we obtain

Sy (2)=H(Z)S ()

S, (Z)=H" [%JSM 2)
A

(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)
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and

S, (2)= H(Z)H*(%ijx (2) (4.145)

where, H(Z) is the bilateral Z-transform of /(n), also denoted Z{h(n)}, and is given
by

H(Z)= ih(n)Z‘” (4.146)

n=—x

The frequency response H(e’®) of the filter can be deduced from the discrete
Fourier transform H(Z) when evaluated on the unit circle in the z-plane. For A(n)
real, H" (1 /1Z" ): H (l /Z ) , and the output spectral density is then

Syy ((D) = ‘H(ejm) 2Sxx(('o) (4147)

Example 4.3

Consider the system given in Figure 4.1. Determine the power spectrum of the
output if the input process X (n) is a stationary white noise process.

Solution

X (n) is a white noise process if

I(n), n, =
E[X(nl)X*<n2)]={ o (4.148)
0 , n#n,
The autocorrelation function of the white noise process is
Fo(ny,ny) =1(n)8(ny —ny) (4.149)
where
8( y={b m=r (4.150)
ny,—n;)= .
2 0, n #n,
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Since the white noise process is stationary, let

I(n)= csi = constant 4.151)
The autocorrelation function becomes

ro(non+k)=r.(k)=oc28(k) (4.152)
where 8(k) is the impulse function given by

1, k=0
3(k) :{ ’ (4.153)
0, k#0

The power spectrum of the input white noise process is
S_ (0 =02 (4.154)

By definition, the Z-transform of the autocorrelation function is
Su(Z)= Y ro(k)z™* (4.155)
k=—o0

and thus, the power spectrum of the output is

2

S, () = ‘H(ej‘”) S (0)=o2|H(e™) (4.156)

4.4 AR, MA, AND ARMA RANDOM PROCESSES

In the previous section, we gave the definitions and properties related to the
different correlations and power spectral densities of a stationary discrete-time
stochastic process. Determining the power spectral density of a random process is
essential in spectrum estimation because the power spectral density provides
important information about the structure of the random process. Such information
can then be used for different applications, such as modeling, prediction, or
filtering of the observed signal, as will be seen in a later chapter. The
nonparametric approach of spectrum estimation is determined by the transform
relationship between the power spectral density and the autocorrelation function,
which is the second-order statistics of the random process. However, in the
parametric approach, a time series model for the random process is assumed, and
thus, the power spectral density is a function of the model parameters, which must
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be determined or estimated. We now consider the modeling of such random
sequences. Consider the system shown in Figure 4.1, with input being the white
noise process. The output sequence can be described by a parametric model; that
is, the spectrum of the output sequence can be expressed in terms of the parameters
of the model considered. Hence, it is necessary to have an appropriate parametric
model, and estimate the model parameters. The models considered most frequently
are the AR processes, the MA processes, and ARMA processes.

4.4.1 AR Processes

An AR process is represented by the following input-output difference equation.

P P
X(n)=—2akX(n—k)+e(n):Z(x)kX(n—k)+e(n) (4.157)

k=l k=l
where X(n) is the observed real random sequences, a;, Kk = 1, 2, ... , p, are

constants called parameters, such that ©, =—a;; e[n] is a sequence of

independent and identically distributed zero-mean Gaussian random variables with
2

an unknown variance o, ; and p is the order of the filter. The sequence is referred

to as a pth order autoregressive model and is abbreviated AR(p). Note that the term
“autoregressive” stems from the fact that X'(n), the present value of the process,

given by

X(n)=-a\X(n-1)—a,X(n-2)- ... —a,X(n—p)+e(n) (4.158)
is a finite linear combination of X(n—-1), X(n-2), ... ,X(n—p), the past
values of the process, and an error term e(n). The Z-transform of (4.158) is given

by
X2 +a,Z7" +a, 27 + ... +a,Z7")=E(Z) (4.159)
where X(Z) is the Z-transform of X (n) , E(Z) is the Z-transform of e(n), and
Z[X(n-k)=Z2""X(2), k=1,2, ..,p (4.160)

The pulse transfer function of the all-zero filter is given by

H(Z):M:1+iakz_k (4.161)
k=1

X(Z)
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X(n)
X(n-1)
X(n-2)
7
| v
X(n—-p) —>

Figure 4.2 Realization of an AR(p) filter.

The realization of such a filter, obtained directly from (4.159), is shown in Figure
4.2. However, when the input is the white noise process e(n), and X(n)is the

output random sequence, the corresponding AR(p) filter is an all-pole filter with
transfer function

H(Z)= ! = ! (4.162)

P P
1+ a2z 1-Yo,z7*
k=1 k=1

The realization of the filter is as shown in Figure 4.3. In order to study the AR(p)
process X(n), we need to determine the mean, autocorrelation function,

correlation coefficients, and of course the power spectral density, which will be a
function of the parameters of the model. The process is assumed to be stationary.
Thus, the mean of X(n), as defined in (4.158), is given by

E[X(n)]=m, =E|- f a, X(n—k)+e(n) |= —f a, E[X(n-p)]  (4.163)
k=1 k=1

since the white noise process is zero-mean E[e(n)]=0. To obtain a general form
with k= p for of all the terms to be determined, we shall first compute them for
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e(n)

> X(n)

X(n-2)

Figure 4.3 All-pole AR(p) filter.

p = 1, the first-order process, and p = 2, the second-order process, and then deduce
easily the desired general form.

AR(1) process

For p = 1, the first-order process is
X(n)=—a, X(n—-1)+e(n) (4.164)
The first-order mean is then
E[X(n)]=m, =~E[a, X (n—1)]=—aym, (4.165)
to yield
m,=0 for a; #0 (4.166)
The corresponding variance is

o2 = ELX(m) X" ()] = E{[-a, X (n-1)+ e(m)][-a, X" (n=1)+ " (n)] |
= Elal X*(n-1)+e*(n)-2a,X(n-De(n)]  (4.167)
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The initial condition X(0) is assumed to be Gaussian with mean zero,
E[X(0)]=0, and uncorrelated, thus independent, of the Gaussian noise process.

Therefore, E[X(n—1)e(n)]=0 and the variance of the AR(l) process

22 2 2
iscy =aj{c;+0,,0r

2
o2 =2n (4.168)

Since the variance of the process must be finite and nonnegative, the constant
a12 must be less than one; that is,
-1<a; <+1 (4.169)

The autocorrelation function of the AR(1) process is given by

Fa (K) = ELX(MX (n= k)] = E{ —a; X(n=1) + e(m] X (n—k)} = —ar, (k=1), k =1

(4.170)
By direct substitution for £ =1,2,... in (4.170), we can see that
o (6)=(=D*afr (0)=(-D*a’s? = 0fc] (4.171)
The autocorrelation coefficient of the process is defined by
Fyx (k) k _k 1
= —_—= —1 a = —7 k 4.172
Pk VXX(O) ( ) 1 Gi xx( ) ( )

The power spectrum of the output process in terms of the input noise process is
S ()= |H(f)|2 S,.(f), where S, (f) is the power spectrum defined in

(4.154). The transfer function is given by (4.162), and hence with Z = e/*% and
k=1, we have

1
m, |(0| <7 (4173)

H(e™®) =

and
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1 1
= =, If]<= (4.174)
1+2a, cos 2nf +a; 2

‘H(ej“)) ’

where @ =2mnf . Thus, the power spectrum of the AR(1) process is

Sw (/)= i —= orl-a) <t (4.175)
1+2a, cos2nf +a; 1+2a, cos2nf +a; 2
where the value of cfl is obtained directly from (4.168).
AR(2) process
The second-order AR process is given by
X(n)=—a; X(n=-1)—a, X(n-2)+e(n) (4.176)
The mean of this process is
E[X(m)]=m, =—am, —a,m, =—(a; +a,)m, (4.177)
and thus,
m, =0 if a,+a, %1 (4.178)

The variance is

o2 = E[X(n) X *(n)]= E{[~a,X(n—1)—a, X (n—2) + e(n)] X (n)}
=—a;r, ()—a,r, (2)+o2 (4.179)

Substituting for r, (k) =p,c> in (4.179), we obtain 6> =—a;p,0> —a,p,6> +0..
Then the variance is

2

2o % (4.180)
l+a,p; +ayp,

2 G
(¢}

which is finite for a,p; +a,p, # —1, and nonnegative for

ap; +ap, > -1 (4.181)
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The autocorrelation function is

ro (k) = EQX(0) X (n—k)]= E{[~a, X (n=1) —a, X (n = 2) + e(n)] X (n— k)}
=—a;r (k=1)—ayr. (k-2) (4.182)

To obtain the constants a; and a,, we need two equations. Hence, substituting in
(4.182) for k=1 and k =2, we have for k=1

ro (D) =—a;r, (0)—a,r, (-1 (4.183)

Since the process is stationary, 7. (1)=r,(-1) and ci =r.(0). After
substitution in (4.183), we have

ra()=—262 =p 52 (4.184)
1+a,
where
p=—2 (4.185)
1+az

For k=2, we have

2

rxx(z):_alrxx(l)_a2rxx(0):( 4 _azJGi :p26§ (4186)
l+a,

where

af

p2 = —a; (4.187)
1+a,

Substituting (4.185) and (4.187) in (4.180), we obtain

3 cfl(l+a2)
C(I—ay)(+a, +a,)(1—a, +a,)

[

(4.188)

Ox

which is finite if
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a, #1
a+a, #-1 (4.189)

a—a, #1
and positive if

-l<a, <1
—(a;+a,)<1 (4.190)

a;—a, <1
The transfer function is, from (4.162), in this case

1 1

oy “j2e —j2nf /4
l+a, e +a,e™®  1+ae ™ +a,e/*"/

H(®) =

1
f|<E (4.191)

B

and the power spectrum of the AR(2) process is then

2
S.(f)= o, I/ <% (4.192)

1+a,e™?™ +a,e7/*

AR(p) Process

We are now ready to determine the general expressions of the AR(p) process,
which is given by

X(n)=—iak)((n—k)+e(n) (4.193)
k=1
with mean
E[X(n)]=m,=0 for iak #1 (4.194)
k=1

and variance

o2 = E[X(n)X*(n)] = —E{X(n){zp: a, X(n—k)+ e(n)}} = —Z": a,r, (k)+o?
k=1

k=1
(4.195)
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In order to determine completely the power spectrum

62

S ()= . 5 (4.196)

P .
1+ age /2%
k=1

we need the estimates of the AR coefficients, and the noise variance o2.

Multiplying both sides of (4.193) by X *(n—/), ¢ >0, and taking the expectation

operator, we obtain

E[X(X*(n-10)]= —i a E[X(n—k)X " (n—0)]+E[e(n) X" (n—10)] (4.197)
k=1
The second term E[e(n)X ™ (n—1)] is zero for £ >0, since the terms X (n—{) are

zero-mean and independent of the noise e(n). For ¢ =0, we have the variance cﬁ .
The first term of (4.197) is the autocorrelation function of the AR process to obtain

p
—Zaerx(ﬂ—k) , >0

ro(0)= ";1 (4.198)
Y apro(t-k)+c;, (=0
k=1

This set of equations can be expressed, using w; = —a, , in matrix form to yield

r() r(0) r(-)  r(=2) - rC=p+D) | o
r(:2) _ r(:l) r(:O) r(:—l) r(—;ﬁ +2) 60:2 (4.199)
r(p)] [r(p-1) r(p-2) r(p=-3) - r(0) Jo,

This set of equations (4.199) is called the Yule-Walker equations, which may be
expressed as

r=Ra (4.200)
or

—r=Ra (4.201)
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The parameters a and ® are the solutions given by

a=-R7'r (4.202)
or
o=R'r (4.203)
with the vectors
r-| ]
a =la;, a,, ..., a, (4.204)
and
r-| ]
0 =0, 0, .. 0, (4.205)
and noise variance
s p
Gy =Ty (0)+Zaerx (k) (4206)
k=l

4.4.2 MA Processes

The MA process is described by

X(n)=bge(n)+be(n—1)+ ... +b;e(n -q)= ib,’;e(n -k) (4.207)
k=0

where by, by, by, ... , b,, are constants called the MA parameters, such that
q

Zbk =1, and e(n) is the input white noise process. The filter representing the
k=0

MA process is shown in Figure 4.4. We can write (4.207) with new parameters
(new b;s), such that

X(n)=e(n)+be(n—-D+be(n-1)+ ... +b,e(n—q) (4.208)

such that the new b; =0and b, #0 for k=1,2,...,q . Note that we maintain the

notation “b” to be consistent with the notation of (4.1). Taking the Z-transform of
(4.208) and solving for H(Z), we obtain the all-zero filter given by
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e(n)
e(n-1)
e(n—2)
Z -1
b‘i
en—q) ] >
Figure 4.4 Moving average filter of order g.
H(Z)=1+bZ ' +b,Z 7 + ... +b,Z7" (4.209)
with transfer function
o q A
HE? =1+ be /> (4.210)
k=1
The mean of the process is
q
E[X(n)]=m, = E{e(n) + bre(n— k)} =0 4.211)
k=l

since the white noise process is zero-mean and stationary. The variance is

ol= E[X(n)X(n)]:E{e(n) + i b,e(n— i)}{e(n) + i be(n— j)}}
i=1 Jj=1
=a§(1+ibﬁ} (4.212)
i=1

The autocorrelation function can be calculated to be



264 Signal Detection and Estimation

i=1 j=1

P (k) = E{e(n) + Zq: be(n— i)}{e(n —k)+ Zq: bje(n —k— j)}

q q 9 4
:ree(k)+zbjree(k+j)+zbiree(k_i)+zzbibjree(k+j_i)
j=1 i=1 i=1 j=l1

LS}

Lo
c, 1+ij , k=0
J=1

q
=<{c; b1+2bjbj_1], k=1 (4.213)
j=2

9
S, b +ijb‘,_2j, k=2
j=3

and so on, until £ =¢ . The general form can then be deduced to be

Jj=k+1

Folk]= o2b, , k=g (4.214)

q
Gi(bk+ ijbj_kJ , k<g

Hence, the power spectral density, which is just the Fourier transform of (4.214),
can be shown to be

2
So(f)=o;

g . .
1+ bye />™/
k=1

1
, |f|<5 (4.215)

4.4.3 ARMA Processes

An ARMA process for the time series X (n) is given by

X(n)+a; X(n=1)+ ... +a;X(n—p):e(n)+b1*e(n—l)+ .. tbye(n—q)
(4.216)

or
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X(n)=—iakX(n—k)+e(n)+ib€e(n—€) (4.217)
k=1 /=1

Taking the Z-transform of (4.217), and solving for the pulse transfer function, we
obtain

d !
1+> 6,27
H(Z) =/pl— (4.218)

1+Zakz_k
k=1

which is a filter with both poles and zeros, as shown in Figure 4.5, since it is a
combination of AR and MA processes. The order of the ARMA process is (p, q).
The autocorrelation function of the ARMA (p, ¢) process, assuming p > ¢, is

e(n)

Figure 4.5 ARMA filter of order (p, ¢) with p > ¢.
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i=l1

Fo (K) = E{X(n)X(n—k)} = E{—i a; X(n—i)+e(n)+ ibje(n —j)}X(n —k)}
j=1

= —i a;ry (k=i)+Ele(n)X(n—k)]+ ibjE[e(n - X (n—-k)] (4.219)
i=l

=l
but
Ele(n)X(n—k)]=0 for k>1 (4.220)

and

b;Ele(n—j))X(n—k)]=0 for k>qg+1 (4.221)
1

J

Substituting (4.220) and (4.221) in (4.219), the autocorrelation function reduces to
J

r (k)= —z a;r,, (k—=i), k>2q+1 (4.222)
i=1

while the power spectral density of the ARMA (p, g) process can be shown to be

2
q i~

1+ b2
(=1

Su(f) =0, = |f|<% (4.223)

p .
1+ age />
k=1

4.5 MARKOV CHAINS

In Section 3.4.8, we defined the concept of Markov processes. When the Markov
process is discrete-valued (discrete state), it is called a Markov chain. To describe
a Markov chain, consider a finite set of states S ={S,,S,,...,Sy}. The process

starts in one of these states and moves successively from one state to another. The
move from one state to another is called a step. If the chain is a state S;, it moves to
a state S; in a step with a probability P, called transition probability.

The Markov chain is then a discrete state, but may have a discrete or a
continuous time. Both cases will be considered in this section.
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4.5.1 Discrete-Time Markov Chains

A discrete-time Markov chain must satisfy the following Markov property:

PlX(n)=x, | X(n-1)=x,_,X(n=-2)=x,_9,...,X(0)=x,]
=P[X(n)=x, | X(n-1)=x,,] (4.224)

where we have assumed that the random sequence takes a finite, countable set of
values. The values of the process are the states of the process, and the conditional
probabilities are the tranmsition probabilities between the states, defined in the
introduction of this section. If X(n) = i, we say that the chain is in the “ith state at
the nth step,” and write

P[X(n)=jl=p;(n), j=12,.. (4.225)

Since the evolution of the chain is described by the transition probability, when we
say that the system is in state j at time ¢,,, given that it is in state i at time #,, we
write

PLX(m) = j| X(n) = i]= P; (n,m) (4.226)

Using Bayes’ rule, we can write
PX(m)=j,X(n)=i]=P[X(m)=j| X(n)=i]P[X(n)=1i]  (4.227)
or, using the new notation

PLX(m) = j, X (n) = i] = Py (n,m)P, (n) (4.228)

Assuming that the finite number of states is &V, these probabilities must satisfy

%‘Pj (n)=1 (4.229)
j=1

and
N
ZPU (n,m)=1 (4.230)
=

The total probability is
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Py (m)= i Py (n,m)P, (n) 4.231)
i=1

In matrix form, the transition matrix or stochastic matrix P (n, m) can be written as

Py By, - Ry
Py Py o Py

P(n,m)=| . .. =B (nm)] (4.232)
Pyr Pyy - Pyy

The entries Py,
chain, starting in state S, will be in state §; The initial state matrix is
P(0)=P =W , denoted as IT in other books.

The column vector

i,j=1,2, ..., N, are the transition probabilities that the Markov

pi(n)

pa(n)
p(n)= : (4.233)

py(n)

is called the state distribution vector, with p(1) representing the starting
distribution. Note that the stochastic matrix P has nonnegative entries, P; > 0, and

N
the sum across each row is equal to one, szy =1, which is (4.230). Hence,
j=1
(4.231) can be written as
P(m)=P(n,m)P(n) (4.234)

Homogeneous Chain

A Markov chain is called homogeneous if the transition probabilities depend only
on the difference between states; that is,

By(m)=P(X .y, = 1 Xy =0) = P(X 1 = J| Xy =) (4.235)

or
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P(n,m)= P(m—n) (4.236)
If m=1,
P(X,. = j| X, =i)=P(X, = j| X, =)= B,(1) = F (4.237)
Substituting (4.236) in (4.234), we obtain
P(m)=P(m—n)P(n)=P(m—-1)P() (4.238)

where P(1) = P is the one-step transition matrix. Hence, by direct substitution in
(4.238), we have

PQ2)=P1)P(1)=P*(1)=P?
P(3)=P(2)P(l)= P> ()P(l)= P*(1) = P*

P(n)=P(n-1)P(1)= P" ()= P" (4.239)

We observe that the n-step transition matrix (the matrix of n-step transition
probabilities) P(n) is

P(n)=P"())=P" (4.240)

Observe that the entry P; of the matrix P"is the probability that the Markov
chain, starting in state S;, will be in state S; after n steps, and P(1) = P is the one-
step transition matrix with elements [P; (1)]. When the matrix P(n) is independent

of n and the chain is homogeneous, it is then stationary. This implies that
P(n)=P(1)=P for all n. A “good” way to represent a Markov chain is the state

transition diagram, which we will show by an example.
Example 4.4

Consider the transition matrix P given by

05 02 03
P=|01 04 05
02 0.1 0.7
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Figure 4.6 State transition diagram.

The state transition diagram is shown in Figure 4.6. We see, for example, that the
probability in going from state S to state S, is P, = 0.2, the probability in going
from state S, to state S5 is P,; = 0.5, and so on. Using (4.239), we have

0.5 02 03
P)=P=|0.1 04 05
02 0.1 0.7
033 021 0.46
PQ)=P>’(1)=P?=]0.19 023 0.58
0.25 0.15 0.60
0.278 0.196 0.562
P(3)=P(1)=P>={0.234 0.188 0.578
0.260 0.170 0.579

0.26 0.18 0.56
P10)=P" =026 0.18 0.56
0.26 0.18 0.56
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026 0.18 0.56
P(12)=P?={026 0.18 0.56
026 0.18 0.56

We observe that

026 0.18 056| [0, ©, o,
PQR0)=P» =026 0.18 0.56|=|0, ©, o,
026 0.18 056| |0, ©, o,

witho; =0.26, ®, =0.18, and ®w; =0.56.

As n increases, we reach the situation where the probabilities that the chain is
in states S, S,, and S; are 0.26, 0.18, and 0.56, respectively, no matter where the
chain started. This type of Markov chain is called a regular Markov chain.

In general, by definition, if a set of numbers ®;,®,,...,®, exists, such that

('01 0)1 e ('01

(Dz 0)2 “ee (Dz
lim P" =W = (4.241)
n—o : : : :

(DN O)N “ee (DN

we say that the steady state probabilities for the chain exist. In this case, the chain
is said to be regular (as shown in the previous example), and W is called the
stationary  distribution matrix for the Markov chain, with entries
o;, j=12,...,N, such that

(4.242)

M=
e
I

and

®;

>0 forall (4.243)

We also observe from Example 4.4 that a homogeneous Markov chain reaches a
steady state probability after many transitions. That is,
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lim P(n)= lim P"(l)= lim P" =W (4.244)
n—»00

n—>0 n—>0

Theorem. Let P be the transition matrix of a Markov chain, and let p” = p” (0)

be the row probability vector representing the starting distribution of the chain.
Then, the probability that the chain is in state S; after » steps is the ith entry in the
vector, given by

pl(n)y=p"P" (4.245)
The important conclusion to draw from this theorem is that the random evolution

of the chain is determined by the transition matrix P and the initial distribution
vector p(0). Equation (4.245) is just the deduction of the general form given by

p(n+m)= p(m)P" (4.246)
The proof of (4.246) is straightforward.
Example 4.5

Suppose that we have the same distribution matrix as given in Example 4.4. Let
pT(0)=p" =[020 025 035]=[p,(0) p,(0) p;(0)] be the probability
vector representing the starting distribution. Using the previous theorem and the

results of Example 4.4, we can compute the distribution of the states after n steps
to be

p T )=p"P=[0225 0225 0225]=[p,(1) p,() p;()]
pT@=p"P*=[0245 0.19 0.565]=[p,(2) p,(2) p;Q2)]
pT3)=p"P?=[0.2545 0.1815 0.564]

pl10)=p" P =[0.26 0.18 0.56]
pl(12)=p" P2 =[026 0.18 0.56]

pT(20)=p"P* =[026 0.18 0.56]=[p,(20) p,(20) p;(20)]

We observe that as n becomes large, we reach a steady state value. Hence, we say
that if
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lim p” (n)=lim p" P=[0, ®, ... o] (4.247)
n—0 n—x0
is a constant distribution, then the column vector p’ =[w, ®, ... @y] is

called the steady state distribution vector.
Example 4.6

Consider the Markov chain given by the two-state transition diagram of Figure 4.7.

Then,
0.65 0.35
P=
0.45 0.55
Computing the different powers of P, we obtain

“0.54 046 0.558 0.442 0.5616 0.4384
ps {0.5626 0.4374} p [0.5625 0.4375} ; {0.5625 0.4375}

, [0.58 0.42 5 |0.566 0.434 4 105632 0.4368
R P , P =

- 0.5623 0.4377 0.5625 0.4375 0.5625 0.4375

0.3 0.64 0.35
If p(0)=p-= 0.7 and P(1)=P = 045 0.55 , then

p')=p"P=[051 0.49]
pT @) =p"P*=[0.552 0.448]
pT3)=p"P?=[0.5604 0.4396]
pT @ =p"P*=[05621 0.4379]
p'(5)=p" P> =[0.5624 0.4376]
p(6)=p" P® =[0.5625 0.4375]
pT (7 =p"P° =[0.5625 0.4375]

0.35

‘-’

0.45
Figure 4.7 State transition for Example 4.6.
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We observe that as n — oo, P" — W , such that the steady state matrix is

P —w :{(01 032}
W 0,

with ©, =0.5625 and ©, =0.4375. Also, p(n)=p P" - p’ =[o, o,],
with ®; =0.5625 and o, =0.4375, is the steady state (stationary) distribution
vector.

We now give the Chapman-Kolmogorov equation, which relates long-term
development to short-term development.

Chapman-Kolmogorov Equation

For a homogeneous discrete-time Markov chain with n; <n, <nj,
By (ny —ny) = Py (n; —m) Py (ny —ny) (4.248)
k

In other words,

By(m+n) =3 Py (m)Py(n) (4.249)
k

where P, (m) = P[X (m+n) = jlX(n)=i]. Hence,

P(m+n)=P(m)P(n) (4.250)
or

P(ny —ny) = P(n, —n,)P(n; —n,) (4.251)
Classification of Chains

In describing the relation between the states of a Markov chain, we say S;
communicates with Sj, denoted S; — §;, if the chain may visit state §; starting

from S; with a positive probability. That is, S; - §;, if F;(m)>0 for some
m > 0. If in addition, state S; communicates with state S;, § ;S0 then we say
that S; and S; intercommunicate, and write S; <> S ;- A state S is called persistent

or recurrent if
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P(X, =i for some n>1X,=i)=1 (4.252)

which means that the probability of an eventual return to state S;, having started
from i, is one. The state may be visited many times. The state S; of a Markov chain
is called absorbing if it is impossible to leave it (i.e., P; =1). If this probability is
strictly less than one, then the state S; is called fransient. Hence, every state is
either transient or recurrent. The Markov chain is absorbing if it has a least one
absorbing state, and it is possible to go to an absorbing state from every state (not
necessarily in one step). To clarify these concepts, consider the Markov chain
shown in Figure 4.8. For example, S| and Ss are transient states, and S,, Sy, and Sg
are recurrent states. We do not have an absorbing state, since we can leave any of
the states we reach, and thus the chain is not absorbing.
A persistent state is said to be nu// if and only if

lim P;(n)=0 (4.253)
n—»0
in this case,
lim P;(n)=0 for allj (4.254)
n—»0 :

A set of states is called irreducible if the states intercommunicate (S; <> S;) for

all i and j in the set. For example, states S, and S; constitute an irreducible set, and
so do states S, and S5 and states S; and Ss.

The number of transitions required for the first return to a state S; in an
irreducible set is a random variable known as the recurrence time. If P;; (k) may be
nonzero k = d, 2d, 3d, ..., with d an integer greater than one, then the irreducible
set is called periodic. If d = 1, the set is called ergodic; that is, it is persistent,
nonnull and aperiodic. Note that the Markov chain is called an ergodic chain if it is
possible to go from every state to every state (not necessarily in one move). The
period of states S, and Ss of the previous example is two, and thus the set is

‘e‘ea‘
T

Figure 4.8 Markov chain.
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4.5.2 Continuous-Time Markov Chains

Let X(¢), t>0, be a continuous-time random Markov chain with finite discrete
states Sy, S,, ... , Sy . By continuous time, we mean that the continuous transition
allows changes of states to occur at any instant of time in the continuous time. The
transition from state S; to state S; (S; <> §;), i# j, occurs in a very small time

At. At is so small that only one transition is possible. The conditional probability
that the transition from S; to §; occurs in the next At is A; Az. The values of A,
i # j, are called the transition probability rates. For homogeneous Markov chains,

A are positive constants. The transition probability function is

Pi(v)=PX(t+71)=j| X(t)=1] (4.255)

with
N
21 P(v)=1 (4.256)
=

since the system will definitely make a transition from state i to any other state in
the chain, and

1 iz
lim P,(A)=8, =1 " '/ (4.257)
A0 y y 0’ li]

for P;(t)to be continuous. Hence, the probability that the system makes a

transition from state S; to another state in the chain in a time interval At is

N
Py (A=Y h;At (4.258)
oy

We observe that the transition intensities can be defined in terms of the derivatives
of the transition probability functions evaluated at T = 0 to yield

_ 6Pz‘j (1)

= L i 4.259
i o J ( )

=0

Note that the transition from state S; to state S; (S; — ;) is interpreted as the

system remaining in state S;, and thus A; is undefined in this case. However, taking
the derivative of both sides of (4.256), we have
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N
Z kij =0 (4.260)
j=1
or
N
A :_ZM (4.261)
j=1
i#]

From (4.258), the probability that the system remains in the same state is

N
Py (M) =1-3 A, At (4.262)
oy

Using (4.261) in (4.262), we can write that
P;(At)=1+A;At (4.263)

In order to find the state probabilities, we first give the Chapman-Kolmogorov
equation for transition probabilities.

Chapman-Kolmogorov Equation

For a Markov chain, the transition probabilities must satisfy the Chapman-
Kolmogorov equation for 0 <¢ < 1, given by

N
Py(t) =2 Py )Py (t=1) (4.264)
k=1

Let p,(t) = P{X(¢) = S;} be the probability that the system is in state S;. The
state distribution vector is the column vector p’ (f)= [pl(t) (1) ... pN(t)],

N

and z p,;(t) =1, since the system must be in some state S; at time ¢. In the limit,
i=1

as ¢t — oo, the probability that the system is in a transient state is zero, and the

state distribution vector p(¢) becomes the steady state vector p.
From (4.255), we have

PIX(t+7)=j]= i PIX(t+1)=j| X(t)=i]P[X(t)=i]  (4.265)
i=1
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and using the Markov property, we can write

N
p; (=2 P;(1)p;(0) (4.266)
i=1

N N
pi(t+AD=p;(6)=> Py(A)p; ()= > Py (Ap; (1) (4.267)
i=1 k=1

i#j k#j

Substituting (4.258) in (4.267), we obtain the N — 1 equations given by

N N
pi(t+A)=p | 1= LAt |+ LAl (4.268)
i =

N
The Nth equation is obtained from Z p;(t)=1. Hence, rearranging terms and

j=1
letting Az — 0, we obtain
dp.(t) XN N
L= - (O 0 (4.269)
dt = =
i#] k=)

Using (4.263), the set of equations for the N-state Markov chain is then given by

{dpl(t) dp, () de(t):|=

dt dt dt
7"11 }“12 7"IN
Aoy Ay Ay
[P Py ... PyO] .. | @.270)
}“Nl 7"N2 }“NN
In matrix form,
p'(1)=pHA (4.271a)

where
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v | dpi () dpy (1) dp (1)
p(t)—{ v ” 0 } (4.271b)
PO =[pi®) Py ... py®)] (4271¢)
and
}“11 }“12 }“IN
Ay Ay o Ay
A=| S (4.2714d)
Ayt hay o Ay

Solving the system of equations in (4.271), we obtain the steady state probabilities.
If the Markov process X(¢) is stationary, then p;(s)=p; = constant, and from

(4.269) and (4.261), the set of equations to solve is

N
Py = ;M‘Pt
i) (4.272)

N
2p;=1

Birth-Death Process

A birth-death process with intensities A, and A,;_;, is a Markov chain taking

values 0, 1, 2, ... , and having changes equal to +1 or —1, such that

Mig+ny =b; (birth rate at S, or arrival rate)
Xi(i_l) =d; (death rate at S;, or departure rate)

(4.273)
A =0 J#i—-Lii+1

The state diagram of this process is shown in Figure 4.9. Thus,

PIX(t+Af)=n| X(t)=n—1]=b, At
PIX(t+AD)=n|X(t)=n+1]=d,, At
PIX(t+At)=n| X(t)=n]=1-(b, +d,)At (4.274)
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bo b1 bn-l
0 &
) OWBOES OWs O
d, dy d,

Figure 4.9 Birth-death process.

Using the notation P[X(t+At)=n]= p,(¢t+At), and using (4.274), we have
pn (t + At) = bn—lAtpnfl (t) + pn+1 (t)dn+1 (t)At + [1 - (bn + dn )At]pn (t) (4275)

Since p', (t) = Altigo[pn (t+At)—p, ()]/ At, then

{p (t) bn lpn l(t) (b +d )pn(t)+dn+1pn+l(t) n_l (4276)

P'o (1) ==bypo(t)+d,p, (1) , n=0

where we used the fact that p_;(¥) =0 and d, =0. To determine the steady state
probabilities, we set p', (¢) = 0 and solve the set of homogeneous equations

by Py —b,+d,)p, +d, 1P, =0 (4.277a)
—bypo+dp; =0 (4.277b)
and using
N
D=1 (4.278)
k=0

Hence, from (4.277b)

b
P =—" Do (4.279)
d
Forn=1,
bypo—(by +d\)p, +dypy =0 (4.280)

Solving (4.280), we obtain
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Py =—"—D (4.281)

Using the value of p, from (2.279), we obtain

_biby
dyd,

P2 Po (4.282)

Continuing in this manner, we obtain the general form of p, to be

b boby ...b, b, _
Py = pan = g (4.283)
d_ did,..d, d,
N
From (4.278), p, + Y. p; =1, and using (4.283), we obtain
=
1
Po 1 (4.284)

If we assume that the birth b, =A and death d, = are constants, then the

system of equations to give the steady state probabilities is obtained from (4.277)
to be

A -(A+ + =0
{ Pat =4 )P, + 1P,y (4.285)
—Apo+up =0
Solving the equations in (4.285) [or using (4.283)], we obtain
7\‘ n
P.=l—1 Po (4.286a)
n
and using p, + p; =1, we have
Py =—H (4.286b)

p+i
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LT LUl T

Figure 4.10 Two-state random waveform.

Example 4.7

Let X(¢) be a random waveform with two states, 0 and 1, as shown in Figure 4.10.
The intensities of transitions from state 0 to state 1 and from state 1 to state 0 are
Ao1 and Ay, respectively. The probability to go from state S; to state S, i, j =0, 1, is
A;At . Determine

(a) Py(¢) the probability that the system is in state S, for > 0.

(b) Py(t) and P;(¢) if Py(0) = 1.

(¢) The steady values of Py and P;.

(d) The probability that the first transition after a time ¢ will be from S to Sy,

(e) The probability of a transition, P(7"), occurring in (¢, ¢ + A¥), t large.

Solution

(a) For the simplicity of notation, let A, =b and A, =d . The state diagram of
this system is shown in Figure 4.11. Using (4. 270), we have

-b b
[P0 ©) P ©]=[po® m(t)]{ . d}

or

=dp, (1) —bp,(?)

po)+p()=1

dp, (1)
dt
Substituting for p,(¢#) =1- p,(¢), we obtain the differential equation

7\.01A[

‘ ’ I-XIOAt

MoAt

1-Ag1 At

Figure 4.11 State diagram for Example 4.7.
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dpe(t)
i po@)ld +b]+d

Solving the differential equation, we obtain the state distribution vector with

d _ d
t)= 0)——— (b+d)’+—, t>0
Po(D) {Po( ) b+d}e bid

pi(O)=1=po®)

where pT(O):[p0 0) p;(0)]. A plot of py(¢) is given in Figure 4.12. We
observe that this is the birth-death process.

(b) If py(0)=1, then p,(0)=1-p,(0)=0. Thus, after substitution we obtain

b _pray , d
H=—o b
Po(O)=3"7¢ b+d
b _piay , d
H=—— b
=0 b+d

(c) As t becomes large, the steady-state values are

d b
lim t)=——= and lim fy=——=
lim po () === =po and lim p, (1) =———=p,

Note that solving the birth-death process equations given by

{dp1 —pob=0
Po+p =1
Po®)

p(0)
P>

d J—

b+d [ "'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'.'.'_'-'-'-'—'-'—'—'—'—'-'-'-'-'-'-""""i\ J
PO <37

0 >

Figure 4.12 Plot of p(?).
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with A =band u = d results in

and __b
b+d Pra

Po =

which agrees with the result obtained using the limits.

(d) A transition from S to S, means that the system is in state S;. Hence, the
probability is

b
b+d

P

(e) The probability of a transition 7 occurring is
P(T)=P(S; | S9)P(So)+P(Sy | S$))P(S)) = bAtp, +dAp,

where P(S; | S;) is the probability of going from state S; to state S;. For 7 large, we

are in steady state, and thus using the result of (c), we obtain

2dbAt

PO="00

4.6 SUMMARY

In this chapter, we presented discrete-time stochastic processes, namely, the AR,
MA, and ARMA processes, and Markov chains. In order to understand the
concepts of the AR, MA, and ARMA processes, we first gave a review of matrix
operations and linear algebra. We showed how these processes are generated and
how the parameters for the correlation functions and power spectrum are
computed. Due to the importance of the autocorrelation function, we developed its
properties in some detail. This is the realm of parametric spectrum estimation.
Spectrum estimation can be very well developed, which is beyond the scope of this
book. Then we presented Markov chains. We defined Markov chains and gave a
few examples to illustrate the concepts introduced.

PROBLEMS

4.1 Find the eigenvalues, the eigenvectors, and the Jordan form by the similarity
transformation of the matrix A4.
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bo b1 bn-l
0 &
) OWBOES OWs O
d, dy d,

Figure 4.9 Birth-death process.

Using the notation P[X(t+At)=n]= p,(¢t+At), and using (4.274), we have
pn (t + At) = bn—lAtpnfl (t) + pn+1 (t)dn+1 (t)At + [1 - (bn + dn )At]pn (t) (4275)

Since p', (t) = Altigo[pn (t+At)—p, ()]/ At, then

{p (t) bn lpn l(t) (b +d )pn(t)+dn+1pn+l(t) n_l (4276)

P'o (1) ==bypo(t)+d,p, (1) , n=0

where we used the fact that p_;(¥) =0 and d, =0. To determine the steady state
probabilities, we set p', (¢) = 0 and solve the set of homogeneous equations

by Py —b,+d,)p, +d, 1P, =0 (4.277a)
—bypo+dp; =0 (4.277b)
and using
N
D=1 (4.278)
k=0

Hence, from (4.277b)

b
P =—" Do (4.279)
d
Forn=1,
bypo—(by +d\)p, +dypy =0 (4.280)

Solving (4.280), we obtain



286 Signal Detection and Estimation

53
A=
35
4.8 Consider the second-order difference equation of the AR process.
(a) Obtain the characteristic equation and draw the model.

(b) Determine the possible poles, and specify the stability region in terms of
the AR parameters.

4.9 The autocorrelation function of the AR(2) process given in Problem 4.8 is

ro(K)+ar, (k=)+a,r, (k=2)=0, £>0

(a) Use Yule-Walker equations to obtain the weights ®, and ®, in terms of
the correlations ., (0), r.. (1), and 7. (2).

(b) Obtain expressions for »,.(1) and 7. (2) in terms of the AR parameters

rXX

a, and a,.

4.10 Consider the discrete-time Markov chain with the following transition
matrix

1/3 1/2 0 0
1/2 1/2 0 0
174 0 1/4 1/2
0 0 0 1

Draw the state diagram and classify the states.

4.11 Suppose that a discrete communication source generates one of the three
symbols, 1, 2, and 3. The generation of symbols obeys a homogeneous
Markov chain, given by the following transition matrix,

05 03 02
P=04 02 04
03 03 04

The initial distribution vectoris p” (0)=[0.3 0.3 0.4]

(a) Draw the state diagram.
(b) Determine the n-step transition matrix, n large.
(¢) Determine the state probabilities after n steps.
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4.13
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In the land of Oz, the weather changes a lot [1]. For example, if they have a
nice (N) day, they may easily have rain (R) or snow (S) on the next day.
Suppose that the weather can be modeled as a Markov chain, whose
transition probability matrix is given by

R N S
R| 05 025 025
N| 05 0 05
§1025 025 0.5

(a) Draw the state diagram.

(b) Compute P(2), P(3), P(4), P(5), and P(6), and comment on the
results.

(c) If p"(0)=[0.7 0.2 0.1], then find the steady state distribution
vector.

Consider a two-state discrete-time Markov chain with probability transition

matrix
P()=P- l-a a
| b 1-b

(a) Draw the state diagram.
(b) Verify by induction the limiting state probabilities given by [2]

b+a(l-a-b)" a-a(l-a-b)"
a+b a+b

P(n) =
b—a(l-a-b)" a+a(l-a-b)"
a+b a+b

(¢) Find the limiting state probabilities for the special cases when
a=b=0 and a=b=1.

References

[1] Kemeny, J. G., J. L. Snell, and G. L. Thompson, Introduction to Finite Mathematics, Englewood
Cliffs, NJ: Prentice Hall, 1974.

[2]

Shanmugan, K. S., and A. M. Breipohl, Random Signals: Detection, Estimation and Data

Analysis, New York: John Wiley and Sons, 1988.



288 Signal Detection and Estimation

Selected Bibliography

Brogan, W. L., Modern Control Theory, New York: Quantum Publishing, 1974.

Dorny, C. N., A Vector Space Approach to Models and Optimization, Huntington, NY: Robert E.
Krieger Publishing Company, 1980.

Gallagher, R. G., Information Theory and Reliable Communications, New York: John Wiley and Sons,
1968.

Grimmett, G. R., and D. R. Stirzaker, Probability and Random Process, Oxford, England: Clarendon
Press, 1982.

Grinstead, C. M., and J. L. Snell, Introduction to Probability, Providence, RI: American Mathematical
Society, 1997, and on-line textbook 2004.

Haykin, S., Adaptive Filter Theory, Englewood Cliffs, NJ: Prentice Hall, 1986.

Kay, S. M., Modern Spectral Estimation; Theory and Application, Englewood Cliffs, NJ: Prentice Hall,
1988.

Madisetti, V. K., and D. B. Williams, (eds.), Digital Signal Processing, Boca Raton, FL: CRC Press,
1999.

Marple, Jr., S. L., Digital Spectral Analysis, Englewood Cliffs, NJ: Prentice Hall, 1987.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, New York: McGraw-Hill,
1991.

Shanmugan, K. S., and A. M. Breipohl, Random Signals: Detection, Estimation and Data Analysis,
New York: John Wiley and Sons, 1988.

Stark, H., and J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers,
Englewood Cliffs, NJ: Prentice Hall, 1986.

Ziemer, R. E., W. H. Trander, and D. R. Fannin, Signal and Systems: Continuous and Discrete, New
York: Macmillan, 1983.



Chapter 5

Statistical Decision Theory

5.1 INTRODUCTION

In our daily life, we are constantly making decisions. Given some hypotheses, a
criterion is selected, upon which a decision has to be made. For example, in
engineering, when there is a radar signal detection problem, the returned signal is
observed and a decision is made as to whether a target is present or absent. In a
digital communication system, a string of zeros and ones may be transmitted over
some medium. At the receiver, the received signals representing the zeros and ones
are corrupted in the medium by some additive noise and by the receiver noise. The
receiver does not know which signal represents a zero and which signal represents
a one, but must make a decision as to whether the received signals represent zeros
or ones. The process that the receiver undertakes in selecting a decision rule falls
under the theory of signal detection.

The situation above may be described by a source emitting two possible
outputs at various instants of time. The outputs are referred to as hypotheses. The
null hypothesis H, represents a zero (target not present) while the alternate
hypothesis H, represents a one (target present), as shown in Figure 5.1.

Each hypothesis corresponds to one or more observations that are represented
by random variables. Based on the observation values of these random variables,
the receiver decides which hypothesis (H, or H)) is true. Assume that the receiver
is to make a decision based on a single observation of the received signal. The
range of values that the random variable Y takes constitutes the observation space
Z. The observation space is partitioned into two regions Z; and Z;, such that if ¥

—» Ho

Source

—» H,

Figure 5.1 Source for binary hypothesis.
289
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decide H,

fY\HO(ylHO)

Source

N

fY\H1 (1 Hy)

decide H,

Figure 5.2 Decision regions.

lies in Z,, the receiver decides in favor of Hy; while if Y lies in Z;, the receiver
decides in favor of H,, as shown in Figure 5.2. The observation space Z is the
union of Z, and Z;; that is,

7=7,UZ7, (5.1)

The probability density functions of Y corresponding to each hypothesis are
Sy, (W1 Ho) and fy, (v H,), where y is a particular value of the random

variable Y.
Each time a decision is made, based on some criterion, for this binary
hypothesis testing problem, four possible cases can occur:

1. Decide Hy, when H, is true.
2. Decide Hy when H, is true.
3. Decide H; when H, is true.
4. Decide H, when H, is true.

Observe that for cases (1) and (4), the receiver makes a correct decision, while for
cases (2) and (3), the receiver makes an error. From radar nomenclature, case (2) is
called miss, case (3) a false alarm, and case (4) a detection.

In this chapter, we develop the basic principles needed for solving decision
problems. The observations are represented by random variables. Extension of
these results to time-varying waveforms will be studied in later chapters.

In the next sections, we study some of the criteria that are used in decision
theory, and the conditions under which these criteria are useful.
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5.2 BAYES’ CRITERION
5.2.1 Binary Hypothesis Testing

In using Bayes’ criterion, two assumptions are made. First, the probability of
occurrence of the two source outputs is known. They are the a priori probabilities
P(H,) and P(H,). P(H,) is the probability of occurrence of hypothesis Hy,

while P(H,)is the probability of occurrence of hypothesis H;. Denoting the a
priori probabilities P(H ) and P(H,;)by P, and P, respectively, and since either
hypothesis H, or H, will always occur, we have

P +P =1 (5.2)

The second assumption is that a cost is assigned to each possible decision. The
cost is due to the fact that some action will be taken based on a decision made. The
consequences of one decision are different from the consequences of another. For
example, in a radar detection problem, the consequences of miss are not the same
as the consequences of false alarm. If we let D;, i=0,1, where D, denotes

“decide Hy” and D, denotes “decide H,,” we can define C;;, 7, j =0,1, as the cost

jj E
associated with the decision D;, given that the true hypothesis is # ;. That is,

P(incurring cost C;;) = P(decide D;, H ; true), i,j=0,1 (5.3)

In particular, the costs for this binary hypothesis testing problem are C, for
case (1), Cy,for case (2), C,, for case (3), and C,; for case (4). The goal in
Bayes’ criterion is to determine the decision rule so that the average cost E[C],
also known as risk R, is minimized. The operation E[C] denotes expected value. It
is also assumed that the cost of making a wrong decision is greater than the cost of

making a correct decision. That is,

Cy >Cy, (5.4a)
and

Cio>Cyo (5.4b)

Given P(D;,H ;), the joint probability that we decide D;, and that the hypothesis

H; is true, the average cost is
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R=E[C] =CyP(Dy,Hy)+Co P(Dy,H)+CigP(Dy, Hy)+C P(Dy, Hy) (5.5)
From Bayes’ rule, we have

P(D;,H,;)=P(D; |H,)P(H ) (5.6)

The conditional density functions P(D; | H ;), i, j=0,1,in terms of the regions

shown in Figure 5.2, are

P(D | Hy) = P(decide Hy | Hy true)=[, fyy, (v] Ho)dy (5.7)

P(Dy | H))= P(decide H, | H, true) = | 4, Fri, (1 H))dy (5.8)

P(Dy |H,) = P(decide H, | H, true) = J.Zl fY|H0 (v Hg)dy (5.9)
and

P(D, | H) = P(decide H, | H, true) = | , Fr (01 Hydy (5.10)

The probabilities P(D, |H,), P(D,|H,), and P(D,,H,) represent the
probability of miss, Py, , the probability of false alarm, Pp , and the probability of
detection, P, respectively. We also observe that

Py =1-P, (5.11)
and
P(Dy |Hy)=1-Pg (5.12)
Consequently, the probability of a correct decision is given by

P(correct decision) = P(c) = P(Dy,H,)+P(D,,H,)
=P(Dy | Ho)P(Ho)+P(D, | H)P(H,)
=(1-Pp)P,+Pp P (5.13)

and the probability of error is given by
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P(error) = P(¢) = P(Dy, H,)+ P(Dy, H,)
=P(Dy |H)P(H\)+P(D, |Hy)P(H,)
=P, P, +P.P, (5.14)

A plot of the probability density function of the cost, P.(c), is illustrated in Figure
5.3. The average cost now becomes

R=E[C] =Co(1-Pp)Py +Cy(1-Pp)P +CygPp Py +C Pp P (5.15)
In terms of the decision regions defined in (5.7) to (5.9), the average cost is

R= PocoojzO Sy, 1 Ho)dy+PlC01IZO Sy, (v Hy)dy

+PyCrof, Fr, 0| Ho)dy+ BCy [, fyu, (v Hdy  (5.16)
Using (5.1) and the fact that
[, Lo, G VHO)AY = [ fr, (| Hy)dy =1 (5.17)
it follows that

[, o, GTH DAY =1=[, fyp, (W1 H dy. j=0.1  (5.18)

where fy, H, (¥ H ), j=0,1,is the probability density function of ¥ corresponding
to each hypothesis. Substituting for (5.18) in (5.16), we obtain

F.(0)

R(1-Py) PRPr pp, HU-Pp)

» C
>
0 C()o CIO C[ 1 C()l

Figure 5.3 Density function of cost.
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R=FC+HC
+JZO A (Cor = Cr) Sy, [ HDI=[F (Cro = Coo) Sy, (v | Ho )3y
(5.19)

We observe that the quantity P,C,, + P,C,, is constant, independent of how we

assign points in the observation space, and that the only variable quantity is the
region of integration Z,. From (5.4a, b), the terms inside the brackets of (5.19)

[P.(Cor = Cou) fyua (| Hy) and Py(Cio = Coo) frur, (| Ho)] » ae both positive.

Consequently, the risk is minimized by selecting the decision region Z; to include
only those points of Y for which the second term is larger, and hence the integrand
is negative. Specifically, we assign to the region Z, those points for which

P (Cy _Cu)fY|H1 (Y1 H)<Py(Cyg _COO)fY\HO (¥[Hyg) (5.20)

All values for which the second term is greater will be excluded from Z, and
assigned to Z;. The values for which the two terms are equal do not affect the risk,
and can be assigned to either Z, or Z;. Consequently, we say if

P(Co1 =Ci)) Sy, W1 H ) > Py (Cro = Coo) fyia, W[ Hyg) (5.21)

then we decide H,. Otherwise, we decide Hy. Hence, the decision rule resulting
from the Bayes’ criterion is

H,
fY|Hl liH) > Py(Cip —Cyo)

fY|HO(y|HO) < P(Cy —Cyy)
H,

(5.22)

The ratio of fy,; (v|H,) over fyy, (v|Hg) is called the likelihood ratio and is
denoted A(y) . That is,

_ Sy, (V| Hy)

A(V) =
O = 1 Hy)

(5.23)

It should be noted that if we have K observations, for example, K samples of a
received waveform, Y;, Y,, ... , Y}, based on which we make the decision, the
likelihood ratio can be expressed as
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v, (Y H)
N LA (5.24)
fY\HO (¥ H,)
where Y, the received vector, is
Y=y, v, ... Y] (5.25)

The likelihood statistic A(Y)is a random variable since it is a function of the

random variable Y.
The threshold is

_ B0~ Cop) 526
Pi(Cor ~C1y)

Therefore, Bayes’ criterion, which minimizes the average cost, results in the
likelihood ratio test

A(y) Z n (5.27)

An important observation is that the likelihood ratio test is performed by
simply processing the receiving vector to yield the likelihood ratio and comparing
it with the threshold. Thus, in practical situations where the a priori probabilities
and the cost may change, only the threshold changes, but the computation of
likelihood ratio is not affected.

Because the natural logarithm is a monotonically increasing function as shown
in Figure 5.4, and since the likelihood ratio A(y)and the threshold m are

nonnegative, an equivalent decision rule to (5.27) is
H,
>
In A(p) - Inn (5.28)

H,

We note that if we select the cost of an error to be one and the cost of a correct
decision to be zero; that is,
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A y=Inx

» x
Figure 5.4 Natural logarithmic function.
and
then the risk function of (5.15) reduces to
R =P, P, +PpP, = P(c) (5.30)

Thus, in this case, minimizing the average cost is equivalent to minimizing the
probability of error. Receivers for such cost assignment are called minimum
probability of error receivers. The threshold reduces to

10

If the a priori probabilities are equal, 1 is equal to one, and the log likelihood ratio
test uses a zero threshold.

Example 5.1

In a digital communication system, consider a source whose output under
hypothesis H, is a constant voltage of value m, while its output under H, is zero.
The received signal is corrupted by N, an additive white Gaussian noise of zero

mean, and variance c?.

(a) Setup the likelihood ratio test and determine the decision regions.
(b) Calculate the probability of false alarm and probability of detection.
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Solution

(a) The received signals under each hypothesis are
H :Y=m+N
Hy,:Y= N

where the noise N is Gaussian with zero mean and variance 2. Under hypothesis
H07

2
Sy, W1 Ho) = fy(n)= \/;—MeXp[— 2y ZJ
o

Under hypothesis H;, the mean of Yis E[Y]= E[m+ N]=m,since E[N]=0. The
variance of Y is

var[Y] = var[m+N]= E[(m+N)*]-(E[m+n])* = E[N*] = >

Hence,

fY\H] v[H,)=

1 1 (y—m)
\/ﬂc exp{—g—y o2 }

The likelihood ratio test is

H 2 _
AGY) = fY|H1 (v Hy) _ p(_m Zym]

T GlHy AT 22
v, V14 c

Taking the natural logarithm on both sides of the above equation, the likelihood
ratio test becomes

H,

m* >
111/\()/)——2)/—F < Inm

H,

Rearranging terms, an equivalent test is
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That is, the received observation is compared with the threshold y. The decision
regions are as shown in Figure 5.5.

(b) The probabilities of false alarm and detection are

2

y
Py = P(decide H, | Hy true) = |———e 29" dy = Q[lj = erfe, (1j
yV2To o c

where

ltz

1 -
e 2du

Q(a)=I\/2—
o V2T

and denoted erfc, () in some books.

© (y_m)z
. 1 - -
Pp = P(decide H, | H, true) = I e 2 dy= Q(uj
y V21o c
Example 5.2
Suppose that the receiver of Example 5.1 takes K samples, Yi, Y5, ... , Yx. The

noise samples are independent Gaussian random variables, each with mean zero
and variance ¢~ . Obtain the optimum decision rule.

Sy, Y| Hy)

0 m
“—H—Py €4 Hi >

Figure 5.5 Decision regions.
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Solution

The received signal under hypothesis Hy and H, is

H1:Yk:m+N, k:1,2,...,K
Hy:Y,= N, k=12,...K

Under hypothesis H,,

1 2
Fronn, Ox | Ho) = fi, 00 == p(%j

Under hypothesis H;, the kth received sample is a Gaussian random variable with
mean m and variance > . Thus,

2
Ty, O THD) = Sy (g =m) = le_nc exp{—%}

From (5.24), we need fy,, (v |H,) and fyy (y|H,). Since the noise samples

are statistically independent, the joint density function of the K samples is the
product of the individual density functions. This yields

)’
e 262

K i K
2
fY|HO(y|H0):H e 2 and fY|H1(.V|H1):H

k=1 x/ﬁc k=1 \/ZG

X X . .
where[] denotes product. Using the fact that []; e k = ez" *, the likelihood
ratio test is

K 2 K _m)? K Km>
A(y)= exp Z; 2}::‘2 —kZ:‘; (J’kchzn) } = exp{%kz{yk - 2;n2 }
Taking the natural logarithm of both sides, the likelihood ratio test becomes
H,
K 2
InA(y)= Gizkz:‘iyk - 12(?2 ~ Iny

H,
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Rearranging terms, an equivalent test is
H,
i y > i Inn+ Km
k=1 f<m 2
H,

That is, the receiver adds the K samples and compares them to the threshold
S g K
m " 2

Sufficient Statistic

A statistic is any random variable that can be computed from observed data. Let T’
be the value of a statistic given by 7 =#(x). Let T'be the value of another

statistic, with 7and 7' having a joint density function given by f (x, | 6). Then,

f(x,»10)= fr(x10)f7(y]x,0) (5.32)

where f7(x|0) is the probability density function of 7, and f5(y|x,0) is the
conditional density function of 7", given T = x . Note that in (5.32), we have used
the fact that P(A and B) = P(A)P(B| A) . Assume the conditional density function
fr (y|x,9) does not involve 6. Then, if T is known, the conditional density
function of 7' does not depend on 0, and 7" is not relevant in the decision making
problem. This can be shown to be the case of all 7' for all data. Consequently, T’
summarizes all data of the experiment relevant to 0, and is called a sufficient

K
statistic. From Example 5.2, we observe that only knowledge of the sum Z Vi is
k=1
K
relevant in making a decision about Y. Hence, T'(Y)= z Y, is a sufficient
k=1
statistic.

Example 5.3

Consider the situation where the samples Y, Y,,..., Yy are independent random

variables, each having a Bernoulli distribution with parameter p. Assume that the
test statistic is
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K
T(Y)=> Y
k=1

Is 7T(Y) a sufficient statistic?

Solution

From (2.1), a random variable Y is said to have a Bernoulli distribution with
parameter p if

frnp)=p*(-p), y=01

where0 < p<1. Since the random variables Y|, Y,,..., Yx are statistically
independent, the joint density function is given by

Sy p)=[p" (1= p) " 1p" (1= p) 7 1. [ (1= p) %]

That is, the joint density function of the sample values does not involve the
K K
parameter p, and depends only on the sum 7'(y) = Z vi- Hence, T(Y) = Z Y, is

k=1 k=1
a sufficient statistic.

Example 5.4

Consider the problem where the conditional density functions under each
hypothesis are

1 y2 1 y2
Sy, V1 Ho) = exp| — and fyy, (v Hy) = exp| —
itto ’ V2no 20(2) i : V2no 261

where o7 >0} .
(a) Determine the decision rule.
(b) Assuming we have K independent observations, what would the decision
rule be?

Solution

(a) Applying the likelihood ratio test given in (5.23), we obtain
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1 y2
exp| =
V2no, 20,
1 y2 < 1
exp|
V21o, [ 26} J Ho

Taking the logarithm on both sides, we have

J H,

H,
2
> Oy y 1 1 >
or G—eXPIT[— —H <

Aly) =

H, H,
2 2 2
1 2
< < 612 —Gg o,

H, Hy

T(Y)=Y? is the sufficient statistic, and hence the test can be written as

(b) Since the random variables Y|, Y,,..., Yx are independent, the joint density
function is simply the product of the individual densities. That is

Yk
K -
1 202 2
Sy, (Y Ho) = e ©° and fyy (¥IH))= !
Y|H, 0 :]!::[1\/%(50 Y|H, 1 H\/—Gl
Substituting in (5.24) and taking the logarithm, we have
H, H,
11 1)1&, oy > K , > 20407 oy
—| = Zyk +KIn— ~ Inn or Zyk ———|Inn—-KIn— |=vy
2[55 of Jk=l o < 0 < of-o§ o
H, H,

K
The sufficient statistic is 7(¥) = >, 2, and the test can be written as
k=1
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Hl
K
>
=2y _ v
k=1
HO

Note that if 012 < 03 , then 612 - 6(2) is negative and the inequality is reversed; that

is,

5.2.2 M-ary Hypothesis Testing

In the previous section, we considered the choice between two hypotheses, H, and
H,. We now consider the choice of one hypothesis among M
hypotheses, H,, H,,... ,H,,_, each time an experiment is conducted. Since any
one of the M decisions can be made, there are M * possible alternatives. Bayes’
criterion assigns a cost to each alternative. To the jjth alternative, which is the
decision D; given hypothesis H, the cost Cj;, i, j =0,1,...,(M —1), is assigned. In
addition to the hypotheses H,,H,,... ,H,,_;, we assign the a priori probabilities
Py, P,... ,Py_;,respectively. The goal is to minimize the risk defined as

M—1 M-
R=> D> PC;PD;|H);) (5.33)
=1 j=1
Using the fact that
P(D; | H )=, fyu, (v H;)dy (5.34)
the average cost becomes
M-1 M-l
R=2 2 PCyl, [y, (| H))dy (5.35)
=0 j=0 i
The observation space Z is now divided into M subspaces, Z,Z,,... ,Z,;_;, such

that
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z=2z,Uz,U..UZ,, (5.36)

In order to find the decision surfaces so that ‘R is minimized, we rewrite (5.35) as

M-1 M-1 M-l
Z PiCy [, fy, 01 H )dy+ 2 RCy [, Sy, (W Hddy  (5.37)
i=0 j::? i=1
M-l
because Iz fY‘Hj_ (¥ | H ;)dy=1,and the surface Z, =Z - UOZj . Substituting in
i
(5.37), the risk becomes
M-l M-1 M1
R=3[, 3 P(Cy~Co Vv, 01 H )+ S BC,  (539)
i=1 " j=0 i=0

J#i

Using the same reasoning as before, we observe that the second term of (5.38) is
fixed, while the first term determines the cost for the selected decision regions.
Hence, the small integral value yields selection of the hypothesis for which

M-1

1) = 2P (Cy=Cy )y, (1 H ) (5.39)
j=0
i

is minimum.
Defining the likelihood ratio A;(y), i=12,...,M —1, as

Sy, W1 H)
A; ) i=12,..,M -1 5.40
O o Ol (340
and the term J;(y) as
1,(y) M=
T =t Z —CA; () (5.41)

fY\HO (¥ Hy) j=1

the decision rule is to choose the hypothesis for which (5.41) is minimum.
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MAP Criterion
In communication problems, it is common to have the costs

C.=0, i=12,...,M-1 (5.42a)

11
and

Cy=1 i#jand ij=01..,M-1 (5.42b)

In this case, minimizing the risk is equivalent to minimizing the probability of
error. After substitution, (5.41) becomes

M-l M-l
L;(»)= 2 P(H ) fyu, (0| H )= 3 P(H ; | Y) fy (9) =[1-P(H; [D)]fy (¥)

Jj=0 Jj=0

izj

(5.43)

Minimizing (5.43) is equivalent to maximizing P(H;|Y), which is the a
posteriori probability of hypothesis H,, given the observation vector y. If in
addition, the a priori probabilities are equal

P(H,)=P(H,)= ... =P(Hy_)=p (5.44)

Equation (5.43) becomes

M-1

L) =p fyu, (| H;)=pll-P(H; |Y)] (5.45)
j=0
J#I

We observe that in this decision rule, the receiver computes the a posteriori
probabilities P(H; | Y),i=0,1,2,...,M —1, and decides in favor of the hypothesis
corresponding to the largest a posteriori probability. Such a minimum probability
of error receiver is also referred to as the Maximum a posteriori probability (MAP)
receiver.

For simplicity, let M =3 and the observation space be Z=2,UZ,UZ,.

