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PREFACE

 

This volume describes the application of supervised and unsupervised pattern rec-
ognition schemes to the classification of various types of waveforms and images.
An optimization routine, ALOPEX, is used to train the network while decreasing
the likelihood of local solutions. The chapters included in this volume bring together
recent research of more than ten authors in the field of neural networks and pattern
recognition. All of these contributions were carried out in the Neuroelectric and
Neurocomputing Laboratories in the Department of Biomedical Engineering at Rut-
gers University. The chapters span a large variety of problems in signal and image
processing, using mainly neural networks for classification and template matching.
The inputs to the neural networks are features extracted from a signal or an image
by sophisticated and proven state-of-the-art techniques from the fields of digital
signal processing, computer vision, and image processing. In all examples and
problems examined, the biological equivalents are used as prototypes and/or simu-
lations of those systems were performed while systems that mimic the biological
functions are built.

Experimental and theoretical contributions are treated equally, and interchanges
between the two are examined. Technological advances depend on a deep under-
standing of their biological counterparts, which is why in our laboratories, experi-
ments on both animals and humans are performed continuously in order to test our
hypotheses in developing products that have technological applications.

The reasoning of most neural networks in their decision making cannot easily
be extracted upon the completion of training. However, due to the linearity of the
network nodes, the cluster prototypes of an unsupervised system can be reconstructed
to illustrate the reasoning of the system. In these applications, this analysis hints at
the usefulness of previously unused portions of the spectrum.

The book is divided into four parts. The first part contains chapters that introduce
the subjects of neural networks, classifiers, and feature extraction methods. Neural
networks are of the 

 

supervised

 

 type of learning. The second part deals with

 

unsupervised

 

 neural networks and 

 

fuzzy 

 

neural networks and their applications to
handwritten character recognition, as well as recognition of normal and abnormal
visual evoked potentials. The third part deals with advanced neural network archi-
tectures, such as modular designs and their applications to medicine and three-
dimensional neural networks architectures simulating brain functions. Finally, the
fourth part discusses general applications and simulations in various fields. Most
importantly, the establishment of a brain-to-computer link is discussed in some detail,
and the findings from these human experiments are analyzed in a new light.

All chapters have either been published in their final form or in a preliminary
form in conference proceedings and presentations. All co-authors to these papers
were mostly students of the editor. Extensive editing has been done so that repetitions
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of algorithms, unless modified, are avoided. Instead, where commonality exists, parts
have been placed into a new chapter (Chapter 4), and references to this chapter are
made throughout.

As is obvious from the number of names on the chapters, many students have
contributed to this compendium. I thank them from this position as well. Others
contributed in different ways. Mrs. Marge Melton helped with her expert typing of
parts of this book and with proofreading the manuscript. Mr. Steven Orbine helped
in more than one way, whenever expert help was needed. Dr. G. Kontaxakis,
Dr. P. Munoz, and Mr. Wei Lin helped with the manuscripts of Chapters 1 and 3.
Finally, to all the current students of my laboratories, for their patience while this
work was compiled, many thanks. I will be more visible—and demanding—now.

Dr. D. Irwin was instrumental in involving me in this book series, and I thank
him from this position as well. Ms. Nora Konopka I thank for her patience in waiting
and for reminding me of the deadlines, a job that was continued by Ms. Felicia
Shapiro and Ms. Mimi Williams. I thank them as well.

 

Evangelia Micheli-Tzanakou, Ph.D.

 

Department of Biomedical Engineering
Rutgers University

Piscataway, NJ



 

© 2000 by CRC Press LLC

 

Contributors

 

Ahmet Ademoglu, Ph.D.

 

Assistant Professor
Institute of Biomedical Engineering
Bogazici University
Bebek, Istanbul, Turkey

 

Sergey Aleynikov, M.S.

 

IDT
Hackensack, NJ

 

Jeremy Bricker, Ph.D. Candidate

 

Environmental Fluid Mechanics 
Laboratory

Department of Civil and Environmental 
Engineering

Stanford, CA

 

Tae-Soo Chon, Ph.D.

 

Professor
Department of Biology
College of Natural Sciences
Pusan National University
Pusan, Korea

 

Woogon Chung, Ph.D.

 

Assistant Professor
Department of Control and 

Instrumentation
Sung Kyun Kwan University
Kyung Gi-Do, South Korea

 

Lt. Col. Timothy Cooley, Ph.D.

 

USAF Academy
Department of Mathematical Sciences
Colorado Springs, CO

 

Timothy J. Dasey, Ph.D.

 

MIT Lincoln Labs
Weather Sensing Group
Lexington, MA

 

Cynthia Enderwick, M.S.

 

Hewlett Packard
Palo Alto, CA

 

Faiq A. Fazal, M.S.

 

Lucent Technologies
Murray Hill, NJ

 

Raymond Iezzi, M.D.

 

Kresge Institute
Detroit, Michigan

 

Francis Phan, M.S.

 

Harmonix Music Systems, Inc.
Cambridge, MA

 

Seth Wolpert, Ph.D.

 

Associate Professor
Pennsylvania State University — 

Harrisburg
Middletown, PA

 

Daniel Zahner, M.S.

 

Data Scope Co.
Paramus, NJ



       
Contents

Section I — Overviews of Neural Networks, Classifiers, and 
Feature Extraction Methods—Supervised 
Neural Networks

Chapter 1 Classifiers: An Overview
1.1 Introduction
1.2 Criteria for Optimal Classifier Design
1.3 Categorizing the Classifiers

1.3.1 Bayesian Optimal Classifiers
1.3.2 Exemplar Classifiers
1.3.3 Space Partition Methods
1.3.4 Neural Networks

1.4 Classifiers
1.4.1 Bayesian Classifiers

1.4.1.1 Minimum ECM Classifers
1.4.1.2 Multi-Class Optimal Classifiers

1.4.2 Bayesian Classifiers with Multivariate Normal Populations
1.4.2.1 Quadratic Discriminant Score
1.4.2.2 Linear Discriminant Score
1.4.2.3 Linear Discriminant Analysis and Classification
1.4.2.4 Equivalence of LDF to Minimum TPM Classifier

1.4.3 Learning Vector Quantizer (LVQ)
1.4.3.1 Competitive Learning
1.4.3.2 Self-Organizing Map
1.4.3.3 Learning Vector Quantization

1.4.4 Nearest Neighbor Rule
1.5 Neural Networks (NN)

1.5.1 Introduction
1.5.1.1 Artificial Neural Networks
1.5.1.2 Usage of Neural Networks
1.5.1.3 Other Neural Networks

1.5.2 Feed-Forward Neural Networks
1.5.3 Error Backpropagation

1.5.3.1 Madaline Rule III for Multilayer Network with 
Sigmoid Function

1.5.3.2 A Comment on the Terminology ‘Backpropagation’
© 2000 by CRC Press LLC



    
1.5.3.3 Optimization Machines with Feed-Forward 
Multilayer Perceptrons

1.5.3.4 Justification for Gradient Methods for Nonlinear
Function Approximation

1.5.3.5 Training Methods for Feed-Forward Networks
1.5.4 Issues in Neural Networks

1.5.4.1 Universal Approximation
1.5.5 Enhancing Convergence Rate and Generalization of an

Optimization Machine
1.5.5.1 Suggestions for Improving the Convergence
1.5.5.2 Quick Prop
1.5.5.3 Kullback-Leibler Distance
1.5.5.4 Weight Decay
1.5.5.5 Regression Methods for Classification Purposes

1.5.6 Two-Group Regression and Linear Discriminant Function
1.5.7 Multi-Response Regression and Flexible Discriminant Analysis

1.5.7.1 Powerful Nonparametric Regression Methods for 
Classification Problems

1.5.8 Optimal Scoring (OS)
1.5.8.1 Partially Minimized ASR

1.5.9 Canonical Correlation Analysis
1.5.10 Linear Discriminant Analysis

1.5.10.1 LDA Revisited
1.5.11 Translation of Optimal Scoring Dimensions into

Discriminant Coordinates
1.5.12 Linear Discriminant Analysis via Optimal Scoring

1.5.12.1 LDA via OS
1.5.13 Flexible Discriminant Analysis by Optimal Scoring

1.6 Comparison of Experimental Results
1.7 System Performance Assessment

1.7.1 Classifier Evaluation
1.7.1.1 Hold-Out Method
1.7.1.2 K-Fold Cross-Validation

1.7.2 Bootstrapping Method for Estimation
1.7.2.1 Jackknife Estimation
1.7.2.2 Bootstrap Method

1.8 Analysis of Prediction Rates from Bootstrapping Assessment
References

Chapter 2 Artificial Neural Networks: Definitions, Methods, Applications
2.1 Introduction
2.2 Definitions
2.3 Training Algorithms
© 2000 by CRC Press LLC



      
2.3.1 Backpropagation Algorithm
2.3.2 The ALOPEX Algorithm
2.3.3 Multilayer Perceptron (MLP) Network Training with ALOPEX

2.4 Some Applications
2.4.1 Expert Systems and Neural Networks
2.4.2 Applications in Mammography
2.4.3 Chromosome and Genetic Sequences Classification
References

Chapter 3 A System for Handwritten Digit Recognition
3.1 Introduction
3.2 Preprocessing of Handwritten Digit Images

3.2.1 Optimal Size of the Mask for Dilation
3.2.2 Bartlett Statistic

3.3 Zernike Moments (ZM) for Characterization of Image Patterns
3.3.1 Reconstruction by Zernike Moments
3.3.2 Features from Zernike Moments

3.4 Dimensionality Reduction
3.4.1 Principal Component Analysis
3.4.2 Discriminant Analysis 

3.5 Analysis of Prediction Error Rates from Bootstrapping Assessment
3.6 Summary

Acknowledgments
References

Chapter 4 Other Types of Feature Extraction Methods
4.1 Introduction
4.2 Wavelets

4.2.1 Discrete Wavelet Series
4.2.2 Discrete Wavelet Transform (DWT)
4.2.3 Spline Wavelet Transform
4.2.4 The Discrete B-Spline Wavelet Transform
4.2.5 Design of Quadratic Spline Wavelets
4.2.6 The Fast Algorithm

4.3 Invariant Moments
4.4 Entropy
4.5 Cepstrum Analysis
4.6 Fractal Dimension
4.7 SGLD Texture Features

References
© 2000 by CRC Press LLC



        
Section II Unsupervised Neural Networks

Chapter 5 Fuzzy Neural Networks
5.1 Introduction
5.2 Pattern Recognition

5.2.1 Theory and Applications
5.2.2 Feature Extraction
5.2.3 Clustering

5.3 Optimization
5.3.1 Theory and Objectives
5.3.2 Background
5.3.3 Modified ALOPEX Algorithm

5.4 System Design
5.4.1 Feature Extraction

5.4.1.1 The Karhunen-Loève Expansion
5.4.1.2 Application by a Neural Network

5.5 Clustering
5.5.1 The Fuzzy c-Means (FCM) Clustering Algorithm
References

Chapter 6 Application to Handwritten Digits
6.1 Introduction to Character Recognition
6.2 Data Collection

6.2.1 Preprocessing
6.2.2 Noise Thresholding
6.2.3 Center of Mass Adjustment
6.2.4 Line Thinning
6.2.5 Fixing to Size
6.2.6 Rotation
6.2.7 Reducing Resolution
6.2.8 Blurring

6.3 Results
6.4 Discussion
6.5 Summary

References

Chapter 7 An Unsupervised Neural Network System for Visual Evoked 
Potentials

7.1 Introduction
7.2 Data Collection and Preprocessing
7.3 System Design
7.4 Results
© 2000 by CRC Press LLC



         
7.5 Discussion
References

Section III Advanced Neural Network Architectures/Modular 
Neural Networks

Chapter 8 Classification of Mammograms Using a Modular Neural Network
8.1 Introduction
8.2 Methods and System Overview

8.2.1 Data Acquisition
8.2.2 Feature Extraction by Transformation

8.3 Modular Neural Networks
8.4 Neural Network Training
8.5 Classification Results
8.6 The Process of Obtaining Results
8.7 ALOPEX Parameters
8.8 Generalization
8.9 Conclusions

Acknowledgments
References

Chapter 9 Visual Ophthalmologist: An Automated System for Classification 
of Retinal Damage

9.1 Introduction
9.2 System Overview

9.2.1 Image Processing
9.2.2 Feature Extraction Methods
9.2.3 Image Classification

9.3 Modular Neural Networks
9.4 Application to Ophthalmology
9.5 Results
9.6 Discussion

References

Chapter 10 A Three-Dimensional Neural Network Architecture
10.1 Introduction
10.2 The Neural Network Architecture
10.3 Simulations

10.3.1 Visual Receptive Fields
10.3.2 Modeling of Parkinson’s Disease

10.4 Discussion
References
© 2000 by CRC Press LLC



          
Section IV General Applications

Chapter 11 A Feature Extraction Algorithm Using Connectivity Strengths 
and Moment Invariants

11.1 Introduction
11.2 ALOPEX Algorithms

11.2.1 Original Algorithm
11.2.2 Reinforcement Rules
11.2.3 A Generalized ALOPEX Algorithm

11.2.3.1 Process I
11.2.3.2 Process II

11.3 Moment Invariants and ALOPEX
11.4 Results and Discussion

Acknowledgments
References

Chapter 12 Multilayer Perceptrons with ALOPEX: 2D-Template Matching 
and VLSI Implementation

12.1 Introduction
12.1.1 Multilayer Perceptrons

12.2 Multilayer Perceptron and Template Matching
12.3 VLSI Implementation of ALOPEX

References

Chapter 13 Implementing Neural Networks in Silicon
13.1 Introduction
13.2 The Living Neuron
13.3 Neuromorphic Models
13.4 Neurological Process Modeling

References

Chapter 14 Speaker Identification through Wavelet Multiresolution 
Decomposition and ALOPEX

14.1 Introduction
14.2 Multiresolution Analysis through Wavelet Decomposition
14.3 Pattern Recognition with ALOPEX
14.4 Methods

14.4.1 Data Acquisition
14.4.2 Data Preprocessing
14.4.3 Representing the Wavelet Coefficients for Template Matching

14.5 Results
14.6 Discussion

Acknowledgments
© 2000 by CRC Press LLC



        
References

Chapter 15 Face Recognition in Alzheimer’s Disease: A Simulation
15.1 Introduction
15.2 Methods
15.3 Results
15.4 Discussion

References

Chapter 16 Self-Learning Layered Neural Network
16.1 Introduction
16.2 Neocognitron and Pattern Classification

16.2.1 Training Algorithm
16.3 Objectives
16.4 Methods
16.5 Study A

16.5.1 Network Description
16.5.2 Results from Study A

16.6 Study B
16.6.1 Results from Study B

16.7 Summary and Discussion
References

Chapter 17 Biological and Machine Vision
17.1 Introduction
17.2 Distributed Representation
17.3 The Model
17.4 A Modified ALOPEX Algorithm
17.5 Application to Template Matching
17.6 Brain to Computer Link

17.6.1 Global Receptive Fields in the Human Visual System
17.6.2 The Black Box Approach

17.7 Discussion
References
© 2000 by CRC Press LLC



     
Introduction—Why this Book?

The potential for achieving a great deal of processing power by wiring together a
large number of very simple and somewhat primitive devices has captured the
imagination of scientists and engineers for many years. In recent years, the possibility
of implementing such systems by means of electro-optical devices and in very large
scale integrations has resulted in increased research activities.

Artificial neural networks (ANNs) or simply Neural Networks (NNs) are made
of interconnected devices called neurons (also called neurodes, nodes, neural units,
or simply units). Loosely inspired by the makeup of the nervous system, these
interconnected devices look at patterns of data and learn to classify them. NNs have
been used in a wide variety of signal processing and pattern recognition applications
and have been successfully applied in such diverse fields as speech processing,
handwritten character recognition, time series prediction, data compression, feature
extraction, and pattern recognition in general. Their attractiveness lies in the relative
simplicity with which the networks can be designed for a specific problem along
with their ability to perform nonlinear data processing.

As the neuron is the building block of a brain, a neural unit is the building block
of a neural network. Although the two are far from being the same, or performing
the same functions, they still possess similarities that are remarkably important. NNs
consist of a large number of interconnected units that give them the ability to process
information in a highly parallel way. An artificial neuron sums all inputs to it and
creates an output that carries information to other neurons. The strength by which
two neurons influence each other is called a synaptic weight. In an NN all neurons
are connected to all other neurons by synaptic weights that can have seemingly
arbitrary values, but in reality, these weights show the effect of a stimulus on the
neural network and the ability or lack of it to recognize that stimulus. All NNs have
certain architectures and all consist of several layers of neuronal arrangements. The
most widely used architecture is that of the perceptron first described in 1958 by
Rosenblatt.

A single node acts like an integrator of its weighted inputs. Once the result is
found it is passed to other nodes via connections that are called synapses. Each node
is characterized by a parameter that is called threshold or offset and by the kind of
nonlinearity through which the sum of all the inputs is passed. Typical nonlinearities
are the hardlimiter, the ramp (threshold logic element) and the widely used sigmoid.

NNs are specified by their processing element characteristics, the network topol-
ogy and the training or learning rules they follow in order to adapt the weights, Wi.
Network topology falls into two broad classes: feedforward (nonrecursive) and
feedback (recursive). Nonrecursive NNs offer the advantage of simplicity of imple-
mentation and analysis. For static mappings a nonrecursive network is all one needs
to specify any static condition. Adding feedback expands the network’s range of
© 2000 by CRC Press LLC



  
behavior since now its output depends upon both the current input and network
states. But one has to pay a price — longer times for teaching the NN to recognize
its inputs. The most widely used training algorithm is the backpropagation algorithm.
The backpropagation algorithm is a learning scheme where the error is backpropa-
gated layer by layer and used to update the weights. The algorithm is a gradient
descent method that minimizes the error between the desired outputs and the actual
outputs calculated by the MLP.

The original perceptrons trained with backpropagation are examples of super-
vised learning. In this type of learning the NN is trained on a training set consisting
of vector pairs. One of these vectors is used as input to the network, the other is
used as the desired or target output. During training the weights of the NN are
adjusted in such a way as to minimize the error between the target and the computed
output of the network. This process might take a large number of iterations to
converge, especially because some training algorithms (such as backpropagation)
might converge to local minima instead of the global one. If the training process is
successful, the network is capable of performing the desired mapping.
© 2000 by CRC Press LLC
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Section I

 

Overviews of Neural Networks, 
Classifiers, and Feature 
Extraction Methods—Supervised 
Neural Networks



                          
1 Classifiers: An Overview

Woogon Chung and Evangelia Micheli-Tzanakou

1.1 INTRODUCTION

One way to better understand a subject is to classify or categorize it among related
subjects. Many classifiers result from different approaches to classification problems.
The purpose of this article is to categorize the well-known classifiers in the literature
according to how they learn to classify.

Lippmann’s tutorial paper1 described various classifiers as well as neural net-
works in detail after his first discussion2 on the general application of neural net-
works. Another general overview on this subject is found in a paper by Hush and
Horne3 in which neural networks are reviewed in the broad dichotomy of stationary
vs. dynamic networks. Weiss and Kulikowski’s book4 generally touches the classi-
fication and prediction methods from the point of view of statistics, neural networks,
machine learning, and expert systems.

The purpose of this article is not to give a tutorial on the well-developed networks
and other classifiers but to introduce another branch in the growing classifier tree,
that of nonparametric regression approaches to classification problems. Recently
Hastie, Tibshirani, and Buja5 introduced the Flexible Discriminant Analysis (FDA)
in the applied statistics literature, after the unpublished work by Breiman and Ihaka.6 

Canonical Correlation Analysis (CCA) for two sets of variables is known to be
a scalar multiple equal to the Linear Discriminant Analysis (LDA). Optimal Scaling
(OS) is an alternative to CCA, where the classical Singular Value Decomposition
(SVD) is used to find the solutions. OS brings the flexibility obtained via nonpara-
metric regression and introduces this flexibility to discriminant analysis, hence the
name Flexible Discriminant Analysis.

A number of recently developed multivariate regressions are used for classifi-
cation, in addition to other groups of classifiers for a data set obtained from hand-
written digit images. The software is contributed mainly from the authors or active
researchers in this area. The sources are described in later sections after the descrip-
tion of each classifier.

1.2 CRITERIA FOR OPTIMAL CLASSIFIER DESIGN

We start with a general description of the classification problem and then proceed
to a discussion of simpler cases in which assumptions are made. Which criterion
should be used is application specific. Expected Cost for Misclassification (ECM)
is applied to problems in which the cost of misclassification differs among the cases.
For example, one may expect to assign a higher cost for misdiagnosing a patient
© 2000 by CRC Press LLC
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with a serious disease as healthy than for misdiagnosing a healthy person as
unhealthy. If a meteorologist forecasts fine weather for the weekend but a heavy
storm strikes the town, the cost of the misclassification will be much more than if
the opposite situation occurs.

Sometimes we do not care about the resulting cost of misclassification. The cost
for misclassification for a pattern recognition system to misclassify pattern ‘A’ as
pattern ‘B’ may be considered the same as the cost to misclassifying pattern ‘B’ as
pattern ‘A’. In this situation we can disregard the cost information or assign the same
cost to all cases. An optimal classification procedure might also consider only the
probability of misclassification (from conditional distributions) and its likelihood to
happen among different classes (from the a priori probabilities). Such an optimal
classification procedure is referred to as the Total Probability of Misclassification
(TPM). The ECM, however, requires three kinds of information, that is, the condi-
tional distribution, the a priori probabilities, and the cost for misclassification.

In the simplest case, we also ignore the a priori probabilities or assume that
they are all equal. In this case we only wish to reduce misclassification for all the
classes without considering the class proportion of the given data. It should be noted,
however, that it is relatively simple to estimate the a priori probabilities from the
sample at hand by the frequency approximation. Thus the TPM is often the choice
as a criterion in which the class conditional distribution and a priori probabilities
are considered.

1.3 CATEGORIZING THE CLASSIFIERS

1.3.1 BAYESIAN OPTIMAL CLASSIFIERS

Bayesian classifiers are based on probabilistic information on the populations from
which a sample of training data is to be drawn randomly. Randomness in sampling
is assumed, and it is necessary for a better representation of the sample of the
underlying population probability function. An optimal classifier would be one that
minimizes the criterion, ECM, which consists of three probabilistic types of infor-
mation. Those are the class conditional probabilities pi (x), a priori probabilities Pi,
and cost for misclassification C (i�j), i ≠ j for i ∈ G. Another criterion of an optimal
Bayesian classifier is ignoring the cost for different misclassifications or using the
same cost for all the different misclassifications. Then the probabilistic information
used is pi (x) and Pi for i ∈ G. This minimum TPM classifier is the Maximum A
Posterior classifier which may be familiar. This will be shown in section 1.4.1. For
the minimum ECM and TPM optimal classifiers, we need to estimate the class
conditional densities for different classes which is usually difficult for . This
difficulty in density estimation is related to the curse of dimensionality caused by
the fact that a high-dimensional space is mostly empty.

A simplified Bayesian classifier can be obtained by assuming a normal distri-
bution for the class conditional density functions. With the normal distribution
assumption, the conditional density functions are parameterized by the mean vector
µi and the covariance matrices Σi for i ∈ G where G is the set of class labels.
Depending on the assumption of the covariance matrices we have a quadratic
discriminant classifier or a linear discriminant classifier.

q ~> 2



                                      
1.3.2 EXEMPLAR CLASSIFIERS

The most simple-minded nonparametric classifier is to use the label information of
the training data to allocate the unknown input x. The idea is to find the distribution
of the labels in a neighborhood of a new observation x in the training sample and pick
the label whose occurrence is maximum. The well-known classifier in this group is
the K-nearest neighbors (KNN) classifier. This classifier is justified either via nearest-
neighbor density estimation, or using the nearest-neighbor nonparametric regression.7

Practical issues in the KNN includes the choice of a metric to measure the
distance between the K nearest points and the unknown pattern point, and fast
searches for neighbors. Advanced data structures such as K-D trees8 are suggested
for faster searches at the expense of complications in training and adaptation.

Other examples are the feature-map classifier,9 Learning Vector Quantization
(LVQ),10 Adaptive Resonance Theory (ART) classifier,11 and others that are found
in the survey paper by Lippmann.1

Vector Quantization (VQ)12,13 is another classical representative exemplar find-
ing algorithm that has been used in communications engineering for the purpose of
data reduction for storage and transmission. The exemplar classifiers (except for the
KNN classifier) cluster the training patterns via unsupervised learning then followed
by supervised learning or label assignment. A Radial Basis Function (RBF)
network14 is also a combination of unsupervised and supervised learning. The basis
function is radial and symmetric around the mean vector, which is the centroid of
the clusters formed in the unsupervised learning stage, hence the name radial basis
function. The RBF networks are two-layer networks in which the first layer nodes
represent radial functions (usually Gaussian). The second layer weights are used to
combine linearly the individual radial functions, and the weights are adapted via a
linear least squares algorithm during the training by supervised learning. Figure 1.1
depicts the structure of the RBF networks.

The LMS algorithm,15 a simple modification for the linear least squares, is usually
used during training for the output layer weights. Any unsupervised clustering
algorithm, such as K-means algorithm (i.e., LBG algorithm13) or Self-Organizing
Map10 may be used in the first clustering stage.

FIGURE 1.1 RBF network. Two-layer network with first layer node being any radial
functions imposed on different locations and second layer node being linear.
© 2000 by CRC Press LLC



                                            
The most common basis is a Gaussian kernel function of the form:

(1.1)

where mj is the mean vector of the jth cluster found from a clustering algorithm,
and x is the input pattern vector. The is the normalization factor which is a spread
measure of the points in a cluster. The average squared distance of the points from
the centroid is the common choice for the normalization factor:

(1.2)

where wj is the set of the points in the jth cluster and Mj is the number of the points
in the jth cluster.

A generalization of the radial function utilizes the variance of an individual
variable and covariance among the variables in the training sample. The Mahalanobis
distance in the Gaussian kernel has the form:

(1.3)

where Σj is the covariance matrix in the jth cluster. The localized distribution function
is now ellipsoidal rather than a radial function. A more extensive study on the RBF
networks can be found in Hush and Horne.3

1.3.3 SPACE PARTITION METHODS

The input space X is recursively partitioned into children subspaces such that the
class distributions of the subspaces become as impure as possible: impurity of class
distribution in a subspace measures the partitioning of the input space by classes.

There are a number of different schemes for estimating trees. Quinlan’s ID316

is well known in the machine learning literature. The citations for some of its variants
can be found in a review paper by Ripley.17 The most well-known partitioning method
is the Classification and Regression Tree (CART),18 which is used to build a binary
tree partitioning the input space. At each split of the subspace, each variable is
considered with a separating value, and the separating variable with the best sepa-
rating value is chosen to split the subspace into two children subspaces.

The main issue in this CART algorithm is how to ‘grow’ it to fit the given training
data well and ‘prune’ it to avoid over-fitting, i.e., to improve the regularization.
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1.3.4 NEURAL NETWORKS

Neural networks are popular, and there are numerous textbooks and journals devoted
to the topic. Lippmann (1987)2 is recommended for a general overview of neural
networks for classification and (auto)associative memory applications. A statisti-
cian’s view on using neural networks for multivariate regression and classification
purposes is found in extensive review papers by Ripley.19,17 Different learning algo-
rithms with historical aspects in learning can be obtained from a reference by
Hinton.20

In this chapter we are mainly interested in multivariate regression and clas-
sification properties of neural networks, usually in the form of feed-forward
multilayer perceptrons. Chapter 2 deals mainly with neural network architectures
and algorithms.

1.4 CLASSIFIERS

1.4.1 BAYESIAN CLASSIFIERS

For simplicity we would like to start with a two-class classification problem and
develop it for multi-class cases in a straightforward way. Three kinds of information
for an optimal classification design procedure in Bayesian sense are denoted as

where C (i�j) is the cost for misclassification of j as i. With the notations introduced,
the probability that an observation is misclassified as w2 is represented by the product
of the probability that an observation comes from w1 but falls in w2 and the probability
that the observation comes from w1:

(1.4)

where the regions R2 and P (2�1) (i.e., the integration of pi (x) in the region R2) are
depicted in Figure 1.2.

Ri, i ∈ {1,2} is an optimum decision region in the input space such that minimum
error results are obtained. P (i�j), i ≠ j ∈ {1,2} is the integration of the conditional
probability function in the region of the other class, thus measuring the possibility
of error due to the regions and the conditional probability functions.
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1.4.1.1 Minimum ECM Classifiers

When the criterion is to minimize the ECM (Expected Cost for Misclassification),
the optimal resulting classifier is called a Minimum ECM classifier. The cost for
correct classification is usually set to zero, and positive numbers are used for
misclassification costs. The whole supporting region is the input space X and is
divided into two exclusive and exhaustive subregions: X = R1 U R2.

By the definition, the Minimum ECM classifier for class 1 is formed as follows:

(1.5)

(1.6)

with all the individual quantities being positive. The minimization is achieved as
close to zero as possible by having the integration in Equation 1.6 to be equal to a
negative quantity. Thus the ECM is minimized if the region R1 includes those values
x for which the integrand becomes as negative as possible with which the absolute
value is equal to the last quantity C(2|1)P1:

(1.7)

and excludes those x for which this quantity is positive. That is, R1, the decision
region for class 1, must be the set of points x such that

(1.8)

FIGURE 1.2 Misclassification probabilities and decision regions R1 and R2.
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(1.9)

Here we have chosen to express the region as the set of solution x of the inequality.
The fractional form of Equation 1.9 for the region R1 is the preferred format, since it
reduces to a simple form (which will be shown) when the conditional distribution
function pi (x), i = 1,2 is assumed to be normal (and thus assuming the same covariance
matrix for the two conditional distributions) for simple Bayesian classifiers.

Assuming the same cost for each misclassification reduces the criterion ECM
to Total Probability of Misclassification (TPM):

(1.10)

(1.11)

from Equation 1.9. Due to the Bayes theorem:

(1.12)

the corresponding decision rule (Equation 1.10) becomes the Maximum A Posteriori
(MAP) criterion, that is to allocate x into w1 if

(1.13)

1.4.1.2 Multi-Class Optimal Classifiers

The boundary regions of the minimum ECM optimal classifier for a multi-class
classifier are obtained in a straightforward manner from Equation 1.6 by minimizing 

(1.14)

The probability of misclassification of x ∈ wi into wk is represented as

(1.15)

The optimal regions {Ri} that minimize the ECM are the set of the points x for
which the allocation of x to a group wk, k = 1, 2, …, J results in the least cost. It
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can be shown that an equivalent form of Equation 1.14 can be represented without
the integral term P (k�i). The equivalent minimizing ECM′ is interpreted intuitively* as

The minimizing ECM is equivalent to minimizing the a posteriori probabilities for the
wrong classes with the corresponding costs.

That is, the equivalent ECM′ has the form

(1.16)

and since the denominator is a constant independent of the indices j, this can be
further simplified as

(1.17)

In other words, the optimal minimum ECM classifier assigns x to wk such that
Equation 1.17 is minimized. The minimum ECM (ECM′) classifier rule determines
mutually exclusive and exhaustive classification regions R1, R2,…, RJ such that
Equation 1.14 (Equation 1.17) is a minimum.

If the cost is not important (or the same for all misclassifications), the minimum
ECM rule becomes minimum TPM. The resulting classifier is, again as in the two-
class case, a MAP classifier:

Assign unknown x to wk:

(1.18)

(1.19)

(1.20)

The Bayesian classification rule which is based on the conditional probability
density functions for each class, pi (x), is the optimal classifier in the sense that it
minimizes the cost of the probability of error.22 However, the class conditional

* The fact that ECM and ECM′ are equivalent is shown analytically in the text.21
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probability density function pi (x) needs to be estimated. The density estimation is
realizable and efficient if the dimensionality is low, such as 1 ~ 2 or 3, at most. The
parametric Bayesian classification, even if it renders the optimal result in the sense
that probability of error is minimized, is difficult to realize in practice. Alternatively,
we look for other simple approximations using a normality assumption on the class
conditional distributions.

1.4.2 BAYESIAN CLASSIFIERS WITH MULTIVARIATE NORMAL 
POPULATIONS

If the conditional distribution of a given class is assumed to be p-dimensional
multivariate normal,

(1.21)

with mean vectors µi and covariance matrices Σi, then, the resulting Bayesian clas-
sifiers are easily realized.

1.4.2.1 Quadratic Discriminant Score

With the assumption of having the same cost for all misclassifications added to the
multivariate normality, we get a simple classification rule directly from Equation
1.19. Then the minimum TPM decision rule can be expressed as follows:

Allocate x to the class wk:

(1.22)

where the quadratic discriminant score is defined as

(1.23)

and consists of contributions from the generalized variance �Σi�, the a priori proba-
bility Pi, and the squared distance from x to the population class mean µi. Note that
dq

i (x) is the quadratic form of the unknown x.

1.4.2.2 Linear Discriminant Score

If we further assume that the population covariance matrices Σi are all the same, we
can simplify the quadratic discriminant score (Equation 1.23) into the linear dis-
criminant score:
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(1.24)

Then the optimal minimum ECM classifier with the assumptions that 

1. the multivariate normal distribution in the class conditional density func-
tion is pi (x),

2. we have equal misclassification cost (thus a minimum TPM classifier),
and that

3. we have equal covariance matrices Σi for all classes,

reduces to the simplest form with a linear discriminant score as follows:

(1.25)

where x was assigned to class wk.
As the name indicates, the linear discriminant score di (x) for a class i used in

the special case of the minimum TPM classifier Equation 1.25 is a linear functional
of the input x. The boundary regions R1, R2,…, RJ are hyper-linear, e.g., lines in
two-dimensional, planes in three-dimensional input space, etc. However, the mini-
mum TPM classifier with different covariances for the classes is given by the
quadratic form of x as in Equation 1.22.

1.4.2.3 Linear Discriminant Analysis and Classification

The Fisher’s Discriminant function is basically for description purposes. With new
lower dimensional discriminant variables, multidimensional data may be visualized
to find some interesting structures; hence, the linear discriminant analysis is explor-
atory. The objective of this section is to relate the linear discriminant analysis to
Bayesian optimal classifiers based on normal theory.

The linear transform by which the discriminant variates is obtained is defined
by the q × q matrix F in the transform:

(1.26)

where q is the dimensionality of vector x and the matrix F consists of s = min{q,
J – 1} eigenvectors of W–1 B whose corresponding eigenvalues are nonzero. This
result is obtained by maximizing the quadratic form of the quadratic expression of
matrix W. W and B are the sample versions of pooled within and between covariance
matrices, respectively defined as
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where N = ni is the size of the sample and J is the number of classes.
In the transformed domain or in the discriminant coordinate space

(CRIMCOORD), the class mean vectors are given by

for x ∈ wi, and by the definition of the LDA cov (X) = I. Thus it is appropriate to
consider a Euclidean distance in order to measure the separation of the discriminant
variates. The classification rule from the discriminants is now to allocate x into
class wk:

(1.27)

Here the dimensionality of x is s ≤ min{q, J – 1}. The dimensionality of the trans-
formed variables, i.e., the discriminant variates, become s and the classification rule
needs only s variables in the linear discriminant classification rule (Equation 1.27).

The reason for only s variables needed for this classification purpose follows.
The sample pooled within covariance matrix W and the between covariance matrix
B have full ranks, hence the W-1B, (q × q)-matrix, has full rank. The number of
nonzero eigenvalues should not be greater than the full rank:

s ≤ q (1.28)

And the class mean vectors span a multidimensional space with dimensionality:

p ≤ J – 1 (1.29)

which is obvious since by definition  = 0. From Equation 1.28 and
Equation 1.29 we can conclude that s = min{q, J – 1}. The remaining (q – s)-
dimensional subspace is called the null space of the linear transformation represented
by the matrix F and consists of all the vectors y that are mapped into 0 by the linear
transformation of Equation 1.26.
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1.4.2.4 Equivalence of LDF to Minimum TPM Classifier

It is interesting to observe the equivalence of the linear discriminant classification
rule Equation 1.27 with that of the minimum TPM classification rule, with the
assumption that all covariances Σi = Σ are the same for all classes i ∈ G.

The argument of the minimization quantity of Equation 1.27 becomes

(1.30)

where the last equation is due to:

(1.31)

The minimization of the squared distance in the Fisher’s discriminant variate domain
is equivalent to the maximization of the linear discriminant score di (y), which results
in the equivalence of the ‘linear discriminant classification rule’ to the ‘minimum
TPM optimal classifier.’23

This is an interesting observation or justification of Fisher’s LDF. Even though
the derivation of the Fisher’s discriminant functions do not require the ‘multivariate
normality’ assumption, the same classification rule is obtained from the minimum
TPM criterion Bayesian classification rule in which normality is assumed.

1.4.3 LEARNING VECTOR QUANTIZER (LVQ)

Learning Vector Quantization (LVQ) is a combination of the self-organizing map
and of supervised learning.10 The self-organizing map is a typical competitive learn-
ing method and results in a number of new vectors, called codebook vectors, ml, i
= 1, 2,…,L. The codebook vectors represent an input vector space with a small
number of representative vectors (codebook M). It is a quantization of the given
data set {xi,gi}  to get a quantized codebook {ml,g}L

1.

1.4.3.1 Competitive Learning

Given a training vector {xi,gi}N
1 and a size L of a randomly chosen codebook {ml}L

1,
an input of time instance k, x (k), is compared to all the code vectors, ml, in order to
find the closest one, mc, by a distance measure such that:

(1.32)
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L2-norm is a common choice, and the competitive learning with this measure utilizes
the steepest descent gradient step optimization.10 Once the closest code vector mc

is found, the competitive learning (or the steepest descent gradient optimization)
updates the closest code vector, mc, but it does not change the other code vectors,
ml l ≠ c.

(1.33)

(1.34)

with α (k) being suitable constant 0 < α < 1, or monotonically decreasing sequence,
0 < α (k) < 1, for which the optimization LVQ (or OLVQ that will be discussed
later) is concerned with.

1.4.3.2 Self-Organizing Map

This is an algorithm for finding a codebook M (or a set of feature-sensitive detectors)
in the input space X. It is known that the internal representations of information in
the brain are generally organized spatially, and the self-organizing map mimics the
spatial organization of the cells10 in its structure. A self-organizing map enforces the
logically inspired network connections, with “lateral inhibition” in a general way
by defining a neighborhood set Nc; a time-varying monotonically decreasing set of
code vectors:

(1.35)

where r (k) represents the radius of the Nc
(k).  Once the winning code vector (or cell)

is found from Equation 1.32, all the code vectors in the neighborhood Nc, which is
centered on the winning code vector mc, are undated and the others remain
untouched. It has been suggested10 that the Nc

(k) be very wide in the beginning and
shrink monotonically with time as r (k) is a function of time, k.

Thus the updating has a similar form to simple competitive learning as in
Equation 1.33,

(1.36)

where α (k) is a scalar-value “adaptation gain” 0 ≤ α (k) ≤ 1.

1.4.3.3 Learning Vector Quantization

If we now have a codebook that represents the input vector space X by a set of
quantized vectors, i.e., a codebook M, then the Nearest Neighbor rule can be used
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for classification problems, provided that the codebook vectors ml have their labels
in the space to which each codebook vector belongs. The labeling process is similar
to the K-nearest neighbor rule in which (a part of) the training data are used to find
the majority labels among the K closest patterns to a codebook vector ml. Thus the
LVQ, a form of supervised learning, follows the unsupervised learning, self-orga-
nizing map, as shown in Figure 1.3:

The last two stages in the figure are called LVQ, and researchers10,24 have come
up with different updating algorithms (LVQ1, LVQ2, LVQ3, OLVQ1) from different
methods of updating the codebook vectors. The LVQ1 and its optimization version
OLVQ1 are considered in the next sections.

1.4.3.3.1 LVQ1
This is similar to simple competitive learning (Equation 1.33), except that it includes
pushing off any wrong closest codebook vector in addition to pulling operations
(Equation 1.33 and Equation 1.36).

Let L (x (k)) be an operation to get the label information; then the codebook
updating rule LVQ1 has the form (Figure 1.4)

(1.37)

(1.38)

Here, 0 < α (k) < 1 is a gain, which is decreasing monotonically with time, as
in the competitive learning, (Equation 1.33). The authors suggest a small starting
value, i.e., α (0) = 0.01 or 0.02.

1.4.3.3.2 Optimized LVQ1 (OLVQ1)
For fast convergence of the LVQ1 algorithm in Equation 1.37 and Equation 1.38,
an optimized learning rate for the LVQ1 is suggested.24 The objective is to find an
optimal learning rate αl (k) for each codebook vector ml, so that we have individually
optimized learning rates:

(1.39)

FIGURE 1.3 Block diagram for a system of Self-organizing Map and Learning Vector
Quantization.
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(1.40)

Equation 1.39 and Equation 1.40 can be stated with a new sign term s (k) = 1 or –1
for the right class and the wrong class, respectively, as follows:

(1.41)

It can be seen that mc is directly independent but is recursively dependent on the
input vector x from Equation 1.41.

The argument on the learning rate10 is that:

Statistical accuracy of the learned codebook vectors mc
(*) is optimal if the effects of

the corrections made at different times are of equal weight.

The learning rate due to the current input x (k) is αc (k) from Equation 1.41, and due
to the previous input x (k–1), the current learning rate is (1 – s (k) αc (k)) · αc (k–1).
According to the argument, the effects to the learning rates are to be the same for
two consecutive inputs x (k) and x (k–1):

(1.42)

If this condition is to hold for all k, by induction, the learning rates from all the
earlier x (k), for k = 0,1,…,k should be the same. Therefore, due to the argument, the

FIGURE 1.4 LVQ1 learning, or updating the initial codebook vectors a, b, c.
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optimal values of learning rate αc (k) are determined by the recursion from Equation
1.42 for the specific code vector mc as:

(1.43)

with which the OLVQ1 is defined as in Equation 1.39 and Equation 1.40.

1.4.4 NEAREST NEIGHBOR RULE

The Nearest Neighbor (NN) classifier, a nonparametric exemplar method, is the
natural classification method one can first think of. Using the label information of
the training sample, an unknown observation x is compared with all the cases in the
training sample. N distances between a pattern vector x and all the training patterns
are calculated, and the label information, with which the minimum distance results,
is assigned to the incoming pattern x. That is, the NN rule allocates the x to wk if
the closest exemplar xc is with the label k = L (xc):

(1.44)

The distance measure between the unknown and the training sample has a general
quadratic form:

(1.45)

With M = Σ–1, the inverse of the covariance matrix in the sample, the result is the
Mahanalobis distance. Euclidean distance is obtained when M = I, i.e., the identity
matrix. Another choice may be the measure considering only the variance for which
M = Λ, where Λ is a diagonal matrix with its elements (λi)1/2 = var (xi) and x = (x1,
x2,…, xp)t.

The K-Nearest Neighbor (KNN) rule is the same as the NN rule except that the
algorithm finds K nearest points within the points in the training set from the
unknown observation x and assigns the class of the unknown observation to the
majority class in the K points.

Recent VLSI technology advances have made memory cheaper than ever; thus,
the KNN rule is becoming feasible. Some modified versions of the original KNN
rules are reported in what follows. These approaches interpolate between outputs of
nearest neighbors stored during training to form complex nonlinear mapping func-
tions.25,26 Much of the work with the modified KNN rules is in designing effective
distance metrics.1 Some modified KNN are developed for parallel machine imple-
mentation, called the connectionist machine,27 as well as for serial computing.25
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1.5 NEURAL NETWORKS (NN)

1.5.1 INTRODUCTION

Neural networks have been a much-publicized topic of research in recent years and
are now beginning to be used in a wide range of subject areas. One of the strands
of interest in neural networks is to explore possible models of biological computa-
tion. Human brains contain about 1.5 × 1012 neurons of various types, with each
receiving signals through 10 to 104 synapses. The response of a neuron is known to
be happening in about 1 ~ 10 milliseconds.28 Yet we can recognize an old friend’s
face and call him in about 0.1 seconds. This is a complex pattern recognition task
which must be performed in a highly parallel way, since the recognition is done in
about 100 ~ 1000 steps. This suggests that highly parallel systems can perform
pattern recognition tasks more rapidly than current conventional sequential comput-
ers. As yet our VLSI technology, which is essential planar implementation with at
most two- or three-layer cross-connections, is far from achieving these parallel
connections that require three-dimensional interconnections.

1.5.1.1 Artificial Neural Networks

Even though originally the neural networks were intended to mimic a task-specific
subsystem of a mammalian or human brain, recent research has been mostly con-
centrated on the Artificial Neural Networks which are only vaguely related to the
biological system. Neural networks are specified by the (1) net topology, (2) node
characteristics, and (3) training or learning rules.

Topological consideration of the artificial neural networks for different purposes
can be found in review papers.2,3 Since our interests in the neural networks are in
classification, only the feed-forward multilayer perceptron topology is considered,
leaving the feedback connections to the references.

The topology describes the connection with the number of layers and the units
in each layer for feed-forward networks. Node functions are usually nonlinear in
the middle layers but can be linear or nonlinear for output layer nodes. However,
all of the units in the input layer are linear and have fan-out connections from the
input to the next layer.

Each output yj is weighted by wij and summed at the linear combiner represented
by a small circle in Figure 1.5. The linear combiner thresholds its inputs before it
sends them to the node function φj. The unit functions are (non-)linear, monotoni-
cally increasing and bounded functions as shown on the right of Figure 1.5.

1.5.1.2 Usage of Neural Networks

One use of a neural network is classification. For this purpose each input pattern is
forced, adaptively, to output the pattern indicators that are part of the training data;
the training set consists of the input covariate x and the corresponding class labels.
Feed-forward networks, sometimes called multilayer perceptrons (MLP), are trained
adaptively to transform a set of input signals, X, into a set of output signals, G.
Feedback networks start with an initial activity state of a feedback system, and after
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state transitions have taken place, the asymptotic final state is identified as the
outcome of the computation. One use of the feedback networks is the case of
associative memories: on being presented with pattern near a prototype X it should
output pattern X′, and as autoassociative memory or contents-addressable memory
by which the desired output is completed to become X.

In all cases the network learns or is trained by the repeated presentation of
patterns with known required outputs (or pattern indicators). Supervised neural
networks find a mapping f : � → � for a given set of input and output pairs.

1.5.1.3 Other Neural Networks

The other dichotomy of the neural networks family is unsupervised learning, that
is clustering. The class information is not known or it is irrelevant; the networks
find the groups of the similar input patterns.

The neighboring code vectors in a neural network compete in their activities by
means of mutual lateral interactions and develop adaptively into specific detectors
of different signal patterns. Examples are the Self-Organizing Map10 and the Adap-
tive Resonance Theory (ART)11 networks. ART is different from other unsupervised
learning networks in that it develops new clusters by itself; the network develops a
new code vector if there exist sufficiently different patterns. Thus the ART is truly
adaptive, whereas others require the number of clusters to be specified in advance.

1.5.2 FEED-FORWARD NETWORKS

In feed-forward networks the signal flows only in the forward direction; no feed-
back exists for any node. This is perhaps best seen graphically in Figure 1.6. This

FIGURE 1.5 (I) The linear combiner output xj = yiwij is input to the node function
φj to give the output yj. (II) Possible node functions. Hard limiter (a), threshold (b), and
sigmoid (c) nonlinear functions.

Σi
n
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is the simplest topology and has been shown to be good enough for most practical
classification problems.19

The general definition allows more than one hidden layer, and also allows ‘skip-
layer’ connections from input to output. With this skip-layer, one can write a general
expression for a network output yk with one hidden layer,

(1.46)

where the bj and bk represent the thresholds for each unit in the jth hidden layer and
the output layer, which is the kth layer. Since the threshold values bj , bk are to be
adaptive, it is useful to have a threshold for the weights for constant input value of
1 as in Figure 1.6. The function φ () is almost inevitably taken to be a linear, sigmoidal
(φ (x) = ex / (1 + ex)) or threshold function (φ (x) = I (x > 0)).

Rumelhart, Hinton, and Williams29 showed that the feed-forward multilayer
perceptron networks can learn using gradient values obtained by an algorithm, called
Error Backpropagation.* This contribution is a remarkable advance since 1969,
when Minsky and Papert30 claimed that the nonlinear boundary, required for the
XOR problem, can be obtained by a multilayer perceptron. The learning method
was unknown at the time.

Since Rosenblatt (1959)31 introduced the one-layer, single perceptron learning
method, called the perceptron convergence procedure, the research on the single

FIGURE 1.6 A generic feed-forward network with a single hidden layer. For bias terms
the constant input with 1 are shown and the weights of the constant inputs are the bias values
which will be learned as training proceeds.

* A comment on the terminology ‘backpropagation’ is given in section 1.5.3. There, the backpropagation
is interpreted as a method to find the gradient values of a feed-forward multilayer perceptron network,
not as a learning method. A pseudo-steepest descent method is the learning mechanism used in the
network.
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perceptron had been widely active until the counter-example of the XOR problem
was introduced which the single perceptron could not solve.

In multilayer network learning the usual objective or error function to be min-
imized has the form of a squared error:

(1.47)

that is to be minimized with respect to w, the weights in the network. Here p
represents the pattern index, p = 1,2,…,P, and tp is the target (or desired) value
when xp is the input to the network. Clearly this minimization can be obtained by
any number of unconstrained optimization algorithms; gradient methods or stochas-
tic optimization are possible candidates.

The updating of weights has a form of the steepest descent method:

(1.48)

where the gradient value ∂E/∂wij is calculated for each pattern being present; the
error term E (w) in the on-line learning is not the summation of the squared error
for all the P patterns.

Note that the gradient points are in the direction of maximum increasing error.
In order to minimize the error it is necessary to multiply the gradient vector by
minus one (–1) and by a learning rate η.

The updating method (Equation 1.48) has a constant learning rate η for all
weights and is independent of time. The original Method of Steepest Descent has
the time-dependent parameter, ηk, hence ηk needs to be calculated as iterations
progress.

1.5.3 ERROR BACKPROPAGATION

The backpropagation was first discussed by Bryson and Ho (1960),32 later by Werbos
(1974),33 and Parker34 but was rediscovered and popularized later by Rumelhart,
Hinton, and Williams (1986).29 Each pattern is presented to the network, and the
input xj and output yj is calculated as in Figure 1.7. The partial derivative of the error
function with respect to weights is

(1.49)

where n is the number of weights, and t is the time index representing the instance
of the input pattern presented to the network.
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The former indexing is for the ‘on-line’ learning in which the gradient term of
each weight does not accumulate. This is the simplified version of the gradient
method that makes use of the gradient information of all training data. In other
words, there are two ways to update the weights by Equation 1.49:

 (1.50)

(1.51)

One way is to sum all the P patterns to get the sum of the derivatives in Equation
1.51 and the other way (Equation 1.50) is to update the weights for each input and
output pair temporally without summation of the derivatives. The temporal learning,
also called on-line learning, (Equation 1.50), is simple to implement in a VLSI chip
because it does not require the summation logic and storing each weight, while the
epoch learning in Equation 1.51 does require to do so. However the temporal learning
is an asymptotic approximation version of the epoch learning which is based on
minimizing objective functions (Equation 1.47).

With the help of Figure 1.7 the first derivatives of E with respect to a specific
weight wjk can be expanded by the chain rule:

(1.52)

(1.53)

For output units, ∂E/∂yk is readily available, i.e., 2 (yk – tp), where yk and tp are
the network output and the desired target value for input pattern xp. The φ′k (xk) is

FIGURE 1.7 Error-backpropagation. The δj for weight wij is obtained, δk’s are then back-
ward propagated via thicker weight lines wjk’s.
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straightforward for the linear and logistic nonlinear node functions; the hard limiter
on the other hand is not differentiable.

For the linear node function:

φ′ (x) = 1 with y = φx = x

and for the logistic unit the first order derivative becomes

(1.54)

(1.55)

The derivative can be written in the form

(1.56)

which has become known as the generalized delta rule.
The δ’s in the generalized delta rule, Equation 1.56, for output nodes, therefore

becomes

(1.57)

The interesting point in the backpropagation algorithm is that the δ ’s can be
computed from output to input through hidden layers across the network. δ ’s for
the units in earlier layers can be obtained by summing the δ ’s in the higher layers.
As shown in Figure 1.7, the δj are obtained as

(1.58)

The δk’s are available from the output nodes. As the updating (or learning) progresses
backwards, the previous (or higher) δk are weighted by the weights wjk’s and summed
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to give the δj’s. Since Equation 1.58 for δj only contains terms at higher layer units,
it is clear that it can be calculated backwards from the output to the input of the
network; hence the name backpropagation.

1.5.3.1 Madaline Rule III for Multilayer Network with 
Sigmoid Function

Widrow took an independent path in learning in as early as the 1960s.35,36 After
some 20 years of research in adaptive filtering, Widrow and colleagues returned to
the neural network research,36 and extended the Madaline I with the goal of devel-
oping a new technique that could adapt multiple layers of adaptive elements, using
the simpler hard-limiting quantizer. The result was Madaline Rule II (or simply
MRII), a multilayer linear combiner with a hard-limiting quantizer.

Andes (1988, unpublished) modified the MRII by replacing the hard-limiting
quantizer resulting in MRIII by a sigmoid function in the Adaline, i.e., a single-
layer linear combiner with a hard-limiting quantizer. It was proven later that MRIII
is in essence equivalent to backpropagation. The important difference from the
gradient based backpropagation method is that the derivative of the sigmoid function
is not required in this realization; thus the analog implementation becomes feasible
with this MRIII multilayer learning rule.

1.5.3.2 A Comment on the Terminology ‘Backpropagation’

The terminology ‘backpropagation’ has been used differently from what it should
mean. To get the partial derivatives of the error function (at the system output node)
with respect to the weights of the units in lower than the output unit, the δ terms in
the output unit are propagated backward, as in Equation 1.58. However, the network
(actually the weights) learns (or weights are updated) using the Pseudo Steepest
Descent method, (Equation 1.48); it is pseudo because a constant term is used,
whereas the Steepest Descent method requires an optimal learning rate for each
weight and time instance, i.e., ηij (k). The error backpropagation is indeed to find
the necessary gradient values in the updating rule. Thus it is not a good idea to call
the backpropagation a learning method; the learning method is a simple version of
the Steepest Descent method, which is one of the classical minimizer finding algo-
rithms. Backpropagation is an algorithm to find the gradient ∇E in a feed-forward
multilayer perceptron network.

1.5.3.3 Optimization Machines with Feed-forward Multilayer 
Perceptrons

Optimization in multilayer perceptron structures can be easily realized by gradient-
based optimization methods with the help of backpropagation. In the multilayer
perceptron structure the functions can be minimized/maximized via any gradient-
based unconstrained optimization algorithm, such as Newton’s method or Steepest
Descent method.
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The optimization machine has the functional description depicted in Figure 1.8
and consists of two parts, gradient calculation and weight (or parameter) updating.

The gradient ∇E of the multilayer perceptron network is obtained by error
backpropagation. If this gradient is used in an on-line fashion with the constant
learning rate η as in Equation 1.48, then this structure is the neural network used
earlier.29 This on-line learning structure possesses a desirable feature in VLSI imple-
mentation of the algorithm since it is temporal: no summation over all the patterns
is required but the weights are updated as the individual pattern is presented to the
network. It requires little memory but sometimes the convergence is too slow.

The other branch in Figure 1.8 shows unconstrained optimization of the nonlinear
function. The Optimization Machine gets the gradient information as before, but
various and well-developed unconstrained optimizations can be used for finding the
optimizer. The unconstrained nonlinear minimization is divided basically into two
categories, gradient methods and stochastic optimization. The gradient methods are
deterministic and use the gradient information to find the direction for the minimizer.
Stochastic optimization methods such as ALOPEX are discussed in another section
of this book as well as in References 37, 38, and 39. Comparisons of ALOPEX with
backpropagation are shown in References 37 and 40.

1.5.3.4 Justification for Gradient Methods for Nonlinear 
Function Approximation

Getting stuck in local minimizers is a well-known problem for gradient methods.
However, the size of the weights (or the dimensionality of the weight space in the
neural networks) is usually much larger than the dimensionality of the input space:
X ⊂ Rp that we like to search for optimization. The employed redundant degrees of
freedom in the ways to find the better minimizer is a good reason or the justification
for the gradient methods used in neural networks.

Another justification for the gradient method in optimization may be due to the
approximation by the Taylor expansion of highly nonlinear functions28 where the
first and second order approximation, i.e., a quadratic approximation to the nonlinear
function, is used. The quadratic function in a covariate x has a unique minimum or
maximum.

FIGURE 1.8 Functional diagram for an Optimization Machine.
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1.5.3.5 Training Methods for Feed-Forward Networks

There exist two basic ways to train the feed-forward networks. They are gradient-
based learning and stochastic learning. Training or learning is essentially an
unconstrained optimization problem. Abundant algorithms in optimization can be
applied to the function approximated by the network in a structured way defined by
the network topology.

In the gradient-based methods, the most popular learning is the steepest
descent/ascent method with Error Backpropagation algorithm to get the required
gradient of the minimizing/maximizing error function with respect to the weights
in the network.29,41 Another method using the gradient information is Newton’s
method, which is basically used for zero finding of a nonlinear function. The function
optimization problem is the same as the zero finding of the first derivative of the
function; hence, the Newton’s method is valid.

All the deterministic (as opposed to stochastic) minimization techniques are
based on either or both the steepest descent and Newton’s method. The objective
function to be optimized is usually limited to a certain class in the network optimi-
zation. The square of the error �t – ŷ� 2 and the information theoretic measure, the
Kullback-Leibler distance, are objective functions used in the feed-forward networks.
This is due to the limitation in calculating the gradient values of the network utilized
by the Error Backpropagation algorithm.

The recommended ‘method of optimization’ due to Broyden, Fletcher, Goldfarb,
and Shannon (BFGS) is the well-known Hessian matrix update in the Newton’s
method of unconstrained optimization.42 It requires gradient values. For the optimi-
zation machine of Figure 1.8 the feed-forward network with backpropagation pro-
vides the gradients, and the Hessian approximation is obtained by the BFGS method.

The other dichotomy of the minimization of an unconstrained nonlinear multi-
variate function is grouped into the so called ‘stochastic optimization.’ The repre-
sentative algorithms are Simulated Annealing,43 Boltzman Machine Learning,44 and
ALgorithm Of Pattern EXtraction (ALOPEX).45,46 Simulated Annealing43 has been
used successfully in combinatoric optimization problems, such as the traveling
salesman problem, VLSI wiring, and VLSI placement problems. An application of
feed-forward network learning has been reported47 with the weights being con-
strained to be integers or discrete values rather than continuum of the weight space.

Boltzman Machine learning by Hinton and Sejnowski44 is similar to Simulated
Annealing except that the acceptance of randomly chosen weights is possible even
when the energy state has decreased. In Simulated Annealing the weights yielding
the decreased energy state are always accepted, but in the Boltzman Machine,
probability is used in accepting the increased energy states.

The Simulated Annealing and the Boltzman Machine Learning (a general form
of Hopfield Network48 for the associative memory application) are mainly for com-
binatoric optimization problems with binary states of the units and the weights.
Extension from binary to M-ary in the states of the weights has been reported for
classification problems47 in Simulated Annealing training of the feed-forward per-
ceptrons.
© 2000 by CRC Press LLC



ALOPEX was originally used for construction of the visual receptive field but
with some modifications was later applied to the learning of any type of network,
not restricted to multilayer perceptrons. It is a random walk process in each parameter
in which the direction of the constant jump is decided by the correlation between
the weight changes and the energy changes.46 Since the stream of this chapter consists
of the gradient-based optimization methods and the scope of the stochastic optimi-
zation is examined elsewhere in this book,37 we do not include the other important
optimization stream of stochastic methods in this chapter.

1.5.4 ISSUES IN NEURAL NETWORKS

1.5.4.1 Universal Approximation

In the introduction section of the article by Hornik, Stinchcombe, and While (1989)49

previous work about the approximation capability of multilayer perceptrons is sum-
marized and is referenced here. More than 20 years ago, Minsky and Papert (1969)30

showed that simple two-layer (no hidden layers) networks cannot approximate the
nonlinearly separating functions (e.g., XOR problems) but a multilayer neural net-
work could do the job. Many results on the capability of the multilayer perceptron
have been reported. Some theoretical analyses for the network capability of the
multilayer perceptron as a universal approximator are listed below and are exten-
sively discussed in Reference.49

Kolmogorov (1957)50 tried to answer the question of Hilbert’s 13th problem, i.e.,
the multivariate function approximation by a superposition of the functions of one
variable. The superposition theory sets the upper limit of the number of hidden units
to 2n + 1 units, where n is the dimensionality of the multivariate function to be
approximated. However, the functional units in the network are different for the
different functions to be approximated, while one would like to find an adaptive
method to approximate the function from the given training data at hand. Thus
Kolmogorov’s superposition theory says nothing about the capability of a multilayer
network nor which method to be used.

More general views were reported. Le Cun (1987)51 and Lapedes and Farber
(1988)52 showed that monotone squashing functions can be used in the two hidden
layers to approximate the functions. Fourier series expansion of a function is
realized by a single layer network by Gallant and White (1988)53 with cosine
functions in the units. Further related results using the sigmoidal (or logistic) units
are shown by Hecht-Nielsen (1989).54 Hornik, Stinchcombe, and White (1989)49

presented a general approximation theory of one hidden layer network using arbi-
trary squashing functions such as cosine, logistic, hyperbolic tangent, etc., provided
that sufficiently many hidden units are available. However the number of hidden
units is not considered to attain any given degree of approximation in Hornik,
Stinchcombe, and White.49 

The number of hidden units obviously depends on the characteristics of the
training data set, i.e., the underlying function to be estimated. It is intuitive to
say that the more complicated the functions to be trained, the more hidden units
are required.
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For the number of hidden units, Baum and Haussler55 limit the size of general
networks (not necessarily the feed-forward multilayer perceptrons) by relating it to
the size of the training sample. The authors analytically showed that if the size of
the sample is N and we want to correctly classify future observations with at least
a fraction  correctly, then the size of the sample has a lower bound given by 

where W is the number of the weights and N the number of the nodes in a network.
This, however, does not apply to the interesting feed-forward neural networks, and
the given bound is not useful for most applications.

There seems to be no rule of thumb for the number of hidden units.19 The size
of the hidden units can usually be found by cross-validation or any other resampling
methods. Usual starting value for the size is suggested to be about the average of
the number of the input and output nodes.19 Failure in learning can be attributed49

to three main reasons:

• inadequate learning,
• inadequate number of hidden units, or
• presence of a stochastic rather than a deterministic relation between input

and target in the training data, i.e., noisy training data.

1.5.5 ENHANCING CONVERGENCE RATE AND GENERALIZATION OF 
AN OPTIMIZATION MACHINE

While the steepest descent method used originally with the backpropagation algo-
rithm, (Equation 1.48), can be an efficient method for obtaining the weights that
minimize an error measure, error surfaces frequently possess properties that make
this procedure of slow convergence. There are at least two reasons (correlated in a
sense as will be seen below) for this slow rate of convergence.56

1. The magnitude of a gradient may be such that modifying a weight by a
constant proportion, η as in Equation 1.48, of that gradient will yield too
little reduction in the error measure. There are two cases for this situation.
When the error surface is fairly smooth (or nearly flat), the gradient
magnitude is small, and consequently the convergence is too slow. The
other situation involves the case where the error curve is too wiggly. Even
a small change in the weight space may result in ‘overshooting,’ which
may produce a small reduction of the error measure. Oscillating over a
local minimum can happen with this error function.

2. The second reason for the slow convergence is that the negative gradient
may not point to the actual minima, as is usually the case. Figure 1.9
shows an example of an error function of the two parameters with the
elliptic curves representing the contour of the error function. With the
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given weight point w (t) at time t, the negative gradient does not point to
the real minima which are represented by a bullet in the center of the
inner contour. Given the negative gradient, the magnitude in the direction
of the major axis x1 is too small, whereas the component in the minor
direction x2 is too large.

