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Abstract

The purpose of this paper is twofold - to demonstrate that in the gravitational redshift it is the

frequency a photon that is constant, and to describe the mechanism responsible for the change of its

wavelength.

PACS: 04.20.Cv, 04.20.-q

It is usually assumed that both frequency and wavelength of a photon in the gravitational redshift change
whereas its velocity remains constant. In this note we shall show that it is the frequency of a photon that
does not change whereas its velocity and wavelength change. It will be also shown that it is the change of
the coordinate velocity of the photon along its path that leads to a change in its wavelength.

Three things should be kept in mind when dealing with the gravitational redshift:
1. If two observers at different points A and B in a gravitational field determine the characteristics of a

photon emitted from identical atoms placed at A and B, each observer will find that the photon characteristics
- frequency, wavelength and local velocity - will have the same numerical values.

2. In a parallel gravitational field coordinate and proper distances coincide dx = dxA = dxB [1] and
therefore the wavelength of a photon at a point is the same for all observers - λA = λB = λ.

3. The local velocity of a photon at a point is different for different observers (it is c only for an observer
at that point).

Consider a non-inertial frame Ng at rest in a parallel gravitational field of strength g. If the z-axis is
anti-parallel to the acceleration g the spacetime metric in Ng has the form [2]

ds2 =

(

1 +
2gz

c2

)

c2dt2 − dx2
− dy2

− dz2 (1)

from where the coordinate velocity of light at a point z in a parallel gravitational field is immediately obtained
(for ds2 = 0)

cg = c
(

1 +
gz

c2

)

. (2)

Notice that (1) is the standard spacetime interval in a parallel gravitational field [2], which does not coin-
cide with the expression for the spacetime interval in a spherically symmetric gravitational field (i.e. the
Schwarzschild metric expressed here in Cartesian coordinates) [3, p. 395]

ds2 =

(

1 −

2GM

c2r

)

c2dt2 −

(

1 +
2GM

c2r

)

(

dx2 + dy2 + dz2
)

. (3)

The metric (1) can be written in a form similar to (3) if we choose r = r0 + z where r0 is a constant

ds2 =

(

1 −

2GM

c2 (r0 + z)

)

c2dt2 −
(

dx2 + dy2 + dz2
)

. (4)
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As g = GM/r2

0
and for z/ r0 < 1 we can write

ds2 =

(

1 −

2GM

c2r0

+
2gz

c2

)

c2dt2 −
(

dx2 + dy2 + dz2
)

. (5)

As the gravitational potential is undetermined to within an additive constant we can choose GM/r0 = 0 in
(5); more precisely, when calculating the gravitational potential we can set the constant of integration to be
equal to −GM/r0. With this choice of the integration constant (5) coincides with (1). Although similar (4)
and (3) have different values for gii (i = 1, 2, 3): gii = −1 in (4), whereas gii = −

(

1 + 2GM/c2r
)

in (3). This
reflects the fact that in a parallel gravitational field proper and coordinate times do not coincide (except for
the proper time of an observer at infinity) whereas proper and coordinate distances are the same [1].

Consider an atom stationary at a point B in a parallel gravitational field. The atom emits a photon - a
B-photon - which is observed at a point A at a distance h above B. As seen at B the B-photon is emitted
with a frequency fB = (dτB)

−1
, where dτB is the proper period. As seen from A, however, the B-photon’s

period is dτA and therefore its frequency is fA
B = (dτA)−1. Notice that if an identical atom at A emits a

photon its frequency at A will be fA = (dτA)
−1

= fB, which means that the corresponding periods will
be (numerically) equal: dτA = dτB . In the case of the redshift experiment, however, when a B-photon is
measured at A, dτA and dτB are different - dτB is the proper period (measured at B) whereas dτA is the
observed period as measured at A. dτA and dτB are the proper times at A and B that correspond to the
same coordinate time, i.e. the same coordinate period dt:

dτA =
(

1 +
gzA

c2

)

dt

and
dτB =

(

1 +
gzB

c2

)

dt.

As zA = zB + h it follows from (1) that the ratio between dτA and dτB is

dτA

dτB

=

(

1 + gzA/c2
)

(1 + gzB/c2)
≈ 1 +

gh

c2
.

Therefore, the initial frequency of the B-photon at B as seen from A will be

fA =
1

dτA

=
1

dτB (1 + gh/c2)
≈ fB

(

1 −

gh

c2

)

. (6)

As seen from (6) for an observer at A the B-photon is emitted with a reduced initial frequency fA < fB.
This demonstrates that the frequency of the B-photon does not change during its journey from A to B since
its final frequency at A should be also (6).

The same expression for the initial frequency of the B-photon at B as seen from A can be obtained if
one makes use of the fact that in a parallel gravitational field proper and coordinate distance coincide. This
means that the initial wavelength λA of the B-photon at B as seen from A is equal to the initial wavelength
λB as measured at B - λA = λB = λ. The initial velocity of the B-photon at B as seen from A can be easily
calculated

cA =
dzB

dτA

=
dzB

dt

dt

dτA

where and dzB/dt is the coordinate velocity at point B

c′ = c
(

1 +
gzB

c2

)

and

dt =
(

1 −

gzA

c2

)

dτA.
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As zA = zB + h we can write

cA = c

(

1 −

gh

c2

)

(7)

Hence, the frequency of the B-photon at B as seen from A is

fA =
cA

λ
= fB

(

1 −

gh

c2

)

where fB = c/λ.
The fact that the B-photon’s frequency does not change demonstrate that its energy is constant - an

indication that the photon is not losing energy while moving against the gravitational field. Inversely, if an
A-photon is observed at B its constant energy will indicate that it is not gaining energy and therefore is
not falling in the gravitational field (if it were falling its average downward speed would be greater than its
upward average speed which is not the case ).

We have seen that it is the frequency that is constant - a conclusion also pointed out by Okun, Selivanov,
and Telegdi [5]. What changes as the B-photon travels toward the observation point A , as seen from A, is its
velocity and wavelength. The initial velocity of the B-photon at B , as seen from A, is given by (7); its final
velocity at A , as seen from A, should be obviously c. The change of the photon’s velocity on its way toward
A also explains the mechanism responsible for the change of its wavelength. As seen from A any wavefront
moving away from the gravitational field (toward A) acquires a greater velocity as compared to the velocity
of the next wavefront that follows it. Due to the speeding up of the first wavefront the spacing between the
two wavefronts increases for one period dτA (as seen by A) by a fraction δλ = δc dτA where

δc = c

[

1 +
g (z + dz)

c2

]

− c
(

1 +
gz

c2

)

= c
gdz

c2

is the change of the coordinate velocity over the distance dz.
Then the total increase of the wavelength from B to A is

∆λ =

∫ h

0

δc dτA = c
gdτA

c2

∫ h

0

dz = c
gh

c2
dτA.

As

dτA = dτB

(

1 +
gh

c2

)

we can write for ∆λ by keeping only the terms proportional to c−2

∆λ = c
gh

c2
dτB = λ

gh

c2

where c dτB = λ is the initial wavelength as determined at B. The final (measured) wavelength of the
B-photon at A is then

λA = λ + ∆λ = λ

(

1 +
gh

c2

)

.

Therefore, in the gravitational redshift it is the velocity and wavelength of a photon that change whereas
its frequency does not change.
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