From (5.35), we obtain
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R= Pocoo_[z0 Sy, (| Ho)dnyPoclojz1 Sy, W1 Ho)dy
JFPoCzoJ‘Z2 Sy, (V1 Ho)dy+1’1C11IZl Sy, (| H\)dy
+PCo [, Fyn, W H)Ay+BCoy [, fy, (v | H )y
+PCo [, fyp, (W1 Ho)dy+ PoCos [, fryy, (v Ho)dly

JszCuJ.Z1 Sy, (¥ 1 Hy)dy (5.46)

Note that

[ S OV Hy =], s, Ty, (v H)dy
=1-2[, Sy, (V| H)dy, i,j=0,1,2  (547)
j J

J#i
Substituting (5.47) for the terms involving C,,C;;,and C,, in (5.46), we obtain

R=FCo +ACy +PCyp
+'[Zo [P (Coy _C22)fY|H2 (W[ Hy)+P(Cy _Cu)fywl (¥ H,y)ldy
+], [P (Cio =Cao) Sy, (W] Ho) + P (Cpa = Con) fyyar, (¥ | H)]dy

+.fzz [P (Cao =Coo) Sy, W1 Ho)+P(Cy =Cyy) fyy, (W | H)ldy  (5.48)
We define 1,(y),1,(y), and I, (y)as

Ly () =Py (Coy =Cx) fyj, W | Hy)+ P(Coy =Cyy) Sy, W[ Hy)  (5.49)

Li(») =Py (Cro = Coo) fyim, W | Ho)+ P (Cry =Cop) fyu, (¥ | Hy) - (5.49b)
and

I, (y) = Py(Cyo = Coo) Sy, W Ho)+ B (Coy =Cry) fy, (W[ Hy) - (5.49¢)

To minimize R, we assign values of Y to the region having the smallest integrands
in (5.48), since 1(y),,(y), and I, (y) are nonnegative. Consequently,
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Zy ={y|1,(»)<I;(y)and I, (p)}

Z, ={y|L,(p) < Iy(p)and I, ()}
and
Z, =1y | 1, (») <Iy(y)and I, (p)}

where | denotes “such that.” From (5.40), the likelihood ratios A, (y)and A, ()
are

fY\Hl(y|H1)
A = 5.50
O Oy (5300
and
fY|H (¥ H>)
A i e I 5.50b
2 0 Hy) (>:300)

In order to incorporate the likelihood ratios into the decision rule, we use the
following equivalent test

HyorH,

Iy(y) 1 () (5.51a)

<
HyorH,

HyorH,

Iy () 1,(y) (5.51b)

>

<
HyorH,
and

HyorH,

1, (y) I,(y) (5.51¢)

<
HyorH,
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Substituting (5.49) and (5.50) into (5.51), we obtain the test

H,orH,
>
B(Co—CioM () B(Cig=Co)+ P (Crp =Cor)As(p) (5.522)

HyorH,
H orH,

Py (Cop =Cyp)A () Z Py(Cao =Cop) + A (Cy =Co)A (p) (5.52b)
HyorH,

and

HyorH,

Py (Cpy =C)A5 (y) Z Fy(Cyo =Cro) + P(Cy =CiDA(p) (5.52¢)
HyorH,

Because M =3, there are only two likelihood ratios and the decision space is two-

dimensional, as shown in Figure 5.6.
For the costs

C,=1, i#j (5.53b)

»

Az(y)‘

Decide H,

Decide H, Decide H,

>N )
Figure 5.6 Decision space for M = 3.
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It is easier to observe, in this case of M =3, that minimizing the risk is equivalent
to minimizing the probability of error, and the decision rule reduces to

H,orH,
> L
< A
HyorH,

A (y) (5.54a)

HorH,
> P()
< B
HyorH,

Ay () (5.54b)

and

HyorH,

> B
—A 5.54c
2 A (5.540)

H,or H,

Ay (»)

The resulting decision regions are shown in Figure 5.7(a). The overall decision
space is given in Figure 5.7(b).
Taking the logarithm of both sides of (5.54a—c), we obtain

A (y)
Ay () A
A
,Hz OI'H]
in OrH()
HyorHy | H,
HyorHy | H, or H,
E H, or H,
Py /P, 7 GRREEE R R R/R
HyorH, .°
0 2,’ H, or H, H
,’ H1 OrH() HO
/,’ H() 0rH|
: > A » M)
R/R R/R
(a) (b)

Figure 5.7 Decision space for M =3: (a) resulting decision regions and (b) overall decision space.
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H,orH,
nA(y) > Il (5.55a)
1y < P .
HyorH,
H,orH,
> P()
InA,(y) In—* (5.55b)
P,
HorH,
and
HyorH,
> it
InA,(y) In—A(p) (5.55¢)
< b
Hjyor H

The decision space in the In A, (y)—In A, (y)— plane is shown in Figure 5.8.
We observe that the decision space now consists of the entire plane.
Furthermore, substituting (5.50) in (5.54), dividing by fy(y) and using

P(A| B)P(B), we obtain the following decision rule

HorH,
>
P(H(|y) . P(H,|y) (5.56a)
HyorH,
InA,(y) A
Decide H,
InF/P,
Decide H,
» InA(y)
. B /P
Decide H,

Figure 5.8 Decision space using logarithm for M =3.
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H,orH,
>
P(Hyy) . P(Hyly) (5.56b)

HyorH,
and

HyorH,

P(Hy|y) . P(H|Y) (5.560)

HyorH,
Hence, this form shows clearly that the decision amounts to computing the a

posteriori probabilities P(H, | y), P(H, | y),and P(H, | ), and then selecting the
hypothesis corresponding to the largest.

Example 5.5

A ternary communication system transmits one of the three amplitude
signals {1, 2,3}With equal probabilities. The independent received signal samples
under each hypothesis are

HI:YkzlJFN, k:1,2,...,K
H,:Y,=2+N, k=1,2,..,K
H3'Yk:3+N, k:1,2,...,K

The additive noise N is Gaussian with mean zero and variance s> . The costs are
C; =0and C; =1fori= j, i,j=1,2,3. Determine the decision regions.

Solution

Since the observation samples are independent, the conditional density function of
the observation ¥ under each hypothesis # ;, j=1,2,3 is

K 1 1 5
o 01 = [T - P

k=1 \V27C

S p{ LS (o )2}
(2nc?)K/? 26% i £
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K

1 1 ) K( )
- L exp _202 Zyk + Z:: 2ypm; —m;

k=1

The decision rule is to choose the hypothesis for which fy, (y|H;)is
maximum. Rewriting fy; (¥ |H ;)

20‘2 k=1

1 1 & 1 &
Sy, W H ;)= 2n0?) <7 exr{— 22 ;yi}eXp{—Z(Zykm —m; )}

we observe that we choose the hypothesis H;, for which

M=

(Zykm -m; ) 2 Zykm -m?

J
k Kkl

is maximum. That is, we choose the maximum of

2 K
_zzyk _ls
Kk:l

4 K 6 K
E;)’k—‘h and EZJ’k_9

where the means m; =1, m, =2, and m; =3 correspond to hypotheses H;, H,
and Hs, respectively. If

= -1 —4
K};J’k >— ZJ’k

we choose H, for the region

K
and so on for all terms. We observe that the test statistic is 7(¥)=(1/K )z Y, .
k=1
which is just the sample mean. Hence, the decision regions are given by
T(y)<1.5 choose H,

1.5<T(y)<2.5 choose H,
T(y)>2.5 choose H,
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A plot of conditional density functions showing the decision regions is shown in
Figure 5.9.

5.3 MINIMAX CRITERION

The Bayes’ criterion assigns costs to decisions and assumes knowledge of the a
priori probabilities. In many situations, we may not have enough information about
the a priori probabilities and consequently, the Bayes’ criterion cannot be used.
One approach would be to select a value of P, the a priori probability of H,, for
which the risk is maximum, and then minimize that risk function. This principle of
minimizing the maximum average cost for the selected P, is referred to as minimax
criterion.
From (5.2), we have

P, =1-P (5.57)
substituting (5.2) in (5.15), we obtain the risk function in terms of P, as

R=Co(1=Pr)+CioPr + P[(C) —Cp)+(Coy =C1 )Py —(Cig —Coo) Pr ]
(5.58)

Assuming a fixed value of P, P, €[0,1], we can design a Bayes’ test. These

decision regions are then determined, as are the probabilities of false alarm, Pr,
and miss, P,,. The test results in

H,

A( ) > (1_})1)(C10_C00)
< PGy —-Cy)
H,

(5.59)

Sy, (Y 1H) Ty, 1) Sy, (91 H3)

]
)
1
I
I
|
] ]
! : : : ' > 7(y)
0 1 1.5 2 2.5 3
—H—>—H —>—H, ——>

Figure 5.9 Conditional density functions and decision regions.
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As P, varies, the decision regions change, resulting in a nonoptimum decision rule.
This in turn causes a variation in the average cost, which would be larger than the
Bayes’ costs. The two extreme cases are when P, is zero or one. If P, is zero, then
the threshold is infinity and the decision rule is

Aly) ~ (5.60)

H, is always true. The observation is Z,, and the resulting probability of false
alarm and probability of miss are

Pr =, fr,(v| Ho)dy =0 (5.61)
and
Py =], Frm, (0| H)dy =1 (5.62)
Substituting for the values of P, Pr, and Py, in (5.58), we obtain that the risk is
R=Cy (5.63)

Similarly, when P, =1, the threshold of (5.59) is zero and the new decision rule is
Aly)~ 0 (5.64)

Since A(y)is nonnegative, we always decide H,. Hence, Pr =1and P,, =0. The
resulting risk is

If P, =P such that P" €(0,1), then the risk as a function of P; is as shown in

Figure 5.10. From (5.58), we see that the risk R is linear in terms of P, and the

Bayes’ test for P, = P" gives the minimum risk 9, . The tangentto R . is
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................................... - - Minimax risk
0 |
:

R*(PY)

0 Pi 1

Figure 5.10 Risk as function of P;.

horizontal, and R*(P,) at P, =P represents the maximum cost. Observe that

the Bayes’ curve must be concave downward. Thus, the average cost will not
exceed R*(P") . Taking the derivative of R with respect to P; and setting it equal
to zero, we obtain the minimax equation to be

(Cy1 =Cop)+(Coy =C11)Py —(Cyg = Coo)Pr =0 (5.66)

If the cost of a correct decision is zero (Cy, = C;; = 0), then the minimax equation

for P, = P" reduces to
Co1Py =CioPr (5.67)

Furthermore, if the cost of a wrong decision is one (C,; =Cj, =1), then the
probability of false alarm equals the probability of miss. That is,

Pp =Py (5.68)
and the minimax cost is
R=P-(1-P)+PPy, =P,P-+PPy (5.69)
which is the average probability of error.

Example 5.6

Consider the problem of Example 5.1. Calculate the minimum probability of error
when:
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(@) Py =P.
(b) Py and P; are unknown.
Solution
(a) From Example 5.1, we found that the decision rule is
H,

2

S mn+Z=
< m 112Y

Hy

Given P, = P, =1/2, the probability of error is P(g) =(1/2)(Pr + P),) , where

Py = Q(%} =erfc, (%j

and

i

(b) In this case, the optimum threshold y" is obtained when P = P,, as given in

(5.68). Hence,
y * ~ m—vy *
%)=

or the threshold y* is y* =m /2. Consequently, the average probability of error is

P(e)=PyPy + PPy, =(Py+P,)Py =0 — | = erfe,| —
26 20

In order to compare the results of (b) and (a), we normalize the standard
deviation of the observation in (a) to one. Let y'=y/c, and since n=1, the

decision rule becomes
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H,

\l

The probability of false alarm and probability of detection are given by

Pp= |

1 *g (a)
e 2dy'=0—
(1/2\/% 2

© -’ o o
PD:_[ e ? dJ":Q(E—Oﬁ):Q(—EJ

a/2 V21

and thus Py, =1-P, =1- Q(— o/ 2) = Q(oc / 2). The average probability of error
is P(e)=(1/2)[0(a/2)+0(a/2)]= 0o/ 2)= O(m / 26). Therefore, both results
obtained in (a) and (b) are the same.

5.4 NEYMAN-PEARSON CRITERION

In the previous sections, we have seen that for the Bayes’ criterion we require
knowledge of the a priori probabilities and cost assignments for each possible
decision. Then we have studied the minimax criterion, which is useful in situations
where knowledge of the a priori probabilities is not possible. In many other
physical situations, such as radar detection, it is very difficult to assign realistic
costs and a priori probabilities. To overcome this difficulty, we use the conditional
probabilities of false alarm, Pp, and detection Pp. The Neyman-Pearson test
requires that Pr be fixed to some value o while Pp is maximized.
Since Py, =1- Pj , maximizing Pp is equivalent to minimizing P,,.

In order to minimize P,, (maximize Pp) subject to the constraint that P, =a.,
we use the calculus of extrema, and form the objective function J to be
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J =P, +MPr—0) (5.70)

where A (A >0) is the Lagrange multiplier. We note that given the observation
space Z, there are many decision regions Z; for which P = a. The question is to

determine those decision regions for which P, is minimum. Consequently, we
rewrite the objective function J in terms of the decision region to obtain

J :,[ZO Sy, 1 H, )dy-i-?uUZl Sy, Ho)dy—a:| (5.71)

Using (5.1), (5.71) can be rewritten as

T = L GV HOD A [, fr, 0| Hoy—a

=h(=0)+ [, Ly, 0 LHO =2 fra, (0] Ho)ldy (5.72)

Hence, J is minimized when values for which fy, (v|H,)> fyyu, (v H,) are

assigned to the decision region Z;. The decision rule is, therefore,

H,
_ fY|Hl(y|H1) >

fY\Hﬂ(ﬂHo) <
H,

Aly)

(5.73)

The threshold n derived from the Bayes’ criterion is equivalent to A, the Lagrange
multiplier in the Neyman-Pearson (N-P) test for which the probability of false
alarm is fixed to the value a. If we define the conditional density of A given that
Hyistrueas fuy (M H),then Pp =a may be rewritten as

Pp =, fyum, (v Ho)dy = { S, M) [ Holdh— (5.74)

The test is called most powerful of level a. if its probability of rejecting H, is o.
Example 5.7

Consider the binary hypothesis problem with received conditional probabilities
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1 1 1 1}
Hy)=—e for |y|<1 and H,)=—rect| —
fY|H0 (v Hy) 2(1—e’1) |J’| fY\H] (v Hy) > [2

The hypotheses Hj and H, are equally likely.
(a) Find the decision regions for which the probability of error is minimum.
(b) Calculate the minimum probability of error.
(c) Find the decision rule based on the Neyman-Pearson criterion, such that
the probability of false alarm is constrained to be P = 0.5.

(d) Calculate the probability of detection for the given constraint of Pr in (b).
Solution

(a) The minimum probability of error receiver requires that Cy, =C,; =0 and
Cy, =Cj =1. Since the a priori probabilities are equal, the likelihood ratio test
reduces to

H,
)_ fY\Hl(y|Hl) >

y =
fY|H0(y|HO) <
H,

That is, we choose the hypothesis for which fy, u, (v H;),j=0,1, is maximum.

The decision regions are as shown in Figure 5.11.
Note that we decide H, for —1< y <-0.459and 0.459 < y <1, and we decide

Hyfor —0.459 < y < 0.459.

(b) The probability of error is P(¢) = Py Py + P, Py, , where

21—ey N\ Jrimg 1 Hy)

. Py (71 H)
r | 7
. ‘Tom/////////fm o
-0.459 .
«— i ple Ho e H —>

Figure 5.11 Decision regions for Example 5.7.
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1 ~0.459 1
Pp = P(decide H, | H, true) =———— Ieydy+ J'efydy =0.418
2(1- -1 0.459

and Py, = P(decide H, | H, true) = 2[(0.459)(1/2)]= 0.459 . Thus, the probability
of error is P(e) = (1/2)(0.418+0.459) = 0.4385 .

(c) In using the Neyman-Pearson criterion, we have

IR
>
Ap)=—2—— T
I
2(0-e™) H,
Thus,
H, H,
l-e' > > 1-e™!
—_— or |y| —In =
e—\y\ < < n
H, H,

P is as shown in Figure 5.12(a). Hence, Pr=P(D;|H,)

-7 1
- 21 _le—l) ( Ieydy+ Ie_deJ =0.5= y =0.38 is the threshold.

—1 -y

(d) The probability of detection, as shown in Figure 5.12(b),
is P, =2[(1-0.38)(1/2)]=0.62 .

A A
fy\HO(}’\Ho)
Pp
» \< Sy, (v | Hy) \ /
"] : > = 7 /47%;///
: 2 o X
7 R ) i,
alt Y -y Y
(@) (b)

Figure 5.12 Regions showing: (a) Prand (b) Pp.
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Receiver Operating Characteristic

A plot of the probability of detection, Pp, versus the probability of false alarm with
the threshold as a parameter is referred to as receiver operating characteristic
(ROC) curves. We note that the ROC depends on the conditional density function
of the observed signal under each hypothesis, that is, fy, H, (v|H;),j=0,1,and

not on the assigned costs, or the a priori probabilities. We shall explain the concept
of the ROC through an example. From Example 5.2, the decision rule was shown
to be

}{1
K 2
> 0 Km
T(y)= N
» Ziyk<m N+
}10

We observe that the sufficient statistic 7(Y') is Gaussian. Calculating the mean and
variance of the sufficient statistic under each hypothesis, we obtain

K
E[T(Y)|Ho1=E| 2 Y, |H, |=0
=

K
var[T(Y)| Hy]=var| Y. Y, | H, | = Ko*
Lk=1

K
E[T(Y)|H1]=E[2Yk |H1}=Km
k=1
and

var[T(Y) | H,]= va{i Y, | Hl} = Ko?
k=1

Hence, to obtain a unit variance under each hypothesis, we need to normalize the
test statistic by VKo to yield var[T(¥Y)| H,]=var[T(¥)|Hy]=1, E[T(Y)|H,]=1,

and E[T(Y) | H,]= x/f m/ o . For the variance of T'(Y) under H, equal to one, the
distance between the two means is defined as

d2 m —m, (5.75)
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where my and m, are the means under hypothesis Hy and H,, respectively. That is,
d= x/E m/ o . It should be noted that

Km? B K?*m? _&
c? Ko? N,

d’ =

can be thought of as a signal-to-noise ratio, where the signal power is
S, = K*m? and the noise power is N, = Ko>. The conditional density functions
of the statistic under hypotheses H, and H, are

L7 1 _eay
frwo(tlHo):Ee R and fo (tlHl):Ee (-d)/2

The decision rule becomes

H,
K
> lnn d
T _— !
(y) \/_le Vi < 4 2
H,

The probabilities of false alarm and detection are

[ In d
Pp = _[ fT|Ho(t|H0)dt:Q(—n+—j
lnT]+£ d 2
d 2
and
T Inm d
[ o, 1 Hyde = Q(_n__j
Inn, d d 2
d 2

The conditional density functions fy, H, (¥ H;), j=0,1,and the probabilities of

detection and false alarm are as shown in Figure 5.13.

Varying the threshold y, the areas representing Pp and Pr vary. The
corresponding ROC curves are shown in Figure 5.14. We observe that as d
increases, the probability of detection increases for a given probability of false
alarm. However, the threshold remains constant for a fixed Pr even as d increases.
Thus, d gives a measure of the hypothesis testing, and therefore it is also called the
detection parameter-.
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Srimg (1 Ho)

Figure 5.14 ROC with d as a parameter.

The two extreme points on the ROC for P, =Py =1 and P, =P, =0 are

easily verified. Since both the Neyman-Pearson receiver and the Bayes’ receiver
employ the likelihood ratio test, and since A(y)is a random variable, Pp and Pr
may be rewritten as

P = P(decide H, | H, true) = .[fAIHI (M Hy)dh (5.76)
n
and
P = P(decide H, | H true) = ij|H0 (M| Hy)dh (5.77)

n
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A(y) is a ratio of two negative quantities, fy; (v|H,) and fyy (v|H,), and
thus takes values from zero to infinity. When the threshold 1 is zero (n=0
corresponds to F, =0), hypothesis H; is always true, and thus P, =Pp =1.
When the threshold n is infinity (1 — o corresponds to P, = 0), hypothesis H, is
always true, and thus P, = P, =0. This is clearly depicted in Figure 5.14.

The slope of the ROC at a particular point on the curve represents the
threshold n for the Neyman-Pearson test to achieve P, and P at that point.

Taking the derivative of (5.76) and (5.77) with respect to 1, we have

dpP d 3
B=— [ faum, O H)dh = ~fr, (M H,) (5.78)
dn dn N
and
dP d =
E= = [ faym, O\ Ho)dh==f g, (| H) (5.79)
dn dny
Also,

Pp(m) = PIA) 2| H\1= [ fam, M) | H Jdh = [ A fa, M0 | Ho ldh
n n

(5.80)
Taking the derivative of the above equation with respect to 1, we obtain
dP
—D:—nf/\\H1 (MIHy) (5.81)
dn
Combining (5.78), (5.79), and (5.80) results in
H
fA\Hl (nlH,) _ (5.82)
f AlH, ([ H,)
and
P
aFp _ n (5.83)

DP;.
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In the Bayes’ criterion, the threshold m is determined by the a priori
probabilities and costs. Consequently, the probability of detection, Pp, and the
probability of false alarm, Pp, are determined on the point of the ROC curve at
which the tangent has a slope of 1.

The minimax equation represents a straight line in the P, — Py plane starting

at the point P, =0and P, =1, and crosses the ROC curve. The slope of the
tangent of the intersection with the ROC is the threshold n.

Example 5.8

Consider a problem with the following conditional density functions

e”?, y20

0 , otherwise

ae @, y20,a>1

fY|H0(y|H0)={ and fYHl(y|H1):{

0 , otherwise

Plot the ROC.
Solution

The ROC is a plot of Pp, the probability of detection, versus P, the probability of
false alarm, with the threshold 1 as a parameter. The likelihood ratio is

Hl
ae ¥ —(a—1 >
Ay) = =ae” T Ty
e <
HO

Taking the logarithm and rearranging terms, the decision rule becomes

H,

> 1 n
——In—=
<l-o a v

H,

From the Neyman-Pearson test, the probability of detection and probability of
false alarm are

Y Y
Py =P(D,|H))=[ae¥dy=1-e" and Py =P(D,|Hy)=[e"dy=1-¢"
0 0
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Note that taking the derivative of Pp and Py with respect to the threshold vy, and
substituting in (5.83), we obtain the threshold n; that is,

dp,,

_ yp—(a-Dy _
=ve =
ap, |

A plot of the ROC with o as a parameter is shown in Figure 5.15.

5.5 COMPOSITE HYPOTHESIS TESTING

In the simple hypothesis testing problem previously considered, the parameters
characterizing a hypothesis were all known. In many situations, the parameters
characterizing a hypothesis may not be known. In this case, the hypothesis is
called a composite hypothesis.

Example 5.9

Consider the situation where the observations under each hypothesis are given by

H :Y=m+N
Hy:Y= N
2

where N denotes a white Gaussian noise of zero mean and variance -, and m is

unknown. Then, we say that H, is a simple hypothesis, and H, a composite
hypothesis.

t t t t |VPF

0 1
Figure 5.15 ROC of Example 5.8.
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H,
»- Transition Observation Decision
Source probabilities space ’
Hy

Figure 5.16 Block diagram showing composite hypothesis.

In the previous sections, we developed the theory of designing good tests for
simple hypotheses. We now consider tests for composite hypotheses. The situation
may be best described by the following block diagram of Figure 5.16.

Each hypothesis is characterized by a set of K parameters, such that

0" =[0, 0, ... 0,] (5.84)

Two cases will be considered. First,® may be a random variable with known
density functions fg; (0| H)and fg; (8] H,). Second, @ may not be a random

variable but still an unknown constant.

5.5.1 O Random Variable

If ® is a random variable with known density functions, fGIHl (0| H,)and
Jou, (01 H,), then the decision is obtained by using the Bayes’ criterion and

minimizing the risk. The analysis is as before. In order to apply the likelihood ratio
test, we need fy, (v|H,) and fy (y|H,). They are readily obtained by

averaging over all possible values of ® . That is,
fyi, OV H) = friom, (W 10.H ) oy (81 H,)dO, j=0,1  (5.85)
The likelihood ratio becomes

v, IHD [ fre, (010, H) fo, (0] H)d®

A(y) = =
fY|H0 (¥ Hy) IfY\G),HO (.V|9J1’o)f®\HO (8] H,)dd

(5.86)

Example 5.10

Consider the problem of Example 5.9, where the constant m, now denoted A/, is a
Gaussian random variable with mean zero and variance o2 . Determine the
optimum decision rule.
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Solution

Using (5.86), the optimum decision rule can be directly obtained from the
likelihood ratio test. Hence,

[ fvie s, G lms HY) g, (m | Hy)dm

A — —00
) Fom [ Hy)

Note that only H, is a composite hypothesis, and consequently the numerator of
A(y) is integrated over M. Since the actual value of M is not important, M is

referred to as the “unwanted parameter.” The numerator of A(y), denoted N(y),
is

o 2 2
-m m
N(y)= j exp —M— 5 dm
2noo, e 2 26
1 % o2 +c’( , 204y y?
:chc Jexp{— Y (m - ol dm
m e c o, G, tO 20

Completing the square in the exponent, N(y) becomes

w 2 2 2 2 2 2 2
G, +0 Gy Gy Yy
N(y)= I expl ———5— (m— Zj dm

262 (an +62) 262

2
1 2 % o2 +o2 o2
= exp _—2y > I expl ——5——| m——; mY ~| |dm
2noo,, 2(c;, +07) | % 26°c G;, +C

Because the integral

2nco

2 2
2070y,

—0

° ol +o? o2y ? cG
Iexp— L m— 2’" > | [dm=~2n L

N(y) becomes
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1 y2
YIH)=———— -
i 010 =y exp{ 2(0,2,,+02J

The likelihood ratio test reduces to

1 2
exp{— 2y 5 }Hl
\/;110,2,, +c? 2(c,+07) ] o
AQ) = : _ o
Y
exp| —
v2no { 262:| Hy

Taking the natural logarithm on both sides and simplifying the expression, we
obtain

H,
5 > 202(0,2"+62) 1 Gi
y —— | Inn+—In| 1+
< o2 2 o’
H,

We observe that exact knowledge of “the unwanted parameter” m is not important
because it does not appear in the decision rule.

5.5.2 6 Nonrandom and Unknown

If 6 is not a random variable but still unknown, the Bayes’ test is no longer
applicable, since 6 does not have a probability density function over which
Sye, H, (»16,H ;),j=0,1, can be averaged, and consequently the risk cannot be

determined. Instead, we use the Neyman-Pearson test. In this case, we maximize
the probability of detection, Pp, while the probability of false alarm, Pf, is fixed,
given that the assumed value 0 is the true value.

Performing this test for several values of 0 results in a plot of Py versus 0,
known as the power function. A test that maximizes the probability of detection as
mentioned above for all possible values of 6 is referred to as a uniformly most
powerful (UMP) test. Hence, a UMP test maximizes the probability of detection
irrespective of the values of 0 .

If Hy is a simple hypothesis and H, is a composite hypothesis, then the test is
called UMP (of level a) if it is the most powerful of level a.
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Example 5.11

Consider the problem of Example 5.9, where m is a positive constant. Determine
the optimum decision rule.

Solution

The conditional density functions under hypotheses H, and H, are

1 y2
H,: Hy)= exp| —
0 fY\HO (y | 0) \/ﬁg p( 202 ]

<y—m>2}

262

1
H, 3fYH1(J/|H1)=meXP{—

The exact value of m is not known, but it is known to be positive. Assuming a
value of m, the likelihood ratio test is given by

2 2
L oxpl [ 2 )
\V2no 20 >

1 2 <
exp| —
V2no [ 2672 ] Ho

Simplifying the likelihood ratio test and taking the natural logarithm, we obtain

A(y) =

n

H,
2
> G—lnn+ﬂ:y
Y < " B 1

H,

Note that the threshold n is determined from the specified value of the
probability of false alarm Pr. In fact, knowledge of n is not necessary to determine
Y, . Assuming v,, as shown in Figure 5.17, we have

0 ') 1 y2
Pp = fyu, (V| Hy)dy = exp| — dy
r ‘[ il 0 ;[«/2710 262

"1

Once vy, is determined, the application of the likelihood ratio test
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A

Sy, (V1 Ho) \ Sy, (v [ Hy)

Y1
Figure 5.17 Threshold y, for composite hypothesis.

Hl
>
<

H,

y Y1

does not require any knowledge of m. That is, a best test can be completely
designed independently of m. Hence, a UMP test exists.
Similarly, if m were unknown but negative, the likelihood ratio test reduces to

H,
2
> G—lnn+ﬂ:y
Y < " ) 2

H,

v, is determined from the specified probability of false alarm to be

2

Y2 Y2 7}72
Pr = [ fym, 0| Hy)dy = | e 2 dy
—o —o i{e

Again, a UMP test exists, since application of the likelihood ratio test is
independent of m. It should be noted that the probability of detection for both
cases, m<0 and m >0, cannot be evaluated because the exact value of m is not
known. Nevertheless, the test is optimum for all possible positive or negative
values of m.

Note that the test designed for positive m is not the same for negative m.
Consequently, if m were unknown and takes all possible values, positive and
negative, a UMP test does not exist. We know from the definition that a UMP test
exists if it is optimum for all possible values of m. In this case, the test designed
for positive (negative) m is not optimum for negative (positive) m. This requires
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that different tests are to be used, which will be discussed in the coming chapter
after we cover maximum likelihood estimation (MLE).

5.6 SEQUENTIAL DETECTION

In the previous sections, we considered the theory of hypothesis testing, such that
the number of observations on which the test was based was fixed. In many
practical situations, observations may be taken in a sequential manner so that the
test is performed after each observation. Each time an observation is taken, one of
the three possible decisions is made:

1. Decide H,
2. Decide H,
3. Not enough information to decide in favor of either H, or Hj,.

If decisions (1) or (2) are made, the hypothesis testing procedure stops. Otherwise,
an additional observation is taken, and the test is performed again. This process
continues until a decision is made either in favor of H; or H,. Note that the number
of observation K is not fixed, but is a random variable.

The test to be performed after each observation is to compute the likelihood
ratio and compare it to two thresholds, n, and n;. Such a test that makes one of

the three possible decisions mentioned above after the kth observation is referred
to as sequential likelihood ratio test.
Let Y, k=1,2,...,K, represent the kth observation sample of the vector ¥

defined as
Y =[Y, Y, .. Yl (5.87)
The likelihood ratio based on the first K observations is

fYK\Hl (g [H))

A =
e fy,<|1-10 (yx [ Hy)

(5.88)

To compute the likelihood ratio of (5.88), we need to know the joint density
function of these K observations. For simplicity, we assume that the observations
are identically distributed, and are taken independently. The likelihood ratio can be
written as a product of K likelihood ratios to obtain

Sy, Vi [ Hy) _ K fyu, Vi [Hy)
fYK|H0 (g [Ho) 34 fYk\HO vk [Hy)

Ayg)= (5.89)
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The goal is to determine m, and 7, in terms of Pr, the probability of false
alarm, and P, the probability of a miss. We set

P; =a (5.90)
and

Py, =B (5.91)
and perform the following test. If

Ayg)zm (5.92)
we decide in favor of H,. If

Alyg)<my (5.93)

we decide in favor of H,. Otherwise, if

Mo <A(yg)<m (5.94)

we take an additional observation and perform another test. The probability of
detection, Pp, in terms of the integral over the observation space is

P, =P(decide H, | H, true)= IZI Sy, Vg [Hdyg (5.95)
Using (5.88), Pp can be written as
Py =], My Frn, Wi | Hody (5.96)

The decision in favor of H; means that A(yx ) = n,. Hence, substituting (5.92) for
(5.96), we obtain the inequality

Po 2 [, frn, (i | Ho)dyc (5.97)
Note that the integral

[, Fvan, Ok [ Ho)dyx =Pr =a (5.98)
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and since Py =1-P;, =1-P, (5.97) reduces to
1-B=na (5.99)
or, the threshold 1, is

1-p

o)

N < (5.100)

Similarly, it can be shown that the threshold n is
. B
Mg =>—— (5.101)
I-a

At this stage, some important questions need to be investigated and answered.
What is the probability that the procedure never terminates? What are some of the
properties of the distribution of the random variable K? In particular, what is the
expected value of this sample size K?

To answer such questions, it is much easier to use the log likelihood function.
Taking the natural logarithm of (5.94), we obtain

fY1|Hl (1 | Hy) r 4In fYK\Hl (vg | Hy)

Inm, <In
le|H0(y1|HO) fYK|H0(yK|HO)

<Inn, (5.102)

Let the kth term, k =1, 2, ..., K, of the above sum be denoted as

fYk\Hl(yk | H,)

= THo) G109
then, (5.102) becomes
Inmy <L(y)+...+L(yp)+...+ L(yg) <Inn (5.104)
The sum may be written in a recursive relation as
Lyg)=L(yg-)+L(yg) (5.105a)

where
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K-1

Lyg_)=L(y)+L(yy)+...+ L(yg ) = ZL()’k) (5.105b)
k=l

In order to calculate E[K], the average number of observations under each

hypothesis, we assume that the test terminates in K observations with probability
one. This assumption implies that L(yy ) takes on two possible values, Inn, and

Inm, . If hypothesis H, is true, a detection is declared when L(y)=Inmn; with
probability P, =1-P, =1-f. A miss occurs when L(ygx)<Inn, with
probability P,, =f. Hence, the expected value of L(y ) under hypothesis H, is

E[L(yx)|H]=PInng +(1-p)Inn, (5.106)

Following the same reasoning, the expected value of L(y ) under hypothesis
H() 1S

E[L(y)| Hyl=alnn, +(1-a)lnn, (5.107)

Let B be a random variable taking binary numbers zero and one such that

(5.108)

1, no decision made up to (k —1) sample
B k= .. .
0, decision made at an earlier sample

that is, B, depends on the observations Y, , k =1,2,...,K —1, and not Yx. Rewriting
the log-likelihood ratio in terms of the random variable B, we obtain

K 0
L(yx) =2 L(yg) =2 By L(yg) (5.109)
k=1 k=1
Since the observations are independent and identically distributed, we have

E[L(yx)|H ;1= E[L(y)| H;1)_ E[B,], j=0,1 (5.110a)
k=1

where

E[L(y)|H,1= EIL(y)| H,1=-=E[L(yg)|H;]  (5.110b)

The sum in (5.110a) is just
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Ms

E[Bk]ziP(sz) =§:kP(K:k)=E[K] (5.111)
k=1

k k=1

1
Substituting (5.111) and (5.110b) into (5.106), we obtain

E[L(y)| H,)E[K | H,]=alnn, +(1-a)lnn, (5.112)
or

_(-B)Inn, +Blnn,

K] E[L(y)| H,]

(5.113)

Similarly, the expected value of K under hypothesis H, can be expected to be

_ alnn, +(1-a)nn,
E[L(y)| H,]

E[K|H,] (5.114)

To answer the question that the process terminates with probability one, we
need to show that

lim P(K > k) =0 (5.115)
k—0

which is straightforward. Furthermore, it can be shown that the expected value of
the number of the observations K under each hypothesis is minimum for the
specified values of Pr and P,.

Example 5.12

Suppose that the receiver of Example 5.2 takes K observations sequentially. Let
the variance 6 =1 and mean m = 1. Determine

(a) The decision rule such that P, =a=0.1=P,, =f.

(b) The expected value of K under each hypothesis.

Solution

(a) The definition of the decision rule is expressed in (5.92), (5.93), and (5.94).
Consequently, we need to solve for the likelihood ratio at the kth stage and for the

thresholds 1, and m,. Substituting for 62 =1 and m=1 in the likelihood ratio of
Example 5.2, we obtain the likelihood ratio at the kth stage to be
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Alyg)= exp(i Vi —gJ

k=1

The log likelihood ratio is just
LS K
L(.VK ): In A(J’K): DV Y
k=1

From (5.100) and (5.101), the two thresholds are

Inn; =2.197 and Inn, =-2.197

Hence, the decision rule in terms of the log-likelihood ratio is:

If L(yg)=2.197, decide H,.

If L(yg)<-2.197, decide H,.

If —2.197 < L(yx ) <2.197, take an additional observation K +1 and perform
another test.

(b) The expected values of K under hypotheses H; and H, are given by (5.113) and
(5.114), respectively. We observe that we need to obtain £ [L( v H 1] and

E[L(y) | H 0]. Assuming that the observations are identical, we have
E[L(y)|H,]=1-(1/2)=1/2 and E[L(y)|Hy]=0-(1/2)=~1/2. Substituting
for the values of E[L(Y)|H,] and E[L(Y)|H ] in (5.113) and (5.114), we obtain
E[K|H;]=3.515 and E[K|H,]=3.515. That is, we need four samples to
obtain the performance specified by P, = P, =0.1.

5.7 SUMMARY

In this chapter, we have developed the basic concepts of hypothesis testing. First,
we studied the Bayes’ criterion, which assumes knowledge of the a priori
probability of each hypothesis, and the cost assignment of each possible decision.
The average cost, known as the risk function, was minimized to obtain the
optimum decision rule. The Bayes’ criterion was considered for the simple binary
hypothesis testing and the M-ary hypothesis testing. The minimax criterion, which
minimizes the average cost for a selected a priori probability, P;, was studied in
Section 5.3. The minimax criterion applies to situations where the a priori
probabilities are not known, even though realistic cost assignments to the various
decisions are possible. In cases where realistic cost assignments are not possible
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and the a priori probabilities are not known, we considered the Neyman-Pearson
approach. In the Neyman-Pearson criterion, the probability of detection (miss) is
maximized (minimized), while the probability of false alarm is fixed to a
designated value. The receiver operating characteristic, which is a plot of the
probability of detection versus the probability of false alarm, was useful in
analyzing the performance of detectors based on the Neyman-Pearson approach.

In Section 5.5, we studied the composite hypothesis testing problem. A
composite hypothesis is characterized by an unknown parameter. When the
parameter was a random variable with a known density function, we applied the
likelihood ratio test by averaging the conditional density function corresponding to
the hypotheses, over all possible values of the parameter. However, if the
parameter were not random but still unknown, then the Bayes’ test was no longer
applicable, and instead we used the Neyman-Pearson test. Furthermore, when it
was possible to apply the Neyman-Pearson test to all possible values of the
parameter, a uniformly most powerful test was said to exist. Otherwise, a different
approach that estimates the parameter should be considered. This will be described
in the next chapter. We concluded this chapter with a brief section on sequential
detection.

PROBLEMS

5.1 Consider the hypothesis testing problem in which
1 y—1 —y
fY|Hl(y|H1):EreCtT and fy (v Hy)=e " for y>0

(a) Setup the likelihood ratio test and determine the decision regions.
(b) Find the minimum probability of error when
(1) Ppy=1/2 2) Py=3/2 3) Py =1/3.

5.2 Consider the hypothesis testing problem in which
1 1 y-1
Sy, (V| H ) = rect ry3 and fY\Hl(y|H1):5reCtT

(a) Set up the likelihood ratio test and determine the decision regions.
(b) Calculate P, the probability of false alarm, and P, the probability of
miss.

5.3 A binary communication system transmits polar signals of values
—Aand + 4 under hypotheses H, and H, respectively. The received signal is

corrupted by an additive Gaussian noise with zero mean and variance o 2.
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5.5

5.6
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(a) Determine the optimum decision rule for minimum probability of error.
(b) Study the decision rule for A =F, /3, Py =P ,and P, =5F, /3.

A ternary communication system transmits one of the three signals,
s1()=-4, sq()=0, and s,(t)=+4, with equal probabilities under
hypotheses H,, H,, and H,, respectively. The received signal is corrupted by

an additive zero mean Gaussian noise with variance o>. Find

(@) The optimum decision rule (draw the decision regions) assuming
minimum probability of error criterion.

(b) The minimum probability of error.

Consider the following binary hypothesis testing problem

H :Y=S+N
H,:Y= N

where S and N are statistically independent random variables with probability
density functions

1 1

—, —l<s<l1 —, —2<n<2
Ss(s)=142 and  fy(n)=14

0 , otherwise 0 , otherwise

(a) Set up the likelihood ratio test and determine the decision regions when
(MHn=1/4 @ n=I (3) n=2.
(b) Find the probability of false alarm and the probability of detection for the

three values of 1 in part (a).
(c) Sketch the ROC.

The output of a receiver consists of a signal voltage S and a noise voltage N.
The joint density function of the signal and noise is given by

J%SmN)zﬂwgﬂgzi}eﬂﬁ 0<s<owand 0<n<N,
0

(a) Obtain f(s)and fy (n), the marginal density functions of the signal and
noise voltages.

(b) Show that they are statistically independent.

(c) Find the density function of sum voltage ¥ =S+ N and sketch it.
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5.7

5.8

5.9
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(d) Suppose now that f(s)and f (n) correspond to the conditional density
functions under H, and Hy, respectively; that is, [y, (Y|H,)= fs(s)
and fyy (Y[Hy)=fy(n). ForNy=2anda=1, obtain the optimum
decision rule assuming minimum probability of error criterion.

(e) Find the minimum probability of error for P =F,/3, P =F,, and
P, =2P,/3.

The conditional density functions corresponding to the hypotheses A, and H,
are given by

2
b4

1
e 2 and fyy, (V|H) =2

1
fY\HO(Y|H0):
V21
(a) Find the likelihood ratio and determine the decision regions.

(b) Find the probability of false alarm and the probability of detection
assuming minimum probability of error and P, =2/3.

(c) Discuss the performance of the minimax text for the cost assignments as
in part (b).

(d) Determine the decision rule based on the Neyman-Pearson test for a
probability of false alarm of 0.2.

In a binary hypothesis problem, the observed random variable under each
hypothesis is

emy)?
e 2 , j=0,1

1
fY|H/(Y|Hj):
27w
where m, =0 and m, =1.
(a) Find the decision rule for minimum probability of error and P, = A, .

(b) Find the decision rule for a Neyman-Pearson test if P, =0.005.
(c) Find Pp based on the test of (b).

Consider the binary hypothesis testing problem where we are given K
independent observations.

Hl 'Yk :m+Nk, k:1,2,...,K
HO.Yk: Nk’ k:1,2,...,K
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5.12

5.13
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where m is a constant, and N, is a zero mean Gaussian random variable with
variance G°.

(a) Compute the likelihood ratio.

(b) Obtain the decision rule in terms of the sufficient statistic and the

threshold y.

Repeat Problem 5.9, assuming that m is zero and the variances of
Ny, k=12,...,K, under H, and H, are 012 and 0% (01>00),
respectively.

Consider Problem 5.10.

(a) Obtain an expression for the probabilities of false alarm and miss for
K=1.

(b) Plot the ROC if o7 =20] =2.

(¢) Determine the threshold for the minimax criterion, assuming

The conditional density function of the observed random variable under
each hypothesis is

2
1 (y—m;)
f (y|H): eXp| — ’j:0’1’2
" / V2no 262

J

(a) Find the decision rule (draw the decision regions), assuming minimum
probability of error criterion and equal a priori probabilities.
(b) Determine the decision regions, assuming

Hy:my=0,0,=1
H11m1=1,01=1
H,:m,=0,0,=2

(c) Calculate the minimum probability of error for the assumptions of (b).

Consider Problem 5.9 where m, now denoted M, is not a constant, but a zero
mean Gaussian random variable with variance an . M and
N;, k=1,...,K, are statistically independent. Determine the optimum

decision rule.
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5.14

5.15

5.16
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Consider the following hypothesis testing problem

Hl.Yk:Mk—i_Nk’ k:1,2,...,K
Hy Y, = Ny, k=12,...,K

where M, and N, k=1,2,...,K,are statistically independent zero mean
Gaussian random variables. Their respective variances are o2 and o2,

where o2 is normalized to one, but G is unknown. Does a UMP test

n
exist?

Consider the following composite hypothesis testing problem. The
observations are Y:[Yl,Yz,...,YK]T, where Y, ,k=12,...,K, are

independent Gaussian random variables with a known variance 62 =1.The
mean m;, j=0,1, under each hypothesis is

Hy :m=m, m>0

(a) Does a UMP test exist?
(b) If Pr =0.05 and m,; =1, using a most powerful test, find the smallest

value of K that will guarantee a power greater than 0.9.

Consider the situation where the conditional density functions under each
hypothesis are

1 y
f‘Yk‘HO (yk |H0):_exp(__kj for Vi ZO’ k:192s--~9K
9o 0o

and

_ Yk

] for y, 20, k=12,..,K
1

1
f}’k|H1 OV |H1):e—exp[
1

It is known that the signal components under each hypothesis are
statistically independent, 6 is a constant equal to 10, and 6, >0, . Find a

UMP test of level oo =0.05 and K =21.
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Chapter 6

Parameter Estimation

6.1 INTRODUCTION

In Chapter 5, we considered the problem of detection theory, where the receiver
receives a noisy version of a signal and decides which hypothesis is true among
the M possible hypotheses. In the binary case, the receiver had to decide between
the null hypothesis H, and the alternate hypothesis H.

In this chapter, we assume that the receiver has made a decision in favor of the
true hypothesis, but some parameter associated with the signal may not be known.
The goal is to estimate those parameters in an optimum fashion based on a finite
number of samples of the signal.

Let Y,Y,,...,Yx be K independent and identically distributed samples of a
random variable Y, with some density function depending on an unknown
parameter 6. Let y,,y,,..,yx be the corresponding values of samples
Y,Y,,....,Yx and g(¥},Y,,...,Yx), a function (a statistic) of the samples used to

estimate the parameter 6. We call
0=g(¥;, Yy, . Yg) ©.1)

the estimator of 0. The value that the statistic assumes is called the estimate of 0

and is equal to 0= g(y1,¥Y2,->¥g ). In order to avoid any confusion between a

random variable and its value, it should be noted that é, the estimate of 0, is
actually g(¥,,7Y;,...,Yx ). Consequently, when we speak of the mean of 0, E[é] s

we are actually referring to E[g(Y;,Y,, ..., Y )].

The parameter to be estimated may be random or nonrandom. The estimation
of random parameters is known as the Bayes’ estimation, while the estimation of
nonrandom parameters is referred to as the maximum likelihood estimation
(MLE).

345
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In Section 6.2, we present the maximum likelihood estimator, then we use this
estimator to compute the likelihood ratio test. This is called the generalized
likelihood ratio test. In Section 6.4, we present the criteria for a “good” estimator.
When the parameter to be estimated is a random variable, we use the Bayes’
estimation. Specifically, we study the minimum mean-square estimation, the
minimum mean absolute value of error estimation, and the maximum a posteriori
estimation. The Cramer-Rao lower bound on the estimator is presented in Section
6.6. Then, we generalize the above concepts to multiple parameter estimation.
Based on the fact that sometimes it is not possible to determine the optimum
mean-square estimate, even if it exists, we present the best linear unbiased
estimator, which is a suboptimum solution, and discuss the conditions under which
it becomes optimum. In Section 6.9, we present the least-square estimation, which
is different than the above-mentioned methods, in the sense that it is not based on
an unbiased estimator with minimum variance, but rather on minimizing the
squared difference between the observed data and the signal data. We conclude the
chapter with a brief section on recursive least-square estimation for real-time
applications.

6.2 MAXIMUM LIKELIHOOD ESTIMATION

As mentioned in the previous function, the procedure commonly used to estimate
nonrandom parameters is the maximum likelihood (ML) estimation. Let
Y,,Y,,...,Yx be K observations of the random variable ¥, with sample values
Y1,V2,.-,Vg. These random variables are independent and identically
distributed. Let fy(y|0) denote the conditional density function of the random
variable Y. Note that the density function of ¥ depends on the parameter 6,
0 € ®, which needs to be estimated. The likelihood function, L(0), is

K
L®)=fy, yvioWisY2r Vi 0= fre10) =[] fr0(: 16 (62)
k=1

The value 0 that maximizes the likelihood function is called the maximum
likelihood estimator of 0. In order to maximize the likelihood function, standard
techniques of calculus may be used. Because the logarithmic function Inx is a
monotonically increasing function of x, as was shown in Chapter 5, maximizing
L(0) is equivalent to maximizing InL(0). Hence, it can be shown that a

necessary but not sufficient condition to obtain the ML estimate 0 is to solve the
likelihood equation.

0
%hl Sre(y10)=0 (6.3)
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Invariance Property. Let L(0) be the likelihood function of 6 and g(6) be a one-
to-one function of 0 ; that is, if g(6,)=g(0,)<=6,=0,.If 0 is an MLE of 6,
then g(é) is an MLE of g(0).

Example 6.1

In Example 5.2, the received signal under hypotheses H; and H, was

H] Yk :m+Nk, k:1,2,...,K
HO.Y]C: Nk’ k:1,2,...,K

(2) Assuming the constant m is not known, obtain the ML estimate 1, of

the mean.

2

(b) Suppose now that the mean m is known, but the variance ¢° is unknown.

Obtain the MLE of 6 =c>.
Solution

Detection theory (Chapter 5) was used to determine which of the two hypotheses
was true. In this chapter of estimation theory, we assume that H; is true. However,
a parameter is not known and needs to be estimated using MLE.

(a) The parameter 0 to be determined in this example is m where the

ml >
meanm € M . Since the samples are independent and identically distributed, the
likelihood function, using (6.2), is

k=1 262

B L O ) R WO U 7l
fYM(.V|m)—E\/%GeXP[ }_(275)1(/2 K p{ Z }

Taking the logarithm on both sides, we obtain

K PRV
In fyn (ylm)zln{ ! }_z(yk m)

(27T)K/2 GK

The ML estimate is obtained by solving the likelihood equation, as shown in (6.3).
Hence,
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81 K —
an(ylm):Zyk2 _ y_k_K_’f ( Zyk J

om k=l © k=10~ © Ko

K K
or m=(1/k)Y. y; . Thus, the ML estimator is i, =(1/k)D_ yy.
k=1 =1

(b) The likelihood function is

- exp{_iM}
(2n)2 6%

k=1 2672

Taking the logarithm, we obtain

K Y
lnL(Gz):—EanTc—KlnG—ZM
2 k=1 20

Observe that maximizing In L(c?*) with respect to 7 is equivalent to minimizing

K _ 2
g(02)=K1n6+Z—(yk ;n)
k=1 20

Using the invariance property, it is easier to differentiate g(c?) with respect to o

to obtain &,, the MLE of o, instead of 62, the MLE of o*. Hence,

dg(c®) _K _ i( o o ee | L
do G - Ko

K
Consequently, the MLE of ” is &, =(1/K) (3, —-m)*.
)

6.3 GENERALIZED LIKELIHOOD RATIO TEST

In Example 5.9, we solved the hypothesis testing problem where the alternative
hypothesis was composite. The parameter m under hypothesis H, was unknown,
although it was known that m was either positive or negative. When m was
positive only (negative only), a UMP test existed and the decision rule was
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for positive m, and

for negative m. Since the test designed for positive m was not the same as the test
designed for negative m, we concluded that a UMP test did not exist for all
possible values of m; that is, positive and negative. This requires that different tests
be used. One approach is to use the concepts developed in Section 6.2. That is, we
use the required data to estimate 0, as though hypothesis H is true. Then, we use
these estimates in the likelihood ratio test as if they are the correct values. There
are many ways to estimate 0, as will be shown in this chapter. If the estimates used
are the maximum likelihood estimates, then the result is called the generalized
likelihood ratio test and is given by

max Hl
0, fy@l(ylﬂl) >
Ag(p) =2~ (6.4)

0o fy\oo (r199) H,

6, and 0, are the unknown parameters to be estimated under hypotheses H,

and H,, respectively.

Example 6.2
Consider the problem of Example 5.9, where m is an unknown parameter. Obtain
the generalized likelihood ratio test and compare it to the optimum Neyman-
Pearson test.

Solution

Since the K observations are independent, the conditional density functions under
both hypotheses H, and H, are
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1 y2
Hy: fY\MHO(y|m Hy)= H eXp| — k2
2no 20

N2
Hy: fym, (9 Im, Hy) = H\/_Gexp{—(y];c;n) }

where m is an unknown parameter. Since hypothesis H, does not contain m (Hj is
simple), the estimation procedure is applicable to hypothesis H, only. From the
likelihood equation given by (6.3), the ML estimate of m under H, is given by

oln fyp p, (yIm Hy)
om

Substituting for fy|,, 4, (¥|m, H,)in the above equation, we have

k=1 k=1

P K (yk_m)Z 1 k&
—m[—zzc—z =0 or MZ;ZYK

The details are given in Example 6.1. The likelihood ratio test becomes

exp(— L j )
2no 252 H,

Substituting for the obtained value of 7 in the above expression, and simplifying
after taking the logarithm, the test becomes

H,

2
Zyk ~ Inn
20 K <

H,

2
K
Since (1/26°K )[Z ykj is nonnegative, the decision will always be H, if n is
k=1

less then one (Inmn negative) or 1 is set equal to one. Consequently, n can always
be chosen greater than or equal to one. Thus, an equivalent test is



Parameter Estimation 351

Hl

2
1 & >
=2k | 2 lm=vy
VK k=1

HO

wherey, > 0 . Equivalently, we can use the test

Hl
1 & >
7| = |—
| | R};yk <Y1
HO

The decision regions are shown in Figure 6.1.
Given the desired probability of false alarm, the value of y, can be

determined. Before we can get an expression for P, the probability of false
alarm, we need to determine the density function of Z. Since

1 K
z=—2V37y
a0

the mean and variance of Y under hypothesis H, are zero and o2, respectively. All
the observations are Gaussian and statistically independent. Thus, the

K
density.function of Z; =) Y, is Gaussian with mean zero and variance Ko?.
k=1

Consequently, Z is Gaussian with mean zero and variance o2, That is,

1 2?2
Sz, (Z1Hy) = exp| ——-
ZHs 0 VJ2no 267

The probability of false alarm, from Figure 6.2, is

—H—p>t——— H ————p¢— I ——
| | » 7
| 0 | -
T Y

Figure 6.1 Decision regions of the generalized likelihood ratio test.
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fzw0 (z1 Hy)
A

PF PF

1 0 Y1
Figure 6.2 Density function of Z under H,.

Py = P(decide H, | H, true)
il 2 © 2
= f ! exp —Z—Z dz+j ! exp| — z 5 dz:ZQ(y—lj
“wV27mo 2c nV2noc 2c c

We observe that we are able to determine the valuey, from the derived

probability of false alarm without any knowledge of m. However, the probability

of detection cannot be determined without m, but can be evaluated with m as a
K

parameter. Under hypothesis H,, Z, :ZY1 is Gaussian with mean Km and
k=1

variance Ko”. Hence, the density function of Z is Gaussian with mean /K m and
variance o2. That is,

fZ\Hl(Z|H1):

The probability of detection for a given value of m, from Figure 6.3, is

P, = P(decide H, | H, true)

N /) P S V)
2 20

exp| — exp

“w\271c nV2no

) o ) o
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fzw1 (z|Hy)
A

Pp

Pp

v

! 0 Yioom

Figure 6.3 Density function of Z under H,.

In Figure 3.31 of [1], it is shown that the generalized likelihood ratio test performs
nearly as well as the Neyman-Pearson test.

6.4 SOME CRITERIA FOR GOOD ESTIMATORS

Since the estimator 0 is a random variable and may assume more than one value,
some characteristics of a “good” estimate need to be determined.

Unbiased Estimate We say 0 is an unbiased estimator for 0 if

A

E[6]=0 forall 6 (6.5)
Bias of Estimator Let

E[0]=0+b(0) (6.6)

1. If h(B)does not depend on O[h(0)=>,], we say that the estimator 0 has a

known bias. That is, (é —b) is an unbiased estimate.

2. When b(0) # b, an unbiased estimate cannot be obtained, since 0 is unknown.
In this case, we say that the estimator has an unknown bias.

When the parameter 6 to be estimated satisfies (6.5) and is not random (i.e.,
there is no a priori probability distribution for 0), it is sometimes referred to as
absolutely unbiased.
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The fact that the estimator is unbiased, which means that the average value of
the estimate is close to the true value, does not necessarily guarantee that the
estimator is “good.” This is easily seen by the conditional density function of the
estimator shown in Figure 6.4. We observe that even though the estimate is
unbiased, sizable errors are likely to occur, since the variance of the estimate is
large. However, if the variance is small, the variability of the estimator about its
expected value is also small. Consequently, the variability of the estimator is close
to the true value, since the estimate is unbiased, which is a desired feature. Hence,
we say that the second measure of quality of the estimate is to have a small
variance.

Unbiased Minimum Variance 0 is a minimum variance and unbiased (MVU)

estimate of O if, for all estimates 6’ such that E[0']=0, we have var[é] < var[0']

for all ©'. That is, 0 has the smallest variance among all unbiased estimates of 6.

A

Consistent Estimate 0 is a consistent estimate of the parameter 0, based on K
observed samples, if

lim P(‘é— 9‘ > s)z 0 foralle>0 (6.7)

K—ow

where P(-) denotes probability.

Applying the above definition to verify the consistency of an estimate is not
simple. The following theorem is used instead.

Theorem. Let § be an unbiased estimator of § based on K observed samples. If

A

lim E[0]=0 (6.8)

K—>o©

Var[é] <var[0']

v

Figure 6.4 Density function of the unbiased estimator 0.
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and if

A

lim var E[0]=0 (6.9)

K—ow

then © is a consistent estimator of 0.
Example 6.3

(a) Verify if the estimator 71,,, of Example 6.1 is an unbiased estimate of m.

(b) Is the estimator 672, unbiased?

Solution

(a) The estimator 71,, is unbiased if E[m,,;]=m. After substitution, we obtain

ml

. 1 & 1 | & 1
E[mml]:E[—ZYK}:—E{ZYK}:?Km:m

K& K

Hence, m,, is unbiased.

ml

(b) The estimator 62, is unbiased if E[62,]=c?. Thatis,

E{ ! i (v, —m)z} :%E{sz + iy,f —ZmiYk:| =o’

K k=1 k=1 k=1

Hence, 62, is unbiased.

6.5 BAYES’ ESTIMATION

In the Bayes’ estimation, we assign a cost C(6, é) to all pairs (6, é) . The cost is a

nonnegative real value function of the two random variables 0 and 6. As in the
Bayes’ detection, the risk function is defined to be the average value of the cost;
that is,

R = E[C(6,0)] (6.10)
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The goal is to minimize the risk function in order to obtain 6, which is the

optimum estimate. In many problems, only the error 0 between the estimate and
the true value is of interest; that is,

0=0-6 (6.11)

Consequently, we will only consider costs which are a function of the error. Three
cases will be studied, and their corresponding sketches are shown in Figure 6.5.

1. Squared error

C(0,0)=(0-0)° (6.12)
2. Absolute value of error
c(e,é):‘e—é‘ (6.13)
3. Uniform cost function
1 lo—d]=2
(0,0) = i (6.14)
0, ‘ 0-0 ‘ <—
2

The unknown parameter is assumed to be a continuous random variable with
density function fg (0). The risk function can then be expressed as

c(8,0) c(8,0) €(8,0)
A A
41
» 0 » 0 » 0
_A A
(@) (b) 2@ ?

Figure 6.5 Cost functions: (a) squared error, (b) absolute value of error, and (c) uniform.
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R =E[C(0.0)]= [ [(6.0) 6y (0,)d0dy (6.15)

—00 —00

Note that we take the cost average over all possible values of 0 and ¥, where Y is

the vector [Y1 Y, ... Y ]T. We now find the estimator for the three cost
functions considered.

6.5.1 Minimum Mean-Square Error Estimate
The estimator that minimizes the risk function for the cost given in (6.12) is

referred to as a minimum mean-square estimate (MMSE). The corresponding risk
function is denoted by R, . We have

R = [ [(0-0) oy (6,9)d0dy= [ db [(0-0)° oy (6, y)ddy  (6.16)

Using (1.91), the risk function can be rewritten as
R = [ dfy ) [(0-0)" foy (0] y)d0 6.17)

Since the density function fy (y) is nonnegative, minimizing R, is equivalent

ms
to minimizing the expression in brackets of the above equation. Hence, taking the

derivative with respect to 6 and setting it equal to zero, we have

d 7 A
= [(0-6)? fo (8] y)dB =0 (6.18)

—00

Using Leibniz’s rule given in (1.38), we obtain

0,5 = [0 for (0] ¥)d0 = E[0] y] (6.19)

—00

That is, the minimum mean-square estimate 0,,, represents the conditional mean

of 6 given Y. It can easily be shown that the second derivative with respect to éms

is positive-definite, which corresponds to a unique minimum of R, ., and is given
by
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R,y = [ drfy () [(0-0,,)° fory (0] )dO

= [ dufy () [{0-E10]y1} for (0] »)d0 (6.20)

The conditional variance of 6 given ¥ is

00

var[0| y]= [{0—E[0] ¥] > fo (0] ¥)dO (6.21)
Hence, R

possible values of Y. This estimation procedure using the squared error criterion is
sometimes referred to as a minimum variance (MV) of error estimation.

is just the conditional variance of 6 given ¥, averaged over all

ms

6.5.2 Minimum Mean Absolute Value of Error Estimate

In this case, the cost function is given by (6.13), and the risk is

Ro = | [[0-0fer @ )d0ay = | 1y (y){ J \e—é\fmemde} dy (622)

Using the same arguments as in Section 6.5.1, the risk can be minimized by
minimizing the integral in brackets, which is given by

0 ©
[(6-0)fo (0] y)d0+ [ (B—0) fey (O] »)d0 (6.23)

—w 9

Differentiating (6.23) with respect to 0 , and setting the result equal to zero, we
obtain

0,5

[ fow ®13)d0 = [ fory (0] )d0 (6.24)

O

abs

That is, the estimateéabs is just the median of the conditional density function

So (0] ). This estimate is also known as the minimum mean absolute value of

error (MAVE) estimate, and thus éabs =0

mave *
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6.5.3 Maximum A Posteriori Estimate

For the uniform cost function given by (6.14), the Bayes’ risk becomes

A A
0-—
o 2 ©
Rug = [ Sy ) [ Loy ©19)d0+ [ fy01 )0 |dy
- ~ 842
2
. é%
Ry = [ Sy 1= [ for ©])d0 |dy (6.25)
—0 é_é
2
where
o2
2 A A
[for 013)dO=P6-=<O<6+—|y (6.26)
5 A 2 2
2

P[] denotes probability. Hence, the risk R, is minimized by maximizing

(6.26). Note that in maximizing (6.26) (minimizing R, ), we are searching for

the estimate é, which minimizes fgy (6] y). This is called the maximum a

posteriori estimate (MAP), 0 which is defined as

map >

af@\y ©®1y)

=0 6.27
P (6.27)

0=0

map

Using the logarithm, which is a monotonically increasing function, (6.27) becomes

oIn fo (013) _

0 6.28
0 (6.28)

Equation (6.28) is called the MAP equation. This is a necessary but not sufficient
condition, since fgy (6] y) may have several local maxima. Using the Bayes’ rule

Syie (¥10) /e (8)

(6.29)
Sy ()

Joy (O] y) =
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and the fact that
Infoy (0]y)=In fye(y[0)+In fo (0)—In fy () (6.30)

then the MAP equation may be rewritten as

alnf@\y(eh’):6lnfy\®(y|9)+6lnf@(6):

0 6.31
00 00 00 ( )

We always assume that A is sufficiently small, so that the estimate émap

by the MAP equation. That is, the cost function shown in Figure 6.5 may be
defined as

is given

C(6,0) =1-5(60,0) (6.32)

Example 6.4

Consider the problem where the observed samples are
Yk:M+Nk’ k:1,2,...,K

M and N, are statistically independent Gaussian random variables with zero mean

A

m and m

. 2 . ~
and variance ¢~ . Find m map » mave -

ms >

Solution

From (6.19), the estimate 71,,, is the conditional mean of m given ¥. The density

function f),y (m|y) is expressed as

Sy (v Im) fy (m)
Sy (»)

fM|Y(m|y)=

where

D S G AL emm)’
fM(m)_ﬂGexp{ 262J3 fY\M(y|m) H\/%Gexp|: 2(52

and the marginal density function fy (p) is
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Sy = [ fary (m,p)dm = [ foy (m] ) for (m)dm

Note that f,y (m| y) is a function of m, but that fy (y) is a constant with y as a

parameter needed to maintain the area under the conditional density function equal
to one. That is,

K+1 K
fu (| =027 p{ 1 {Z<n—m>2+’”2}

Sy (») 262 k=1

Expanding the exponent, we have

K K K
Z(y,f —Zykm—i-m2)+m2 :mz(K—i-l)—ZmZyk +Zy,§
k=1 k=1 k=1

—(K+l){m2 —Z—miy }+§:y2
K+1 , =l g

k=1
1 K 2 TS 2k s
K+l me—— I D
( +)[m KHkZ:lyk] [Kﬂkzzlykj +kZ=‘iyk

The last two terms in the exponent do not involve m, and can be absorbed in the
multiplicative constant to obtain

2
1 1 &,
= e —_ —_———
Sy (m]y)=c(y)exp 5 z(m K+1k§_1ykJ

m

where ¢, = cs/ VK +1. By inspection, the conditional mean is

N 1 &
=E|M =—
Mg [ |y] K+1k221yk

According to (6.20), R, is given by

R, = [var[M | ylfy (»)dy

—00
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Hence, since [ fy (y)dy =1, then R,,, =o, [ fy (»)dy =o),

—0 —00

The MAP estimate is obtained using (6.28) and (6.29). Taking the logarithm
of fyqy(m|y),wehave

2
lnfMy<m|y>=1nc(y)—ci2[ ——Zyk]

m

Therefore,

6m 02

oln fyy, (m| y) 1 ( 1 & ]
— = | m- yi |=0
K+1.5

=m map K+lzyk

That is, n,,, =, . We could have obtained this result directly by inspection,

since we have shown that f),y (m|y) is Gaussian. Consequently, the maximum
of fyy (m|y) occurs at its mean value.

Using the fact that the Gaussian density function is symmetric, and that m,,,,,,

is the median of the conditional density function f,y (m|y), we conclude

Myave = Mg :mmap K+l Zyk
k=1

From (6.31), if 0 is assumed to be random with f (8) =0 for —c0 <0 < oo, then

the ML estimate can then be considered to be a special case of the MAP estimate.
Such a density function for 0 connotes zero a priori information about 6.
Furthermore, the MAP estimate of a Gaussian distributed parameter is equivalent
to the ML estimate as the variance increases; that is, the distribution of the
parameter to be estimated tends to be uniform. In general, for a symmetric
distribution centered at the maximum, as shown Figure 6.6(a), the mean, mode,
and median are identical. If the distribution of the parameter is uniform, then the
MAP, the MMSE, and the MAVE estimates are identical. In Figure 6.6(b), we
illustrate the different estimates when the density function is not symmetric. Recall
that the median is the value of y for which P(Y < y)=P(Y > y)=1/2, while the

mode is the value that has the greatest probability of occurring.
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A Sro(r10) A Srp(r10)
MAP :
ML MA
MMSE E
MAVE 1 1
A: H MMSE
* > 0 * ¢ >0
mean, mode, mode median mean
median
(@) (b)

Figure 6.6 Density functions showing relations to MAP, MAVE, and MMSE estimates:

(a) symmetric pdf, and (b) nonsymmetric pdf. (From: [2]. © 2000 John Wiley and Sons, Inc.
Reprinted with permission.)