1.5.5.1 Suggestions for Improving the Convergence

Jacobs (1988)56 summarized four heuristics proposed in the literature for increasing
the rate of convergence:

1. Every parameter of the performance measure to be minimized should have
its own individual learning rate, ηij.

2. Every learning rate should be allowed to vary over time, ηij (k).
3. When the derivative of a parameter possesses the same sign for several

consecutive time steps, the learning rate for that parameter should be
increased.

4. When the sign of the derivative of a parameter alternates for several
consecutive time steps, the learning rate for that parameter should be
decreased.

Note that from Figure 1.9, by providing different learning rates for each param-
eter dimension, the current point in the weight space is not modified in the direction
of the negative gradient, but toward the real minima.

Another cause for the slow convergence comes from the sigmoidal units φ ()’s
that are used to impose the network with nonlinearity. The derivative of the nonlinear

FIGURE 1.9 Error surface with contours over a two-dimensional weight space.
© 2000 by CRC Press LLC



unit function has been shown to be in the form of Equation 1.55. The logistic units
may become ‘stuck’ at a round value, either 0 or 1, since φ′ (x) = y (1 – y) (Equation
1.55) gives a very small value for an output � 0 or 1:

φ′ (x) = y (1 – y) � 0  for y � 0 or 1 (1.59)

Unfortunately, any saturating unit function is bounded, resulting in the property:
near the saturation points the derivative vanishes. With nonlinear units with the
backpropagation learning and the general objective function E = �t – y�2 giving the
∂E/∂w = y (1 – y) the convergence of a network is known to be slow, as discussed
earlier.

In the original work of Rumelhart, Hinton, and Williams29 a ‘momentum’ term
was added; that, is an exponential smoothing was applied to the correction term, so
that 

(1.60)

They also considered the ‘on-line’ version of Equation 1.60, that is

(1.61)

and updated the weights as each pattern was presented to the network.

1.5.5.2 Quick Prop

Some other interesting ideas to speed up the convergence have been introduced.
Quickprop57 used a second-order method, based loosely on Newton’s method. Quick-
prop is based on two risky assumptions, (1) that the error vs. weight graph for each
weight can be approximated by a parabola with one minimum value and (2) that
the change in the slope of the error curve, as seen by each weight, is not affected
by all the other weights that are changing at the same time.

Everything else proceeds as in standard backpropagation, but for each weight
wij a set of information for the previous time update is retained to get a second order
approximation. The steps to follow are (1) find the error derivative Sij (t – 1) = ∂E (t
– 1)/∂wij (t – 1) and (2) update ∆wij (t – 1) = wij (t) – wij (t – 1). The computation for
the next step size of a found direction according to the heuristics above is then
given by:

(1.62)
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where S (t) and S (t – 1) are the current and previous values of ∂E/∂w. This is a crude
approximation to the optimal minima. The fraction portion η in each parameter wij

is adaptively adjusted using the Equation 1.62.
To get around this pitfall, Fahlmann (1989)57 suggested also using an offset in

order for the delta (as in Equation 1.57) to be at least 0.1, i.e., φ′ (x) = 0.1 + y (1 – y).

1.5.5.3 Kullback-Leibler Distance

A more interesting treatment for the problem with the classical gradient descent
method has been shown in the literature. (58-60) A relative (or cross) entropy of target
t with respect to output y is defined and interpreted as Maximum A Posteriori (MAP)
estimation for the optimal minima of the weight space, 

(1.63)

This entropy measure becomes the measure of ‘maximum likelihood’ if the
targets tk are tk ∈ {0,1},20 and may be called the ‘Kullback-Leibler’ distance, one
of the probabilistic distances.

The interpretation of the output vectors with this distance measure is that the
output vector represents the conditional probability of target t, given the input pattern
x. A binary random variable Bk associated with the kth output unit describes the
presence (Bk = 1) or absence (Bk = 0) of the kth output attribute. For a given input
pattern xp, the activity yp reflects the conditional probabilities

(1.64)

(1.65)

With this distance measure the δ value in the generalized delta rule,
(Equation 1.56), becomes simpler and linear with the error (tp – yk):

(1.66)
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Thus the error signal propagates towards the inner layers backwards and the pitfall
problem (Equation 1.59) no longer exists for this distance measure.

1.5.5.4 Weight Decay

Another way to avoid saturation is to discourage large weights and hence large
inputs:20 ones with large deviations from the data set are used for training. One can
modify the error function to obtain the regularization effects by adding an extra
term, which penalizes the overfitting. Also the discouragement of unusual inputs
(e.g., outlier patterns) works as robust learning. This generalization in learning is
related to the bias-variance trade-off in the scatter plot smoothing.

A new error to be minimized is the sum of the squared error:

(1.67)

where the λ is the weight decay parameter. The weight update rule, (Equation 1.48),
turns out to be (with the penalty term)

(1.68)

This is the gradient (or steepest) descent learning method with a new error term.
Two effects from the weight decay can be realized. One is the generalization

obtained by the shrinkage effect of the weight decay. This shrinkage method is the
same idea as ridge regression in statistics, which may be written in a modified linear
regression form as:

(1.69)

where Λ is a non-negative diagonal matrix. This is motivated by a prior on β or as
a penalty term or a device to avoid large parameter values in nearly collinear
problems.19 It is also known that weight decay helps the numerical stability of
optimization algorithms, especially in avoiding almost flat regions in iterative meth-
ods, such as in Equation 1.48.

The extra penalty term in Equation 1.68, weight growing is equally discouraged;
there is no discrimination of the weights by their hierarchical position in a multilayer
network. With the help of Figure 1.7, the weights {wij} relate the system as inputs
yi = xi and xj, the input to the next layer units, but the weights {wjk} are between yj

and xk. To give the same penalty for all the weights evenly, (Equation 1.68), the
input vector x to the system should have the same range as the yj’s. Thus it is more
sensible that the system inputs have the same range as the intermediate values yj’s,
which is done by scaling so that the input {xp} is in [0,1], approximately.

′ = + ∑E E w
ij

ijλ 2

w w y wij ij

p

i
p

j
p

ij← − −∑η δ ηλ2

X X X Yt t+( ) =Λ β̂
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For the decay parameter λ, Ripley28 suggested λ � 10–4 ~ 10–2 for the sum of
the squares criterion (Equation 1.68), and 0.01 ~ 0.1 for the entropy measure
criterion, (Equation 1.63). 

If regression and classification are to be considered in a unified frame, the
distinguishing characteristic is in the interpretation and use of the response variable.
Regression is a method of model fitting for the given data point pairs. Regression
has the continuous response variable, representing outputs of the estimating function
f̂ (·), and  usually continuous in the region of the function f (·). One likes to find or
estimate the underlying function that relates input and output pairs, { (xi, yi)}N

1, for
many reasons. Prediction for future observations x0, inference on the estimated
function f, and interpretation of the function of covariate xi are the principal objec-
tives. Neural networks are a new surge in this regression paradigm, although research
for regression purposes is not as active as it is for classification problems. Classifi-
cation is meant to analyze different group data and to represent the group data well
so that future observations could be classified as correctly as possible. The response
variable can be considered as a categorical variable taking the value from a finite
set of class labels.

The difference between regression and classification is whether the response
variable is the continuous region of the function or the categorical variable for
classification, respectively.

1.5.5.5 Regression Methods for Classification Purposes

The recent success and popularity of neural networks motivated some applied stat-
isticians to look for similar methodologies in the statistical literature and to develop
methods to use the existing nonparametric regression techniques5 for classification.
The classification problem is recast in the form of a regression problem. To establish
a relationship between regression and classification, the two-class linear discriminant
function can be shown to be the scalar (not a constant) multiple of the least square
regression function in Section 1.5.6.

Generalization for multiple group settings is given in Section 1.5.7. A number
of recently developed adaptive regression methods are studied. Those are Classifi-
cation And Regression Tree (CART),18 BRUTO,61 and Multivariate Adaptive Regres-
sion Splines (MARS)62 and incorporated with a bridging tool FDA (Flexible Dis-
criminant Analysis)5 for classification purposes.

1.5.6 TWO-GROUP REGRESSION AND LINEAR DISCRIMINANT 
FUNCTION

The linear discriminant function for two-group classification has been viewed by
Fisher (1936) alternatively in a regression context. (See pp. 212–213 of Anderson
(1984)21). The linear projector W–1t ( –x (2) – –x (1)) in the linear discriminant function
( –x (2) – –x (1))tW–1 –x is actually a scalar multiple of the linear regression function.

A dummy variate is introduced for two class response values. Let the two
variables be
© 2000 by CRC Press LLC



(1.70)

(1.71)

The regression function btx is obtained by minimizing the sum of squared residual
(SSR)

where xi
(j) is the ith observation from group j, j = 1,2 and x– is the overall mean of

the training data.
The normal equations are obtained by taking the derivative of the SSR with

respect to b, the newly defined unknown coefficients of the two-group regression,
and set it equal to zero:

(1.72)

(1.73)

The outer product in the LHS of Equation 1.72 is the total covariance of the
predictor variables and can be decomposed in the form of within-covariance and
between-covariance matrix combinations as

(1.75)

(1.74)
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Thus Equation 1.72 is rewritten as

(1.76)

If we define the within-group SSP (sum of squares and products) as W:

the normal Equation 1.76 has the form

(1.77)

(1.78)

Since the whole bracket is a scalar, the solution b of Equation 1.78 is proportional
to the projection vector W-1 (x– (1) – –x (2)) of the linear discriminant function.

1.5.7 MULTI-RESPONSE REGRESSION AND FLEXIBLE DISCRIMINANT 
ANALYSIS

Multiresponse linear/nonlinear regression can also be used for classification. The
most simple and common way is to transform the categorical variable j ∈ {1,2,…,J}
in the form of (N × J)-matrix YN×J such that an element yij has a value of 1 in the
jth column if the observation is in class j. The multiresponse multivariate regression
is carried onto the predictors x. A new observation x0 is fitted with the J fits and is
classified by the class having the largest fitted value, i.e., Yj.

Since we cannot expect the regression fit ŷk = fk (x0), the kth regression fit, to be
in the region [0,1], the indicator matrix Y whose elements are either 0 or 1 is not a
good way of introducing dummy response variables. Optimal Scoring, which will
be studied in Section 1.5.8, transforms a categorical variable to real line R, such
that linear regression of the transform is best regressed on the predictor variables x.
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1.5.7.1 Powerful Nonparametric Regression Methods for 
Classification Problems

Recently, Hastie, Buja, and Tibshirani63 introduced a new treatment of regression
methods to be used for classification problems. They showed that the discriminant
analysis could be tackled via Optimal Canonical Correlation Analysis (CCA), espe-
cially its asymmetric version, Optimal Scoring (OS). The idea is based on the facts
that CCA is equivalent to Linear Discriminant Analysis (LDA) and that the OS
results to CCA, via various nonparametric regression methods.

Linear discriminant analysis in Section 1.4.2 of multi-group has been the tradi-
tional choice in classification and discriminant analysis. The robustness and the
simplicity of LDA64 in implementation and interpretation are responsible for its
popularity. Recently a group of applied statisticians found and developed ways of
using regression techniques for classification applications. Breiman and
Ihaka (1984)6 noticed that the regression approach to the classification problem can
be extended from the two-group to a multi-group setting via scaling and ACE. This
idea has been adapted by Hastie, Tibshirani, and Buja and was developed to render
the Flexible Discriminant Analysis (FDA).5

The basic concept is that the LDA, CCA, and OS are equivalent. One can find
the discriminant variates via either CCA or OS. Since this equivalence is so critical,
some space is devoted here to the understanding of this property. The generalization
of the LDA to nonlinear flexible discriminant analysis is due to the fact that an OS
solution can be obtained by any linear/nonlinear regression method. This has the
important consequence that we can simply use the tools for nonparametric regression
to perform nonparametric discriminant analysis, which the authors termed as Flexible
Discriminant Analysis (FDA). This section is a somewhat concise version of Section
3 of Hastie, Buja, and Tibshirani’s unpublished paper.63

It is known that discriminant variates are the same as the so-called ‘canonical
variates,’ which result from an associated canonical correlation analysis (CCA), and
often the latter term is used interchangeably with discriminant variates. Somewhat
less known is that an asymmetric version of canonical correlation analysis, here
called optimal scoring (OS), well-known in correspondence analysis, can also yield
a set of dimensions which coincide with those of LDA and CCA. Each of the three
techniques (OS, CCA, LDA) to be discussed has an associated criterion and con-
straints under which the criterion is to be optimized. The equivalence of LDA, CCA,
and OS follows as each of them are briefly described.

1.5.8 OPTIMAL SCORING

Optimal scoring is used to turn categorical variables into quantitative ones by
assigning scores to classes (groups, categories). Suppose θ : T → R is a function
that assigns scores to the classes, such that the transformed class labels are optimally
predicted by linear regression on X. This produces a one-dimensional separation
between the classes. More generally, we can find K sets of independent scorings for
the class labels, {θ1, θ2,…, θK}, and K corresponding linear maps ηk (X) = Xtβk,
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k = 1,2,…, K, chosen to be optimal for multiple regression in RK. Thus the OS
problem is to find the two sets of unknown functions that minimize a certain criterion.

Let (xi,gi), i = 1,2,…, N, be the training sample; then the scores {θk (g)}K
1 and

the maps {βk}K
1 are chosen to minimize the average squared residual (ASR):

In the criterion ASR above, θ (g) assigns a real number, θj, to the jth label of g, the
categorical response variable. With the matrix notation, given a J-vector of such
scores θk, a N-vector Yθ is a vector of scored training data which one may try to
regress onto the predictor matrix H, the N × p-matrix.

For simpler notational purposes, we proceed with a single solution only. The
multiresponse multivariate regression can be thought of as simply the K duplicates
for the single response multivariate regression. Thus a single solution pair (θ,β) is
used in the following, instead of the series of solution (θk,βk), k = 1,2,…, K, to
simplify the notation.

Definition: The Optimal Scoring problem is defined by the criterion

(1.79)

(1.80)

which is to be minimized (or made stationary) under the constraint N–1�Y θ�2 = 1
which is for a unique solution for θ.

A unified view for the three similar but equivalent techniques (OS, CCA, and
LDA) can be conveniently achieved by rewriting the ASR in Equation 1.80 in a
quadratic form:

(1.81)

where the matrices Σ are defined as:

• Σ11 = YtY, a diagonal matrix with the class proportions pj = nj/N in the
diagonal,

• Σ22 = (HtH), the total covariance matrix of the predictor variables,

• Σ12 = (YtH), Σ21 = Σt
12

If all considered classes are in the sample, i.e., nj > 0, Σ11 is invertible.
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1.5.8.1 Partially Minimized ASR

If we assume that the score vector θ is fixed, the minimizing β for the OS
problem is obtained by the least squares estimate of β:

(1.82)

The linear regression of Yθ on to the design matrix H with the least square
criterion gives the following results. From Equation 1.80 and Equation 1.82:

(1.84)

(1.83)

where S = H (HtH)–1Ht denotes the ‘hat’ or ‘smoother’ matrix of the predictor matrix
H, which is the result of the least square linear regression.

The same equation on the ASR (θ, β) has a matrix form as

(1.85)

with a new notation for the projection matrix, PH, based on the predictor design
matrix H for the least square linear regression

With the assumption of fixed θ we have reached the partially minimized ASR
where the minimizing β was obtained via the least square linear regression. Now,
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such that the linear regression yields the best fit to the new scalings. The question
then is — Given Equation 1.85, what θ gives the least possible ASR?

It is the quadratic form of the symmetric matrix Yt (I – PH)Y that we like to look
for the vector θ, that results in the minimum quadratic value. Minimizing θ for the
whole matrix Yt (I – PH)Y is the same as maximizing θ for the matrix YŶ = YPHY,
provided that the regression fit YŶ = PHY is shrunk, which is a property of all linear
smoothers.65 The projection operation PH is a linear smoother. Therefore, the mini-
mizing θ in Equation 1.85 is the eigenvector corresponding to the largest eigenvalue
of YŶ = YPHY.

This is the point at which nonlinear nonparametric regressions come into play
for classification applications of regression. Direct calculation of the projector matrix
PH of the expanded predictor space h (x), or spanned by the columns of the matrix
H is possible, but the fact that any regression can calculate the fitted value Ŷ allows
various linear/nonlinear regressions to be used.

1.5.9 CANONICAL CORRELATION ANALYSIS

Canonical Correlation Analysis (CCA) seeks to identify and quantify the associa-
tions between two sets of variables. The correlation of two linear combinations of
the two sets of variables is to be maximized.

Definition: The canonical correlation problem is defined by the criterion

(1.86)

which is to be maximized under the constraints

(1.87)

The Σ’s are the same as in the previous section for optimal scoring. The criteria
of the optimal scoring ASR (θ,β) and canonical correlation analysis COR (θ,β) are
related to each other by Equation 1.81 and the two CCA constraints:

ASR = 2 – 2 COR

which means that the OS and the CCA differ only in the additional constraint on β
through Equation 1.87.

The partially maximizing βCCA with θ for both the OS and the CCA obtained
by minimizing βOS with the constraint of the βCCA in Equation 1.87 is

(1.88)

The maximizer βCCA representation in terms of the minimizer βOS in the above
equation (Equation 1.88) and the definition of the CCA (Equation 1.86) entails the
identity in the fixed linear coefficients θ in the OS and CCA:

COR CCA CCA
tθ β θ β

θ β
, max
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θ β β βt tΣ Σ11 221 1= =, .   and   

β β β βCCA OS OS
t

OS= Σ22 .
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(1.89)

which verifies the identity of θ in that the minimizer in Equation 1.84 is the same
as the one in the maximizer in Equation 1.86. With the identity of θ for both the
OS and the CCA as just shown and the relationship between the β’s (Equation 1.88)
verifies that the OS is essentially the same as the CCA with the constraint on the βCCA.

1.5.10 LINEAR DISCRIMINANT ANALYSIS

Linear Discriminant Analysis (LDA) is a standard tool for classification and dimen-
sion reduction purposes. The LDA is a special case of the Bayesian Classifier as in
Section 1.4.2, where the group conditional distributions are assumed to be multi-
variate normal, have a common covariance matrix, and have different mean vectors
for the different classes.

1.5.10.1 LDA Revisited

The optimizing problem of the multiclass data is to find the K ≤ J – 1 linear
combinations which separate the class means mj as much as possible in the K
dimensional subspace satisfying the constraint that the linear combinations are to
be spherical, i.e., uncorrelated and with unit variance, with respect to Σw, the within-
class covariance. The columns of the matrix U of LDA vectors uk are the eigenvectors
corresponding to the K largest eigenvalues of the matrix of Σ–1

B ΣW. The procedure
for the LDA is first to sphere x with respect to the common within-groups covariance
matrix, project these data onto the J – 1 dimensional subspace spanned by the J
group mean vectors mj’s, and then classify the new discriminant covariate, Ux0,
vector to the class corresponding to the closest centroid.

Following the notations of the two sets of variables as in Section 1.5.8, the
matrix M of mean vectors, ΣB, and ΣW have the following simple form with PY =
Y (YtY)–1Yt the projector onto a Y-column space:
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• M = Σ–1
11 Σ12, a J × p-matrix whose rows are the class means mj = avg{hi;

i ∈ Class j} : M = (m1, m2,…, mJ)t

• ΣB = (PY H)t (PY H) = Σ21 Σ–1
11 Σ12 = Mt Σ11M

• ΣW = [ ( (I – PY)H)t (I – PY)H] = Σ22 – ΣB

The matrix M consists of rows of class mean vectors mj. The between-class
covariance ΣB is the covariance of H regressed onto Y, or, equivalently, the class-
weighted covariance of the class means. The within-class covariance is the left of
the subtraction of the ΣB from the total covariance Σ22.

The criterion of the linear discriminant problem is the maximization problem
of the between-class variance under a constraint on the within-class variance.

Definition: The criterion of the linear discriminant problem to be maximized is
the between-class variance:

(1.90)

with the constraint:

(1.91)

1.5.11 TRANSLATION OF OPTIMAL SCORING DIMENSIONS INTO 
DISCRIMINANT COORDINATES

It is convenient to use CCA as a link between OS and LDA. CCA is a generalized
singular value problem for Σ12 with regard to the metrics given by Σ11 and Σ22.
Remember that it is the maximizing problem Equation 1.86 in which the generalized
quadratic form is used, hence it is called the generalized singular value problem.

The associated singular value decomposition (SVD), essentially a collection of
stationary solutions of the CCA problem, takes on the form:

(1.92)

(1.93)

(1.94)

where L = min (J,p), Θ is a J × L matrix whose columns θk are left-stationary
vectors, B is a p × L matrix whose columns βk are right-stationary vectors, and Dα
is a diagonal matrix of size L × L with non-negative diagonal elements of αk sorted
in descending order. 

A simple (non-generalized) SVD of a form A = UDVt entails the trivial conse-
quences:
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These are translated to the generalized SVD as follows. The left column is for the
regular SVD and the right column for the generalized SVD.

(1.95)

(1.96)

(1.97)

(1.98)

(1.99)

(1.100)

In particular, Equation 1.98 implies COR (θk, βk) = αk.
As noted before from Equation 1.84 and Equation 1.89, the stationary θ vectors

of OS and CCA are the same, while the β vectors of OS and CCA are related
according to Equation 1.82 and Equation 1.97 by

(1.101)

BOS being a matrix of OS-stationary column vectors βOS,k. From Equation 1.84 and
Equation 1.89 it follows that ASR (θk,βk) = 1 – α2
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To link CCA and LDA, we rewrite Equation 1.100 using the expression of the
ΣB = Σ21 Σ–1

11 Σ12 as:

(1.102)

and

(1.103)

(1.104)

These two equations, (Equation 1.102) and Equation 1.104 show that B diagonalize
both ΣB and ΣW. If we define,

we get a matrix whose columns βLDA,k are stationary solutions of the LDA problem:

(1.105)

(1.106)

Finally, the relation between the LDA and the OS solutions is given by 

(1.107)

1.5.12 LINEAR DISCRIMINANT ANALYSIS VIA OPTIMAL SCORING

The minimization criterion, average squared residual (ASR), for a multi-response
Optimal Scoring has the form

(1.108)
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With a new notation for the projection matrix, PH, and smoothing operation S, based
on the predictor design matrix H for the least square linear regression PH = S =
H(HtH)–1Ht, the partially minimizing ASR with the Θ* fixed becomes 

(1.109)

If we set the constraints on the Θ* of zero mean and being unit variance and
uncorrelated:

the minimizing Θ is obtained from Equation 1.109 by the K largest eigenvectors Θ
of YtPHY with the constraint Θt Dp Θ = IK and with Dp = YtY/N.

A direct approach for such optimal score Θ would be by explicitly building the
project (or hat) matrix PX and doing eigen analysis via Singular Value Decomposition,

A more convenient approach avoids the explicit calculation PX and takes advantage
of the fact that PX computes the linear regression Ŷ = PXY. An algorithmic approach
to compute the usual canonical variates by OS provides an equivalent procedure to
get the LDA by OS.

1.5.12.1 LDA via OS

As the equivalence of OS and LDA from Equation 1.107 the algorithm for LDA via
OS is:

1. Initialization: form YN×J, the indicator matrix, whose index yij is 1 if the
ith observation belongs to the jth group, otherwise is 0.

2. Linear multivariate regression: find the linear regression
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and by the linear least squares, set B such that

3. Optimal scores: find the eigenvector matrix Θ of rank K ≤ J matrix YtŶ
via SVD

4. Update the coefficient matrix of the linear combination matrix B obtained
in step 2.

The final coefficient matrix BOS is, up to a diagonal scale matrix, the same as
the LDA coefficient matrix BLDA obtained from Equation 1.107.

where the diagonal matrix D has the elements

and αk is the kth element of the diagonal matrix Λ, in the spectral decomposition
of the rank K ≤ J matrix YtŶ  via SVD:

1.5.13 FLEXIBLE DISCRIMINANT ANALYSIS BY OPTIMAL SCORING

If we apply nonparametric regression Ŷ = S (λ̂)Y, in step 2 above, we can reduce the
flexibility of the nonparametric regression into a classification problem. Here the
smoothing parameter λ̂ controls the fitness of the regression Ŷ to Y, and is thus the
control parameter.

The nonparametric multivariate regression in Ŷ = S ( λ̂)Y comes into play in
two ways:5 

• the regularization property by bias-variance control is obtained, and
• a model selection (i.e., variable selection) and interaction between vari-

ables may be exploited in the multivariate regression.
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There exist many powerful nonparametric multivariate regression methods, and
more are expected to be developed. The most recently developed are (1) Projection
Pursuit Regression (PPR),66 (2) Alternate Conditional Expectation (ACE),67 (3)
Additivity and Variance Stabilization (AVAS),68 (4) Additive Model (AM),63 (5)
Multivariate Adaptive Regression Splines (MARS),62 (6) π-method,69 (7) Interac-
tion spline method,70 (8) Hinging-hyperplanes,71 and (9) Neural networks.

The FDA by OS method is similar to the algorithmic LDA by OS of the previous
Section 1.5.12. The steps to follow are 

1. Initialize: Choose an initial score matrix Θ0 satisfying the constraints

and get the scoring matrix Θ*
0 = Y Θ0. The Θ0 may be obtained by a

contrast matrix.*
2. Multivariate nonparametric regression: Fit a multi-response, adaptive

nonparametric regression of Θ*
0 of X by one of the nonparametric regres-

sions listed above.

where η (x) is the vector of fitted regression functions.
3. Optimal scores: Obtain the eigenvector matrix Φ of Θ*t

0 Θ̂ *
0 and hence

the optimal scores ΘJ×K = Θ0Φ.
4. Update the final model from step 2 using the optimal scores:

It is worth noting step 3 in both procedures in order to distinguish the way of
obtaining the optimal scores. For the first procedure for the LDA via OS, the indicator
matrix Y is regressed on to X. But in the second procedure for FDA via OS, the
transformed score data, Θ*

0 = Y Θ0 are regressed onto X by any of the various
nonparametric regression methods. The optimal score Θ is thus updated as Θ = Θ0Φ.

For a J class problem, it is known from the discriminant analysis that the vector
of canonical variates or functions η (x) has at most K = J – 1 components. If –ηj =
Σgi=j η (xi)/nj denotes the fitted centroid of the jth class in this space of canonical
variates, the discrimination rule has the form of a (weighted) nearest centroid rule:

* The contrast matrix is the K – 1 linear combinations of a factor variable with K levels. It is an encoding
method of the factor variable such that the linear combination of the levels becomes linearly independent.
There exist the Helmert, polynomial contrasts and others (see References 72, Ch.2).

Θ ΘK J
t

p J K KD I× × =

Θ Θ0 0
* *ˆ= ( ) = ( )S λ η x

η ηx x( ) ← ( )Θt
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(1.110)

D is the diagonal matrix of scale factors that convert optimally scaled fits to dis-
criminant analysis variables.

1.6 COMPARISON OF EXPERIMENTAL RESULTS

In general, any pattern recognition system consists of two basic subsystems: feature
extraction and classifier design. In this study, however, we are mainly interested in
classifiers. There are many different classifiers from the simple and powerful non-
parametric KNN rule to the recently popularized neural networks, as well as the
newly developed multivariate regression methods. Eleven classifiers, which are all
explained in Section 1.1, are experimented with the same data set obtained by
Zernike Moments, a global feature extraction method.73–75

A new branch in the growing tree of the classifiers has been developed in applied
statistics6,5 and is by now popularized. It is based on the fact that Optimal Scoring
(OS) is equivalent to the Linear Discriminant Analysis (LDA) (Equation 1.107)
and the OS can be obtained by various regression techniques which are well
researched in statistics (Section 1.5.11). The multivariate regression methods were
used for classification, and the results were proven to be competitive to the classical
statistical methods.

Table 1.1 describes the classifiers in a simple format with control parameters,
learning and operation process. Details on the classifiers are given in Section 1.1.

The core part of the software for the classifiers used in the study has been
obtained from contributed software. They are written mostly by originators or some
active researchers in the area. The archive package “classif” is a collection contrib-
uted by B. Ripley and is maintained in the statlib@lib.stat.cmu.edu which is acces-
sible by anonymous ftp. It can be found under “S” directory of the maintainer. This
“classif” library also contains LDA, OLVQ1, KNN, and others that we did not
experiment with.

Hastie and Tibshirani contributed the programs that are recently developed by
themselves and A. Buja. The package “fda” contains the Flexible Discriminant
Analysis (FDA), which is a way of using Optimal Scoring by nonparametric regres-
sion for classification problems. The library “fda” comes with POLYREG, BRUTO.
MARS and BRUTO are the recently developed multivariate regression methods.
MARS can also be obtained from the directory “general” in the same maintainer,
statlib@lib.stat.cmu.edu. The CART and PPREG can also be found from the “S”
directory of the same maintainer. These are also available in function type “tree ()”
and “ppreg ()” from the commercial package Splus.*

The NNET neural networks written by Ripley are different from the original
ones29 in that he uses the modified Newton’s optimization algorithm with BFGS
algorithm (the most popular Hessian matrix update algorithm). The description is

* The commercial version of “S”76 which is developed in AT&T Bell Lab. Splus is an extended version
of “S” from Statistical Sciences, Inc. Seattle, WA., USA.

x x∈ = ( ) −( ){ }j D
k

karg min η η
2
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depicted in Figure 1.8. The NNET has been very reliable in experiments and yields
a better convergence to better minima than any other software that has been tested
for the feed-forward multilayer neural network study with backpropagation.

1.7 SYSTEM PERFORMANCE ASSESSMENT

In practice we are given a data set and required to design a system for a certain
objective. The system is a realization of the function of an unknown input space D.

TABLE 1.1
The List of the Classifiers Used

Classifiers
Control 

Parameters Learning Operation

LDA F, µi arg mini�G

�F (x – µi)�2

OLVQ1 Codebook find {mi}L
1 find di (x, mi)

KNN k=1,3,5 arg mini

{di (x, xi)}

NNET h = 15
λ = 0.005

Minimize arg maxj {P (j�x)}

CART find Bm (x) =

LREG deg = 1 Px = X (X′ X)–1 X′ ŷ = Px y

POLY deg = 2 PH = H (H′H)–1 H′ ŷ = PH y

PPREG min = 9
max = 15

Minimize

BRUTO cost = 2.5 Backfitting

MARS cost = 2
deg = 1

TURBO

Nnet h = 15 Minimize arg minj

ŷ t Wi i−( ) +∑ ∑2 2λ

∏ −( )[ ]= ( )k
L

km v k m km
m H s x t1 ,

L arg maxm m

M
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If we know all the necessary characteristics of the input space D, it is fairly easy to
design an optimal system for the objective, such as the Bayesian classification rule
with class conditional distributions and a priori probabilities for the classes. We,
however, usually do not know the underlying generating function that generates the
sample we have at hand. Instead, from the sample we like to find the underlying
generating function, i.e., the population distribution. This is the inference problem.

Let us say that the input space is fully described by a certain distribution function
F (·). The system we are interested in can be represented as a functional θ that takes
the population distribution F: θ (D) = θ (F). The functional θ is known, but the
distribution F is not. θ could be any statistic or a complicated error rate in a
classification problem. 

The distribution is usually estimated parametrically or non-parametrically, thus
providing the input argument to the system functional θ () in order to estimate the
system’s functional of the real population distribution F. Thus we have an estimation
for θ (F):

With this estimation strategy the next question is how accurate θ̂  is as the estimator
of θ.

1.7.1 CLASSIFIER EVALUATION

Once we have designed a classifier, we like to know how accurately the system can
do the job or quantify the quality of the system performance. Prediction error is the
criterion that we like to employ to see how good the designed system is. For both
regression and classification system design, the usual system performance measure
is its prediction error. In the context of regression, prediction error refers to the
expected squared difference between the response value and its prediction from the
model

(1.111)

The expectation operation refers to the repeated sampling from the true underlying
population distribution. 

Prediction error also arises in classification problems, where the response falls
into one of J not ordered classes. The prediction error is commonly defined as the
probability of an incorrect classification

(1.112)

which is called misclassification rate.
How to assess the system performance is an important issue in order to better

quantify the designed system in terms of a criterion, e.g., error rate.

θ θF F( ) ( )� ˆ .

PE E y y= −( )ˆ 2

PE y y= ≠( )Prob ˆ
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1.7.1.1 Hold-Out Method

If the data set at hand is large, we may divide it in two parts; use one for training
and hold out the other for testing, hence the name hold-out method. This is a popular
method to assess the system’s performance. In most cases the data are limited in
size; thus a hold-out method is ad-hoc in the sense of which subset is held out for
testing. The performance evaluation via this method depends on how the data are
separated.

1.7.1.2 K-Fold Cross-Validation

A natural compromise to the hold-out above is the so-called K-fold cross-validation
method. The given data are divided evenly into K parts. One or more of the K parts
is used to test the designed system by the remaining parts of the data. An average
among the results is called the K-fold cross-validation estimate of the true error rate.
An extreme case results to the leave-one-out method, in which one observation,
(yk,xk), is left out and the rest N – 1 cases, { (yi,xi}i≠k } are used for training. The
prediction error, PE (Equation 1.111) from the leave-one-out method is the average
of the N errors

(1.113)

where f̂–i (xi) is the estimation of the response of f (xi) based on the system trained
with the data in which the xi is missing. In general, with a notation wi being the
index group in which the index i falls, the cross-validation has a form of prediction
error in regression:

and in classification setting:

(1.114)

Other than cross-validation for estimation some modification of the apparent
error, the sum of squared residuals (SSR)
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has also been used [see Reference 77, Ch.17]; such as SSR/ (N – p), SSR/ (N – 2p),
and Cp = SSR/N + 2pσ̂2/N. Leaving these modifications of SSR aside (since they are
beyond the scope of our interest) we like to use the Bootstrap estimate of prediction
error, which is also used for the performance analysis of our classification system.

1.7.2 BOOTSTRAPPING METHOD FOR ESTIMATION

Bootstrapping is a method of nonparametric estimation of statistical errors, which
are the bias and the standard error of an estimator. The nonparametric techniques
known to date are the Bootstrap, the Jackknife, and the cross-validation. Nonpara-
metric methods for testing the accuracy of an estimator have all some common
desirable features: they require very little in the way of modeling, assumptions, or
analysis, and can be applied in an automatic way to any statistics, no matter how
complicated these are.78

In order to see what they are, a simple statistic, the sample mean
–
X, is employed

to assess the accuracy of the estimation for the true mean µ. We consider the available
data set as a random sample of size N from an unknown distribution F in the sense
that it represents the population F relatively well. As shown in Figure 1.10, a random
sample is drawn from an unknown probability distribution F,

(1.115)

With a sample from F, we compute the sample average x– = ΣN
1 xi/N as an estimate

of the expectation of F, EF (X). For this special statistic (sample average), we can
get more information about the estimator –x. The accuracy of the estimator is rep-
resented by the standard deviation of –x:

FIGURE 1.10 Illustration of the Bootstrap sampling.

X X X Fn1 2, , , ~…
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(1.116)

(1.117)

where µ2 (F) is the central moment of the population with distribution F. This
standard error formula with the raw sample realization of Equation 1.115, does not
extend to the other statistics, such as median, correlation, or prediction error. This
is the point where computer methods, such as the resampling techniques for accuracy
estimation, come into play.

1.7.2.1 Jackknife Estimation

Let –x (i)* defined as

(1.118)

with N – 1 points, be the sample average of N – 1 points for all i = 1,2,…,N. Then
the jackknife estimate of standard error is represented by 

(1.119)

The –x (i) = ΣN
i 

–x i/N is the average among the N –x (i)’s. This can be proved to be
equal to the standard error for the sample average of Equation 1.117 by substituting
Equation 1.118 onto the Equation 1.119.

The jackknife standard error estimation of any statistic θ may have the form of
Equation 1.119 to get the accuracy information of the estimator, θ̂J. The advantage
with the estimate of standard error for a statistic is to use Equation 1.119 where any
statistic θ̂ (i) = θ̂ (X1,…,Xi–1, Xi+1,…, XN) is replaced by –x (i) and θ̂ (·) = 1/N Σi=1

N θ̂ (i)

for –x (i).

* Note the change of the notation in the deletion statistic from the usual superscript with negative sign,
e.g., ,f̂–i (xi) in Equation 1.113.

ˆ ; , var var /
/ /

/

σ F N x X X N

N N
x x

i

N

i

( ) = ( ){ } = ( ){ }

=
−( ) −( )











=
∑

1 2 1 2

1

2

1 2

1
1

�
µ ( )





2

1 2
F

N

/

x
N

x
Nx x

Ni j

j i

i
( )

≠

=
−

= −
−∑1

1 1

ˆ ; ,

/

σ J i

i

N

F N x
N

N
x x( ) = − −( )









( ) ⋅( )

=
∑1 2

1

1 2
© 2000 by CRC Press LLC



1.7.2.2 Bootstrap Method

Bootstrap generalizes Equation 1.117 in an apparently different way. Any statistic
θ (F), which is a functional, requires the distribution F. But in practice F is not
known and is difficult to estimate. An empirical distribution F̂ from the given sample
from an unknown distribution F is defined in a bootstrap setting by giving an equal
probability mass to each of the values xi, and draw a sample from the empirical
distribution F̂:

Each x*
i is drawn independently with replacement and with equal probability from

the set {x1,x2,…,xN}. Then the standard error of sample mean –X* = Σi=1
N X*

i /N is
given as

(1.120)

where µ2 (·) is the second order central moment of a given distribution. Comparing
this standard error for bootstrap sample average with Equation 1.117, we note that
they are almost the same. Thus the jackknife (Equation 1.119) and the bootstrap
(Equation 1.120) standard error for sample average (a simple statistic as an example)
are shown to be nearly equal to Equation 1.117; a special statistic that is the sample
average as an estimate for mean has an explicit form. Formulas like Equation 1.117
do not exist for most statistics.

This is where the computing intensive jackknife and bootstrap estimations are
used. It turns out* that we can always numerically evaluate the bootstrap estimate
for standard error σ̂ = σ (F̂ ), without a simple expression like Equation 1.117.

1.8 ANALYSIS OF PREDICTION RATES FROM 
BOOTSTRAPPING ASSESSMENT

The boxplots in Figure 1.11 represent the E632 estimator superimposed by the
distribution of the B = 100 bootstrap sample errors, θ̂* (b)’s. The median value of
the B error rates is replaced by the E632 estimate; thus the B bootstrap errors are
shifted according to the E632 estimate. For ease of display and understanding the
system performance, the recognition rates, i.e., 1 – θ̂′s, are plotted.

* The proof can be found in Reference 77.
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The generality issue of the designed system is related to its reliability in terms
of standard error of the estimator for the prediction error. To make the analysis
simpler, we assume the symmetry of the system performance of the classifiers in
the boxplot figures. Then the standard error of the prediction rule by the mean (or
median simply from the boxplots) is relatively approximated by the inter quartile
range of the boxplots. 

The mean value is the bootstrap sample estimate θ̂ of the true statistic θ = 1 – PE.
The standard deviation implicity represents the reliability of the estimate, i.e., stan-
dard error of the estimate. From the result of the classifiers considered in this study,
(Figure 1.11), the 95% confidence interval of the estimate θ̂ = 0.955 is given by 

where the multiple factor 1.645 is the 95% percentile point of the standard normal
variate, N (0,1).

The graphical display seems to reveal more for the comparison study of the
classifiers and different treatments of the data. The boxplot display of a batch is a
very simple and useful way to show the distribution of the sample. The Inter Quartile
Range (IQR), which is the difference between the upper quartile and the lower
quartile, is considered to be the robust estimation of the scalar multiple of the
dispersion. The height of the box is the IQR. The median of the batch is represented
by the line in the box. The whiskers represented by the dotted lines are extended
up to the points in which the 1.5 times of the IQR contains. Outliers are represented
by the individual dots to signify their existence. The boxplot, thus, displays the
distribution very simply but well enough, especially when many different batches
are to be compared.

The correct recognition rates from 11 classifiers are displayed with the boxplots
for each data set obtained from the different treatments. Each boxplot shows the
distribution of the recognition rate of the 100 systems designed by B = 100 bootstrap
samples. The corresponding figures for the data are in Figure 1.11.

The results from the LDA and LREG (via linear regression) would have been
the same due to the equivalence of the LDA and OS (Equation 1.107 and Equation
1.110) if the same bootstrap sample were used for both classifiers; the bootstrap
samples used to train the classifiers are different for no reason!*

The best performance of the optimization machine with the feed-forward neural
network structures can be observed (Figure 1.11). This is seen with the mean values
for the estimation of the correct recognition error. Note that we do not consider the
KNN classifier as a learning mechanism, so it is not of concern. It does not learn
but performs by the exemplars; i.e., the computation in the operation phase is the
largest, which is inappropriate in real-time processing applications.

* If the different classifiers were trained with the same B bootstrap samples, then the classification by
the linear regression method and the LDA would have been the same.
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2 Artificial Neural 
Networks: Definitions, 
Methods, Applications

Daniel A. Zahner and 
Evangelia Micheli-Tzanakou

2.1 INTRODUCTION

The potential of achieving a great deal of processing power by wiring together a
large number of very simple and somewhat primitive devices has captured the
imagination of scientists and engineers for many years. In recent years, the possibility
of implementing such systems by means of electro-optical devices and in very large
scale integrations has resulted in increased research activities.

Artificial neural networks (ANNs) or simply neural networks (NNs) are made
of interconnected devices called neurons (also called neurodes, nodes, neural units
or simply units). Loosely inspired by the makeup of the nervous system, these
interconnected devices look at patterns of data and learn to classify them. NNs have
been used in a wide variety of signal processing and pattern recognition applications
and have been successfully applied in such diverse fields as speech processing,1–4

handwritten character recognition,5–7 time series prediction,8–9 data compression,10

feature extraction,11 and pattern recognition in general.12 Their attractiveness lies in
the relative simplicity with which the networks can be designed for a specific
problem, along with their ability to perform nonlinear data processing.

As the neuron is the building block of a brain, a neural unit is the building block
of a neural network. Although the two are far from being the same or from performing
the same functions, they still possess similarities that are remarkably important. NNs
consist of a large number of interconnected units that give them the ability to process
information in a highly parallel way. The brain, as well, is a massively parallel
machine as has long been recognized. As each of the 1011 neurons of the human
brain integrates incoming information from all other neurons directly or indirectly
connected to it, an artificial neuron sums all inputs to it and creates an output that
is carrying information to other neurons. The connection from one neuron’s dendrites
or cell body to another neuron’s processes is called a synapse. The strength by which
two neurons influence each other is called a synaptic weight. In a NN all neurons
are connected to all other neurons by synaptic weights that can have seemingly
arbitrary values, but in reality, these weights show the effect of a stimulus on the
neural network and the ability or lack of it to recognize that stimulus.
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In the biological brain, two types of processes exist, static and dynamic. Static
brain conditions are those that do not involve any memory processing, while dynamic
processes involve memory processing and changes through time. Similarly, NNs can
be distinguished as static or dynamic, the former being those that do not involve
any previous memory and only depend on current inputs, the latter having memory
and being described by differential equations that express changes in the dynamics
of the system through time.

All NNs have certain architectures, and all consist of several layers of neuronal
arrangements. The most widely used architecture is that of the perceptron first
described in 1958 by Rosenblatt.13 In the sections that follow we will build on this
architecture but not necessarily on the original assumptions of Rosenblatt, the valid-
ity of which has been disputed by others.27

Since there are many names in the literature that express the same thing and
usually create a lot of confusion for the reader, we will define the terms to be used
and use them throughout the chapter. Terminology is a big concern for those involved
in the field and for organizations such as IEEE. A standards committee has been
formed to address issues such as nomenclature and paradigms. In this book, when-
ever possible, we will try to conform to the terms and definitions already in existence.

Some methods for training and testing of NNs will be described in detail,
although many others will be left out due to lack of space, but references will be
provided for the interested reader. A small number of applications will be given as
examples, since many more are discussed in other chapters of this book, and it will
be redundant to repeat them here.

2.2 DEFINITIONS

Neural Nets (NNs) go by many other names, such as connectionists models, neuro-
morphic systems, and parallel distributed systems, as well as artificial NNs, which
distinguishes them from the biological ones. They contain many densely intercon-
nected elements called neurons or nodes, which are nothing more than computational
elements nonlinear in nature. A single node acts like an integrator of its weighted
inputs. Once the result is found, it is passed to other nodes via connections that are
called synapses. Each node is characterized by a parameter that is called threshold
or offset and by the kind of nonlinearity through which the sum of all the inputs is
passed. Typical nonlinearities are the hardlimiter, the ramp (threshold logic element),
and the widely used sigmoid.

The simplest NN is the single layer perceptron13,14 which is a simple net that
can decide whether an input belongs to one of two possible classes. Figure 2.1 is a
schematic representation of a simple one-neuron perceptron, the output of which is
passed through a nonlinearity called an activation function. This activation function
is of different types, the most popular being a sigmoidal logistic function.

Figure 2.2 is a schematic representation of some activation functions, such as the
hardlimiter (or step), the threshold logic (or ramp), a linear, and a sigmoid. The neuron
of Figure 2.1, receives many inputs, Ii, each weighted by a weight Wi (i = 1, 2....N).
These inputs are then summed. The sum is then passed through the activation
function, f, and an output, y, is calculated only if a certain threshold is exceeded.
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Complex artificial neurons may include temporal dependencies and more complex
mathematical operations than summation.15 While each node has a simple function,
their combined behavior becomes remarkably complex when organized in a highly
parallel manner.

NNs are specified by their processing element characteristics, the network topol-
ogy, and the training or learning rules they follow in order to adapt the weights, Wi.
Network topology falls into two broad classes, feed-forward (nonrecursive) and
feedback (recursive) NNs.16 Nonrecursive NNs offer the advantage of simplicity of
implementation and analysis. For static mappings a nonrecursive network is all one
needs to specify any static condition. Adding feedback expands the network’s range

FIGURE 2.1 Artificial neuron.

FIGURE 2.2 Typical activation functions.
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of behavior since now its output depends upon both the current input and network
states. But one has to pay a price, longer times for teaching the NN.

Obviously the scheme of Figure 2.1 is quite simple and inadequate in solving
problems. A multilayer perceptron (MLP) is the next choice. A number of inputs
are now connected to a number of nodes at a second layer called the hidden layer.
The outputs of the second layer may connect to a third layer and so on, until they
connect to the output layer. In this representation, every input is connected to every
node in the next layer and the outputs of one hidden layer are connected to the nodes
of the next hidden layer and so on. More details on multilayer perceptrons can be
found in Chapter 12.

Artificial neural networks usually operate in one of two modes. Initially there
exists a training phase where the interconnection strengths are adjusted until the
network has a desired output. Only after training does the network become opera-
tional, i.e., capable of performing the task it was designed and trained to do. The
training phase can be either supervised or unsupervised. In supervised learning, there
exists information about the correct or desired output for each input training pattern
presented.20 The original perceptron and backpropagation are examples of supervised
learning. In this type of learning the NN is trained on a training set consisting of
vector pairs. One of these vectors is used as input to the network; the other is used
as the desired or target output. During training the weights of the NN are adjusted
in such a way as to minimize the error between the target and the computed output
of the network. This process might take a large number of iterations to converge,
especially because some training algorithms (such as backpropagation) might con-
verge to local minima instead of the global one. If the training process is successful,
the network is capable of performing the desired mapping. 

In unsupervised learning, no a priori information exists, and training is based
only on the properties of the patterns. Sometimes this is also called self-organiza-
tion.20 Training depends on statistical regularities that the network extracts from the
training set and represents as weight values. Applications of unsupervised learning
have been limited. However, hybrid systems of unsupervised learning combined with
other techniques produce useful results.21–23 Unsupervised learning is highly depen-
dent on the training data, and information about the proper classification is often
lacking.21 For this reason, most neural network training is supervised.

2.3 TRAINING ALGORITHMS

After McCulloch and Pitts24 demonstrated, in 1943, the computational power of
neuron-like networks, much effort was given to developing networks that could
learn. In 1949, Donald Hebb proposed the strengthening of connections between
presynaptic and post-synaptic units when both were active simultaneously.25 This
idea of modifying the connection weights as a method of learning is present in most
learning models used today. The next major advancement in neural networks was
by Frank Rosenblatt.13,14 In 1960, Widrow and Hoff proposed a model, called the
Adaptive Linear Element (ADALINE), which learns by modifying variable connec-
tion strengths, minimizing the square of the error in successive iterations.26 This
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error correction scheme is now known as the Least Mean Square(LMS) algorithm,
and it has found widespread use in digital signal processing. 

There was great interest in neural network computation until Minsky and Papert
published a book in 1969 criticizing the perceptron. This book contained a mathe-
matical analysis of perceptron-like networks, pointing out many of their limitations.
It was shown that the single layer perceptron was incapable of performing the XOR
mapping. The single layer perceptron was severely limited in its capabilities. For
linear activation functions, multilayer networks were no different from single layer
models. Minsky and Papert pointed out that multilayer networks with nonlinear
activation functions could perform complex mappings. However the lack of any
training algorithms for multiple layer networks made their use impossible. It was
not until the discovery of multilayer learning algorithms that interest in neural
networks resurfaced. The most widely used training algorithm is the backpropagation
algorithm, as already mentioned in the introduction.

Another algorithm used for multilayer perceptron training is the ALOPEX algo-
rithm. ALOPEX was originally used for visual receptive field mapping by Tzanakou
and Harth in 197328–30 and has since been applied to a wide variety of optimization
problems. These two algorithms are explained in detail below.

2.3.1 BACKPROPAGATION ALGORITHM

The backpropagation algorithm is a learning scheme in which the error is back-
propagated layer by layer and used to update the weights. The algorithm is a gradient
descent method that minimizes the error between the desired outputs and the actual
outputs calculated by the MLP. Let

 (2.1)

be the error associated with template p. N is the number of output neurons in the
MLP, Ti is the target or desired output for neuron i and Yi is the output of neuron i
calculated by the MLP. Let E = Σ Ep be the total measure of error. The gradient
descent method updates an arbitrary weight, w, in the network by the following rule:

 (2.2)

where

 (2.3) 

where n denotes the iteration number and η is a scaling constant. Thus, the gradient

descent method requires the calculation of the derivatives for each weight,

w, in the network. For an arbitrary hidden layer neuron, its output, Hj , is a nonlinear
function f of the weighted sum of all its inputs (netj).
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(2.4)

where f is the activation function. The most commonly used activation function is
the sigmoid function given by

 (2.5)

Using the chain rule, we can write

 (2.6)

and since
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also

(2.13)

Therefore,

(2.14)

Assuming f to be the sigmoid function of Equation 2.5, then

(2.15)

Equation 2.14 gives the unique relation that allows the backpropagation of the error
to all hidden layers. For the output layer

(2.16)

(2.17)

In summary, then, first the output Yi for all the neurons in the network is calculated.
The error derivative needed for the gradient descent update rule of Equation 2.2 is
calculated from

(2.18)

If j is an output neuron, then

 (2.19)

If j is a hidden neuron, then the error derivative is backpropagated by using Equations
2.14 and 2.15. Substituting, we get

 (2.20)
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Finally the weights are updated, as in Equation 2.2.
There are many modifications to the basic algorithm that have been proposed

to speed the convergence of the system. Convergence is defined as a reduction in
the overall error below a minimum threshold. It is the point at which the network
is said to be fully trained. One method31 used is the inclusion of a momentum term
in the update equation such that

 (2.21)

η is the learning rate and is taken to be 0.25. α is a constant momentum term which
determines the effect of past weight changes on the direction of current weight
movements.

Another approach used to speed the convergence of backpropagation is the
introduction of random noise.32 It has been shown that while inaccuracies resulting
from digital quantization are detrimental to the algorithm's convergence, analog
perturbations actually help improve convergence time. 

One of these variations is the modification by Fahlman,33 called the quickprop,
that uses second derivative information without calculating the Hessian needed in
the straight backpropagation algorithm. It requires saving a copy of the previous
gradient vector, as well as the previous weight change. Computation of the weight
changes uses only information associated with the weight being updated:

(2.22)

where ∆wij(n) is the gradient vector component associated with the weight wij at
iteration n. This algorithm assumes that the error surface is parabolic, concave
upward around the minimum, and that the slope change of the weight ∆wij(n) is
independent of all other changes in weights. There are obviously problems with
these assumptions, but Fahlman suggests a “maximum growth factor” µ in order to
limit the rate of increase of the step size, namely that if ∆wij(n) > µ∆wij(n – 1) then
∆wij(n) = µ∆wij(n – 1). Fahlman also used a hyperbolic arctangent function to the
output error associated with each neuron in the output layer. This function is almost
linear for small errors, but it blows up for large positive or large negative errors.
Quickprop is an attempt to reduce the number of iterations needed by straight
backpropagation, and it succeeded in doing so by a factor of 5, but this factor is
problem dependent. This method also required several trials before the parameters
were set to acceptable values.

Backpropagation has achieved widespread use as a training algorithm for neural
networks. Its ability to train multilayer networks has led to a resurgence of interest
in the field. Backpropagation has been used successfully in applications such as
adaptive control of dynamical systems and in many general neural network appli-
cations. Dynamical systems require monitoring of time in ways that monitor the
past. In fact, the biological brain performs in an admirable way just because it has
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access to and uses values of different variables from previous instances. Backprop-
agation through time is another extension of the original algorithm proposed by
Werbos in 199034 and has been previously applied in the “Truck Backer-Upper” by
Nguyen and Widrow.35 In this problem a sequence of decisions must be made without
an immediate indication of how effective these steps are. No indication of perfor-
mance exists until the track hits the wall. Backpropagation through time solves the
problem, but it has its own inadequacies and performance difficulties. Despite its
tremendous effect on neural networks, the algorithm is not without its problems.
Some of the problems have been discussed above. In addition, the complexity of
the algorithm makes hardware implementations of it very difficult.

2.3.2 THE ALOPEX ALGORITHM

The ALOPEX process is an optimization procedure that has been demonstrated
successfully in a wide variety of applications. Originally developed for receptive
field mapping in the visual pathway of frogs, ALOPEX's usefulness and its flexible
form have increased the scope of its applications to a wide range of optimization
problems. Since its development by Tzanakou and Harth in 1973,28 ALOPEX has
been applied to real-time noise reduction,36 pattern recognition,37 adaptive control
systems,38 and multilayer neural network training to name a few.

Optimization procedures, in general, attempt to maximize or minimize a function
F( ). The function F( ) is called the cost function, and its value depends on many
parameters or variables. When the number of parameters is large, finding the set (x1,
x2,… xN) that corresponds to the optimal (maximal or minimal) solution is exceed-
ingly difficult. If N were small, then one could perform an exhaustive search of the
entire parameter space, in order to find the “best” solution. As N increases, intelligent
algorithms are needed to quickly locate the solution. Only an exhaustive search can
guarantee that a global optimum is found; however, near-optimal solutions are
acceptable because of the tremendous speed improvement over exhaustive search
methods.

Backpropagation, described earlier, being a gradient descent method often gets
stuck in local extrema of the cost function. The local stopping points often represent
unsatisfactory convergence points. Techniques have been developed to avoid the
problem of local extrema, with simulated annealing39 being the most common.
Simulated annealing incorporates random noise, which acts to dislodge the process
from local extremes. Crucial to the convergence of the process is that the random
noise be reduced as the system approaches the global optimum. If the noise is too
large, the system will never converge and can be dislodged mistakenly from the
global solution.

ALOPEX is another process which incorporates a stochastic element to avoid
local extremes in search of the global optimum of the cost function. The cost function
or response is problem-dependent and is generally a function of a large number of
parameters. ALOPEX iteratively updates all parameters simultaneously based on the
cross-correlation of local changes, ∆Xi, and the global response change ∆R, plus an
additive noise. The cross-correlation term ∆Xi∆R helps the process move in a direc-
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tion that improves the response. Table 2.1 shows how this can be used to find a
global maximum of R.

All parameters Xi are changed simultaneously at each iteration according to

 (2.23)

The basic concept is that this cross-correlation provides a direction of movement
for the next iteration. For example, take the case where Xi↓ and R↑. This means
that the parameter Xi decreased in the previous iteration, and the response increased
for that iteration. The product ∆Xi∆R is a negative number, and thus Xi would be
decreased again in the next iteration. This makes perfect sense since a decrease in
Xi produced a higher response; if you are looking for the global maximum, then Xi

should be decreased again. Once Xi is decreased and R also decreases, then ∆Xi∆R
is now positive and Xi increases.

These movements are only tendencies, since the process includes a random
component that will act to move the weights unpredictably, avoiding local extrema
of the response. The stochastic element of the algorithm helps it to avoid local
extrema at the expense of slightly longer convergence or learning period.

The general ALOPEX updating Equation 2.23 is explained as follows. Xi(n) are
the parameters to be updated, n is the iteration number, and R( ) is the cost function,
of which the “best” solution in terms of Xi is sought. Gamma, γ, is a scaling constant,
ri(n) is a random number from a Gaussian distribution whose mean and standard
deviation are varied, and ∆Xi(n) and ∆R(n) are found by:

 (2.24)

(2.25)

the calculation of R( ) is problem dependent and can be easily modified to fit many
applications. A detailed description of the response calculation can be found in other
chapters. This flexibility was demonstrated in the early studies of Harth and Tzana-
kou.29 In mapping receptive fields, no a priori knowledge or assumptions were made
about the calculation of the cost function, instead a “response” was measured. By

TABLE 2.1

∆X ∆R ∆X ∆R
X↑ + R↑ + +

X↑ + R↓ – –

X↓ – R↑ + –

X↓ – R↓ – +

X n X n X n R n r ni i i i( ) = −( ) + ( ) ( ) + ( )1 γ ∆ ∆

∆ X n X n X ni i i( ) = −( ) − −( )1 2

∆ R n R n R n( ) = −( ) − −( )1 2
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using action potentials as a measure of the response28,29,40,41 receptive fields could
be determined by using the ALOPEX process to iteratively modify the stimulus
pattern until it produced the largest response. 

It should be stated that due to its stochastic nature, efficient convergence depends
on the proper control of both the additive noise and the gain factor γ. Initially all
parameters Xi are random, the additive noise has a Gaussian distribution with mean
0, and standard deviation, σ, initially large. The standard deviation, σ, decreases as
the process converges to ensure a stable stopping point. Conversely, gamma, γ,
increases with iterations. As the process converges, ∆R becomes smaller and smaller,
and an increase in gamma is needed to compensate for this.

Additional constraints include a maximal change permitted for Xi, for one iter-
ation. This bounded step size prevents the algorithm from drastic changes form one
iteration to the next. These drastic changes often lead to long periods of oscillation,
during which the algorithm fails to converge.

2.3.3 MULTILAYER PERCEPTRON (MLP) NETWORK TRAINING WITH 
ALOPEX

A MLP can also be trained for pattern recognition using ALOPEX. A response is
calculated for the jth input pattern based on the observed and desired output 

(2.26)

Where Oobs
k and Odes

k are vectors corresponding to Ok for all k. The total response
for iteration n, is the sum of all the individual template responses, Rj(n).

(2.27)

In Equation 2.27 m is the number of templates used as inputs. ALOPEX iteratively
updates the weights using both the global response information and local weight
histories, according to the following:

(2.28)

(2.29)

where γ is an arbitrary scaling factor, ri(n) is an additive Gaussian noise, ∆W
represents the local weight change and ∆R represents the global response informa-
tion. These values are calculated by:

 (2.30)

R n O O n Oj
des

k
obs

k
des

k( ) = − ( ) −( )2

R n R nj

j

m

( ) = ( )
=

∑
1

W n r n W n R n W nij i ij ij( ) = ( ) + ( ) ( ) + −( )γ ∆ ∆ 1

W n r n W n R n W njk i jk ik( ) = ( ) + ( ) ( ) + −( )γ ∆ ∆ 1

∆W n W n W nij ij ij( ) = −( ) − −( )1 2
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 (2.31)

 (2.32)

Besides its universality to a wide variety of optimization procedures, the nature of
the ALOPEX algorithm makes it suitable for VLSI implementation. ALOPEX is a
biologically influenced optimization procedure that uses a single value global
response feedback, to guide weight movements toward their optimum. This single
value feedback, as opposed to the extensive error propagation schemes of other neural
network training algorithms, makes ALOPEX suitable for fast VLSI implementation.

Recently, a digital VLSI approach to implementing the ALOPEX algorithm was
undertaken by Pandya and Venugopal.66 Results of their study indicated that
ALOPEX could be implemented using a Single Instruction Multiple Data (SIMD)
architecture. A simulation of the design was carried out, in software, and good
convergence for a 4x4 processor array was demonstrated. 

In our laboratory, an analog VLSI chip was designed to implement the ALOPEX
algorithm. By making full use of the algorithm's tolerance to noise, an analog design
was chosen. As discussed earlier, analog designs offer larger and faster implemen-
tations than those of digital designs. More details are given in Chapter 12.

2.4 SOME APPLICATIONS

2.4.1 EXPERT SYSTEMS AND NEURAL NETWORKS

Computer-based diagnosis is an increasingly used method that tries to improve the
quality of health care. Systems that depend on artificial intelligence (AI), such as
knowledge-based systems or expert systems, as well as hybrid systems such as the
above combined with other techniques, like NNs, are coming into play. Systems of
that sort have been developed extensively in the last ten years with the hope that
medical diagnosis and therefore medical care will improve dramatically. Hatzilyger-
oudis et al.42 are developing such a system with three main components; a user
interface, a database management system, and an expert system for the diagnosis of
bone diseases. Each rule of the knowledge representation part is an Adaline unit that
has as inputs the conditions of the rule. Each condition is assigned a significance
factor corresponding to the weight of the input to the Adaline unit, and each rule is
assigned a number, called a bias factor, that corresponds to the weight of the bias
input of the unit. The output is calculated as the weighted sum of the inputs filtered
by a threshold function.

Hudson et al.43 developed a NN for symbolic processing. The network has four
layers. A separate decision function is used for layer three and a threshold for each
node in the same layer. If the value of the decision function exceeds the correspond-
ing threshold value, a certain symbol is produced. If the value of the decision function
does not exceed the threshold, then a different symbol is produced. The so generated
symbols of adjacent nodes are combined at layer four according to a well-structured

∆W n W n W njk jk jk( ) = −( ) − −( )1 2

∆ R n R n R n( ) = −( ) − −( )1 2
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grammar. A grammar provides the rules by which these symbols are combined.44

The addition of a symbolic processing layer enhances the NN in a number of ways.
It is, for instance, possible to supplement a network that is purely diagnostic, with
a level which recommends further actions, or to add additional connections or nodes
in order to more closely simulate the nervous system.

With increasing network complexity, parameter variance increases, and the net-
work prediction becomes less reliable. This difficulty can be overcome if some prior
knowledge can be incorporated into the NN to bias it.45 In medical applications in
particular, rules can either be given by experts or can be extracted from existing
solutions to the problem. In many cases the network is required to make reasonable
predictions before it has gone through any sufficient training data, relying only on
a priori knowledge. The better this knowledge is initially, the better the performance
and the shorter the training.46,47

2.4.2 APPLICATIONS IN MAMMOGRAPHY

One of the leading causes of death of women in America is breast cancer. Mam-
mography has been proven to be an effective diagnostic procedure for early detection
of breast cancer. An important sign in its detection is the identification on the
mammograms of microcalcifications, especially when they form clusters. Chan et
al.48 have developed a computer-aided diagnosis (CAD) scheme based on filtering
and feature extracting methods. In order to improve on the false positives, Zhang et
al.49 applied an artificial NN which is shift invariant. They evaluated the performance
of the NN by the “jack-knife” method50 and receiver operating characteristic anal-
ysis.51,52 A shift invariant NN is a feed-forward NN with local, spatially invariant
interconnections similar to those of the neocognitron53 but without the lateral inter-
connections. BP was also used for training for individual microcalcifications and a
cross-validation technique was employed in order to avoid overtraining. In this
technique the data set is divided into two sets, one used for training and the other
for validating the predetermined intervals. The training of the network is terminated
just before the performance of the network for the validating set decreases. The
shift-invariant NN was proven to be much better in dropping the false positive
classifications by almost 55% over previously used NNs.

