

Snort ™

FOR

DUMmIES
‰

01_568353 ffirs.qxd 6/3/04 10:07 AM Page i

01_568353 ffirs.qxd 6/3/04 10:07 AM Page ii

by Charlie Scott, Paul Wolfe, and Bert Hayes

Snort ™

FOR

DUMmIES
‰

01_568353 ffirs.qxd 6/3/04 10:07 AM Page iii

Snort™ For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@
wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

GENERAL DISCLAIMER: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK
AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERV-
ICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO
IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004102600

ISBN: 0-7645-6835-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/SS/QW/QU/IN

01_568353 ffirs.qxd 6/3/04 10:07 AM Page iv

About the Authors
Charlie Scott is an Information Security Analyst for the City of Austin, where
he helps maintain the City’s network security infrastructure and helps analyze
intrusion detection data. He has nearly ten years of experience in the Internet
industry and has been an avid user of open source security software that entire
time. Charlie is a Certified Information Systems Security Professional (CISSP)
and a Cisco Certified Network Professional (CCNP).

Bert Hayes is a Security Technical Analyst for the State of Texas, where he
maintains network security for a medium sized agency. In Bert’s ten years
of IT industry experience, he has done everything from managing a corporate
IT shop during a successful IPO to performing white hat penetration tests for
corporate and government offices. He has long been a proponent of open
source solutions, and is a Red Hat Certified Engineer (RHCE).

Paul Wolfe is an independent information security consultant and author,
specializing in open source security.

01_568353 ffirs.qxd 6/3/04 10:07 AM Page v

01_568353 ffirs.qxd 6/3/04 10:07 AM Page vi

Authors’ Acknowledgments
This book benefited greatly from the research and writing contribution of
Mike Erwin, an early collaborator on this project. Mike is the president and
CEO of Symbiot, Inc., a developer of intelligent security infrastructure man-
agement system designed to interoperate with intrusion detection systems
and other pieces of security infrastructure. Mike has fifteen years of experi-
ence in network operations and security, has co-authored over a half-dozen
books, and is a Certified Information Systems Security Professional (CISSP).

The authors collectively bow to the developers of the myriad of security
tools covered in this book, especially Marty Roesch, for answering our ques-
tions and creating Snort in the first place!

The authors also thank Melody Layne, Pat O’Brien, and the rest of the Wiley
team for their hard work and prodding, and our agent Carole McClendon of
Waterside Productions. They also thank Jamie Pugh of Symbiot for his inci-
sive technical review.

Bert dedicates his portion of the book to everyone who would rather build
his or her own system than buy one off the shelf. He also acknowledges the
unwavering love and support of his wife Kate, the loyalty of his pets, and the
wisdom of his parents.

Paul thanks Nikolaus, Lukas, Rayna, Jesse and Brenda, whose support make
his work possible (and necessary . . .). And finally, thanks to Charlie for ruling
this project with the iron grip of a dictator. Bastard.

Charlie dedicates his portion of the book to everyone who has ever had to
clean up a cracked system — may it never happen again. He thanks his won-
derful wife, Mary, and his co-workers at the City of Austin for their support.

01_568353 ffirs.qxd 6/3/04 10:07 AM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Pat O’Brien

Acquisitions Editor: Melody Layne

Copy Editor: Barry Childs-Helton

Technical Editor: Jamie Pugh

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition

Project Coordinator: Courtney MacIntyre

Layout and Graphics: Andrea Dahl,
Stephanie D. Jumper, Lynsey Osborn,
Heather Ryan

Proofreaders: Laura Albert, David Faust,
Andy Hollandbeck, Brian H. Walls,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_568353 ffirs.qxd 6/3/04 10:07 AM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Getting to Know Snort and Intrusion Detection5
Chapter 1: Looking Up Snort’s Nose ..7
Chapter 2: Fitting In Snort ...19
Chapter 3: Readying Your Preflight Checklist...29
Chapter 4: Makin’ Bacon: Installing Snort for Linux ..41
Chapter 5: Installing Snort and MySQL for Windows...77

Part II: Administering Your Snort Box.........................105
Chapter 6: Snorting Through Logs and Alerts..107
Chapter 7: Adding Visuals and Getting Reports ...133
Chapter 8: Making Your Own Rules..175
Chapter 9: What, Me Worry? ...199
Chapter 10: Dealing with the Real Thing ...217

Part III: Moving Beyond the Basics............................241
Chapter 11: Reacting in Real Time ...243
Chapter 12: Keeping Snort Up to Date...263
Chapter 13: Filling Your Farm with Pigs ..275
Chapter 14: Using the Barnyard Output Tool ...295

Part IV: The Part of Tens ...317
Chapter 15: Ten Cool Tools for Snort...319
Chapter 16: Ten Snort Information Resources ...327

Appendix A: What’s On the CD-ROM331

Index ...337

02_568353 ftoc.qxd 6/2/04 9:17 AM Page ix

02_568353 ftoc.qxd 6/2/04 9:17 AM Page x

Table of Contents
Introduction..1

Who Should Read This Book?...1
About This Book...1
How to Use This Book ...2
What You Don’t Need to Read ..2
Foolish Assumptions ...2
How This Book Is Organized...3

Part I: Getting to Know Snort and Intrusion Detection......................3
Part II: Administering Your Snort Box..3
Part III: Moving Beyond the Basics ..3
Part IV: The Part of Tens..4

Icons Used in This Book..4
Where to Go from Here..4

Part I: Getting to Know Snort and Intrusion Detection5

Chapter 1: Looking Up Snort’s Nose .7
Why All the Hubbub about Security? ..8
What Is an IDS, and Why Have One?..9

Key IDS concepts..9
Don’t put all your eggs in the firewall basket12

Why Snort?..12
Snort’s Components ..13
Glancing at Snort’s Output..15
Visualizing with Consoles ...16
Getting to Know Snort’s Buddies ...17

Chapter 2: Fitting In Snort .19
Network-Based IDS...19

Finding a home for your Snort sensor ...20
Inviting More Pigs to the Party...25

A single, all-seeing Snort sensor...26
Eyes and ears everywhere ..27

Chapter 3: Readying Your Preflight Checklist .29
Choosing Your Operating System ..29

Running Linux: the pig digs the penguin...31
The pig jumps through Windows ...33
Which operating system is right for me? ..34

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xi

Sizing Up Your System...34
Keep the packets flowing ..35
Looking at hardware options ..35

Chapter 4: Makin’ Bacon: Installing Snort for Linux41
Staying Safe ...41

Starting with a clean slate ...42
Keeping a low profile ...42
Compile from source code or install a binary?46

Securing the SSH Daemon...48
PGP and hashing: Accept no substitutes ..49
Compiling the code ..51
Physical security ..54
Loose ends ..54

Installing MySQL for Linux..55
Getting the code ...55
Preparing your system for MySQL ...56
Compiling and installing MySQL ..57

Installing Snort for Linux...61
But wait, there’s more..61
Downloading and compiling Snort...63
Configuring Snort ...66
Is this thing on? ..73
Starting up Snort at boot time ..74

Chapter 5: Installing Snort and MySQL for Windows 77
The Windows Snort IDS Box ...77

Choosing your Windows OS..78
MySQL, your SQL..79
Two resource hogs: Windows and Snort...79

Keeping Your Windows Locked..81
Limit physical access...81
Tighten OS access control...81
Harden the OS...82

Installing the Base Snort System..84
WinPcap...84
Time for a Snort..85

Bending Snort to Your Will..86
Network settings...87
Rules, rules, rules ...89
Include configuration...92

Testing the Installation..93
Sniffer mode ..93
Packet Logger ...95

Snort For Dummies xii

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xii

Setting Up MySQL for Snort ..95
Installing MySQL...95
Digging in SQL guts ..99
Is this thing on? ..101
Locking MySQL and throwing away the key102

Configuring Snort as a Service ...102
Windows 2000, XP, and 2003 service commands102
Installing Snort as a service ..103

Part II: Administering Your Snort Box105

Chapter 6: Snorting Through Logs and Alerts .107
Snort’s Basic Output ..107

tcpdump binary..107
ASCII logging ...108
Logging to a database ..108
Snort’s output facilities..108

Snort’s Output Modules ..111
Alerting modules ..112
Logging modules ..122
Snort logging to a database...127
Unified logging ..131

Chapter 7: Adding Visuals and Getting Reports133
The ACID Dependency Soup...133

ACID..134
PHP...134
Web server ..135
ADODB ...135
PHPlot and JpGraph...135

Preparing ACID and Its Dependencies...135
Gathering the necessary files ...135
Installing and configuring a Web server ..138
Installing and configuring PHP ...141
Installing and configuring ADODB..147
Installing and configuring PHPlot and JpGraph150

Installing and Configuring ACID ...151
Preparing MySQL on Linux and Windows.......................................151
Preparing the MySQL databases ..153
Installing the ACID console ...156
Edit the ACID configuration file ..157
Configuring IIS for the ACID console..159
Taking the ACID test...161

xiiiTable of Contents

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xiii

Using ACID to View Snort Alerts ..163
The main ACID console page ..163
Graphing and reporting ...169
Maintenance..172

Chapter 8: Making Your Own Rules .175
The Power of the Pig..175
The Center of Snort’s Universe ..176

Picking apart the snort.conf file ...176
Playing by the rules..177

Rule Installation..178
How the rules files are organized ...178
An in-depth rule structure...178
Elements of the rule header..181
Elements of the rule body ...184
How does Snort deal with all those rules?193

Rule Refinements ...193
Trimming the fat ...193
Making adjustments ...194
Building a rule from whole cloth ..195

Chapter 9: What, Me Worry? .199
Preprocessing Punk Packets...199

Defining preprocessing ...200
Understanding the benefits of preprocessing200
Looking under the packet magnifying glass....................................201
Detecting anomalies...201
Keeping packets in a row...202
Normalizing network traffic ..206
Deciding what’s normal and what’s not ..209

Fine Tuning: Reducing False Positives ..212
Removing unnecessary rules..212
Using a security audit tool ..214

Chapter 10: Dealing with the Real Thing .217
Developing an Incident Response Plan ...217
Houston, We Have an Incident..218

Benign alerts ...219
Malicious alerts ..219
Checking an attack with ACID ..220

Using Snort to Track an Attack ..221
Obtaining more information on an alert..222
Digging into a triggered alert ..222

Snort For Dummies xiv

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xiv

Halting the Attack ..226
Pulling the network plug ...226
Pulling the power plug...227

Looking through Logs..228
Locating Unix and Linux logs..228
Using Window’s Event Viewer...229
Knowing what to look for in your logs...229
Keeping your logs safe...230

Looking for Odd Running Processes ...231
Viewing processes in Unix and Linux ..231
Viewing processes in Windows ..232

Looking for Odd Files...234
Linux...234
Windows 2000 ...234
Windows XP ..235

Looking for Odd Network Services..236
Recovering from the Incident ...237
Learning from the Attack ..238

Part III: Moving Beyond the Basics241

Chapter 11: Reacting in Real Time .243
Integrating Snort into Your Security Strategy ..243

Using Syslog-ng for log wrangling ..244
Using Swatch to Watch Your Log Files ..252

Downloading and installing Swatch ...252
Configuring Swatch ..253
Starting Swatch...256

Firewalling Suspicious Traffic in Real Time ..257
Blocking malicious network traffic with SnortSam........................258

Chapter 12: Keeping Snort Up to Date .263
Updating Rules with Oinkmaster ...263

Obtaining and installing Oinkmaster ...264
Mastering Oinkmaster ...265
Mastering Oinkmaster ...270

Upgrading Snort ...272
Preparing for the upgrade ...272
Completing the upgrade..273
Testing ...273

xvTable of Contents

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xv

Chapter 13: Filling Your Farm with Pigs .275
Pigs on the Perimeter ..275

Preparing for deployment ...276
Setting up a Snort sensor for an internal network277
Snort sensor in the DMZ..279

Catching All the Oinks ...281
Multiple output configuration ..281

Securing Snort’s Output ..283
Getting and installing stunnel ...284
Configuring and running stunnel as a server..................................285
Configuring and running stunnel as a client290
Running Snort and stunnel..291

Chapter 14: Using the Barnyard Output Tool .295
Barnyard for Fast Output ..295

What does Barnyard do? ...295
Installing and Configuring Barnyard..297

Prerequisites ...297
Extracting the archive..298
Configuring Barnyard...298
Making and installing ...300

Fitting Barnyard into Your Snort Environment ..301
Setting up Snort for unified logging ...301
Configuring Barnyard...302
Starting Barnyard ...311

Part IV: The Part of Tens..317

Chapter 15: Ten Cool Tools for Snort .319
Alert-Management Tools ...319

SnortSnarf..319
Snort Alert Monitor..320
Pig Sentry ..321

Alert-Reporting Tools ..322
RRD-Snort ..322
Snortalog ...323

Alert-Response Tools...323
SnortFW ...324
Guardian ..324

Intrusion-Management Tools ..325
MIDAS...325
Demarc PureSecure..325
IDScenter ...326

Snort For Dummies xvi

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xvi

Chapter 16: Ten Snort Information Resources 327
The Snort.org Web Site..327
The Snort Mailing Lists..328
The SANS Institute ...328
The Whitehats Security Forums...328
The SecurityFocus IDS Mailing List..329
The WINSNORT.com Web Site ..329
The My-snort.org Web Site..329
The LinuxSecurity.com Web Site..329
The Freshmeat.net Web Site ...329
Our Web Site ...330

Appendix A: What’s On the CD-ROM .331

Index..337

xviiTable of Contents

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xvii

Snort For Dummies xviii

02_568353 ftoc.qxd 6/2/04 9:17 AM Page xviii

Introduction

Welcome to Snort For Dummies. This book introduces you to the world
of detecting and responding to network and computer attacks using

the Snort intrusion detection system (IDS). Intrusion detection is a fascinat-
ing, important, and sometimes harrying subject — after all, we’re talking
about someone trying to breach all the network defenses you have in place
and attack your computer systems! For network and systems administrators,
very little is more worrisome than network attacks. Fortunately, the goal of
intrusion detection is to remove some of that worry by letting you know
when an attack is in progress.

The Snort IDS is one of the most popular intrusion detection platforms avail-
able. Snort is an open-source IDS solution, meaning that the source code is
free for anyone to use or modify. It’s released under the GNU General Public
License (GPL) open-source license, which means that it’s also free for anyone
to use. That’s right, it won’t cost you anything except time and computer
hardware. Interested? You should be. Used in conjunction with your firewall
and other layers in your security infrastructure, Snort helps you to detect
and respond to worms, system crackers, and other nasty beasts that aim to
take down your network and computer systems.

Who Should Read This Book?
This book is for you if you’re a network administrator, systems administrator,
information security manager, security consultant, or anyone interested in
finding out more about running a Snort intrusion detection system to watch
for attacks against your network.

About This Book
Snort For Dummies is a reference guide for installing, configuring, deploying
and managing Snort IDS sensors on your network. This book covers every-
thing from why you need an IDS, to installing Snort, to dealing with network
attacks, to deploying multiple Snort sensors. There are thousands of ways
that Snort can be deployed and a myriad of databases, logging systems, and
tools it works with. We focus on the tools and techniques that are widely
deployed and known to work best with Snort, all the while remaining generic
enough that the information should be helpful no matter what your situation.

03_568353 Intro.qxd 6/2/04 9:18 AM Page 1

Whether you’re watching for attacks on a home network, a small company
network, or an enterprise network, Snort For Dummies provides you with the
information you need.

How to Use This Book
This book is modularly designed so you can jump right in to the information
you need, rather than read it from cover-to-cover. You can refer directly to
individual chapters that pertain to the information you’re looking for. If a con-
cept from an earlier chapter suddenly becomes important, we tell you which
chapter to refer to so you can refresh your memory. If you’re new to intrusion
detection or have never installed Snort before, we recommend that you read
Part I. If you already have a Snort sensor and just need to know the best way
to manage it, you can skip to Part II. If you’re already managing your Snort
IDS and want to know about tools and practices that can enhance its ability
to detect attacks (and your ability to respond to them), then hit Part III.

What You Don’t Need to Read
Depending on your computer and network configuration, you may be able to
skip chapters. For instance, if you’re running all Linux systems on your net-
work, you can skip the chapter on installing Snort for Windows. Or, if you’re
only interested in deploying a single Snort sensor, you can skip the chapter
on scaling Snort.

Foolish Assumptions
We make a few assumptions about you, a soon-to-be IDS master, so that we
can focus this book as much as possible on intrusion detection with Snort:

� You understand basic computer-, network-, and information security-
related concepts and terms. You don’t need to have worked for the NSA
(known for its security geniuses) but you do need to know what a fire-
wall is.

� You have a computer that is available, or can become, your Snort
sensor.

� You understand basic software installation and system administration
on the system you’re working on, be it Linux or Windows.

� You have access to the Internet in order to obtain the software used to
run your Snort IDS.

2 Snort For Dummies

03_568353 Intro.qxd 6/2/04 9:18 AM Page 2

� You’re allowed to run Snort on the network you plan on putting it on.
This is important because Snort’s a network packet sniffer, and there
might be privacy implications, or you might violate your organization’s
own network security policy.

How This Book Is Organized
This book is organized into four parts: three regular-chapter parts and a Part
of Tens. There’s also an Appendix. These parts are modular, so you can jump
around from part to part if needed. Each chapter provides practical installa-
tion, configuration, and administration information on running a Snort IDS
and its more useful components.

Part I: Getting to Know Snort
and Intrusion Detection
This part covers the basics of getting Snort up and running. It starts by show-
ing you what Snort is capable of and why it’s one of the best intrusion detec-
tion systems out there. It then shows you where to put Snort on your network.
Finally, it shows you how to install Snort on both Linux and Windows systems.

Part II: Administering Your Snort Box
This part covers the day-to-day tasks of running your Snort IDS. It starts by
showing you how to use Snort’s primary output: logs and alerts. Once you
have that down, it takes you through installing the ACID console for getting
visuals. Snort’s intrusion detection rules are at the core of its operation, so it
shows you how to create new rules and tweak them to reduce alerts that
don’t pertain to you. Finally, it shows you how to deal with an actual attack
against your computer systems!

Part III: Moving Beyond the Basics
This part takes you into some of those more advanced features of Snort. It
starts by showing you how to send yourself real-time alerts when your net-
work is being attacked. Upgrading your Snort rules or Snort itself can seem
like daunting tasks, but we show you how to do both. If you have a large net-
work, you should take advantage of Snort’s scalability and run multiple Snort
sensors. Finally, this part shows you how to use Snort’s unified logging fea-
ture and Barnyard to offload log processing from your Snort sensors.

3Introduction

03_568353 Intro.qxd 6/2/04 9:18 AM Page 3

Part IV: The Part of Tens
This part points you to tools and resources to help you get the most out of
your Snort IDS. It starts by showing you the top ten coolest tools for Snort,
many of which help you visualize what Snort’s telling you, or e-mail you con-
venient summaries of Snort’s alert information. Finally, it tells you where you
can go for extra Snort help and information.

Icons Used in This Book
This icon points out technical information that’s interesting but not vital to
your understanding of the topic being discussed.

This icon points out information that’s worth committing to memory.

This icon points out information that could seriously impact your ability to
run your Snort IDS or companion programs, so please read it!

This icon points out advice that will make it easier to install or run your
Snort IDS.

Where to Go from Here
This book is designed to be modular. Read through the table of contents and
decide where you are in the process of installing, configuring, deploying, and
managing your Snort IDS. Choose which part or chapter most applies to you
and go for it!

4 Snort For Dummies

03_568353 Intro.qxd 6/2/04 9:18 AM Page 4

Part I
Getting to Know

Snort and Intrusion
Detection

04_568353 pt01.qxd 6/2/04 9:18 AM Page 5

In this part . . .

This part covers the basics of getting Snort up and run-
ning. It starts by showing you what Snort is capable of

and why it’s one of the best intrusion detection systems
out there. It then shows you where to put Snort on your
network. Finally, it shows you how to install Snort on both
Linux and Windows systems.

04_568353 pt01.qxd 6/2/04 9:18 AM Page 6

Chapter 1

Looking Up Snort’s Nose
In This Chapter
� Understanding network and computer attacks

� Understanding intrusion detection

� Understanding the Snort intrusion detection system

Your boss left a magazine article on your desk about a company whose
customer database was cracked by a hacker. What’s worse, the intruder

had been pulling credit-card numbers out of the database for months, and all
the while the company had no clue it was the victim of a high-tech robbery.
The company’s customers stopped trusting, and the company lost money.
Attached to the article was a Post-It note in your boss’ handwriting: “Can this
happen to us?” How can you assure her you’ll know if an intruder attacks
your database? How can you be sure it hasn’t already happened?

You did some research and discovered that adding an Intrusion Detection
System (IDS) to your network will give you the information you need to detect
network attacks. You looked around at some of the commercial IDS products
and found these products slick and beautiful, but also found their price tag
equals a few months of your salary. Ouch! Despite your boss’ concern about
hackers, you know that money is tight, and the security budget is small.

Open source software projects have gotten a lot of press because they’re
often inexpensive, or even free. You found an open source IDS software pack-
age called Snort. It looks like a good choice, but you’re not a computer secu-
rity guru, and open-source software isn’t known for having an easy “three
clicks and you’re done” installation process. You want intrusion detection
alerts and reports, but you don’t have a lot of time to figure out on your own
how to build or maintain an IDS.

You’ve come to the right place! In this book we tell you how to get your Snort
IDS up and running, and how to use the information it provides to keep your
network secure.

05_568353 ch01.qxd 6/2/04 9:19 AM Page 7

Why All the Hubbub about Security?
It used to be that every computer network was an island unto itself. Network
security? All you needed were guards and keys to keep people who didn’t
belong on your computers out of your building. Sure, some computers were
broken into over phone lines, but that was rare and only done by brainiacs
like the kid from the movie WarGames, right? Computer viruses spread, but
only when someone brought in a floppy disk from home. Worms? Only your
dog got those.

Then, companies, governments, organizations, and individuals across the
globe began connecting to the commercialized Internet, and a couple of
things changed for network security.

� All those separate islands were connected by bridges (routers, technically
speaking). It became much easier for one computer to talk to another,
across town or across the globe.

� Network penetration and computer cracking tools became much easier to
obtain and use. It takes hardcore programming skills to build computer-
cracking tools, but you don’t have to be a Über-hacker to run them.
Programmers who know how to create cracking tools can make them
available on the Internet, where anyone from a curious 12-year-old to a
corporate spy can download and use them.

Some of the threats you have to watch out for include the following:

� Worms: These little attack-bots are everywhere these days. Worms exploit
known holes in computer operating systems and applications to spread
automatically from one machine to the next.

� Script-kiddies: Only slightly smarter than worms, script-kiddies are real
people that use someone else’s aforementioned cracking tools to do
their dirty work. Because they tend to use well-known hacking tools and
go after low-hanging fruit, they are usually easy for IDS systems to spot.

� Denial-of-Service and Distributed Denial-of-Service attacks: These
attacks rob you of your computer and network resources (such as net-
work bandwidth, CPU cycles, network connections, memory, and disk
space). DOS and DDOS attacks can bring a computer network to its knees.

� Black-hat hackers and crackers: Black-hat hackers and crackers are
usually very skilled at network penetration and exploiting system vul-
nerabilities. They often go to great lengths to evade IDS systems.

With threats like these on the Internet, information security is a concern for
everyone.

8 Part I: Getting to Know Snort and Intrusion Detection

05_568353 ch01.qxd 6/2/04 9:19 AM Page 8

What Is an IDS, and Why Have One?
An IDS is an application that detects attacks against your computer or net-
work, and lets you know when the attacks occur. How can an IDS help you
deal with the threats against your network and computer systems? What fol-
lows is a quick rundown of some of the benefits of running an IDS:

� Detecting attacks. Attack detection is what an IDS is there for. An IDS
can tell you if a worm is attacking your network, or if a computer system
has been compromised.

� Enforcing policies. An IDS can monitor an internal network for behavior
that violates your organization’s network security or acceptable use
policies. For instance, if users are chatting on AOL Instant Messenger,
when IM use is prohibited.

� Providing an audit trail. An IDS can provide an after-the-attack audit
trail for seeing how far an attacker got, and where it came from.

� Resource justification. An IDS can provide information on how well your
firewall is working and exactly how many people are “out to get you.”
This is useful when the suits want justification for the firewall upgrade,
extra staff for the security team, or your pay-raise.

All of the preceding benefits are good reasons to install an IDS as part of your
security strategy.

Key IDS concepts
Every aspect of information technology has its own lingo, and intrusion
detection is no exception. What follows is a breakdown of key concepts and
terms that are important to running an IDS.

False positives and false negatives
False positives are alerts generated by an IDS because it thinks it has detected
a valid attack against a monitored system, but the attack really isn’t valid.
False positives are problems because they create alert noise that can hide a
real attack, and then can send you on wild goose chases for attacks that
never really happened. A false positive occurs when an IDS generates an alert
on either

� Network traffic that looks like an attack to the IDS, but isn’t an attack.

� A real attack that attack doesn’t apply to the system being monitored.

A false negative is a real attack that was missed by the IDS, and therefore
not alerted on. An IDS might miss an attack because the attack is not one it

9Chapter 1: Looking Up Snort’s Nose

05_568353 ch01.qxd 6/2/04 9:19 AM Page 9

recognizes, because the IDS is overwhelmed, or because the attacker has suc-
cessfully used a method of evading the IDS. The implications of this are obvi-
ous: An attacked missed by your IDS is an attack you’re not aware of!

Signatures and anomalies
There are a couple of ways IDS solutions can detect attacks:

� Signature detection. An IDS that uses signature detection matches the
network traffic it sees against a list of attack signatures. These signatures
are typically important bits and pieces of the attack that the IDS should
look for in incoming network packets and flag as “bad” traffic. The down-
side of signature detection is that it only knows to look for attacks that it
has signatures for, and therefore can miss newly developed attacks. A
properly tuned signature detection IDS might be low on false positives,
but can be high on false negatives.

� Anomaly detection. An IDS that uses anomaly detection works in a dif-
ferent manner. It learns what “normal” traffic for your network looks like,
and will then alert you when it sees something that looks “abnormal.”
Unfortunately, anything new or different might have the chance of being
labeled abnormal, so a properly tuned anomaly detection IDS might be
low on false negatives, but higher on false positives.

Some IDS solutions use signature detection, some use anomaly detection, and
some use both. Snort uses signature detection.

Network-based IDS (NIDS)
A network-based IDS (NIDS) analyzes packets coming across a network con-
nection for data that look like its part of an attack. NIDS perform the following
tasks:

� NIDS analyze network traffic for attacks, using signature or anomaly
detection (or both). Its network interface card (NIC) runs in promiscu-
ous mode, which means that it captures all network traffic that goes by
its NIC, not just the traffic destined for the IDS system itself.

� Generates alerts to notify you of an attack in real-time.

� Generates logs to drill down deeper into an attack, typically after the
attack has occurred.

NIDS can often be distributed to different parts of your network infrastructure,
yet can send alerts to one central console. Snort is a fine example of a NIDS.

Host-based IDS (HIDS)
While a NIDS looks at all the traffic on a network to detect intrusions, a host-
based IDS (HIDS) only monitors for intrusions on the system it’s running on.
HIDS perform one or more of the following tasks:

10 Part I: Getting to Know Snort and Intrusion Detection

05_568353 ch01.qxd 6/2/04 9:19 AM Page 10

� HIDS look at incoming network traffic for attacks, using signature or
anomaly detection. Typically, the NIC on a system running a HIDS is not
in promiscuous mode.

� HIDS examine system logs for unusual events, such as multiple invalid
login attempts.

� HIDS check the integrity of files on the system. This has nothing to do
with the files’ moral character, but rather whether or not a file has been
modified. Integrity checking will also let you know if files have been cre-
ated or deleted. This is useful for detecting when backdoor or Trojan
programs have been installed on your system.

11Chapter 1: Looking Up Snort’s Nose

The lowdown on layers
While you don’t have to be a networking genius
to use Snort, there is one concept that is impor-
tant for the discussion about how Snort works
and how to read its output: the Open Systems
Interconnection Reference Model (called the
OSI Model for short). The OSI Model is an
International Standards Organization (ISO) stan-
dard for how networking protocols relate to
each other. The OSI Model sometimes is
referred to as the OSI/ISO or ISO/OSI Model.

The OSI Model is comprised of seven layers
that make up the bits and pieces of a network-
ing protocol. So do you have to memorize every
single one of the OSI model layers? No. In fact,
the TCP/IP protocol suite (which makes up all
Internet traffic) only loosely fits into the OSI
Model. But we refer to the other OSI Model
layers in numerous parts of this book, because
describing Snort’s output relies on them. What
follows is a listing of the layers of the OSI Model
that are important to our purposes:

Layer 1 (Physical): Layer 1 is your physical net-
work connection. For instance, your Ethernet
network interface card (NIC).

Layer 2 (Data Link): Layer 2 is the binary data
that rides over the physical connection. For
example, the 802.2 Ethernet protocols operate

at this layer. Ethernet Media Access Control
(MAC) addresses are also at this layer.

Layer 3 (Network): Layer 3 provides the
addressable routing of packets. The Internet
Protocol (IP) operates at this layer, so IP
addresses are known as Layer 3 addresses.

Layer 4 (Transport): Layer 4 provides end-to-end
networking communications. While Layer 3 tells
data where it needs to go, Layer 4 tells it how to
establish a connection. The Transmission Control
Protocol (TCP) and Universal Datagram Protocol
(UDP) perform this function in TCP/IP. Layer 4
communications over TCP/IP is done through
numbered “ports” over which network applica-
tions and network services run. Web servers, for
example, typically run over TCP port number 80.

Layer 7 (Application): Layer 7 provides for the
end-to-end communication between applica-
tions. An example of this is the Hyper-Text
Transport Protocol (HTTP), used by Web servers
and Web browsers to communicate between
each other.

The layers we refer to most in other chapters of
this book are Layer 3 (Network), Layer 4
(Transport), and Layer 7 (Application).

05_568353 ch01.qxd 6/2/04 9:19 AM Page 11

Using HIDS is another way to defend your network, and contributes to a
defense-in-depth posture by adding yet another layer of security. If someone
gets past your firewall and sneaks by your NIDS, there’s a chance your HIDS
can still catch him.

Don’t put all your eggs
in the firewall basket
If you don’t already have a firewall between your computer network and the
Internet, then put down this book and go set one up right now!

Done? Good. A firewall is a basic requirement for a network connected to the
Internet these days; without a firewall, you’re not even doing the minimum
to protect your network and computers. A firewall is your network’s bouncer,
only allowing certain people in or out. A firewall protects computer resources
that you don’t want outsiders to reach (for example, your file servers), while
allowing access to resources you do want outsiders to reach (your Web
server, for example).

You need both a firewall and an IDS. A firewall is not a replacement for an IDS,
it’s just a layer of the total security onion. Although some firewalls have intru-
sion detection capabilities, they are typically able to detect fewer attacks
than a full-fledged IDS.

Why Snort?
Snort (affectionately known by its designers and users at “the Pig”) is a net-
work based IDS that uses signature detection; it sniffs and examines network
data packets for content that matches known attacks.

Snort is not the only NIDS option available. Security is a hot topic, and there
are many big-name manufacturers with IDS products on the market these
days (ISS RealSecure and Cisco IDS are two examples). There are also a
number of free, open-source IDS projects (the Prelude IDS for Linux and BSD
operating systems is one example). With all of these options, why pick Snort
to monitor your network for intrusions?

� Snort is configurable. All of Snort’s inner workings, configuration files,
and rules are laid bare to you, so you can tune Snort to your specific net-
work architecture. Not only that, but you can create your own rules for
new attacks.

12 Part I: Getting to Know Snort and Intrusion Detection

05_568353 ch01.qxd 6/2/04 9:19 AM Page 12

� Snort is free. Snort is released under the GNU GPL, which means you can
use it for free, no matter if you’re a company or just a curious hobbyist.

� Snort is widely used. There are tens of thousands of downloads of Snort
each month from the http://www.snort.org/ Web site.

� Snort runs on multiple platforms. Snort not only runs on all the major
Unix and Unix-ish operating systems (including Linux), but also runs on
Microsoft Windows.

� Snort is constantly updated. Maintenance releases for Snort come out
as needed, typically once every few months. The Snort rules are regu-
larly updated with new attack signatures and can be downloaded from
www.snort.org/.

When it comes to network intrusion detection systems, nothing gives you
more bang for your buck than Snort.

Snort’s Components
Snort’s designers set out to create a top-notch open-source IDS, and in our
opinion they’ve certainly succeeded. In the process of designing Snort, the
developers focused their energies on taking an existing tool and greatly
expanding its abilities to make it something new; again, we see how the open-
source model works for you. In this case, the existing tool was tcpdump, the
ubiquitous packet capturer found on many Unix systems (and available at
www.tcpdump.org/, by the way). Marty Roesch, Snort’s creator, took tcp-
dump’s ability to grab packets, and added the ability to analyze those pack-
ets against a set of attack signatures.

Snort is an elegantly designed little beast, made up of several components
that each perform a specific task. Figure 1-1 breaks Snort down.

Libpcap
Library

Snort Packet
Decoder

Reprocessor
(plug-ins)

Detection
Engine

Detection
(plug-ins)

Output
(plug-ins)

Figure 1-1:
Follow
Snort’s

nose as it
processes

packets.

13Chapter 1: Looking Up Snort’s Nose

05_568353 ch01.qxd 6/2/04 9:19 AM Page 13

Whenever a network packet hits an Ethernet wire that Snort is sniffing, it
takes the following path:

1. Packet capture library. Illustrated as “Libpcap library” in Figure 1-1, the
packet capture library is a separate piece of software that tosses Snort
network packets from the network card. There are unprocessed Data-Link
Layer (Layer 2 of the OSI model) packets, such as Ethernet frames. On
Linux and Unix systems, Snort uses libpcap (covered in Chapter 4). On
Windows systems, Snort uses WinPcap (covered in Chapter 5).

2. Packet decoder. The packet decoder takes the Layer 2 data sent over
from the packet capture library and takes it apart. First it decodes the
Data Link frame (such as Ethernet, TokenRing, or 802.11), then the IP pro-
tocol, then the TCP or UDP packet. When finished decoding, Snort has all
the protocols information in all the right places for further processing.

3. Preprocessor. Snort’s preprocessor has several plug-ins that can be
turned on or off. Preprocessing operates on the decoded packets, per-
forming a variety of transformations making the data easier for Snort to
digest. Preprocessors can alert on, classify, or drop a packet before
sending it on to the more CPU-intensive detection engine. We tell you
more about Snort’s preprocessors in Chapter 9.

4. Detection engine. The detection engine is the heart of Snort. It takes
information from the packet decoder and preprocessors and operates
on it at the transport and application layers (Layers 4 and 5 of the OSI

14 Part I: Getting to Know Snort and Intrusion Detection

Understanding CIDR notation
When you configure Snort to monitor IP
addresses and networks, it wants you to use
something called CIDR (Classless Inter-Domain
Routing) notation to represent the network
mask. You’re probably familiar with seeing a
network and netmask pair such as this for a
Class C network:

192.168.1.0 255.255.255.0

Using CIDR notation, the same Class C network
is represented like this:

192.168.1.0/24

The number 24 after the slash is called the IP
network prefix, and basically means the same

thing as a netmask. This number is derived from
the number of bits that are turned on (starting
from the rightmost bit) in a 32-bit IP address.

If you don’t already know how to calculate CIDR
notation, don’t worry — you don’t have to calcu-
late the address yourself. Even hardcore network
geeks don’t calculate it every time — they even-
tually just memorize which prefixes match up to
the netmasks they most often use. The easiest
way to map CIDR notation to netmasks and
number of hosts is to freeload off of the security
wizards at the SANS Institute. The SANS com-
plete CIDR table is found at this Web address:
www.sans.org/dosstep/cidr.php.

05_568353 ch01.qxd 6/2/04 9:19 AM Page 14

model), comparing what’s in the packet to information in its rules-based
detection plug-in. These rules contain signatures for attacks, and we
cover them in-depth in Chapter 8.

5. Output. When a preprocessor or rule is triggered, an alert is generated
and logged (optionally along with the offending packet). Snort supports
a variety of output plug-ins, including its own text- and binary-based log-
ging formats, a number of databases, and syslog. Chapter 6 covers
Snort’s output methods.

At the network layer (OSI model Layer 3) and above, Snort can only decode
packets that are part of the TCP/IP protocol suite. This means it cannot
decode packets or detect attacks that are carried out over other network
protocols, such as Novell’s IPX/SPX or AppleTalk. For the most part, though,
this is no big deal, as many network operating systems have already migrated
to TCP/IP. And don’t worry about someone attacking you with IPX from the
Internet — because they can’t!

Glancing at Snort’s Output
Just to give you a brief taste of what Snort will tell you whenever you’re
under attack, here’s an alert generated when a packet matching the MS-SQL
Worm propagation attempt rule, also known as the Slammer worm, came
across our wire (the IP addresses have been obfuscated with Xs and Ys to
protect the guilty):

02/26-17:59:01.635549 [**] [1:2003:2] MS-SQL Worm
propagation attempt [**] [Classification: Misc
Attack] [Priority: 2] {UDP} Y.Y.250.124:1162 ->
X.X.2.27:1434

The alert tells us the following:

� The date and time the attack occurred

� Signature identification information to match the alert to a specific Snort
rule

� A description of the alert

� What type of attack the alert is classified as

� The alert’s priority (the lower the number, the more serious the attack)

� What protocol the attack came over (in this case UDP)

� The source IP address and port number, and the destination IP address
and port number

15Chapter 1: Looking Up Snort’s Nose

05_568353 ch01.qxd 6/2/04 9:19 AM Page 15

All of this information is potentially useful to us to track down an attack. We
give you more information on Snort’s alert output, and show you other ways
of logging alerts, in Chapter 6. We tell you how to track down an attack in
Chapter 10.

Visualizing with Consoles
As you can see in the preceding section, Snort’s output isn’t much to look at.
While a flat-text Snort alert file contains a whole lot of useful information, and
is great for parsing with a script, staring at Snort alerts scrolling by will make
you go blind before your time.

Fortunately there’s ACID (Analysis Console for Intrusion Detection), a Web-
based helper application for viewing and analyzing Snort alerts. Figure 1-2
shows a snapshot of alerts on an ACID console.

Much better, eh? Not only does ACID give you a more pleasurable alert-
viewing experience, but ACID also allows you to drill down into the guts of
an alert, track where the attacker came from, and search on alerts using a
number of criteria. We cover installing and using ACID in Chapter 7, and
show you how to use ACID to investigate an attack in Chapter 10.

Figure 1-2:
ACID

prettifies
Snort’s
output.

16 Part I: Getting to Know Snort and Intrusion Detection

05_568353 ch01.qxd 6/2/04 9:19 AM Page 16

Getting to Know Snort’s Buddies
Snort can do its job alone, but it can do its job better with a little help from
some other applications. One of these fine pieces of software is Barnyard, a
tool that offloads Snort’s output processing. We cover installing and using
Barnyard in Chapter 14. Other programs relate specifically to real-time alerting
and attack mitigation, such as Syslog-NG, Swatch, and SnortSam. We cover all
three of these real-time alerting and mitigation tools in Chapter 11. In Chapter
15, we tell you about ten more cool Snort tools for you to check out.

The busier Snort is, the more likely it’s going to drop packets, and dropped
packets are packets that don’t get analyzed. Let Snort handle capturing and
analyzing network traffic, and let other programs handle everything else
when possible.

17Chapter 1: Looking Up Snort’s Nose

05_568353 ch01.qxd 6/2/04 9:19 AM Page 17

18 Part I: Getting to Know Snort and Intrusion Detection

05_568353 ch01.qxd 6/2/04 9:19 AM Page 18

Chapter 2

Fitting In Snort
In This Chapter
� Snort as a host intrusion detection system

� Snort as a network intrusion detection system

� Putting Snort in its place on your network

� Adding Snort sensors

Three factors determine the overall effectiveness of your Snort system:
location, location, and location. With Snort, as in the world of real estate,

where you are is just as important as what you do.

Before you start your Snort install, decide what you are protecting:

� A single server

� A group of systems

� An entire subnet

Once you know what part of your network you want to monitor, your deci-
sion on where to place your Snort monitor practically is made for you.

Network-Based IDS
Why run Snort on a single host? The following examples are perfectly good
instances of when to run Snort on a single system, because both are exam-
ples of the smallest of networks: a single host.

If a single host is the limit of your network (or the piece of the network that
you monitor for attacks), skip the rest of this chapter and go straight to
Chapter 4 (if you’re installing for Linux) or Chapter 5 (if you’re installing for
Windows):

06_568353 ch02.qxd 6/2/04 9:19 AM Page 19

� Your single host is a Web server locked up in a far-away cabinet in some-
one else’s data center. You might not want to pay the extra money for
another couple units of rack-space just for a dedicated Snort system.

� You’re a wireless java junkie with your own chair at the local Wi-Fi café.
You might consider running Snort on your laptop to see when someone
decides to — ahem — check your laptop for the latest system patch.

Once you start worrying about monitoring more than one host, you must
decide whether you want to

� Run Snort on each of those hosts

� Run a single dedicated Snort system to watch an entire chunk of your
network.

With the amount of work involved in installing and maintaining Snort,
you get more bang for your buck with a dedicated Snort sensor to watch
entire sections of your network.

Snort isn’t useless for monitoring a single host. But Snort only looks for
attacks in network traffic. This puts Snort in the NIDS camp, regardless of
whether you monitor a single host or an entire network with Snort.

Snort is a textbook definition of a Network IDS. It started its life as a juiced-up
version of tcpdump, the ubiquitous packet capture agent that takes raw data
straight off the wire, and was enhanced to compare that data to a list of known
attack patterns, alerting you when traffic patterns match attack patterns. In a
nutshell, that’s what Snort does, and that’s what it does best.

Exposing Snort to more of your network results in it watching more network
traffic. The default setting in your snort.conf file is to define var HOME_NET
any. This tells Snort to watch any traffic that whizzes past it and look for
attacks, so getting Snort to monitor more of your network can be as simple as
exposing it to more network traffic.

Finding a home for your Snort sensor
If you set up a Snort sensor as a dedicated NIDS, have it watch as much traffic
as it can handle at one time. Why watch a single server, when you can moni-
tor every host on your DMZ? Snort puts a network card in promiscuous
mode, so it watches all network traffic that flies by. You can edit your
snort.conf file to limit what you want Snort to react to, but the network card
grabs every packet it can. The key to making Snort watch more of a network
is letting it see more of that network.

20 Part I: Getting to Know Snort and Intrusion Detection

06_568353 ch02.qxd 6/2/04 9:19 AM Page 20

When it comes time to choose the hardware for running Snort, and you’re
worried about Snort seeing enough of your network, pick a server that looks
good. After all, the better you look, the more you see. Joking aside, we guide
you in choosing the best hardware for a Snort sensor in Chapter 3.

Switches, repeaters, and hubs, oh, my!
For a Snort user, there’s one important difference between hubs (or
repeaters) and switches:

� Hubs repeat data to every port.

With hubs, a network card in promiscuous mode easily watches other
people’s network traffic (because everyone’s packets already go to
everyone else).

� Switches only send data to the port where that data’s ultimate destina-
tion lies.

A switch knows which MAC address is on each port. It takes data that
comes in on a port (or ports) and spits it back out on another port (or
ports). A switch reduces the total traffic on the network by only sending
data destined for a particular device’s MAC address to the switch port
that device is plugged in to.

A switch’s ability to forward traffic only to devices that the traffic is destined
for means that switches are much better performers and are more scalable

21Chapter 2: Fitting In Snort

Host-based IDS
In the world of intrusion detection systems
(IDS), there are basically two flavors:

� Network-based IDS (NIDS): Snort is a NIDS.
Snort puts a network card in promiscuous
mode, looks at every packet that whizzes by
(regardless of its ultimate destination), and
alerts about packets that look like attacks.

� Host-based IDS (HIDS): A true HIDS
watches events on the host itself (such as
changes to important files and unsuccess-
ful local logins) and decides whether these
events indicate some shenanigans.

Snort can be run on a single host, config-
ured to watch only the network traffic that is
relevant to that host. This myopic monitor-
ing does not make Snort a HIDS.

Imagine a Snort sensor that runs on the host it’s
meant to monitor; that sensor only sees network
traffic for that particular host. Now imagine the
following scenarios: One of your admins creates
a privileged account for use after he turns in his
letter of resignation; an unused account for a
user on a lengthy sabbatical is suddenly active
again; your company’s top-secret plans for a
submersible bicycle are copied to a floppy disk
and taken off-site; or your login program is
replaced with a keystroke logger. Snort can’t
detect any of these attacks while running on a
single server because these attacks either
happen at the console, or abuse existing privi-
leges and don’t occur over the network directed
at network services. Snort would not see any
traffic that indicates an attack.