Example 6.5
Find x,,, the minimum mean-square error, and x,,,, , the maximum a posteriori

estimators, of X from the observation ¥ = X+ N. X and N are random variables
with density functions

Fe ()= 2800+ 58(e-1) and Sy () =5 =12

Solution

The estimate fcmap maximizes the density function fy(x|y). Since the

conditional probability density function is fyy (v X)=(1/2)e ", the
probability density function of Y is

Sr)= [ frx @10 fx (dx = % [ I[8(x)+ 8(x~1)1ax
(e" +e”71) , y<0

:%{e_n +e_‘n_l‘ }: (ef" +e"71) , 0<y<l

Bl— B~ B~

(e_" +e ! ), y>1
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The a posteriori density function is, from (6.29), given by

—‘n—x‘ 3
Fay el = L QIO @) _ (360 5]
.fY (y) e || e |n—1|

Sx(x|y) is zero except when x=0 and x=1. The above expression is
maximized when |n - x| is minimized. Since x can take only two values, but must

be close to n, we have

1 for nZl
2

map 1
0 for n<—
2

The mean-square error estimate is the mean of the a posteriori density
function as given by (6.19). Hence,

dx

< © —‘n—x‘ _
Sy = [y (x| )= [ = [3(x) +3(x ~ D]

Since J O(t—ty)g(t)dt = g(ty), the mean-square estimate is

—00

fn-1
e

=
|

ms

Y

|n1
+e

and we see that %, isnotidentical to x,,,.

p

6.6 CRAMER-RAO INEQUALITY

From the MAP equation of (6.31), if we set the density function of 6 to zero, for
all 8, we obtain the likelihood equation of (6.3). That is, the ML estimate can be
considered as a special case of the MAP estimate. In this case, to check whether
the estimate is “good,” we need to compute its bias and error variance and
determine its consistency. It may be very difficult to obtain an expression for the
error variance. In this case, the “goodness” of the estimator is studied in terms of a
lower bound on the error variance. This bound is known as the Cramer-Rao
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bound. The Cramer-Rao bound of a constant parameter is given by the following

theorem.

Theorem. Let the vector ¥ =[Y,,Y,,...,Yx ]T represent K observations, and 0 be

the unbiased estimator of 0. Then

1

. rlnfn@(yle)T
00

var[(0—0) | 6] >

where

. {6lnfye(y|9)}2 :_E{é‘z lnfye(yle)]
00 00°

Proof. For an unbiased estimator 0, we have
E[0]0]=6

Therefore,

E[(6-0)16]= [(0-6) fyo (y]6)dy =0

Differentiating (6.36) with respect to 0, we obtain

J - G)Mdy oo

The second integral is equal to one. Using the fact that

Olng(x) 1 0og(x)
Ox _g(x) ox

where g(x) is a function of x, we can express Jfye (y[60)/00 as

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)
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P ye(y16) Oln fye (¥]0)

= fre (10— (6.39)
Substituting (6.39) into (6.37), we obtain
j (6~ O)fm(yle)w =1 (6.40)

The Schwarz inequality states that
o0 o0 o0 2
{ [ xz(t)dtﬂ [ yz(t)dt} > { [ x() y(t)dt} (6.41)

where x(¢) and y(t) are two functions of z. Equality holds if and only if
y(t) =cx(t), with ¢ a constant. Rewriting (6.39) in order to use the Schwarz
inequality, we have

=81 0 A
J {% fm<y|e)}[(e—e> Sro(IOJdy=1 " (642)

—00

or

{j 6-0)[1r0(r10) dy} {%} Fro(w|0)dy21 (643)

The first integral between brackets is actually var[(é—9)|9]. Hence, the
inequality becomes

1

E{{alnfye(ﬂe)}z}
00
which proves (6.33).

We now prove (6.34), which says that the Cramer-Rao bound can be
expressed in a different form. We know that

var[(0—0) | 0] >

(6.44)
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[ frio(r10)dy =1 (6.45)

Differentiating both sides of the equation with respect to 0 results in

T I ye(¥10) iy =

0 6.46
1=% (6.46)
Rewriting (6.46) and using (6.38), we have
© 0ln fye(¥0)
[ frer|0)dy=0 (6.47)
Differentiating again with respect to 6, we obtain
7 Gzlnfy‘@(y|6) T 0ln fye(¥0) fye(y16)
- 0)dy + =0 6.48
I 02 Srvie (¥|0)dy f 20 20 (6.48)

—0 —0

Substituting (6.47) for the second term of the second integral of (6.48), and
rearranging terms yields

E{filﬂli?ﬁfl?l}:_if{fggfffﬁfjfﬁ}z (6.49)

002 00

which is the same as (6.34), and the proof of the theorem is complete.
An important observation about (6.43) is that equality holds if and only if

T LoD _ oyt (6:50)

Any unbiased estimator that satisfies the equality in the Cramer-Rao inequality of
(6.33) is said to be an efficient estimator.

If an efficient estimator exists, it can ecasily be shown that it equals the ML
estimate. The ML equation is given by

Oln fye(y[6)

=0 (6.51)
0 0.

m
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Using (6.50), provided that an efficient estimate exists, we have

Oln fyje (¥10)

= =c(O)[0-0] (6.52)

=0,

0=h

ml

which equals zero when 0 = ém,.

Example 6.6

Consider K observations, such that
Yk:m+Nk, k:1,2,...,K

where m is unknown and N;s are statistically independent zero mean Gaussian
random variables with unknown variance 2.
. . ~ ~2 2 .
(a) Find the estimates mandc” for mand o~ , respectively.

(b) Is m an efficient estimator?
(¢) Find the conditional variance of the error var[(m —m) | m].

Solution

(a) Using (6.2), we can determine /m and &° simultaneously. The conditional

density function of ¥ given m and o’ is

k=1 262

LS
fryimo®)=]] exp| -
v2no
Taking the logarithm, we have

K ERY
1an(.V|m,02) =—£ln(2noz)—zw
2 k=1 262

We take the derivative of the above equation with respect to m and o to obtain
two equations in two unknowns. That is,

ol 5y Eoy-
nfy(ylmo ):2zyk g
om -1 20



Parameter Estimation 369
and

oln fy(ylmo®) K i(yk—m)z
oo 262 & 26t

and

(b) m,, is an unbiased estimator since

. 1 LS
E[mml]:_E|:Zyk:| =m
LG =
To check if the estimator is efficient, we use (6.50) to obtain

alnfy(y|m,cz>:§yk—m (Zyk ]
2

om k=1 O Ko

K

where ¢(m)=K /c? and m :(l/K)z vy =m,,;. Hence, the estimator is
k=1

efficient.

(c) To determine the conditional variance of error, we use (6.33) and (6.34).
Taking the derivative of the likelihood equation with respect to m, we obtain

O Infy(y|mo®) _ K.

om? o’

Hence,
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n 1 c?

(5= )| ] = -2

var[(m—m) | m i pr 1an(y|m,02) e
om?

Cramer-Rao Inequality for a Random Parameter

We suppose that 6 is a random parameter, such that the joint density function
Sye (¥ 16) of the observation vector ¥ and the parameter 6 are known. Then,

1

var[(0—0)2]> - (6.53)
0
E{@O In fY,@) (», 9)} }
where
) 2 0?
E {% In fy oy, 9)} } = —E{ae—z In fy o (», 9)} (6.54)
Equality of (6.53) holds if and only if
i1nf (»,0)=c(6-0) (6.55)
20 vol),9)=c¢ .

where ¢ is independent of ¥ and 6. Furthermore, the lower bound of (6.53) is
achieved with equality if and if' fqy (0] y) is Gaussian.

It also can be shown that if the lower bound on the nonrandom parameter of
(6.34) is denoted J and if the lower bound on the random parameter of (6.54) is
denoted L, then

(6.56)

L=J-F >
00

o’ lnf@(e)}

Next, we present the generalization of the Cramer-Rao bound for a vector
parameter on multiple parameter estimation for both random and nonrandom
parameters.
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6.7 MULTIPLE PARAMETER ESTIMATION

In many radar and communication applications, it may be necessary to examine
several parameters simultaneously. For example, in a radar application, a problem
may be to estimate the range and velocity of a target; while in a communication
application, the problem may be to estimate the amplitude, arrival time, and a
carrier frequency of a received signal. Therefore, we can now extend the parameter
estimation concepts to multiple parameters. The vector to be estimated may be
random (in this case we use the Bayes’ estimation) or nonrandom (in this case we
use the maximum likelihood estimation).

6.7.1 0 Nonrandom

In this case, the vector 0 is
0=[0, 0, ... 0. (6.57)

Then, (6.3) becomes the following set of simultaneous likelihood equations

0
—1an|e(J/1,J/2a-~-,y1< 101,0,,...,0,)=0

00,
0
_lnfy|9(y1ay2’~~-’J/1< 101,0;,...,0,)=0
00,
In fyo (V1,255 Yk 101,05,...,0)=0 (6.58)
00 ¢

In order to write (6.58) in a more compact form, we define the partial derivative
column vector by

T

voo2 o o 659
00, 00, 00 ¢

This operation is generally applied to row vectors only. That is, if

x" =[x, X, .. X,],then
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o [ox, ox, X,
09, 00, 00, 00,
0 oX, 0X, oX,
VX7 = 00, X, X, X,]= 00, 00, 00,
0 oX, 0oX, oX,
| 0 | |00, 00y Oy |
The ML equation is then

Volln fye(v10)]] (6.60)

. =0
9:eml (y)

We saw in Section 6.4 that a measure of quality of the estimate is the bias. The
conditional mean of the estimate given by (6.6) becomes

E[0(p)|0]=0+5(0) (6.61)

If the bias vector b(0) =0, that is, each component of the bias vector is zero for
any 0, then the estimate is said to be unbiased. We note that

b(8) = E[(B(y)-0)|6] = E[6(y)] = E[6(»)]- 6 (6.62)

A second measure of quality of the estimate is the conditional variance of the
error. For multiple parameters, the corresponding conditional covariance matrix of
the error is

C=E[(6-0,)(0" -0,)]0] (6.63)
where 6,, is the bias vector given by
0, = E[0(y)|0]=b(6) (6.64)
Note that € isa K x K matrix. The ijth element is
Cy =E[(8;~6,,)(0, -0, 0] (6.65)

while the ith diagonal element is the conditional variance given by
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var[5,]=C;; = var[0, | 0] = var[(0, (»)—6,)| 0] (6.66)

Cramer-Rao Bound

The extension of the Cramer-Rao bound is given by the following theorem.

Theorem. If @ is any absolutely unbiased estimator of 0 based on the observation
vector ¥, then the covariance of the error in the estimator is bounded by the
inverse, assuming it exists, of the Fisher information matrix J.

E[(0-0)0-0)" |0]>J" (6.67)

where

52
0 Z—E{ae—zlnf;'@(“eﬂe}

(6.68)

o To
J=E{{%1nfy|®(y|9)} [%lnfn@(Ylﬁ)}

J ! is the inverse matrix of the Fisher information matrix. Equality holds only if

d ! A
[%m fro (y|e>} —c(0)[0-0] (6.69)

The derivatives Ofye (y[8)/00 and 0? Sre(y10)/ 007 are assumed to exist and
to be absolutely integrable. The Fisher information matrix is defined as

1=E[[Volin fro (v 10H{Voln vy 10]}710] 670
which can also be rewritten as
1=—EV,{Vo[in fy0(v19)]}716] 6.71)

For simplicity, we give the conditional variance on the error

0,=0,-0,,i=1,2,...,K , which is bounded by the inequality

1
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o2 =varld, |0]= var|(8, ()~ 0,)6] =77 (6.72)

J' is the ith diagonal element in the K x K square matrix J ' . The jjth element
of J in (6.70) is given by

Oln 0) 0ln 0
Ji/ -K fY\@(J’| ) fY|®()’| )|0 (6.73)
00, 20
whereas the jjth element of (6.71) is given by
8% In 0
Jy=-E v (6.74)
00,00,

Proof. One way to prove the above theorem without resorting to excessive matrix
operation is the following. Since the estimations are unbiased (the expected value
of each estimator is the true value), we can write

E[0;(»)]0]= [0,(3)fye(y]0)dy =0, (6.75)

or
o0

[16,(»)-0,1fy0 (¥ 0)dy =0 (6.76)

—00

Differentiating both sides of (6.76) with respect to 0 ;, we have

. Oln 0 00.
Iei(y) f;g(yl )dy:ael
J J

(6.77)
Using (6.38) for the integral, and the fact that 60, /00; is the Kronecker 3,

(unity for i = j, and zero otherwise), (6.77) can be rewritten as

Oln fye(y]0) =5, 6.78)

Léi(J’)fY\@ (y19) 20, ij
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Consider the case when j =1, and define the K +1 dimensional vector X (K
is the number of parameters to be estimated) as

él(y)_el
Oln fye(y0)
09,

x=| n/rer® (6.79)
00,

Oln fye(y10)
20,

Note that the mean values of the components of X are all zero. The first term is
zero because the estimate is unbiased, while the other terms are zero in light of
(6.35), which can be written as

T 0ln fye(y0) Oln fye(y|0)
_ 0O)dy=E————|=0 6.80
L o e (y10)dy p (6.80)
The covariance matrix of X is then
P -
it 0
1 Ju Ji Jik
Cyx =E[XXT1=| 0§ Joy Ty -+ Jig (6.81)
0! Jg Jia Jkx |
or in partitioned form,
o210 0
1
e i
Cxx=| 01 (6.82)
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Since the covariance matrix is nonnegative definite, and consequently its
determinant is nonnegative definite, the determinant of (6.81) is given by

IR T
2 p J22 J23 JZK
det(Cxy)=0p |- i= : S (6.83)
£ A
|
p JKZ JKS JKK

From (4.30), we observe that (6.83) can be written in terms of the cofactor Jj;.
Hence,

Jn Jyu o Jag
5 Jn Jynoo Ik 5
det(CXX ): S |J|— : : : . |=0o5 |J|—c0fact0rJ11 (6.84)
Jka Jks o Ikk

Assuming that the Fisher matrix J is nonsingular, we have
Cyx :E[XXT]zcs%_ |J|—cofact0rJ11 >0 (6.85)

or

% S cofactor J _ i (6.56)
M
which is the desired result given in (6.72).

6.7.2 0 Random Vector

In the Bayes’ estimation, we minimize the cost function C[6, é( »)] . Consider now

the extension of the mean-square error criterion and the MAP criterion for multiple
parameters estimation.

Mean-Square Estimation

In this case, the cost function is the sum of the squares of the error samples given
by
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K K ~
CLO(»)]1=cl0(»)-01= Y [0,(»)— 0,(»] 2 )>=070(y)  (6.87)
i=1 i=1
The risk is
R, = [ [ClOD)]fy o (y.0)dydo (6.88)

Substituting (6.87) in (6.88) and using the Bayes’ rule, the risk becomes
R, = j Sy (ay | { Y00,(»-0,] }fgy (6] y)d0 (6.89)
—oo Li=l

As before, minimizing the risk is equivalent to minimizing the expression in the
brackets of (6.89). Each term between the brackets is positive, and thus the

minimization is done term-by-term. From (6.19), the ith term éi( ») is minimized
for

0, ()= [0, for (0]y)d0 (6.90)
In vector form, the MMSE is given by
0,, =E[0]y]= j 0 for (8]y)d0 (6.91)

It can be shown that the mean-square estimation commutes over a linear
transformation to yield

$, () =DB,,,(») (6.92)
where D is an L x K matrix.

MAP Estimation

From (6.28), the MAP estimate émap

Generalizing the result to the estimation of multiple parameters estimation, we
obtain the following set of MAP equations:

is obtained by minimizing fgy (0]y).
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Oln fo (0] y)

%, 0=6,,,,(»)

=0, i=12,.. K (6.93)

Using (6.59), the MAP equation can be written in a single vector to be

VolIn foy 61 1)]] (6.94)

0=0,,4, (»)
Cramer-Rao Bound

The covariance matrix of the error of any unbiased estimator 0 of 0 is bounded
below by the inverse of the Fisher information matrix, L, and is given by

E[(é—O)(é—(—))ﬁz% (6.95)

where
a 2
L=-E“—1In fyo(5.0) (6.96)
00 '
Note that the equality holds if and only if
d o
{%m fro(. 0)} = c(6-0) (697)

where ¢ is independent of O and Y . If the conditional density function
Sfye (¥10) is Gaussian, the lower bound of (6.95) is achieved with equality.

The information matrix L can be written in terms of J as

82
L :J—ELe—zm fo (9)} (6.98)

6.8 BEST LINEAR UNBIASED ESTIMATOR

In many practical problems, it may be not possible to determine the MMSE
estimators of a random or an unknown parameter, even if it exists. For example,
we do not know the probability density function of the data, but we know the first-
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order and second-order moments of it. In this case, the methods developed in
estimating the parameters and determining the Cramer-Rao lower bound cannot be
applied. However, we still would like to obtain a reasonable (suboptimum) or
“best” estimator, in the sense that it is unbiased and has a minimum variance,
usually called MVU estimator. To do so, we limit the estimator to be a linear
function of the data, and thus it becomes possible to obtain an explicit expression
for the best linear unbiased estimator (BLUE).

We first give the one parameter linear minimum mean-square estimation to
present the fundamental concepts, and then generalize them to multiple
parameters.

6.8.1 One Parameter Linear Mean-Square Estimation

The linear minimum-square estimate of a random parameter 0 is given by

0,,, =a¥Y+b (6.99)
The corresponding risk function is
Ry = EICO,0)]= [ [(0-0)* fo (0, )d0dy
= [ JO-ay=0)*fo (6, y)dody (6.100)

—00 —0

Following the same procedure as we did in Section 6.5.1, we observe that
minimizing the risk involves finding the constants a and b, so that R, is

minimum. Hence, taking the derivatives of R,,, with respect to a and b and
setting them equal to zero, we have

[ [©-ay=b)yfe (0, y)dody =0 (6.101)
and
[ [©-ay—b)foy®,y)dody=0 (6.102)

Using (1.45) and (1.108), (6.101) and (6.102) can be rewritten as

aE[Y?]+bE[Y]=E[0Y] (6.103)
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and
aE[Y]+b = E[0] (6.104)
We have two equations in two unknowns. Solving for a and b, we obtain

. _ E[0Y] - E[0]E[Y]

> > (6.105)
E[Y“1-E-[Y]
and
b= E[0]- E[Y E[GY]Z_E[GEE[Y] (6.106)
E[Y“]-E“[Y]
Knowing that the correlation coefficient pgy is given by
E[(0—m)(¥ =m,)]
Poy = : - (6.107)
Gy0,

with mg =E[0], m, =E[Y], o¢=yE[(0-mg)*, and o, =/E(Y-m,)>.
Then,

a=pg, —> (6.108)

and

b:me—peymyz—e (6.109)

¥
The optimal cost function can be obtained to be

Ry =05(1-p5,) (6.110)

It can be shown that if the joint density function fy g (y,0)is Gaussian, then

the conditional mean E[0| y]is linear in the observation data, and thus the
minimum mean-square estimate is linear. In addition, we usually assume for
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convenience that the parameter 0 and the observation Y have zero means. In this

case, 0,,, is unbiased, and is given by

Opse = CoCryy 6.111)

where Cg, = E[0Y] and C;yl =1/E[Y?]. We now can generalize the result of

(6.111) for multiple parameter estimation.
6.8.2 0 Random Vector
If now O is a random vector parameter and 8 and ¥ are assumed to have zero
means, then it can be shown that the BLUE that minimizes the mean-square error
(variance minimum) is given by

A -1

04 = Coy CyyY (6.112)
and the mean-square error is

E[(0~0,1,.)(0—0,,.) 1= Cop —CoyCyyCyg (6.113)

Cyy is the covariance matrix of the observation vector ¥, Cyy is its inverse, and
Cyy is the cross-covariance matrix between ¥ and 0. Note that the mean and

covariance of the data are unknown, and the means of ¥ and 0 are assumed to be
zero, and thus the linear mean-square estimator is unbiased.

Proof.  We now give a derivation of the result given in (6.112). Since 0 is

restricted to be a linear estimator for ¥, that is a linear function of the data, then 0
can be written as

0=DY (6.114)

The problem is to select the matrix D so that the mean-square given by (6.113) is
minimized. Equation (6.113) is called the matrix-valued squared error loss
function. Substituting (6.114) into (6.113), we have

E[(0-6)(0-6)]=E[(8-DY)(0-DY)"] (6.115)

Using the fact that
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E[(0-0)(0-0)"1=tr E[(0-0)(0-0)"] (6.116)
then, (6.115) becomes

E[(0-0)0-0)"]=tr E[(0—DY)(0-DY)"]
=tr{Cgg —Coy D" —DCyy + DCyy D" ] (6.117)

Note that

(D—CyyCyy)Cyy (D—CyyCyy)'
= DCYYDT —DCyy (Cyy C;;, )T - CeyDT + CeYC;%/Cye
=DCyy D" —DCyy —Cyy D" +CyyCyyCyp (6.118)

Using (6.118), we can write

E[(0-0)(0-0)" ]=tr[Cyy +(D~CyyCyy)Cyy (D~ CoyCry) " —Coy CryCra]
(6.119)

We observe that the gain matrix D appears only in the second term on the right-
hand side of (6.119). Thus, each diagonal element in the matrix
E[(0—0)(0—0)"] is minimized when D is given by
D=CyyCyy (6.120)
Substituting (6.120) in (6.114), we have
0=0,,, =CoyCiy ¥ (6.121)
and the proof is complete.
Note that if ¥ and © are not zero mean, such that E[¥]=my and E[0]=m,,
then

0,,, =AY +b (6.122)

where the matrix 4 and the vector b are given by

A= {E[YYT]—E[Y]E[YT ]}‘1 {E[eYT]—E[e]E[YT]}z CyiCoy  (6.123)
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and
b =E[0]- AE[Y] (6.124)
By direct substitution, we obtain
éblue =my +C9YC}_’)1’ (Y_mY) (6125)

The BLUE given in (6.121) has several properties of interest:

E[0,,,¥ " 1= Coy (6.126)
841,071, 1= Coy Cy'Cyy = C5 4 (6.127)
E(0-0,1,)0-0,,,)"1=Cop ~C; 5 - (6.128)
E[(0-0,,,)¥"]=0 (6.129)
E[(0—0,,)07,,,1=0 (6.130)

We observe that property (6.129) means that the error in the estimate is orthogonal
to the data ¥, while property (6.130) means that the error in the estimate is
orthogonal to the estimator 6 e - This concept of orthogonality is an important

result, which will be developed and used extensively in the next chapter on
filtering.

6.8.3 BLUE in White Gaussian Noise

Consider the general problem of estimating a random vector with N parameters
(denoted as the N-dimensional vectors 0), to be estimated from K observations
(denoted as the K-dimensional vector ¥), in white Gaussian noise. The parameters
6 and measurements Y are assumed to be related by the so-called linear model

Y=HO+N (6.131)

H is a K x N known mapping matrix, ¥ is the K x1observed random vector, 0 is
an N x1random vector to be estimated, and N is a K x1vector representing errors

in the measurement (noise). Assuming that 8 and N have zero means, then ¥ has
zero mean. The covariance matrix of Y is
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Cyy =[(HO+N)YHO+N) |=HCyH" + HCyyy +CrgH” +Cpy  (6.132)
while the cross-covariance matrix of ¥ and 0 is
Cyg =HCyy +Cpy (6.133)

Substituting (6.132) and (6.133) in (6.121), we obtain the BLUE estimate of 0 to
be

0,0 =[CogH” +Con THCooH™ + HCyy +CrgHT +Cpy 1Y (6.134)
with error covariance matrix

Cys =Cop —(CogH™ +Cyy)
(HCooH" + HCyy +CngH" +Cny) ' (HCg +Cpp)  (6.135)

When 0 and N are uncorrelated, which is the usual assumed case, Cqyy =0, and
the BLUE of 0 reduces to

0=CooH  (HCooH" +Cpy)'Y (6.136)
while the error matrix becomes
Cy5 = Cop ~CooH " (HCooH" +C yy) ' HCyg (6.137)

Using the matrix inversion lemma given in Chapter 4, and after some matrix
operation, we have

04,0 =Coa H C\ Y (6.138a)
where
Cys =(Cop +H CyyH)™! (6.138b)

If no a priori information about @ is available, and thus if Cgq is assumed zero, the

BLUE of 6 is given by
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0=(H CyyH) 'H'Cy\Y (6.139)
Note that in these results, we only assumed that 6 is a random parameter.
Consider now the problem of estimating the unknown vector 6, but which is
constrained to be a linear function of the data (measurements).

The Estimator as a Linear Function of Data

In this case, we require

D>
Il
M=

aikYk +bk7 i=1,2,...,M (6140)

=
Il
—_

or, in matrix form
0=AY +b (6.141)

where A is an M x K matrix, and ¥ and b are K x1 vectors. In order for 0 to be
unbiased, we must have

E[0]0]=0 (6.142)
Hence,

E[AY +b|0]= AE[Y |0]+b= AE[HO+ N |0]+b=AHO+b=0  (6.143)

only if
AH =1 (6.144a)
and
b=0 (6.144b)
The BLUE estimate is then given by
O=(H CyNH)'HTC{ Y (6.145)

Therefore, with the noise Gaussian in the linear model, we can state the
following result given by the Gauss-Markov theorem.



386 Signal Detection and Estimation
Gauss-Markov Theorem. If the data is of the general linear model form
Y=HO+N (6.146)

where H is a known K xM matrix, 0 is an M x1 vector of parameters to be
estimated, and N is a K x1noise vector with mean zero and covariance matrix
C yn » then the BLUE of 0 that minimizes the mean-square error is

0=(H'CyyH) 'HTC\Y (6.147)
with error covariance matrix

Cyi = E1(0-0,,,)0-0,,,)" |0]=(H CyyH)™ (6.148)
The minimum variance of 0 « 1s then

var[0, 1=[(H" CyyH) '], (6.149)
Example 6.7
Consider the problem of Example 6.2 where

Y, =A+N,, k=12,...K

where N, is a zero mean white noise. Find the BLUE of M if:
(a) The variance of N, ,k=1,2,....K is o2

(b) The noise components are correlated with variance c% Jk=1,2,...,K.

Solution

(a) The estimator is constrained to be a linear function of the data. Let

n K
A =Y 4, j=12...M
k=1

where the 4;s are the weighting coefficients to be determined. From (6.147), the
BLUE is given by

1& = (HTCNNilH)ilHTCNNily
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where
ElY, 1= E[H Ay + Ny 1= H E[4;]

Since A4; must be unbiased, then E[4;]=4,, H, =1, and thus H =1.
Substituting, we have

a=(1"Ln ) 17 Ly |=2k)? Zi —if

c Ko

Hence, we observe that the BLUE is the sample mean independently of the
probability density function of the data, while the minimum variance is

. 1 1 c’
var[A4] = — = ] =—
(H CyyH) 71 pg K

2

c

(b) In this case, the variance matrix is

6l 0 - 0
Cyy =
0 0 o%

After substitution, the BLUE is

2
~ k=10
A= k
i 1
2
k=0 Gk
while the minimum variance is
~ 1
var(A) =
1
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6.9 LEAST-SQUARE ESTIMATION

In studying parameter estimation in the previous sections, our criteria were to find
a “good” estimator that was unbiased and had minimum variance. In the least-
square estimation, the criterion is only to minimize the squared difference between
the given data (signal plus noise) and the assumed signal data.

Suppose we want to estimate M parameters, denoting the M-dimensional
vector O, from the K measurements, denoting the K-dimensional vector Y
with K > M . The relation between the parameters 6 and the observed data Y is
given by the linear model

Y=HO+N (6.150)

where H is a known (K x M) matrix, and N is the unknown (K x 1) error vector

that occurs in the measurement of ©.
The least-square estimator (LSE) of 8 chooses the values that make X = H 0

closest to the observed data ¥. Hence, we minimize

J(e>=§<Yk -X,)*=(Y-HO6) (Y-H®0)
k=1

=vY'-Y"Ho-0"H'Y+0"H"H®O
=yvyY' -2vy"Ho+0"H ' H®O (6.151)

Note that ¥” H @ is a scalar. Taking the first-order partial derivative of the cost
function J(0) with respect to 0 (i.e., the gradient) and setting it equal to zero, we
obtain the set of linear equations

%:—2HTY+2HTH9:0 (6.152)

and the LSE is found to be
0,=(H"H)'H"Y (6.153)

Note that the second-order partial derivative is

82J(0) _

poe H'H (6.154)
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This matrix is positive-definite as long as H is assumed to be of full rank to

guarantee the inversion of H’ H . Thus, the solution (6.153) is unique and
minimizes J(0) . The equations

H'"Ho=H"Y (6.155)

to be solved for 6 =6 ;s are referred to as the normal equations.

We observe that the error in the estimator 0, is a linear function of the
measurement errors NN, since

0,200, =0—(H"H) H'Y=0—(H"H) H[Ho+N]
= 6—(HTH)71HTH9—(HTH)71HTN
—(a"H)'HTN (6.156)

The minimum least-square J ;, can be shown, after some matrix operation, to be

=JO)=(Y-HO) Y-HO) =YY" -Y"HH"H)"'H"Y
=Y (Y-H0) (6.157)

‘]min
Generalization of the Least-Square Problem

The least-square cost function can be generalized by introducing a K x K positive
definite weighting matrix W to yield

J(0)= (Y —H0)" W (Y - H0) (6.158)

The elements of the weighting can be chosen to emphasize specific values of the

data that are more reliable for the estimate 0 .
The general form of the least-square estimator can be shown to be

0=H"WH) ' H Wy (6.159)
while its minimum least-square error is
J.. =Y [W-wHH"WH) 'H'WY (6.160)

min

The error covariance matrix becomes
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Cyy =(H"WH) '"H"WRWH(H"WH)™ (6.161)
where Ryy is a known positive-definite covariance matrix given by
Ryy =E[NNT] (6.162)

since E[N]=0 (i.e., Ryy =Cpnp )-

If the measurement errors N are uncorrelated and have identical variance o2,

then R=c>1; and if W =c”1, then (6.159) reduces to (6.153). That is, a
constant scaling has no effect on the estimate.

It can also be shown that the least-square estimator and the linear minimum
mean-square estimator are identical when the weighting matrix W is chosen as

W=R"' (6.163)
that is, the inverse of the measurement noise covariance matrix.
Example 6.8

Consider again the problem of Example 6.5 with Y, = A+ N,,k=12,....K.
From (6.153), the least-square estimate is A= (HTH)'HTY . H is the (K x1)

column matrix denoted 17 = [1 1 .. 1]. Hence,
~ 1 &
A=1"ny"1"'Y==>y,
K=

which is the sample mean. Observe that for this simple operation, instead of
applying a derived result, we could have started by writing the least-square cost

K
function J(4) = Z i - A)? , then differentiating .J(4) with respect to 4, setting
k=1

the result equal to zero, and solving for A= 1:115 .

Example 6.9

Suppose that three measurements of signal s, =0exp(k/2), where 0 is the
parameter to be estimated, are given by y, =1.5, y, =3, and y; =5. Find the
least-square estimate of 0.
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Solution

The data can be put in the form, ¥ = H0+ N given by (6.150). Substituting for
the values of k, we have

1.5=1.6480 + N,
3=2.7180 + N,
5=4.4820 + N,

where y=[1.5 3 5]” is a realization of ¥, H =[1.648 2.718 4.482]" , and
N =[N, N, N;] arealization of N. The least-square estimate is given by

0,=(H"H)'Hy

3 3
where H'H =Y H} =30.192,and H y =) H Y, =30.036 . Hence,
k=1 k=1

3
ZHkYk

0, =(H H) " H" y=*=———=0.995

> H
k=1

6.10 RECURSIVE LEAST-SQUARE ESTIMATOR

In real time estimation problems (filtering), it is necessary to write the estimator

0 in a recursive form for efficiency. For example, consider a situation where an

estimate 6 is determined based on some data ¥, «. If new data Y, is to be
processed after having determined an estimate based on the data Y, it is best to

use the old solution along with the new data to determine the new least-square
estimator. It is clear that discarding the estimate based on the data Y, and

restarting the computation for a solution is inefficient. This procedure of
determining the least-square estimate from an estimate based on ¥ and the new
data Yy, is referred to as sequential least-square estimation, or more commonly

recursive least-square (RLS) estimation.
Consider the problem of estimating 0 from the data vectors Z,, given by the

linear model
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Z,=H,0+U, (6.164a)
where
T
zZ, =y, v, ... v,] (6.164b)

is an (MK+1) collection of vectors Y,,Y,,...,Y,,, since each vector
Y,, k=12,...,M, isa (K +1) vector,

Uy,=[N N, ... N,T (6.164c)
is an (MK +1) error vector, and
Hy=[h hy ... hyJ (6.164d)

is an (MK xn) mapping matrix relating Z,, to the (nx1) parameter vector 0 to

be estimated.
It can be shown that the RLS estimator is given by

éM :éM—l +Vy Uy _HMéM—l] (6.165)
where
Vy=C yoHL Ry (6.166)

C is the error covariance matrix given by

Rll Rlz “en Rll
) R, R, .. Ry,

Cyy = EUL,U1=| . _— : (6.167)
R, RI, .. Ry,

and

E[N,NT1=R, 5, (6.168)
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The covariance matrix of the individual noise vector NV is R, £ R;. Equation

i =
(6.170) indicates that the estimator u based on Z,, is formed as a linear

combination of 9 v-1 and a correction term V), [U,, —H Mé M-1]-

If @ were a random variable, it can be shown that the generalization of the
recursive least-square estimation leads to the Kalman filter [3]. In the next chapter
on filtering, we present an introduction to Kalman filtering.

6.11 SUMMARY

In this chapter, we have developed the concept of parameter estimation. We used
the maximum likelihood estimation to estimate nonrandom parameters. We first
obtained the likelihood function in terms of the parameters to be estimated. Then,
we maximized the likelihood function to obtain the estimator, which resulted from
solving the likelihood equation. We linked this chapter to the previous one by
presenting the generalized likelihood ratio test in Section 6.3. In the generalized
likelihood ratio test, we used the maximum likelihood estimate of the unknown
parameter in the composite hypothesis as its true value and then performed the
likelihood ratio test. This was an alternative to the case where UMP tests did not
exist. Measuring criteria for the estimator, such as bias and consistency, were
presented to determine the quality of the estimator.

When the parameter to be estimated was a random variable, we used Bayes’
estimation. In Bayes’ estimation, we minimized the risk, which is a function of
error between the estimate and the true value. Three cases were considered; the
squared error, the absolute value error, and the uniform cost function. It was
shown that the minimum mean-square error represents the conditional mean of the
parameter (associated with the observation random variable) to be estimated. The
resulting minimum risk was the conditional variance. In the absolute value error
case, the estimate turned out to be the median of the conditional density function
of the parameter to be estimated, given the observation random variable.

For the uniform Bayes’ cost, the estimator was actually the solution of the
MAP equation. In comparing the ML estimate and MAP estimate, it was observed
that the ML estimate was a special case of the MAP estimate and is obtained by
setting to zero the density function of the parameter to be estimated in the MAP
equation. In order to measure the “goodness” of the estimator, the Cramer-Rao
bound was given as an alternate way to measure the error variance, since an
expression for the error variance was difficult to obtain. The above results were
generalized to multiple parameter estimation in Section 6.7.

Then, we presented linear mean-square estimation for situations where it may
have been difficult to find the MMSE, even if existed. We defined the BLUE in
the sense that the mean-square value is minimized. We verified that for a joint
Gaussian density function of the observation and the parameter to be estimated, the
linear mean-square estimator is the optimum MMSE. An introduction to least-
square estimation was presented. We noted that least-square estimation was not
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based on the criteria of the unbiased and minimum variance estimator, but rather
on minimizing the squared difference between the given data and the assumed
signal data. We concluded the chapter with a brief section on recursive least-
square estimation.

PROBLEMS

6.1 Let ¥,,Y,,...,Yx be the observed random variables, such that
Yk:a+bxk+Zk, kzl,z,...,K

The constants x;, ,k=1,2,...,K, are known, while the constants a and b are
not known. The random variables Z, ,k=1,2,...,K, are statistically

independent, each with zero mean and variance 62 known. Obtain the ML
estimate of (a, b).

6.2 Let Y be a Gaussian random variable with mean zero and variance 2 .

(a) Obtain the ML estimates of ¢ and c7 .
(b) Are the estimates efficient?

6.3 Let Y; and Y, be two statistically independent Gaussian random variables,
such that E[Y,]=m, E[Y,]=3m , and var[Y;]= var[Y, ]=1; m is unknown.
(a) Obtain the ML estimates of m.
(b) If the estimator of m is of the form a,Y, +5,Y,, determine a, and a5, so
that the estimator is unbiased.

6.4 The observation sample of the envelope of a received signal is given by the
following exponential distribution

1
——exp| —2E|, k=1,2,...,K
S =75 Xp( eJ

0 is an unknown parameter and the observations are statistically independent.
(a) Obtain the ML estimate of 0.

(b) Is the estimator unbiased?

(c) Determine the lower bound on the estimator.

(d) Is the estimator consistent?
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6.6

6.7

6.8

6.9

Parameter Estimation 395

Let the observation Y satisfy the binomial law, such that the density function
of Yis

fr(= @p a-p)"*

(a) Find an unbiased estimate for p.
(b) Is the estimate consistent?

Obtain the ML estimates of the mean m and variance o for the independent
observations Y;,Y,,...,Y , such that

1 (yk_m)2
Sy, i) = exp| — L k=12,..,K
K J2no { 262

Let x be an unknown deterministic parameter that can have any value in the
interval [-1,1]. Suppose we take two observations of x with independent

samples of zero-mean Gaussian noise, and with variance o superimposed on
each of the observations.

(a) Obtain the ML estimate of x.

(b) Is x,, unbiased?

LetY,,Y,,..., Yy be K independent observed random variables, each having a
Poisson distribution given by

Yk

00
fYH@(yk|e):eey ) ykzoakzlaza"'aK'
k.

The parameter 0 is unknown.
(a) Obtain the ML estimate of 6.
(b) Verify that the estimator is unbiased and determine the lower bound.

Let Y},Y,,...,Yx be K independent and identically distributed observations.
The observations are uniformly distributed between —6 and + 6, where 0 is

an unknown parameter to be estimated.
(a) Obtain the MLE of 6.
(b) How is the estimator unbiased?
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6.10

6.11

6.12
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Let Y,,Y,,....Yx be K independent variables with P(Y, =1)=p and
P, =0)=1-p,where p, 0< p <1 is unknown.
(a) Obtain the ML estimate.

(b) Determine the lower bound on the variance of the estimator, assuming
that the estimator is unbiased.

Find X,,, the minimum mean-square error, and X the maximum a

ms > map >

posteriori estimators, of X from the observations
Y=X+N

X and N are random variables with density functions

2
T () =%[6(x—l)+6(x+l)] and £y (n) = le_nc exp(_ x J

262

The conditional density function of the observed random variable Y given a
random parameter X is given by

xe ™, y>0and x>0
Srx1x)= g
0 , ¥<0

The a priori probability density function of X is

r
(04 1 -
r=1 _—ox x>0

I =11 "
0 , x<0

where o is a parameter, » is a positive integer, and I'(») is the gamma

function.
(a) Obtain the a priori mean and variance of X.
(b) For Y given,
1. Obtain the minimum mean-square error estimate of X.
2.  What is the variance of this estimate?
(c) Suppose we take K independent observations of Y, , k =1,2,..., K, such

that

—XVk

xe
Srax e [X0) = ’
G 0 > Y <0

Yy 20and x>0
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6.14

6.15

6.16

6.17
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1. Determine the minimum mean-square error estimate of X.
2. What is the variance of this estimate?
(d) Verify if the MAP estimate equals the MMSE estimate.

Consider the problem where the observation is given by Y =In X+ N,
where X is the parameter to be estimated . X is uniformly distributed over
the interval [0,1], and N has an exponential distribution given by

7 on=0

, otherwise

Sy ()= {;

Obtain
(a) The mean-square estimate, x,,

(b) The MAP estimate, *,,, -
(¢) The MAVE estimate, x

S -

mave *

The observation Y is given by ¥ = X + N, where X and N are two random

variables. N is normal with mean one and variance o2, and X is uniformly
distributed over the interval [0, 2]. Determine the MAP estimate of the
parameter X.

Show that the mean-square estimation éms = E[0| y] commutes over a
linear transformation.

Suppose that the joint density function of the observation Y and the
parameter 0 is Gaussian. The means m, and m, are assumed to be zero. 0

can then be expressed as a linear form of the data. Determine an expression
for the conditional density fgqy (0]).

Consider the problem of estimating a parameter 6 from one observation Y.
Then, ¥ =0+ N, where 0 and the noise N are statistically independent with

n
and fy(n)=<2"
0, otherwise

0<n<2

1, 0<6<1
f®(9)={

0, otherwise

Determine 6 »ive » the best linear unbiased estimate of 0.
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Chapter 7

Filtering

7.1 INTRODUCTION

In Chapter 6, we developed techniques for estimating random and nonrandom
parameters. We also studied measures to determine the “goodness” of the
estimates. In many applications, the goal was to estimate a signal waveform from a
noisy version of the signal in an “optimal” manner.

In this chapter, we assume that the received signal is corrupted by an additive
noise. We would like to extract the desired signal from the received signal based
on the linear minimum mean-square error criterion. The received process signal,
Y(2), is observed over some interval of time 7 €[z,,7,], where #, denotes initial

time and # denotes final time. The problem is to determine Y (1), a linear estimate
of Y(¢). When ¢ is outside the interval, we talk about prediction. If t <t,, then Y ®)
is a backward predictor. If t>1,, then Y (t) is a forward predictor. When
telt;,t,], the problem is referred to as smoothing. The process of extracting the

information-carrying signal S(f) from the observed signal Y(f), where
Y(t)=S(t)+ N(¢) and N(?) is a noise process, is called filtering. In Section 7.2, we
define the linear transformation and present some related theorems in some detail.
Recall that this concept was introduced and used in the previous chapter without
any formal proof. The orthogonality principle theorem will be discussed in some
detail, and we also show how it is used in different problems.

In Section 7.3, we discuss the problem of filtering by deriving the impulse
response of the system for both realizable and unrealizable filters, continuous and
discrete, using spectral factorization. Then, we derive a realizable discrete
optimum Wiener filter of a transversal filter with an impulse response of finite
duration using the “mean-square method.” We conclude the chapter with a section
on Kalman filtering.

399
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7.2 LINEAR TRANSFORMATION AND ORTHOGONALITY PRINCIPLE

The estimate to be determined Y (t) is a linear transformation of the received
signal Y(¢). In this section, we present some useful properties about linear
transformations and discuss an important theorem known as “the orthogonality

principle” before deriving the estimation rule. The estimate may be written as

Y=Ly ()] (7.1)

where the operator L[-]denotes linear transformation. The estimation rule is based
on the minimum mean-square error. Hence, defining the error as

e()=Y(®)-Y(t) (7.2)
we would like to derive the estimation rule L[], so that the mean-square error
2 ~ 2
E|s)’|=E ‘Y(t)—Y(t)‘ (1.3)
is minimized.
By definition, a transformation L[] is linear provided that
Lo, + @, 0] = ar L% 01+ 4,1, ()] (7.4)

for all constants a; and a, and processes Y;(t) and Y,(¢#). The difference
transformation is also linear. That is, if L, [] and L, [] are two linear
transformations, such that

Lia,Y, () +a,Y, ()] = a,L, [, )]+ a, L, [Y, (0)] (7.5)
and
Ly[a Y0+ a Y, (0] = a L[ 0]+ ay L, [V, ()] (7.6)
then the difference transformation
Ll]=L,[]- L[] (7.7)

is linear. The proof is straightforward by direct substitutions of (7.5) and (7.6) in
(7.7). For a linear transformation, it can be shown that
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E{e[]j= L{EL]} (78)

where the operator E[|denotes expectation.
If Z(¢) is a process orthogonal to Y(§) for all & in the interval [t,-,tf] s
then any linear transformation on Y (&) is also orthogonal to Z(¢) in the interval
e [t,-,t /-] . To prove this statement, we start from the definition that Y(§) is

orthogonal to Z(¢) in the given interval; that is,

Er@z©] =0 for telr,.1,] (7.9)

Let L[Y (?;)] be a linear transformation of Y(&). Since linear operations and
expectations are interchangeable as given in (7.8), we have

Elilvol o= Elirez o))
~tEr@z o))=0 for ecfi.,] (7.10)

which proves that the linear transformation of Y (&) is orthogonal to Z(¢) .

Theorem. Orthogonality Principle

The linear transformation L[] is the minimum mean-square error estimate if and

only if the error &(¢) is orthogonal to Y (&) for & e [ti,t f]

Proof. Let all processes Y(¢), S(¢),and N(¢), where Y(t)=S(¢)+ N(¢), be real
and stationary. Consider the linear transformation L, [], L, [Y (é)]: S (t)forall &,

such that the mean-square error £ [812 (t)], NOEMNGE S (¢) is minimum. That is,

L[y ©®)]=50) (7.11)

is the optimum estimator, and the mean-square error is
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e = Ele2(0)]= Elis) - L, [r@)?] =0 (7.12)

Consider the linear transformation L, -] L,[Y (&)]:S(t) forall &, such that the

error €,(¢), where sz(t):S(t)—S”(t) is orthogonal to the data Y (&) for all &.
That is,

Ele, ()Y (1)]= E{[S(t) - S(z)]ﬂz)}: 0 (7.13)

The error €,(¢) can then be expressed in terms of €, (¢) as

e1(t) =S~ Li[Y(©)]=S(0) +{L,[Y(©&)]- L, [y ©)]}- L, [r (¢)]
=&, () + L [Y(©®)]-L [ ©)]=e, )+ LY (¢)] (7.14)

where the difference transformation L[-]: L, [-]—L1 [] is linear as given by (7.7).

Substituting (7.14) into (7.12), the linear mean-square error using the optimum
estimator becomes

e = ESO) - L [Y @)1= Elfes 0+ Ly @) ]

= fle2 ) 28{e, Lly @)1+ B2y @) ] (7.15)

Since €,(¢) is orthogonal to the data, €,(f) is also orthogonal to L[Y (é)] as
shown in (7.9). Thus,

E{e,(0L[r(®)]}=0 (7.16)

and the minimum mean-square error reduces to

e, = E[g§ (t)]+ E[{L[Y(F,)]}Z ] (7.17)

where £ [8% (t)] is the mean-square error with L, [] as the estimator. Therefore,
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e, = E3 0] £fizlr@lf] = Eled o] (7.18)

if and only if the nonnegative quantity £ [{L[Y (&)]}2] is zero. That is,

L1=Ly[]-L4,[]1=0 (7.19)

Hence, this proves our theorem, which says that the linear transformation for
which the error is orthogonal to data results in the minimum mean-square error
linear estimator and vice versa.

We now derive a simple expression for e, , the minimum mean-square error,
using the fact that the error is orthogonal to the data, which is given by

E{bayﬂﬁn])q@}zo (7.20)

Substituting (7.9) into (7.20), the above expression becomes
Eliso-Llr@©ilr@]=0 (721)
Consequently, the minimum mean-square error reduces to
e, = E[{S) - LIy ®)]}s )] (7.22)
Example 7.1

Let the observation process be Y(¢) = S(¢)+ N(¢), where S(¢) and N(¢) are zero
mean wide-sense stationary processes. Obtain an estimate of S(¢) in terms of the

present value of Y(¢), and determine the minimum mean-square error.
Solution

In this case, the problem is to estimate the constant a, such that the estimate S )
is given by

S(t) = a¥ (1)
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The linear minimum mean-square error estimator results in the requirement that
the error €(¢) = S(¢)— 5'(t) be orthogonal to the observed data Y(¢). That is,

Ellst)-$0)ro)= E{s0) - ay)] v} = Els@)y )]~ &y * )]
=R, (0)—aR,,(0)=0

Solving for a, we obtain

R, (0)
a=
R,,(0)

The minimum mean-square error is given by

e, = E{s()-S0]s}= E{fst)-ar@]s}= E[s* 0] -aelrms)]
= Rss (O) - aRys (0)

Substituting for the value of ¢ and noting that R, (0) =R (0), the minimum

mean-square eIror becomes
R), R, (O)R,,(0)-R (0)

e, =R, (0)——2—=
T R, (0) Ry, (0)

If, in addition, the signal and noise processes are statistically independent, then
R, (0) = E[SOY(0)]= E{S®)[S() + N(®)]} = R,, (0)
since E[S(H)N(t)]= E[S@)|E[N(1)]=0. Also,
R, (0)= E{S@O+ NS+ N@)]} = Ry (0)+R,, (0)
Therefore,

B R (0)
"Ry (0)+R,, (0)

and
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_ Rss (O)Rnn (O) _

- - aRnn (0)
Ry (0)+R,, (0)

m

It should be noted that if the processes were not zero mean, then the estimator
must solve for the constants a and b, such that

S(t)=aY()+b
Example 7.2 (Interpolation)

Estimate Y(¢) in the time interval ¢ [0, T ] given Y(0) and Y(T). Determine the
minimum mean-square error.

Solution

The problem of estimating a signal at any instant in an interval of time, given the
values of the signal at the end of the interval, is known as interpolation. Using a

linear estimator, the estimate Y (t) may be written as
Y(t) = aY(0)+bY(T)

where a and b are constants to be determined. Since we require that the error be
orthogonal to the data, we have

E{[Y(1)—aY(0)-bY(T)[r (0)} =0

0

E{[v(-aY(0)-bY(D)¥ (1)}
It follows that

R, (t)=aR,, (0)+bR ,(T)
R, (T~t)=aR,,(T)+bR,,(0)

We have two equations in two unknowns. Solving for a and b, we obtain

e R, (O)R,, ()-R, (T)R,, (T -1)
R;y (0)- Ryzy (1)

and
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b R, (OR, (T-)-R,, (DR, (T)
R;y (0)- R;y ()

The minimum mean-square error is
e, =E{Y(t)-av(0)-bY(D)Y (1)} = R,, (0)—aR,, (1)~ bR, (t - T)

where a and b are as given above.
We observe that if t=7/2, then

R, (T/2)
a=b=—2""""_ and e, =R, (0)~(a+b)R,,(T/2)
R, (0)+R,, ()

Example 7.3 (The Yule-Walker Equations)

We now consider the problem where we are given K random variables,
Y,Y,,...,Yg , and we need to determine the linear minimum mean-square error

estimator for the random variables S. Since the estimator is linear, the estimate S
is given by

From the orthogonality principle, the mean-square error is minimum if and only if
the constants a;,a,,...,ag are chosen so that the error is orthogonal to the data.

That is,
E[(S—a)Y,—ayY, —...—agY )Y, |=0, k=1,2,...,K (7.24a)

or

E[SY, |-a,E[1,Y, |- a, E[V, Y, |-...—ax E[Y, Y, ]=0, k=1,2,...,K (7.24b)

Defining

E[SY, =Ry, (7.25a)

Ery] =R, (7.25b)
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we obtain, from (7.24), the following set of K equations in K unknowns, known as
the Yule-Walker equations, as discussed in Chapter 4.

aRy +a R, + ... +agRix =Ry,

a1R21+a2R22 + ... +aKR2K :ROZ

alRKl +a2RK2 + ... +aKRKK :ROK (726)

The solution yields the constants a;,a,,...,ag. In matrix form, (7.26) can be
written as

Ra =R, (7.27a)
where
Ry Ry, Rk
Ry, Ry, ... Ry
R=| . . . ) (7.27b)
Ry Rgs Rk
a= [a1 a, ag ]T (7.27¢)
and
T
RO = [ROI R02 ces ROK ] (7.27d)

Since Ry =Ry, j,k=12,...,K, in the Yule-Walker equations, the coefficients
are obtained from (7.27) to be

a=R'R, (7.28)

Note that the data correlation matrix is given by

R=Ryy =E[yv" | (7.29a)

where ¥ denotes the transpose of ¥ and
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y=[y, v, ... v | (7.29b)
The estimator is simply the inner product of @ and ¥; that is,
S=a"Y=Y"a (7.30)
Geometrically, S is the projection of S onto the surface spanned by Y;,Y,,..., Y.
This is illustrated in Figure 7.1 for K =2.
The mean-square vector is
E[S‘z]zE[S’ST]:E[aTYYTa]:aTRa (7.31)
Similarly, we can determine the minimum mean-square error to be

e, =E[(S—S)S]:E[(S—alY1 —ayYy —...—agYy)S]

:ROO —alR()l _azRoz _..._aKROK (732)

where Ry, = E[S?]. In matrix form, the minimum mean-square error is expressed
as

e, =Ry —a’ R, (7.33)
substituting for (7.28) in (7.33), we have

e, =Rog—(R"'R))" Ry =Ryy —Rj (R R, (7.34)

Figure 7.1 Projection of S onto plane spanned by Y, and Y>.
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When the data has a nonzero mean vector, we add a constant to the estimate given
by (7.23), which becomes

A

S:ao“l‘al}]l +a2Y2+ e +aKYK (735)
Following the above procedure, we obtain the set of (K +1) equations

ao +m1a1 + ... +mKaK :mS

miag+Ryjay+...+Rigaxg =Ry
Mrgag+Rga)+ ... +Rgpag = Rog (7.36)

where m :E[ﬁ] and my :E[Y ]

7.3 WIENER FILTERS

We now consider the case where the data is not a finite number of random
variables as in the previous examples, but rather a random process, X (&),

observed over an interval of time &e[z;,7,]. The goal is to estimate another

process, Y(¢), by a linear function of X (&), such that

R Iy
Y(0) = [ &)X (E)de (7.37)

The weighting function A(§) is to be determined based on the minimum mean-
square error criterion. The orthogonality principle requires that the error
e(t)=Y (t)—f (¢) be orthogonal to observed data X (&) during the interval
Eelt;,1,]. Hence,

t:

i

E [Y(t) - jh(i, K)X(i)d&]){(k) =0, relr,1/] (7.38)

Assuming that the processes are stationary, in which case the filter used is time-
invariant, (7.38) becomes
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R, (t-0)= [R (E=Wh(E)E, Lelti,] (7.39)

Solving the integral equation of (7.39) results in the desired weighting function
() -

The minimum mean-square error is

en =E [Y 0)- [E)X (é)dilY 0 (7.40)

i

or
Iy
e, =R, (0)- [hE)R, (1-8)dE (7.41)

7.3.1 The Optimum Unrealizable Filter

We now let Y(¢) =S(¢)+ N(¢), where S(¢) is the desired signal to be estimated
from the data Y(¢) for all time ¢ That is, we wish to obtain the optimum linear
time-invariant filter, such that the mean-square error estimate of S(z) is minimum.

We assume all processes to be stationary, real, and zero mean. The system is
required to be time-invariant, and consequently the desired estimate may be
expressed as

S = [ht-8)Y(E)de (7.42)

Note that in this case, the filter is not constrained to be realizable since we do
not require a causal system. The impulse response A(f —&) may be zero for # <& .

This filtering problem can be represented by the block diagram of Figure 7.2.

Y()=S@)+N(t) o) 7(6)=S(0)

»
>

>

Not causal

Figure 7.2 Filtering S(7).
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The orthogonality principle requires that

E{S(t) - Th(&)Y(t - &)d&}Y(k)} =0 forallA (7.43)
That is,
Ry, (t=2) = .fR w (E=E=M)(E)dE (7.44)

Let t—A =1, then (7.44) becomes
Ry, (0) = IR w (T=EE)dE =R, (1) * (1) (7.45)

where * denotes convolution. It is easier to solve the above equation in frequency
domain. Taking the Fourier transform of (7.45), we obtain

Sy ()=8,, (NHH(S) (7.46)
or
S, (f)
H(f)=—2= 7.47
f 5,0 (7.47)

The minimum mean-square error is given by
e = E{S(r)—? Y(t—i)h(é)dé}b‘(t)} R, O~ [R, MO (7450
where
IOR” OhEE=[R,, (-0 *h(D)] (7.48b)

Expressing the error of (7.48) in terms of the power spectral density, we obtain
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o0

e = [[S(f)=Sy (~NHIf

—o0

Substituting (7.47) in (7.49), the error becomes

Ssy (_f)Ssy (f)

d
Sy (f) /

€m =T Sss(f)_

If S(¢) and N(¢) are statistically independent, then
E[S(O)N(®)]= E[S()IE[N ()] =0
since they are zero-mean. It follows that
Sy () =8s(N)+S,,(f)
Se (=84 (f)

Therefore, the transfer function H(f) is

H(f) — SSy (f) — SSS (f)
Sy () S ()8 (/)

The resulting minimum mean-square error in this case is

7 S2() Sy (NS ()
o __{D S s e [V ‘_[O 4

Sss () +8,,(f)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

We note that if the power spectral densities S (f) and S,,(f) do not

overlap, then

Sw(f)=0 when S,,(f)#0
S,(/)=0 when S,(f)#0

The transfer function H(f) becomes

(7.56)
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1 for f such that S (f)#0

"= {o for / such that S, (f)#0 (7:57)

For these power spectral densities of S (f) and S§,,(f), which are
nonoverlapping, the product S (f)S,, (f) is zero, and thus the minimum mean-
square error is zero.

Example 7.4

Let the observation process for all time ¢ be Y(¢) = S(¢)+ N(¢).
(a) Obtain the linear mean-square error of S'(¢), the derivative of S(¢) .

(b) Determine the impulse response 4(¢) given that

R,=¢, R,(1)=0, and R,, () =kS(1)

Solution

(a) The linear mean-square error estimate of S'(¢) is given by

$' ()= [Y(t-&hE)ds

Since the error is orthogonal to the data, we have

E{{S’(r) - TY(t - oc)h(oc)doc}Y(é)} =0 forall®

—00

or, Ry, (1-8)= TRyy(t—oc—é)h(oc)doc .Let t=¢-¢&, then

Ry, ()= [R, (1—a)h(o)do  forallt

Taking the Fourier transform of the above expression, we obtain

Sg ()
Sy ()

JISy(N)=8, (NH(S) or H(f)=jf
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Y() = S() + N(©) s ) N0) N0
> < > o ——
5, (1) ’

Figure 7.3 Filter for estimating S (1) .

Hence, the optimum filter for estimating S'(¢) is a cascade of two systems; the
first system has a transfer function S,,(f)/S,,(f), while the second system is a

differentiator as shown in Figure 7.3.

(b) Using (7.52) and (7.53), we have R (1)=R, (1)+R,,(t) and

R, (1) = Ry (1), since R, (1) =0. Consequently, the transfer function becomes

S (f)

HD =0T e s

We need to determine S (f) from R (t). The Fourier transform of the
autocorrelation function R (1) is

< 2 42
S ()= J.efmzesznﬁdr = \/Eexp(— Ui ]
(o o

—00

where we have used the fact that

a

o0 2 _
[ expl[—(ax® +2bx+c)] dx = \/E exp(b “CJ for a>0
a

—0

The transfer function becomes
2 42 )
\Fexp =S 1\Fexp _mS?
a a ’ k\Va a
=J
2 42 2,2
\/;exp[—n S j+k l+1\/;exp(—7T f J
a a k\Va o

H(f)=Jjf =JjfG(f)

where
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Thus, A(t)=dg(t)/dt, where g(¢) is the inverse Fourier transform of G(f). It
can be shown that the impulse response /() is given by

o3 @ " 2
s e

The above series converges, provided that (1/k)vm/a <1.

Example 7.5

(a) Determine the optimum unrealizable filter A(z) of the observation process
Y®)=S@)+N(@E). S() and N(¢) are uncorrelated with autocorrelation
functions

-t N,
RSS (T) =e ‘ ‘ and Rnn (T) = TOS(T)

(b) Calculate the minimum-mean-square error.
Solution

(a) The transfer function H(f') is given by (7.54), where S (f) and S,,(f)

are the Fourier transforms of Ry (T) and R,,(T), respectively. Hence,

20 /(a? +4n° f%) B a

H(f)= -
) Ra/(a? +4n* f2)]+Ny /2 b +4n’f?

where a =40/ N, and b* =a* +(4a/ Ny). It follows that
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h(?)
4
2b
' )
0
Figure 7.4 Filter A(¢) for Example 7.5.
“ - , 2 4
h(t) = I %ejhﬂdf:%e 1| :—“exp[_ o2 +N_°‘|,|J
b +4 4

—o o f N, a2 +N70t 0

0

From the plot of A(¢) shown in Figure 7.4, we observe that the impulse response

h(t) is noncausal and thus nonrealizable.

(b) The minimum mean-square error is given by (7.55). Substituting for S, (f)
and S, (f) and solving the integral, we obtain the minimum mean-square error to
be

7.3.2 The Optimum Realizable Filter

In the previous section, we solved for the optimum unrealizable filter to extract the
desired signal from the observation process Y (¢) =S(¢)+ N(¢). We now consider

the same problem with the constraint that the filter A(¢) is realizable; that is,
h(t) =0 for t < 0. The system representing the problem is shown in Figure 7.5.

Y()=S(@®)+ N(@) () S()
causal

v

Figure 7.5 Optimum realizable filter.
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We assume that the signal process Y(f) is known only up to the present

moment . Therefore, the estimate of S(¢) is

S()= [ h(t-8)Y(©)de = [ Y(t-E)h(E)dE (7.58)
—0 0

The linear mean-square estimation requires that A(z) be chosen so that the mean-
square error is minimum. From the orthogonality principle, we have

E{S(t) - T Y- &)h(&)d&}Y(r’)} =0 forall#'< ¢ (7.59)
0
The impulse response of the realizable filter satisfies the integral equation
Ry (t~1") =TRW (1~ &—1)h(E)dE (7.60)
0
Let 1 —t'=1; then the integral equation becomes
Ry, (1) = OJE]RW (t—&)h(E)dE forall t20 (7.61)
0

Equation (7.61) is called the Wiener-Hopf integral equation. Furthermore, the
mean-square error of the estimate reduces to

ey = E{S(r) N @h(&)d&}S(r)} =R, (0)~ [R,, () (7.62)
0 0

The solution to the Wiener-Hopf integral equation is not as easy as in the case
of the unrealizable filter, since the integral is valid for positive T only. Equation
(7.61) can be written as

Ry, (M= R, (1-&)h(E)dE, 120 (7.63)

It can be shown that the choice of the above integral for negative 1 is not arbitrary
when the additional constraint /(&) causal is imposed. Moreover,
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[R,, (t=E)R(E)E % Ry (1), T<0 (7.64)

Consequently, we cannot obtain the impulse response of the optimum realizable
filter by simply using the frequency domain approach, as we did with the
unrealizable filter.

To obtain an integral equation valid for all T, —o <t <o, we combine (7.63)

and (7.64), which results in

TRW (t—Eh(E)dE~R,, () =a(r) forall T (7.65)

—00

where a(t) is zero for T positive, and
a(r)= [A(f)e* 7 df, 7<0 (7.66)

Assume that the power spectral density S, (/) is a rational function and can be

factored into
S, (f)=58,,(NS,,(f) (7.67)

" . . - o

§,,(f) and its conjugate S (f) are called the spectral factorizations of
" . .

S, (f). S8}, (f) has all its poles and zeros in the left half-plane (LHP) of the S-

plan (s = jo,»=2nf"), whereas S, (f) has all its poles and zeros in the right
half-plane (RHP). Taking the Fourier transform of (7.65), we have

Sy (NH) =S4 (f) = A(S) (7.68)
or

S (NS (NDH() =Sy (f) = A(S) (7.69)

Dividing (7.69) by S, (f) , we obtain
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Sy () _ A
S, () S,

Sy (HH() - (7.70)

Note that since S, (f) and H(f) have all their poles in the LHP, the product

+
»
+ . . L
Sy, (fYH(f) has its poles in the LHP, and consequently the corresponding time
function is zero for t<0. Since S, (f) has its zeros in the RHP and A(f) has

all its poles in the RHP, the quotient A(f)/S,, (/) has all its poles in the RHP.
Consequently, the corresponding time function is zero for t©>0. The ratio
S (f)/S8,,(f) has poles in the LHP and RHP. Thus, its corresponding time
function is valid for all 7. Splitting the poles and zeros, the ratio S, (f)/S,,(f)

may be expressed as

Syt _[$oD] | [SaD] o
SsU) [sun] o [Se0

[Sy, (/) S,,( 1T has all its poles and zeros in the LHP, whereas

[Ss, (f)/S,, (/)] has all its poles and zeros in the RHP. Substituting (7.71) into
(7.70), we obtain

S (FH) - SoN ] [SaD] _ a4 .
T [Su(D ] [S) )
LHP RHP RHP
Define
5y =| 2D gy 22D (7.73)
S () S

Equating the terms marked by LHP (all poles in LHP) in (7.72), we have
Sy (NH)=B*(f)=0 (7.74)

or, the transfer function H(f) is
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B*(f)
Sy ()

H(f)= (7.75)

All poles of H(f) are in LHP, and consequently the filter response A(#) is zero
for ¢ negative, and thus it is realizable. Therefore, the optimum filter is

- | 20

e/ gf (7.76)
20 S5 (f)

The corresponding minimum mean-square error is obtained by substituting for
(7.75) into (7.62) and taking the Fourier transform, which results in

’ B*(f)
= I Sen=5,nL gy (7.77)
n=| s o

Example 7.6

Consider the problem where the signal S(¢) and the noise N(#) are uncorrelated,
and with autocorrelation functions R (1) = e_uM and R, (t)=(N,/2)d(t). For
simplicity, assume oo =N, /2=1.