In another study, Zheng et al.54 used a multistage NN for detection of microcal-
cification clusters with almost 100% success and only one false positive per image.
The multistate NN consists of more than one NN connected in series. The first stage
is called the “detail network,” with inputs the pixel values of the original image,
while the second network, the “feature network” gets as inputs the output from the
first stage and a set of features extracted from the original image. This approach has
higher sensitivity of classification and a lower false positive detection than the
previous reports.

Another approach was used by Floyd et al.55 where radiologists read the mam-
mograms and came up with a list of eight findings, which were used as features for
a NN. The results from biopsies were taken as the truth of diagnosis. For indeterminate
cases, as classified by radiologists, the NN had a performance index of 0.86, which
is quite high.
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Downes56 used similar techniques to identify stellate lesions. He used texture
quantification via fractal analysis methods instead of using the raw data. In mam-
mograms, specific textures are usually indicative of malignancy. The method used
for calculating the fractal dimension of digitized images was based upon the rela-
tionship between the fractal dimension and the power spectral density.

Giger et al.57 aligned the mammograms of left and right breasts and used a
subtraction technique to find initial candidate masses. Various features were then
extracted and used in conjunction with NNs in order to reduce false positives
resulting from bilateral subtraction. Receiver operating characteristic (ROC) analysis
was applied to evaluate the output of the NN. The methods used were evaluated
using pathologically confirmed cases. This scheme yielded a sensitivity of 95% at
an average of 2.5 false positive detections per image.

2.4.3 CHROMOSOME AND GENETIC SEQUENCES CLASSIFICATION

Several clinical disorders are related to chromosome abnormalities that are difficult
to identify accurately and also classify the individual chromosome. Automated
systems can greatly help human capabilities in dealing with some of the problems
involved. One way to deal with this problem is the use of NNs. Several studies have
already been done toward enhancing the ability of an automated computerized
system to analyze chromosome identification.58 One such study by Sweeney and
Musavi59 analyzed the metaphase of chromosome spreads employing probablistic
NNs (PNNs), which have been used as alternatives to various classification problems.
Firstly introduced by Specht,60,61 PNNs are combinations of a kernel-based estimator
for estimation of probability densities and the Bayes rule for classification decision.
The estimation with the highest value specifies the correct class. Thus, training of
PNNs means to find appropriate kernel functions, usually taken to be Gaussian
densities, and therefore the problem is reduced to the selection of a scalar parameter,
namely the standard deviation, of the Gaussian. A way to improve the accuracy of
a PNN for chromosome classification is to use the knowledge that there can be a
maximum of only two chromosomes assigned to each class. This knowledge can be
easily incorporated into the NN. Similar or better results were obtained to the
classical BP-trained NN.

A hybrid symbolic/NN machine learning algorithm was introduced by Noordew-
ier et al.62 for the recognition of genetic sequences. The system uses a knowledge
base of hierarchically structured rules to form an artificial NN in order to improve
the knowledge base. They used this system in recognizing genes in DNA sequences.
The learning curve of this system was compared to that of a randomly initialized,
fully connected two-layer NN. The knowledge-based NN learned much faster than
the other one, but the error of the randomly initialized NN was slightly lower (5.5
vs. 6.4%). Methods have also been devised to investigate what the NN has learned
by an automatic translation into symbolic rules of trained NN initialized by the
knowledge-based method.63

Medical axis transform (MAT) based features as inputs to a NN have been used
in studying human chromosome classification.64 Prenatal analysis, genetic syndrome
diagnosis, and others make this research very important. Human chromosome clas-
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sification based on NN requires no a priori knowledge or even assumptions on the
data. MAT is a widely used method for transformations of elongated objects and
requires less storage and time while preserving the topological properties of the
object. MAT also allows for a transformation from a 2D image to a 1D representation
of it. The so obtained features are then fed as inputs to a two-layer feed-forward
NN trained by BP, with almost perfect results in classifying chromosomes. An
optimization on an MLP was also done.65
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3 A System for 
Handwritten Digit 
Recognition

Woogon Chung and Evangelia Micheli-Tzanakou

3.1 INTRODUCTION

Visual pattern recognition has long been an interesting problem, both from the
application and technical aspects. We hope to design a system that understands
characters, words, and even sentences. Handwritten digit recognition is one of the
most challenging problems. Its applications are extensive—automatic document
processing, banking systems, etc. Depending on the writer’s environment, the writing
style differs, and this causes the difficulty in the system design, even though the
fundamental assumption in writing communications is that differences between
characters are more significant than differences among the same character.

The handwritten digit recognition has a long history, and many researchers have
proposed different models.1–6 These are mostly model-based. The developed model
is usually specific to the given data set, and its applicability for a different data set
is rather restricted. These methods find local properties, or primitives, e.g., arcs,
lines, starting/end points, and the rules that combine the individual properties, from
the skeletonized images. Painstaking processes to find and tune the properties are
some of the difficulties and variabilities of the resulting systems.

A simple and important image pattern analysis (of Arabic numerals, for example)
is carried out to demonstrate that a simple model-free strategy, via global moments
with proper statistical analysis, renders a quite acceptable result. The moment cal-
culation for features is model-free, since no other information of the data set than
the group label is required in order to design the pattern recognition system. All the
groups of data are treated the same way to extract the global features, while the
model-based methods are required to describe each different digit by a certain list
of properties.

3.2 PREPROCESSING OF HANDWRITTEN DIGIT 
IMAGES

The images are passed through a sequence of preprocessing steps before the Zernike
moments calculation, a global feature extraction method which will be described in
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Section 3.3. A block diagram for the sequence of preprocessing procedures and the
intermediate results of digit images are shown in Figure 3.1.

FIGURE 3.1 (I) Sequence of the preprocessing. (II) Two original images (9,6) and their
preprocessed results. Starting with the original images, the results of ‘smoothing,’ ‘contrast
enhancement,’ ‘thresholding,’ ‘centering,’ ‘skeletonization,’ ‘dialization,’ and ‘size normal-
ization’ are presented from left to right and top to bottom of the figure.
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The objectives and the methods for each preprocessing are described in the
following paragraphs. The major objective in the preprocessing stage of the pattern
recognition system is getting unique features from the same group of patterns.

Noise due to acquisition or transmission is reduced by a smoothing operation
with neighboring pixel values which generally is low-pass filtering. Smoothing
substitutes the value of the pixel in the center of a window with the average of pixels
in the window. Such an operation has the effect of suppression of the distortions in
the gray values caused by sensor noise or transmission errors. Edges in an object
are typical changes in the gray levels. Thus, smoothing and edge detection are
contradictory. In image analysis, however, one likes to smooth without distorting
the edges.

Median filtering, which is a nonlinear operation, is well known for noise removal
while preserving the edges7 rendering solution to this contradiction. Since the binary
noise (i.e., shot noise) is the noise type to be removed, we apply median filtering
to our data. The pixels in the window (usually 3 × 3-matrix) are sorted, and a robust
median value is chosen to replace the pixel value. Since the binary noise, like the
shot noise, completely changes the gray level value, it is very unlikely to be the
median value in the window. Thus, the median of the pixel values in the window is
used to estimate its gray level value.

Due to variations in the acquisition systems, e.g., cameras and scanners,
reflection angle, etc., recorded pixel values are not exactly what objects really are.
Thus the smoothed images are further processed for gray-scale modifications to
enhance constrast.

The contrast of an image in a given gray level range can be increased by
stretching the range of gray levels in the image. The brightest and the darkest pixel
values are found, and they are assigned to white and black, i.e., 255 and 0 in an 8-
bit representation. This is an affine transformation taking the acquisition value and
changing it to the full gray levels. Some benefits from the contrast enhancement
(usually known as histogram equalization) are

• the elimination of the irregular acquisition effects, and
• the enhancement of contrast.

The enhanced contrast not only helps in viewing but also in building more
confidence in finding the threshold in order to separate an object from the back-
ground. Segmentation of an image into parts is an important stage in image analysis.
It uses clustering of pixels by their values. An ideal clustering would result in
homogeneity in the distribution of pixels in a cluster, thus segmenting the images
into parts by their pixel values.

In digit recognition we have only one object to be segmented from the back-
ground. For this purpose, simply taking the midpoint as the threshold of the gray
level in the histogram will result in good binary images.

Another preprocessing step is done for the varied positions of the centroids of
the digits, as seen in Figure 3.2. This translational variance of the images is inter-
preted as the camera movement in a direction perpendicular to the optical axis. The
centroid of an image f (x, y) is given by
© 2000 by CRC Press LLC



                
where

is the (p + q)-th order moment. The image is translated to the center of the frame
by moving the centroid to that point.

Depending upon the writing instruments and the writer’s habits, stroke widths
are different, as can be seen in the sample digits of Figure 3.2. Skeletonization* is
used in order to find an approximation to the medial axis of planar objects.

FIGURE 3.2 Some digits from the training data. Five people are involved in writing digits
on a grid and of one inch square. We assume that the digits are well separated, that is
interaction and occlusion problems are solved already. Different sizes and widths of writing
styles are notable.

* Some other terms, like shrinking and thinning, appear in the literature and are used interchangeably.8,9
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p q
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The basic requirements in the skeletonization algorithms are end-point preser-
vation and pixel connectivity.8,9 The algorithm used for our study is that of Zhang
and Suen.9 Eight neighbor pixel values, either 0 or 1, are usually compared, and a
decision is made as to whether to delete the center pixel or not. The eight neighbors
are denoted as (p2, p3,…,p9), as shown in the Figure 3.3(a). Using the eight neighbor
values, we test for four conditions in order to decide for the removal of the center
pixel, p1.

The algorithm works in two directions. The conditions for the two directions are

FIGURE 3.3 (I) (a)Neighboring pixels and (b)preventing end-points and middle points
from deletion. (II) A series of skeletonized patterns next to the original pattern. Starting from
upper left, original pattern, 1st, 2nd, 3rd, 4th, and 5th (the last one) are displayed. As the
procedure goes, it peels off the boundary points and an opposite corner point; then it does
the same from the opposite direction. In the first peeling-off, all the N/W boundary points
and a S/E corner point are deleted.
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where the first two conditions of the second set are the same as the ones in the first
set of conditions. B(p1) is the sum of all the eight neighboring pixels, that is, B(p1)
= p2 + p3 + L + p9, and A(p1) represents the number of the (0, 1) patterns around
the neighboring pixels (Figure 3.3b).

The conditions of Equation 3.3 and Equation 3.4 in the first set above are
satisfied when p4 = 0 or p6 = 0 or (p2 = 0 and p8 = 0). So point p1, which has been
removed, might be an East/South boundary point or a North-West corner point.
This set of conditions is valid for East/South boundary point or North-West corner
point deletion. The conditions of Equation 3.1 and Equation 3.2 protect the end-
points from being deleted (Figure 3.3): the first loop at the left end-point has
B(p1) = 1 which does not meet the condition of Equation 3.1, and the second loop
shows that A(p1) = 2, meaning the middle point cannot be deleted. A set of
skeletonized patterns and the original is also displayed in Figure 3.3. Note that the
procedures take turns in both directions as the algorithm passes the two subitera-
tions with the corresponding conditions.

After segmentation by thresholding, the binary images are skeletonized to obtain
the invariance of the stroke width that resulted from different writing styles and
writing instruments. For global moment calculation a dilation process is desired.
Pen path-width standardization by dilation is proven to be important for that purpose.
(This will be indirectly seen later in Figure 3.6, where the reconstruction of patterns
is progressively done for some font images. In the reconstruction, the narrow strokes
are less prominent compared to the wider width parts of the fonts).

Another reason for the path-width standardization is that the moment values
obtained from the skeletonized images (width of one pixel) are more vulnerable to
perturbation by a little change in the location of the skeletonized pixels (Figure 3.4).
Therefore, a certain width in a given image size is desired in order

• to stabilize the moment values against the variation of the skeletonized
patterns and

• to build tighter clusters in the same group and larger separations between
the clusters of the different classes.

Nonlinear morphological processing, as opposed to the linear processing (e.g., con-
volution) achieves certain effects such as dilation, erosion, opening, closing, and
boundary extraction.7,10,11

Let F be the set of all the pixels of the matrix which are not zero and M the set
of the non-zero mask pixels. With M p we denote the mask shifted or centered on
this reference point to the pixel p.

Dilation is defined with a set operation as follows:

that is, the dilation operation produces the points on which the mask M and the
image F have at least one non-zero pixel in common. Erosion is defined as

F F⊕ = ≠ ∅{ }M Mp p: I
© 2000 by CRC Press LLC



                                                               
that is, the erosion produces the points for which the mask is a subset of the original
image. These are equivalent to the regular binary operations for dilation and erosion,
respectivley:

(3.5)

and

(3.6)

where the � and  denote the logical [OR] and [AND] operations, respectively. The
binary image f is convolved with a symmetric (2K + 1) × (2K + 1) mask M. The
erosion has to be done as shown in Equation 3.6 since the all-zero mask M would
have no meaning in a binary [AND] operation. In other words, the erosion operation
is done by first dilating with the background and then inverting the result to get the
erosion effect.

3.2.1 OPTIMAL SIZE OF THE MASK FOR DILATION

The intuition for the dilation operation is justified via a simulation to find an optimal
dilation matrix of size, 2K + 1. The strategy is that given a size of the image frame,
find the size of the dilation matrix of size 2K + 1 which gives a larger separation
between group means (or higher confidence in order to reject the null hypothesis of
MANOVA model), in comparing J population mean vectors. The MANOVA model
and the modified Wilks’ statistic (or Bartlett statistic)12 is used to measure the
separation. Leaving the details to Reference 13, we introduce its definition as well
as results from a simulation study.

3.2.2 BARTLETT STATISTIC

This is the modified Wilks’ lambda statistic, given by

(3.7)

where the WSSP and BSSP are the “within” and “between” sums of squares and
cross-products. A simple modification results to the Bartlett statistic, provided that
the null hypothesis (i.e., same group means) is true and N = ∑J

j=1 nj is large:
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(3.8)

where χ2
p(J—1) (α) is the upper (100α)th percentile of a chi-square distribution with

p(J — 1) degrees of freedom and J is the number of classes while p represents the
dimensionality of the covariate.

The size of the digital images used in this study is about 128 × 128 because the
moment approximation by digital calculation requires high resolutions. This fact is
partly studied for lower moment invariants14 requiring the image size to be larger
than 60 × 60 pixels. For the higher order moments, a higher resolution may be
required. With the image size fixed (129 × 129), Bartlett statistics (or modified
Wilks’ lambda Λ*) are calculated for different dilation matrix size, 2K + 1, as in
Equation 3.5.

For the simulation study, an image pattern ‘A’ is preprocessed in the same way
except for the size of dilation. The skeletonized image is dilated with dilation matrix
sizes 2K + 1 = 1, 3, 5, 7, 9, 11, 13, 15. A set of Zernike moments are obtained for
different dilation sizes, and the Bartlett statistics (Equation 3.8) are calculated and
plotted against the size of the dilation matrix 2K + 1 (Figure 3.4). The null hypothesis
(that is, all the mean vectors are the same) test is obviously rejected in all K values
at the significance level α = 0.01.

From Figure 3.4, the statistic with 2K + 1 = 7 is the highest. In fact results using
size 7 look the best (Figure 3.1) for an image of size around 129 × 129, which is
the size we have chosen.

FIGURE 3.4 Bartlett statistic against dilation matrix size. Dilation increases the statistic
as K increases and starts decreasing after size 2K + 1 = 7 with the image frame of size
129 × 129.
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It is worth noting the assumption made on the statistics. The statistics of Equation
3.8 assume that the error term follows the multinormal distribution ∈l,j ~ N(0, Σ) in
the one-way classification model

Xij = µX + µj + ∈ij

where i = 1, 2, …, nj and j = 1, 2, …, J. µX is an overall mean and µ j represents the
jth treatment effect (or jth group mean) with ∑J

j=1 njµj = 0.
Furthermore, the statistic does not necessarily measure the separation between

multigroup mean vectors where J > 2. For example, with a scalar statistic in a two
dimensional three group setting, a large statistic may result also from the case that
any two mean vectors are unacceptably close, but the other mean vector is far from
the two. However, the more ideal separation among the groups is in the case when
the three mean vectors are equilateral in distance. The Bartlett statistic in this sense
gives little insight on how well the mean vectors are separated; however, it still gives
some feeling about the separation.

After the translation invariance has been obtained by the translation standard-
ization stage in Figure 3.1, size standardization follows. The radius of an image
function f(x, y) can be defined15 as

(3.9)

where µ20  and µ02 are the moments of order 2 after the centralization and represent
the variance in x- and y-directions of the ellipsoidal approximation of the image. In
the stage of size standardization the desired radius rs, after normalization, is fixed
to be 60% of one-half the smaller side of the image frame:

(3.10)

where ncol × nrow is the size of the image frame. All the object pixels are scaled
in such a way that the radius rs of the scaled object becomes the prescribed value.
The 60% restriction can be thought of as a control parameter that contains all the
scaled objects inside the frame. This prevents the scaled objects from spilling outside
the frame, and it corresponds to the coordinate normalization in the Zernike moment
calculation, which will be treated in Section 3.3. It should be noted that the radius
in Equation 3.9 is neither the principal axis length a nor the secondary principal
axis length b of an ellipsoid approximation of the image function f(x, y), but that it
is directly related to a and b; the area of an ellipse of parameters (a, b) is equal to
πab. Digits such as ‘1’ have a larger major principal axis but smaller secondary
principal axis, whereas the digit ‘0’ and ‘4’ give relatively equal principal and
secondary principal axes a and b. The effect of the size normalization with the
control constant 0.6 in Equation 3.10 is shown in Figure 3.1.

r = +( )µ µ20 02

1 2/

r ncol nrows = ∗ { }0 6 2 2. min / , /
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3.3 ZERNIKE MOMENTS (ZM) FOR 
CHARACTERIZATION OF IMAGE PATTERNS

The complex Zernike moments of order n with repetition l are defined as

(3.11)

where n = 0, 1, 2,L, ∞ and l takes on positive and negative integer values such that

(3.12)

The Zernike polynomials
16

 given by

(3.13)

are a complete set of complex-valued orthogonal functions on a unit disk x2 + y2 ≤ 1:

(3.14)

In Figure 3.5 the luminance of gray images represents the real part of the
polynomials which are in [—1, 1] and 256 gray levels are assigned to the discrete
level of the polynomials. The periodicity in Equation 3.13 being equal to 2π/l related
the polynomial image to an l-fold symmetric range.

The real-valued radial polynomial shown in Figure 3.5 and represented by
Equation 3.13 satisfies the following condition:

(3.15)

and is defined as

(3.16)

where the Bn|l|k is the new expression (by changing the variable) for the coefficient
part of the radial polynomial:
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The orthogonality of the Zernike polynomials enables a given f(x, y) to be
expressed in terms of the polynomials

(3.17)

where the Zernike moments Anl are computed over the unit disk x2 + y2 ≤ 1:

This is obtained simply by the orthogonality property of the Zernike polynomials
in Equation 3.13. The second equal sign holds because f(x, y) is real, and the radial
polynomials satisfy Rn,l = Rn,—l. An,l can be interpreted as the projection, correlation,
or proximity of a given image onto each complex valued polynomial. Thus the set

FIGURE 3.5 Radial and Zernike polynomials Rnl(r) for different orders for a given azi-
muthal repetition l. Two real parts of Zernike polynomials with (n, l) = (6, 4) and (n, l) = (9, 5)
are also shown.
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of Zernike moments is the collection of the projections of a given image onto the
set of the Zernike polynomials with order n and azimuthal repetition l.

In practice, we cannot have an infinite limit in the summation of Equation 3.17.
Instead the finite order of N is used:

(3.18)

This approximation with the finite order N is the optimal among all the other
representations of f(x, y) expressed by moments due to the orthogonality property.

The Zernike moments can be represented by the regular geometric moments
(GM) by expressing the terms rk in Equation 3.16 and exp(—ilθ) in Equation 3.13
in terms of x and y:

(3.19)

The resulting expression for the Anl is

(3.20)

where w = —i, + i for l > 0, l ≤ 0, respectively, and q = (k — �l�).

3.3.1 RECONSTRUCTION BY ZERNIKE MOMENTS

In designing a pattern recognition system, one should be concerned with what
constitutes the feature elements. What is the best set (if any at all) of the possible
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features for the classification purpose? How does one get it? A trade-off is to be
made between representability and complexity of the system that resulted from the
selected set of the global features.

The order of the ZM to be included can be found by the reconstruction process.
Due to the orthogonality of the Zernike polynomials (Equation 3.14), we are able
to reconstruct the image f̂(x, y) by its finite order representation (Equation 3.18) of
the original image f(x, y). In order to illustrate the reconstruction process and to find
the optimal order to be used, we revisit Equation 3.18 and simplify it in terms of
real-valued functions.17

with

In Section 3.3 the azimuthal index l is limited by the condition

(3.21)

Two digits of times-bold 14 font were reconstructed from the ZM. The reconstruc-
tion is done up to a certain high order, say 15; the order up to 15 renders a total of
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Figure 3.6 shows the original image and its reconstruction by ZM. It is evident
that lower order ZMs capture gross shape information and that the more fine struc-
tures are filled in by higher order moments. Each digit consists of 16 small frames,
which are the original, top-left, and its reconstruction in the direction from left to
right and top down for orders 1 to 15. Most of the digits are well reconstructed by
order around 11 ~ 15, except the digit ‘4’. We conjecture that the handwritten digits
with various writing styles need orders up to 15 for the reconstruction to be close
enough to the original images. The possible redundant variables included by higher
moments will be removed via PCA (see Section 3.4).

Order 15 was chosen to be the cut-off point for our handwritten digit data through
visual inspection of Figure 3.6. In this way we have resolved the question of how
large the feature set should be.

FIGURE 3.6 Reconstruction via ZM. The original image and the reconstruction by 1st
to 15th orders of moment show the effects of the orders in the reconstruction.
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3.3.2 FEATURES FROM ZERNIKE MOMENTS

The advantage of ZMs for pattern recognition has been reported in terms of noise
immunity, discrimination power18 and image representation ability, noise insensitiv-
ity, and information relevance.19 These are considered a basic theoretical support for
ZM. A simulation study that supports the theoretical work can be found in Reference
20. The application of ZM for pattern recognition is also in favor of the ZMs
compared to others.21

Functions of the Zernike moments, called Zernike Moment Invariants (ZMIs),
are introduced in order to get the rotational invariance from different orders m and
azimuthal indices h for a given order n and l. Teague22 introduced a form of rotational
invariance

(3.22)

(3.23)

where the integers m, n, h, l and positive integer p are constraints such as

The first two invariants in Equation 3.22 are called primary invariants and the third
in Equation 3.23 secondary invariants. The number of the primary invariants for a
given order n is + 1, due to the constraint n — �l� = even in Equation 3.12 of the
ZM definition. The secondary invariants are found by forcing the exponential term
to be 1, thus to become independent of the angle θ,

(3.24)

with the constraint on p, h, and l ensuring the cos() term to be one, thus resulting
in Rnl(r) Rp

mh (r) being independent of the angle θ. Since there is no restriction on
the order m of the secondary invariant, we could have an infinite number of invariants
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by varying m while satisfying Equation 3.23. However by the definition of the
functional independence of the invariants, only n + 1 number of invariants are
functionally independent. The moment invariants are functionally independent if the
invariants can be solved for the moments which form them.21 n + 1 is the number
of the independent moments from the definition of ZM (Equation 3.11) and its
constraints on the indices (Equation 3.12).

Another set of Zernike moment invariants has been introduced recently.21 The
idea is the same as that of Teague’s in Equation 3.22 and Equation 3.23, and is
given by

(3.25)

(3.26)

where

The difference of this formulation from the original ones (Equation 3.22 and Equa-
tion 3.23) is that the modulus values are taken instead of their squares, and the
constraints on the indices are rational power multiplications rather than integer
power. The first constraint m ≤ n ensures that only combinations of moments of
orders lower than n are used to form secondary invariants. The factor p ranges
between 0 and 1. This constraint tends to decrease the magnitudes of the secondary
invariants since p decreases as l increases. This magnitude decreasing property of
the new invariants ZMI′ (Equation 3.26) is desirable and was not present in the
original ZMI of Equation 3.23.

The secondary parts of the ZMI and ZMI′ (Equation 3.23 and Equation 3.26)
are the additional (n/2) rotational invariant values that are obtained from the power
multiplication of the higher order moments or lower order moments, respectively.

As shown in the ZMI and ZMI′ the rotational invariance is obtained in various
ways by forcing the phase information of complex-valued ZMs to be one. Using
only radial information means that all the points of a circle of radius r, in the complex
domain, are the same. In addition, in digit recognition, 180-degree rotation conflict
digits such as 9 and 6 are not taken care of.

Khotanzad and Hong17 used the modulus value of the complex-valued ZM, the
primary invariant, to eliminate the rotational problem. Their argument is based on
the fact that the ZM for a rotated image fr(x, y) due to rotation by θ, results to a
simple phase shift:
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(3.27)

The original function f(x, y) and the rotated one fr(x, y) result to the same modulus
value:

As a remedy to this problem we have included skewness information into the
modulus value of all the variables used (up to order 15). The skewness of a two-
dimensional function f(x, y) is obtained for each variable x and y. The skewness for
an image function f(x, y) is given by

(3.28)

(3.29)

Two more new variables for the skewness information are added to the modulus
values of the ZM order from 2 to 15. The 0th and 1st order are deleted since the
image has been preprocessed to be size standardized and to be centered by the
centroid. The new moment moduli with the skewness values added are now not only
rotation invariant but also free of the 180-degree rotation conflict.

Section 3.5 includes the results from both the modulus values of ZM called ‘V’
and the modulus values of ZM with skewness information added, called ‘V1’.

An argument is developed here to justify the use of only the real components
of the ZM. The 180-degree rotation conflict problem is taken care of by the third
order moments µ0,3 and µ3,0 of Equation 3.28 and Equation 3.29. This skewness
information is contained in the real part of the phase components of the lower orders
of ZM (A3,l and A2,l). We call ‘R’ the real part of the ZM. The number of the real
part of the ZM for a given order n is + 1 and is obtained with m = even from
Equation 3.20. That is, the real part of ZM is given by
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(3.30)

with q = (k — �l�).
The rotational invariance by the modulus operation of ZM or moment invariants

has been successful with the patterns that have no 180-degree rotation conflict, such
as printed English alphabets, the aerial views of the four Great Lakes, aircraft
recognition tasks, etc.

The circular symmetry property of the Zernike polynomials seems to handle the
rotational variance of the patterns well. The Zernike polynomial Vnl(r, θ) is circularly
symmetric in periods of 2π/l (Equation 3.13) and has a wedge shape implying the
rotational variance of patterns.

If the patterns from a group vary within a certain orientation range (as is the
case with handwritten digits), the modulus operation or the ZMI costs too much for
the rotational invariance. The range of the modulus operation of the complex-valued
ZM is only the distance, represented by a radius in a complex domain. The real part
of ZM, however, has a range twice as large as that of the modulus value; it explains
more than the radius does.

The modulus value (called ‘V’) or squared modulus of the complex-valued ZM
is the primary part of the Zernike moment invariants [ZMI] (Equation 3.22 and
Equation 3.25). The secondary part of the ZMI shown in Equation 3.23 and Equation
3.26 is not included in our features because the secondary invariants are simply the
power multiplication that adds another (n/2) number of the orientation independent
values. Instead, we have followed the strategy of including the primary invariants
of all the moments that have been included by the reconstruction process in finding
the finite number of moments for the given patterns.

3.4 DIMENSIONALITY REDUCTION

The subject of dimensionality reduction in pattern recognition is concerned with
mathematical tools for reducing the size of the features. The most revealing facts
with dimensionality reduction are discussed in reference 23 and summarized below:

• Reduction of the physical system complexity is as required by feasibility
limitations of either a technical or economical nature.

• It ensures the reliability of the decision making procedure by removing
the redundant and irrelevant information which has a derogatory effect
on the classification process.

• More importantly, the dimensionality is strongly related to the size of the
sample used for training: as the dimensionality increases, the size of the
training required grows exponentially. Neural networks, however, train
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well regardless of the dimensionality, except that the networks require
more time to learn and result to poor convergence.

Two stages are employed for this purpose: Principal Component Analysis
(PCA) is followed by Discriminant Analysis (DA), both of which are eigen analyses
on the covariance-type matrices. These eigen analyses can be interpreted as finding
p < q directions on which the projections of the data result to some interesting
properties, such as large variance or separation among the group means under a
set of constraints.

3.4.1 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis of a multivariate random sample can be viewed as
finding an axis optimizing a criterion in a geometric sense. Illustration with projec-
tion of simulated two-dimensional data points is shown in Figure 3.7. Pearson (1901)
looked for a new axis on which the projection gives the least sum of squares of di.
Hotelling (1933) was interested in finding a new axis on which the maximum
variance of the projection values is obtained (see reference 24). Even though the
approaches are different and opposite, the resulting axis from the two different
approaches is the same. The optimal axis for minimal sum of the squares of di’s is
the same as the one with the axis in which maximum variance of zi is obtained.

(3.31)

where PY is the projection operator defined by a projection axis.

The idea of the PCA is to find a rotational transformation (i.e., an orthogonal
transformation) matrix Rq×q such that the sample variances of the new rotated vari-
ables are in decreasing order of magnitude.24 Thus the first principal component is
such that the projections of the given points onto it have maximum variance among

FIGURE 3.7 Illustration of projection of a vector point yi onto the principal axis. zi

represents the projected value of xi onto the axis and di the error component of the projection.
z2

i + d2
i = const confirms the equivalence of the two motivations for finding the optimal axis.

max min
P

i

P i
Y Y

z

N
d

2
2

1−
⇔ ∑∑
© 2000 by CRC Press LLC



all possible linear coordinates; the second principal component has maximum vari-
ance subject to being orthogonal to the first; and so on.

The PCA is done on the sample version of total covariance matrix Tq×q of the
handwritten data matrix, YN×q, where the dimensionality q = 70 and the size

, and where J = 10 is the number of classes.
The lower curve of the plot in Figure 3.8 is called scree plot and represents the

variance information contained in the new derived variates. The upper curve repre-
sents the accumulated version of the lower scree curve, which is the total variance
of the newly obtained variables from the first to the corresponding variable indices.
The 95% and 99% of the accumulated variance are indicated by the two broken
lines. The 99% explanation of the variance information is obtained by the first 35
newly obtained variables.

Since the dimensionality of the original data q = 70 was too large, we reduced
the dimensionality using PCA of the total covariance. With the new data set, which
is supposed to be uncorrelated (or less correlated), we are ready to do more
statistical treatment in order to find multidimensional outliers for robust analysis
and reduce the heteroscedacity (and as a by-product enhance the multinormality,
if possible at all).

A strategy we follow for such large dimensionality is a two-step dimensionality
reduction. First principal component analysis on the total sample covariance matrix,
T, is carried out. Then discriminant analysis follows, in order to reduce the dimen-
sionality even further to J — 1.

Even though the PCA is well known to be sensitive to outliers,25,26 we argue
that the whole data set is preserved, as much as we want, in a lower dimensional

FIGURE 3.8 PCA on the sample total covariance matrix of the handwritten data set ‘R.’
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space, provided that the explanation of the variance information is over, say, 99%.
The whole data set as a single batch from the different clusters of different classes
is decorrelated via principal component analysis. Now the lower p = 35 dimensional
space is processed by discriminant analysis for further dimensionality reduction.

3.4.2 DISCRIMINANT ANALYSIS

Suppose that we wish to find a linear transformation matrix F, which maximizes
some distance criterion d defined over a sample of random vectors in a new transform
space. Two interesting pairwise distance measures are the intraset and the interset
distances.27 The intraset distance, or averaged within-class distance, between the kth
variable of all pattern vectors in one class, averaged over all classes is

(3.32)

where ni is the number of vectors y ∈ wi and fk is the kth column of the transformation
matrix F.

The interset distance, or between-class distance, of the kth direction in the new
transform space is defined as

(3.33)

The first two summation indices hold for N(N — 1)/2 interpoint distances.
These averaged distance measures are expressed in terms of sample within-

groups covariance matrix W and between-groups matrix B,28 defined as:

respectively, where 
Using the definition of W and B, the distance measures dW

(k) (Equation 3.32) and
dB

(k) (Equation 3.33) can be written, in terms of W and B, as follows:
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Now, we are interested in maximizing a distance measure dB
(k) = ft

kBfk with respect
to the transformation vector fk subject to a constraint, e.g., holding a distance
measure, (i.e., dW

(k) = ft
kWf) constant. The constraints are usually chosen to be irrel-

evant for the maximization of dB
(k) while guaranteeing a unique solution fk, i.e., ftWf

= 1. The solution for this kind of optimization problem can be obtained by the
method of Lagrange multipliers. Maximization of dB

(k), subject to dW
(k) constant, has

the form

Setting the first derivative of J with respect to fk equal to zero yields

If we premultiply the above by W—1, it results in an eigenvalue problem, i.e.,

(3.34)

The traditional disCRIMinant COORDinate system (or CRIMCOORD) is inter-
preted as finding functions that maximize the quadratic forms:

with respect to fk, subject to the constraint of

(3.35)

resulting to the solution of Equation 3.34.
Two consecutive linear transformations by R (via PCA) followed by F (via DA)

are represented by a linear transformation matrix FR of dimension J — 1 × q, for
example, 9 × 70 for our data set. Figure 3.9 shows two-dimensional projections of
30 randomly selected patterns from each group on the first five discriminate variates
(CRIMCOORD) with corresponding digit representation. Remarkably, some distinc-
tion of the digits is clear from the figures, implying that the discriminant variates
discriminate among the different groups.
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3.5 ANALYSIS OF PREDICTION ERROR RATES FROM 
BOOTSTRAPPING ASSESSMENT

Prediction error is usually a good measure of the performance of pattern recognition
systems. In practice, a random sample, called training data, from an unknown
population described by distribution F is given. Any statistic θ (F) requires distri-
bution F, but in practice, the F is not known and is difficult to estimate. An empirical
distribution F̂ from the given sample from an unknown distribution F is defined in
a bootstrap setting by giving an equal probability mass 1/N on each of the values
xi. A bootstrap sample is a random sample from the empirical distribution

Each xi
* is drawn independently with replacement and with equal probability from

the sample, i.e., training data:

FIGURE 3.9 Two-dimensional projections of the handwritten data with the first five
discriminant variates.
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Standard error and bias estimation using Bootstrap resampling techniques can
be found from the references.29,30 Here we introduce the algorithms for estimation
of the standard error and the bias for prediction error estimation, leaving the technical
details in the references above.

The Monte Carlo bootstrapping algorithm proceeds in three steps:

1. using a random number generator, independently draw a large number 50
≤ B ≤ 200 of bootstrap samples, {F*b}B

b=1,
2. for each bootstrap sample F*b, evaluate the statistic of interest, θ̂*(b) =

θ̂ (F*b) for b ∈ {1, 2,…, B} from the training data X,
3. calculate the sample standard deviation of θ̂* (b) values

(3.36)

Standard errors are crude but useful measures of statistical accuracy.31 An
approximated confidence interval for an unknown parameter θ is given by

(3.37)

where z(α) is the 100 · α percentile point of a standard normal variate, e.g., z(0.95) = 1.64485.
The standard error approximation (Equation 3.37) for a confidence interval bears the
assumption that

Bias about an estimator θ̂ is the next to be considered. Bootstrap bias estimation
is an estimation of the optimistic bias op resulting from using the same training data
for prediction, e.g., via the resubstitution method. One way to estimate the system
performance from the given sample is to correct the apparent error rate (or resub-
stitution error rate) by the estimation of the optimistic (or positive) bias. The opti-
mistic bias is defined as

where θ is the true error rate for the unknown distribution F and θapp for the apparent
error rate. Since we do not know the bias op(X, F), the bootstrap estimate of the
bias, opboot is found instead and the optimistic θapp is corrected by adding the
estimated bias
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(3.38)

Let η(v, X) be a decision rule based on the training set X and let Q[yi, η(vi, X)]
be an indication of misclassification of vi by η():

Thus Q[·] = 1 indicates the misclassification of a training observation from the
system designed by the training data.

The bootstrap procedure for estimating the bias, opboot, follows:

1. Select 50 ≤ B ≤ 200 bootstrap samples from the empirical distribution F̂.
2. From each bootstrap sample compute the bias wb

with Pi
*b indicating the proportion of the bootstrap sample on xi, i.e.,

and η(vi, F*b) being the prediction of vi from the system trained by F*b.
3. Repeat step 2 to get {w1, w2,L, wB}.

Then the bootstrap bias opboot is estimated by

and thus, the bootstrap error estimate θ̂ (Equation 3.38) is obtained.
E0 prediction error estimation is equivalent to counting the number of patterns

that are not included in the bootstrap samples and normalizing the misclassification
count of the samples32 by the total number of the training patterns not selected in
the bootstrap samples. Thus, E0 uses the testing set, which is asymptotically 36.8%
of the original training, according to the argument that follows. In a typical bootstrap
sample, about 63% of the original observations are likely to be chosen. This is easly
seen since the probability that an observation does not belong to a bootstrap sample is

θ̂ θ= +app bootop
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Thus an observation xi will be in the bootstrap sample with about 1 — 1/e = 63.2%
chances.

Let Ab = {i � Pi
*b = 0} denote the index set of training patterns that do not appear

in the F*b, then the prediction error θ0 estimated by the E0 estimator is defined by

This E0 estimator is a form of cross-validation in that the testing data have not
been used in training. The difference from the cross-validation is that the E0 separates
the training and the testing data randomly while the cross-validation selects the
testing pattern sequentially such that all the training patterns are used for testing.

The testing patterns used in the apparent error rate obtained by the resubstitution
method are too close or the distance is ‘zero’ from the training patterns, while the
test patterns for E0 estimator are ‘too far’ from the training set. From that the
asymptotic probability argument that a pattern will not be included in a bootstrap
sample is 0.368, the weighted average of θapp and θ0 involves patterns at the ‘right’
distance from the training set in estimating the error rate:32

(3.39)

The E632 was shown to be optimal in terms of least variance and bias from a
comparison study for various estimators32,33 among cross-validation, ordinary boot-
strap bias correction (Equation 3.38) and E632 (Equation 3.39). We used the E632
prediction error as a standard performance measure. (The bootstrap package boot-
strap.funs* contains various resampling techniques and is available via anonymous
ftp to statlib@lib.stat.cmu.edu.)

The boxplots in Figure 3.10 represent the E632 estimator superimposed to the
distribution of the B = 100 bootstrap sample errors, θ̂*(b)’s (Equation 3.36). The
median value of the B error rates is replaced by the E632 estimate; thus the B
bootstrap errors are shifted according to the E632 estimate. For ease of display and
understanding the system performance, the recognition rates, 1 — θ̂′s, are plotted.

The height of the box is the inter-quartile range, which is the difference between
the upper quartile and the lower quartile, and is considered to be a robust estimation
of the scalar multiple of the dispersion. The median of the batch is represented by
the line in the box. The bars, represented by the vertical dotted lines, are extended
up to the points 1.5 times of the inter-quartile range. Outliers are represented by the
individual dots to signify their existence. The boxplots display the distribution very
simply but well enough, especially when many different batches are to be compared.

The correct recognition rates from three-layer feed-forward neural networks with
the Broyden, Flecher, Goldfarb and Shannon (BFGS) algorithm (in reference 34)

* The bootstrap was contributed by Efron and Tibshirani.
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are displayed in the boxplots for each data set obtained from the different treatment
in Section 3.3.2. The classifiers* used in this study can be obtained via anonymous
ftp to statlib@lib.stat.cmu.edu. Each boxplot shows the distribution of the recogni-
tion rate of 100 systems designed by 100 bootstrap samples.

3.6 SUMMARY

A simple model-free feature extraction by the two-dimensional Zernike polynomials
was shown to be a powerful pattern recognition system (via the correct recognition
rate > ∼ 95%  via the E632 prediction error measure) for handwritten digits. The
images are preprocessed before ZM calculations take place, and the dimensionality
of the feature vectors is reduced by PCA followed by DA.

For the 180-degree rotation conflict data, addition of the skewness variables
improves the performance of the system. Simply by taking the real (or imaginary)
part of the complex-valued Zernike Moments, one obtains more information than
what is lost by the rotational invariance operation for the rotational variance of the
patterns, which is inherent in handwritten digit data. The rotational variance of the
patterns seems to be observed by the wedge type Zernike polynomials.

The addition of skewness information (V1) to the modulus value (V) of the
complex-valued ZM improves generally the correct recognition rate by 2–3%, while
the real part (R) yields generally 3–4% improvement over the modulus value (V).
The wedge shape of the polynomial also possesses an important property that the
variation, at around the outer region of the patterns, results to less variance than the
one from the Cartesian coordinates, such as the regular moments and their invariants.

FIGURE 3.10 Boxplots from nnet with hidden layer size = 15 for data sets of V, V1, R.
E632 prediction error rate and B = 100 bootstrap samples are used.

* The package nnet is contributed by Ripley.
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4 Other Types of Feature 
Extraction Methods

Evangelia Micheli-Tzanakou, Ahmet Ademoglu, 
and Cynthia Enderwick

4.1 INTRODUCTION

If a signal contains frequency components emerging and vanishing in certain time
intervals, then a time as well as a frequency localization is required. The traditional
method proposed for such an analysis is the Short Time Fourier Transform (STFT)
or Gabor Transform.5 The STFT enables the time localization of a certain sinusoidal
frequency but with an inherent limitation of the Heisenberg’s uncertainty principle,
which states that resolution in time and frequency cannot be arbitrarily small, because
their product is lower bounded by

(4.1)

In order to overcome the resolution limitation of the STFT, a decomposition of
square integrable signals L2(R) has recently been developed under the name of
wavelets.1,10 These families of functions ha,b

(4.2)

are generated from a single function h(t) by the operation of dilations and transla-
tions. The wavelet transform of a continuous signal x(t) can be defined as

 (4.3)

where * represents the complex conjugation and where <> represents the inner
product. Equation 4.3 is interpreted as a multiresolution decomposition of the signal
into a set of frequency channels having the same bandwidth in a logarithmic scale
(i.e., constant Q or constant relative bandwidth frequency analysis by octave band
filters). For the STFT, the phase space is uniformly sampled, whereas in wavelet
transform the sampling in frequency is logarithmic, which enables one to analyze
higher frequencies in shorter windows and lower frequencies in longer windows
in time.
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4.2 WAVELETS

As mentioned in the introduction, wavelet analysis has practically become a ubiq-
uitous tool in image and signal processing. Two basic properties, space and frequency
localization and multiresolution analysis, make this a very attractive tool in signal
and image analysis. Unlike the complex sine and cosine basis functions of the Fourier
transform, the basis functions of the wavelet transform are localized in both space
and frequency.

Taking the wavelet transform of an image involves convolving a pair of filters,
one high pass and one low pass, with the image. This is followed by decimation by
two and repeated for as many octaves as desired. This algorithm is depicted in Figure
4.1, which shows a one-octave decomposition of an image into four components:
low pass rows, low pass columns (LP-LP); high pass rows, low pass columns
(HP-LP); low pass rows, high pass columns (LP-HP); and high pass rows, high pass
columns (HP-HP). These will later be referred to as components 0 through 3,
respectively. For the purposes of decomposing images, subsequent octaves were
created by transforming the LP-LP component of the previous octave.

The result of the wavelet transform on a test image is shown in Figure 4.2.
Figure 4.2a shows the original image Lena.bmp. Figure 4.2b shows the first octave
wavelet decomposition using a 4-tap Daubechies filter bank1 (see also Press et al.15)
enhanced to show the high-pass components. From left to right, top to bottom is
LP-LP (component 0), HP-LP (component 1), LP-HP (component 2), and HP-HP
(component 3). Notice that component 1 accentuates the vertically oriented details,

FIGURE 4.1 Wavelet transform algorithm — sub-band decomposition of one octave. HP
= high-pass, LP = low-pass, ↓ 2 represents decimation by 2.
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component 2 accentuates the horizontally oriented details, and component 3 accen-
tuates the 45° and 135° diagonal details.

While there exist many practical wavelet filters applicable to a wide variety of
problems, the filter used in our analysis is the Daubechies 8-tap filter. These filter
coefficients are

High-pass coefficients = {0.010597, 0.032883, –0.030841, –0.187035,

0.027984, 0.630881, –0.714847, 0.230378}

Low-pass coefficients = {0.230378, 0.714847, 0.630881, –0.027984,

–0.187035, 0.030841, 0.032883, –0.010597}

4.2.1 DISCRETE WAVELET SERIES

Although various ways of discretizing time-scale parameters are possible, the con-
ventional scheme is the so-called dyadic grid sampling, where time remains contin-
uous but time-scale parameters are sampled by choosing a = 2i and b = k2i i,k e Z.
The wavelets in this case are given by

(4.4)

A wavelet series decomposes a signal x(t) onto a basis of continuous-time wavelets
or the so-called synthesis wavelets αi,k(t) as shown

(4.5)

The wavelet coefficients are defined as

(4.6)

FIGURE 4.2 The wavelet transform of Lena.bmp. Note that (b) has been enhanced to
accentuate the detail coefficients (Reproduced by special permission of Playboy, © 1972).
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The signal decomposition may be done by using orthogonal wavelets,1 in which
case the analysis and synthesis wavelets are identical.

4.2.2 DISCRETE WAVELET TRANSFORM (DWT)

The DWT is very close to a wavelet series, but in contrast, it applies to discrete-
time signals x[n]. It achieves a multiresolution decomposition of x[n] on I octaves
labeled by i = 1,…,I, given by

(4.7)

The DWT computes wavelet coefficients ai,k for i = 1,…,I and scaling coefficients
bi,k, which are given by

(4.8)

and

(4.9)

where the gi[n – 2ik]’s are the discrete wavelets and the hI[n – 2Ik] are the scaling
sequences.

4.2.3 SPLINE WAVELET TRANSFORM

The attractiveness of the Gabor representation of a signal comes from its optimal
time-frequency localization.5 However, the use of fixed window size, redundancy,
and nonorthogonality are the major limitations of the Gabor analysis. The use of B-
spline wavelets is shown to have near optimal time-frequency localization by Unser
et al.25,26 Although they are not orthogonal as the Battle/Lemarie polynomial spline
wavelets used by Mallat10 which are exponentially decaying, they are semiorthogonal
and have a compact support.

The B-Spline Wavelet Transform is used to construct a sequence of embedded
polynomial spline function spaces {S(i)

n i ∈ Z} of order n such that S(i)
n ⊃ S(i+1)

n for
i ∈ Z where Z is the set of integers.26 S(i)

n is the subset of functions in L2(R) that are
of class Cn–1, i.e., continuous functions with continuous derivatives up to order (n–1)
and are equal to a polynomial of degree n in intervals [k2i,(k+1)2i] with k ∈ Z. 

Hence

(4.10)
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where

(4.11)

The basis function bn(x) is the B-spline of order n. For the spline basis functions of
order n the wavelet sequence qn is

(4.12)

where b2n+1 (k) = β2n+1(k), and pn(k), the scaling sequence, is the binomial kernel

 (4.13)

When the wavelet and the scaling sequences are determined, the wavelet function
b2

n(x) can be constructed by a scaling function ßn(x) by solving a two-scale equation
(a dilation equation)

 (4.14)

Given a function φn(x), we can obtain the B-spline representation at the finest
resolution level that is defined as level (0) using

(4.15)

The essence of the wavelet transform is to decompose the above expression using
basis functions that are expanded by a factor of two

(4.16)

The B-spline wavelet is a polynomial compact support with the property that
β2

n ⊥ β2
n(x–2k) k ∈ Z.25 This means that the first term of the right-hand side of

Equation 4.16 is the projection of φ(0)
n on S(1)

n and the second term represents the
residual error.

The decomposition can be implemented iteratively up to a level I, which yields
the wavelet representation

(4.17)
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where

(4.18)

The coefficients {d(1),…,d(I)} are the so-called wavelet coefficients ordered from fine
to coarse while the sequence {c(I)} characterizes the lower resolution signal at
level (I).

4.2.4 THE DISCRETE B-SPLINE WAVELET TRANSFORM

It is possible to take a wavelet function which may be regarded as a band-pass filter
and represent it as a combination of a low-pass and a high-pass filter. In this case, the
wavelet analysis becomes a multiresolution analysis. The low-pass and the high-pass
filters for nth order spline wavelet multiresolution decomposition may be computed as

(4.19a)

(4.19b)

where ↑2 indicates up-sampling by 2.

4.2.5 DESIGN OF QUADRATIC SPLINE WAVELETS

For the analysis of the waveforms used in this study, the quadratic spline wavelets
(n = 2) are designed particularly for their antisymmetric property which conforms
to the morphological character of the signal. The quadratic spline and wavelet
functions are shown in Figures 4.3 and 4.4. The low-pass h(n) and the high-pass
g(n) filter kernels for the quadratic spline wavelet are

(4.20)

(4.21)

where

(4.22)

and

(4.23)
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FIGURE 4.3 Quadratic B-spline functions.

FIGURE 4.4 Quadratic B-spline wavelet.
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It may be shown that [b5(k)]–1 can be expressed in factorized form by

(4.24)

where α1 = –0.04309 and α2 = –0.43057.
Now [b5(k)]–1 can be determined as

(4.25)

The coefficient values for these filter kernels h(n) and g(n) are given in Table 4.1
for the quadratic spline wavelets.

TABLE 4.1
Coefficients of the Truncated Decomposition Filters 
h, g (IIR) and Reconstruction Filters p2, q2 (FIR) for 
Quadratic Spline Filters.

k h(k) g(k) p2(k) q2(k)
-10 +0.00157 -0.00388
-9 +0.01909 -0.03416
-8 -0.00503 +0.00901
-7 -0.04440 +0.07933
-6 +0.01165 -0.02096
-5 +0.10328 -0.18408
-4 -0.02593 +0.04977 + 1/480
-3 -0.24373 +0.42390 -29/480
-2 +0.03398 -0.14034 +1/4 +147/480
-1 +0.65523 -0.90044 +3/4 -303/480
0 +0.65523 +0.90044 +3/4 +303/480
1 +0.03398 +0.14034 +1/4 -147/480
2 -0.24373 -0.42390 +29/480
3 -0.02593 -0.04977 - 1/480
4 +0.10328 +0.18408
5 +0.01165 +0.02096
6 -0.04440 -0.07933
7 -0.00503 -0.00901
8 +0.01909 +0.03416
9 +0.00157 +0.00388
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4.2.6 THE FAST ALGORITHM

The initial step is to find the B-Spline coefficients c(k) at the resolution level 0. This
is efficiently implemented using

(4.26a)

(4.26b)

(4.26c)

where b0 = –8a/(1–a2) b1 = a = √ 8–3 with c+(1) = c–(K) = 0. The wavelet coefficients
are then computed iteratively for I octaves by filtering and decimating by a factor of 2

(4.27a)

(4.27b)

where ↓2 indicates down-sampling by 2 and where h and g are the low-pass and the
high-pass filter kernels for decomposition respectively and computed as

 (4.28a)

(4.28b)

where ↑2 indicates up-sampling by 2. The basic computational block diagram for
the I octave wavelet decomposition is given in Figure 4.5. The input to the block
diagram is the signal at resolution level (0). The H(z) and G(z) denote the z-transform
of the low-pass and high-pass filter kernels h and g, respectively. The discrete wavelet
transform by the spline wavelets is performed by these two filters, as in the form of
multiresolution decomposition. In each resolution level, the output of the high-pass
filtering yields the wavelet coefficients for that resolution (i), and the output of the
low-pass filtering yields the coarser input to the next resolution level (i+1). For the
purpose of scaling, the discrete sequences decimation by two is performed after each
time filtering is applied. Various fast algorithms for the implementation of the
recursive filtering and decimation schemes for wavelet decomposition are proposed
in Reference 17. 
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The wavelet transform is a sequential band-pass filtering operation using filters
with logarithmically ordered band-pass characteristics in frequency domain. In the
time domain, this operation corresponds to projecting a signal onto a subspace
spanned by the dilated and translated versions of prototype functions called wavelet
and scaling functions. Dilation yields logarithmically ordered filters, and transla-
tion yields the information about where in time any frequency band activity in the
signal occurs.

In the multiresolution scheme, the number of wavelet coefficients halves from
one scale to the next, which implies that longer time windows for lower frequencies
and shorter time windows for higher frequencies are employed in the analysis. The
wavelet coefficients can be used to investigate the amplitude and phase characteristics
of oscillations in various frequency bands forming the waveform or the image under
consideration.

For the exploration of different oscillatory components in a waveform using
multiresolution analysis, the waveforms are decomposed into six or more scales by
the Quadratic Spline Wavelets. The decomposition filters are designed as described
in Section 4.2 for the corresponding multiresolution approximation. As an example,
if the sampling rate is 1KHz, each scale covers the frequency band:

FIGURE 4.5 The basic computational block diagram of one octave wavelet decomposition
algorithm.
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first Scale 250–500 Hz

second Scale 125–250 Hz

third Scale 62.5–125 Hz

fourth Scale 31.3–62.5 Hz

fifth Scale 15.6–31.3 Hz

sixth Scale 7.8–15.6 Hz

Residual Scale 0.0–7.8 Hz.

4.3  INVARIANT MOMENTS

Moments have long been used in statistical theory and classical mechanics.28

Statisticians view moments as means, variances, skewness, and kurtosis of distri-
butions, while classical mechanics students use moments to find centers of mass
and moments of inertia.24 In imaging, moments have been used as feature vectors
for classification11 as well as for image texture attributes and shape descriptors of
objects.16,20 In the early 1960s, Hu developed seven invariant moments from
algebraic moment theory.6 These seven moments are invariant under translation,
rotation, and scaling. Perhaps the most important contribution of this work was
the application of these seven invariant moments to the two-dimensional pattern
recognition problem of character recognition. This was a crucial development,
since many key problems in imaging and image recognition focus on recognizing
an image even though it has been translated or rotated, or perhaps magnified by
some means. Since that time other pattern recognition applications have included
hand-printed characters, aircraft identification, chest X-rays and ship recognition,
and more recently face recognition.11

Similar to the definition of moments in classical mechanics, the two-dimensional
moments of order (p + q) with an image intensity distribution of f(x,y) are defined as

(4.29)

where p,q = 0,1,2,…. These moments in general are not invariant to any distortions,28

and, therefore, the central moments are defined as

 (4.30)

m x y f x y dx dypq
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where

The central moments are known to be invariant under translation, and by working
through Equation 4.30, it can be shown that the first four orders of central moments
can be expressed in terms of the ordinary moments defined in Equation 4.29 as

 (4.31)

Often it is desirable to normalize the moments with respect to size. This may
be accomplished by using the area, µ00. The normalized central moments are

(4.32)

where  for (p + q) = 2, 3,….

With these normalized moments the seven Hu invariants are found by:
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 (4.33)

While these seven invariants are given in terms of the normalized moments, they
may be calculated from the central moments as well. In that case the formulas are
the same with µ substituted for η in Equation 4.33.

One item to note is that these normalized moments assume that the image is
represented by pixels, the values of which are all > 0. There is no problem in
calculating the original and central moments even if some of the pixels are < 0.
However, the normalized moments pose a different problem. If a substantial number
of pixels have values < 0, then µ00 becomes negative. This causes a problem during
the normalization, since µ00 raised to a nonintegral power becomes an imaginary
number. Because this system calculates the moments of the wavelet coefficients
there are situations where a substantial number of coefficients are negative. Because
of this, when the normalized moments are calculated µ00 is treated somewhat like a
vector. It is considered to have magnitude |µ00| and a direction which is (+) if µ00 >
0 and (–) if µ00 < 0. Therefore, the normalization of µpq is then:

(4.34)

Therefore, this technique actually calculates pseudo-moments to use as features.
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4.4  ENTROPY

Entropy is a quantity that is widely used in information theory and is based on
probability theory.4,18 Consider first an event E that can occur when an experiment
is performed. How surprised would one be to see that E actually does occur? The
answer to that question depends upon the probability of E. Suppose, for instance,
cards are being drawn with replacement one at a time from a full deck of playing
cards. If E were defined as “the card being a heart,” it would not be too surprising
if E occurred as P(E) = 0.25. (There are 52 cards in a full deck broken into four
equal suits, hearts, spades, diamonds, and clubs.) However, if E were defined to be
“the card being the ace of hearts,” then we might be rather surprised to see that
occuring, as now P(E) = 0.0192 or , but it is possible to quantify this concept of
surprise.18

If this concept is extended to a random variable X which can be one of the
values x1, x2, …, xn with probability p1, p2, …, pn, then the expected amount of
surprise upon learning the value of X is

 (4.35)

This quantity is the entropy of the random variable X. Note that if pi = 0, then 0
log2 0 is defined to be 0.

Thus H(X) represents the average amount of surprise associated with the value
of X. It also can be interpreted as representing the amount of uncertainty that exists
in the value of X. In information theory, H(X) is considered to be the average amount
of information received when the value of X is observed.4

It is from the information theory point of view that the entropy would be a valid
data point for images. It is conjectured that perhaps normal outcomes would contain
more information than abnormal, or vice-versa, and therefore, the entropy values
would be of use for classification purposes. Interestingly enough, when viewed by
a human observer, the distribution of entropy values of abnormal mammograms, for
example, seemed no different than the distribution of the normal mammogram
entropy values. However, when used as input to a neural network, they indeed added
some discrimination.

4.5 CEPSTRUM ANALYSIS

Naturally, a recorded signal, such as EEG, is mixed with noise. And the relationship
between the signal and noise is simply considered as an addition, i.e.,

 (4.36)

where xi is the recorded signal, si the pure signal, ni the noise and i the time index.
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Additionally, Fourier spectrum analysis and signal filtering can be applied
directly. However, if the relationship between the signal and noise is convolution,
which often occurs, i.e.,

(4.37)

where * means convolution, the system is not linear, and the Fourier analysis and
filtering cannot be used directly and deconvolution is needed. Basically the relation-
ship between the signal and noise is a mixture of addition and convolution. After
the discrete Fourier transform (DFT) is obtained

 (4.38)

where x̂i is the DFT of xi,, si, is the DFT of si,, n̂i the DFT of ni and · means
multiplication. Then after the Log is applied, the signals become additive:

 (4.39)

where ~xi is the Log of x̂i, s, ~ the Log of ŝ i, and ~n i the Log of n̂ i.
To return to the time domain, an inverse DFT (linear transform, which maintains

the addition relationship) is performed, and the output is the cepstrum ci. Just the
low part of the cepstrum, where the signal is assumed to be concentrated, is selected
by cepstrum filtering through the cepstrum window. The output cepstrum will be
the input to the ANN. If the real Log of the absolute values of the DFT spectrum
is used, the output is the real cepstrum. If the complex Log of the complex values
of the DFT spectrum is used, the output is the complex cepstrum.

4.6 FRACTAL DIMENSION

Additional features extracted from images and signals focus on texture features. The
method used here was based on fractals. While fractal geometry has been around
for over a century, it is thanks to Mandelbrot, who coined the term ‘fractal’ and
popularized this class of mathematical functions.14 Examples of fractals best explain
what a fractal really is. Purely mathematical fractals include the Mandelbrot set and
the von Koch snowflake. Fractals occurring in nature include clouds, trees, the coast
of England, mountains, blood vasculature, cauliflower, and much more. What these
all have in common is some degree of self-similarity; naturally occurring fractals
are statistically self-similar. In other words, a whole cauliflower looks like half a
cauliflower looks like one fourth a cauliflower, and so on. This example using
cauliflower can be found in Peitgen et al.12 or try it for yourself!

The measure used to describe the ‘fractal-ness’ of an object or image is the
fractal dimension. The fractal dimension is the measure of self-similarity of an
image; the basic idea is that an image with fractal properties will look the same at
all scales. Many have used the fractal dimension to analyze and segment textures.

x s ni i i= ∗

ˆ ˆ ˆx s ni i i= ⋅

˜ ˜ ˜x s ni i i= +
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In a sense, the fractal dimension measures the roughness of an image. For example,
computer generated mountains with low fractal dimension are smooth and rolling
while those generated with high fractal dimension are rough and jagged.11,14

Fractals have been used in general purpose texture analysis, synthesis, and
segmentation, particularly of natural scenes. Pentland11 segmented images containing
aerial views, mountains, and a desert scene using the fractal dimension. Keller et
al.7 used two characteristics related to the fractal dimension to distinguish silhouettes
of trees from silhouettes of mountains. Keller et al.2 and Dubuisson and Dubes2

discuss the use of lacunarity (another fractal-based feature) in conjunction with
fractal dimension to improve the segmentation of natural textures. They argue that
the fractal dimension alone cannot discriminate all natural textures as well as a
human observer but that other fractal-based features such as lacunarity can improve
this segmentation.

In general, the dimension of a set can be found by the equation

(4.40)

where D is the dimension, N is the number of parts comprising the set, each scaled
down by a ratio r from the whole.12 For a two-dimensional square, N parts scaled
by the ratio r = 1/N1/2 results in Nr2 = 1 or D = 2. A set is considered fractal if D
is a noninteger value. For example, von Koch’s snowflake has four parts, each one-
third the length of its parent, so D = log(4) / log(3) = l.26.

There are many ways to calculate the fractal dimension of naturally occurring
images. Most common in the literature are methods that estimate the fractal dimen-
sion based on statistical differences in pixel intensity. Voss27 and Keller et al.7 used
a popular box-counting method similar to Sarkar and Chaudhuri19 described in more
detail next. Peleg et al.13 used a multiresolution method to measure the fractal
dimension by observing the change in surface area of a covering blanket over the
topological map of an image at different scales. Super and Bovik23 used the outputs
from multiple Gabor filters and fit them to a fractal power-law curve to obtain the
fractal dimension. This has the added capability of spatial localization. Pentland14

gathered second-order statistics at varying distances, resulting in a Gaussian-shaped
distribution. A fractal dimension estimation was gathered by fitting the standard
deviations over scale.

The method chosen here is that proposed by Sarkar and Chaudhuri.19 Starting
with the basic equation D = log(N) / log(1/r), an image sized M × M, and G number
of gray levels, the algorithm is as follows:

1. Divide up the image into size s × s where M/2 > s > 1 such that r = s / M.

2. Imagine the two-dimensional image is a topological map in three dimen-
sions. On each grid sized s × s can be built a column of boxes sized s ×
s × s’ where G/s’ = M/s with indices starting with 1 for the bottom box.

3. Find the lowest and highest boxes intersected by the image in the current
column of boxes and name them k and l, respectively.

D N l r= ( ) ( )log / log /
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4. Add up the differences (l – k + 1) for all areas s × s for the current scale
r and call it N(r).

5. Do this for all scales, and the result will be a vector N(r) where 1/r = 2,
4, 8, … M/2.

6. Plot log(N[r]) vs. log(1/r) and calculate the slope using a least square
linear fit. This is the fractal dimension.

Sarkar and Chaudhuri19 used random images with increasing standard deviation
to test their algorithm. These results were recreated by the authors by first generating
8-bit test images of Gaussian noise with a mean of 128 and standard deviation
ranging from 8 to 128 in increments of 8. Some examples are shown in Figure 4.6.
The size of all test images was 128 × 128 pixels. The results are shown in Figure
4.7. As demonstrated, the fractal dimension increases with increasing noise standard
deviation similar to the results Sarkar and Chaudhuri show in their paper.19

Although it probably would have been more appropriate to generate actual fractal
images with known dimension, such as fractal Brownian images, the calculation of
the fractal dimension is only an estimation and can be thought of as a measure of
the roughness of an image. Furthermore, when using the fractal dimension in texture
analysis applications, the more salient property is that it increases monotonically
with increasing true fractal dimension or roughness. Thus, by using these random

FIGURE 4.6 Test images used to test fractal dimension algorithm, FD = fractal dimension.
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images, the authors demonstrated an increase in fractal dimension with increased
noise or roughness; compare their algorithm with that of others, namely Keller et
al.,7 Peleg et al.,13 and Pentland.14 In comparison, Pentland14 and Peleg et al.13 are
accurate and cover the full dynamic range of fractal dimensions but are computa-
tionally expensive. On the other hand, the methods of Gagnepain and Roques-
Carmes (1986) and Keller et al.7 are computationally efficient but do not cover the
full dynamic range. The method of Sarkar and Chaudhuri demonstrated both qualities
and was therefore chosen for implementation.