06_568353 ch02.qxd 6/2/04 9:19 AM Page 21

than hubs. The other side of that coin, however, is that traffic not destined
for a particular device is hidden from that device. Since your Snort box is just
another device plugged into the switch, this presents a problem: If you want
to monitor the entire network’s conversations, you want to be able to listen
to all of conversations at once. This is easy with a hub, but difficult with a
switch.

Most modern switches can designate a specific port as a monitoring port. The
monitoring port can watch all traffic between any port (or group of ports) on
your switch. On some switches, such as Cisco switches, the monitoring port
is called a SPAN port. Consult your switch’s documentation to set up a moni-
toring or SPAN port.

Some switches can’t be configured with a monitoring port. Those little eight-
port switches that cost $100 a few years ago are a good example. If your
switch can’t designate a monitoring port, consider either

� Using a hub to repeat the traffic that you want to monitor

� Replacing your switch with one that allows you to designate a monitor-
ing port

Location, location, location
What Snort monitors depends on where it is on your network. A diagram of a
typical network is shown in Figure 2-1. Like most, this network uses a firewall
to split Internet facing servers into a DMZ, and keeps end-user workstations
and internal servers in a NAT network.

� A DMZ (De-Militarized Zone) network is a kind of limbo, a neither here
nor there zone that has tight controls on what network traffic goes in
and what comes out. Traditionally, it’s a semi-trusted network where
publicly facing Internet servers reside.

� NAT stands for Network Address Translation, a way to hide multiple
machines using private IP space behind a much smaller chunk of public
IP space. With NAT, your end-user workstations and internal file servers
can initiate outgoing Internet connections, but other hosts on the
Internet can’t initiate connections the other way.

Keeping servers in a DMZ keeps your NAT network secure. If one of your
Internet-facing servers in your DMZ is cracked, the damage should be limited
because the hacker can’t get out of the DMZ to your internal network.

Covering your assets
If your network is for a business or other organization that uses the Internet,
network Internet access probably is critical to your business operating
smoothly. Even e-mail can be vital to day-to-day operations, so keeping these

22 Part I: Getting to Know Snort and Intrusion Detection

06_568353 ch02.qxd 6/2/04 9:19 AM Page 22

servers safe is key. If you have publicly facing Internet servers in a DMZ,
watch here for trouble: Internet access to your servers means that you can
tell the entire world about www.yoursite.com, but the entire world can poke,
prod, and tickle your servers, too.

Any place you have publicly facing Internet servers is a place for Snort.

If you use a separate DMZ network, you must do the following:

� Designate a port on your DMZ switch as a monitoring port.

� Tell your snort.conf file that you want to monitor this subnet.

Switch with
Monitoring
Port or Hub

Switch
or Hub

Switch
or Hub

Router

Firewall

Snort
Sensor

Internet

DMZ NetworkInternal NAT
Network

Figure 2-1:
A common

network
showing

Snort sensor
placement.

23Chapter 2: Fitting In Snort

06_568353 ch02.qxd 6/2/04 9:19 AM Page 23

After watching this traffic for a while, you start to see alerts for Web server
attacks and attempts to squeeze your servers for network information. Keep
an eye on Snort’s alerts and start trimming your configuration to reduce false
positives (we cover this in Chapter 9).

Monitoring your DMZ alerts you when someone attacks a server and tells
you whether an already compromised server is attacking other servers in the
DMZ. This information is critical to network forensics (covered in Chapter 10).

Seeing who isn’t on the guest list
In almost every case, you should monitor unfiltered Internet traffic. This traffic
is directed at your network, but hasn’t had a chance to be rejected by your
firewall. Though most bad traffic gets the boot from your firewall and never
touches the protected parts of your network, it’s nice to see that traffic is. If
your boss ever wants stats on how well your firewall is doing its job, this is
one great resource.

Figure 2-1 shows a switch in between the router and firewall. Although this
isn’t necessary, it’s usually helpful to have unfiltered IP space for network
troubleshooting. If there’s a switch in front of your firewall, but you can’t des-
ignate a monitoring port on it, throw a hub between your router and switch.
This lets you plug your Snort sensor in front of the firewall; for many sites, it
won’t introduce any bottlenecks. (A T1 line is only 1.54 Mbps, and even the
cheapest hub handles 10 Mbps.)

If you monitor unfiltered Internet traffic, you see a lot of alerts. You should
see a slew of such attack alerts as

� Port scans that never make it past your firewall

� Random worm activity directed at hosts that don’t exist

This data is proof that your firewall is doing its job.

Keeping tabs on the inside
Although it seems logical that you’d want to use Snort to monitor your inter-
nal NAT network filled with end-users and file servers, we don’t recommend it
until you’ve gained some experience scaling and tuning your Snort system for
a couple of reasons:

� Bandwidth: Internal LANs typically run at 100 Mbps to ensure fast
access to internal file servers or databases. Compare this to the size of
the pipe from the Internet to your DMZ. If every host on your internal
network has a 100 Mbps dedicated pipe (thanks to the magic of modern
switches, this is now the norm), your Snort system must watch a lot of
traffic at once. This is possible with Gigabit Ethernet interfaces and sys-
tems with really fast processors, but your super-fast Snort system may
be pushed to its limits.

24 Part I: Getting to Know Snort and Intrusion Detection

06_568353 ch02.qxd 6/2/04 9:19 AM Page 24

� False positive alerts: Snort has a built-in notion of us vs. them, which
is most evident in the snort.conf settings var HOME_NET, and var
EXTERNAL_NET. Snort has a very hard time correctly differentiating
between legitimate internal network traffic and hostile attacks. You can
get around this by setting both variables to any, but it doesn’t change the
fact that Snort is looking for attacks. Snorts default set of rules assumes
that your HOME_NET needs to be protected from your EXTERNAL_NET.

If your system can handle watching the big bandwidth of a LAN, Snort is your
best friend for monitoring internal LAN traffic. Watching internal LAN traffic
can be a great way to make sure that your users are sticking to the network
policy if you have

� A high-performance Snort sensor with CPU cycles and RAM to spare

� A highly tuned rule set

Your highly tuned rule set should include rules that you develop your-
self. We cover writing your own rules in Chapter 8. You can write rules to
alert you if you start seeing HTTP traffic coming from anything that isn’t
a sanctioned Web server. Or consider a rule to watch for spyware trying
to phone home from your internal LAN.

Inviting More Pigs to the Party
So you want to monitor your network everywhere; you need Snort sensors in
front of your firewall, behind your firewall, next to your firewall, in your DMZ,
in your NAT network, under your desk, behind your chair, maybe even in the
office break room, you know, just in case. Sound paranoid? You bet! But no
two sites have the same monitoring requirements.

Fortunately, Snort is modular and scalable. It’s relatively easy to deploy an
army of Snort sensors, though a small squad may be more appropriate.

You may be tempted to place a single Snort sensor on your network and put
an armful of different subnets in your var HOME_NET variable. If Snort can
see traffic on all of those subnets, it might be a good idea (if your system has
the CPU and RAM to keep up). But most network architectures are so compli-
cated that seeing network traffic for different subnets requires a different
sensor for each subnet.

If you watch different subnets, you must use a different network interface to
listen to each subnet. This can mean either

� Running separate sensors for each subnet

� Putting multiple NICs in a single Snort host

25Chapter 2: Fitting In Snort

06_568353 ch02.qxd 6/2/04 9:19 AM Page 25

A single, all-seeing Snort sensor
If you have more than one NIC (Network Interface Card) in a single Snort
system, you can use the -i command line switch to control which interface
to listen on. Versions of the libpcap library running on Linux kernels 2.2.x and
higher let you listen to all interfaces at once using -i any. (In the old days,
that required running a separate instance of Snort for each subnet you
wanted to monitor.)

We don’t recommend listening on all interfaces at once. Once you start run-
ning Snort, it needs some fine-tuning. Some rules may be appropriate for your
DMZ network, and some may be more appropriate for watching unfiltered
Internet traffic. You might even want to run some preprocessors on one net-
work, but not another (preprocessors are covered in Chapter 9). Soon you
realize that you want Snort custom-tailored for your network, but covering
different subnets using the same configuration is more of a one-size-fits-all
deployment. The Windows WinPcap library can’t watch multiple interfaces at
once, so running Snort on Windows with multiple network interfaces means
running multiple instances of Snort.

Single processor host
If your single processor Snort system has enough CPU power, you can run mul-
tiple instances of Snort at once on the same CPU. Running multiple instances of
Snort on your single-CPU system gives you the following benefits:

� Reducing the number of individual machines running Snort eases
management.

� Multiple instances of the same running program are a cheap and dirty
way to multi-thread.

Dual processor host
If you have a dual processor system, a different instance of Snort can run on
each processor.

This can be a lifesaver: If one part of your network is under an unusually
heavy load, it won’t reduce the performance of the other Snort process.
Figure 2-1 shows two instances of Snort watching two different subnets, all
running on the same server.

Multiple Network Interface Cards
Monitoring multiple subnets means running Snort with multiple Network
Interface Cards (NICs). Although Snort can monitor all NICs at once in some
installations, we recommend running a different instance of Snort for each
NIC so you can customize Snort’s configuration for each subnet you monitor.

26 Part I: Getting to Know Snort and Intrusion Detection

06_568353 ch02.qxd 6/2/04 9:19 AM Page 26

Adding more NICs to your Snort system shouldn’t be hard if your Operating
System supports the hardware; you’ll be limited by the number of expansion
cards your motherboard can handle. If you go hog-wild with your Snort install,
and you run out of places to stick NICs, consider using a NIC with multiple
interfaces on the card. Some PCI cards can have as many as four interfaces.

When using multiple NICs to monitor different subnets, make sure that these
NICs don’t have an IP address. If you run Snort on a headless server some-
where (headless means “no monitor”, not “no cranium”), you need one IP
address for access via SSH or log forwarding over syslog or MySQL. If you’re
really paranoid, you can run Snort on a system with a monitor and no IP
address at all, although this severely limits Snort’s scalability.

Eyes and ears everywhere
Although running a single Snort host with multiple NICs and multiple
instances of Snort is a viable solution, your network may be expansive
enough that this isn’t feasible. This certainly is the case if your network has
multiple physical locations. In this case, multiple Snort sensors with central-
ized logging are for you.

Adding Snort sensors to your network just entails setting up more hosts run-
ning Snort. For easier management, send the output from all of these sensors
to the same place. This is done with the output module in your snort.conf
file. Often, multiple sensors send their output to the same logging server or
database server. Scaling your Snort installation across multiple hosts, multi-
ple subnets, or multiple physical sites is covered in exquisite, gory detail in
Chapter 13.

Figure 2-2 shows a typical network configuration where we see the following
separation of duties within our Snort architecture:

� Separate Snort sensors watching different parts of a network. The
dashed lines from Snort sensors to switches or hubs are un-addressed
NICs that are monitoring traffic. Solid lines from Snort sensors to the
NAT network are connections to addressed NICs for remote access.

� A separate database server (holding our Snort alerts) and Snort ACID
console running on its own Web server.

Snort’s scalability makes it easy to run each sensor, log database, or con-
sole on a dedicated machine. This N-tier architecture makes your Snort
system more configurable, stable, and scalable as your network grows.

27Chapter 2: Fitting In Snort

06_568353 ch02.qxd 6/2/04 9:19 AM Page 27

A passive Ethernet tap can hide your sensor completely from the rest of your
network. You cut wires used for sending data, so you can monitor network traf-
fic without alerting other systems of your presence. Pretty slick, eh? The wiz-
ards at snort.org offer a tutorial on constructing your own passive Ethernet
tap. Take a spin over to http://www.snort.org/docs/tap/ for the lowdown.

Router

Snort Sensor

Database Server

Analysis Console
(Web Server)

Snort Sensor

Switch with
Monitoring
Port or Hub

Switch with
Monitoring
Port or Hub

Switch with
Monitoring
Port or Hub

Internet

International
NAT Network

DMZ
NetworkFigure 2-2:

Additional
Snort

sensors
monitoring

separate
subnets.

28 Part I: Getting to Know Snort and Intrusion Detection

06_568353 ch02.qxd 6/2/04 9:19 AM Page 28

Chapter 3

Readying Your Preflight Checklist
In This Chapter
� Choosing your Snort IDS operating system

� Comparing Linux and Windows as Snort platforms

� Sizing up hardware requirements for Snort

When you start a construction project, it’s good to know the tools you
need and the type of foundation you’re building on. The same applies

to constructing your Snort Intrusion Detection System (affectionately known
as “The Pig” because of its pig mascot). This chapter looks at both Linux and
Windows as platforms for Snort, examines Snort’s hardware requirements,
and helps you make the right choices for your network.

If you already have a Snort IDS system up-and-running, then — first off —
congratulations! Second, take a gander at this chapter anyway, because it’s
never too late to beef up that existing Snort sensor or start planning the
next one.

Choosing Your Operating System
Snort is distributed both as source code (which you can compile yourself)
and as binary files that are pre-compiled for you. The source code can be
compiled for a number of platforms — including Linux, OpenBSD, FreeBSD,
Solaris, Tru64, AIX, MacOS X and Windows. You read correctly: Windows!
There are no known problems running Snort on any post-2000 version of
Windows. Open-source tools such as Snort are not just the domain of Unix
and Unix-ish operating systems anymore. Of course, actually compiling Snort
on Windows is a daunting task — not recommended — but that’s where the
Snort executable binaries come in handy.

07_568353 ch03.qxd 6/2/04 9:20 AM Page 29

Pre-compiled binaries (for Linux and Windows only) are available from the
snort.org Web site. The Linux binaries are distributed in the RPM package
format, commonly used with RedHat Linux, the Fedora Project (a community-
supported RedHat Linux spin-off), and Mandrake Linux. The Windows bina-
ries are simply EXE files. For Linux, compiling from source is the recommended
method of installation. For Windows, the binary is the best way to install.

Snort runs on various operating systems, each with its advantages and disad-
vantages. Table 3-1 offers a brief look at some of these OS choices — as well
as what they have going for (and against) them.

Table 3-1 A Brief Overview of Snort’s OS Choices
Operating System Advantage Disadvantage

Linux Flexibility Almost too flexible (lots to figure out)

Windows User-friendly Bulky OS

IBM AIX Scalability Expensive RISC hardware

FreeBSD Stability Limited hardware choices

OpenBSD Security Limited hardware choices

Sun Solaris Scalability Expensive Sparc hardware

HP Tru64 Fast 64-bit platform Expensive 64-bit hardware

MacOS X User-friendly Limited hardware choices

This book covers installing the Snort IDS for Linux and Windows. Sorry to
leave all you BSD devils out of the fun, but the line had to be drawn some-
where. Linux and Windows were chosen for a couple of reasons:

� Pre-compiled Snort binaries are available for both operating systems
at http://www.snort.org/.

� Linux and Windows have a large combined market share. They are
also the fastest growing server operating systems on the market. IDC
(a fancy IT-industry-analysis firm) reported in November 2003 that Linux
server shipments grew by 50 percent — and Windows server shipments
grew by 21 percent — from year to year. Servers using other Unix oper-
ating systems shipped only 4 percent more over the same period. We fig-
ured it’s a safe bet that any given one of you has a Windows or Linux
system in your organization.

30 Part I: Getting to Know Snort and Intrusion Detection

07_568353 ch03.qxd 6/2/04 9:20 AM Page 30

If you choose not to run Linux or Windows, fear not! With the exception of the
installation chapters, the majority of this book is devoted to Snort features
that aren’t specific to any platform. The day-to-day tasks of running a Snort
IDS sensor are the same no matter what operating system you choose.

Running Linux: The pig digs the penguin
Small wonder that the Linux mascot is a penguin — the Linux operating
system is an extremely cool platform for running Snort. We recommend you
use a modern Linux distribution that uses version 2.4 or newer of the Linux
kernel (the core of the Linux operating system). Linux Kernel version 2.4
gives you performance and security advantages over the older kernels. Linux
Kernel 2.6, released in late December 2003, offers even better scalability,
improved I/O performance, and support for high-end processors such as the
AMD 64-bit Opteron.

Linux’s advantages as a Snort IDS sensor can be summed up in four Ps:
performance, pruning, patching, and price.

The penguin is a top performer
The Linux TCP/IP stack (especially in the version 2.4 series and newer of
Linux kernels) is excellent at handling the large amounts of data that pass
through a Snort IDS network interface.

Most sysadmins (system administrators) seem to know intuitively that Linux
is a much better performer as a Web server. For example, a study at IBM’s
Watson Research Center found that Linux could handle TCP/IP 21 percent
faster than Windows 2000.

Pruning Windows versus pruning the penguin
The standard Windows installation brings with it (from Snort’s point of view)
some unneeded bells and whistles — chief amongst them the Explorer graph-
ical user interface (GUI) and numerous GUI applications such as Notepad,
WordPad, and HyperTerminal. Are any of these required for Snort’s day-to-
day functions? Nary a one. The GUI takes up memory and CPU cycles just to
run (not to mention the hard-drive space it uses). Even though you can
remove some of the built-in Windows applications, there’s no way you’re get-
ting rid of the GUI (after all, that’s what makes Windows Windows, right?)

With Linux you don’t need to run — or even install — a GUI, and you can
keep applications that aren’t Snort-related down to a minimum. And Linux
doesn’t throw a tantrum if you take away some of its toys. You can run it as
bare-bones as you wish, streamlining it into a fast, lean machine.

31Chapter 3: Readying Your Preflight Checklist

07_568353 ch03.qxd 6/2/04 9:20 AM Page 31

Practically painless penguin patching
Because your Snort IDS is a critical part of your security infrastructure, you
don’t want it to be down very often — and when it is down, not for long.

There is what amounts to a holy war over which operating system is more
secure, Linux or Windows. If you want drama, just check out Slashdot
(http://www.slashdot.org/) on any given week for the latest Linux-
versus-Windows rants. The truth of the matter is that an improperly config-
ured or un-patched Linux system is just as insecure as an improperly
configured or un-patched Windows system.

There is a definite difference, however, in the ways Windows and Linux sys-
tems are patched. Many Windows systems administrators know the pain of
having to reboot their machine after each new Service Pack or Hotfix. This
downtime means a bleary-eyed sysadmin has to perform this update during
an after-hours “maintenance window” (usually in the wee hours of the morn-
ing or on a treasured kick-back-with-a-beer weekend). It also leaves you with-
out your Snort system for several minutes (a computer eternity) while you
shut the system down, wait for it to reboot, and make sure all services come
back up unscathed. Now, with Microsoft taking the useful (if not always wel-
come) initiative of fixing security holes and releasing patches on a monthly
basis, you’re almost guaranteed the pleasure of rebooting at least once per
month.

If you use Linux, unless there’s a critical kernel patch (rare, but not unheard
of), you never need to reboot after a patch. Hey, it might keep your weekends
free for a few cold ones.

32 Part I: Getting to Know Snort and Intrusion Detection

Why downtime is a big deal for a Snort IDS
Many a systems administrator is aware of the
pain and suffering caused by downtime for
upgrades: upset users, long hours, interrupted
business, and — worse — the chance that the
system won’t come back up! Hence the reason
most upgrades are scheduled during after-
hours “maintenance windows” when business
is least likely to be affected. The problem with a
Snort IDS, however, is that intrusion attempts,
network attacks, and worm infestations can

occur at any time — day or night, weekday or
weekend, workday or holiday. Your Snort IDS
has to be “always on the job” to detect them.
That fifteen minutes (or more) of upgrade down-
time could be the window of opportunity an
attacker needs to exploit a security hole and get
by undetected. It is unrealistic to never expect
any downtime for upgrades, but for security’s
sake, it’s in your best interest to minimize it as
much as possible.

07_568353 ch03.qxd 6/2/04 9:20 AM Page 32

The penguin is worth more than its price
The final thing Linux has in its favor is its cost. It’s free, just like Snort itself.
Granted, you can purchase full-support distributions of Linux (such as Red
Hat Advanced Server), but if you’re willing to forgo commercial support, then
plain old Red Hat Linux (or Fedora Linux, Red Hat’s open-source, community-
supported sister project) works perfectly well — as do various other Linux
distributions. Large enterprises need multiple Snort sensors, which means
multiple hardware and software deployments. In this case, using a free oper-
ating system can save you hundreds (or even thousands) of dollars — if you
go about it right.

The pig jumps through Windows
The Snort IDS runs on Microsoft Windows 2000 Professional and Server, XP
Professional, and 2003 Server. Because of the way Snort uses the network
interface (it just listens and doesn’t make connections), the Professional
versions of 2000 and XP work fine (and save you hundreds of dollars in
server-licensing costs).

Snort can run on Windows 95, 98, ME, NT, and XP Home — but we don’t rec-
ommend it. These versions lack support for higher-end hardware, are less
stable, and have poorer security than their newer counterparts. Plus, the
Windows 95, 98, and NT versions have reached their end-of-life for both main-
stream and extended support — if a security hole is found that affects those
versions, you’re out of luck if you want a Hotfix.

Using Windows as your Snort IDS platform is an advantage if Windows is the
your organization’s primary supported operating system. You already have
the Windows gurus on staff, and have support agreements with Microsoft and
other vendors in place. Your Snort IDS is supposed to give you peace of mind;
a good comfort level with the operating system you’re running it on con-
tributes to that.

Another advantage to Windows is that easy-to-use Windows GUI. All
Windows’ system administration tasks — from partitioning hard drives to
creating users — can be performed using point-and-click applications that
are the same across Windows systems (though not always exactly the same
across versions of Windows). Similar tasks under Linux either require com-
mand-line operations or GUI applications that vary depending on if you run
the KDE desktop, Gnome desktop, or some other Linux desktop environment.

33Chapter 3: Readying Your Preflight Checklist

07_568353 ch03.qxd 6/2/04 9:20 AM Page 33

Which operating system is right for me?
If you’re choosing on purely technical merit, we recommend that you run
your Snort IDS on Linux. Linux systems are fast, typically have little down-
time, and are very flexible and highly configurable. It’s a reliable, Swiss-Army-
knife OS with a whole slew of blade options — and you can remove the
blades you don’t need!

In the sometimes-Byzantine world of information technology, however, not all
decisions are based on purely technical criteria. If you’re more comfortable
with Windows and you’re not ready to jump into supporting a Linux system,
then Windows is the most practical choice.

If you choose to run your Snort IDS on Windows rather than on Linux, you’re
not at a functional disadvantage! Snort has the same features on both plat-
forms, and we cover installing and configuring both. After all, this book isn’t
about Linux, and it’s not about Windows: It’s about Snort and other applica-
tions that help you use Snort to its fullest potential.

Sizing Up Your System
How big a computer system you need for your Snort IDS is the most difficult
question to answer. It’s never a one-size-fits-all situation. What you need for
running Snort depends on some variables:

� The speed of your network (10 Mbps, 100 Mbps, 1000 Mbps, and so on).
By and large, faster is better.

� The amount of data that passes through your network during its peak.
The bigger the number, the faster the system you’re likely to need.

� How long you want to keep your Snort logs and alerts. The longer you
keep ’em, the more space you need to store ’em.

� What other services you want to run on the system (Web, PHP, MySQL,
and so on). Services usually have an appetite for system resources.

� How much money you can spend on hardware, software, and associated
support contracts. Shoestring budgets can really stunt system size.

Yes, Snort itself is free, but you’re not going to get through this without
opening the wallet a little.

As you can see those variables can be quite . . . well, variable from network to
network and organization to organization. That’s why the Snort documenta-
tion and mailing lists are peppered with qualifying phrases about hardware

34 Part I: Getting to Know Snort and Intrusion Detection

07_568353 ch03.qxd 6/2/04 9:20 AM Page 34

requirements — “it depends,” “more is better,” and whatnot — even from
Snort developers themselves. No cop-out, just practicality: It truly does
depend on your particular needs, and more is definitely better — if you can
get it. In the meantime, a few guidelines can help you choose the hardware
that fits your current situation . . .

Keep the packets flowing
Snort’s job is to listen to your TCP/IP network traffic and look for signatures
in the data flow that might indicate a security threat to your network and
your computer systems. It has to look at anywhere between 1 to 100
megabytes of traffic going across the network wire every second — which
means that anything that slows down your computer system also thwarts
Snort’s ability to process the packets it sees.

If your hardware can’t keep up with the flow of network data packets coming
across your network interface, then Snort can’t keep up. An overloaded
system ends up dropping packets — and a packet dropped is a packet not
analyzed for security threats — which means an attack might get in right
under Snort’s nose. Net effect: Your Snort IDS system might as well be com-
pletely down (for an elaboration on the perils of this situation, see the earlier
sidebar “Why downtime is a big deal for a Snort IDS”).

Looking at hardware options
To keep your Snort IDS from dropping network data packets, speed is the
single most important factor. One approach is to unsnarl a number of
hardware-related bottlenecks that can occur with a Snort IDS sensor. Choosing
hardware that best fits your scenario helps to keep those bottlenecks to a
minimum, and network data packets under control.

Processor requirements
Examining the traffic passing through your Snort sensor takes considerable
processor (CPU) speed. Also, the more preprocessors (Snort modules that
sort the packets before the Snort detection engine looks at them) you’re run-
ning, the faster it needs to be.

Snort sensors that are looking at slow network speeds of 10 Mbps or less
(such as a broadband or T1 connection) can get by with a budget CPU, such
as a Celeron or Duron. Sensors that are looking at 100 Mbps networks need at
least Pentium III or Athlon processors. A sensor watching a gigabit network
needs at least a Pentium IV or Athlon XP. The next-generation 64-bit CPUs

35Chapter 3: Readying Your Preflight Checklist

07_568353 ch03.qxd 6/2/04 9:20 AM Page 35

might also be worth looking at as operating systems, compilers, and applica-
tions are written to take advantage of these processors’ capabilities. The two
64-bit CPUs on the market right now are Intel’s Itanium and AMD’s Opteron.

Adding an extra CPU can also help. Linux, Windows 2000 Professional
and Server, Windows XP Professional, and Windows 2003 Server all have
Symmetric Multi-Processing (SMP) capabilities, which means they can take
advantage of systems having two or more CPUs. Snort can have a processor
all to itself, and leaves the other chips for other applications. The newest
Pentium IVs can also do something called Hyper-Threading, which makes
a single processor behave like two processors to the OS. Windows XP,
Windows 2003, and Linux Kernel 2.6 systems are especially good at taking
advantage of Hyper-Threading. Hyper-Threading is a good way to get some
of the advantages of a multi-processor system without the cost of adding
an extra processor.

Also take into consideration what other applications you’re running besides
Snort. Running a Web server, MySQL database management system, PHP
server-side scripting language, and the ACID Web-based reporting console for
Snort adds some overhead — especially when you’re running queries against
the database to generate reports. This is a case where the dual-processor
system helps. Barring that, beef up your system requirements to handle this
extra load. For instance, where you may have been able to get by with a
Celeron on a 10-Mbps network, the extra overhead from the additional soft-
ware means you need at least a Pentium III.

Memory requirements
When we talk about memory requirements, we’re talking about actual, physical
RAM chips — not mere hard-drive storage. Although (at first glance) memory
may not seem such a big deal for something input/output-intensive like Snort,
where its job is to suck in the network traffic, analyze it, and then spit out
alerts. In reality, however, the bulk of Snort’s work is done in memory, where
it buffers the network data while analyzing it. In short: The more (and faster)
memory you have, the better.

Why is memory so important? Running out of RAM severely affects the per-
formance of your Snort IDS and can cause it to drop network data packets.
When a computer system runs out of physical RAM, it starts using storage
space set aside on the hard drive that acts like virtual RAM. On Linux sys-
tems this is referred to as swap space (because it’s swapping pages of
memory between RAM and hard drive), and on Windows systems this is
referred to as Virtual Memory (which you set via the System control-panel
applet). Hard drive access is much slower than physical RAM access, so
when a system starts “swapping” it slows down the entire computer, and
Snort won’t have a chance to pick up and analyze every network data packet
that comes in.

36 Part I: Getting to Know Snort and Intrusion Detection

07_568353 ch03.qxd 6/2/04 9:20 AM Page 36

For Linux systems, the minimum requirement for running a Snort IDS system
is 128MB of RAM. If you’re running Windows you’re going to need more
memory than a Linux system on an equivalent network to handle the over-
head of the GUI. On a Windows system, start with no less than 256MB of RAM.

Fortunately, most new computers come with at least 128MB of RAM these
days, and most new server-class systems come with at least 512MB of RAM.
Memory prices fluctuate wildly over short periods of time, seemingly set in
motion by the fluttering of butterfly wings in South America (as rational a
take as any on the nature of commodity technology). The price can also vary
depending on the speed of the RAM and demand for it (a new 512MB stick of
RAM for an older computer might actually cost you more than a 512MB stick
for a popular latest model).

Hard-drive storage and speed
Snort can require a lot of hard-drive space. A typical Linux installation
requires 1 gigabyte of hard-drive space; a typical Windows installation
requires 3 gigabytes of hard-drive space — and that’s just for the operating
system! Snort and MySQL requires another 60MB of hard drive space on top
of that, just for the software itself.

What’s going to chew up most of your disk space, however, is Snort’s logs
and alerts. The amount of hard drive space required is going to vary depend-
ing on how much data you’re keeping, how long you’re keeping it, the amount
of data coming into your network. A good place to start is 30GB of disk space
for your database/logging partition, adding more as needed.

Another question is whether you should use IDE/ATA drives or SCSI drives.
IDE/ATA drives are common on desktop computers, while SCSI drives are
common on high-end servers. Gigabyte-to-gigabyte, IDE/ATA drives are much
cheaper than SCSI drives. SCSI hard drive controller cards are also more
expensive than IDE/ATA controllers (which these days are often simply built
into motherboards).

The benefit of SCSI is in speed. You can get 10,000 and 15,000 revolutions per
minute (RPMs) out of SCSI spindles, whereas IDE/ATA drives top out at 10,000
RPMs. The SCSI bus speed is also faster than IDE/ATA bus speed. In general,
SCSI drives perform better than IDE/ATA drives in multi-drive and RAID sce-
narios, whereas IDE/ATA drives perform better singly. A relatively new IDE/
ATA standard called Serial ATA (SATA) closes some of this gap by offering
150MB/s transfer rates and hot-pluggable drives, while remaining software-
compatible with the parallel IDE/ATA. SATA uses a new cabling standard, how-
ever, so you need SATA-compatible controller cards and hard drives.

37Chapter 3: Readying Your Preflight Checklist

07_568353 ch03.qxd 6/2/04 9:20 AM Page 37

If you can afford to spend the extra money for a system with SCSI hard drives,
we recommend it. I/O is a big factor when it comes to your Snort IDS keeping
up with the millions of packets flying by, and the SCSI speed gives you an
advantage over an IDE system. Otherwise, try the new Serial ATA drives and
controllers to get SCSI-comparable speeds at lower costs.

Network interface cards
It is best to have at least two network interface cards (NICs) in your Snort IDS
sensor:

38 Part I: Getting to Know Snort and Intrusion Detection

RAIDing your Snort IDS
RAID is an acronym for Redundant Array of
Independent (or Inexpensive) Disks. It’s a way
to use several hard drives in conjunction (as an
array) to increase performance or reliability.
The industry defines eight RAID implementa-
tions (also called RAID Levels), labeled 0
through 7. We recommend the following when
it comes to using RAID with your Snort IDS:

� Use a hardware-based RAID controller,
such as an IDE or SCSI controller card that
supports RAID. Although Windows and
Linux can both support software-based
RAID, the performance lost by saddling the
OS with taking care of RAIDing isn’t worth
it on a Snort IDS sensor.

� Use RAID Level 0 when you want to maxi-
mize the amount of available hard-drive
space. Level 0 writes data across several
hard drives in stripes. This RAID level gives
you the fastest performance out of your
hard drives — but if one hard drive goes
out, you lose all your data! Make sure you
back up Level 0 implementations regularly.

� Use RAID Level 1 when you have two hard
drives of the same size and want to mirror
the data between them. That way, if one
hard drive crashes, the other can be used

as the primary hard drive until the first is
replaced. RAID Level 1 does degrade per-
formance somewhat on hard-drive writes,
but hard-drive reads are faster than you get
with many other RAID levels.

� Use RAID Level 5 when you need a high
degree of fault tolerance and good perfor-
mance. If one drive goes out, the system
can keep running until it’s replaced. One
downside of RAID 5 is that it’s slower in
writing to the hard drive than are RAID
Levels 0 and 1. Another downside is that
one hard drive in your array is essentially
unavailable to you for storage because of
the amount of space needed to store the
parity information that’s used to rebuild a
crashed hard drive. In other words, you lose
1/n of your overall storage space to parity
information (where n is the number of hard
drives in your RAID 5 array). For example, if
you have three 120GB hard drives in your
RAID 5 array, you really only have 240GB of
storage space available. If you have eight
120GB hard drives, you only have 840GB of
storage available.

RAID isn’t a requirement for a Snort sensor, but
it can help you increase the system’s perfor-
mance, or make sure it stays up.

07_568353 ch03.qxd 6/2/04 9:20 AM Page 38

� One NIC for managing the system remotely (for example, using SSH or a
remote desktop tool to get to the system)

� One or more NICs for network packet sniffing (which is Snort’s job,
after all)

The benefit of having two NICs is twofold:

� You can keep your management and sniffing tasks on separate NICs, so
one task doesn’t interfere with the other.

� You can put the management NIC on a trusted (secured, usually private)
network and the sniffing NIC on an untrusted (unsecured, usually public)
network. For instance, you can have the management NIC on a trusted
internal network behind your firewall, and put the sniffing NIC outside
your firewall (in what amounts to a hostile environment). The sniffing
NIC isn’t given its own IP address (it doesn’t need one for sniffing), so
it’s safe from most network-based attacks.

A too-puny or otherwise mismatched NIC is an invitation to disaster. Use
NICs on your Snort IDS sensor that fit the speed of your network. For
instance, if you’re running a 10-Mbps Ethernet network, use a 10-Mbps or
10/100-Mbps Ethernet NIC. If you’re running a 100-Mbps Ethernet network,
get a 100-Mbps Ethernet NIC. Lucky enough to have a gigabit Ethernet net-
work? Then (you guessed it) use a gigabit Ethernet NIC. Not only does match-
ing the NIC card speed to your network speed make good sense from the
standpoint of ensuring Snort can snort enough data, but it might help you
avoid speed auto-sensing troubles.

If you’re in a high-performance network environment (especially a gigabit net-
work or a 100-Mbps network that is highly utilized), we recommend using a
server-class NIC instead of a desktop-class NIC. Server-class NICs can cost
twice as much as desktop-class cards — but if the cash is available and your
situation warrants the expense, they’re worth considering. Server-class NICs
are designed for high-performance applications that require a lot of network
traffic, such as Snort. In addition, they include such features as encryption
offloading and SNMP management — and those come in handy for managing
your Snort IDS.

39Chapter 3: Readying Your Preflight Checklist

Giving Snort the fastest snoot
In some cases, you may want your Snort sensor
to have a faster NIC than you typically run on
your network. For example, say you have a
switch that has mostly 100-Mbps Ethernet ports,
but also a couple of gigabit Ethernet ports. Even

if you’re primarily using the 100-Mbps ports for
your systems, connecting your Snort IDS sensor
to a gigabit port gives Snort a bigger straw to
suck on while sniffing the network.

07_568353 ch03.qxd 6/2/04 9:20 AM Page 39

40 Part I: Getting to Know Snort and Intrusion Detection

07_568353 ch03.qxd 6/2/04 9:20 AM Page 40

Chapter 4

Makin’ Bacon: Installing Snort
for Linux

In This Chapter
� Starting with a secure system

� Installing and configuring Snort

� Installing and configuring MySQL for Snort

When you first see the list of prerequisite software, installing Snort for
Linux may seem like a daunting prospect, especially if you’re new to

Linux and its eccentricities. But don’t panic! In this chapter, we walk you
through setting up Snort itself, and the MySQL database to hold your logs
and alerts, all while keeping the geek-speak to a minimum (where possible).

If you’re already an accomplished Linux admin, this chapter not only serves
as a no-nonsense guide to installing Snort, but points out several Linux-admin
tips and tricks along the way, so read on!

Staying Safe
If you’re going through the trouble of installing an Intrusion Detection
System, you’re obviously concerned about network security. Naturally, you
want to make sure that your freshly minted Snort box is adding to the overall
security of your network, not detracting from it. How embarrassing would it
be for your IDS itself to be cracked in to? Or used as a mail relay to spew
spam? Or for your Snort logs to be available for all the world to see over the
Internet? Don’t laugh, it could happen. But not to you, because you know
better, right? Good. If not, don’t worry: We help you get there.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 41

Starting with a clean slate
If at all possible, you want to install Snort on a dedicated system with a fresh
installation of your favorite Linux distribution. Most software ages about as
well as cheese; some about as well as fish. The older your initial Linux install
is, the more likely there are going to be software bugs, security vulnerabili-
ties, or leftover garbage that’s just going to clutter things up. So make sure
you know what you’re getting yourself into, and start with a fresh Linux
installation.

Once you’ve got Linux installed and running, it’s time to lock it down. Linux is
well-known as a secure and stable operating system, but it’s just as easy to
run an insecure Linux server as it is to run an insecure Windows server. Most
modern Linux distributions come with almost everything you could possibly
need to run a server or workstation. But when it comes to running a secure
Snort server, these optional extras are unnecessary, and can open your
server up to attacks if left untended.

Keeping a low profile
The more network services you leave running on your server, the easier time
an attacker is going to have cracking in. If all you want to do is monitor net-
work traffic, and later report on it, you don’t need to run network services
like a DNS server, or mail server, and you certainly don’t want to be running a
file server. But how do you find out what network services are running and
what aren’t?

Throughout the book (and this chapter especially), you’ll see the pound sign
(#) and the dollar sign ($) at the beginning of a Linux command. These are
basic command-line prompts, much like the C:\> prompt that Windows
command-line users are accustomed to seeing. The difference here is that the
dollar-sign prompt indicates that you are logged in as a regular user, while
the pound-sign prompt means that you are the all powerful root user. When
you see that pound-sign prompt, feel the power — but use it carefully.

To check the network status of your system, run the command netstat
(Network Status, Net-Stat, clever, eh?). If you’re logged in as root (and if
you’re going to be mucking around with network services, you’d better be)
you can run netstat as follows to see what ports are open on your system,
and what program has them open:

netstat -anp

-a shows all network connections

-n lists addresses as IP addresses, not host and domain names

-p lists the program that’s using the network

42 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 42

If you just ran that command, you’ll notice you got ample output. To read it
before it screams off the top of your terminal, pipe the netstat command to
more.

netstat -anp | more

This is a little more manageable. See the following sample output. You’re
really concerned with the services that are listed as LISTENING. These are
network services, ready to be used and abused by anyone on the Internet,
and after a default Linux install, all kinds of services are running that you
don’t want or need.

netstat -anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN 1560/
tcp 0 0 127.0.0.1:32769 0.0.0.0:* LISTEN 1682/xinetd
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1541/
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1668/sshd
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 1741/cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 1702/
tcp 0 240 192.168.2.29:22 192.168.2.27:33093 ESTABLISHED 1908/sshd
udp 0 0 0.0.0.0:32768 0.0.0.0:* 1560/
udp 0 0 0.0.0.0:111 0.0.0.0:* 1541/
udp 0 0 0.0.0.0:631 0.0.0.0:* 1741/cupsd
udp 0 0 0.0.0.0:888 0.0.0.0:* 1560/
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program name Path
unix 2 [ACC] STREAM LISTENING 2069 1721/gpm /dev/gpmctl
unix 9 [] DGRAM 1685 1519/syslogd /dev/log
unix 2 [] DGRAM 2178 1782/anacron
unix 2 [] DGRAM 2087 1730/crond
unix 2 [] DGRAM 2052 1711/
unix 2 [] DGRAM 2038 1702/
unix 2 [] DGRAM 1980 1682/xinetd
unix 2 [] DGRAM 1746 1560/
unix 2 [] DGRAM 1693 1523/klogd

The last column shows the PID (process ID) and program name that’s using
that particular network resource. To stop the process right away, run kill
-TERM 999 where 999 is the particular PID you want to stop. If kill -TERM
won’t stop it, kill -9 will. (For more options, see the man page for kill.)

That’s great for stopping the service immediately, but chances are, it’ll start
back up the next time the server is rebooted. Of course you’re thinking, But
this is a Linux box! I’ll never have to reboot it! Accidents happen, hardware
fails, power lines snap, coffee is spilled. Be prepared.

To keep these services from starting up again, you have two choices: Remove
or modify the initialization script that starts the service, or remove the entire
software package.

43Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 43

To toy with the initialization scripts, look in the /etc/init.d/ directory.
Each file in this directory is a script that stops, starts, or restarts a corre-
sponding network service. The following output gives an example of some
standard initializations scripts on a RedHat Linux system. What you see on
your Linux system may be slightly different depending on your distribution
and what software packages you chose at install-time.

ls /etc/init.d/
anacron* functions* kdcrotate* network* random* rwhod* xfs*
apmd* gpm* keytable* nfs* rawdevices* sendmail* xinetd*
arpwatch* halt* killall* nfslock* rhnsd* single* ypbind*
atd* identd* kudzu* nscd* rstatd* snmpd* yppasswdd*
autofs* ipchains* lpd* portmap* rusersd* sshd* ypserv*
crond* iptables* netfs* pppoe* rwalld* syslog*

The cheap-and-dirty way to stop these services from starting up is to make a
new directory, and move the unwanted script to the new directory. This is
like making mashed potatoes with a sledgehammer: effective but messy. The
next time your server restarts, it will complain loudly about not being able to
find the corresponding initialization script. Although, since it can’t find the
script, the service will not start.

A more elegant method exists, but is usually different depending on which
distribution of Linux you’re running.

Disabling services in Red Hat Linux
On Red Hat Linux, and most other distributions that are RPM-based (such as
SuSE and Mandrake), you can use the chkconfig command to modify when
these scripts are kicked off.

For example, to disable sendmail on your server, follow these steps:

1. Check to see when sendmail is called on to start and stop:

[root@redhatbox init.d]# chkconfig --list sendmail
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off

The numbers listed are run levels; you’re really only concerned with the
default run level (which is what’s running right now, unless you did
something non-default when you booted the system).

2. Check to see what run level you’re in, using the runlevel command:

[root@redhatbox init.d]# runlevel
N 3

Hey, who says Linux isn’t intuitive? Looks like we’re in run level 3 (the
default for Red Hat, unless you’re running a GUI), and sendmail is set to
run by default. Aha!

44 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 44

3. Disable sendmail for run levels 2, 3, 4 and 5:

[root@redhatbox init.d]# chkconfig --level 2345 sendmail off

4. Check to make sure your command actually worked:

[root@redhatbox init.d]# chkconfig --list sendmail
sendmail 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Success!

This process is a little less severe than removing the software package
entirely, and sendmail is a good thing to keep around, especially if you want
to actually send mail someday.

Disabling services in Debian GNU/Linux
Debian Linux uses a different command, but it follows a similar idea. The
command is update-rc.d, and it gives you two general options:

� You can tinker with the command syntax, and remove the service from
specific run levels.

� To be sure you get the job done right, you can remove the service from
every run level, and here (again) you have two options:

• The usual way to do so is to remove the init script from the
/etc/init.d/ directory, and then let update-rc.d do the rest.

• If you want to terminate the service gracefully, shut it down using
the init script first, and then remove the init script.

In this section, as a classic example, we prevent sendmail from starting on
our Debian system. The steps look like this:

1. Verify that the sendmail initialization script exists.

To do so, change to the /etc/init.d directory and have a look at
what’s listed there.

2. Create a directory to hold the initialization scripts you plan to
remove:

cd /etc/init.d
ls sendmail
sendmail
mkdir removed_init_scripts

3. Stop any running instances of sendmail:

./sendmail stop
Stopping Mail Transport Agent: sendmail.

45Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 45

4. Move the sendmail initialization script to the removed_init_scripts
directory.

mv sendmail removed_init_scripts/

5. After the initialization script is removed, run update-rc.d like this:

update-rc.d sendmail remove
Removing any system startup links for /etc/init.d/sendmail ...
/etc/rc0.d/K20sendmail
/etc/rc1.d/K20sendmail
/etc/rc2.d/S20sendmail
/etc/rc3.d/S20sendmail
/etc/rc4.d/S20sendmail
/etc/rc5.d/S20sendmail
/etc/rc6.d/K20sendmail

Voilà! No more sendmail.

Disabling services in Gentoo Linux
Gentoo Linux (more formally known as Linux, The Next Generation) also has
a script to ease the pain of manually enabling and disabling network services.
Look at /sbin/rc-update.