(a) Obtain the optimum realizable filter.

(b) Calculate the minimum mean-square error.

Solution

() The optimum realizable filter is given by (7.76), where B"(f) and S, (f)

are defined in (7.73a) and (7.67), respectively. Since S(¢) and N(¢) are
uncorrelated, the power spectral density of Y(¢) is as given by (7.52). Hence,

S,y (f)=8x(f)+S,,(f), where

Sss(f):W and Snn(f):1

Substituting for the expressions of S (f) and S,,(f), we obtain
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g 1 _2+4n%f  pP -2
yy(f)_ 2,2 T 2,2 2
1+4n° f 1+4n° f p -1

where p = j2nf. In order to differentiate between S denoting the power spectral

density and P the Laplace transform, we denote the Laplace transform by
p = j2nf. Consequently,

=2 _(p+V2)(p—2)

pP + -
w(P) e (D(p—) w (P)S,,(P)
where
2 _ -2
S5 (p)= pp*jl— and S, (p) :%

We need to determine the cross-spectral density S, (/). From (7.53), we have
Sy (f) =S (f)=1/(1+4n>f?), or in the Laplace domain (p =2 jnf)
1 -1

N =S = =
o (P)=S5(p) 1 (D))

Hence, from (7.71),

Ss_y(p):B+(p)+B,(p): -1 :1/(1+ﬁ)+—1/(1+ﬁ)
S5 () (p+D(p-+2)  p+l p2

Now that we have B (p) and S, (p), we substitute in (7.75) to obtain

_BT(p) _1(+42) p+l _1/1+42)

H(p) = =
Sy Pl pe2 pe2

or, H(f) =[1/1 +42 MNI/(j2rf + V2 )]. Taking the inverse Laplace transform of
H(p), we obtain the optimum realizable filter /() to be
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1 2t
)= ——
© 1+ \/E ¢

where u(¢) is the unit step function.

(b) The minimum mean-square error is given by (7.62) to be

e, =R (0)—'[R5y(<‘,)h(§)d§. From part (a), we found that S, (p)=S,,(p)
0

=—1/(p? —1) . Taking the inverse Laplace transform, we have

L
R . (t)=R_(1)=—
ss (D =R, (1) 5 ¢

Substituting for the expression of R (0)=1/2 and R, (1) into e, , we obtain

1 |
ey, =———F7——
2 201+442)
Example 7.7

Let Y(t)=S@{)+N(¢), where the signals S(tf) and N(¢) are statistically
independent with zero mean and autocorrelation functions

K

R ()=e and R, (t)=5(t)+2e

(a) Find the optimum unrealizable filter.
(b) Find the optimum realizable filter.

Solution

(a) The optimum unrealizable filter is given by (7.47) to be

Sg (f)

H(f):Syy(f)

where S, (f)=S8,(f) and S, (/) =S (f)+S,,(f), since the signal and noise

are uncorrelated and zero mean. Hence, S (f)=1/(1+ 47c2f2) =S8, (),
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S () =1+[2/(1+4n* )], and S, (f)=(@4+4n> £2) /(1 +4n> £2).

Substituting into the expression of H(f), we obtain

1

H -
) 4+4n%f2

Consequently,

(b) The optimum realizable filter is given by (7.75). First, we factor S,,(f) into
+ -
§,,(f) and S, (f) . Then,
P-4 _(p-2)(p+2)

S - -
I ey

where
+2 _ p-2
St (p)=LT2 and S5 (p) ===
w(P) ol w(P) P
Also,
-1 -1
Sy(p)=Sy(p)= =
Y pi-1 (p+D(p-1)
Consequently,

Se(p) -1 _ 3 -1/3
S,(p (p+h(p=2) p+l p-2

where B (p)=1/[3(p+1)] and B~ (p)=-1/[3(p—2)]. The transfer function of
the realizable filter is
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H(p):B+(p): 1/3
Sy(p) p+2

Taking the inverse Laplace transform of H(p), we obtain the Wiener filter to be

1

—e 7, t20
h(t)=43

0 , t<0

7.4 DISCRETE WIENER FILTERS

We now consider the filtering problem where the observed signal is a discrete
random sequence, and the goal is to estimate another random sequence. The
incoming sequence composed of the signal sequence S(n),n=0,1,2,... and the

additive noise sequence N(n),n=0,1,2,..., enter a linear discrete-time filter with
impulse response denoted by the sequences h(n),n=0,1,2,..., as shown in
Figure 7.6.

We assume that the sequences S(n) and N(n) are uncorrelated zero mean

random variables. We wish to find S(n), the minimum linear mean-square error

estimator. The estimate S (n) may be expressed as the correlation sum of the

sequences Y (n) and h(n), and is given by

S(n) = i h(k)Y (n—k) (7.78)
k=—c0
or
S(n) = i h(k)Y (n—k) (7.79)
k=0
h(n)

.§(n

=

Y(n Discrete-time

AL
S(n) '* linear filter

N(n)

£

\

Figure 7.6 Filtering the sequences S(7).
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Equation (7.78) indicates that all data Y(n) is available for all n. The sequence is

not finite, and thus the filter is not realizable. Equation (7.79) indicates that only
present and past values of ¥ are used in estimating S(7). Thus, we have a finite

sequence, and the filter is causal or realizable.
7.4.1 Unrealizable Filter

In this case, the estimator is given by (7.78). The criterion used to determine the
filter sequence /(n) is the mean-square error and is given by

E{[S(n) - §(n)] 2 } (7.80)

The mean-square error is minimized by applying the orthogonality principle. Thus,

E{S(n) =S k)Y (- k)}Y(n - m)} for all m (7.81)
fk=—0

or
Ry, (m) = i h(k)R,, (m—k)  forallm (7.82a)
k=—0
where
Ry, (m) = E[S(n)Y (n—m)] (7.82b)
and
R,, (n—m) = E[Y (n)Y (m)] (7.82¢)

We define the Fourier transform of a discrete sequence f(k),k=0,£1,1£2,..., as
Fe™)="Y flkye™ (7.83)
k=—0

where ® = 2nf. Making the change of variable z = e/*" ., (7.82) becomes
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F(z)= i flkz™* (7.84)
k=—c0

Note that the trajectory of z=e/® is the unit circle on the Z-plane. F(e’®) is

periodic with period 2m, and hence the spectrum is usually plotted for
oe[-m,w]or e [—1/2, 1/ 2]. Taking the Z-transform of (7.82), we obtain

Sy (2)=H(2)S,,(2) (7.85)
or
S, (2)
H(z)=—"— 7.86
(2) 5, (7.86)

The resulting mean-square error is
Cn = Rss (0) - zh(k)Rys (_k) (787)
k=—c0

7.4.2 Realizable Filter

In this case, the filter is causal, and the estimator is given by (7.79) to be

S(n)= i h(k)Y (n—k) (7.88)
k=0

Assuming a linear filter with an impulse response of finite duration, single
input, and single output, the filter can conceptually be realized as shown in Figure
7.7.

Applying the orthogonality principle, we obtain the discrete version of the
Wiener-Hopf equation given by

Ry, (m)= i (k)R ,, (m ~ k) (7.89)
k=0

where R, (m) and R, (m—k)are as defined in (7.82b) and (7.82c), respectively.
Let the spectral density S, (z) be
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Y(n) Y(n-1) > Y(n —2) Y(n—M +Dy Y(n—M)

S(n)

Figure 7.7 Realization of a digital filter.

S,(@)= 2R, (k)z™* (7.90)
k=—0

Following a similar procedure as in the continuous case, we first factor S, (z)

into
Syy (z)= S;y (z)Sy_y (2) (7.91)

such that the poles and zeros of S, (z) inside the circle |z| <1 are assigned to

»w

S;fy (z) , whereas the poles and zeros in the region |z| >1 are assigned to S, (z) .
" . L oo - . .

Consequently, S, (z) is analytic inside the unit circle, and S, (z) is analytic in

|z| >1. Dividing (7.91) by §,,(z), and applying partial fraction expansion, we

obtain

Sy(@) |84 . Sy (2) (7.92)
Sy |5, Sy (2)

where [-]* denotes poles and zeros inside |z| <1, and [-]” denotes poles and zeros

in |z|>1.Let
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o= 22D g2 S0 (7.93)
Sy (2) Sy (2)

The optimum causal filter is

H(Z):B+(z): 1 | Sy(2) (7.94)
S, S5(2)]S,@

We see that the optimum discrete realizable filter is a cascade of two filters as
shown in Figure 7.8. The mean-square error is

e = Ry (0= Y hK)R,, (k) (7.95)
k=0

Example 7.8

Consider the problem where the received sequence is Y(n) = S(n)+ N(n). The
signal sequence S(n) is stationary and zero mean with power spectrum

2

S (e’)y=—Z=
w (e 5—4cos®

The noise sequence N(n) is independent of the signal sequence S(n), and has

power spectrum S, (e/*)=1.

(a) Obtain the realizable filter.
(b) Find the unrealizable filter.

Solution

(a) Since the signal and noise sequences are independent, then

SSy (e]m) = Sss (e J("))

Y(n) 1 S,,(2) S(n)
— " 5.0 : ’

\ 4

Figure 7.8 Wiener filter.
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Making the change of variables z = e’®, we have S,, (z) =1

2z

Sy(@)=8;@)=—F——
i * —2z245z-2
Thus,

2z -7z+2 (z-3.186)(z—0.314)
222 —5z42 (z=2)(z—-0.5)

SW(Z):SSS(Z)*'SM(Z) =

z—-0.314 _ z-3.186
Sw@=""Tg5 M S»(=—"

Dividing S, (z) by §,,(z) , we obtain

Sy (2) —z _ ~LI86  0.186
S, (z) (2-3.186)(z-0.5) z-3.186 z-0.5

where B¥(z) =0.186/(z—0.5). Using (7.94), the optimum realizable filter is

B*(z) 0.8 z-05 _ 0.186

+ h —_ —_— N u—
Si(z) z-05z-0314 2z-0314

H(z)=

or
h(n)=0.186(0.314)", n=0,1,2,...
(b) The optimum unrealizable filter is given by (7.86) to be

_Ssy(Z)_ -z -z

S, (2) 2235241 - (z—3.186)(z—0.314)

Note that the pole at z =3.186 outside the unit circle makes this filter unstable,
and thus unrealizable in real time.

The method described above in solving the Wiener-Hopf equation is called
spectral factorization. Another approach to obtain the Wiener filter is based on the
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Input Wiener Filter output s Estimation error
—_—> >
Y(n) filter 5(’1) e(n)

+

Figure 7.9 Canonical form of a Wiener filter. Desired response S()

least-square principle discussed in the previous chapter. We minimize the error
e(n) between the actual output and the desired output, as shown in Figure 7.9.

Mean-Square Method

Consider the linear transversal filter with M —1 delays as shown in Figure 7.10.
Note that the tap weights h(0),h(1),...,h(M —1) of Figure 7.7 are now denoted
©4, 0 ,...,0)_, respectively. Since in many practical situations such as

communications, radar, and sonar, the information carrying signal may be
complex, we assume the general case that the time series
Y(n), Y(n—-1),..., Y(n—M +1) is complex valued. Following the approach

developed by Haykin [1], the filter output is then given by the convolution sum

R M-1
S(ny= Y o} Y(n—k) (7.96)
k=0
Y(n) Y(n—1) Y(n-2) Y(n—-M +2) [ [ —M+1)

Desired signal S(n)

Figure 7.10 Transversal filter.
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Since the estimation error is
e(n) = S(n)—S(n) (7.97)

the goal is to minimize the cost function

C(w) = E[e(n)e* (n)] (7.98)

which yields the optimum linear filter in the mean-square sense. Let the weight
vector o be

o=[o, 0, ... oy, (7.99)
and the input vector Y (n) be
Y(n)=[Y(n) Y(n-1) ... Y(n-M)]" (7.100)
Then, in matrix form,
S*(n)=0"Y(n) (7.101)
where H denotes the Hermitian transpose and
S ) =Y"(ne (7.102)
Substituting (7.101) and (7.102) into (7.98), the cost function becomes
C(w) = E{[S(n) - oaHY(n)][S* (n)-Y*" (n)oa]}

= E[S(n)s* (n)]— mHE[Y(n)S* (n)]— E[S(n)YH (n)]0)+ mHE[Y(n)YH (n)]m

(7.103)

. . 2
Assuming S(n) has zero mean and variance o, then

ol = E[S’(n)S* (n)] (7.104)
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The cross-correlation vector between the input sequence and the desired signal is

Ry =E[Y(n)S"(n)]=E{[Y(n) Y(n-1) ... Y(n—M+1)]S"(n)}
:[rys(o) r(D) . rys(M_l)] (7.105)

where r,(-) is the cross-correlation between y(-) and S(-). The

autocorrelation matrix of the input sequence is given by

Ryy = E[Y(n)YH (n)]

7y (0) re ), (M=)
Ty =D Tyy (0) T (M -2) (7.106)
ryp(M+1) 1 (-M+2) ... r,(0)

Note again that we use the lowercase letter 7 to represent the correlation elements
of a matrix or a vector and the subscript capital to denote matrix.

After substitution of (7.104), (7.105), and (7.106) in (7.103), the cost function
can be written as

C@)=c>-Rio-0"Ry, +0” Ryyo (7.107)

The cost function is a second-order function of a weight vector, ® and thus the
dependence of the cost function on the weights ®,,®,,...,®,,_;, can be visualized

as a bowl-shaped surface with a unique minimum. This surface is referred to as the
error performance surface of the filter. The minimum-mean-square error values
for which the filter operates at the minimum point of the error performance surface
yields the optimum weight vector ®,. Hence, we need to take the derivative of

(7.107) with respect to the vector @. Before giving the optimum weight vector, we
need to show the differentiation with respect to a vector.

Differentiation with Respect to a Vector
Let g be a scalar-value function of a K x1vector @ with elements
O, =a; +jb, k=12,...,K (7.108)

The derivative of g with respect to the vector o is defined as
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Filtering
[ og
Oa,

og
=& =| Oa,

% .
_6aK

g |
rn

o
G
ob,

@'
%K

433

(7.109)

This example has been reprinted from [1] with permission by Pearson Education.
Given the scalar g, a Kx1 vector ¢, and a KxK matrix @, determine the

derivative 0g /dm for

(@ g=c"o

() g=0"c

©) g=0"00.
Solution

(a) g =c” @ can be written in expanded form as

Taking the derivative with respect to a, and b, , respectively, we have

and

K

K
g=ZCZwk Z k(ak +jby)
k=1

k=1

%
Oa,,

_ Ed
=c; s

o
ob,

Substituting in (7.109), we obtain

8 _jer, k=12,...K
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0,
£ (w)y=0 (7.110)
oo

(b) Similarly, g =o" ¢ can be written as

K K
g=ch (’JZ :ch(ak = Jjby)
k=1 k=1

Hence,
% e k=12.K
Oa,
%8 e, k=12,...K
ob,
After substitution, we have
4 (@he)=2e (7.111)
do

(c) In this case g:mHQ(x). Let ¢, =00 be a constant; then ¢/ =0 Q.
Therefore,

dg d
—=—(c;m)=0
do d(:)(1 )

dg d H
—=—(0"¢)=2c
o dm( 1) =2¢

Summing both results, we obtain

dg _d

H —
o do (0"0mw)=20m (7.112)

Now, taking the derivative of the cost function given in (7.103) with respect to @,
and using (7.110), (7.111), and (7.112), we obtain
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9
gmtbakn+2an=0 (7.113)
@

or
Ryyo =Ry, (7.114)

Equation (7.114) is the Wiener-Hopf equation in the discrete form, and is called
the normal equation. Solving (7.114), we obtain the optimum weight vector to be

®¢ = Ryy Ry, (7.115)

Note that from the principle of orthogonality (i.e., the error is orthogonal to
the data), we have

E[Y(n)eg (n)] =0 (7.116)

where eg(n) is the estimate error resulting from the use of the optimum filter and
is given by

en(n)=S"(n)-Y7" (nw, (7.117)

It can be shown that
Ekmyam]=o (7.118)

which means that the estimate at the output of the optimum filter and the
estimation error e,(n) are also orthogonal as shown in Figure 7.11. This is why

the Wiener-Hopf equations in discrete form are also referred to as normal

equations.
/T
e
>

s

Figure 7.11 Error orthogonal to filter output S.
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The minimum mean-square error is given by

e, =0 —Rlw, =02 —R{I Ry} Ry, (7.119)
or
M-1
€, =07 — O o ry (k) (7.120)
k=0

Assuming that the desired response S(n)and the input sequence ¥ (n)have zero
means, the minimum mean-square error is

263 (7.121)

7.5 KALMAN FILTER

In this section, we present the optimum Kalman filter. We consider the state model
approach. In this case, filtering means estimating the state vector at the present
time based upon past observed data. Prediction is estimating the state vector at a
future time. Since it can be shown that the filtered estimate of the state vector is
related to the one-step prediction of the state, we first develop the concept of
prediction, and then derive the equations for the filtered state.

We shall state the problem for the scalar case and then generalize it to the
vector case. We follow this approach for all necessary steps in order to understand
the resulting general equations. We assume the state model or signal model

S(n) = ®(n)S(n—1)+W(n) (7.122)

where S(n) is a zero mean Gaussian sequence and ®(n) is a series of known
constants. The additive random noise disturbance is also Gaussian and white with
variance Q(n) [or va(n) ]

The observation Y(n) is modeled as
Y(n)= H(n)S(n)+ N(n) (7.123)

where H(n) is a measurement relating the state S(n) to the observation Y(n),

and N(n) is a zero mean white Gaussian noise with variance R(n) [or Gﬁ (n)].
The corresponding state vector model is of the form
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S(n) = ®(n)S(n—1)+W(n) (7.124)

where S(n) is the mx1 state vector, ®@(n) is an mxm known state transition
matrix, and W (n) is an mx1 noise vector. We assume that the vector random
sequence S(n) is zero mean Gaussian, and the noise vector process W (n) is also
zero mean and white with autocorrelation

O(n), n=k

EW W' (k)] = {0 o (7.125)

Let Y(n)be the px1 observation vector consisting of a Gaussian random
sequence. The observation can be modeled as

Y(n) = H(n)S(n)+ N(n) (7.126)

where H(n)is a pxm measurement matrix relating the state vector to the
observation vector, and N(n) is a known px1 measurement error. N(n) is a
Gaussian zero mean white noise sequence with autocorrelation

E[NmNT ()= {5(")’ : ; ]; (7.127)

In order to obtain the Kalman filter state, §(n), we first solve for S‘(n+1), the
one-step linear predictor, using the concept of innovations.

7.5.1 Innovations

In this section, we first present the concept of innovations for random variables
and give some important properties. The results, which will then be generalized to
random vectors, will be used to solve for Kalman filter. Let Y (1), Y(2),...,Y(n) be

a sequence of zero mean Gaussian random variables. The innovation process V' (n)

represents the new information, which is not carried from the observed data
Y(1),Y(2),...,Y(n—1), to obtain the predicted estimate Y (n) of the observed

random variables. Specifically, let S (n—1) be the linear minimum mean-square
estimate of a random variable S(n—1) based on the observation data
Y(1),Y(2),...,Y(n—1) . Suppose that we take an additional observation Y(n) and

desire to obtain S’(n) the estimate of S(n). In order to avoid redoing the
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computations from the beginning for §(n—1), it is more efficient to use the
previous estimate §(n—1) based on the (n—1) observation random variables

Y(1),Y(2),...,Y(n—-1), and compute §(n) recursively based on the n random
variables; Y(1),Y(2),...,Y(n—1) and the additional new observation variable
Y(n). We define

V(n)=Y(n)-Yn| Y1), YQ2), ....,Y(n-1)], n=12,... (7.128)

where V' (n) denotes the innovation process and Y [7]Y (), Y(2),...,Y(n-1)] is
the estimate of Y(n) based on the (n—1) observations, Y(1),Y(2),...,Y(n—1).
We see form (7.128) that because V' (n) represents a new information measure in
the observation variable Y(n), it is referred to as “innovation.”

The innovation ¥ (n) has several important properties as follows.

1. The innovation V' (n) associated with the observation Y(n) is orthogonal to
the past variables, Y(1),Y(2),...,Y(n—1); that is,

ElV(n)Y(k)]=0, k=12,...,n-1 (7.129)
This is simply the principle of orthogonality.

2. The innovations V' (k),k=1,2,...,n, are orthogonal to each other; that is,
E[V(n)V(k)]=0, k#n (7.130)

3. There is a one-to-one correspondence between the observed data
{Y(1),Y(2),...,Y(n)} and innovations {V'(1),V(2),...,V(n)}, in the sense that one
sequence may be obtained from the other without any loss of information. That is,

r),rQ),....,Y(n)} & f10),VQ2),---,V(n)} (7.131)

Using property (3), §(n) is the minimum mean-square estimate of S(n) based on
the observations Y(1),Y(2),...,Y(n). Equivalently, 5‘(n) is the minimum mean-
square estimate of S(n) given the innovations V(1),V(2), ...,V (n). Hence,

defining the estimate 3‘(11) as a linear combination of the innovations
V),V Q),...,V(n), we have



Filtering 439

S(n)::f:ka(k) (7.132a)
k=1
::Eika(k)+an(n) (7.132b)
k=1

Using property (2) and the fact that b, is chosen so that the minimum mean-square

value of the error S(n)— S (n) is minimized, we obtain

_ E[smy )]

b, k=12...,n (7.133)

Ehﬂ(kﬂ

n n—1
Recognizing that the estimate S(n—1)= Zbk V(k), we observe that the estimate
k=1

3’(71) based on the n observations, Y(1),Y(2),...,Y(n), is related to the estimate

3’(71 —1) based on the (rn—1) observations, Y(1),Y(2),...,Y(n—1), by the
following recursive rule

S(n)=S(n—1)+b,V(n) (7.134)

where the constant b, is given by
_ E[Smym)]
Ek%w]

b (7.135)

n

Generalizing the results given in (7.128), (7.129), and (7.130) to random vectors,
we obtain

V(i)=Y (n)-Y[n|Y(1),¥(2),...,.Y(n—-1)], n=12, ... (7.136)
bemYT@ﬂ =0, k=12,...,n—1 (7.137)

and

Ekmﬂﬂkm]zo,kin (7.138)
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7.5.2 Prediction and Filtering

The optimum linear mean-square error one-step predictor based on the Gaussian
assumptions is given by

S(n+1)= E[S(n+1)| Y(1),Y(2), ..., Y(n)] (7.139)
The goal is to write §(n+1) in a recursive form. Since there is a one-to-one
correspondence between the set of observation vectors and the set representing the
innovations [property (3)], then

S(n+1)= E[S(n+1) V1),V (), ...,V (n)] (7.140)

3‘(11 +1) is also a linear combination of the innovations, and thus

Sn+1) = z”:akV(k) (7.141)
k=1

where g, is a constant to be determined. Since the error is orthogonal to the
observations (innovations), we have

E{[S(n+l)—§(n+1)] V(k)} =0, k=12,....n (7.142)

Substituting (7.141) in (7.142), we obtain

E[S(+ 1)V (k)] = ——2 (7.143)
&0
or
g - E[S(n+ 1)V (k)] (7.144)
2w

Substituting for the value of «; in (7.141) and using the state model
S(n+1)=d(n+1)S(n)+W(n), we obtain
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2 E{{[®@n+1)S(n)+ W (n+ D)V (k)}

Sn+1)=Y V (k)
k=1 E[Vz(k)]
P YR: SCLAC) PRI S UACRRIAC) PP RS
k=1 E? (k)] k=1 E[V2 (k)]

Note that the second term of (7.145) is zero because W (n+1) is zero mean and
statistically independent of S(k) and N(k), and thus independent of Y (k) and
V(k), since V(k) is a linear combination of the observations
Y(k), k=12,...,n.Hence, (7.145) becomes

2, E[S(n)V (k)]

S(n+1)=®(n+1)Y V (k) (7.146a)
)
=®(n+1) fw V (k) +M V(n)y (7.146b)
k=1 E[Vz(k)] E[Vz(n)]

Using (7.132a) and (7.133), (7.146b) becomes
S(n+1)=0(n+D)[S(n)+b,V(n)] (7.147)
Note that using properties (1) and (3), we observe that
E[y(n)|[VQ),V(Q2),...,V(n)]= S(n) (7.148)
where S (n) is the linear minimum MSE estimator of S(#), and thus
V(n)=Y(n)-S(n) (7.149)
Defining

~dn)
k(n) = YO (7.150)
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and using (7.149) and (7.150) in (7.146), after some mathematical manipulation,
we obtain

S(n+1)=®n+ 1)[§(n) + k(n)V(n)] (7.151a)
=®(n+ 1){[1 —k(m)[S(n)+ k(n)Y(n)} (7.151b)

Equation (7.151) indicates that the optimum prediction is a linear combination of
the previous best estimator S(n) and the innovation V' (n) =Y (n)— 3‘(11) of Y(n).

We now need to determine k(n), which is unknown. To do so, we use the
estimation error

S(n)=S(n)-S(n) (7.152)

and define
P(n) = E[§ 2 (n)] (7.153)

Substituting (7.152) in (7.153), and then using (7.149), (7.122), and the
orthogonality principle, after some back-and-forth substitutions we obtain

P(n+1)=®*(n+ 1){[1 +k(n)|* P(n)+ k* (n)R(n) }+ O(n+1) (7.154)

That is, P(n+1) is the error at stage n+1 using all previous observations until
stage n. Minimizing (7.154) with respect to k(n), we obtain

k() = — L)

R (7.155)

which is referred to as Kalman filter gain. Again, by back substitutions, it can be
shown that [2]

P(n+1) =2 (n+D[1-k(n)]P(n)+ O(n+1) (7.156)

In summary, to start the algorithm at n =1, we need the observation Y (1),
and to assume some initial values for P(1) and 3’(1). The usual practical

assumptions are 3’(1) =0, P()= va(l) [P()= Gﬁ(l) ]. We first calculate k(n)
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using (7.155). Then, we revise 5’(n) based on the innovation (new information)
due to the measurement Y(n), so that we can project to the next stage using
®(n+1) . Then we apply (7.156).

We can now generalize the above concepts to the vector Kalman filter by
giving the main results only. The optimum linear mean-square error one-step
predictor is

S(n+1)=E[S(n+1)| Y(1),Y(2),...,Y(n)] (7.157)

Using (7.136), and the fact that there is a one-to-one correspondence between the
set of the observation vectors and the set representing the innovations process, we
can write that

S(n+1) = Z A(n, kW (k) (7.158)
k=1

where A(n,k) isan mx p matrix to be determined.
In accordance with the orthogonality principle, we have,

E{[S(n+1)-$(n+1)]V(n)}:0 k=1,2,....n (7.159)
Substituting (7.158) in (7.159) and simplifying, we obtain
E[S(n +T (13)]: A(n, z)E[V(z)VT (f)]: A(n, 0)Cyy (1) (7.160)

where Cy, (¢) is the correlation matrix of the innovations process. Solving for

A(n,?) and substituting in (7.159), the predictor state becomes

S'(n+1)= ZE[S(n+1)VT(k)]C;}/(k)V(k) (7.161)
k=1
Upgrading (7.124) to (n+1) and substituting into (7.161), we have

E[S(n+1)VT(k)]=q)(n+1)E[S(n)VT(k)] , k=0,1,2,...,n (7.162)

where we have used the fact that
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E[Y(k)WT(n)]: 0 (7.163)

and the fact that the innovations depend on the observation vectors. Substituting
(7.162) into (7.161), and after some manipulations, the predictor state becomes

S(n+1)=®(n+1)S(n)+ Kn)V(n) (7.164)

where K(n) is an m x p matrix called the predictor gain matrix, and defined as
K(n)=®(n+ l)E[S(n)VT (n)]C,},l/ (n) (7.165)

Equations (7.164) and (7.165) can be simplified further for computational
purposes. If we define

S(n)=Sn)-Sn) (7.166)

and

P(n)= E[§(n)§ r (n)] (7.167)

where S (n) is called the predicted state-error vector and P(n) is the predicted
state-error correlation matrix, then it can be shown that [3]

K(n)=®n+1)Pm)H" (n)Cyy (1) (7.168)

It can also be shown that P(n) can be updated recursively as

P(n+1) = [®(n+1) - K(n)H(n)|P(n)[®(n+1) - K(n)H (n)]|"
+0(n)+K(n)RMK" (n) (7.169)
and that the filter state is

S(n) = ®(n)S(n—1)+ K (n)Cyy (n) (7.170)
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where K(n) is an mxm matrix called the filter gain matrix, and is given by
K(n)=®(n)P(n) (7.171)

Equation (7.169) can be decomposed into a pair of coupled equations to constitute
the Ricatti difference equations.

Relationship Between Kalman and Wiener Filters

The Kalman filter can also be derived for continuous time. If all signal processes
considered are stationary, the measurement noise is white and uncorrelated with
the signal, and the observation interval is semi-infinite, then the Kalman filter
reduces to the Wiener filter. That is, both Kalman and Wiener filters lead to the
same result in estimating a stationary process.

In discrete time, the Kalman filter, which is an optimum recursive filter based
on the concept of innovations, has the ability to consider nonstationary processes;
whereas the Wiener filter, which is an optimum nonrecursive filter, does not.

7.6 SUMMARY

In this chapter, we have covered the concept of filtering. We first presented the
orthogonality principle theorem, the definition of linear transformations, and
related theorems. Realizable and unrealizable Wiener filters for continuous-time
were presented in Section 7.4. To obtain the linear mean-square error realizable
filter, we needed to solve the Wiener-Hopf integral equation. An approach called
spectral factorization using Laplace transform to solve the Wiener-Hopf equation
was shown. Then, we extended the concept of the Wiener filter to discrete-time.
For a realizable discrete Wiener filter, we considered a transversal filter with an
impulse response of finite duration. We used the “mean-square approach” and
solved for the optimum weights. We concluded this chapter with a section about
Kalman filtering. Since vector Kalman filter development can be “heavy,” we gave
more details for the scalar case only.

PROBLEMS

7.1 Let the observation process be Y(z) =S(¢)+ N(¢). The signal process S(¢)
and the zero mean white noise process N(f) are uncorrelated with power
spectral densities

20,

_ _Mo
SSS(f)_()Lz-i-ZTczfz and S/m(f)_ 2
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7.2

7.3

7.4

7.5

Signal Detection and Estimation

(a) Obtain the optimum unrealizable linear filter for estimating the delayed
signal S(¢—1).
(b) Compute the minimum mean-square error.

Let the observation process be Y(¢)=S(t)+ N(¢). The signal process S(¢)
and the zero mean noise process N(¢) are uncorrelated with autocorrelations
R, =e" and R, (1) =5(1).

(a) Find the optimum unrealizable filter.

(b) Obtain the optimum realizable filter.

(c) Compute the minimum mean-square error for both filters and compare
the results.

Let the observation process be Y(¢)=S(¢)+ N,(¢).The signal process S()
and the zero mean noise process N,(¢) are uncorrelated. The autocorrelation

function of N, (¢) is R, (1) = e_M. Assume that the signal S(¢) is given by
the expression S'(¥)+ S(t) = N, () for ¢ positive. S'(¢) denotes the derivative
of S(¢#) with respect to t. N,(¢) is a white Gaussian noise with power
spectral density 2. Determine the Wiener filter if the processes N,(¢) and
N, (t) are independent.

Let the observation process be Y (¢) = S(¢)+ N(t), for —o <t <& . The signal
process S(¢) and the noise process N(¢)are uncorrelated with power spectral
densities

1

SSS(f):m

and (/) :é

Obtain the optimum linear filter to estimate S'(¢); S'(¢)is the derivative of

the signal S(¢) with respect to .

Let the observation process be Y(¢)=S(t)+ N(¢). The signal process S(¢)
and the zero mean noise process N(¢) are uncorrelated with autocorrelation
functions

1
R (r):ge 2l and Rnn(t)zge_‘r‘
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Obtain the optimum linear filter to estimate S(¢+a), a > 0.

7.6 Let Y(n)=S(n)+ N(n) be the received sequence. The signal sequence S(n)
and the noise sequence N(n) are zero mean and independent with
autocorrelation functions

1720

Ry (n) = /4

(a) Obtain the optimum realizable filter.
(b) Compute the mean-square error.

7.7 Let Y(n)=S(n)+ N(n) represent the received sequence. The signal sequence
S(n) and the noise sequence N(n) are zero mean and independent with
autocorrelation functions

Ry (n) = — a  Rr,m=1 "7°
\n)y=— an n)=
> ol " 0, n#0

(a) Obtain the optimum realizable filter.
(b) Compute the mean-square error.

7.8 Consider the Wiener filter consisting of a transversal filter with two delays, as

1.1 0.5
shown in Figure P7.8, with ©, =1, correlations matrix Ryy :[ 05 1 J

Y(n) Y(n—l)k Y(n-2)

Figure P7.8 Wiener filter.
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0.5272
and Rys =1 _ 445

(a) Determine the optimum weights.
(b) Determine the minimum mean-square errore,, if the signal variance is
0.9486.
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Chapter 8

Representation of Signals

8.1 INTRODUCTION

In this chapter, we study some mathematical principles that will be very useful to
us in order to understand the next two chapters. First, we define the meaning of
orthogonal functions, which are used to represent deterministic signals in a series
expansion known as the generalized Fourier series. We use the Gram-Schmidt
procedure to transform a set of M linear dependent or independent functions into a
set of K, K <M , orthogonal functions. We also discuss geometric representation
of signals in the signal space, which can be used to determine decision regions in
M-ary detection of signals in noise, as be will be seen later. Then, integral
equations are studied. The relation between integral equations and their
corresponding linear differential equations are established through Green’s
function or the kernel. In solving integral equations, we present an approach by
which we obtain the eigenfunctions and eigenvalues from the linear differential
equation. In Section 8.4, we discuss the series representation of random processes
by orthogonal functions known as Karhunen-Lo¢ve expansion. Specifically, we
consider processes with rational power spectral densities, the Wiener process, and
the white Gaussian noise process.

8.2 ORTHOGONAL FUNCTIONS

From vector analysis, we say that two vectors X and Y are orthogonal
(perpendicular) if their dot or inner product is zero. That is,

X-¥Y=0 (8.1)

Let X and Y be two vectors in RX, such that X =[x, x, ... xx]" and

Y=[y, »y, ... yK]T.Then

449
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X Y=xy,+X0y+ ... +XgVg (8.2)

The distance d(x, y) between the points x and y is given by

A6, ) = =x)7 + (72 = x2) 7+ o+ (g —2) (8.3)

The length or norm of the vector X, denoted |X | , is defined by

|X|=«/X-X:\/x12+x§+ o+ XE (8.4)

If the length |X | =1, we say that X is a normalized vector. Geometrically, (8.1)
says that the angle 8 between the vectors X and ¥ is 90°. For an arbitrary angle 0
between the two vectors X and ¥, 0 is defined by

cosf = X¥ (8.5)

X[
We now generalize the above concepts to continuous functions of time. Let

{sk (t)}, k=1,2,..., be a set of deterministic functions with finite energies defined
over the interval ¢ €[0,7]. Let E, denote the energy of s, (¢) . Then,

T
E, = [|s, (0 dr <o (8.6)
0

The norm of s, (¢), k=1,2,..., can be written as

T

2
ls, (0] = { [si (t)dt} (8.7)

0

Geometrically, (8.7) represents the square root of the area under the curve s,% ).
The “distance” between the two signals s, (f) and s, (7) is

r 2
HOERIGE { [isi)=s, (r)]zdz} (8:8)
0
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We say that the set of functions (signals), {S k (t)}, k=1,2,..., are orthogonal when

T
[se@)s;(0)dt =0, k= j (8.9)
0

A set of functions {d) x (t)}, k=1,2,..., are orthonormal if

T 0o (i =5, =11 T k=S 8.10
£¢k<>¢j() =34=10 if kr (8.10)

where o kjis the Kronecker’s delta function. Note that the set of functions
{04 (O} k=1,2,..., is normalized.

8.2.1 Generalized Fourier Series

Let s(f) be a deterministic signal with finite energy £ and observed over the
interval 7 €[0,7]. Given an orthonormal set of functions {¢k (t)}, k=12,..., for
the specified time ¢ €[0,7T], it may be possible to represent the signal s(z) as a
linear combination of functions ¢, (¢), k =1,2,..., as

S =510, (O)+520,(O)+ ... +5,0, @)+ ... =isk¢k(t) (8.11)
k=1

Assuming the series of (8.11) converges to s(z), then

T
s = [ s, ()t (8.12)
0

T
where we have used the fact that J'(l) ¥ (D)0 ;()dt =8, . In this case, the
0
coefficients s,,k=1,2,..., are called the generalized Fourier coefficients. The
series in (8.11) with the coefficients as given by (8.12) is called the generalized

Fourier series.
If there exists a set of orthonormal functions {d) k (t)}, k=12,...,K, such that

the signal s(#) may be expressed as
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K
s@) =D 5,94 () (8.13)
k=1

where s, is as given by (8.12), then the set of orthonormal functions
{0, (O} k=1,2,...,K, is said to be complete.
Consider the finite sum s, (), such that

K
Sg ()= 5,0, (1) (8.14)
k=1

where s (¢) is an approximation to the signal s(z) observed over the interval
t€[0,T]. In general, it is practical to only use a finite number of terms K. The
goal is to select the coefficients s, such that the mean-square error is minimum.

We define the error e (¢) as

ex () =s(t)—sk (1) (8.15)

and its corresponding energy as
T
Ey =[ek (t)dt (8.16)
ek K :
0
The mean-square error is
2 1%,
<E8K(z)>=ﬂs,((z)dz (8.17)
0

where <-> denotes time average. We observe from (8.16) and (8.17) that
minimizing the mean-square error is equivalent to minimizing the energy. Hence,

T K 2
Eg =] {s(t)—Zskd)k(t)} dt (8.18)

0 k=1

Differentiating (8.18) with respect to s, , we obtain
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dE. T K T K T
| {s@ = siby (r)} ¢, (Odt ==2[ s ; ()t +23" 5, [0, (DD, (1)t
k=1 0 k=1 0

ds, 0
(8.19)

Setting (8.19) equal to zero and using (8.10), the coefficients of s, are given by

T

s = [ s, ()t (8.20)

0

Note that the second derivative d zESk /ds ,f =2 is positive, and thus the
coefficients s;,k=1,2,..., K, minimize the energy or the mean-square error. The
set {(I) X (t)} forms a complete orthonormal set in the interval [0,7]. That is,

T
Iii_r)r;.([[s(t)—s,{(t)]zdtzo (8.21)

or

Li.m. s () =s(0) (8.22)

Equation (8.22) is read as the /imit in the mean of sg(t) as K — o equals s(t),
or sg(t) converges in the mean to s(t) as K — oo . Substituting the result of
(8.20) in (8.18) and solving for ., we obtain

T K K
Ey =[s>(0)dt=) s; =E=) s} (8.23)
0 k=1 k=1

We observe that E, is minimum when the set of orthonormal signals {§; | is
complete. That is,

T 0
Ey =[s*(dt=Y s} (8.24)
0 k=1

s ,f may be interpreted as the energy of the signal in the kth component. Equation

(8.24) is referred to as Parseval’s identity for orthonormal series of functions. The
set of orthonormal functions {(I) k (t)} over the interval [0,7] can be obtained by
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1
|

&0
s(?)

1
|

$,(0)

1
|

b (0)

Figure 8.1 Correlation operation for generating the set of coefficients {sk }

using the Gram-Schmidt orthogonalization procedure, which will be given in
Section 8.2.2. The coefficients s;,k=1,2,...,K, may be determined by a
correlation operation as shown in Figure 8.1. An equivalent operation is filtering.
The signal s(z) is passed through a set of linear filters, matched filters, with
impulse response 7/, (t)=¢, (T —7), and the outputs of the matched filters are
then observed at time ¢ =T . This is shown in Figure 8.2. Due to the importance of
matched filters, we will study them in some detail in Chapter 10.
Let the output of the kth channel be y, (T"). The output of the kth filter is

T T
Y (0) = [ sy (t=1)dr = [ (D), (T —t +1)dr (8.25)
0 0
t=T

A 4

&(T -0 L Z ~———
s(1)
_> »
1 %.T-1 %32

A 4

T e

Figure 8.2 Filtering operation for generating the set of coefficients {sk }
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Sampling y, (¢) attime =T, we obtain

T T
Y0 = [ (04 (T =T +1)dr = [ (), (Dt = 5 (8.26)
0 0

8.2.2 Gram-Schmidt Orthogonalization Procedure

Given a set of M signals s, (¢),k=1,2,...,M, we would like to represent these
signals as a linear combination of K orthonormal basis functions, K <M. The
signals s,(?),s,(¢),...,5,, (¢) are real-valued, and each is of duration 7. From
(8.13), we may represent these energy signals in the form

© 0<t<T
S =D 5,0, (1) k=12,....K (8.27)
J=1 m=12,....M

where the coefficients s yoJ=L2,...,K, of the signal s, (¢) are defined by

T
sy = [siOb;0Odt k,j=1,2,....K (8.28)
0

The orthonormal functions ¢ (), j =1,2,...,K, are as defined in (8.10). That is,

T
j¢ ¥ (D), ()dt =3,;. The orthogonalization procedure is as follows.
0

1. Normalize the first signal s,(¢) to obtain ¢,(#). That is,

S N
0y (1) = ——==— (8.29)
T E
[si @t Ve
0
where E; is the energy of s,(¢). Thus,
51(6)=E 6,(0) = 51,6, () (8.30)

where the coefficient s,, = E| .
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2. Using the signal s,(¢), we compute the projection of ¢,(r) onto s,(¢),
which is
T
so1= [ 520 ()dr (831)

0

We then subtract s,,¢,(¢) from s,(¢) to yield

S (@) =55 (1) =550, (1) (8.32)

which is orthogonal to ¢,(¢#) over the interval 0<¢<T. ¢,(¢#) is obtained by

normalizing f,(¢); thatis,

f2(@®) =Sz(t)_S21¢1(t)
T E. _s2
0

T
where E, is the energy of the signal s,(¢). Note that from (8.33), I (I)% (t)dt =1
0

0, (1) = (8.33)

T
and I¢2(t)¢1(t)dt =0. Thatis, ¢,(¢) and ¢,(¢) are orthonormal.
0

3. Continuing in this manner, we can determine all K (K < M) orthonormal
functions to be

fi ()

05 (1) = (8.34)
/ [ £
where 0
Ji(0)=s; —};stkj(bj(t) (8.35)

and the coefficients SgsJ=12,...,k—1, are defined by
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T
sy = [ sx (O ()t (8.36)
0

If all M signals s,(¢),s,(¢),...,5,, (¢) are independent, (i.e., no signal is a linear

combination of the other), then the dimensionality K of the signal space is equal to
M.

Modified Gram-Schmidt

The proposed Gram-Schmidt procedure defined in (8.34), (8.35), and (8.36) is
referred to as the classical Gram-Schmidt (CGS) procedure. The concept of
subtracting away the components in the direction of ¢,(?),d,(?),..., ¢, () is

sometimes numerically unstable. A slight modification in the algorithm makes it
stable and efficient. This modification yields the modified Gram-Schmidt (MGS)
procedure. For simplicity, we show only the first two steps. We compute the
projection of s, (¢) onto ¢;(t),d,(),...,0;_;(r). We start with s,,0,(r) and

subtract it immediately. That is, we are left with a new function s ,1{ (?), such that

sk(0)=5,() =511 (O, (1) (8.37)

where s,,1s as defined in (8.36). Then, we project s,l{ (¢) instead of the original
signal s, (¢#) onto ¢, (¢) and subtract that projection. That is,

St (0) = sp(6) =551 (1), (£) (8.38)

where
T
sy = [ 51O, (1)t (8.39)
0

and the power 2 on s, (f) denotes a superscript. Observe that this is identical in
principle to the classical Gram-Schmidt procedure, which projects s, (¢) onto both
¢,(?) and ¢,(¢) to yield f;(¢). Substituting (8.37) and (8.39) into (8.38), we
obtain

st (0 =[5 (=500, O]~ {02 Osi () =510, O}, (1)}
= 54 (1) = 51101 () = 51205 (1) = 3 () (8.40)
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T
since [ ¢, ()¢, ()t =0.
0

8.2.3 Geometric Representation

In order to have a geometric interpretation of the signals, we write the M signals
by their corresponding vectors of coefficients. That is, the M signal vectors are

SkZ[Skl Skz vee SkK]T k:1,2,...,M (841)

The vectors s,,k=1,2,..., M, may be visualized as M points in a K-dimensional

Euclidean space. The K mutually perpendicular axes are labeled
O1(), 45 (2),...,0x (¢). This K-dimensional Euclidean space is referred to as the

signal space.
Using (8.4), we say that the inner product of the vector s, with itself, which

is the norm of s, is
2 K 2
|sk| :(sk:sk)zzskj (8.42)
J=1

Since the K orthonormal functions form a complete set, (8.42) also represents the
energy of signal s, (f) as shown in the previous section. Thus,

K
Ey =Y sp (8.43)
=1

From (8.3), (8.41), and (8.43), the Euclidean distance between the points

represented by the signal vectors s, and s; can be written as

K T
s | = sk =si=[ls0-s, OF d (8.44)
i= 0

The correlation coefficient between the signals s, (f) and s, (¢) is defined by

T T K K
[se@)s (1)t I[Zsk,»mMZsm,}dr Zskl Si Ty
_0 _oLi=l =l / (8.45)

W RE, VELE; _\/"—Ef sl
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where s, is givenin (8.41), and s is

sj:[sjl Sip e SJK]T (8.46)
Example 8.1

Consider the signals s, (), s, (¢),s5(?), and s, (¢) as shown in Figure 8.3. Use the

Gram-Schmidt procedure to determine the orthonormal basis functions for
s, k=1,2,3,4.

Solution

From (8.29), the first function ¢, (¢) is

3 T
s (1) —, 05—
0 == =\T 3

VE 0 , otherwise

T/3
where E| = J(l)zdt =T7/3.To find ¢, (¢), we first use (8.31) to determine s,,;
0

T
that is, s, = [, (), (¢)dt =~T /3 . From (8.32), £, () is given by
0

s1(1) $5(1)

s3(1) s4(1)

Figure 8.3 Set of signals {s; ()} .
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T 2T
i

1’
S2O)=5,()—590,(1) = 3

0, otherwise

Normalizing f,(¢), we have

3. 7T 2T
¢2(f)=A: \/;, ?StST

T
J f2(tde 0, otherwise
0

We use (8.35) and (8.36) to find the coefficients s;; and s3,; that is,
T T

s31= [ 5304, ()dt =0 and 53, = [ 53(), (1)t =0. Thus, f5(¢) =55 (¢), and the
0 0

normalized signal ¢;(¢) is

3 2T
s5(8) —, —<t<T
¢3(f)=3F= N7° 3
3 0 , otherwise

We observe that s,(¢) =s,(¢)—s5(¢) is a linear combination of s, (¢) and s5 (7).
The complete set of orthonormal functions is ¢, (¢), ¢, (¢), and ¢ (¢) ; that is, the
dimensionality is K = 3. The basis functions are shown in Figure 8.4.

Example 8.2

(a) Find a set of orthonormal basis functions that can be used to represent the
signals shown in Figure 8.5.

A1) $,(0) d5(1)

T T T
3 3

3]
o3
<L
N
~
~

Figure 8.4 Orthonormal basis functions {¢, (¢)} .
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si® 200 0 50

t
a1k -1+ -1+ -1L i

Figure 8.5 Signal set for Example 8.2.

(b) Find the vector corresponding to each signal for the orthonormal basis set
found in (a), and sketch the location of each signal in the signal space.

Solution
(a) In this example, we are not going to do a formal mathematical derivation as we

did in the previous one, but instead we solve it by inspection. We see that the
given waveforms can be decomposed into two basis functions ¢,(¢) and ¢, (¢), as

shown in Figure 8.6.

1
Since ¢,(¢) and ¢, (¢) must have unit energy, we have E = I(At)z dt=1 or

0
A=+3.

(b) The signal vectors are

—_

lt) olh ) )34

Thus, the signal space is as shown in Figure 8.7.

(1) $,(0)

| > ! > !

1 2 1 2

Figure 8.6 Basis functions for Example 8.2
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b,
A
£
S, D ‘_/_g_ _____ . S,
L nl
V3 3
: : Ll ¢I
S4.. """"""" 1""'. S,
Ng)
Figure 8.7 Signal space for Example 8.2.
Example 8.3
Consider the three possible functions
2kmt  k=1,2,3
t)= Ecos R
# () T > 0<t<T

(a) Does ¢, constitute an orthonormal set?
(b) What geometric figure does the vector s, £ =1,2,3, form in the signal

space?
Solution

(a) To check for orthogonality,

2k j
m cos M dt
T

T T
©4.0,)= [0 (), (dt = E” [ cos
0 0

2|\ T _ T .
:E_|:Icosmdt+.[cosmdt:|
2 0 T 0

:E_Zﬂ T Sin2nt(k+j)TJ{ T Sin2nt(k+j)T}
2 || 20k — ) T 2k + ) T

0 0

=0, for k#j
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s

Figure 8.8 Signal space for Example 8.3.

T

If k=j,wehave (¢;.,¢;)=E” [cos(2knt/T)dt = E*T /2. Hence, ¢ constitutes
0

an orthonormal set.

(b) The signal vectors for the set of signals {s, (¢)} are

s;=[1 0 0], s, =[0 1 0], s;=[0 O 1], and s,=[1 1 1]
as shown in Figure 8.8.
8.2.4 Fourier Series

If the signal is periodic with period T, such that
s()y=s(t+kTy), k==£1%2,... (8.47)

it can be represented by an infinite set of orthonormal functions made of sines and
cosines. This is the most common representation of a signal by a set of
orthonormal functions and is known as the Fourier series. The trigonometric form
of the series is

s(t)=ag+ Y a, coskwyt+ ) by sin kot (8.48)
k=1 P

where o, =2n/T =2nf,, f,=1/T,, and a,, a;, and b, are the Fourier
coefficients given by
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1
a, =7 [ |, SOt (8.49)
. :Ti | [, SO cos kot dr (8.50)
0
and
2 .
b, =T—jT0 s(t) sin ke ot dt (8.51)
0

_[T (-) dt denotes integration over any period.
0

Let the normalized set of functions of sines and cosines and a constant term be

L, icosko)ot, isinj(x)ot , k,j=12,... (8.52)
‘\’TO TO TO

From (8.11) and (8.12), the generalized Fourier series of (8.52) corresponding to
the signal s(¢) with respect to the orthonormal set is

Ty
s(t) = \/_ Is(t)fdt+Z{\/ﬁcoskwotjs(t)\/Tzcoskwotdt
0 0

[2 no2
+ —sinkcootjs(t) — sin ko tdt (8.53)
T, 0 T,

Hence, the generalized Fourier series (8.53) is the series (8.48), and the
generalized Fourier coefficients s, of (8.12) are the coefficients (8.49), (8.50), and

(8.51). This correspondence can be rewritten as

0 TO
s(t)=— Is(t)dt -i—Ti Z [cos kot J. s(t) cos ko tdt
0 k=1 0

Ty
+sin kot [ s(t)sin kwotdt] (8.54)
0



Representation of Signals 465

which confirms that the Fourier series, which consists of sines and cosines as the
orthonormal set of functions, represents a periodic signal with period 7|, for all ¢.

Note also that the constant term a,, in the series is the average value of s(¢) over
the period 7.

Since the Fourier series is well known, we give only a brief discussion.
Another useful form of the Fourier series is the exponential or complex form,
which is given by

st)= > cpe/t (8.55)
fk=—0
where
1 —jkwgt
=— [ s@e 7 lar, k=1,2,... 8.56
e =7 ]y, 500¢ (8.56)

¢, 1s the complex number, which is written in polar form as
_ o,
Ch —|ck|e (8.57)

|ck| ,k=0,£1,+£2, ..., is the amplitude spectrum of s(t). When s(¢) is a real

signal,
ey =cp=|eple™ (8.58)
and
le—i] =lex] (8.59)

That is, the amplitude spectrum of real signals is even. The phase spectrum is the
set of numbers of 0,,k=0,t1,%+2,.... For s(¢) real,

e_k :ek (860)

and thus the phase spectrum is odd. The relationship between the trigonometric
and complex form depends on the different ways we write the trigonometric
Fourier series. If
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s(t)= Ay + D A, cos(kwot +6 ) (8.61a)
k=1

then

Ay =cq, A =2c] (8.61b)
If
s(ty=ag+ Y a; coskwgt+ Y b, coskwyt (8.62)
k=1 k=1

then

ag=cy, a =25Re{ck}, b, =-23m {ck} (8.63)

where Re{-} and Im{-} denote the real part and imaginary part, respectively.
Note that

b
0, =—tan™' (—kj (8.64)
a

k

All three forms of the Fourier series are then equivalent.

8.3 LINEAR DIFFERENTIAL OPERATORS AND INTEGRAL
EQUATIONS

In the representation of signals, we frequently encounter integral equations, as will
be seen in upcoming sections and chapters. In this section, we give the
mathematical foundations for their solutions by using their inverse: the linear
differential equations. We establish the relationship and the approach to solve
them through the use of the kernel (Green’s function), and the use of
eigenfunctions and eigenvalues. A brief analogy to matrix operation also will be
given.

From spectral analysis of differential systems, let f'be a function in the space

C%(0,T) of twice continuously differentiable functions in the interval [0,7]. Then

—f"" will be in the space of continuous functions C(0,7") [or ¢°(0,T) ]. Consider
the following linear differential equation
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-f"'=¢ (8.65a)
with boundary conditions
fO)y =0, f(T)=0a, (8.65b)

The ordinary solution to differential equations will be to solve the equation
—f"=¢ while ignoring the boundary conditions. Then, we apply the boundary

conditions to eliminate the arbitrary constants in the solution. However, if we

consider the operator —D? as being restricted throughout the entire solution
process to act only on functions that satisfy the boundary conditions, then the
computed constants in the solution of the differential equation are not arbitrary
anymore. Rather, they are unknown specific functions of the boundary values
o, and a,. We define the differential operator in modeling systems as

T:C? 0,7) > ¢(0,T)x R?2, where R is the set of a couple of real numbers such
as

Tf2[=/"f0), ()] (8.60)

and where 2 denotes definition. The system of equations in (8.65) can be written
as

Tf=(,ay,0;) (8.67)

The goal is to find an explicit expression for the inverse operator T !, such that
=T -1 (d, oy, oc2) . To do so, we decompose the differential system (8.65) into

two functions, one function f,; involving the distributed input, and the other

function f; involving only the boundary conditions. Hence, we have

[

fa=¢ with f;(0)=f,(T)=0 (8.68)

and

£y =0 with f,(0O)=a,, f,(T)=a, (8.69)

The superposition of the solutions of (8.68) and (8.69) yields a unique solution f'to
(8.65). For the purpose of performing inverse operations, we define the modified

differential operator T, :v — C(0,b) by T, f 2 —sz for all f'in v, where v is
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the subspace of functions in (¢?(0,b) satisfying the homogeneous boundary
conditions f(0)= f(T)=0. Then,

Tyfa=9 (8.70)

includes the boundary conditions in the definition of the operator. Similarly, the
differential system (8.69) can be expressed in terms of the modified operator

T, 22 5> R? by T,f 2 [f(0), f(T)] for all fin ®?, where ®?is the space of
functions of the form f(¢)=c,;t+c,. Note that f"(#)=0 = [f'(H)=¢; =
f(#)=ct+c,. Hence, (8.69) can be expressed in terms of the operator 7) as a

two-dimensional equation including the differential equation and the boundary
conditions to yield

T,fy, =(0,0,) (8.71)
Hence, the solution of (8.65) is
F=fa+ 1y =T+, (0100) =T (0,0, 015) (8.72)

Since T, is a differential operator, its inverse T, ! is then an integrator, and f; is
given by

T
Lo =T 0)0) = [k(u.08()dr, 0<u,t<T (8.73)
0

The kernel function k(u,t) is also referred to as Green’s function for the
differential system (8.65). Note that f,(#) must satisfy the differential system
(8.68). Hence, substituting (8.73) in (8.68) yields

2 T T
fi0)= —;’t—f [ kw00 = I—d k(u D
0

du)du =¢(z)  (8.74)
with

T
£4(0) = [ k0, 1)¢(u)du =0 (8.75a)
0

and
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T
L4 (T) = [K(T,u)d(u)du =0 (8.75b)
0

(8.74) and (8.75) are satisfied for all ¢ continuous if and only if

dPk(u,1)

e S(t—u), k(0,u)=k(T,u)=0 (8.76)
t

We can do the same operations to obtain the solution of (8.69) to be
Sy =Ty (0, 05) = 0yp; +0,p, (8.77)

where p, and p, are functions in ®2, known as the boundary kernel for the
differential system (8.65). It can be shown that

fo@)= aipi(t) ayp3()=0 (8.78)

with
f5,0)=0,p;(0)+0,p,(0)=0q, (8.79a)

and
@) =ap(T)+a,p,(T) =0, (8.79b)

for all o, and a,, and thus, the boundary kernel p(#) must obey

P =0, p(0)=1, p(T)=0 (8.80a)

and
P2()=0, p,(0)=0 , p,(T)=1 (8.80b)

Having T,;' and 7, ', we combine the two inverses to obtain the complete
solution of ¢(¢) to be

T
O(6) = [ *(u, ()t +0typy (1) + a2 (1) (8.81)
0
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8.3.1 Green’s Function

Green’s function of a differential system is also known as the kernel function.
Green’s function associated with (8.65) for ¢ €[0,7] must satisfy the differential

equation and the boundary conditions, and thus it must satisfy

2 O<u,t<T
B CONFER Siis (8.82)
dr® k(0,u)=k(1,1)=0

as was shown following the procedure developed by Dorny [1]. We now show how
we solve (8.82) in Figure 8.9. Integrating (8.82) and permitting the value of ¢, to

depend upon the point u at which the unit impulse is applied, we have

 dk(u,1) :{cl @ -, O<t<u (8.83)

dt )+l u<t<T

which is shown in Figure 8.10. The integration of —dk(u,t)/dt yields a continuity
of —k(u,t) atu, such that

¢y (W)t +cy(u) , 0<
—k(u,t) = (8.84)
cyu+c,(W)y+[c,w)+1](t—u), u<t<T
and is shown in Figure 8.11. Thus, the function k(u,?) exists and is unique. It is
explicitly given by
M, 0<t<u
k(u, 1) = TT t (8.85)
wr=n ., _,<r
~ dk(u,1)
 d’k(u,0) dt A
di’ ctl 1 —
M |
T 0 —
u T
} » !
0 u T Ci

Figure 8.9 Graph representing (8.82). Figure 8.10 Graph representing (8.83).
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—k(ut AK@0)

(T —u)u
(&) +(C’1+1)T-

------------------------ : T :
C / 1

u 1 i
0 ¢ i

Figure 8.11 Graph representing (8.84). Figure 8.12 Green’s function.

and is shown in Figure 8.12. If T =1, then k(u,?) reduces to

1) = t(l-u), 0<t<u 8.86
D= u1=1), u<r<1 (5.56)

Similarly, solving for the boundary kernel p(#) associated with (8.65), we
obtain

pl(t)— T »Pz(f)— (8.87)

Substituting (8.85) and (8.87) in (8.81), we obtain the complete solution of ¢(z) to
be

T
o) = fk(u,t)d)(u)du +app(f)+ayp,(?)

T
& t)“ (1) +j( o) +al%+a2; (8.88)
0

In general, Green’s function cannot be determined by direct integration
techniques when the system is not as simple as the second order we just treated. A
different approach would be to use the eigenfunction expansion, which is to be
developed in the next section on integral equations.

8.3.2 Integral Equations

Consider the nonhomogeneous linear equation defined over the interval 7 €[0,7]
and given by
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2
’ dj)z(t) +/(0=0, ¢0)=a, ¢(T)=p (8.89)

The forcing function, f(t), and the boundary values, ¢(0)and ¢(T'), are known.
The general solution to (8.89) is of the form

T
0(0) = [ k(u, 1) f () +(1— )+ B (8.90)
0

where the kernel k(u,t) is Green’s function. Note that in comparing (8.90) with
(8.89), we observe that

a=1"% (8.91)

and
B=0a, (8.92)

If the boundary values are zero, ¢(0) = ¢(7) =0, then (8.90) becomes
T
0(0) = [ k(u, ) f (w)du (8.93)
0
An integral equation is an equation having the form
T
J'k(u, HOw)du—adp(t) = f(¢), 0<t<T (8.94)
0

Given the kernel k(u,t), the nonhomogeneous term f(¢), and the eigenvalue A,
we would like to determine the unknown function ¢(¢), and study its dependence
on the function f(¢) and the eigenvalue A.

The integral equation in (8.94) is known as the Fredholm equation of the
second kind when A =0, and as the Fredholm equation of the first kind when
A =0. When the function f(¢) is zero, we have the eigenvalue problem

T
[k, 0)du =1(r), 0<t<T (8.95)
0
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For simplicity and without loss of generality, if 7 =1, then the nonhomogeneous
linear differential equation becomes

d? ¢(z) 0<t<l
o= ¢(0)=o(1) =0 (856

Using eigenfunction expansion, the associated eigenproblem is given by

0<t<1
d” ¢( 40D )=, = (8.97)
$(0)=o(1)=0
The nontrivial solutions [¢(¢) # 0] to the boundary value problem of (8.97) are

called eigenfunctions. The corresponding values of A are known as eigenvalues.
Before developing the solution, we first give some important properties of integral
equations that will be used in solving the eigenproblem.

Properties

1. There exists at least one square integrable function ¢(¢) corresponding to a
definite eigenvalue A (A # 0) that satisfies (8.95).

2. Ifthe eigenfunction ¢, (¢) is a solution, then cd, (¢) , with ¢ a constant, is also
a solution. This means that we can normalize the eigenfunction.

3. An eigenvalue may be associated with more than one independent
eigenfunction.

4. If ¢,(¢) and ¢,(¢) are two eigenfunctions corresponding to the same
eigenvalue A, then c¢;¢,(¢) and c,¢,(¢) , where ¢, and ¢, are constants, are also

eigenfunctions corresponding to the same eigenvalue A .

5. Let X,andX; be any two distinct eigenvalues with corresponding
eigenfunctions ¢, (#) and ¢ ;(¢). Then, ¢, (¥)and ¢,(¢) are orthogonal. Since
O, (t)and ¢ (#) are the eigenfunctions corresponding to A, andA; (A, #4 ),
then

T
Db (6) = [ Kt )b (w)du (8.98)
0
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and
T
qu)j )= _[k(t,u)q)j (u)du (8.99)
0

It follows that

€

T
- [ k(w9 (t)du}dt (8.100)

J o

T T
[ox 00, (0)e = [, (;){
0 0

Interchanging the integrations and noting that k(¢,u) = k(u,t), we have

T T T
[0t :% ] ¢,<u)du{ Jor® k(u,odr} (8.101)
0 J o 0

From the definition of the integral equation, the integral in brackets is A ¢, (¢) .
Hence,

T by T
040, (0)dr = k—kf¢k(u)¢j(u)du (8.102a)
0 Jj 0

or

T
O =2 )[04 (O, (1)t =0 (8.102b)
0

T

Since A, # A ;, then f¢ k(¢ ;(1)dt =0, and we conclude that the eigenfunctions
0

¢, (¢)and ¢ (¢) are orthogonal.