4.7 SGLD TEXTURE FEATURES

Described in detail in Haralick et al.,3 the gray-tone spatial-dependence matrix, as
they call it, reveals the second order statistics of an image. Often applied to the
segmentation and/or classification of textures, the SGLD matrix in Haralick et al.3

was used to classify aerial images. The matrix itself contains the statistics of pairs
of pixel intensities located a distance d away from each other at an angle Θ. Note
that d is not the Euclidean distance but represents the number of units away in pixels;
a pixel’s eight nearest neighbors are one unit away. Thus, element (i, j) in the SGLD
matrix Φd,Θ is the probability that pixel valued i is a distance d away from a pixel
valued j at an angle Θ. The matrix Φd,Θ for a two bit per pixel image (four gray
levels) is explained in Table 4.2.

The SGLD matrix is best explained by an example from Haralick et al.3 Take
an image I with four possible gray levels {0, 1, 2, 3},

FIGURE 4.7 Fractal dimension as a function of standard deviation of test images.
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The four most typical SGLD matrices, ΦH (H = Horizontal), ΦRD (RD = Right
Diagonal), ΦLD (LD = Left Diagonal), and ΦV (V = Vertical) are symmetric matrices
with a default d = 1 and Θ = 0°/180°, 45°/225°, 135°/315°, and 90°/270°, respec-
tively. They are calculated by first computing the SGLD for only one angle, then
taking the transpose (representing the SGLD matrix of the angle added to 180°),
and adding the transpose to the original matrix as demonstrated below for
Θ = 0°/180°. This makes the SGLD matrix invariant to 180° rotations.

The other three matrices, ΦRD, ΦLD, and ΦV are

TABLE 4.2
Calculation of Matrix Φd,Θ for A Two Bit Per Pixel Image

j 0 1 2 3
i
0 # pairs (0,0) w/ 

(d, Θ) separation
# pairs (0,1) w/ 
(d, Θ) separation

# pairs (0,2) w/ 
(d, Θ) separation

# pairs (0,3) w/ 
(d, Θ) separation

1 # pairs (1,0) w/ 
(d, Θ) separation

# pairs (1,1) w/ 
(d, Θ) separation

# pairs (1,2) w/ 
(d, Θ) separation

# pairs (1,3) w/ 
(d, Θ) separation

2 # pairs (2,0) w/ 
(d, Θ) separation

# pairs (2,1) w/ 
(d, Θ) separation

# pairs (2,2) w/ 
(d, Θ) separation

# pairs (2,3) w/ 
(d, Θ) separation

3 # pairs (3,0) w/ 
(d, Θ) separation

# pairs (3,1) w/ 
(d, Θ) separation

# pairs (3,2) w/ 
(d, Θ) separation

# pairs (3,3) w/ 
(d, Θ) separation
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The above example is an oversimplified case. Typical gray-scale images have 256
gray levels; therefore, the resulting SGLD matrix would be 256×256, much larger
than 4×4.

In order to convert each matrix into a probability density function, each element
of the above matrices must be normalized. This is done by dividing each element
by the number of pixel pairs included in the calculation of the matrix. This value
depends on d and Θ. This is best described in Euclidean terms. Let D be the Euclidean
distance between pixel pairs. For example, if d = 1 and Θ = 45, then D = . Then,
let m be the horizontal projection of (D, Θ) where m = Dcos(Θ), and let n be the
vertical projection of (D, Θ) where n = Dsin(Θ). Therefore, for an image sized Nx

× Ny, each element must be divided by 2(Nx – m)(Ny – n). The factor of 2 is only
necessary for symmetric matrices invariant to 180° rotations.

Of course, if it is desired to reflect the exact relationship of pixel pairs to each
other or, in other words, to detect 180° rotations, the symmetric matrix would not
be used. For example, if only the relationship d = 1, Θ = 0° is desired to be detected,
only the matrix Φ1, 0° would be used instead of ΦH.

Statistical features are then computed from the above matrices (after normaliza-
tion). The most common features used in the literature include the energy, entropy,
correlation, local homogeneity, inertia, cluster shade, and cluster prominence. Often,
these features are averaged over the four directions (or one averaged SGLD matrix
would yield the same averaged features). Variance of the features from the four
directions may also be an important feature, and in this case the four SGLD matrices
will need to be preserved. The equations for these features are

(4.41)

(4.42)
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(4.46)

(4.47)

where 

(4.48)

for symmetric matrices,

and 

(4.49)

for symmetric matrices. Other less common features mentioned in Haralick et al.3

are the sum average, sum variance, sum entropy, difference variance, difference
entropy, and information measures of correlation.

(4.50)
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(4.53)
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(4.54)

(4.55)

information measures of correlation:

(4.56)

(4.57)

where 

 

(4.58)

due to symmetry

 (4.59)

also due to symmetry.
Features can be averaged over the four directions (horizontal, vertical, right

diagonal, and left diagonal) to calculate an average value. The variance between the
features of the four directions is also calculated. Both these average values and
variances can be used as input features in the classification of tissue ROIs.
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5 Fuzzy Neural Networks

Timothy J. Dasey and 
Evangelia Micheli-Tzanakou

5.1 INTRODUCTION

This chapter is divided into four components. In the first section, the concepts and
background relevant to pattern recognition, some typical optimization techniques
and ALOPEX, and a tutorial on the ideas and early works in neural networks are
dealt with. The danger in this presentation is that these fields might be construed as
disjoint problems. The truth is that a large amount of overlap exists between these
conceptual divisions. Pattern recognition has benefited from the application of neural
networks and optimization. Neural networks commonly use optimization routines
to guide their training and have achieved many of their greatest successes in pattern
recognition applications. These relationships should be kept in mind during the
reading. The last section of this chapter includes a philosophical discussion explain-
ing the rationale for the work.

5.2 PATTERN RECOGNITION

5.2.1 THEORY AND APPLICATIONS

To most individuals, a pattern recognition task involves an ability of the brain to
assign labels to objects, sounds, feelings or ideas and discriminate one from another.
Most of us are extremely adept at this processing task, while being unaware of the
precise mechanism that provides us with this power. In fact, it is through the scientific
field of pattern recognition, which relegates this task to machines, that the methods
of our brain can be fully realized. Yet, there has never been a machine designed that
has our capability to be a general-purpose pattern recognition machine.

Regardless of the limitations, machines perform quite well in the grouping and
labeling of patterns from certain problem sets. Machines excel when the recognition
task is confined to a specific application. An extensive body of literature describes
the recent attempts at relegating many pattern recognition tasks to machines as the
explosive growth of information overworks the human classifiers.20,48,67 The use of
automated pattern recognition machines has now touched nearly every field in an
enormous variety of workplaces.

The special nature of each pattern recognition task requires selection of the best
approach.30 Heuristic approaches, which rely on the designer’s intuition and famil-
iarity with the problem, are often sufficient to provide excellent solutions to many
problems. Linguistic (syntactic) approaches are often useful when numerical
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measurements are not sufficient to describe the problem. Many pattern recognition
problems can be solved through several mathematically substantiated techniques,
using statistical variability between patterns or certain pattern similarity measures.18

When confronting a typical pattern recognition task, three particular problems
must be addressed by the designer. The first is the representation of the input data
that the system will use in its classifications. When determined, these comprise the
pattern vector x as

(5.1)

where n is the total number of parameters needed for analysis. In many mathematical
pattern recognition problems, it is often convenient to envision each parameter xi as
describing an axis in n-dimensional space (n-space), where each pattern then com-
prised a point in that space, as in the two-parameter space depicted in Figure 5.1.

The second problem concerns the extraction of certain characteristic attributes
from the pattern vectors and a reduction in the dimensionality (from n to m) of those
vectors. This is usually termed the preprocessing and feature extraction problem.
The attributes of features to be selected vary with the application but involve the
selection of pattern attributes that can best be used for discrimination among the
patterns. The feature extraction process can be thought of as an intermediate formu-
lation of the more prominent goal of pattern recognition: the compression of large
numbers of attributes to a small number of class determinants.64

The third problem involves the determination of optimum decision procedures,
which are used for the identification and classification process. Many such

FIGURE 5.1 A two-parameter space. Each point in the space corresponds to an input
pattern vector.

x x x x xn= …( )1 2 3, , , ,
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procedures involve the separation of n-space (or m-space) into clusters, much as
Figure 5.1 includes pattern points which are grouped into three similar categories.

Although mathematical formulations of pattern recognition methods have been
available for several decades, many prominent problems still must be solved before
great theoretical improvements can be made.36,38 One issue, that of properly estimating
the classification performance of a machine, has been largely agreed upon.58 It is
generally thought that two pattern populations are needed to ensure that a machine
pattern recognizer can generalize. One group is reserved for the training of the
machine (determination of the decisions involved in making a classification), and the
other is used for post-training testing. This helps to ensure that the decisions formu-
lated for the training group also apply to the similar but distinct non-training group.

5.2.2 FEATURE EXTRACTION

A feature of a given parameter set refers to an attribute described by one or more
elements of the original pattern vector. In an application to imaging, the elements
are each pixel, and a feature may be selected as a subset of the pixel intensity values.
More commonly, a feature describes some combinations of the original pixels, as
in a Fourier expansion or a spatial filtering operation. The precise meanings of a
preprocessing operation and a feature extraction process overlap, but in general a
feature extraction operation involves the reduction in dimensionality of the pattern
vector. The primary reason for such a transformation is to provide a set of measure-
ments with more discriminatory information and less redundancy to the classifier.

The precise choice of features is perhaps the most difficult task in pattern
processing. In order to know the most successful set of features for a particular
problem, the accuracy of the classifier must be known. Yet the classifier depends on
the information from a feature extraction device, and thus cannot normally provide
that information without a completely designed feature extractor. This enigma
remains the primary reason for the difficulty in evaluating competing feature extrac-
tion methods. It has prompted many researchers to select features subjectively from
an educated guess of what will be most important to the classifier. These techniques
can be effective but are increasingly more difficult to ascertain as the complexity of
the patterns increases, and they are always subject to personal bias.

Many common mathematical parameters are used as feature measurements.39 A
set of n-space Euclidean distance measurements is a very common example. In other
situations where the identity of the patterns are known, transformation matrices to
minimize intraset pattern entropy65 or intraset pattern dispersion and functional
approximation methods are commonly used. Several orthogonal expansions are also
used, including the Fourier expansion and the Karhunen-Loève (K-L) expansion.21

The K-L expansion offers certain optimal properties and will be reviewed in more
detail in Section 5.3.1. Other common measurements, such as moment invariants,55

are used because of their constancy under many common pattern transformations.
The number of different schemes for feature extraction, even in similar applications
(such as the processing of handwritten characters), is typically enormous.
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5.2.3 CLUSTERING

“Clustering operation” may have different connotations for different people, even
in the pattern recognition community. This chapter will use a terminology commonly
accepted by many scientists. A clustering operation involves the grouping of like
patterns with one another without any knowledge of pattern identity beforehand (an
unsupervised classification operation). Classification problems generally have this
information. In the clustering problem, patterns must be separated solely on their
specific attributes, whereas the classification problems have access to error signals
which can be generated to guide the decision making of the machine.

Continuing with the geometrical analogy outlined in Section 5.1.1, let us envision
each pattern as a point in n-space, much as we see each star as a point in the sky.
If we are asked to group the stars in the sky, what measurement do we use for this
determination? The exact formulation of this answer often depends on the applica-
tion.50,53 In some instances, the distances between patterns can be used to separate
patterns. In other cases, pattern density in regions of space are used to indicate
locations where patterns likely are drawn from the same class, the techniques known
as histogram approaches.37

It should be clear already that no clustering operation can ever be guaranteed
to operate without error. The successful operation of the clustering method relies on
the separability of the data from the attributes used as the pattern vectors. If two or
more classes overlap in n-space, they will never be perfectly separated. All clustering
problems rely on the fidelity of these input data and generally are based on the
separation from highly dense regions of patterns from one another. Each of these
“modes” of the distribution is assigned a particular class label at a later time.

A large class of problems relies on a hierarchical grouping of pattern data.13 The
procedures used usually have the disadvantage of a phenomenon called “chaining”,
where small errors in grouping at the extremes of the tree accentuate at later levels.
Patterns in this scheme can be given a classification arbitrarily by choosing to “cut”
at a particular level of the tree, but recent thinking is that there is significant
information in leaving the class identity of patterns “fuzzy”. Fuzzy clustering refers
to assigning grades of membership to patterns and is currently a widely touted
method.16,23 

5.3 OPTIMIZATION

5.3.1 THEORY AND OBJECTIVES

In many situations it is desirable to find the values of a set of parameters that best
define the solution to a particular problem. As a rule, it is always possible to perform
an exhaustive search over the entire parameter space, choosing the parameter values
that are closest to the desired operation of the system. In most cases, a measure can
be formalized to assess the degree of fit of the proposed solutions to the ideal. This
measure is usually termed a cost, energy, Hamiltonian, or objective function.
Although an exhaustive search through all allowable combinations of system param-
eters is always theoretically possible, it is generally not feasible for even a moderately
high number of system parameters. In fact, the number of possible choices (N)
explodes exponentially with the number of parameters (q) involved in the space as
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(5.2)

where nj is the number of samples of parameter j, or as

(5.3)

when n1 = n2…= nq. As an example, if the system is composed of three parameters,
and the search is conducted by sampling the parameters every 0.1 in the interval
[0,1], then there are 113 or 1331 search items. With the same sampling and ten
parameters, the search list includes 1110 or 2.6 × 1010 items.

It is obvious that this scheme is untenable for all but simple problems and is
certainly impossible for the implementation of a dynamic system. It is for this reason
that optimization procedures have received attention for a long period. The goal is
to find the optimal (or at least close to optimal) solution with a shorter search time
than the exhaustive search method. One of the conceptual means of achieving this
uses a hyper-dimensional geometrical visualization of the cost function as it varies
with each of the (presumably uncouples)* system parameters. This parameter space
is usually widely variant, and the search over that space involves the extraction of
a global minimum (or maximum, depending on the cost function used) from among
all of the local minimum. In truth, the global extremum is rarely consistently
attainable for realistic situations in finite time, but usually a very close approximation
is both achievable and sufficient.

Two means for adjusting the exhaustive search technique readily come to mind.
The first involves sampling the entire parameter space at a low resolution and finding
the lowest (in the case of a minimization) region. Then that subregion can be sampled
at a higher resolution ad infinitum. This procedure has occasionally been adapted
but makes the major assumption that the global extremum is contained in a larger
depression about it (and that the boundary of the global minimum is at least approx-
imately funneling into that extremum). This is a gross oversimplification, and appli-
cation of these methods can result in a solution far from the best choice. In many
other schemes, referred to as gradient descent techniques, the effect of a parameter
change on the cost function is calculated, and the parameter is adjusted so that it is
moving downhill toward a better solution. This results in a rapidly converging
iterative procedure, but the technique is fortuitous if the solution at which it arrives
is a global, not a local, minimum. All good optimization routines work on the concept
that a short-term deleterious move, moving uphill as well as downhill, is necessary
to ensure the possible escape from local minima and arrive near or most preferably
at the global extremum.

5.3.2 BACKGROUND

Much of the literature on optimization deals with the analogy between optimization
and statistical mechanics. Perhaps the first to draw this comparison was the technique
that has become known as the Metropolis algorithm.43 This system was originally
written as a means for investigating such macromolecular properties as the states of

N n n n n= …1 2 3 2

N nq=
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substances at the level of a set of N individual molecules. At any particular time,
the potential energy of the system can be found as

(5.4)

where V is the potential between molecules and dij the minimum distance between
molecules i and j. The problem consists of optimizing the positions of the particles
in space (in this case 2-D space) to arrive at the lowest potential energy of the system.
Starting with random positions of the particles, each particle is moved a random
amount in a random direction. The new energy of the configuration is checked. If
the energy is decreased, the move is allowed. However, if the move results in a 

(5.5)

higher potential energy, the move is allowed with a probability P(∆E), which is the
Boltzmann distribution. Notice that this is no longer a gradient descent technique,
but rather there is always a finite probability that the system can move uphill, out
of a local minimum. In this way, the equilibrium states of the set of molecules could
be analyzed, and it was seen that the system settled in configurations which also
conformed to a Boltzmann distribution. It turns out that this method is a simple
modification of a Monte Carlo scheme, where instead of choosing configurations
randomly and weighting those configurations with a Boltzmann factor, the config-
urations are chosen with a Boltzmann distribution (evident through the simulations)
and weighted evenly.

The analogy between this statistical mechanics problem and optimization was
explored even further with the introduction of the “simulated annealing” procedure.34

If we examine the Boltzmann update from the Metropolis algorithm, it is clear that
the higher the temperature, the more likely that an uphill move will be accepted.
Conversely, at zero temperature all uphill moves will be denied, and the system will
fall to an energy minimum. To ensure a ground state configuration (without crystal
imperfections) in a material, the system must be carefully annealed, a process where
the substance is first melted and then slowly cooled, with extra time spent near the
vicinity of the phase transition. With the analogy to the optimization problem, a
“ground state” (global minimum) of the system may be found by starting off at a
high value of temperature. This corresponds to melting the system so that uphill
moves are nearly equiprobable to downhill moves, and the system randomly wanders
in parameter space. By slowly lowering the temperature (and thus reducing the
probability of uphill moves), the system can slowly settle in to a minimum. It has
been shown that the simulated annealing procedure can find the global minimum
under certain conditions with probability 1.0, but that finding may take an inordinate
amount of time. An analogous calculation to the specific heat of the system can be
sued to signal phase transitions in the optimization. The simulated annealing pro-
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cedure has been applied to a wide variety of pattern recognition tasks.66 The primary
emphasis of experimentation with the algorithm has been the adjustment of the
cooling schedule, the process of lowering the temperature.51 The simulated annealing
procedure has received great attention over the last decade but is burdened by the
application-dependent optimum cooling method and the necessity of a large number
of iterations for convergence.

Another has been dubbed Mean Field Annealing.49,54 In this scheme, the cost
function H(x), which may have many local minima and in other ways be “ugly”, is
replaced by another function H(x,m) which “resembles” H(x) but has components
that are much easier to minimize (they could be convex functions with only one
minimum). In order to make the two functions resemble each other, the set of
parameters mi must be estimated. To perform this, another technique is borrowed
from statistical mechanics, the mean field approximation. The details are too inten-
sive to consider in this synopsis, but by estimating each of the parameters mi, the
problem is reduced to a series of gradient descents at each value of temperature
(note that this theory also utilizes a Boltzmann probability distribution).

Several researchers have noted that each of the above methods involves a local
search about the current point in parameter space. That is, even with the capability
to move uphill, all operations are still local. The odds of crossing a wide gap to a
region of “better” minima is low, and thus more global search methods have been
proposed. One commonly used technique is to run multiple trials on a given data
set, saving the best result. Given a high number of random starts, the hope is that
the global optimum will be among the optima identified. Galar22 proposed a similar
optimization routine to that of Eigen’s theory of macromolecular evolution19 which
was more capable of crossing wide gaps. This method has many striking similarities,
at least in concept if not in the method of application, to the ALOPEX process
discussed in detail in the next section. Galar describes a two-term parameter update,
one of which is a modified Markov chain and the other a random walk component.
He claims that the resulting “biased random walk” is more capable of crossing wide
gaps between local extrema than procedures like simulated annealing.

Another recent approach has been named the dynamic tunneling algorithm.40

This routine uses gradient descent to go to a local minimum. At this time, the system
“tunnels” through the surrounding hill (using an appropriately defined tunneling
function) for the purpose of finding a point, other than the last minimum, which,
when gradient descent is continued, will arrive at a point lower than the last mini-
mum. The calculations are quite intensive, but the algorithm converges relatively
often to the global minimum and may be more effective for problems with a high
density of local minima.

5.3.3 MODIFIED ALOPEX ALGORITHM

The optimization routine ALOPEX (ALgorithms Of Pattern EXtraction) presents an
alternative to the previously reviewed algorithms. It was originally applied to the
measurement of the visual receptive fields of cells in the adult frog tectum.25,61 In
the original application of the method, the cost function was referred to as the
response function R.
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The method normally updates the model parameters (the pixel intensity values
in the original application) as

(5.6)

where Bi(n) represents the influence of a term due to historical bias, and ri(n) is a
random noise component. The bias term is calculated as

(5.7)

where DPi(n) represents the previous change in the ith parameter value Pi(n) as

(5.8)

and DR(n) indicates the similar change in the response function as

(5.9)

The two terms in the modification of Equation 5.3 provide different influences on
the optimization. The first term is a bias term which tends to move the parameter
in the direction that has been successful in the past. It is actually an aggregation of
the biases to that point in the simulation, where the direction of the latest addition
to the bias is determined by the change in the response function due to the last move.
The second term is a random number, generated for each parameter at each iteration,
which provides the opportunity for the parameter to move against the direction of
recent success. As mentioned earlier, this capability to move “uphill” is what provides
a good optimizer with the ability to escape local extrema.* The term ri(n) in the
ALOPEX update equation is typically implemented as a Gaussian random number
with zero mean and standard deviation σ.

The accumulation of the biased terms in Equation 5.7 must be controlled in
order to prove helpful. Without this regulation, the magnitude of Bi due to past
iterations may overpower the relatively smaller change from the current iteration.
In this scenario, the system has effectively gained “mass”, so that the “momentum”
of the movement in one direction will not allow the system to stop quickly enough
at the sites of the extrema. In all simulations in this chapter, the magnitude of Bi

is constrained to the limits [–a,a]. The first two iterations of the simulation supply
random numbers for the forthcoming update statements. The responses are found
for each, and the update Equations 5.6 through 5.9 are applied to all of the
parameters. This process repeats itself until the simulation is finished. Note that

* The form of Equation 5.6 is correct for the maximization of the response function R. For minimization,
the sign of the bias term should be changed.
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the ALOPEX process provides for the simultaneous update of all parameters at
once, which the simulated annealing algorithm does not. This generally makes the
ALOPEX process more time conservative. In addition, the magnitude of the random
component does not depend on the amount by which that component raises of
lowers the response (there is a dependence via the Boltzmann distribution in
simulated annealing). This makes it easier for parameters to traverse wide gaps
between the extrema.

Even with the differences previously indicated, there are some analogies between
the parameters of simulated annealing and those of ALOPEX. If the magnitude of
the random component is much higher than that of the biasing component, then the
parameters will be overwhelmingly driven by randomness, a situation analogous to
the “melting” process in simulated annealing. Conversely, with no noise, the
ALOPEX process simplifies to a gradient descent.* This indicates that the choices
of γ and σ are critical for controlling the speed and accuracy of the convergence.

The suspicion that the ALOPEX process could be run under similar conditions
of “annealing” was confirmed by earlier60 and later work,14 which showed that slowly
shrinking the magnitudes of both the noise and bias components in the update of
the parameters could result in a great improvement in both the speed and accuracy
of the optimization. In this work, the values of γ and σ were initially high and were
lowered during the course of the simulation by the schedule

(5.10)

and

(5.11)

where τ was used to control the rate of the “cooling”, and the initial and final
parameter values are user entered.

Many other improvements have also been suggested, including a parallel imple-
mentation of the algorithm,42 averaging between multiple ALOPEX processes,60 and
an interleaved formulation of the algorithm to work on multiple response functions.10

Recent work has used distributed ALOPEX processes working on overlapping
“fields” of an image to enhance convergence speed.41 In a situation where the
algorithm is used for noise removal or the correction of pattern imperfections and
there exist a set of templates to guide the optimization, it has been shown42 that
multiple response functions from each of the m templates Rj(n) can be used to get
a single response function as

*Note that there is not complete freedom of movement of the parameters with no noise. This is due to
the fact that only one response function is used. 
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(5.12)

A similar function, with the inversion of both the numerator and denominator of
Equation 5.12, was used for minimizing a particular response function.15

The ALOPEX process has been applied successfully to many application areas
since its introduction, in large part because of its general and flexible form. The
ALOPEX process is interesting in that the pattern recognizer can be converted to a
pattern extractor.44,17 Other applications include curve fitting to waveforms such as
Visual Evoked Potentials,45,62 crystal growth,26 the traveling salesman problem,22 and
pattern recognition applications.15 Using ALOPEX in perceptual tasks has also been
addressed.28 Recent applications include the use of ALOPEX in reconstructing
compressed images,60 reducing motion artifacts,11 and use of the VEP as a generator
through ALOPEX of patterns of stimulation.31

5.4 SYSTEM DESIGN

A pattern recognition system comprises four essential components, as labeled in
Figure 5.2. The preprocessing module is an application dependent stage. The feature
extracting and clustering modules are the trainable commodities in this scheme and
comprise the bulk of the discussion of this chapter. As indicated by Figure 5.2, these
modules are under the training control of the ALOPEX process, although the depic-
tion of ALOPEX as a control external to the individual module is merely used as a
convenience. A more accurate depiction would place an independent ALOPEX
process within each stage. The final module is a labeling stage, in which the clusters
formed in the previous stage are assigned an identity.

5.4.1 FEATURE EXTRACTION

A feature of an input pattern refers to any measurement from a set of pattern
measurements that characterizes some attribute of that pattern. It was previously
mentioned that a good feature extraction routine will compress the input space to a
lower dimensionality while still maintaining a large portion of the information
contained in the original pattern space. Although this is the most often-cited advan-
tage of feature extraction, it is also true that an appropriate choice of features can
help eliminate redundant and irrelevant information from the data set, thereby reduc-
ing the overhead for the classifier.56 Most feature extraction routines can significantly
aid in the performance of a classifier.

In unsupervised situations, the only information available to the feature extrac-
tion module is the statistical distribution of the patterns. In such a scenario, it is
impossible to quantitatively analyze the effectiveness of a feature extraction routine
in improving pattern classification. However, there are operators designed to main-
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tain high information content in the features (as compared to the original measure-
ment pattern space) with a minimum number of dimensions.

5.4.1.1 The Karhunen-Loève Expansion

Perhaps the most widely used feature extraction routine with some of these infor-
mation-conserving properties is the Karhunen-Loève (K-L).9,32,63 If it is desired to
represent the kth N-dimensional input pattern x with an M-dimensional feature
pattern y, then an M × N matrix Φ can be chosen so that

(5.13)

The matrix Φ is actually a set of M orthonormal vectors (meaning they lie perpen-
dicular to one another in N-dimensional space and have unit magnitude) constructed
by taking the M eigenvectors corresponding to the M largest eigenvalues of the
covariance matrix C constructed by the input patterns. This matrix C is formed by

(5.14)

where P is the number of patterns in the set and the vector µ is the mean vector of
the patterns set as

(5.15)

FIGURE 5.2 A component diagram of the pattern recognition system used in this research.
The dotted lines indicate control signal input to the modules, whereas the solid lines denote
transfer of data.
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It has been shown that the eigenvectors of this covariance matrix exhibit certain
optimal properties as a feature extractor when they are ordered with their correspon-
dence to the eigenvalues of the matrix from highest to lowest.9 One of these properties
is that the mean square representation error is the minimum for any choice of M
orthogonal vectors, meaning that the approximation error (ε) of reconstructing the
original pattern space with only M features

(5.16)

is the smallest for any choice of M vectors in Φ. This means the expansion answers
a key requirement in the information compression problem of feature extraction. Its
other optimum property is that this choice of vectors associates with the coefficients
of the expansion a minimum measure of entropy or dispersion. The borrowed concept
of entropy is often used in the pattern recognition field as a clustering measure,57,65

and so this minimum entropy property characterizes the K-L expansion as likely to
contain clustering transformational properties. The crux of the theory is that the
features contain the most information (without knowing the pattern identities) for
the price and probably retain the existing pattern groups in the population.

An implementation of the K-L expansion as a feature extractor21,35,33 generally
proceeds in the opposite direction to the above analysis as the following steps:

1. Calculate the covariance matrix in Equation 5.14 using all available pat-
terns and the mean vector from Equation 5.15.

2. Find the eigenvalues and eigenvectors of that covariance matrix.
3. Select the eigenvectors corresponding to the M largest eigenvalues and

store them in the matrix Φ. 
4. Find the feature values for each of the patterns via Equation 5.13.

The primary advantage in using the K-L expansion for selection of features is that it
requires no previous knowledge of pattern labels and thus is perfectly suited to
unsupervised tasks. Many people confuse the aforementioned optimum properties of
the expansion with an assumption that the features generated for the expansion
provide optimum performance of the classifier. This is certainly not the case. A feature
extractor can never provide optimum classifier information without information from
the classifier about its historical performance. Nevertheless, the K-L expansion is
useful in situations where that information is not reliable or available. The K-L
expansion is also a linear operation, and considerable evidence suggests that other
nonlinear features can often provide more useful information to the classifier.12

There is an additional point which should be mentioned here. It turns out that
the primary eigenvector points in such a direction that the variance of the patterns
in that feature space is maximum for all vectors. Subsequent eigenvectors find other
locally maximum variance features in orthogonal directions. Furthermore, the eigen-
value representing each eigenvector is exactly equivalent to the variance of projected
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patterns onto the corresponding eigenvector.18 It is this realization that provides the
impetus for the enactment of the K-L expansion onto a neural network, as described
in the next section.

5.4.1.2 Application by a Neural Network

The linear projection of a pattern vector onto one of the K-L expansion vectors is
a simple inner product operation, as denoted by Equation 5.13. Conveniently, this
is the same operation that is most commonly given to units of an artificial neural
system, as seen by the comparison with Equation 5.13 for all Qk = 0. In concept
then, an artificial neuron can use its connection weightings to act as one of the
eigenvectors contained in the matrix Φ in the last section. It only remains to consider
the method of training a cell to retain that specific pattern of connections. After
training, the output of the neuron is a real number corresponding to the feature value
from the input pattern.

A hint has already been given about the means for training a cell to retain the
“maximum” eigenvector. It was mentioned that the primary K-L expansion vector
had the property that the output features generated by it contained the maximum
variance of any features generated by any other choice of vectors. In direct relation
to the neural network, if the variance of the output of the cell for all training patterns
is maximized during training, the connection vector retained after training corre-
sponds to the primary K-L vector. The scheme for training any one cell follows the
steps outlined below.

1. Set the connections to the cell to random values.
2. Calculate the output value of the cell for every training pattern.
3. Find the variance of the output over all patterns used in step 2.
4. Update the connection weights to the cell via an ALOPEX update equation.
5. Normalize the connection weights to the cell to a vector magnitude of 1.0.
6. Go to step 2 until a convergence criterion has been met.

In particular, the output y of the jth cell from the input of the kth N-dimensional
pattern x is found as 

(5.17)

and the variance of the jth cell output (Vj) is calculated over all P patterns by

(5.18)
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The ALOPEX update equation uses the changes in the variance (∆Vj) and connections
(∆Cij) from the current iteration (n) to the previous iteration (n–1) to change the
connections by

(5.19)

where

(5.20)

[see Equations 5.17 through 5.20]. The term rij(n) is a Gaussian random number
with zero mean and standard deviation. The factors γ and σ are adjusted as in
Equations 5.21 and 5.22.

To illustrate the performance of the algorithm, a simple two-dimensional pattern
space was constructed, and one neuron was trained on 60 patterns in this space using
ALOPEX output variance maximization. The performance of the algorithm can be
tested easily, since the “ideal” maximum is known (it can be found by the analysis
of Section 5.4.1). The resultant vectors of the ALOPEX method and the K-L expan-
sion are shown in Table 5.1. Also included in that table are two other commonly
used methods for unsupervised neural network training. The first is a simple nor-
malized Hebbian scheme, where the connections are changed during each iteration
by

(5.21)

where η is a gain factor. The second is a widely touted method employed by Oja,47

which is a variant of the Hebbian proposal and includes output feedback as 

(5.22)

Table 5.1 shows some clear results, the first of which is that the variance
maximization scheme with ALOPEX was able to mimic very accurately the optimal
K-L vector. Second, it clearly points out a weakness in the Hebbian proposal. As
further experiments will show, the Hebbian training29 (and the Oja training, which
is nearly identical in most real world situations) cannot optimize to the “best” vector
because the input patterns are not zero-mean centered (they do not share a center
of mass at the origin of the coordinate system). Thus, the Hebbian mechanism is
essentially unable to compensate for DC offsets, a situation that must be tolerated
in nearly all real-world applications. Obviously this weakness can be compensated
for by centering the data before it enters a Hebbian-trained module, but this requires
additional post-training computation and is impractical in a highly connected system.
Oja claims that this scheme will result in the cell retaining the principal component
of the input pattern distribution.*

* The principal component is identical to the first K-L expansion vector when the center of mass of the
patterns in data space is at the origin.
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Figure 5.3 shows the pattern space that was used for the training results in
Table 5.1. Clearly the space is composed of three quite distinct clusters. However,
not all choices of vectors allow all of those clusters to be clearly evident at the output
of the feature cell. The illustrations of Figure 5.4 make it obvious why the K-L and
ALOPEX-trained connections are superior choices to the Hebbian scheme. The
diagrams in Figure 5.4 are histograms of the output values of the cell for each of
the different vectors in Table 5.1. It is easy to see why the K-L expansion and
ALOPEX-trained vectors are preferable to the Hebbian and Oja schemes: the
increased range of the neuron output levels increases the information content of the
output by allowing all three clusters to be evident on the output line. So the concept
of variance maximization indirectly promotes the retention of cluster forming infor-
mation. Note that this is not a proof of superiority of the methods, but it is a valid
observation with an example training set.

With the one-cell implementation described thus far there is still the question
of how a network of cells is to optimize to other vectors in the K-L expansion. Since
each cell is searching for the “optimal” vector, all cells in a network will arrive at
or near the same vector when using the same input pattern set. There are several
possible means for forcing other neurons to optimize to other K-L vectors when
more than one feature output is necessary. The training routine can be altered so
that the optimization is not a global search. This will force each cell to arrive at a
local optimum that differs depending on the initial conditions, but this does not
guarantee that redundant cells will not be formed, and it imposes a strong likelihood
that some cells will arrive at local maxima which are not K-L expansion vectors. A
second possibility is for an additional term to be added to the ALOPEX cost function
which uses feedback connections between other feature extracting cells in the net-
work to impose a constraint on the uniqueness of each cell. There are several
problems with this choice. The insertion of inter-network feedback requires that
additional care be taken to prevent instability, and even when stability of the output
of the cells is guaranteed, computation time is drastically increased because of the

TABLE 5.1 
Converged Connection Vectors 

Principal 
K-L Vector

ALOPEX 
Variance 

Maximization
Normalized 

Hebbian
Oja 

Scheme

0.2011 0.1920 0.6305 0.6299
0.9796 0.9810 0.7760 0.7770

Note: For the two-dimensional sample data space shown in
Figure 5.3. The first row in the table refers to the first connection
value in the neuron, while the second row denotes the second
connection value.
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need to wait until the outputs of the cells “settle”. Additionally, the weighting
between the terms is most likely problem-dependent and is certainly optimally
different for each cell. This possibility was examined in detail, though, and the
interim results indicate the possibility of training cells to recognize features that
were highly nonlinear and yet often retained some of the optimal aspects required
by the problem. The work on this possibility was suspended when the training times
became exorbitant. Instead, a more viable solution was obtained. The actual method
used imposes the constraints on the ALOPEX optimization in a more implicit way.
Instead of adding extra qualifying terms to the ALOPEX update equation, the input
pattern space itself was altered to exclude the information that was already retained
by other cells. In the resulting architecture (Figure 5.5), the cells are “chained” to
one another in series by a weighted feedback of the output of the previous cell to
the input of the current cell. The first cell receives the original pattern space unaltered
and will perform exactly as the single cell simulations shown previously. Subsequent
cells receive the original pattern space (x), minus the component of that space
extracted by the previous cells as

(5.23)

FIGURE 5.3 The input pattern space used for the training of the vectors in Table 5.1.
There are 60 patterns in the space, with 20 grouped in each cluster.
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for the ith input to the jth cell in the chain. The output of the jth cell is then found
in the same way as before, only now using the modified input space as

(5.24)

FIGURE 5.4 The feature cell output value histograms for the space of Figure 5.3 for (a)
the normalized Hebbian training and (b) the ALOPEX variance maximization scheme.
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Using this method, only the first cell, which receives no interference from other
cells in the network, can optimize to the principal vector, while all others are
relegated to finding secondary yet potentially important vectors. When a network
such as this is trained, it can be seen that the first cell optimizes to the first Karhunen-
Loève eigenvector, and the other cells locate in order the remaining eigenvectors.
Sanger recently published an architecture similar to this scheme,52 but his training
relies on the gradient descent method of Oja.47

To illustrate the performance of this architecture, let us use the pattern space
employed in the one neuron simulation in Figure 5.3. Since the first cell in the chain
architecture above does not receive any influence from other cells, it will optimize
in the same way as in Table 5.1. If we now find the new pattern space to provide
to the second cell according to Equation 5.24, we get a different pattern space. All
information in the direction of the first cell vector of Table 5.1 has been removed
from the pattern space given to the second cell. It is then a trivial matter for the
second cell to optimize on this pattern space. Note that we were, in this example,
extracting two features from what was originally a two-dimensional pattern space.
This is not a compression scenario. In a more general case where the number of
features is less than the number of pattern dimensions, the input space would never
compress to a line, as in Figure 5.6. Rather, with each cell in the chain, there is
essentially a virtual removal of a dimension from the pattern space in the direction

FIGURE 5.5 The feature extraction architecture for three feature cells. After the first cell,
all inputs are modified by a subtracted weighted input from the outputs of the previous cells,
as in Equation 5.1.11. The triangle symbol represents the neuron integrator, while the symbol
C12 indicates the connection weight from the first input to the second cell.
© 2000 by CRC Press LLC



of the previously optimized vectors (not a physical removal, since the feature extrac-
tion is still performed over the same number of dimensions). The application of this
feature extraction method to a more complicated pattern space is shown in subse-
quent chapters, where it can be clearly seen that this architecture and training allow
for the network cells to converge on the K-L expansion vectors in order.

5.5 CLUSTERING

5.5.1 THE FUZZY C-MEANS (FCM) CLUSTERING ALGORITHM

The concept of fuzzy logic was first introduced by Zadeh, whose classic paper has
become the philosophical bible in the field.68 The concept is simple: set membership,
and indeed reasoning of any sort, carries more information when there is a continuum
of grades of membership. The reasoning is based on Zadeh’s Principle of Incom-
patibility, which maintains that high precision is incompatible with high complexity.
The suggestion is that the complexity of a system and the precision with which it
can be analyzed bear a roughly inverse relation to one another. He asserted that since
real world ideas appear to be fuzzy in nature, there is reasonable cause for adapting
this approach to machines. Since that time, the number of applications to decision
making and pattern clustering in particular have been numerous.16

One of the first to apply fuzzy reasoning to pattern recognition was James
Bezdek.2 The method that he and his colleagues have introduced, the Fuzzy c-Means
clustering (FCM) algorithm,3–5 has seen great popularity as a flexible and easily
implemented method. The method itself is actually a spinoff of the venerable ISO-
DATA algorithm.1 The ISODATA clustering method is one of a set of techniques
that assumes that the optimal cluster partitioning is described as the minimum (or

FIGURE 5.6 The revised pattern space of Figure 5.3 as seen by the second cell in a feature
extraction network chain.
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maximum) of an objective function. For the ISODATA algorithm and others like it,
which use a set of c prototype “centers” of clusters around which patterns are grouped
by their resemblance to these centers, the most common choice of objective function
J is of the form

(5.25)

where uik is the membership strength of pattern k in cluster i and dik is the squared
distance from pattern k to cluster center i in m-dimensional feature space. The
ISODATA algorithm is normally used to generate hard partitions of the data. A hard
partition is one in which each pattern is allocated entirely to one cluster or another,
so that the membership strengths take on the values of zero or one.

In most scenarios, the assignment of patterns to any one cluster prototype in
exclusion of all others is a gross simplification of the complexity of the pattern
space. Bezdek used the concept of fuzzy logic, where decisions are made through
analog weightings, and applied it to this objective function J. In doing so, J was
defined as

(5.26)

It is easiest to think of this objective function as representing the sum of the errors
(the distances) in representing the patterns by a set of c cluster centers, weighted
by the membership of the patterns to those clusters. The exponent q controls the
sharpness of the decision boundaries, so that when q = 1, hard clusters are con-
structed, and when q = ∝, all patterns share the same membership to each cluster.

Most importantly for the mathematical analysis of this function, the use of
continuous memberships means that the decision space is now continuous for all
q > 1. It now becomes possible to examine the conditions for minimization of this
function. It was demonstrated that J could be locally optimal for any one q only if

(5.27)

and

(5.28)
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where Vi is the ith cluster center and xk the kth pattern. By iterating through these
conditions, Bezdek3 claimed that a local minimum of the function J would be
achieved. It was later seen that this iteration could only guarantee stationary points
and not necessarily local minima;69 nevertheless, the FCM method was found widely
useful in practically achieving rapid (usually < 25 iterations) and “good” clusterings
of data from many application areas.6,7,8,24

There are two factors in the use of the FCM procedure which still require
discussion. One of these points is the optimal selection of the parameter q. To this
point, there is no automated way of selecting the best value of q for any one pattern
set, but most applications seem to find reasonable values as lying somewhere between
1.2 and 4.0.3

The second factor is the way in which the distance dik is calculated. In general,
the distance d can be calculated through the quadratic form

(5.29)

which is termed the A-norm distance. If the matrix A is chosen to be the identity
matrix, then the distance is the squared Euclidean distance from pattern xk to center
vi. This causes the FCM algorithm to form roughly hyperspherical clusters. This
makes convergence simpler (since each cluster shape is identical) but is not optimal
for most data sets with clusters of unequal shape. If the matrix A is chosen as C–1,
where C is found as the fuzzy covariance matrix

(5.30)

then the axes of the cluster are effectively scaled according to the distribution of the
data points within those clusters. This is a modification of the Mahalanobis distance
measure for “hard” data sets.56 Other forms of the matrix A are also popular, including
a diagonal matrix of the eigenvalues of the matrix C which Equation 5.30 calculates.5

Using A = C–1, and with the same calculation of membership strengths as in
Equation 5.28, clusters of essentially hyperellipsoidal shape can now be found.
Furthermore, the cluster shapes can be variant from one cluster to another, since
each cluster has its own covariance matrix C. The incidence of local optima in the
use of a variant A matrix such as this has been shown to rise drastically, affecting
almost every problem, even with small data sets.3 To compensate for this, elaborate
means of choosing initial conditions have been used, with unproven ability to
guarantee global success.23

Finally, every clustering algorithm must develop a proven means for determining
the optimal number of clusters in the data set and whether a converged set of clusters
is a “good” clustering. This is usually termed the cluster validity problem, and there

d x v x v A x vik k i A k i

T

k i= − = −( ) −( )r r r r r r2

r

r r r r

C

u x v x v

u
i

ik

q

k i k i

T

k

P

ik

q

k

n=
( ) −( ) −( )

( )
=

=

∑
∑

1

1

© 2000 by CRC Press LLC



are at least as many opinions as to what is the best set of parameters to provide this
information as there are clustering routines.

The originators of the FCM routine usually use an entropy measure to charac-
terize the effectiveness of the clustering operations, which is given by

(5.31)

where Hc = 0 for hard partitions and Hc =loga(c) for an entirely “blurred” (or
indecisive) clustering. Another related parameter, termed the partition coefficient
(F), is found by

(5.32)

Both of these parameters rely on one of the major paradoxes of fuzzy logic. That
is, although the pretext of fuzzy clustering is to incorporate more information via
using analog decision criteria, heuristically the “best” clustering is one in which the
resultant clusters are hard (have binary membership strengths). This idea is the basis
behind the use of the entropy (H) and partition coefficient (F) measures and assumes
that the optimal number of clusters is the choice for which H is minimized and F
is maximized.

The FCM algorithms already fit many of the requirements for ALOPEX training.
There is an explicit cost function which determines the “optimal” choice of cluster-
ing, a requirement for an optimization routine such as ALOPEX. Further, there is
really only one set of independent parameters which must be varied in order to
minimize the cost function of Equation 5.26: the set of cluster centers (c times m
parameters in total). All other information for the determination of membership
strengths results from the specification of cluster centers. The distances (Equation
5.29) are found in reference to the cluster centers, and the membership strengths
are based entirely on distance information (Equation 5.28).

It remains only to justify the use of ALOPEX to this application. ALOPEX will
reduce the likelihood of arriving at a locally optimum solution at the price of
increased computation time. However, most situations demand accuracy, even when
having to sacrifice increased computation time. This is especially true when you
consider that the decision of these clustering partitions is usually needed only once,
after which those partitions are used to make rapid decisions about new data.

The danger of locally optimal solutions becomes especially apparent when
clusters of nonhyperspherical shape are assumed. The distance measurements often
become very local in certain directions from the cluster center. The result is a much
more localized cost function, which is therefore much more volatile. The resulting
distances generated can often exceed the real number range of most software lan-
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guages, and special care must be taken to ensure the stability of the algorithm as it
iterates.

As mentioned before, all of the FCM family of algorithms share the danger of
locally optimal solutions. Even with a Euclidean distance measurement, it is easily
apparent that multiple runs of the FCM algorithm arrive at different solution points
for pattern spaces of reasonable complexity. A more complete example of this
behavior is shown in the context of the classification of handwritten characters.

In order to incorporate a global optimizer into the fuzzy c-means family,
ALOPEX is used to adjust the cluster centers iteratively in the steps outlined below.

1. Randomly choose initial cluster centers.
2. Find squared distances between patterns and centers.
3. Calculate membership strengths via Equation 5.28.
4. Find the current cost function J from Equation 5.26.
5. Use ALOPEX to update the centers based on recent change in the cost

function and the centers.
6. Go to step 2 until a convergence criterion is met.

The performance of this routine, and that of the feature extractor, is illustrated in
the context of two application domains. These are described in detail in Section 5.6.

Most pattern recognition schemes need to consider the assignment of labels or
pattern identities to decision codes generated by the pattern recognition system.
Most commonly, this consideration is important for supervised schemes, in which
the pattern identities are known without ambiguity. In unsupervised methods, the
notion of pattern labeling is somewhat self-defeating. That is, if the identities of the
patterns used in the training were known before training, then a supervised method
would have been more productive. If, however, the pattern labels are suppositions
or decisions with an amount of uncertainty, it would be more useful to assign labeling
based only on cluster membership strengths.

The classification of handwritten digits by this unsupervised system is an unusual
task. As mentioned before, it is motivated by a desire to improve the algorithm
without biasing the answer toward concurrence with the medical diagnoses. Para-
doxically, the labels of each of the characters used in the study (which were never
subjected to a segmentation process) are known unambiguously before training, but
the knowledge is only used in the assignment of pattern labels after training is
completed. This allows for a quantitative description of the performance of the
algorithm.

The labeling of such a scenario is performed in this research by analyzing the
constituent memberships of each cluster into an array Ω.
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where Ωij is the percentage of cluster l membership from pattern type j (for R pattern
types in the simulation, i.e., 10 digits in the character recognition problem), and
there were c clusters formed from the P training patterns. Then the degree (ψkj) to
which pattern k belongs to pattern type j is calculated as

(5.34)

The label of pattern k (Lk) is then the maximum of the degrees of memberships to
the pattern types as

(5.35)

In this way the labeling is performed not only on the membership strengths of the
patterns given by the clustering module but also on the specificity to a single pattern
type demonstrated by the clusters. That is, the labeling of a pattern with a high
membership strength to a cluster with a high population of more than one pattern
type will downplay that cluster membership strength in favor of other clusters with
more “pure” pattern types.

Most neural network decisions formulate their decisions in a highly intertwined
and complicated way. Even if the network is purely feed-forward (as is the multilayer
perceptron used in the backpropagation algorithm), there is usually only a limited
idea of the criteria that the network used in making its decision.

The neural network just presented is an intriguing exception to this category of
systems. The primary finding of the clustering module is the set of “centers” around
which the cluster boundaries are formed. Since the coordinates of this center reside
in the same space as the feature vectors of the input patterns, the cluster center
coordinates can be thought of as the feature values that would have been extracted
if there were a corresponding input pattern.

The primary question is whether, knowing these feature values, we can find out
what the input pattern would have looked like. The answer is a resounding yes! The
feature extracting neural network implements the K-L expansion, as we have already
mentioned. Since the K-L expansion is really a linear expansion of the input pattern
and since the K-L expansion is used both as a feature extractor and as a data
compression method, the feature vector can be reconstructed to find the input pattern
with the knowledge of the K-L vectors that derived the features. This is essentially
the same concept that was used to remove information from subsequent cells in the
feature extraction network applied to a different task.

Given an m-dimensional feature vector y and a desired representation of the
input pattern x, we can reconstruct an approximation to the input pattern (x) as
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(5.36)

where xi is the ith input of the vector x and Cij is the network connection strength
from input l to feature extracting cell j. The vector x is an approximation to m terms
of the K-L expansion the original input pattern x.

The realization that the cluster solutions (the centers) can be reconstructed into
the corresponding input pattern (with hopefully a small error) allows the system to
be used in an entirely new light. Not only can the system provide unsupervised
classifications of a set of patterns, but through the reconstruction of the input pattern,
a glimpse of the reasoning of the decisions can be made. This is made more apparent
when the reconstructions of specific applications are displayed, as is done in
Chapter 6 with Figure 6.8.
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6 Application to 
Handwritten Digits

Timothy J. Dasey and Evangelia Micheli-
Tzanakou

6.1 INTRODUCTION TO CHARACTER RECOGNITION

Among the widely varied applications of pattern recognition techniques, perhaps
none has been studied more intensively than the machine recognition of character
data.1 The number of potentially profitable uses for such systems is nearly limitless,
since so much of the information resident in today's industrial society is textual.
This is one reason that an application of the methods developed in this book is
devoted to the character recognition arena. Also, the nature of the task permits the
experimenter a concrete success formulation since the correct classes can be deter-
mined unambiguously. This is a much more desirable environment for the devel-
opment of a new method than the less clearly formulated class memberships of
medical data is treated in Chapter 7.

The industrial applications of character recognition (CR) systems fall into several
broad categories. One area is certainly that of data entry of handwritten information
into conventional computer systems. Such arenas are typically constrained to data
sets with limited character sets and constrained paper format (i.e., banking). This
overlaps with the text entry area, which is more concerned with the input of type-
written characters into a word processing or publishing environment. These systems
can only recognize characters of certain fonts, but with very high success (> 99.9%).
Other character recognition systems use the deciphered information to control a
process, as would happen in a post office branch with a CR system that sorts mail.
A final application area deals with providing an interface with the visually impaired,
which often involves both a recognition procedure and a translator into speech.

Any comparison of character recognition tasks must be approached cautiously,
since the difficulty of the task is determined largely by the constraints imposed on
the data and the information available to the machine. It is certainly much easier
for a machine to recognize typewritten characters than handwritten characters, since
the typewritten characters would usually follow more standard guidelines and be
less variable. Similarly, a signature verification system would likely be more suc-
cessful if the machine had access to the pen pressure, velocity, and acceleration
information at the time of the writing, as well as the shape characteristics of the
signature.
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The recognition of handwritten characters is a subset of the much more extensive
optical character recognition (OCR) problem. It deals with the recognition of single
hand-drawn characters of an alphabet that is unconnected. It must be differentiated
from script recognition, which is concerned with the recognition of handwritten
characters that may be connected and cursive. In this sense the developers of
handwritten character recognition schemes do not need to concern themselves with
the extremely challenging task of segmenting the characters.2 Still, handwritten
character recognition is not as simple a task as it may appear, since some claim3

that even human beings can make up to 4% of mistakes when reading certain
characters in the absence of context. Errors in reading handprinted characters, in
addition to deriving from the algorithm and scanning methods, can also arise
because of variations in shape due to the habits, style, mood, health, and other
conditions of the writer.4

The recognition of handwritten characters must consider at least two problems:
the means of scanning the image and the method for its recognition. The choice of
a scanning device is not considered in this discussion, but the methodology of the
recognition has been categorized as5,6

(i) Point-by-point global comparison with stored images;7

(ii) Global transformations such as Karhunen-Loève,8,9 Fourier,10,11 Walsh,12

moments of inertia,13 and others;14,15

(iii) Extraction of the local properties, such as endpoints, line crossings, and
angles;16,17,18

(iv) Use of curvature and stroke information for analysis;19,20,21 and
(v) Structural methods, including decomposition of the character into graphs

or other constituent elements.22,23

Many techniques contain portions that overlap between these categories. Each tech-
nique must be assessed by its ability to “ignore” deformation of the image caused
by noise, translation, rotations, style variations, and other distortions, as well as
practical considerations of the implementation, such as speed and complexity.

The work of Grimsdale et al. represents one of the earliest attempts at character
recognition.24 In this scheme, each digitized pattern is analyzed for shape by a
computer, which extracts heuristic features and compares them to feature values
stored on the computer. A few years later the notion of “analysis-by-synthesis” was
presented by Eden.25,26 He initially proposed that all Latin characters could be
formulated by only 18 strokes, which in turn could be generated by a subset of four
strokes, called segments. More generally, the concept was that handwritten characters
are formed by a small, finite number of schematic features, which, when known,
can be used for recognition of character data.

Perhaps more than Latin character recognition, the study of the Chinese alphabet
is a stringent test for any algorithm.27 One of the first attempts at this problem was
made by Casey and Nagy at IBM.28 A step-by-step approach was used for this large
character set, in which the first stage grouped similar characters, and then “group
masks” and “individual masks” were employed to further specify the character. This
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type of method, in which a hierarchical decision process is employed, is character-
istic of several OCR schemes.29

Other researchers implemented a more mathematically formulated process for
their systems. Tou and Gonzalez used a two-stage system, the first stage performing
a series of measurements for subgroup separation and the second extracting a set of
specialized features.30 Pavlidis and Ali used a “split-and-merge” algorithm to produce
polygonal approximations of the characters which could provide enough information
for decision making,31 while others used clustering procedures on the task.32

The review paper of Suen et al.33 discusses the efforts in the recognition of
handprinted numerals. The best classifications of over 30 studies ranged from 85 to
99.79%, but direct comparison of methods is rarely feasible. This is due to the large
discrepancy in the experimental setups. Not surprisingly, the 85% success rate used
a realistic data set collected from the U.S. Postal Service34 while the 99.79% accuracy
was derived after training writers to write numerals in specified shapes and sizes.35

In addition to this widely varying data quality, the number of training patterns was
different in each case, and some studies never reserved any patterns for testing of
the system after training.

The arrival of neural network concepts into the pattern recognition field has
spurned some wonderful successes and great disappointments in the character rec-
ognition field. Most studies use the backpropagation algorithm for the training and
network architecture.36 The recent study at AT&T Bell Laboratories is one of the
more notable projects, in which postal zip code numerals were trained with a
modified backpropagation algorithm.37 Using this challenging data set of 7291 train-
ing patterns, they were able to show 0.14% error on the training set and 5% on the
2007 pattern test set. Fukushima's Neocognitron network38 also has demonstrated
an invariance in recognizing characters of different rotations, sizes, and translations.
Other works, such as the ART topologies, have very limited success in detecting
any discrepancies among patterns.39

The testing of newly established algorithms often relies on a realistic data base
for the development of the method. Several popular data sets are widely available
for this purpose, the most popular of which are those created by Highleyman,40

Munson,41 and Suen.33 The Munson data set seems to be the most popular, chiefly
because of its difficulty. A more recent large data set was created in which the
optimal writing style for recognition was also examined.42 Still, many researchers
choose to construct their own data sets, and this is the strategy used in this work.

6.2 DATA COLLECTION

Digits were collected from 13 subjects, who were instructed to write several of each
of the digits on a clean sheet of paper. No limitations were imposed as to the style,
size, clarity, thickness, or slant of the digits. The numbers were then digitized using
a Hewlett Packard Scanjet II digital scanner using the Scanning Gallery software
package on an IBM PC. Each of the digits was segmented by hand, scanned at
300 DPI with 16 gray levels, and saved in separate files. The Scanning Gallery
program saved the files in the TIF binary file format, and a C program was necessary
to convert these files to an ASCII file format, which could be read by subsequent
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programs. A total of 1500 digits were collected in this manner, approximately 150
of each of the 10 digits types.

There are only a few assumptions that were imposed on the data. Among these are

1. The digits were to be clearly segmentable from one another. That is, a
rectangular box could be drawn around each digit so that the entire content
of one digit resided inside that box, and no portion of any other digits
were contained in that region.

2. The background was relatively noiseless so that there exists a clear thresh-
old between background and digit intensities.

3. No character was rotated more than 45° from what is normally considered
its upright position (the character was not upside down).

Figure 6.1 displays many of the digits collected with this process. It is clear that
they were written without regard to neatness, and in fact some of the digits appear
ambiguous to human classifiers. This variety was encouraged to provide a realistic
environment for the training process.

6.2.1 PREPROCESSING

The networks used for feature extraction and classification are highly dependent on
spatial overlap of digits of the same class for their success. The original digits were
written without regard to this constraint, and so it was necessary to process the digits
to alleviate differences in size, thickness, rotation, location, and intensity. This was
not expected to destroy the recognition capabilities of either humans or machine,
since the information content of the digits is largely contained in the form of the
digits. In addition, the resolution of the digits was reduced to prevent prohibitive
training time for subsequent modules.

The preprocessing was conducted in the following steps: intensity thresholding
to remove noise, center of mass adjustment, line thinning, simultaneous rotation to
standard axis and translation to standard center of mass, size determination and
fixation, reduction in resolution, and smoothing of digits as a form of anti-aliasing.
This sequence is depicted in Figure 6.2 and the methods for these steps are described
in the following paragraphs. The inputs to the preprocessing stages come from the
digitized characters from the digital scanner, while the outputs of the preprocessing
feed into the inputs of the feature extraction network.

6.2.2 NOISE THRESHOLDING

A threshold was applied to each pixel of the original digits, creating a binary image
for further processing. The threshold served a dual purpose. It eliminated weak and
extraneous information from the digit, thereby aiding a separation from the back-
ground. Second, it eliminated intensity variability from within the contour of the
digit. Each pixel of the digit was checked against the threshold value. If it was lower,
it was set to zero. If the pixel value was equal to or higher than the threshold, it was
set to a maximal value (assigned to be 2). An effective threshold was found to be
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at a gray level of 4, and this value was used for the processing of all digits. A more
flexible approach would have been to use an adaptive threshold, whereby the decid-
ing value is based on the content of each digit by analyzing an intensity histogram.
In part because of the controlled lighting conditions of the digital scanner and also
due to the assumption of a clear separation of the digit from its background, it was
felt that this additional computation was not necessary. This analysis was confirmed
by the high quality of the digits after thresholding was applied.

FIGURE 6.1 Random samples of the original unprocessed characters used in this study.

FIGURE 6.2 The sequence of steps in the preprocessing of the handwritten digits.
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6.2.3 CENTER OF MASS ADJUSTMENT

Particular problems were encountered when some digit types (nines, eights, sixes)
had small loops or regions of high density of pen marks. In such instances, the center
of mass of the digit was highly skewed toward that region, and overlap with similar
digits was often small. This also often resulted in an abnormal rotation when that
routine was applied. An adjustment was applied to each digit to expand small regions
as this and so move the center of mass toward the absolute center of the digit. In
this method, the center of mass (CM = [xc yc]T) was located and the digit split into
quadrants about this point. Each quadrant was then mapped into its corresponding
quadrant in absolute space (using the absolute center AC = [xa ya]T) by scaling each
of the regions as

(6.1)

where the old x coordinate is mapped to the new location x′. The y coordinate is
changed in the same way.

6.2.4 LINE THINNING

A thinning routine was used on the binary level digits to reduce the effects of line
thickness. The method used is familiar in the literature.43,18 Basically, the algorithm
pares away all boundary points in the digit until it is left with only skeletal pixels,
which must be kept in order to preserve the integrity of the digit contour. A pixel
is considered to be a skeletal pixel if it is part of the digit (has a nonzero value),
one of its four neighbors is zero valued, and it passes either of two conditions as
described thoroughly in a previous article.18 Several passes of this procedure are
necessary to reduce the image to one consisting of only skeletal pixels, since the
above criteria will remove only boundary pixels with each pass through the digit.

6.2.5 FIXING TO SIZE

Prior to the use of the rotation routine, the image is fixed to a standard size (60 × 100
pixels). This is necessary to avoid errors in the calculation of the digit principal axes
caused by distortions in portions of the digit. To perform this task, the corners of
the digit are located and scaled to the new size. Pixels are mapped into the nearest
pixel after the scaling factor has been applied. The operation is performed in the
same way as Equation 6.6 (a),(b), where the x coordinate magnifier is 60.0 and the
y magnifier is 100.0.

6.2.6 ROTATION

The rotation algorithm uses the coordinates of each of the nonzero valued image
pixels to find a principal vector of the image. This vector specifies the angle of the
principal axis of the digit in two-dimensional space, which can then be manipulated

′ =
−( ) −( )

−( )x
x x x x

x x
c a

c

max

max
© 2000 by CRC Press LLC



                                                                
to create a transformation matrix which will rotate the image. Each of the digits is
rotated and translated in this space to a standard location and primary axis. The
center of mass of the digit (M = [mx my]T) is located and used to find a correlation
matrix for the digit, calculated as

(6.2)

where the summation is over all r nonzero pixels in the image and the vector P is
the coordinate vector of the pixel (P = [px py]T). An eigenvector matrix E is calculated
from the 2 × 2 matrix C, encoding the angle (f) through which the primary axis of
the digit runs as

(6.3)

Each digit was rotated so that the primary axis lies vertically (90°). Each pixel
location P′ = [px′ py′]T of the rotated image is calculated from the original image as

 (6.4)

(6.5)

and the vector P contains the original pixel coordinates. The elements of P′ are
rounded to the nearest integer locations.

6.2.7 REDUCING RESOLUTION

The corners of the rotated image (smallest rectangle which completely encloses the
digit) are found and used to scale the digit to a new resolution of 16 × 16. This is
performed by calculating a new pixel coordinate [x′ y′] by

(6.6a)

and

(6.6b)
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where the nint( ) operation nearest integer takes the nearest integer of the resultant
division. A pixel in the new 16 × 16 digit is assigned a value of 2 if any of the
positive valued pixels of the higher resolution are mapped into that location. An
alternative is to assign an additional threshold to turn on a pixel in the lower
resolution image if the number of original pixels mapping into that location exceeds
the threshold. The resultant 16 × 16 images were considered generally to be of good
enough character (by subjective analysis) to avoid this additional complication.

6.2.8 BLURRING

As was mentioned previously, one of the assumptions fundamental to the success
of the subsequent neural network processors is that of a high degree of spatial overlap
of similar digits. That is, because of the hard wiring of neural inputs to image
locations, the neural networks are not position invariant. The aforementioned pre-
processing steps can aid in creating an invariance but is by no means invincible in
this task. To assist in the overlap of the digit contours of similar digits, a simplified
smoothing operation was applied to the 16 × 16 images. This operation can also be
thought of as an anti-aliasing operation. Basically, if a zero valued pixel has one or
more of its four primary neighbors with a nonzero value, that pixel is turned on with
a value of 1 (it should be remembered that the pixels on the contour were given
values of 2).

6.3 RESULTS

The feature extraction routine (ALOPEX variance maximization of network node
outputs using the architecture of Figure 5.5) was applied to each of the digits in the
data set. A random 1000 digits were selected for the training of this module, and
32 features were extracted from each 256 dimensional input image.* Since the
feature extraction module has an architecture reminiscent of a pipeline, it was more
efficient computationally to allow each neuron in the module to complete training
before any subsequent nodes were altered. Training appeared most efficient with
ALOPEX parameters of γ0 = a0 = 5.0 × 10–3, σ0 = 7.5 × 10–3, γ∞ = a∞ = 5.0 × 10–5, σ∞
= 7.5 × 10–5, and τ = 1000, and typically required between 8,000 and 12,000 iterations
per node for a good convergence, as seen by the response curve of Figure 6.3. The
vast bulk of the processing time is due to the large number of patterns (1000) used
in the training, since each pattern must be presented to the neuron during each
iteration.