The following syntax removes the service (replace default with the run
level your system booted into):

/sbin/rc-update -d yourservice default

Here’s what it looks like in action:

cd /etc/init.d
ls sendmail
sendmail
rc-update -d sendmail default
* sendmail removed from the following run levels: default
* Caching service dependencies... [ok]
* rc-update complete.

Now that you know how to disable network services and other daemons,
repeat the process for each network service that’s listening for connections
until you have nothing but SSH left. To confirm, run netstat -anp again.
Only sshd should be left listening.

Compile from source code
or install a binary?
Throughout this book, we’ll come across extra software that has to be
installed to make your Snort box everything it wants to be. Since Snort is an

46 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 46

open-source software project, its dependencies and prerequisite software
pieces are also open-source. One blessing of this situation is that when
you download the software, you’re getting a copy of the human-readable
source code: the stuff that some caffeinated coder (a hip term for a computer-
programmer geek) diligently banged out on the keyboard using a text editor.
This is wonderful for coders, but bad for machines (which prefer to read
their instructions in the binary language of zeros and ones). To placate those
gimme-binary-only machines, you run your code through a compiler, a piece
of software that turns the human-readable stuff into instructions that are spe-
cific to your machine. This is a kind of tailor-fit; the resulting machine code
(often just called binary code) is optimized for your particular system. Sound
good? It is.

Popping in the binary
But what about pre-compiled binaries? You may find the software we discuss
available as .rpm files, .deb files, or .pkg files. These are pre-compiled
binary packages: a package of files where the source-code has already been
compiled for a particular architecture (i386, IA64, Sparc, whatever) and pack-
aged with the necessary configuration files, man pages, and directions on
where to put all of this stuff. You simply tell your system to install the pack-
age, and it moves the files around accordingly. Most of the time, your package-
management software also checks for software dependencies and warns you
accordingly, sometimes even downloading and installing the prerequisites for
you. Sound cushy? It is, but that convenience can cost you. We favor compil-
ing from source code instead. Read on . . .

Using the source
For the purposes of this book, we’ll be telling you to download the source
code and compile it yourself. Why? Well, let us count the ways . . .

� Universal application. Compiling from source code is the same across
all Linux distributions; a single set of instructions can guide you.

� Open-source software is updated regularly. Getting the latest version
can greatly enhance your peace of mind.

� Each update is released as source code, not as a pre-compiled binary.
Usually it’s up to someone who works for a company that markets a
Linux-based product — or otherwise supports some distribution of
Linux — to compile the source code to fit a specific architecture. This
extra step alone often ensures that pre-compiled binary packages are a
bit behind the freshly released source code — a few days at best, or
several major revisions at worst. In one case, the binary package for
Snort itself is so out of date that even installing it becomes a security
risk. (We won’t mention which distribution by name, but you apt-get
users know who you are.)

47Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 47

� Compiling it yourself tailors the code to your system. Do yourself a
favor — use the source, Luke! You’ll get the latest version of the soft-
ware, compiled for your machine and your processor, not some faceless
beige box.

� Everybody needs a hobby, right? (Insert innocent grin here.) If you get
involved in the software deeply enough, you’ll love having the source
code available to dig through (or possibly even modify).

If you’re not familiar with compiling software from source, just take a deep
breath and take it slow. The directions we include will get you there, and all
the software we list comes with ample documentation should you find your-
self lost in the woods.

Securing the SSH Daemon
A daemon (pronounced either as day-mon or dee-mon) is just another name
for a program that usually starts automatically, and runs constantly in the
background.

Okay, assume you’ve turned off all extraneous network services and kept ’em
off. There’s one remaining service to look at: the SSH daemon. Unless you like
sitting at a terminal in front of your Snort box every time you need to check
on it, leave the SSH daemon running so you can access your Snort system
remotely.

OpenSSH is the de facto standard in modern Linux distributions because it’s
open-source and free. SSH stands for Secure SHell, but how secure is it? If
you’re running an older version of SSH, chances are good that your system is
a far cry from being secure. To see just how secure or insecure your version
is, check out http://www.openssh.org/security.html for a brief history
of security vulnerabilities in OpenSSH. We recommend starting with the latest
(therefore most secure) version.

If you’re running the SSH daemon that shipped with your Linux distribution,
you’re probably running its precompiled SSH binary package. Not a problem —
exactly — except some Linux vendors (most notably Red Hat) release
patched versions of their software without changing the revision number for
that software package. For example, if you’re running kewlserver-3.14
and a security vulnerability is discovered, the maintainers of kewlserver
normally release a software patch, and then re-release the patched soft-
ware as kewlserver-3.15. Your Linux vendor may only fix the security
vulnerability and not the revision number. Thus, if you install the updated
.rpm (or .deb or .pkg) package, your kewlserver may no longer have a
security vulnerability — but it may still report itself as kewlserver-3.14.

48 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 48

The moral of this story is that if you’re running software from a package,
check with the maintainer of that package to make sure it’s a secure version
of the software.

To upgrade your version of OpenSSH, either

� Check for updated packages for your particular Linux distribution.

� Grab the latest source code and start compiling.

PGP and hashing: accept no substitutes
When you download source code from the Internet, how can you be sure that
what you’re downloading is exactly what the author wrote? How can you be
sure that someone hasn’t tampered with the code? Even if you’re download-
ing the source code from some crew of self-proclaimed security gurus, how
do you know someone else hasn’t already cracked their server and replaced
the original code with something far more nefarious? The answer is to check
the software for either a PGP signature or an MD5 hash.

PGP signature
To guarantee a file’s integrity, the software author uses his or her own PGP
(Pretty Good Privacy) encryption key to “sign” the software. This process
creates a string of characters indicating that the author — and only the
author — declares that the software has not been tampered with.

GnuPG is a free, open-source program that uses the OpenPGP standards and
comes with most Linux distributions (if you don’t have it, you can get it at
http://www.gnupg.org/). If you’re not up to speed on public-key encryp-
tion, check out the International PGP home page at http://www.pgpi.org,
where you’ll find oodles of documentation and FAQs. The following demon-
stration uses the GnuPG command gpgv for signature verification.

Chances are, you don’t already have the software author’s public key on your
PGP keyring, so the following session also shows how to grab it and use it.

Traditional encryption systems relied on a single secret key to encrypt and
decrypt data. This worked well, but it meant that both the sending and
receiving parties had to know the secret key. Public key encryption uses two
different keys that are mathematically related to each other; one is a secret
key available only to its owner, and the other is a public key available to (you
guessed it) the public at large. This encryption scheme means you can send
an encrypted message to someone you’ve never met before, using his or her
public key, and you can be sure that person is the only one who can decrypt
it (since that person is the only one who has access to that private key).

49Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 49

$ wget -q
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable
/openssh-3.7.1p2.tar.gz

$ wget -q
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable
/openssh-3.7.1p2.tar.gz.sig

$ gpgv openssh-3.7.1p2.tar.gz.sig
gpgv: /home/snortfd/.gnupg/trustedkeys.gpg: keyring created
gpgv: Signature made Tue Sep 23 04:56:21 2003 CDT using DSA

key ID 86FF9C48
gpgv: Can’t check signature: public key not found
$ gpg --keyserver pgp.mit.edu --recv-keys 86FF9C48
gpg: /home/snortfd/.gnupg/secring.gpg: keyring created
gpg: /home/snortfd/.gnupg/pubring.gpg: keyring created
gpg: requesting key 86FF9C48 from pgp.mit.edu ...
gpg: key 86FF9C48: public key imported
gpg: /home/snortfd/.gnupg/trustdb.gpg: trustdb created
gpg: Total number processed: 1
gpg: imported: 1
$ gpgv openssh-3.7.1p2.tar.gz.sig
gpgv: Signature made Tue Sep 23 04:56:21 2003 CDT using DSA

key ID 86FF9C48
gpgv: Can’t check signature: public key not found
$ gpgv --keyring ~/.gnupg/pubring.gpg openssh-

3.7.1p2.tar.gz.sig
gpgv: Signature made Tue Sep 23 04:56:21 2003 CDT using DSA

key ID 86FF9C48
gpgv: Good signature from “Damien Miller (Personal Key)

<djm@mindrot.org>”

MD5 hash
An MD5 hash is a type of encryption code generated when the encryption
software examines a file and uses a mathematical “hashing” process to gener-
ate a single line of text based on the entire contents of the software file. If you
change a single character in the file, the MD5 hash code is no longer the
same.

The following transcript shows the author downloading the latest version of
Apache for Linux and checking its MD5 sum.

$ wget -q http://apache.webmeta.com/httpd/httpd-2.0.48.tar.gz
$ wget -q http://apache.webmeta.com/httpd/httpd-

2.0.48.tar.gz.md5
$ cat httpd-2.0.48.tar.gz.md5
466c63bb71b710d20a5c353df8c1a19c httpd-2.0.48.tar.gz
$ md5sum httpd-2.0.48.tar.gz
466c63bb71b710d20a5c353df8c1a19c httpd-2.0.48.tar.gz

As you can see in the transcript, the MD5 sum that was published by Apache
jives with the output from our own md5sum command, so we know that the
software we just downloaded hasn’t been tampered with.

50 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 50

Compiling the code
The instructions for compiling software are generic and should work across
the majority of Linux distributions without modifications. If you suspect
that your installation is significantly different from a generic installation,
or if you’re curious to see what kind of options are available, you can run
./configure --help (which makes the configure script list all options)
at compile time.

OpenSSH depends on OpenSSL, which is available at http://www.openssl.
org/. OpenSSL has had its share of security vulnerabilities as well, so make
sure you run the most recent version.

Here’s the royal road to compiling and installing OpenSSL and OpenSSH:

1. Download the source code from http://www.openssl.org/ and put
it somewhere convenient on your system.

A good place for source code is in /usr/local/src/. A good place to
put downloaded software as a compressed tarball (Unix slang for a
bunch of files stuck together in file with a .tar , .tar.Z, tar.gz,
or .tgz extension) would be a directory such as /usr/local/src/
tarballs/. You can delete the tarball and the source directory later. If
(like us) you like working with a bit of a safety net, keep the tarball and
source around until you’re sure you don’t need ’em anymore (say, after
the next version is released).

Downloading, compiling, and installing openssl looks like this:

cd /usr/local/src/tarballs/
wget http://www.openssl.org/source/openssl-0.9.7c.tar.gz
wget http://www.openssl.org/source/openssl-0.9.7c.tar.gz.asc
gpgv openssl-0.9.7c.tar.gz.asc
gpgv: Signature made Wed Mar 17 06:09:54 2004 CST using RSA key ID 49A563D9
gpgv: Can’t check signature: public key not found
gpg --keyserver pgp.mit.edu --recv-keys 49a563d9
gpg: requesting key 49A563D9 from pgp.mit.edu ...
gpg: key 49A563D9: public key imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
gpgv --keyring ~/.gnupg/pubring.gpg openssl-0.9.7d.tar.gz.asc
gpgv: Signature made Wed Mar 17 06:09:54 2004 CST using RSA key ID 49A563D9
gpgv: Good signature from “Mark Cox <mjc@redhat.com>”
gpgv: aka “Mark Cox <mjc@apache.org>”
cd ../
tar -xvzf tarballs/openssl-0.9.7c.tar.gz
cd openssl-0.9.7c/
script ~/openssl.install.notes
./config shared
make

51Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 51

make test
make install
echo “/usr/local/ssl/lib” >>/etc/ld.so.conf
ldconfig
exit

OpenSSL installs without a hitch (well, we can hope, right?). And every
good OpenSSL needs an OpenSSH, so . . .

2. As a preparation for installing OpenSSH, set up the script command
to keep a log of what’s going on.

See the “Let your script do the watching . . .” sidebar in this chapter for
details.

The code that tells script what to watch for looks like this:

cd /usr/local/src/tarballs/
wget ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-

3.7.1p2.tar
cd ../
tar -xvzf tarballs/openssh-3.7.1p2.tar.gz
cd openssh-3.7.1p2/
script ~/openssh.install.notes
./configure --with-pam
make
make install
exit

If your Linux distribution uses Pluggable Authentication Modules
(PAM) (most, including RedHat), you’ll want to read the documentation
distributed with the OpenSSH software and run configure with the
--enable-pam switch. Otherwise you’ll quickly find yourself locked out
of your own box!

52 Part I: Getting to Know Snort and Intrusion Detection

Let your script do the watching . . .
The Unix command script watches all visible
input/output through the terminal and logs it to
a text file somewhere. If you’re on a fast enough
system, you’re going to have a hard time keep-
ing up with the text as it flashes skyward on
your terminal. The script command is invalu-
able when looking for configure warnings or
other errors that may not kill the configure

script, but will cause headaches down the road.
The syntax is script somefile where
somefile is the file to capture the terminal
session; script -a somefile will append
to your log file, instead of overwriting it. To exit
a script session, just type exitwhen you’re
done, and the program stops logging your ter-
minal session.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 52

3. To ensure that the SSH daemon starts when your machine does, make
sure you have an initialization (init) script in /etc/init.d/.

The initialization script that was there originally may not work anymore,
especially if the version of SSH that came with your system lives at
/usr/sbin/sshd and the one you just installed lives in
/usr/local/sbin/sshd. Various handy, fresh init scripts are
distributed with OpenSSH; you can find them in subdirectories of the
$openssh_source/contrib/ directory.

4. Choose a port for the SSH daemon.

Yes, you can choose the default port (22), but check out the “Bringing
OpenSSH into port” sidebar in this chapter for an alternative — a little
cyber-hot-rodding that makes good practical sense.

5. Specify a port for the SSH daemon by editing the appropriate lines in
your sshd config file.

Most likely your configuration file is /etc/ssh/sshd_config if you’re
using the version that came with your Linux distribution. It should be
/usr/local/etc/sshd_config if you compiled from source using the
default values. Those default values have pound signs (#) in front of
them to indicate that what follows is a comment, and is safe to ignore.
If you don’t want to use the default values, make sure you change them,
and remove the pound sign. When you’re done, the following lines (not
necessarily in this order) in your sshd_config file should look like this:

53Chapter 4: Makin’ Bacon: Installing Snort for Linux

Bringing OpenSSH into port
Although unorthodox settings may head off
a little unauthorized fumbling by users, any
network-security geeks worth their weight in
bits will tell you: Security-through-obscurity isn’t
a recommended strategy. Even so, sometimes a
“creative” departure from the default has its
place. For example, why bother running the
latest version of SSH on the default port (22)?
Why let every one in the world bang on your
SSH server when you’ll only be allowing a small
handful of people (maybe only yourself) access
to the machine? Here’s a chance to do yourself
another favor, and run the SSH daemon on a
non-standard port. Pick a port that’s not already

in use, and one you can remember. You have
65535 ports to choose from, so choose wisely.

If you’re changing the default port that the SSH
daemon listens to, you can make another
couple of changes while you’re at it.
Specifically, you want to allow only SSH traffic
that uses SSH protocol version 2, since it is
more secure than version 1. This can cause
problems with some older SSH clients though,
since some only support version 1 of the proto-
col. Check your client before making this
change. Also, it’s a good practice to deny root
logins that use SSH, and not to allow folks to
connect using empty passwords.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 53

Port 65432
Protocol 2
PermitEmptyPasswords no
PermitRootLogin no

That’s it. You’ve got OpenSSL and OpenSSH installed and ready to rock.

Physical security
When your system is secure from a cyber-world perspective, it’s time to
make sure it’s secure from a real-world perspective.

The principal component of physical security is restricting physical access to
the system. If you’ve already got a server-closet/systems-room/data-center
environment for your servers, chances are you only allow certain folks in
there. That’s great, but it’s just a start. Try to stay practical if you impose any
additional physical-security measures. Start (maybe stop?) with the obvious:

� Restrict access to the power switch.

� Restrict access to specific CD-ROM or floppy drives by using a server
case that has a locking faceplate. Keep the key in a safe place.

Some other suggestions you may hear — such as using a BIOS password are
overkill. Remember, you want the system to restart without intervention in
case of a power outage. If you’re super-paranoid about physical access,
check out the man page for your LILO or Grub, depending on which you’re
using. Additional lock-down methods are available.

One of the most effective security measures for physically securing your
server is also one of the easiest: Unplug the keyboard. It sounds trivial, but
it’s vital, especially if your server is on a switch box, sharing keyboard, video,
and mouse (KVM) with other systems. We have had Linux servers sponta-
neously rebooted by slap-happy Windows administrators giving a three-finger
salute (simultaneously pressing the Ctrl+Alt+Del keys) to every blank screen
on a KVM switch when looking to log on to their Windows server. While
Ctrl+Alt+Del will give you a login prompt in Windows, unless you’ve changed
this default behavior, it will reboot a Linux box.

Loose ends
When you have a secure system, take a minute and look things over. Reboot
your system to make sure everything starts up as expected. Is sshd running?
What port is it running on? Anything else running? Use netstat -anp to
make sure. Is root allowed to log in using SSH?

54 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 54

If everything looks good to you, take a breather. You’re ready to install Snort
and MySQL, and you’ll need your wits about you for this one.

Installing MySQL for Linux
MySQL touts itself as the world’s most popular open-source database, and
with good reason. With more than 4 million active installations, many of the
world’s largest organizations — including Yahoo!, The Associated Press, and
even those rocket scientists at NASA — are running MySQL. And you can too,
if you aren’t already.

Getting the code
This is one place where we deviate from our “Use the Source” mantra, and
say it’s okay to use MySQL from pre-compiled binaries. In fact, the MySQL
Web site recommends it.

Installing MySQL goodies from the Linux package
Since practically every version of Linux includes MySQL, you probably
already have it installed. If so, you’ve got a few matters to look at:

� Make sure you have both the client and server pieces installed. If you
do, you can skip ahead to the Installing Snort section. If not, ask yourself
whether you want to

• Compile from source

• Install binaries from MySQL.org

• Install a binary package from your Linux distribution

� If you install precompiled binary packages from your Linux distribu-
tion, make sure you get all the included MySQL packages. Typically,
there are separate packages for

• The client

• The server

• Documentation

• A collection of “common files” needed by both client and server

� If you’re not sure about what you need, or you’re having a hard time
figuring it out, try compiling from source code. (You knew we were
going to say that.) There’s not too much hassle involved, but be pre-
pared to give your compiler some time to work. This is a complex soft-
ware package, and you may have time to catch a cup of coffee before the
whole installation is finished. While we’re on the subject . . .

55Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 55

Installing MySQL from source code
MySQL is available from http://www.mysql.com/downloads/index.html.
Make sure you check its note regarding licensing costs. MySQL is covered
under the GPL (GNU Public License, available in the back of this book), and
unless you want support, a warranty, or you have plans to distribute MySQL
code as part of your non-open-source software, you don’t need a commercial
license.

There are two ways you can download MySQL:

� As actual source code: You can compile it for your system.

� As a glob of binary files: These have already been compiled for your
system by the fine folks at MySQL. This is different than the binary pack-
age put out by your Linux vendor, in that these binaries are not specific
to a certain distribution of Linux, but are released for a specific architec-
ture, (such as i386 or IA64).

True to form, we detail (next) how to install using the source code. That’s
because it should be the same regardless of which version of Linux you use.

Preparing your system for MySQL
Before installing the software on your system, save yourself some hassle:
Get it ready for a MySQL installation. First item of business is to check your
system to see whether it already has a MySQL user account and group in
place. Here’s what the process looks like:

1. Check for a MySQL user account by issuing this command:

cat /etc/passwd | grep -i mysql

If the command doesn’t produce any output, then you don’t have a
MySQL user account.

2. Look for a MySQL group in the /etc/group file (you need one there
too), using this command:

cat /etc/group | grep -i mysql

If you do get output from this command (or the one in Step 1), chances
are you already have MySQL installed on your system. Here’s what the
output looks like on a system that already has MySQL installed:

cat /etc/passwd | grep -i mysql
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

56 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 56

3. Make sure that the root user account can execute MySQL commands.

To do so, check the root account’s $PATH variable to see whether the
MySQL executable path (/usr/local/mysql/bin) is in there. If it’s not
there, edit /root/.bash_profile (sometimes installed as /root/.
profile) to put /usr/local/mysql/bin into the PATH statement for
root. For example, here’s what /root/.profile looked like on our
system before editing:

~/.profile: executed by Bourne-compatible login shells.

if [-f ~/.bashrc]; then
. ~/.bashrc

fi

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/bin/
X11

export PATH

mesg n

Here is the same file after editing:

~/.profile: executed by Bourne-compatible login shells.
if [-f ~/.bashrc]; then
. ~/.bashrc

fi
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/bin/

X11:/usr/local/mysql/bin
export PATH
mesg n

When your root user account’s ~. profile resembles this one, its MySQL
executable path is in place. To take advantage of this change, you’ll
either have to log out and then log back in, or type

source ~/.profile

The profile is only read at login, so this step forces your system to re-
read your profile and apply any changes you may have made.

4. Make sure your files and permissions are set up correctly to accom-
modate MySQL.

With the MySQL executable path in place and your permissions set cor-
rectly, you’re ready to compile MySQL.

Compiling and installing MySQL
Compiling the MySQL from source code (rather than installing binaries)
requires a little attention to detail. For example, make sure you grabbed the
right software package before you install what’s in there (remember there are

57Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 57

different packages for the client, server, common files, and documentation).
The command tar -tvzf mysql-package.tar.gz is a handy way to check,
since it will tell you what files are in a tarball without actually extracting
them. Assuming you downloaded the right tarball to /usr/local/src/
tarballs/, you’re ready to proceed with the installation.

Doing the installation and configuration
Here’s the drill for installing MySQL:

1. Change to the directory from which you want to unpack your MySQL
source code:

cd /usr/local/src

2. Check the MD5 sum or PGP signature on your downloaded source
code and compare it to the signature on the mysql.com Web site at

md5sum mysql.tar.gz

3. Using the tar command, un-gzip and un-tar the source code:

tar -xvzf /usr/local/src/tarballs/mysql.tar.gz

4. Change to the mysql directory that was created in your source
directory.

5. Run the configure program like this:

cd mysql/
./configure --prefix=/usr/local/mysql

The --prefix flag identifies the directory where you want to install
MySQL (we recommend /usr/local/mysql). Don’t worry if this direc-
tory doesn’t yet exist; the installation creates it.

6. Build and install MySQL with the make and make install commands:

make
make install

You’re ready to tell your Linux system how to find the MySQL shared
libraries (which Snort needs to access).

7. Run the echo and ldconfig commands as follows:

echo “/usr/local/mysql/lib/mysql” >>/etc/ld.so.conf
cat /etc/ld.so.conf
ldconfig

Here echo adds a line to your library configuration file, ld.so.conf.
The ldconfig command reloads that configuration file. Some distribu-
tions (notably Gentoo) automatically generate this file; check your
distribution’s documentation if you’re unsure.

58 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 58

8. Run the script command as follows:

scripts/mysql_install_db

This command sets up the initial mysql database that MySQL uses for
its internal configuration.

9. Run the mysqladmin program to set a root password for your MySQL
server.

You don’t want to leave your databases wide open for anyone to admin-
ister! Behold and heed our admonitory sidebar — and for maximum
safety, run the mysqladmin program as shown here:

/usr/local/mysql/bin/mysqladmin -u root -h localhost
password ‘new-password’

10. Change the permissions on the newly created directories, and run
ldconfig against /usr/local/lib/, as follows:

chown -R root /usr/local/mysql/
chown -R mysql /usr/local/mysql/var
chgrp -R mysql /usr/local/mysql
cp support-files/my-medium.cnf /etc/my.cnf
cat /etc/ld.so.conf
echo “/usr/local/lib” >>/etc/ld.so.conf
ldconfig -v

Checking the installation
We could say something profound at this point about second-guessing
Murphy’s Law, but simple is best: Check to make sure all this stuff worked.
Here’s how:

59Chapter 4: Makin’ Bacon: Installing Snort for Linux

Not just any old password for root
If the root password is cracked, it’s like giving
anyone the keys to the city and the treasure
vault. When you set a password, make it tough
to crack but possible for you to remember. Avoid
writing it down; if you absolutely must write it
down, put it somewhere seriously secure. You
never know when you’ll need it again, and it’s
not easy to reset the root password if you’ve

forgotten it, so make it stick. In our example, we
use new password, but only (need we say it?)
a “dummy” would use that as an actual pass-
word. Make yours something obscure to
anyone but you. Using a combination of letters,
numbers, and punctuation can help make it
more secure, as does avoiding dictionary
words, phone numbers, names, and dates.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 59

1. Type the following at a command prompt:

/usr/local/mysql/bin/mysqld_safe --user=mysql &

If you get no error messages, you should see the MySQL server listing in
the process list:

ps -ef | grep -i msyql

2. Check the process list for the following bunch of entries:

root 7754 0.0 0.1 2056 976 ? S Dec23 0:00 /bin/sh
/usr/local/mysql/bin/mysqld_safe --datadir=/usr/local/mysql/var
--pid-file=/usr/local/mysql/var/boris.pid

mysql 7782 0.0 2.1 54148 12648 ? S Dec23 0:00
/usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql --
datadir=/usr/local/mysql/var --user=mysql --pid-
file=/usr/local/mysql/var/boris.pid --skip-locking --port=3306 -
-socket=/tmp/mysql.sock

mysql 7784 0.0 2.1 54148 12648 ? S Dec23 0:00
/usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql --
datadir=/usr/local/mysql/var --user=mysql --pid-
file=/usr/local/mysql/var/boris.pid --skip-locking --port=3306 -
-socket=/tmp/mysql.sock

mysql 7785 0.0 2.1 54148 12648 ? S Dec23 0:00
/usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql --
datadir=/usr/local/mysql/var --user=mysql --pid-
file=/usr/local/mysql/var/boris.pid --skip-locking --port=3306 -
-socket=/tmp/mysql.sock

If you see ten or twelve of these lines, don’t panic; this is normal. If you
don’t see any of these lines, check the log files in /usr/local/mysql/
var/ for errors.

3. If your MySQL server is running, make sure the MySQL daemon starts
and stops when your server (respectively) boots up and shuts down.

If your MySQL source is in /usr/local/src/mysql, look for the follow-
ing file and copy it to /etc/init.d directory:

/usr/local/src/mysql/support-files/mysql.server

60 Part I: Getting to Know Snort and Intrusion Detection

MySQL — at your service
Starting and stopping the MySQL daemon at
startup and shutdown works especially well
when you enable MySQL as a service. You can
do so by using the tools and scripts listed in the

“Disabling Services” section of this chapter, or
you can do so manually by creating links to the
initialization script from the appropriate rc.d
directory.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 60

4. To start and stop the MySQL daemon when the system enters or exits
the default run levels, use the commands in the “Disabling Services”
section of this chapter, or issue the following commands:

cd /etc/rc3.d
ln -s ../init.d/mysql.server S85mysql
ln -s ../init.d/mysql.server K85mysql
cd ../rc2.d
ln -s ../init.d/mysql.server S85mysql
ln -s ../init.d/mysql.server K85mysql
cd ../rc5.d
ln -s ../init.d/mysql.server S85mysql
ln -s ../init.d/mysql.server K85mysql
cd ../init.d/
chmod 755 mysql.server

5. Reboot your server to check the effectiveness of your initialization
scripts.

No time like the present. After all, Snort’s not installed yet, the machine
isn’t in production, and there’ll be plenty of time for accumulating
uptime soon.

Installing Snort for Linux
Installing a base Snort system is actually pretty easy, if you don’t want any
fancy frills. This chapter details how to install and configure Snort and how
to configure the MySQL databases for logging all of Snort’s output. Other
databases are available for Snort’s logging, but MySQL is by far the most pop-
ular with Snort, and it’s got the greatest amount of support out there, so
that’s what we’ve detailed.

Advanced logging concepts are covered in Chapter 6 and putting a pretty pic-
ture on the pig through reporting and visualizations is covered in Chapter 7.

But wait, there’s more
Snort won’t run on its own, and requires some underlying software to run.
Here’s a lineup of the usual suspects . . .

Setting up libpcap
One required piece of software for Snort is libpcap, a packet-capture library.
It’s available at http://www.tcpdump.org/release/ and installs easily.
Don’t forget to check the digital signature! Assuming you’ve downloaded the
source to /usr/local/src/tarballs and you wish to untar it to /usr/
local/src/ like this:

61Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 61

cd /usr/local/src/tarballs
gpgv libpcap-0.7.2.tar.gz.asc
gpgv: Signature made Wed Feb 26 01:36:50 2003 CST using DSA

key ID 89E917F3
gpgv: Can’t check signature: public key not found
gpg --keyserver pgp.mit.edu --recv-keys 89E917F3
gpg: requesting key 89E917F3 from pgp.mit.edu ...
gpg: key 89E917F3: public key imported
gpg: Total number processed: 1
gpg: imported: 1
gpgv --keyring=~/.gnupg/pubring.gpg libpcap-

0.7.2.tar.gz.asc
gpgv: Signature made Wed Feb 26 01:36:50 2003 CST using DSA

key ID 89E917F3
gpgv: Good signature from “tcpdump.org (SIGNING KEY)

<tcpdump-workers@tcpdump.org>”
cd ../
tar -xvzf ../tarballs/libpcap-3.7.2.tar.gz
cd libpcap-3.7.2/
script ~/libpcap.install
./configure
make
make install
exit

Setting up PCRE
Snort requires PCRE to build. PCRE (no, it isn’t pronounced “peccary,” as far
as we know) stands for Perl-Compatible Regular Expressions, and Snort now
lets you write rules using this powerful text-matching syntax. PCRE is gaining
popularity every day, and by the time you read this, you may already have it
installed on your system. We didn’t, so here’s how to get and install it:

cd /usr/local/src/tarballs
wget -q ftp://ftp.csx.cam.ac.uk/pub/software/programming/

pcre/pcre-4.5.tar.gz
wget -q ftp://ftp.csx.cam.ac.uk/pub/software/programming/

pcre/pcre-4.5.tar.gz.sig
wget -q ftp://ftp.csx.cam.ac.uk/pub/software/programming/

pcre/Public-Key
gpg --import Public-Key
gpg: key FB0F43D8: public key imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
gpgv --keyring ~/.gnupg/pubring.gpg pcre-4.5.tar.gz.sig
gpgv: Signature made Wed Dec 10 10:45:53 2003 CST using RSA

key ID FB0F43D8

62 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 62

gpgv: Good signature from “Philip Hazel <ph10@cam.ac.uk>”
gpgv: aka “Philip Hazel <ph10@cus.cam.ac.uk>”
tar -xvzf tarballs/pcre-4.5.tar.gz
cd pcre-4.5/
script ~/notes/pcre.install
Script started, file is /root/notes/pcre.install
./configure
make
make install

Adding the /usr/local/lib line
Make sure your /etc/ld.so.conf file has a /usr/local/lib line in it,
which it should if you installed MySQL as shown in the “Compiling and
installing MySQL” section of this chapter. If not, add it in, and run ldconfig
as root.

We haven’t typed exit yet, so we’re including this step in the script output
for the record.

echo “/usr/local/lib” >>/etc/ld.so.conf
ldconfig -v
exit
Script done, file is /root/notes/pcre.install

Downloading and compiling Snort
The latest version of the Snort source code is available from http://www.
snort.org. The Snort home page will list what the latest stable version avail-
able for download is.

Check for new source code early and often. Updates from developers are
frequent.

Subscribing to the various Snort mailing lists is an easy way to keep up to
date with the latest Snort news. The Snort-Announcements list is very low
volume, typically limited to new software announcements. You can find a link
to the mailing lists on the snort.org Web site.

Software updates typically mean new software features, so check in on the
Snort Users mailing list occasionally to see what’s new, and what other
people are having trouble with; chances are you might be having the same
problem.

63Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 63

Preparing your system for Snort
Snort can run under its own user account in its own group. This arrangement
allows you to run some very powerful software as someone other than root,
which is always nice when you consider the fact that the software is designed
to indiscriminately read and parse wild packets from the Internet.

Adding the Snort user account and group
After all that build-up installing Snort’s prerequisites, you might find the
actual steps for installing Snort disappointingly simple.

1. Run the following commands as root to add the Snort user and group:

groupadd snortgroup
useradd -g snortgroup snortuser

2. Make a directory for your Snort configuration file.

You can put it anywhere. We use /usr/local/snort/etc (the -p switch
will create the parent directory /usr/local/snort as well as the etc
directory underneath it).

3. Create a directory for Snort’s log file.

/var/log/snort sounds good to us.

mkdir -p /usr/local/snort/etc
mkdir /var/log/snort

Downloading Snort
It’s time to download Snort, if you haven’t already. Don’t forget to check the
PGP signature, or at least the MD5 sum. We didn’t already have the public key
for the Snort.org release team — and chances are, you won’t either — so
we’ve included the step to download the public key, after which you should
recheck the digital signature on the tarball.

wget -q http://www.snort.org/dl/snort-2.1.0.tar.gz
wget -q http://www.snort.org/dl/snort-2.1.0.tar.gz.asc
gpgv snort-2.1.0.tar.gz.asc
gpgv: Signature made Thu Dec 18 11:16:50 2003 CST using DSA key ID 1946E4A1
gpgv: Can’t check signature: public key not found
gpg --recv-keys --keyserver pgp.mit.edu 1946E4A1
gpg: requesting key 1946E4A1 from pgp.mit.edu ...
gpg: key 1946E4A1: public key imported
gpg: Total number processed: 1
gpg: imported: 1
gpgv snort-2.1.0.tar.gz.asc
gpgv: Signature made Thu Dec 18 11:16:50 2003 CST using DSA key ID 1946E4A1
gpgv: Can’t check signature: public key not found
gpgv --keyring ~/.gnupg/pubring.gpg snort-2.1.0.tar.gz.asc
gpgv: Signature made Thu Dec 18 11:16:50 2003 CST using DSA key ID 1946E4A1
gpgv: Good signature from “Snort.org releases <releases@snort.org>”

64 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 64

Opening the Snort tarball
So you’ve got the goods, and you know they’re . . . well, good, right? Let’s
un-tar this pig and get compiling.

1. We’re going to work out of /usr/local/src/snort-version/ so we
move up a directory to run tar.

cd /usr/local/src
tar -xvzf tarballs/snort-2.1.0.tar.gz

2. Run the configure script, which will make several determinations
about the best way to compile the software for your system.

We’ve listed some of the more popular configuration options in our text,
but others may be right for you. Run the configure script with the help
option ./configure —help to see what other options are available, and
whether they make sense for you to use; pipe the output to more or
less for easier reading, or redirect it to a file to peruse later.

3. Since we just went through all the trouble of installing MySQL, you
definitely want to specify the —with-mysql option.

We list the MySQL directory that resulted from installing from source
code. If you installed a vendor-supplied package, your MySQL files may
be in a different directory. You can find the MySQL directory by typing
the following:

find / -name “mysql”

4. If the configure script bails on you with an error message about not
being able to find your libpcap files, you may need to specify their
location as well.

Look for libpcap by using this command:

find / -name “libpcap.a”

Before you start to configure and compile the software, run the script
command to capture the terminal output to a file. You’ll want to read it
later if there are errors, and it will come in handy the next time you want
to install the software.

Compiling Snort
Other than specifying an option or two, compiling Snort is disappointingly
mundane:

script ~/notes/snort.install
Script started, file is /root/notes/snort.install
./configure --with-mysql=/usr/local/mysql
make
make check
make install
exit

65Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 65

When you’ve got a working Snort binary, you need to create a place for the
Snort rules to live, and start hacking on your snort.conf file. We’ve already
made the /usr/local/snort/etc directory, and we recommend putting the
Snort rules in their own directory /usr/local/snort/rules. There are a
couple of other configuration files that need to move too, so don’t forget
those (listed in the following instructions):

� reference.config is a collection of URLs for references found in the
Snort rules.

� classification.config file helps in classifying and prioritizing alerts.

You should still be in the /usr/local/src/snort-version directory that’s
holding all of the Snort source code.

mkdir /usr/local/snort/rules
cp rules/* /usr/local/snort/rules/
cp etc/snort.conf /usr/local/snort/etc/
cp etc/reference.config /usr/local/snort/etc/
cp etc/classification.config /usr/local/snort/etc/
cp etc/unicode.map /usr/local/snort/etc/
cp etc/threshold.conf /usr/local/snort/etc/

The rules in /usr/local/snort/rules are rules that were included when
your particular version of Snort was released. Snort rules change, and new
ones are released regularly — sometimes daily — just as new threats to the
Internet emerge daily. (Chapter 12 explores how to keep your rules updated
automatically, and even how to write your own. Right now, we’re making sure
that we can get Snort running at all, so we won’t bother tinkering with the
rules just yet.)

When you’ve got the necessary files moved, you’re ready to configure Snort
for your network.

Configuring Snort
Snort is a very flexible piece of software — detailing all its configuration
options (and the best ways to take advantage of them) is something we do
with much more gusto in Parts II and III of this book. The steps given here get
you going with a good set of generic options — which you set in the snort.
conf configuration file in /usr/local/snort/etc. Go ahead and open it up
with your favorite Unix text editor (vi, emacs, or pico -w are good choices).
You can also download the configuration file to another system and open it;
just make sure you use a text editor that won’t mangle it. The snort.conf
file is heavily commented, with useful hints at every turn.

66 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 66

Defining network variables
The first step in configuring Snort is telling it which network(s) to monitor:

1. Set the var HOME_NET variable to the slice of network you want to
monitor.

You can monitor a single host, a whole network, or anything in between.
The configuration file uses var HOME_NET any as a default; whatever
network it sits on becomes its “home network” to monitor (not a bad
default value). If your Snort box has multiple network interfaces and sits
on multiple network segments, check out Chapter 13 to see how to scale
Snort for multiple networks.

2. Tell Snort which network you consider the “external” network.

The file uses var EXTERNAL_NET any, and this is a good default value.

3. Set all server variables to $HOME_NET.

Even if you’re the only person managing your network, you should real-
ize that given enough time, your servers aren’t going to be where they
were when you installed Snort, and your snort.conf file will need edit-
ing. So unless your network configuration is truly set in stone, leaving all
server variables set to $HOME_NET means Snort always knows where to
look. (See the “$HOME_NET sweet $HOME_NET” sidebar in this chapter.)

Defining other operating variables
The next variable to define is where your Snort rules live. We moved our
rules to /usr/local/snort/rules, like this:

var RULE_PATH /usr/local/snort/rules

67Chapter 4: Makin’ Bacon: Installing Snort for Linux

$HOME_NET sweet $HOME_NET
If you’re only interested in watching DNS traffic
that’s sent to your DNS servers, or SMTP traffic
that’s sent to an SMTP server, then you can
specify which host on your network sends and
receives which kind of traffic. Although such a
setup can conserve the resources of your Snort
box, it’s also a good way to miss important net-
work traffic — or even a potential attack. If you
manage a large enough network, chances are

good that you have different people managing
different network services, and they might not
consult you when they bring up a new DNS,
SQL, SMTP, or (even) Web server. And you can
bet they won’t consult you if they’re bringing up
a new server “just for testing.” If all your Snort
server variables are set to $HOME_NET, you’ve
got those new critters covered.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 67

Make sure your snort.conf file reads accordingly:

� If you have a low-powered (or near-maxed-out) machine as your Snort
box, you may want to uncomment the config detection: search-
method lowmem line to make the most of your available resources.

� By and large, the default settings for the Snort decoder and the detec-
tion engine can stay as-is. Tweaking the decoder is best done after
you’ve already logged some network traffic — if you’re trying to lower
the network noise level, having a sample to work with is a great help.

� Some network traffic on the logs is also good before you try configuring
the preprocessor (a bit of fine-tuning that we address in Chapter 9).
For now, the default values are fine.

Configuring the system for Snort logs
Now that Snort knows what to watch for, you need to tell it where to send its
alerts when it sees something alert-worthy. Snort lets you specify multiple
output plugins. For example, you can send its output to any combination of

� the syslog facility

� an external database

� a binary tcpdump file

This little section sets up basic logging — including logging to syslog and to
a MySQL database. Nifty output tricks such as unified logging are covered in
Chapter 5.

Logging Snort using syslog
Logging to two different destinations may seem repetitively redundant (boy,
you can say that again), but it can also be very handy, especially when trou-
bleshooting problems. If you’re like us, and you find reading a flat text file
easier than pulling data from a database, you’ll be glad to have Snort logging
its own status through the Unix syslog facility. Here’s how to point Snort’s
snout in the right direction:

1. Uncomment and edit one of the output alert_syslog lines to read
like this:

output alert_syslog: LOG_LOCAL3

You can pick any local syslog facility from 0 to 7. Just make sure it’s not
already in use.

2. Edit your /etc/syslog.conf file to make sure the log facility you just
specified isn’t already in use, and tell syslog which file to write the
Snort logs to.

For example, consider this syslog.conf file from a Red Hat system:

68 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 68

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don’t log private authentication messages!
*.info;mail.none;authpriv.none;cron.none;local3.none

/var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
*.emerg *

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.log
local3.* /var/log/snort/snort.log

The last line indicates that any logs received from the local3 syslog
facility should be written to /var/log/snort/snort.log. A syslog.
conf file that works like this tells syslog where to put your Snort logs.

3. Confirm that the log file is actually there.

Try changing to /var/log/snort to see whether the log file exists. If it
doesn’t, create it in Step 4.

4. If the snort.log file doesn’t exist, create it by using the touch com-
mand, and then use chown to make sure the snortuser you created
can write to the file:

cd /var/log
touch snort/snort.log
chown -R snortuser.snortgroup snort/

These commands establish that the file is present and is owned by
snortuser.

5. Restart the syslog daemon to ensure that your changes take effect.

More syslog tips and tricks, including details on syslog-ng (the next gener-
ation of syslog), are in Chapter 6.

69Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 69

Configuring Snort to log to a MySQL database
For faster access to your Snort logs by other programs, like ACID, the
Analysis Center for Intrusion Detection (see Chapter 7), you should configure
Snort to log to a database. And since you just installed and configured MySQL,
that’s where you’ll be sending Snort’s output.

1. In the snort.conf file, find the following line:

output database: log, mysql, user=root password=test
dbname=db host=localhost

2. Change the line so it contains the correct values for your Snort/
MySQL installation.

Some of these values haven’t been set yet, although some have been.
For example, we already added a snort user, so you can change the
user=root section to read user=snortuser or whatever you named
your snort user (Ralph? Brunhilde?) when you added him or her in the
previous section.

3. Create a name for the database you’ve designated to hold your Snort
logs.

You’ll be creating the database to go with this name soon, along with a
password. (We use the placeholder snortdb as the database name in
Step 5.)

4. Specify a host server.

At this point, we assume that the MySQL server you’re logging in to is
the same box you’re running Snort on. (Logging in to a separate data-
base server is covered in Chapter 13.) Your host here is 127.0.0.1 or
localhost.

70 Part I: Getting to Know Snort and Intrusion Detection

Tell syslog where to go and Snort to shut up
Some Linux systems will write all log entries of
a certain priority to the same file. In the Step 2
example given here, the Red Hat server logs
anything with the priority of info to
/var/log/messages (a familiar file to all you
Red Hat admins). Snort can be very chatty at
times, sometimes more than you want. To keep

Snort log entries from popping up in your
/var/log/messages file, specify that no
local3 log entries go to that file. In the
syslog.conf file shown in Step 2, the
local3.none entry in the first uncommented
line takes care of exactly that chore.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 70

5. Edit your output-database line so it resembles this one:

output database: log, mysql, user=snortuser password=h4wg dbname=snortdb
host=localhost

The new unified-output plug-in allows even faster log processing, and it
is truly the wave of the future. And by “the future” we mean Chapter 6,
the logging chapter, where unified logging is addressed in detail. For
now, leave the unified logging lines commented out.

The next section covers which rule sets to enable. (We cover Snort rules in
greater detail in Chapter 8.) From a practical standpoint, you want to have
already captured some data before you decide which rules just aren’t for you.

Preparing the MySQL database for Snort
After you’ve configured Snort to log to a MySQL database, make sure that
database is prepared to accept Snort’s logs. Here’s how it looks:

1. Using the mysql client, you can:

• Create every database you want Snort to use for logging

• Grant appropriate permissions on these databases to the Snort
user account

For example, here’s a transcript of setting up the Snort databases on our
server:

hawg:/# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 3.23.49-log

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> create database snortdb;
Query OK, 1 row affected (0.02 sec)

mysql> grant INSERT,SELECT on snortdb.* to snortuser@localhost;
Query OK, 0 rows affected (0.00 sec)
mysql> SET PASSWORD FOR snortuser@localhost=PASSWORD(‘h4wg’);
Query OK, 0 rows affected (0.00 sec)
mysql> grant CREATE,INSERT,SELECT,DELETE,UPDATE on snortdb.* to

snortuser@localhost;
Query OK, 0 rows affected (0.00 sec)
mysql> flush privileges
mysql> exit
Bye
hawg:/#

71Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 71

When this process is complete, the databases exist, and snortuser has
the appropriate permissions on them.