6. Because the kernel k(z,u)is nonnegative-definite, it can be expressed in the
Fourier series expansion to yield

k(u,t):ikkd)k(t)d)j(u) 0<t,u<T (8.103)
k=1

This is known as Mercer’s formula.
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Now, solving (8.97) and imposing the boundary conditions, we obtain the
nontrivial solutions

o, () =sinknt, k=12,... (8.104)
corresponding to the eigenvalues
A, =k*n?, k=12,... (8.105)

The eigenfunctions corresponding to different eigenvalues are orthogonal; that is,
1
.[sin(km) sin(jnt)dt =0 for k# j (8.106)
0

Note that (8.97) is a problem of the type of (8.96), with the forcing function
f()=Ad(2) . Since the “solution” of (8.96) is given by (8.93), it becomes

1
0(0) = A kG, 0)p(u)du, 0<r<1 (8.107)
0

The function ¢(¢) appears in both sides of (8.107); that is, we really have not
solved for ¢(¢), but we have shown that the nonhomogeneous linear equation

(8.97) is equivalent to the integral equation (8.95). The boundary conditions are
incorporated in the integral equation through its Green’s function, known as kernel
k(u,t) . Hence, we write

1
0(0) = A [ k(u,D¢@)du, 0<1<1 (8.108)
0

Example 8.4

Consider a differential system of the form

()

= 0=, 0<i<1

$(0) = (1) = o

Determine the kernel k(u,?).
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Solution

A solution to the homogeneous equation

¢()+¢(z) 0

is ¢, (1) =ce™" . We guess a solution for k(u,?) to be

ce”, 0<t<u
k(u,t) = »
c,e, u<t<l

In this case, the kernel satisfies dk(u,t)/dt =8(t —u), and hence at t =u we have
—cie™ +c,e™ =1. From the boundary conditions, we have ¢, +c e =0.

Solving for ¢, and ¢, , we obtain

u—1 —u
e
¢ = - and ¢, = 1
I+e” l+e”
Consequently, the kernel is
—u—t-1
e
- - 0<t<u
ke(u, 1) = l+e
u—t
T, U <t<l1
I+e”

Example 8.5

Consider the homogeneous eigenvalue problem K¢—Ap=0. Let the associated
eigenproblem be given by the following homogeneous differential equation

0 1
a2 ¢(r) 49O =0 ¢,§0’; o=

(a) Determine the kernel and write the corresponding integral equation.
(b) Find the eigenvalues and eigenfunctions.
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Solution

(@) Let ¢"(r) denote d’¢(r)/dt?, and ¢'(r) denote di(¢)/dt. Integrating the
differential equation with respect to #, we have

¢'(1)—¢'(0) + Ki O(u)du =0
Integrating again results in
O(1) = 0(0)—1¢'(0) + 7»]; (1 —u)p(u)du =0
Applying the boundary conditions, ¢'(0) =0 yields
o) —9(0)+ Ki (1 —u)¢(u)du =0

To determine ¢(0) in the above equation, we apply the boundary condition
0(1)=0 at t=1; that s,

(1) —9(0)+ 7»} (1-u)o(u)du =0 or ¢(0)= 7»} (1= u)o(u)du
0 0
Substituting for ¢(0) into ¢(f), we have
o(t) = xi (1— ) (uu)lu - xi (t — ) ()l
= ;[(1 —u)(u)du + j (1= 1) (ut )l —xi (t =) ()l

t 1 1
= [ (A= u)d(u)du + 1 (1 =u)d()du = A[ k(u, )d()du
0 0 0

where the kernel &(u,t) is
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1-t, 0<t<u

1—u, t<u<l

k(u,t) ={

(b) From the homogeneous differential equation ¢''(¢)+A¢'(z) =0, we have the
general solution

o(t) = Acos ﬁt + Bsin ﬁt

The derivative of ¢(¢) is
o@t)= - ﬁA sin ﬁt + ﬁB cos ﬁt

Applying the boundary condition, ¢'(¥)=0 = ¢'(0)= —\/XB =0. Since 1#0

= B=0,then ¢(t) = Acos/At.
Applying the other boundary condition, ¢ (1) = 0 yields

¢(1)=Acosﬁ=0:ﬁ=(2k—1)g, k=1,2,...

Hence, the eigenvalues are

22
x,{:w, k=1,2,...

and the corresponding eigenfunctions are

d)(t):Acos(Zk—l)gt, 0<r<1

1

but _[d)z(t)dt:l = A:\/E . Therefore, the nonzero eigenvalues and the
0

corresponding normalized eigenfunctions are

2k -1)*n? n <t<
A, =——— and 1)=+2 2k-1)—t,
i and ¢, (1) =2 cos(2k =) L2
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8.3.3 Matrix Analogy

A differential equation with an appropriate set of boundary conditions is analogous
to a square matrix equation. In order to remove any abstractness from the
differential operators and their inverses, we explore this analogy by considering a
simple example. Let 4 be a 2x2 square matrix, and x and y two column vectors,

such that Ax =y
[an ap :||:x1 } :{M}
az Ay |[ X2 Y2

[Xl}: 1 {azz _alz}{)ﬁ}
xy | det(A) | ay  ay |y

det(A) =a,,a,, —a,,a,; . The element of x can be expressed as

and x:A’ly

1

X = do t(A)( »nY1—apyy) and x; = do (A)( 0V +ays)

In general form, for an nxn matrix, we have
=2 (A, y,, i=12.n (8.109)
=

We observe that the inverse matrix is analogous to the integral equation (inverse
differential equation). The symbol (A_l )[/ represents the elements in row i and

column ; of the nxn matrix A", as clearly shown by the example of the 2x2
matrix. Hence, the form (8.109) (of x=A"' y) is the discrete analog for the

T
integral equation ¢d(t)=fk(u,t)¢(u)du of (8.73). The kernel k(u,t) is the
0

analogue of the inverse matrix A" If we compare (8.103) to (8.81), the analogy

is not very clear, because the true analog of A" is the pair of kernel functions
k(u,t) and p(¢).
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Based on the above discussion, to determine the eigenvalues for which the
integral equation of (8.95) has no trivial solution, we must solve the eigenvalue
problem

(K -I)® =0 (8.110)

where K is a symmetric nonnegative definite matrix representing the
transformation operator.
In summary, from Section 4.3, if an operator T is invertible and Tx = Ax, then

T’lx:(l/ A)x . That is, the eigenvectors of 7 and T™' are identical and

correspond to the reciprocal eigenvalues. We have seen that a differential system T
is invertible if and only if the trivial solution A =0 is not an eigenvalue of 7, and
thus the kernel of T does not exist. Invertible differential equations come in pairs,
the integral equation and the inverse. Hence, we use the integral form to obtain any
information about the eigenfunctions and the solutions of equations. However,
integral equations are difficult to solve. We thus return to the differential form and
standard differential equation techniques to determine the eigenfunctions, as we
have shown in Example 8.5.

8.4 REPRESENTATION OF RANDOM PROCESSES

In Section 8.2, we represented deterministic finite energy signals in terms of an
orthogonal series expansion. We now extend this concept to random processes.
Let X(¢) be a random process to be represented by a complete set of

orthonormal functions {¢, (¢)} specified over the interval [0,7]. That is, we write
K
X() = lim ZXk(])k(t) (8.111)
k—o0 k=1
where the random variable X, is given by
T
Xy = [ X000 (1)t (8.112)
0

The above ordinary limit is not practical, since it requires that all sample functions
of the random process satisfy (8.111), which is not possible. Instead, we use a little
more relaxed type of the convergence, which is the mean-square convergence.
That is, we require
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2
K
lim E {X(t)—ZXkd)k(t)} =0 (8.113)
K—o© =1
Equivalently, we say
K
X(t)= lim Zqu)k(t) (8.114)
K—x© =1

Since it is generally easier to solve problems in which the random variables
are uncorrelated, we would select the set {¢,(#)}, such that the coefficients
Xy, k=12,...,K, are uncorrelated provided that

Substituting (8.112) into (8.115), we obtain
T T
E[X X ;1= E| [ X (00, ()t [ X ) ; ()du
0 0
T T
= [0 (Vdt[ K () ; (u)du = 1,8 (8.116)
0 0

where K . (t,u)=E[X(¢)X (u)] is the autocovariance function of X (¢) . Equation
(8.116) is satisfied if

T
[ K o) ; ()i =126 5 (2) (8.117)
0

Equation (8.117) is the homogenous linear integral equation as defined in the
previous section, and the autocovariance function represents the kernel. The kernel
K .. (t,u) can always be expanded in the series

Koty =3 Apby (00, (), 0St,u<T (8.118)
k=1

where the convergence is uniform for 0 <¢,u <T . This is Mercer’s theorem.

To compute the discussion on the properties of the integral equations given in
the previous section, we add the following properties.
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1. If K, (t,u) is positive-definite, the eigenfunctions form a complete
orthonormal set. If K, (¢,u) is not positive-definite, the eigenfunctions cannot

form a complete orthonormal set. In such a situation, the eigenfunctions are
augmented with additional orthonormal functions to complete the rest. These
additional functions are referred to as eigenfunctions with zero eigenvalues.

2. The mean energy of the random process X(¢) in the interval (0,7) is the
infinite sum of the eigenvalues; that is,

T T 0
E{IXZ(t)dt} = [K  (0dt =31, (8.119)
0 0

k=1

We have

j=lk=1

T T o o
E{ j Xz(t)dt} = E{ j XX Xh j(t)d)k(t)dt:l
0 0

[
TP
M

~.
Il

=~
Il

T ©
ELX X 1[0, (00, (0de =Y EIXF]  (8.120)
1 0 k=1

Assuming X (¢) is zero mean, we can use (8.115), and thus (8.120) reduces to

T T 0
E{sz(t)dt} =[K (t.0dt =32, (8.121)
0 0

k=1
Karhunen-Loéve Expansion

The series expansion of X ()

K
X(0)=2 X;0,(0) (8.122)
k=1

is known as the Karhunen-Loeve expansion. We now show the mean-square
convergence for this series representation. We define the error € (¢) as

K 2
ex(®)=F {X(t)—Zqu)k(t)} (8.123)
k=1
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Expanding &€ (¢) , we have

ex ()= E{X ®- 2X(t)ZXk¢k(t)+ZZX X0, (t)(l)k(t)}

j=lk=1

k=1] 0

K|T
=K, (r)—ZE{X(r)Z{ [ X, (u)du} }m ()

|| MN

K
Z [X ;X100 () (8.124)

T
Using the fact that E[X X, ]1=2;8; and [K . (tu)d,(u)du =2 ¢ (),

results in
£ 2
’SK(f):Kxx(fJ)—ZMq)k(f) (8.125)
k=1

From Mercer’s theorem, we have

K o (t) = §Ak¢k<t>¢k<u> (8.126)
or
K. (t,H)= gkmi(t) (8.127)
Hence,
lim & (=0 (8.128)

and the series converges in the mean-square sense.
8.4.1 The Gaussian Process

In Chapters 3 and 4, we presented the Gaussian random variable and Gaussian
random process. The definition of the Gaussian process was deduced from the
property of jointly Gaussian random variables. We now give a formal definition of
the Gaussian process and some of the properties that follow from the definition,
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while using the new concept of orthogonal functions and the Karhunen-Loéve
expansion that we have just developed in this chapter.
Recall that K random variables X, X,,..., Xy are jointly Gaussian, if

K
Y=> g% (8.129)

k=1
is a Gaussian random variable for all possible finite g, . If the number of the

random variables K is infinite, then the mean-square value of ¥, E[Y 2 ], must be
finite.

Definition. A random process X () defined over some interval [7;,7 ;] with mean

value function m, (f) and covariance function K, (f,u) is said to be Gaussian if
and only if the random variable

T,

Y = [ g(u)x(u)du (8.130)
T

i

is Gaussian for all possible functions g(u), such that E[Y 2 < o0,

Properties

1. For any set of times ¢,,7,,...,¢, in the interval [7},7 ], the random variables

X(4),X(ty),..., X(¢,) arejointly Gaussian random variables.

Proof. Let X () be a Gaussian random process, and let

2= g,8u—1) 8.131)
k=1

Then, from (8.127), the random variable

T,

T/ n n
Y = [gx)du =Y g, [x@)dw—t)du= g;x(t;) (8.132)

T k=1 T, k=1

i

is a Gaussian random variable for any set g,, and X(¢;) is a random variable

corresponding to the sampling instants ¢,,k=1,2,...,n. Hence, the random
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variables X(¢,), X(¢,),...,X(t,) arejointly Gaussian variables.

2. If X(¢) is a Gaussian random process applied to a linear system with impulse

response A(t,u), then the output Y(¢) is also a Gaussian process.
Proof. The output Y(¢) is given by

T
Y(t)= fh(t,u)x(u)du, T, <t<T, (8.133)
T

i

where the interval [77,7,] is the range over which Y(¢) is defined. From (8.130),
Y(¢) is a Gaussian random variable. The goal is to show that any linear function of

Y(¢) is Gaussian. Hence, let

T
Z =g, 0yt (8.134)

T

where g, (7) is any arbitrary function, such that E[Z <. Substituting (8.133)
in (8.134), we obtain

T, T,
Z={g,0 f h(t,u)x(u)dudt (8.135)
i 7

i

Integrating first with respect to 7, we have

T, T T,
z=| x(u)[ f gy(t)h(t,u)dt}du = [x(w)g)du (8.136)

by T, T

i i

since the integral between brackets is g(u). Since X(¢f) is a Gaussian random
process in the interval [7;,7,], then Z is a Gaussian random variable for every

choice of g(u), and Y(¢) is a Gaussian random process for every g, (7).
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T
Y, = fgl (u)x(u)du (8.137)
T

i

and
T,

Y, = | g5 (u)x(u)du (8.138)
T.

i

where X (u) is a Gaussian random process, then Y| and Y, are jointly Gaussian.
Proof. Let Y be a linear combination of ¥; and Y, . Then,
Y=cY +c,Y, (8.139)

where ¢; and ¢, are constants. Substituting (8.137) and (8.138) in (8.139), we
have

Ty

Y = [[c1 () + 285 ()] x()du (8.140)
T

i

which is, from (8.129) and (8.130), a Gaussian random variable for all possible c,

and c,. Thus, Y| and Y, are jointly Gaussian.

4. Let ¢,(r) and ¢ () be two orthonormalizing eigenfunctions in the interval

telT,.7;] of

Ty
by ()= [ K o (1,00 ; (u)du (8.141)
T

i

where K . (¢,u) is the kernel. If

T,
X; = [b;@)x@du (8.142)
T

i
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and

T
X, = f b, (w)x()du (8.143)
T

i

then X ; and X, j # k , are statistically independent Gaussian random variables.

Proof. From property (3), X; and X, are jointly Gaussian random variables.
From (8.115), E[X ;X ]=X;8,;, which means that X ; and X, are uncorrelated

random variables. Since the random variables are Gaussian, they are also
statistically independent. In this case, the density function X, is given by

_ 1 (O -my)?
ka ('xk) - \/m eXp|: 27\.k :| (8144)

where A, is the corresponding eigenvalue and m,, is the mean given by
T,
my = E[X,1= [ m () ()t (8.145)
T‘.

Observe that property (4) is the base of the characterization of a Gaussian random
process into a Karhunen-Loéve expansion; that is, in a series of countably infinite
sets of the statistically independent Gaussian random variables, as was shown in
the previous section.

8.4.2 Rational Power Spectral Densities

Let X(f) be a zero mean wide-sense stationary process with a rational power
spectrum density of the form

N(w?)
D(®?%)

S..(0)= (8.146)

where w=2nf. S, (@) is an even function of ®, and forms a Fourier transform
pair with autocorrelation function R, (t), which is equal to the autocovariance
function, since E[X(¢)]=0. Thus,
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R, (1) =E[X*()]=K (7)

and

B (0= 5., (@do

(8.147)

(8.148)

Let N(w?) be a polynomial of degree ¢ in o?,and D(®?) be a polynomial of

degree r in o”, where g < r, since the mean-square value E[X 2(1)] is assumed

finite.

For a rational function of the form given in (8.146), the solution to the integral
equation can always be obtained from the corresponding linear differential

equation with constant coefficients. The integral equation is
T
M) = [ K (t—w)da)du, 0<t<T
0
Since ¢ is zero outside the interval [0,7], (8.149) can be written as

M) = [ Ko (- u)b)de, —o0 <1<

—00

Taking the Fourier transform, we have

2
AD(jo) = S (@)D(j0) = 22D (o
D(07)

or
[AD(0?) = N(0*)]0(jo) =0
Let p = jo,then p? = -0 . Substituting in (8.152), we have

[AD(—P*)~ N(-P*)]®(p) =0

(8.149)

(8.150)

(8.151)

(8.152)

(8.153)

where p can be implemented as an operator, and thus (8.153) can be transformed
into a homogeneous linear differential equation, such that p denotes d/dt. Since
the polynomial in (8.153) is of degree 2r, there are 2r homogeneous solutions
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denoted as ¢, (1),k=1,2,...,2r, for every eigenvalue A. Once we obtain
by (), k=12,---,2r, we form

2r
OEDNING (8.154)
k=1

where ¢, is a constant, and then substitute into the original integral equation to
determine A and ¢, , as shown in Example 8.4.

Example 8.6

Let X(¢#) be a zero mean wide-sense stationary process with power spectrum
density

S (@) =—22"_ foralle

o +a

aand 2 are constants.

(a) Obtain the differential equation.
(b) Determine the eigenvalues A.

Solution

ol

(a) The autocorrelation function is given by R, (1) =0ce %", Observe that

R, (0)= o?, which is the variance of X(¢), since it is zero mean. Assuming a
symmetric observation interval, the integral equation is

T T
M) = [ K (Gd)du = [ e ™ p(u)du
-T -T
since R, (1)=K . (1), where t=¢—-u . The above expression can be rewritten as
t T
A(2) = I o2e ) o(u)du + J o2e D o(u)du
-T 1

Differentiating with respect to ¢, we obtain
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. T
}\’ dd)(t) - a J’Gzeia(tiu)(l)(u)du +QJ62€7Q(M7t)¢(u)du
dt 7 !

Differentiating again results in

2 t T
x% =a’ [o?e ™ ¢(u)du — 2007 §(t) + o [ 6% e~ p(u)du
t T '

T
= 2a04() +o® [oe I g(u)du = ~2a05>4(1) + o M)

-T

or

PR A » o) =0

(b) Since the eigenvalues must be nonnegative, we have four cases:

2 2 2
(1) %=0 ) 0<n <2 3) n=2°" @) 1>
o a o

Case (I). A =0. The differential equation is —20c>¢(r)=0. Since ac’ #0,

we only have the trivial solution ¢(z) =0, and thus A =0 is not an eigenvalue.

Case (2). 0<A<206?/a.Let B> =(a® /M) /[L—(20°/a)] = 0<B? <o, and
the differential equation becomes [d 2(I)(t)/ dt2]+['32¢(t) =0. This has a general

solution of the form ¢(¢) = c,e’” +c,e P, where ¢, andc, are constants to be

determined. Substituting for ¢(¢) in the integral equation and integrating, we

obtain

A A A 1 1 ; 1 1
K(clefB’+cze’Bt):clczefﬁt(—.+ . ]+czcze’ﬁt[—.+ .
a+jp o-jp a-jp a+jB

—(a+jP)T —(a—=jpT —(a—=jp)T —(a+jP)T
cle c,e ce c,e
_GZeat{ 1 L2 J_Gzem{ 1 L6

a+jp o-jp a—jp o+ jp

By inspection of the above expression, we have
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Ce @ BT @) @ BT m(e/P)

. + . - > . + . >
o+ jB a—jB a—jpB a+ /B

1 1
+

kclzclcz , and kczzczcz ! + !
a+jB oa-/B a—jB o+jB

Solving for A,c;,andc,, we obtain the eigenvalue A= 2007 (o +B2) and

2 2
=0 = Cl =Cyp Or ¢ =-0C.

When ¢, =c,, the kth eigenfunction is ¢, (r)=c (e’ +e P

T
= A, cosP,t.  Since '[(I),% (t)=1, we can solve for A4, as
-T

A, :1/\/T[1+(sin 28,7 /2B;)] . It should be noted that when ¢, =¢,, we have

(a+ jB)e’®” = (~a+ jB)e T or tan(B/T)=a /P . The values of P satisfying the
above equation can be determined graphically, as shown in Figure 3.8 of Van
Trees [2].

When ¢; =—c,, we follow the same procedure as before to obtain

¢, (t) =B, sinB,t, where B, :1/\/T[1—(sin2[3kT/2[3k)] and tanB7 =-a/B.

Case (3). L =20"/o.. In this case, the differential equation becomes

d’ (1)
dt—2=0:>(l)(f)=clt+02

Substituting for ¢(¢) into the integral equation to determine the constants
c; and ¢,, we obtain ¢; =c,[T—(1/a)] and ¢; =—c,[T-(1/a)]. For T #1/a

= ¢ =c¢, =0 we only have the trivial solution ¢(¢) =0, and A = 262 /o is not
an eigenvalue.

Case (4). A>20%/o. Let y=(a*/AM)[A-Q2c%*/a)] = 0<y*><a? For
|y|<oc, the differential equation is [d*4(r)/dt>]—yd(t)=0, which has the

solution  ¢(t)=cje” +cye™. As in Case (2), we obtain

29T 29T

cylep=—la+y)(a—y)le and ¢, /¢; =—{(a—y)/(a.+7y)]e " . No solution

satisfies this equation, and hence A > 262 /o is not an eigenvalue.
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8.4.3 The Wiener Process

In Chapter 3, we showed how the Wiener process (a nonstationary process) is
obtained from the random walk. In this section, we derive the eigenvalues and the
corresponding eigenfunctions of the Wiener process in order to write the
Karhunen-Loéve expansion.

Let X(¢#) be the Wiener process. To determine the covariance function

K .. (t,u)=E[X(t)X(u)], consider the increments X (¢#)— X (u) and X (¢)—X(0),
where #>u>0. Since X(u)—X(0)=X(u), then X(#)—X(u) and X(u) are
statistically independent. Consequently,

E{[X(1)~ X@)IX ()} = ELX ()X )] - ELX > )] = K () —au =0 (8.155)
since E[X(¢)]=0. Hence,
K. (t,u)y=au, t2u (8.156)
Similarly, for u >¢ >0, we obtain
K. tu=ot, uxt (8.157)
The covariance function of the Wiener process is

. ou, u<t
K. (t,u) = o min(u,?) :{ (8.158)
at, t<Zu

To solve for the eigenfunctions, we use the integral equation
T ¢ T
() = [ K o (6,u)d()du = o u(u)du + ot [ ou)du (8.159)
0 0 ‘

Differentiating twice with respect to #, and using Leibniz’s rule, we obtain the
differential equation

d d’()+ ad(r) =0 (8.160)
t

We have two cases: (1) A=0 and (2) A>0.

Case (I). A =0. Inthis case ¢(¢) =0, which is the trivial solution.
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Case (2). L>0. Let p*> = o/ A . Then the differential equation is

d ‘I’(t) +B20(1) =0 (8.161)

where
O(t) = c,e™ +c e P (8.162)
Substituting into the integral equation and solving for A, and ¢, (¢), we obtain

T2
y WL IS, . S (8.163)

Br wllk-(1/2)]°

where B, =(n/T)[k—(1/2)], and the normalized ¢, (¢) is

o, ()= —s1n[ (k—EH, 0<t<T (8.164)

Therefore, the Karhunen-Loéve expansion of the Wiener process is

X()= ZXkd)k(t) ZXk\/;sm{ (k—Ej} (8.165)

where the mean-square value of the coefficient X is

2
E[X2]=A et 8.166
[XiT=2y TERYENEE ( )

8.4.4 The White Noise Process

2

The white noise process can be derived from the Wiener process. Let oo =c“ and

the K-term approximation of the Wiener process X (¢) be X (¢). Thatis,

K [2 1\n
Xe(®)=)> X, ,|=sin|| k——|—t¢ 8.167
x () ch=:1 k Tsm{( ZJT } ( )
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Taking the derivative X x (¢) with respect to 7, we obtain

X & (1 z\ﬁ (_ijz _{ \ﬁ (_ljz
” —I(Z_‘;Xk(k ZJT Tcos{k 57 —Z;Wk 7 cos k Ik

(8.168)
where
W, =Xk(k—l)£ (8.169)
2)T
and
EW?2l=c? forall k (8.170)

Note also that the functions ¢, (?) :m cos{ [k=QA/2)](r/T )t} are
orthonormal in the observation interval [0,7] and are possible eigenfunctions to
the derivative process.

To show that the set of functions {(])k (t)} are eigenfunctions for the

approximate integral equation corresponding to the white noise process, we need
to define the white Gaussian noise process.

Definition. A white Gaussian process is a Gaussian process with covariance
function given by

o28(t—u) (8.171)

where o is the data function. The coefficients along each of the coordinate

functions are statistically independent Gaussian random variables with variance

2
o .

Now considering the derivative of the covariance function of the Wiener
process, we have

02 0?
:|: otou E[X(I)X(u)]:%Kxx (t’u)

2

dX (1) dX (u)
dt du

Kx'x'([ﬂu) = E|:

[0? min(u,0)]=c28(t—u)  (8.172)

otou
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The corresponding integral equation is
T
AO(t) = j o28(t —u)d(u)du = 5> (1) (8.173)
0

and hence the integral equation is satisfied for any set of orthonormal functions
{04 ()} . In addition, we observe that

Ay =c” for all k (8.174)

Note that the energy over the interval [0,7] is not finite as K — o, since

ixk =i02 — o (8.175)
k= k=1

Therefore, this derivative process is not realizable. Nevertheless, one possible
representation, which is not unique, is

W (t) = d);f) iWk\/; cosz——j% } (8.176)

8.5 SUMMARY

In this chapter, we have shown how a deterministic signal can be represented in a
series expansion of orthonormal functions. In doing this, we needed to cover the
fundamental mathematical concepts of orthogonal functions and generalized
Fourier series. Then, we used the Gram-Schmidt orthogonalization procedure to
show how a set of dependent or independent functions can be decomposed into
another set of orthonormal and independent functions.

We also showed how a random process can be represented by an orthonormal
series expansion, known as the Karhunen-Loéve expansion. Specific processes
such as the rational power spectral densities, the Wiener process, and the white
noise process were considered. We showed how the white Gaussian noise process
can be derived from the Wiener process. This required solving for the eigenvalues
and eigenvectors of linear transformations. We discussed Green’s function and
showed how integral equations can be reduced to linear differential equations in
order to solve for the eigenvalues and their corresponding eigenfunctions.

The mathematical concepts covered, such as solving for eigenvalues and
eigenvectors/eigenfunctions, matrix diagonalization, and series representation of
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signals will be useful to us in the next two chapters, which deal with the general
Gaussian problem and detection in noise.

PROBLEMS

8.1 (a) Is the set of functions

L,\/zcosﬁt, k=12,...
ﬁ T T

orthonormal in the interval [0,77] ?

(b) Using the fact that the functions in (a) are orthonormal on the interval
[0,T], show that the set

{L L cos(k—nj t} k=12
A\/ﬁ b ﬁ T b b AR
is orthonormal on the interval [T, T].

8.2 Let s,(f)=1 and s,(¢) =¢ be defined on the interval [-1,1].
(a) Are s,(¢t) and s,(¢) orthogonal in the given interval?
(b) Determine the constants o and P, such that s;(¢) =l+ar+pt? is
orthogonal to both s,(¢#) and s,(¢) in the given interval.

8.3 (a) Find a set of orthonormal basis functions for the set of signals shown in
Figure P8.3.
(b) Find the vector corresponding to each signal for the orthonormal basis set
found in (a), and sketch the signal constellation.

5(2) 5,(0) S
A A

—~
T 73
~

Figure P8.3 Set of signals.
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8.5

8.6

8.7

8.8
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Show by substitution that

o) = fexp[ 7(n®—tsin 0)]d0

-7

is a solution of

d( dow) [ n”)
E(tTJ'F{I p ](I)(t)—O

Find the kernel for the differential system

BO oy =u(ey, 0<i<1
dt
$'(0)=0=¢(1)

n/2
Consider the integral equation Ad(¢) = Jk(u, Ho(w)du, 0<t<m/2, where
0

u, u<t . . . . . .
k(u,t):{ . Find all eigenvalues and eigenfunctions in the interval
t, u>t

[0,7/2].

T
Consider the integral equation Ad(¢)= Ik(u, Ho(w)du, 0<t<T ,where
0
T—t, u<t . . . . .
k(u,t)= T . Determine the eigenvalues and eigenfunctions in the
—u, u>

interval [0, T].

Determine the eigenvalues and eigenfunctions for the linear differential
equation

d2¢(z)+md¢(t):0 0<t<T
dr? dt »(0)=¢(T)=0

Assume ¢(¢) is continuous, such that ¢'(u—-0)—-¢'(#+0)=1 and
sin nwT #0.
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8.9

8.10

8.11

8.12

Signal Detection and Estimation

As in Problem 8.8, find the solution k(¢,u) of dk(r)/dt? =0 that has the
properties  k(0,u) =k(T,u)=0, where £k(t,u) is continuous, and
k,(u=0,u)—k,(u+0,u)=1 for 0<t,u<T.

If k(¢,u) is the solution of Problem 8.9 and ¢(¢) is any twice continuously
differentiable function, then show that

d 2T
— [kt w)o@)du = (1)
dt” %

T
and _[k(t, u)d(u)du =0 at t =0and T . Thus, the solution of the differential
0

equation (if it exists)

& "’()+x¢(r) 0, $(0)=d(T)=0

T
is also a solution to the integral equation ¢(¢) = XJ k(t,u)o()dr .
0

Verify that the kernel k(¢,u) = k(u,t) for both Problems 8.8 and 8.9.

The differential equation of Problem 8.9 has twice continuously

differentiable solutions only when A e {kn = (mr/ T )2 } The corresponding

orthonormal set of solutions is [, (t) =+/2/T sin(nnt/T)]. Calculate the
coefficients in the expansion

k()= ¢, @), (0)

n=1

Show from the solution of Problem 8.11, represented as A(z,u), that

T
&1 = 1| ht,u)p(u)du
0

is a solution of



8.13

8.14

8.15
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" () +[(10*) +110() =0, $(0)=¢(T) =0

Show from the solution of Problem 8.8, represented as /(¢,u), that

T
O(0) = 1| bt 1)p(u)du
0

is a solution of

d>§(t)

= +[(n0®) +110() =0, §(0)=(T)=0

Use the integral equation to obtain ¢, (#) in A(t,u) = ch (1), (¢). Note

n=l1
that {(I)n(t)} is the set of functions of Problem 8.12, and
Le [xn =(nn/T)? —(mco)z].
Consider the integral equation

AD(E) = Tk(t,u)q)(u)du for all¢

where

1 12 +u? 12 +u® = 2stu
k(t,u) = exp exp| —
2 2 2
I-s I-s

2
and s, 0<s<1, is fixed. Show that ¢(t)=e”" 2 is an eigenfunction

corresponding to the eigenvalue A = Jr.

Determine the integral equation corresponding to the following second-
order linear differential equation

d’ ¢(t)+x¢(r) 0
[
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where A is constant, d¢(¢)/ dt|t:0 =0, and cl)(t)|t:1 =0.

8.16 Consider the integral equation with the following corresponding linear
differential equation

() =0, 0<t<T

ap(+¢'(1) =0, ¢(0)=0

d¢()
dr*

where o is a positive constant. Determine all eigenvalues and
eigenfunctions.

8.17 Determine all eigenvalues and eigenfunctions for the integral equation with
the corresponding linear differential equation

0<t<T
d? ¢()+M)(t) 0, ¢'?0t)<: ¥ () =0
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Chapter 9

The General Gaussian Problem

9.1 INTRODUCTION

In Chapter 2, we discussed the Gaussian random variable. In Sections 3.4.4 and
8.4.1, we discussed Gaussian random processes. Due to the wide use of the
Gaussian process, we formulate the general Gaussian problem in Section 9.2. In
Section 9.3, we cover the general Gaussian problem with equal covariance matrix
under either hypothesis H; or H,. For nondiagonal covariance matrices, we use an
orthogonal transformation into a new coordinate system so that the matrix is
diagonalized. In Section 9.4, we also solve the general Gaussian binary hypothesis
problems but with mean vectors equal under both hypotheses. In Section 9.5, we
consider symmetric hypotheses and obtain the likelihood ratio test (LRT).

9.2 BINARY DETECTION

In this section, we formulate the general Gaussian problem for binary hypothesis
testing. Consider the hypotheses

H :Y=X+N

9.1
Hy: Y= +N G-

where the vector observation ¥, the signal vector X, and the noise vector /V are
given by

Yl Xl Nl
Y. X N

y=|"2|, x={"*, N=|? (9.2)
YK XK NK

503
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The noise components are Gaussian random variables. By definition, a hypothesis
testing problem is called a general Gaussian problem if the conditional density
function fy,; (y[H ;) for all j is a Gaussian density function. Similarly, an

estimation problem is called a general Gaussian problem if the conditional density
function fyg(y|0) has a Gaussian density for all §, where 6 is the parameter to

be estimated.
Consider the binary hypothesis testing problem given in (9.1). Let the mean
vectors m; and m, under hypotheses H; and H,, respectively, be

m, =E[Y|H|] (9.3a)
and
m,=E[Y|H,] (9.3b)
The covariance matrices under each hypothesis are given by
G :E[(Y_m1)(Y_m1)T | H,] (9.4a)
and
Co = E[(Y —mo)(¥Y —my)" | Ho] (9.4b)

In Chapter 5, we have seen that applying the Bayes’ criterion to the binary
hypothesis problem resulted in the likelihood ratio test; that is,

H,
Sy, WIH) >
Ap)=———— 9.5
W Sy, W1 Hyg) <M ©-3)
H,
where
Sy, VI H )= |1/2 exp{—%(y—m_,)TC‘l(y—m_,)}, j=0,1

(2n)K/2|Cj
(9.6)

Substituting (9.6) into (9.5) yields
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H,

. 9.7)

1/2 1 T -l
C\| “expl—-—(y—-my) Cy (y—m )}
" e = o) €5 o)

Co|'” exp[—i(y—mlfcl‘(y—mo}
A(y) =

Taking the logarithm on both sides of the above equation, an equivalent test is

H,
| N A N DA P DR >
E(.V my) Cy (y—my) E(J’ m) Cy (y—m) < Y (9.8a)
H,
where
yzlnn+%(ln|C1|—ln|C0|) (9.8b)

Thus, the likelihood ratio test reduces to the difference of two quadratic forms. The
evaluation of such difference depends on several constraints on the mean vectors
and covariance matrices under each hypothesis.

9.3 SAME COVARIANCE

In this case, we assume the covariance matrices C; and Cy under both hypotheses
H, and H, are the same; that is,

Cl = CO = C (9.9)
Substituting (9.9) into (9.8a), the LRT can be written as
H,
1 T ~-1 1 T ~-1 >
F=mg) € (y—mo)=—(y=—m) C(y—m) _ v (9.10)
H,
Expanding the above expression, we obtain

| S 1 7 | |
——m,C ——y C my+—myC my+—m, C
2 0 y 2,V 0 > 0 0 > y



506 Signal Detection and Estimation

H,
+lyTC71m1—lm1TC71m1 > Yy (9.11)
2 2 <

H,

Using the fact that the inverse covariance matrix C~' is symmetric, that is
¢ =(Cc™7, and the fact that the transpose of the scalar is equal to itself, that is

yClm, =(y'C'm)" =mi(CcH y=miCc Ty, j=01 (9.12)

Equation (9.11) reduces to the following test

H,
ool Ty Lo lor >
mpC y—m .V+EmoC mo—Emlc mp 9.13)
H,
Rearranging terms, an equivalent test is
H,
>
(m{ —mg)C™y _ v, (9.14a)
H,
where
1 _ -
T =v+5(mITC 'my—m{C'm) (9.14b)

Note that all terms in y are on one side, and the others are on the other side. Hence,
the sufficient statistic 7'(y) is

T(y)=(m{ —mg)C'y (9.15)
Let the difference mean vector be
Am=m; —m, (9.16)

Substituting (9.16) into (9.14a), the LRT becomes
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H,

>
7 9.17)

H,

T(y):AmTCfly:yTCflAm

We observe that 7(y) is a linear combination of jointly Gaussian random

variables, and hence, by definition, it is a Gaussian random variable. Therefore, we
only need to find the mean and variance of the sufficient statistic under each
hypothesis, and perform the test in (9.17) against the threshold v, to determine the

performance of this test. The mean and variance of 7'(y) are given by

E[T(Y)|H,;1=E[Am"C™'Y |H;1=Am" C"'E[Y | H,]
=Am"C'm;, j=0,1 (9.18)

and

var[T(Y)|H ;1= E{T(Y)-E[T(Y)| H,;])* | H ;}
=E{[Am" C7'Y -Am" C7'm ;17 |H ;}
=E{{Am" C7'Y ~Am" C7'm Y CT'Am —m [ C~'Am]| H ;}
=E{[Am" CT (¥ -m DI[(¥ " —m[)C'Am] | H ;}
=Am " CT'E[(Y =m )(¥" —mT)| H,;1C”'Am (9.19)

Using (9.4) and (9.9), the conditional variance of the sufficient statistic becomes

var[T(Y) | H,;1=Am" C™'CC™'Am = Am" C ™' Am (9.20)

since CC™' =1 is the identity matrix. Note that the variance is independent of any
hypothesis. The performance of this test is affected by the choice C, which we will
study next.

In (5.75), we defined the detection parameter when the variance was
normalized to one. When the variance is not normalized to one, the equivalent
definition of the detection parameter d is

{E[T(Y)|H, —E[T(Y)| Hy1}’
var[T(Y)| H,]

d?* 2

(9.21)

Substituting (9.18) and (9.20) in (9.21), we obtain
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_ (Am"Cm, —AmTCmO)2

d2
AmT CAm

=Am” CAm (9.22)

Hence, for this case of an equal variance matrix, the performance of the system is

determined by the quadratic form of d 2. We now study the different cases for the
covariance matrix.

9.3.1 Diagonal Covariance Matrix

Let the covariance matrix C be diagonal and given by

i 0 0 ... 0
0 63 0 ... 0

C= (9.23)

0 0 0 .. ok
This means that the components Y, ,k=1,2,...,K , are statistically independent.

Two possible cases may arise. The variances of the components are either (1)

equal and in this case 012 = c% =..= cﬁ( =02, or (2) unequal and in this case

2 2 2
G} #65 #...%20%.

Equal Variance In this case, the covariance matrix is given by

OQN
Qq

o &
oS O
(=l

c=| " T =61 (9.24)

that is,
B, —m )Y, ~m =10 I 9:25)
J JNk k 0, j#k )
The inverse covariance matrix is C ' =(1/c?)I. Substituting in (9.15), the

sufficient statistic is
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1
T(y)=—Am'y (9.26)
(e}

which is simply the dot product between the mean difference vector Am and the
observation vector ¥. The corresponding detection parameter is simply

2 _ |Am|2
(am)? =5 027

M=

d* =Am" CAm =L2(AmTAm)=L2
(e} G k

1l
N

where |Am| is the magnitude of the vector Am . Hence,

d =L%"| =@ (9.28)

is the distance between the two mean value vectors divided by the standard
deviation of the observation Y, ,k=1,2,...,K as shown in Figure 9.1 [1].

Unequal Variance In this case, the covariance matrix is as given in (9.23), where
G| #0, #...# 0. The inverse covariance matrix is given by

Figure 9.1 Mean value vectors. (From: [1]. © 1968 John Wiley and Sons, Inc. Reprinted
with permission.)
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/6 0 ... 0
0 1/c63 ... 0
c'=| . . (9.29)
0 0 .. llox

Consequently, after substitution into (9.15), the sufficient statistic becomes

A
T(y)=Am'C 'y = ZM (9.30)
k=1 Gk

It follows that

CAm ]
O
Am,
A
d* =Am"C'Am = AmT| ©2 Z% (9.31)
: k=1 O
Amyg
L Ok |
Making a change of variables, let
yy =2k (9.32)
Ok

K is Gaussian with mean m, /o, and variance one. The

Then, Y, ,k=1,2,...,
corresponding mean difference vector is
Am, A Amy |
m m m
Am'{ ! z o K } (9.33)
) ) Sk

The detection parameter becomes

(9.34)

K
d? =Z(Am"j =Y (Am} ) =|Am'|2
k=1\ O k=1
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or
d=|Am'|=|m] —mj| (9.35)

That is, it can be interpreted as the distance between the mean value vectors in the
new coordinate system. The sufficient statistic is

_KAmky_k_K ror nNT .1 _ nT ’ 936
T(y)=),——="=2 Amy,=(Am") y'=(y) Am (9.36)
k=1 Ok Ok k=l

9.3.2 Nondiagonal Covariance Matrix

In general, the covariance matrix C will not be a diagonal matrix, and thus the
components of the received random vector ¥ are not statistically independent. In
order to make the components independent, we need to find a new coordinate
system in which the transformed components are independent. That is, the
covariance matrix in the new coordinate system must be diagonal.

The concept of diagonalizing a matrix, which can be done by the similarity
transformation, was presented in Chapter 4 and now can be used. Let the new
coordinate system have coordinate axes denoted by the set of orthonormal vectors
{(I) }, k=1,2,...,K. Let Y be the original observation vector and Y¥' its

transformed vector in the new coordinate system. The vector Y’ also has K
components, where the kth component, denoted Y}, is just the projection of the

observation vector ¥ onto the coordinate @, of the new system. This geometric

interpretation mathematically represents the dot product between the vector ¥ and
the vector @, . That is,

V/=0,Y=Y"®, (9.37)

Assuming we have a three-dimentional vector, the transformation of the vector ¥
into ¥' in the new coordinate system may be as shown in Figure 9.2. The mean of
Y' in the new coordinate system is

m' =E[Y'=E[@®@ Y]=®TE[Y]=0"m=m"® (9.38)

The covariance matrix of ¥’ is diagonal since the components in this new
coordinate system are now statistically independent; that is,

ENY] =m )Y, =m)] =B (9.39)
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L3

V3

s

Figure 9.2 New coordinate system representing transformation of vector ¥ into ¥'.
where m; = E[Y; ], and & is the Kronecker delta function. Using the fact that
Y, =@ Y=Y"®, and m; =®;m=m"®,,(9.39) can be written as
E[@ ¥ -m)¥Y" —m")® =215, (9.40)
or
OICD, =15, (9.41)
Hence, (9.41) is only true when
CO, =), D, (9.42)
since
oD, =5, (9.43)

Consequently, the solution reduces to solving the eigenproblem
CO =)\0 (9.44)

or
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(C-D)®=0 (9.45)

The solution to the homogeneous equations of (9.45) was studied in detail in
Chapter 8. That is, we first obtain the nonzero eigenvalues from the equation

|C - I?»| = 0. Then, using (9.44), we solve the set of K equations in K unknowns to
obtain the eigenvectors &, ,k=1,2,...,K, corresponding to the eigenvalues

Ay, k=12,...,K . The eigenvectors are linearly independent. We form the modal
matrix M given by

M=[® @, i®] (9.46)

and then use the similarity transformation to diagonalize the covariance matrix C.
We obtain

o0 .0

0 Ay 0

h=M'em=| | TP T (9.47)
0 0 .. Ag

It should also be noted that since the covariance matrix C is real and symmetric,
the inverse of the modal matrix M equals its transpose (M M T). Thus, the
orthogonal transformation can be used to diagonalize C. The vector y' in the new
coordinate system is given by

y'=M"y (9.48)
or
y=My' (9.49)

The above transformation corresponds to a rotation, and hence the norm of y' in

the new system is equal to the norm of y in the original system.

Now, we can apply the LRT to the binary hypothesis problem in the new
coordinate system. The sufficient statistic is still of the form given in (9.15). Let
m; and m, be the mean vectors in the original coordinate system under

H, and H ,, respectively, such that
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my i
mpp L)

ml = . N mO = . (950)
m g Mok

The transformed mean vectors are given by (9.38). Hence, the transformed mean
difference vector Am'=m; —my is

o Am | [® ]
ol Am | | ®]

Am' = = Am =WAm (9.51)
(D} Am| | D

where W is a KxK matrix with the vectors (I),f,k=1,2,...,K. That is,
W =M" =M and hence,

Am =W 'Am' = MAm' (9.52)

Substituting (9.48) and (9.52) into (9.15), the sufficient statistic in the new
coordinate system becomes

T(y)=AmC 'y =(MAm") C™' (M y")=(Am"Y M"C'M y'
=(Am") ' M'Cc "My’ 9.53)

Using (9.47), the sufficient statistic reduces to

’ r - ’ K Am, y'
T(y)=Am)"n "y = —H5k (9.54)
k=1 xk
where
1/n, 0 0
0 1/x, 0
A= L (9.55)
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Example 9.1

Consider the binary hypothesis problem with specifications

1 05 025 my,
mo :0, C: 0.5 1 05 N ml = m12
025 0.5 1 mys

Obtain the sufficient statistic in the new coordinate system for which the
components of the observation vector are independent.

Solution

For the components of ¥ to be independent, the covariance matrix C in the new
coordinate system must be diagonal. This can be achieved using the orthogonal
transformation. First, we solve for the eigenvalues of C using

I-» 05 025
|c-D|=0=] 05 1-& 05]|=-2"+31> —243751+0.5625
025 05 1-%

Therefore, A, =0.4069, A, =0.75, and A; =1.8431. To obtain the first

eigenvector @, we solve

105 025]¢, o)
CO, =1,®,=|05 1 05]|¢,|=04069 6,
025 05 1 |6y P13

Solving for ¢, , ¢;,,and ¢,5, we obtain

0.4544
@, =|-0.7662
0.4544

Similarly, we solve for @, and ®;, using C®, =A,®, and CO; =A1;P;, to
obtain
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-0.7071 0.5418
®, =| 0.0000 and @; =|0.6426
0.7071 0.5418

Hence, the modal matrix M is

04544 —0.7071 0.5418
M=[® ®, ®,]=|-07662 0.0000 0.6426
04544  0.7071 0.5418

Since y=My'=y'=M"'y=M"y  we have

w] [04544 —0.7662 0.4544] vy,
y'=| v, |=|-07071  0.0000 0.7071 | y,
vy | [ 05418  0.6426 0.5418 | v

Since my =0=m{ =M " m, =0and Am' = m| where

m! | [ 04544 —0.7662 0.4544] m,,
m| =mj |=-0.7071 0.0000 0.7071 | m,,
my | | 05418  0.6426 0.5418 | m,,

Therefore, the sufficient statistic is

Example 9.2

1
Consider the problem of Example 9.1, but K =2, m, =0, and C :{ ﬂ .
p

Solution

Following the same procedure as in Example 9.1, we solve for the eigenvalues
using |C —IX| =0. That is,
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I-A p

=A% —2h+1-p* =0
p 1-A

Thus, A, =1+p and X, =1-p. To obtain the eigenvector @®,;, we have

CP, =), ®,or
L pféy b1y
=(
[P 1}{‘1’12} (+p){¢1j

Solving for ¢, and ¢;,, such that ®/®, =¢7, +d;, =1, we obtain the
T
normalized  eigenvector ®, :[1/\/5 1/\/5] . Similarly, we obtain
T
D, =[1/J§ —1/\/5] . The modal matrix is

11
. 2 | 1t
M=[®  ®,]= {5 J% ==, }

ELE N EEY
22
Note that
1 1|1 1 1 1 0 A 0
Mo =L P _|'*P _|M _yy
201 =1]p 11 -1 0 1-p| |0 &,

The observation vector y' in the new coordinate system is

1 1
' E E {)ﬁ} Y1t y V1= V2
y :MTyz =y =—=— and y), ="=+~
L gl
2 2

Similarly, the mean vector m is

1
m my +m my —m
m =M"m, = V2 x/zl { ll}jm, ST and ), = 2L M2

11— ﬁ \/E
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The difference mean vector is Am'=m; —m(; =m|. Therefore, the sufficient
statistic is given by

ry =AM mit | s

i A l+p 1-p
_ (myy +my) (0 +y2)+(m11 —mp) (¥ —¥2)
2(1+p) 2(1-p)

9.4 SAME MEAN

In the previous section, the constraint was that the covariance matrices under both
hypotheses were the same. Now, we consider the case with the constraint that the
mean vectors under both hypotheses are equal. That is,

m =my=m (9.56)
Substituting (9.56) into the LRT given in (9.8), we obtain
H,
1 T el el >
E(.V—m) (Cy —C )Ny—m) <! (9.57)
H,
Note that the mean vector m of the test in (9.57) does not affect the decision as to

which hypothesis is true. Consequently, for simplicity and without loss of
generality, let m = 0. The LRT reduces to

H,

_ _ >
T(y)=y"(Cy' =Cy _ 2v=1, (9.58)

H,

Furthermore, assume that this binary hypothesis problem can be characterized
by

H,:Y, =S, +N,, k=12,...,K

(9.59)
Hy:Y,= N, k=12,..,K
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That is, we only have noise under hypothesis H,, while under hypothesis H; we
have signal plus noise. The signal and noise components are assumed to be
statistically independent. In addition, the noise components are uncorrelated with

equal variances 62 ,k=1,2,...,K . Thus, the noise components under hypothesis

n o

H, are a multivariate Gaussian with variance matrix
C,=c21=C, (9.60)

If the signal components are assumed to be independent of each other, then the
covariance matrix C, is diagonal. The signal components are also a multivariate

Gaussian with covariance matrix C; . Since the signal and noise components are

independent, the covariance matrix C,; under hypothesis H, is
C,=C,+C,=C, +c’1 (9.61)
Substituting (9.60) and (9.61) into (9.58), the LRT becomes

H,

T<y>=yf{%1—<cs —cil)‘l}y e (9.62)

H,

We note that the LRT can be further reduced depending on the structure of the
signal covariance matrix, which we consider next.

9.4.1 Uncorrelated Signal Components and Equal Variances

In this case, we assume that the signal components are uncorrelated and identically
distributed. Thus, the covariance matrix is diagonal with equal diagonal elements

c f ; that is,

C,=c.1 (9.63)
Consequently, the LRT reduces to
H,
2 2 %
Oy (S 2 >
T =" r=—"F5520 Y (9.64)
a6t Ve <

H,
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where v, =2y, and vy is given in (9.8b). Simplifying (9.64) further, we obtain the
equivalent test

Hl
Ko
TM=25i _ 7 (9.65)
k=1
HO

K
where v; = [Gi (cf +G§ )/ cf,]yz . Hence, the sufficient statistic is 7(y) = Zy,f .
k=1

Since Y is independent and an identically distributed Gaussian random variable,
T(Y)=Y?+Y?+...+Y? is a chi-square random variable with K degrees of

freedom, as was shown in Chapter 2. Consequently, we can carry the test further,
and obtain an expression for P, , the probability of detection, and P, the

probability of false alarm. Note that once we obtain P, and P, we can plot the

receiver operating characteristics.
Using the concept of transformation of random variables developed in Chapter

1, the density function of the random variable ¥ = X2, where X is Gaussian with

mean zero and variance > , 18

1
V26 (1 V2 50
fr(y)= F(I/Z) 262 yie > Y (9.66)

0 , otherwise

where, from (2.102), o =1/2and = 2062, Hence, the mean and the variance of ¥
are E[Y]=0p = o? and var[Y]= 0c[32 =2c*. From (2.106), the characteristic

function of ¥ = X 2 is

®, (jo)= Ele/*¥]=— L 9.67)

(1-jBw)®

Generalizing the result in (9.67) to Y=Y, +Y,+...+Y;, the sum of K

independent random variables, we obtain

D, (jo) = E[e/" = E[e/*" 410 | = Fle/*N B[/ ). E[e/TF ]
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1
:(Dyl (j(’))q)h (jw)"'q)yk (jo)= (1 iB )a1+az+...+tx1< (9.68)

and hence the density function of Y is

O +0Ly +... +0g bd
1P 2 e P y>0
Sr(y)= F(a1+a2+...+aK) § ’ (9.69)

0 , otherwise

Using a=1/2and p=20%, we obtain the density function of the sufficient
statistic to be

2, 202’ >0
fr() = 2’</20’<r(1</2)y g

0 , otherwise

(9.70)

Note that the variance ¢ of Y, - k=L12,...,K, denotes Gflunder hypothesis H,

and (cf + cﬁ) under hypothesis H;. That is, the density function of the sufficient
statistic 7(y) under each hypothesis is

1 -1 T
— 2 g "% t>0
S, (1 Ho) = 28268 (K /2) (9.71)
0 , otherwise
K t
1 T Tt
— 2 ¢ 9 t>0
Jri, (E1H ) =92K126K (K /2) (9.72)
0 , otherwise

where 62 =02 and of =o? +oc2. Knowing the conditional density functions

S, (¢1Hy) and fr, (¢] H,), we can obtain expressions for P, and Py. From

(9.65), the probabilities of detection and false alarm are
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K t
1 Tl T2
jtz e 2% 4y

)1y E——
e = ] S (1 Ho X265 (K /2) ;.

V3

and

t
PD:ffT\HI(t|H1)dt=2K Itz e “°ldt

. (K /2)

9.4.2 Uncorrelated Signal Components and Unequal Variances

(9.73)

(9.74)

In this case, we assume that the signal components are uncorrelated, and thus the
covariance matrix C; is diagonal. We also assume that the variances of the

different components are not equal; that is,

Gfl 0
0 Gi
C, =
0 0 Oy,

From the LRT in (9.62), let the term in brackets be denoted H; that is,

H =L21-(CS +o.1)

n

(9.75)

(9.76)

Substituting (9.75) into (9.76) and rearranging terms, the H matrix reduces to

S )
il 0 0
c,(o;, +0,)
0 %, 0
H- c.(cs +0,)
2
0 0 O
(o2 +0)

(9.77)
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and consequently, the LRT becomes

Hl
2
1 X Gy, >
TW=y"Hy=—53>——"5vi _ 1 (9.78)
G, k=1(0y, +0;)
HO

We observe that the above expression is not as simple as the one in the
previous section, and consequently it may not be easy to obtain expressions for
P, and Py .

Remark. 1If the signal components are not independent, and thus the signal
covariance matrix is not diagonal, we can diagonalize the matrix using an
orthogonal transformation, following the procedure given in Section 9.3.2.

Example 9.3

Consider the binary hypothesis problem

Hl:Yk:Sk+Nk’ k:1,2
Hy:Y,= N, k=12

where the noise components are zero mean and uncorrelated Gaussian random
variables with variance o>

n >

k =1,2 . The signal components are also independent

. . 2 . .
and zero mean with variance o ,k =1,2. The signal and noise components are

independent. Obtain:
(a) the optimum decision rule.
(b) expressions for the probabilities of detection and false alarm.

Solution
(a) This is the case where the noise components are independent and identically

distributed, and the signal components are also independent and identically
distributed. Both covariance matrices C; and C, of the signal and noise are

diagonal. The optimum decision rule is given by (9.65) to be
H,

>
T =y +y _ 13
HO
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wherey; = {[62(c2 +62)1/62 y5,7; =2y, and y =Inn+(1/2)(In|C,|~In|C, ) .

The covariance matrices C, and C,, under hypotheses H, and H, are

2 2 2
¢ =c,+c, =% O i ¢ =c, =% °
0 c; +o, 0 o

n

Rearranging terms, the decision rule becomes

H,
2, 2 2 )
+ +
T(y)=y{ +y3 Z 2—6"(GS2 6”)[lnnﬂn—cs ZG”JzYa
GS GS
H,

Consequently, the sufficient statistic is 7'(y) = yl2 + y% .

(b) Using the results derived in (9.71) and (9.72), the conditional probability
density function of the sufficient statistic under each hypothesis is

1 t
' —exp —— | t>0
S, (1 Ho) =420 20}

0 , otherwise

—eXp 1 , t>0
S, (1 Hy) =4 207 267

0 , otherwise

where 63 =c2 and 6} =o? + 2. Consequently, the probability of detection and

probability of false alarm are

9.5 SAME MEAN AND SYMMETRIC HYPOTHESES

Consider the binary symmetric hypothesis problem given by
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oo Yk:Sk+Nk’ k:1,2,...,K
"y.= N, k=(K+D,(K+2), ... 2K

Yk = Nk’ k:1,2, “es ,K
Hy - (9.79)
Y, =S, +N,, k=(K+1),(K+2), ... ,2K

We assume, as before, that the mean vectors m; =m, =0 and that the noise

. . 2 . . .
components are uncorrelated with variance ;. Thus, the noise covariance matrix

is C, =c2I.Let C, denote the signal covariance matrix. Then, the 2K x2K
covariance matrices C, and C; under hypotheses H, and H,, respectively, can
be partitioned into K x K submatrices. That is,

c,+C, i 0 C,+c2I | 0
o] IS T I foeenee (9:80)
o i cC, 0 ool
and
c, 0 o2l 0
Cy = |- e —— R e (9.81)
0 | C,+C, 0 | C,+c1

Let the difference of the inverse covariance matrices of C, and C; be denoted by
AC =c,' -c)! (9.82)

Thus,
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LZI—(CS +oin™
(o) 1
=[-eereemeeeen e R (9.83)

Y= (9.84)

and substituting (9.84) and (9.83) into (9.58), the LRT becomes

T(y)=y'AC 'y

1 241 |
—I1-(C,+0:1 : 0
le Gi ( s n ) E »
T E
y2 0 g (Cs+oﬁl)‘1—iz1 P
: n
H,
r| 1 2 -1 T 2yl 1 >
=) _21_(Cs+6111) Yi+y2 (CS+GnI) __21 ) < Y2
n G}'l
H,
(9.85)

Again, depending on the structure of the signal covariance matrix C,, the above
expression may be reduced as in the previous section.

9.5.1 Uncorrelated Signal Components and Equal Variances

In order to carry the test in (9.85) further, let the signal components be
uncorrelated and identically distributed. That is,

C,=c’I (9.86)

Substituting the above value of the signal covariance matrix into (9.85), the LRT
test is obtained to be
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T(y)= yf{%l—(cflmil)l }yl +y§{(631+051)1 —%1}’2

(¢

n n

H,
G? T T >
=5 5 A0irn-»y) _ 1N
c,(c; +0o;,)

H,
or
H,
KoK
TV =2 vi— 2Vi < s
pa k=K +1
H,

where v; is defined in (9.65).

527

(9.87)

(9.88)

We can have more insight into this problem by assuming that we have a
minimum probability of error criterion, and that both hypotheses are equally likely.
Thus, the threshold n equals one, and y, and y; become zero. We observe that

the determinants of both covariance matrices are equal (|C1| :|CO|), since the

hypotheses are symmetrical. Consequently, the LRT reduces to

Hl
K ) > 2K ’
L=y = 2Zvi =T
k=1 k=K+1
HO

The probability of error is defined as
1
P(e)=P(e| Ho)P(H)+P(e| H)P(H,) =5[P(8 | Hy)+P(e| Hy)]
Since the test is symmetrical with respect to both hypotheses, we have
P(e|Hy)=P(e| H,)

Thus, the probability of error is just

P(e)=P(e|Hy)=P(Ty <T\ [Hy)=P(e|H,)=P(T, <Ty | H,)

(9.89)

(9.90)

(9.91)

(9.92)
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=1t
P(e| Hy)

P(e|H))

Figure 9.3 Regions of integration for P(g).

From Figure 9.3, we see that the probability of error is given by

©

P(e)=P(e| Hy) = [ [ fyz, (t1.10 | Ho)dtydt,
00

=P(e|H)) = [ [ frz, (t1.t0 | H)dtodt, (9.93)
04

From (9.70), T;(Y) and T7,(Y) are statistically independent and chi-square
distributed, and thus

n 4
1 27 T
frt)=——— 42 ¢ 2 (9.94)
D KRG rg )
n fo
20—
S (1) = 1 1 e 2 (9.95)

2K26K (K /2) °

where 63 = Gi and 612 = c? +Gi . Substituting (9.94) and (9.95) into (9.93) and
solving the integral, it can be shown that the probability of error reduces to

K K
- L. 2\
G +k-1 G,
P <8)=(ﬁ] 2|2 (l‘ﬁJ (9.96)

oy +0, k=0 k Gy +0,

9.5.2 Uncorrelated Signal Components and Unequal Variances

In this case, we assume that the signal components are uncorrelated but their
corresponding variances are not equal. That is, the signal covariance matrix is still
diagonal but with unequal elements. Thus, we have
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_Gi . -
0 Gi
C, = (9.97)
0 0 Oy,
Substituting (9.97) into (9.82) and rearranging terms, we obtain
_ Ggl 0 | 0 0 0 |
o, (o5, +0,) |
0 0 5 0 0 0
0 Gi“ 0 0 0
AC = SOOI
. o,
0 0 0 = . > 0
; o5, +0,
0 0 0 5 0 0
s o2
0 0 0 : 0 - £ P
o, *t0o,
(9.98)
It follows that the test (9.85) becomes
2 H,
2( g g2 2K ol
(e} Sy S(h— >
TW = X Vi~ 2 5 Vi| . "2 (9.99)
G, k=10s,( +0, k=K +1 Gs(kik) +0,
H,

This expression is too complicated to proceed any further with the test.

9.6 SUMMARY

In this chapter we have discussed the general Gaussian problem. We considered
the binary hypothesis problem. Due to the characteristics of the Gaussian process
and Gaussian random variables, the general Gaussian problem was considered in
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terms of the covariance matrices and mean vectors under each hypothesis. First,
we considered the case of an equal covariance matrix for both hypotheses. The
noise samples were always assumed uncorrelated and thus statistically independent
with equal variances. The signal components considered, however, were either
independent or not independent. When the signal components were independent
and of equal variance, the problem was relatively simple, since the covariance
matrix is diagonal with equal value elements. When the signal component
variances were not equal, the expressions were more difficult, and in this case we
were able to solve for the sufficient statistic only.

In the case when the covariance matrices are general, we transformed the
problem from one coordinate system into another coordinate system, such that the
covariance matrix is diagonal. We solved for the eigenvalues and eigenvectors,
and then used an orthogonal transformation to diagonalize the covariance matrix.
In Sections 9.4 and 9.5, we considered the case of equal mean vectors and obtained
the LRT.

PROBLEMS

9.1 For the binary hypothesis problem with m, =0, let the covariance matrix C
be

o[t w2l 1o o [1 0o
@C=,, ®C= 1| @l

Determine the LRT for the three cases above.

9.2 Repeat Problem 9.1, assuming that the covariance matrix C is

109
C =
{0.9 2 }

9.3 Consider the binary hypothesis problem

where the noise components are zero mean and uncorrelated Gaussian random
variables with variances Gi =1,k=12. The signal components are also

independent and zero mean with variances Gf =2,k=12. The signal and

noise components are independent.
(a) Obtain the optimum decision rule.
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(b) Determine the minimum probability of error for P(H,)=P(H,)=1/2.
9.4 Repeat Problem 9.3 with £k =1,2,3,4.

9.5 Plot the receiver operating characteristics of Problem 9.3 with the ratio
6?2 /o2 asa parameter.

9.6 Consider Problem 9.3 with signal covariance matrix
2
C, - o O2
0 o

9.7 Consider the symmetrical binary hypothesis problem

Design an optimum test.

Yk:Sk+Nk’ k:1,2
H1:
Y,= N, k=34

Yk = Nk N k = 1, 2
H() :

Yk:Sk+Nk’ k:3,4
Let the mean vectors under each hypothesis be zero for both hypotheses H
and H,. The noise components are identically distributed Gaussian random

variance with variance 1. The signal components are also independent and

identically distributed with variance 2. The signal and noise components are

independent.

(a) Design an optimum test.

(b) Determine the probability of error assuming minimum probability of error
criterionand Py =P, =1/2.

9.8 Repeat Problem 9.1 if the covariance matrix is given by

I 08 0.6 02
08 1 08 06
06 08 1 038
02 06 08 1

1 09 05
(@ C=09 1 0.1 (b) C=
05 0.1 1
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Chapter 10

Detection and Parameter Estimation

10.1 INTRODUCTION

In Chapters 1 and 3, we presented the fundamentals of probability theory and
stochastic processes. In Chapters 5 and 6, we developed the basic principles
needed for solving decision and estimation problems. The observations considered
were represented by random variables. In Chapter 7, we presented the
orthogonality principle and its application in the optimum linear mean-square
estimation. In Chapter 8, we presented some mathematical principles, such as
Gram-Schmidt orthogonalization procedure, diagonalization of a matrix and
similarity transformation, integral equations, and generalized Fourier series. The
concept of generalized Fourier series was then used to represent random processes
by an orthogonal series expansion, referred to as the Karhunen-Loéve expansion.
Chapter 8 gave us the basic mathematical background for Chapters 9 and 10. In
Chapter 9, we covered the general detection Gaussian problem.

In this chapter, we extend the concepts of decision and estimation problems to
time varying waveforms. If a signal is transmitted, then the received waveform is
composed of the transmitted signal and an additive noise process. If no signal is
transmitted, then the received waveform is noise only. The goal is to design an
optimum receiver (detector) according to some criterion. In Section 10.2, we
discuss the general and simple binary detection of known signals corrupted by an
additive white Gaussian noise process with mean zero and power spectral density
N, /2. The received waveforms are observed over the interval of time ¢ €[0,7].