The number of features to retain was calculated by plotting the eigenvalues in
descending order as generated from the conventional K-L expansion, as in Figure 6.4.
The magnitude of the eigenvalues is identical to the optimum variances of the cell
outputs in the Feature Extraction (FE) network, and it is convenient to relate the
magnitude of the eigenvalue with the amount of information the corresponding K-
L vector carries. The number of features to extract (32) was subjectively obtained

* Note that the neural networks in this study have gloval inputs and are not spatially interdependent.
This means that the preprocessed 16×16 digits are viewed as a 256-dimensional vector by the networks.
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from Figure 6.4 as the point in which the information given by an additional
eigenvector reduces to near zero. Another way of finding the optimum number of
neurons in the feature extracting network is to set a threshold. If a neuron optimizes
to an output variance below this threshold, the node is not logically added to the
network, and the training simulation is stopped. In this way both the extent of the
network and its connectivities can be adaptable in the training.

Figure 6.5 depicts the feature cell vectors as they would appear in image form.
Each connectivity strength is given a corresponding intensity (relative to the strength
of the connectivity) in the spatial position where the input to the connection arose.
Very high intensities (white) indicate large positive connections, and large negative
connections are shown as a low intensity value (black). Some of the feature “filters”
have regions of high contrast, which remind us of features in the character data set.
It is clear that the last few feature images are quite “noisy”, and this is consistent
with their low information content. Moreover, it is very obvious that these “optimal”
vectors would be very difficult to specify heuristically.

The clustering operation needed to incorporate some understanding of the num-
ber of clusters necessary to accurately describe the data. Since the ALOPEX opti-
mization for the clustering operation was quite time consuming, the standard FCM
algorithm with Euclidean distance measurements was used to find the cluster validity
measures described in Section 5.4 for as few as 2 and as many as 40 clusters. These
simulations typically required no more than 30 iterations for convergence.

In Section 5.2.1 the determination of the number of clusters necessary for any
given data space was discussed (the cluster validity problem), and the cluster
validity measures F and H were introduced. Figure 6.6 illustrates the change in
the validity measure H for the converged clusterings of the FCM algorithm from

FIGURE 6.3 A response curve vs. iteration number. A convergence can be observed in
about 10,000 to 12,000 iterations.
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FIGURE 6.4 The eigenvalue as a function of the number of the K-L expansion vector.
The eigenvalue can also be thought of as the optimum nodal output variance for the ALOPEX-
trained feature cell.

FIGURE 6.5 The 32 feature cell connection vectors displayed in image form. The vectors
are shown in descending order of their output cell variance as you view from left to right and
top to bottom.
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2 to 40 clusters (q = 1.2). It is hoped that a distinct minimum in the entropy (H)
measure and a distinct maximum in the partition coefficient (F) measure will
present themselves definitively around a certain value of c. This is not the case in
any of the plot of Figure 6.6. In fact, the data space created by these digits appears
rather homogeneous in nature, with few well-separated regions for simple cluster
identification. This may be an artifact of the high number of patterns used in the
cluster formation, which may “fill in” many of the less dense regions of feature
space used for simple cluster identification.

The credibility to the notion that the data space is highly uniform is enhanced
by the extremely low value of q which was necessary to form clusters. At q = 1.2,
the clusters are formed with very sharp decision boundaries. When a more commonly
used value (q = 2) was used, the FCM algorithm converged every cluster center to
the same point, so that the class memberships were entirely fuzzy, and no distin-
guishing information was provided.

There are two regions in the curve of Figure 6.6 in which it is reasonably safe
to assume that there are relatively “better” clusterings than for other c values. The
first is for the value of c = 2, which the curve of Figure 6.6 shows as locally optimal.
For the purposes of this study, the value of c = 2 had to be rejected simply because
of the understanding that there are at least 10 clusters desired. This is because of
the 10 digit types (zero through nine) used in the data set.

The second region occurs for values of c > 30. In this region of the curve of
Figure 6.6, there begins a “plateau” region, beyond which a mental extrapolation of

FIGURE 6.6 The variation in the entropy (H) for choices for the number of clusters (c) from
2 to 40.
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the curves would anticipate little improvement for a much higher number of clus-
ters.* The region from c = 30 to c = 40 is heuristically an acceptable region and
still maintains an adequate number of average samples (25–33) per cluster. The
heurisitic basis for the credibility of this range of c values resides in the belief that
each of the digit types can be written in, on average, 3 to 4 different styles. For
example, a one can be written as a single vertical line, or with additions of an upper
diagonal line alone or with an accompanying lower horizontal line.

It is interesting to note that there is indication that the FCM algorithm was not
finding the globally optimal solution to the clustering problems it was presented
with. One evidence of this was that the cost function value of the converged solution
was often higher than one of the intermediate solutions through which the simulation
had passed. But by far the simplest determination of locally optimal solutions is to
run the program several times with the same parameter set and the same patterns.
When this was performed at c = 30, the FCM algorithm obtained different solutions
each time, as evidenced by discrepancies in the cost function value** and cluster
membership distributions (the array F from section 5.3). This lends further credence
to the use of an optimizer in the FCM routines.

The ALOPEX-trained FCM algorithm was trained on 30 clusters for the same
1000 training patterns. In order to reduce the computational overhead, the simulation
was started by using the center coordinates converged upon by the standard FCM
algorithm. The simulation typically required between 1,000 and 2,000 iterations for
a “good” convergence and seemed to perform best with ALOPEX parameters of γ0

= a0 = 0.2, σ0 = 0.3, γ∞ = a∞ = 2.0 × 10–3, σ∞ = 3.0 × 10–3, and τ = 2500. Primarily
for computational reasons, the Euclidean distance measure was used in the
ALOPEX-trained FCM algorithm. The use of a non-Euclidean measure would have,
for this application, resulted in exorbitant execution times, since the calculation of
the covariance matrices results in substantial computational overhead. Another rea-
son for not using the fuzzy-covariance matrices in the formulation of a non-Euclidean
distance metric was that later simulations showed that such a selection seemed to
result in an unusually hard membership assignment, which may be disadvantageous
for medical applications in particular.

Table 6.1 shows the classification results for the ALOPEX-modified FCM
scheme with the labeling method described in Section 5.4. The total classification
accuracy is 86.3% for the 1000 training digits, and 86.0% for the 500 post-training
digits, as indicated in Table 6.2.

Figure 6.7 depicts the cluster centers as images (using the method of Section
5.4), to give us a flavor for the aspects of the characters which each cluster empha-
sizes. As Figure 6.7 shows, most clusters have fields that are strongly reminiscent
of one of the digit types, but there are a few clusters which are blends of portions
of several types.

* This was partially confirmed with a simulation performed at c=50, which indicated a continuation of
this trend.
** When the FCM algorithm was run twice at c=30, final cost function values of J=52422.17 and
J=56321.15 were obtained.
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Figure 6.8 shows the misclassified digits as they appeared in their original
unprocessed form, grouped by the digit type with which they were incorrectly
identified with. Some of the misclassifications can be connected directly with pre-
processing problems (i.e., improper rotations, noise in the image retained), while
others are probably due to the strong overlap between certain characteristics of the
digit types.

The data set was also tested with the backpropagation neural network training
algorithm. This technique was described thoroughly in Chapter 2. A direct compar-
ison of the backpropagation results with the ALOPEX-trained network developed
in this study is not equitable, since the backpropagation algorithm is a supervised
technique. However, since backpropagation is so widely used, and since it has been
used in the specific application of character recognition, the results that it provides
can give a calibration of the difficulty of the data set. These results can also dem-
onstrate the degree of additional accuracy which can be extracted by knowing the
pattern identities a priori.

The training was conducted with a network comprising 256 input nodes, 100
hidden nodes, and 10 output nodes on 1000 input patterns (consisting of the same
preprocessed character training set as was used in the ALOPEX-trained system).
The desired low value of the output lines was set at 0.1 and the desired high value
at 0.9. The network was trained for 300 epochs with values of h = 0.1 and a = 0.75.
Upon the completion of training, the training pattern classification error was deter-
mined by assigning it the class identity of the output node with the highest activity.

TABLE 6.1 
A Comparison of the Classification Results of the ALOPEX-Trained 
Network with the Actual Pattern Identities of the Digits Used in the 
Training. Of the 1000 Training Digits, 863 were Correctly Classified 
(86.3%).

Assigned Digit Class

0 1 2 3 4 5 6 7 8 9
0 96 0 0 0 0 0 3 0 1 0

1 0 85 3 0 6 1 0 2 3 0

2 0 2 88 0 1 0 0 6 2 1

3 0 0 1 86 0 2 0 3 7 1

4 0 0 0 0 84 6 1 0 0 9

5 0 0 0 0 0 96 2 0 2 0

6 1 1 0 0 2 14 81 0 1 0

7 0 0 0 0 11 0 0 89 0 0

8 0 1 0 5 1 1 1 0 90 1

9 2 0 0 5 12 3 0 5 5 68
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For the 1000 training patterns, the backpropagation network correctly classified all
but two of them, for an accuracy of 99.8%. The 500 patterns not used in the training
were classified with 93% accuracy, as shown in Table 6.3 below.

TABLE 6.2 
A Comparison of the Classification Results of the ALOPEX Trained 
Network with the Actual Pattern Identities of the Digits Not Used 
in the Training. Of the 500 Digits, 430 were Correctly Classified 
(86.0%).

Assigned Digit Class
0 1 2 3 4 5 6 7 8 9

0 46 0 0 0 1 0 1 0 0 0

1 0 41 3 0 3 0 1 1 1 0

2 0 6 44 0 0 0 0 2 0 0

3 0 0 0 41 0 2 0 2 4 1

4 0 0 0 0 41 2 1 0 0 4

5 0 0 0 0 0 49 1 0 0 0

6 0 0 0 0 0 5 47 0 0 0

7 0 0 1 0 2 0 0 46 0 1

8 0 0 0 2 1 1 0 0 48 0

9 2 0 0 3 12 1 0 1 2 27

FIGURE 6.7 The 30 cluster centers displayed in image form.
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6.4 DISCUSSION

Our primary interest in this application is to be able to fine-tune the training algorithm
so that it is of maximum efficiency and accuracy for subsequent medical applications.
In this regard, the classification of handwritten digits tests the limits of the applica-
bility of the method. This is because the large number of clusters, features, and
patterns stress the algorithm to its maximum load. The computing times for all
phases of the ALOPEX-trained algorithm were significant, but the accuracy of the
optimization was nearly ideal in the feature extraction training. For the clustering
module, the ALOPEX simulation for c=30 provided a moderate improvement over
the standard FCM algorithm. Clearly a much more substantial computational demand
is caused by the use of a non-Euclidean distance metric, particularly when the
calculation of a fuzzy covariance matrix is required. For a large cluster, large pattern
set application such as this, the Euclidean metric becomes one of the only feasible
possibilities.

One of the largest problems appears to be the determination of the number of
clusters necessary for an accurate depiction of the data space. Both of the cluster
validity measures we used, along with about a half dozen others not included in this
document, were not able to give us a definitive idea of the proper number of clusters.
There is a natural tendency for all of the measures to drift toward their ideal values
as the number of clusters increases, since when the number of clusters equals the
number of patterns, we have a trivial but perfect set of clusters. Whether the plateau

TABLE 6.3 
A Comparison of the Classification Results of the Backpropagation 
Trained Network with the Actual Pattern Identities of 500 Digits Not 
Used in the Training. Of the 500 Digits, 465 were Correctly Classified 
(93%).

Assigned Digit Class
0 1 2 3 4 5 6 7 8 9

0 46 0 0 0 1 0 1 0 0 0

1 0 42 2 1 0 0 1 3 1 0

2 0 5 46 1 0 0 0 0 0 0

3 1 1 0 44 0 0 0 1 0 3

4 0 0 0 0 47 0 1 0 0 0

5 0 0 0 0 0 47 1 0 1 1

6 0 0 0 0 0 0 51 0 1 0

7 0 1 1 0 0 0 0 47 0 1

8 0 0 0 1 0 1 0 0 49 1

9 0 0 0 0 1 0 0 0 1 46
© 2000 by CRC Press LLC



region of the curves of Figure 6.6 is an artifact from this tendency is unknown, but
since the number of clusters was still substantially lower than the number of patterns
(30 << 1000), the assumption is that the saturation of the validity measures after
c=30 contains real information.

As was mentioned earlier, the low value of q and the lack of a distinct local
extremum in the cluster validity measures are indicative of a data space with few if
any well-separated and compact clusters. The data space appears to be naturally
“fuzzy”. It is curious that the FCM algorithm requires a rather hard decision to
partition this fuzzy data space, while the theoretical reasoning for fuzzy logic
presumes a fuzzy algorithm as ideal for this type of decision making. In any event,
it is unclear whether the ALOPEX-trained FCM algorithm really arrives at a good
clustering of the data space, or whether there is just a large enough number of cluster
centers to “fill in” the data space.

This low value of q may account for many of the classification errors presented
in Figure 6.8. Many of the misclassified digits are visually clearly a member of
another class. The sharp decision boundaries created by the low value of q can push

FIGURE 6.8 A sample of some of the characters misclassified as (a) nines, (b) eights,
(c) sevens, (d) sixes, (e) fives, (f) fours, (g) threes, (h) twos, (i) ones, and (j) zeroes. Each
character is shown in its unprocessed form, with the preprocessed character shown directly
beneath it.
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the cluster membership strengths toward their limits (zero and one). Thus, even
though a character lies near the boundaries between clusters, it is given a strong
membership to a cluster. This pushes a marginal pattern (i.e., a pattern with 50%
similarity to each of two clusters) to become decisively incorrect! With this infor-
mation misgiven in the clustering module, no labeling scheme can reclaim a correct
classification.

The errors in the classification of the handwritten digits appear to arise from
multiple sources. A few of the characters are of uncertain identity to the authors and
several others who have viewed the data, and so it is unreasonable to expect that
the computer algorithm should perform any better. Many of the erroneous classifi-
cations can be traced to the preprocessing of the characters. This is perhaps the most
crucial and controllable portion of the system, and yet very difficult to design and
improve. Alterations to any of the algorithms seemed to improve the operations on
some characters to the detriment of several others. There are some adjustments that
can and should be made to any implementable system, including the addition of
thresholds to the resolution reduction and a contour tracing program to alleviate
noisy elements which cannot be removed by threshold analysis and yet contribute
to improper rotations.

Even with these contributions, the most significant source of error is from the
decisions made by the classification system itself. The question becomes how these
erroneous decisions can be reduced. The answer seems to lie in the selection of the
training set and other parameters of the simulation, including the selection of the
resolution of the digit representation. Subjectively, using an 8 × 8 image would
probably result in even larger classification errors, as there is barely enough resolu-
tion to represent unambiguously most of the digits with a 16 × 16 image. A slightly
higher resolution would probably provide some relief but was not feasible compu-
tationally with the speed and memory of the machines available.

Most importantly, the composition of the data set seems to be in question. Most
other studies with digit recognition have used a much larger training set, up to 10
times the size. This larger training set helps to generalize the networks trained with
supervised algorithms. The data set used in this study may have more than a “normal”
share of unusual and exceptional characters, as several of the providers of the data
(notably the authors) intentionally wrote the characters using various writing styles,
slants, and sizes.

The use of the backpropagation algorithm allows a calibration of this method
with a more widely used strategy. It appears that this data set is of comparable
difficulty to the postal zip code data used by LeCun et al.,18 since both data sets
were tested with the backpropagation technique and performed similarly. Both data
sets performed nearly perfectly in classifying the training set, and the untrained set
classified 93% accurately in this study, as opposed to 95% accuracy for that AT&T
Bell Labs group.*

Given that the unsupervised system developed in this study was not privy to the
class identities during training, the 86.3% accuracy of the method is, in our opinion,

* The slightly higher accuracy of their study is probably attributable to the slightly variant neural
architecture they used to accentuate certain inherent aspects of the digits.
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outstanding. Even more striking is the ability of the unsupervised system to gener-
alize its decision capabilities more easily than the supervised system, as indicated
by the 86.0% error in classifying the untrained data. The inherent ability of unsu-
pervised decision making to generalize more readily, and with fewer training pat-
terns, was hypothesized as one of the motivations for the construction of the system.
It is clear, at least for this application, that the decisions made by the unsupervised
classifier are more general than that of backpropagation, in that there is little loss
of information after training. It is also clear that the inherent accuracy, whether with
regard to the training set or test set, is greater for the backpropagation system.

This understanding gives credence to a recent trend to incorporate unsupervised
and supervised decision making in the same system. Each scenario is beneficial at
different times. It may be particularly useful to use an unsupervised decision until
the time that there are enough training patterns to construct supervised decisions.
One would expect that if the training set for this study were reduced (say from 1000
patterns to 500 patterns) that the unsupervised method would have classification
accuracy on the untrained data closer to the supervised decision accuracy on the
same data set.

There is one other important aspect which should be considered in the compar-
ison of these two techniques: the amount of hardware resources necessary to imple-
ment these methods in a true parallel form. For the backpropagation system, the
decisions were made with 110 computing nodes and 26,600 connections, versus 93
nodes and 17,178 connections for the ALOPEX-trained unsupervised system. The
savings in connections for the unsupervised method are the most critical, since this
is the most challenging aspect of implementing these systems in parallel (the hard-
ware interconnects require a great deal of space). Additionally, the unsupervised
system requires only 18,015 additions and 17,388 multiplications, while backprop-
agation requires 26,490 additions and 26,600 multiplications.

This discussion would not be complete without some speculation about the
strategy used for the character recognition process. It is our belief that the primary
limitation of the classification is the assumption that the spatial form of the digit is
the most important aspect of character recognition. It is more likely that an analysis
of the stroke curvatures and other contour-based principals will provide more infor-
mation to the classifier. As an example, notice how much confusion there was
(Figure 6.8) in classifying the number two from the way many people write the
number two. As difficult as this was for the software, it is remarkably easy for
humans, even though the only real distinction is the smooth curvature of the number
two versus the sharp vertices of the number one. The most promising systems appear
to be those that can retain this contour-based information of curvature and stroke
direction, or if shape information is still important, preserve the pixel neighborhoods
in the analysis.
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6.5 SUMMARY

An unsupervised pattern recognition system has been introduced, largely based on
methods originating elsewhere, but bound by their application to a parallel archi-
tecture and their ability to be trained by a single optimization algorithm. The method
has been tested in two widely varying application domains: in the classification of
handwritten digits and the diagnosis of Visual Evoked Potential signals of normal
and abnormal subjects. The scope of the second application is given in the next
chapter.

The ALOPEX-trained system has proven itself capable of strong generalizations,
as is evidenced by the application to handwritten digits, and is able to extract a
significant amount of information without the advice of an omnipotent instructor.
When properly tuned, the clustering module can make decisions of an analog nature,
so that an understanding of the certainty of its decision can be analyzed.

To artificial neural network purists, this architecture can only loosely be referred
to as a neural network. In the sense that the system is trained by example, highly
parallel, and comprised of highly interconnected elements performing simple com-
putations, the neural network label is quite fitting. If, however, the label also connotes
a system trained through local information sharing and nodal units based only on
inner product variations,* then a more general label should be applied. In the truest
sense, the backpropagation algorithm is not a “local” training regime, since the errors
propagate through the layers imaginatively and do not actually reside on any signal
lines.

The reason for mentioning this small labeling problem addresses the direction of
the neural network community as a whole. Only recently has the field begun to merge
with other more well-established disciplines, partly because of limited utility alone
and partly because of a reluctance to share in the spotlight. In the context of parallel
processing systems in general, the neural network extension has a good deal to gain
by attributing more computing power to the processing elements. From a hardware
perspective alone, the high connectivity of “pure” neural network systems has been
a technological stumbling block. Providing more power to the “neuron” means releas-
ing the tight relationship to neurobiology upon which many researchers rely.

One of the fields that has long been tightly interwoven with the neural network
field is that of combinatorial optimization. The usual hope is that the optimization
schemes, such as the ALOPEX technique used in this chapter, will provide a higher
probability of reaching a globally optimal solution. That ALOPEX, in this network
construction, can provide this is certain. Whether it is always computationally nec-
essary is less certain.** More overlooked but of primary importance is the utility
of a proven optimization scheme as a flexible and reliable design tool. Regardless
of the architecture, if the information which the user desires to retain in the network
after training is expressible through the minimization or maximization of a function
of the network, then ALOPEX can be used to find that information. In our laboratory,

* The clustering module differs from this in that some of the units perform squaring and difference
operations.
** The ALOPEX simulation results for the clustering module in the application to the VEP’s performed
no better than the standard FCM simulation.
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ALOPEX has been used as an alternative to the backpropagation training on the
multilayer perceptron architecture, as well as in the training of Hopfield nets. It
seems reasonable that specialized problems can be solved with this general tool. In
this sense ALOPEX can perform, as it has in this study, as a conversion of the
desired information onto a parallel architecture.

As hoped, the conclusion of this study has produced more questions and prom-
ising directions than answers. The character recognition arena was an interesting
demonstration, but it is unlikely that this scheme can ever compete equally with the
supervised methods. Still, the blending of unsupervised and supervised training
methods at varying times in the learning process is intriguing and probably beneficial
if a suitable application is available.
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7 An Unsupervised Neural 
Network System for 
Visual Evoked Potentials

Timothy J. Dasey and Evangelia Micheli-
Tzanakou

7.1 INTRODUCTION

Visual Evoked Potentials (VEPs) have been used in the clinical environment as a
diagnostic tool for many decades. Stochastic analysis of experimental recordings of
VEPs may yield useful information that is not well understood in its original form.
Such information may provide a good diagnostic criterion in differentiating normal
subjects from subjects with neurological diseases, as well as provide an index of
the progress of the diseases. VEPs are assumed to reveal basic functional entities in
the brain that correspond to the peaks observed in their waveforms. These peaks are
the so-called N1 (60–80 msec), P1 (90–110 msec), N2 (135–170 msec), P2 (180–200
msec) and P3 (280–350 msec).10 The ranges in the parentheses denote the time
period over which each peak is to appear in the VEP waveform of a normal subject.

VEPs have been used in the detection of certain diseases which result in cortical
malfunctioning, such as Multiple Sclerosis (MS), Alzheimer's disease, and others.11,12

The detection is currently based on distortions of the waveform and mainly on peak
occurrence outside its normal range and even peak disappearance.

More recently, the use of color vision tests on patients with MS has become
more common. Harrison et al.6 used a battery of color vision tests in their study,
with 65% of the MS subjects failing at least one of the tests. They also used VEPs
using standard black and white stimuli in their study. No correlation between the
VEPs and color vision abnormalities was found. Frederiksen et al.5 performed similar
studies. Their color vision tests revealed mostly BLUE/YELLOW defects as well
as some RED/GREEN. In our studies,8,9 the circular checkerboard pattern was shown
to be a more effective stimulus than the standard checkerboard, and some MS
color defects were detected. A prolongation of the N1 peak and a reduction of the
N2 peak were found for the circular checkerboard (CCB) pattern. Although the
color patterns produced the same overall latency effect as the black and white
patterns, there were distinct differences in the responses for the color VEPs. The
BLUE/YELLOW combination gave results most similar to that of black and white
patterns in terms of peak latencies. The other combinations, RED/GREEN and
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RED/BLUE, caused rightward shifts of the main peaks, including P1. Although there
is no guarantee that all MS patients will experience visual defects, the VEP has been
shown to be a more sensitive indicator of MS than either the Somatosensory Evoked
Potential (SEP) or the Brainstem Auditory Evoked Potential (BAER).7

In this study, we report on results from the training of an unsupervised neural
network system in the detection of differences in VEPs between normal subjects
(control) and MS patients. Since an unsupervised system does not rely on the
accuracy of any external experts but rather analyzes only the statistics of the patterns
and how they relate to one another, it is not sensitive to errors from a clinical
diagnosis. As such, it will be able to provide a more accurate generalization with
fewer training patterns.

7.2 DATA COLLECTION AND PREPROCESSING

The Visual Evoked Potentials (VEP) used in the study were collected and analyzed
in previous works.8,9 Patterns presented included the typical checkerboard but also
some atypical patterns such as “windmills”, “concentric circles”, and “circular
checkerboards”. These patterns are shown in Figure 7.1. In addition to black and
white presentations of these patterns, BLUE/YELLOW, RED/GREEN, and
RED/BLUE color combinations were used, for a total of 16 patterns presented to
each patient. The conditions for the experiment were kept as consistent as possible,
with careful control given to background noise and room lighting, stimulus size and
luminance, and patient positioning.

The normal subjects were volunteers from the Rutgers University community.
The MS patients were volunteers from around the New Jersey area (28 to 58 years
old, with a mean of 48 years), and all consented to the experimental procedure in
writing. A prescreening of the patients was made in order to determine most closely
the important factors in their medical and visual history. The MS patients were
consulted about the progress of the disease. Most of the subjects could be grouped
under that of control subjects (NL) or as afflicted with some degree of MS (as
determined by their physicians). We used 13 control, 9 definite multiple sclerosis
(DMS), and 3 probable multiple sclerosis (PMS) subjects, as classified by their
physicians. The exceptions included one patient who was originally diagnosed with
MS and later found to be suffering from neurosarcoidosis (NSD), a disease that can
mimic MS. Additionally, one of the control subjects was also categorized separately
from the other normals, since that patient had difficulty controlling the movements
of the left eye. The patient disease states were hidden from the unsupervised classifier
until all stimulations were completed.

The signals were collected with a bipolar midline electrode placement (Oz–Cz),
sampled at 1000 Hz, and averaged over 64 stimulus presentations. Patterns were
presented for 512 ms; then the pattern was reversed for another 512 ms during each
presentation. Color VEP collection was preceded by a subjective determination of
the patient's isoluminence points.
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7.3 SYSTEM DESIGN

A block diagram of the components of the system was shown in Figure 5.3. This
section summarizes the design of the unsupervised pattern recognition system used
in this research. For more details on the system, the reader should consult Chapter 5.
As seen earlier, the system first uses a feature extractor to reduce the dimensionality
of the input pattern set and derive a subset of features which a classifier can later
use more readily to assign patterns to a particular class. Both the feature extractor
and classifier are trained by the optimization routine ALOPEX11 (for a discussion
of this method see also Chapter 5).

Figure 5.5 showed a subset of the neural network used for feature extraction.
Each node in the network is trained by ALOPEX to find a set of weightings which
maximize the variance of the output of each node. Successive nodes are inhibited

FIGURE 7.1 The stimulus patterns used for collection of the VEPs, (a) checkerboard
(CB), (b) concentric circles (CC), (c) windmill (WM), and (d) circular checkerboard (CCB).
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by their predecessors, so that the feature axis, which prior nodes had chosen, is
excluded from consideration. The result is that the network of nodes finds the n
highest variance features of the input pattern space, where n is the number of nodes
in the feature extraction network. The n highest variance nodes correspond to an
n-dimensional Karhunen-Loève feature extraction. This is shown to be an optimal
linear solution when other information about the pattern identities is not available.2

In this study we chose to hide any information about the pattern classes (such as a
physician's diagnosis) from the pattern recognition system to preclude the system
from any biases.

The vectors of feature values output from the feature extraction network for each
input pattern is subjected to a fuzzy classifier, based on an ALOPEX modification
of the fuzzy C-mean clustering algorithm.1 This module seeks to select a set of
centers in the n-dimensional feature space which are representative in a geometric
sense of a set of patterns which are closely related. The number of cluster centers
to be found was hand selected based on a cluster entropy measure, which helps
describe the degree of organization of the input patterns about the cluster centers.
The result of the clustering module is a set of numbers for each pattern signifying
the degree of similarity of each pattern to each cluster center. These cluster mem-
bership strengths are then analyzed against the known pattern identities and assessed
for correlation.

Note that the entire pattern recognition system is a linear operation on the input
patterns. This may not be entirely optimal for some pattern distributions, but it does
allow the cluster centers to be reconstructed by an inverse linear operation as if they
were input patterns. This is important for an unsupervised system in helping the
users understand the reasoning of the system in making a decision about a pattern's
class identity.

7.4 RESULTS

The number of training patterns varied between 27 and 21, depending on the
stimulation pattern used to collect the VEP. When training the feature extraction
module, as discussed in Chapter 5, each neuron in the module was allowed to
complete training before any subsequent nodes were altered. Training was successful
in 20,000 to 50,000 iterations with ALOPEX parameters of γ0 = α0 = 5.0 × 10-3,
σ0 = 7.5×10–3, γ∞ = α∞ = 1.0 × 10–4, σ∞ = 1.5 × 10–4, and τ = 7500.

Figure 7.2 shows the eigenvalue (or optimal output variance) of the ith feature
node as a function of the number of features i for the patient waveforms generated
through stimulation with a BLACK/WHITE checkerboard (BWCB). The number of
features was chosen to be six, since this number seemed to be at a point after which
little additional information could be gleaned from subsequent features, as seen in
Figure 7.2. This happens to coincide with the number of K-L vectors chosen for
another study with VEPs. This choice of the number of features was used for all
patterns of stimulation, since the construction of plots similar to Figure 7.2 for other
patterns indicated the value of six also to be near the information saturation region.

Cluster module training was successful in 700 to 1500 iterations for a two-cluster
task with ALOPEX parameters of γ0 = α0 = 25.0, σ0 = 37.5, γ∞ = α∞ = 0.5, σ∞ = 0.75,
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and τ = 750 when using 27 patterns in a six-dimensional feature space. Manual
examination of an entropy cluster validity measure confirmed the best cluster sep-
aration for a two-cluster stimulation for all training pattern data sets.

The two-cluster results for a sample of the stimulation patterns are shown in the
form of a histogram in Figure 7.3. A one-dimensional display of the results is possible
for this two-dimensional output space since the cluster membership strengths for
each waveform are not independent by virtue of the fact that the sum of these cluster
membership strengths must equal 1.0. Encouragingly, most of the histograms seem
to indicate a good separation of most of the normals from the MS patients. In all
cases, the NSD and VIS subjects are grouped near the DMS patients.

As the separation for most patterns is good, there is little subjectively to decide
what are the more discriminating patterns for detecting patient abnormalities. The
exception appears to be the RED/BLUE patterns, which in general result in a larger
overlap between the patient populations. This is not true for the other color combi-
nations or for the BLACK/WHITE patterns, which in general result in little overlap
in cluster membership strengths for the subject populations.

In order to understand what waveform qualities the system is using for its
discrimination, the cluster centers are projected back into pattern space and plotted
in Figure 7.4 for a representative sample of the stimulation patterns. It should be
remembered that these are not actual waveforms, and that the six-feature data space
is missing information, although hopefully a small amount. From Figure 7.4 and
other similar plots (not shown), it appears that much of the clustering analysis is
based on amplitude determinations. This is in contrast to the common heuristic, that
demyelinating diseases present most of the information in the VEP as prolonged
latencies. A few of the reconstructed cluster centers show differing P1 latencies from
one another, but most of them indicate more pronounced differences in N2 latency.
This is in agreement with a previous study by Regan10 that alluded to the additional
diagnostic information in the N2 peak.

FIGURE 7.2 The change in converged output variance (eigenvalue) of the ith feature node
(expansion term) as i varies for the VEPs generated from the black/white checkerboard pattern.
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The clustering analysis for the VEP signals is carried one step further. Since the
cluster membership strength outputs of the system can by themselves be thought of
as a feature of the original patient disease status as extracted by stimulation with a
particular pattern, those numbers can be used for a final clustering sequence. The
aim of this step is to discount unusual attributes from an individual VEP signal
through the use of all 16 patterns. Thus if the VEP signal from any one pattern is
abnormal due to the lack of patient attentiveness or other uncontrollable factors
while signals deriving from the other patterns are “normal”, the clustering process
over all patterns will largely overlook the discrepancies from any one pattern.

The clustering of the pattern cluster 1 membership strengths was performed with
16 features (one cluster membership strength for each pattern used) with c = 2 and
q = 4.0 (see Chapter 5). The value of c was verified as before using the cluster validity
measures. The unusually high value of q = 4.0 (as opposed to the use of q = 2.0 for
the single pattern clusterings) was necessary to provide at least some degree of

FIGURE 7.3 The cluster membership histograms for all of the subjects used in the study
for stimulation with (a) a black/white checkerboard and (b) a red/green circular checkerboard.

(a)

(b)
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fuzziness in the final outcome membership strengths. When clustered at q = 2.0, the
memberships were entirely hard (took values of either zero or one), indicating a
very distinct pair of clusters.

The histogram for the final clustering step is shown in Figure 7.5 for q = 4.0.
Only 20 patients were used in this final clustering, since some patients were not
tested on all 16 patterns. This depicts a clear separation between the subject popu-
lations. In a clinical setting, a “normality” threshold might be set near 0.45, if it
were necessary. Significantly, if a diagnosis were to be based on this membership
solely, there would be no false negatives from the DMS population, and only one
PMS patient would be grouped with the normal population.

Unlike the application of this system to the classification of handwritten digits
(Chapter 6), there was not a significant amount of “leftover” data that could be used
to test the generalization capabilities of the clustering decisions. However, a few
patients were stimulated a multiple number of times with a pattern during one
experimental session. In each case (a total of 18 instances), when the test was
repeated on a subject with a duplicate pattern, the cluster membership strengths
arising from analysis of the waveform were within 0.05 of the training pattern cluster
membership strength.

7.5 DISCUSSION

In this work, an unsupervised pattern recognition system has been introduced, largely
based on methods originating elsewhere,3–4 but bound by their application to a
parallel architecture and their ability to be trained by a single optimization algorithm.
The method has been tested in two widely varying application domains: in the
classification of handwritten numerals (Chapter 6) and the clustering of Visual
Evoked Potential signals.

This VEP application set clearly highlights the more advantageous aspects of
the unsupervised routine. Through one system, the use of the VEP in the diagnosis
of MS has been reaffirmed, and a means of automating the multiparametric classi-
fication of the VEP has been implemented. The system was able to perform this
analysis without bias from other diagnostic sources, with relatively few training
patterns, and with little computational overhead.

In the process, the system has reaffirmed some of the previous notions about
what aspects of the VEP are most crucial for diagnosis, through the ability to
visualize the features it is using and to depict the cluster centers. Figure 7.4 already,
with this limited application, has pointed out some curious aspects of the decision
making of the system. For one, it is obvious that the amplitude of the signal played
a large portion in the cluster-making decisions. Some of the centers show little or
no difference in P1 latencies (Figure 7.4a), while having markedly different N2
latencies. Also, some cluster centers (Figure 7.4b) appear to have a distinctive
presence (or absence for the other center) of a P2 peak. The P2 peak is rarely used
in the literature, since most researchers consider it to be too variable as a measure.
Yet, when shown as a “trend” of the clusters derived from many of the pattern
stimulations, one of the center waveforms has a noticeable P2 peak.
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In a more general context, the use of a multiparametric decision in medical
applications is highly desirable. Physicians often have to work with a myriad of
measurements collected from several sources, decipher the relevant information from
the extraneous, and make a decision on the patient status while considering all of
the measurements together. In the VEP application domain alone, a conscientious
clinician must consider the latency and amplitude characteristics of several peaks,
the general constitution of the signal, the stimulation pattern, and other experimental

FIGURE 7.4 The cluster centers reconstructed as if they originated as pattern waveforms
for the clustering results of the (a) red/green windmill and (b) red/green concentric circles.
The solid curve represents the cluster with the most normals.
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conditions. It seems reasonable to see that a decision of this sort is a complicated
art and could be facilitated by consultation with a system like the one described.

Most computer diagnostic algorithms are of the supervised sort and typically
can do no more than duplicate the past decision of physicians. As such, they are
quite useful as quality control devices but will probably do little to enhance the
information set of a well-trained clinician. On the other hand, an unsupervised pattern
recognition scheme, such as the one in this study, can make an unbiased assessment
of a set of multidimensional measurements, create a decision, and retrace the process
to propose to the physician the information behind the decision.

The ALOPEX-trained system has proven itself capable of strong generalizations,
as evidenced by the application to handwritten digits,4 and is able to extract a
significant amount of information without the advice of an omnipotent instructor.
When properly tuned, the clustering module can make decisions of a fuzzy nature,
so that an understanding of the certainty of its decision can be analyzed. As the VEP
application has shown, the pattern recognition system can affirm the diagnostic
usefulness of the input measurement, although the reverse is not necessarily true.

As hoped, the conclusion of this study has produced more questions and prom-
ising directions than answers. It is clear that the VEP provides a useful measure of
visual defects in multiple sclerosis, but a larger patient population (including espe-
cially significant numbers of possible and probable MS subjects) would facilitate
an understanding of how well this clustering scheme can indicate gradations of
abnormality. Future directions include correlating the waveforms generated from the
cluster centers with actual trends in the data set. Still, the blending of unsupervised
and supervised training methods at varying times in the learning process is intriguing
and probably beneficial in certain application domains.

FIGURE 7.5 The cluster membership histogram for 10 NL, 5 DMS, 3 PMS, 1 NSD, and
1 VIS patient using the cluster membership strengths of each of the 16 stimulation patterns.
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8 Classification of 
Mammograms Using A 
Modular Neural Network

Lt. Col. Timothy Cooley and 
Evangelia Micheli-Tzanakou

8.1 INTRODUCTION

Mammography has been and still remains the key screening tool for breast abnor-
malities. Other modalities such as thermography, ultrasound, and magnetic resonance
imaging are available, but none compares with the ease and low cost of mammog-
raphy.19 However, mammography is not without its problems.8 Mammograms miss
approximately 10% of all breast cancers. Even with recent advances, mammography
is as much an art as it is a science. Errors may occur at many stages, starting with
the very idea itself, then in the technique of the mammographer, and then that of
the radiologist who reads the mammograms. Mammograms are, simply, specialized
X-rays12 and as such an abnormality will only appear if its absorption of the  X-ray
waves is different from the surrounding tissue.6 In some cases potential tumors are
masked, because they appear strikingly similar to dense fibrous normal breast tissue.8

Additionally, films from mammograms are notoriously difficult to read,6,36 as they
are low in contrast and high in noise. Because of these factors it is no wonder that
a recent report showed that consistency among radiologists’ interpretation of mam-
mograms was moderate, and in several cases the readings differed substantially.14

In the last few years, a lot of research has been done on mammography, using
different methods of processing and interpretation.9–11 Given the difficulty in reading
mammograms and the benefit of early detection of breast cancers, it is not surprising
that much research has been done in recent years on computerized systems to aid
in this process. This research has focused on two major areas: developing a system
which enhances mammograms and makes them easier for a radiologist to read and
developing systems that take regions of interest selected by a radiologist to determine
whether these regions are malignant or benign. The first area falls under the category
of Computer Aided Diagnosis (CAD) systems and centers on helping detect possible
cancer areas. The second area focuses on reducing the number of biopsies performed
each year and still requires the radiologist to perform the first step of the detection.
In both cases the expert (radiologist) must be part of the system.

A different approach to this problem would be to develop a system that reads
the mammogram by using the entire image and then gives a classification of that
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mammogram. A radiologist will classify a mammogram into one of five categories:
category I is completely normal; category II shows a known abnormality that has
appeared previously and is benign; category III shows an abnormality that is thought
to be benign—a follow-up sooner than normal may be recommended but a biopsy
should not be done; category IV shows a suspicious abnormality that needs further
evaluation and probably biopsy; and category V shows a definite cancerous tumor
that requires immediate attention. A computer system that could perform this type
of classification could act essentially as a second opinion for a radiologist. One
important benefit is that the computer system would be consistent and the incon-
sistencies noted by Elmore et al.14 would no longer be a problem. However, even
if the system could just delineate normal mammograms (category I) from abnormal
ones (categories II, III, IV and V) this would be of help. In this case, the system
could still be used as a second opinion and might detect some mammograms that
are classified as normal that are really abnormal. Additionally, there is some vari-
ation between radiologists over what is a category III mammogram and what is a
category IV. The difference between these two categories is somewhat subjective.
There are some radiologists who choose the cautious side and recommend a biopsy
on anything that is a change. Others will hold off on the biopsy but recommend a
follow-up in three to six months. Because of this, any system developed to classify
mammograms in all five categories would be biased toward the radiologist reading
the mammograms.*

A system that could delineate between normal and abnormal would also be of
use is in places where there is no radiologist. One of the most prominent places
where this occurs is the mobile mammography van. These vans travel primarily to
major corporations and offer women an opportunity to have a mammogram done
with minimal disruption to their routine. All they need to do is schedule approxi-
mately 30 minutes for the procedure and then they are back at work. This is much
more appealing and convenient than driving to a center and having to schedule
perhaps a couple of hours for travel time and the appointment. However, in the
mobile van, once the mammograms are taken, they are not read until the following
day. This means that if there is a need for further views or perhaps for some reason
the  X-ray is unreadable, the woman must now schedule a follow-up appointment
at a center. If the mammography technician knew at the time of the first exam
whether the mammogram was normal or abnormal, the extra views could be taken
right then.

This chapter discusses the design, methods, and results of a computer system
that classifies mammograms as normal or abnormal. The motivation for this kind of
research has been given above, but succinctly stated the system is intended to aid
in the early detection of breast cancer. The goal of this research is to develop a
system that can take a mammogram and classify it as normal or abnormal with no
expert intervention. Additionally, the system should be mobile in the sense that it
could be fielded on a mobile mammography van. For this system to function in that

* This system was designed when only four categories were used. Previously category I included those
mammograms that were totally normal as well as those that had a known abnormality. Five categories
were created when category I was split as defined above.
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capacity, it must be able to produce a reading quickly enough so that the wait time
for the patient is not unacceptable. Eventually digital mammography will be the
standard, but until that time this system must have the capability to digitize the
mammograms as well.

8.2 METHODS AND SYSTEM OVERVIEW

The system described in this paper is composed of three essential steps divided into
two developed programs. The three basic elements are image acquisition, image
transformation and preprocessing in order to extract features for classification, and
classification itself via neural networks. Acquiring, digitizing, or scanning the image
is a step which requires the use of a commercial scanning system, one that can
accurately scan transparencies or  X-ray films at a high resolution. The transforming
and processing module and the classification process are developed software and
will comprise the major part of the discussion of the next two sections. Figure 8.1
shows a block diagram of the system.

8.2.1 DATA ACQUISITION

As previously stated, digitizing a mammogram image can be accomplished by using
one of several good scanning systems commercially available. Still, there are some
issues which necessitate discussion.

A radiologist reads a mammogram looking for submillimeter microcalcifications
as well as larger nodules or tumors.32 Because of this, any system that is used to
scan these images must have a high enough resolution to capture these small micro-
calcifications. Additionally, the scanner must be able to scan  X-ray images so that
they appear to have some depth and are not just flat, two-dimensional images. By
using a scanner with a transparency adapter, images were obtained which more
closely resembled the true mammogram film. Our scanner had a resolution of 400
dots/in., corresponding to .0625 mm/pixel (or 62.5 microns [µm]), which is adequate
to capture the small microcalcifications. Additionally, the scanning system had

FIGURE 8.1 Overview of the system.
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software which allowed the contrast and brightness values to be adjusted. By using
this software the images were essentially preprocessed by enhancing the contrast
and obtaining the best possible image. While this does not reduce the noise in the
image, it is a good first preprocessing step. This resulted in files that were 3–9
Mbytes in size. The sizes vary since mammograms vary in size, and to save space
each image was windowed so that the absolute minimum area was captured. This
scanning system saved the files in Microsoft Windows 3.x bitmap (BMP) format,
and therefore, all processing assumes this format.

8.2.2 FEATURE EXTRACTION BY TRANSFORMATION

Since the raw digitized images are very large, some method of reducing the number
of data points or extracting features must be applied prior to attempting to classify
the images. Additionally, mammogram images are known to be noisy.36 However,
there are conflicting opinions as to whether it is desirable to filter the image.2,27 On
the one hand, it is difficult to distinguish noise from the microcalcifications, and
any filtering may result in essential data loss. The other opinion is that the noise
appears too much like the real microcalcifications and must be eliminated in order
to reduce the number of false-positive readings that are obtained. The ideal situation
would be to filter out the noise only and leave all the microcalcifications intact.
While the perfect ideal filter may not exist, a multiresolution technique solves some
of the problems.

The wavelet transformation with multiresolution analysis was chosen for the
first stage of the processing. Not only does the wavelet transform tend to extract the
critical areas, but the multiresolution method performs an essential task. Wavelets
and multiresolution analysis together have recently been widely used. For example,
they have been used to detect microcalcifications in mammograms,22,34,27,39 to extract
features in face recognition,41 to compress image,15,20,40 and to enhance images and
simulate human perception.26

Mammograms are difficult images as they must be viewed at many different
scales.13 At a coarse scale, a relatively large tumor may be found which would cause
a mammogram to be abnormal. These are the obvious and easier classifications. The
microcalcifications appear at a fine scale, which if found in clusters will also result
in an abnormal mammogram. These microcalcifications are extremely difficult to
detect32,36 and virtually impossible to find if searched for on a coarse scale. Multi-
resolution analysis allows the image to be analyzed at a fine scale first and then
successively coarser scales at each level.42 Additionally, wavelet functions have the
ability to be translated and dilated so that in the wavelet analysis small transient
signals are able to be detected.7,31 This ability is what enables them to extract the
small microcalcifications as the microcalcifications appear in an image, in much the
same way a transient spike appears in a signal. Furthermore, the wavelet transform
is a fast transformation. It is implemented via convolutions, which makes the com-
plexity linear in the size of the input (O(n)).4,33 While this is still a lengthy process
on large images, it is the best transformation complexity that can be achieved
currently. Multiresolution and wavelet transformations are discussed below.
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While the wavelet transform highlights the potential problem areas, it does not
reduce the number of data points. On the contrary, since the images were
transformed to five octaves, the result was 33% more data points. Therefore, a
feature extraction method was needed. Recent success with classifying images by
using invariant moments41 led to this direction. Mammography is not immune to
some of the standard problems of imaging, i.e., translation, rotation, and scaling.
It is easy to see that from one mammogram to the next, even on the same patient,
it is highly unlikely that the breast will be positioned in exactly the same place on
the  X-ray film. Additionally, rotation is a problem since the procedure itself does
not always take the mammogram from the same angle. Even without the variance
in the procedure, it would be unlikely that the breast would not be rotated on the
film. In order to obtain a better image of the tissue, the breast is compressed in
the mammogram process. Since this is a subjective process, the amount of com-
pression may vary slightly from one mammogram technician to another. This, of
course, changes the shape or the scaling of the image. Additionally, a patient may
gain or lose weight between two mammogram procedures (usually there is a year
or more between mammogram appointments). This also may affect breast size.
Because of all these variables, moments which are invariant to rotation, translation,
and scaling appeared to be a logical choice as features for the classification process.
The Hu moments18 met these qualifications and were chosen. However, the
moments were calculated not only on the original image but also on the transformed
components. This is important as the wavelet multiresolution analysis has reduced
the noise and highlighted the potential problem areas. In Shen et al.30 it is noted
that moments are susceptible to noise and may not perform well on noisy images.
The wavelet transform has reduced the noise in most cases and increased the
performance of the moments as features. Moments are discussed in more detail in
Chapter 4.

Since there are seven Hu invariant moments through the third order, the number
of data points was reduced at this step to 147 (i.e., five octaves of transforms with
four components per octave equals 20 components. Seven moments of 20 components
equals 140 moments, plus the moments of the original image equals 147). In viewing
the wavelet transforms, it was observed that the fifth octave did not contain much
information (due to most of the details being extracted at this point) and, therefore,
was not used in the classification process. This results in only 119 data points.

In the initial design, the moments were not calculated on the original image.
Because of this it was determined that some measure from the original image might
aid in the classification process. One such compact and global measure is the entropy
of the image. Widely used in information theory as a measure of the average number
of bits required to represent each symbol in an alphabet,43 it also can be a measure
of the information content of a signal or image.44

With the addition of the entropy of the image there are 120 data points per image
used in the classification process. This represents a huge reduction in dimensionality,
which is what was needed. The average mammogram image digitizes to 4.5 Mbytes.
Representing the features in 120 data points means the dimensionality has been
reduced on the order of 105.
© 2000 by CRC Press LLC



            
8.3 MODULAR NEURAL NETWORKS

Simon Haykin in his book Neural Networks — A Comprehensive Foundation16

defines a modular neural network as follows:

A neural network is said to be modular if the computation performed by the network
can be decomposed into two or more modules (subsystems) that operate on distinct
inputs without communicating with each other. The outputs of the modules are mediated
by an integrating unit that is not permitted to feed information back to the modules.
In particular, the integrating unit both (1) decides how the outputs of the modules
should be combined to form the final output of the system, and (2) decides which
modules should learn which training patterns.

Figure 8.2 shows an example structure of a modular neural network.

The idea of modular neural networks is analogous to biological systems.16,46 Our
brain has many different subsystems that process sensory inputs and then feed these
results to other central processing neurons in the brain. For instance, consider a
person who meets someone they have not seen in a long time. To remember the
identity of this person, multiple sensory inputs may be processed. Foremost perhaps
is the sense of vision, whereby one processes what the person looks like. That may
not be enough to recognize the person, as the person may have changed over the
course of a number of years. However, looks coupled with the person’s voice, the
sensory input from the ears, may be enough to provide an identity. In addition, the
olfactory system may also provide more information. In this way our biological
system makes many different observations, each processed first by some module

FIGURE 8.2 An example of a modular neural network. The boxed area highlights one
module. The module hidden layer and the neural net layer are not fully connected just for
clarity. Normally these two layers would be fully connected. Only the input layer to the
module hidden layer is modularized.
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and then the results sent to be further processed at a central location. Indeed, there
may be several layers of processing before a final result is achieved.

In addition to different modules processing the input, the same sensor may
process the input in two different ways. While the concept of a modular neural
network is based upon biological phenomena, it also makes sense from a purely
practical viewpoint. Many real-world problems have a large number of data points.
Using the large number of points as input to a fully connected multilayer perceptron
results in a very large number of weights. Just blindly trying to train a network with
this approach most often results in poor performance of the network, not to mention
long training times because of slow convergence [Haykin, 1994; Rodriguez et al.,
1996]. Sometimes there are feature extraction methods, such as those described in
Section 2, which will reduce the number of data points. However, as was the case
in this project, there are times when even then the amount of data is large. Since it
is desirable to have the minimum number of weights that will yield good perfor-
mance, a modular neural network may be a good solution. Each module is able to
compress its data effectively and extract subfeatures which then are used as input
to a fully connected neural network. Without this modularity the number of weights
in the network would be far greater.

8.4 NEURAL NETWORK TRAINING

There are two types of neural network training, supervised and unsupervised.16,23

Supervised training involves presenting examples to be learned to the network, along
with the correct output (the teacher) for each example. The calculated outputs are
compared to the known values, and the weights are adjusted so that the difference
between the outputs and the known values is minimized. The training continues (in
theory) until the output for each example is correct. Unsupervised training involves
presenting examples to the neural network but without the correct outputs. The
weights are adjusted based upon some well-defined algorithm in order to group or
cluster like examples together in a consistent manner. Unsupervised training does
not require a teacher, and because of this the network’s behavior is sometimes called
self-organizing. Many scientists believe that the brain operates more like unsuper-
vised training38 and, therefore, in order to attain learning capabilities close to those
of the brain, unsupervised training must be used. In practicality, much success has
been achieved with supervised training as well.

This project only considered supervised training. For that reason, the details of
different unsupervised training algorithms will be left to the interested reader to
research in one of the neural net references.16,17,21,23,38 While backpropagation is
perhaps the most often used supervised training algorithm, because of past perfor-
mance ALOPEX was chosen for this system.

8.5 CLASSIFICATION RESULTS

As noted in Section 8.3, classification was performed by a modular neural network
with nine total modules. The input to the modules were features extracted by taking
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the moments of the multiresolution wavelet transform of the digitized mammogram.
In addition, the moments and entropy of the original mammogram were used as
input as well.

Over 250 different experiments were performed with many different neural
network structures and parameters. There are literally thousands of combinations
that are possible. Table 8.1 lists the major variables for the classification process.

The kinds of things that can be changed for that type of variable or some possible
values for that variable are listed in parentheses. Each one of the subvariables can
take on several values of its own. Table 8.2 lists the best results achieved for certain
configurations of the neural network. All of the results listed in Table 8.2 are for
nine modules, eight with 29 inputs (28 for the one case where entropy was not
included) and one with eight inputs (seven for the one case without entropy), with
49 training mammograms and 10 test mammograms. In all cases the ALOPEX
parameters were changed by exponential decay for σ and the maximum change per
epoch, and exponential growth for γ with a scaling factor of 2500 epochs. In addition
the least squares function was used as the cost function in the ALOPEX algorithm.

The first column of the table gives the configuration of the eight modules which
use the moments of the wavelet coefficients as their input. A 29-3-8-2 configuration
means each module had 29 inputs, three hidden nodes in the module, followed by
eight nodes in the neural network integration layer, and finally two output nodes.
On the next line in the first column is the configuration of the module which processes
the moments of the original image. An 8-2 means that there are eight inputs into
the module with two hidden nodes. The neural network integration layer and output
layer are the same as the other modules since all the modules feed into these layers.
The third line in the first column of the table indicates whether or not the entropy
values were included in each module.

The second column shows how the data were normalized. All of these use some
variation of the natural logarithm (ln) and then scale these numbers to lie in the
[–1,1] interval. Most of the experiments listed perform this process twice since that
method performed much better. This is further discussed in the next section.

TABLE 8.1 
Types of Variables in the Classification Process

Neural Net Structure (hidden nodes, output nodes)

Presentation of data (by component, by octave, entropy)

Data normalization (ln and scale, tanh, sigmoidal)

ALOPEX parameters (σ, γ, and maximum change)

Change of ALOPEX parameters (exponential, tanh, sigmoidal)

Number of files for training and testing
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TABLE 8.2 
Classification Results

Neural Net 
Structure

Data 
Norm

ALOPEX 
Params 

σ, γ, Max 
Change

Trng 
%

Test 
%

Sensitivity 
% 

Specificity 
% Epochs

1 29-3-8-2 
8-2 

Entropy

Double ln 0.120–0.003
0.220–25.00 
0.175–0.025

93.9 100.0 100.0 
100.0

36200

2 29-3-8-2 
8-2 

Entropy

Double ln 0.100–0.003 
0.200–25.00 
0.170–0.025

93.9 90.0 75.0 
100.0

23400

3 29-3-8-2 
8-2 

Entropy

Double ln 0.150–0.003 
0.275–25.00 
0.200–0.025

91.8 90.0 75.0 
100.0

39400

4 29-3-8-2 
8-2 

Entropy

Double ln 0.150–0.003 
0.270–25.00 
0.225–0.025

91.8 80.0 75.0 
83.3

15400

5 29-3-9-2 
8-2 

Entropy

Double ln 0.100–0.003 
0.200–25.00 
0.150–0.025

91.8 80.0 75.0 
83.3

28600

6 29-3-8-2 
8-2 

Entropy

Double ln 0.250–0.003 
0.330–25.00 
0.400–0.025

89.8 80.0 50.0 
100.0

29200

7 29-3-7-2 
8-2 

Entropy

Double ln 0.150–0.003 
0.250–25.00 
0.225–0.025

87.8 80.0 75.0 
83.3

35400

8 28-3-8-2 
7-2 

No Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

95.9 70.0 75.0 
66.7

36000

9 29-3-8-1 
8-2 

Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

93.9 70.0 50.0 
83.3

15600

10 29-3-10-2 
8-2 

Entropy

Double ln 0.100–0.003 
0.200–25.00 
0.150–0.025

89.8 70.0 75.0 
66.7

24800

11 29-3-8-2 
8-1 

Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

79.6 60.0 50.0 
66.7

30800

12 29-3-8-2 
8-3 

Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

79.6 60.0 50.0 
66.7

13800

13 29-3-8-2 
8-2 

Entropy

Single ln 0.120–0.003 
0.220–25.00 
0.175–0.025

59.2 60.0 0.0 
100.0

5400

14 29-4-11-2 
8-2 

Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

98.0 50.0 25.0 
66.7

8800

15 29-5-12-2 
8-2 

Entropy

Double ln 0.120–0.003 
0.220–25.00 
0.175–0.025

95.9 60.0 75.0 
50.0

9200
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The third column lists the initial and final ALOPEX parameters. The top line
gives the σ values, the next line the γ values, and the last line the maximum change
values. For the final values, these are the values that the parameters would be if the
network was allowed to run long enough. The final values were reached at approx-
imately 20,000 epochs for σ and the maximum change, and 12,000 epochs for γ.

Columns four and five give the best training and testing percentages, respectively.
These percentages were taken once the network had stabilized. The graph in Figure
8.3 gives an example of the convergence of the network. As can be seen, at a low
number of epochs the network oscillates and is not stable. In the graph the network
starts to stabilize at approximately 6000 epochs. This point differs from configuration
to configuration, but all percentages were taken after that point. Also, these percent-
ages are the ones that were repeated and had consistently occurred over the final
600 epochs or so. This eliminates the single data point that may be an anomaly
because of the random nature of the ALOPEX algorithm.

Column six of Table 8.2 lists the sensitivity and specificity of the system as
measured on the test data. Sensitivity is a measure of how well the system detects
abnormal mammograms, and specificity is the gauge of the system’s performance
on normal mammograms.28 These quantities are calculated in the following way:

FIGURE 8.3 Graph of the convergence of one example of the neural network. The number
of iterations is on the x-axis, and the total error is on the y-axis. The number of iterations
only goes to 20,000, but the graph shows the early initial oscillations.
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(8.1)

(8.2)

where true positives are those mammograms that the system classifies as abnormal
that are truly abnormal, true negatives are those mammograms that the system
classifies as normal that are truly normal, false positives are those mammograms
that the system classifies as abnormal that are really normal, and false negatives are
those mammograms that the system classifies as normal that are really abnormal.
The sensitivity and specificity values are important, but because of the small test
sample, they vary widely for this system. The last column gives the number of
epochs required to obtain the performance listed in columns four and five. Most of
these experiments were run longer than this number of epochs. However, sometimes
performance, especially the testing percentage, will decrease if the network trains
beyond a certain point. Normally the experiments were run until the performance
started to degrade, and then they were stopped. Therefore, the epoch numbers
represent when the network peaked in its performance. Some of these issues are
addressed again in the next section where reasons are given to explain many of the
behaviors observed. However, many more types of experiments were run than those
listed in Table 8.2. Usually these experiments showed lower performance. The next
section will discuss them, since the path that led to the results is often more important
than the results themselves.

8.6 THE PROCESS OF OBTAINING RESULTS

As in all research projects, the data have to be examined very carefully. First, the
range of the moment values is from –1 × 1041 to 1.1 × 1041. This is a huge span,
but 85% of the raw data lie in the [–1,1] interval! In addition, the range of values
in one octave is fairly large, but the range in one component is not nearly as large.
This makes sense since the moments are based upon the pixel values. Clearly it is
easy to see that the residual has the highest concentration of large pixel values, and
therefore, these moments will be similar. Following this logic then, it would make
sense that the component that contains the vertical edges would have moment values
in the same general range as other like components. This is true for the diagonal
and horizontal components as well. Also, the moments that were highest in absolute
value normally came from the vertical and diagonal components. However, no
distinguishing characteristics were gleaned from studying the entropy values. There
appeared to be no difference between the normal and abnormal cases.

The above insights led to some changes in the neural network structure. However,
perhaps more importantly, they led to changes in the way the data were normalized.
At the start, the data were normalized by taking the natural logarithm (ln) of all
moments and then globally scaling these data onto the [–1,1] interval. What is meant

Sensitivity =  
Number of True Positives

Number of True Positives +  Number of False Negatives

Specificity =  
Number of True Negatives

Number of True Negatives +  Number of False Positives
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by global scaling is that a max and a min value are determined for the ln of all the
data points and then these values are used to scale the data by the following equation:

 (8.3)

But since most of the raw data are in the [–1,1] interval and the max and min
values are so huge in absolute value, this procedure compacts most of the data into
a very small interval. This makes classifying the data difficult since the separation
between the data is so small. Therefore, the switch was made to scaling the data
by component since the component data are similar in magnitude. In this process,
maximum and minimum values for the natural logarithms were calculated for each
component, and each component was scaled with its corresponding maximum and
minimum values. This meant that the first component moments, which are normally
very small in magnitude, did not get lost in scaling by huge numbers. These small
numbers were then scaled with other small numbers, which meant that these num-
bers then had some impact upon classification since they were no longer compacted
so tightly.

Other normalization methods were tried, such as the hyperbolic tangent and a
sigmoidal function, but none worked consistently as well as the ln and scaling
method. In addition, the best approach is to perform this method twice on the data.
Potential reasons for this are discussed in the next section.

Given the above changes, the next approach was to structure the neural network
with four modules each of which would process all the moments from one compo-
nent, not by octave. In addition, the normalization approach was changed to scale
the ln data by component (only once at this time), and the entropy values were added
to each module. These experiments started to give some better results. Training
percentages near and slightly above 80% were achieved. However, the testing per-
centages were normally between 60 and 70%.

Combining the two ideas presented up to this point increased the training per-
centage. The structure now consisted of eight modules, four of which processed the
moments by octave and four of which processed the moments by component. In
addition each module contained the entropy value, and the data were normalized
using a single ln and scale method. It was now possible to obtain training percentages
approaching and at times greater than 90%. However, the testing percentage con-
tinued to be between 60 and 70%.

At this point, analysis of the output from the trials thus far indicated that certain
mammograms were consistently misclassified. From the start, the training had been
performed on 52 mammograms, 32 normals and 20 abnormals, and the testing on
the remaining 13 in the data base, 8 of which were normal and 5 abnormals. All the
“problem” mammograms were normals that would be classified as abnormals. A
review of these mammograms showed some interesting things. In one case there
was a scar from a previous surgery and the system was picking this up as abnormal.
In other cases, metallic markers were put on the breast to mark moles or other
exterior-related abnormalities so that the radiologist would know that this spot was

scaled value =  
old value -  min

max - min
( )

( )
× −2 1
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not something internal. These markers appear as very bright small dots on the
mammogram, and the system was determining that this was abnormal. In yet another
case, there were several marks on the mammogram that were made by a person who
desired to draw attention to some area. Figure 8.4 shows an example of a mammo-
gram with metallic markers. After this review, six normals were taken out of the
data base and only 59 mammograms remained, 34 normals and 25 abnormals.

Further trials with the same structure but the new data base now quite often
showed training percentages greater than 90%. Occasionally the testing percentage
would reach 80%, but most likely would be 70%. At this time it was decided that
more information from the original image might aid the classification process.
Another module was added that only contained the seven moments from the original
image. Experiments with this structure showed a better average performance. How-
ever, for the most part the best trials were the same, training greater than 90% and
testing at 80%. In one instance training was performed to 96% and testing to 90%.
The problem was that this result could not be recreated, but in the process of
attempting to recreate this result a key concept was discovered.

Our system has the ability to gather the data from a number of files (moment
files for each mammogram, entropy files and moment files for the wavelet coeffi-
cients) and then save these data to one compact file in order to simplify future
experiments on the same data. These data can be saved at any time, even after it
has been normalized. To save one processing step the data had been saved after the
ln and scaling operation. However, in remembering the steps for that experiment it
was discovered that the data had again been normalized by performing an additional
ln and scaling operation. While those results with that neural network structure were
never consistently recreated this discovery was important. By using this double ln
and scaling method for normalization, the testing percentage was increased on the
average. Comparing row 1 and row 13 in Table 8.2 shows an extreme difference
between the two normalization methods. Fewer trials ended with a testing percentage
of 60% and many more achieved 80% or higher. However, a reasonably consistent
90% result was not yet attainable.