2. Build the database structure for each database Snort will use.

This is easy to do, thanks to the scripts included in the contrib direc-
tory where your Snort source code resides. Here’s how you get to them:

cd /usr/local/src/snort-2.1.0/
mysql -u root -p <./contrib/create_mysql snortdb
Enter password:
#

3. Make sure your Snort databases are set up and ready for action.

This transcript shows us doing just that:

mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 10 to server version: 3.23.49-log

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| snortdb |
| test |
+----------+
3 rows in set (0.00 sec)

mysql> use snortdb
Database changed
mysql> SHOW TABLES;
+-------------------+
| Tables_in_snortdb |
+-------------------+
| data |
| detail |
| encoding |
| event |
| icmphdr |
| iphdr |
| opt |
| reference |
| reference_system |
| schema |
| sensor |
| sig_class |
| sig_reference |
| signature |

72 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 72

| tcphdr |
| udphdr |
+-------------------+
16 rows in set (0.00 sec)

mysql> exit;
Bye
#

Huzzah! Snort is ready to keep an eye (nose?) on your MySQL databases.

So now you’ve got Snort’s prerequisite software installed and compiled, the
MySQL server installed and configured, the Snort databases set up, and Snort
itself configured and ready to run. Take a moment and take a deep breath —
now you’re ready to make sure all this stuff actually works!

Is this thing on?
This is the moment when you find out whether all this hard work is going to
pay off. Before you go any farther, take a moment; savor the anticipation.

Okay. Now you’re ready to test your Snort installation. Conveniently, Snort
includes a switch you can use to start it up in test mode — where it checks
your configuration file, your rules, your database, everything. Here’s a typical
test scenario:

1. To start testing, use -T and watch the output.

Chances are you’re going to see errors. Don’t panic, just read the error
message(s), fix the problem(s), and try again.

2. Make sure Snort knows where to find its configuration file.

Remember, when you start Snort, you have to specify where that file
is — and we’re running the Snort user account as snortuser, not as
root — so specify that too with -u snortuser, as follows:

hawg:/# /usr/local/bin/snort -T -u snortuser -c
/usr/local/snort/etc/snort.conf

3. Success? Huzzah! Not yet? Rats. Read the error message carefully and
consider these common pitfalls:

• Check for typos in your config file.

• Make sure a necessary file didn’t get moved.

• If your problem starts looking big, take a tour of the Snort users’
mailing-list archives.

73Chapter 4: Makin’ Bacon: Installing Snort for Linux

08_568353 ch04.qxd 6/2/04 9:21 AM Page 73

Open-source is as much a community as it is a set of programs.
Somebody somewhere has probably run into the same problem. You’ll
feel better knowing that someone else has had the same trouble, and
you’ll feel a whole lot better once you get it resolved and your server is
running.

Starting up Snort at boot time
When you’ve got Snort up and running, sniffing packets and logging data . . .
congratulations! The last step is to get Snort to shut down cleanly and start
up automatically when your system shuts down or boots up.

Thankfully, the kind developers at Snort.org have already written an initializa-
tion script to handle this. Might as well dig it out (root it out?) and set it up:

1. Look in the contrib/ directory of your Snort source for a handy shell
script called S99Snort.

2. Copy the S99Snort script into your /etc/init.d directory.

3. Rename the script as snort and make sure it’s executable.

It becomes your new initialization script for Snort. Here’s the code that
does the trick:

cp /usr/local/src/snort-version/contrib/S99snort /etc/init.d/snort
chmod 755 /etc/init.d/snort

4. Read your new snort initialization script and edit it appropriately.

Be sure to edit the CONFIG, IFACE, SNORT_GID, as well as the OPTIONS
parameter. You don’t want Snort to run under the all-powerful root
account, but rather under the snortuser account just created. For our
installation, the parameters are

SNORT_PATH=/usr/local/bin
CONFIG=/usr/local/snort/etc/snort.conf
IFACE=eth1
SNORT_GID=snortgroup
OPTIONS=”-D -u snortuser”

Make sure the initialization script for your system is edited the way you
want it before you move on to Step 5.

5. Make sure the initialization script is called at boot time.

You can do so in one of these ways:

74 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 74

• Use the scripts we mention in this chapter (in the “Keeping a low
profile” section) for disabling/enabling services.

or

• Link the snort initialization script to the runlevel directories.

Here’s what linking the init.d/snort script looks like:

cd ../rc2.d/
ln -s ../init.d/snort S99snort
ln -s ../init.d/snort K99snort
cd ../rc3.d/
ln -s ../init.d/snort K99snort
ln -s ../init.d/snort S99snort
cd ../rc5.d/
ln -s ../init.d/snort S99snort
ln -s ../init.d/snort K99snort

Voilà!

6. Test the new arrangement by rebooting your server.

You should have a working Snort installation that starts automatically
for you.

75Chapter 4: Makin’ Bacon: Installing Snort for Linux

It’s in the (network) cards . . .
It’s a good idea to have multiple network cards
in your Snort box — at least two: one for man-
aging the system itself, and one just for sniffing
packets. The packet-sniffing interface should
not be given an IP address, but it should be

brought up at boot time. The easiest way to do
this is just to give the ifconfig command for
the interface, but not to specify an IP address: #
/sbin/ifconfig eth1 up. For more about
using multiple network cards, see Chapter 3.

08_568353 ch04.qxd 6/2/04 9:21 AM Page 75

76 Part I: Getting to Know Snort and Intrusion Detection

08_568353 ch04.qxd 6/2/04 9:21 AM Page 76

Chapter 5

Installing Snort and MySQL
for Windows

In This Chapter
� Getting to know Snort for Windows

� Setting up Snort for Windows 2000

� Setting up MySQL for Windows 2000 and Snort

For an average Windows user, installing Snort is a little more of a
headache than for your average Linux user. This is because Snort was

developed initially for open-source Unix-like platforms such as Linux, and if
you are at all familiar with Linux, you know what that means: command-line
options and text-based configuration files. For a Windows user who’s used to
point-and-click configuration, command-line is a little intimidating. Add to
that the fact that there’s little supporting documentation for the Windows
platform on Snort’s Web site or the rest of the Internet, and you have all the
makings of a bumpy ride.

Never fear: This chapter gives you step-by-step installation instructions for
getting your Snort IDS up and running on Windows.

The Windows Snort IDS Box
These are the minimum requirements for a Windows Snort box:

� A PC running Windows NT 4.0, Windows 95, Windows 98, Windows 2000
(Server or Professional), Windows XP (Home or Professional), Windows
2003 Server

� A packet-capture driver for Windows (WinPcap is really your only
choice)

� One or more network interface cards (NICs) and a network connection

� Snort

09_568353 ch05.qxd 6/2/04 9:22 AM Page 77

The preceding requirements are definitely the minimum requirements for run-
ning Snort on a Windows box: You can get Snort up and running with that
configuration. You can also drive a front-wheel-drive car with just the two
front wheels, but you’re not going to get very far, your tail-end will spew a lot
of sparks, and you might explode along the way. The point is that the mini-
mum requirements are not necessarily the best configuration. In the follow-
ing sections we go over specific recommendations for the Windows OS,
logging database, and system resources.

Choosing your Windows OS
Just because Snort can run on practically any 32-bit version of Windows,
doesn’t mean you should run Snort on just any version of Windows. We rec-
ommend running Snort on either Windows 2000 Professional or Windows XP
Professional for the following reasons:

� Windows 2000 and XP Professional are more secure and stable than the
“home user” Windows systems, such as Windows 98, Windows ME, or
Windows XP Home Edition. This is due to features such as the NTFS
filesystem, better multitasking, and better memory management in 2000
and XP Professional.

� The “home user” Windows systems, such as Windows 98, Windows ME,
or Windows XP Home Edition are not suitable for running a Web server
such as Internet Information Services (IIS). A Web server is required for
the ACID visualization console we cover in Chapter 7.

� The “home user” editions of Windows only support a single processor,
whereas Windows 2000 and XP Professional support dual processors.

� Windows 2000 and XP Professional are still supported by Microsoft,
unlike Windows NT 4.0 (or earlier versions of NT).

� Windows 2000 and XP Professional are cheaper alternatives than
Windows 2000 Server or Windows 2003 Server.

In some high-performance environments the server-class versions of
Windows 2000 and 2003 might make more sense, such as when you want to
take advantage of systems that have more than two CPUs.

The minimum configuration only gets you text-based logging and alerts,
which can be hard to manage. In the long run, we want to be able to classify
alerts and use reporting and visualization tools such as the ACID console we
cover in Chapter 7. In order to do this, we need to run an RDBMS (Relational
Database Management System, a fancy name for a database program).

78 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 78

MySQL, your SQL
The RDBMS we chose is MySQL. MySQL is a free database that works on a
number of platforms, including Windows. As a Windows user you might
already be familiar with some of the Microsoft database products, such as MS
SQL and Access, and are wondering why we aren’t using those. MySQL has a
number of things going for it as a backend database for Snort:

� Snort can log directly to MySQL natively, as the alerts come in. Snort
can’t currently log in real-time to Access databases.

� Snort’s unified logging output can be converted directly to MySQL using
the Barnyard utility (covered in Chapter 14). Barnyard cannot currently
convert Snort’s unified logging output directly to Access formats.

� MySQL is supported by many extra Snort tools, including the ACID visu-
alization console we cover in Chapter 7. ACID currently does not sup-
port Access databases.

� Did we mention that MySQL is free? MS SQL and Access licenses aren’t
free, which can increase the cost of your Snort IDS if you don’t already
own those licenses.

If you’ve never used MySQL or any other RDMS before, don’t worry. You don’t
need to be a database guru or even understand SQL queries to get Snort up
and running with MySQL. We provide instructions to get Snort logging to
MySQL under Windows.

Two resource hogs: Windows and Snort
All Windows-based operating systems have high base hardware requirements
relative to other operating systems, even with as much unnecessary stuff
removed as possible. When it comes to recommended hardware, for Snort,
the faster and more the better. Snort needs as much processor speed and
memory you can throw at it, relative to the activity on your network:

� If Snort runs out of resources, it drops packets; it won’t analyze all of the
network packets that come under its nose. With Snort dropping packets,
the entire purpose of an IDS is defeated; an attack on your network or
hosts can come at any time. (Murphy’s Law says the attack will probably
come when your IDS is overloaded.)

� If you plan to run MySQL (or another database system), IIS (or another
Web server), and ACID (and all its dependencies) on the same computer
as Snort, consider fielding a very fast system.

79Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 79

For high-traffic production networks, you’ll get the best performance from
Snort by running the database, Web server, and sensor on different comput-
ers. Look at your network traffic and the requirements for the OS you select
before setting up a Snort system. Chapter 3 should give you a better idea
about how to size your Snort system to your particular environment.

Program storage requirements
With MySQL and support programs, the full Snort complement could fill as
much as 60MB of hard drive space. That’s not a huge amount of space by
today’s I-need-hundreds-of-gigs-just-for-my-downloaded-music standards, but
that figure is only for the software itself, not the data you’re going to collect
using it. The Snort executable takes a measly 400KB of disk space. The entire
Snort package takes 5.8MB on initial install.

Data storage
Your data storage requirements depend on what you do with the data:

� If you’re capturing all packets on your network and storing them with
Snort (not something you’d normally keep around forever, though) your
storage needs will grow exponentially, daily.

� If you are running a single sensor and looking for only a few alerts or
using a small rule base, you don’t need much disk storage space.

In our testing environment, we captured alerts off of the basic Snort rules,
and these alerts average about 5KB per alert in the text alert format. Though
the size of the alert may be pretty standard, how many are generated on your
network and how many are captured are up to you. Chapter 8 gives more
detailed guidelines on rules and how to use them to maximize your Snort
system.

Partition configuration
When installing your Windows operating system, set up at least two parti-
tions on the hard drive:

� A small partition sized for the OS and applications running on your com-
puter. By “small” we mean large enough to hold the Windows operating
system, which can take as much as 3GB of disk space. We recommend
making this partition at least 6GB in size.

� A larger partition for data depending on the amount of data you plan for
Snort to capture. This is where your Snort logs and alerts go, so the
amount of space varies depending on your network. It’s a good idea to
make it as large as you can.

80 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 80

Separate OS and data partitions keep the partitions from corrupting each
other in case one fills up, and makes it much easier to back up to the parti-
tions individually on separate schedules.

For extra security on your Web server we recommend having your IIS docu-
ment root on its own partition, too.

Keeping Your Windows Locked
Before installing Snort and any other components, it’s important to lock
down your Windows system. After all, what good is a Snort IDS that’s been
compromised by an attacker? No good at all.

Hardening any Windows OS has become more difficult over the past few
years, as more and more applications are integrated with the base operating
system. Even so, following the guidelines and recommendations set forth in
this section will help you secure your Windows-based Snort system.

Limit physical access
Physically secure the system in the following ways:

� Locate your Snort sensor in a secure area, accessible only to people who
need physical access to the machine.

� Configure the system to boot only from the hard drive. You don’t want
someone bypassing Windows’ security controls simply by booting off a
floppy disk or CD-ROM, or even a keychain-sized USB drive!

� Consider using a system with a locking front panel that prevents an
unauthorized person from booting from a floppy disk or CD-ROM.

Nobody should have access to the console of the Snort IDS sensor but you!

Tighten OS access control
Limiting the users who can log on to your system and having a good pass-
word policy are imperative. Here are a few suggestions for keeping your
accounts secure:

81Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 81

� Set up a strong password policy on the system.

• Always use a complex password that uses a combination of upper
and lower case letters, numbers, and special characters (*!#$).

• Use passwords of eight characters or more.

• Enable logging of login attempts, failures, and successes.

� You need one user on this system: the Administrator.

• Immediately change the Administrator account name.

• Rename and disable the Guest account (you can’t remove it).

• Remove all other accounts.

Nothing makes a hacker’s job easier than choosing a simple word or name for
your password, or allowing guest access to your system. So, don’t make a
hacker’s day: Follow the preceding account lockdown suggestions.

Harden the OS
Hardening an OS means to take measures to increase security and reduce
vulnerabilities that go beyond the default installation of the OS. Since
Windows is a general-purpose OS designed for user-friendliness, there are
many features turned on by default that aren’t required on a Snort system.
Here are a few suggestions for hardening a Windows Snort IDS box:

� Install only components that are absolutely necessary to run the OS.

Windows operating systems install many programs that you don’t need
for a Snort IDS. Most notable are such applications as Windows Media
Player and Outlook Express. Install nothing extra and add what programs
you need, later.

When given the option, just say no.

� After installing Windows, turn off all unneeded services.

Windows runs a plethora of services in the background that aren’t
needed for every implementation of the OS. Figure out what you need
and turn off the rest.

� Disable unneeded network protocols. All you need is TCP/IP. That’s it.
Everything else: out the window!

Use netstat from the command line on your Windows box to list the net-
work services that are listening (or connected) at any given time. To use
netstat to list all the listening ports by protocol, open a command window
and type

82 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 82

netstat -an

� Conduct all remote communications to and from the sensor with secure
protocols and applications, such as IPSec, SSL, and ssh.

� Apply all security updates, patches, and service packs.

Maintenance is imperative. Regularly check for new security updates,
patches and service packs. New Windows-specific exploits hit the wire
all too frequently.

There are reams of information available on the Internet for securing Windows
systems. Here are a few of our favorite Windows security resources:

� The security wizards at SANS list the Top 20 critical security vulnerabili-
ties for Windows (at http://www.sans.org/).

� The Center for Internet Security (a group that includes SANS, govern-
ment agencies, and private industry) has a security benchmarking tool
at http://www.cisecurity.org/.

� Microsoft’s Baseline Security Analyzer and IIS Lockdown Tool is avail-
able at its Web site, http://www.microsoft.com/. Always get the
latest versions.

Hardening your Windows Snort IDS is an ongoing process.

83Chapter 5: Installing Snort and MySQL for Windows

Patch, patch, and patch again
We can’t emphasize enough the importance of
patching on Internet-facing Windows systems!
All the infamous destructive Windows worms of
2003 — Slammer, Blaster, Nachi — used known
holes for which patches already existed.

If you’re concerned about patching a produc-
tion Snort IDS, set up a second Windows Snort
box as a test bed. Set up that box to automati-
cally use Windows Update to detect and down-
load the latest critical patches, and test it first.
If everything continues to work perfectly after

patching, do it on the production system. Same
goes if you’re in an enterprise environment and
use Microsoft’s Systems Management Server
(SMS) or Software Update Services (SUS) for
patching: Test, then deploy.

Just do it, and plan to do it regularly (Microsoft
is currently releasing patches once a month, so
this makes it much easier to plan). The comfort
zone between the discovery of a vulnerability
and the release of a worm is rapidly shrinking.

09_568353 ch05.qxd 6/2/04 9:22 AM Page 83

Installing the Base Snort System
Installing the base Snort system requires two components: the WinPcap
packet capture library, and the Snort IDS program itself. In the following
sections we configure and install both WinPcap and Snort.

WinPcap
WinPcap (Windows Packet Capture Library) is a packet-capture driver.
Functionally, this means that WinPcap grabs packets from the network wire
and pitches them to Snort.

WinPcap is a Windows version of libpcap, which is used for running Snort
with Linux. For more on libpcap, see Chapter 4.

Functions
The WinPcap driver performs these functions for Snort:

� Obtains a list of operational network adapters and retrieves information
about the adapters.

� Sniffs packets using one of the adapters that you select.

� Saves packets to the hard drive (or more importantly for us, pitches
them to Snort).

Installation
The installation and configuration of WinPcap is dead easy, with almost no
intervention by you:

1. Download the latest installation file from

http://winpcap.polito.it/install/default.htm

The installation file is generally called something like WinPcap_3_0.exe.

2. Double-click the executable installation file and follow the prompts.

WinPcap installs itself where it belongs.

Snort calls WinPcap directly on any of the functions to grab and analyze net-
work packets. If the driver did not install properly, Snort does not function.

84 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 84

Time for a Snort
Snort.org distributes a convenient install package for Windows available at
its Web site:

http://www.snort.org/dl/binaries/win32/

Download this package (generally called snort-2_1_0.exe) and perform the
following steps to install Snort:

1. Double-click the executable installation file.

The GNU Public License appears.

2. Click the I Agree button.

Installation Options window appears.

3. In the Installation Options dialog box, click the appropriate boxes to
select from among these options:

• I do not plan to log to a database, or I am planning to log to one
of the databases listed above. Choose this option if you are not
using a database or if you are using MySQL or ODBC databases.
Snort has built-in support for these databases, and for our exam-
ple, we chose this option.

• I need support for logging to Microsoft SQL Server. Only click
this radio button if you already have SQL Server client software
installed on this computer, and you plan to use MSSQL as your log-
ging database.

• I need support for logging to Oracle. Only choose this option if
you have the Oracle client software installed on this computer, and
you plan to use Oracle as your logging database server.

85Chapter 5: Installing Snort and MySQL for Windows

Accept no substitutes for Windows
These tools verify that the programs you down-
load from the Internet haven’t been tampered
with by a miscreant (this process is called
“integrity checking”). We highly recommend
that you use them.

� A Windows equivalent for md5sum is
MD5summer. MD5Summer is free and has

an easy-to-use GUI interface for generating
MD5 checksums. It can be found at
http://www.md5summer.org/.

� A Windows binary for GnuPG can be found
at http://www.gnupg.org/(en)/
download/index.html.

09_568353 ch05.qxd 6/2/04 9:22 AM Page 85

4. Click the Next button.

The Choose Components window appears.

5. In the Choose Components window, select the components you want
to install and then click the Next button.

We recommend selecting all of the components. The Snort option is the
snort executable, the Documentation option gives you a few documents
on using Snort and the Contrib option installs the contrib directory con-
taining goodies such as scripts for building database tables in the
MySQL, MSSQL, PostGres, and Oracle database systems.

The Install Location window appears.

6. Choose a directory to install to.

We chose to keep all of our Snort-related applications in the same root
directory on our D:\ drive (the data partition we mentioned). The path
to our Snort installation is: D:\snortapps\snort, but you can install it
anywhere on your drive.

7. Click the Install button.

8. When the installation is complete, click the Close button.

An information window appears.

9. Click the OK button.

You’re done! Now it’s time to move on to configuring your Snort system.

Bending Snort to Your Will
A new Snort installation requires a few configuration points. Conveniently,
one file has all the configuration settings required (Snortpath is the path to
your Snort installation):

Snortpath/etc/snort.conf

When you’re ready to configure Snort, open snort.conf in a text editor.
Figure 5-1 shows snort.conf in WordPad, but you can use:

� Edit (from the command line)

� Notepad

� Any other text editor that won’t corrupt the text with crazy formatting
characters the way some fully featured word processors will.

86 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 86

This configuration isn’t a series of handy questions, button clicks, and good
feelings. You’re parsing through a flat text file and entering the proper set-
tings by hand.

Double-check everything you type in to the snort.conf file. If entries aren’t
exactly correct, Snort doesn’t work. Guaranteed.

The following configuration options in the snort.conf file are essential to a
properly functioning Snort installation:

� Network settings

� Rules settings

� Output settings

� Include settings

Network settings
The network settings allow you to set Snort to monitor any range of network
IP addresses, from a single IP address, several IP addresses in groups or indi-
vidually, and entire IP subnets. You can configure the IP address range and
the subnet.

Figure 5-1:
snort.conf is
best viewed
while firmly

seated.

87Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 87

The placement of the Snort sensor depends on both the configuration file
and how much “pipe” it can suck from. In a switched environment, when
using prodigious VLANs, additional network configuration may be required to
give Snort the best possible sample of network traffic. Chapter 2 provides all
the detail you need to set up Snort in any network environment.

You can control the network range that Snort monitors by changing the var
HOME_NET setting in snort.conf. Your options are:

Entire network
By default, snort.conf contains the following line, which monitors the entire
local network:

var HOME_NET any

If you don’t change this setting, Snort monitors the entire network segment
the Snort system is attached to.

Single IP address
To monitor a single IP or computer insert the IP address range and the
subnet of the network or host into snort.conf. To do this, replace the existing
var HOME_NET configuration line with this form:

var HOME_NET IPAddressRange/Subnet

The IPAddressRange/Subnet notation may not be something you’re familiar
with; it’s not normally used to configure a network interface on Windows sys-
tems. This particular type of IP address notation is called CIDR notation, and
we give you the run-down on it in Chapter 1, in the sidebar “Understanding
CIDR notation.”

The following examples monitor a Class C network with an IP address range
of 192.168.10.0 – 192.168.10.255 and a subnet of 255.255.255.0:

� This line monitors the entire Class C network:

var HOME_NET 192.168.10.0/24

� This line monitors a single host on the Class C network:

var HOME_NET 192.168.10.2/32

Multiple hosts
You can specify a number of hosts within the network space you are monitor-
ing by listing them in the var HOME_NET configuration statement. The line
takes this form:

88 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 88

var HOME_NET IPAddressRange/Subnet,IPAddressRange/Subnet,...

Separate each IP address in the var HOME_NET configuration statement by a
comma without spaces. If there are any blank spaces in the list of IP
addresses and subnets, then Snort fails to start.

The following example monitors three hosts on a typical class C network:

var HOME_NET 192.168.10.2/32,192.168.10.3/32,192.168.10.6/32

Rules, rules, rules
So Snort can detect attacks and alert you when attacks occur, Snort needs to
know where its rulebase is (and you need to know it if you want to write new
rules).

By default, the rulebase is in Snortpath\rules (Snortpath is the location of the
Snort install).

To set the rules path in the snort.conf file, replace the existing var
RULE_PATH line with this form (Snortpath is the location of the Snort install):

var RULE_PATH SnortPath\rules

Figure 5-2 shows an example of a properly configured var RULE_PATH line in
the snort.conf file.

Figure 5-2:
The Tao of

Snort Rules.

89Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 89

Output settings
Output settings are very important in Snort, for they define how Snort’s infor-
mation will be presented to you. We go into output settings in-depth in
Chapter 6, but for now we’re concerned with configuring Snort to output to
an alert text file and a database.

Alert output
The alert output setting is added to the snort.conf configuration file. The
snort.conf file will also come in handy when we port that information into our
MySQL database. Follow these steps:

1. Find the output line that appears by default as:

output log_tcpdump: tcpdump.log

Because the default line begins with the comment character (#), Snort
ignores it.

2. Change the preceding default output line to this:

output alert_fast: alert.ids

This setting creates a flat text file in the ‘log’ directory where Snort
appends each alert created when one of its rules fires on incoming net-
work packets.

Delete the comment character (#) from the beginning of the changed line so
Snort doesn’t ignore it when processing the configuration file.

Database outputs
These configuration settings configure Snort to push information to MySQL,
the Windows database we recommend.

Even if MySQL hasn’t been installed yet, this is the right time to get every-
thing ready for MySQL on the Snort side of the house.

Collecting database information
Before configuring the database output settings, you must decide on the fol-
lowing information. Unless you’re working with an existing database, these
four settings are totally up to you.

Feel free to write your information in the following blanks, but guard it care-
fully or destroy it unless you want some wily social-engineering “3l33t haxor”
to get all your database information.

90 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 90

� User: ______________________________

This is the MySQL user for the database where Snort stores its data. We
like ‘elvis’ (who doesn’t?), but it can be anything you want.

� Password: __________________________

This is the password for the MySQL database user.

� dbname (for logs and alerts): ___________________________

This is the database name where Snort will store its alerts and logs.

� YOURHOSTNAME _________________________________

This is the hostname of your database server. If you are running your
database on the same system as your Snort sensor, then it is the same
name.

If you don’t know your computer’s hostname, you can find it by typing
hostname at the command prompt. The prompt returns the hostname of
your machine.

Don’t use default users, database names, and passwords unless you want
your box hacked.

Editing the output settings in snort.conf
When you have the database information ready, you can configure the output
settings in snort.conf.

The following steps show how to edit snort.conf to log alerts to a MySQL
database for your system. There are examples for our own test system, which
has a MySQL database called snorty as the user elvis with a password of
3133th@x0R on the local IP address (127.0.0.1) at port 3306 with a sensor
name of elvisisdead.

If you plan to install your database on a separate server, put the correct IP
address where the database resides. For this demonstration, the database is
running on the same server as Snort.

Follow these steps to configure the output settings in the snort.conf file:

1. Find the following default output line in the snort.conf file:

output database: log, mysql, user=root password=test
dbname=db host=localhost

2. Configure the logs. Using your own database information, change that
default output line to something like this:

output database: log, mysql, user=User password=Password
dbname=dbname host=YOURHOSTNAME port=portnumber
sensor_name=thesensorname

91Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 91

Delete # from the beginning of the changed line so Snort doesn’t ignore
the line.

For example, we changed the default to this line:

output database: log, mysql, user=elvis
password=3l33th@x0R dbname=snorty host=127.0.0.1
port=3306 sensor_name=elvisisdead

3. Configure the alerts. Using your own database information, add a new
output line like this:

output database: alert, mysql, user=User
password=Password dbname=dbname host=YOURHOSTNAME
port=portnumber sensor_name=thesensorname

For example, we added this output line:

output database: alert, mysql, user=elvis
password=3l33th@x0R dbname=snorty host=127.0.0.1
port=3306 sensor_name=elvisisdead

Include configuration
Two standard Snort configuration files must be referenced for Snort to prop-
erly classify and provide references to the alerts it generates:
classification.config and reference.config.

classification.config
classification.config holds alert levels for the rules that Snort monitors
against network traffic.

To set the classification.config file in the snort.conf configuration file, follow
these steps:

1. Find this default line in the snort.conf file:

Include classfication.config

2. Insert the actual path for the classification.config file into the
preceding Include line, like this:

Include SnortPath\etc\classification.config

For example, the actual snort.conf file on our test system has this line:

Include D:\snortapps\Snort\etc\classification.config

92 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 92

reference.config
reference.config contains URLs referenced in the rules that provide more
information about the alert event.

To set the reference.config file in the snort.conf file, follow these steps:

1. Find this default line in the snort.conf file:

Include reference.config

2. Insert the actual path for the reference.config file into the preced-
ing Include line, like this:

Include SnortPath\etc\reference.config

For example, the actual snort.conf file on our test system has this line:

Include D:\snortapps\Snort\etc\reference.config

Testing the Installation
Snort runs in three different modes: Sniffer, Packet Logger, and Network
Intrusion modes.

Sniffer mode
Sniffer mode is the simplest iteration of Snort. To run it, follow these steps:

1. From the command line (within the SnortPath\bin directory) type

snort -v

This command runs Snort as a packet sniffer with the verbose switch,
outputting TCP/IP packet headers to the screen (see Figure 5-3). As you
know if you’re a coffee-guzzling network engineer, Snort is working at its
most basic level. But don’t panic . . .

Figure 5-3:
Aagh!

What’s that?

93Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 93

2. Press Ctrl+C keys together to stop the output.

Snort/WinPcap summarizes its activities, as shown in Figure 5-4.

3. To receive a more detailed capture of packets on the wire, type

snort -vd

This command provides the TCP/IP headers and packet information
(descriptive).

4. Type snort at the command line for a full list of all the switches.

If you’re getting TCP headers, you know that so far you’re right on track.

5. If you have more than one network card in your Snort IDS system,
type

snort -W

This command determines how WinPcap has these adapters numbered,
and is only available in the Win32 version of Snort.

6. If you’re running Snort from the command line with two network
adapters, specify which adapter to monitor:

snort -v -i#

is the number of the applicable adapters (as shown on the output of
the snort -W command).

You must use this -i switch whenever you run the snort program on
the command line.

Figure 5-4:
A summary

of Aagh!
What’s

that?

94 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 94

Packet Logger
You can test Snort’s logging abilities with the –l (log) switch, by typing:

snort –dev –l SnortPath\log

This runs Snort in descriptive verbose mode and logs all its findings to the
directory called log under the Snort install directory. The individual packets
are filed in hierarchical directories based on the IP address from where the
packet was received, as seen in Figure 5-5.

Several command-line switches are specific to logging and output, including
the ability to log all packets to a single binary file. Play around with those as
needed. Chapter 6 goes over a few of your options.

Setting Up MySQL for Snort
While MySQL isn’t required with Snort, it is required for a front-end console
such as ACID. If you set up MySQL or another database system, you can see
the alerts without the front-end console, but you really don’t need that kind
of pain.

Installing MySQL
Before you install MySQL, you have to get hold of it. MySQL can be down-
loaded from http://www.mysql.com/downloads/index.html.

Figure 5-5:
Pretty cool-
looking, but

not a very
useful way

to do it.

95Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 95

Get the latest production version of MySQL for your Windows operating
system.

When you’ve downloaded, perform these steps to install MySQL:

1. Uncompress the MySQL ZIP file into a temporary directory.

This file is ZIP file usually called something like mysql-4.0.17-
win.zip. You need a compression utility (such as WinZip or WinRAR) to
uncompress it on a Windows 2000 platform, but Windows XP has built-in
transparent access to compressed archives with extensions such as zip,
gzip and tar.

2. Where you uncompressed the file, double-click setup.exe.

The Welcome window appears.

3. Click Next, read the information, and click Next again.

The Information window appears. If you install MySQL in a directory
other than C:\mysql, you must create an initialization file; the
Information window describes this process.

4. At the Destination Location window, click Next if you want to install it
to the default directory (c:\mysql).

5. Choose the Typical install and click Next.

MySQL installs itself.

6. When the installation is finished, click the Finished button.

You’re all installed now.

To finish the initial configuration of MySQL, perform these steps:

1. Open a command window and navigate to

$SQLPATH\bin

$SQLPATH is the path to the directory in which you’ve installed mysql
(ours is C:\mysql\).

2. In the SQLPath\bin directory, type the following command:

winmysqladmin

The MySQL administration console window appears and prompts you
for a login.

96 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 96

3. Use any login name and password you want.

This sets the root password for MySQL. Ours looked like this:

login: root
password: Fry4tat3rZ

4. Click the OK button, and MySQL starts up as a service.

A traffic light appears in your system tray, showing a green light.

If the light is red, MySQL can’t start. The “Whoa, red light!” sidebar in
this chapter can help you diagnose the problem.

Configuring MySQL for Snort
When MySQL is up and running, you’re ready to configure it to take data from
Snort. To check that everything is A-OK, right-click the traffic-light icon in the
system tray and click Show Me. Click the Start Check tab. The my.ini line
should show a yes, and all other lines should show OK, as in Figure 5-6.

97Chapter 5: Installing Snort and MySQL for Windows

Whoa, red light!
If the MySQL Admin traffic light is Red, MySQL
can’t start. It probably can’t read its .cnf and
.ini files. MySQL first reads the my.ini file
(usually located in the C:\Winnt directory). If
it can’t read that, it reads the my.cnf file, usu-
ally located in the root directory (C:\). Check
both of those files with a text editor (WordPad
or Notepad) and ensure that lines like these
appear (carefully check the slashes):

basedir=SQLPath
datadir=SQLPath/data
[WinMySQLadmin]
Server=SQLPath/bin/mysqld-

nt.exe
user=USER
password=PASS

For the preceding lines, the variables in your
files should have these values:

� SQLPath: the path to where you installed
MySQL (that is, the root MySQL directory
path)

� USER: the MySQL account’s username

� PASS: the MySQL account’s password

The resulting configuration file looks something
like this:

basedir=C:/mysql
datadir=C:/mysql/data
[WinMySQLadmin]
Server=C:/mysql/bin/mysqld-

nt.exe
user=root
password=Fry4tat3rZ

Carefully check the orientation of the slashes
(/). They are Unix-like forward slashes, not
the backslashes you typically use with the
Windows filesystem. If these aren’t right,
MySQL won’t start.

09_568353 ch05.qxd 6/2/04 9:22 AM Page 97

Setting up the my.ini file
You can set up the my.ini file from the Admin console (winmysqladmin) or
with a text editor. We prefer the Admin console; you can edit the my.ini file
directly from the Setup tab of the winmysqladmin console. To set up the
my.ini file using the Admin console, perform the following steps:

1. Run winmysqladmin from a command prompt.

2. Bind MySQL to this system’s localhost IP address.

In this case, it’s 127.0.0.1.

3. Set the communication port.

For a typical MySQL installation, it’s 3306.

4. Set the key_buffer setting for Snort data.

(We chose to keep no more than 64MB in the Snort buffer.) When you’re
finished, the text in the my.ini Setup tab should look like the following
code snippet (with the exception of the password line, which should
contain your password):

#This File was made using the WinMySQLAdmin 1.4 Tool

#Uncomment or Add only the keys that you know how works.
#Read the MySQL Manual for instructions

[mysqld]
basedir=C:/mysql
bind-address=127.0.0.1
datadir=C:/mysql/data
#language=C:/mysql/share/your language directory
#slow query log#=
#tmpdir#=

Figure 5-6:
Everything

is A-OK
with

MySQL.

98 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 98

port=3306
set-variable=key_buffer=64M
[WinMySQLadmin]
Server=C:/mysql/bin/mysqld-nt.exe
user=root
password=YOURPASSWORD

Any text that follows a pound (#) symbol is a comment and ignored by
MySQL. If your code looks the way it should, then your my.ini file is set.

5. Click the Save Modifications button (in the lower-left corner).

MySQL prompts you to confirm the changes.

6. Click the Yes button.

MySQL alerts you that the changes have been made and confirmed.

7. Click the OK button.

The changes are accepted.

8. Right-click anywhere on the window, and then click the Hide Me
menu option to close the console.

Digging in SQL guts
Once MySQL is configured properly, clean up MySQL, configure it for Snort,
and secure it. All this essential stuff is done from the command line.

In the MySQL command interface, every command must end in a semicolon (;).

The first order of business is to clean up some chaff by deleting the default
databases.

1. In the SQLPath\bin directory, log in to mysql from the Windows com-
mand prompt, type the following command, and press Enter:

mysql –u root -p

You’re asked for your MySQL root password.

2. Enter the root password and press Enter.

A welcome message reminds you that commands must end with a semi-
colon. Your prompt changes to

mysql>

3. At the prompt, type the following and then press the Enter key:

use mysql;

This command puts you in the database called mysql.

99Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 99

4. Get rid of any host entries, like this:

delete from user where host = “%”;

5. Delete other user accounts, like this:

delete from user where user = “”;

6. Make sure the root account is the only user account here, like this:

select * from user;

This command displays user information. You should only see root as
a user.

7. Delete the test database by typing the following:

drop database test;

8. Ensure that only the mysql database exists by typing this command:

show databases;

The following should appear:

+----------+
| Database |
+----------+
| mysql |
+----------+
1 row in set (0.00 sec)

If you get that, you’re ready to create your Snort databases.

Create the Snort databases
At the mysql> prompt, type the following commands and press the Enter key
after each one:

create database snort;
create database archive;

When you execute a show databases; command now, you should see this:

+----------+
| Database |
+----------+
| mysql |
| snort |
| archive |
+----------+
1 row in set (0.00 sec)

100 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 100

Creating Snort’s user accounts
With the Snort databases in place, set up the user accounts that Snort is to
use when it logs in to add data to its databases. As an example, the following
steps walk through setting up the elvis user account.

1. At the mysql> prompt, type the following and press Enter after each
line:

grant INSERT,SELECT,UPDATE on snort.* to elvis@localhost
identified by “3l33th@x0R”;

Refer to Chapter 7 for more about user setup.

2. Verify the elvis user’s permissions type:

show grants for elvis@localhost;

MySQL displays the elvis user’s permissions, which should match
those you gave the elvis user account when you created it.

3. If you made a mistake, go back and redo the snort user account’s
permission.

The snort user account must be allowed to do its business, otherwise
nothing will work.

Is this thing on?
After configuring the user accounts, make sure everything’s working:

1. Open the MySQL console by issuing the following command:

winmysqladmin

2. Click the my.ini Setup tab, and then click the Create ShortCut on
Start Menu button.

This creates a shortcut in the Windows Startup folder so MySQL starts
automatically when your Windows 2000 box starts.

3. Check the Windows Task Manager (right-click the Windows toolbar
and select Task Manager).

In Windows 2000 and XP, you can press Ctrl+Shift+Esc instead.

Here’s where you make sure that both snort.exe and mysqld-nt.
exe are running in the Process list. If you are still running the console,
winmysqladmin.exe also appears in the process list.

101Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 101

Locking MySQL and throwing
away the key
Choose a strong password for your root user and make sure you remember
it, since it’s your only admin interface to MySQL. Don’t duplicate our example
(Fry4tat3rZ) — but you knew that. Choose a password that includes num-
bers, upper- and lowercase letters, and special characters. To change the
password for the root user, type the following at the mysql> prompt and
press the Enter key:

set password for = password (“YOURPASSWORDHERE”);

You should get a confirmation. Then you can type quit; and press the Enter
key to exit.

Configuring Snort as a Service
To run Snort as a background service on Windows 2000, XP, or 2003, you
must know

� Where your rules directory is

� Where you want Snort to create its log file

When we added the database output configuration to the snort.conf file,
we made Snort rely on MySQL. If we try to run Snort as a service without
having MySQL installed and configured, the Snort service fails because it’s
looking for MySQL databases. Keep this in mind if you configured Snort for
MySQL support, but skipped the section on installing and configuring MySQL.

The following examples are a generic configuration. Your configuration may
vary slightly.

Windows 2000, XP, and 2003
service commands
The general procedures for installing and uninstalling services on a Windows
2000 system are pretty straightforward:

� To install a program as a service on Windows 2000, XP, or 2003, execute
the following command at the command line (replace Program with the
executable you want to install as a service):

Program /SERVICE /INSTALL

102 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 102

� To Uninstall a program from the Services, execute this command
(replace Program with the executable you want to uninstall from the
Services):

Program /SERVICE /UNINSTALL

Installing Snort as a service
To install Snort as a service, follow these steps:

1. Specify your Snort path by typing the following command at the com-
mand line (in the /bin directory of your Snort installation) and then
pressing Enter:

snort /SERVICE /INSTALL –de –c SnortPath\etc\snort.conf
–l SnortPath\log –i#

For the preceding command:

• snort is the name of the Snort executable.

• /SERVICE is the Windows command to access the Services com-
mands.

• /INSTALL is the Services command that installs the program as a
Windows service.

• -de is a pair of switches: the –d switch tells Snort to dump
Application-Layer network information; the –e switch displays
Second-Layer header information.

• -c $SnortPath\etc\snort.conf is where the –c switch tells
Snort to use the configuration file specified by
$SnortPath\etc\snort.conf.

• -l $SnortPath\log is where the –l switch (that’s a lowercased
L) tells Snort to log to the path: $SnortPath\log.

• -i# tells the –i switch tells Snort to capture log data on the net-
work interface specified, and # is the number of the interface you
want Snort to monitor.

(If you’re unsure which network adapter you want Snort to moni-
tor, type snort –W to list available interfaces — and then choose
one. Note that the switch is case-sensitive.)

• SnortPath is the path to your root installation of Snort. (For
example, ours is D:\snortapps\snort.) The # sign after the -i
switch represents the actual network interface that you want Snort
to monitor.

103Chapter 5: Installing Snort and MySQL for Windows

09_568353 ch05.qxd 6/2/04 9:22 AM Page 103

2. Specify the -i switch by typing the following command at the com-
mand line and then pressing Enter:

snort -W

Using WinpCap, Snort outputs the names of your network adapters
(probably just one) to the screen, preceding each one by a number. This
number is the one you want for the -i switch.

If the service fails to start or if you get an error after executing this com-
mand, make sure that you

• Typed the command correctly

• Properly configured the snort.conf file (as discussed in the pre-
ceding sections)

In some situations, you won’t receive a specific failure message for
Snort. In these cases, check the Event Viewer in the Windows Control
Panel for details about the error. Usually, there are problems with
either your snort.conf file or your MySQL (or other database system)
installation.

104 Part I: Getting to Know Snort and Intrusion Detection

09_568353 ch05.qxd 6/2/04 9:22 AM Page 104

Part II
Administering
Your Snort Box

10_568353 pt02.qxd 6/2/04 9:22 AM Page 105

In this part . . .

This part covers the day-to-day tasks of running your
Snort IDS. It starts by showing you how to use Snort’s

primary output: logs and alerts. Once you have that down,
it takes you through installing the ACID console for getting
visuals. Snort’s intrusion detection rules are at the core of
its operation, so it shows you how to create new rules and
tweak them to reduce alerts that don’t pertain to you.
Finally, it shows you how to deal with an actual attack
against your computer systems!

10_568353 pt02.qxd 6/2/04 9:22 AM Page 106

Chapter 6

Snorting through Logs and Alerts
In This Chapter
� Understanding Snort’s basic output

� Snort’s output facilities

� Snort’s output modules

Your Snort box is up and running and packets are whizzing around your
network at light speed. Are these the packets of productive netizens

surfing the Web, transferring files, or playing online games? Or are these per-
nicious packets packed with peril? Who knows? Your Snort box knows! But
will it tell you? If so, how much will it tell you? And will what it tells you make
sense, or will it be a jumble of pig-Latin?

If you’ve ever tried to teach a pig to talk, you know that meaningful communi-
cation doesn’t come easy. We promise that getting this pig to squeal is much
easier, and much more rewarding.

Snort’s Basic Output
Snort can log its output in a variety of formats. You can choose your format
based on your need for speed, ease post-processing, machine readability, or
human readability. Snort can do it all.

tcpdump binary
tcpdump binary is the ultimate in speed and flexible post-processing. This
nearly universal method doesn’t require the processor-intensive conversion
to text. When tcpdump-style logging is used, Snort easily keeps up with very
busy networks without dropping packets.

11_568353 ch06.qxd 6/2/04 9:23 AM Page 107

Binary data is great for machines, but tough for people. There are 10 kinds of
people in this world: those who understand binary data, and those who don’t.

ASCII logging
If you have a hard time interpreting a language made solely of ones and zeros,
then consider ASCII logging options.

This chews more CPU cycles than binary logging, but the results are a lot
easier for us humans to interpret.

Logging to a database
Logging directly to a database is one of the most useful options for reporting
your Snort data and sharing it with others. Although database tables aren’t
easy to read without a software client, software clients are abundant, and
programs to translate the cold hard world of database entries into the warm,
fuzzy, and colorful world of Web pages are also plentiful.

Chapter 7 delivers the scoop on how to install and configure ACID: the
Analysis Console for Intrusion Detection, a top-notch reporting tool for Snort.

Snort’s output facilities
Snort basically has two ways to spit out data. The Snort developers identify
these with the technical sounding term output facilities instead of the more
colloquial data spitters. You can tell Snort to

� Alert you when an attack is happening, complete with information on

• What kind of attack it is

• Where it’s coming from

• Where it’s going

• Where to find more information about the attack

� Log the actual packets of the attack, showing

• MAC addresses

• IP addresses

• Packet payload

• Timestamp

• TCP flags

108 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 108

Usually, Snort can simultaneously send alerts and log data.