In Section 10.3, we extend the concepts of binary detection to M-ary detection. In
Section 10.4, we assume that the received signals in the presence of the additive
white Gaussian noise process have some unknown parameters, which need to be
estimated. Some linear estimation techniques are used to estimate these unknown
parameters, which may be either random or nonrandom. Nonlinear estimation is
presented in Section 10.5. In Section 10.6, we consider the general binary
detection with unwanted parameters in additive white Gaussian noise. In this case
the received waveform is not completely known a priori, as in the previous

533
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sections. The unknown parameters of the signal are referred to as unwanted
parameters. We consider signals with random phase. We obtain the sufficient
statistic and solve for the probabilities of detection and false alarm through an
example showing all steps. We show how the incoherent matched filter is used for
this type of application. Then, we consider signals with two random parameters,
the phase and amplitude. Other cases, such as signals with random frequency,
signals with different random phases, frequency shift keying signals with Rayleigh
fading, and signal with random time of arrival that may arise in radar and
communication applications are also discussed.

We conclude this chapter with a section on detection in colored noise.
Specifically, we consider the general binary detection in nonwhite Gaussian noise.
Two different approaches, using Karhunen-Loéve expansion and whitening, are
suggested to solve this problem.

10.2 BINARY DETECTION

In a binary communication problem, the transmitter may send a deterministic
signal s,(¢#) under the null hypothesis Hy, or a deterministic signal s,(¢#) under
the alternate hypothesis H,. At the receiver, the signal is corrupted by W(¢) , which
is an additive white Gaussian noise process. Assume that the additive noise is zero
mean and has a double-sided power spectral density of N, /2. The goal is to
design an optimum receiver that observes the received signal Y(¢#) over the
interval 7€[0,7], and then decides whether hypothesis H, or hypothesis H, is
true.

10.2.1 Simple Binary Detection

In a simple binary detection problem, the transmitted signal under hypothesis H, is
s(t), and no signal is transmitted under the null hypothesis H. At the receiver, we

have

H,:Y(t)=s(t)+W (), 0<t<T

(10.1)
Hy:Y(@)= W), 0<t<T

Note that the signal is a continuous time function. In order to obtain a set of
countable random variables so that we may apply the concepts developed in
Chapter 5, we need to take K samples, where K may be infinite. However, in
Chapter 8, we saw that a continuous time signal may be represented by Karhunen-
Loéve expansion using a set of K complete orthonormal functions. The
coefficients in the series expansion are the desired set of random variables.

The energy of the known deterministic signal is
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T
E=[s*()dt (10.2)
0

Thus, let the first normalized function ¢, (¢) be

0, (®) -0 (10.3)

5

or

s(t)=E®, (1) (10.4)

Consequently, the first coefficient in the Karhunen-Loéve expansion of Y (¥) is

H,: [s@)+ W), ()dt =VE +W,

T
Yy = [Y(0), ()dt = (10.5)
0

Hy: |\ W), ()dt =W,

ce Ny O

where W is the first coefficient in the series expansion of W(¢). T s(¢)+ W (¢) he
rest of the coefficients Y) , k£ =2,3,..., are obtained by using arbitrary orthogonal

T
functions ¢, , kK =2,3,.... ¢, orthogonal to ¢, (?) [jq)k ¢, (t)dt = OJ . Thus,
0

H,:
Yk:
Hy:

[s(t)+ W (©)Jo, (H)dt =W,
(10.6)
W (), (t)dt =W,

clNy o

Since W(t) is a Gaussian process, the random variables W, ,k=2,3,..., are
Gaussian. We observe from (10.6) that the coefficients Y, ,k=2,3,..., are
coefficients of a white Gaussian process (#}), and do not depend on which
hypothesis is true. Only the coefficient ¥; depends on the hypotheses H; and H,.

We need to find a sufficient statistic for this infinite number of random
variables in order to make a decision as to which hypothesis is true. Since the
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coefficients W; and W, j#k, of Karhunen-Loéve expansion are uncorrelated,
that is,

Elw,w, 18, |=E[w,w, 11, ]=E[ww]=0, j=k (10.7)

and are jointly Gaussian, they are statistically independent. Thus, all
Y, ,k=2,3,..., are statistically independent of Y, and have no effect on the
decision. Hence, the sufficient statistic is only Y, ; that is,

T(Y)=Y, (10.8)

We learn from (10.8) that the infinite observation space has been reduced to a one-
dimensional decision space. Thus, the equivalent problem to (10.1) is

H,:Y, =JE+W,

(10.9)
Hy:Yy= W,

where W, is Gaussian, with means
T T
E[w, | H,]=E[W, | H,]= E{ [ o1 (t)W(t)dt} = [0 EW =0 (10.10)
0 0
and variances

TT
w1, )= Elw? 111, )= E{ [ 41006, @) W(r)W(u)dtdu}
00

SN

T
[ 0100, @ E[W ()W () ldtdu (10.11)
0

The power spectral density of W(t)is N, /2 for all frequency f, and thus its
autocorrelation function R, (¢,u) is

E[W(@OW w)]=R,,,, (t,u)= %S(t —u)=C,,, (t,u) (10.12)
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where C,,, (¢t,u) is the covariance function. Substituting (10.12) into (10.11), we

obtain the variance of W, to be

TT T
E[le]:%J.J-(I)l(t)(])l(u)éi(t—u)dtdu =%j¢f(r)d¢:% (10.13)
00 0

We observe that the problem given by (10.9) is the same as the one solved in

Example 5.1, with mzx/f and o =N, /2. Consequently, the optimum

decision rule is

> N E
T(y)=y <ﬁlnﬂ+72‘/
H,

The detection parameter is given by

E[r(n) | H\ - E[r(n)| Ho [} _2E

d* 2 =
var[T (V)| H] No

The probabilities of detection and false alarm are then

Y—x/fj

Ny

P, = Q{Z

and

i
0

(10.14)

(10.15)

(10.16)

(10.17)

where O( - ) is the O-function, also denoted erfc, (- ) in many other books. Thus,

the only factors affecting the performance of such a receiver are the signal energy
E and the noise power spectral density N, /2. From Chapter 8, we note that the

optimum receiver is either a correlation receiver or a matched filter receiver. The

receivers are illustrated in Figures 10.1 and 10.2.
Note that the impulse response /() of the matched filter is
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HI
»(® r » S o
— > J Y —» Desicion
0
HO
60
Figure 10.1 Correlation receiver.
t=T H,
() S .
—» T -1 <Y |—— Decision
HO

Figure 10.2 Matched filter receiver .

h(t):{d)l(T—t), 0<t<T (10.18)

0 , otherwise

We now derive the optimum receiver without resorting to the concept of
sufficient statistics. Given a complete set {(I) k (t)} of K orthonormal functions, the

Karhunen-Loéve expansion of the received process Y (¢) is

K
Y(t) =D Y ¢, (), 0<t<T (10.19)
k=1
where
T
Yo = [Y0b ()dt, k=12,....K (10.20)
0
The observation vector is ¥ =[Y; Y, ... Yk]T . Under hypothesis Hy, Y, is
expressed as
T
Y = [W (O, ()dt =W, (10.21)
0

while under hypothesis H;, Y} is
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T T
[s()+ WO, ()dt =[ s, ()t + [W (), ()t =5, + W, (10.22)
0 0

o‘—.’\]

Y, indicates Gaussian random variables, and thus we only need to find the means

and variances under each hypothesis to have a complete description of the
conditional density functions. The means and variances of Y, are

ElY, |H,|=E[W,]=0 (10.23)
Ely, |H,|=E[s, +W,]=5, (10.24)
var[y, | H, |= E[Yk2 |H, ]: E[Wk2 |H, ]: R, (0)= % (10.25)

and
N
varlt, | 1,1 B[, =5 P 1o J= 22 1 ] R0 =22 1026)

Since uncorrelated Gaussian random variables are statistically independent, the
conditional density functions are

Fom G D) =T — oxp| - =50 (10.27)
Y|H, 1 i '_TCNO N, .
and
Fy, ( IH)—ﬁ L oxp| - 2K (10.28)
viH, (V1119 —k:IW p N, .

From (8.11), (8.22), and (8.24), we have

s(t) = lim sg () (10.29)
K—w
where

K
s ()= 5.0, (0) (10.30)
=1
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Consequently, the likelihood ratio is

Lo O _Sk)2:|
fom iy { No

fY|H0(.V|H0)_ 15[ 1 exp(—]):;j

Aly(@®)]= 1?310 Alyg )] = (10.31)

where Alyg(¢)] is the K-term likelihood ratio. Taking the logarithm and
simplifying, (10.31) may be rewritten as

2 X 1 &,
Iim InAlYx (¢)|= lim|— ) Y. s, — > s 10.32
Jim InA[Y, (0] K%(Nogkk NOkZ_lkj (1032)
where
K T
lim Y Yesy = [Ye (0)s g ()t (10.33)
K—o© =1 0
and
K T
lim > s =[sk(Oat (10.34)
K—o =1 b
The likelihood ratio, letting K — o , is
2t 1 f
In A[Y(0)]=——[Y()s()dt —— [ s* (1)t (10.35)
NO 0 NO 0
and the decision rule is given by
Hl
In Afy()] Z Inn (10.36)
HO

Substituting (10.2) into (10.4), and then into (10.36), we obtain
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Hl

2 I E >

In Aly()|=— | y(t)s(t)dt —— In
K0) N(){y()() o <
HO

Since s(¢) = JVE ¢, (?), the test reduces to

H,

2@7 > E
t t)dt Inn+—
N, gy()w) <

HO
or
Hl

T
{ YO0, (0t 7y
HO

541

(10.37)

(10.38)

(10.39)

which is the optimum receiver derived earlier in (10.14) using the sufficient

statistic.

Example 10.1

Consider the digital communication system shown in Figure 10.3. The information
source is binary, and produces zeros and ones with equal probability. The
communication system uses amplitude shift keying (ASK) so that the received

signals under hypotheses H, and H, are

H,:Y(t)=As@t)+W (), 0<t<T
Hy:Y(t)= W), 0<t<T

Source Channel » Receiver

j

40)

Figure 10.3 Digital communication system.
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The attenuation 4 produced by the communication channel is a Gaussian random
variable with mean zero and variance 62 . The signal s(¢) is deterministic with
energy E, and W (¢) is an additive white Gaussian noise with mean zero and power
spectral density N, /2. Determine the optimum receiver assuming minimum
probability of error criterion.

Solution

From (10.3), the first normalized function ¢,(¢) is ¢, () =s(¢)/ JE . Following
the same procedure described from (10.3) to (10.9), the problem reduces to

H,:Y, = AJE +W,
Hoy:Y, = w

The conditional density functions are

fy]\HO(J/l |H0):fm(W1):

1 y2

exp| ———

ﬂﬂ:NO NO
and  fy .y (v | Hy)=f4(a@)* fy, (w), where * denotes convolution. The

convolution of two Gaussian density functions is Gaussian with mean
EM|HJ=EPJE+M|HJ=0
and variance

Var[Yl |H1]=Var[A\/E+W1 |H1]=E[(A\/E+Wl)2 |H1}=Evar[A]+Var[Wl]

=Eci +&
2

since the random variables 4 and W, are independent and each with mean zero.
Thus, the conditional density function under hypothesis H, is

le\Hl(yl | H,y)=

1 b }
exps —
V2 Ec2 +(N, /2) { 2Es; +(Ny/2)]
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Applying the likelihood ratio test, we have

2
! exp[— )2}1 ]Hl
Sy, O [ Hy) n(2Ec? + Ny) 2Es; +No )
fY1|HO(y1 | Hy) 1 y12 <
exp| ———
N

A(yy)

0

Taking the logarithm and rearranging terms, an equivalent test is

Hl
2EG? N
y12 —(Z” > lnn—lln—zo
Ny(QEs: +Ny) | < 2 2Esi+N,
HO
or
Hl
N,(2Es? + N, N,
y2 > 0(2Ec, +Ny) lnn—lln 0
< 2Ec? 2 2Ecl+N,
HO

For minimum probability of error, Cyy =C;; =0 and Cy =C;y =1, we have
N=PFy(Cio—Cp)/ P (Cy —C,;)=Fy /P, =1, since the hypotheses are equally
likely. Thus, Inn =0, and the optimum decision rule becomes

Hl

) > N0(2E53+N0)IH2EG§+NO _
b< 4EG§ Ny

HO

The sufficient statistic is T(y) = ylz, and the optimum receiver is as shown in
Figure 10.4.

10.2.2 General Binary Detection

In this case, the transmitter sends the signal s,(¢) under hypothesis H; and s (?)
under hypothesis Hy. At the receiver, we have
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»(®

—9 H

6@
Figure 10.4 Optimum receiver for Example 10.1.
H, :Y(t)=s,()+W (), 0<t<T
Hy:Y(t)=s,()+W(t), 0<t<T

Let the signal s, (¢) and s,(¢) have energies

T
Ey =[5t
0

and
T

E, =[sf ()t
0

and correlation coefficient p, —1<p <1, such that

jso(t)sl (t)dt

‘\/010

(10.40)

(10.41)

(10.42)

(10.43)

Following the same procedure as in the previous section, we use the Gram-
Schmidt orthogonalization procedure to obtain a complete set of orthonormal

functions. The first basis function is

51(0) 510

VE

¢ ()= -
[ st ()t

0

The second basis function ¢, (¢) orthogonal to ¢, (¢) is

(10.44)
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S2(0)

d, (1) :T— (10.45)
[ £3 @)t
Vs
where
f2(8)=50() = 5010, (1) (10.46)
and
r
So = £ so (D), (1)dt (10.47)
Substituting (10.44) into (10.47), we obtain
LT
Sol E { s0()s, (H)dt = py E, (10.48)
Thus,
f2(6)=50()=pyfEq 6, (0) (10.49)
and
02(6) =[5 () - Py 0, )] (10.50)

Ey(1-p?)
The remaining ¢, (¢), k =3,4,..., needed to complete the orthonormal set can be

selected from any set orthogonal to ¢,(¢) and ¢,(¢). In terms of the basis

functions, s,(¢) and s,(f) are

51(6) = JE; 0, (2) (10.51)

500 =| pEq 1 0+ Eg 19780 | (10.52)

The general binary hypothesis problem is now given by
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H, Y () =E 6, () + W (0) 0</<T
(10.53)
Hy 1Y) = | pyEg b1 (0 +/Eg(1-p %(r)}W(r) 0<t<T
To obtain the random variables Y,,k =1,2,..., we need to determine Karhunen-
Loéve coefficients of Y(¢). Thus,
T
Hy: [y @), (ode = J VE 97 (dr + J W ()0, (t)dr
Y, = 0 (10.54)
H, :J{[p\/ﬁ ¢1(f)+\/Eo(1—Pz)¢2(1)}+W(f)}¢1(t)df
0
or
Y, ={H1 E +W (10.55)
H, :p\/E_0+W1
T T
since [ (1), (6)dt =0 and [¢7 ()t =1. Also,
0 0
T T T
H,y : [ (9]0 (1)t = [ E 6,000, (0)de + [ W (00, (1)t
Y, = (; 0 0 (10.56)
Hy:[ {[pﬁ ¢1(f)+\/E0(1—P2)¢2(f)}+W(t)}¢2(t)dt
0
or
H, W,
Y, = 10.57
’ H0¢VE0(1—92)+W2 ( :

The random variable Y; for k>2 is not dependent on the choice of the

hypotheses, and thus it has no effect on the decision. It is
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T
1, [VE 6,0+ w@)o (e =7,
Y, = 0 (10.58)

T
H,: j{[p«/E_odh )+ Ey(1—p? )b, (1)} N W(t)}(])k (t)de =W,
0

Since W, k=1,2,..., is a coefficient of Karhunen-Loéve expansion of the white
Gaussian process with mean zero and power spectral density N, /2, it is a

statistically independent Gaussian random variable with mean zero and variance
NO /2 .
The equivalent problem to (10.40) is now two dimensional, and is given by

Y, = E, + W,

le{l VAL (10.59)
Y2: W2
Y =p4Ey +W

(10.59b)

H,:
Y, :VE0(1—92)+W2

In vector form, the received vector ¥ and the signal vectors s, and s, are

Y,
Y { 1}, s = {S” } s = {S‘”} (10.60)
Y, S12 S02

Y, and Y, are statistically independent Gaussian random variables with mean
vector m; under hypothesis H,, and mean vector m under hypothesis H,, given

by

mp; S12

m, {m“}=E[Y|H1]:{*/§_‘}:{S”}=sl (10.61)

and

mo=|:mm}=E[Y|Ho]: PvEo =[S°1}=SO (10.62)
Moy \/EO(I—PZ) S02

Since the components of ¥ are uncorrelated, the covariance matrix of ¥ under each
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hypothesis is diagonal and is given by

No/2 0
C = =C,=C (10.63)
0 Ng/2

Thus, using the results in (9.14a) for diagonal equal covariances, the decision rule
is

H,
>
T(y)=(m1T—m0T)C y _ (10.64)
H,
where
B L( 7. T el
y—lnn+5 m C m—-myC m (10.65)
and
o |2/N, 0
C = (10.66)
0 2/ N,

Since €' is also diagonal, the decision rule reduces to

Hl
> N, 1 2 2
T(y)=y" (m —m,) _ 7°1nn+5(|m1| ~|m| )=v1 (10.67)
HO
The sufficient statistic is
T(y)=y" (m,—m,) (10.68)

Substituting (10.59) to (10.61) in (10.68), the sufficient statistic can be written as

T(y) =y, (myy —mg; )=y, (my, _m02):y1(\/E_l_p E )—J’2\/Eo(1—92)
T T
—(VE, —pyEo ) [ vy (00t~ JEg(1=p?) [ 90, (0)ce (10.69)
0 0
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]. N
T 0
(1) a0 S11-So1 + H —» H
>
T(y)
_ —> H,
H,
a@?—» |
0
b, (1) S12-S02

Figure 10.5 Optimum receiver for general binary detection.

The optimum correlation receiver is shown in Figure 10.5.
This optimum receiver can be implemented in terms of a single correlator.
Substituting for the values of ¢,(¢) and ¢, (¢) in (10.69), we have

t E t
1) =, - EO B0 j 0520 PVE ()
VE,(1-p%)
T
= [y(@)Ls; () =so(Oat J Y(B)sp (1)t (10.70)
0
where
sa () =5,()=5,(1) (10.71)
The decision in this case is
Hl
z >
[yOlsi)=so]ar Z v, (10.72)
0 H,

where

N 17
7 :7°1nn+5j [sf(z)—sg(t)]dt (10.73)
0
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() T Iil —» H;
_,(g —» _[ T .
T 0 HO _> H(]

S,

Figure 10.6 Optimum receiver for general binary detection problem with one correlator.

The corresponding optimum receiver is shown in Figure 10.6.

We now study the performance of this detector. Since the sufficient statistic is
Gaussian, we only need to solve for the means and variances under each
hypothesis to have a complete description of the conditional density functions.
Solving for the means, we have

E[T(Y)|H1]:(\/E_1—P E, )E[Yl |H1]_\JE0(1—P2)E[Y2 | H, ]
:(\/E_l‘P Ey )x/E_lel—P EyE, (10.74)

and

E[T(Y)|H1]:(\/E_1_P E, )E[Yl |H0]_VE0(1—PZ)E[Y2 |Ho]

—(VE - o JoyEo —Es(1-pP)Ey(1-p?)
= pJEE, —E, (10.75)

The variances are
var[T(Y) | H, ] = var[T(Y) | H, ]
~(VE, -pyE, | varr, |H1]+( Eo(l—pz))z varlY, | H,]
- W -pF o (e ) |52
~ (£, +E, —2pm)%202 (10.76)

The performance index, after substitution of (10.75) and (10.76), is given by

2
g2 ETOOUE-ETOO I 2 (0 5 25 07
var[T(Y)|H0] N, ( 1T Lo 2Py £y 0) ( )
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Therefore, the probability of detection is

t—E 1/EE
PD_IfT\H(”H])dl—I\/_ ep[ 1U-E +pyE )’ ]

Y1 0-
—E; +pEyE
:Q[Yl 1 TPy Ly 1} (10.78)
c
where
1
v, :E(NO Inn+E, —E,) (10.79)
The probability of false alarm is
PF—IfT\H (f|Ho)df—_[ l(t_p E0E1+E0)2 dt
0 l 2
T 2 °
+E,—pEE
:Q[Yl 0~ Py Lol ] (10.80)
c

We get more insight into the performance of this system by assuming that the
hypotheses are equally likely, and by using minimum probability of error criterion.
In this case,

1
T =5(E1 ~E,) (10.81)
Define the constant
oa=E +E,-2p|EE, (10.82)

Substituting (10.81) and (10.82) into (10.79) and (10.80), and rearranging terms,

we obtain
1 |20
P. =0 — |— 10.83
i3 Q(szNo] ( )
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PD=Q(—;/]2V“]= —Q[ ]ZVGJ (10.84)
0 0

Since the probability of miss P, =1- P}, then the probability of error is

P(e)=Py =P, :Q@ /fv“] (10.85)
0

We observe that the probability of error decreases as o increases, while N is

and

fixed. Thus, from (10.82), the optimum system is obtained when the correlation
coefficient p=—1. In this case, s,(#) =—s,(¢), and we say that the signals are

antipodal. 1f, in addition, the signal energies are equal, E, = E|, = E, then the
likelihood ratio test is

Hl
T(y)=y" (m,=my) 7 0 (10.86)
HO
or
Hl
T(y)=AE (l—p)iy(t)w)dz—m iy(r)%(z)dr Z 0 (1087)
H,

Substituting for the values of ¢,(¥) and ¢, (¢)in terms of s,(¢) and s,(¢) into
(10.85) and simplifying, an equivalent test is

H,

T T
[y)s, ()at Z [ ¥(@®)so (1)t (10.88)
0 0

H,
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A 4
ct—~

T —» H,
t

() si(0) Choose

> largest

—»

ct—~
A 4

50(0)

Figure 10.7 Optimum receiver representing (10.88).

The corresponding receiver is shown in Figure 10.7. The decision rule of (10.88)
means that the receiver chooses the signal that has the largest correlation
coefficient with the received one.

Example 10.2

Consider a communication system with binary transmission during each duration
T, =2n/ o, seconds. The transmitted signal under each hypothesis is

H,:5,() =Asinwyt , 0<t<T,

The hypotheses are equally likely. During transmission, the channel superimposes
on the signals a white Gaussian noise process with mean zero and power spectral
density N, /2. Determine the optimum receiver and calculate the probability of

error. Assume minimum probability of error criterion.
Solution

The received signal is characterized by

H,:Y(t)=s,(t) +W(t), 0<t<T,
Hy:Y(0)=s,(t)+W (1), 0<t<T,

We observe that the signals s,(¢) and s,(¢) are orthogonal with energies
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AT, 2
E, = b:ﬂ:EozE
2 ),

Thus, the orthonormal basis functions are

d)l(t):il/%):\/Tzsinmbt and ¢2(z)=sjg)=\/Tzsinzmbt
b b

Using (10.54) and (10.56), we obtain the equivalent decision problem

T
Hy < [[s; 0+ W @)]o, ()t =VE +W,
Y, = ‘;
Hy: [lso @)+ W ()], (0)dt =w,
0

and

T
Hy : [l (0 + W (0)] o, (1)t =W,
0
Y, = .
Hy : [[so 0+ W ©)], (0)dt =JE +,
0

Correspondingly, the coefficients of the signal vectors s; and s, are

T

Applying the decision rule of (10.67), we have
H,
T > l( 2 2)
T(y)=y"(s1-59) _ > |s1| |s0|
H,

where Inn is zero, since we are using minimum probability of error criterion and

P, = P, . Substituting for the values of y, s,, and s, the test reduces to
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H, H,
> >
T)=y-y2 0 0or yy _ ¥
H, H,
To determine the probability of error, we need to solve for the mean and
variance of the sufficient statistic 7(¥Y)=Y,-Y,. Since Y, and Y, are

uncorrelated Gaussian random variables, T(Y)=1Y, —-Y, is also Gaussian with
means

E[rev) | H, )= E[Y, -1, | H\|=E
E[T(Y)| H,)= E[Y, =Y, | Ho|=—E
and variances
var[T(Y) | H, )= var[T(Y) | Hy )= varlt, | H, |+ varly, |5, =01

The variance of Y, under hypothesis H, is
, TT
varlt, | Hy )= E[2 | Ho )= E| [ [ W@ W ()6, (w)dedu
00

o1 (D)9, (”)E[W(t)W(u)]dtdu

SN
oe—=

where
NO
E[W@Ww)|=R,,, (t,u)=C,,, (t,u) = Tsa —u)
Thus,

N, LT N, T N
varlly | HoJ==F [ ] 61006, )8(¢ ~w)dedu == [ 97 (e ==
00 0

and
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var[T(Y) | Hy |= var[T(Y) | H, ]= N,

The conditional density functions of the sufficient statistic are

t|Hy)= exp| ——
fT|H1(| 1) 2N, p > N
1 1 t+\/f ?
Srim, (1 Hy) = exp| ——

The probability of error in this case is

P(e)=P(e| H\)P(H)+P(e| Ho)P(H) = P(e| H,) = P(¢| Hy)

© 2 2
= 1 Iexp _lML dt:Q i :Q A Tb
lanO 0 2 Ny \} N 2N,

The optimum receiver is shown in Figure 10.8.

10.3 M-ARY DETECTION

We now generalize the concepts developed for binary hypothesis to M hypotheses.
In this case, the decision space consists of, at most, (M —1) dimensions.

—>®—>

S —

o) + H, —» H,
»0) >
—> =y, 0
— —» H
H, 0

S —y

4, (1)

Figure 10.8 Optimum receiver for Example 10.2.
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10.3.1 Correlation Receiver

The problem may be characterized as follows
H,: Y@ O+W@) Osr<T (10.89)
: =5 , .
¢ g k=12,...M

where s, (¢) is a known deterministic signal with energy E| , such that
T
Ey =[si@adt, k=12,...M (10.90)
0

and W (¢) is an additive white Gaussian noise process with mean zero and power

spectral density N, /2, or of covariance (autocorrelation) function
Ny
wa(t,u)=wa(t,u)=78(t—u) (10.91)

The M signals may be dependent and correlated with autocorrelation coefficients

T
! [s;Os,dt, j.k=1,2,....M (10.92)

Pjk = '—Ej By

As before, we need to find a set of orthonormal basis functions in order to expand
the received process Y () ; that is W (¢) into the Karhunen-Loéve expansion, since

C,, (t,u)=C,,, (t,u).
Using the Gram-Schmidt orthogonalization procedure, we can find a set of K
basis functions, K < M , if only K signals {s k (t)} are linearly independent out of

the original M signals. Once the complete set of K orthonormal functions
{(]) j (t)}, j=1,2,...,K, are obtained, we generalize the corresponding coefficients

by
T
Y, =[Y(®d;0dt, j=12,....K (10.93)
0

From (10.29), the signals s, (¢), kK =1,2,...,M, may be written as
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(1) i o, @) O=r=t (10.94)
Sk = Sk' . , .
o k=12,....M

where s,; is as defined in (8.36). Substituting (10.94) into (10.23), the equivalent

M-ary decision problem becomes

0 0LJ=

_{s,g-+Wk, k=12,...,K

T T
H,:Y, = j [s() + W ()], (t)dt :j {Z S+ W(t)} b, (1)dt

(10.95)
W,, k=K+1,K+2,...

We observe that Y} is a statistically independent Gaussian random variable with
variance N, /2, and that only the first K terms affect the decision, since for

k > K the coefficients are W, , irrespective of the hypothesis considered. That is,
we have reduced the decision space to K,K <M . The mean of the first K
coefficients under each hypothesis is

Ely, 1H,] j=L2....M (10.96)
l=m.. =8 iy .
R R A T - ¢
whereas, for k£ > K , the mean is
Ely, |H,]=EW,]=0 (10.97)

From (5.56), we have seen that the optimum decision is based on the
computation of the a posteriori probability P(H ; |¥). A decision is made in favor

of the hypothesis corresponding to the largest a posteriori probability. Since the set
of K statistically independent random variables is described by the joint density
function

S (J’—mk)2
H)= | | -
fY\Hj V| H;) 1 '_TCNO exp[ N,

K

> (e —m,g)z} (10.98)

(TN~ '? { Ny i=

and the a posteriori probability on which the decision is based is given by
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P(Hj)fY\Hj(y|Hj)

P(H,|Y)= (10.99)
! Sy (»)
the sufficient statistic can be expressed as
Ti»=Pifyu, WIH;), j=12,...M (10.100)

Note that fy (), which is the denominator of (10.99), is common to all signals,

and hence it does not affect the decision and need not be included in the
computation. Substituting (10.98) into (10.100) and taking the logarithm, an
equivalent sufficient statistic is

1 £ 2 .
T}(y)=1nPj—N—Z(yk—m,g») , j=12,...,M (10.101)
0 k=1
where
T} (»)=T,(p)+In(nN,)*"? (10.102)

The 1 of T /-1 (y) is a superscript. From (10.99) and (10.97), the signal vector is

equal to the mean vector. That is,

1) m
Sj mj;

s;=| . [EY|H]=m;=| . || j=L2,...M (10.103)
SKj m;

We observe that if the hypotheses are equally likely, P, =1/M for all j, then
(10.100) means to compute fy, H, (¥|H ;) and select the maximum. That is, the

MAP criterion is reduced to the ML criterion. The sufficient statistic reduces to

M=

RN 2
T; (y)——Z(yk—mkj) =-

(v =54 P =|y—sj|2, J=12,..M (10.104)
k=1 k

where
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T} (y)=N, le(y)+lnM] (10.105)

and 2 of T jz () is a superscript. In other words, the receiver decides in favor of

the signal that maximizes the metric. Dropping the minus sign in (10.104) means
K

that the receiver computes Z( Vi —S$ kj)z and decides in favor of the signal with
k=1

the smallest distance.

The computation of the decision random variables given by the sufficient
statistic in (10.105) can be simplified if the signals transmitted have equal energy.
The equivalent sufficient statistic is (see Problem 10.11)

T
T (y)=s}¥= _[sj(t)Y(t)dt, j=12,...M (10.106)
0

where the 3 of T 1»3 (¥) is a superscript. The optimum receiver computes the

decision variables from (10.106) and decides in favor of one. This receiver is
referred to as the “largest of ” receiver and is shown in Figure 10.9.

Probability of Error of M-Orthogonal Signals

We have seen that when all hypotheses are equally likely and when all signals
have equal energy F, the optimum receiver is the “largest of” receiver, as shown in

) |
T 0
4,(2)
T
J' > Choose
WD) o largest — Decision
—p decision
0,0 variable
2
L]
L]
L]
T
*§>—' /
bk (0

Figure 10.9 “Largest of ” receiver.
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Figure 10.9, which computes the sufficient statistics given in (10.106) and decides
in favor of the hypothesis with the largest 7';. The probability of error is given by

P(e)=PP(e|H )+ P,P(e|Hy )+ ... + Py P(e| H,, ) (10.107)
Assuming H, is true, it is easier to calculate P(g) using the complement. Thus,
P(e)=1-P, =1-P(all T, <T} ,k=2,3,...,M | H,) (10.108)

where P, is the probability of a correct decision. A correct decision for 4, means
that the receiver decides H, (I} > T}, for all k # 1) when H, is transmitted.
Since the variables Y, ,k=1,2,...,M , are Gaussian and uncorrelated, the

sufficient statistics are also Gaussian and uncorrelated, and thus statistically
independent. They are given by

T, } 05, (6)+ W (0)Jde Exm, k=1 (10.109)
=|s sp(H)+ = .
A Wy, k=2,3,.,.M
The mean and variance for T, ,k =1,2,..., M , under hypothesis H, are
=15 K= (10.110)

U0, k=2,3,...M '

and
NO
var[Tk|Hl]:T for all k (10.111)

Hence, the conditional density functions of the sufficient statistics are

2
(1 ~E) } (10.112)

1
Srm, (4 [ Hy) = €xp| —
V7N, Ny

and

S, (e | Hy) =

2

t

expl ——— |, k=2,3,....M (10.113)
NO

1
VTN
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The probability of error is given by
P(e)=1-P, (10.114)
where P, is given by

P, =P(T, <T\,T; <T,...,Ty <T, | H;)
=P(T, <T,|H,)P(Ty <T, | H,)...P(T), <T, | H,) (10.115)

Given a value of the random variable 7}, we have

M-1
P(T, <t;,k=2,3,....M | H,) {J-fm,{l(tHHl)dtk] (10.116)
Averaging all possible values of 7}, the probability of a correct decision is

—0

; M-l
P, = I S, 4 |H1)[ J-ka\Hl (7% |H1)dtk] dt, (10.117)

Thus, P(g) is obtained to be

e ol e

A signal source generates the following waveforms

Example 10.3

s1(t)=cosm, .t , 0<¢<T

s,(1) = cos[(oct+2TnJ, 0<¢<T

2
s3(1) = cos(mct—%} 0<t<T

where @, =2n/T . During transmission, the channel superimposes on the signal a

Gaussian noise with mean zero and power spectral density N, /2. Determine the
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optimum receiver, and show the decision regions on the signal space. Assume that
the signals are equally likely and minimum probability of error criterion.

Solution

We observe that the three signals s,(¢), s,(f), and s;(¢#) have equal energy
E =T/2. Let the first basis function be

:Sl(l)
JE

2
=, =cosw.t, 0<t<T
T

;

Using trigonometric identities, s,(¢#) and s5(¢#) can be written as

5,(t)= cos(coct + 2%} = cos(mct)cos(i—nj - sin(mct)sin(z?nj

s3(t) = cos((oct _%rj = cos(mct)cos(z?nj + sin(mct)sin(z?n]

where cos(2n/3)=-1/2 and sin(2n/3)=+/3/2. By inspection, k=2
orthonormal functions are needed to span the signal set. Hence,

o, (1) =

2

Fcoscoct, 0<t<T
2 .

d, () = ?smwct, 0<t<T

The optimum receiver is the “largest of ” receiver, as shown in Figure 10.10. In
terms of the basis functions, the signal set {s k (t)} may be expressed as

T
Sl(t):\/;d)l(t)
1 |T 1 |3T
Sz(t)z—E\/;%(l)—E 7¢2(t)

1 [T 1 (37
s3(t)=—5\/;¢1(t)+5 - 620
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—>®—>

Ot

(0 (0]
l >
$,(0)

Figure 10.10 Optimum receiver for Example 10.3.

Choose
largest

— Decision

The signal constellation and the decision regions are shown in Figure 10.11.

Example 10.4

Consider the problem given in Example 10.3, assuming the signal set

s, =4 sin{mct+ (k-1) ﬂ

Solution

0<t<T
k=123,4

Using trigonometric identities, s () can be written as

%
w

/

/

\

\

k<

Figure 10.11 Decision regions for Example 10.3.
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5, (t) = Asin(w, 1) cos{(k - 1)%} + Acos(w,?) sin{(k - 1)%}, k=1,2,3,4

or s,(t)=Asinw,t,s,(t)=Acosw_t, s5(t)=—Asinw t,and s,(t) =—A4cos ®_t

The signals have equal energy E = A>T /2. By inspection, K =2 orthonormal
functions are needed to span the signal set {s x (t)}, k=1,2,3,4.Thus, we have

0, ()= %coso)ct and ¢, (¢) = %sinmct for 0<¢<T

Again, since the signals have equal energy and are equally likely, the optimum
receiver is the “largest of ” receiver, and the decision regions, which are based on
the “nearest neighbor” rule, are shown in Figure 10.12.

Note that a rotation of the signal set does not affect the probability of error.
For convenience, let the new signal set be as shown in Figure 10.13. Assuming
that the signal s,(#) is transmitted, the probability of error is

P(e|H,)= P(Y falls outside first quadrant | H, )
Due to symmetry and the fact that P;=1/4for j=1,2,3,4,
P(e|H,)=P(e|H,)= P(e| Hy)=P(e| H,)= P(e)

Y; and Y, are statistically independent Gaussian random variables with means

A
N T /’
~ A— 4
N 2 | % e
N ’
AN H, 7/
N 4
N 7’
N Vs
S3 H, \\// H S .
Vi » )
d N
/ ’ N fT
7 P N A|—
2 7 N 2
7 A Y
Vs H, N
d T \\
7’ ’
7 —A 3 Sy N\

Figure 10.12 Decision space for Example 10.4.
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A Y2
AT A
$oommomomones N B .
; ; >
4ot | gs
2T P A
2 :7‘/7
. y .
LT |
. 2
[

Figure 10.13 Signal set for Example 10.4 after rotation.

E[y, | H,]=E[Y, |H1]:§ﬁ

and variances

varly, | H, ] = var[Y, |H1]:%

Therefore,

and the probability of error is

<wo)P(0<Y, <w)={]

0

1
0 /TN

A

exp| —

o d 42|
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10.3.2 Matched Filter Receiver

The sufficient statistic given by (10.101) in the previous section using a correlation
receiver can also be obtained using a matched filter. The matched filter is a
particularly important topic in detection theory either for communication or radar
applications. The output signal-to-noise ratio (SNR) is an efficient measure of the
system. Instead of using a bank of K correlators, as shown in Figure 10.9, we use
K matched filters, as shown in Figure 10.14. The impulse responses of the K filters
are

0<t<
hi () = ¢, (T 1), f =1 (10.119)
where {d) P (t)} form the set of basis functions.

If s(¢) is the input to a linear filter with impulse response 4(t), as shown in
Figure 10.15, the output y(¢) is just the convolution of s(¢) and A(¢) to yield

=T |
< »
S I AT R AT
=T |
< _»
P 0, (T-1) —BZ¥> Choose
() : ! lareest — Decision
—> ! ge
' decision
. E variable
L] ]
: e
=T 1
< K
> o (T-0) —;2; ~—>
Sample at t=T
Figure 10.14 Matched filter receiver.
s(1) Impulse response
Eam— 4 (]

Figure 10.15 Linear filter.
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y(t) = ]Os(r)h(t—r)dr (10.120)

If A(?) is as given by (10.119), the resulting filter output is
y(6)= [T ~t+1)drn (10.121)

—00

Sampling at # =T , we obtain

0 T
¥ = [sd()dr = [ s(p(r)de (10.122)
—o 0

since ¢(¢) is zero outside the interval 0 <¢<T. A filter whose impulse response
h(t)=s(T —t) is a time-reversed and delayed version of a signal s(¢), 0<¢<T,
is said to be matched to the signal s(¢). Correspondingly, the optimum receiver

shown in Figure 10.14 is referred to as the matched filter receiver, since the K
matched filters are matched to the basis functions {d) 3 (t)} and generate the

observation variables Y;,Y,,..., Y.

Maximization of Output Signal-to-Noise Ratio

Consider the system shown in Figure 10.16 with a known input s(¢), impulse
response /(t), and an additive white Gaussian noise W (¢) of mean zero and
power spectral density N /2. The input is

X(O)=s)+W(1), 0<t<T (10.123)

The resulting output Y (¢) of the linear filter may be expressed as

t=T
+ X() Impulse Y
s() response “A >
a h(?)
W)

Figure 10.16 System for derivation of matched filter.
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Y(t) =50 (£) + W (1) (10.124)

where s, (t) and W(¢) are produced by the signal and noise components of the
input X(¢), respectively. The largest output signal-to-noise ratio is defined at the
sampling time ¢t =7 as

2
=SNR, _ bo@F (10.125)

2
‘ E[W2 (t)]

out

Note that the denominator of (10.125) is actually the variance of the noise. We
now show that maximization of the SNR occurs when the filter is matched to the
input known signal s(?).

Let S(f) and H(f) denote the Fourier transforms of s(#) and A(z),
respectively. Then, s, (¢) can be written in terms of the inverse Fourier transform
to be

$o(0) = TS(f)H(f)e"'z"f’ df (10.126)

At sampling time ¢ =7 , we may write

2

lso (D" =| [ S(HH(™ df (10.127)
Evaluating the output average power of noise, we have
2 T No 7 2
EW2 0= 5., (ar == [le1r) ar (10.128)
Substituting (10.127) and (10.128) into (10.125), we obtain
" 2
[SUHH(f)e* T df
d?, =SNR, = (10.129)

S0 ol ar

—0
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Using the Schwarz inequality for the numerator of (10.129), we have

2

[SHHN T df| < (SO df [|H df (10.130)
The output SNR becomes
2 o0
d2, =SNR, SN—O_J;JS(f)|2df (10.131)

We observe that the right-hand side of (10.131) does not depend on the transfer
function H(f) of the filter, but depends only on the signal energy and noise

power spectral density. Hence, the signal-to-noise ratio in (10.131) is maximum
when equality holds; that is, we choose H(f)=H,, (/) so that

[SNR ¢ Linax = Ni [Iscrf*ar (10.132)
0 —o

Again, using the Schwarz inequality, the optimum value of the transfer function is
defined as

H,, (f)=S8"(f)e*™T (10.133)

where S”(f) is the complex conjugate of the Fourier transform of the input signal

s(t). For a real valued signal, S*(f)=S(—f) and the impulse response of the
optimum filter (10.133) is then

B () = TS(— e TDgr = (T —1) (10.134)

—00

which is a time-reversed and delayed version of the input signal s(¢), and thus
matched to the input signal.

Example 10.5

Let s,(t) and s,(¢) be two signals as shown in Figure 10.17, which are used to

transmit a binary sequence.
(a) Sketch the matched filters.
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s1() 82(1)
A A
A A
r
2 T
| » !
0 0 T
4+

Figure 10.17 Signals s,(¢) and s,(¢) for Example 10.5.

(b) Determine and sketch the response to s, (¢) of the matched filter.

Solution

(a) The matched filters to the signals s;(f) and sy(¢) are 7, (¢)=s5,(T—¢) and
hy(t)=s,(T —1t), as shown in Figure 10.18.

(b) The output to the input s, (¢) is y, () =s,(¢)*h, (). Solving the convolution,

we obtain

A2
—t , 0<t<T
2
vy (f) = AZ(T—é], T<t<2T
0 , otherwise
hl(t) hz(t)
A A
4 A
> ! > !
0 T T 0 T
2
A

Figure 10.18 Matched filters to s,(f) and s,(¢).
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A()
AT

v

0 T 2T

Figure 10.19 Response y,(f) of matched filter.

which is shown in Figure 10.19. We observe that the maximum of the response is
at the sampling time =T .

10.4 LINEAR ESTIMATION

In Chapter 6, we studied some techniques for parameter estimation in some
optimum way, based on a finite number of samples of the signal. In this section,
we consider parameter estimation of the signal, but in the presence of an additive
white Gaussian noise process with mean zero and power spectral density N /2.

The received waveform is of the form
Y(0)=s(t,0)+W (1), 0<t<T (10.135)

where 0 is the unknown parameter to be estimated and s(z) is a deterministic

signal with energy E. The parameter 6 may be either random or nonrandom. If it
is random, we use Bayes estimation; otherwise, we use the maximum likelihood
estimation. We assume that s(¢,0), which is a mapping of the parameter 6 into a
time function, is linear. That is, the superposition principle holds, such that

s(t,0, +0,)=s(,0,)+5(t,0,) (10.136)

The estimator of the above-mentioned problem is /inear, as will be shown later,
and thus we refer to the problem as a linear estimation problem.

Systems that use linear mappings are known as linear signaling or linear
modulation systems. For such signaling, the received waveform may be expressed
as

Y(6)=0s(t)+W (1), 0<t<T (10.137)

We now consider the cases where the parameter is nonrandom and random.
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10.4.1 ML Estimation

In this case, © is a nonrandom parameter. Y(¢#) may be expressed in a series of
orthonormal functions, such that

K
Y()= lim Zka)k(t) (10.138)
K—ow =
where

T
Y = [Y(©)b, (Dat (10.139)
0

and the function ¢, forms a complete set of orthonormal functions. Thus, the first
basis function is

0, (2) ) (10.140)

N

Substituting (10.140) into (10.139), with k£ >1, we obtain
T
Y, ZI[G\/E¢1(1)+W(1)]¢k(t)dtZWk (10.141)
0
which does not depend on the parameter to be estimated, whereas
T
Y, =] [eJEpl (t)+ W(r)]q)1 (t)dt = OVE +W, (10.142)
0

depends on 6. Consequently, Y, is a sufficient statistic. Y| is a Gaussian random

variable with mean 0~/E and variance N 0/2.
The likelihood function is

(yl ‘eﬁ)z

L(©®) = fy0 (1 10) = JlTexp— N (10.143)
N, 0

We know, from (6.3), that the ML estimate 0 is obtained by solving the likelihood
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equation. That is,

2
Oz =2~ Linmn, - (yl_eﬁ) JE

2
S - —oJE)=0 (10.144
20 6| 2 N N, (r-0VE )0 (0144

or

=L (10.145)

Therefore, this optimum estimator is a correlation of the received signal with the
signal s(¢) normalized as shown in Figure 10.20.

To check if an estimate is “good,” we need to compute its bias, error variance

or Cramer-Rao bound, and determine its consistency. We observe that éml is

unbiased since E[Y;]=0VE , and thus from (10.145)
El6,, 0 ]-—= £l ]-0 (10.146)
JE

For an unbiased estimate, the variance of the error is equal to the lower bound of
the Cramer-Rao inequality, provided it is efficient. Using (6.50) and (10.144), we
have

6111f1@|®()’1|9)_2\/f _2E( »
20 TN, (yl_eﬁ)_N_o(ﬁ_e

= c(9)[é(y1)—9]9=éml (10.147)

which means that var[0,, —0] equals the lower bound of the Cramer-Rao
inequality given in (6.33).

»(®

T
l JE >0

oi(0)

Figure 10.20 Optimum ML estimator.
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10.4.2 MAP Estimation

Following the same procedure as in Section 10.4.1, we obtain the sufficient
statistic ¥;. However, since 0 is now assumed to be a random variable, the MAP

estimate is obtained by solving the MAP equation in (6.31). Assume that 0 is

Gaussian with mean zero and variance 0'5 ; that is,

1 0°
0) = _ 10.148
f@( ) \/%0-6 exp[ 263} ( )

The MAP equation is

Oln 0 Oln ) 1
VETAS |J’1)= SrieOn | )+8 nf@(9)=2ﬁ(yl_e\/f)+i=0
00 00 00 N, o}

(10.149)

Solving for 6, we obtain the MAP estimate to be

WEIN -
0,0y (1)) = Y, =ab,, (10.150)
(2E/Ny)+(1/62)
where

2JE /N,

o= JE N, (10.151)

(2E/NO)+(1/G§)

It is easily shown that the mean-square error of the MAP estimate is equal to the
lower bound of the Cramer-Rao inequality; that is,

2
N
Var{[emap(Yl)—G]Z}:— . ! S A (10.152)
g 0% In fre (¥ 10) | 204E+N,
002

The optimum MAP estimator is shown in Figure 10.21.
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»(®

map

O C—y

a .
— —»
\/E 0

(A0
Figure 10.21 Optimum MAP estimator.

10.5 NONLINEAR ESTIMATION

The function s(¢,0) is now a nonlinear function in 6. Again, & may be random
or nonrandom.

10.5.1 ML Estimation

Let {0, ()} be a set of K orthonormal basis functions. Since we require an infinite
number of basis functions to represent Y(¢), we approximate the received signal
Y(¢) as

K
Y(t) =Y Y04 (2) (10.153)
k=1
where
T
Y, = [Y(0), (1)t (10.154)
0

Substituting (10.135) into (10.154), we have

Il
o'—.’\]

T T

[5(6,0)+ W (0) |6, (Ot = [ 5(t,0)0 (t)ee + [ W (1), (1)t
0 0
=S

O+ W, k=12,..,K  (10.155)

where

T

54(0) = [ 5(2,0), (1)t (10.156)
0
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The Y} is a statistically independent Gaussian random variable with mean s, (0)
and variance N /2. Thus, the likelihood function, from (6.2), is

i =5, ®F
— Hexp{ Lk TR (10.157)

L(©) = fye(y]0) = N
0

(nN )
As K — o, (10.157) is not well defined. In fact,

0 for N, >1

lim = 0) = 10.158
Koo Tre(r10) {oo for 7N, <1 ( )

Since the likelihood function is not affected if it is divided by any function that
does not depend on 6, we avoid the convergence difficulty of (10.156) by

dividing L(0) by

2

Vi
exp| ——— 10.159
p{ N} ( )

Consequently, we define A'[y, 0] as

A[y,0]2 .fY|®(.V|e) —ex { 2

K
fr () Pl 2 Ve @)= Zsk(ﬁ)} (10.160)

0 k=1 Okl

The ML estimate is the value of 0 for which A,[Y,0] is maximum. Using
Parseval’s theorem and the fact that I}im v ()= y(¢) and I}im 5, (t,0)=s(,0),
—®0 —®

we obtain
K T
lim 3" yys,(0) = [ y(0) s(z,0)dt (10.161)
K—w =1 0
and

K T
lim Zs,f(e)zjsz(t,e)dt (10.162)
K~>ook:1 0
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Using (10.161) and (10.162), and taking the logarithm as K — oo, the likelihood
function is

T T
In ATY(2),0] = Ni [rose, e)dz—NL [ERAYE (10.163)
00 00

To obtain the ML estimate ém,, which maximizes the likelihood function, we
differentiate (10.163) with respect to 6 and set the result equal to zero. We find

that the ML estimate 0 is the solution to the equation

as(z 0)

Y(£)-s(z,0) dt=0 (10.164)
I[ ]

Since 0,,, is an unbiased estimate, it can be shown that the error variance from the

inequality
A N,
var{[Y()]-6} > ————— (10.165)
LT os(2,0)
of | == dt
oL 00
equals the lower bound of the Cramer-Rao if and only if, as K — oo,
OlnA'[Y(1),0
oY), 6] _ (e){ o[r(r)]-o } (10.166)

00
Example 10.6
Consider a known signal of the form

s(t,0)= A, sinQnf,t+0), 0<t<T

where the amplitude 4., the frequency f., o, =kn/T, and the integer k are
known. We wish to estimate the unknown phase 0 .

Solution

The ML estimate 0, is the solution to (10.164). That is,

ml
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T
[ [Y(t) — A, sinQnf.t+ é)]cos(27t fot+0)dt =
0

or

T
[Y(t)cos(2nf,t+0)dt =
0

T
since _[ A, sin(2rnf,.t+0)cos(2nf,t +0)dt =0. Using trigonometric identities, we
0

can express the above integral as

T T
cos éj Y(t)cos(2nf, t)dt —sin éj Y(¢)sin(2nf, t)dt =0
0 0

Solving for 0, we obtain the ML estimate to be

T

[Y(t) cos(2nf,b)dt
,1 (;‘

[Y(®)sin2nf,t)dt

0

é: tan

10.5.2 MAP Estimation

Now O is a random variable with density function fg(0). Following the same
approach as in Section 10.5.1, and using the fact that émap is that value of 6 for

which the conditional density function fgy (0] y) is maximum,

A dInA'[Y(1),0]
mp =T og

=—j[Y<r>—(e)] L

dt+—1nf@(6) (10.167)

If 0 is Gaussian with mean zero and variance o3, then
dln fo(0)/d6=-6/ Gé,and the MAP estimate becomes
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0s(t,0)
00

. 262 T
0 ap :N—OQE[[Y(t)—s(t, 0)] dt (10.168)

10.6 GENERAL BINARY DETECTION WITH UNWANTED
PARAMETERS

In this section, we consider the general binary detection of signals in an additive
white Gaussian noise process with mean zero and power spectral density N /2.

However, the received waveform is not completely known in advance as in the
previous section, where we assumed that the only uncertainties were due to
additive white Gaussian noise. These signals, which are not completely known in
advance, arise in many applications due to factors such as fading, random phase in
an echo pulse, and so on. The unknown parameters of the signal are known as
unwanted parameters.

Consider the general binary detection problem where the received signal
under hypotheses H; and Hj is given by

(10.169)
Hy:Y(t)=5,(t,0,)+W (), 0<t<T

where 0, and 0, are the unknown random vectors. Note that if 8, and 0, are
known, the signals s,(z,0,) and s,(¢,0,) are deterministics, and thus they are

completely specified.
The unknown parameter 0 ; , j = 0,1, may be either random or nonrandom. In

our case, we assume that 0, j=0,1, is a random vector with a known a priori

density function. That is, the joint density function of the components of
0, ,/=0,1, is known. The approach to solve this problem is to obtain a set of K

orthonormal functions {d)k (t)}, approximate Y(¢f) with the K-term series

expansion, and let K — o . We form the K-term approximate to the likelihood
ratio, and let K — oo to obtain

Sy, (W1 H )

(10.170)
fy|HO (v Hy)

Alr@]= lim Aly, (0]=

where
Srn, WIHD =] fro,m, (5,01 | Hy)do,
1

=[ . Tv.m, (7100 H\)fou, (0 | H\)dO,  (10.171)
1
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and

Sy, (VI Hy) ZIXBO Sy, (9,00 [ Ho)db,
=L, v0011, (100 Ho o1, 00 | Ho )0y (10.172)
where Xo, » J =0,1, denotes the space of the parameter 0 ; .

We now solve for leQ/,H/_ (¥10,,H ), j=0,1, under the given conditions.

Let

K
Y ()= Y0, () (10.173)
k=1
where
T
Y, = [ Ve (o)t (10.174)
0
The observation vector is
Ye=[r, v, ..o (10.175)

Substituting (10.169) into (10.174), we obtain that Y, under hypothesis H, is

T T
Ye = [1(6.0)0, (Vdt + [ W ()¢, (D)t = s, + W, (10.176)
0 0

while under hypothesis H, is
T T
Y = [59(6,00)0; ()t + [W ()b, (0)dt = 510 + W, (10.177)
0 0

Given 0 .7 =0,1,Y is a statistically independent Gaussian random variable with

means

E[Y, 10, H ]=5, (10.178)
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E[Y, 10, H =54 (10.179)

and variances
N,
var[Y, |0,, H, |= var[Y, |00,H0]:7 (10.180)

Thus, the conditional density functions are

K _ 2
Sre.n (10, H)=T] ! exp{—(yk s’”)} (10.181)

k=1 4/ Ny

K _ 2
Syiopm, 100, H)=T] ! exp{—(ykNSko)} (10.182)

k=1 4/ TN 0

We observe that A[Y, (¢)] is the ratio of (10.181) and (10.182). In the limit as

K — o, the terms in the exponent of (10.181) and (10.182), which can be
approximated as summations, become

K T
Jim > (g =s0)? = [ [0 =5, .0 e (10.183)
=07 0
and
K T
Jim 3 (i =s10)” = [ [0 =s0(1,00) ] ar (10.184)
- T 0

Substituting (10.183) and (10.184) into (10.171) and (10.172), respectively, we
obtain

T
Frm W)= fou, O] Hl)exp{—Ni [bo-si@.00F dt}del
0] 00
(10.185)

and
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T
Sy, WTHO) = To,1, 00| H@exp{—Ni [0 =s0.00)F dt}deo

00
(10.186)
Hence, the likelihood ratio is the ratio of (10.185) and (10.186) to yield
T
1 2
[, foum ® |H1)exp{—N [y -5,(t.0))] dr}dﬂl
A[Y(1)]= oo (10.187)

LT
Ix Jom, 00 |H0)3XP{_NI [y(t)—so(t,eo)]zdt}dﬂo
0o 00

10.6.1 Signals with Random Phase

We assume that the uncertainty in the received signal is due to a random phase
angle, which is probably the most common random signal parameter. Let the two
hypotheses be characterized by

H,:Y(t)=Acos(w t+@O)+W (), 0<t<T

(10.188)
Hy:Y(t)= W(), 0<t<T

where the amplitude 4 and frequency ®=2nf are assumed to be known. The

phase ® is a random variable having an a priori density function

]
L r<e<
fo@ =120 07T (10.189)

0 , otherwise

We observe that s,(#,0) = Acos(wt+0®) and s,(t)=0. The goal is to design a
receiver that chooses between the two signals s;(¢) or s,(¢). Since s,(#,0) =0,
the denominator of the likelihood ratio given by (10.186) becomes

1,
[, four,®1Ho) exp{—N—o { y (t)dr}de

1 T
= exp{—N— [y <z>dz} [ Sou, ®1H,)do
00 0
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T
= exp{—NL [y (t)dt} (10.190)
00

because Ix Sou, (@1 Hy)dd=1. Substituting (10.190) into (10.187) and
()
simplifying, the resulting likelihood ratio is
T

T T
Aly®]= | fQ(O)dOexp{i | y(:)sl(t,e)dz—i | slz(t,e)dt} (10.191)
T No g No g

Solving for the integral between brackets, we obtain

T 2
JAZ cosz(mct+6)dt= AT
0 2

(10.192a)

and
T T
[ ¥(0)s, (t)dt = A[ y(t) cos(o, ¢ + O)dt
0 0

T T
= Acos B y(t) cos(o,t)dt — Asin 0] y(t)sin(w,)dt  (10.192b)
0 0

where we have used
cos(®, .t +0) = cos(w,¢) cos O —sin(m_#) sin O (10.192¢)

For convenience, define the quantities
T
ye = [y coso, tdt (10.193a)
0
and
T
¥, =[y(@O)sino.rdt (10.193b)
0

Substituting (10.192) and (10.193) into (10.191), we have
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2 T
Aly()] = exp(— AT J 1 J.exp{ﬁ (yc cos0—y, sin 6)} do

2Ny )27 = 0
2
=exp AT I, ﬁw/yf +y? (10.194)
2N, | °\ Ny

where 1, ( - ) is the modified Bessel function given by

LJ.exp[acosx+bsinx]abc=10(\/a2 +b2) (10.195)

27T,n

The likelihood ratio test is then

H,
AT | (24 >
Aly()] = exp| ——— |Io| ==/ yZ + y? n (10.196)
2N, N, <
H,
Taking the natural logarithm, an equivalent test is
H,
oy =1 | 2L 52+ | > lnr|+2N0:y (10.197)
1 vy YT ) < 2t '
H,

The optimum receiver computes only the sufficient statistic 7;(y). A possible

realization is shown in Figure 10.22.
The Bessel function /,(x) is a monotonically increasing function of x.

Recognizing that the plus sign is associated with the square root, the decision may

be taken on x or x>. Removing the square root blocks, an equivalent sufficient
statistic is

Hl
>
() =2 +y?) _ 12 (10.198)

H,

and the alternate realization of the optimum receiver is shown in Figure 10.23.
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T Ve
[ o 2 P (F
Nﬂ
0
Wo)| coswt f, > H,
—» J P lnlo(-) Be Zyl
> H,
H, °
T Vs
J —» fV—A > ()
) 0

sin o, ¢

Figure 10.22 An optimum receiver for the problem stated in (10.188).

z Ve
— ) | (-F
0
(1) cosTo)(,t
AN T,()
Vs
| o ()
0
sin, ¢

Figure 10.23 Simplified form of the optimum receiver.

Note that in deriving the decision rule, we kept y, and y, as defined in (10.193a)

and (10.193b) to show how the quadrature components are used in the decision
process. If we now use polar transformations

Y. =rcos
b = rsin® (10.199)

such that 6 = tan ! (y./ys),(10.194) becomes
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2
A[Y(®)]= exp(— ;NT JIO (ﬁ rJ (10.200)

0

This is a “nice” result [1], that will be used in the next section on signals with
random phase and amplitude.

Incoherent Matched Filter

We now show that the optimum receiver can be implemented in terms of a
bandpass filter followed by an envelope detector and a sampler. The combination
of the matched filter and envelop detector is often called an incoherent matched
filter. We observe that by substituting (10.193) in (10.198), the decision rule can
be written explicitly as

2H1

T 2 T
Tz(y)={fy(t)cosmc(t)} +{Jy(t)sinwc(t)} o1 (10.201)
0 0
H2

which is the known quadrature receiver shown in Figure 10.24.

We have shown in the previous section that a correlator filter is equivalent to a
matched filter having an impulse response A(t) =s(7' —¢),0<t < T, followed by a
sampler at =7 . The incoming signals are in this case cosw,.t and sinw,z,
0<¢<T.Hence, the equivalent quadrature receiver is as shown in Figure 10.25.

[ o (-

—» H,

cos ¢
»(® >
—» T,(») <12

o=
—»%)—» (-

sin o, ¢

ot—
A 4

Figure 10.24 Quadrature receiver.
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| M) =coso (T -0 » ()

" 0<t<T
H —» H,

w0 >
— T,(») <12
[—[0 _>H0
hy(y)=sino (T —1) o ()2
" 0<t<T ”
Figure 10.25 Quadrature receiver using matched filters.
The impulse response of a bandpass filter can be written as
h(t)=h; (t)cos[o.t+; (1)] (10.202)

where £, (¢)is the lowpass representation of /(z). That is, it is very slowly
varying compared to cosw.t. The phase ¢;(¢) is also very slowly varying
compared to cos®, .z, and it can be shown that setting it equal to zero will not
make any difference. Hence, the bandpass filter becomes

h(t)y=h;(t)cosw, t = ‘J{e{ h; (t)ejm"t} (10.203)
If the input to the bandpass filter is s(¢), then the output at time T is
T T
() = [ (T =0)s(t)dt = [ s(O)h, (T 1) cos(w, T~ t)dt  (10.204)
0

0

Expanding the cosine, we obtain

T T
y(T) = cos (ochs(t)hL (T —t)cos w t dt +sin (DCT_[s(t)hL (T-t)ysinw,tdt
0 0
=cosw Iy, (T)+sinw T y,(T) (10.205)

where
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T T
y(T) = [ s(t)h, (T —t) cos ¢ dt = iRe{J. s()h, (T - t)ejm‘tdt} (10.2062)
0 0

and
T

T
¥ (T) = [ s(O)h, (T =t)sin ot dt = Sm{ [ sy, (T~ t)e-/(”C’dt} (10.206b)
0 0

Equation (10.203) can be written in terms of the amplitude and phase as

Y(T) =y (T)+ y2(T) cos[w,t +(1)] (10.207a)
where
B = tan- 25D 10.207b
¢(1) = —tan ) ( )
Let Z be given by

T .

7= j s(O)h, (T —1)e’™ dt (10.208)
0

Then, |Z| = \/€Re2 {Z}+3m*{Z}. We conclude that

Vi) +y2(T) =|z]=

T
[ s, (T —t)e’ dt
0

(10.209)

That is, 4 yf (T)+ yc2 (T) is the envelope of the response at time 7" and can be
obtained by the incoherent matched filter shown in Figure 10.26.

t=T
2 2
s(t) Bandpass filter y([l Envelope 7& VYD) +y; (Tl
h(®) detector ¥ >

Figure 10.26 Incoherent matched filter.
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Suppose now that our signal is s,(¢) = A(¢)cos(w.t+0),0<¢<T, and the
amplitude variation A(¢) is slow compared to cos ® ¢ . By definition,

T T
Ve = Iy(t)A(t) cosw, tdt = ‘.Re{J. y(t)A(t)ejm“tdt} (10.210a)
0 0
and
T T .
s = [y A@)sin ot dt = Sm{ [y A@)e’ dt} (10.210b)
0 0
It follows that

Ny +yl =

(10.211)

T
[y A@)e”™ at
0

In comparing (10.211) and (10.209), we observe that + y2(7)+ y2(T) is identical

to yy2+y2 when A(t)=h,(T—1) or h, ()= A(T—1). That is, when the
impulse response of the bandpass filter has the envelope matched to the amplitude
of the signal, the output of the bandpass filter at time 7 is

T()|,_, =ye+: w{wct—tan1 &J (10.212)

Ve
Hence, the sufficient statistic is the output of the envelope detector at time ¢ =T.
Example 10.7

Given the problem in (10.188), and assuming ® uniformly distributed over the
interval [—m, 7], determine

(a) the probability of false alarm.
(b) the probability of detection.