8.7 ALOPEX PARAMETERS

Prior to this time the ALOPEX parameters had not been varied much. During the
attempt to recreate the results, experiments were done with widely different
ALOPEX parameters. Also, at this time experiments were done with changing the
updating method for the parameters. Initially it seemed that relatively large starting
values for the ALOPEX parameters gave better performance, and, as a result, most
trials were done with initial parameters close to σ = 0.25, γ = 0.35, with the maximum
change per epoch being 0.40. Once the additional module was added, better results
were achieved with initial values much less than those listed above, such as σ = 0.12,
γ = 0.22, and the maximum change per epoch equaling 0.175. A comparison of row
1 with rows 3, 4, and 6 shows the difference that the ALOPEX parameters can make
and the effect of making the initial values smaller. Row 2 shows that making the
values smaller yet does not necessarily increase performance.
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FIGURE 8.4 Example of a mammogram with metallic markers. The two metallic markers
are easily seen as bright, perfectly round spots on the breast. These spots confused the
classification process, and this mammogram was consistently misclassified.
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While exponential decay for the maximum change and σ were always used, the
rate of decay was changed. Initially, the experiments were run with a decay rate
of 3500. This means that at every 3500 epochs the values are decreased by a factor
of e, where e is the exponential function. The slower the decay (this translates to a
larger decay rate), the more randomness exists in the system for a longer period of
time. Also, since the maximum change will be greater for a longer period of time,
the network has less stability in the early training stages. Initially this was thought
to be beneficial. However, once the network evolved into its final structure, the longer
decay rate did not perform as well. After trials with several different rates, a decay
rate of 2500 was determined to provide the best results. Figure 8.5 shows a graph
of different decay rates.

The learning rate, γ, must increase as the network starts to converge. Different
growth methods were tried as shown in Figure 8.6. The hyperbolic tangent, with a
multiplicative factor to make γ greater than 1, would appear to be an ideal growth
choice, but it initially grows too slowly. A sigmoidal function was tried, but again
the performance of the network was worse with this approach as it too grows too
slowly at high epoch numbers. The exponential growth method consistently per-
formed the best, and, while not required, the growth rate was set to be the same as
the decay rate for the maximum change and σ. Trials with other growth rates did
not provide any improvement in convergence or performance.

Additionally, the final values for the ALOPEX parameters were varied. At the
start of the experiments, these values were set to much lower numbers for σ and the
maximum change, and a much higher number for γ. The low number for the
maximum change led to training that would essentially stop once the number of
epochs was large enough so that the final value was reached. Furthermore, the lower
ending number for σ virtually eliminated the random component, thereby adding to

FIGURE 8.5 Graph of different σ decay curves. The solid line represents the decay curve
with a decay rate of 2500 epochs. The dashed line represents a rate of 4500 epochs. As shown,
σ is equal to 0.05 at 2300 epochs for the 2500 decay rate and at 4100 epochs for the 4500
decay rate.
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the slow convergence. Once these numbers were raised, the high number for γ caused
the system to have difficulty stabilizing in the midtraining stages. Therefore the
maximum γ value was lowered. The final values were not extensively varied, but
the ones given in Table 8.2 seem to perform adequately.

During all the experimentation with the ALOPEX parameters, the entropy value
was added as an input to the ninth module, which processes the moments of the
original image. This seemed to be the final change needed and led to the best results
of 93.9% training and 100% testing. While no discriminating value can be seen by
examining the entropy value, that in conjunction with the moments definitely appears
to provide good discrimination. Moreover, using these inputs, the neural network
structure was varied. Comparing rows 1, 2, and 3 with rows 5, 7, and 10 of Table
8.2, it is evident that the structure with three hidden nodes per module (except for
the ninth module with only two hidden nodes), eight integrating neural network
nodes, and two output nodes gives the best performance.

Additionally, to satisfy curiosity, experiments were performed using only the
moments of the original image and the entropy. While only seven different configu-
rations were run, the best result was with five hidden nodes in the module feeding
to four neural net nodes and then to two outputs. This gave 75.5% training and 50.0%
testing. Experiments were also performed using a fully connected neural network.
The configuration contained the same number of nodes as the best modular network,
giving 240 input nodes, 26 nodes in the first hidden layer, 8 nodes in the second
hidden layer, and 2 output nodes. This configuration usually did not converge. When
it did converge, the outputs were all zeroes, giving 57.2% training and 60.0% testing.

FIGURE 8.6 Graph of different growth curves for γ. This graph shows the difference in
possible growth curves for γ. The dotted line is the hyperbolic tangent function multiplied by
the maximum value for γ, which is set at 25. The solid line is the exponential growth curve
that was actually used. When γ reaches 25, it no longer increases. The dashed line is the
sigmoidal-like function multiplied by 25 and translated so that when n=0, it is the initial value
of γ. Note the different number of iterations needed for each curve to achieve the value of 10.
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The time to perform one experiment varies with the structure, the computer
platform used, and the number of epochs that are required; most of these trials took
between 90 and 120 min. While it may be possible to use other structures and change
the parameters such that equally good results are achieved, this system appears to
perform best with the configuration given above. The next section will explain why
the system responds as it does to changes in configuration.

8.8 GENERALIZATION

There are three areas of the results presented in the last section that require further
explanation. They are the changes in results related to the neural network structure,
the changes related to the ALOPEX parameters, and the performance related to the
data normalization techniques. Each of these will be discussed in detail. However,
a general point that needs to be made is that ALOPEX is a stochastic process that
relies upon random numbers. In addition to that, the neural network weights are
initialized to random numbers. Because of this, recreating exact results is very
difficult. This means that comparing the effects of parameter and neural network
structure changes is also a difficult task. Most often, several trials are run with a
certain configuration to get a general sense of how well that configuration performs.
Therefore, the conclusions reached are based upon general trends. Because of the
randomness involved, it is certainly possible that one very unique trial in one
configuration may be better than a second configuration, even though in general the
second configuration will give better results.

Table 8.3 shows that in 12 of the 15 cases presented, the training percentages
are at least acceptable. In many cases they are very good. However, really only the
first three cases show acceptable testing or validation percentages. The testing
percentage tells how well the network can generalize. By generalization we mean
how well the network performs on cases it has not seen but that are similar to the
training data. Humans are particularly good at this. For example, once children are
told what an automobile is, they can correctly identify another automobile even
though it may be a different color, shape, or size. Not only that but they could be
shown a picture of a boat and they will normally be able to say that it is not an
automobile. The goal is to configure the neural network so it can perform as well.

If a neural network could not generalize, it would be essentially useless. A
system that only recognizes data that it has already seen could be replaced by a

TABLE 8.3 
Comparison of ALOPEX Parameters

Row 1 Value Row 4 Value % Change

σ 0.120 0.150 + 25
γ 0.220 0.270 + 23

Max Change 0.175 0.225 + 29
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simple look-up table.37 Generalization depends on the size of the training set and
the configuration of the network.16 The generalization problem is closely related
to the problem of polynomial interpolation.37 Since the interpolation problem has
been well studied, it will be used as an example to illustrate some of the ideas of
generalization.

With enough independent variables, any number of nonconflicting* data points
can be exactly fitted by an interpolating polynomial. However, often the generali-
zation performance suffers. The same behavior is exhibited in neural networks.

As shown in Table 8.2, this system exhibits the classic generalization behavior.
In a neural network the weights are the independent variables. There is a direct
correlation from this application to the interpolation problem. In this problem a fixed
number of data points is used for training and the rest for testing. Then a neural
network structure is trained to fit those points. Neural networks with more nodes
and, therefore, more weights tend to overfit the data. The ones with too few nodes
and weights do not learn the data well enough. The network of the best size is the
one that provides the best performance in terms of training and generalization.

In order to see the trends, experiments with similar ALOPEX parameters must
be compared. The best comparison is between row 1 in Table 8.2 and rows 14 and
15. In this case we see the classic overfitting situation. The neural networks in rows
14 and 15 have more weights corresponding to more independent variables and have
a better training percentage with a much lower testing percentage. Additionally, they
converge in fewer epochs. This is a clear case of overfitting the data. The same
situation occurs when rows 1 and 2 are compared with rows 5 and 10, but it is not
as obvious from Table 8.2. Since Table 8.2 reports the best results, there are times
when the training percentage is less than the best training percentage in order to
report a better testing percentage. Both rows 5 and 10 trained to a higher percentage,
but then the testing percentage would be around 60%. Furthermore, row 7 shows
that the best performance by a network with fewer weights is not as good as
equivalent networks, such as rows 1, 2, and 3, with a greater number of free
parameters.

As stated above, the generalization performance is also dependent upon the size
of the training set.37 Therefore, the conclusion is that there is an optimum size of
the training set to maximize generalization performance.

Indeed, much research was done on this problem in the late 1980s and early
1990s.3,5,24 Virtually all of this research was done on standard feed-forward neural
networks using backpropagation as a training mechanism. This makes the applica-
tion of these results to this system difficult at best. However, if the modules of the
neural network are considered to be just compressing the input features, then the
classification process could be viewed as a standard feed-forward neural network
with one hidden layer. This would mean that the network structure would be 26
input nodes, 8 hidden nodes and 2 output nodes, all fully connected. This gives a
total of 224 weights plus a bias term at each node for a total of 260 free parameters.
Wasserman37 points out that if the neural network is viewed as a learning system,

* By nonconflicting, it is meant that for any given input there is only one output. For example, if the
input were (1,2,3) and the output were (6,3) every time (1,2,3) was input, (6,3) would be the result.
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then the Vapnik-Chervonenkis35 or VC dimension can perhaps be used to estimate
the number of training examples required for good generalization. However, for a
multilayer neural network there is no explicit formula for calculating the VC
dimension.37 The VC dimension is related to the number of weights in the neural
network,3 and this number is often used as an estimate of the VC dimension.
Wasserman37 gives a lower bound on the number of examples needed by noting
that for certain classes of problems the generalization error will be greater than or
equal to O(d/m), where O(.) means “on the order of,” d is the VC dimension, and
m is the number of training examples. Substituting the numbers from this system
if a generalization error of 10% is desired, then:

 0.1 > O(260/m) (8.4)

or

m > 2600

Obviously, the system described in this paper achieved generalizations of 90% and
better with far fewer training examples. This shows that these bounds are very
conservative in practice.

This observed contradiction between the theoretical lower bounds and the actual
behavior of the neural network in practice has been a point of contention between
theorists and practitioners.37 There may be many ways to explain the difference, one
being that many times the simplifications that must be made to calculate the bounds
on the number of training examples result in the bounds not reflecting reality.24 In
the case of our system, the answer may lie in the fact that the studies were done on
systems much different than this with a different learning algorithm. However,
another very plausible reason is that the training examples for this system may
contain a high percentage of “boundary samples”.1,24 Boundary samples, or border
patterns in a two-class problem, are examples that lie very close to the boundary
between the two classes of data. Ahmad and Tesauro showed a marked increase in
generalization performance when a large percentage of boundary samples are chosen
to be in the training set. In addition, with a high enough number of boundary samples,
the total number of examples needed to provide good generalization decreases. In
the mammography application it is difficult to determine which examples are bound-
ary samples (which is why most theoretical work is done on the XOR problem or
the majority problem). However, given the above discussion, it would appear that
the training set contains a high number of boundary samples.

As previously stated, the generalization performance is dependent on the size
of the training set and the structure of the neural network. Given this, there are then
two ways to attack the generalization problem. First, one could set the size of the
network and then collect enough data to obtain the performance desired. Or, the
data could be collected and then the network sized to provide the best results given
the data. Both methods have been approached in the above discussion. However, in
practicality, the second method, which is how this system evolved, is usually chosen.
In many situations it would be impossible or very expensive to collect more data.
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For this reason most researchers will change the network structure to accommodate
the data.

Section 8.4 discussed the resulting data normalization method that this system
uses. However, it was rather surprising that the ln and scaling approach done twice
performed that much better than just a single ln and scale. The answer behind this
lies in an analysis of the data.

As Section 8.4 listed, the moment values lie between –1 × 1041 and 1 × 1041,
with the minimum in absolute value being 1 × 10–39. Once the ln is taken, the values
range from approximately –90 to 94. When these values are scaled onto the [–1,1]
interval, the values from -90 to 0 fall into [–1,–.02], which is almost half the interval.
These values of natural logarithms from –90 to 0 were the original data values that
were in the [–1,1] interval. That is where 85% of the original moment data lie.
Therefore, the majority of the data now occupies half the interval instead of 1/1041

of the interval that it did before. This results in the data becoming much more
separable. To perform this operation again just further separates the data. Figure 8.7
shows this graphically. It is easy to see that the solid line, which is the ln(|x|), provides
a good separation on the interval [–1,1]. However, the separation is even greater
with the ln(|ln(|x|)|), as that function has a greater range. Figure 8.8 shows the same
thing, only the results are now scaled to lie on the [–1,1] interval to exactly match
the normalization of the data. While the same result can be seen, it is clearer in
Figure 8.7.

This ability to allow the majority of the data to be more influential obviously
increased the performance of the network. This says that the discriminating value

FIGURE 8.7 Graph of ln(|x|) and ln(|ln(|x|)|). The solid line shows the graph of ln(|x|) and
the dotted line the graph of ln(|ln(|x|)|). The interval between –2 and 2 is shown so that the
effect on the [–1,1] interval can be more clearly seen.
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came from this part of the data and not the few data points that were large in
magnitude.

Table 8.2 shows that the same neural network structure with different ALOPEX
parameters will produce different results. While this is not too shocking given that
the ALOPEX parameters control the amount of randomness in the system, for some
cases it seems that the parameters are too sensitive to change. For example, com-
paring row 1 with row 2 shows that a very small change in the ALOPEX parameters
led to a drop in the generalization performance. Rows 1 and 4 show an even greater
performance drop for a slightly greater change in parameters. This seems to be an
undesirable trait, and this situation warrants a closer look. Table 8.3 compares the
initial ALOPEX parameters from row 1 and row 4.

When viewed in the perspective of Table 8.3, things do not seem so out of the
ordinary. One would expect that a 25% change in parameter values would give a
change in performance. Additionally, Table 8.4 compares rows 1 and 2, which had
a small change in performance. Table 8.4 shows that a smaller percentage change
in parameters led to this smaller change in performance. This is what would be
expected and desired. The system was most sensitive to the starting point of the
weights, which are randomly set. This behavior is tied to the topography of the error
surface, which depends upon the cost or error function used and the number of
training examples. While smaller networks have advantages in generalization and
training times, as previously discussed, they tend to produce more rugged error
surfaces with fewer good solutions.29 In this case global minimization methods or
methods that use at least some global information tend to perform much better than
local minimization methods such as backpropagation.29 ALOPEX uses both global
and local information, and as such, it is a good choice in this instance.

FIGURE 8.8 Graph of ln(|x|) and ln(|ln(|x|)|) with scaling. This graph shows the same
functions as Figure 8.7, except that the result of each function is now scaled to lie on the
[–1,1] interval as were the input data.
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The behavior described above is exactly what was observed in this system. There
were few good solutions, and the ones that existed were difficult to find. To correct
this problem, additional training examples would need to be used. However, as
explained earlier in this section, additional training examples may lead to a larger
network required in order to learn the increased training set size. This, in turn, means
longer training times. Still, it may be possible to add training examples and smooth
out the error surface to alleviate some of the problem and not increase the network
size. This is one of the issues for future work.

8.9 CONCLUSIONS

We have described a system that reads a digitized mammogram and classifies it as
normal or abnormal. The results presented, even though they were generated on a
small set of data, show great promise for a system of this type to be used in a clinical
setting. With the maturation of digital mammography and the increase in processor
speed of readily available and affordable personal computers, this system could
easily be fielded on a mobile mammography van. Additional work on a larger
database is ongoing.
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9 Visual Ophthalmologist: 
An Automated System 
for Classification of 
Retinal Damage

Sergey Aleynikov and 
Evangelia Micheli-Tzanakou

9.1 INTRODUCTION

There is a vast variety of eye related diseases which leave visible artifacts on the
retinal surface. This makes it very difficult to create any automated classification
system, since the disease features vary widely. Retinal diseases are classified in two
major groups: vascular diseases, caused by circulatory disturbances of the retinal
vessels; and avascular diseases, where the rod and cone layers and the pigment
epithelium are implicated. In this research an attempt was made to classify only
diseases belonging to the first group, resulting from retinal hemorrhage.

9.2 SYSTEM OVERVIEW

The system, which was named “Visual Ophthalmologist�” (VO) is designed for a
32-bit operating system, such as Windows NT�, or Windows 95�, running on a
PC-compatible computer. The flowchart of Figure 9.1 describes the main components
of the system. The system consists of five general modules:

M1. Image Acquisition Module-Image Source
M2. Database Image Management Module
M3. Image Processing Module
M4. Feature Extraction Module
M5. Neural Network Classification Module

The system can function independently just as an image data management system
(IDMS), or it can also be used for image classification. Module M1 consists of a
Hewlett Packard 4cx desktop scanner with a transparency adapter to scan slides.
This module can be substituted with any compatible scanner capable of providing
optical resolution greater than 150 dpi. Instead of using a scanner, it is also possible
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to incorporate a digital camera into the system’s structure and use it for direct image
acquisition.

The images are scanned using proprietary software into Windows Clipboard,
and then pasted right into a newly created record in the Database Image Management
Module (M2). The Database Image Management Module (DIMM) is a database
client, which requests information from and sends information to a database server.
A server processes requests from many clients simultaneously, coordinating access-
ing and updating of data. The advantage of this type of architecture is that the image
server can be located either on a local computer or on a remote computer. The
communication of the DIMM with the database server is done through an interme-
diate layer, called Borland Database Engine (BDE). The patients’ data are organized
in three independent databases connected between each other with a parent/child
relationship in the following manner:

1. Patient database (this file contains general patient data: first and last name,
social security number, date of birth, etc.),

2. Visit database (includes information on patient’s visits, belonging to a
patient in the ‘patient database’. This information may include: date of a
visit, description, etc.),

3. Image database (consists of several fields, which include patient’s images
belonging to a specific visit in the ‘visit database’).

FIGURE 9.1  System components flowchart.
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9.2.1 IMAGE PROCESSING

The image processing tools included in this module are histogram equalization and
stretch, image compression based on a Gaussian Pyramid,2 image orientation, center
of mass determination, and a set of convolution filters. This enables the user to
acquire a more accurate and flexible classification.

9.2.2 FEATURE EXTRACTION METHODS

Module M4 in Figure 9.1 is a Feature Extraction Module. It processes selected
records in the imaging database and outputs specific features extracted from the
images. These features are saved in a file to be used in the image classification by
module M5. The feature extraction is based on three independent methods to allow
for a higher recognition rate. These methods are

1. Image Central and Invariant Moments,5

2. Image Power Spectrum, based on the F-CORE Decomposition,7 and
3. Multiresolution Wavelet Decomposition Approach.4,6

9.2.3 IMAGE CLASSIFICATION

Module M5 (Figure 9.1) of the system consists of a Modular Neural Network, which
takes the features generated and saved to a file by the Feature Extraction Module
(M4), and tests them against the information on which the neural network was
trained. This module is implemented in a separate program, which can be run
concurrently with the Visual Ophthalmologist. The reason for not incorporating this
module directly into the Visual Ophthalmologist is that since it is a versatile program
by itself, it can serve for finding solutions of many independent problems of recog-
nition/classification, similar to the ones found by the Visual Ophthalmologist project.
The neural network training in this module is based on the Algorithm of Pattern
Extraction (ALOPEX). ALOPEX is an optimization technique developed by Tza-
nakou and Harth in 1973 (for a list of references the reader is advised to look into
Reference 9) to optimize receptive field mapping in the visual system of frogs. It
has been applied to a broad variety of applications due to the fact that it has better
convergence compared to the traditional gradient methods. Some of its recent appli-
cations include face recognition8 and mammogram classification.3 ALOPEX serves
to minimize/maximize a system’s global response R, which is a function of multiple
parameters. As the parameter space of the response becomes large, it becomes more
and more complicated to find an appropriate solution. A valuable characteristic
feature of the ALOPEX algorithm is that at each iteration it considers both local
and global effects on the response function. For the complete description of the
algorithm, the reader is referred to one of the latest publications.

9.3 MODULAR NEURAL NETWORKS

The idea of building modular networks comes from the analogy with biological
systems, in which a brain (as a common example) consists of a series of interconnected
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substructures, like the auditory and visual systems, which, in turn, are further struc-
tured on more functionally independent groups of neurons.

Each level of signal processing performs its unique and independent purpose,
such that the complexity of the output of each subsystem depends on the hierarchical
level of that subsystem within the whole system. Modular neural networks can be
used in a broad variety of applications. Each module does its unique function,
providing some output to the modules in the next level. The usage of modular neural
networks is most beneficial when there are cases of missing pieces of data.1 Since
each module takes its input from several others, a missing connection between
modules would not significantly alter that module’s output.

With the introduction of object-oriented computer languages in the early 1990s,
it has become relatively easy to implement parallelism in neural network processes,
which extends the regular procedural approach to a new “biological-like” dimension.

At a level of high abstraction the network should look like the “black box” object
in Figure 9.2. It receives some input from templates stored in a file, propagates it
through all modules, and provides some output in a meaningful format. A module
is not aware of any type of processing that is going on in the rest of the network,
though it knows which particular network it belongs to in order to provide correct
references, stored in the second container, to the rest of the modules. A local error
of a template is the summation of a function of the absolute differences between
the desired and actual values of the module’s output nodes to a given template. We
use different approaches for computing the local error :

If > threshold, then if the desired output is 1, we set equal to exp(2·
) –1. (This is done because we like the values on the diagonal of the output

matrix to have an increased rate of convergence.) Otherwise is expressed as
exp –1.

The traditional training approach assumes that the local error is equal to 2.
However, we would like to make it more sensitive to a change of the argument,
which is why –1 has been chosen. In fact, to get a faster convergence of the
output that are set to 1, we use an even more sensitive function, namely exp(2· )–1.

9.4 APPLICATION TO OPHTHALMOLOGY

This section summarizes the application of the modular neural network algorithm
described in the previous section to the problem of retinal image damage classifi-
cation. Once the data were acquired and stored in the database and all features were
generated using approaches discussed earlier, we built a neural network as shown
in Figure 9.3 to classify the obtained features.

As shown in the figure, the network consists of two levels of modules. The
modules on the first level process the features generated by three feature extraction
methods consecutively: a) moments, b) F-CORE, and c) wavelet histogram. The
module on the second level serves as the classifier of the results generated by the
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FIGURE 9.2 An example of a modular perceptron-based neural network.

FIGURE 9.3 The configuration of a neural network used for retinal image classification.
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first three modules. It combines the recognition of three different methods into a
joint classification. The definition of the correct classification of the retinal hemor-
rhage is that the network should be able to tell whether or not any given image
contains a hemorrhage. In order to test the accuracy of recognition, the original
images were preclassified by a degree of hemorrhage damage to a [1, .. ,5] range,
where 1 means no or very little (< 5% of retinal surface) hemorrhage, and 5 means
very high degree of damage(> 80% of retinal surface). The architecture of each
module is as follows: the moments processing module consists of three layers of
neurons, containing respectively: 15→10→5 nodes. It contains 15*10 + 10*5 = 200
connections. The F-Core processing module consists of three layers of neurons,
containing respectively: 25→15→5 nodes. It contains 25*15 + 15*5 = 450 connec-
tions. The wavelet histogram processing module consists of three layers of neurons,
containing respectively: 25→15→5 nodes. It contains 25*15 + 15*5 = 450 connec-
tions. Finally, the merging module merges the classification of the previous three
modules into a combined form to provide the final classification of the degree of
retinal damage. It consists of 15→10→5 input/hidden/output nodes, respectively.
The number of neurons in the input layer of each module is equal to the number of
features in the corresponding method. The number of output neurons is equal to 5
(the number of hemorrhage classes). A hidden layer contains the number of neurons
equal to the average of the neurons in the input and output layers.

9.5 RESULTS

Since the Visual Ophthalmologist is a highly integrated system, the process of
obtaining results is very simple. It consists of three steps: 1) selecting the image
records containing images of interest, 2) running the feature extraction algorithms
on the selected data, and 3) classifying results using the modular neural network.

The system currently contains a database of 160 retinal images obtained from
three different sources: a) black and white sheet slides, b) loose color slides, and c)
ophthalmological atlas. All images were preprocessed before they were input into
the database. Preprocessing included

a) Image re-sizing using Gaussian compression to 256 × 256 pixels
b) Histogram stretch/equalization to enhance the quality of the image

All images stored in the databases are in the Windows Device Independent
Bitmap format (bmp). We chose this format due to compatibility with most Windows
imaging applications. All 160 images were used for testing of the system. Twenty-
five images were chosen for training of the neural network. Therefore, the network
training set contained 25 templates, each consisting of 15 + 25 + 25 = 65 features
provided by the feature extraction module.

The overall classification provided by the module of the second level in the
network’s architecture resulted in the correct classification of 127 images out of 160,
which is equal to 79.38%. For each image processed by the system, the following
rule was used to provide the image classification. As discussed in the previous
section, each image could belong to one of five classes ordered by the degree of
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hemorrhage from 1 to 5. The correct recognition by the network is considered true
if its most dominant output deviates by not more than a distance of two from the
correct classification.

The modular network was also trained to 95%, and classified correctly 127 out
of 160 images, which signifies 79.38% of recognition accuracy.

9.6 DISCUSSION

The results obtained in the process of application of the four outlined methods are
mainly affected by the feature extraction criteria in each method, the normalization
of data provided to a neural network, and finally the training parameters of each
network. When a classical neural network is used for classification, the convergence
is much slower and not as accurate. Although we chose a very small number of
templates for training, we still achieved a high testing performance (80%). Once our
database becomes larger, then training will be done with a larger number of templates
for each class. Undoubtedly the testing performance will be improved.
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10 A Three-Dimensional 
Neural Network 
Architecture

Evangelia Micheli-Tzanakou, 
Timothy J. Dasey, and Jeremy Bricker

10.1 INTRODUCTION

The idea behind the presented architecture was to create a pattern recognition system
using neural components. The brain was taken as a model, and although little is
known about how pattern recognition is accomplished, much more is known about
the cells that comprise the earliest levels of processing and analyzing the features
of an environment most directly. By constructing cells with similar properties to the
biological cells, we may gain an advantage in information conservation and proper
utilization of neural architectures. The most important characteristic of these cells
is their receptive field (RF). With this in mind, we could search for an adaptive
mechanism that, by changing connective strengths, could give the desired RFs.
Therefore, since we will know what information the algorithmic components are
providing, when a method is found that provides the desired cell types, we may be
able to trace back via the algorithm to see what information the neurons give.

10.2  THE NEURAL NETWORK ARCHITECTURE

The architecture chosen was that of a hierarchy of two-dimensional cell layers, each
successive layer more removed from the environment (Figure 10.1). The first layer
receives inputs from the external world and all other layers from the preceding layers.
In addition, the cells may receive lateral connections from other neighboring cells
within the same layer, depending on the particular choice of the architecture. The
interlayer feed-forward connections are chosen so that a cell feeds its connections
onto a neighborhood of cells in the lower layer. This neighborhood may have definite
bounds so that all cells within it make connections, or it may have indefinite bounds
in which the probability of a connection decreases as a Gaussian with distance.

The component cells themselves choose their outputs based on a weighted sum
of all inputs passed through a function σ, such as

 (10.1)O t C O ti i j ij j( ) = −( )[ ]σ α * *Σ 1
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where Oi(t) is the output of neuron i at time interval t, Cij are the connection strengths,
bounded from [–β,β] where β is usually 1.0, and α is a constant. In the simulations,
σ is usually a sigmoid of the form

 (10.2)

where a,b,c are constants which fix the maximum value, steepness, and bias of the
sigmoid, respectively. However, if we wish to allow the inhibitory components of
the RF to be used by subsequent layers, then the sigmoid function must have a non-
zero firing level for those negative inputs. This suggests the use of a spontaneous
firing activity for all neurons. An additional requirement needed to keep the neurons
useful and “responsive” is to keep that neuron from being pushed too far into the
saturation level. If that occurs, input deviations will not be sensed well, if at all.
Since each neuron receives several inputs, it is easy for this to occur. To prevent it
from happening, α is usually chosen equal to the reciprocal of the number of
connections to neuron i, so that the neuron simply passed a weighted average of the
inputs through the sigmoid.

10.3 SIMULATIONS

A simulation usually consists of a sequence of presentations of random input patterns
to the first layer and a learning rule imposed on the connections by analysis of the
firings of the neurons. A random input was chosen so as to prevent the cells from
being biased towards any specific environmental feature. Since neighboring inputs
are uncorrelated, first layer cells that receive their influences are expected to have
synapse patterns that would similarly wander aimlessly in the learning process. The
first layer provides a spatial average of the overlying inputs. Since neighboring cells
have the greatest overlap in their neighborhoods, they tend to have firing patterns
which are most similar. This would cause cells in layer 2 to have synapses that
originated from nearby cells to want to be alike. The actual training of the connec-
tions can be done in different ways.

I) Synapses can be changed based on a variation of the Hebbian rule1 as follows:

 (10.3)

where δ is a small positive constant. Due to the correlation between neighboring
level 1 cells, the synapses to the cells in later layers would tend to want to be all
alike without additional constraints. In order to guarantee both positive and negative
synapses to every cell, an additional “resource” constraint is imposed, which takes
the form of

 (10.4)

σ x a b x c( ) = + ( )( )0 5 1. tanh* * * *

C O Oij i j= δ * *

Σ j ijC = 0
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The third restriction is a bounding of the connections to the interval [–1, 1]. A
synapse is allowed the freedom to switch from positive to negative and vice versa.
This is not expected to alter the main results but only to prevent many of the synapses
from disappearing with zero strength. Convergence usually occurs within 1000-5000
iterations, although faster convergence can be achieved with larger δ. Usually the
final state of the synapses is at either the excitatory or the inhibitory limits.

10.3.1 VISUAL RECEPTIVE FIELDS

A network was created with three layers and 128 cells per layer. A square stimulus
was assumed with 32×32 size. The maximum distance that these cells can affect is
a radius of r, with minimum weight –1 and maximum weight values of +1. The
network had a total of 7071 connections. In the training mode, the minimum stimulus
value was assumed to be zero and the maximum equal to 10. No noise was imposed
on the system. The results obtained show the emergence of cells with edge-type RFs
in layer 2 (Figure 10.2a). The orientation of the edge appears to be totally arbitrary,
even between neighboring cells. In layer 3, these edge cell RFs often conflict to give
RFs which have oblong centers and surrounds of the opposite polarity, but many
times these centers draw to the edges with further learning. Thus the final RFs often
look like an elliptical center touching the outside of the field, mostly surrounded by
a horseshoe-shaped region of opposite polarity (Figure 10.2b).

FIGURE 10.1 A schematic representation of the neural architecture.
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Figure 10.3 shows the results from a similar network, except that the minimum
weight value is –0.5, i.e., less inhibitory effects. Notice that excitation spreads more
and that the maximum amplitudes are much larger. Also notice that the layer 3 RF
is much longer than the one in layer 2.

In the frequency domain, these RFs show more fine tuning as we move to deeper
layers of the system. Figures 10.4 and 10.5 represent the power spectra of Figures
10.2 and 10.3, respectively. Also, notice that the edge effects are more obvious in
the spectra of layer 3.

II) The wider the variance of the firing rate of the cells the more information
the cells can carry. With such a supposition we can use an optimization routine to
find the values of the synapses to a cell such that the variance in the firing rate of
the cell is maximized. The optimization system is a variation of the ALOPEX
process.2 In this process two random connection patterns can be presented, and the
variance (V) of the cell output is estimated with a number of random input patterns.
Since we want the pattern of connection strengths to affect the variance and not the
strength of the connections themselves, the variance can be modified as

Figure 10.2 Receptive field characteristics for the neurons described in the text. (a) RF
of layer 2. (b) RF of layer 3. Notice the center-surround organization of layer 2 and the
elongated character of layer 3.

FIGURE 10.3 Receptive field organization for layer 2 (a) and layer 3 (b) when the inhib-
itory effects are less than in Figure 10.2. Compare the amplitudes and the spread of the RFs
to those of Figure 10.2.
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 (10.5)

The connections are then changed based on the relation between the last change in
connections and the last change in the variance, with an added noise term to prevent
local minima as follows:

(10.6)

Amazingly, with this modification, the same edge sensitive cell RFs emerge after
only about 100 iterations and remain the same until about 400 iterations. This shows
that the combination of Hebb’s rule and ALOPEX is something desirable. It might
also mean that the way in which the architecture of the network is set up biases
them toward neurons with edge detection capabilities. Work by others3 has indicated
that certain forms of the Hebb rule can be used to perform principle component
analysis, a variance maximization of sorts. In addition, both feed-forward and feed-
back connections are used, with feedback having a wider connective neighborhood
than the feed-forward connections. All connections are variable. If the inhibitory
connections are spread over a much wider area, they tend to cancel the excitatory
influence, making the Hebb changes ineffective. In future work we will include feed-
forward connections of cells with a Gaussian distribution, and with inhibitory con-
nections and excitatory connections having a different spatial standard deviation.
The present number of maximum synapses allowed does not give us the ability of
obtaining statistical significance for initial random strength generation.

III) Both feed-forward and feedback connections can be used, with the feedback
having a wider connective neighborhood than the feed-forward connections.

IV) Lateral connections on each layer are allowed and used, thus adding an extra
feature of similarity to the biological system.

FIGURE 10.4 Power spectrum of the RF in Figure 10.2. (a) layer 2, (b) layer 3. Notice
the fine tuning in layer 3. 
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If each input signal value is thought of as a dimension in parameter space, any
particular input will comprise a point in that space. The synapses of a neuron can
then be thought of as describing a vector in the same space and the output of the
neuron as the projection of the input point onto the synapse vector. If the choice of
the synapses is initially random, chances are that the projections from many different
inputs will lie close to one another, giving the neuron a response profile. Consider
this to be the response profile of a neuron before optimization. In order to better
distinguish between inputs, the synapses should be changed so that more of the
neuron range can be utilized. An intriguing choice is for the neuron to perform a
type of principal component analysis (PCA) (Karhunen-Loève feature extraction).
Principal component analysis may be approximated by a search for the vector
(described by the connection weight values), which maximizes the variance of the
cell firing level. The choice of this property may serve to partition the input space
into recognizable categories at the output. This analysis approximates the Karhunen-
Loève search for the eigenvector of the maximum eigenvalue. For layers of neurons

FIGURE 10.5 Power spectra of RFs in Figure 10.3. (a) layer 2, (b) layer 3. Compare with
Figure 10.4. The edge effect is much more pronounced.
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that have a large amount of information with near neighbors, the use of low-level
lateral inhibition should prevent the system from settling on the same vector for
each neuron, providing instead a graded topography to the layer.

Depending on the partitioning of the input space, this processing mode of
neurons could provide many different behaviors. If the input space has clusters, the
neuron may provide classification. If, on the other hand, the inputs are “randomly”
distributed in space, the neuron can choose any feature vector, but could be con-
strained by near neighbors interactions into how it forms topographic maps.

10.3.2 MODELING OF PARKINSON’S DISEASE

We have created a network with eight neural layers in addition to a layer for stimuli.
Each layer represents one physiological region of the brain or nervous system, as
described by the model of DeLong et al.4 By means of a series of excitatory and
inhibitory feed-forward and feedback synapses, the brain stem (layer 7) is relatively
active. Another layer was added to represent the motor neurons of the extremities
(head, legs, and arms). The connections from the brain stem to the extremities are
assumed to be inhibitory. Thus, in the normal state, the high activity of layer 7
subjects layer 8 to a large degree of inhibition, making this layer rather inactive.
The Parkinsonian case is simulated by cutting off connections stemming from the
input layer. When this happens, layer 7 is not excited to a degree as large as it is in
the normal case. Sequentially, a smaller amount of activity exists with which to
inhibit the extremities. This unusually high level of activation in the motor neurons
of the extremities represents the tremors present in patients suffering from Parkin-
son’s Disease.

A Pallidotomy is then simulated in the Parkinsonian scenario by destroying
groups of neurons in the Globus Pallidus Internum (or GPi, layer 4). As is evident
from DeLong’s model (Figure 10.6), this action will reduce the total amount of
activity present in the GPi, causing less inhibition to the layer following the GPi,
followed by greater excitation of the cortex, greater excitation of the brain stem, and
more inhibition to the motor neurons of the extremities, corresponding to a reduction
in tremors. The Pallidotomy brings the degrees of activation on layers between the
GPi and the extremities back to levels akin to those observed in the non-Parkinsonian
scenario. The program allows the effects of different types and locations of lesions
to be observed. In general, a lesion is targeted on the location in which the highest
degree of activity in the GPi is recorded. The network is helpful in predicting the
consequences of lesioning off-target or at a location other than the point of highest
activity. Lesioning at multiple locations or on different layers may also be simulated.

The program created a network consisting of eight layers of neurons and one
layer of input nodes. Each layer corresponds to one layer in DeLong’s model.4 On
each layer are placed 200 neurons. This large quantity of neurons is necessary in
order to visualize each layer well. The neurons are randomly scattered on each layer
within the spatial bounds of -2<x<2 and -2<y<2. The input layer consists of two
stimuli, each of which contains one input node. One stimulus is located at (–1,0)
and the other at (1,0).
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The input nodes connect to neurons on layer 1 within a radius of .5 units in the
program’s coordinate space. These connections are set at a constant value of 1. Each
half of layer 1 connects to each of layers 2 or 4 with a radius of 10 units, causing
each neuron on the left half of layer 1 to be fully interconnected with neurons on
layers 2 and each neuron on the right half of layer 1 to be fully interconnected with
neurons on layer 4 (the left of layer 1 does not connect with 4, nor the right of layer
1 with 2). The reason for this is to allow the entirety of layers 2 and 4 to play a role
in the simulation while only being exposed to effects from the correct stimulus (as
is seen in the figure). If the connections from layer 1 to layers 2 and 4 had a
connective radius of only .5 units, then only the left-hand side of layer 2 and the
right-hand side of layer 4 would be meaningful. By fully interconnecting the halves
of layer 1 to these other layers, all the neurons of layers 2 and 4 are active in the
model (technical note: the halves of layer 1 are connected to layers 2 and 4 by first
destroying all connections between layer 1 and layers 2 and 4 and then restoring
connections only between a circle on the left half of layer 1 with layer 2 and between
a circle on the right half of layer 1 with layer 4). Between all other layers of the
network, the connective areas have radii of .5 units. Connections are created as
displayed in Figure 10.6, but the initial connection strengths (except between stimuli
and layer 1) are randomly distributed between –1 and 1 (as opposed to being
uniformly inhibitory or excitatory between any two layers as the figure suggests).
Connections between stimuli and layer 1 are set at constant values of –1 or 1
(inhibitory or excitatory, as seen in Figure 10.6). In this figure thick arrows represent
excitation and thin arrows represent inhibition. For comparison, the left side of the
figure is a schematic representation of a normal subject, while the right-hand side
depicts a Parkinsonian subject.

The activation function of the neurons in the network takes the form of a
sigmoid with minimum value 0 and maximum value 1; when the sum of the inputs
equals zero, a neuron will generate an output of 0.5. Even though this propagates
a signal through the network when no stimulus exists, the conventional sigmoid
(with bounds between –1 and 1, where zero input gives zero output) would not
work well for the application in question. Assume, for instance, that layer 1 has a
highly positive activation. Then, this would give a large degree of inhibition (a
very negative input) to layer 2 (due to the negative weights of the synapses
connecting these two layers). Now, if the range of neural activation reaches below
zero, the neurons on layer 2 will fire with a highly negative activation. This negative
activation will combine with the inhibitory (negative) synapses between layers 2
and 3 to produce an excitatory (positive) input to layer 3, causing the neurons on
layer 3 to take a highly positive activation. Such a situation does not recreate the
conditions this model attempts to emulate. Therefore, the necessity arises of using
an activation function that allows the neurons only positive activation. Inhibition
and excitation are thus an immediate function of the synaptic connection strengths,
not of the neural activity. In this case, high activation on layer 1 causes a large
negative input to layer 2, creating a small positive (near zero) output on layer 2.
This small positive output on layer 2 feeds into layer 3 as a small negative input.
As DeLong’s model requires, layer 3 experiences an inhibitory input (though not
as inhibitory an input as layer 2 experienced) and thus generates a small positive
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output (though larger than the output of layer 2). Evidently, restricting the activation
function to a range between 0 and 1 is necessary in order to allow synapses to be
inhibitory or excitatory in the fashion this model requires.

The problem now facing the network is that of configuring its connection
strengths to DeLong’s model (inhibitory or excitatory as seen in the figure) while
producing little activation on layer 8 in the normal case and higher activation
(tremors) on layer 8 in the Parkinsonian case. This configuration must come about
by supervised training of the network with ALOPEX. Training is done with two
templates, one representing the normal case and the other representing the Parkin-
sonian case. In the normal case, the input stimuli both take a positive activation
(remember that the connection strengths are what create inhibition or excitation in
this model; the activation of a neuron or input node is always positive) and layer 8
(which may be considered the output layer) is to show only a small amount of
activity. The template for the Parkinsonian situation has input nodes, each of which
has an activation of zero (which is the same as cutting off the inputs), while layer
8 is forced to a higher degree of activity than in the normal state. A special bias in
the connection strengths of the network must also be implemented in order to satisfy
the condition that these connection strengths be inhibitory between certain layers
and excitatory between others (Figure 10.6).

If the network could be trained in such a manner, then a Pallidotomy could be
simulated. A specific area (or areas) of neurons on layer 4 (the GPi) would be
lesioned (killed), and the result of this lesioning would become apparent on the
activation of layer 8 (reduction of tremors in the extremities).

FIGURE 10.6 The DeLong model. Adapted from Reference 4.
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10.4  DISCUSSION

For the neural network architecture presented, certain assumptions were made and
various constraints were imposed, so that it resembled as much as possible the
biological equivalents of feature detectors and edge detectors. In dealing with the
above, the neural network can “learn” from stimuli alone, without a set of templates
with which to compare the stimuli. To deal with this, the neural network can
implement an unsupervised training with a variation of a Hebbian learning rule.2

The connection strengths among the neurons of this network (weights) thus become
the means of storing memories of the presented stimuli, where the same stimulus,
if reapplied, will bring the same output to the neural network. These outputs can
become the templates to a new neural network—to a different region or even the
same region implementing a different function. In recollection, external stimuli must
be correlated with memories already stored as templates. In the case of using another
neural network for this purpose, the ALOPEX training algorithm1 can be applied
with supervision in the form of previously stored memories.

The storage/recollection process is a dynamic one, and these networks need be
coordinated well in order that new “experiences” can affect both networks in a proper
fashion. Damage within a network may affect storage or recognition (or both).

The results of an experiment like the simulation of Parkinson’s disease as
presented here would need to be compared to actual data from the operating room
so that the validity of this network could be assessed. One way of comparing results
from the network with those from the Operating Room (OR) is by observing (quan-
titatively) how a patient’s motor activity is altered depending upon the location of
the lesion relative to points of high and low activity in the GPi. These same obser-
vations would then be made on the network. The goal of this experiment would be
to match the results of the network as closely as possible to those obtained from the
OR. The network contains many parameters that would need to be “played with” in
matching its results to real data. Some of these parameters are the connective areas,
activation function slope, magnitude of activation function range, spacing and num-
ber of neurons on a layer, connection strength range, and other network parameters,
as well as the validity of DeLong’s model itself.
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11 A Feature Extraction 
Algorithm Using 
Connectivity Strengths 
and Moment Invariants

Tae-Soo Chon and Evangelia Micheli-Tzanakou

11.1 INTRODUCTION

The ALOPEX process has been used in the past to solve various optimization
problems as in pattern recognition,9–10 visual perception,1–2 curve fitting, as well as
face recognition.11 One of the original applications was in the mapping of visual
receptive fields (RFs) in animals.6–7 In general when an optimization procedure is
used, an optimum value of a “cost” function is sought. The function is in a well-
defined domain and depends on many parameters, Ij, where j =1, …n. In this context,
the optimum has the meaning of a maximum or a minimum, depending on whether
the highest or the lowest value of the function is found. In most of the optimization
procedures, a true optimum is not found: instead a local maximum or a minimum
is achieved. Once the cost function is stuck at the local maximum or minimum,
there is no means of getting away from it. Reaching the global optimum of the cost
function thus becomes an impossibility.

Many heuristic methods have been used for different optimization problems that
scan a variety of fields.1–11 One of the most popular techniques is the simulated
annealing, first introduced by Kirkpatrick et al. in 1983.13 In this technique a “tem-
perature effect” represents all random fluctuations involved in the problem. The
temperature is gradually decreased as the system approaches an extremum. Under
the assumption that the cost function representing the system is the system’s energy
state, the lowest energy state will be achieved at zero temperature. If the temperature
is not lowered gradually and systematically but rather abruptly, a higher energy state
will be reached, which does not represent the global minimum. This can be avoided
by allowing the system to reach equilibrium before changing the temperature again
(see also Reference 12).

ALOPEX is another such optimization technique. The cost function has been
called the response of the system and represents a scalar quantity. In the application
of this paper, the parameters Ij represent the intensities of a pattern. The procedure
used is iterative where all Ij are changed simultaneously by small amounts and the
response is computed in every iteration. The intensities depend on the changes of
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the response and the changes of the intensities over the previous two iterations. A
stochastic element, an added noise, provides for the ability of the process to get
away from a local maximum or minimum.

One of the problems that ALOPEX has encountered in the past is the large
number of iterations required for convergence, especially when a χ2 approach is used
as a cost function. In pattern recognition and template matching in particular,9 if the
images used are large and complex, the speed of convergence is greatly delayed. In
this study we address the issue of the convergence speed using the concept of
“connectivity strengths” of the templates in conjunction with moment invariant
measures.

11.2 ALOPEX ALGORITHMS

11.2.1 ORIGINAL ALGORITHM

Let us assume that in general we have an array of N2 elements which represent the
parameters. An additive noise to each of these elements is denoted by rj (n), and
R(n) is the cost function of the system at the nth iteration (j = 1, 2,...,N2). The
parameters Ij(n) represent the intensities of each element in the array at iteration n
and can be found as

 (11.1)

where bj(n) is called the bias of the jth element and rj (n) is a random variable. The
biases are cumulative and represent the evolution of the pattern.

11.2.2 REINFORCEMENT RULES

The reinforcement rules can be thought of as the part of the algorithm that rewards
a parameter that contributed to an increase in response. This reward should be
cumulative, so that the random fluctuations from iteration to iteration will eventually
be overcome by the correlation that must exist between the “global” response of the
system, R(n), and the value of each parameter, Ij (n). The quantity to be modified
is bj(n). A simple reinforcement rule that has been used most often is

(11.2)

where γ is an arbitrary constant and

(11.3)

(11.4)
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In this case Equations 11.2 and 11.3 state that the bias, and hence the expectation
value of the gray level of a pixel, will be raised if, in the preceding two iterations,
the gray level for that element and the response R(n) are changed in the same
direction. Otherwise the increment to the bias will be negative or zero. Note that
the response is elicited by the whole pattern and given by the equation below:

(11.5)

where φjm is the field strength in the RF of a template m, m = 1, 2, … k and j = 1,
2, …N2. In this case we have assumed that there exist m templates to choose from
and that the process starts from a random pattern. For the first two iterations the
biases are kept constant, with an initial value chosen arbitrarily.

The total response R(n) of the process is computed by summing up the contri-
butions of the responses from each template:

(11.6)

where

(11.7)

are weighting factors for each of the templates, and m = 1, 2, … k, indicating the
individual template’s contribution to the response.

11.2.3 A GENERALIZED ALOPEX ALGORITHM

For generalization of the algorithm, the intensity of the jth element of the image Ij(n)
is expressed as a linear combination of the template intensities Ijm and their connec-
tivity strengths Pjm(n) as well as the connectivity strengths of the noise added to the
image:

(11.8)
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and where the connectivity strengths play the role of weights. Ij(n) is the intensity
of the jth element of the converging image at the nth iteration, I′jm is the intensity of
the jth element of the mth template, Pjm(n) is the connectivity strength (probability)
that I′jm could contribute to the convergence of the image at the nth iteration, and
rjk′(n) and Pjk′(n) are the random noise and its connectivity strengths (probabilities)
at the nth iteration (Pjk′ (1) = 1.0).

Regarding I′jm as a variable and Pjm(n) as its probability density function, then
the image Ij(n) can be represented as the first moment of I′jm. (i.e., the average
intensity of the mth template for pixel j). As Pjm(n) increases while it converges to
the mth template, the mth template will contribute more to the converging image. If
the connectivity strengths for all elements become 1.0, then the converging image
Ij(n) solely contains the contributions of the responsible mth template. In this case
Ij(n) is equal to I′jm and convergence has been achieved.

Connectivity strengths lie in the range of 0.0 – 1.0, and the sum of them for
each row is 1.0 (Figure 11.1b). If we imagine these connectivity strengths themselves
as a separate image of a k × N2 matrix, the convergence of the actual image to a
template is reflected in the changes of images from noise to a single bar in the
connectivity matrix (Figure 11.1a), which is equivalent to a collection of 1.0s for
the converged template, while the rest of the elements are all zeroes. Although the
real images are complex, there always exists a simple way of convergence in the
connectivity image, similar to the traditional ALOPEX procedure when used to
imitate a simple or a complex cell receptive field (RF) in the visual system of
animals.5–7 In this particular case, a complex cell RF is reduced to a simple cell RF,
using the connectivity strengths as described further.

In this study, ALOPEX is used on connectivity strengths rather than on image
intensities, as if there is a receptive field for connectivities of a k × N2 matrix. The
field strength for the RF represents the closeness of the converging image and the
templates through an adaptive process, and can be calculated in a similar manner
to the traditional model, since the image is a function of connectivity strengths
(Equation 11.8).

The connectivity RF has two controlling roles in convergence: (1) maximi-
zation of differences in connectivity strengths among templates, and (2) mini-
mization of differences in connectivity strengths within templates. Since these
maximization and minimization procedures have to be satisfied concurrently
during the converging process, two ALOPEX processes are applied in an inter-
leaved manner using three arbitrary sets of “clocks”, n – t2, n, and n + t1 where
n – 1 <(n – 1) + t1 < n – t2 < n < n + t1 <(n + 1) – t2 <n + 1 (Figure 11.2). The
overall model is described by the two processes as given by the equations below:

11.2.3.1 Process I

 (11.9)P n t B n t r n tjm jm jm+( ) = +( ) + ′ ( )1 1 1–
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(11.10)

  (11.11)

  (11.12)

 (11.13)

 (11.14)

In Equation 11.14 it is assumed that an average connectivity strength is found. This
part of the process is represented by arrows A and B between nodes (n – t2) and (n)
of Figure 11.2.

11.2.3.2 Process II

  (11.15)

(11.16)

(11.17)

 (11.18)

 (11.19)

where Bjm (n) is the bias for the connectivity strength, representing a cumulative
converging factor, r′jm (n) is the added noise, G1(n) and G2(n) are normalization
coefficients that keep the total connectivity strengths equal to 1.0, γ1 and γ2 are
scaling constants, and R1(n) and R2(n) are the responses at the nth iteration.

Minimization of connectivity differences within a template is conducted in
Process I, and the maximization of connectivity differences among templates is
accomplished in Process II. If Pjm(n) is calculated from Process II, then it generates
Pjm(n – t2), which is the average of all Pjm(n)’s within each template (arrows A in
Figure 11.2). As the response gets optimized, the reinforcement ψm (n) gets stronger,
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since the variance of the connectivities {Pm(n) – Pjm(n)}2 for elements in the same
template is also optimized. The response is given by

  (11.20)

 (11.21)

where Pm(n) is the average connectivity strength within a template, and A is a
constant.

As the connectivities are equal for all elements within the same template, the
response becomes maximum in the (n – t2)th iteration. By producing R1(n – t2) and
R1(n) from Pjm (n – t2) and Pjm (n) respectively, Pjm (n + t1) is calculated through
cross-correlations in Process I (arrows B in Figure 11.2, and Equations 11.9 – 11.14).
Since calculations on the biases can be conducted independently for each template,
parallel processing is applied here. Parallel processing may be more effectively used
if we suppose that these processes repeat many times in order to drive the connec-
tivities closer to their averages.

In Process II, Pjm{(n – 1) + t1} and Pjm (n + t1) produce R2{(n – 1) + t1} and
R2(n + t1) respectively and determine Pjm (n + 1) through the ALOPEX process
(arrows C in Figure 11.2 and Equations 11.15 – 11.19). This connectivity strength,
Pjm(n + 1), in turn is used in Process I to repeat the minimization of connectivities
within templates. This way it is possible to keep equal time differences between
consecutive iterations in each process—i.e., n – (n – t2) =(n + 1)-{(n + 1) – t2} =t2

in Process I and (n + t1)-{(n-1) + t1} ={(n + 1) + t1}-(n + t1) =1 in Process II. In
Process II, the responses for maximizing differences in connectivities among tem-
plates are mainly obtained from the degree of closeness of moment invariants
between templates (as explained below) and the converging image. As the converging
image gets closer to a template, the responses become optimal.

11.3 MOMENT INVARIANTS AND ALOPEX

Moment invariants have been used successfully in pattern recognition for many years
(for calculation of moments and their applications the reader is referred to
References 14–21 and Chapter 4). The two-dimensional moments for discrete vari-
ables are given by

(11.22)
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where I(i, j) is the (i, j)th pixel intensity, and p and q are the orders of moments.
The moment invariants are combinations of moments that have properties such

as translation, rotation, and size invariance in the corresponding images. It has been
found that the first seven moment invariants based on the first three moments are
sufficient to help in the recognition of an image.14

The response for closeness of moment invariants is given by

FIGURE 11.1 An image of connectivities in k × N2 field. The summation of connectivities
Pjm(n), for each row is 1.0. To emphasize the convergence to a “single bar”, the column that
converged is represented as black (1.0), while the others are represented as white (0.0) after
convergence. Even though the images are very different their connectivity strengths are very similar.
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 (11.23)

where

  (11.24)

where θλ(n) is the transformed λth moment invariant for the converging image at the
nth iteration, θ′λm is the log-transformed λth moment invariant for the mth template,
Wm(n) is the weighting coefficient for the mth template at the nth iteration, s is the
total number of moment invariants used in the calculation and A′ is a constant. Φm(n)
is the reinforcement factor and Wm(n) is the weighting factor of the contributing
template at iteration n.

Since it is difficult to use moment invariants directly due to their range differ-
ences, they are appropriately log-transformed. The ordinary moment invariants14 are
adjusted by normalizing and coding them in such a way that their absolute values
lie in the range of 10–1 and 10–100 before the log transformation.

The averaging effect in Process I contributes to similar connectivities for all
elements in the same template. The achievement of similarity in connectivities is
reasonable, since the template requires equal chance of representation for its ele-
ments as a contribution to the converging image. Assuming that the averaging
procedure in Process I is repeated enough times, the connectivity strengths for
elements within a template will eventually become equal, i.e., Pjm(n) = Pm(n) where
Pm(n) is the average connectivity for elements in the same template at the nth iteration.

Supposing we start with Pm(n) and the assumption that connectivity strengths
are equal for every element within the same template, Process I may be omitted.
The model is then expressed as

(11.25)

where  

(11.26)
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(11.28)

In this model, calculating the biases is simple, since only k connectivity strengths
are required, while for the previous model k × N2 calculations are needed. Making
the calculation independent of the number of elements makes it possible to handle
large images in a much simpler way. Although the connectivity strengths are provided
as a “constant (or average)” information without variability within templates, the
calculated image has N2 elements providing “local” information since Ij(n) is
expressed as the expected value for each element j of all templates (Equation 11.25).
This causes some loss of variability in images due to the constancy of Pm(n), but
the moments calculated from the constructed image are sufficiently variable.

11.4 RESULTS AND DISCUSSION

Figures 11.3 (b) and 11.4 (a) show an example of convergence with the first model
(variable connectivities within a template) when Pjm(n) is applied on five templates
of 21 × 21 pixels each. The convergence is complete before 1000 iterations are
reached, with average connectivity strength of about 80% of the maximum value
possible. The speed of convergence increased roughly more than ten times compared
to the speed of the traditional methods, where usually about 1 × 104 to 5 × 104

iterations are required for convergence.9

In order to enhance the efficiency of the system even further, another kind of
response is also incorporated in Process II. Since the achievement of convergence
is expressed as maximization of differences among connectivity strengths for all

FIGURE 11.2 A computation flow for the two inter-leaved ALOPEX processes. Average
connectivities within templates are generated (arrows A, dotted line) to proceed to Process I,
which minimizes differences in connectivities within the same template (arrows B, thin lines
carry the information). In Process II connectivities among templates are maximized (Arrows
C, heavy lines carry this information).

∆ ∆ ∆Βm mn R n P n−( ) = −( ) −( )1 1 12γ

–
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FIGURE 11.3 Examples of convergence when ALOPEX was conducted with connectivity
strength Pjm(n) on five templates of 21 × 21 elements (iteration numbers are 100, 150, 200,
and 250 from left to right at the top row and 300, 350, 400, and 600 at the bottom row). (a)
Templates. For calculating bias differences in the model responses from moment invariants
and connectivity differences among templates are combined as follows: (b) Responses from
moments are only used (λ1 = 1.0 and λ2 = 0.0 in Equation 11.29). (c) Two responses are
combined “additively” (λ1 = λ2 = 1.0). (d) Both responses are activated “cooperatively” when
the signs of both response (λ1 = λ2 = 1.0) differences are the same, otherwise λ1 = λ2 = 0.0.
(e) Both responses contribute to the calculation “alternately” (e.g., if the iteration is an odd
number, λ1 =1.0 and λ2 = 0.0, otherwise λ1 = 0.0 and λ2 = 1.0).
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templates, the variance of connectivity can be used as reinforcement for the response
function; as convergence is approached, this value increases. By adding these
responses to those obtained from the closeness of moment invariants when calcu-
lating biases, Equation 11.17 is rewritten as

(11.29)

and where

 (11.30)

  (11.31)

where λ1 and λ2 determine the contributions (weighting constants) of corresponding
responses, –Pm(n + t1) is the average connectivity within a template, –P(n + t1) is the
overall average connectivity strength, γ2 and γ3 are scaling factors and C is a constant.

Since R3 (n + t1) acts as a response, it alone can contribute to the convergence
without any effect from the responses from the moment invariants. By adjusting the
weighting constants λ1 and λ2 independently, convergence is achieved in a different
manner. It is assumed that λ1 + λ2 = 1.0, which imposes yet another normalization
on ∆Bjm.

Figures 11.3 and 11.4 show some of these results. When the R3 (n + t1) is used
alone (Figure 11.4e), the response curves appear smoother than those from R2 (n+ t1)
alone (Figure 11.4a). In this case responses from the moment invariants are not used
for the calculation of biases but only for connectivity calculations (λ2 = 1 while
λ1 = 0). In the case where responses from moment invariants are used alone, the
responses from the connectivity differences among templates do not contribute to
the calculations at all (λ2 = 0 while λ1 = 1).

The appearance of discontinuities in both the connectivity and response curves
in the case of using moment invariants (Figure 11.4a) reflects the fact that the total
information carried by moment invariants is variable during the whole convergence
process. This may be due to the fact that appearance of small disturbances (noise)
in the templates other than the converging one affects significantly the total structure
of the image even though their connectivities are small. These instabilities caused
by moments are most of the time advantageous since they help get away from local
maxima and minima. However, in some cases it has been observed that a very abrupt
divergence from the convergence point can occur. This phenomenon is under further
investigation.
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The moment invariants have yet another advantage. Since the number of the
moment invariants is much smaller than the elements of the image (s<<N2), they
help in time savings from excess calculations and at the same time help in responding
more readily to any global changes in the image. While the responses resulting from

FIGURE 11.4 Average connectivity strengths and responses when ALOPEX was con-
ducted with Pjm(n) on the five templates of 21 × 21 elements. (a) Only moment response is
used. (b) Responses from moments and connectivity differences are used “additively”. (c)
“Cooperatively”. (d) “Alternately”. (e) Only connectivity responses are activated. In (e) the
connectivity occasionally drops momentarily after convergence. This is due to the fact that
the signs of connectivity and response differences did not coincide; i.e., slight decrease in
connectivity may produce increase in responses. Hence the product of both difference terms
becomes negative, at the maximum level of connectivity. This was intensified by high con-
nectivities and can be reduced by adjusting the amplitude of bias differences or by decreasing
connectivity variabilities within templates (see Figure 11.6e).
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moment invariants generate some unstable situations in the ALOPEX process, the
response R3 (n), (Figure 11.4e) resulting from variances among template connectiv-
ities is relatively smooth, since the calculations are only based on the previous
connectivities. Due to the cross-correlation properties, the process always proceeds
to the direction of increased variances, guaranteeing the convergence in the connec-
tivity of RFs to “any” one of the templates. This implies that the responses from
the connectivity differences among templates are more sensitive to the detection of
local extrema.

The response R2(n) (Figure 11.4a) from the moment invariants seems to perform
well with respect to the overall structure of the image, being more sensitive in finding
the global extremum. However, due to the frequent changes in every iteration during
convergence, the information carried by the moments is in general more “ambigu-
ous”. In contrast, responses from connectivity differences among templates appear
to be more responsible for slow changes in the images, and they carry more infor-
mation due to the fact that the response calculations depend upon their own histo-
ries—two previous iterations—and change gradually during convergence.

As shown in Figure 11.4, the speed of convergence and the connectivity strengths
increase when the two responses are combined. In this case, the amplitude of the
response differences for both responses is adjusted to be roughly the same at the later
stages of the process. Initially R3(n) started very low and increased rapidly as the
iteration number increased. Convergence was achieved more efficiently when both
responses acted “cooperatively” (Figure 11.4c) or “additively” (Figure 11.4b) than
when the processes were alternating (Figure 11.4d). However, since many factors are

FIGURE 11.4 (Continued)
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involved in the ALOPEX process and in a complex manner, more observations may
be needed under various parameter settings to generalize the combined phenomena.

Another type of experiment was also performed in order to test the feasibility
of using moment invariants. In this, ALOPEX simulations are performed with five
input templates of translocated and rotated images of different sizes. Figure 11.5
shows an example. Convergence is achieved in a similar manner to the previous
ones since the moment invariants are set equal for the corresponding new templates.
Due to the different sizes and locations of the features to be extracted, different
image fields are produced, which affect the calculation of moments in each iteration
producing more instabilities in the system. Better convergence is obtained when the
features are larger and more toward the center of the template.

Figure 11.6 shows examples of simulation results when ALOPEX is conducted
with constant connectivity strengths within the template, Pm(n), using Equations
11.25–11.28. With similar values of parameters as in the previous model, the sim-
ulation generally led to a faster convergence. Convergence is achieved at about
100–200 iterations, roughly 10 times faster than the previous model. The connectivity
strengths also showed an improvement.

Successful results are also obtained with combined responses from moment
invariants and connectivity differences among templates in this model. To allow for
the multiple responses in calculating the biases, Equation 11.28 is rewritten as
follows:

(11.32)

As shown in Figure 11.6, convergence is enhanced. Similar patterns are observed
also in the case when variable connectivities within templates are used. Higher
discontinuities are observed in the curves when responses from moment invariants
are used (Figure 11.6a) and general enhancement of convergence when the responses
are appropriately combined (Figure 11.6b–e).

In order to test the dependence of the model on the image size, images of
256 × 256 pixels are used for templates. Figure 11.7 shows some examples of
convergence when one to three templates are used. Convergence is achieved at about
200–250 iterations with high connectivities similar to the previous cases using Pm(n).
A further enhancement of convergence is possible by using negative weights for
responses from the noise pattern (Figure 11.7d). Since the converging image is initially
closer to the noise pattern, it shows higher responses. The connectivity strengths
decrease rapidly at the early stages of the process due to the above-mentioned negative
weights of the response. Later on, the noise level drops more rapidly while conver-
gence takes place.