The alert facility
The alert facility is used by Snort to tell you when the network traffic matches
the criteria defined in a rule. Well, okay, it won’t grab you by the ears and
yell, “You’re getting hacked!” But here’s an example of what it might say (all
names and IP addresses have been changed to protect the innocent, not to
mention the less-than-innocent):

01/20-22:34:35.218093 [**] [1:469:1] ICMP PING NMAP [**] [Classification:
Attempted Information Leak] [Priority: 2] {ICMP} 192.168.1.68 ->
172.16.34.18

This is your Snort box telling you that someone out there is using nmap, a
network-security scanning tool, to ping your system — a sure sign that a port
scan will shortly follow!

The preceding code says more than “You’re getting pinged.” In addition to a
few jazzy asterisks, it includes

� Date and time (including the microsecond appended to the second
itself)

� The SID (Snort ID), an identifier indicating which rule was tripped. This
is written in the following format:

[sig_generator:sig_id:sig_revision]

• sig_generator indicates which part of Snort generated the alert

• sig_id is the Snort signature ID, which indicates which rule was
tripped

• sig_revision is the revision number of this rule

� A brief text message

� Classification and priority of the attack

� The protocol of the packet that tripped the rule

� Source and destination IP addresses involved

Whew, that’s a lot! And that’s just for the alert_fast output module, which
prints a minimum of information. Other modules will print the MAC
addresses, TCP flags, or even the packet payload in ASCII or hex. The options
aren’t limitless, but Snort can print enough detail to satisfy even the most
hardcore wire head.

The log facility
The log facility doesn’t sound any alarms. It quietly logs all of the packet
information relevant to this particular attack. There are times when you may

109Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 109

want to log attack data without generating alerts. For example, running Snort
as a souped-up packet sniffer. Here’s the same Nmap ping logged by the log-
ging facility. It shows the details of the port scan to port 80 as well:

01/14-19:42:03.114656 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x3C
192.168.1.68 -> 172.16.34.18 ICMP TTL:37 TOS:0x0 ID:44936 IpLen:20 DgmLen:28
Type:8 Code:0 ID:13988 Seq:7720 ECHO

=+

01/14-19:42:03.114717 0:A0:CC:D2:10:31 -> 0:10:67:0:B2:50 type:0x800 len:0x2A
172.16.34.18 -> 192.168.1.68 ICMP TTL:255 TOS:0x0 ID:2734 IpLen:20 DgmLen:28
Type:0 Code:0 ID:13988 Seq:7720 ECHO REPLY

=+

01/14-19:42:03.115157 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x3C
192.168.1.68:50488 -> 172.16.34.18:80 TCP TTL:36 TOS:0x0 ID:3836 IpLen:20

DgmLen:40
A* Seq: 0x3C4A079E Ack: 0x498A079E Win: 0x800 TcpLen: 20

=+

01/14-19:42:03.115194 0:A0:CC:D2:10:31 -> 0:10:67:0:B2:50 type:0x800 len:0x36
172.16.34.18:80 -> 192.168.1.68:50488 TCP TTL:255 TOS:0x0 ID:0 IpLen:20

DgmLen:40 DF
*****R** Seq: 0x498A079E Ack: 0x0 Win: 0x0 TcpLen: 20

=+

01/14-19:42:03.420876 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x3C
192.168.1.68:50468 -> 172.16.34.18:80 TCP TTL:41 TOS:0x0 ID:64826 IpLen:20

DgmLen:40
******S* Seq: 0x6E30F501 Ack: 0x0 Win: 0xC00 TcpLen: 20

=+

01/14-19:42:03.420964 0:A0:CC:D2:10:31 -> 0:10:67:0:B2:50 type:0x800 len:0x3A
172.16.34.18:80 -> 192.168.1.68:50468 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:44

DF
***A**S* Seq: 0xAC878D4E Ack: 0x6E30F502 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+

01/14-19:42:03.459314 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x3C
192.168.1.68:50468 -> 172.16.34.18:80 TCP TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:40

DF
*****R** Seq: 0x6E30F502 Ack: 0x0 Win: 0x0 TcpLen: 20

=+

110 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 110

If you’ll run Snort as an Intrusion Detection System, you need to generate
alerts. Most of the time you’ll want to log relevant packet information as well
so you can trace the steps of an attack packet by packet.

Snort’s Output Modules
As of version 1.6, Snort uses output modules, or output plug-ins, to write the
data sent by the logging and alerting output facilities.

Snort’s alerting and logging facilities don’t actually write the data. They send
data to the appropriate output module, which handles the formatting and
writing of the logs. Anyone can write their own output module for handling
Snort’s output in specific ways, and multiple output modules can be com-
bined for custom logging.

Snort can be run in a few ways.

� As a daemon, constantly running as a background process monitoring
the network for intrusion attempts

� From the command line as a packet sniffer (much like its forefather tcp-
dump)

� As a kind of super packet sniffer that captures data, then compares it to
known attack signatures on the fly

Some of Snort’s output modules are better suited for daemon mode and some
for packet-sniffing mode. They can all be combined with one another, and
used effectively no matter how you run Snort.

As we’ll see, each output module is called with a slightly different syntax
depending on whether you call it from the command line, or the configura-
tion file. By default the output modules send their data to /var/log/snort, but
of course, a different directory can be specified to suit your tastes.

A different log directory can be specified on the command line by using the
-l switch. All ASCII (plain text) packet logs and alerts will go to this direc-
tory. If the -l switch isn’t used, logs will go to /var/log/snort by default.

Any option that’s specified on the command line will silently override that
same option in the snort.conf file. For instance, if you have output
alert_fast: snort.log in your snort.conf file, but you call snort on the
command line with the -A full switch, Snort will run with full alerts, and
your snort.log file will contain the fully decoded packet header as well as the
alert itself. (We cover the fast and full alerting options themselves in more
detail in the following section, “Alerting modules.”)

111Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 111

Alerting modules
Snort’s got a couple of different ways to generate alert data depending on how
much detail you want in your alerts, and where you want to send them. We
start with some of the more basic options, and work our way up in complexity.

Configuration of output modules is done within the snort.conf configura-
tion file. (From our Linux installation in Chapter 4, the configuration file is
/usr/local/snort/etc/snort.conf. In the Windows installation in Chapter
5, the location is D:\snortapps\Snort\etc\snort.conf.) Open snort.conf
and find the output plug-ins section. In the default snort.conf, this section is
labeled with the comment “Step #3: Configure output plug-ins.” Find the sec-
tion either by searching for Step #3, or by searching for the word “output.”
All of the following output module configuration is done within this section.

alert_fast
This is a straightforward, no nonsense way for you to get Snort alerts. The
alert_fast module will print alerts in a one line format to whatever file you
specify. It’s fast because Snort doesn’t burn CPU cycles converting packet
headers to ASCII or writing them to the output file.

The syntax to use in your snort.conf file to specify the alert_fast output
module is:

output alert_fast: snort.log

To use fast alerts when calling Snort on the command line, use the -A fast
option.

Fast alerts show the flavor of attack, its classification, source, destination,
and a timestamp. Not much else gets logged using the alert_fast output
module, which is one of the reasons it’s so fast.

01/16-22:57:23.872383 [**] [1:1122:4] WEB-MISC /etc/passwd [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
192.168.1.68:44258 -> 172.16.34.18:80

01/16-22:57:24.668612 [**] [1:1113:4] WEB-MISC http directory traversal [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
192.168.1.68:44266 -> 172.16.34.18:80

01/16-22:57:24.668612 [**] [119:2:1] (http_inspect) DOUBLE DECODING ATTACK [**]
{TCP} 192.168.1.68:44266 -> 172.16.34.18:80

01/16-22:57:24.767891 [**] [1:1113:4] WEB-MISC http directory traversal [**]
[Classification: Attempted Information Leak] [Priority: 2] {TCP}
192.168.1.68:44267 -> 172.16.34.18:80

01/16-22:57:24.767891 [**] [119:2:1] (http_inspect) DOUBLE DECODING ATTACK [**]
{TCP} 192.168.1.68:44267 -> 172.16.34.18:80

01/16-22:57:24.867426 [**] [1:988:6] WEB-IIS SAM Attempt [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.1.68:44268 ->
172.16.34.18:80

112 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 112

Wow, that was fast! Remember, this data gets logged to /var/log/snort/
alert by default.

alert_full
The alert_fast output module will print Snort alerts with the full packet
headers decoded into plain text. This gives you significantly more informa-
tion about an attack, but it comes at the price of significantly decreased per-
formance, and shouldn’t really be used unless your Snort box is on a lightly
trafficked network. Use this option on a network with a lot of traffic, and Snort
will drop packets. Not only that, but you’ll be writing gobs of data to your
hard drive, reducing free space and causing an I/O bottleneck on your system.

To generate full alerts, edit your snort.conf file to specify the following
output module configuration:

output alert_full: alert.full

Here we see the logs written to /var/log/snort/alert.full, as specified in
the preceding output module configuration:

[**] [1:1668:5] WEB-CGI /cgi-bin/ access [**]
[Classification: Web Application Attack] [Priority: 1]
01/16-23:06:11.675382 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0xDD
192.168.1.68:44561 -> 172.16.34.18:80 TCP TTL:47 TOS:0x0 ID:53932 IpLen:20

DgmLen:207 DF
AP Seq: 0xD5349716 Ack: 0x2B34D8BB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 322913730 135653681

[**] [1:1201:7] ATTACK-RESPONSES 403 Forbidden [**]
[Classification: Attempted Information Leak] [Priority: 2]
01/16-23:06:11.675864 0:A0:CC:D2:10:31 -> 0:10:67:0:B2:50 type:0x800 len:0x268
172.16.34.18:80 -> 192.168.1.68:44561 TCP TTL:64 TOS:0x0 ID:12687 IpLen:20

DgmLen:602 DF
AP Seq: 0x2B34D8BB Ack: 0xD53497B1 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 135653685 322913730

[**] [1:1852:3] WEB-MISC robots.txt access [**]
[Classification: access to a potentially vulnerable Web application] [Priority:

2]
01/16-23:06:13.035036 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0xDF
192.168.1.68:44572 -> 172.16.34.18:80 TCP TTL:47 TOS:0x0 ID:27543 IpLen:20

DgmLen:209 DF
AP Seq: 0xD5D72DD3 Ack: 0x2BD8E79A Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 322913866 135653817
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=10302]

[**] [1:1145:6] WEB-MISC /~root access [**]
[Classification: Attempted Information Leak] [Priority: 2]
01/16-23:06:13.233595 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0xDA
192.168.1.68:44574 -> 172.16.34.18:80 TCP TTL:47 TOS:0x0 ID:5770 IpLen:20

DgmLen:204 DF

113Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 113

AP Seq: 0xD55950D4 Ack: 0x2B16C39E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 322913886 135653837

[**] [1:1156:4] WEB-MISC apache DOS attempt [**]
[Classification: Attempted Denial of Service] [Priority: 2]
01/16-23:06:13.542489 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x1D5
192.168.1.68:44577 -> 172.16.34.18:80 TCP TTL:47 TOS:0x0 ID:62470 IpLen:20

DgmLen:455 DF
AP Seq: 0xD62EB27E Ack: 0x2B97F12D Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 322913917 135653868

Full alerts can also be specified on the command line using the -A full
switch. But unless you’re doing some network debugging or you’re on a net-
work segment with light traffic, this option isn’t recommended.

alert_syslog
Sending alerts to a log file is great, but the methods we just mentioned lack a
bit of flexibility. What if you want to send the alert data to a remote logging
server? Or what if your Snort sensor is on a lightly trafficked network, and
you want alerts sent to the same log file as other security alerts, like invalid
logins, or attempts by users to “su” to root? To add a bit of flexibility to your
logging, use the alert_syslog option to send your alerts to the Unix syslog
facility.

Alert_syslog basically does the same thing as alert_fast: It formats Snort
alerts as a single line showing what kind of attack is happening, the classifica-
tion, source, and destination of the attack. Alert_syslog shines by taking
advantage of the syslog daemon’s features.

One of the nicest features of syslog is the ability to send logs to a remote log
server. If a computer system has been compromised, it’s wise not to trust the
log files on that system, since most attackers will concentrate on covering
their tracks after getting in almost as much as they concentrate on cracking
the system in the first place. With remote logging, the attacker will have a
much harder time covering their tracks, since they must compromise both
your remote logging server and the one they just broke into.

Configuring Snort for syslog logging is as easy as specifying the following in
your snort.conf file:

alert_syslog: <facility> <priority>

You can use any one of the following facilities:

LOG_AUTH
LOG_AUTHPRIV
LOG_DAEMON

114 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 114

LOG_LOCAL0
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4
LOG_LOCAL5
LOG_LOCAL6
LOG_LOCAL7
LOG_USER

and any of the following priorities:

LOG_EMERG
LOG_ALERT
LOG_CRIT
LOG_ERR
LOG_WARNING
LOG_NOTICE
LOG_INFO
LOG_DEBUG

The preceding options give you lots of possibilities, but if you simply want to
get Snort logging to the local syslog log file and move on, enter the following
in your snort.conf configuration file:

output alert_syslog: LOG_AUTH LOG_ALERT

Snort doesn’t care which syslog priority you specify as much as syslog does.
That is to say that if you specify the LOG_ALERT priority, Snort will spit out
the same data as if you specified the LOG_DEBUG priority. The difference mat-
ters when it comes to telling syslog where to send the data. For example, if
you have the following lines in your snort.conf file (remember, you can spec-
ify multiple outputs):

output alert_syslog: LOG_LOCAL3 LOG_ALERT
output alert_syslog: LOG_LOCAL3 LOG_DEBUG

and you’ve got this in your syslog.conf file:

local3.debug /var/log/snort.debug
local3.alert /var/log/snort.alert

after running Snort for a while, both /var/log/snort.debug and
/var/log/snort.alert will be identical. Of course, you could do the same
thing by using one alert_syslog module and one alert_fast module, both
pointed at different files:

output alert_syslog: LOG_LOCAL3 LOG_ALERT
output alert_fast: /var/log/snort/snort.alert

115Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 115

So why specify different priorities? Mainly because syslog wants to see some
kind of priority attached to a log entry. It also comes in handy if you intend to
send the same data to two different locations. If you’re really paranoid about
system security, you might want to keep one copy of your snort logs on your
snort system, and another identical copy on your remote logging server. This
way, if your log files ever differ between the two systems, you can reasonably
suspect that shenanigans are afoot, and someone’s been tampering with your
logs!

Logging to a remote syslog server
So how do we configure syslog for remote logging? Thankfully, it’s not nearly
as hard as you might think. There is no difference in your snort.conf file if
you’re using local syslog logging or remote logging, in both cases you simply
specify which facility and priority to use. The changes need to be made in the
syslog.conf file on your Snort system, as well as the initialization script that
starts the syslog daemon (syslogd on Linux systems) on the remote logging
server.

To send syslog entries to a remote server instead of a local file, simply spec-
ify an @ sign and the server’s IP address instead of a local file. For example, to
send all local3 facility logs to 192.168.1.51, your syslog.conf file should
include the following line:

local3.* @192.168.1.51

To keep one copy of your logs locally, and one copy on a remote syslog
server, you could include the following in your snort.conf file:

output alert_syslog: LOG_LOCAL3 LOG_ALERT
output alert_syslog: LOG_LOCAL3 LOG_DEBUG

and this in your syslog.conf file:

local3.debug /var/log/snort.debug
local3.alert @192.168.1.51

Naturally, you need to configure your remote logging server to accept this
data, as well as tell it where to write the data. In this case, we’re sending data
with the local3 facility, and telling the remote syslog server where to write
the data is no different than if it originated locally:

local3.* /var/log/snort.log

To tell the syslog daemon to accept log data from remote sources, syslogd
must be started with the -r switch. If you’re running Red Hat Linux or SuSe
Linux, check /etc/sysconfig/syslog file.

116 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 116

On Red Hat, change the line that reads:

SYSLOGD_OPTIONS=”-m 0”

to

SYSLOGD_OPTIONS=”-r -m 0”

And on SuSE, add a -r to your SYSLOGD_PARAMS=”” line, so it reads:

SYSLOGD_PARAMS=”-r”

If you’re running Debian GNU/Linux, look at /etc/init.d/sysklogd. About a
dozen lines down in the file, change the line:

SYSLOGD=””

to:

SYSLOGD=”-r”

Once you’ve edited the appropriate file and changed the way syslogd starts
up, don’t forget to restart it so your changes take effect!

Now if you look at the /var/log/snort.log file on your remote log server,
you should see your alerts:

Jan 15 16:12:59 yoursnortbox.yourdomain.com snort: [1:483:2] ICMP PING CyberKit
2.2 Windows [Classification: Misc activity] [Priority: 3]: {ICMP}
192.168.200.50 -> 172.16.34.18

Jan 15 16:15:41 yoursnortbox.yourdomain.com snort: [1:483:2] ICMP PING CyberKit
2.2 Windows [Classification: Misc activity] [Priority: 3]: {ICMP}
10.64.229.250 -> 172.16.34.18

Jan 15 16:16:23 yoursnortbox.yourdomain.com snort: [1:2003:2] MS-SQL Worm
propagation attempt [Classification: Misc Attack] [Priority: 2]:
{UDP} 10.77.29.69:1282 -> 172.16.34.18:1434

Jan 15 16:17:37 yoursnortbox.yourdomain.com snort: [1:483:2] ICMP PING CyberKit
2.2 Windows [Classification: Misc activity] [Priority: 3]: {ICMP}
64.123.246.211 -> 172.16.34.18

Notice how the hostname of your Snort box is appended at the beginning of
each line? You’ll be glad this information is there if you’re running a central-
ized log server with multiple machines logging to it.

117Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 117

118 Part II: Administering Your Snort Box

Replacing syslog with syslog-ng
syslog is a wonderful tool that’s been in
the Unix world for a long time. So long, in fact,
that it’s starting to look a little long in the tooth.
Enter syslog-ng — the Next Generation of
syslog— a drop-in replacement that includes
better remote logging and log forwarding, built-in
message filtering, and logging over TCP as well
as UDP protocols. (The older syslog only han-
dles the less-secure UDP protocol.) On the draw-
ing board for future versions of syslog-ng is
message integrity and encryption.

Why should you consider syslog-ng? If our
glowing description of its features hasn’t
enticed you enough, imagine having the capa-
bility to easily split your Snort alerts out to dif-
ferent files depending on the nature of the
attack. (While this is technically possible
with traditional syslog and some hacking
of your snort.conf and local.rules files,
syslog-ng makes the process much easier.)
What about real-time file monitoring of all your
syslog files? Or the capability to launch spe-
cific programs based on the content of incom-
ing log entries? Add-on software such as
Swatch can help handle these tasks when
you’re using the traditional syslog program,
but why rely on external software when you can
do it all from syslog-ng? Even if you install
syslog-ng solely for use with Snort right now,
once you’ve become familiar with its power and
flexibility, you’ll be amazed at what you can do.

Some distributions of Linux are starting to ship
with syslog-ng as an install-time option, and
others have syslog-ng available as a precom-
piled binary. If your favorite distribution lacks a
syslog-ng package, you can grab the source
code and compile it for yourself (not a bad idea
anyway, even if there’s a binary package avail-
able for you).

syslog-ng lives at http://www.bala
bit.com/products/syslog_ng/ where
you can find links to the source code, docu-
mentation, and mailing lists. If you’re going to
install syslog-ng, it’s a good idea to subscribe to
the mailing list, or at least peruse the archives a
bit. You’ll find more up-to-date information this
way than by reading the Web site or even the
documentation included in the syslog-ng source
code.

syslog-ng depends on libol, a support
library that’s also available from the syslog-ng
Web site. Once you’ve got both packages
downloaded, installation is relatively painless.
Assuming you’ve downloaded the source tar-
balls to /usr/local/src/tarballs, instal-
lation is as follows (the version numbers of libol
and syslog-ng will have most likely changed
by the time you read this):

cd /usr/local/src
tar -xvzf tarballs/libol-

0.3.2.12.tar.gz
tar -xvzf tarballs/syslog-ng-

1.6.1.tar.gz
cd libol-0.3.12/
./configure
make
make install
ldconfig
cd ../syslog-ng-1.6.1/
./configure
make
make install

Once you’ve got syslog-ng compiled, it’s time to
build a syslog-ng.conf file. This can be an over-
whelming task if you must start from scratch,
but most folks won’t, since there are already
sample configuration files included in the doc/
and contrib/ subdirectories of the syslog-ng
source code. If you’ve already got a custom

11_568353 ch06.qxd 6/2/04 9:23 AM Page 118

119Chapter 6: Snorting through Logs and Alerts

tailored syslog.conf file that you’re very proud
of, and you sneer at the notion of someone’s
default configuration file fitting your needs, you
can relax; there’s a shell script that will gener-
ate a syslog-ng.conf file from your existing
syslog.conf file.

Since we’ve already customized our syslog.conf
file, let’s use the script to generate an appropri-
ate syslog-ng.conf file. Before running the script,
make sure you’ve got an /etc/syslog-ng
directory. We’re going to run the script, and
redirect the output to this directory, creating our
new configuration file in one fell swoop.

mkdir /etc/syslog-ng
cd /usr/local/src/syslog-ng-

1.6.1/contrib
cat /etc/syslog.conf |

./syslog2ng > /etc/syslog-
ng/syslog-ng.conf

Swoop! You’ve got a configuration file! Pull it up
in your favorite text editor and give it a gander.

You’ll notice that the script has kept each line
from your original syslog.conf file in the new file,
but the line is commented out, so syslog-ng
ignores it when initialized.

Once you’ve got your configuration file set up,
you’ll want to make sure you’ve got an initial-
ization script in place so syslog-ng starts up at
boot time. There are many sample initialization
scripts in the contrib/ directory; find one that
matches your system, and place it in your
/etc/init.d directory (or wherever your ini-
tialization scripts go for your flavor of Linux). For
more information on setting up initialization
scripts, see the section titled “Keeping a low
profile” in Chapter 4. Once syslog-ng is set to
start at boot time, disable the old syslog script
so syslog won’t start at boot time.

To see some of the neat tricks you can do with
syslog-ng and how they can apply to your Snort
installation, check out Chapter 11.

If you’re running Snort on a Windows platform, you don’t have a native syslog
daemon, and the differences between the alert_syslog output module and
the alert_fast output module may be so small as to not be worth your
worry. If you decide that remote logging is just so cool that you’ve got to try
it in Windows, grab a patch from by Frank Knobbe that lets you use syslog-
style remote logging from the command line, without clobbering the rest of
your logging settings in your snort.conf file. The patch is available from the
Snort.org Web site at: http://www.snort.org/dl/contrib/patches/
win32syslog/.

If you decide that syslog by itself is such a cool idea that you’ve got to have a
syslog daemon for Windows, check out the Kiwi Syslog Daemon, from Kiwi
Enterprises at http://www.kiwisyslog.com. Kiwi Syslog Daemon comes in
two versions: A freeware version that you can download and use without
paying anything, and a licensed version that comes with extra features (such
as database logging and better performance) for around $99.

alert_CSV
CSV stands for Comma Separated Values, a nearly universal intermediate
format for importing data into databases or spreadsheets. If you want to
process your Snort alerts in a database that’s not natively supported by

11_568353 ch06.qxd 6/2/04 9:23 AM Page 119

Snort, like MS Access, or import them into a spreadsheet such as Excel, or
run them through your own home-brewed analysis program, the alert_CSV
output module is for you. To specify it in your snort.conf file, use the follow-
ing format:

output alert_CSV: <destination file> <format>

Where <destination file> is the file where you want your CSV-formatted
data to land, and <format> is a comma separated list of alert data to write. If
you want to log everything, you can specify default as the format to use.
Table 6-1 lists all of the CSV fields you can write. If you use the default format,
the fields will be written in the order listed in Table 6-1, top to bottom.

Table 6-1 CSV Fields Used by the alert_CSV Output Module
Module Syntax What You’re Actually Capturing

timestamp The date and time of the attack

msg Alert message, telling you what kind of attack it is

proto Protocol of the packet that caused the alert

src Source IP address of the packet that caused the alert

srcport Source port of the attack packet

dst Destination IP address of the attack packet

dstport Destination port of the packet

ethsrc Ethernet source (MAC address)

ethdst Ethernet destination (MAC address)

ethlen Ethernet frame size

tcpflag Any TCP flags associated with the attack packet

tcpseq TCP sequence number

tcplen TCP packet length

tcpwindow TCP window size

ttl Time to live

tos Type of service

id Identification

dgmlen Datagram length

iplen IP length

120 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 120

Module Syntax What You’re Actually Capturing

icmptype ICMP type

icmpcode ICMP code

icmpid ICMP ID

icmpseq ICMP sequence number

So to just start logging all format information to a CSV file called alert.csv,
add the following entry to the snort.conf configuration file:

output alert_CSV: /var/log/snort/alert.csv default

Here’s a snippet of the alert.csv log file showing some ICMP (ping) probe
activity, using the default format we specified in the preceding alert_CSV
configuration:

01/15-21:39:00.801134 ,ICMP PING CyberKit 2.2
Windows,ICMP,67.95.155.138,,172.16.34.18,,0:10:67:
0:B2:50,0:A0:CC:D2:10:31,0x6A,,,,,,111,0,40019,92,
20,8,0,,

01/15-21:43:07.555566 ,ICMP PING CyberKit 2.2
Windows,ICMP,213.86.221.179,,172.16.34.19,,0:10:67
:0:B2:50,0:C0:F0:2B:E5:F8,0x6A,,,,,,107,0,25381,92
,20,8,0,,

01/15-21:45:35.047068 ,ICMP PING CyberKit 2.2
Windows,ICMP,213.249.229.182,,172.16.34.18,,0:10:6
7:0:B2:50,0:A0:CC:D2:10:31,0x6A,,,,,,105,0,17518,9
2,20,8,0,,

Too much information? You can simplify it by telling the alert_CSV module to
log only what you want. Maybe you’re only interested in the timestamp, alert
message, source IP address, and destination IP address. Use this line in your
snort.conf file:

output alert_CSV: /var/log/snort/alert.csv timestamp,msg,src,dst

It will generate much more succinct data, such as this entry showing many
Web-based attacks against a Web server:

01/16-20:33:08.978678 ,ATTACK-RESPONSES 403 Forbidden,172.16.34.18,192.168.1.68
01/16-20:33:10.250312 ,WEB-MISC robots.txt access,192.168.1.68,172.16.34.18
01/16-20:33:10.490020 ,WEB-MISC /~root access,192.168.1.68,172.16.34.18
01/16-20:33:10.792501 ,WEB-MISC apache DOS attempt,192.168.1.68,172.16.34.18
01/16-20:33:11.614642 ,WEB-MISC .DS_Store access,192.168.1.68,172.16.34.18
01/16-20:33:11.709005 ,WEB-MISC .FBCIndex access,192.168.1.68,172.16.34.18
01/16-20:33:12.792244 ,WEB-CGI printenv access,192.168.1.68,172.16.34.18

121Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 121

This looks a little easier to handle. With Snort, as with all things in life, make
sure you know what you need, and don’t be concerned with what you don’t
need.

Logging modules
Logging modules are used to log packet information. Sounds simple enough,
right? Logging modules are typically called by alert modules in order to log
packet information relevant to a particular alert, but they can also be called
by some of the preprocessors, or called independently from the command
line.

Confused? Follow along in Figure 6-1. For IDS mode, in a nutshell: Snort cap-
tures network traffic and applies a preprocessor on it that normalizes the
traffic into a recognizable format. If the preprocessor deems the traffic note-
worthy, it can call an output module to send an alert, or log the packet, or do
both (depending on how the preprocessor is written). Snort then compares
the normalized network traffic to a list of rules. If the packet matches a par-
ticular rule, then Snort generates an alert using the appropriate alert module
(specified in snort.conf or on the command line). When the alert is gener-
ated, Snort also calls the appropriate logging module to log details of the net-
work packets that matched the rule. Now when you see the alert in your logs,
you can go back and examine the packet information responsible for generat-
ing the alert.

Default logging in ASCII format using -l
Snort can be used to log network traffic without generating alerts. In fact,
Snort started life as a hopped-up version of tcpdump, the ubiquitous packet
capture program used by network geeks everywhere. The simplest way to
generate logging (not alerting) is to call Snort from the command line and tell
it to log packet data somewhere using the -l switch which specifies a logging
directory.

The -l switch is available and useful from the command line only. If you are
running Snort with the -D switch for daemon mode, and you’re specifying a
snort.conf file with the -c switch, you’re not going to get much use out of
using the -l switch for logging packet information.

Create a test logging directory, then tell snort to send its log data there. At a
command prompt under Linux, do the following:

mkdir /var/log/snort/test_logging
/usr/local/bin/snort -l /var/log/snort/test_logging/

122 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 122

In Windows:

C:\snort\bin>mkdir c:\snort\logs
C:\snort\bin>snort -l c:\snort\logs

Let this run for a minute or so, then kill it by hitting Ctrl+C. Now take a look at
the /var/log/snort/test_logging directory. You’ll see a set of subdirecto-
ries, one for each IP address that’s been sending packets to and from your
network. If you look at the files in these subdirectories, you’ll find a bunch of
files, named for the protocol, source port, and destination port of each
packet. Here’s someone poking at my Web server (the nerve!):

libpcap (or winpcap) captures
raw data from network card

and sends it to Snort

Snort decodes packets based
on protocol

Snort applies preprocessors
to normalize traffic

If traffic matches a rule,
generate an alert

The alert module calls the logging
module to log packet details

Normalized traffic is passed on
to main detection engine

Figure 6-1:
Snort’s
packet

processing
and logging.

123Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 123

cd /var/log/snort/test_logging/
ls
192.168.1.68 10.100.11.17 ARP
cd 192.168.1.68/
ls
TCP:45955-80 TCP:45961-80 TCP:45967-80 TCP:45973-80 TCP:45979-80
less TCP:45991-80
01/16-23:34:11.865655 192.168.1.68:45991 -> 172.16.34.18:80
TCP TTL:47 TOS:0x0 ID:44483 IpLen:20 DgmLen:60 DF
******S* Seq: 0x3ED87B82 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 323081793 0 NOP WS: 0
=+

01/16-23:34:11.865697 172.16.34.18:80 -> 192.168.1.68:45991
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:60 DF
***A**S* Seq: 0x933AEFD2 Ack: 0x3ED87B83 Win: 0x16A0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 135821704 323081793 NOP
TCP Options => WS: 0
=+

01/16-23:34:11.901372 192.168.1.68:45991 -> 172.16.34.18:80
TCP TTL:47 TOS:0x0 ID:44484 IpLen:20 DgmLen:52 DF
A* Seq: 0x3ED87B83 Ack: 0x933AEFD3 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 323081797 135821704
=+

01/16-23:34:11.903218 192.168.1.68:45991 -> 172.16.34.18:80
TCP TTL:47 TOS:0x0 ID:44485 IpLen:20 DgmLen:203 DF
AP Seq: 0x3ED87B83 Ack: 0x933AEFD3 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 323081797 135821704
=+

01/16-23:34:11.903262 172.16.34.18:80 -> 192.168.1.68:45991
TCP TTL:64 TOS:0x0 ID:38495 IpLen:20 DgmLen:52 DF
A* Seq: 0x933AEFD3 Ack: 0x3ED87C1A Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 135821708 323081797
=+

Notice how any mention of a specific alert is conspicuously absent from
these files.

If you’re like us, you want to see what’s happening as it happens, instead of
seeing what happened after the fact. Ever bake a cake with the oven light on
the whole time? It doesn’t make the cake cook any faster, but it’s kind of cool
to watch it rise. For those of us who need this instant gratification, Snort has
the -v switch. When logging packet data, this will send the data straight to
the console.

124 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 124

Since Snort is a descendant of tcpdump, it will take much of the same com-
mand line syntax as tcpdump, including expressions dictating what kind of
traffic to process, and what to ignore. If you’re going to try running Snort
with the -v switch to watch decoded packets and you’re accessing your
Snort machine over an SSH connection, make sure to tell Snort to ignore your
SSH traffic, otherwise your terminal will turn into an unreadable flood of data
as Snort displays the headers for each SSH packet. Each packet sent back to
your terminal will in turn have its headers displayed, causing an unending
cycle of data streaming.

The -v switch is great for debugging purposes, but it slows down Snort con-
siderably, and causes Snort to drop packets. Don’t use the -v switch while
running Snort in IDS mode, or you might miss an attack.

If you want to log more detail about each packet, you can use the -d switch
to dump application layer data from each packet, and you can use the -e
switch to dump the link layer data from each packet. Here, we tell Snort to
ignore our own SSH packets (which operate over port 22), and print all other
packets to the terminal showing the application layer as well as the link layer:

snort -vde not port 22
Running in packet logging mode
Log directory = /var/log/snort/test_logging2/

Initializing Network Interface eth0

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface eth0

--== Initialization Complete ==--

-*> Snort! <*-
Version 2.1.0 (Build 9)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

01/16-01:22:23.654699 0:10:67:0:B2:50 -> 0:A0:CC:D2:10:31 type:0x800 len:0x6A
192.168.16.50 -> 172.16.34.18 ICMP TTL:104 TOS:0x0 ID:60592 IpLen:20 DgmLen:92
Type:8 Code:0 ID:56566 Seq:16552 ECHO
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

=+

125Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 125

01/16-01:22:23.654842 0:A0:CC:D2:10:31 -> 0:10:67:0:B2:50 type:0x800 len:0x6A
172.16.34.18 -> 192.168.16.50 ICMP TTL:255 TOS:0x0 ID:35856 IpLen:20 DgmLen:92
Type:0 Code:0 ID:56566 Seq:16552 ECHO REPLY
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

=+

Yep, we’re getting pinged (the keywords ICMP, ECHO, and ECHO REPLY clue
us into this). If you want to see more interesting traffic than this, run the
same command on your own Snort box and see what you get. If the output is
too much to deal with, try playing around with different expressions to ignore
different kinds of traffic. For a list of useful command-line options that per-
tain to Snort’s logging and alerting, see the sidebar titled, “Snort’s command-
line switches for logging and alerting” in this chapter.

using log_tcpdump
It may come as no surprise that the log_tcpdump logging module logs data
to a binary tcpdump-formatted file. Logging binary data is very fast for Snort,
since it skips the binary to text conversion process associated with other
forms of logging.

Once you’ve got log data in a tcpdump format, you can use any one of many
different tools for post processing. If you’ve been working with networks for a
while, it’s possible that you already have a favorite tool for working with net-
work packet captures. One of ours is Ethereal, a great GUI packet-sniffer that
can actively capture data or display previously recorded network traffic.

The log_tcpdump output module takes only one argument when specified in
your snort.conf file, and that is the destination file for logging its data:

output log_tcpdump: snort.dump

Remember, by default Snort will send all of its output to /var/log/snort
unless you specify a different path, or override this setting on the command
line.

When running Snort as an IDS, the log_tcpdump module is activated when
packets match Snort rules and generate alerts. It will log packets that are
associated with alerts only, and not log every packet that flies across the
wire. Although this may sound like a limitation, it is very desirable behavior,
since logging every packet on your network would quickly fill up the hard
drives on your Snort system.

If you’ve decided that for testing or debugging purposes logging every packet
on the wire is really what you need to do, you can call Snort with the -b

126 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 126

switch to log all packets in binary format and specify the log file with the -L
switch. To log all packets to a binary format, type the following at a command
line:

/usr/local/bin/snort -b -L /var/log/snort/snort.dump

When you look in the /var/log/snort/ directory, you’ll see your snort.
dump file has a dot and a bunch of numbers stuck on the end:

snort.dump.1074240477

This is a timestamp, indicating when this particular instance of Snort was run
so it isn’t confused with other packet-capture sessions. The number is a
count of the number of seconds past “the epoch,” and is a standard way of
measuring time in the Unix world. (The epoch, incidentally, is 01 January
1970. It may be worth noting that the Unix programmer’s sense of time begins
at the exact moment the ’60s ended.)

Snort logging to a database
So far we’ve talked about Snort’s capability to log data in a variety of formats
to flat text files, as well as its capability to log straight tcpdump-formatted
data to a binary file.

Flat text files are a great format for reading (in fact, text is one of our favorite
things to read), and they’re not bad for sorting through by machine. The Unix
grep command is by far one of the most useful tools for sorting through log
files, and there are numerous programming languages devoted solely to
manipulating text (such as awk, sed, and perl). The problem with this is that
sorting through flat text files is slow, and it only gets slower the larger your
files become.

Binary data in a tcpdump-formatted file is great for reading with your favorite
packet sniffer, or analyzing with any of the myriad packet analysis tools avail-
able, or even replaying like a tape through Snort to test new rules or look for
attacks. But analyzing these binary files takes processor power — and as
with text files, the larger your binary data file becomes, the more your
processor must crunch to make human-readable sense out of all the zeros
and ones.

Neither of these solutions is viable when you want immediate (or close to
immediate) reports on what’s been happening on your network. If your Snort
sensor has been running for more than a few hours, you’re going to generate
a tremendous amount of data, and flat text files and binary data just don’t
scale very well.

127Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 127

128 Part II: Administering Your Snort Box

Snort’s command-line switches
for logging and alerting

Snort has many logging options that can be
specified at run time on the command line. If you
also specify the use of a configuration file,
remember that any option listed on the command
line will override that same option in the config-
uration file. The following options are useful
when considering different logging options:

-A alert-mode This switch tells Snort to
use one of various alert modes. alert-
modecan be fast, full, none, or unsock
(an experimental alert mode that sends
alerts to a Unix socket, and is safe to ignore
unless you like writing Unix socket code).

-b This option tells Snort to log packets in a
tcpdump-formatted file. Using this switch,
Snort will log all packets going across
the wire, not just those that match an attack
pattern or other rule. This makes Snort
behave almost exactly like tcpdump —
including the use of tcpdump-style expres-
sions to specify which traffic to grab.

-B address-conversion-mask This
switch converts all IP addresses of your
local network, or home network in the binary
logs, to the address indicated by address-
conversion-mask. In this way, you can share
binary Snort logs with others without reveal-
ing your home network address.

-C When logging packets as ASCII text, this
switch prints the character data from the
packet only without printing the corre-
sponding hex data.

-d This switch prints Application-layer data
when logging packets.

-e Displays Link-layer data in packet headers

-h home-net Use this option to specify your
home network, which should be replaced in
your binary logs with the network specified
by the -B switch.

-l logging-directory This option will
tell Snort to log to the specified direc-
tory, rather than the default /var/log/snort
directory.

-L binary-log-file When logging in the
binary tcpdump format, this switch speci-
fies where Snort should dump its packets.

-N This option turns off packet logging. This is
useful when you want to specify a snort.
conf file that includes a packet logging
option that you want to override. Snort will
continue to generate alerts normally when
this switch is used.

-O When logging packets as decoded
plain text, this switch will change any IP
addresses that get printed to “xxx.xxx.xxx.
xxx”, unless the “home net” is specified
with the -h switch — in which case, home-
net IP addresses will be changed but exter-
nal addresses will be left unchanged. This
is another method of hiding your home-
network information when sharing your
logs with others.

-P snap-length When capturing packets,
this sets the packet snaplen (the amount
of data in a packet that’s captured) to the
value represented here by snap-length.

-s Use this switch to send alerts to the Unix
syslog facility.

11_568353 ch06.qxd 6/2/04 9:23 AM Page 128

Enter the Snort database output module. By logging your alerts and packet
logs to a database, you get a very stable format that scales exceptionally well,
and allows for extremely fast searching and reporting. It’s not unusual to have
Snort databases that are a gigabyte or so in size. By splitting each log entry
into component pieces, and writing those pieces to different database tables,
searching for a specific entry is fast enough that it can be done from a Web-
server script to generate Web pages on the fly. Try to do that with a text file
(you’d better have some errands to run while you wait for the output). These
are some of the reasons why we chose to configure Snort for database output
in Chapters 4 and 5.

With the database output module, Snort has the ability to send output to many
SQL databases. As of version 2.1, Oracle, UnixODBC, MS-SQL, PostgreSQL, and
the ever-popular MySQL are all supported by this plug-in.

If you plan to log your Snort data to a database, make sure you run the config-
ure script with the appropriate flag to include support for your particular
database format when you compile and install Snort. More information on
compiling Snort is available in Chapter 4.

Database logging isn’t available as a command-line option to Snort. Instead, it
must be configured in the snort.conf file. The format to include this module is:

output database: <log | alert>, <database type>, <parameter list>

The | (pipe) between log and alert is shorthand, indicating that you need
to specify either log or alert as the logging method.

The database module differs from other reporting modules a bit in how it han-
dles logs versus alerts. If you have the log keyword in a Snort rule, when the
rule is activated, it sends data on to the appropriate output module (usually
log_tcpdump) by way of the log facility. When the alert keyword is used in

129Chapter 6: Snorting through Logs and Alerts

-U Timestamps in all logs will be converted to
UTC (Universal Coordinated Time)

-v Print packets to the console. A nearly uni-
versal Unix directive to be verbose. This
is great for testing or debugging, but bad for

production environments, since it will slow
down your system, and cause Snort to drop
packets.

-y Show the year in your log files.

11_568353 ch06.qxd 6/2/04 9:23 AM Page 129

a Snort rule, the alert facility is used, but data is also written to the log facil-
ity. If the database plug-in is configured for alerts, it will only receive output
from rules that specify the alert keyword. If the database plug-in is config-
ured with the log option, it receives output from alert rules and log rules.
Sound confusing? Don’t sweat it. The log option will work just fine for most
situations.

So if you know that you want to use the log option, and you already know
what database type you’re going to use, you can move on to specifying the
required parameters to make it all work. Some of these parameters must be
specified; others will be filled in by Snort, if not by you. When written into
your snort.conf file, each parameter is specified by a name=value pair,
where name is the parameter name, and value is, of course, its value.

� host: The name or IP address of the host that’s running your database
server. If you don’t include a hostname, Snort assumes you’re sending
data over a Unix domain socket. If a host name or IP address is specified,
Snort will use TCP/IP to send your data. If you’re running your database
server on the same system as Snort, set your host to localhost.

� port: The port number your database server is listening on.

� password: If your database server requires authentication, this is the
password to use.

� dbname: This is the database username used for authentication purposes
when connecting to your database.

� encoding: Binary data isn’t very portable across databases, but binary
data is what we’ve got in our packet payload, so some form of encoding
must be done to actually store the data in the database. Your options are
as follows:

• hex: This is the default method. It represents binary data as a
hex string, which makes for great searchability, but poor human-
readability without some form of post-processing. This takes up
twice as much space as binary data.

• base64: Binary data is represented as a base64 string, which is
slightly larger than the binary data itself. This format isn’t very
searchable or readable without post-processing.

• ascii: Since not all binary data can be represented as ascii, you
will loose some data if you go this route. This takes up slightly
more space than the original binary format, but gives you excellent
searchability when looking for a text string. And of course, ascii
text is infinitely readable by us humans.

� sensor_name: If you want to specify a name for this particular Snort
sensor, do so here. If not, Snort will come up with one for you.

130 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 130

� detail: How much detail of the offending packets should be logged?

� full: This is the default, which logs all the available information about
the packet, including the packet payload, and its ip/tcp options.

� fast: This will only log the timestamp, message signature, source IP
address, destination IP address, source port, destination port, tcp flags,
and protocol.

A minimalist configuration entry for database logging would look something
like this:

output database: log, mysql, user=snortuser password=h4wg
dbname=snortdb host=localhost

Unified logging
If you’ve tried other logging formats, you’ll soon find that once you’ve over-
come the intimidation factor involved in installing and configuring your own
databases, logging to a database is the best way to go for long-term stability
and scalability of your Snort data. With the amount of software and Web-
driven scripts available for pulling details from databases, database logging
is the best storage mechanism to make your log details quickly available for
reporting and analyzing.

But for all its advantages, the database output module is still being run on your
Snort sensor, even if the results are being sent to a remote database server. In
fact, it’s being run by the same process that’s analyzing packets. This means
valuable CPU cycles are being spent converting data and talking to your data-
base server, instead of doing what Snort does best: capturing and analyzing
network traffic.

Wouldn’t it be nice if Snort didn’t worry about converting the binary data it
gets from libpcap (or WinPCAP) to a format us puny humans can read? Or if
it didn’t worry about shoveling data over to your database server, or syslog
server, or writing log files to directories? Without these extra tasks to bog it
down, Snort could process more packets and compare them to more rules
even faster than it does now.

With the new unified logging format, Snort does exactly this. It keeps all of
the packet data that it gets from libpcap in its native binary form, and doesn’t
even bother to convert the alert data to something human-readable. Instead,
it relies on an external software piece to do this work for it.

This extra bit of software is Barnyard, and combined with unified logging, it is
the way of the future.

