Three light rays are emitted simultaneously in an elevator at rest in the Earth's gravitational field (representing a non-inertial reference frame N^{g}) from points D, R, and S toward point M. Let I be a reference frame initially at rest with respect to N^{g} which starts to fall in the gravitational field at the moment the light rays are emitted. The emission of the rays is simultaneous in N^{g} as well as in I. At the next moment an observer in I sees that the elevator moves upward with an acceleration g. Therefore the three light rays arrive simultaneously not at point M, but at O since for the time $t=r / c$ the elevator moves at a distance $\delta=g t^{2} / 2=g r^{2} / 2 c^{2}$. As the simultaneous arrival of the three rays at the point O in I is an absolute event (the same in all reference frames) being a point event, it follows that the rays arrive simultaneously at O as seen from N^{g} as well. Since for the same coordinate time $t=r / c$ in N^{g} the three light rays travel different distances $D O \approx r, S O=r+\delta$, and $R O=r-\delta$ before arriving simultaneously at point O an observer in the elevator concludes that the average downward velocity \bar{c}^{\downarrow} of the light ray propagating from S to O is slightly greater than c

$$
\bar{c}^{\downarrow}=\frac{r+\delta}{t} \approx c\left(1+\frac{g r}{2 c^{2}}\right)
$$

The average upward velocity \bar{c}^{\uparrow} of the light ray propagating from R to O is slightly smaller than c

$$
\bar{c}^{\uparrow}=\frac{r-\delta}{t} \approx c\left(1-\frac{g r}{2 c^{2}}\right)
$$

The vector form of the average light velocity in N^{g} can be obtained if R, S, M, and O are taken to lie on a line making an angle with \mathbf{g} :

$$
\begin{equation*}
\bar{c}^{g}=c\left(1+\frac{\mathbf{g} \cdot \mathbf{r}}{2 c^{2}}\right) . \tag{1}
\end{equation*}
$$

Figure 1. Three light rays propagate in an elevator at rest in the Earth's gravitational field. After having been emitted simultaneously from points D, R, and S the rays meet at O (the ray propagating from D toward M, but arriving at O, represents the original thought experiment considered by Einstein). The light rays emitted from R and S are introduced in order to determine the expression for the average anisotropic velocity of light in a gravitational field. It takes the same coordinate time $t=r / c$ for the rays to travel the distances $D O \approx r, S O=r+\delta$, and $R O=r-\delta$. Therefore the average velocity of the downward ray from S to O is $\bar{c}^{\downarrow}=(r+\delta) / t \approx c\left(1+g r / 2 c^{2}\right)$; the average velocity of the upward ray from R to O is $\bar{c}^{\uparrow}=(r-\delta) / t \approx c\left(1-g r / 2 c^{2}\right)$.