The above mentioned simulations demonstrate the fact that application of the
ALOPEX process on connectivity strengths improves the convergence and increases
the sensitivity of finding global and local extrema. Figure 11.8 compares the flow
charts for the ALOPEX on image intensities (traditional) (Figure 11.8a) with that
on the connectivity strengths (Figure 11.8b). By considering the connectivities as a
new image converging to the RF of a simple cell, as those found in the biological

∆ ∆ ∆ ∆ ∆B n R n P n R n P nm m m−( ) = −( ) −( ){ } + −( ) −( ){ }1 1 1 1 11 2 2 2 3 3γ λ λ γ
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visual system, the advantages of connectivity strengths and cross-correlations are
effectively integrated. Cross-correlation terms in connectivities produced an intrinsic
“drive for convergence” in the system. Consider the simple case where the connec-
tivities are constant within templates and the responses are only determined from

FIGURE 11.5 An example of convergence by an ALOPEX with Pjm(n) when templates
were rotated and translocated at different sizes. (a) Templates. (b) Convergence to a template.
Iteration numbers are 100, 150, 200 and 250 from left to right at the top row and 300, 350,
400, and 600 at the bottom row.
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the weight of the connectivity strengths. The model is then given by
Equations 11.25–11.28, except for the response which is now expressed as

(11.33)

where W′m(n) is the weight from the connectivity strengths. If the connectivity
strengths initially start with small random numbers close to zero for the templates
and 1.0 for the noise pattern, while negative (or zero) weights are given to the noise
pattern, the system converges to one of the templates (Figure 11.9), i.e., only one

FIGURE 11.6 Connectivity strengths and responses when ALOPEX was conducted with
constant connectivities Pm(n), on the five templates of 21 × 21 elements. (a) Only moment
response is used. (b) Responses from moments and connectivity differences are used “addi-
tively”. (c) “Cooperatively”. (d) “Alternately”. (e) Only connectivity responses are activated.
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Pm(n) becomes equal to 1.0 while the others are all equal to 0.0. This happens
because the response term, which is actually the sum of the squares of connectivities
[W′m(n)] proportional to Pm(n), is affected by the differences in connectivities. Thus
the sign of the response difference coincides with that of the maximum connectivity
difference, which in turn has the advantage of increasing the response, since if the
signs of the response and connectivity differences are the same, the calculated values
are positive. The maximum is obtained when only one Pm(n) is 1.0 and the rest are
all 0.0.

If we assume that the system starts with small random numbers of the same
amplitude as those of the template connectivities and ends up with only one template
having the maximum values, this procedure can be thought of as the process of
decreasing entropy while reaching the global extremum. If variations are allowed
in connectivities within templates, the convergence is slowed down depending upon
the degree of variations used.

This model is similar to other traditional neural network models in the sense
that it uses connectivity strengths that are initially random numbers and adaptively
converge to some values through an iterative procedure. However, this model has
some different characteristics: (1) the connectivities are calculated from the previous
two iterations (i.e., Pjm(n – 2), Pjm(n – 1)) and determined by cross-correlations using
response differences, (2) all parameters are changed simultaneously in each iteration,
and (3) the connectivities have direct relationships to the templates.

Since many parameters are involved in the convergence of ALOPEX and the
algorithm is not a linear process, it is not simple to analyze. Through simulations,

FIGURE 11.6 (Continued)
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however, image structures, amplitudes of noise in connectivity strengths and
responses and their weights appear to influence the convergence. In a certain range,
the high amplitude of the random noise in connectivities improves the speed of
convergence but at the same time increases instabilities in connectivities.

One problem in using moment invariants in calculating responses is the initial
distances between noise and templates. If the moment invariants of one template are
distinctively closer to those of noise, that template appears to be favored for con-
vergence. This phenomenon is being studied more closely at the present time.
However, this effect indirectly confirms the fact that responses from moment invari-
ants can direct the convergence. This is not a problem when we apply ALOPEX to
the recognition of a “biased” starting image. Considering that moment invariants
are sensitive to the overall structure of an image, a “biased” image would rapidly
change the distances in favor of the template that has similar statistics with the
“biased” image, that is an image that has been contaminated by a lot of noise and
therefore is unrecognizable. In all cases, the responses from the moment invariants
appear to “diverge” after the maximum connectivity (1.0) is reached. This is due to
the fact that the sensitivity of moment invariants near the  complete convergence is

FIGURE 11.7 Examples of convergence when ALOPEX was conducted with Pm(n) on real
template images. (a) Templates. (b) Convergence when one template was used (iteration
numbers are 10, 30, 60, and 90 from left to right at the top row and 120, 150, 200, and 300
at the bottom row). (c) Convergence when three templates were used (iteration numbers are
same as (b) except the last one, which was 250). (d) Convergence on three templates when
the response from the noise pattern had a negative effect (iteration numbers are 6, 8, 10, and
12 from left to right at the top row, and 14, 16, 18, and 20 at the bottom row).
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FIGURE 11.7 (Continued) (d. Reproduced by special permission of Playboy©1972.) 
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FIGURE 11.8 Flowcharts for ALOPEX. (a) On image intensities (traditional). (b) On
connectivity strengths.
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very high. A slight connectivity change in another template due to noise or bias
calculations will produce a new image which is in a “confusion state” between the
templates (i.e., it is a mixture of the templates under consideration). These unex-
pected changes in the moment responses may be used as an indication of reaching
complete convergence.

In that context, learning can be conceived as being the progression of conver-
gence through time. The classical “weights” of neural networks are inherent in the
connectivity curves. While in backpropagation algorithms only the final weights are
saved and can be analyzed, the connectivity curves of the present algorithm show
the history of changes, although no weights are needed for recognition. This algo-
rithm can be and has been used with the traditional neural network architectures as
well, applied directly to the templates as described in this chapter. 
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12 Multilayer Perceptrons 
with ALOPEX: 
2D-Template Matching 
and VLSI 
Implementation

Daniel A. Zahner and 
Evangelia Micheli-Tzanakou

12.1 INTRODUCTION

12.1.1 MULTILAYER PERCEPTRONS

Common network architectures consist of multiple layers of neurons, where each
neuron in layer 1 is connected to all neurons in layer 2. A three-layer feed-forward
architecture is shown in Figure 12.1. The input layer receives external stimulus, and
the output layer generates the output of the network. The hidden layer and all the
interconnections are responsible for the neurocomputation. The number of neurons
in each layer and the number of layers necessary are problem dependent. Generally,
as the number of nodes or neurons increases, problem complexity increases, as does
the time to train the network. For linear activation functions, one layer is all that is
necessary for linear separability. Additional layers are redundant,1 when linear acti-
vation functions are employed. In the nonlinear cases, using two layers increases
the nonlinear separability. Figure 12.1 shows a three-layer network, the simplest
multilayer perceptron network.

The optimal number of hidden neurons needed to perform an arbitrary mapping
is a subject of much debate. Methods used in practice are mainly intuitive determi-
nation or are found by trial and error. Mathematical derivation proves that a bound
exists on the number of hidden nodes, m, needed to map a k element input set. The
formulation is that m = k – 1 is an upper bound.2 These results are consistent with
the optimal number of hidden neurons, determined empirically in Reference 3. Others
believe the number of hidden nodes necessary to be a function of the number of the
separable regions needed as well as the dimension of the input vector.4

For most artificial neural networks there is an initial training phase in which the
interconnection strengths are adjusted until the network has a desired output. Only
© 2000 by CRC Press LLC



                                       
after training is the network capable of performing the task it was designed to do.
The training phase can be either supervised or unsupervised. In supervised learning,
there exists information about the correct or desired output for each input training
pattern presented.5 In unsupervised learning no a priori information exists, and
training depends on the properties of the patterns. Unsupervised learning is highly
dependent on the training data, and information about the proper classification is
often lacking.5 For this reason, most neural network training is supervised.

It was not until the discovery of multilayer learning algorithms that interest in
neural networks resurfaced. The most widely used training algorithm, called back-
propagation, was initially discovered by Werbos,6 although it went virtually unno-
ticed until 1985 when Parker rediscovered it.7 In 1986, Rumelhart et al.8 rediscovered
the algorithm, and called it the delta rule. Their main contribution was not the
discovery of the algorithm but their popularization of the algorithm, which has led
to a renewed interest in neural networks. Another algorithm used for multilayerper-
ceptron (MLP) training is the ALOPEX algorithm. ALOPEX was originally used
for receptive field mapping by Tzanakou and Harth in 1973,9 and has since been
applied to a wide variety of optimization problems.10–17 These two algorithms have
been described in Chapter 2.

It should be stated that due to its stochastic nature, an efficient convergence for
ALOPEX depends on the proper control of both the additive noise and the gain
factor γ. Initially all parameters Xi are random, the additive noise is of Gaussian
distribution with mean 0, and standard deviation, σ, initially large. The standard
deviation, σ, decreases as the process converges to ensure a stable stopping point.
Conversely, gamma, γ, increases with iterations. As the process converges ∆R
becomes smaller and smaller, and an increase in γ is needed to compensate for this.
Figures 12.2, 12.3, and 12.4 show the response, gamma, and sigma with iterations
for a typical ALOPEX run. Additional constraints include a maximal change per-
mitted for Xi, for one iteration. This bounded step size prevents the algorithm from
drastic changes from one iteration to the next. These drastic changes often lead to
long periods of oscillation, during which the algorithm fails to converge.

FIGURE 12.1 Multilayer perceptron network.
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FIGURE 12.2 Response vs. iterations.

FIGURE 12.3 Gamma vs. iterations.

FIGURE 12.4 Gaussian noise standard deviation vs. iterations.
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12.2 MULTILAYER PERCEPTRON AND TEMPLATE 
MATCHING

A three-layer perceptron is trained for pattern recognition using ALOPEX. The
network is trained to recognize ten 5 × 7 templates corresponding to the ten digits,
0–9. Backpropagation training occurs as previously described. How ALOPEX is
implemented in this application is described below.

For each 5 × 7 input pattern there exists a desired output vector Odes
k . The

observed output, Oobs
k , is found by a single feed-forward pass through the fully

interconnected layers of the network. Neurons or nodes in the hidden and output
layers incorporate a nonlinear activation function, called a sigmoid.

As already has been discussed in Chapter 2, the response is calculated for the
jth input pattern based on the observed and desired output

(12.1)

where Oobs
k and Odes

k are vectors corresponding to Ok for all k. The total response for
iteration n is the sum of all the individual template responses, Rj(n).

(12.2)

In Equation 12.1, m is the number of templates used as inputs. ALOPEX iteratively
updates the weights using both the global response information and local weight
histories, according to the following:

(12.3a)

(12.3b)

where γ is an arbitrary scaling factor, ri(n) is an additive Gaussian noise, ∆W
represents the local weight change, and ∆R represents the global response informa-
tion. These values are calculated by

(12.4a)

(12.4b)

(12.4c)
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After training the network, it was tested for correct recognition using incomplete or
noisy input patterns. The results show the robustness of the system to noise corrupted
data. It should be noted that regardless of which training procedure was used,
backpropagation or ALOPEX, the recognition ability of the system was the same.
The only difference was in how the response grew with iterations. Two response
curves are shown in Figure 12.5.

It can be seen from Figure 12.5 that backpropagation converges faster than
ALOPEX, particularly in the early periods of training. The networks were trained
to 99% of maximal response; backpropagation converged in 1910 iterations, whereas
ALOPEX took 2681 iterations to reach the same level.

The neural network’s robustness is derived from its parallel architecture and
depends on the network topology, not the learning scheme used to train. The network
used was a three-layer feed-forward network with 35 input nodes, 20 hidden nodes,
and 10 output nodes. The network's recognition ability was tested with noisy input
patterns. Each 5×7 digit of the training set was subjected to noise of varying Gaussian
distribution and tested for correct recognition. The original training templates were
binary (0 or 1) images. The results, demonstrating the network’s robustness, are
shown in Figure 12.6. Note that even when the standard deviation approaches 1, the
network correctly recognizes over 50% of the trained templates.

Artificial neural networks have shown a limited ability to solve problems, which
conventional computers are unable to resolve. Image and speech recognition, motor
control, and other such tasks which human brains perform well are stumbling blocks
for the serial architecture. Artificial neural networks were derived from a conscious
effort to mimic brain functions and are models of their biological counterparts. While
ANN's are modeled after the human brain, they are far from repeating the brain's
behavior. Severe limitations still exist, especially in terms of size and speed of the
networks and in the understanding of the biological system.

FIGURE 12.5 Response curves for ALOPEX and backpropagation.
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12.3 VLSI IMPLEMENTATION OF ALOPEX

Artificial neural networks (ANN) have existed for many years, yet because of recent
advances in technology, they are again receiving much attention. Major obstacles in
ANN, such as a lack of effective learning algorithms, have been overcome in recent
years. Training algorithms have advanced considerably, and now Very Large Scale
Integration (VLSI) technology may provide the means for building superior net-
works. In hardware, the networks have much greater speed, allowing for much larger
architectures.

The tremendous advancement in technology during the past decades, particularly
in Very Large Scale Integration (VLSI) technology, has renewed interest in artificial
neural networks. Hardware implementation of neural networks is motivated by a
dramatic increase in speed over software models. The emergence of VLSI technology
has and will continue to lead neural network research in new directions. VLSI has
advanced considerably over the last few years. Chips are now smaller, faster, contain
larger memories, and are becoming cheaper and more reliable to fabricate.

Neural network architectures are varied, with over fifty different types being
explored in research.18 Hardware implementations can be either electronic, optical,
or electro-optical in design. A major problem in hardware realization is often not
due to the network architecture but to the physical realities of the hardware design.
Optical computers, while they may eventually become commercially available, suffer
far greater problems than do VLSI circuits. Thus, for the immediate and near future,
neural network hardware designs will be dominated by VLSI.

Much debate exists as to whether digital or analog VLSI design is better suited
for neural network applications. In general, digital designs are easier to implement
and are a better understood methodology. Also, in digital designs, computational
accuracy is only limited by the chosen word length. While analog VLSI circuits are
less accurate, they are smaller, faster, and consume less power than digital circuits.19

FIGURE 12.6 Recognition of noisy images by a trained MLP as a function of the standard
deviation of the superimposed noise.
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For these reasons, applications that do not require great computational accuracy are
dominated by analog designs.

Learning algorithms, especially backpropagation, require high precision and accu-
racy in modifying the weights of the network. This has led some to believe that analog
circuits are not well suited for implementing learning algorithms.20 Analog circuits can
achieve high precision, at the cost of increasing the circuit size. Analog circuits with
high precision (8 bits) tend to be as large as their digital counterpart.21 Thus, high
precision analog circuits lose their size advantage over digital circuits. Analog circuits
are of greater interest in applications requiring only moderate precision.

Early studies show that analog circuits can realize learning algorithms, provided
that the algorithm is tolerant of hardware imperfections such as low precision and
inherent noise. In a paper by Macq et al., a fully analog implementation of a Kohonen
map, one type of neural network, with on-chip learning is presented.22 With analog
circuits having been shown capable of the computational accuracy necessary for
weight modification, they should continue to be the choice of neural network research.

Size, speed, and power consumption are areas in which analog circuits are far
superior to digital circuits, and it is these areas that constrain most neural network
applications. To achieve greater network performance, the size of the network must
be increased. The ability to implement larger, faster networks is the major motivation
for hardware implementation, and analog circuits are superior in these areas. Power
consumption is also of major concern as networks become larger.23 As the number
of transistors per chip increases, power consumption becomes a major limitation.
Analog circuits dissipate less power than digital circuits, thus permitting larger
implementations.

Besides its universality to a wide variety of optimization procedures, the nature
of the ALOPEX algorithm makes it suitable for VLSI implementation. ALOPEX is
a biologically influenced optimization procedure that uses a single value global
response feedback to guide weight movements toward their optimum. This single
value feedback, as opposed to the extensive error propagation schemes of other neural
network training algorithms, makes ALOPEX suitable for fast VLSI implementation.

Recently, a digital VLSI approach to implementing the ALOPEX algorithm was
undertaken by Pandya et al.24 Results of their study indicated that ALOPEX could
be implemented using a Single Instruction Multiple Data (SIMD) architecture. A
simulation of the design was carried out, in software, and good convergence for a
4×4 processor array was demonstrated.

The importance of VLSI to neural networks has been demonstrated. For neural
networks to achieve greater abilities, larger and faster networks must be built. In
addition to size and speed advantages, other reasons, including cost and reliability,
make VLSI implementations the current trend in neural network research. The design
of a fast analog optimization algorithm, ALOPEX, is covered below.

ALOPEX is an optimization procedure as already has been mentioned, in which
the “best” value of a cost function or response is sought. The process uses a stochastic
element (added Gaussian white noise) to avoid local extremes of the response. In
other words, the added noise helps the procedure to find the global maximum or
minimum value of the response. ALOPEX is an iterative procedure, where a large
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number of parameters are simultaneously changed by small amounts and then a new
response is computed. The changes in the pixels of images are determined from the
change in the response, the change in the pixel from the previous two iterations,
plus the additive noise.

Let us assume that we have an array of 64 pixels which we call Ii(n) where n
represents the iteration. The additive Gaussian white noise is denoted by ri(n), and
Rj(n) is the response (or cost function) of the jth template at iteration n. The parameter
Ii(n) can then be found by the following equation:

(12.5)

where γ is an arbitrary scaling constant and ∆Ii and ∆R are found from the following:

(12.6)

(12.7)

where i = 1,2,3,…,64.
Let us assume that there are 16 templates to choose from, each with 64 pixels.

The ALOPEX process is run on each of them, with the objective being to recognize
(converge to) an input pattern. Due to the iterative behavior, if allowed to run long
enough, ALOPEX will eventually converge to each of the templates. However, a
“match” can be found by choosing that template which took the least amount of
time to converge.

By convergence we mean finding either the global maximum or minimum of
the response function. This response function can be calculated in many different
ways, depending on the application. To allow this chip to be general enough to
handle many applications, the response will be computed off the chip. A PROM can
be used to compute the response based on the error between the input, Ii(n), and the
template. The PROM enables the response function to be changed to meet the needs
of the application.

While the chip design is limited to only 64 ALOPEX subunits, the parallel nature
of ALOPEX will enable many chips to be wired together for larger applications.
Parallel implementations are made easy since each subunit receives a single global
response feedback that governs its behavior. Backpropagation, on the other hand,
requires dense interconnections and communication between each node. This flex-
ibility is a tremendous advantage when it comes to hardwired implementations.

Originally the ALOPEX chip was designed using digital VLSI techniques. Dig-
ital circuitry was chosen over analog because it is easier to test and design. Floating
point arithmetic was used to ensure a high degree of accuracy. The digital design
consisted of shift registers, floating point adders, and floating point multipliers.
However, after having done much work toward the digital design, it was abandoned
in favor of an analog design. The performance of the digital design was estimated
and was found to be much slower than an analog design. The chip area of the digital

I n r n I R I ni i i i( ) = ( ) + + −( )γ∆ ∆ 1

∆I n I n I ni i i( ) = −( ) − −( )1 2

∆R n R n R n( ) = −( ) − −( )1 2
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design was much larger than an analog design would be. Also, the ALOPEX algo-
rithm would be tolerant of analog imperfections due to its stochastic nature. For
these reasons, it seemed clear that a larger, faster network could be designed with
analog circuitry.

The analog design needed components similar to the digital design to imple-
ment the algorithm. Mainly there needed to be an adder, multiplier, difference
amplifier, a sample and hold mechanism, and a multiplexing scheme. These cells
each perform a specific function and are wired together in a way that implements
the ALOPEX process.

The chip is organized into 64 ALOPEX subunits, one for each pixel in the input
image. They are stacked vertically, wiring by abutment. Each subunit is made from
smaller components that are wired together horizontally and contains the following
cells: a group selector, demultiplexor, follower aggregator, multiplier, transconduc-
tance amplifier, multiplexor, and another group selector.

The Gaussian white noise required for the ALOPEX process is added to the
input before it reaches the chip. This will allow precise control of the noise, which
is very important in controlling the stability of the algorithm. If there is too much
noise, the system will not converge. If there is too little noise, the system will get
stuck in local minima of the cost function. By controlling the noise during execution,
using a method similar to simulated annealing26 where the noise decays with time,
it has been shown that the convergence time can be improved.15 Also, by having
direct control of the added noise, the component and functional testing can be done
with no noise added, greatly simplifying the testing.

The addition, multiplication, and subtraction required by the ALOPEX algorithm
are performed by the follower aggregator, Gilbert multiplier,25 and transconductance
amplifier, respectively. To understand how these units implement the equations of
the ALOPEX process, let us rewrite the original ALOPEX equation as follows:

(12.8)

where ri(n) is Gaussian white noise and bias(n) is defined as

(12.9) 

The follower aggregation circuit computes the weighted average of its inputs. By
weighing the inputs equally, the circuit computes the average of the two inputs. The
average is chosen instead of the sum since the circuit is more robust, in that the
output never has to exceed the supply voltage. A straight summer is more difficult
to design because voltages greater than the supply voltage could be needed. The
output of the follower aggregator, Ii(n) is sent to the multiplier where a C-switch
acts as a sample and hold, to store the value of the previous iteration, Ii(n – 1). The
difference between these signals is ∆I and is one input to the multiplier. The previous
two responses, calculated off chip, are the other two inputs, representing ∆R. The
output of the multiplier is γ∆I∆R, where γ is the gain of the multiplier and is
controlled by the control signal gamma.

I n r n ni i( ) = ( ) + ( )bias

bias biasn I R n( ) = + −( )γ∆ ∆ 1)
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The output of the multiplier is a current equal to γ∆I∆R. The current can be
either positive or negative, depending on the signs of ∆I and of ∆R. The output node
acts as a capacitor that holds the bias voltage from Equation 12.9. This bias is then
adjusted by an amount, γ∆I∆R, after each iteration. This bias is one of the inputs to
the follower aggregator, the other being the input stimulus with added Gaussian
white noise. The follower aggregator implements Equation 12.8, except that it
computes the average or the sum divided by two.

The error signal is computed by the transconductance amplifier. The error is
simply equal to the difference between Ii(n) and the template to which you are
matching. However, since Ii(n) is equal to the sum divided by two, the template
values must be halved before being multiplexed onto the chip. The error signal is
computed, then multiplexed with Ii(n) and sent off the chip. The error is used to
compute the response R(n). Ii(n) is sent off the chip so that the operator can see the
image as the algorithm converges, by sending the signal to some sort of display.

The power is supplied to the chip by four pins, two each for VDD and GND.
The purpose of having two pins of the same signal is so that by placing them on
opposite sides of the chip and by proper wiring, the resistive drop can be reduced.

In designing the chip, much effort was made in making it controllable and
testable, while making the chip general enough that it could be used in a wide variety
of applications. This is why the Gaussian white noise is added off chip, and also
why the error signal is taken off chip for the computation of the response. This not
only allows the response function to be changed to meet the requirements of the
specific application, but it also provides the operator with accessible test points.

Despite the decrease in operating speed by a factor of four, due to time division
multiplexing at both the input and outputs, the chip still operates at over 7,000,000
complete iterations per second. This speed may not even be attainable, given possible
interfacing bottlenecks and much slower support hardware that is necessary for
operation. Support hardware necessary for chip operation includes circuitry for the
response calculation as well as memory to store templates. Depending on the appli-
cation, A/D and D/A converters may be necessary. If this is the case, then 7 Mhz
operation speed is more than adequate.

While backpropagation is the most widely used software tool for training neural
networks, it is less suitable for VLSI hardware implementation than ALOPEX for
many reasons. While backpropagation converges quickly, due to its gradient descent
method it can often get stuck in local extrema. ALOPEX tends to avoid local extrema
by incorporating a random noise component, at the expense of slightly longer
convergence times.

The major differences arise when hardware implementation is discussed. Back-
propagation is computationally taxing, due to the error computation needed for each
node in the network. Each error is a function of many parameters (i.e., all the weights
of the following layer). In hardware, very complex interconnections between all
nodes are required to compute this error.

ALOPEX is ideal for VLSI implementation for a couple of reasons. First, the
algorithm is tolerant of small amounts of noise; in fact, noise is incorporated to help
convergence. Second, all parameters change based on their local history and a single
© 2000 by CRC Press LLC



value global response feedback. This single-valued feedback is much simpler to
implement than the error propagation used in backpropagation.
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13 Implementing Neural 
Networks in Silicon

Seth Wolpert and Evangelia Micheli-Tzanakou

13.1 INTRODUCTION

In spite of dramatic increases in the capacity and throughput of automated systems,
there remain a number of descriptively simple yet highly desirable tasks that have
remained elusive. These tasks are associated with the process known as pattern
recognition. If machines were able to identify patterns in electrical, visual, mechan-
ical, acoustic, or chemical signals as quickly and reliably as living systems, our
world would be a very different place. A number of tedious operations could be
performed tirelessly and accurately. We would no longer have the need for locks on
our automobiles and homes or keyboards on our computers. For many years, engi-
neers and mathematicians have worked to perform computer-based pattern recogni-
tion using geometric and statistical methods, but levels of accuracy commensurate
with those of human operators have been difficult to obtain. To address the over-
whelming utility to perform these tasks, engineers have begun to take cues from
biological systems, the simplest of which are able to perform pattern recognition
with relative ease and high reliability, as a matter of their very survival.

In order to deal with the sheer magnitude of living nervous systems, inroads
have been taken historically to understand their workings by ‘top-down’ and ‘bottom-
up’ approaches. Top-down approaches are based on outward observations of capa-
bility and behavior and have given rise to the field of Artificial Neural Networks,
or ANNs. ANNs are based upon simplified models of individual neurons, which are
highly interconnected via an array of variably coupled transmission units known as
synapses. Such systems are generally implemented as computer models and have
been most effective when configured and controlled in a manner tailored specific to
a given pattern, method of assimilation and processing, and identification criteria.
Generally implemented in the form of a computer simulation, these networks acquire
data, train themselves, and evaluate possible solutions serially, and therefore require
an inordinate amount of time and computational resources to function as well as
traditional non-ANN pattern recognition methods. Clearly, these ANN methods have
the potential to easily surpass conventional methods, but, in order to do so, they
must be transplanted from the virtual environment within a serial computer to a
dedicated hardware platform, where they may be implemented in a parallel and
simultaneous manner. This would be consistent with theories of how living nerve
circuits operate so quickly and reliably, and introduces the motivation for pursuing
© 2000 by CRC Press LLC



         
bottom-up approaches, based on observations of the structure and function of indi-
vidual nerve cells.

13.2 THE LIVING NEURON

Living nerve cells have always been studied and modeled to the very limits of
available electronic technology. Since as early as the 19th century, electrical models
of processes observed in living nerve cells have undergone ardent development. The
justification has been that machines had been previously unable to achieve the same
tasks that living systems could so easily do; perhaps we could emulate them and
put them to work in a number of endeavors. After all, the brain of an Einstein or a
Shakespeare is not significantly different in structure or composition from the aver-
age human brain. The computational potential of the average human brain, then,
must be remarkable, and an electronic model, which functions 100,000 times faster,
would hold great potential as a computer for a variety of applications. The problem
with this objective, however, has been in the sheer magnitude of the machinery.
Consisting of 100 billion nerve cells, many of which have many thousands of
interconnections, the human brain is a machine far beyond the analysis, design, and
manufacturing capacities of any existing human technology. If such a “machine” or
even a small part of it were to be replicated, however, such an effort must begin on
the cellular level. In order to describe these efforts, a review of nerve cell structure
and function is in order.

A typical living nerve cell is depicted in Figure 13.1. Physically, it may be
described as a tentacled elastic sac, whose interior and exterior are bathed in different
conductive fluids separated from each other by the cell’s outer material, known as
cell membrane. This membrane draws upon the cell’s metabolic processes to supply
the energy it requires to accumulate specific ions against concentration gradients.
Two key ions, potassium, which is accumulated inside the cell, and sodium, which
is ejected to the exterior of the cell, have been identified as having the strongest role
in the function of the nerve cell. The imbalance in distribution of these ions and
several others forms the basis for an electrical potential within the cell relative to
the conductive environment outside. This potential, known as cell membrane

FIGURE 13.1 A typical living nerve cell.
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potential, rests nominally at 60–80 mV negative with respect to its external envi-
ronment. Fluctuations in this cell membrane potential are the means by which
neurons express their activity and communicate with sensory receptor cells, muscle
cells, and other neurons.

The tentacles that branch off from the neuron’s body, or soma are known as
dendrites. Dendrites, which may number from zero to well into the thousands, branch
off to other cells and collect sensory input signals based on those cells’ levels of
activity. These signals appear as electrical transients in membrane potential, which
are accumulated over time and space, with the resultant sum appearing in the cell
soma. Emanating from the soma is another singular tentacle known as the axon.
Typically larger, longer, and better insulated than the dendrites, the axon conveys
the output of its cell over long or short distances to target nerve and muscle cells.
The point at which the axon attaches to the cell body is known as the axon hillock.
There, the accumulated cell membrane potential is compared against a cellular
threshold potential. When that threshold potential is exceeded, a separate mechanism
in the axonal membrane gives rise to a single impulse, typically 80–100 mV in
amplitude, and 1 ms in duration. This impulse is then propagated down the axon to
its remote terminus, where individual fibers branch off and adjoin target nerve or
muscle cells. While such an impulse is being generated, the cell enters a temporary
state of total inexcitability, where no amount of stimulation can cause a second
impulse to be superimposed over the first. This state soon elapses, and the cell
gradually returns to an excitable condition. This phenomenon is known as refraction,
and the interval of inexcitability is known as the refractory period.

Between the axonal terminus and the soma or dendrite of the target cell, a fluid
gap forms a synapse, a physical discontinuity from one cell to the next. At the axonal
terminal, a packet of chemicals is released into the synaptic gap, where it will migrate
to the target cell and induce transient impulses in that target cell’s membrane
potential. These chemicals are known as neurotransmitters, of which over twenty
different types have been identified. Neurotransmitters that induce negative transients
in target cell membrane potential are known as inhibitory, while those that induce
positive transients in target cell membrane potential are known as excitatory. Inhib-
itory stimuli suppress activity in target cells, while excitatory stimuli facilitate
activity in target cells. Cells that induce large transients are said to have high synaptic
weights, while those inducing little or no transients in target cells are said to have
low synaptic weights. The magnitude or the duration of that transient may be affected
by the synaptic weight, and changes in synaptic weight form the basis for training
of ANNs, as well as learning in living nervous systems. The synapse also prevents
reflection of impulses back to source cells, which would cause unbridled chaos to
engulf the entire nervous system in a very short time.

Orchestrating the modification of synaptic weight in a network of cells learning
to perform a new task or recognize a sensory image is the basis for top-down neuronal
study. For bottom-up study, two other aspects of the operation of living neurons are
of particular interest to those modeling its function: formulating the threshold of a
nerve cell in terms of the spatial and temporal distribution of stimuli directed toward
it and the relationship between conductivity of the membrane to the ions giving rise
to membrane potential, present membrane potential magnitude, and time. These two
© 2000 by CRC Press LLC
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aspects have been the bases for modeling individual nerve cells from two schools
of thought.

13.3 NEUROMORPHIC MODELS

Since the era of the vacuum tube, a multitude of neuronal models composed of
discrete components and off-the-shelf ICs have been published. Similar efforts in
custom VLSI, however, are far fewer in number. A good introduction to a number
of neuronal attributes, however, was presented by Linares-Barranco et al. of Texas
A & M University.1 CMOS-compatible circuits for approximating a number of
mathematical models of cell behavior are described. In its simplest form, this model
represents the cell membrane potential in the axon hillock as nothing more than a
linear combination of an arbitrary number, n, of dendritic inputs, X, each of which
is weighted by a unique multiplier, W, summed, and processed by a nonlinear range-
limiting operator, f. The mathematical equation for this relationship is

(13.1)

and this relationship is realized in the circuit model shown in Figure 13.2a and the
CMOS circuit implementation in Figure 13.2b. This circuit is totally static and makes
no provision for time-courses of changes in input or output signals, or intracellular
relationships. In the implementation of Figure 13.2b, the operational transconduc-
tance amplifier, OTA, as described in Reference 16 and depicted in Figure 13.3, is
used in lieu of operational amplifiers for this and most other VLSI neural network
applications. Highly compatible with CMOS circuit technology, it is structurally
simple and compact, realizable with only nine transistors, and provides reasonable
performance. The only consideration it warrants is that its transfer function is a
transconductance. As such, operations performed on its output signals must be
oriented to its current rather than its voltage. When driving high load impedances,
as is usually the case with CMOS circuitry, this is only a minor inconvenience,
necessitating buffering for lower load impedances. In fact, under some circum-
stances, such as when algebraic summation is being performed, a current output
may actually be an advantage, allowing output nodes to be simply tied together.

The nonlinear range-limiting operator, f, mentioned earlier, is necessitated by
the observation that, for a given biological neuron, there are limits on the strength
of the electrochemical gradients that the cell’s ionic pumps can generate. This
imposes limits on how positive and negative cell membrane potentials may go. Since
a neuron may receive inputs from many other neurons, there is no such limit on the
aggregate input voltage applied. As a result, an activation function, a nonlinearity
of the relationship between aggregate input potential and output potential of a neuron,
must be imposed. This is typically done in one of three different ways, the binary
hard-limiter, which assumes one of only two possible states—active or inactive, the
linear-graded threshold, which assumes a linear continuum of active states between
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its minimal and maximal values, and the sigmoid, which assumes a sigmoidal
distribution of values between its negative minimal and positive maximal output
values. All three of these relationships are shown in the graphs of output potential
vs. input potential of Figures 13.4a, b, and c, respectively.

Which type of activation function is employed depends on the type of artificial
neuron and network in which it is implemented. In networks where cell outputs are
all-or-none, such as McCullouch and Pitts models,2 the binary threshold model is
used. In networks where neurons are theorized to have variable output levels applied
to distinctly designated excitatory and inhibitory inputs, such as Hopfield Networks,
the linear threshold model is used. In networks where a synaptic connection must
be both excitatory and inhibitory, depending on the level of activity, the sigmoid
threshold is used. In either of the latter two activation functions, the slope of the
overall characteristic can be varied to suit the sensitivity of the cell in question.

The basic neuron cell model shown in Figure 13.2a was designed for primitive
neuronal models and learning algorithms. It performs linear summation of indepen-
dently weighted synaptic inputs applied to a single node, and discriminates according

FIGURE 13.2 Circuit organization of a general purpose neuronal model (a), and a CMOS
VLSI circuit implementation of such a model (b).
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to a binary threshold of zero, as shown in Figure 13.4a. Although the linear combi-
nation is an easy process to comprehend, its fidelity in the face of biological nerve
behavior is restricted. In order to improve the applicability of such models, several
improvements must be made to their mathematical descriptions. The first such
improvement is the dynamic model. Like the model described by Equation 13.1, it
includes linear combination, summation, and a nonlinear operator, in this case, the
sigmoidal activation function. Consistent with transconductance amplifiers, however,
its output is now expressed as a current in the form of CdS/dt. It also features IB,
which represents a fixed biasing current that determines a baseline level of activity,
or threshold. This activity level represents a threshold that must be surpassed by the
aggregate sum of weighted inputs in order for cell k to respond. Different cells may
be assigned different thresholds, so that their responsiveness may be tuned to the
demands of the network in which they reside. Finally, the dynamic model includes
R, a self-relaxation term that insures that S, the cell output potential, will decay to
zero when all dendritic inputs, X, are zero. The dynamic model is implemented using
a “leaky integrator”, which allows for the duration or persistence of input signals to
be controlled. The equation for this behavior is

FIGURE 13.3 CMOS implementation of an Operational Transconductance Amplifier,
OTA, widely used for realization models and networks in VLSI.

FIGURE 13.4 Nonlinear activation functions imposed on outputs of nerve cell models.
Shown are the binary bipolar hard limiter (a), the linear graded potential (b), and the sigmoid
potential (c).
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(13.2)

A mathematical model of this equation is given in Figure 13.5a, and the CMOS
implementation in Figure 13.5b.

More comprehensive features to facilitate functioning in a large population of
nerve cells have been incorporated into the generalized model described by Carpenter
and Grossberg.3 This model includes the features of the dynamic model, as well as
a more comprehensive facility for temporal summation with the self-forgetting, or
persistence term, Ak. The H and L coefficients allow for the fixed and output voltage-
dependent levels of activity in the network to be controlled. This keeps the network’s
signals from saturating at too high or low an overall level of activity. The E coefficient
represents a fixed applied bias signal analogous to the IB term of Equation 13.2. The
Z coefficient represents a synaptic coupling analogous to W of Equation 13.2.
Mathematically, the equation for the generalized model is given as

FIGURE 13.5 Circuit organization of a dynamic cell model (a) and a CMOS VLSI
implementation of such a model (b).
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(13.3)

and the model, along with a CMOS implementation are given in Figures 13.6a and
13.6b, respectively.

This model is comprehensive enough to be appropriate for implementing artifi-
cial neural networks that realize Adaptive Resonance Theory (ART), as well as
Hopfield Networks and McCullouch and Pitts networks, but still lacks one vital
attribute of the living neuron. All of the cell models presented so far portray neurons
as simplified cells whose output is expressed as a DC level that reflects some
nonlinear function of the aggregate sum of input signals. This forms the basis for
most ANN implementations. There is also a class of cell models whose output is a
train of similar pulses whose frequency is varied, rather than a variable DC potential.
For these frequency-modulated models there are also a series of circuit implemen-
tations.

Frequency-based neuronal models are similar to those already presented, in that
they perform temporal and spatial summation of an arbitrary number of dendritic

FIGURE 13.6 Circuit organization of a dynamic cell model providing unconstrained
assimilation of excitatory and inhibitory inputs (a) and a CMOS implementation of that
model (b).
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inputs, as well as their own current state of activity. They will also have activation
functions assigned, depending on the type of cell and network. Unlike the activation
functions of voltage-based models, these are imposed in recognition of the fact that,
for a given biological neuron, an action potential cannot be elicited during the
formation of its predecessor. This manifests itself as a limit on how close together
in time two action potentials may occur from a given cell, and therefore, a limit on
the maximal frequency at which a neuron can generate pulses. A neuron may receive
inputs from many other neurons. While each of those inputs has a similar upper
limit on its frequency, there is no such limit on the number of inputs, and therefore
no limit on the overall input frequency. As a result, a non-linearity of the relationship
between input frequency and output frequency of a neuron must be imposed. In
most cases, this type of behavior may be brought about with the simple addition of
a voltage-controlled oscillator, or VCO, to the output stage of one of the previously
defined models with an activation function operator.

There are two CMOS VLSI implementations of oscillatory models of note, both
of which are derived from the system of differential equations formulated by
Hodgkin and Huxley4 in 1952. In the course of producing an action potential, the
neuronal cell membrane exhibits conductances to sodium and potassium ions that
were found to be mathematical functions of time and of cell membrane potential.
The Hodgkin-Huxley equations were derived to describe those time and voltage
relationships. A popular circuit approach to realizing the oscillatory behavior
required to synthesize a single pulse from one control input is to employ a hysteretic
output stage. The organization of such a system is shown in Figure 13.7a, along
with a CMOS circuit implementation in Figure 13.7b. It is apparent that this is a
simple adaptation of the dynamic model shown in Figure 13.5.

The other approach to recreating such a circuit instability is in a Hodgkin-Huxley
derivative known as the Fitzhugh-Nagumo model.5 Based on a mutually antagonistic
relationship between two cells and an I-V characteristic outwardly similar to that of
a tunnel diode, the Fitzhugh-Nagumo model is somewhat more complex but still
realizable in conventional CMOS VLSI subcircuits. The model for this circuit is
given in Figure 13.8, and it formed the basis for one of the more successful CMOS
VLSI implementations of single-neuron models.

In 1991, Bernabé Linares-Barranco et al.6 fabricated and characterized a circuit
whose behavior is based on the Fitzhugh and Nagumo equations. The variability
membrane conductance characterized by the Hodgkin-Huxley equation was recre-
ated as a piece-wise linear model, which was realized empirically using the circuit
of Figure 13.8b. A series of OTAs whose transconductances correspond to the
membrane ionic conductances over specified input voltage ranges was used to realize
the transients in membrane conductance that give rise to the action potential. Fab-
ricated prototypes were demonstrated to replicate several types of behavior com-
monly seen in living nerve cells, i.e., free-running sustained oscillation in a single
cell and on-and-off, or bursting oscillation, as seen in a pair of mutually antagonistic
cells. For both circuit configurations, oscilloscope photographs appear similar, albeit
less noisy than intracellular recordings from live nerve cells.

Along similar lines, another CMOS implementation was developed by Mahow-
ald and Douglas.7 In this model, the time course of sodium and potassium currents
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are recreated empirically, by virtue of fundamental similarities between ionic con-
ductivity in neural membrane and that of appropriately biased MOSFETs. Structur-
ally simple yet elegant circuits shown in Figure 13.9a, b, and c recreate the time
and voltage courses of potassium activation, sodium activation, and sodium inacti-
vation respectively in neural membrane. Rectangular current pulses of various ampli-
tudes applied to the circuit show a striking similarity to similar impulses applied to
living nerve cells. The circuit is highly compatible with larger scale applications,
requiring minimal off-chip support, occupying under 0.1 mm2 of chip area, consum-
ing under 60 W of power, and able to operate a million times faster than their
biological counterparts. With the incorporation of a dendritic array, networks of
several hundred nerve cell analogs on a single chip have been envisioned.

FIGURE 13.7 Circuit organization for a dynamic cell model producing variable-fre-
quency output signals by the application of a hysteresis subcircuit (a), and a CMOS imple-
mentation of that model (b).
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Another well-executed implementation of VLSI-based nerve cells complements
the Mahowald-Douglas model, concentrating less on overall nerve cell behavior and
more specifically on how inputs to a neuron combine over time and space to affect
a target cell.8–9 Temporal and spatial summation and some topical applications have
been modeled extensively in CMOS VLSI by Elias and Northmore. Recognizing
that the strength, duration, and delay of a neuronal stimulus depend strongly on the
physical location to which that stimulus is applied, Elias and Northmore recreate a
linearly arrayed multicompartmental silicon dendrite, in which each segment or
compartment has a specific capacitance to the cell’s exterior, Cm, impedance of the
internal fluid, or, cytoplasm, Ra, and impedance of a leakage path to the cell’s
exterior, Rm. Implemented using on-chip switched-capacitor analog networks, the

FIGURE 13.8 Circuit organization of a model of the Fitzhugh-Nagumo equation (a) and
a CMOS implementation of that model (b).
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FIGURE 13.9 Circuits described by Mahowald and Douglas to realize sodium and
potassium currents in active membrane. The potassium activation circuit is shown in part (a),
the sodium activation is shown in part (b), and the sodium inactivation is shown in part (c).
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authors demonstrate impulses that can persist millions of times longer that the
impulses from which they originated. They also showed a mechanism by which a
target cell’s sensitivity may be keyed to any of a wide range of impulse shapes,
durations, latencies, directional velocities, and repetition frequencies, as applied at
various locations along a dendritic tree (topographic connection), or across a den-
dritic tree (laminar connection). The design of distributed compartments and their
incorporation into a dendritic tree is shown in Figure 13.10a.

The facility of such networks to recognize specific spatial and temporal frequen-
cies in arbitrary images was then applied to a VLSI-based system for recognition
of binarized two-dimensional visual images. Due to the large number of possible
input sites to a dendritic tree contained in a 40-pin IC package, a multiplexed
approach was taken to transmission of data on- and off-chip. For the two-dimensional
input images, one dimension is applied to topographic connections of the dendritic
tree, and the other dimension is applied to laminar connections of the tree. As the
image is scanned into the dendritic tree, spatial summation of the laminar inputs
and temporal summation of the topological inputs results in a synchronized response
unique to the pattern of the input image. Depictions of topographic and laminar
connections to a dendritic tree are given in Figure 13.10b. The remainder of the
circuitry in the implementation is associated with encoding and transferring data
and synaptic coefficients. Dendritic trees of higher dimensions may be used to
recognize images of higher dimension, and lateral inhibition and other real-time
image processing operations are highly compatible with this method.

Another well-developed implementation of individual artificial nerve cells is the
one by Wolpert and Micheli-Tzanakou.10–11 While most neuromorphic models are
based on the Hodgkin-Huxley equations, this one uses a sequencer to synthesize the
action potential in three distinct phases. It also employs a different formulation for
cell membrane and threshold potentials known as an integrate-and-fire model, pre-
sented and implemented in discrete components by French and Stein in 1974.3 It
makes use of the aforementioned leaky integrator and provides off-chip control over
the response and persistence of stimuli assimilated into membrane potential. The
model affords similar controls over the resting level and time constant of the cell
threshold potential and allows for refraction to be recreated. This organization also
affords control over the shape, resting level, and duration of the action potential and
produces a TTL-compatible pulse in parallel with the action potential. These con-
trols, all of which are continuously and precisely adjustable, make this model ideal
for replicating the behavior of a wide variety of individual nerve cells, and it has
been successfully applied as such. The organization for the French and Stein model
is shown in Figure 13.11, and the Wolpert and Micheli-Tzanakou VLSI circuit was
implemented as shown in Figure 13.12.

The Wolpert and Micheli-Tzanakou model is organized around three critical
nodes, the somatic potential, the axonal potential, and the threshold potential. Each
of these nodes is biased off-chip with an R-C network so that its resting level and
time constant are independently and continuously controllable. Stimuli to the cell
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are buffered and standardized by truncation into 10µs impulses. Synaptic weight
inputs on the excitatory and inhibitory pathways allow for this value to be increased
or decreased from off-chip. The impulses are then applied to somatic potential by
a push-pull MOSFET stage and compared to threshold potential by an OTA acting
as a conventional voltage comparator. When threshold is exceeded, an action poten-
tial is synthesized and outputted. This waveform is then binarized and buffered to
form a binary-compatible output pulse. Also at the same time, threshold is elevated
to form the refractory period. The circuit consists of approximately 130 transistors

FIGURE 13.10 Circuits used to realize dendritic trees by Elias and Northmore. Dendritic
compartment circuitry and the organization of compartments into a dendritic tree are shown
in part (a), and the application of laminar and topographic summation in a dendritic tree are
shown in part (b).
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plus a few on chip and discrete resistors and capacitors, and was implemented in a
conventional CMOS technology, requiring a single-ended DC supply of 4-10 volts
DC, and occupying 0.6 mm2 of chip area.

With its critical nodes bonded out off-chip, the Wolpert-Micheli-Tzanakou neu-
romime’s rate of operation may be accelerated from a biologically compatible time
frame over several orders of magnitude. This model was first implemented in 1986
and is intended as a flexible and accurate aesthetic, rather than a mathematical model
of cell behavior. In the time since then, it has been used to successfully recreate a
number of networks from well-documented biological sources. Waveforms obtained

FIGURE 13.11 Organization of the “integrate and fire” model of neuronal behavior
described by French and Stein.

FIGURE 13.12 Implementation of the French and Stein model used for the VLSI proto-
type of the artificial nerve cell described by Wolpert and Micheli-Tzanakou.
© 2000 by CRC Press LLC



        
in these recreations have shown a striking similarity to intracellular recordings taken
from their biological counterparts. It has also been applied successfully to problems
in robotics and rehabilitation.

Another well-conceived VLSI-based model of neuronal response is a hybrid
neural processing element, PE, described by DeYong, Findley, and Fields.12 Running
at nominal CMOS VLSI speeds and having no need for internal nodes representing
membrane and threshold potentials, this implementation requires far fewer compo-
nents and is therefore much more appropriate for large-scale implementations in
VLSI. In this model, each of the synaptic types, excitatory, inhibitory, and shunting,
is implementable using seven transistors or less, and variability in synaptic weight
costs an additional five transistors per synapse. The accumulated somatic potential
is then applied to an axon hillock circuit, which performs threshold discrimination
and generates an action potential pulse from under twenty transistors. This circuit
has many of the features of the Wolpert-Micheli-Tzanakou model, including an
arbitrary number of excitatory, inhibitory, and shunting inputs, a tangible threshold
potential node, and biologically aesthetic waveforms, even though their durations
and amplitudes are oriented to conventional analog and digital circuitry. The circuit
is used to realize a one-by-four celled laterally inhibited winner-take-all network,
which is of particular interest in pattern recognition operations, where the known
pattern that is most similar to the unknown image is singled out over the remainder
of less secure match candidates. Finally, models of neuronal function may be radi-
cally simplified to a voltage-controlled oscillator. This function may be realized in
large quantity using a minimalist model known as the NTC, or Neural-Type Cell.

Recognizing that a neuron may be described as a voltage-driven pulse generator,
Moon et al.13 have been developing and applying NTC’s to various problems in
Artificial Neural Networks (ANN). The description of a neuron as a VCO is one
that can be implemented as a small circuit of three MOSFETs, three resistors, and
a capacitor, as shown in Figure 13.13. Although the circuit does not oscillate over
a wide range of frequencies and its output frequency is not linearly related to its
input level, its simplicity, small number of outward connections, and compact size
make the NTC appropriate for implementation in large quantities. With the replace-
ment of R6 with a voltage-controlled variable resistor, this circuit is able to assimilate
variable synaptic weight as is manifest by a variable duty cycle on its output
waveform. This circuit may also be tuned to function over a wide range of operating
frequencies, as controlled by R6 and C. The NTC and the other VLSI circuits
presented so far have all been conceived with the intent of replicating one or more
aspects of nerve cell behavior. There are also many efforts directed at modeling cell-
to-cell interactions, as theorized and observed in living nervous systems.

13.4 NEUROLOGICAL PROCESS MODELING

The modeling of interaction between nerve cells has been most widely pursued with
respect to problems in image processing and computation. Image processing
applications were mostly pioneered in VLSI form by Carver Mead, one of the world’s
leading educators and implementers of VLSI, and the models of vision and audition
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he has developed focus on the simultaneous and immediate preprocessing of sensory
images that is believed to take place before interpretation. The most common such
processing step is known by the name of lateral, reciprocal, or mutual inhibition,
and modeling of sensory processes that make use of lateral inhibition has been
foremost in neural process modeling. Computation, on the other hand, encompasses
system control, pattern recognition, clustering, and prediction. The latter three of
these topics will be discussed in more detail in a future chapter. The former has
several VLSI applications, one of which is as a general-purpose servo element.

DeWeerth and Mead, of Cal-Tech, and Nielsen and Astrom of Lund Institute of
Technology in Sweden, have implemented a simple servo controller in custom
VLSI.14 The authors recognize that human tissues possess friction, elasticity, and
internal damping, yet are capable of precise positioning and movement due to the
presence of copious feedback and redundancy. Such a precise control system can
surely provide excellent positional and motion resolution to electromechanical sys-
tems, as well. The OTA of Figure 13.3 was modified with the addition of a second,
parallel output, whose current is the complement of the primary output. In addition,
the biasing transistor, whose gate was depicted as being tied to VDD in Figure 13.3,
now has its gate tied to a DC reference input voltage, Vb. This input serves as an
overall gain control for each OTA.

To implement the servo system, a number of these OTAs are connected with
their corresponding outputs in parallel, as shown in Figure 13.14. As such, they
represent a number of independently weighted synaptic inputs, whose outputs sat-
urate as they approach maximal and minimal levels, forming a sigmoidal activation
function. The aggregate complementary output currents are then pulse-width mod-
ulated. The complementary pair of variable duty cycle pulse trains that result are
then buffered and applied directly to the terminals of a bidirectional DC motor.
When system conditions demand motion in the positive direction, its synapses
approach positive output currents, and the pulse train to the positive terminal of the

FIGURE 13.13 Schematic of the Neural-Type Cell described by Moon, Zaghloul, and
Newcomb.13
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motor approaches 100% while the duty cycle of the pulse train to the negative
terminal approaches zero. This affects rotation in the positive direction. When full
positive and negative motion are invoked, the motor turns rapidly, yet when the
positive and negative pulse trains are roughly equal, there is a very fine resolution
of motor control. In the servo system, the complementary outputs assume an ago-
nistic/antagonistic relationship, where one signal exists at the expense of the other,
and both signals cannot coexist simultaneously. This mutually inhibitory relationship
is a frequently recurring theme in a wide variety of living nervous systems in a
variety of organisms and has been modeled by a number of researchers.

Lateral inhibition is the process in which a cell containing some level of infor-
mation encoded as its output level acts to inhibit and is inhibited by a similar
adjoining cell, as depicted in Figure 13.15. For many years, this process has been
observed with striking regularity in both one- and two-dimensional arrays of sensory
receptors in a variety of systems, in a variety of organisms. In numerous morpho-
logical, mathematical, and circuit studies, it has been identified as a key image
preprocessing step, which optimizes a sensory image in order to facilitate fast and
accurate recognition in subsequent operations. Lateral inhibition accomplishes this
by amplifying differences, enhancing image contrast, lending definition to its out-
ward shape, and isolating the image from its background. While a digital computer
would accomplish this process one pixel at a time, biological systems manage it in
a manner that is both immediate and simultaneous.

Laterally inhibited behavior has been observed in pairs of cells implemented in
hardware and software models by many researchers, but in dedicated VLSI by only
a few. Notable among them, Nabet of Drexel University, and Pinter and Darling of

FIGURE 13.14 Organization of the VLSI neuron servo. System control directives are
inputted to OTAs fitted with complementary outputs. Aggregate positive and negative motion
directives are pulse-width modulated, buffered, and fed to the input terminals of a reversible
DC motor.
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the University of Washington have extensively studied the stability and effectiveness
of both pairs and linear strings of mutually inhibiting cells in CMOS VLSI and
obtained results well-correlated with biological data.15 This line of work has been
explored in two dimensions in another series of VLSI-based models by Wolpert and
Micheli-Tzanakou.16 Arrays of mutually inhibiting cells that inhibit via continuously
active connections and cells that inhibit by dynamic or strobed controls were both
found to offer stable and variable control over the degree of inhibition. Arrays of
hexagonally interconnected cells were found to be more stable than the square array,
which tended to “checkerboard” when significant levels of inhibition were attempted.
Feedback inhibition, where one array is used to store both the initial and inhibited
images, was found to be as effective but less convenient to access than feed-forward
inhibition, where separate input and inhibited images are maintained.

Characterization of lateral inhibition in the context of a more specific biological
model has been pursued in another noteworthy effort by Andreou of Johns Hopkins
University and Boahen of Cal-Tech. Multiple facets of cell-cell interactions, includ-
ing both mutual inhibition and leakage of information between adjoining cells, were
implemented in VLSI as a model of early visual processing in the mammalian
retina.17 There, adjacent cells on the photoreceptor layer intercommunicate through
gap junctions, where their cell membrane potentials couple through a resistive path.
Simultaneously, optical information from the photoreceptor cells are downloaded to
corresponding cells of the horizontal layer, which have been shown to have mutually
inhibitory connections. This interaction is illustrated in Figure 13.16. One-dimen-
sional arrays, and subsequently, two-dimensional models of these relationships were
implemented in analog VLSI and tested. Although little numerical data were pub-
lished from these arrays, the two-dimensional array was demonstrated to produce a
number of optical effects associated with the human visual system, including Mach
bands, simultaneous contrast enhancement, and the Herman-Herring illusion, all of
which are indicative of the real-time image processing known to occur in the
mammalian retina.

Finally, the definitive VLSI implementation of a two-dimensional array is the
well-known silicon retina devised by Carver Mead of Cal-Tech, and described in
his text, “Analog VLSI and Neural Systems”,18 in addition to presenting a compre-

FIGURE 13.15 A pair of mutually inhibiting circuit nodes.
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hensive treasury of analog VLSI circuits for a variety of mathematical operations
necessary to implement neural networks in VLSI. The book then goes on to present
several applications of analog ANNs, culminating in an auditory model of the cochlea
and a visual model of the retina.

The ‘silicon retina’ is built around a 48 × 48 cell array of photosensors on a
microchip. This array is then overlaid with a grid of resistors that replicates the gap
junctions of the cells of the photoreceptor layer. Also incorporated into the array is
a network of amplifiers, whose inputs are drawn from each adjoining node. The
output of these amplifiers is an image that represents the Laplacian of the image,
which replicates the mutual inhibition inherent in the horizontal cell layer. Because
there are more pixels in the array than pins on the IC package that houses it,
individual pixel data must be conveyed off-chip by an analog decoder/multiplexer.
In tests, the circuit was shown to possess temporal and spatial response similar to
those of living retinas, as evidenced by its recreation of a number of optical illusions
associated with human vision. Since its initial description in 1988, many interesting
modifications to the silicon retina have been implemented by Mead’s students in the
Computation and Neural Systems Laboratory at Cal-Tech.

An on-chip photoreceptor capable of transducing visual light over six orders of
magnitude was implemented and published by Delbruck. They also developed a
motion-sensitive silicon retina, which reacts to moving rather than stationary objects.
This phenomenon has been observed many times in living retinas in a variety of
organisms. Directional sensitivity was then applied to this principle by Delbruck
and Benson. Velocity-sensitivity was later implemented by Delbruck, as well as the
facility to optimize the focus of an image onto the surface of a chip by means of a
distributed system of differentiators, a maximizer, and a servo mechanism to control

FIGURE 13.16 A mutually inhibitory pair, as implemented in analog VLSI by Andreou
et al. This model represents the highly interconnected photoreceptor and horizontal cells of
the retina, as indicated by the R and H nodes, respectively.
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positioning of an optical lens over the chip. This, along with intrinsic electronic
control over contrast and brightness, constitutes a crucial first step in implementing
a totally parallel visual system. This same objective has been brought to fruition in
auditory system modeling, which has resulted in a number of commercial products
now on the market.

A custom CMOS VLSI model of the human middle and inner ear has been
implemented by Liu, Andreou, and Goldstein of Johns Hopkins University.19 The
eardrum and bones of the middle ear are modeled as a fifth order low pass filter
with a second order pole at 15 kHz, and a third order pole at 100 kHz. The
cochlea is modeled as a bank of thirty second-order band-pass filters, whose Q
and center frequency are tuned by on-chip resistors and DC bias voltages. The
hair cells of the cochlea perform nonlinear transformations and dynamic range
compression, and are modeled by a series of 128 analog switches, voltage divid-
ers, and voltage comparators.

The voltage comparison in this model is accomplished with the use of the OTA
shown in Figure 13.3. The active filters, on the other hand, required an amplifier
with a higher output impedance. This is because the circuits were operating in their
subthreshold region. Subthreshold operation is used when the Vgs of a MOSFET is
varied between zero and its specified threshold voltage. Transistors biased in this
region pass small although coherently exponential drain-source currents. These
currents are necessitated by the extremely long time constants of the human audio
spectrum and the limited value of on-chip capacitors. A schematic for the modified
subthreshold OTA with heightened output impedance is shown in Figure 13.17.
Electrical signals in the VLSI implementation measured in response to sinusoidal
tones correlate quite well to signals recorded under similar conditions in the auditory
nerve of the cat. The overall organization of the system is shown in Figure 13.18.
The technology for cochlear modeling has resulted in dramatic progress, not only
in research efforts, but in commercial endeavors, as well.

A good deal of commercial success has been made in the area of cochlear
implants. Deafness in humans is the result of a number of possible pathologies. In
cases where deafness occurs due to physical damage to the structures of the outer
and middle ear, those structures may be augmented by a surgically implantable
microchip that decomposes incoming sounds into the fundamental and harmonic
frequencies of which they are composed. The output of the device is then a multipolar
electrode that applies various frequency signals to various points on the basilar
membrane of the intact cochlea. In devices such as the implant manufactured by
Cochlear Corp., a microphone is worn on the outside of the ear in much the same
way as a hearing aid. The microphone then decomposes the sound wave into fre-
quency bands, and transmits them through the skin to the implanted device in the
form of a modulated radio frequency signal. The implanted device then rectifies the
information signal to derive the power required to run its internal circuitry and to
provide electrical stimulation of the appropriate region of the cochlear membrane.
This eliminates the need for internal batteries, which may pose a health hazard due
to their chemical contents or the surgical procedures required to install and replace
them. While cochlear implants do not restore total hearing, they do impart the ability
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to receive sounds which aid in lipreading and overall awareness of the auditory
environment. The cochlear implant also represents the leading edge in cybernetic
implants, blazing the path for devices to augment hearing, vision, and sensation and
movement, both visceral and somatic.

Clearly, the living nervous system has been the inspiration for a substantial
amount of engineering development. Astounded and reassured by the utter through-
put, reliability, and robustness of living sensory systems, engineers, mathematicians,
neuroscientists, and computer scientists have doggedly endeavored to understand
the workings of living nervous systems. Much progress has been made in under-
standing and recreating the structure and function of individual nerve cells. From
morphological and electrophysiological study, progress has also been made in under-
standing the structure of small nerve circuits. Ahead lies the most profound frontier,
that of the algorithms and control over activity in the brain.

FIGURE 13.17 Operational Transconductance Amplifier adapted for use in subthreshold
mode and elevated output impedance.
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14 Speaker Identification 
through Wavelet 
Multiresolution 
Decomposition and 
ALOPEX

Francis Phan and Evangelia Micheli-Tzanakou

14.1 INTRODUCTION

Speech intelligibility is most often corrupted by a noisy environment, which pro-
foundly affects the hearing impaired. Hearing impairment ranks first in the United
States among chronic disabilities. As communicative disorders go hand-in-hand with
hearing impairment, there is an impetus to enhance speech intelligibility. Electronics
miniaturization, along with digital signal processing techniques, has made speech
enhancement more viable through digital-based hearing aids.1

Development of digital hearing aids for the hearing impaired has seen exciting
growth over the last decade, due to the ongoing miniaturization and increasing power
of microprocessor electronics. Digital hearing aids offer many significant advantages
over older conventional analog hearing aids, in that they are programmable in nature.2

This flexibility allows for the implementation of various signal processing techniques
to enhance the intelligibility of speech or a particular sound source of interest.
Computer simulation as a means of development for digital hearing aids facilitates
design and is especially suitable for the evaluation of signal processing techniques.
When developing working models of the digital hearing aid, the physiological
properties of the ear canal and ear drum can be considered as well.3

The three primary operations of the digital hearing aid are amplification, filtering,
and output limiting. Most research applied to the digital hearing aid lies within
filtering in which two sources of noise have been delineated, 1) noise attributed to
feedback and 2) noise attributed to the listening environment. An inherent problem
with the structural design of conventional hearing aids is that of acoustic and elec-
tronic feedback, due to the microphone-receiver proximity and the acoustical dynam-
ics of the ear canal. Feedback in the hearing aid degrades overall signal-to-noise ratio
and thus limits the maximum usable gain of the instrument. Adaptive noise cancel-
lation of feedback implementing LMS has been researched, simulated in depth, and
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described in References 4, 5, 6. The primary objective of our research relates to noise
in the ambient listening environment, such as with competing speakers.

The benchmark for future generation digital hearing aids can be measured by
how well it assists the hearing impaired in enhancing primary sounds of interest as
well as the ability to suppress unwanted noise. The cocktail party effect refers to
the mechanism by which humans can normally distinguish a particular sound source
among many.7 The notion of being able to differentiate one source among many
sound sources for humans is a natural ability that is usually taken for granted. For
the hearing impaired, the ability to achieve this effect is somewhat more difficult,
as amplifying the sound also translates into amplifying noise, which conventional
hearing aids normally do. Typically, most hearing aids implement static filtering that
may be satisfactory for deterministic-based noise but is unsuccessful in filtering
nondeterministic noise that is considered to degrade the primary sound source of
interest, namely competing speech. As in the cocktail party effect, there may exist
the problem of being able to differentiate one speaker from another, and thus the
task of defining what is the primary sound source and what is not becomes more
difficult. This complication is further compounded by frequency spectral overlaps
among many sound sources. As shown in the following sections, it is rather difficult
to differentiate one waveform from another once they have been combined.

As communicative disorders are a common result of hearing impairment, it
seems reasonable that speech makes up the primary sound of interest for the hearing
impaired. Our objective would be to implement a device that shall handle the cocktail
party effect as a preprocessing element to the brain. With some assistance from the
user, this device should be able to adjust its signal processing adaptively to focus
in on a desired speaker and at the same time suppress the noise that may affect the
speaker's intelligibility. Before signal processing can be applied to the sound signal
arriving at the user's ears, a method must first be developed to differentiate speech
from noise. This noise can be speech from a competing speaker. Although this
objective is simple to describe, its actual implementation is not trivial. This problem
breaks down into a speech and speaker recognition system in the presence of noise.
Although this research was inspired by digital hearing aids applications, the princi-
ples of the system presented here can be applied to any speaker and speech recog-
nition system.