131Chapter 6: Snorting through Logs and Alerts

11_568353 ch06.qxd 6/2/04 9:23 AM Page 131

For all of the hype, configuring unified logging for Snort is actually pretty
simple. Since it’s really not doing anything other than dumping raw data, you
just need to tell Snort to use the unified logging output and where it should
write its data. Edit the snort.conf configuration file and add the following:

output alert_unified: unified_alert_filename
output log_unified: unified_log_filename

As with all other Snort logging, these files will wind up in /var/log/snort by
default. When you look at these files, you’ll see that the filename has been
appended with a bunch of numbers. This is a timestamp designed to keep dif-
ferent unified output files separate. As with the alert_tcpdump output files,
the timestamp is the number of seconds past the epoch (that is, 01 January
1970).

Shazam! You’ve got unified logging! Now what do you do with it? Flip over to
Chapter 14 and see what you can do with Barnyard.

132 Part II: Administering Your Snort Box

11_568353 ch06.qxd 6/2/04 9:23 AM Page 132

Chapter 7

Adding Visuals and
Getting Reports

In This Chapter
� Preparing your Web server

� Installing PHP

� Installing ACID for Snort

� Configuring ACID for Visuals

� Navigating and reading ACID reports

So you’ve set up Snort and MySQL on the operating system of your choice.
Everything is working fine: Both Snort and MySQL are running with no

errors. Now you’d like to see the alerts, wouldn’t you? For this we use the stan-
dard Web technology — a Web browser. Unfortunately, it’s not as easy as point-
ing your browser at someone’s Web site and digesting a deluge of information.
You have to set up your own Web server, configure a scripting language, and
install some custom scripts designed to extract and present Snort alert infor-
mation from your SQL database. So plant your tuchus in a seat — because even
though these various applications and scripts are pretty straightforward to set
up, it takes a while to get all the components talking to each other the way they
should.

The ACID Dependency Soup
For retrieving and presenting Snort alert information, we use ACID (an acronym
for Analysis Console for Intrusion Detection), an open-source analysis console
specifically tailored for Snort. The console (really a set of PHP scripts and a
configuration file) requires the following supporting programs:

� A Web server that supports version 4.0 or later of the PHP scripting
language

� Version 4.0 or later of PHP

12_568353 ch07.qxd 6/2/04 9:24 AM Page 133

� ADODB (which stands for Active Data Objects Data Base — don’t ask us
how to pronounce it)

� JpGraph and PHPlot (packages designed for graphing data retrieved by
ACID)

Each of these components must be installed and properly configured for ACID
to function the way it’s supposed to. In the following sections, we cover each
application in more detail, and then move on to installing and configuring
each application.

ACID
ACID is an analysis and reporting tool for Snort that is accessible through a
Web browser. ACID isn’t an actual application in the strictest sense, but rather
a collection of PHP scripts; working together, these scripts retrieve Snort data
from your database, format what they get into easy-to-navigate Web pages, and
constantly update those pages. When you have it up and working, you’ll under-
stand why ACID is probably the most widely used analysis and reporting pack-
age around. With an ACID console, you can do the following:

� View Snort alerts according to various criteria.

� View details of each alert, including source and destination IP address,
full session information, and the actual vulnerability under attack.

� Exploit the (in most cases) helpful security information on Web sites
such as those for Bugtraq and arachNIDS.

� Organize historical alert information in various formats and organiza-
tional techniques (such as Most Frequent by source or destination port,
and Most Recent by protocol).

� Put all alert information in graphical format (using JpGraph/PHPlot).

� Search functions for all Snort data in the database.

PHP
PHP is a Web scripting language used for building dynamic Web pages. It’s
often used to pull information from a database application (such as MySQL)
to construct Web pages. PHP is the language that the ACID scripts are written
in, and must be installed and configured to operate with your Web server
before ACID will function.

134 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 134

Web server
Naturally, if you’re going to serve up Web pages, you need a Web server. As
long as the Web server supports PHP 4.0 or later, you’re good. In this chapter
we cover two platforms: Apache on Linux, and Internet Information Services
for Windows. Apache and IIS are by far the most widely used Web-server soft-
ware packages on the Internet, with a combined market share of over 88 per-
cent (according to a January 2004 Netcraft survey). For more information
on other Web servers that support PHP, consult the PHP documentation at
www.php.net.

ADODB
ADODB is a collection of standardized database class libraries for the PHP
scripting language. Within the Snort environment, these scripts do the grunt-
work of pulling out relevant Snort alert data and passing the data to ACID for
display.

PHPlot and JpGraph
These plotting and graphing libraries are required in order to view graphical
information derived from your Snort alerts — and both are written in the PHP
scripting language:

� PHPlot is the plotting software and is required with Windows.

� JpGraph is an engine for displaying graphs from ACID data and is
required for both Windows and Linux/Unix platforms.

Preparing ACID and Its Dependencies
Before you can install ACID, you must prepare all its dependencies.
Unfortunately, for most of these packages, you’ll only know that everything
is working when you launch a Web browser and point it at ACID. Following
these instructions step-by-step should have you up and running in no time.

Gathering the necessary files
Before you begin, you need to download all the necessary packages into a
temporary directory on your hard drive. What follows is a list of packages
used for this chapter and their relevant Web addresses. Internet Information

135Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 135

Services, however, is available only on your Windows operating system CD
(Windows 2000 Professional, Windows 2000 Server, Windows XP Professional,
or Windows Server 2003).

Internet Information Services (IIS) is the default Web and FTP server for the
Windows platform, and has been since Windows NT 4.0. Windows XP Home is
the exception: IIS isn’t included. Table 7-1 outlines how IIS differs on the vari-
ous Windows platforms:

Table 7-1 Windows IIS Platforms
Windows 2000/XP Windows 2000 Windows Server 2003
Professional Server

Version 5.0/5.1 Version 5.0 Version 6.0

10 Simultaneous Unlimited Unlimited Connections
Connections Connections

1 Virtual Server Unlimited Virtual Unlimited Virtual Servers
(Web Site) Servers

ACID
This version of the ACID console is compatible with both Linux and Windows
installations. Developed by Roman Danyliw, ACID is available at his Web site

http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

or on SourceForge.net at

http://acidlab.sourceforge.net/

PHP version 4
Both the Linux and Windows versions are available from the PHP Web site at

http://www.php.net

Apache Web Server version 2
This is the Unix source-code distribution of the current Apache version. We
cover installation and configuration of the Apache Web server for the Linux
operating system in this chapter. The Apache Web server is available from

http://www.apache.org

136 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 136

Internet Information Services
You need your Windows CD to install Internet Information Services (IIS). We
cover both Windows 2000 and Windows XP configuration and installation in
the “Installing and configuring a Web server” section of this chapter.

ADODB version 4
Both the Unix and the Windows versions are available from the ADODB Web
site at

http://php.weblogs.com/ADODB

PHPlot version 4
This version is for the Windows platform only. (You don’t need PHPlot for the
Unix platform.) PHPlot is available at the following Web site:

http://www.phplot.com

JpGraph version 1
This version is for both the Windows and Unix platforms. JpGraph is avail-
able at the following Web site:

http://www.aditus.nu/jpgraph/

137Chapter 7: Adding Visuals and Getting Reports

Tar got you stuck? Zip through this . . .
If you are using the Windows 2000 (or earlier)
operating system, you need a file-archive tool
to decompress zipped or tar/gzipped files (any
files ending with the suffixes .zip, .tar.gz,
or .tgz). Here’s a quick rundown on popular zip
utilities:

� WinRAR is a freeware, open-source appli-
cation, available at the RARLabs Web site:
http://www.rarlab.com/.

� WinZip is a commercial application, available
at the WinZip Web site at http://www.
winzip.com/.

Both WinRAR and WinZip are popular file-
archive tools available for the Windows
platform. (Windows XP and later Windows
platforms have file archiving built-in, and
thus don’t require a third-party application
for un-zipping files. For un-tarring files,
however, Windows XP still requires a third-
party application.)

� For you Linux users, the tar and GNU Zip
(gzip and gunzip) utilities come as stan-
dard parts of Linux OS distributions.

12_568353 ch07.qxd 6/2/04 9:24 AM Page 137

Installing and configuring a Web server
In this section, we cover installing, configuring, and securing the Apache Web
server for Linux and Internet Information Services for the Windows platform
in relation to the ACID console.

Apache and PHP on Linux
Apache is by far the most popular Web server for the Linux platform due to
Apache’s stability and flexibility. This section assumes that you don’t already
have Apache installed; we walk you through installing Apache for use as an
ACID console.

Apache got its name from being “a patchy” server, built from patches submit-
ted by a whole community of coders. That said, make sure you’re using the
latest version of the software; earlier versions are more likely to have secu-
rity vulnerabilities in them.

Installing and configuring PHP is best done when you install Apache, so we
cover PHP in this section as well.

Installing Apache
True to form, Apache has a “patchy” installation process. Here’s the basic drill:

1. Download the latest source code for Apache from

http://httpd.apache.org/download.cgi

Using this page is one way to be a good Net neighbor and download
Apache from a local mirror site, rather than from one central server.

2. Download the PGP signature and/or MD5 hash from the same source.

Download the tarballs (Unix-geek jargon for archive files made with the
tar utility) into /usr/local/src/tarballs and keep the un-tarred
source code in /usr/local/src. Here’s the code that does the job:

$ cd /usr/local/src/tarballs
$ wget -q http://apache.webmeta.com/httpd/httpd-

2.0.48.tar.gz
$ wget -q http://apache.webmeta.com/httpd/httpd-

2.0.48.tar.gz.md5
$ cat httpd-2.0.48.tar.gz.md5
466c63bb71b710d20a5c353df8c1a19c httpd-2.0.48.tar.gz
$ md5sum httpd-2.0.48.tar.gz
466c63bb71b710d20a5c353df8c1a19c httpd-2.0.48.tar.gz

From this, we can see that the MD5 sum published by Apache matches
the output from our own md5sum program. Now we know for sure that
the source code hasn’t been tampered with. (For more information on
why we did this, see the “Accept No Substitutes” sidebar in Chapter 5.)

138 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 138

3. Prepare to extract the source code and start configuring and compil-
ing Apache.

Apache is an extremely flexible piece of software and has numerous con-
figuration options. For an ACID console, you won’t need anything too
esoteric. For a taste of what other options are available when configur-
ing Apache, run the configure script with the —help option.

4. Change to the directory where your source is kept:

cd /usr/local/src

5. Run the script command, like this:

script ~/apache.install.notes

This makes a handy transcription of all our subsequent commands (and
their output) in the apache.install.notes file so we can refer to the
transcript later if problems crop up in the installation.

6. Rip open that tarball, configure Apache, and build it:

tar -xvzf tarballs/httpd-2.0.48.tar.gz
cd httpd-2.0.48/
./configure --enable-so
make
make install

7. You’re not quite done yet. Tell your system how to get to Apache’s
shared libraries:

echo “/usr/local/apache2/lib” >>/etc/ld.so.conf
ldconfig
exit

8. When you’ve finished the installation procedure, test the server.

By default, Apache 2.0 puts all its files in /usr/local/apache2, so you
should be able to run the following command:

/usr/local/apache2/bin/apachectl start

You should get one of two results:

• If that command didn’t throw out a barrage of error messages,
point a Web browser at the IP address of your new Web server, and
you should see Apache’s lovely default Web page. Success?
Excellent!

• Oops, not yet? Check the apache.install.notes file in your
home directory for errors. You can also check your /usr/local/
apache2/logs/error_log file.

9. If your Web server ran, shut it down for now.

Use the same command you used to start it up, only tell it to stop:

/usr/local/apache2/bin/apachectl stop

139Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 139

Internet Information Services (IIS) on Windows
IIS comes standard with Windows 2000 Professional and Windows XP
Professional, which are the versions of Windows we currently recommend for
use with Snort. We cover installing and configuring the services necessary to
operate the ACID console in the following sections. The configuration options
for PHP and ACID are covered in the sections “Installing and configuring PHP”
and “Installing and Configuring ACID” in this chapter.

Installing IIS on Windows 2000 and XP Professional
To install IIS, perform the following steps:

1. Insert the Windows CD into your CD-ROM.

2. Click the Start button, point to Settings, and then click Control Panel.

3. Click the Add/Remove Programs icon.

The Add/Remove Programs window appears.

4. Click the Add/Remove Windows Components icon.

The Windows Component Wizard appears.

5. Click the Internet Information Services check box and then click the
Details button.

Details, details. You’ve got ’em.

6. Check the following check boxes:

• World Wide Web Server

• Common Files

• Documentation

• Internet Information Services Snap-In

7. Uncheck all other check boxes and then click the OK button.

The Windows Components Wizard window appears.

8. Click the Next button.

Windows builds a file list and installs components.

9. At the Completed window, click the Finished button.

You’re finished. But you knew that.

Additional setup tasks
Well, okay, we’re not quite done yet. You still have to let IIS know that PHP is
present and how to handle PHP scripts. In addition, you must set up the ACID
Web site in IIS. We discuss all this stuff in more detail in the following section,
“Installing and Configuring PHP,” because PHP and ACID must be installed
before these tasks can be completed.

140 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 140

Installing and configuring PHP
In this section, we cover installing and configuring PHP for the Windows and
Linux platform, including configuring Apache on Linux and IIS on Windows to
use PHP scripts.

Installing PHP for Apache on Linux
PHP is the wildly popular scripting language that enables you to publish
dynamic and exciting Web pages. Like Apache, PHP is extremely flexible and
functional. That functionality comes at a price when installing PHP — namely,
a few software dependencies, and at least one case where a dependency has
a dependency. So take a deep breath and read on . . .

PHP uses the GD library to perform image manipulations. In the old days, GD
was distributed separately from PHP, and had to be compiled and installed
separately. Now GD is included in the PHP distribution — but (unfortunately)
many of GD’s dependencies are not.

Installing GD dependencies to go with PHP on Linux
Work with us here. Before you can get PHP up and running, you have to grab
and install two GD dependencies: libpng and zlib. Fortunately, these two
packages are pretty straightforward to install.

Your Linux distribution might already have libpng or zlib installed. Use the
find or locate commands to see whether they’re already on your system
(the way to use of find and locate can be found in your Linux distribution’s
documentation or by typing man find or man locate). Our example
assumes you don’t already have libpng or zlib installed.

Here goes the downloading part:

1. Download libpng from

http://www.libpng.org/pub/png/libpng.html

2. Download zlib from

http://www.gzip.org/zlib/

3. For each program, check the MD5 sum for the source code.

That’s the same step we recommend in the “Accept No Substitutes” side-
bar in Chapter 5. The MD5 sums for libpng and zlib are listed at their
respective Web sites.

4. Use the script utility to generate a transcript of the installation
session.

Doing so gives you a resource you can refer to in case of errors.
Meanwhile, if the downloads are complete, install ’em if you got ’em . . .

141Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 141

Installing zlib
To install zlib, the basic drill starts with the path:

cd path-to-your-tar-files

where path-to-your-tar-files is the directory where you store the
compressed files on your system (for example, ours is /usr/local/src/
tarballs). Then . . .

wget -q http://www.zlib/net/zlib-1.2.1.tar.gz
md5sum zlib-1.2.1.tar.gz
cd ../
script ~/zlib.install.notes
tar -xvzf path-to-your-tar-files/zlib-1.2.1.tar.gz
cd zlib-1.2.1/
./configure
make
make test
make install
cd ../
exit

Installing libpng
When zlib is installed, you can install libpng Here goes:

cd path-to-your-tar-files

where path-to-your-tar-files is the directory where you store the
compressed files on your system (for example, ours is /usr/local/src/
tarballs). Then . . .

wget -q http://download.sourceforge.net/libpng/libpng-
1.2.5.tar.gz

md5sum libpng-1.2.5.tar.gz
cd ../
tar -xvzf path-to-your-tar-files/libpng-1.2.5.tar.gz
cd libpng-1.2.5/

This part is a little different because libpng doesn’t use the typical configure
script you’ve seen so many times before. Instead, there is a makefile already
made for you in the scripts directory (what the heck, all the configure
script does anyway is make a makefile). Because you’re running this whole
show on Linux, use the makefile.linux file, like this:

script ~/libpng.install.notes
cp scripts/makefile.linux Makefile
make test
make install

142 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 142

Building PHP
When you’ve got the GD software dependencies built, it’s time to build PHP
with its built-in (har, har) GD support. Assuming you’ve already downloaded
the PHP source code from a mirror site and placed it in /usr/local/src/
tarballs, start with the following code to build PHP:

cd path-to-your-tar-files

where path-to-your-tar-files is the directory where you store the com-
pressed files on your system (for example, ours is /usr/local/src/
tarballs). (Yep, there’s something familiar about that command.) Then . . .

md5sum php-4.3.4.tar.gz
tar -xvzf php-4.3.4.tar.gz
cd php-4.3.4.tar.gz
./configure --prefix=/usr/local/apache2/php \
> --with-config-file-path=/usr/local/apache2/php \
> --with-apxs2=/usr/local/apache2/bin/apxs \
> --enable-sockets \
> --with-mysql=/usr/local/mysql \
> --with-zlib-dir=/usr/local \
> --with-gd

As you can tell, there are a ton of configuration options to PHP that we want
to enable at this point. So many, in fact, that they won’t all fit on one line, so
we split them up on the command line. Each backslash (\) tells your Linux
shell that the command input is to be continued on the next line. This makes
the long string of configuration options more manageable to enter.

Making PHP
When it’s configured, PHP installs with simple make and make install
commands. The next step is to copy the php.ini file to the apache directory
on your system. Assuming you’re still in the PHP source directory, here’s the
magic word:

make
make install
cp php.ini-dist /usr/local/apache2/php/php.ini

Configuring Apache to use PHP
Three general steps configure Apache to use PHP:

1. Edit the Apache configuration file.

2. Test the Apache and PHP configuration.

3. Set Apache to start automatically when the server starts.

143Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 143

Editing the Apache configuration file
Now you need to tell Apache what to do with .php files, like this:

1. Edit your httpd.conf file (in /usr/local/apache2/conf/) and make
sure you have the following line in there:

LoadModule php4_module modules/libphp4.so

Newer versions of PHP add this line for you.

2. Add this next line by hand:

AddType application/x-httpd-php .php

The last edit lets Apache know that an index.php file can serve as a
default directory index.

3. Find the line with the DirectoryIndex directive, and edit it to
include index.php, like this:

DirectoryIndex index.html index.html.var index.php

Testing the Apache-PHP setup
Before you go making any rash assumptions, test and make sure that PHP
and Apache are working and playing well together:

1. Make a small (and we mean small) phptest.php file in your /usr/
local/apache2/htdocs directory, containing only one line:

<?php phpinfo();?>

2. Restart your Web server, using apachectl start.

3. Point a browser at http://your.apache.server.ip/phptest.php.

If everything worked correctly, you should see a page detailing every
aspect of PHP on your system — and this kind of information is a gold-
mine for system crackers. So . . .

4. After you’ve confirmed that your system is working correctly, make
absolutely sure that you move, rename, or delete this test script.

Configuring Apache to start automatically
After you’ve confirmed that everything is working correctly, ensure that it
works correctly after a system reboot. To do this, follow these steps:

1. Copy the apachectl binary that you’ve used to start and stop your
server to the /etc/init.d directory as httpd.

2. Set up links to the new initialization file from your default run level.

That would be run level 3 on Red Hat Linux, unless you’re running a GUI.
(If necessary, check your run level by entering the runlevel command.)

144 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 144

The code that accomplishes Steps 1 and 2 looks like this:

cp /usr/local/apache2/bin/apachectl /etc/init.d/httpd
cd /etc/rc3.d
ln -s ../init.d/httpd S85httpd
ln -s ../init.d/httpd K85httpd

Congratulations! You now have a working Apache Web server with work-
ing PHP.

3. Test to make sure Apache with PHP is going to start up after a system
reboot.

To do so, reboot your system and point it to the appropriate URL:

http://your.apache.server.ip/phptest.php

Go ahead, we’ll wait for you. Never hurts to make sure.

Setting up PHP on the Windows platform
As with the package for Linux, the Windows PHP package consists of a collec-
tion of configuration files and executable files that the Web server uses to
process PHP scripts.

Extracting the files
First order of business is to extract the PHP files and put them in an applica-
tions directory. (We keep all our Snort-related apps in a directory called
snortapps on our C:\ drive.) Regardless of where you put your Snort-related
apps, take note of the location of PHP.

To extract PHP using WinZip or WinRAR, perform the following steps:

1. Double-click the compressed file.

WinZip/WinRAR opens and displays the files in the archive.

2. Click the Extract button (for WinRAR, it’s the Extract to button).

An Extraction window appears.

3. Type a path into the dialog box provided, and then click the Extract
button (for WinRAR, it’s the OK button).

PHP extracts into a directory called php-4.3.4-W32.

4. After the files are extracted, navigate to php-4.3.4-W32 and change
the name of this directory to php.

The location of PHP on your hard drive is important when you configure IIS.
The Web server needs to know the path to php.exe to properly pass PHP
code to the parser. So, if you don’t keep all your Snort-related applications in
the same directory, be sure to record what directory you installed PHP in.

145Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 145

Renaming the PHP INI file
PHP needs its own initialization file. To meet that need by renaming the php.
ini-dist file, follow these steps:

1. Click the Start button, point to Run, type cmd in the Open dialog box,
and click the OK button.

A DOS command window opens.

2. Change to the directory in which you’ve installed PHP.

3. Type the following at the command prompt:

copy php.ini-dist php.ini

4. Type exit.

The DOS window closes.

Editing the PHP INI file
To edit the php.ini file, open it in a text editor such as Notepad or WordPad.
Once it’s opened, edit the following lines:

1. Change the following line:

max_execution_time=30

to

max_execution_time=60

2. Change the following line:

session.save_path=/tmp

to

session.save_path=YOUR-TEMPORARY-DIR

YOUR-TEMPORARY-DIR is the path to a temporary directory that anyone
accessing an ACID console has permission to use:

• For Windows 2000, that directory is typically C:\Winnt\Temp.

• For Windows XP Professional, the temporary directory is typically
C:\Windows\Temp.

3. Change the following line:

;cgi.force_redirect=1

to

cgi.force_redirect=0

146 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 146

The cgi.force_redirect line has a semicolon (;) in front of it — the
standard way to tell PHP to ignore a line in a script. Be sure to remove
the semicolon when you edit this line so PHP knows what to do.

4. Change the following line:

;extension=php_gd2.dll

to

extension=php_gd2.dll

As with the previous line, remove the semicolon from in front of the
extension=php_gd2.dll line. No other changes are made to this line.

5. Change the following line:

extension_dir=./

to

extension_dir=PHP-Path\extensions

PHP-Path refers to the path to your PHP installation. For our configura-
tion, this line reads as follows:

extension_dir=c:\snortapps\php\extensions

6. After you’ve edited these lines, save the file.

If you’re in WordPad, be careful to save it as a Text Document and not as
an RTF file.

7. Exit from the text editor.

Copying the DLL
In order for PHP to function on a Windows platform, you must copy the file
php4ts.dll into the System32 folder in your Windows directory. The php4ts
DLL file is located in the PHP root directory.

ACID won’t run without the PHP DLL file. Before you run ACID, you must
restart Windows so it can pick up the DLL file for processing:

� For Windows 2000 Professional, copy this file into C:\Winnt\System32.

� For Windows XP, copy this file into C:\Windows\System32.

Installing and configuring ADODB
The ADODB database-abstraction scripts require little setup on either Linux
or the Windows platform. We cover installing and configuring ADODB on both
platforms here, though an additional configuration task is required for the
ACID console (covered in “Installing the ACID console,” later in this chapter).

147Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 147

Getting to ADODB for Linux
The archive file for ADODB for Linux is the same as for the Windows plat-
form: a GNU Zipped Tar file with the .tgz extension. All that’s required is to
download and extract the archive, and then make a quick change to the
ADODB configuration file.

Extracting the files
Download the current ADODB archive to a temporary directory (we used
/usr/local/src/tarballs) from the ADODB Web site at

http://php.weblogs.com/ADODB

When that’s done, follow these quick steps to extract the files to the proper
directory:

1. At the command prompt, type

cp adodb401.tgz /htdocs-root/

and press the Enter key. (The variable htdocs-root refers to the root
directory for your Web server. The command that copied the ADODB
archive to our root directory, for example, was cp adodb404.tgz /www/
htdocs/.)

2. Change to the Web server’s root directory and type the following
command:

tar -xvzf adodb404.tgz

Then press the Enter key. The archive extracts to a directory called
adodb404.

3. Change the name of the directory to adodb by typing the following:

mv adodb404 adodb

Then press the Enter key.

4. Open the file adodb.inc.php with a text editor and change the follow-
ing line:

$ADODB_Database = ‘’;

to

$ADODB_Database = ‘/htdocs-path/adodb’;

where the variable /htdocs-path is the path to the root directory for
your Web server. This configuration line in our adodb.inc.php file
looks like this:

$ADODB_Database = ‘/www/htdocs/adodb’;

5. Save the file and exit.

148 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 148

That’s it for ADODB for the moment. We walk you through ACID’s configura-
tion concerning ADODB in the “Installing and Configuring ACID” section, later
in this chapter.

Setting up ADODB for Windows
Since it’s only a collection of scripts, ADODB requires little setup in Windows.
Simply extract the files and make a quick change to the ADODB configuration
file.

Extract the files
Extract the files from the ADODB archive to a directory on your hard drive. We
chose to keep all our Snort-related applications together and extracted ADODB
to its own directory under snortapps. To extract the files with WinZip or
WinRAR, perform the following steps:

1. Double-click the ADODB archive.

2. Click the Extract button (or Extract to if you’re using WinRAR).

3. Type the path to the directory to which you want to extract ADODB.

For example, we extracted ADODB to C:\snortapps\adodb.

4. Click the Extract button (or the OK button if you’re using WinRAR).

The files extract to the directory you indicated.

5. Close WinZip or WinRAR.

Configuring the ADODB INI file
To configure an INI file for ADODB, follow these steps:

1. Navigate to the ADODB directory and open the file adodb.inc.php in
a text editor such as Notepad or WordPad.

2. Change the following line:

$ADODB_database=”;

to

$ADODB_database=’ADODB-Path’;

ADODB-Path refers to the directory where you installed ADODB. For our
configuration, this line reads like this:

$ADODB_database=’c:\snortapps\adodb’;

Be sure to edit this line exactly as it appears, with the single quote (‘)
enclosing the ADODB path and a semicolon (;) at the end. If you don’t,
ACID won’t be able to talk to the database because ADODB won’t be able
to find itself.

149Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 149

3. After editing the line that identifies the ADODB path, save the file and
exit the text editor.

A later section of this chapter (“Installing and Configuring ACID”) shows
you how to configure ACID to use ADODB as an interface to your SQL
server.

Installing and configuring
PHPlot and JpGraph
Installing PHPlot on Windows
All you need do to install PHPlot on Windows is extract the files and rename
the directory, like this:

1. Double-click the PHPlot archive and extract the files to a directory on
your hard drive.

We chose to keep all our Snort-related applications in the same direc-
tory tree, thus we extracted to c:\snortapps\.

2. Navigate to the PHPlot directory, click to highlight its name, and type
in a new name.

PHPlot extracts to a directory called phplot-4.4.6. Rename this direc-
tory to simply phplot.

Installing JpGraph on Linux
To get JpGraph installed on your Linux system, all you need do is extract the
files to the htdocs directory and then rename the JpGraph directory, like this:

1. Change into your Apache document root directory:

cd /usr/local/apache2/htdocs

2. Grab the JpGraph source code from the Web site:

wget
http://members.chello.se/jpgraph/jpgdownloads/jpg
raph-1.14.tar.gz

3. Rip open the JpGraph tarball.

JpGraph extacts itself to your Apache root directory.

4. Delete the JpGraph tarball.

5. Rename the JpGraph directory by using the move (mv) command:

tar -zxvf jpgraph-1.14.tar.gz
rm jpgraph-1.14.tar.gz
mv jpgraph-1.14 jpgraph

150 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 150

That’s all there is to installing JpGraph on Linux. Quite simple, eh?

Installing JpGraph on Windows
We’re going to extract the JpGraph scripts, and then copy them to the
PHPplot directory. Steady as she goes . . .

1. Double-click the jpgraph archive and extract the files to a temporary
directory.

You might as well use an existing one, but if Windows asks you to name a
new one, name it jpgraph.

2. From the DOS command line, navigate to the jpgraph directory and
copy all .php and .inc files to the phplot directory.

Doing so puts all the JpGraph and PHPlot files in one place so the pro-
gram can find them fast. For our configuration, the command-line call
that does the move looks like this:

copy *.php c:\snortapps\phplot
copy *.inc c:\snortapps\phplot

3. Delete the jpgraph directory.

Installing and Configuring ACID
After you have all the ACID dependencies installed and configured, you must
prepare MySQL for ACID’s use before you can install and configure ACID. The
next subsection walks through preparing MySQL.

Preparing MySQL on Linux and Windows
It’s a two-stage process to prepare MySQL: Create the ACID user account in
the database-management system, and then build the tables where Snort
stores its data and ACID pulls its data. The commands for getting all this
done are virtually identical in Linux and Windows (with the exception of the
paths to certain files, which are notated in the text where appropriate).

Adding the ACID user account
To add the ACID user account, perform the following steps:

1. Log in to MySQL as the root user and type the following at the DOS or
Unix command prompt:

path-to-mysql/mysql -u root –p

151Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 151

Where path-to-mysql is the path to the mysql executable. If you
already have the mysql executable in your path, you don’t have to
worry about the whole path, just type mysql –u root –p.

MySQL prompts for a password.

You set your mysql root user’s password when you installed MySQL. If
you used this book to do that, we walked you through it in Chapter 5. We
also provided you a handy cheat sheet to write your password down on,
if you didn’t eat the cheat sheet (to throw off the hackers).

When the password is entered correctly, your prompt changes to mysql>.

2. From the mysql> prompt, create the ACID user account by typing the
following:

grant USAGE on *.* to acid@localhost identified by
“insert-password-here”;

This command is case-sensitive. Type your chosen password between
the quotation marks, and don’t forget: Each mysql command must end
in a semicolon before you press the Enter key.

Giving the ACID user account its proper database permissions
You created the snort and archive databases for MySQL as described in
Chapter 4 or 5 (depending on whether you’re installing on Linux or Windows).
Now give the ACID user permissions to use these databases.

1. Add permissions for the snort database.

To do so, type the following command at the mysql> command prompt:

grant SELECT,INSERT,UPDATE,DELETE,CREATE,ALTER on snort.*
to acid@localhost;

2. Press the Enter key.

3. Grant permissions for the archive database.

To do so, type the following at the mysql> prompt:

grant SELECT,INSERT,UPDATE,DELETE,CREATE on archive.* to
acid@localhost;

4. Press the Enter key.

After each successful command, you receive a confirmation message
from MySQL that looks like this:

Query OK, 0 rows affected (0.00 sec)

Checking the grants for the ACID user account
The next order of business is to confirm that the ACID user account now has
the proper grants (database permissions). Follow these steps:

152 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 152

1. Type the following command at the mysql> prompt:

show grants for acid@localhost;

2. Press the Enter key.

The permissions entered previously appear, as in the following example
output:

+---
---------------+

| Grants for acid@localhost
|

+--
--------------+

| GRANT USAGE ON *.* TO ‘acid’@’localhost’ IDENTIFIED BY PASSWORD
‘6ce1bf3569265b9d’ |

| GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, ALTER ON `snort`.* TO
‘acid’@’localhost’ |

| GRANT SELECT, INSERT, UPDATE, DELETE, CREATE ON `archive`.* TO
‘acid’@’localhost’ |

+--
--------------+

3 rows in set (0.00 sec)

3. Exit MySQL.

Preparing the MySQL databases
Now to set up the tables in the snort and archive databases in MySQL. To
set ’em up in MySQL on the Unix or the Windows platform, follow the steps in
the following subsections.

Setting up the snort database tables
Before Snort can do you any good, the data it generates must have some-
where to go on your system — the Snort database tables. Here’s how to set
them up:

1. At the command line, type the following command:

mysql -u root -p snort < Create-MySQL-Path

Create-MySQL-Path refers to the path to the contrib directory and
the create_mysql file. This flat text file (installed by Snort) runs the
routines that create the tables used by the snort and archive data-
bases. For instance, on our Windows platform, the full command looks
like this:

mysql -u root -p snort <
c:\snortapps\snort\contrib\create_mysql

153Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 153

On our Linux platform, the full path looks like this:

mysql -u root -p snort <
/usr/local/etc/contrib/create_mysql

2. Press the Enter key.

MySQL prompts for the MySQL root user’s password.

3. Type in the MySQL root user’s password.

You are returned to the DOS or UNIX command line with no messages
(whether of success or errors).

Setting up the archive database tables
If you want to track attempted attacks through time to look for trends, you
need a place to store vital data about the attacks — the archive database
tables. Here’s how to set those up:

1. At the command line, type the following command and press Enter:

mysql -u root -p archive < Create-MySQL-Path

where Create-MySQL-Path refers to the path to the contrib directory
and the file create_mysql installed by Snort. As with the snort data-
base, the create_mysql file runs the routines that create tables for the
archive databases (the snort and archive databases use the same
structure). For instance, on our Windows platform, the full command
looks like this:

mysql -u root -p archive <
c:\snortapps\snort\contrib\create_mysql

On our Linux platform, the full path looks like this:

mysql -u root -p archive <
/usr/local/etc/contrib/create_mysql

2. When MySQL prompts for the MySQL root user’s password, type it in.

You are returned to the DOS or Unix command line with no messages
(whether of success or errors).

Checking your work
Better make sure those new databases work before you start relying on them.
Here’s the drill for checking first the snort, then the archive, database:

1. Log in to MySQL by typing the following command:

mysql -u root -p

2. Press the Enter key.

MySQL prompts you for the MySQL root user’s password.

154 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 154

3. Enter the MySQL root user’s password, and then type the following at
the mysql> prompt:

show databases;

4. Press the Enter key.

The output should look similar to this:

+----------+
| Database |
+----------+
| archive |
| mysql |
| snort |
+----------+
3 rows in set (0.00 sec)

If yours looks like this, all your databases are present. If it doesn’t look
like this, you have a problem. If you got error messages while typing in
the commands, take a look and see what went wrong. If all else fails, you
can start again at the beginning of this section.

5. If your databases are present, type the following:

use snort;

You should get an indication message that you are using the snort
database.

6. Type the following command:

show tables;

7. Press the Enter key.

A list of 16 tables (titled, oddly enough, Tables_in_snort), appears,
looking a lot like this:

+------------------+
| Tables_in_snort |
+-------------------+
| data |
| detail |
| encoding |
| event |
| icmphdr |
| iphdr |
| opt |
| reference |
| reference_system |
| schema |
| sensor |
| sig_class |
| sig_reference |
| signature |
| tcphdr |

155Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 155

| udphdr |
+------------------+
20 rows in set (0.00 sec)

If your tables match the ones in the preceding example, your snort data-
base tables are set up correctly. Now to check on the archive database.

8. Type the following command and then press Enter:

use archive;

You should get an indication that you’re in the archive database.

9. Type the following command and then press Enter:

show tables;

The same 16 tables we saw in the snort database should appear, in a list
now titled Tables_in_archive.

If all databases, tables and users are present, you’re ready, finally, to install
the ACID console.

Installing the ACID console
Windows and Linux use the same ACID archive of files and (essentially) the
same installation process. The differences are notated in the appropriate fol-
lowing sections.

Extracting the files . . .
After you get a hold of the ACID archive (see the section “Gathering the nec-
essary files,” near the beginning of this chapter), extract the files in the
archive to the directory by performing the following steps.

. . . for Linux
To extract the files from the ACID archive on Linux, perform the following steps:

1. Navigate to the directory where you downloaded the ACID archive
and type the following:

cp acid-0.9.6b23.tar.gz /htdocs-path

This copies the ACID archive to the htdocs directory. htdocs-path rep-
resents the path to the htdocs directory for Apache. For example, the
command to copy the ACID archive to the htdocs directory for our con-
figuration looks like this:

cp acid-0.9.6b23.tar.gz /www/htdocs

2. Change to the htdocs directory by typing the following:

cd /htdocs-path

156 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 156

Again, /htdocs-path represents the logical path to the htdocs direc-
tory. The command to change to the htdocs directory with our setup
looks like this:

cd /www/htdocs

3. Extract the archive by typing the following:

tar -xvzf acid-0.9.6b23.tar.gz

The file extracts to the acid-0.9.6b23 directory.

4. Rename the directory to acid by typing the following:

mv acid-0.9.6b23 acid

5. Remove the archive tarball file by typing the following:

rm acid-0.9.6b23.tar.gz

. . . for Windows
To extract the files from the ACID archive, perform the following steps:

1. Double-click the ACID archive file.

The WinZip or WinRAR archive appears. If you’re using Windows XP, a
regular directory window appears.

2. Extract the files to a directory.

We chose to group all our Snort-related apps under one directory tree,
thus our ACID install path is

C:\snortapps\acid

3. Right-click the ACID archive and click the Delete tab.

Edit the ACID configuration file
Editing the configuration file is basically the same in Windows and Linux,
except for the paths to other supporting scripts (such as ADODB and
JpGraph). Differences are notated in the text where appropriate.

To edit the configuration file for ACID, perform the following steps:

1. Open the configuration file in a text editor.

The configuration file, named acid_conf.php, is in the directory where
Acid was installed.

2. Use the text editor to modify the configuration file:

• For Linux, use vi or pico (run pico with the -w flag to turn off
text-wrapping).

• For Windows, use Notepad or WordPad.

157Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 157

3. Set the DBlib_path variable, changing the line

$DBlib_path=””;

to

$DBlib_path=”/ADODB-Path”;

where ADODB-Path is the path to your ADODB installation. For our Linux
system, the $DBlib_Path line looks like this:

$DBlib_path=”/www/htdocs/adodb”;

For our Windows system, the $DBlib_path line looks like this:

$DBlib_path=”c:\snortapps\adodb”;

4. Change the MySQL variables for ACID (they’re the same for Linux and
Windows) from

$alert_dbname = “snort_log”;
$alert_host = “localhost”;
$alert_port = “”;
$alert_user = “root”;
$alert_password = “mypassword”;

to

$alert_dbname = “snort”;
$alert_host = “localhost”;
$alert_port = “3306”;
$alert_user = “acid”;
$alert_password = “acid_password”;

Here “acid_password” is the password you assigned the user “acid”
in the MySQL users table.

5. Change the following values:

/* Archive DB connection parameters */
$archive_dbname = “snort_archive”;
$archive_host = “localhost”;
$archive_port = “”;
$archive_user = “root”;
$archive_password = “mypassword”;

to

/* Archive DB connection parameters */
$archive_dbname = “archive”;
$archive_host = “localhost”;
$archive_port = “3306”;
$archive_user = “acid”;
$archive_password = “acid_password”;

Here “acid_password” is the password you assigned the user “acid”
in the MySQL users table.

6. Set the graphics engine to suit your platform.

158 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 158

• For Windows, change the following line:

$ChartLib_path =””;

to

$ChartLib_path =”PHPlot-path”;

where PHPlot-path represents the logical path to your installa-
tion of PHPlot. For our configuration, the $ChartLib_path line
looks like this:

$ChartLib_path =”c:\snortapps\phplot”;

• For Linux, change the following line:

$ChartLib_path =””;

to

$ChartLib_path =”JpGraph-path”;

where JpGraph-path is the path to the src directory in your
JpGraph installation. For our Linux system, the $ChartLib_path
looks like this:

$ChartLib_path =”/usr/local/apach2/htdocs/jpgraph/src”;

7. Save the acid_conf.php file and exit the text editor.

If you’re using WordPad to edit your conf files, be careful to save the file
as a Text Document and not RTF.

Configuring IIS for the ACID console
After you’ve installed ACID and all its dependencies on the Windows plat-
form, you must create the ACID console Web site and let the IIS Web server
know to use PHP on the ACID console directory. With Apache, all this is taken
care of when you install PHP and ACID. Unfortunately, the additional steps
are required if you’re running IIS; fortunately, the upcoming subsections
break them down.

Create the ACID sonsole Web site in IIS
Before you can set up PHP, you must create the ACID console Web site in the
IIS management snap-in. To create the ACID console Web site, perform these
steps:

1. Click the Start menu, point to Settings, and click Control Panel.

The Control Panel window appears.

2. Double-click the Administrative Tools icon.

The Administrative Tools window appears.

159Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 159

3. Double-click the Internet Services Manager icon.

The Internet Information Services window appears.

4. In the left pane of this window, double-click the root machine.

Typically, it will have the same name as the hostname of your machine.

5. Right-click the Default Web Site entry in the left pane of the Internet
Information Services window.

A drop-down menu appears.

6. Click the New menu option and the Virtual Directory menu option.

The Virtual Directory Creation Wizard window appears.

7. Click the Next button.

8. Type a name for the Web site in the field labeled Alias, and then
click the Next button.

For example, we called our virtual directory ACID.

9. In the Directory field, type the path to your ACID installation and
then click the Next button.

For example, the path to our installation of ACID is C:\snortapps\acid.

10. On the Access Permissions window, ensure that the Read and Run
Scripts check-boxes are checked and click the Next button.

The wizard finishes up, and your new ACID Web site is created.

Configuring the ACID console to use PHP in IIS
To let IIS know that how you want PHP files to be processed, perform the fol-
lowing steps:

1. Click the Start menu, point to Settings, and click Control Panel.

The Control Panel window appears.

2. Double-click the Administrative Tools icon.

The Administrative Tools window appears.

3. Double-click the Internet Services Manager icon.

The Internet Information Services window appears.

4. In the left pane of this window, double-click the root machine.

Typically, it will have the same name as the hostname of your machine.

5. Double-click the Default Web entry.

The Web tree expands.

6. Right-click your ACID Web site entry and select the Properties menu
option.

160 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 160

The Web site Properties window appears.

7. On the Virtual Directory tab, click the Configuration button.

The Application Configuration window appears.

8. Click the Add button.

The Add/Edit Application Extension Mapping window appears.

9. In the Executable field, type the path to php.exe.

For our configuration, the path is: C:\snortapps\php\php.exe.

10. Type .php In the Extension field.

11. Click the Script Engine check box.

12. Click the OK button.

13. On the Application Configuration Window, click the Apply button,
and then click OK to close the window.

14. Click the OK button on the Properties window.

Taking the ACID test
Finally. It’s installed — but is it working? Well, you’re about to find out, one
handy subsection at a time.

Point a browser at it
Open a Web browser on the computer where ACID is installed. The browser
window is where you complete the configuration. Onward . . .

� For Windows: Type the following Web address in the browser’s address
field:

http://localhost/your-ACID-console/index.html

Here your-ACID-console is the name you gave the virtual directory
when you created the ACID console Web site in the previous section.

� For Linux: Type the following address into the browser’s address field:

http://hostname/acid/acid_main.php

Here hostname refers to the hostname of the computer that ACID is
installed on. For example, the Web address to our Linux ACID console is

http://frytaters/acid/acid_main.php

Deal with the error
Sure as Murphy’s Law, the first time the ACID console runs, the error shown
in Figure 7-1 appears.

161Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 161

Actually, ACID is working fine. Believe it or not, there’s one more configura-
tion step to go through. (Ready, and . . .)

1. Click the Create ACID AG link.

Doing so creates additional tables in the snort and archive databases
in MySQL.

2. Click back to the index page.

Behold! The ACID console lives! Figure 7-2 shows the stuff it makes visible.

Figure 7-2:
Success is a

pig-pile of
immediate
attempted

exploits
on your

network.

Figure 7-1:
Oh, pig-

slop! You
mean it’s not
working??!!

162 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 162

Using ACID to View Snort Alerts
Pretty hefty configuration process, eh? Good thing ACID is an especially power-
ful alert-reporting console. It enables you to view individual alert events picked
up by Snort — and you can view groups of events, organized by various criteria
(source or destination addresses, type of protocol, time of day). With the addi-
tion of the graphing libraries installed in the course of this chapter, you can
also view such data in a graphical format. In this section, we navigate and dis-
cuss the major features of the ACID console.

The main ACID console page
The main ACID console page gives you

� A quick view of how many alerts your Snort sensors have dumped to
your database

� Some subdivided data for further investigation (such as alerts sorted by
protocol/attack type)

� Graphs created by the graphing and reporting functions (installed with
JpGraph and PHPlot).

� Maintenance tools related directly to the ACID application

In the following subsections, we discuss the various areas of the main ACID
console page. (Figure 7-3 shows the main ACID console.)

Console information
In the upper-left corner of the console window, ACID provides quick informa-
tion about the console itself (as in Figure 7-3), as follows:

Figure 7-3:
Quick

information
can be had

from the
main ACID

console.

163Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 163

� Queried on: This line shows the last date and time the ACID console
queried the Snort database. ACID automatically queries the database
every 3 minutes or every time you click a link on the ACID console,
whichever comes first.