Solution

(a) We found that the optimum receiver is the quadrature receiver with sufficient
statistic 7(y) = y2 +y2, with y. and y, as defined in (10.193). W (¢) is a white
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Gaussian noise with mean zero and power spectral density N, /2. Under H,,
Y(t) =W (t), and the probability of false alarm is given by

Pr =P[T(y)>v|Ho]=P[Yc2+Yv2 >Y|H0]

From (8.130), y. and y, are Gaussian random variables, and thus we need only
determine the means and variances. We observe that

E[Y, |H,]=E[Y, |Hy]=0

Also,
TT
Var[YC |H0]:E[Yc2 |HO]:_” cos @ tE W(t)W(u)]coso) udtdu
00

N, th
= EN Icos ®,t0(t—u)cosw udtdu
0

NoT (
cos oa,tdt:L+—0.[cosZo)ctdlz
4 4 5

since the integral of the double frequency term is negligible. In a similar manner,

N,T
4

Var[YS | H ] ~
We now show that Y, and Y; are approximately uncorrelated
TT
E[YCYS | HO]: II cos o tE W(t)W(u)]sm o udtdu

00

T N. T
—OIcos o tsinw tdt = Toj'sin 2w,.tdt =0
0 0

since, again, the integral of the double frequency term is negligible. Hence, the
joint density function of Y, and Y, is

1 Ve + s
Syyim, Ve s 1 Ho) = 5 exp{ J
2nc
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with 6% = N o /4 . The probability of false alarm is given by
Pr :P[T(y)>Y|H0]:P[Yc2 +Y} >Y|Ho]

2 2
=[[ 1 eXP(—%decdys

D 2nc?

where D is the region in the y.-y, plane outside the circle of radius ﬁ , as shown
in Figure 10.27.
Using polar coordinates, we have y. =rcosa, y, =rsina, r? = yf, +y3,

a’=tan"'(y,/y,.),and dy.dy, = rdrdo. . Hence,
2 2

r r Y

1 e 27 rdodr= [ Le dr=c (10.213)
21 Ji ©
Y

—3

Py =|
\/?

a

(b) Assuming 0 is known, the probability of detection is given by
Poo = Pp(®) = PT() > 710.H, 1= P[Y2 + 2 >y 1,

Under hypothesis H;, Y(¢) = Acos(w, .t +®)+W(¢). Thus,

T T
Y, = J Acos(w, t+0)cosw, tdt+ J AW (t) cos(w, t+0)dt
0 0

>

Vi

o
Ui

| WW |

Figure 10.27 Region D in the y.-y, plane.
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Since E[W(1)]=0 , then

f AT At
E[YC |6, Hl]: A_[cos(coct +0)cosw tdt = TCOS 9+5.fE[cos(2mct + 9)]dt
0 0

Once again, the double frequency term is negligible, and thus
E[YC | B,Hl]:gcose

Similarly, it can be shown that

NoT

ElY, |e,H1]=§sme and var[Y, |0, H,|=varlY, |0,H,]=

In addition, Y, and Y are jointly Gaussian and statistically independent under the
assumption that 6 is known. Hence,

[y, —(AT/2)cos B +[y, —(AT)sin O]’ }

1
/5 (Ve Y5 10, Hy) = exp
Y.Y,0.H, = 752

The probability of detection is then

no 262

{_ [y, — (AT /2)cos O] +[y, — (AT)sin O]

Pp(0) =] 5 1 - exp }dycdys
Dy

Using polar coordinates, as in (a) with y, =rcosa and y, =rsina, then

= \/J.;J.n 2nc

AT : . AT Y
I"COS(X_TCOS(X, + rsmoc—Tsmot
rdrdo.

262

xp| —
Zep

Expanding the exponent, P, (0) becomes
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where

T

Tl.’
Iexp{ AY; rcos(a— 9)}'@ = 27510( AY; rj
- 2c 2c

A]; rcos(o— 9)}d6

(10.214)

We observe that P, (0) is no longer a function of 6, and thus it does not matter

whether or not 6 is known. It follows that P, (8) = P, . Defining

g2 4r/2)
o2
and
,
z=—
c
then

© 2 2
P, = .[ zexp(—z ;d ]Io(dz)dz

\/; /o
This is Marcum’s Q-function, where

Z2 +a2

O(a,b) = Tz exp[— ]IO (az)dz
b

(10.215a)

(10.215b)

(10.216)

It does not have a closed form, but the integral is evaluated numerically and

tabulated. Thus,
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Pp =Q[d,ﬂ] (10.217)
(e}

Since Pp :exp(—y/ZGz), In Pp :—y/262, and the threshold becomes
y=-2c" In P . Hence, the probability of detection also can be written as

P, =0(d,+/—21n Pr ), and the ROC can be plotted as shown in Figure 10.28.

10.6.2 Signals with Random Phase and Amplitude

In many applications, both the signal amplitude and phase may be random. The
received hypotheses are

H, :Y®)=S@)+ W), 0<t<T
(10.218)
Hy,:Y(@)= W), 0<t<T
where S(¢) = Acos(w,t+0®). The amplitude 4 and the phase ® are random

variables, even through they are assumed constant during an observation time
interval [0,7]. The a priori distributions of the amplitude and phase are assumed

to be known. W (¢) is the white Gaussian noise with mean zero and power spectral
density N, /2. Using (10.170) and (10.171), the decision rule is

Pp

0 0.2 0.4 0.6 0.8 1
Pr —

Figure 10.28 ROC for problem (10.188) with random phase.
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H,

[, fre.n (7100 H\) o (01 H,)d0,
! _n (10219

Aly(@)|=
[y( )] fy\Hﬂ (y1H,)

H,

where the vector 0, represents the unknown parameters a and 0,; that is,
0, =(a,0). Since the random variables A and ® are assumed independent, the
likelihood ratio becomes

[, Jo friao,m (71 0.0.H1) 4 (@) fo ()dado

Aly(n]= P (10.220)
Defining the conditional likelihood ratio as
. Avs0n (v 1.0.H,) o (0)dadd
Aly|4]= e (v | Hg) (10.221)
the likelihood ratio is
Alyl=] Alylalf,(a)da (10.222)

Using the result obtained in (10.200), the conditional likelihood ratio is then

2
a“T 2a
A al=exp| — I[,| —7r 10.223
[v1d] p[ 2N0J0(N0 ] ( )

Assume O is uniformly distributed over the interval [0, 27] and the amplitude
A has a Rayleigh density function given by

2
izexp —— > b az=0
fa@)=1c 262 (10.224)

a

0 , otherwise

This is called a slow Rayleigh fading, since the channel is considered constant over
the signaling interval 7. Substituting (10.223) and (10.224) in (10.222) and solving
the integral, the likelihood ratio is then
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© 2
A= [ exp - T L Io(z_arjda
OGa 2 NO Ga NO
a

N, 262 )
= > €XP) N
No+Tc2 | Ny(N,y +Tc?2)

(10.225)

Taking the natural logarithm on both sides of (10.225) and rearranging terms, the
decision rule is

H,
>
T(y)=r oY (10.226)
H,
where
1
N N Te 2 N Te 2 2
y= 1Mot 02+ S 1 ‘1( 0ot Ga) (10.227a)
20, Ny
and

r=yi+y? (10.227b)

Hence, the optimum receiver is the matched (or correlation) filter followed by an
envelope detector, as shown in Figure 10.29.

T

0 | »<‘)2—l

H, >
0) cos ¢ el ' H,
nvelope > >
) detector T(y) < Y
—» H,
H,
T
[ Py
0
sin, ¢

Figure 10.29 Optimum receiver for a slow Rayleigh fading channel.
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The probability of false alarm is given in (10.213) to be

Y 2y
P, =exp| ——— |=exp| — 10.228
i3 p( 202} p( NOTJ ( )

since 6% =N ol /4. For a given value of 4 = a, the probability of detection is

Py = |, Po(@)/ 1 (@)da (10.229)

where Pj,(a) is given by (10.214). Substituting (10.214) and (10.224) in (10.229)
and solving the integral, we obtain

2y 2y 1 p
Py =exp| —————— | =expy— =P, (10.230)
P { NOT+G§T2] { N0T|:1+((55T/N0):|} (7r)

where B=N,/(N, +G§T ). The average signal energy, for a given signal level

A=a,is

Eav :]?
0

q|g]

2
a 2Ga

2
exp[— - JdachT (10.231)

where E = AT /2. The probability of detection then becomes

No

Py = (P )Ny+E, (10.232)

10.6.3 Signals with Random Parameters

Once the fundamental concepts of binary detection with unwanted parameters are
understood, we can apply them to the many radar or communication situations that
may arise. After we treated in detail the detection of signals with random phase,
and random amplitude and phase, we can now give the procedure of some other
applications.

Signals with Random Frequency

This is a typical radar application where the frequency of the echo signal of a
moving target may differ from the frequency of the transmitted signal by a
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frequency f,; known as Doppler frequency. The problem may be defined as
follows

H,:Y(t)=Acos(wt+0)+ W(t), 0<¢<T
(10.233)
H,:Y(t)= W), 0<t<T

where the phase is uniformly distributed. The signal amplitude and time of arrival
are assumed to be known, while the frequency is a random variable uniformly
distributed over the interval [®,,®;, ] with density function fj (w). o =2nf and
o, and o, denote the lowest and the highest possible frequencies. W (¢) is the
additive Gaussian noise with mean zero and power spectral density N, /2.

Using the approach developed by Whalen [1], from (10.200), the conditional
likelihood ratio is

AT 24
Aly|o]=exp - Lo| —r 10.234
[y]o] p[ 2N0]0(N0 j (10.234)
while the average likelihood function is
Wy
Aly]= [Aly| o]fy (@)do (10.235)

®,

To solve the integral (10.235), the density function is approximated by a discrete
density function, such that

M
Sw (@)=Y p(o,)d(0-0,) (10.236)
k=1
where
p(og) = fy (o) Ao (10.237a)
© =0, +kAw, k=12, 25" (10.237b)
A
and
On O s g (10.237¢)

Ao
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Hence, the likelihood function is

K
Aly]=Y Alyloglp(o,) (10.238)
k=1

and the optimum receiver may be as shown in Figure 10.30.
Signals with Random Frequency and Rayleigh Fading Amplitude

This is the same problem as the one defined in (10.231), while the amplitude has
the density function as given by (10.224). The conditional likelihood ratio is then

2
ALy o]=—N0exp 20 r? (10.239)
N0+E“V NO(N0+EaV)

Using the discrete approximation (10.226), the likelihood ratio is then

Matched Envelope 7
filt .
B rer ™ detector 4’?* L)
[Q]]
24
N, H Hl
1
Matched Envelope 2 N
filt v _,®_, .
»(0) ) VL detector Iy(+) <Y
' (O} T H =
24 " | Hy
N()

Matched Envelope 'k
filt v _,®_, :
i et ™ detector ()

Wg
e
Ny

Figure 10.30 Optimum receiver for signals with random frequency. (From: [1]. © 1971 Elsevier.
Reprinted with permission.)



Detection and Parameter Estimation 601

A[y]=jA[y|m]f (m)dm:Lip(m ) exp er
' No+E, 55 No(Ny+E,) "

(10.240)
The optimum receiver is shown in Figure 10.31.
Signals with Different Random Phases
This is known as the binary frequency shift keying (FSK) in communications. One

of two frequencies is transmitted with an equal probability. At the receiver, we
have

H, :Y(t)=S,(t) +W(t)

(10.241)
Hy:Y()=S,@&)+W ()
Where
S, (t) = Acos(w,t +0) (10.242a)
Matched Quadratic rlz
™ ﬁ(l]:er ™ detector _’?_’ exp[-]
13 p(o)
H, i
Matched Quadratic rzz > i
»() ™ filter ™ detector exp[-] <7
> (O] o >
0 H,
° g p(®;)
.
.
Matched 2
Quadratic K
I ﬁ(})t:r ™ detector 4’?_' exp[-]
< pog)

Figure 10.31 Optimum receiver for signals with random frequency and Rayleigh fading amplitude;
£ =202 /[Ni(1+c>T)] . (From: [1]. © 1971 Elsevier. Reprinted with permission.)
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S () = Acos(owyt + D) (10.242b)

The random phases ® and @ are statistically independent and uniformly
distributed over the interval [0, 2xt]. From (10.187), the likelihood ratio is

1 2n 1 T )
— [expi——— [[¥(t) - A cos(,t +0) | dt ;b
(10.243)

2
Aly]= ;tzon -
% E[CXP

T
{—]\} [[y() - 4cos(wot +) dt}dd)
00

We follow the same approach as we did for signals with random phase in Section
10.6.1, but in this case, we develop both the numerator and denominator of

(10.243) to obtain
AT 24
fon 1) S 2w, S0 "
Afyl= T 0 0 (10.244)
Sy, (VI Hy) AT 24
exp| — Iy| — 1y
2N, N,

[ 2 2 : [ 2 2
where n= ylc+yls’ ylc,:rlcose’ yls:rISIHG’ oy = y0c+y03’

Yoe =¥y cos ¢, and yo, =7, sin ¢ . The likelihood ratio test is then

I, [ rlJ H,
NO >
=—< (10.245)

In communications problems, we are interested in the minimum probability of
error, and thus Cyy =C;; =0 and C\y =Cy =1.If Py =P =1/2, then n=1,

and the decision rule is

Hl
Io(ﬁq] > lo[ﬁroJ (10.246)
Nyt < U,
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or equivalently

Hl
non (10.247)
HO

The corresponding optimum receiver is shown in Figure 10.32.
The probability of error can be shown to be

P(a):%exp£— £ J (10.248)

2N,

where E = A’T /2 is the signal energy.
FSK Signals with Rayleigh Fading

Due to multipath, the Rayleigh amplitude is often assumed in communication
systems. Applying the Rayleigh fading model to FSK signals, the received signals
are modeled as given by (10.241), with S;(¥)=Acos(w,;#+6) and
S, ()= Bcos(mgt+0¢). S;(¢) and S,(?) are transmitted with equal probabilities.
Assuming slowly fading channel, the density functions of 4 and B are given by

2
a a
fa(a)=—5expl ——— (10.249a)
c 26
cosw, (T —1) Envelope 4
0<t<T ’ detector
+ H, —» H,
) S
—> n=n 0
- H, —» H,
cos o (T —1) Envelope ro
0<i<T —> detector

Figure 10.32 Noncoherent receiver for binary FSK signals.
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and

2
f5(b)= iz exp(— zb 5 j (10.249b)

c c
The random phases ® and @ are statistically independent and uniformly

distributed over the interval [0, 2rt]. W (¢) is the white Gaussian noise with mean

zero and power spectral density N, /2. In this case, the likelihood ratio is

[, Jofrin0m (1 a.0.H) 1@ fo(O)dads

Aly]= (10.250)
Vs Yo Fvim.0., (150, H0) 15(5) fi (§)db
Solving for the decision rule after substitution, we obtain
20 2 | H,
exp
Aly]= . n (10.251)
exp 2 i} .
No(N, +5°T) | Ho
Taking the natural logarithm, the decision rule becomes
H,
2 2 >
ety Y (10.252a)
H,
where
No(Ny+6°T
y= 0(0—26) In (10.252b)
20
Assuming minimum probability of error, the decision rule becomes
H,
N (10.253)

H,
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The optimum receiver is the same as the one shown in Figure 10.32. The
probability of error can be shown to be

NO _ NO
2N0+0'2T 2+Eav

P(e) = (10.254)

where E,, is the average signal energy given by (10.231), and E = AT /2 is the
signal energy over the interval T for a given signal level.

Signals with Random Time of Arrival

In this case, the received hypotheses are

H,:Y(t)=S{t-t)+W(t)

(10.255)
Hy:Y(t)= 40

where s(f) = Acos(w,t+0),0<¢<T, and the arrival time t has a density
function f(t) for T defined in 0 <t <1 . The conditional likelihood is then

E 24
Alylt]= exp(— N—OJIO{VOr(r + T)} (10.256)
where

F(t+T) =yl +y? (10.257a)

T
Ve = [y coso, (t—1)dt (10.257b)

1+T
= [y(®)sino, (t—1)dt (10.257¢)

The likelihood ratio test is

TH+tg AT )
Aly]= j Aly 1 <]fr(v)dr = j exp{—wjlo[]v—r(u)}p(u T)du (10.258)
0

and the optimum receiver is as shown in Figure 10.33.
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Matched
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H

0<t<T+1y

Envelope
detector

()

24
A%

p(t=T)

Figure 10.33 Optimum receiver for signals with random time of arrival.

T+ty

AV T

X

\ERE

If the arrival time 0 <1t <1y is divided in K discrete times t,,k=1,2,..., K,

then, by analogy to the random frequency case, the optimum receiver is as shown
in Figure 10.34.

10.7 BINARY DETECTION IN COLORED NOISE

In the previous sections, we assumed that the additive Gaussian noise is zero mean
and white. However, in many applications this assumption is not valid. We now
consider detection of signals in nonwhite Gaussian noise. Consequently, the power

(@)

Figure 10.34 Optimum receiver for signals with discrete random time of arrival. (From:

Elsevier. Reprinted with permission.)

r@)=(t,+7)
Delay Matched Envelope
™ T ) filter detector IU( ' )
24/N,
rit)=1,+T)
Delay Matched Envelope
™ T2 ) filter detector IO( )
24/N,
r()=(t, +7)
Delay Matched Envelope
- Tk ) filter detector IO( )
24/N,

}ﬂ
H
>
< HO
H,
[1]. © 1971
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spectral density is not constant in the filter bandwidth. The noise samples are no
longer uncorrelated, and thus they are statistically dependent. One way to deal
with this problem is to extend to colored Gaussian noise the concepts using
Karhunen-Loéve expansion for white Gaussian noise. Another way may be to use
some preliminary processing for the noise (referred to as whitening) to make the
colored noise white, and then use the Karhunen-Loé¢ve expansion.

The problem under consideration is to design a receiver to test for the general
binary detection given by

H :Y®)=s5,(t) +N(#), 0<t<T
(10.259)

Hy:Yt)=s5)+N(@), 0<t<T
where Y(¢) is the received waveform, s,(¢¥) and s,(¢#) are known deterministic
signals, and N(¢) is the additive colored Gaussian with mean zero and covariance

function C,, (t,u) .
10.7.1 Karhunen-Loéve Expansion Approach

The solution to the binary detection problem with Gaussian noise was relatively
simple, since the coefficients of the Karhunen-Loéve expansion generated by any
set of orthonormal basis function resulted in independent samples. The coefficients
Y,,Y,,...,Yx were statistically independent Gaussian random variables, and thus
the likelihood function was the joint probability density function of these
coefficients in the limit as K — oo . The goal is still to generate uncorrelated
coefficients from the likelihood ratio and obtain the decision rule. That is, the
corresponding orthonormal functions and eigenfunctions satisfy the integral
equation

T
[Cot) fr@)du=Dy fr, 0<t<T (10.260)
0
where A, is the eigenvalue. This means that the coefficients
T T
Yo = [Y(O £, Odt = [[s()+ NO)] f; ()dt = s, + N, (10.261)
0

0

where

T

s = [ s fi (Oat (10.262)
0
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and

T
Ny = [ N@) i ()t
0

(10.263)

are obtained by the correlation operation and are uncorrelated. The noise
components are uncorrelated Gaussian random variables with zero mean, such that

T
E[N]= [ e OE[N®]di=0
0
and
E[N N, =08,
as shown in Section 8.5. The series expansion of noise is
Kk
N(1)= lim D N, f,, (t)
K—ow =1

Karhunen-Loéve coefficients under hypotheses H, and H, are

Hl :Yk =Sk +Nk

and
Hy: Y, =50 + Ny
with means
E[Y, |H]=sy
and

E[Yk |HO]:s0k
and variances

Var[Yk |H1]:Var[Yk |H0]:7\'k

(10.264)

(10.265)

(10.266)

(10.267)

(10.268)

(10.269)

(10.270)

(10.271)
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Since the coefficients Y,k =1,2,...,K, are statistically independent under each
hypothesis, the conditional density functions are given by

2
_ (yk _Slk) :l (10272)

K1
Sy, Y1 Hy)= exp
Y|H, 1 g ,—270% 2,

and

2
exp{— M] (10.273)

£
WIHo) =[]
Sy, W1 Hy g 2,

Consequently, the K-term approximation of the likelihood ratio is

exp{_ (i - Slk)2:|

20,

5

1 27‘[7\,k

l—K[ 1 exp| - (yk _SOk)2
k=l A 2T, 20y
X 1 X 1
= —_— 2y, — 2 (10.274)
eXP{Z 0, Slk( Yk Slk):| {Z 0, SOk( Yk — SOk):|}

k=1 k=1

A[J’K(t)]_

Taking the logarithm, we obtain
H,
K

InAlyg ()] = Z Slk(zyk Sik)— Z Sor Cyi — SOk) lnn (10.275)
- A

Ho

Letting K — oo, the log-likelihood ratio is

InAlyg (t)]= Z_Slk(zyk Sik )~ ZISOk(Z)}k So) (10.276)
k

Substituting (10.259) and (10.260) in (10.274), we obtain the likelihood ratio in
terms of the correlation to be
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SRy -s, (u)]iwd; du

1 T
nALO)= 1
0 k=1 k

% ESo(t)[Zy(u) so(u)]sz()f:k( LeOS @) 4 g, (10.277)
Define

Iy (1) = js (t)kZlf"(tif"(”) (10.278)
and

Iy (t) = J' o(t)z Ji(t )fk(“)

(10.279)
k=1 7\‘k

Substituting (10.278) and (10.279) into (10.277), the log-likelihood ratio test
becomes

Hl
17 17
S [ @RyO =510kt = [ 0230 =50 0}t i (10.280)
0 0 HO
or
Hl
T T >
[ y@m i = [ yho e~ v (10.281)
0 0 HO
where
17 17
y=Inn+ 3 { s, () (1) di — B { 5o (D)o (1)dt (10.282)

Hence, from (10.280), we see that the receiver for detection of signals in colored
noise can be interpreted as a correlation detector, as shown in Figure 10.35. To
build such a receiver, we need to determine 4, (¢) and A (¢) . Substituting (10.278)
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St

W) ()
—>

T
AV T

y > Decision

X

St

Iy (2)

Figure 10.35 Correlation receiver for signals in colored noise.
and (10.279) into (10.260), we obtain

’ ’ T & S )
[ Conttswhy @) = [ €, (0] 3 =251 (0 ()i
0 0 0 k=l k

© T ©
- Ziijc,m tu) fr @ydu = s, f () =5,(1)  (10.283)
=1 M P

and similarly,
T
[ Co (b0 g (1)l = 5 (0) (10.284)
0

That is, h,(¢) and h,(¢#) are solutions to the integral equations in (10.283) and
(10.284), respectively.

10.7.2 Whitening Approach

Another approach to detect signals in colored noise is to do a preliminary
processing of the colored noise. The received signal is passed through a linear
time-invariant filter, such that the noise at the output of the filter is white, as
shown in Figure 10.36.

The process of converting colored noise to white noise is referred to as
whitening. Once the noise is white, the problem becomes a detection of a known
signal in additive white Gaussian noise, which we have covered in the previous
sections.
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() y(@®
—P h,(t,u) —>

Figure 10.36 Whitening filter.

We now solve the binary detection problem in colored noise. The output of
the whitening filter under hypothesis H; is given by

T
Y'(t)= Jhw (t,u)Y (u)du (10.285a)
.
= Jhw(t,u)[sl (u)+ N(u)]du (10.285b)
0
=s1(O)+N'(t) (10.285c¢)
where
T
s1(t) = I h,, (t,u)s,(w)du, 0<t<T (10.286)
0
and
T
N'(t) = Jhw (¢, u)N(u)du, 0<t<T (10.287)
0

under hypothesis Hy, Y'(¢) is
T
Y'(®) :Ihw(t,u)[s0 W)+ N®w)ldu =sy()+N'(2), 0<t<T (10.288)
0
where
T
5o =jhw(t)so(u)du, 0<t<T (10.289)
0

Since N'(¢) is the white Gaussian noise, its covariance function is given by
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C,(t,u)=E[N'(O)N'(u)] =8(t—u), 0<tu<T (10.290)

where we have assumed N, =2 . Thus, we have reduced the problem to general

binary detection in white Gaussian noise. The equivalent problem is summarized
as follows:

H,:Y'(t)=s,(t) +N'(?)

, ; , (10.291)
Hy:Y'(t)=sh(t)+ N'(r)

This problem was solved in Section 10.2.2. Thus, by analogy to (10.71) and
(10.72), the decision rule can be written as

Hl
T
[yolsio-siolar - v (10.292)
0 HO
where

1 Lt o o np

y=ghn-- | {[so(z‘)] ~[s; @] }dt (10.293)

0

Note that »'(¢), s;(¢), and s;(¢) are given in (10.285a), (10.286), and (10.289),
respectively, in terms of the original signals y(#), s,(¢), and s,(¢) . Rewriting
(10.292) and (10.293) in terms of the original signals, we obtain

H,
TT T
[ [ 1 @)Y @) [y, (2, 0)]s, () = 5 (0)|dv du dt Z y (10.294)
00 0

H,

which can be implemented as shown in Figure 10.37.

Again, construction of the receiver requires knowledge of the impulse
response A, (¢,u) , which can be obtained by substituting (10.287) into (10.290).
We have
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y'(@) T
() () _[ |
0

AV T

Y | Decision

=

sy () = 5{(t) = 55.(0)

h, (2,u)

T

sa()=5,(8) = 5,(8)

Figure 10.37 Receiver for colored noise using whitening.

TT
ELN'()N"(u)] = E{ [ (.00, (. BN (@) N (B)ddp
00

S

T
[ 1 (6, 00h, (1, B) C,p, (B = (¢ ) (10.295)
0

The solution to the integral equation in (10.295) yields 4,,(¢, w).

Another way to define the integral equation is in terms of the function
O(a,b) . In some applications, we may need to express the colored noise as the
sum of two components, such as

N(@)=N,({)+N'(¢) (10.296)

where N (¢) is not known. In this case, the function Q(a,b) is useful in obtaining

the minimum mean-square error, N . () of N_(¢). We define

T
Q,,(a,b) = [ h, (t,a)h, (t,b)dt = O,,, (b, a) (10.297)
0

In order to write the integral equation in terms of Q(a,b), we multiply both sides
of (10.295) by £,,(¢,v) , and integrate with respect to ¢ to obtain

T
[ B, ()8, wydt = b, (u,0) (10.298a)
0
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h,(t,0)h,,(t, a)h,, (u,b)C,, (a,b)dadbdt (10.298b)

nn

|

T T
h,, (w,b)[ C,, (a,b)[ h,,(t,0)h,,(t, a)dadbdt (10.298¢)
0 0

S

?
0
T
0
Substituting (10.297) into (10.298¢) results in
T T
h, (u,0) = [ b, @,b)[ C,,(a,b)Q,, (v,a)dadb (10.299)
0 0
From (10.298a) and (10.299), we deduce that

T
3(b—v) = [ C,,(a,b)Q,, (v, a)da (10.300)
0

which means that given the covariance function C,,(a,b), we solve (10.300) to
yield Q,,(v,a).

10.7.3 Detection Performance

In this section, we study how the colored noise affects the performance. Recall that
for binary detection in white noise, the decision rule, from (10.71), (10.72), and
(10.73), was

Hl
T T
10)= [0l O0-sy k- [ 0-si ol 7 Z2mn ao3on
0 0

H,

Using the whitening approach, the nonwhite noise N(¢) is transformed into white
noise N'(¢#) with Ny =2 . The received waveform Y(¢) is transformed into Y'(¢),
and the transmitted signals s,(¢) and s,(¢) are transformed into s{(r) and s;(¢),

respectively. Assuming minimum probability of error criterion and that the
hypotheses are equally likely, the test may be expressed as
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Hl
T T

() = [ y'@)si e = y'@)sp0)dr
0 0

H,

T
[ {[s{ o) -[so O }dt (10.302)
0

N | —

The sufficient statistic 7(Y") is Gaussian with means

T T T TT
E[T|H,1= [[s] (O dt = [ s{(©)s§(0)dt = [ dt[ [ b, (t,u)s, @h, (£, 0)s, (v)dudv
0 0 R 0 00
= [dt[ [ h,,(tu)s, @)h,, (£ 0)sq (v)dudv  (10.303)
0 00
and
T T T TT
E[T|Hol=[s;0)s{()dt—[[sq @) de = [ at[ [ h,, (t.u)s0 @h, (£, v)s, (v)dudv
0 0 0 00

S

TT
dt[ [, (t,w)h,, (1, 0)s0 )so (v)dudv  (10.304)
00

The variances under hypotheses H; and H, are the same. The expression is
cumbersome. However, it can be shown to have a value of twice the mean of T
under H,. Denote this variance by o2, and then the probability of error is

21 [t+(1/2)6%]? 21
P(s) = - dt =
(e) .([mc exp{ 22 } t .[

c/2 '\/E

where o is given by (10.303). The calculation of (10.305) is involved. However,
we observe that the probability of error is a function of the signal’s shape, unlike
the case of detection in white noise, where the performance was a function of the
signal-to-noise ratio only. Consequently, to minimize the probability of error, we
need to find the signals shape. We also see from (10.305) that the probability of
error is minimized if ¢ is maximized, subject to the constraint that the energy is
fixed to a value E. Hence, we form the objective function J and solve the equation

2
exp{—%] du  (10.305)

J=c?-\E (10.306)

where A is the Lagrange multiplier and £ is given by
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157, 2
E= 5 [ [sl (t)—si (t)]dt (10.307)
0

The solution of (10.306) results in the optimum signal’s shape, which is obtained
to be

s;(6)=—so(t), 0<t<T (10.308)

That is, we have optimum performance when the correlation coefficient p=-1,
which is the same result obtained for binary detection in white Gaussian noise.

10.8 SUMMARY

In this chapter, we have discussed the problem of detection of signal waveforms
and parameter estimation of signals in the presence of additive noise. We first
covered binary and M-ary detection. The approach adopted was to decompose the
signal waveform into a set of K independent random variables, and write the signal
in Karhunen-Loéve expansion. The coefficients of Karhunen-Loéve expansion are
in a sense samples of the received signal. Since the additive noise was white and
Gaussian, the coefficients of the Karhunen-Loéve expansion were uncorrelated
and jointly Gaussian. Consequently, the problem was reduced to an equivalent
decision problem, as developed in Chapter 5.

In Sections 10.4 and 10.5, we assumed that the received signals may contain
some unknown parameters that needed to be estimated. Linear and nonlinear
estimation were considered. When the parameter to be estimated was nonrandom,
we used maximum likelihood estimation. The maximum a posteriori estimation
was used for a random parameter. The “goodness” of the estimation techniques
was studied as well.

The general binary detection with unknown parameters was presented in
Section 10.6. Again using Karhunen-Loéve coefficients, we obtained the
aproximated K-term likelihood ratio, and then we let K — o to obtain the
likelihood ratio. This approach of obtaining a K-term approximation of Karhunen-
Loéve coefficients and letting K — oo was also used in solving for the parameter-
estimates discussed in Sections 10.4 and 10.5. Specifically, we considered signals
with random phase, and derived the incoherent matched filter. Then, we
considered signals with random phase and amplitude. In Section 10.6.3, we treated
examples of signals with random parameters, such as signals with random
frequency, signals with random frequency and Rayleigh fading amplitude, signals
with different random phases, FSK signals with Rayleigh fading, and signals with
random time of arrival.

We concluded the chapter with a section on binary detection in colored noise.
Since the noise was not white anymore, the generated Karhunen-Loéve
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coefficients were no longer uncorrelated. In solving this problem, we first used the
K-term approximation from Karhunen-Loéve coefficients. However, due to the
nature of noise, some integral equations needed to be solved in order to design the
optimum receiver. The second approach used to solve this problem was whitening.
That is, we did a preliminary processing by passing the received signal through a
linear time-invariant system, such that the noise at the output of the filter was
white. Once the noise became white, the techniques developed earlier for binary
detection were then used to obtain the optimum receiver. A brief study on the
performance of detection of signals in colored noise was also presented.

PROBLEMS

10.1 A signal source generates signals as shown in Figure P10.1. The signals are
expressed as s, (¢) = cos(2nt) rect(¢) , s,(¢) =cos[2nt+(2n/3)]rect(t) , and

53 (¢) =cos[2nt — (21 / 3)] rect(¢) .

(a) Describe a correlation receiver for these signals.
(b) Draw the corresponding decision regions on a signal space.

10.2 A rectangular pulse of known amplitude A4 is transmitted starting at time
instant £, with probability 1/2 . The duration T of the pulse is a random
variable uniformly distributed over the interval [7},7,]. The additive noise

to the pulse is white Gaussian with mean zero and variance N /2.

(a) Determine the likelihood ratio.
(b) Describe the likelihood ratio receiver.

10.3 Consider the general binary detection problem

H, :Y(t)=s,(t) +W (1), 0<t<T
Hy: Y(t)=so()+W(t), 0<t<T

5,(t) $,(t) s3(2)

e T

Figure P10.1 Signal set.
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5,() NG
A A

A A

v
v

Figure P10.3 Signal set.

104

10.5

10.6

where s,(¢) and s,(¢) are as shown in Figure P10.3, and W (¢) is a white
Gaussian noise with mean zero and power spectral density N /2.

(a) Determine the probability of error, assuming minimum probability of
error criterion and P(H,)=P(H,)=1/2.

(b) Draw a block diagram of the optimum receiver

In a binary detection problem, the transmitted signal under hypothesis H;
is either s,(¢) or s,(¢), with respective probabilities P, and P,. Assume
P =P, =1/2, and s,(¢f) and s,(¢) orthogonal over the observation time
t€[0,T]. No signal is transmitted under hypothesis H,. The additive
noise is white Gaussian with mean zero and power spectral density N /2.

(a) Obtain the optimum decision rule, assuming minimum probability of
error criterion and P(H,)=P(H,)=1/2.

(b) Draw a block diagram of the optimum receiver.

Consider the binary detection problem

H,:Y(@t)=s,() +W(), 0<t<2
Hy: Y(6)=sy(O)+W(t), 0<t<2

where s,(t)=—s,(t)=e™", and W(¢) is an additive white Gaussian noise
with mean zero and covariance function C,,,, (¢,u) = (N, /2)3(t —u).

(a) Determine the probability of error, assuming minimum probability of
error criterion.
(b) Draw a block diagram of the optimum receiver.

A binary transmission uses two signaling waveforms s;(¢) and s, (¢) , such
that
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10.7

10.8

10.9

Signal Detection and Estimation

sinEt, 0<t<T sinz—nt, 0<t<T
s(t) = T and s,(?) = T

0 , otherwise 0 , otherwise

s1(t) and s,(¢) are transmitted with equal probability. The additive noise

during transmission is white Gaussian with mean zero and power spectral
density N, /2. Determine the minimum probability of error at the receiver.

A binary transmission is constructed from two orthogonal signals s,(¢) and
§,(t), 0<¢t<T, with energies E, =1 and E, =0.5, respectively. The
additive noise is white Gaussian with mean zero and power spectral density
0.5. s,(¢) and s, (¢) are transmitted with equal a priori probabilities.

(a) Determine the achievable probability of error.
(b) Determine the minimum signal energy to achieve the same error
performance.

Consider the following binary detection problem. At the receiver, we have

H,: Y(t)=Es@) +W (), 0<t<T
Hy: Y(t)= W), 0<t<T

The additive noise is Gaussian with mean zero and power spectral density
N, /2. However, when a signal is transmitted, it can be either s,(¢) or

s, (1), which occur with probabilities P, and P,, respectively. s,(¢) and
s, (¢) are orthogonal over the observation interval, and have energies E,
and E,, respectively. Determine the decision rule that minimizes the
probability of error.

Let ¢,(r), ¢,(¢), and ¢5(¢) be three orthonormal functions over the
interval [0,T]. Define s, (¢),k=0,,2,...,7, as

so(0) = Ald; () + ¢, (1) + 3 (1)] s4(0) = A[=0, (D + 2 () + 3 (0)]
510) = A[o1 (D) + 6, (1) — 95 (0)] s5(6) = A[—¢; () + ¢, () — 5 (0)]
55 () = A[d; (1) = 0 (1) + ¢3(1)] 56(1) = A[=; (1) =, (1) + §3(1)]
53(2) = A[¢1 (1) =0, (1) — 93 (2)] 57() = A=, (1) — ¢, () — 93 (2)]

The signals s,(¢),k=0,1,2,...,7, are transmitted with equal a priori
probabilities, and the received signal is given by
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Y()=s,(t)+W(t), 0<t<T

where W(¢) is the white Gaussian noise with mean zero and power spectral
density N, /2.
(a) Determine 4, such that the energy of s, (¢) is equal to E.

(b) Determine the receiver for minimum probability of error criterion.
(c) Show the decision regions.
(d) Find the minimum probability of error.

10.10 During transmission of 16 quadrature amplitude modulated signals, an
additive white Gaussian noise with mean zero and power spectral density
N, /2 is superimposed on the signals. The signal space is shown in Figure

P10.10. The signal points are spaced d units apart. They are given by

-T
—=<t<
2

SR

s =ad () +b,0, (1),

where ¢,(#) =v2/T cos2nfyt and ¢, (1) =+2/T sin2nf,t
Assume minimum probability of error criterion.

(a) Draw a block diagram of the optimum receiver.

(b) Show the decision regions in the signal space.

(¢c) Determine the probability of error.

A ¢2

Figure P10.10 Signal set.
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10.11

10.12

10.13

10.14

10.15
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Starting from (10.104), derive the expression in (10.106).

Consider the situation where the received signal is given by

H,:Y@t)=A4s@) +W (), 0<¢<T
Hy:Y(t)= W), 0<t<T

Let A be an unknown constant and W (¢) be a white Gaussian noise process
with mean zero and power spectral density N, /2. Design the optimum
receiver, assuming minimum probability of error criterion.

Consider the estimation problem

Y(6)=s(t,0)+W(t), 0<t<T

where s(¢,0)=(1/6)s(¢). 0 is an unknown constant, whereas s(f) is a

known signal with energy E. W(¢) is a white Gaussian noise with mean

zero and covariance function C,,,(f,u) =(N, /2)d(t —u) . Determine ém,,

the maximum likelihood estimate of 0 .

Consider Problem 10.13, where 0 is now a Gaussian random variable with
mean zero and variance o . Determine the equation for which a solution is
émap , the maximum a posteriori estimate of 0, and show that this equation

also gives 0, as the variance cé — 0.

Assume the received signal is given by
Y(t)=Acos(w t+0)+W(t)

where 0 is an unknown constant, and W (¢) is the white Gaussian noise
with mean zero and power spectral density N, /2.
(a) Determine the likelihood equation satisfied by the maximum likelihood

estimate for 0. Assume the integral involving the double frequency
terms is zero.

(b) Assuming éml unbiased, and apply the Cramer-Rao inequality to

obtain a bound for Var[ém,] when (4°T/ N, o) <<1; that is, when the
signal-to-noise ratio is very small.
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(1)

A
1.0
t t t —» ¢
1 2 3 4 5 6 7
5,(1)
A
0.5
+ »
1 2 3 4 5 6 7
-0.5 4

Figure P10.16 Signals s,(r) and s, (?).

10.16 Let s,(¢) and s,(¢) be the signals shown in Figure P10.16.

(a) Specify the matched filter for each of the signals shown.

(b) Sketch the filter output as a function of time when the signal matched
to it is the input.

(c) Sketch the output of the filter matched to s,(#) when the input is

s1(8).

10.17 Consider the general binary detection with

\/Z O<t<Z \/z Z<1<T
si)y=\7" = "2 and s,(O)=<\T7" 2

0 , otherwise 0 , otherwise

over an additive white Gaussian noise channel. The noise is assumed to
have zero mean with power spectral density N, /2.

(a) Determine the matched filters.

(b) Draw the responses (noise-free) of the matched filters.

(c) Compute the SNR at the output of the matched filters.

10.18 Consider a digital communications system with a source using On-Off
signaling. The channel superimposes on the transmitted signal an additive
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10.19

10.20
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white Gaussian noise process with mean zero and power spectral density
N, /2. The received waveforms are given by

H, :Y({t)=Acos(w t+0O) +W(t), 0<t<T
H,: Y@= W), 0<t<T

where the amplitude 4 and the phase ® are independent random variables
with known density functions. Assume that ®, =2nn/7T where n is an

integer, ® is uniformly distributed over the interval [0,2n], and 4 is
Rayleigh distributed with density function

2
iexp —a—z, a=0
fal@)=q0, 20,

0 , otherwise

The signal s,(¢) =cosw_.t,0<¢<T, has energy E.

(a) Determine the optimum decision rule.
(b) Draw a block diagram of the optimum receiver.

Consider the problem of signals with random phase and amplitude given in
Section 10.6.2. Using the Neyman-Pearson test, determine the probability of
detection for a specified probability of false alarm. The random variables ®
and 4 are assumed to be statistically independent, with ® uniformly
distributed over the interval [0, 2n] and 4 Rayleigh distributed.

Consider the estimation problem
Y(£)=s(,0)+N@E), 0<¢<T

where N(¢) is a nonwhite Gaussian noise with mean zero and covariance
function

Cnn (t» u) =C (ts u) + Cn(.n(, (ts u)

"
nn

where C,,(t,u)=(N,/2)d(t—u). The received waveform is passed
through a correlation operation to yield

Yk:Sk(e)+Nk, k:1,2,...,K
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such that
T
54(0) = [ 5(1,0)0, (1)1
0

and N;,k=1,2,...,K, are random variables. ¢, (?),k=1,2,...,K, are
eigenfunctions corresponding to A,,k=1,2,...,K, associated with the
covariance function C, , (¢,u) . In the limitas K — oo, we have

K K
Y(0) = 1im D 5, (0)p4 (1) + lim " Ny (0)
K—w =1 K—ow =l

(a) Determine the mean and variance of the Karhunen-Loéve coefficients
Ny
(b) Are the noise components N,k =1,2,..., statistically independent?

(c) If Y(¢) is passed through a whitening filter to obtain
Y'(t)=s'(t,0)+ N'(2), 0<t<T

K K
= lim 3757 (0)0, (1) + lim > N} (B)d, (1)
= % k=1

determine the mean and variance of the white noise component Nj.

Consider a noise process, such that N,(#) =W in the interval ¢ €[0,T]. W

2
w*

(a) Can N,(¢) be whitened in the given interval? Explain.

is Gaussian with mean zero and variance &

(b) Repeat (a) assuming that another independent noise process N, (¢) is

superimposed on N, (¢), such that the new noise process is
N@)=N,(t)+ N,y(t), 0<t<T

and the covariance function of N, (¢) is

N
Covyny (t,u)=708(t—u), 0<t,u<T
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Chapter 11

Adaptive Thresholding CFAR Detection

11.1 INTRODUCTION

In signal detection, the basic goal is to derive the optimum receiver structure based
on some criterion that is determined by the application. Such optimal (ideal)
detectors require an essentially complete statistical description of the input signals
and noise. In practice, this information may not be available a priori, and the
statistics of the input data may also vary with time. These constraints lead to the
consideration of other (nonoptimal) detectors.

In practical radar signal detection systems, the problem is to automatically
detect a target in thermal noise plus clutter. Clutter is the term applied to any
unwanted radar signal from scatterers that are not of interest to the radar user [1].
Examples of unwanted echoes, or clutter, in radar signal detection are reflections
from terrain, sea, rain, birds, insects, chaff, and so on. Chaff consisting of dipole
reflectors, usually metallic, is dropped from aircrafts to mask the real target from
the radar. Due to the development of Doppler processing, it is now mainly used for
slow moving targets [2]. Since the environment in which a radar operates depends
on factors such as weather conditions and the physical location of operation, the
returned signals are statistically nonstationary, with unknown variance at the
receiver input. Thus, the ideal detector using a fixed threshold is extremely
sensitive to the total noise (thermal noise plus clutter) variance. In fact, a small
increase in the total noise power results in a corresponding increase of several
orders of magnitude in the probability of false alarm. For a single pulse detection,
it can be shown that the probability of false alarm is given by [3]

20

2
P, =exp(—y—2j (11.1)

where 7y is the threshold level and o is the total noise variance. Let Py be the

design probability of false alarm based on a known variance 0‘21. For a fixed

627
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threshold v, the probability of false alarm in terms of the noise level and design
probability of false alarm is obtained from (11.1) as

P = (P, ) (112)

The subscript d denotes design value. As illustrated in Figure 11.1, for a design

probability of false alarm of 107°, an increase of only 3 dB in the noise power
causes the actual probability of false alarm to increase by more than 1,000, which
is intolerable for data processing, either by a computer or by a human operator.
Therefore, adaptive threshold techniques are needed to maintain a CFAR. The
receiver is desired to achieve CFAR and maximum probability of detection of the
target.

In order to appreciate the practical aspects of adaptive thresholding detection,
we first give a brief description of radar principles. It should be noted that radar
concepts can be very involved, and many books are written in that sense. Thus, we
only give the necessary fundamentals to be able to understand adaptive
thresholding CFAR detection. Then, we discuss some of the adaptive CFAR
techniques. We also introduce the concept of adaptive CFAR detection in mobile
communications. In particular, we consider applications of adaptive CFAR
detection in code division multiple access (CDMA), and thus we must also give a
brief description of spread spectrum communication systems. Again, we present
only the necessary fundamentals to be able to appreciate the applications and
possible future developments.

1071

—
(=]

—
(=)
IS

Probability of false alarm

0 2 4 6 8 10 12

Noise power increase from design value (dB)

107

Figure 11.1 Effect of the noise power increase on the probability of false alarm for a fixed threshold;
design Pp =107,
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11.2 RADAR ELEMENTARY CONCEPTS

Radar is derived from the initials of the phrase RAdio Detection And Ranging.
Radar is an electromagnetic system used for the detection and location of objects
(or targets). It achieves these two purposes by transmitting an electromagnetic
energy and then extracting the necessary information about the target from the
returned echo signal, as shown in Figure 11.2. This information is drawn from the
changes observed in the signal parameters. The range, or distance, is determined
from the measurements of the time taken for the radar signal to travel to the target
and back (time delay). The direction, or angular location, of the target relative to
the radar is found with a directive antenna. The shift in the carrier frequency of the
received echo signal caused by a moving target (Doppler effect) yields information
on the range rate or velocity, and also may be used to distinguish moving targets
from stationary objects. Thus, from the measurements of these parameters with
time, the radar can derive the track, or trajectory, of a moving target, and predict
its future location.

In general, the transmitter and the receiver are in the same location. This is
called a monostatic radar. This particular system shares a single antenna between
the transmitter and the receiver (R, =0, R, = R,)via a waveguide called the

duplexer [4]. A simplified block diagram of a modern monostatic radar is shown in
Figure 11.3.

The major blocks—the modulator, the transmitter, the receiver, the signal
processor, the data processor, and the display—and their functions are now briefly
described [5].

The Modulator Upon reception of each timing pulse, the modulator produces a
high-pulse direct current and supplies it to the transmitter.

The Transmitter The transmitter is a high-power oscillator. It generates a high-
peak power coherent train of pulses to illuminate the target.

Ant
S0 ntenna
Transmitter —6

I 1‘_1%‘1_7—1 *

Rb é H

RO R, E

Receiver ; :

Antenna ;

E Channel 1

&
<«

Figure 11.2 Basic radar scene.
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Transmitter |4 Modulator

Duplexer

Receiver
1 |
IF —»| Matched »| Envelope |
amplifier > filter p| detector |:
0 ;
<
Local
oscillator
Signal Processing
Dat Dat Decision Sienal
| ata ata P ) ignal
processor 1 extractor Thresholding 4 processing [
Data Processing * |
< >

Azimuth angle

Reference

A\ 4

Display

Figure 11.3 Signal and data processing in a modern pulse radar system.

The Receiver Typically, the receiver is of a superheterodyne type. It provides
frequency conversion (to a lower frequency called intermediate frequency, IF),
interference rejection, and low-noise amplification. Noise reduction is an
important consideration in radar receiver design, and it is accomplished by a
matched filter that maximizes the SNR at the output.

Signal Processor This device processes the target echoes and interfering signals
to increase the signal-to-interference ratio. The operations may be pulse
compression, Doppler range clutter suppression techniques, and CFAR processing.
This is the part that will be developed in detail. However, we say briefly that the
CFAR circuit keeps the rate of occurrence of false decisions (alarms) due to
background noise and clutter at a constant and relatively low rate. This prevents
saturation of the system and/or user. It estimates the noise and clutter level from a
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number of range, Doppler, and/or azimuth cells to allow the threshold to be set
correctly.

Data Processor It provides the target measurements in range, angle (azimuth and
elevation), radial velocity, and possibly the target signature.

Display The output is generally conveyed to a display to visualize the
information contained in the target echo signal in a form suitable for operator
action and interpretation. The plan position indicator (PPI) is the usual display
employed in the radar receiver, and it indicates the range and azimuth of a detected
target.

When the transmitter and the receiver are in separate locations (R, # 0 ), this
is called a bistatic radar. In this case, the ranges R, and R, may not be the same.
A multistatic radar is a radar with one transmitting antenna, but many receiving

stations, all in a network. Most radars nowadays are active and of pulse type; that
is, the radars have a transmitter, and the signal transmitted is a pulse.

11.2.1 Range, Range Resolution, and Unambiguous Range

When a pulse is transmitted, the radar clock begins counting the time. The time
taken for the pulse to travel to the target and return is called the time delay, T, .

The range of the target is given by

(11.3)

where c is velocity of light ¢ = 3x10% m/s. Since radar signals propagate in real
atmosphere and not a vacuum, c¢ is actually the velocity of propagation given by

¢ =2.9979x10® m/s. The factor 2 appears in the denominator of (11.3) because of
the two-way travel of the pulse to the target and back.

If the time delay between the echoes from two targets is equal to or greater
than the pulse duration, then two separate echoes are observed, as shown in Figure
11.4(a, b), respectively. In this case, the targets are resolvable. However, if the
time delay is less than a pulse duration, the targets are not resolvable, as shown in
Figure 11.4(c). Instead of seeing two targets, we see one large one. Hence, the
range resolution between the two targets is [2]

CcT
AR =— 11.4
5 (11.4)
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Figure 11.4 Returned target echoes: (a) 7,=1, (b) s > 1, and (¢) ;<.

The radar receiver samples the output every T seconds, and thus each sample
represents a distance AR , called range gate or range bin. For example, if the radar
pulse duration is tT=1ps and we desire a receiver output every 150m in range,

we would use a 1-MHz 4/D sampler.
The rate at which pulses are transmitted is called pulse repetition frequency
(PRF), f,, and it is determined by the maximum at which the targets are

expected, such that

C
2Rmax

f, < (11.5)

That is, in transmitting multiple pulses, the limit occurs when the second pulse is
transmitted before the first one has completed its two-way trip to the target and
back. This maximum range is called the unambiguous range, also denoted R,. For

example, if we use a pulse repetition frequency of f, =1kHz, the maximum

range is R, <c/2f, =150 km. If we now want to survey this range with a

higher PRF of 1.5 kHz, which has an R_,, of 100 km, the echo of the first pulse
may be confused with the echo of the second one, as shown in Figure 11.5. We
observe that target 4 at 30 km is within the unambiguous range. However, target
B at 130 km could be the echo of the first pulse at 130 km, or the echo of the
second pulse at 30 km.

A typical radar transmits a series of N pulses. The pulse width t, the interpulse
period T, and the transmission duty cycle t/7, as shown in Figure 11.6, are

constant throughout the transmission of all N pulses [6]. T is called the pulse
repetition interval (PRI) and is the inverse of the pulse repetition frequency,
T'=1/f,. The N transmitted pulses are coherent; that is, they are in-phase, and

max
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Figure 11.5 Illustration of ambiguous range.
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Figure 11.6 Coherent pulse train.

the set of N coherent pulses transmitted during the time interval T is called a
coherent pulse-train. The time spanned by the coherent pulse-train is called a
coherent processing interval (CPI).

11.2.2 Doppler Shift

An accurate way of measuring the speed of a target is the use of Doppler
frequency shift, which is the difference between the received frequency and the
transmitted frequency caused by the motion of the target. In this case, a coherent
system is needed, in the sense that the transmitter and the receiver oscillators are
phase locked, in order to detect any difference in the echo signal. Thus,

Ja=1=1 (11.6)

where f, is Doppler frequency, f, is the receiver frequency, and f, is the
transmitter frequency. Doppler frequency is given in terms of wv,, the radial
component of the target speed toward the radar, by

1, =2”T" Hz (11.7)

where v, <<c, c is the speed of light, and the wavelength ) is given by
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A=— (11.8)

For fixed objects, f,; equals zero.

11.3 PRINCIPLES OF ADAPTIVE CFAR DETECTION

The input signal at the radar receiver, when a target is present, is an attenuated
randomly phase-shifted version of the transmitted pulse in noise. A typical radar
processor for a single-range cell sums the K samples of the matched filter output
and compares the sum to a fixed threshold, as shown in Figure 11.7. When the
transmitted pulse is embedded in white Gaussian, the clutter return signal envelope
is Rayleigh distributed [7]. The optimum Neyman-Pearson detector, for this case,
is shown in Figure 11.8, where y(f) denotes the received signal and ®, the

carrier angular frequency. From Figure 11.1, we saw that a small increase in noise
power causes the probability of false alarm to increase intolerably. Hence, when
the noise variance is not known, and in order to regulate the false alarm
probability, Finn and Johnson [8] proposed the use of a reference channel, from
which an estimate of the noise environment can be obtained, and upon which the
decision threshold is adapted. The radar uses the range cells surrounding the cell

Ve %) H, —» H,
¥ Matched fil » Envelope N Noncoherent T4 >
> atched filter p| detector integration W
¥s H, [
Figure 11.7 A scheme for a fixed threshold radar detection.
T
—>®—> | (-F
* 0
cos o, t
y(® Threshold »H,
—P> device —» A,
T
| o ()
0
sin ¢

Figure 11.8 Optimum receiver, square realization.
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under test as reference cells, as shown in Figure 11.9. The detector proposed in [8]
is the cell-averaging constant false alarm (CA-CFAR), where the adaptive
threshold is obtained from the arithmetic mean of the reference cells. For a
homogeneous background noise, and independent and identically distributed
reference cells outputs, the arithmetic is the maximum likelihood estimate. This
means that the detection threshold is designed to adapt to changes in the
environment. These noise observations are obtained by sampling in range and
Doppler, as shown in Figure 11.10. The bandwidth of each Doppler, (bandpass)
filter is equal to the bandwidth of the transmitted rectangular pulse B, where

W) Matched filt Je » Envelope Noncoherent | 1)
» atched hitter 5 »  detector integration
v ’ |
e I\
P v/
< A A \ 4 A 4 \ A 4
Hy < H, Selection logic

Figure 11.9 A scheme for an adaptive threshold radar detection.
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Figure 11.10 Range and Doppler sampling process.
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B=1/t and t is the transmitted pulse width. The output of each square-law
detector is sampled every T seconds, which corresponds to a range interval of
ct/2. Hence, each sample can be considered as the output of a range-Doppler

resolution cell with dimensions t in time and 1/t in frequency [9]. Therefore, we
obtain a matrix of range and Doppler resolution cells, as shown in Figure 11.11.
For simplicity and without loss of generality, we show the CA-CFAR detector in
Figure 11.12 for range cells only and for a specific Doppler frequency.

We now describe the system in more detail. The output from the square-law
detector is fed into a tapped delay line forming the reference cells. To avoid any
signal energy spill from the test into directly adjacent range cells, which may

Doppler 5
/——Guard cells
| Cells used for threshold estimate
Ve
¥
o00 o00
? Cell under test
> Range
Figure 11.11 Matrix of range and Doppler cells.
Y
Input Square-law ﬁ
signal detector | ] §I% \
X1 X2 ees cee XN A
\ A 2N / \ A A | H, Decision
U=)» X, V=YX s
DX DX, vz
L | n
Z=V+U

»
—>

Figure 11.12 Cell averaging CFAR detector.
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affect the clutter power estimate, the adjacent cells, called guard cells, are
completely ignored. Each resolution cell is tested separately in order to make a
decision for the whole range of the radar. We assume that the cell under test is the
one in the middle. The statistics of the reference windows U and V are obtained
from the sum of the N /2 leading cells and N /2 lagging cells, respectively.
Thus, a total of N noise samples are used to estimate the background environment.
The reference windows U and V are combined to obtain the estimate of the clutter
power level Z. To maintain the probability of false alarm, Py, at the desired value,

the adaptive threshold is multiplied by a scaling factor called the threshold
multiplier T. The product 7Z is the resulting adaptive threshold. The output Y
from the test cell (center tap) is then compared with the threshold in order to make
a decision.

We assume that the target model at the test cell, called the primary target, is a
slowly fluctuating target of Swerling Case 1. The signal-to-noise ratio of the target
is denoted S. We further assume that the total background noise is white Gaussian.
Since both the noise and Rayleigh targets have Gaussian quadrature components,
the output of the square-law detector has an exponential probability density

function [2]. If the noise variance is o2, then the conditional density function of
the output of the test cell is given by

y
> exp| ——— , for H,
26°(1+5S) 26°(1+9)

1 y
exp| ——— , forH
262 ( 262 j ‘

The hypothesis H, represents the case of noise alone, while hypothesis H,

Sy, (V1 H;) = (11.9)

represents the noise plus target signal case.
The probability of detection is given by

Py =[P(Y >TZ|Z,H)) fyy, (v| H)dy=E,[P(Y >TZ| Z,H)] (11.10)
0

where Z is the estimated homogeneous background noise power level, f,(z) is
the density function of Z, and E,[-] is the expected value over all values of z.
Substituting (11.9) into (11.10) and solving the integral, we obtain

[ y 7
P :E —_— _—_— d :E —
P Z{szzoz(HS)eXp{ 202(1+S)} y} Z{exl{ 202(1+S)}
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T
M, 1111
ZL&(HS)} (1

where M, ( ) denotes the MGF of the random variable Z. We can obtain the

probability of false alarm in a similar way, or by setting the target SNR, S, to zero
to obtain

T
Pr=M (11.12)
F 2(2(52]

Hence, for a design probability Py, the threshold multiplier 7" can be computed
from (11.12). For the CA-CFAR detector, the reference window is

Z=3X, (11.13)

with X;,i=12,...,N, independent and identically distributed random variables.
From Chapter 2, the gamma density function G(a,) given in (2.98) is

1 e1,B 11.14
Fr (9= g e (11.14)
with MGF
!
M ()=— (11.15)
(1-pn*

If we set =1, we obtain the exponential distribution G(1,) with density
function

X

.fX<x>=%eﬁ (11.16)

which is equivalent to fy, (v|H;) given in (11.9), with B= 267 under
hypothesis H, and B:202(1+S) under hypothesis H,. Thus, using (11.15),
the probability of false alarm of the distribution G(N, 267) is
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-N
T N 1

Pr=M.|—|=|1-262 || =— 11.17

" Z(zozj [ ° (2&}} 1+ (1)

The threshold multiplier is then

1
T=-1+P.N (11.18)

Replacing T /262 by T /[2062(1+8)], the probability of detection is [10, 11]

-N N
Py = 1+L = i (11.19)
1+ 8 1+S+T

For this homogeneous clutter background, the detection performance of the
CA-CFAR detector is optimum in the sense that its probability of detection
approaches, that of the (ideal) Neyman-Pearson detector as the number of
reference cells becomes infinite. Hence, there is an inherent loss in the probability
of detection of the adaptive CFAR detector when compared to the Neyman-
Pearson detector.

In general, the CFAR loss in the design, while computing the scale factor 7, is
a function of the background noise assumed, the design probability of false alarm,
and the reference window size N [12, 13]. It is also a function of the CFAR
algorithm adopted, as we will see. This gives an idea about the many CFAR
processors we can have for different applications. In fact, hundreds of papers were
published to deal with the different applications. Thus, we can only give a rough
sketch showing the evolution and variety of classes of CFAR problems.

Note also in deriving expressions for the probabilities of detection and false
alarm, we assumed a target model of Swerling Case 1, which we did not define.
This means that other targets may be considered depending on the application.
Before giving the definitions of target models in the next section, it should be
noted that there are different types of radar targets. The simplest target that we are
considering is the point target, but there are other types of targets. A point target is
one whose largest physical dimension is small relative to the range cell (c¢t/2) of

the transmitted pulse [4]. Such targets may be many aircrafts, satellites, small
boats, people and animals, and land vehicles. These targets are small enough so
that no significant “smearing” or spreading in time occurs in the received pulses.
Larger targets that can cause spreading in the received pulses, such as large
buildings, ships, and some aircraft, are called extended targets. Still larger targets
are called distributed targets. In this latter case, there is a class of targets called
area targets, which represents targets such as forests, oceans, and mountains.
Another class of targets, representing targets such as rain, snow, fog, smoke, and
chaff, is called volume targets.
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11.3.1 Target Models

When a target is present, the amplitude of the signal at the receiver depends on the
target radar cross section (RCS), which is the effective scattering area of a target as
seen by the radar. In general, the target RCS fluctuates because targets consist of
many scattering elements, and returns from each scattering element vary. The
effect of the fluctuation is to require a higher signal-to-noise ratio for high
probability of detection, and lower values for low probability of detection than
those required with nonfluctuating signals. In addition, returns from the same
scattering element are functions of the illumination angle, the frequency and
polarization of the transmitted wave, the target motion and vibration, and the
kinematics associated with the radar itself [1, 2, 4, 12-15]. Target RCS
fluctuations are often modeled according to the four Swerling target cases,
Swerling case 1 to 4. These fluctuating models assume that the target RCS
fluctuation follows either a Rayleigh or one-dominant-plus Rayleigh distribution
with scan-to-scan or pulse-to pulse statistical independence.

A scan is when the antenna main beam of the radar makes one complete
search of a surveillance region, as shown in Figure 11.13. When the antenna’s
main beam crosses a target, the radar receives a group of N pulses within a
resolution angle of the surveillance region. If the reflected target amplitude is
constant over the entire time it takes to observe a resolution angle, as the antenna
returns to again search the area containing the target, the RCS may have changed.
This slow fluctuation of the radar reflected target amplitude from a pulse-group to
a pulse-group, but not within a group, is called scan-fo-scan fluctuation. However,
when the radar-reflected target amplitude is fast enough so that it can be
considered independent for each pulse within the group of N-pulses, this
fluctuation is called pulse-to-pulse. The four Swerling cases are defined as follows.

\V\Resolution angle
(2N

' Resolution cell

\
\
1
1
1

Figure 11.13 A radar scan.
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Swerling Case 1 In this case, the returned signal power per pulse on any one scan
is assumed to be constant, but these echo pulses are independent (uncorrelated)
from scan to scan. A returned signal of this type is then a scan-to-scan fluctuation.
The envelope of the entire pulse-train is a single Rayleigh-distributed independent
random variable given by

N s

P(S) = miexp[—mi], ) (11.20)

where m is the average cross section (average of RCS or signal-to-noise power
ratio S) over all target fluctuations.

Swerling Case 2 In this case, the fluctuations are more rapid than in Case 1, and
are assumed to be independent from pulse-to-pulse instead of from scan-to-scan.
This is pulse-to-pulse fluctuation. The probability density function for the target
cross section is the same as given in (11.20).

Swerling Case 3 In this case, the fluctuations are scan-to-scan as in Case 1, but
the probability density function is given by

P(S)ziiexp(—ﬁ} S0 (11.21)
s m

Swerling Case 4 In this case, the fluctuations are pulse-to-pulse as in Case 2, but
the probability density function is given by (11.21).

Note that in Cases 1 and 2, the targets are assumed to be composed of a large
number of independent scatterers, none of which dominates (e.g., large aircraft).
Cases 3 and 4 represent targets that have a single dominant nonfluctuating
scatterer, together with other smaller independent scatterers (e.g., missiles).
Observe that Cases 1 and 2 targets produce signals whose envelopes are Rayleigh
distributed, while Cases 3 and 4 targets produce signals whose envelopes are chi-
squared distributed.

Swerling Case 5 Often, nonfluctuating targets are said to have Swerling Case 5 or
Swerling Case 0. In this case, the received signal amplitude is assumed unknown,
and there is no amplitude (or RCS) fluctuation.

Swerling Cases 1 to 4 are the models most commonly used, even though other
models have been developed. They are summarized in the chi-square target models
family by [13]



642 Signal Detection and Estimation

k-1
1 k&S kS

s

where T'(k)=(k—1)!, S=A4%/2c? is the target signal-to-noise power ratio (radar
cross section), m, is the average signal-to-noise ratio (mean cross section),

2

k= mf /var[S], o~ is the noise variance, and A4 is the signal amplitude. Table

11.1 shows the different Swerling target models for different values of k.
11.3.2 Review of Some CFAR Detectors

There are three main approaches to the CFAR problem: the adaptive threshold
processor, the nonparametric processor, and the nonlinear receiver approach. The
adaptive threshold processor is the one most commonly used, because it provides
the lowest CFAR loss when the actual environment closely matches the design
environment. Of the hundreds of papers published in this field, we shall mention
only a few to give a sketch of the advance of this rich field up to the actual interest
when using high-resolution radars.

A real environment in which a radar operates cannot be described by a single
clutter model. We refer to homogeneous clutter in situations where the outputs of
the range cells are identically distributed and statistically independent. In a
nonhomogeneous background, the adaptive threshold setting is seriously affected,
resulting in a degradation of the performance.