Our research to develop this cocktail party preprocessor to the brain incorporates
a variety of interdisciplinary paradigms, which include signal analysis through
orthogonal wavelet transforms, feature extraction through the ALOPEX optimization
method, and implementation of artificial neural networks. The first technique
described is multiresolution decomposition through wavelets, a signal processing
method that overcomes limitations imposed on signal processing techniques such
as the Short Time Fourier Transform (STFT). The features that we used in this
pattern recognition system are derived from the time-frequency coefficients gener-
ated by the wavelets. These features are implemented into ALOPEX, an optimization
method inspired by a biological process. The methods for this research are based
on the elements previously mentioned, which are integrated to form a speaker
recognition system. A discussion follows which outlines the significance and limi-
tations of the system and an outline for future work.
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14.2 MULTIRESOLUTION ANALYSIS THROUGH 
WAVELET DECOMPOSITION

The phonemes of speech encompass a wide variety of characteristics in both the
time and frequency domains. As an example, vowels and fricatives have almost
complementary characteristics in which vowels are typically lower in frequency for
longer time durations, whereas fricatives have a high frequency content for short
durations.8 Frequency analysis through conventional fixed window techniques such
as the STFT are fixed window resolution operators in which the time duration of
the analysis is inversely proportional to the bandwidth of the filters.9 In other words,
high frequency localization results in poor time resolution as high time resolution
results in poor frequency localization. In extracting features from a sampled speech
waveform, it would be useful to have a means to analyze the signal from a multi-
resolution perspective. Another motivation to pursue a multiresolution analysis of
speech is that it somewhat models the cochlear mechanism of spectral decomposition
during the initial stage of sound transduction in the ear, in which a time varying
signal is spatially distributed in patterns along the basilar membrane. It has been
shown that the nervous system processes spatially distributed patterns more effi-
ciently than varying temporal signals.10

Wavelets are based on mathematical constructs that deal with the linear expansion
of a signal into contiguous frequency bands. Instead of analyzing a signal with a
single fixed window, as with short-time Fourier transform techniques, wavelets enable
a signal analysis with multiple window durations that would allow for a coarse to fine
multiresolution perspective of the signal.11 Wavelets were popularized in the last
decade after the detailed mathematical analysis by Grossman and Morlet in 1984.12

Since then wavelets have been applied to all facets of signal processing, such as image
processing and data compression. The multiresolution analysis implemented in this
research is based on the wavelet decomposition algorithm developed by Mallat.13

Multiresolution analysis of a signal decomposes into a hierarchical system of
subspaces that are one-dimensional and are square integrable. Each resolution of
the decomposition consists of a multiresolution subspace and an orthogonal sub-
space. These subspaces can also be respectively referred to as the discrete approx-
imation and the detail signal at a particular resolution. Orthogonality implies that
no correlation exists between subspaces of different resolutions. Each subspace is
spanned by basis functions that have scaling characteristics of either dilation or
compression, depending on the resolution. The implementation of these basis func-
tions is incorporated in a recursive pyramidal algorithm in which the discrete approx-
imation of a current resolution is convolved with quadrature mirror filters in the
subsequent resolution. Quadrature mirror filters (QMFs) are a pair of filters whose
frequency responses are complementary.14 Essentially, they are high and low pass
filters that define the bandwidth for a particular resolution. A particular resolution
in the decomposition process can also be referred to as an octave.

Figure 14.1 displays plots for the detail signal and discrete approximation. In
each plot, the original sampled waveform is shown first. Beneath the original wave-
form are the multiresolution decompositions represented in four octaves. Notice that
for each subsequent octave there exists a down sampling by a factor of two. Due to
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convolution with the QMFs, the discrete approximations indeed appear as low pass
filtering where conversely, the detail signal reflects high pass filtering.

The quadrature mirror filters implemented are based on the 23 tap FIR filter
defined by Mallat13 which we shall denote as h(n), which represents the low band
of the QMF. The high band of the QMF can be derived from h(n) as follows:

(14.1)

Figure 14.2 is a graph of these filters.
The original speech waveform sampled at 8 kHz is convolved with the high pass

and low pass QMFs. The resulting coefficients of the filter convolutions are sub-
sampled or decimated by a factor of two and represent the coefficients for that octave.
The signal details correspond to the coefficients generated from the high pass filter
convolution of g(n). The signal detail coefficients will eventually be used as the
feature space for this particular octave. The approximate signal corresponds to the
coefficients generated from the low pass filter convolution of h(n). The approximate
signal coefficients are then fed in as input to the next successive stage of QMFs.
Figure 14.3 is a schematic representation of the process described above.

The subsampling that proceeds the QMF convolutions provides for time dilation
to a more coarse resolution. In subsampling, every other sample is dropped so that
the original number of coefficients is down-sampled by a factor of two. For each

FIGURE 14.1 Wavelet representation of a speech waveform (a) signal detail, (b) discrete
approximation.

g n h nn( ) = −( ) −( )−1 11
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successive octave, the filter lengths of the QMFs remain static; thus, the decimation
of the approximated and detail signals is responsible for the time dilation.

The frequency bands on to which wavelet coefficients are projected are contig-
uous in nature. Thus there are no overlaps or notches in the frequency response
before the Nyquist criterion. For a speech waveform sampled at 8 kHz, the frequency
bandwidth that corresponds to each of four octaves are is shown in Table 14.1.

FIGURE 14.2 Plot of the (a) high pass filter coefficients and (b) low pass filter coefficients.

FIGURE 14.3 Successive recursive stages of multiresolution decomposition using Mallat
QMFs.

TABLE 14.1 
Frequency Bandwidths for Four 
Successive Octaves of a Waveform 
Sampled at 8 kHz

Original Signal Sampled at 8 kHz

First octave 2 kHz – 4 kHz

Second octave 1 kHz – 2 kHz

Third octave 500 Hz – 1 kHz

Fourth octave 250 Hz – 500 Hz
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14.3 PATTERN RECOGNITION WITH ALOPEX

Paradigms in pattern recognition usually rely on templates in which a closest match
or correlation is determined for a given input pattern. Artificial neural networks provide
a nondeterministic means for pattern recognition and rely on algorithms to update
connectivity weights between nodes of successive layers. Pattern recognition can be
implemented by more intuitive approaches, such as by direct template comparisons
to an input pattern and then determining the least squares error among the templates.

For the problem at hand, once the time-frequency features have been obtained
for the various speech waveforms, the objective is to use these features in a pattern
recognition scheme and in a manner that avoids the undesirability of local conver-
gence. How then is it possible to devise an algorithm which effectively finds the
global maxima and minima without local convergence yet in a manner that does not
require inefficient scanning for the solution? The ALOPEX algorithm is a method
developed to do just that and avoid these complications. The overall optimization
of a function takes into consideration a global component as well as a local one.
The ALOPEX paradigm incorporates a stochastic element to prevent convergence
to local minima and inverts the typical pattern recognition process by generating
features of a pattern as opposed to extracting them.

Through the iterative process of ALOPEX, the input pattern X(n) should even-
tually transform into the template that has the maximal response R(n) of all the
templates. It is in this way that ALOPEX can be said to be a pattern generator. The
template in which the input most closely converged to is determined by the template
with the maximal response value.

14.4 METHODS

The speech processing of this research involving the implementation of the tools
outlined earlier was implemented as software routines developed in C on a PC. The
data processing windowing scheme was developed in part to memory limitations
imposed on this platform. This memory restriction, however, is a typical design
complication associated with embedded control instrumentation, such as with digital
hearing aids, and is treated as a “real world” problem in this research. Thus, the
software routines used in this research have been developed to circumvent memory
restrictions, but at the cost of computational speed. As with any practical signal
processing application, there is a trade off between memory and speed. However,
as VLSI technology is continually developing faster microprocessors, speed in the
overall perspective of this research takes a lesser precedence to memory overhead.
Figure 14.4 is a block diagram of the overall system. Presently, speaker identification
operates off line as data preprocessing, and links between each of the components
are not automated yet.

14.4.1 DATA ACQUISITION

Subjects were asked to speak into a unidirectional microphone leaving about a 1-cm
distance between the mouth and the microphone. The sampling rate and analog to
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digital conversion resolution are 8 kHz at 8 bits, respectively. Although careful
studies have shown that speech sounds such as vowels and fricatives are inherently
not band-limited, it has been observed that high frequencies above 4 kHz fall off
appreciably to that more than 40 dB below the peak spectra, which is typically
between 1 and 2.5 kHz.20 It seems reasonable then to define the Nyquist frequency
for speech to be 4 kHz, which is the same for “telephone speech”, enabling a minimal
sampling rate of 8 kHz for intelligible speech. For this speech processing application,
8-bit AD resolution is chosen over 16-bit resolution because the added overhead
required in memory does not justify the increased dynamic amplitude range.

14.4.2 DATA PREPROCESSING

Six speakers were used as subjects; three were male and three were female. The
subject comprised speakers with American, Chinese, and European accents. Each
speaker was asked to articulate a series of 10 words three times each. These words
were chosen to represent a variety of vowel phonemes and are listed below.

FIGURE 14.4 Block diagram of speaker identification system.

TABLE 14.2 
Test Utterances Articulated Three Times 
Each by Six Subjects and Arpabet 
Representation

Utterance Vowel Utterance Vowel

beet IY hot AA

bit IH bought AO

bet EH foot UH

bat AE boot UW

but AH bird ER
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Each utterance is assumed to have a duration of 0.50 s, and thus the speech samples
have been edited to truncate any trailing space in the utterance.

Once the waveform is on the editing screen, the beginning of the waveform is
visually determined in which samples before this beginning point are deleted. In
most cases, detecting the beginning of the utterance is obvious. However, for some
utterances that begin with low energy fricatives, as in foot and hot, the beginning
of the waveform is more ambiguous. For utterances that have beginning points that
are hard to delineate, the three waveforms are approximately lined up in time, and
the endpoints are determined by centering the waveform in a 0.50-s window. Thus,
this preprocessing stage renders all the waveforms to a 0.50-s duration, in which
the beginning of the sampled waveform corresponds to the approximate beginning
of the utterance. It is also assumed that multiple utterances of a word possess similar
envelope characteristics with respect to one another in time. However, in the figure
shown above, different articulations of the same utterance show some variability.

14.4.3 REPRESENTING THE WAVELET COEFFICIENTS FOR TEMPLATE 
MATCHING

Once the input speech waveform has been preprocessed, it is made available to the
wavelet transform. The signal detail coefficients, which are the time-frequency
features, are generated for four octaves. For the pattern recognition input configu-
ration, these coefficients are mapped to a vector whose length is a power of two. In
the case of ALOPEX, this shall be a vector of 256 parameters. For an artificial neural
network, the input would consist of 256 nodes.

Figure 14.6 illustrates how the coefficients from each of the four octaves are
mapped into a matrix form. Each octave of signal detail in the wavelet decomposition
is divided into 14 ms bins. Each bin contains the mean value of the coefficients that
fall within that bin. Each octave has a maximum of 64 bins spanning 896 ms. Signals
that are shorter than 896 ms are zero padded to that duration. For four octaves, the
number of bins totals 256 and is used to form the pattern vector.

FIGURE 14.5 (a) Example of determining endpoint for an utterance of “hot”. (b) Three
separate utterances of the word “bird”.

(a)

(b)
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As described earlier, the wavelet transform consists of convolutions of quadrature
mirror filters. Because linear convolution can be computationally inefficient, fre-
quency-based convolution was implemented instead. A problem with frequency
convolution, however, is that the FFT algorithm processes its input as if it was a
periodic signal resulting in side lobe artifacts at the boundaries of the signal. Another
important problem is that too much memory overhead is required in processing the
entire length of the waveform at one time. To circumvent these limitations, an
overlapping windowing technique was devised in which the sampled waveform is
processed in windows of 256 bytes with overlaps of 32 bytes, in which each 8-bit
sample is stored in a byte.

Before the next window is processed, the resulting wavelet coefficients for the
current window are swapped to disk. The current window that is read is processed
entirely, but not all the coefficients are written to disk, as the coefficients closest to
the end boundary contain the artifacts associated with the FFT. The coefficients from
the next window overwrite the artifact area of the previous window. The choice of
the 32-byte overlap for the signal is not an arbitrary value. A system of overlapping
coefficients for the respective octaves must be taken into consideration as well.
Another important consideration is that for the decimated waveform, subsequent
octave lengths are not static and continually divide by a factor of two. Wavelets with
orthogonal basis functions, as with this application, require that the signal processed
be a power two. Thus for windowed portion of a signal it is 256 bytes long, as shown
in Figure 14.7. Table 14.3 shows the byte overlap based on the frequency band and
the signal size.

FIGURE 14.6 Deriving the 256 time-frequency features into matrix form.
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The overlap values are determined as a ratio of windows overlapping each other
by a factor of 1/8. As described earlier, the mean values of the coefficients are taken
for a window subdivided by two. To calculate the time resolution that these subdi-
visions represent, the actual size of the window is truncated by the overlap of the
proceeding window. From the table above, the processed window can be calculated
to be a length of 224 samples. When subdivided by two and considering an 8-kHz
sampling rate, each subdivision represents mean values taken for a 14 ms duration.
Thus for a 500-ms sample, 18 of 64 subdivisions are required to represent the
waveform. The remainder of the subdivisions are zero padded. The maximum signal
length that can be processed is 896 ms.

14.5 RESULTS

Three versions of the utterance “bat” were sampled from six speakers and were
preprocessed as described earlier. One waveform of the three versions from each of
the speakers was used as templates where the remaining two versions were used as
test inputs. Speaker recognition for clean and corrupted input waveforms was per-
formed using the ALOPEX template matching scheme. The cocktail party effect

TABLE 14.3 
Relative Frequency Band and Length Characteristics 
for Wavelet Octaves

Octave Freq. Band Size in Bytes Byte Overlap

Windowed waveform Sampled at 8 kHz 256 32

First octave 2 – 4 kHz 128 16

Second octave 1 – 2 kHz 64 8

Third octave 500 Hz – 1 kHz 32 4

Fourth octave 250 Hz – 500 Hz 16 2

FIGURE 14.7 Processing the waveform by overlapping windows.
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was simulated by digitally mixing in with the input waveform another speaker
uttering the word “vision”. Tests were also conducted with input waveforms cor-
rupted with –20 dB white noise. Training data are not used as testing data for the
results presented. Figure 14.8 displays plots of an input waveform before and after
it was altered. The speaker recognition scheme is based upon the coefficients of the
wavelet representation of the speech waveform.

Table 14.4 shows results for speaker recognition for the three test scenarios
described above. The column headings are the initials of the speaker templates where
row headings are initials of speaker inputs. A “thumbs up” or “thumbs down”
indicates if the expected classifications were made successfully. The boxed “x”
indicates misclassification. For the no noise background case, there was one mis-
classfication in which speaker MZ was misidentified as FP. The other five speakers
were correctly identified. For the –20 dB white noise case, misclassfication occurred
for three of the six speakers. For the cocktail party effect in which the word vision
was mixed in with the bat utterance, the results were identical to that of the no noise
test case.

A more rigorous application of the cocktail party effect was simulated for speaker
recognition between two speakers simultaneously articulating the same utterance.
The utterance bat from speaker FP was mixed in with the bat utterances of the
speaker test data set. For this situation, the speaker recognition system correctly
classified three of the five speakers.

Speech recognition was tested for one speaker articulating three words. In all,
three utterances for each word were sampled. For a particular word, one utterance

FIGURE 14.8 Input speech patterns before and after waveform altering.
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was trained as a template, while the two other utterances were used as test inputs.
Training data were not used as testing data. The methods of preprocessing and
wavelet representation are the same as with the speaker recognition system. Table
14.5 column headings represent the template utterances as the row headings represent
the test utterances. The number suffix appended to the listed utterance is intended
to differentiate multiple articulations of the same utterance. Three methods of pattern
recognition were implemented: ALOPEX template matching (see Chapters 12 and
17), artificial neural network using an ALOPEX training algorithm, and artificial
neural network using a backpropagation learning algorithm. The neural network
topology used in each neural network implementation consisted of 256 nodes in the
input, 10 nodes in the hidden layer, and 3 nodes in the output layer. Each node of
the output layer represents one of the three templates (speakers).

The utterances used have similar time alignment but possess variable prosodics.
Beet2 is slightly higher in pitch as compared to beet3. Template matching with
ALOPEX correctly identified the utterance where the neural networks failed to
classify. The ANN with ALOPEX converged halfway with all the templates where
the ANN with backpropagation misclassified. Boot3 has an exaggerated “t” stop
consonant sound, which was misclassified by ALOPEX and the ANN with back-
propagation but correctly identified with ALOPEX template matching. Bought,
which sounded similar for all utterances, was correctly classified by each paradigm.

TABLE 14.4 
Case 1. Speaker Recognition Against Competing Noise and Speakers

No noise background –20 dB white noise Cocktail Party Effect

FP MZ KL BL YA DZ FP MZ KL BL YA DZ FP MZ KL BL YA DZ

FP � – – – – – � – – – – – � – – – – –
MZ ⌧ � – – – – – � – – – ⌧ ⌧ � – – – –
KL – – � – – – – ⌧ � – – – – – � – – –
BL – – – � – – – – – � – – – – – � – –
YA – – – – � – – – – – � ⌧ – – – – � –
DZ – – – – – � – – – – – � – – – – – �

TABLE 14.5 
Speaker Recognition for Simultaneous 
Utterance of “bat” Between Two Speakers

MZ KL BL YA DZ

MZ � – – – ⌧
KL – � – – –
BL – – � – –
YA – – – � –
DZ – – – ⌧ �
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For the neural network topology used, ALOPEX as a training algorithm showed
stronger convergence as compared to backpropagation, as shown in Figure 14.9.

14.6 DISCUSSION

The results that have been presented in our study show promise of using wavelet
representation of discrete short speech utterances for speaker recognition in the
presence of noise or a competing speaker for a cocktail party effect. The current
implementation of our system, however, is somewhat limited considering the small
number of templates used in the pattern recognition schemes. However, as the
template and vocabulary size increase, so does computational and memory overhead
required for the pattern recognition paradigms. Thus, the primary focus was in
establishing the wavelet representation of speech for time-frequency tokens in a
multispeaker environment.

TABLE 14.6 
Interspeaker Speech Recognition for Three Words of Two Utterances Each

ALOPEX ANN & ALOPEX ANN & Backprop
beet1 beet1 bought1 beet1 boot1 bought1  beet1 boot1 bought1

beet2 � – – �.5 .5 .5 �.13 ⌧.89 .01
beet3 � – – �1.0 0.0 0.0 �.89 .09 .04
boot2 – � – 0.0 �1.0 0.0 .63 �.23 .30
boot3 – � ⌧ .19 �1.0 0.0 ⌧.89 �.09 .04
bought2 – – � 0.0 .01 �1.0 .04 .01 �.98
bought3 – – � 0.0 0.0 �1.0 .04 .01 �.98

FIGURE 14.9 Average convergence comparisons for ALOPEX and backpropagation train-
ing algorithms.
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Although a certain amount of speaker cooperation is assumed, variability in
multiple speech samples is expected to exist. Since wavelets produce frequency
features localized in time, preprocessing can be greatly enhanced though a time
alignment technique such as Dynamic Time Warping. Prosody of an utterance,
however, provides more of a spectral variability. Thus, as discussed earlier, wavelets
provide a multiresolution analysis of a signal that Short Time Fourier Transforms
cannot provide. Low frequency features associated with vowels and high frequency
features of consonants can be distinguished more readily with multiple filter lengths
as opposed to a static one.16

The subsampling characteristic of wavelet processing for multiple octaves and
use of QMFs have made it possible for wavelets to be used in data compression and
reconstruction. In association with the feature mapping algorithm implemented in
this study, the actual amount of data used for speaker recognition represents a 90%
data reduction from the original sample size. This is significant in that it minimizes
memory and computational overhead for the pattern recognition algorithms.

The ALOPEX template-matching paradigm was demonstrated to be fairly robust
to white noise or multiple speaker corruption. This technique works to generate the
features of the template to which it converges, in this case the wavelet coefficients
of the speech waveform. Future work would involve resynthesizing the speech signal
without its noise components based on the ALOPEX-generated features.

The speech input is taken from a monaural sound source. Speaker recognition
for the cocktail party effect in the system is based on time-frequency characteristics
of speech stored as templates and does not rely on binaural phase information.
However, sound localization is an important factor in the cocktail party effect and
has been addressed with techniques in adaptive beamforming.

Due to computational overhead, the implementation of the cocktail party pre-
processor into a digital hearing aid is presently unlikely. However, a feasible method
of speaker identification in the presence of competing noise has been demonstrated,
which is a complication to which all speaker and speech recognition systems are
susceptible.
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15 Face Recognition 
in Alzheimer’s Disease: 
A Simulation

Evangelia Micheli-Tzanakou

15.1  INTRODUCTION

“Visual agnosia” is an impairment of the nervous system in recognizing visual
stimuli such as faces, words, and other objects. These manifestations occur although
the subjects might exhibit signs of intact basic perceptual performance in discrim-
inating brightness. The defect of not recognizing faces is also called prosopagnosia,
and it appears to be exceedingly impaired, relative to the impairment in recognizing
other types of objects. Cases like this have been reported in the literature.1 There
are yet other cases where the recognition of certain objects other than faces is also
defected. One such category is animals.2 There the recognition of the class animals
was intact but the species was totally or almost totally mistaken. The same is true
for plants,3 as well as buildings and monuments3–4 and clothing articles.5–6 Damasio
et al.5–6 also exhibited some evidence that food is another category yet. Feinberg et
al.7 and McCarthy and Warington8 have reported cases with object recognition
difficulties. Yet the level of face recognition was reported as satisfactory. A number
of other studies have suggested the presence of face-selective cells in the temporal
cortex of the monkey.9–11 The response of these cells was reported to be invariant
to rotation and partial occlusion of the face. However, cells were not significantly
or consistently responsive to line-drawn faces. It has also been reported that some
of the face-selective cells were not facial-feature selective.

These studies motivated us to develop a neural network that would recognize
faces in a similar fashion. We used commonly available feature extraction techniques
for image compression to isolate “features” from a face. In addition, the aging
process, both normal and abnormal, was simulated by adding noise to the weights
of a trained network in order to simulate memory decay with age.

15.2 METHODS

The gray scale images of two individuals, a male and a female, were acquired using
a JVC camcorder connected to a TARGA board inside a PC. Different versions of
the faces were obtained: full smile, no smile, partially occluded profiles, etc. The
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video frames were converted into eight 16 × 16 digital images per person using
standard data compression techniques.

A circular mask was used in order to eliminate backgrounds from the pictures.
The mask sets all pixel intensities outside a given radius (user selected) to zero. The
number of inputs to the neural network depends on the number of features selected
by the different methods.

Two different training algorithms are used, backpropagation (BP) and ALOPEX
(both described in detail elsewhere in this book). In the paragraphs that follow, we
will describe the methods used for extraction of features.

Feature extraction was achieved by different methods, such as moments, edges,
wavelet and Fourier coefficients (F-CORE), all described in Chapter 4.

The masked images were convolved with a 3 × 3 Prewitt operator to extract
edge information from these images. The edge image was created by thresholding
the convolved image. If the pixel value of the convolved image was less than the
set threshold, then it was set to zero; otherwise it was set to 255.

The wavelet transform provides a multiresolution representation of signals or
images and has been used extensively in the last few years, both in signal and image
processing.13–14 The orthogonal wavelet transform can be composed of a set of
quadrature mirror filters. In this study 256 wavelet coefficients were obtained from
each image, but only the eight highest in amplitude were used as inputs to the neural
network.

The same approach was taken with F-CORE, which is a Fourier-based method.15

After finding the Fourier spectrum of an image, the method sorts the frequency
coefficients from max to min. The user can select a percentage of these coefficients
in decreasing order. The selected highest in magnitude coefficients are used as inputs
to the neural network. This way most of the energy of an image is used.

15.3 RESULTS

Once the features from the different methods are obtained, they are used as inputs
to the neural network, and both BP and ALOPEX are used for comparison. The two
methods exhibited a large difference in the number of iterations needed for training.
BP reached the maximum number of iterations (30,000) allowed by the program
before reaching the optimal convergence. At that point the program is stopped.
ALOPEX, on the other hand, converged at approximately 4,000 iterations in the
worst case. In the testing mode the results are comparable to the training level for
each method of training.

Figure 15.1 shows curves of the system response vs. iterations for the selected
features from each of the methods. We tested the effect of noise added to the inputs
with different standard deviations of the Gaussian noise. As it is shown in
Figure 15.2, the response of the network decreased exponentially as the noise level
on the inputs increased. In this case no noise was added to the weights. That means
that we assumed there is no damage to the “brain.” In Figure 15.3, the percent of
recognition vs. standard deviation of the noise applied on the weights (assumed to
be damage to the connectivity of neurons in the “brain”) is shown. No noise was
added to the inputs. Notice that the response drops exponentially with increasing
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standard deviation of the Gaussian noise applied on the weights. Also notice that
the greater the sigma, the lower the starting point of recognition (y-axis intercept).
This should be compared with Figure 15.2, where all responses start from 100%
and deteriorate as the inputs decay. Finally, Figure 15.4 shows the effects of noise

FIGURE 15.1 Features selected using different methods required different numbers of
iteration to converge to 99% recognition during training.

FIGURE 15.2 The response of the network decays exponentially as the noise level on the
inputs increases. No noise applied to the weights.
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(or damage) to the “brain” as well as on the inputs. Responses decayed exponentially
with increasing weight decay and increased damage to the input image. The increased
noise to the input image, simulates the changes of a face due to aging.

FIGURE 15.3 The response drops exponentially with increasing noise component. Noise
applied to the weights.

FIGURE 15.4 Response decayed exponentially with increasing neuron decay. Noise
applied to the inputs.
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15.4 DISCUSSION

Responses of the network to different images were tested under a variety of condi-
tions that systematically validated the robustness of the neural network. Features
from faces (looking straight ahead, rotated 45°, profiles, and edge images) were used
as inputs to the network. The network was trained mainly on the frontal views of
the face, to capture the most important features. The network was tested with various
noisy faces as well. This was done to compare the recognition of highly degraded
images by networks trained on noiseless or low noise images. In another effort to
test the robustness of the network and to determine the extent to which responses
to parts of the faces could account for a response to the entire face, parts of the
faces were occluded.

We simulated the natural aging by using a decaying mechanism on the weights,
and the Alzheimer’s abrupt changes by using a Gaussian noise added to the weights.
The robustness of the neural network was tested by adding noise to the images. This
way a comparison could be made between the simulated normal aging and Alzhe-
imer’s disease.

The results indicate that the percent recognition and number of iterations needed
are closely related to the choice of features. The ALOPEX algorithm had a much
faster convergence as compared to the BP method. Wavelet coefficients and moments
served as good feature extractors. Rotation and occlusion of parts of the face did
not decrease the recognition to any appreciable degree. The response decreased
exponentially though, with an increasing noise on the input images as well as with
an increase in simulated decay of neuronal function, thus indicating that similar
symptoms may be observed under different pathological conditions and different
causes.
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 16 Self-Learning Layered 
Neural Network

Faiq A. Fazal and Evangelia Micheli-Tzanakou

16.1 INTRODUCTION

The basic task of any pattern recognition system is to decide on the class membership
of the current input pattern to the system. One approach is to make use of decision
functions, if the input pattern has n items Euclidean space. Consider, for example,
the two-dimensional cases depicted in Figure 16.1. We note that in Figure 16.1a the
input patterns can be put into two different cases, c1 and c2, and a linear decision
function d1 exists such that for any pattern, p, d1(p)>0 if p belongs to c1 and d1(p)<0
if p belongs to c2. Figure 16.1b shows a more complicated case of clustering, which
requires three decision functions to establish a pattern’s membership.

For more involved classification schemes, one may have to turn to a nonlinear
decision surface. For example, Figure 16.1c shows pattern classes separated by a
circle. A detailed and mathematically rigorous discussion on this topic can be found
in Tou and Gonzalez.1 It is apparent that the success of this scheme depends on
two factors: (a) the form of the decision function and (b) the ability to determine
its coefficients.

Often decision functions are not prewired into pattern classifiers but heuristically
develop as the classifier experiences input patterns during the training period. This
is referred to as clustering. Several methods of clustering exist1 and have found a
variety of applications.2,9 For example, the first of the input patterns during the
training period forms a class of its own and becomes the initial prototype for the
class. If the second pattern is similar to the first pattern, it is put in the first class,
and the prototype for the class is adjusted so that the difference between it and the
two patterns in the class is minimized. If the second pattern is not similar, then it
forms a new class of its own and becomes the initial prototype for that class. This
process is repeated for each of the patterns, forming a new class only if the pattern
does not match the prototypes of the existing classes. Several measures exist for
similarity, which include finding the following two: 1) the minimum distance
between the prototype and the pattern and 2) the dot product between the prototype
and the pattern. A pattern belongs to a class represented by the prototype, if this
measure is less than or exceeds a specified threshold, respectively.

Numerous questions can be asked regarding the quality of the clustering mech-
anism, such as
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• How distinct or redundant are the prototypes for the various classes? For
this estimation, the dot product between prototype pairs could be used.

• How much of an “overlap” exists between the classes?
• How correlated are the samples within each class? This can serve as

measure of the selectivity of the clustering procedure.
• Are there lots of prototypes with very few samples in them? This reflects

on the sensitivity of the clustering mechanism to noise.
• Is the clustering mechanism dependent on the order in which the patterns

are applied?
• Is the clustering mechanism dependent on the rate at which clusters are

formed?

In this chapter, we study the pattern clustering performance of a well-known
neural network (NN) model, namely, the layered NN (Neocognitron) of Fukushima.3

This model is a self-organizing (implying unsupervised learning) classifier of input
patterns, which is capable of tolerating shifts in position and a certain degree of

FIGURE 16.1 Different types of clustering: (a) Simple separation of classes, (b)more complex
clustering, (c) clusters separated by a circle.
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deformity of the input pattern. The following section reviews the neocognitron model
in terms of the classical pattern recognition techniques without getting into the
details. This will help provide insight into the underlying mechanisms of the neocog-
nitron, suggest quantitative measures for its performance, and encourage experimen-
tation with techniques not discussed by Fukushima.3 A simplified version of the
neocognitron is also described in Deutsch and Micheli-Tzanakou.4

Note that the present study excludes aspects of the neocognitron which deal
with tolerance to deformity and shifts in position. This is because the underlying
mechanisms for the functionality are not necessary to or explicitly integrated into
the more difficult task of unsupervised pattern classification. In addition, the func-
tionality is hard wired and does not involve learning.

16.2 NEOCOGNITRON AND PATTERN 
CLASSIFICATION

Figure 16.2 conceptualizes the pattern classification model embodied in the neocog-
nitron. The first thing we note is the distribution of the decision functions involved
in pattern classification. Instead of having a set of decision functions which operate
over the entire input field, the neocognitron architecture distributes the decision
mechanism over several levels. The decision functions at the first level work over
very small portions of the input representation and, accordingly, decide over the
existence of low-level features in the various parts of the input field. Thus, given
the pixel-input representation of Figure 16.3a, the first level decision function may
collectively map it into a representation involving corners and line-segments, as
depicted in Figure 16.3b. The mapped representation, which must preserve the
spatial relationship of the higher-level features, now serves as input to the next level
of decision functions. This level, in turn, produces a topographic map of the primary
input in terms of more complex features. The process continues to the top-most level
whose decision functions collectively decide on the correct classification of the entire
input to the network. Thus, in Figure 16.3c the top-most level of a two-level network
will put the topographic map of Figure 16.3b into a class which could be labeled A.

This approach to classification can be viewed as a divide-and-conquer technique
to solving the problem. However, this distribution implies that at the lower level
decisions are made on a local basis without taking the entire picture into account.
In the presence of noise in the input pattern this scheme may not perform as well
as a single-level scheme would have done. This is also true even when such distrib-
uted schemes take top-down expectations into account. After all, top-down expec-
tation can only be initiated after receiving some initial evidence from bottom-up.
Also, in image reconstruction through top-down excitation, this scheme may cause
convergence problems.

The basic decision mechanism is the same at all levels. Each level has a set of
decision functions which work in parallel and in competition in order to decide on
the features present in the different sections of the input-field. This process is
conceptualized in Figure 16.4.
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The decision functions for level l work parallel on their respective receptive
field in order to decide which feature is present in it. The decision functions also
compete with one another to decide on the winning feature for each section (also
referred to as competition area). The decision for each competition section collec-
tively forms the input to the next level of decision functions. It should be noted
that the output of each decision function, which is shown as a single point in
Figure 16.4, is typically represented by the states of a collection of units in the
actual neural model.

In the neocognitron the decision functions at each level are implemented by
the a vector associated with each plane in the feature-detecting layer (known as
the S-layer) of that level. The number of planes in each S-layer thus places an
upper limit on the number of classifications that can be made at the corresponding
level. Each unit of a given S-plane attempts to decide if the prototype feature

Figure 16.2 Pattern classification model embodied in Neocognitron. It includes three levels,
each containing a decision function (DF).
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represented by the plane’s a vector is presented in the unit’s receptive field in the
previous layer.

Mathematically, this decision is specified by the following discriminant:

where

FIGURE 16.3 Input representation of a pattern to each level of the Neocognitron in Figure
16.2. (a) Pixel input (level 0), (b) first level representation of a decision function involving
corners and line segments (level1), (c) classification stage (level 2).

FIGURE 16.4 Parallel and competitive execution of decision functions.
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and

While the vector a is the same for each of the units in a plane, vector u, which
represents the feature currently present in a unit’s receptive field, may be different
for each unit. Vector c and scalar b are used to compute the average excitation in a
unit’s receptive field.

From Equation 16.1 it can be seen that df is a decision function of the quadratic
form, based on the equations below:

In the neocognitron the values of a and b are developed during the training period,
which c is a constant vector associated with each plane. All planes at a given level
have the same c. In the neocognitron, c follows an exponentially decreasing function
over the receptive field with the constraint that

The learning (or clustering) mechanism of the neocognitron can be described by the
procedure given below.

16.2.1 TRAINING ALGORITHM

1. apply the next training pattern
2. for each level in the network perform the following, bottom-up for each

section in the input to this level:
a. determine the plane whose a vector has the closest match with the
feature contained in this section,
b. update a and b as follows:
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where q is the learning rate and v is the average inhibitory excitation computed u
and c.

16.3 OBJECTIVES

The objectives of the simulation experiments include an attempt to understand the
issues about the clustering mechanism that were raised in the introduction. Specif-
ically, we are interested in the dependence of these issues on the form and the
parameters of Equation 16.1 and Equation 16.4. The varied parameters are the
following:

• inhibition-factor, r, from Equation 16.1
• learning-rate, q, from Equation 16.4
• the form of vector c, i.e., exponentially decreasing vs. uniform
• the initial values for vector a, i.e., random vs. primed
• thresholding the selection of winning units in the competition area with

a threshold factor, ϑ. Experimentation has shown that such threshold can
reduce the development of noisy or redundant features. Essentially, only
those units whose activation exceeds ϑ* average-activation are selected
for a weight update.

In relation to the distributed nature of clustering and the fact that the neocogni-
tron has a prefixed limit on the number of clusters that can be formed at each level,
the following issues are also investigated:

• How should the inhibition-factor and learning rate vary from one level to
another?

• How many applications of the training patterns are necessary for learning
to develop?

• Does it help to intermix the patterns from the different classes?

16.4 METHODS

The applied input stimulus consisted of an array of pixels whose values are set to
0 or 1 in order to create different types of patterns. A facility provided by the
simulation environment allowed creation of noisy patterns from the originals. The
noise introduced by this facility is random. However, the user can control the
Hamming distance* of the noisy pattern from the original one. In the two studies
reported in the next section, the mix of the original (i.e. non-noisy) pattern to noisy

* If the pixels composing a pattern are viewed as elements of a vector, then the Hamming distance
between two patterns is equal to the number of pixels in which they differ.
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patterns was 2:1:1, where the three numbers refer to the proportion of original,
1-Hamming-noisy and 2-Hamming-noisy patterns, respectively.

In these simulations, there exist several fixed and variable parameters as
listed below.

The fixed parameters are the number of levels, layers, planes, and units, and the
size of the receptive field. The variable parameters are the learning rate, q, the
inhibition factor, r, and the form of the vector c.

Two cases are considered for vector c, namely, a uniform distribution of con-
nection weights and an exponential distribution of connection weights. In addition,
the initial value for vector a assigned to each of the learning planes is a variable
parameter. For a, two cases of initial values are considered, namely, (a) random
assignment of the weights and (b) primed assignments, mixed with random assign-
ments. Primed assignment of the initial value to an a vector gives it a slight bias to
certain types of patterns in its receptive field. The pattern types included horizontal,
vertical, and diagonal lines.

Another variable parameter is ϑ, the threshold factor used in deciding the
winning unit in each competition area.

The network performance is evaluated in terms of its capability to learn and
recall after learning is over. Learning is evaluated in terms of (a) the number of
planes used at each level and (b) how orthogonal are the a vectors for the planes
that are used in learning. The dot-product between the a vectors is used for this
purpose. After learning is completed for each level, the dot-product between the a
vectors is computed, along with the minimum, average, and maximum values.

In the results presented here (Figures 16.6 through 16.10 and 16.14 through
16.16), the learned a vector for each plane is shown in a two-dimensional grid format
to make obvious the correspondence between the vector and the feature that it detects.
Each number within the grid represents the relative sensitivity of the learned pattern
to excitation occurring at the location of the number. For clarity, zero sensitivity is
represented by blank space. Recall is evaluated in terms of the activation states of
the units at the various levels.

Two different studies, Study A and Study B, were performed. The results and
their implications are presented next.

16.5 STUDY A

Study A was made with a two-level network having an input level and a recog-
nition level.

16.5.1 NETWORK DESCRIPTION

The table below summarizes the description of the network used in this study. The
entire NA stands for Not Applicable.

The input patterns consist of a 5 × 5 array of pixels. Figure 16.5 shows the
patterns that are used in Study A. If we consider patterns 5 and 6 as being similar
to 4 and 1, respectively, then we expect the network to cluster them into four classes.
This should result in four planes being used in level 1.
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16.5.2 RESULTS FROM STUDY A

Several observations are made, and are listed below:

A1 The larger the inhibition factor, the more discriminatory is the clustering
process which, in turn, results in larger number of clusters. This can be
seen in Figures 16.6a, 16.7a, and 16.8a for different inhibition factors.
These figures show that there is an increase in the number of planes used
up in the clustering process as the inhibition factor increases.

A2 The greater discrimination resulting from increased inhibition may cause
the development of redundant planes. This can be seen by comparing the
connections in Figures 16.6a, 16.7a, and 16.8a. For example, in Figure
16.8a, which shows the results for the highest inhibition, we see similar

TABLE 16.1
Description of Network Used in Study A

 Level 0 Level 1
layer INP layer Vc layer S

# of planes 1 1 10

Units per plane 5×5 1 1

Receptive field size NA 5×5 5×5

FIGURE 16.5 Input patterns for Study A.
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patterns (4 and 7, 2 and 6) represented by different planes. However, in
Figure 16.6a, which corresponds to the least inhibition, only four planes
develop. This is about the number that we would expect based on a human
inspection of the stimulus shown in Figure 16.5. This redundancy is also
reflected in the increase of the dot-product of the a vectors of the devel-
oped planes, as seen in Figures 16.6b, 16.7b, and 16.8b.

A3 Decreasing the learning rate has little effect (actually, negative, if any)
on the results for the one level classification attempted in Study A. This
can be inferred by comparing the results in Figure 16.8 with those in
Figure 16.9. In the latter the learning rate was decreased to 0.75, and the
number of vectors increased appropriately so that the same amount of
learning occurred. As a result of a decrease in the learning rate, q, we
note that the number of clusters increased by 1 and the dot-product also
increased slightly.

A4 Using the exponential form of c only seems to worsen the classification
in the one level case. This can be seen by comparing the results shown
in Figure 16.6 with those shown in Figure 16.10. They differ in the form
of vector c. The exponential form of c results in fewer clusters than are
actually required. For the exponential case, we also note an increase in
the value of the dot-products between clusters.

A5 A high inhibition factor causes a sharp drop in the response of a feature
detecting plane, even with a single missing element in the feature. This
could be a problem if the input consists of a macro-feature which contains
many instances of this feature. Figure 16.11 illustrates this phenomenon
for a plane detecting a diagonal line. With a high I inhibition-factor (in
this case equal to 4), the decrease in activation is significantly greater than
with a low inhibition factor (in this case equal to 1). Figure 16.12 illustrates
the problem this could cause in the network’s response to a macro-feature
containing contiguous instances of a micro-feature (feature 1). With a
high inhibition factor, the one missing pixel may cause the activations of
units at level l + 1 to decrease significantly, which would prevent the
feature’s detection at that level.

16.6 STUDY B

This study was made with a three-level network: an input level, a micro-feature
recognition level, and a level recognizing the total input pattern. Table 16.2 summa-
rizes the description of the network used in this study. The entry NA stands for Not
Applicable. The input patterns consisted of a 9×9 array of pixels. The patterns are
shown in Figure 16.13.

16.6.1 RESULTS FROM STUDY B

Several observations are made, and are listed below:
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B1 With appropriate values for the inhibition factor and the learning rate,
the neocognitron seems to extract appropriate micro-features at the first
level, which are then used in recognizing the different letters at the second
level. This observation is substantiated by noticing that the a vectors
developed for level 1 (Figure 16.14a) correspond to features that are
apparent through visual inspection of the letters (Figure 16.13). Also, 
after learning has occurred, each letter is associated with a response from
only one plane in level 2 (Figure 16.14c). The responding plane is unique
to that letter, thus signifying the recognition of the input letters by the
trained network. For the experiment on which this observation is based,
the variable parameters are set as follows:
a. for pass 1, in which the network is trained with four instances of each

pattern:
• the inhibition factor is set at 5 for level 1, and 8 for level 2,
• the learning rate is set for 0.5 for level 1, and 1 for level 2.

b. for pass 2, in which the network is trained with seven instances of each
pattern:
• the inhibition factor is set to 5 for level 1 and 8 for level 2,
• the learning rate is set to 2.0 for level 1 and 9 for level 2.

B2 The high inhibition factor required to distinguish between letter A and R
resulted in the network being very sensitive to missing features in the input.

B3 Lowering the inhibition factor to reduce this sensitivity resulted in failure
to distinguish between A and R.

B4 Not thresholding the selection of winning features in each competition
area resulted in the development of redundant micro features. This is
evidenced by the development of connections for plane 8 in level 1, as
shown in Figure 16.15a.

B5 Primed, instead of totally random initialization of a resulted in a better
clustering at level 1. This is evidenced by comparing the connection tables
for level 1 in Figure 16.14a and Figure 16.16a (the unprimed case). We
note that the unprimed case resulted in more clusters, with increased dot-
product between them. However, this does not seem to affect the capacity

TABLE 16.2 
Description of Network used in Study B

 level 0  level 1  level 2
layer INP layer Vc layer S layer Vc layer S

# of planes 1 1 12 1 12

Units per plane 9×9 7×7 7×7 1 1

Receptive field size NA 3×3 3×3 7×7 7×7

Competition area NA NA 2×2 NA 3×3
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of the network to distinguish between the letters, as evidenced by the
distinct activation of the planes in level 2 (Figure 16.16c).

16.7 SUMMARY AND DISCUSSION

The neocognitron is analyzed in terms of classical pattern recognition techniques.
Its ability to recognize characters is demonstrated through simulations. Useful obser-
vations are made about the performance of this task. The most critical factors for
the process appear to be the selection of the learning rate and the inhibition factor.
The neocognitron seems to provide a viable approach for optical character recogni-
tion. Several copies of the type of network used in study B could be used in parallel
to recognize items like zip-codes or social security numbers.

Future work will consider the hardware implementation of this type of neocog-
nitron. The local decision functions at each level could be implemented with simple
processors with a small amount of local memory that could store the values of a, c,
b and other parameters. Finally, it would be interesting to perform studies of the
type reported in this chapter on some of the other (References 5–8) pattern clustering
approaches that are based on neuro-computing paradigms.
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FIGURE 16.6 Results from Study A with INPUT_STIMULUS: stimulus 1, IF: 1.0, LR:
3.0, type of c: UNIFORM, initialization of a: RANDOM. (a) CONNECTIONS for Level 1
plane. (b) DOT_PRODUCT of CONNECTIONS after LEARNING.
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FIGURE 16.7 Results from Study A with INPUT_STIMULUS: stimulus 1, IF: 2.0, LR:
3.0, type of c: UNIFORM, initialization of a: RANDOM. (a) CONNECTIONS for Level 1
plane. (b) DOT_PRODUCT of CONNECTIONS after LEARNING. 
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FIGURE 16.8 Results from Study A with INPUT_STIMULUS: stimulus 1, IF: 4.0, LR:
3.0, type of c: UNIFORM, initialization of a: RANDOM. (a) CONNECTIONS for Level 1
plane. (b) DOT_PRODUCT of CONNECTIONS after LEARNING. 
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FIGURE 16.9 Results from Study A with INPUT_STIMULUS: stimulus 1, IF: 4.0, LR:
0.75, type of c: UNIFORM, initialization of a: RANDOM. (a) CONNECTIONS for Level 1
plane. (b) DOT_PRODUCT of CONNECTIONS after LEARNING. 
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FIGURE 16.10 Results from Study A with INPUT_STIMULUS: stimulus 1, IF: 1.0, LR:
3.0, type of c: EXPONENTIAL, initialization of a: RANDOM. (a) CONNECTIONS for
Level 1 plane. (b) DOT_PRODUCT of CONNECTIONS after LEARNING.
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FIGURE 16.11 Neocognitron’s sensitivity to distortion in learned features. (a) An example
pattern (Pattern 3) with distortions (3-1 to 3-4). (b) Activation as a function of distortion.
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FIGURE 16.12 Adverse effect of high inhibition.
© 2000 by CRC Press LLC



FIGURE 16.13 Input patterns for Study B.
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FIGURE 16.14 Results from Study B. (a) CONNECTIONS for Level 1 learning. (b)
DOT_PRODUCT of CONNECTIONS for Level 1. (c) ACTIVATION of PLANES in Level 2.
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FIGURE 16.15 Results from Study B referred to in observation. (a) CONNECTIONS for
planes in Level 1 after learning. (b) DOT_PRODUCT of CONNECTIONS for Level 1. (c)
ACTIVATION of PLANES in Level 2. 
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FIGURE 16.16 Results from Study B referred to in observation. (a) CONNECTIONS for
planes in Level 1 after learning. (b) DOT_PRODUCT of CONNECTIONS for Level 1. (c)
ACTIVATION of PLANES in Level 2. 
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17 Biological and Machine 
Vision 

Evangelia Micheli-Tzanakou 
and Raymond Iezzi, Jr.

17.1 INTRODUCTION

Feature detectors, as well as feature generators, have been the subject of many
papers. Since Receptive Fields (RFs) are considered to be the trigger features of
cells; they can be considered to be critical tokens, which are representative of a
stimulus. Stimuli are presented in a variety of ways. The RFs can be determined as
the sum of points in the visual space where the optimal stimulus excites them all at
a rate larger than a specific threshold. This threshold is larger than the cell’s spon-
taneous activity. This way an image can be segmented into a large number of RFs
of neighboring cells. More sophisticated methods have also been used, such as the
reverse correlation method8 and the ALOPEX method14 that uses the cell’s response
as a feedback in order to find the optimum two-dimensional pattern of its RF. The
ALOPEX method reverses the pattern recognition process and makes a pattern
extractor become a pattern generator. Marcella9 and Daugman,5 simultaneously pro-
posed a model for simple cortical RFs. Their hypothesis was tested experimentally
and was found to be valid for every simple cell tested.12

The basic assumption for the model was that the response of a simple cortical
cell is strongly localized in both the space and frequency domains. In the space
domain, such a localization defines the RF profile of a cell, while in the frequency
domain, it defines the cell’s spatial frequency tuning curve. Therefore, the represen-
tation of images in the visual cortex involves features from both domains. Further-
more, it suggests a mathematical description where the product of the localization
in these two domains is minimum.

In this chapter we propose a neural network approach to the notions described
above, and we attempt to map RFs in the human cortex using the optimization
technique ALOPEX.

17.2 DISTRIBUTED REPRESENTATION

A representation in which the features can be used for an effective further processing
of information and in which they can be represented by combinations of activities
of elements rather than the activities of neurons that are sensitive to these features
is called a distributed representation. Local mechanisms can estimate how often
features (and any existing combinations of them) and any reinforcements are avail-
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able or are taking place. One can imagine the reinforcement signal being available
at all elements that carry information about a feature having occurred.

17.3 THE MODEL

Most of vision problems can be formulated as an optimization of some cost function.
Some of them are intrinsically global types of computation, like template matching
or pattern recognition. Others, like the computation of intrinsic images of a scene11

or image reconstruction,6 can be restricted to local computations. The first kind
requires processes with global support, while the second kind can be performed by
processes with local support.1 The problem with global processes is that they require
a vast number of connections to even start approaching the goal. With local processes,
a small number of connections is needed, and the number of iterations usually does
not depend on the input array.

In this model, we use local processes to solve visual tasks which require a global
kind of computation. Any optimization problem requires a search over the config-
uration space for an optimal set of variables to be found. The cost function depends
on those variables. Convergence can be improved by parallel processing.4 One can
divide the process of searching for an optimal solution into several phases. We might
start with a global optimum in some very coarse scale and then keep refining the
scale until a more precise solution is found. This method, known as the pyramidal
processing, has been extensively used in the past.13 The often-encountered problem
with this approach is how to combine the results from the different levels of the
pyramid. In order to prevent such a problem from occurring, we introduce a novel
method where all processes work on the same data set in each scale.

The neural network used is based on the same method used in the past.10 It
consists of an input array where the data are presented and several levels of opti-
mizing processes. Every process computes its local cost function. The processes of
the upper levels have larger RFs than those of the lower levels. The determination
of the RF size is problem dependent and must be done heuristically (Figure 17.1).
The RFs of the processes at any level are overlapping to allow for spreading of a
“temperature”. The temperature is defined as the reciprocal of the response strength.
In addition to overlapping, any process is laterally connected to its nearest neighbors
at its own level of the pyramid. All these connections are mutually inhibitory. This
is necessary in order to ensure temperature transfers from “warmer” to “colder”
regions. The competition is gradual rather than winner-takes-all (WTA).

This type of neural architecture is shown in Figure 17.2 and is based on a method
presented in Marsic and Micheli-Tzanakou.10

Every process (Ak) computes its local cost function. In addition to overlapping,
any process is laterally connected with its nearest neighbors at its own pyramid level.

17.4 A MODIFIED ALOPEX ALGORITHM

The calculation of the response Rk (cost function) is problem specific. Examples of
cost functions for low-level vision tasks are given in Reference 11, while an example
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of template matching is given in the next section. The goal is to maximize the
response Rk for each optimization process. Each process is running on its own data
subset. These subsets are overlapping. One iteration in the process consists of (a)
calculation of all responses for all processes using problem-specific cost function

FIGURE 17.1 Pyramidal structure of the neural network. The optimization processes are
organized into levels according to their RF sizes.

FIGURE 17.2 Neural network architecture. Each feature cluster consists of s feature ana-
lyzers Fi. The response integrators Ak compute the overall response Rk of the cluster k.
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equations and (b) updating the corresponding subset. Updating any variable in the
nth iteration is computed as in the original ALOPEX algorithms.14

The degree of the mutual inhibition among the response integrators of the same
size RFs is computed in the following way. The response integrator Ak with the
lowest response should afford the biggest change. Accordingly, it should inhibit its
neighbors by the greatest amount. This is done by the following equation:

(17.1)

where Mk(n) is the amount of inhibition of the response integrator Ak. The Mk(n) is
calculated in the following way: in the beginning, we set it equal to 1 for all Ak. If
some of them have responses greater than their neighbors for some threshold value,
its Mk(n) is increased by one. So, the highest level of inhibition of a pixel is equal
to the number of its closest neighbors. At equilibrium, all response integrators will
have inhibition levels equal to one, and this serves as a stopping condition.

Setting different thresholds for the different RF sizes generates a pyramidal
processing. We are always checking whether all processes have the same response.
Therefore, the value of the threshold determines the coarseness of the scale on which
we search for an optimum at the particular level of the pyramid. If a large threshold
is used, all processes will soon achieve an equilibrium, and processing at that scale
is terminated. Conversely, a low threshold will initiate a very precise search for an
optimum. All levels of the pyramid are synchronized so that processes with the
largest RFs have to achieve an equilibrium, in order to allow for processes with
smaller RFs to commence their work. Only when processes at an upper level whose
RFs overlap with the RF of a lower level process are inactivated is a particular lower
level process activated. However, higher order processes continually check for an
equilibrium, and if it is not there any more, they are immediately activated, and
lower level processes inactivated. This continues until all levels of the pyramid are
at equilibrium.

17.5 APPLICATION TO TEMPLATE MATCHING

In this application we used hexagonal arrays as inputs. These hexagonal lattices
contain the image that should converge to one of the stored templates. Each opti-
mizing process consists of two layers of “neurons”, as shown in Figure 17.2.

1. Feature analyzers (FAs), Fj, with RFs connected to the input array for a
feature cluster. Every feature cluster has as many neurons (feature ana-
lyzers) as the number of learned templates.

2. Response integrators (RIs), Ak, compute local cost functions by combining
the responses of all FAs within the feature cluster. Lateral inhibitory
connections in between processes are implemented at this layer.

The response of an FA is computed as a combination of pseudo-χ2 expressions
for each feature Fj within a cluster of features:

x n x n x n M ni i i
k k( ) = −( ) + −( ) −( )1 1 1∆ /
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(17.2)

The FA responses are then combined in a nonlinear way to calculate the response
(cost function) of the whole feature cluster k:

(17.3)

The goal here is to get the input image to converge to one of the templates. The
number of hexels (hexagonal pixels) in such a hexagonal image (i.e., in one of the
RFs) is H = 3N2 – 3N + 1, where N is the number of hexels per side. Uniformly
distributed noise in the range of 0–30 is added to the input image. The global
ALOPEX needs about 3500 iterations to erode the excessive line, whereas the
distributed one, with 19 RFs of N = 9, needs 1350–1750 iterations (Figure 17.3),
depending on the parameter γ. Introducing the next level of the pyramid with smaller
RFs reduces the number of iterations to less than 200. This depends on the choice
of the parameters γ and σ and the thresholds of both levels of the pyramid.

Although a global ALOPEX takes much less than 146 parallel ALOPEXes on
a serial computer, since, most of the time, most of them are inactive and convergence
takes much fewer iterations, the whole task takes less time overall than the global
ALOPEX. Evidently, implementation on a parallel computer will result in a much
faster process. The presented architecture of the network can be considered as a
pyramid or processing cone,13 the main difference being that there is no difficulty
combining results from the different layers, since all levels work on the same data.
Another advantage is the stopping condition that forces the process to stop when
equilibrium is reached everywhere. It may be applied to problems where the com-
bining of state variables into a cost function is done in a “homogeneous” way, and
where all local cost functions have approximately the same optimal value.

In all cases we have three memorized or learned templates consisting of the
hexagonal representation of the numbers “EIGHT”, “NINE”, and a damaged “SIX”,
while the input image is a complete “SIX”. The upper left line of the input pattern
“SIX” should disappear upon convergence, as is clearly the case shown in Figure 17.3.

17.6 BRAIN TO COMPUTER LINK

17.6.1 GLOBAL RECEPTIVE FIELDS IN THE HUMAN VISUAL SYSTEM

Since a very large portion of vision can be based on the properties of the RF profiles,
it would be very interesting to find a way to study human cortical RFs (visual or
auditory). Since we cannot perform single unit recordings in the human brain,
another noninvasive method should be applied. As already has been mentioned,
ALOPEX was originally used as a RF mapping technique. The underlying assump-
tion was based on the fact that a cell would fire most rigorously when the stimuli
best match its RF's spatial characteristics. Therefore, by presenting a stimulus and
then modifying it using the cell’s response as a guide, one can eventually converge
to a pattern that is a global RF. The so-found RF has a very high correlation with

R n x n Fj I i ij
*( ) = ∑ ( ) −[ ]2

R n R n R nk j j j j( ) = ∑ ( )( ) ∑ ( )( )1 1
2

/ / /* *
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FIGURE 17.3 The ALOPEX process at work. After 1750 iterations the complete “SIX” in
the input image has converged to the learned one (damaged “SIX”).
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the RF mapped with the classical methods and yet it is more specific in defining the
spatial arrangement of the emerging pattern pixel intensities. For humans, instead
of the response of a single cell, we can measure an aggregate response of thousands
of cells located in the visual cortex. Smaller contributions from other areas are
contributing as well. The measured signal in this case is the visual evoked potential
(VEP). The problem that arises is what to use as a response function. One would
like a response that is maximized when ordered patterns are used as stimuli and is
minimized when random patterns are used. In a series of experiments carried out in
our laboratory, it was found that, when a sequence of equi-luminant patterns is
presented and the only variable that changes is the amount of order in successive
patterns, then there exists a large correlation between the change in the N2 peak of
the VEP waveform and the bi-directional transition from disordered patterns to
ordered ones. Furthermore, if a biasing orthogonal to the sequence pattern is pre-
sented as an OFF pattern, the previous measure changes direction completely.2,7

These results show that there is a way to perform an ALOPEX process on humans,
by establishing a BRAIN-TO-COMPUTER LINK, in order to find an optimum
pattern for any human visual system. If the N2 peak characteristic (amplitude or
latency) change and/or changes in the neighboring peaks are used as response
feedback, then it is possible that the process will eventually converge to an ordered
pattern. This pattern can then be assumed to be a global human RF.

17.6.2 THE BLACK BOX APPROACH

A Fourier analysis of the stimulus patterns can also be done. Fifteen patterns that
ranged from totally random converging to a bar were used as stimuli. When these
patterns were analyzed with a two-dimensional Fast Fourier transform (2D-FFT),
they showed a gradual sweep of spatial frequencies in the very low spatial frequency
range (0.2–0.5 cycles per degree). Using a modified perceptron neural network as
shown in Figure 17.4, two-dimensional spectra were correlated to VEP amplitude
responses using a novel blackbox approach.

This perceptron has one input layer with as many input nodes as the number in
the power spectrum. Each input node receives one and only one input, corresponding
to one point from the power spectrum. An activation function given by

(17.4)

is applied to the single output node. As noted from Equation 17.4, this is a linear
function. For each stimulus image, a power spectrum plot was generated that con-
tained 128 frequency points; therefore, 128 input nodes were used, no hidden layers,
and only one output node. Subscript i indexes each one of these frequencies in a
given power spectrum, while j identifies which template in the set of 15 patterns
used as stimuli is presented to the network. The idea then is that given a power
spectrum, indexed by j = 1,…m, Yj should output the VEP voltage amplitude,
corresponding to the stimulus image, j. The weights Wi, when optimized correctly,
should provide a single global solution for all input spectra, Xij, and all amplitudes,

Y n X W nj j ij i( ) = ∑ ( )*
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Yj. Notice that there is no index j for the weights. This single set of weights must
provide the simultaneous solution for all input power spectra and all output VEP
amplitudes. In providing the simultaneous solution for all input spectra and all output
amplitudes, the neural network weights actually describe the spatial frequency tuning
sensitivity curve for the human visual system under study, for the set of patterns
and responses studied. A schematic representation of what is described above is
given in Figure 17.5.

FIGURE 17.4 The black box approach of the ALOPEX process for the human brain.

FIGURE 17.5 An example of how an input sinusoidal function is reproduced by ALOPEX
using spatial frequencies.
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Using this technique, it is possible to predict which spatial frequencies of the
stimuli were most important in producing any response trends noted. Those spatial
frequencies that enhance the VEP response should have strong positive weights
and vice versa. Network training was performed, using ALOPEX. Figure 17.6
demonstrates the use of the ALOPEX black box solution technique in a real time
ALOPEX-VEP experiment where the subject was instructed to concentrate on
mentally producing an ordered pattern, starting with a totally random pattern of
intensities. As the process is iterative, in each iteration the subject gets closer to
the order pattern that the subject tries to produce. On the left of the figure, we see
the computed spatial frequency sensitivity tuning curves for P100, N2, and P100/N2

peak-to-peak amplitudes.
These curves, when convolved with the power spectrum of an input image, will

produce the images corresponding to VEP response amplitude, shown to the right
of the figure. For comparison, the desired outputs, which are the physiologically
measured VEP amplitudes, are superimposed. It is important to notice that the
fundamental spatial frequency for all of these ALOPEX images can be computed
on the basis of their intrinsic check size. This results in a fundamental spatial
frequency of 0.35cpd, the same as that found from the peak in the figures on the
left. Most importantly, we also see that there is another strong peak approximately
at 5cpd. Another such case is shown in Figure 17.7. Similar results were obtained
from all other subjects tested in this study. Adjacent to these peaks, strong inhibitory
regions were also observed. It is critical to note that these spatial frequency tuning
curves are not pattern dependent, since the images produced by these subjects were
totally different for each subject—each one had their own preferred pattern evolution.
They resulted from independent, subject-specific, ALOPEX feedback optimization
of stimulus and brain response. As such, the patterns generated by each subject are
totally different and unique for each subject. Nevertheless, they all support the
concept of facilitatory and inhibitory spatial frequency channels and the fact that
stronger VEP amplitudes are associated with stronger more narrow energy peaks in
the 2-D FFT. This technique, therefore, allows us to study human visual RFs, as
well as facilitatory and inhibitory interactions in the human visual system.

17.7 DISCUSSION

The ALOPEX optimization techniques described in this work have allowed us to
examine spatial frequency analysis systems intrinsic to the biological brain, by either
using a visual evoked potential or other types of evoked responses for different types
of stimuli.

The premise of the black box technique was that the visual system analyzes
spatial frequency information, and that the VEP amplitudes are the result of some
complex membership function, which weighs the response for each spatial frequency.
That was the case as well presented in Figure 17.2, with the feature analyzers and
the response integrators. The single weighting function corresponds to the input
weights of a single node filter or neural spectrum for any given ALOPEX image
(consisting of 128 frequency spindles, or points), to a single VEP output voltage
that corresponds to either the P100 amplitude, or the N2 amplitude, or the P100/N2
© 2000 by CRC Press LLC



    
peak-to-peak amplitude. This amplitude was recorded in response to that ALOPEX
image when presented as a stimulus. In order to arrive to a single global solution
for the node input weights, the entire set of images FFTs for each image FFT in a
set was used, and a VEP voltage was computed and compared to the actual VEP
amplitude measured from the subject. An error term was computed by summing the
difference between the actual subject's VEP amplitude for the given pattern and

FIGURE 17.6 Computed Spatial Frequency tuning curves for an on-line ALOPEX exper-
iment (subject MV).
© 2000 by CRC Press LLC



    
computer-generated VEP amplitude, produced by the node when presented with the
2D-FFT of that pattern, over all images generated in a set. The ALOPEX algorithm
optimized the single set of input weights, so as to minimize the global error term
for all VEP responses. The ultimate single set of weights provided the computed
Transfer Function (TF) for spatial frequency sensitivity of the VEP parameter in
question. Using this technique, one may examine the relationship between specific
VEP parameters and their spatial tuning.

FIGURE 17.7 Graphs similar to Figure 17.6 for a different subject (subject LM).
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The novel application of these techniques has allowed us to relate VEP response
trends to the information content of the ALOPEX-generated stimuli, using a response
feedback mechanism from the subject's brain, in this unique brain-to-computer link!
Thus, the pattern recognizers in the human brain became pattern generators. The
brain is the ultimate neural network that can work in both a supervised and an
unsupervised manner, in order to extract features from signals and image patterns
to make sense of situations and the environment.
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