� Database: This line shows the database, host and port that ACID is
monitoring.

� Time Window: This is the time span of data that ACID has access to.

Quick Alert Information
The Quick Alert Information area of the console gives you some compiled sta-
tistics. If you have multiple sensors, all alerts are shown in these statistics.
The following information is covered by this area of the main console window:

� Sensors: Displays how many sensors’ data ACID has access to. Clicking
the number brings you to another page with data for each individual
sensor (Figure 7-4).

� Alert Information: These two criteria show you how many unique alerts
have fired a Snort rule and the total number of alerts for all sensors.

� IP Address Information: Source, Destination, and Unique IP’s are all
quickly available by clicking the appropriate numbered link.

� Port Information: Source and Destination ports, as well as the protocols
involved are listed for quick access here.

� Traffic by Protocol: The alerts by protocol are displayed in bar-graph
format on the right side of the Alert Information table, showing

• Each protocol (TCP, UDP, ICMP, and Portscan traffic)

• A percentage of the total beside each protocol

We discuss Traffic by Protocol in more detail in the following section.

Figure 7-4:
Yeah, yeah,

we only
have one

sensor.
But, it’s a
BIG one.

164 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 164

Snapshot views
The Snapshot area of the console gives you quick access to alerts in a spe-
cific grouping, such as most recent, all alerts for today, last 24 hours, last 72
hours, and others (as in Figure 7-5). The following information is available
from the Snapshot view:

� Recent Alerts: You can view the most recent alerts by any protocol or
by a specific protocol by clicking the appropriate link (any protocol,
TCP, UDP, or ICMP). A separate link gives you access to the most recent
15 Unique Alerts.

� Time Grouped Alerts: Three separate bullet points give you access to
alerts grouped by Today, the last 24 hours, or the last 72 hours. You can
view by alerts, unique, a straight list, or by source or destination IP
Address.

� Port Grouped Alerts: Two groups of links give you access to the last
source or destination ports (grouped by any, TCP or UDP).

� Frequent Alerts: These are grouped by the 5 most frequent alerts, most
frequent source or destination ports (by any, TCP, or UDP) and the most
frequent 15 IP addresses (source or destination).

Drill-down information
By clicking the links available on any of the views discussed in the preceding
bulleted list, you get a wealth of information about each individual alert,
including

� Unique ID # that Snort assigned the alert

� Attack signature that fired the Snort rule

� Timestamp when the alert fired in Snort

Figure 7-5:
ACID’s

Snapshot
console

gives you
the from-

50,000-feet
view of
recent
alerts.

165Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 165

� Source and destination IP addresses

� Layer-4 (Transport Layer) protocol that the attack used (TCP, UDP, ICMP,
or whatever)

For more information on the OSI networking model and how its layers match
up to the TCP/IP protocol suite, see the sidebar “The lowdown on layers” in
Chapter 1.

Let’s take a sample alert and walk through the information you can get just
by a few clicks of the mouse.

Table view of an alert
In Figure 7-6, we see a typical alert in its table view. (From the main ACID con-
sole, we clicked the “Most Recent Alerts: any protocol” link and illustrate the
first one that popped up.)

Here’s what to look for in Figure 7-6:

� The unique identification number that Snort assigned this particular
alert. All the information about this alert is stored under this ID in the
database. Notice also that the ID# is a link. We talk about that in just a bit.

� The signature that fired this alert is displayed: ICMP Destination
Unreachable (Communication Administratively Prohibited).

� Displayed before the alert are links to more information about this alert.
In this case, only one source is listed: the snort.org Web site. Essentially,
our alert is an administrative alert. Someone tried to ping our system,
our firewall denied the reply to the host, and this triggered the ICMP
Destination Unreachable rule. (More about Snort rules in Chapter 8.)

� The last four columns in the table list additional information about the
alert, including

• The Timestamp that Snort applied to the alert before storing it in
the database

• The IP address from which the attack originated

Figure 7-6:
A typical

alert sitting
at the table.

166 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 166

• The IP address to which the attack was directed (shown as Source
Address and Dest. Address in the table)

� The last column in the table lists the Layer-4 protocol that the attack
used. In this case, it was a ping and used the ICMP protocol.

Detailed view of the alert
If you click the ID number on the alert table page, a detailed view of the alert
displays (as in Figure 7-7).

Here you have all relevant information concerning the alert, including all
information displayed in the table view, as well as specific IP information on
the datastream, and the payload of the packets received.

The IP information includes

� The source and destination address

� Additional IP information

� Host and domain names of both source and destination addresses

It’s a handy feature that ACID looks up the host and domain name of
the source and destination addresses for us so we don’t have to do it
manually.

It’s important to understand that not all IP addresses will resolve to host
and domain names. This is a “best practice” on the Internet, but not
every organization or ISP does it. Sometimes, an IP address might be all
the information you have to track an attacker.

Figure 7-7:
A detailed

view of
the alert.

167Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 167

The Payload section of this window lists

� The actual bits of the network packet received in Hexadecimal (or hex as
it’s often abbreviated)

� A translation of the hex into a more human-readable text format

� The original source and destination IPs, names, and ports

Hex is often used by programmer geeks as a shorthand way to represent the
zeros and ones of binary computer code. But don’t worry, you don’t need to
read hex to understand your Snort alerts! The payload is there for informa-
tional purposes if you want to get into the nitty-gritty details of each packet,
and can be useful for tweaking Snort rules. But the main things you’re con-
cerned with are

� Where the attack’s coming from (the source)

� Where it’s going (the destination)

� Which Snort alert rule was triggered

Detailed view of the signature
The link listed in the signature column in the table view of the alert takes you
to an external Web page that describes the particular attack signature
detected. This is really just a “for your information” Web site maintained by
snort.org or other organizations that specialize in IDS signatures. The infor-
mation found on these sites can help you track down both what the attack
could have been targeting as well as why a Snort rule fired on that particular
piece of network traffic.

Detailed view of the IP address
On any window where a destination or source IP address appears, that IP
address is displayed as a Web link. If you click an IP address link, you receive
what’s shown in Figure 7-8:

� Information on the specific host

� Links to additional information (most of the additional information is
from external Web sites, rather than your ACID console).

Figure 7-8:
Additional

information
about the

offending IP
address.

168 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 168

� Links to other occurrences of this IP address (shown at the top of the
window), whether as source, destination, or both in your Snort database.

� Unique alerts and port scan events associated with this IP address.

� Some more security ammo below the information on this IP address:

• External links for more information about this host.

• ARIN, RIPE, APNIC and LACNIC links that take you to information
on those respective pages about the owner of that IP address.

Usually an Internet service provider owns a range of IP addresses, of
which the one you’re querying is one, but the information can be as spe-
cific as an individual company or organization that the IP address range
is assigned to. The ARIN, RIPE, APNIC and LACNIC registries may not
have information on the specific IP address you’re querying, if these IP
address registries don’t control that address (see the sidebar “What are
these registries?” in this chapter for more about registries).

� Reverse-DNS (the hostname of the computer that has this IP address)
using the DNS link.

� A link to the SamSpade Web page, where you can perform several useful
functions, such as

• Following a trace route to the IP address

• Processing all the information available from the ARIN link dis-
cussed previously

We discuss hunting down and reporting attackers in more detail in
Chapter 10.

Graphing and reporting
ACID’s graphing and reporting functions are full-featured and easy to use,
giving you graphical data on every sensor in your Snort network. The graph-
ing functions are highly configurable, enabling you to display

� The number of alerts over time

� Source or destination IP address

� Source or destination ports (by protocol)

� Signature classification

� Number of alerts by sensor

To access the graphing functions of the ACID console, click the Graph Alert
data link on the main console page.

169Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 169

The Graph Alert data page
The main reporting page presents you with a myriad of options for reporting
the alert data stored in your Snort database (see Figure 7-9). As an illustra-
tion, we discuss how to pull up a graphical report on all alerts over a span of
seven days.

Figure 7-9:
The main
reporting

page.

170 Part II: Administering Your Snort Box

What are these registries?
Four Regional Internet Registries (RIR) act as
points of authority for the most basic Internet
resource: the IP address. These registries con-
trol the allocation of IP address space, as well
as Autonomous System Numbers and IN-
ADDR.ARPA inverse mapping. What all this
means to you is that these registries maintain
public databases detailing where every IP
address on the Internet is assigned. This is all
done by querying the registry’s “Whois” (as in,
“Who is the owner of this IP address?”) data-
base for a particular IP address or IP address
range. A Whois database query can typically be
done on a registry’s Web site.

This information is invaluable when trying to
track down an attacker that pops up in your

ACID console. Conveniently, ACID provides links
to the four RIR sites wherever an IP address
appears on a Snort alert:

� ARIN (American Registry of Internet
Numbers): America and Sub-Equatorial
Africa

� RIPE (Reséaux IP Européens Network
Coordination Centre): Europe, Middle East,
Central Asia, Northern Africa

� APNIC (Asia Pacific Network Information
Center): Asia-Pacific

� LACNIC (Latin American and Caribbean
Addresses Registry): Latin America and the
Caribbean

12_568353 ch07.qxd 6/2/04 9:24 AM Page 170

Select a title, chart type and period
To select a title, chart type and period, perform these steps:

1. Type a chart title in the Chart Title text box.

2. Select a chart type from the Chart Type drop-down menu.

3. Select a chart period from the Chart Period drop-down menu.

There are three options in the Chart Period drop-down menu. The Chart
Period parameter displays all alerts in your report by

� Time of day

� Day of the week

� Both

and gives you a view of any trends in the alerts. Thus, if you look at all your
alerts for the month by time of day, you probably notice that most of the
alerts occur at between midnight and 4:00 a.m. For our example, we keep the
default Chart Title: ACID Chart. We want a chart of all alerts over the last
seven days, by day, so we select Time (day) vs. Number of Alerts as the Chart
Type and we leave the Chart Period as No period because we want to see the
actual dates on the graph.

Set the size, plot type and date range
To set the size, plot type and date range, perform the following steps:

1. In the Size (width x height) text boxes, type in the size of the chart (in
number of pixels).

The size of the chart is in number of pixels wide by number of pixels tall.

2. Click the appropriate radio button for the Plot Type (bar, line, or pie).

3. Select the day, month and year for the chart to begin in the Chart
Begin drop-down menus.

4. Select the day, month and year for the chart to end in the Chart End
drop-down menus.

For our purposes, we wanted a nice large (1024 x 768) pie chart, graphing
data from December 23rd to December 29th.

Graph them there data
Once all your criteria are entered, click the Graph Alerts button. ACID chews
on the data for a few seconds, constructs a JPEG image on the fly, and dis-
plays a beautiful pie chart in the lower half of the Graph Alert Data window
(as in Figure 7-10).

171Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 171

Maintenance
From the ACID console, you can view the status of the Web server, PHP, the
database, and the ACID tables within the database. You can do some repairs
and rebuilds of the ACID tables in the database, as well.

To access the Maintenance page, click the “Application cache and status” link
at the bottom of the main ACID console page.

PHP build
The PHP Build section of the Maintenance window displays information about
PHP, as well as the hardware and software PHP runs on. All this information is
basic FYI and only useful if you’re troubleshooting a problem with PHP.

The following information is available in the PHP Build section of the
Maintenance window:

� Client: Information on the client (Web browser) you’re currently using to
view the ACID console.

� Server: The Web server type and version.

� Server HW: A bit of a misnomer, Server HW actually displays the operat-
ing system and version that’s serving up the ACID console (through PHP
and the Web server).

� PHP Version: The version of PHP running on the Web server.

� Additional PHP information: Including the logging level, modules and
API used by ACID to generate the Web pages you’re seeing.

Figure 7-10:
Yeah, yeah,

okay. We
took a

break for
Christmas.

172 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 172

Database
The Database section of the Maintenance window displays information about
the database management system that ACID pulls data from and includes the
following information:

� DB Type: This is the actual database-management system process ACID
is pulling data from (mysql, mssql, postgres, oracle).

� DB Abstraction Version: ACID talks to this version of the abstraction
tool to pull data from the database (in our example, we’re using ADODB
version 4.04).

� Alert DB Name: The actual database in the database management
system where ACID pulls alert information (in our case, “snort”).

� Archive DB Name: The database in the database-management system
where archived alerts are stored (in our case named archive).

If, for some reason, these databases are not working or the data is somehow
corrupted, the Database section includes a Repair Tables button that exe-
cutes a repair command on the database and rebuilds the data tables. Only
use this if you know that the database tables are corrupted. You’ll know the
database tables are corrupted if you stop receiving alerts or if duplicates or
garbage text appears on the ACID console.

Alert information cache
The Alert Information Cache section of the Maintenance window gives you
information on the alerts cached from the database. You can take one of two
actions at this point:

� Update the Alert cache (if for some reason an alert isn’t reaching the
console) by clicking the Update Alert Cache button.

� Rebuild the alert cache by clicking the Rebuild Alert Cache button.

If your alerts don’t seem to be reaching the console (for instance, you haven’t
seen one during a period of time that your normally get several), you might
have a corrupted Alert Cache, and a good first-step in troubleshooting is to
Rebuild the Alert Cache.

IP address cache
The IP Address Cache section of the Maintenance window includes informa-
tion and functionality related to ACID’s IP, DNS and Whois cache. You can
update and rebuild IP and Whois cache information by clicking the appropri-
ately titled buttons.

173Chapter 7: Adding Visuals and Getting Reports

12_568353 ch07.qxd 6/2/04 9:24 AM Page 173

Here are a couple of good starting points if specific types of information
aren’t showing up:

� If you don’t see hostname and domain name information in the Detailed
View of the alert, you might have a corrupted IP cache, and a Rebuild
the IP cache is a good first step in troubleshooting.

� If IP-ownership information from the registries (ARIN, RIPE, APNIC and
LACNIC) in the Detailed View of the IP address isn’t showing up, you
might have a corrupted Whois cache. In that case, rebuilding the Whois
cache is a good first step in troubleshooting.

174 Part II: Administering Your Snort Box

12_568353 ch07.qxd 6/2/04 9:24 AM Page 174

Chapter 8

Making Your Own Rules
In This Chapter
� Exploring the gritty details of Snort’s master configuration file (snort.conf)

� Dissecting Snort’s pre-installed rules

� Exploring the many rule options

� Tweaking and modifying rules

� Creating new rules entirely from scratch

Although it may seem like an incredibly daunting task, sifting through the
many rules that come installed with Snort can provide some incredible

insight into what makes it tick. This chapter makes short order of that whole
smorgasbord, and you can feast alongside the Pig itself.

This chapter dives headlong into the main configuration file (snort.conf) and
explores the different sections and commands at your disposal. The snort.conf
configuration file is a virtual buffet of rules, where you can pick and choose
what it makes sense for you to feed Snort. Throw in a little spice and voilà! A
feast!

The Power of the Pig
Snort has such a devoted following because the program is far more than just
an alarm system for hackers. Snort’s real power comes from its clever architec-
ture. The designers didn’t want a simple “signature” scanner. They created an
“erector set” for network security that you can modify to match your prefer-
ences and environment. They ultimately created a “rules-based” engine, a strik-
ing and well-timed advancement in the science of network intrusion detection.

Why is a rules-based approach to intrusion detection important? Signatures
don’t have the flexibility of rules. Think of it this way: A “signature” is much like
a printed list of stolen credit-card numbers that’s kept behind the counter of an
electronics store. The clerk verifies a card presented for payment isn’t on the
stolen-card list when a customer tries to buy something. Thus, the clerk veri-
fies a unique aspect of the card (the presented credit-card number) against a

13_568353 ch08.qxd 6/2/04 9:25 AM Page 175

“signature database” (the list of stolen credit-card numbers). If the presented
card’s number isn’t on the list of stolen cards, the clerk runs the card, the
transaction goes through, and someone goes home with a new plasma TV.

That’s fine for the specific threat of stolen credit cards, but what about other
threats that affect the store’s bottom line? To continue with our analogy,
“rules” are akin to a published set of guidelines given to the electronics store
clerk that describes the things to look for that could threaten the store. For
example, one rule may be to “Be on the lookout for patrons wearing panty-
hose over their heads, brandishing weapons, and toting a bag with a ‘$’ sign
stenciled on the side of it.”

Snort is a very powerful, rules-based network IDS. It’s extensible via plug-ins
and very customizable for any network environment. That’s what gives it
some of the highest marks by the security geeks who play with it day in and
day out. Rules can describe things in ways that make Snort incredibly more
flexible than merely matching signatures.

The Center of Snort’s Universe
You’ve already had some modest exposure to the snort.conf configuration file
if you installed and configured Snort to run in your shop. It looks long, com-
plicated, and riddled with hieroglyphics, but it isn’t nearly as bad as it seems.

Picking apart the snort.conf file
First off, the snort.conf file is divided into handy sections and organized
very logically, even for nontechnoids. (The makers of Snort won’t have poorly
built configuration files with their software.) The Snort makers break down
your most likely edits into four basic steps, which they conveniently refer to
at the top of the file. You’re interested in the Rules section, which is the last
step in the snort.conf file.

A simple four-step process can manage the configuration parameters in the
snort.conf file:

1. Be like a Boy Scout: Be prepared by having a plan-of-action for what
changes you want to make to snort.conf before touching the
snort.conf file itself.

Keep a notes file of any changes (both made and proposed) and settings
you’re working with.

2. Back up the snort.conf file before you edit it.

176 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 176

We call ours snort.conf.bak and typically keep it in the same direc-
tory as the original snort.conf configuration file.

3. Use your favorite text editor to make your changes.

4. Run Snort with the “-T” flag to check snort.conf.

At the command prompt, run snort by typing the following:

snort -T

Running Snort with “-T” tests your snort.conf configuration file and rules
for errors and tells you where the problems are. Testing your configura-
tion and rules files before restarting Snort lets you correct errors before
restarting Snort, thus keeping you from missing any alerts!

Once you’ve made changes to snort.conf (or any configuration files), restart
the Snort application (which geek-types affectionately refer to as “bouncing,”
“sig-hupping,” or even “tickling” the running snort process). If you make
changes without completing this step, nothing may happen until the next time
you start your computer because Snort hasn’t re-read the configuration files
and found the changes.

Playing by the rules
The rules section is the real meat of the snort.conf file. (Or should we say,
“The real bacon”?) The snort.conf file has two important configuration
entries for proper rule setup:

� The location of the rules directory, configured under the snort.conf
file’s main variable initialization section (Step 1).

In Step 1, the variable $RULE_PATH must be set to the location of
Snort’s rules — for example /usr/local/snort/rules on Linux or
D:\snortapps\rules on Windows.

� Near the end of the snort.conf file, in Step 4, where line after line of
rule reference is placed. Here’s a snippet of a few items in our list:

include $RULE_PATH/local.rules
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules

Many of the configuration file’s parameters and settings have analogous
command-line switches. When Snort is faced with two opposing instructions
(for example, when you pass the “–fast” logging argument to Snort, but have
the alert_full output module configured in the snort.conf file), Snort ignores the
configuration file and executes according to what was present on the command
line. For testing and isolated sensor installation, command-line options work
well, but for larger deployments, use the configuration files to make the man-
agement, editing, and distribution far easier to handle.

177Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 177

Rule Installation
Snort comes with more than enough rules to satiate your diet. We’re always
surprised to learn about new rules that inventive people have made from all
over the world; many have been added to the public domain.

Our goals in building a well-tuned IDS installation is to first enable most, if not
all, of the rules that come with Snort. This enabling produces a ton of output
(most is likely irrelevant to your network environment), but it gives you a great
introduction to the type and frequency of the alerts pounding on your front
door. From there, tuning Snort is like Goldilocks faced with her choices: Start
with the bed that’s way too big and then keep refining until it’s “jusssst right.”

This section delves into those messy-looking rules files.

How the rules files are organized
Snort’s rules directory sorts hundreds of rules into rules files according to
their purpose. Although the rules are cataloged a few different ways and
some of the rule categories have overlapping domains, there’s certainly a
method to the madness.

Rules files fit into eight major categories:

� Low-level protocols (icmp, netbios, tcp, udp)

� High-level protocols (http, ftp, dns, pop3, imap)

� Web server specific (web-attack, web-cgi, web-client)

� Exploit specific (shellcode, backdoor, exploit)

� Service impacting (dos, ddos)

� Policy specific (policy, info, misc, porn)

� Scanning and probing activities (scan, bad-traffic)

� Viruses, worms, and other malware (virus)

An in-depth rule structure
The best way to find out how the whole rule system works is to get your
hands dirty with a typical example:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-IIS CodeRed
v2 root.exe access”; flow:to_server,established;

178 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 178

uricontent:”/root.exe”; nocase; classtype:web application-attack; reference:url,
www.cert.org/advisories/CA-2001 19.html; sid:1256; rev:7;)

This rule demonstrates many of the options that you’re likely to encounter
with your own setup. We picked the Code Red worm alert from the web-
iis.rules file as our starting point.

Here’s a piece-by-piece explanation of that Code Red worm rule, which
appeared earlier in this section:

� The alert directive (in bold in the following alert snippet) tells Snort
that if the packet matches this rule, then the rule should send its output
through the alert facility.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS...

The overwhelming majority of Snort’s rules use the alert facility,
although optionally, you can use the log facility. Chapter 6 explains the
difference between these two facilities.

� The tcp keyword is an argument that identifies which network protocols
the rule applies to. The following alert snipped shows the tcp keyword
in bold:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS...

Because the tcp keyword is specified, Snort knows to match this rule
only to network traffic using the TCP protocol (other protocols, such as
UDP) will be ignored.

� The network source and destination arguments are highlighted in bold
in the following statement:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS...

The preceding network source and destination arguments (including
port numbers) tell Snort to alert on any traffic that is either

• From the $EXTERNAL_NET on any port

• To any of our Web servers on the defined Web ports.

The network source and destination arguments use the variables estab-
lished at the beginning of the snort.conf file (the arguments beginning
with the $). These substitutions provide convenience and readability for
managing a large collection of rules, which can easily top a few thousand
entries.

179Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 179

� The last part of the rule gets even more granular with information the
rule should match on, as well as what Snort should do if the rule does
match . The following snippet shows what this looks like:

(msg:”WEB-IIS CodeRed v2 root.exe access”; flow:to_server,established;
uricontent:”/root.exe”; nocase; classtype:web application-
attack; reference:url, www.cert.org/advisories/CA-2001-19.html;
sid:1256; rev:7;)

• A few other tests tucked away in that last section must be passed
before an alert is generated. The flow: and uricontent: keywords
further refine the rule. In this case, if the uricontent (URI stands for
universal resource identifier) contains the text “/root.exe”. The
flow says that the connection should be going to the server and
should already be established. IP listed in your var HTTP_SERVERS
section of snort.conf, then an alert is generated with the message
“WEB-IIS CodeRed v2 root.exe access”.

Snort also identifies the type of attack by classifying it as a “web
applications-attack.” It further identifies the exact nature of the
alert setting the “sid” (Snort IDentification) field to 1256. Sids are
unique identifiers to Snort. They can nail down an offense to exactly one
alert. The reference: keyword provides a log entry regarding any other
information that’s known about the nature of the attack. References are
often URLs to security-related Web sites, such as CERT, Whitehats, or
SecurityFocus, which provide advisories on what the attack is and how
to patch for it (if possible). In our Code Red example, we point to the
CERT Web site with the following URL:

http://www.cert.org/advisories/CA-2001-19.html

Figure 8-1 shows a graphical overview of how a Snort rule is laid out. In it,
you see many of the bits and pieces of a rule.

BodyHeader

Rule Action Protocol

alert tcp

Flow

→

Source Address
& Port

SEXTERNAL_NET any

Destination
Address & Port

SHTTP_SERVERS
SHTTP_PORTS

Additional Tests,
Output Miscellaneous

(msg: ”WEB-llS CodeRed v2 root.exe
access“:flow:to_server, established;
urlcontent. ”/root.exe“;nocase;
classtype;web application-attack;
reference:url,
www.cert.org/advisories/CA-2001
19.html;sid:1256; rev:7;)

Figure 8-1:
The Snort

rules layout.

180 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 180

Flow or direction operators represent how traffic is traversing the network.
Their use is pretty straightforward:

� The > operator tells Snort that the network on the left should be regarded
as the source, and the one on the right should be the destination.

There isn’t a <- operator. All instances using it are written by flip-
flopping the arguments around the > command.

� The <> operator will match any traffic between the network on the left
and the network on the right, regardless of which network originated the
traffic.

The directionless operator (<>) can sometimes cause a bit of confusion
with its use. It seems to makes sense that you would inspect traffic flowing
both ways from one computer or network to another, but that inspection
happens infrequently. Most Snort rules look something like this:

$EXTERNAL_NET any -> (internal host / port)

A rule that matches too broadly (which the preceding rule would do if it
contained <>) produces a huge Snort log and unduly burdens the pro-
cessing engine as it inspects everything that passes by.

Elements of the rule header
Sifting through the directory of rules shows that all the rules contain header
information, though most have a jumble of different items in their bodies. The
header is just a front-end filter that separates out traffic by using five key sift-
ing factors: source IP address, destination IP address, source port, destination
port, and protocol.

Rule actions
Snort comes built-in with five different rule actions. Each gives you a lot of
power in building your arsenal.

Before changing the default behavior of your Snort rules, spend some time
watching it operate in your environment and use its output to help you
reduce noisy false positives.

Here are Snort’s five rule actions:

� The log action merely logs the offending packets to the output logging
that we set up when the Snort sensor was configured. The output plug-
ins options are many and varied, giving you a rich set of choices. A per-
rule log directive lets you customize logging down to a remarkable level.

� The alert action can print a log entry and post a notification when
some event is associated with a higher priority and probably needs a
personal touch.

181Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 181

The alert action is the default action for most rules that come with
Snort. Snort’s job, after all, is to alert us of an attack on our network!

� The pass action can ignore a matched packet and continue processing.

The pass action is useful when you’re tuning your rules and need to dis-
able some of the noisier ones so that you can actually see the output of
what you’re working with.

� The most powerful of the Snort actions is the activate keyword.
Activate operates in concert with the dynamic action by triggering an
alert and running what’s specified by the associated dynamic rule.

The activate/dynamic pair is ideal for catching a complex series of
attacks that may otherwise go unnoticed.

� The dynamic action is associated with a rule that shouldn’t run until
another event is encountered. You combine the dynamic action with
the activate action to set up a second level of processing in certain
circumstances.

The activate/dynamic pair isn’t often used in common Snort setups,
but it can be a handy tool for advanced intrusion detection.

Protocols
Snort, as a network IDS, must operate on the lowest level of the network to
do its job. Snort grabs Ethernet frames directly from the wire. Inside of those
frames are the four protocols that the free version of Snort normally scans: IP,
ICMP, TCP, and UDP.

Snort’s developers are attempting include other protocols, such as HTTP,
802.11, and ARP. The keywords for building your rules should include only
one of the original four.

For example, let’s say employees aren’t allowed to use the eBay auction Web
site on the job. A particular employee has been reprimanded for spending
hours browsing eBay, and HR wants to monitor his behavior. The following
rule logs all Web traffic that contains ebay.com coming from the host
192.168.1.18 with the message eBaying:

log tcp 192.168.1.18/32 any -> any 80 (msg:”eBaying”; uricontent:”ebay.com”;)

Source/destination
The last part of a well-formed Snort rule is probably the most important
piece of configuration data: The two IP address ranges that are involved with
the communication. The source and destination networks are identified in a
rule that takes this form:

(source network) (port) -> (destination network) (port)

182 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 182

CIDR (Classless Inter Domain Routing) notation is used for the network argu-
ments. CIDR notation is that funny way of expressing an IP address using a /
and another number — for example, 10.35.24.0/24, which means a Class C
network of 254 hosts on network 10.35.24.0 (plus the first and last
addresses that are reserved for the network address and the broadcast
address, namely 10.35.24.0 and 10.35.24.255).

For the Snort rules files, you really deal with only two types of entries:

� Networks (which contain a /)

� Hosts (which omit /)

Omitting / is a shorthand way of saying, “Just the single IP address, if
you please.” For example, the address 10.35.24.66 indicates just one
host for matching against.

You can also enter ranges of port numbers, similar to ranges of IP addresses.
Most of the examples that we cover in this chapter are single ports, such as
80 for the Web port, 443 for the encrypted Web port, and 25 for sendmail.
The entire range of available ports extends from 0 to 65535.

For a range of ports, you just place a colon between the two ports. The fol-
lowing rule looks for any traffic containing “ebay.com” occuring on any TCP
port between 1 and 1023.

log tcp 192.168.1.18/32 any -> any 1:1023 (msg:”eBaying”;
uricontent:”ebay.com”;)

You can also include the maximum and minimum ports ranges by simply
leaving off a number. For example :1023 means a range of ports from 0–1023,
and 1024: refers to a range of 1024–65535.

Wildcards
Wildcards simplify rules. Wildcards work just like those “splat” asterisks that
you can type into a DOS window or Unix shell to list only certain files. In
Snort, the any keyword is the most powerful wildcard — and it’s all over the
place. You’re allowed to use the any wildcard in both the network and port
configurations: any matches everything for the category you placed it in.

In the preceding section, we used the any wildcard in a couple of places. When
the host 192.168.1.18 tries to start a communication on any port with any
host on ports 1–1023 with the text “ebay.com” as part of a URI, then . . . bingo!
That’s a match, and the message eBaying appears in the logs.

183Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 183

Elements of the rule body
After being mangled by the pre-processors and whittled down by the filters of
the rule’s header, the rule’s body contains a virtual cornucopia of tests.

The most powerful test is pattern-matching what slips through for either spe-
cific keywords, phrases, or strings of binary data. Often, this inspection is the
most critical, because what’s being searched for is the “fingerprint” of the
attack itself.

Many of the most powerful features of Snort’s detection engine reside in the
body of the rule. Each feature has a different style, syntax, and set of options.
This flexibility can make rule management somewhat complicated, but very
worthwhile.

The layout of the rule body
Snort’s rule body must follow this specific structure:

� The body section of a rule is always wrapped by one set of parentheses.

� Body options (keywords, instructions, tests, and commands) are within
the parentheses.

� Each body option is separated by a semicolon.

� Each body option usually conforms to this format (the value is wrapped
in double quotes):

item: “value”;

� The entire line is terminated with a semicolon.

While the structure contains a lot of punctuation, it helps keeps things
straight for both Snort and the person managing it.

The “content” option
Content analysis flushes out specific attack signatures within the packet. The
particulars of the content option is applied to each and every packet that
matches the header of the rule and can be expressed in either plain text form
(ASCII) or geek-speak (Hexadecimal).

Worms, viruses, and server cracks are normally transmitted onto your network
as raw machine code, which, to the naked eye, looks like gobbledy-gook, but is
in fact a series of instructions that harm your computers and servers.

Content matching is typically done at the application layer (Layer 7) of the
OSI networking model.

184 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 184

Text content matching (ASCII)
As a simple scenario for demonstration purposes, let’s say you’re concerned
about employees trading computer hacking information within your organiza-
tion. You can create a rule that generates an alert whenever an e-mail is sent
to your primary mail server (the mail server’s IP address is 172.16.30.7)
containing the word “hacking”. The mail port is 25; most mail is transmitted
using the TCP protocol, so the following rule illustrates how we can use the
content keyword to craft a rule to meet our goal.

alert tcp $EXTERNAL_NET any -> 172.16.30.7 25 (msg:”Found hacking reference in
e-mail”; content:”hacking”;)

Content analysis (by either text or hexadecimal matching) is used in more
than two-thirds of the rules that come with Snort.

Hexadecimal content matching
Hexadecimal (hex) content, although expressed differently than ASCII text, is
ultimately treated the same as ASCII by the Snort processing engine. In both
cases, the text is reduced to what the computer deals with best: bits, which is
then matched against the data streaming across your network. Hex is just a
shorthand way of representing the zeros and ones of binary machine code.

Hexadecimal is like a numerical alphabet that is 16 characters long, as com-
pared with English (which has 26 letters) or decimal math (which has 10
numerals). Hexadecimal is often referred to as base-16 because the “alpha-
bet” it uses has only 16 “letters” (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Hexadecimal
strings entered into a Snort rule body contain only those characters and
none others. If you create a hexadecimal string with nonhex characters,
expect that Snort will turn up its nose.

Here’s a real example right out of the rules directory:

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:”EXPLOIT ssh CRC32 overflow
filler”; flow:to_server,established; content:”|00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00|”; reference:bugtraq,2347;
reference:cve,CVE-2001-0144; classtype:shellcode-detect; sid:1325;
rev:3;)

To use a hex match for content searching, wrap the hexadecimal characters
to find with the pipe symbols (|). White space can separate out single bytes
of hexadecimal data (“00 00”). Snort ignores the white space, which is only
there to preserve the readability to the rule crafter.

The preceding rule is meant to watch for an attempted exploitation of the
Secure Shell server application (sshd) by scanning traffic coming from any-
where on the external network and destined for your home network on port

185Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 185

22 (the sshd port). The content search is a long series of binary zeros (18
sets of two, to be exact). How can a pattern of zeros be unique? A pattern of
zeros is frequently found in attack code and is often a give-away that some-
one is doing something you don’t like.

Mixing it up
You can mix and match the style of content searching without confusing
Snort. As long as the binary data you want to search for has the bookends of
the pipe characters, that block of text can be intermingled with other, plain
ASCII text. What follows is a good example from the back-door.rules file.

alert tcp $EXTERNAL_NET any -> $HOME_NET 12345:12346 (msg:”BACKDOOR netbus get-
info”; flow:to_server,established; content:”GetInfo|0d|”; refer-
ence:arachnids,403; classtype:misc-activity; sid:110; rev:3;)

Notice how the content search string is constructed: GetInfo|0d|. This
string tells Snort’s pattern matching subsystem to watch for the text phrase
GetInfo with a carriage return at the end. Pretty nifty, eh? Inserting hex into
a plain text string is useful for representing characters that can’t be repre-
sented by plain text, such as a carriage return. You can drift between text and
binary content all within the same search string.

The “depth” option
It would be nice if malicious content always occurred at the beginning or end
of a packet. Unfortunately, malicious content can occur almost anywhere in a
packet. The depth option specifies how many bytes into a packet the Snort
processor should look before moving on to the next rule.

The main reason for using the depth option is to restrict the search to the
most likely places where a match is found, without wasting valuable proces-
sor resources to search the entire packet. For example, if you want to find the
HTTP protocol version as part of a Web site communication, look in the first
few hundred bytes. Because a packet may be as large as 1,500 bytes (less the
header overhead), it makes a lot of sense to give Snort a break, especially if
what it must look through are millions upon millions of packets.

The following rule from the web-misc.rules file reveals that you need only
15 bytes to catch the sadmind worm. Hence, the content GET x http/1.0 is
always encountered at the very beginning of the packet.

web-misc.rules:alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:”WEB-MISC sadmind worm access”; flow:to_server,established;
content:”GET x HTTP/1.0”; offset:0; depth:15; classtype:attempted-
recon; reference:url,www.cert.org/advisories/CA-2001-11.html;
sid:1375; rev:5;)

186 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 186

The “nocase” option
The nocase option, which appears in more than a third of the rules that ship
with Snort, basically says to ignore the case of the characters submitted for
searching. Because the nocase directive takes no arguments, it’s normally
just used with a terminating semicolon. The following example from the
info.rules file finds the text LOGIN FAILED or LoGIn FaIlEd on a telnet
session port.

alert tcp $HOME_NET 23 -> $EXTERNAL_NET any (msg:”INFO TELNET Bad Login”; con-
tent: “Login failed”; nocase; flow:from_server,established;
classtype:bad-unknown; sid:492; rev:6;)

The “offset” option
Another tool that gives us a more precise scope on where in the packet to
look is the offset option. Offset works by skipping over the number of bytes
supplied to the right of the colon. So, offset:90 skips the first 90 bytes of
the packet and then begins searching for the string given as part of the con-
tent keyword. Offset and depth work nicely together to make the search area
of a packet limited to a window that is bracketed by the two. Basically, if you
know where to look and what to look for, you can use these two options to
help Snort get a fast grip on where to spend its time.

The Uniform Resource Identifier (URI) option
You can use the uricontent option to conduct a similar type of content
searching. Its purpose is similar to the depth and offset options: to reduce
the overall processing burden on Snort as it watches for more attacks to
effectively do its job.

The uricontent option works much like the content one, except it restricts
its searching to only URIs in the payload of the packet. URIs (Uniform
Resource Identifiers) in Snort can specify other protocols than http, such as
ftp, gopher, rsync, and https.

The uricontent option only searches for the given text in URIs that is found
in the packet. If URIs aren’t present, no match occurs. URI searching is good
for catching malicious commands that are readily evident as they often
appear in the location request to a Web server. The following rule from the
web-iis.rules file shows an exploit attempt against the IIS server using
both content and uricontent analysis:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-IIS .asa HTTP
header buffer overflow attempt”; flow:to_server,established; con-
tent:”HTTP|2F|”; nocase; uricontent:”.asa”; nocase;
content:”|3A|”; content:”|0A|”; content:”|00|”; reference:bug-
traq,4476; classtype:web-application-attack; sid:1802; rev:4;)

187Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 187

A couple of interesting characteristics about this rule are worth discussing:

� When nocase follows a string, its effect is upon the content string
immediately prior.

� The nocase option has no effect upon binary search strings. Leaving it
off of those strings just helps the overall flow of the rule.

Classification
The classification options provide an overall description of a rule, along with
other helpful information about the rule, that can be used by the Snort pro-
gram itself and a system administrator. These options include the Snort ID,
the alert message to appear in the alert log, the rule revision number, the
alert priority, the alert classification, and external references for the exploit
or vulnerability that triggered the alert.

Snort IDs
Quite a few options help organize and classify detected alerts. The Snort ID
(sid) option is unique to the Snort system and a good way to get a handle on
classifications.

The format of the Snort ID value is the same as it as other classification
options. For example, a proper usage is as follows:

sid:<ID_VALUE>;

When you get the hang of building your own sets of rules, assign each custom
rule a unique sid number somewhere above the 1,000,000 mark. That way,
updates to the Snort rule base won’t accidentally collide with your custom
rule. Table 8-1 gives you a breakdown of the uses for sid ranges.

Table 8-1 Snort ID (sid) Values
Range of Values Usage

1–100 Reserved for future use

100–1,000,000 For use within the www.snort.org distribution network

1,000,000 + For use in customizing your own Snort rules

Priority
Snort has a built-in numerical rating for many of the rules that it ships with:
The lower the priority number, the higher the risk posed by the attack that
tripped the rule. By using the priority option, you can override Snort’s

188 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 188

default level and rate how important or impacting a particular rule is to your
unique environment. For example, the following command assigns the rule
associated with it the highest priority: 1.

priority:1;

Classtype
The classtype option can organize rules into major groups. A few dozen differ-
ent classification types are spread over three priority levels, which are
described in Tables 8-2, 8-3 and 8-4. For inclusion in a rule, the syntax is

classtype:<CLASS_TYPE_NAME>;

Table 8-2 Priority 1 Classifications (Critical Severity)
classtype Description

attempted-admin Attempted privilege escalation to an
Administrator level

attempted-user Attempted privilege escalation to a User level

shellcode-detect Discovered executable code

successful-admin Achieved successful privilege escalation to an
Administrator level

successful-user Achieved successful privilege escalation to a
User level

trojan-activity Discovered software code of a Trojan Network
Attack

unsuccessful-user Failed privilege escalation to a User level

web application attack Identified an attack upon a Web server’s appli-
cation software

Table 8-3 Priority 2 Classifications (Intermediate Severity)
classtype Description

attempted-dos Attempted denial-of-service attack

attempted-recon Attempted information collection
(reconnaissance)

bad-unknown Potentially bad traffic seen (malformed)

(continued)

189Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 189

Table 8-3 (continued)
classtype Description

denial-of-service Denial-of-service attack possibly underway

misc-attack A catch-all category

non-standard-protocol Detection or use of a nonstandard protocol

rpc-portmap-decode Portmap decode detected

successful-dos Denial of service detected

successful –recon- Large-scale information collection
largescale (reconnaissance)

successful –recon- Limited information collection (reconnaissance)
limited

suspicious-filename- Strange or unusual filename was detected
detect

suspicious-login Strange username was found attempting to
login

suspicious-call-detect System call was detected

unusual-client-port- A client was abnormally using a network port
connection

web-application- Access was made to a potentially vulnerable
activity web-app

Table 8-4 Priority 3 Classifications (Low Severity)
classtype Description

icmp-event A “ping” packet was detected

misc-activity Some behavior was detected that may be
considered a policy warning

network-scan A host or network was being scanned

non-suspicious Regular usage activity was detected

protocol-command-decode A protocol instruction was decoded

string-detect A pattern of specific bytes was detected

unknown Unknown or unclassified traffic

190 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 190

Revision and versions
The Snort people thought ahead and even included a way to keep a version
tracking on each individual rule. The software industry uses many version
management schemes because the field is so fluid and so dynamic that tight
change control is almost a necessity. The format of the option is

rev:<#>;

Very few rules that come with Snort (less than 10 percent) have a revision
number of only 1. Busy enterprise networks are sometimes hostile and fast-
paced environments. Sometimes, rules are quickly added during the heat of a
malicious event so that immediate visibility is provided to the security man-
agers who must monitor the attack. After some analysis and a firmer under-
standing of the events takes shape, Snort’s rules are then revised (often only
subtly) to reflect what’s known about the event.

Messaging and output
The mesg option creates a customized output message that can be included
with any logs, alerts, and data dumps processed by the detection engine. By
looking through the rules directory, you can see that the fabricators of the
rules file have added messages to almost all the entries that they include.
The following is an example of the format of the mesg directive in use:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:”SMTP sendmail 5.5.5
exploit”; flow:to_server,established; content:”mail
from|3a20227c|”; nocase; reference:arachnids,119;
classtype:attempted-admin; sid:662; rev:4;)

See how cleverly the Snort makers had the output of this mail exploit attempt
reported as “SMTP sendmail 5.5.5 exploit”? Describing the nature of an attack
in plain English helps you in the long run (especially when you’re searching
through logs at trying to track down a breach).

External references
The second most powerful (and widely used) feature within a Snort rule is
the external reference option. You can reference Web-based resources that
provide you with tons of additional data on an attack or probe right in the
Snort logs.

A few different formats are used. Nearly all are Web site front-ends that look
up an attack based on a unique identifier. For example, using the example in
the preceding section, we find the following: reference:arachnids,119;

Thanks to this command, when Snort encounters this Sendmail attack, it pro-
vides a URL where the user can find out more about the Sendmail attack.
Table 8-5 gives a list of Snort’s external references.

191Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 191

Table 8-5 Snort’s External References
Keyword URL Base

bugtraq http://www.securityfocus.com/bid/

cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

arachNIDS http://www.whitehats.com/info/IDS

McAfee http://vil.nai.com/vil/content/v_

Nessus http://cgi.nessus.org/plugins/dump.php3?id=

url http:// (a general URL that’s passed straight through)

Proper use of the external keyword takes this form:

Reference: <SYSTEM> <VALUE>

You can tie together any number of reference options as long as they’re sepa-
rated by a semicolon.

Advanced options and deep dark secrets
The advanced options give you a peek into the dark side: the stuff of the
geek-chic and the wizards of computer security.

Flow control
The flow control option lets you define the direction of a network stream. All
network communications have two endpoints and a direction, so Snort can
be configured to alert whenever one of many other triggers is tripped. Snort’s
internal engine must do some fancier processing for the flow control (includ-
ing some on-the-fly packet reconstruction), but it’s certainly worth the over-
head because it lets you know whether an attack actually worked or not.

Regular expressions
A regular expression (regex in computer-nerd circles) is the incredibly power-
ful voodoo of using wildcards to match substrings within other strings.
Without jumping into the deep end of this black art, a regular expression
combined with a Snort rule makes for powerful mojo!

Protocol options
Because of Snort’s primary function to act as a low-level packet trap and fil-
tering device, it can make lots of specific selections based on granular net-
work protocol components. For example, sometimes hackers use specialized
or fragmented packets to tease at the edge of networks for information about

192 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 192

what they may find if they break in. These probing and recon expeditions
may otherwise go unnoticed by a system administrator or a security package
not configured to watch for such errant behavior. Snort’s native IP rules
options put a huge amount of power at your fingertips.

How does Snort deal with all those rules?
Managing the files and their contents, let alone keeping a huge decision tree
running, is a fine programmatic accomplishment.

Snort keeps track of all those intricate rules (some with more than 20 differ-
ent options) with some fancy data processing internally. Without getting too
bogged down, the process of reading in a particular rule is governed by a
string parser, which cuts apart the rule into its component parts, which are
then stored into a series of linked lists.