Clutter Edge
This model is defined to describe situations where there is a transition in the clutter

power distribution. The transition is not relatively smooth, and it is assumed that

Table 11.1
Different Cases to Which Swerling Models Apply

i Fluctuations
Model Scan-to-Scan Pulse-to-Pulse Scatterers

Swerling Case 1 1 v Many

- independent
Swerling Case 2 1 v
Swerling Case 3 2 v One

K dominant
Swerling Case 4 2 v

Swerling Case 5 0 Nonfluctuating
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the total noise power as a function of range can be represented by the step
function, as shown in Figure 11.14. This may represent the boundary of a
precipitation area. Two cases may be encountered in this severe clutter
environment. In the first case, the cell under test is in the clear, but a group of
reference cells are immersed in the clutter. This results in a higher adaptive
threshold, and the probabilities of detection and false alarm are reduced. This is
also known as the masking effect. In the second case, if the cell under test is
immersed in the clutter but some of the reference cells are in the clear region, the
threshold is relatively low, and the probability of false alarm increases intolerably.
Hansen and Sawyers [16] proposed the greatest-of-selection logic in cell averaging
constant false-alarm rate detector (GO-CFAR) to control the increase in the
probability of false alarm. In the GO-CFAR detector, the estimate of the noise
level in the cell under test is selected to be the maximum of U and V,
X =max(U,V), where U and V are the sums of the outputs of the leading and

lagging cells, respectively. If one or more interfering targets are present, Weiss
[17] has shown that the GO-CFAR detector performs poorly, and suggested the
use of the smallest-of-selection logic in cell averaging constant false-alarm rate
detector (SO-CFAR). In the SO-CFAR detector, the minimum of U and 7,

X =min(U, V), is selected to represent the noise level estimate in the cell under

test. The SO-CFAR detector was first proposed by Trunk [18] while studying the
target resolution of some adaptive threshold detectors. We can intuitively see that
the SO-CFAR detector performs well for the case shown in Figure 11.14(a).

Homogeneous Background Plus Interfering Targets

This model is defined to describe situations where the clutter background is
composed of homogeneous white Gaussian noise plus interfering targets. The
targets appear as spikes in individual range cells. These interfering targets may fall
in either the leading or lagging reference cells, or in both leading and lagging
range cells at the same time [19].

When interfering targets lie in the reference cells of the target under
consideration, the primary target, the threshold is raised and the detection of

Clutter power Clutter power
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Figure 11.14 Model of a clutter edge, test cell in (a) clear and (b) clutter. Ny = noise power,
Cy = clutter power.
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the primary target is seriously degraded. This is known as the capture effect. With
the threshold too high, some targets may be undetected, as illustrated in Figure
11.15. On the other hand, if the threshold is not high enough, as illustrated in
Figure 11.16, the number of false alarms due to noise spikes increases. To alleviate
such problems, much research work has been proposed in the literature. Rickard
and Dillard [20] proposed the censored mean level detector (CMLD), in which
target samples are censored and the noise level estimate is obtained from the
remaining noise samples. Ritcey [21] studied the performance of the CMLD for a
fixed number of interfering Swerling Case 2 targets. Gandhi and Kassam [22]
proposed the trimmed mean level CFAR (TM-CFAR) detector, that implements
trimmed averaging after ordering the samples in the window. When the number of
interfering targets is not known a priori, Barkat et al. [23] proposed the generalized
censored mean level detector (GCMLD), in which the number of interfering
targets is determined and their corresponding samples are then sampled. In the
censored mean level detector, the outputs of the range cells are ranked in
ascending order according to their magnitude to yield the N-ordered samples

Primary target
Threshold

Y T

Primary target

Figure 11.15 Threshold too high.

False alarm

Target \4
Threshold

-------- il

Figure 11.16 Threshold not high enough.



Adaptive Thresholding CFAR Detection 645
Xy SXoy oS X gy Seec S Xy <Xy (11.23)

Then, a censoring algorithm is applied according to the application. Rohling [24]
proposed the order-statistic CFAR (OS-CFAR) detector which chooses one
ordered sample to represent the noise level estimate in the cell under test. The kth
ordered sample value, X k) > selected as the test statistic Z, is multiplied by the

scale factor 7 to achieve the desired probability of false alarm, and then a decision
is made by comparing the output of the cell under test ¥ with the adaptive
threshold 7Z. The value suggested in [24] to represent a good background estimate
for typical radar applications in Gaussian noise is k =3N /4. The calculations of
the probabilities of detection and false alarm are relatively simple, and that makes
the OS-CFAR detector a relatively more popular detector. The probability density
function of the kth ranked sample in a Gaussian homogeneous background is given
by [11, 24, 25]

N
Txy (2= k( 5 J[l ~F@I" IF@1 f(2) (11.24)
where the noise density function is

f(@)= %exp(—ij, 220 (11.25)

and F(z) is the corresponding distribution function given by
F(z)=1-¢"* (11.26)

Substituting (11.25) and (11.26) in (11.24), we obtain

k(N - N-k+1 - k-1
Trx =52 ( i j{eXp[— %H {1 - eXp(— %H (11.27)

Using (11.12), the probability of false alarm is then

Py = % (]]{VJHI - exp(—iﬂk_l {exp(— %ﬂ e dz

_ []]CVJT(l_e_Z)k—l(e_Z)T+N—k+le:%:% (11.28)
. i
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Replacing Tby T /(1+.S) in (11.28), we obtain the probability of detection to be

k-1 .
P, =HN—1T (11.29)
SON-—i+—
1+S8

Clutter Edge and Spikes

This model describes the most general case in which there is not only a transition
in the clutter power distribution, but also interfering targets, as illustrated in Figure
11.17. Himonas and Barkat [26] proposed the generalized two-level censored
mean level detector (GTL-CMLD), which uses an automatic censoring algorithm
of the unwanted samples when both interfering targets and extended clutter are
present in the reference window of the cell under test. Khalighi and Bastani [27]
presented another variation called the AEXGO-LOG processor.

Many papers were published using different variations of the above detectors
for specific environments. For example, El-Mashade [28] studied the performance
of the mean-level CFAR processor in multiple target environments when using M-
correlated sweeps. In [29], an intelligent CFAR processor based on data variability
was proposed. In [30], they considered an automatic censoring approach based
also on ordered data variability, and proposed an automatic censoring CFAR
detector for nonhomogeneous environments.

Non-Gaussian Noise

Non-Gaussian distributions have been considered since the beginning of adaptive
thresholding techniques to represent certain types of clutter, such as sea clutter,
land clutter, and weather clutter. The log-normal, Weibull, and gamma
distributions have been used to represent envelope-detected non-Gaussian clutter
distributions. In recent years, the K-distribution has been used mostly to model the

Clutter Clutter
Power (dB) Power (dB)
A A
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X 111
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Figure 11.17 Sample clutter power distribution when clutter edge and spikes appear in the reference
range cells; Ny = thermal noise power, C, = clutter power.
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sea clutter [31-41]. The most important characteristic of the K-distribution is its
ability to take into account the correlation properties of the sea echo. This ability is
a result of the fact that the K-distribution is a compound distribution made up of a
Rayleigh distributed component termed “speckle,” whose mean level component
varies slowly in time according to a chi-distribution, as discussed in Chapter 2.
This is equivalent to modulating the square law detected speckle S with a gamma
distributed power modulation process T, referred to as “texture.” A characteristic of
all non-Gaussian distributions used in radar detection is their having a much longer
“tail” than the Gaussian distribution. Thus, the optimum detectors used assuming a
Gaussian background are no longer optimum, resulting in a significant increase in
the probability of false alarm. If the threshold is raised to maintain a constant false
alarm rate, then the probability of detection is seriously reduced. Thus, better
signal processors are needed to obtain a high performance.

High-Resolution Radars

In early studies, the resolution capabilities of radars were relatively low, and the
Gaussian representation of the background noise (that is, the amplitude is Rayleigh
distributed) was a good statistical representation. Optimal detection approaches as
discussed in the previous chapter were considered. As the resolution capabilities of
radar systems improved, it was believed that the radar would intercept less clutter,
and thus improve the detection performance. However, the detection performance
did not improve, but rather the radar system was plagued by target-like “spikes”
that gave rise to an intolerable increase in the false alarm rate [42]. It was then
observed that the noise statistic was no longer Gaussian, as it was assumed. Hence,
new clutter models were needed to reduce the effects of spikes to improve the
detection performance. Studies showed that “good” distributions to represent spiky
non-Gaussian clutter possess “longer tails,” such as the Weibull distribution, log-
normal distribution, and K-distribution, which are two parameter distributions.
Anastassopoulos et al. [43] showed that these distribution models are special cases
of the compound-Gaussian model. In Chapter 2, we discussed the different cases
obtained from the compound-Gaussian model. There is a lot of research ongoing to
improve detection performances while controlling the false alarm rate. Gini et al.
[44] published a list of almost 700 references on radar signal processing, which
comprises more than 120 papers on CFAR detection. In [45], a review of some
CFAR detection techniques in radar systems was presented. Another reference is
the paper published by Shnidman [46] on a generalized radar clutter model.
Recently, Conte et al. [47] presented a statistical compatibility of real clutter data
with the compound Gaussian model.

The literature on CFAR detection is very rich. I apologize to the many authors
who contributed in this field but were not cited explicitly.
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11.4 ADAPTIVE THRESHOLDING IN CODE ACQUISITION OF
DIRECT-SEQUENCE SPREAD SPECTRUM SIGNALS

The concept of adaptive thresholding CFAR in digital communication systems
started to appear in the literature in the last seven years. The basic CFAR operation
is the same but the philosophy and approach are completely different. In the
previous section, we introduced the concept of adaptive thresholding. We needed
to give a very brief description of some radar principles, so that we can understand
the application and its philosophy. Similarly in this section, we first present a brief
description of spread spectrum signals in digital communication systems and then
show how adaptive thresholding techniques are applied.

Spread spectrum communication signals have been used in military systems
for decades because of their ability to reject interference. The interference can be
unintentional when another transmitter tries to transmit simultaneously through the
channel, or intentional when a hostile transmitter attempts to jam the transmission.
By definition, for a communication system to be considered spread spectrum, it
must satisfy two conditions. First, the bandwidth of the transmitted data must be
much greater than the message bandwidth. Second, the system spreading is
accomplished before transmission by some function (e.g., code or a PN sequence)
that is independent of the message but known to the receiver. This same code is
then used at the receiver to despread the signal so that the original data may be
recovered. Thus, synchronization between the PN sequence generated at the
receiver and the PN sequence used in the transmitted signal is necessary for
demodulation. This may be achieved by sending a fixed PN sequence that the
receiver will recognize in the presence of interference. After the time
synchronization is established, transmission of information may commence.

The two main modulating techniques in spread spectrum communication
systems are direct-sequence (DS) or pseudonoise (PN) spread spectrum, and
frequency-hop (FH) spread spectrum. Direct-sequence and pseudonoise are used
interchangeably, with no distinction between them. In direct-sequence spread
spectrum technique, a pseudorandom or a pseudonoise sequence, which is a noise-
like spreading code, is used to transform the narrowband data sequence into a
wideband sequence. Then, the resulting wideband signal undergoes a second
modulation using phase shift keying (PSK) techniques. In frequency-hopping
spread spectrum, the information sequence bandwidth is still widened by a
pseudonoise sequence but with a changing carrier frequency. A typical spread
spectrum digital communication system is shown in Figure 11.18.

Spread spectrum signals appear like random noise, which makes them
difficult to demodulate by receivers other than the intended ones, or even difficult
to detect in the presence of background noise. Thus, spread spectrum systems are
not useful in combating white noise, but have important applications such as
antijam capabilities and interference rejection.

Interference arises also in multiple access communication, in which a number
of independent users share a common channel. The conventional way to provide



Adaptive Thresholding CFAR Detection 649

Information Channel Modulator Channel
sequence encoder

i

PN Sequence

Output data Channel
sequence encoder |¥ Demodulator

i

PN sequence

Figure 11.18 Typical spread spectrum system.

multiple access communication uses frequency division multiple access (FDMA)
or time division multiple access (TDMA) communication. In FDMA, each user is
assigned a particular frequency channel, which presents a fraction of the channel
bandwidth until system capacity is reached, when the whole bandwidth is used. In
TDMA, the channel time-bandwidth is apportioned into fixed time slots. Each user
is assigned a particular time slot until capacity is reached, when all time slots are
used. A more efficient way to accomplish multiple access communications is code
division multiple access (CDMA). In CDMA, each user is assigned a particular
code, which is either a PN sequence or a frequency-hopping pattern, to perform the
spread spectrum modulation. Since each user has its own code, the receiver can
recover the transmitted signal by knowing the code used by the transmitter.
However, each code used must be approximately orthogonal to all other codes;
that is, it must have low cross-correlation.

CDMA offers secure communication privacy, due to the fact that the
messages intended for one user may not be decodable by other users because they
may not know the proper codes. In addition, as the number of users increases
beyond a certain threshold, a gradual degradation in the performance is tolerated,
and thus CDMA can accommodate more users. Because of its low power level, the
spread spectrum signal may be hidden in the background noise, and in this case it
is called “covert.” It has a low probability of being detected and is called a low-
probability of intercept (LPI) signal. Because of the above advantages, DS-CDMA
became in the late 1980s increasingly of interest in cellular type communications
for commercial purposes [48]. Next, we present the pseudonoise sequence.

11.4.1 Pseudonoise or Direct Sequences
The most widely used PN sequences are the maximum length sequences, which are

coded sequences of 1s and Os with certain autocorrelation properties. They have
long periods, and are simply generated by a linear feedback shift register. An
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m-sequence is periodic with period (length) N =2" —1 bits, and is generated by a
shift register of length m, which uses m flip-flops, as shown in Figure 11.19. Some
properties of the maximum length sequences are as follows [49].

1. Balance Property Each period of the sequences contains 2™ ones and

2"1 _1 zeros; that is, the number of ones is always one more than the number of
ZEro0S.

2. Run Property Among the runs (subsequences of identical symbols) of ones or
zeros in each period of a maximum-length sequence, one-half of runs of each kind
are of length one, one-fourth are of length two, one-eighth are of length three, and
so forth, as long as these fractions have a meaningful number of runs. The total
number of runs is (m+1)/2.

3. Correlation Property The autocorrelation function of a maximum-length
sequence is periodic and binary valued.

Example 11.1

Consider the m = 3 -stage feedback shift register shown in Figure 11.20. The

systematic code generated is of length N =2° —1=7, as shown in Table 11.2.

Assuming that the initial state of the shift register is 100, the successive states will
be 100, 110, 111, 011, 101, 010, 001, 100, ....

L /‘
Output
M 1 2 — w2 ] oml — m seq‘;gj@:
Figure 11.19 Maximum-length PN code generator.

Modulo 2

adder
L /‘
Input : §: Output
sequence 1 » 0 » 0 sequence >

Figure 11.20 Three-stage (m = 3) feedback shift register.
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Note that the choice of 100 as an initial state is arbitrary. Any other choice
from the six possible states would result in a shifted version of this cyclic code, as
shown in Table 11.2. The state 000 results in the catastrophic cyclic code.

The output sequence is the code {c,}=00111010.... Note that we have four

N=7
runs: 00, 111, 0, and 1. Two of the runs (one-half of the total) are of length one,
and one run (one-quarter of the total) is of length two.

In terms of the levels —1 and +1, let zero represent —1, and thus the output
sequence is as shown in Figure 11.21. The small time increments representing the
duration of binary symbols 0 or 1 in the sequence are commonly referred to as
chips, and denoted T,, and N is the length of one period of the sequence. The

autocorrelation function is given by

Table 11.2
Maximum-Length Shift Register Codes for m =3

Information Bits Code Words
000 0000000
001 1001110
010 0100111
011 1101001
100 0011101
101 1010011
110 0111010
111 1110100
Chip 1 1
00 1 1 1i0i10o o0 1 11 0 110 0 I
+1 4
-1
N=2"-1 %" | |
T, | |
: NTL :I ]

Figure 11.21 Periodic binary PN sequence.



652 Signal Detection and Estimation

1, k=(N

1 N
R.(k)=—)> c,c, ; = 11.30
c( ) N,; n“n-k _%, k£ (N ( )

where /¢ is any integer. The autocorrelation function is shown in Figure 11.22.
Note that the autocorrelation function is periodic and binary valued.

11.4.2 Direct-Sequence Spread Spectrum Modulation

One way of widening the bandwidth of the information-bearing signal is by
modulation of the PN sequence on the spread spectrum carrier, which can be
binary phase-shift keying (BPSK), as shown in Figure 11.23. First, the binary
message m(t) and the PN sequence p(¢) are applied to a product modulator, as
shown in Figure 11.24(a). The assumed sequences m(¢) and p(f) are represented
in their polar forms, as shown in Figures 11.24(b, c). Note the duration of a
rectangular pulse 7, = MT,, where M is an integer representing the number of

chips per information bit. Therefore, it also represents the number of phase shifts

R(‘(‘E) A

1.0

Figure 11.22 Autocorrelation function of PN sequence.

Binary message Binary - Binary Transmitted signal
m(f) adder "] modulator x(0)
A
p(®
PN code Carrier frequency
generator fe

Figure 11.23 Direct-sequence transmitter.
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(@) PN sequence p(¢) A E E
@) +11 |J |—|
0
, L U
1(©) 5
SO a 5 :
14 _|
0 : >
-1 LI L
(d)
Figure 11.24 Simplified spread spectrum transmitter and waveforms.
that occur in the transmitted signal during the bit duration 7). Since the

information sequence m(¢) is narrowband and the PN sequence is wideband, the

product signal s(z) will have a spectrum nearly the same as the PN sequence. That

is, the spectrum of the transmitted signal is widened by the PN sequence, which is

a spreading code. Thus, the transmitte

d signal is

s(t) = m(t) p(?)

(11.31)

The transmitted signal is corrupted by some additive interference i(t) , as shown in

Figure 11.25(a). The received signal y(¢) is

s(t)
)

i)
(a)

w0

=(f)

Lowpass
filter

20)
(b)

Figure 11.25 Spread spectrum model: (a) channel and (b) receiver.
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() =s@)+i(t)=m(t) p(t)+i(t) (11.32)

To recover the original information sequence m(¢), the receiver signal is applied

to a synchronous demodulator, which is a multiplier followed by a lowpass filter,
as shown in Figure 11.25(b). The resulting demodulated signal is

2(8) = y()) p(t) = m(6) p* (1) + p(0)i(t) = m() + p(1)i(t) (11.33)

since p2 (¢)=1 for all «. Thus, we obtain the original narrowband message m(t)
plus a wideband term p(¢#)i(¢). The filter reduces significantly the power of the

interference. This is just to illustrate the baseband transmission and reception. In
reality, the message is transmitted over a bandpass channel with a carrier
frequency f,, as illustrated in Figure 11.23. Thus, for direct-sequence binary

c

phase-shift keying (DS/BPSK) transmission, the transmitted signal is
s(t) = A cos[w 1 +0(1)] (11.34)

where o, =2nf, is the carrier frequency, and the phase 6(¢) is given by the truth

table in Table 11.3. The general model of a direct-sequence spread spectrum
phase-shift keying system is shown in Figure 11.26.

Table 11.3
Truth Table for Phase 0(7)

Message m(t)
Polarity of PN
Sequence +1 -1
+1 0 T
-1 i 0
Transmitter Channel Receiver
Elnformation sequence s(9) Ef ii () (1) Estimate E

PSK modulator

Coherent .
detector of m(f)

I3

e
e T

PN sequence .
Frequency carrier

; E Local PN
() P " Local frequency

) .
i, Sequence carrier
AN

Figure 11.26 Conceptual model of DS/BPSK system.
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11.4.3 Frequency-Hopped Spread Spectrum Modulation

In an FH spread spectrum communications system, the frequency is constant
during each time chip but changes from chip to chip, as illustrated in Figure 11.27.
The bandwidth is thus subdivided into a large number of contiguous frequency
slots. The modulation of FH systems is commonly binary or M-ary frequency shift
keying (FH/FSK or FH/MFSK) [50, 51]. A block diagram of an FH/MFSK
transmitter and noncoherent receiver is shown in Figure 11.28.

11.4.4 Synchronization of Spread Spectrum Systems

For both DS and FH spread spectrum systems, time synchronization of the local
code generated at the receiver and the code embedded in the receiving signal is
done in two phases. The initial synchronization, called acquisition, consists of
bringing the two spreading signals into coarse alignment with one another within
one chip interval T,. Hence, the problem of acquisition is one of searching

through a region of time and frequency in order to synchronize the received spread
spectrum signal with the locally generated spreading signal. Once the received
spectrum signal is acquired in the acquisition phase, then the second phase, called
tracking, performs a fine synchronization within a small fraction of a chip, and
maintains the PN code generator at the receiver in synchronism with the incoming
signal while the demodulator is in progress. The usual way for establishing initial
synchronization is for the transmitter to send a known pseudorandom data
sequence to the receiver, and thus the initial synchronization may be viewed as
establishing a time synchronization between the transmitter clock and the receiver
clock. There is an initial timing uncertainty between the transmitter and the
receiver for the following reasons [52].

1. Uncertainty in the range between the transmitter and the receiver, which
translates into uncertainty in the amount of propagation delay.

Frequency
i i PRRZZEZE
([ i i i E
(ceesnin! : E E
5 5 e ;
i f i ! H » Time
T. 2T, 37T, 4T, 5T,

Figure 11.27 Frequency-hopping signal.
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Figure 11.28 Block diagram of an FH/MFSK spread spectrum system.

2. Relative clock instabilities between the transmitter and the receiver, which
results in phase differences between the transmitter and the receiver spreading
signals.

3. Uncertainty of the receiver’s relative velocity with respect to the transmitter,
which translates into uncertainty in a Doppler frequency offset value of the
incoming signal.

4. Relative oscillator instabilities between the transmitter and the receiver, which
results in frequency offset between the incoming signal and the locally generated
signal.

Note that most acquisition schemes utilize noncoherent detection because the
spreading process typically takes place before carrier synchronization, and thus the
carrier phase is unknown at this point. Acquisition can be realized in principle by a
filter matched to the spreading code or cross-correlation, which are optimum
methods.
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Serial Search

A popular strategy for the acquisition of direct-sequence spread spectrum signals is
the use of a sliding correlator, as shown in Figure 11.29. This single correlator
searches serially for the correct phase of the DS code signal.

The incoming PN signal is correlated with the locally generated PN signal in
discrete time instants, usually in time intervals of 7./2. In order to test

synchronism at each time instant, the cross-correlation is performed over fixed
intervals of NT,, called search dwell time. The correlator output signal is

compared to a preset threshold. If the output is below the threshold, the phase of
the locally generated reference code signal is advanced in time by a fraction
(usually one-half) of a chip, and the correlation process is repeated. These
operations are performed until a signal is detected; that is, when the threshold is
exceeded. In this case, the PN code is assumed to have been acquired, the phase-
incrementing process of the local reference code is inhibited, and the tracking
phase is initiated.

If N chips are examined during each correlation, the maximum time

required— (Tacq )max —for a fully serial DS search, assuming increments of 7, /2,

is
(7o) =2NN,T, (11.35)

where N, chips is the time uncertainty between the local reference code and the

receiver code (searched region). The mean acquisition time can be shown, for
N.>>T,/2,tobe [52]

Ty = Q=P+ KPe) 1) (11.36)

Pp

Received Threshold
coded signal detector
Acquisition
PN code Search indication
« d
generator control [«
clock

Figure 11.29 A sliding correlator for DS serial search acquisition.
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where Pj, is the probability of detection, P is the probability of false alarm, and
KNT,(K >>1) the time interval needed to verify a detection.

A similar process may also be used for frequency-hopping signals. In this
case, the problem is to search for the correct hopping pattern of the FH signal.

Parallel Search

Consider the direct-sequence parallel search acquisition shown in Figure 11.30.
We observe that the incoming signal is correlated with the locally generated code
and its delayed versions with one-half chip (7, /2) apart. If the time uncertainty

between the local code and the received code is N, chips, then we need 2N,

correlators to make a complete parallel search in a single search time. The locally
generated code corresponding to the correlator with the largest output is chosen.
As the number of chips N increases, the probability of choosing the incorrect code
alignment (synchronization error) decreases, and the maximum acquisition time
given by

(7o) =NT, (11.37)

increases. Thus, N is chosen as a compromise between the acquisition time and
the error probability of synchronization. The mean acquisition time is [52]

— NT,
Tag =3 (11.38)
D

C"—-;sl
Y

T

Local code generated g(7)

NT.
J. P Select code Output
Received coded J e
—> >
signal output

=
ce—3

glt— (2N, -DT]

Figure 11.30 Correlator for DS parallel search acquisition.
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The number of correlators can be large, which makes this parallel acquisition less
attractive. Other approaches or combinations have been proposed in the literature.

11.4.5 Adaptive Thresholding with False Alarm Constraint

Threshold setting plays an important role in the performance of the system, since it
is the base for the decision of synchronization. Several methods for setting the
threshold have been published in the literature. In the last seven years, the concept
of adaptive CFAR thresholding has been introduced. Consider a single dwell serial
search scheme with a noncoherent detection, as shown in Figure 11.31. This
system consists of a single adaptive detector with a correlation tap size N. The
adaptive detector consists of two blocks. The first block is the conventional
noncoherent matched filter (MF) detector, as shown in Figure 11.32. The second
block illustrates the adaptive CFAR operation for the decision process. Figure
11.33 illustrates the overall operation in some detail. The received PN signal plus
noise and any interference are arriving at the input of the adaptive detector. If the
adaptive detector declares that the present cell is the correct one, the tracking loop
is activated, and the relative time delay of the local PN signal is retarded by AT,
where T, is the chip time, to examine the next cell. The whole testing procedure is
repeated. Usually, the value of A is 0.25, 0.5, or 1. On the other hand, if the

Adaptive detector To tracking loop
| b
o : Conventional Y Adaptive T
7 Wi noncoherent > operation E
i detector CFAR T I
i ! 0
Update by AT.
Figure 11.31 Adaptive serial search acquisition scheme.
2
Correlator — () —
y
0] 2 cosmot T -
B el B
\/2 sinmot >
Correlator > ()2 —

Figure 11.32 1-Q noncoherent matched filter.
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Figure 11.33 Block diagram of adaptive detector.

adaptive detector declares H, the phases of the two codes (incoming and local) are
automatically adjusted to the next offset position, and the test is repeated.

For the adaptive operation of the decision processor, the threshold value of the
comparator in the adaptive detector is adapted in accordance with the magnitude of
the incoming signals. Accordingly, the outputs of the correlator are serially fed
into a shift register of length M + 1. The first register, denoted as Y, stores the
output of the multiplication of the power of the incoming signal with the value of
the partial correlation between the local and incoming PN sequences. The
following M registers, denoted by X;, j = 1, 2, ..., M, and called reference
windows, store the output of the previous M phases. Note that the data stored in
the register forming the reference window is like the radar reference window in
CFAR adaptive thresholding. A selection logic is then used to set the threshold
based on a fixed probability of false alarm.

Note that the first register stores the output of the test phase. This is a
fundamental difference from radar CFAR detection. However, the operations of
thresholding are the same, and thus much research can be pursued in this field.
Linatti [53], while studying threshold principles in code acquisition of direct
sequence spread spectrum signals, showed that better performances may be
obtained using CFAR criterion under certain conditions. Different CFAR
algorithms have been suggested in the literature [54—58], and the results look
promising.

11.5 SUMMARY

In this chapter, we considered applications of adaptive CFAR thresholding in radar
systems and code division multiple access communication systems. We first
showed the need of adaptive thresholding CFAR in radar automatic detection due
to the nonstationary nature of signals. Then, we presented briefly the simplified
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basic concepts of radar systems. The theory of radar systems can be very involved,
but we presented only the necessary steps that lead us to understand the principles
of automatic detection. The cell-averaging CFAR detector was then presented in
some detail, since it is the first detector presented in adaptive thresholding CFAR
detection. Different detectors were then discussed to show the evolution of
adaptive CFAR detection in different environments. The OS-CFAR detector was
also presented in some detail. The literature in this field is very rich, and thus we
had to limit ourselves to only a few papers.

In Section 11.3, we briefly described spread spectrum communication
systems. Then, we presented the concepts of adaptive thresholding CFAR applied
to spread spectrum communication systems, which started to appear in the
literature in the last few years. We showed how the philosophy of radar adaptive
thresholding is different from spread spectrum communications adaptive
thresholding, but the operations of computing the adaptive threshold and the scale
parameter for a CFAR are the same.
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Chapter 12

Distributed CFAR Detection

12.1 INTRODUCTION

The concept of employing multiple sensors with data fusion is widely used in
surveillance systems. For a large area of coverage and/or a large number of targets
under consideration, a number of geographically separated receivers may be used
to monitor the same volume in space, as shown in Figure 12.1. In such space
diversity systems, complete observations can be transmitted by the sensors to a
central processor for data processing. Diversity systems are more robust and more
reliable than single sensor systems. However, the enhanced performance of these
systems is essentially derived from the diversity of the system configuration, at the
expense of a required large communication bandwidth between the local receivers

Phenomenon H

Sensor 1 Sensor 2 Sensor 3 XX Sensor N

Y Y, \ 2€

Central processor

|

Figure 12.1 Distributed sensor system with central computation.
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and the central processor. Thus, due to the constraints on the bandwidth of the
communication channels, distributed signal processing with a data fusion center is
preferred in many situations. In such distributed detection systems, some
processing of the signal is done at each sensor, which then sends partial results
(compressed data) to the central processor, or in the context of distributed
detection, to the data fusion center, as shown in Figure 12.2. These partial results
are combined according to a suitable data fusion rule to yield the desired global
result. In our case, the partial results are decisions from the individual detectors,
D;,i=12,...,N, where D; €{0,1}. The values of D; are combined to yield a
final decision, Dy, which may again be zero or one.

A lot of work on distributed detection using a fixed threshold has been
reported in the literature, for example [1-11]. When the target is embedded in
nonstationary clutter and noise, adaptive thresholding techniques are used.

12.2 DISTRIBUTED CA-CFAR DETECTION

The theory of distributed CA-CFAR detection was first developed by Barkat and
Varshney [12, 13]. They considered the problem of detecting a Swerling target
model I, embedded in a white Gaussian noise of unknown level. For a given target
SNR common to all local detectors and a known fusion rule at the data fusion
center, they obtained the optimum threshold multipliers of the individual detectors
and derived an expression for the probability of detection at the data fusion center.
The probability of detection, Py, for detector i, i =1,2,..., N, is given by

Phenomenon H

Detector 1 Detector 2 Detector 3 eee Detector N

D, D, vDs Dy

Data fusion center

an

Figure 12.2 Distributed sensor system with data fusion.




Distributed CFAR Detection 667

Py, :TP(YO" >TZ' |Z",H1)PZ, (z"}zz" (12.1)
0

where 7, is the threshold multiplier at the CA-CFAR detector i, i=1,2,..., N,

and P, (zi) denotes the probability density function of the adaptive threshold at
the ith CA-CFAR detector. Also,

i

P(YO" >T,Z! |z",H1)= j Py (y" |H1)dy" =exp[—i_—ySJ (12.2)
Tz

Since the noise samples for each CA-CFAR detector are identically distributed, the
probability of detection of the individual detectors can be written, from the
previous chapter, as

(1+5)" ,
Ph=——7— i=12,...,N 12.3
D (1+S+1,)" (12.3)

The goal is to maximize the overall probability of detection while keeping the
overall probability of false alarm constant. To do this, we use the calculus of
extrema and form the objective function

J(T. Ty, ... Ty )= Py (S, T}, Ty .., Ty )+ M [Pr (T}, Ty, ..., Ty ) -] (12.4)

where a is the desired false alarm probability at the data fusion center, A is the
Lagrange multiplier, and T; ,i=1,2,...,N, is the threshold multiplier at each

detector. To maximize Pp (S, n,T,,...,T N), subject to the constraint that
Py (T 1, T N) is a constant, we must maximize the objective function
J(T},Ty,...,Ty). We set the derivative of J(T},T,,...,Ty) with respect to
T,,i=1,2,...,N, equal to zero, and solve the following system of N nonlinear
equations in N unknowns.

aJT,,Ty,....,Ty)

o,

=0, j=L2,...,N (12.5)
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Once the threshold multipliers, 7;,i=1,2,..., N, are obtained, all the values

of Py are fixed and the optimum P, results. Now, we give specific results for the

“AND” and “OR” fusion rules. We also find the optimum threshold multipliers so

as to maximize P, while P is maintained at the desired value.

AND Fusion Rule

In this case, the global probabilities of detection and false alarm, in terms of the

local ones, are

I
Py =11Pp,
i=1
and
I
Pp=||Pr
i=1
That is,
P N (1+S)N"
P iz (1+S+7})Nf
and
ﬁ 1
P =
T )Y

Substituting (12.8) and (12.9) into (12.4), the objective function is

J(TI,TZ,...,TN):IE[L)M_+K{IEI;—G}

i (1+1,)"

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

Taking the derivative of J(7},7,,...,Ty) with respectto T; ,i=1,2,...,N, and

setting it equal to zero, we obtain
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(1+8)N*Ni
1+S+T, )N 1+ s+T,)Y

N 1
N —0, j=12,..,N (1211
1_[(1+TJ)N“(1+T) / ( )

The threshold multiplier, 7, can be obtained by solving the above set of coupled
nonlinear equations along with the constraint

N
= H (12.12)
i<l (1+T,.)
OR Fusion Rule
In this case, we have
N
Py :HPM,- (12.13)
i=1
and
N
P =1-11(1-7;) (12.14)

where P,, is the probability of miss, and recall that P, =1- P, . The objective
function then becomes

J(T,.Ty,....Ty )= Py +A[Pe (T}, Ty, ..., Ty ) -0

it ]

(12.15)

Note that in this case we have to minimize J(7},7,,...,Ty), since we are

minimizing the overall probability of a miss, which is equivalent to maximizing
P, at the data fusion center as defined by (12.4). Taking the derivative of the

objective function with respect to 7, j=1,2,..., N, and setting it equal to zero,

we obtain
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) (1+S+1,)"

aJ(T),T,,...,Ty) (1+8)Y N . (1+8)"
or, (les+7, T i
Jj#i

A il 1

+ [1]1- =0, j=0,1,2,...N (12.16)

(11, )t ,~=1{ (1+T,.)Nl /
’ J#i

Hence, we obtain a system of coupled equations. Then, we use the following
constraint

1- 1][ (1+T) }:a (12.17)

to solve for the unknown threshold multipliers recursively.

12.3 FURTHER RESULTS

In [14], Elias-Fusté et al. extended the work in [12] to N receivers using cell-
averaging and order statistic CFAR. They considered a “k out of N’ fusion rule at
the data fusion center, and solved for the optimum thresholds of the local receivers
by maximizing the overall probability of detection, while the global probability of
false alarm is maintained constant. Then, they assumed that the local receivers are
based on identical ordered statistics CFAR for a multiple target situation. Recall in
OS-CFAR detection, an order number of the estimating cell is used to represent
the background level. The problem of nonidentical OS-CFAR local detectors was
considered in [15]. For a given set of ordered number cells, k;,i=1,2,..., N, they

form the objective function at the data fusion center, which is given by

k) Tk ) (T ke = P (1A LTk ) (T ke )]

+}\‘{PF[(Tl’kl)’(T25k2)ﬂ""(TNﬂkN)]_OL}
(12.18)

Subject to the constraint that the overall desired probability of false alarm at the
data fusion center is o, A is again a Lagrange multiplier. Then, they obtain the
optimum threshold multipliers 77,7,,...,Ty, by solving the set of nonlinear

equations

a‘][(Tl’kl)s(Tzskz)’""(TN’kN)]:0 ]:12 N

o,

(12.19)
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for the constraint
PF[(Tl:kl)7(T2:k2)ﬂ""(TNﬂkN)]:a (12.20)
The corresponding objective functions for the AND and OR fusion rules are,

respectively, given by

T, Tk b e =TT TT—

= UON it T;
1+s
N (k-1 N—j
+A —L |- (12.21)
s
and
al A N, -J
J[(Tlak )s(Tzskz) ---a(TN»kN)]:l_H 1- T
i=1 j:ONi_]+ i
1+s
N k-1 .
A 1-T]|1- NitJ g (1222
i=1 s Ni—Jj+T;

Further results based on decentralized cell-averaging CFAR detection and
decentralized order statistic CFAR detection were developed by Blum et al. [16,
17]. In [18], different target models were considered.

Non-Gaussian clutter such as the Weibull distribution or the distribution K
were considered in [19-21]. The literature is very rich, and further developments
can be found in [22-32].

Again, I apologize to the many authors who contributed in this field and were
not cited explicitly. As discussed in the previous chapters, high-resolution radars
and different topologies with embedded systems may be considered for this quest
of better detection performances.

124 SUMMARY

In this chapter, we introduced the concept of adaptive thresholding CFAR using
multiple sensors and data fusion. We showed how the problem is formulated and
gave the necessary steps to obtain the optimum scale factors using the AND and
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OR fusion rules at the data fusion center. Other approaches using OS-CFAR
detection were also discussed. Then, we presented some papers that enriched this
concept of adaptive CFAR detection with multiple sensors and data fusion, for
non-Gaussian clutter environments, and under different constraints.
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Appendix

The density function of the Gaussian, also called normal, distribution is given by

N2
fX(x)zéGexp{—(xzcn;)} for all x (A.1)

where m and © are the mean and standard deviation of X, respectively, and satisfy
the conditions —o <m <o and o> 0. The corresponding distribution function is
given by

Fy(x)=P(X <x)= é . j exp {-%} du (A2)

The distribution function can be determined in terms of the error function as

Fy(x)= %+ % erf (%} (A3)
where
erf(x) = —= j e du (A4)
ex

Letting u = (x—m) /o in (A.1), then

2

! [e 2du (A.5)

I(x) 2 Fy(x)=P(X < x)
where
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fy(x)= e 2 (A.6)

is the standard normal distribution with mean m = 0 and variance o> = 1, and also
denoted MO0,1). Tabulated values of /(x) and erf(x) are given in Tables A.1 [1]

and A.2 [2], respectively.

Other important results are the complementary error function and the Q-
function given by

erfe(x) = % ]j e du (A7)
such that
erfc(x) = 1 — erfe(x) (A.8)
and
O(x)= J;_RT e 2 du (A.9)
where
0(0)=7 (A.10)
and
O(-x)= 1-0(x) for x>0 (A.11)

The Q-function can be written in terms of the error function to be

0(x)= %{ 1- erf[%J } = %erfc[%] (A.12)

Also note that

I(x)+0(x) =1 (A.13)
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and

e 2, forx>4 (A.14)
xA/27

In some books, O(x) defined in (A.9) is denoted erfc«(x), while I(x) in (A.5) is
denoted erfc«(x), and thus erf«(x) + erfc«(x) = 1, as in (A.13).
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Table A.1 Values of the Standard Normal Distribution Function

Signal Detection and Estimation

I(x) 2

o1
1

™ 2y = P(X <x)

4

5

6

7

8

9

-3.0

0.0013

0.0010

0.0007

0.0003

0.0002

0.0002

0.0001

0.0001

0.0000

-29
-2.38
-2.7
-2.6
-25
-24
-23
-22
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-14
-13
-1.2
-1.1
-1.0
-09
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
-0.0

0.0019
0.0026
0.0035
0.0047
0.0062
0.0082
0.0107
0.0139
0.0179
0.0228
0.0287
0.0359
0.0446
0.0548
0.0668
0.0808
0.0968
0.1151
0.1357
0.1587
0.1841
0.2119
0.2420
0.2743
0.3085
0.3446
0.3821
0.4207
0.4602
0.5000

0.0018
0.0025
0.0034
0.0045
0.0060
0.0080
0.0104
0.0136
0.0174
0.0222
0.0281
0.0352
0.0436
0.0537
0.0655
0.0793
0.0951
0.1131
0.1335
0.1562
0.1814
0.2090
0.2389
0.2709
0.3050
0.3409
0.3783
0.4168
0.4562
0.4960

0.0017
0.0024
0.0033
0.0044
0.0059
0.0078
0.0102
0.0132
0.0170
0.0217
0.0274
0.0344
0.0427
0.0526
0.0643
0.0778
0.0934
0.1112
0.1314
0.1539
0.1788
0.2061
0.2358
0.2676
0.3015
0.3372
0.3745
0.4129
0.4522
0.4920

0.0016
0.0023
0.0031
0.0041
0.0055
0.0073
0.0096
0.0126
0.0162
0.0207
0.0262
0.0329
0.0409
0.0505
0.0618
0.0749
0.0901
0.1075
0.1271
0.1492
0.1736
0.2005
0.2297
0.2611
0.2946
0.3300
0.3669
0.4052
0.4443
0.4840

0.0016
0.0022
0.0030
0.0040
0.0054
0.0071
0.0094
0.0122
0.0158
0.0202
0.0256
0.0322
0.0401
0.0495
0.0606
0.0735
0.0885
0.1056
0.1251
0.1469
0.1711
0.1977
0.2266
0.2578
0.2912
0.3264
0.3632
0.4013
0.4404
0.4801

0.0015
0.0021
0.0029
0.0039
0.0052
0.0069
0.0091
0.0119
0.0154
0.0197
0.0250
0.0314
0.0392
0.0485
0.0594
0.0722
0.0869
0.1038
0.1230
0.1446
0.1685
0.1949
0.2236
0.2546
0.2877
0.3228
0.3594
0.3974
0.4364
0.4761

0.0015
0.0021
0.0028
0.0038
0.0051
0.0068
0.0089
0.0116
0.0150
0.0192
0.0244
0.0307
0.0384
0.0475
0.0582
0.0708
0.0853
0.1020
0.1210
0.1423
0.1660
0.1922
0.2206
0.2514
0.2843
0.3192
0.3557
0.3936
0.4325
0.4721

0.0014
0.0020
0.0027
0.0037
0.0049
0.0066
0.0087
0.0113
0.0146
0.0188
0.0238
0.0300
0.0375
0.0465
0.0570
0.0694
0.0838
0.1003
0.1190
0.1401
0.1635
0.1894
0.2177
0.2483
0.2810
0.3156
0.3520
0.3897
0.4286
0.4681

0.0014
0.0019
0.0026
0.0036
0.0048
0.0064
0.0084
0.0110
0.0143
0.0183
0.0233
0.0294
0.0367
0.0455
0.0559
0.0681
0.0823
0.0985
0.1170
0.1379
0.1611
0.1867
0.2148
0.2451
0.2776
0.3121
0.3483
0.3859
0.4247
0.4641
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(continued) Values of the Standard Normal Distribution Function

I(x) 2

&

™ 2y = P(X <x)

0

1

2

3

4

5

6

7

8

9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
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Table A.2 Error Function

erf(x)=—= )jc e du
0

a

X erf(x) x erf(x) x erf(x) X erf(x)

0.00 0.00000 0.25 0.27633 0.50 0.52050 0.75 0.71116
0.01 0.01128 0.26 0.28690 0.51 0.52924 0.76 0.71754
0.02 0.02256 0.27 0.29742 052 0.53790 0.77 0.72382
0.03 0.03384 0.28 0.30788 0.53 0.54646 0.78 0.73001
0.04 0.04511 0.29 0.31828 0.54 0.55494 0.79 0.73610
0.05 0.05637 030 0.32863 055 0.56332 0.80 0.74210
0.06 0.06762 031 033891 0.56 0.57162 0.81 0.74800
0.07 0.07885 0.32 0.34913 0.57 0.57982 0.82 0.75381
0.08 0.09007 033 0.35928 0.58 0.58792 0.83 0.75952
0.09 0.10128 0.34 0.36836 0.59 0.59594 0.84 0.76514
0.10 0.11246 035 0.37938 0.60 0.60386 0.85 0.77067
0.11 0.12362 0.36 0.38933 0.61 0.61168 0.86 0.77610
0.12 0.13476 037 039921 0.62 0.61941 0.87 0.78144
0.13 0.14587 038 0.40901 0.63 0.62705 0.88 0.78669
0.14 0.15695 039 041874 0.64 0.63459 0.89 0.79184
0.15 0.16800 0.40 0.42839 0.65 0.64203 0.90 0.79691
0.16 0.17901 0.41 043797 0.66 0.64938 091 0.80188
0.17 0.18999 0.42 0.44747 0.67 0.65663 092 0.80677
0.18 0.20094 0.43 045689 0.68 0.66378 093 0.81156
0.19 0.21184 0.44 0.46623 0.69 0.67084 094 0.81627
0.20 0.22270 0.45 0.47548 0.70 0.67780 0.95 0.82089
0.21 0.23352 046 048466 0.71 0.68467 0.96 0.82542
022 0.24430 0.47 0.49375 0.72 0.69143 097 0.82987
0.23 0.25502 0.48 0.50275 0.73 0.69810 0.98 0.83423
0.24 0.26570 0.49 0.51167 0.74 0.70468 0.99 0.83851
0.25 0.27633  0.50 0.52050 0.75 0.71116 1.00 0.84270
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Table A.2 (continued) Error Function

X
erf(x)= 2 | e du
T 0
x erf(x) X erf(x) x erf(x) x erf(x)
1.00 0.84270 1.25 0.92290 1.50 0.96611 1.75 0.98667
1.01 0.84681 1.26  0.92524 1.51 0.96728 1.76  0.98719
1.02 0.85084 1.27 0.92751 1.52 0.96841 1.77 0.98769
1.03  0.85478 1.28 0.92973 1.53  0.96952 1.78 0.98817
1.04 0.85685 1.29 0.93190 1.54 0.97059 1.79 0.98864
1.05 0.86244 1.30 0.93401 1.55 0.97162 1.80 0.98909
1.06 0.86614 1.31 0.93606 1.56  0.97263 1.81 0.98952
1.07 0.86977 1.32 0.93807 1.57 0.97360 1.82  0.98994
1.08 0.87333 1.33  0.94002 1.58 0.97455 1.83  0.99035
1.09 0.87680 1.34 0.94191 1.59 0.97546 1.84 0.99074
1.10 0.88021 1.35 0.94376 1.60 0.97635 1.85 099111
1.11 0.88353 1.36  0.94556 1.61 0.97721 1.86  0.99147
1.12  0.88679 1.37 0.94731 1.62  0.97804 1.87 0.99182
1.13  0.88997 1.38  0.94902 1.63 0.97884 1.88 0.99216
1.14 0.89308 1.39 0.95067 1.64 0.97962 1.89 0.99247
1.15 0.89612 1.40 0.95229 1.65 0.98038 1.90 0.99279
1.16 0.98910 1.41 0.95385 1.66 0.98110 1.91 0.99308
1.17  0.90200 1.42 0.95530 1.67 0.98181 1.92  0.99338
1.18 0.90484 1.43  0.95686 1.68 0.98249 1.93  0.99366
1.19 0.90761 1.44 0.95830 1.69 0.98315 1.94 0.99392
1.20 0.91031 1.45 0.95970 1.70  0.98379 1.95 0.99418
1.21 0.91296 1.46 0.96105 1.71 0.98441 1.96 0.99442
1.22 091553 1.47 0.96237 1.72 0.98500 1.97 0.99466
1.23  0.91805 1.48 0.96365 1.73  0.98558 1.98 0.99489
1.24 0.92051 1.49 0.96490 1.74 0.98613 1.99 0.99511
1.25 0.92290 1.50 0.96611 1.75 0.98667 2.00 0.99532
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Index

Absolute error cost function, 358-59
Adaptive
CFAR detection, 628, 63439,
642-68, 659
distributed CFAR detection,
665-71
threshold, 628, 634-39, 659
Adjoint matrix, 229
Alarm, probability of false alarm,
290, 292
Algebraic multiplicity of eigenvalues, 240-43
Aliasing error, 190-91
All-pass filter, 201
All-pole filter, 255
All-zero filter, 254
Alternative hypothesis, 289
Amplitude random, 155-57
Amplitude estimation, random phase, 595-98
Amplitude spectrum, 465
Antipodal signals, 552
AND rule, 668
A posteriori density, 359
A posteriori estimate, maximum,
359-60
A priori probability, 291
Approach
Gaussian process sampling, 189-94
Karhunen-Loéve, 607-10
whitening, 611-17
Approximation
of binomial, 87
of distributions, 30
of Gaussian, 30
of Poisson, 87
of hypergeometric, 88
AR process, 25462
autocorrelation, 261-62
order 1, 256-58
order 2, 258-60
order p, 260—62
power spectral density, 261
Yule-Walker equation, 261, 406-9
ARMA process, 264—66

685

ASK, 600
Associativity, 6, 226
Augmented matrix inversion lemma,
230
Autocorrelation, 41
coefficients, 4243
ergodicity, 187-90
function, 146, 153
of bandlimited white noise, 205-8
matrix, 247
properties, 153-54
stationary, wide sense, 154-55
stationary, strict, 145
time average, 186
Autocovariance, 43
Average cost, 291-94
Average value, 23-24
of probability, 6-7

Backward prediction, 345
Bandlimited white noise, 205-7
Bandpass process, 210
Bandwith

definition, 210

effective, 209-10

of noise, 205-6
Basis orthonormal, 455-56
Bayes

cost, 291-94

criterion, 291-94

M hypothesis, 303—13

two hypothesis, 291-96

estimation of nonrandom

parameters, 34647
estimation of random parameters, 346—
60

risk, 292

rule, 14

composite hypotheses, 326
Bernoulli distribution, 75-76
Best linear unbiased estimator, 378—79
Beta distribution, 98
Beta function, 98
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Bessel function, 104
Bias
absolutely, 353
known, 353
unknown, 353
Biased estimation, 354
Cramer-Rao bound, 363-64, 373-76
Binary
colored Gaussian noise, 606
detection, 28696, 534-41
detection in colored noise, 60617
general detection, 541-53
simple binary hypothesis tests, 289-90
Binary transmission
random, 148-50
semirandom, 147
Binomial distribution, 75
Birth-death process, 279-82
Bivariate Gaussian, 121-23
Boltzman’s constant, 206
Bound
Chernoff, 29-30
Cramer-Rao, 310-12
erfc, 90, 681-82
lower bound on variance, 311
mean square estimation error, 364
Tchebycheft, 29
Boundary conditions, 467-79
Boundary kernel, 467
Brownian motion, 170-71

Capture effect, 644
CDMA, 649, 652-54
CFAR, 635-39
loss, 639
Canonical form, 429
Cauchy distribution, 120
Causal system, 179
Chapman-Kolmogorov equation, 173,274,
277
Central limit theorem, 95-96
Characteristic equation
of a matrix, 237
Characteristic function, 28
of beta distribution, 100—1
of binomial distribution, 75-76
of bivariate Gaussian, 121-22
of Cauchy distribution, 120
of chi-squared distribution, 106
of exponential distribution, 96-97
of F distribution, 118
of gamma distribution, 98
of Gaussian distribution, 93
of Laplace distribution, 98
of multivariate Gaussian, 128
of noncentral chi-square, 103
of Poisson distribution, 85

of Rayleigh distribution, 106

of student’s ¢, 115

of uniform distribution, 88
Characteristic polynomial, 237
Chip, 651
Chi-square distribution, 101-6
Cofactors, 23-24
Conformability, 225
Combinatorial analysis, 9
Commutativity, 6
Complement error function, 89
Complement of an event, 5

Complete orthonormal (CON) set, 453-54

Composite hypothesis, 326
Consistent estimator, 354
Continuity, 194-95
Continuous

Gaussian process, 161

random variable, 20
Convergence

mean square, 452-54, 480-81
Correlation, 41

coefficient, 42

matrix, 248

receiver, 538, 557-62
Cost function

absolute error, 356

squared-error, 356

uniform, 356
Covariance, 43
Covariance matrix, 123, 127

of error, 372-73
Convolution, 52-53
Cramer-Rao inequality, 365-68
Criterion

Bayes, 291-96

MAP, 305, 377

maximum likelihood, 345

mean square, 37677

minimax, 313-15

Neyman-Pearson, 317-18
Cramer-Rao

bound, 363, 370, 373-74

inequality, 36465, 370
Cross

correlation function, 153-54

covariance, 147

power spectrum, 177-78
Cumulative distribution, 18, 20
Cyclostationary, 160

Data extractor, 631
Decision regions, 290
Delta function, 18, 36
De Morgan’s laws, 6
Density function
Bernoulli, 75
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beta, 100
binomial, 76-77
bivariate Gaussian, 121
Cauchy, 120
chi-square, 101
exponential, 96
F, 118
gamma, 98
Gaussian, 89
Generalized compound, 135
geometric, 78-79
hypergeometric, 82—-84
joint, 31
K, 132-33
Laplace, 97
lognormal, 131
marginal, 36-37,
Maxwell, 113
multinomial, 78
multivariate Gaussian, 128
Nagakami m, 115
Normal, see Gaussian
Pascal, 80
Poisson, 85
Rayleigh, 106
Rice, 112
student’s ¢, 115
uniform, 88
Weibull, 129
Dependence and independence, 13—14
Detection
binary, 291-96, 534-53
CFAR, 634-41, 659-60
distributed CA-CFAR, 666-70
in colored noise, 607—17
M-ary, 303-11, 556-62
sequential, 332-36
Deterministic, 142
Difference of sets, 4
Differential equations, 466—75
Differentiation of vectors, 43234
Discrete
Fourier transform, 252, 264
random variable, 18-19
time random process, 223-24, 245
Discrete Wiener filter, 423-35
Display, 631
Distributed detection, 665-70
Distributivity, 6
Domain, 236

Echelon, 17

Efficent estimate, 367
Effective bandwidth, 210-11
Eigenfunction, 236, 473
Eigenspace, 236
Eigenvalue, 236-37, 473
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Eigenvectors, 236-38
Ellipse, 124-27
Empty set, 2
Energy, 450
inner product, 450
norm, 450
signal, 450
Ensemble, 2, 141
Enumeration methods
combinations, 8
multiplication principle, 9
permutations, 8
Ergodicity
in the autocorrelation, 187
of the first-order distribution, 188
in the mean, 18687
of power spectral density, 188
Error
absolute error cost function, 356
bound, 29-30, 311
function, 90
function complementary, 91
mean square, 452, 480-83
minimum criterion, 295-96
Estimation,
Bayes, 354-56
best linear estimate, 37885
biased, 353
least-square estimation, 388-90
maximum a posteriori, 359-60
maximum likelihood, 346
linear mean square, 377-78
minimum mean square, 357
minimum variance, 354
minimum mean absolute value of error,
357
recursive least square, 391-93
Estimator
consistent, 354-55
efficient, 367
linear, 377-78
Euclidean space, 461
Events
impossible, 12
independent, 13
mutually exclusive, 12
Expected value, 23-24
Exponential distribution, 96
characteristic function, 98

Fading channel, 596, 603-5
Fading figure, 116
False alarm probability, 292
FDMA, 649
F distribution, 118
Filter

causal, 416-19
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Kalmam, 437-46 Tchebycheft, 29
matched, 453-54, 587-90 Schwarz, 153, 366
order, 254 Inner product, 449
whitening, 611-15 Innovations, 437-39
Wiener, 410-36 Integral equation, 471-75
Fisher information matrix, 373-77 eigenvalue problem, 471-75
Fourier coefficients, 451, 463-66 Fredholm, 472
Fourier series, 463-66 Random process, 199-201, 480-83
Fourier transforms, 27, 174 Interpolation, 4045
Fredholm integral equations, 472 Intersection of sets, 4
FSK signals with Rayleigh fading, 603—5 Inverse Fourier transform, 28, 174
Fundamental theorem, 50, 58—60 Inversion lemma matrix, 384
Fusion center, 666
Fusion rule, 666, 668—79 Jacobian of transformation, 59-60, 63—-64
Joint characteristic function, 4445
Gamma independent, 45
distribution, 99 Joint density, 30-32
function, 98 Joint distribution, 32
Gauss-Markov theorem, 385 Jointly wide sense stationary, 147
Gaussian Jordan block, 241
characteristic function, 93
density, 89 K distribution, 132-33
bivariate, 12324 Kalman filtering, 435-44
multivariate, 127 Kalman gain, 441
process, 48387 Karhunen-Loéve approach, 534-39, 544-53,
General binary detection, 543—53 607-11
General Gaussian problem, 503 Karhunen-Loéve expansion, 48083
Generalized compound distribution, 135 Kernel, 469-71
Generalized eigenvector, 24041 Kronecker delta function, 12
Generalized Fourier series, 451 Kummer’s confluent hypergeometric function,
Generalized likelihood ratio test, 348—49 119
Generation of coefficients, 453—58
Geometric distribution, 78-79 Lack of memory property, 136
Gram-Schmidt orthogonalization, 45657 Law of large numbers, 30
Green’s function, 46971 Lagrange multiplier, 318, 617, 663
Guard cells, 636 Laplace distribution, 97
Laplace transform, 421
Hilbert transform, 201-5 Laplace expansion of determinants, 229
Homogeneous Markov chain, 268 Largest of receiver, 567
Hypergeometric distribution, 82—84 Leibniz’s rule, 21, 357
Hypothesis Likelihood
alternative, 289 equation, 346
binary, 291 function, 346
composite, 326 maximum likelihood estimate, 34647
M-ary, 30311 ratio conditional, 596
null, 289 ratio, 294
simple, 289 ratio test, 295
symmetric, 525 statistic, 295
l.i. m., 453
Impulse function, 18, 36 Linear
Incoherent matched filter, 587-90 combination, 248
Independent estimation, 377-82, 573-75
events, 35 independence, 248
increment process, 164, 171 mean-square estimator, 377-78
random variables, 35 model, 383
Inequality prediction, 439

Cramer-Rao, 364—65 system, 178-79
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transformation, 236, 400-3
Local detectors, 666
Log likelihood

function, 346

ratio, 296
Log-normal distribution, 131

MAP, 359-60
Marginal
density, 33
distribution, 32
Masking effect, 644
Matched filter receiver, 454, 537-38, 567
Marcum’s Q-function, 105
Markov chains
absorbing, 275
ergodic, 275
homogeneous, 268
regular, 271
stationary, 269
Markov random process, 172-73
birth-death, 279-80
Markov sequence state diagram, 270
Matched filter, 454, 587-90
Matrix
adjoint, 229
block diagonal, 232
circulant, 234-35
cofactor, 228
column, 225
conjugate, 227
definition, 224
determinant, 228
Hermitian, 227
Hermitian Toeplitz, 235
idempotent, 234
identity, 226
indefinite, 231, 243
involutory, 234
minor, 228
modal, 238
nonsingular, 229
periodic, 234
positive-definite, 231, 243
positive-semidefinite, 231, 243
negative-definite, 231, 243
negative-semidefinite, 231, 243
null, 226
orthogonal, 233-34
rank, 229
row, 224
square, 224
symmetric, 227
symmetric Toeplitz, 235
Toeplitz, 235
transpose, 225
triangular, 233

689

unitary, 226

Vandermonde, 235
Matrix inversion lemma, 230
Maximum a posteriori estimation, 359
Maximum likelihood estimation, 346
Maximization of SNR, 568-70
Maxwell distribution, 113
McLaurin series, 26
Mean, 23
Mean square

convergence, 452-54, 480-83

definition, 25

error, 452

estimation, 376

value, 25
Mercer’s theorem, 474-81
Memoryless nonlinear system, 161
Minimax

criterion, 313-15

equation, 315

risk function, 313
Minimum

error probability, 296, 315, 452

mean-square estimate, 357-58
Miss probability, 290
Mixed distribution, 22
Model

AR, 254-62

ARMA, 264-66

MA, 262-64
Modified Bessel function, 104—12
Modified Gram-Schmidt, 457
Modulator, 629
Moment

generating function, 26

nth, 27
Most powerful test, 318
Multinomial coefficients, 9
Multinomial distribution, 79-80
Multivariate Gaussian distribution, 128
Mutually exclusive, 6

Nagakami m-distribution, 115
Neyman-Pearson criterion, 317-18
Noise equivalent bandwidth, 210-11
Noncentral distribution

chi-square, 102-5

F distribution, 118

t distribution, 116
Noncentrality parameter, 103
Nonlinear estimation, 57678
Normal distribution, see Gaussian
Normal equations, 389
Norton’s equivalent circuit, 207
Null hypothesis, 289
Nyquist rate, 190
Nyquist theorem, 207
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Objective function, 318, 617 extended target, 639

Observation space, 290 monostatic, 629

Optimum receiver, 538, 54950, 560 multistatic, 631

OR fusion rule, 669-70 point target, 639

Order statistic, 645 pulse repetition frequency, 632

Orthogonal pulse repetition interval, 632
functions, 450-51 range bin, 632
random variables, 43 target range, 631

Orthogonality principle, 400 time delay, 631

Orthonormal unambiguous range, 631
basis, 455 volume target, 639
function, 451 wavelength, 634

Random process

Pairwise disjoint sets, 7 Bernoulli, 166-67

Pairwise independent events, 7 binomial, 167-68

Parametric model, 223-26 continuous-time, 143

Parallel topology, 665-66 cyclostationary, 160

Parseval’s identity of orthonormal functions, Gaussian, 161, 463-87
453 Markov, 172-73

Parseval’s theorem, 174 periodic, 158-61

Pascal distribution, 80 point, 164

Periodic process, 158-61 Poisson, 162-64

Phase spectrum, 465 Random walk, 168-69

Plan position indicator, 631 strict sense stationary, 145

Poisson white noise, 205-6
distribution, 85 wide-sense stationary, 145, 154
process, 161-65 Wiener, 168-69,

Positive Random variable, 17-18
definite, 232, 244 continuous, 20
semidefinite, 232, 243 discrete, 18-19

Power function, 329 mixed, 22-23

Power spectral density, 174 two-dimensional, 31-37

Prediction filter, 429-30, 44045 Random walk, 168

Predictor Rank order, 645
gain, 443 Rayleigh fading, 596-98

Prewhitening filter, 611-13 Rayleigh distribution, 106

Probability density function, 18, 20 Realizable filter, 416-19

Probability distribution function, see density Receiver operating characteristic, 321-24
functions Resolution cell, 636

PSK, binary, 652, 654 Ricatti difference equation, 444

Pulse response, 251 Rice distribution, 112

Pulse-to-pulse, 640 Rieman integral, 199

Pulse transfer function, 254 Risk function, 291-92

ROC, 331-34

Quadratic filter, 201

Quadratic form, 231 Sample space, 6

Quadratic receiver, 587 Sampling theorem

QO-function, 91-92 deterministic, 189-91

stochastic, 192-94

Radar Scan, 640
area target, 639 scan-to-scan, 640
bistatic, 631 Schwarz inequality, 153, 365
coherent processing interval, 634 Sequence PN, 650-53
coherent pulse train, 633 Sequential detection, 331-36
cross section, 640 Sequential likelihood ratio test, 332
Doppler frequency shift, 633 Set

distributed target, 639 complement, 5
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countable, 2

difference, 4

disjoint, 3

empty, 2

finite, 2

infinite, 2

intersection, 4

mutually exclusive, 3

null, 2

partitions, 5

subset, 2

uncountable, 2

union, 3

universal, 2
Signal space, 458
Signals with random amplitude, 595-98
Signals with random frequency, 598-600
Signals with random phase, 583-90
Signals with random time of arrival, 605—-6
Sliding correlator, 657
Space, observation, 290
Spectral density

rational, 487-89

theorem, 247
Spectral factorization, 417-19
Square-error cost function, 356
Square-law detector, 586
State distribution vector, 268
State transition matrix, 267, 436
State vector, 436
Stationary process

cyclostationary, 160

jointly wide-sense stationary, 147

strict sense, 145

wide-sense, 145, 154
Statistically independent

random variables, 35

random process, 149
Strong law of large numbers, 30
Student’s ¢ distribution, 115
Sufficient statistics, 300
Superposition principle, 572
Swerling targets, 641-42
Synchronization, 655

t distribution, 116
Target models, 640
Tests, Bayes
binary hypothesis, 291-96
generalized likelihood ratio, 348—49
likelihood ratio, 291
maximum a posteriori probability, 309—
10
M hypothesis, 303—11
minimax, 313-15
Neyman-Pearson, 317-18
UMP, 329
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Tchebycheff inequality, 29
TDMA, 649
Thermal noise, 205-6
Thevenin’s equivalent circuit, 207
Time autocorrelation, 187
Time average, 186
Total probability, 14
Transition probability, 267
Transition probability rate, 276
Transition matrix, 268
Transmitter, 629
Trace of matrix, 229-30
Tracking, 655
Transformation

linear, 400-13

of random variable, 48-60

orthogonal, 238

similarity, 238
Threshold

adaptive, 637

fix, 295-96

multiplier, 637

Unbiased estimates, 353

Unbiased minimum variance, 354

Uncorrelated random processes, 154

Uncorrelated random variables, 42

Uncorrelated signal components, 508, 519-23,
526-29

Uniform cost function, 356

Uniform distribution, 88

Uniformly most powerful (UMP), 329

Unit matrix, 227

Unknown bias, 353

Unrealizable filters, 41013, 425-26

Unwanted parameter, 580

Vandermonde matrix, 236
Variance, 25
lower bound, 364
of error estimation minimum, 357
minimum unbiased, 354
sum of random variables, 43
Vector
eigenvector, 237-39
inner product, 225
norm, 450
orthogonal, 248
state distribution, 268
Venn diagram, 4-5

Wald’s sequential test, 332-36
Weak law of large numbers, 30
Weibull distribution, 129
White noise, 205-6, 252-53
White noise process, 493-95
Whitening approach, 611-13
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Whitening filter, 614

Wide-sense stationary, 143

Wiener filter, 409-35

Wiener-Hopf integral equation, 416, 426
Wiener-Kinchin relation, 177, 250
Wiener-Levy process, 17071
Woodbury’s identity, 230-31

Yule-Walker equation, 261, 405-8

Z-transform, 251-52