Snort is a busy, complex, and low-level application. Every small or subtle
error that goes undetected or that causes minor annoyances can snowball
into a huge performance issue under certain circumstances. Although it
doesn’t happen often, a misplaced command or configuration option can
cause downtime or data loss.

Rule Refinements
This section is the fun part of tweaking specific rules to match your environ-
ment. We recommend a regular strategy of nosing through your Snort output.
As time passes, the composition of your network changes, and the minefield
of vulnerabilities expands.

Trimming the fat
Likely the first refinement that any IDS guru recommends, almost to the point
of being a broken record, is to reduce your false positives by stripping the
dead wood from your rules files.

We recommend that you sit down with a map of your network and a list of
your network connected assets (operating systems and exposed services are
the most critical) and build a table of your computer resources that can be
attacked. From there you comment out those rules that just don’t matter. If
you have ten Windows NT servers running MS Project Server and nothing
else, there’s little need for a thousand Linux/Unix rules.

193Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 193

Commenting out unneeded rules is a simple matter: Just edit the file contain-
ing the rule and place a “#” before the first character of the rule type (gener-
ally “alert”).

Chapter 9 includes more tuning methods that reduce false positives and the
reasons why removing the extra noise keeps your Snort a-snorting.

Making adjustments
Small changes to the rules files of your setup can keep your Snort installation
running at peak efficiency. By refining the rules that you are already running
with Snort, you generate better reports, waste less time reviewing them, and
react faster.

Before editing any Snort rule file, it’s highly recommended that you do the
following:

� Always make a backup of that rule file.

� Make sure that you use a plain text editor that doesn’t add any funky for-
matting or characters when you save the file. The vi program in Linux
and Notepad in Windows are good examples.

Start by finding a rule that can use some tweaking. Maybe this DNS rule was
misclassed:

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:”DNS SPOOF query response PTR
with TTL\: 1 min. and no authority”; con-
tent:”|85800001000100000000|”;
content:”|c00c000c00010000003c000f|”; classtype:bad-unknown;
sid:253; rev:2;)

Out of the box, it’s classified as a “bad-unknown” alert. Maybe it should be
reclassified as a reconnaissance or information probe, consistent with an
“attempted-recon” tag. To change the rule, just edit the dns.rules (the file
that contains the rule we’re modifying) and change it to something like

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:”DNS SPOOF query response PTR
with TTL\: 1 min. and no authority”; con-
tent:”|85800001000100000000|”;
content:”|c00c000c00010000003c000f|”; classtype:attempted-recon;
sid:253; rev:3;)

We bumped up the revision number to 3 so that another person can see that
something’s changed.

194 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 194

If you plan on making lots of changes to the base rules that come with Snort,
keep a local backup copy of the original version outside of the directory that
Snort uses to manage its configuration. If you upgrade Snort without keeping
copies of all your custom tweaking, you may accidentally overwrite the
whole lot with one punch of the enter key!

Building a rule from whole cloth
In some cases, a new rule is needed. Situations that might require a new rule
include:

� Some sort of odd behavior on the network has been noticed: Maybe an
abnormal amount of data is transferred on the network after hours, or a
particular server is rebooting for no apparent reason. An investigation
begins to determine what these oddities mean, and based on captured
network data, you can create a rule that matches the odd event.

� A new attack hits the Internet. There are no existing Snort rules that
match the attack, so you decide to create a rule on your own.

For almost all configurations, the standard set of rules (if regularly updated)
can be just what the doctor ordered. The need to build a whole rule from
scratch isn’t an everyday occurrence.

Here’s a real-world situation that we can use as an example. While on-site at a
customer’s facility, we heard that its network was acting irrationally and that
the customer needed our help in isolating the cause of it. After an hour of
tracking back a huge amount of network bandwidth coming from two work-
station computers, we found that they were infected with some sort of virus.
We diagnosed a virus by running a packet sniffer and capturing all of those
workstations’ network communications.

All of that techno-sleuthing work we did can be best summarized into a
packet capture, or at least a fair approximation of one. What follows is a snip-
pet of what we were looking at:

15:30:05.000913 10.3.232.38.1522 > 192.168.4.81.1434: udp 376

0x0000 4500 0194 bec2 0000 6d11 d406 d963 055d E.......m....c.]
0x0010 d8ab 0224 1069 059a 0180 6b52 0401 0101 ...$.i....kR....
0x0020 0101 0101 0101 0101 0101 0101 0101 0101
0x0030 0101 0101 0101 0101 0101 0101 0101 0101
0x0040 0101 0101 0101 0101 0101 0101 0101 0101
0x0050 0101 0101 0101 0101 0101 0101 0101 0101
0x0060 0101 0101 0101 0101 0101 0101 0101 0101

195Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 195

0x0070 0101 0101 0101 0101 0101 0101 01dc c9b0
0x0080 42eb 0e01 0101 0101 0101 70ae 4201 70ae B.........p.B.p.
0x0090 4290 9090 9090 9090 9068 dcc9 b042 b801 B........h...B..
0x00a0 0101 0131 c9b1 1850 e2fd 3501 0101 0550 ...1...P..5....P
0x00b0 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65 ..Qh.dllhel32hke
0x00c0 726e 5168 6f75 6e74 6869 636b 4368 4765 rnQhounthickChGe
0x00d0 7454 66b9 6c6c 5168 3332 2e64 6877 7332 tTf.llQh32.dhws2
0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend....B.E.P..
0x0100 508d 45e0 508d 45f0 50ff 1650 be10 10ae P.E.P.E.P..P....
0x0110 428b 1e8b 033d 558b ec51 7405 be1c 10ae B....=U..Qt.....
0x0120 42ff 16ff d031 c951 5150 81f1 0301 049b B....1.QQP......
0x0130 81f1 0101 0101 518d 45cc 508b 45c0 50ff Q.E.P.E.P.
0x0140 166a 116a 026a 02ff d050 8d45 c450 8b45 .j.j.j...P.E.P.E
0x0150 c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45 .P........<a...E
0x0160 b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829 ...@...........)
0x0170 c28d 0490 01d8 8945 b46a 108d 45b0 5031 E.j..E.P1
0x0180 c951 6681 f178 0151 8d45 0350 8b45 ac50 .Qf..x.Q.E.P.E.P
0x0190 ffd6 ebca

That same sequence of bytes was being repeated ad nauseum by the two
busted computers. What we didn’t know at the time was that a new worm
outbreak had just started to infest the Internet. What we were seeing with
that hex dump was the MS-SQL worm (also known as Slammer) in its replica-
tion stage. To bandage the situation, we unplugged the two offending comput-
ers and ran to our Snort installation, where we chopped a few bytes out of
this trace to build a signature and ultimately a Snort rule to catch any more
of these instances.

To illustrate, here’s a string of 16 bytes that can represent this novel worm:

c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45

Line number “0x0150” is an example of a segment made into a signature. Now,
on to the fun part of making a Snort rule out of that gunk! The first goal is to
build an appropriate header. A review of the first line of the trace dump gives
all the necessary network information you need to construct a header.

15:30:05.000913 10.3.232.38.1522 > 192.168.4.81.1434: udp 376

Table 8-6 identifies the meaning of each of the preceding line’s component
elements.

Table 8-6 Components of Packet Trace
Description Value

Time packet was sent 15.30:05.000913

Source address 10.3.232.38

196 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 196

Description Value

Source port 1522

Destination address 192.168.4.81

Destination port 1434

Protocol UDP

Packet size (bytes) 376

All that’s needed from Table 8-6 are the protocol and the destination port.
The source IP address, source port, and destination IP address show up dif-
ferently when coming from and going to different systems. Remember, we’re
looking for new instances of this worm, not the infected systems we already
know about. Coupled with the signature that was scissored from that big
block of packet data, that’s the complete makings of a fledgling Snort rule. All
the pieces fit together like this:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:”New MSSQL Worm A-
Multiplyin’”; content:”|c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45|”;
sid:1000001; rev:1;)

The preceding example highlights the following best-practices in creating a
Snort rule:

� We followed the path of the good Snort administrator and made the
Snort ID equal to 1,000,000.

� The revision is marked as 1, meaning that this attempt was our first at
drafting a rule to achieve the wanted results.

After testing, if our signature isn’t right or other elements need tweaking, we
can make the changes and increase the rev number to reflect the changes.

197Chapter 8: Making Your Own Rules

13_568353 ch08.qxd 6/2/04 9:25 AM Page 197

198 Part II: Administering Your Snort Box

13_568353 ch08.qxd 6/2/04 9:25 AM Page 198

Chapter 9

What, Me Worry?
In This Chapter
� Uncovering Snort’s preprocessors

� Tuning Snort’s preprocessors to improve efficiency

� Trimming Snort’s rules to reduce false positives

A new Snort sensor is a sensitive beast, which is good because you want
Snort to be sensitive, but not too sensitive. After all, you need to spend

your time watching for alerts and protecting your network from security
breaches, not tweaking Snort day and night or going on a virtual snipe hunt
for a security breach that didn’t actually happen.

This chapter gives you what you need to know to increase Snort’s reliability
and efficiency by using preprocessors and reducing false positives.

Preprocessing Punk Packets
Snort relies on a packet-sniffing subprocess using the pcap library of func-
tions, which it gets from either the Linux libpcap library (see Chapter 4) or
the Windows WinPcap driver (see Chapter 5). Snort is a network packet snif-
fer, so it works by detecting well-defined patterns (signatures) as network
traffic flows by. As Figure 9-1 shows, preprocessing is the first stop on the
long train ride for a packet through Snort’s systems.

The signature analysis that most people associate with a network IDS comes
into play with Snort’s detection systems, which are built by using the rules
files explored in Chapter 8. Snort has a robust and flexible system of rules;
that flexibility puts a lot of bullets in the belts of security administrators.

This low overhead and plug-in architecture gives Snort such a remarkable
efficiency. You can turn on or off different elements as needed for every
installation, which is one reason why Snort fits “just right” in most environ-
ments. If you don’t need certain functions, turn them off. Preprocessing is
one of the shining examples of that philosophy in action.

14_568353 ch09.qxd 6/2/04 9:26 AM Page 199

Defining preprocessing
Preprocessing fits into this whole quilt at the lowest level: the network layer.
The purpose of preprocessing is to remove as much work as possible from
the detection engine and associated plug-ins (which are far more processor
intensive) by removing packets that just waste Snort’s time.

Imagine having a million tiny balls of three different colors — red, blue, and
yellow — and each ball has a number printed on it. Preprocessing is like sort-
ing the jumbled balls into three trash cans by color and then looking through
the pre-sorted balls for a specific number. If you know that only red balls can
represent an attack in progress, then it makes no sense to spend time care-
fully checking the numbers on any of the blue and yellow balls.

Understanding the benefits
of preprocessing
Preprocessing performs lots of useful tasks for a well-oiled Snort IDS. It pro-
vides a clearer picture of a stream of communications between the comput-
ers, instead of just relying on a single packet without any context. When
two computers are exchanging information, the “conversation” that they’re
engaged in is usually called a session. Sessions have a well-defined beginning
and end, as well as rules for who can speak and at what time.

Session analysis reduces both false positives and false negatives and gives
the detection engine more visibility of the kind of behavior that is actually
occurring. Packet inspection with preprocessing can reveal a lot about what
tricks those wily hackers are employing to subvert the integrity of network
communications, and possibly evade network security sensors.

Libpcap
Library

Snort Packet
Decoder

Reprocessor
(plug-ins)

Detection
Engine

Detection
(plug-ins)

Output
(plug-ins)

Figure 9-1:
Follow

Snort’s nose
as data
packets

travel
through its

many
systems.

200 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 200

Looking under the packet
magnifying glass
When normal network communication transpires (for example, when some-
one is browsing for a movie showtime on Yahoo!), little bits of data go back
and forth in a well-defined, choreographed dance. Some advanced packet
preprocessors detect ill-formed and inconsistent packets, which are usually
indicative of illicit behavior. Such network scanning tools as Nmap and Strobe
allow for the manufacture of fake packets that can cause information leaks
and system crashes.

Detecting anomalies
Snort implements its preprocessing functions at the decoder level after the
packet has been broken out into its major fields and before the rule-processing
engine does any pattern matching or rule analysis. This processing order
gives you the most flexibility and keeps Snort operating at near-wire speed.

201Chapter 9: What, Me Worry?

Statefulness explained
The most useful preprocessor plug-ins are the
ones that involve stream reassembly and state-
ful inspection. Because the normal method of
communication using TCP/IP can be likened to
a bucket brigade (little pails of info with “to:”
and “from:” addresses being carried back and
forth) they’re considered a “conversation” only
when viewed all together, in a stream. Stateful
inspection allows Snort to understand that this
stream of packets is a conversation, rather than
just random, individual packets.

Because Snort’s original operation was as a
packet scope, inspecting each pail being car-
ried, none of the context the communication
was ever imparted on the detection engine. In
other words, some of the information was lost.
You’ve probably heard of state preservation or
stateful inspection more from firewall vendors
than from IDS vendors. But the term means
the same thing whether you’re talking about

firewalls or intrusion detection. You can figure
out a lot of problems simply by tracking what
kinds of packets are transmitted, what flags are
set, and what the different elements of the
envelope (the packet header) are.

By using stateful inspection, Snort can deter-
mine whether someone is portscanning (a
process that usually is part of a hacker’s initial
reconnaissance while getting the lay of the
land). Also, Snort can detect stealth or mal-
formed packets, which are more likely indica-
tions of probes sent out from a would-be
attacker. By comparing some of the basic build-
ing blocks of a packet across time and across
different hosts, the preprocessor plug-in can
get a tidy view of what would otherwise be
invisible behavior. This powerful benefit is one
of the many imparted by using preprocessing to
round out your Snort installation.

14_568353 ch09.qxd 6/2/04 9:26 AM Page 201

When you implement more and more front-end analysis, speed is sacrificed.
In essence, the more examination you do, the slower the entire system, but,
the better the results. One of the most important themes with tuning Snort —
or any other IDS — is trying to find that fine line between too much noise and
missed attacks: Eradicating false positives should be your first and foremost
goal.

This goal makes Snort’s method of preprocessor plug-in design a well thought-
out and attractive option. If you want to expend the extra resources to scour
packet streams for more data, simply turn preprocessing on. If you don’t
want the hassle, turn preprocessing off.

Keeping packets in a row
In this section we explore how we can setup and use the best of the pre-
processors that come standard with your Snort distribution: stream4 and
frag2. Without stream4 and frag2, your Snort system would be oblivious to
scans against your network and attempts to bypass your IDS or firewall.

The stream4 preprocessor
The stream4 preprocessor was built to help Snort get a better view of TCP
sessions by providing stateful inspection and session reassembly. According
to its original design, Snort is basically stateless. The stream4 preprocessor,
when enabled, allows Snort to monitor thousands of concurrent sessions
and has the added flexibility of activating state management for user-defined
ports. By restricting the preprocessor to only a few ports, you can save a lot
of processing power, which would normally be wasted on trying to keep track
of potentially millions of sessions in a large-scale network.

Also, you can set stream4 to alert you when sniffed packets aren’t part of any
session at all. This event really only occurs when a hacker is trying to mas-
querade as one of the computers involved in a session or is trying to insert
himself into the communications stream, often called a man-in-the-middle
attack.

Stream4 also allows the construction of rules using the flow keyword that
can identify the direction and state of the traffic. These rules are especially
helpful in determining how sessions begin and end and whether an attack is
inbound or outbound from your network, as well as giving some indication
as to the nature of the session. (Chapter 8 shows rules building and testing,
including many rules that rely on the stream4 preprocessor for a complete
analysis.)

202 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 202

Configuring the stream4 preprocessor
To enable stream4, open your snort.conf file with a text editor and make
sure that the following line is uncommented:

preprocessor stream4: detect_scans, keepstats machine

The stream4 preprocessor has several different options, which you include
as a comma-separated list, as shown in the preceding example. The following
options govern what you can configure the preprocessor to look for (includ-
ing portscans and state problems):

� detect_scans: The detect_scans option (which is normally set to Off
if it’s not included on the configuration file) instructs the stream4 pre-
processor to alert when a portscan is attempting to avoid detection
by using stealth techniques. Because the regular way TCP/IP traffic
works involves a three-step handshake, which many types of stealth
portscanners intentionally fail, they’re snooped out by using this
stream4 parameter.

� detect_state_problems: The detect_state_problems option (which
defaults to Off if not explicitly set) instructs the stream4 preprocessor to
analyze how the state of a flow of TCP packets is kept. This feature is
intended to catch faults or failures if the state mechanism of a TCP ses-
sion is somehow altered by a peer. Given how noisy this parameter can
be, we don’t recommend it unless you intend on doing some heavy in-
depth analysis. Although good at detecting packets that are malformed,
many implementations of TCP/IP have small variations that trip this
sensor.

� disable_evasion_alerts: The disable_evasion_alerts option is
an advanced setting that detects special cases where an attacker tries to
fool an IDS detection engine into ignoring a packet, but the packet gets
to the target.

We recommend leaving this option off (which is the default). It can gen-
erate many false positives and eat lots of processing power.

� ttl_limit: TTL means Time To Live and is a common term used when
talking about packet transmissions over a network. A TTL setting can
help keep tabs on how much time a packet flow takes to reach its desti-
nation. Sometimes an attacker tries to evade detection or masquerade
as being somewhere else by twiddling the TTL settings with a session.
You can use the ttl_limit option to alert you to a big variation in the
TTL setting across a stream of traffic. This parameter is hard to tune
properly, but it’s a safe bet to use 10 as a starting point as the maxi-
mum TTL.

203Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 203

� keepstats: The keepstats parameter accumulates a set of statistical
data on the connection tracking and session state analysis, which can be
logged with either the machine keyword (which actually is a text file) or
the “binary” keyword, which tools such as Barnyard can read.

� noinspect: To curb excessive processing on a busy Snort installation,
the noinspect switch can restrict the stateful inspection to only those
ports listed with the stream4_reassemble preprocessor.

� timeout: The timeout parameter sets an idle time after which stream4
stops monitoring a particular session. Basically, if Snort doesn’t see a
packet as part of an active session in its table within the time specified
by the timeout switch, then that session is flushed from memory.
Because this option defaults to 30 seconds without even specifying it,
Snort’s normal behavior is to only perform stateful analysis of traffic
that has been active within a 30-second window.

� log_flushed_streams: The stream4 preprocessor works by building a
session block from the little packets that comprise the entire stream.
Using this method, the preprocessor can look for anomalous behavior
and perform rule testing. This session block, which is kind of like a
gigantic packet, can be flushed to disk for troubleshooting and further
analysis. The log_flushed_streams parameter to stream4, if used,
instructs the preprocessor to drop the session block in the logs when it
triggers an alert.

Our advice is to experiment with the preceding options, see what works well
for you, stick with it for a time, and then go back and tune as attack trends
change.

Stream4 and session reassembly
Somewhat similar to session tracking (see the preceding section), Snort’s
stream4 preprocessor also supports full session reassembly. By keeping a
window of packets that comprise a session in memory, Snort can alert you
to attacks that span multiple packets.

TCP connections can have data fragmented across a group of packets, while
UDP transmissions are required to contain all the data in a single packet.
Many applications that use TCP for their transfer medium are interactive in
nature and often have lots of fragmentation. SSH and telnet session are noto-
rious for splitting data in this way.

By reassembling packets, Snort’s analysis and detection engines can catch
the sneakiest of attacks. For example, say that you wanted notification when
someone transmits a sequence of characters containing /etc/passwd (the
location of the users and groups on a Unix operating system) over a telnet
session. Telnet sends a separate packet for each keystroke. So, in essence,
what you’d have is thousands of little packets, with one character in each,
which is horrible for a rule-matching system like Snort. Reassembly globs all
of those individual packets into a giant packet to which the rules engine can
analyze.

204 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 204

Session reassembly is set up in much the same way as the stream4 pre-
processor (which we discussed in the preceding section). By adding the
following line to your snort.conf configuration file, you can enable the
reassembly features.

preprocessor stream4_reassemble: both ports 21 23 80 110

The following options are available in the stream4_reassemble preprocessor:

� clientonly, serveronly, both: The first parameters given to
stream4_reassemble identify which sides of the connection to conduct
reassembly on.

• Clientonly refers to traffic inbound to what you’ve defined as
$HOME_NET in your snort.conf file.

• serveronly refers to traffic outbound.

• Both means reassembly of everything.

� ports: The ports parameter directs Snort’s stream4 preprocessor to
restrict its reassembly activity to just the ports identified with this
switch.

• By using the default keyword, Snort performs reassembly on
ports 21 23 25 53 80 110 111 143 and 513.

• The keyword all performs reassembly on all ports, which we
don’t recommend (except for short periods of testing).

� noalerts: The noalerts parameter tells stream4 not to report on
strange or problematic issues encountered during reassembly. For
example, traffic manually inserted into a stream or modified packets is
detected and logged, and stream4_reassemble generates an alert,
unless this option has been indicated.

The preceding example of stream4_reassemble usage should be enough for
most people. If you either use other protocols where you want reassembly to
occur or run telnet, FTP, HTTP, or POP on nonstandard ports, change the
ports listing to the appropriate application ports for your configuration.

The frag2 preprocessor
Because many varieties of devices are out there (and many can transfer data
over TCP/IP), subtle implementation differences result in packets that must
sometimes be reorganized and chopped into smaller packets, a process that’s
called fragmentation.

To a network-based IDS, fragmentation can result in false negatives (real
attacks that are missed) because the attack actually spans several packets.
The original offending data may have been in a single packet at the beginning
of its journey, but through the normal process of routing, it may have been
redistributed over several packets, which hides it well. Such fragmentation

205Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 205

poses a special problem for Snort, but, thinking ahead, the Snort team has an
answer: the frag2 preprocessor.

By enabling frag2 in your snort.conf file, Snort’s packet decoder uses a sim-
ilar reassembly process for reconstructing fragmented packets, before sub-
mitting them to the detection engine. It takes the pieces and puts Humpty
Dumpty back together again.

To enable the frag2 preprocessor, use a configuration like this:

preprocessor frag2: timeout 60

Normalizing network traffic
The decoding and normalization of certain types of network traffic is an
important preprocessing chore. Pattern matching systems like Snort can fail
when an attacker introduces subtle variations. These variations are perfectly
acceptable and even warranted in most cases, but they can be misused by
attackers.

There are many ways to encode a Web page address into a URL It’s possible
for two encoded URLs to look completely different to the human eye, but are
the same as far as a Web server is concerned. For example, the following two
URLs are exactly the same, yet they look entirely different.

http://www.somewhere.tld/cgi-bin/form-mail.pl?execstuff
http://0/%63g%69%2d%62in/%66%6fr%6d%2d%6d%61%69l%2e%70l?%65%78%65%63%73%74uf%66

Of course, these different notations can easily trip up a Snort rule, which
matches against an exact pattern. In the preceding example, consider that a
rule matches the form-mail.pl string of bytes, which generates a Snort
alert. The second URL would sneak by the detection engine, though it’s just
as lethal as the first.

Snort’s normalization preprocessors are an excellent way to combat these
open doors. The following sections cover three of these preprocessors in
more depth: HTTP, telnet, and RPC (Remote Procedure Call).

http_inspect: a preprocessor for HTTP
With Snort 2.1, the http_decode preprocessor gave way to the http_inspect
preprocessor. If you use Snort 2.0, use http_decode. If you use Snort 2.1
(or later), use http_inspect.

206 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 206

We recommend installing and using the http_inspect preprocessor. Using
http_inspect normalizes all packets containing different forms of HTTP com-
munication into a state that Snort can easily compare and scan through its
rules. A huge amount of Web traffic crosses the Net, and many attacks rely on
the HTTP protocol as their transmission medium.

To configure your Snort system so that it normalizes Web traffic, you need to
put a few lines in your snort.conf configuration file that look something like
the following:

preprocessor http_inspect: global iis_unicode_map unicode.map 1252
preprocessor http_inspect_server: server default profile all ports { 80 }
preprocessor http_inspect_server: server 172.16.1.1 profile all ports { 80 }

The first configuration line, which contains the keyword http_inspect, is
for setting up the global behavior of the preprocessor, whereas the other
lines with http_inspect_server in them are for specializing the configura-
tion for individual machines. You need to include the iis_unicode_map
keyword and its argument. Without it, Snort complains and refuses to start.

The options that follow the http_inspect_server keywords include the

� Ports on which the preprocessor should operate (between the {}s).

� A series of operations that should be used when normalizing the traffic.

The options described in the next sections are some of the most useful
http_inspect options. They show how HTTP preprocessing really works.

iis_unicode <yes|no>
Characters in English and Western-European languages are normally repre-
sented using the ASCII encoding system. ASCII doesn’t cut the mustard for
languages that require extended character sets, so a larger encoding system
called Unicode, or UTF-8, is used. By using the iis_unicode keyword to the
http_inspect_server preprocessor, all non-ASCII characters are converted
back into ASCII for comparison.

The iis_unicode option is important because it alerts on attempts to hide a
URL by using different encoding techniques.

double_encode <yes|no>
Double encoding is often used to preserve % in URI encoding. The percent
sign is most frequently used as an escape character within a URL, giving uses
the full spectrum of additional characters as part of their input. Because
hackers may try to disguise their attempts using a way to obfuscate their
traffic with extra %’s, this option helps trap and contain them.

207Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 207

iis_backslash <yes|no>
Windows and DOS systems use the back-slash character \, much like Unix
systems use the / character. Web browsers, Web servers, and URLs follow
the lead of the Unix world and use the forward slash as part of an encoded
URL. Microsoft’s IIS Web server can treat both identically, yet Snort only
matches on exact sequences of bytes. The iis_backslash parameter can
catch odd sequences of slashes as part of an attacker’s behavior.

apache_whitespace
The apache_whitespace parameter helps when a muck of whitespace char-
acters try to sneak around the detection engine. The apache_whitespace
option automatically converts all tabs in a URL into spaces, before the detec-
tion engine compares the data in the URL against the Snort rules.

telnet_decode: a preprocessor for telnet sessions
In much the same way that http traffic can be preprocessed before being
turned over to the detection engine for adjudication, telnet remote interac-
tive command-line sessions can be sent through a preprocessor.

The two peers using the telnet protocol do their housekeeping via an inline
protocol that can often trip-up the Snort detection engine. The inline negotia-
tion channel involves such flow control parameters as discussing features
the client and server support and what kind of terminal should be emulated.
This noise is useless for the detection engine. By using the telnet_decode
preprocessor, telnet protocol chatter can be filtered out before being ana-
lyzed for security rule matches.

The following is an example of how to configure telnet_decode in your
snort.conf configuration file:

preprocessor telnet_decode: 23

The trailing 23 is the port number that the preprocessor should restrict its
activity to. Telnet normally runs on port 23, but if you run your telnet
daemon on a different port, then change this number to that port.

You can specify multiple ports by adding to the end of the config line, sepa-
rated by spaces.

rpc_decode: a preprocessor for RPC connections
Applications that use Remote Procedure Calls (RPC connections) use a
different connection method than most common network services. Servers
using RPC don’t listen on published well-known ports, such as TCP port 22
for telnet or TCP port 80 for HTTP. Servers using RPC bind to a random,

208 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 208

unreserved port and publish that they’re available to another application
(the local portmapper). You may already be familiar with portmapper if
you’ve seen what application is listening on a TCP and UDP ports 111 on a
standard Unix computer.

How can you snort when you don’t know where to put your nose? The
answer is to decode the traffic on port 111, which is the traffic cop port. It
isn’t a perfect answer, but it helps get the job done.

To configure the rpc_decode preprocessor, insert the following line into your
snort.conf configuration file:

preprocessor rpc_decode: 111 32711

The numbers that follow the colon are ports to regard for decoding. Port
32711 is a port that Sun’s Solaris operating system uses for portmapper in
addition to port 111.

Deciding what’s normal and what’s not
A big advantage of using a preprocessor plug-in is the detection of anomalous
protocol behavior. With anomaly detection preprocessors, Snort can be
extended to detect attacks using more advanced techniques than simple pat-
tern or port matching.

Some of the best examples of this advanced analysis are well demonstrated
with the portscan and bo preprocessors.

portscan, portscan2, conversation
Portscanning is a technique that hackers use to “get the lay of the land” of a
network that they intend to target. If we compare digital attacks to real-world
warfare ones, portscanning is analogous to sending a surveillance and recon-
naissance team to catalog the buildings, access portals, and armed guards
that protect an installation.

Typical Snort rules can’t see whether an individual packet is part of a probing
attack. The portscan, portscan2, and conversation preprocessors operate on
both

� Individual packets

� Groups of packets

What makes a portscan a portscan? Together, several factors paint a pretty
good picture of the prober’s intent:

209Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 209

� The time over which the packets were sent.

� The number of destination ports the packets were directed toward.

� The number of destination hosts addressed by the packets.

Snort’s portscan preprocessor operates by watching for a specified number
of packets, sent within a certain timeframe, directed at any of the hosts on
our network. For example, portscan produces an alert if it’s programmed
with a threshold that 100 different ports were addressed within 5 minutes all
from the same IP address source.

The portscan preprocessor is configured in the Snort configuration file with a
line like this:

preprocessor portscan: 172.16.100.0/24 10 30 /var/log/snort/portscan.log

For the specifics on those options, check the configuration flags, which con-
form to this setting:

preprocessor portscan: <network> <# of ports> <time period> <logfile>

The example shows that this instance of the portscan preprocessor is set
up to produce alerts whenever someone is probing the 172.16.100.0 Class C
network with at least 10 different ports within 30 seconds.

A configuration line in your snort.conf file can tell the system to ignore cer-
tain networks. This line is handy when you do port scans of your own net-
work for topology mapping purposes. To configure portscan-ignorehosts,
edit your snort.conf file and input a line using the following syntax:

preprocessor portscan-ignorehosts: network/netmask

To ignore networks 192.168.4.0/24 and the host 10.10.10.66, add the following
line to snort.conf:

preprocessor portscan-ignorehosts: 192.168.4.0/24 10.10.10.66/32

Sneaky stealthy snoops: advanced portscan techniques
The portscan preprocessor has an interesting advanced behavior that helps
you detect obvious rogues who are trying to paint a picture of what you have
online. Often hackers use specialized tools to try mapping a network by slip-
ping “broken” or “invalid” packets past Snort. Many of those packets should
never be seen within the context of normal network communications, and
others shouldn’t exist at all. Snort can catch these stealth-scanning methods
by using the portscan preprocessor’s ability to detect these manufactured
fake packets. Table 9-1 summarizes the most common stealth portscanning
techniques.

210 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 210

Table 9-1 Stealth Techniques Detected by Snort
Packet Type Description

FIN Only the FIN flag in the packet header is on.

NULL No flags are on (which should never happen).

SYN/FIN Only the SYN and FIN flags are present.

XMAS Only the FIN, URG, and PSH flags have been set.

Back Orifice (bo)
In the late 1990s, an underground hacking group named The Cult of the Dead
Cow (CDC) created a remote administration application called Back Orifice
(a play on Microsoft’s Back Office program suite) to control Windows operat-
ing system computers from afar. While Back Orifice can be used for legitimate
system administration, it’s also a favorite backdoor program for intruders. All
you must do is trick someone into installing the program, which isn’t hard
because it’s small and easy to package with other programs.

The bo preprocessor focuses on traffic associated with the Back Orifice tool,
which is an incredibly strong indication of a hacker in your midst.

The bo preprocessor can detect the first few moments of a BO connection
attempt across the network and alert on it appropriately. Configuring the bo
preprocessor is straightforward. Simply edit your snort.conf file and add
the following:

preprocessor bo

Experimental preprocessors
A handful of other preprocessors — some developed by groups outside of
the Snort development organization — are out there. These experimental and
third-party can

� Handle ARP spoofing. (ARP stands for Address Resolution Protocol and
deals with how computers’ IP addresses are found on a local Ethernet
network.)

� Look aggressively for unknown exploit code that hasn’t been identified
by a signature yet.

� Analyze the other protocols found in a standard internal network.

211Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 211

Fine Tuning: Reducing False Positives
You can fine-tune your Snort installation to reduce false positives. The
single largest, easiest way to approach that goal is to turn off unneeded rule
processing.

Removing unnecessary rules
Thousands upon thousands of rules come standard with Snort, and that
number doesn’t include any that you may have borrowed from elsewhere or
created yourself. Probably less than half of these rules are relevant to what is
running around your shop.

Cataloging your network
Probably the best place to start when you want to remove rules is with your
network topology map. If you have a gigantic ocean-crossing organization,
you have lots of network diagrams laying about giving you the placement of
your technology assets with specific details on the hardware in use, operat-
ing system, installed applications, available services, and such access cre-
dentials as the user and group.

The best filters to strip unneeded rules from your setup are operating sys-
tems and installed network applications.

Scanning your network
Scanning your network is a quick way of finding out whether any rogue ser-
vices or rogue computers are lurking on your IP network. Looking through
the eyes of the enemy is often rewarding from a planning and understanding
standpoint.

Your favorite tools for network or service mapping are ideal for collecting
this info. For example, NMAP (a popular open-source network mapping tool,
found at http://www.insecure.org/) produces a very quick understanding
of how curious passers-by see your network.

Commenting out any unneeded rules
Your goal in creating this network audit is to find rules in your Snort rules
directory, open them, and place a “#” before them, which disables them from
being found or logged.

If you have a network of only Windows 98 workstations and those platforms
don’t offer any services, you can safely disable all the Linux and Unix
exploits, probes, and other attacks within Snort. It’s a waste of time to see
them in your logs or have Snort look for them.

212 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 212

Coming up with an action plan
Let’s say you’re running a 30-person insurance claims-processing office, with
lots of medical and financial records stored on four different file servers (all
four running Windows 2003 Server). The company processes its own e-mail
and Web services, outsources spam and virus-filtering to a third-party, and
runs a few custom applications to handle the ordinary course of business.
Staff members also use Windows XP Professional computers and laptops for
daily activities. The office does not have any Macintosh or Unix computers
(although e-mail may be moved to an open-source solution, time permitting).
There’s a firewall for NAT. Access Control Lists (ACLs) block everything
except inbound mail to the mail server and Web traffic to the Web server.

This office’s system administrator first needs to organize what’s known about
the network into a report. Table 9-2 summarizes the most important points
from the preceding example network.

Table 9-2 Network Summary
Host IP Address O/S Exposed Services (Ports)

10.0.0.1 Cisco Routers & Switches None

10.0.0.2 Windows 2003 25, 80

10.0.0.3 Windows 2003 25, 110, 143, 993, 995

10.0.0.4 Windows 2003 80, 443, 3218

10.0.0.5 Windows 2003 80

10.0.0.6- Windows XP Professional Not available through the firewall
10.0.0.28

The network summary is your roadmap for removing unneeded junk from
your rules and configuration files. For example, most of the rules in web-
cgi.rules still apply. However, you can comment out almost half of the
lines in shellcode.rules and everything in rservices.rules.

Usually, you decide which rules to remove based on several factors: The
source and destination ports, the protocol, and the message body of the rule,
which should give you an extra bit of explanation of whether the rule applies.

For example, check the following rule from the exploit.rules file:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:”EXPLOIT x86 windows
MailMax overflow”; flow:to_server,established; content:”|eb45 eb20
5bfc 33c9 b182 8bf3 802b|”; reference:bugtraq,2312;
reference:cve,CVE-1999-0404; classtype:attempted-admin; sid:310;
rev:5;)

213Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 213

� The header of the rule indicates that it’s designed to catch an exploit
directed at an SMTP (mail) service listening on the well-known port 25.

� The message part of the body of the rule suggests that the exploit was
engineered to operate on an Intel x86 processor running the Windows
operating system and the MailMax application server software.

Many of the stars align for this rule to match the example network, but
not all of them. For example, if the mail implementation is offered using the
Microsoft Exchange service instead of MailMax, the buffer overflow indicated
by this rule isn’t a threat. You can safely comment it out.

Using a security audit tool
A security auditing tool is an excellent way to tune your Snort installation.
A vulnerability scanning tool produces a detailed view of the specific vulnera-
bilities that each host on your network may be susceptible to.

We recommend investigating a very robust and capable tool called Nessus
(http://www.nessus.org/), which was written by developers guided by the
same principles that drove Snort’s creation:

� An extensible client-server architecture using plug-ins.

� An up-to-date set of vulnerabilities in its testing database.

� A robust scripting language.

The Nessus server runs on Linux and Unix systems, and a client is available
for Windows systems (NessusWX).

Once Nessus has been executed against your internal network, you can use
its output to locate machines that are vulnerable to attacks. If you can patch
the vulnerabilities Nessus found, then by all means patch them. If you can’t
patch the vulnerabilities, then your Nessus output is a list of attacks you
need to watch out for.

Nessus can test thousands of attacks (all developed as plug-ins). Once a
Nessus report is available, we found that the most ideal method for locating
and editing your Snort rules is to compare one of the unique identification
tags that both systems share:

� The Common Vulnerabilities and Exposures (CVE) database (http://
cve.mitre.org)

� The BugTraq Vulnerability Mailing List (http://www.securityfocus.
com/archive/1)

� The arachNIDS signature database (http://www.whitehats.com/ids/)

214 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 214

For example, after running Nessus, you find that hackers can use CVE-
1999-0494 against one of your mail servers. A little shorthand Unix grep-
ping easily locates that rule within Snort’s rule files:

cd /usr/local/snort/rules
grep “CVE-1999-0494” *.rules
pop3.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 110 (msg:”POP3 USER overflow

attempt”; flow:to_server,established; content:”USER”; nocase; con-
tent:!”|0a|”; within:50; reference:bugtraq,789; reference:cve,CVE-
1999-0494; reference:nessus,10311; classtype:attempted-admin;
sid:1866; rev:5;)

You found a vulnerability. Make sure that you patch it and update your Snort
rules.

215Chapter 9: What, Me Worry?

14_568353 ch09.qxd 6/2/04 9:26 AM Page 215

216 Part II: Administering Your Snort Box

14_568353 ch09.qxd 6/2/04 9:26 AM Page 216

Chapter 10

Dealing with the Real Thing
In This Chapter
� Responding to an attack

� Figuring out how far the attacker got

� Recovering from an attack

� Learning from an attack

A real attack is something we hope you never have to deal with, but
you’re nuts to turn a blind eye and think it won’t happen. The attack

may come from a skilled hacker, a script kiddie, a worm, or an insider . . . but
it will come.

Fortunately, you have a Snort IDS. Snort is installed, configured for your net-
work, tuned up, and you’re watching its output using ACID. Nothing will get
by you, right? Well, hopefully not, but just in case an attack does slip past
your watchful eye, you need to know how to deal with it. After all, what good
is detecting an attack if you don’t know how to respond to it? This chapter
gives you what you need to know to detect, track down, and remediate an
attack against your computer systems — all the while using Snort and ACID.

Developing an Incident Response Plan
“Houston, we have a problem.”

Remember in the movie Apollo 13 when the service module’s oxygen tank
explodes and astronaut Jim Lovell (played by Tom Hanks) utters that oft-
quoted line? The explosion sends the Apollo capsule hurtling through space
and drastically reduces the crew’s on-board oxygen. A problem? Now that’s
an understatement! Well, security gurus have their own understated word
for any bad event that breaches the security of your network and computer
systems: incident.

An incident can be a worm outbreak, a system cracked by hackers, a DOS
attack against a network, or even an insider snooping around where he
shouldn’t. What all incidents have in common is that

15_568353 ch10.qxd 6/2/04 9:26 AM Page 217

� They affect the security of your network in a negative way.

� You need to be respond to them quickly.

� You need to be take care of them effectively (referred to as remediation
by security wonks).

A whole subfield of information security is out there. It’s called incident
response, and it deals with how you respond and remedy incidents. Part of
incident response is coming up with an incident response plan.

If you’re like us, then the idea of having to actually sit down and document
some kind of plan probably sounds about as pleasant as a root canal. Believe
us, though: In the heat of battle against a network attack — with tempers
running high, the coffee running low, and people worried about their jobs —
your incident response plan is going to be the voice of reason. Hence we
include the following simple steps for dealing with network security incidents:

1. Watch for an incident.

Use Snort and your common sense to keep your eyes peeled for attacks .

2. Identify the incident.

Use Snort and its resources to figure out what kind of attack you’re
dealing with.

3. Investigate the incident.

Correlate your Snort logs with system logs and information gleaned from
other tools.

4. Recover from the incident.

After you know what happened, get your system back in working order.

5. Learn from the incident.

Use what you learned about this attack to fine-tune your network secu-
rity and response plan.

The rest of this chapter delves into each of the preceding five steps, and
shows you how to tackle an incident from discovery to recovery.

Houston, We Have an Incident
The first step in responding to an incident is knowing that the attack hap-
pened. That’s why you installed Snort, right? Snort often alerts you to an
attack before the attack causes any damage, but you also have to be pre-
pared in case Snort fails to alert you (or you fail to notice in time).

218 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 218

In an ideal world, Snort catches an attack and alerts you of it before the
intruder gets very far. This scenario means, of course, that Snort needs to let
you know when an attack is occurring. For all Snort’s flexibility, the number
of ways an alert can get from your Snort sensor to your eyeballs boils down
to two:

� Real-time alerts notify you when an attack is happening. (We tell you
what you need to know to generate real-time alerts in Chapter 11.
Several of the tools in Chapter 16 can also generate real-time alerts.)

� Viewable alerts are viewed and analyzed through Snort consoles, such
as ACID (which we tell you how to get up and running in Chapter 7) or
by looking at the Snort alert file directly.

In addition to using real-time alerting, we recommend that you or someone in
your organization be responsible for viewing and analyzing recently gener-
ated unique alerts on a daily basis. Sometimes it takes a human to recognize
seemingly unrelated events, and no modern computer has the gut instinct of
a person watching the Snort console every day. You can monitor these events
with the ACID viewing tool (see Chapter 7).

Benign alerts
Certain alerts shouldn’t cause you concern:

� Alerts that don’t apply to your network. If you’re not running Microsoft
SQL or the Microsoft Data Engine (MSDE), for example, you can ignore
the MS-SQL Worm propagation attempt alert, which pertains to the
SQL Slammer worm. In fact, rules that don’t apply to your network are
good candidates to get rid of in order to reduce false positives. We tell
you how you can reduce false positives on your Snort IDS in Chapter 9.

� Ping sweeps and network scans. Ping sweeps and network scans go on
all the time, and if you tracked every single one of them, you wouldn’t
have time for anything else (and the source IP address may end up being
spoofed anyway). You should, however, keep these alerts archived, as
they’re often the prelude to a more serious attack, and it may be useful
in an investigation to go back and look at them. Also, look for trends in
scanning, such as a large increase in the overall numbers of scans, or a
group of scans focused on a particular system, as they can be the pre-
lude to a more serious attack. ICMP PING and SCAN rules are under the
attempted-recon Snort rule classification.

Malicious alerts
Alerts you should look out for on your ACID analysis console are the following:

219Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 219

� Attempts to escalate privileges. Privilege escalation usually shows up as
an attempted-admin or attempted-user classification in Snort, mean-
ing that someone is trying to gain administrator or user-level access to
the system. A successful-admin classification means that a successful
administrator or root login was detected.

� Attempts to insert shellcode. Shellcode is often inserted when a buffer
overflow vulnerability is exploited in a program. This exploit gives the
attacker the ability to run system commands as the user that the
vulnerable program was running as, sometimes root or administrator.
Shellcode detection shows up as the shellcode-detect classification
in Snort.

� Brute force login attacks. By using a brute force attack, an intruder
(or worm) hopes to guess the password of a given user. Brute force
attacks are performed over services that require logins, such as Telnet,
FTP, POP, IMAP, or HTTP authentication sessions. Brute force attacks fall
under the suspicious-login classification in Snort.

� Denial-of-service (DOS) and distributed denial-of-service (DDOS)
attacks. DOS and DDOS attacks can take down your systems or network
by exhausting resources, such as bandwidth, TCP connections, memory,
disk space, or CPU time. With a DDOS attack, you may not be only a
victim, but also an unwitting co-attacker! DOS and DDOS attacks usually
fall under the attempted-dos classification in Snort.

Checking an attack with ACID
Figure 10-1 shows a bit of our ACID console for a particular date. The first two
octets (the numbers between the dots) of the IP have been blurred to protect
the innocently unpatched.

In our alert.fast log, the same slice of alerts looks like this (note that the
numbers that were blurred in Figure 10-1 were replaced with Xs and Ys in the
text):

Figure 10-1:
Snapshot
of evil on

the Internet:
A partial list

of today’s
attacks.

220 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 220

02/07-15:55:16.344074 [**] [1:2003:2] MS-SQL Worm
propagation attempt [**] [Classification: Misc
Attack] [Priority: 2] {UDP} Y.Y.75.228:1100 ->
X.X.2.26:1434

02/07-16:05:18.835701 [**] [1:2003:2] MS-SQL Worm
propagation attempt [**] [Classification: Misc
Attack] [Priority: 2] {UDP} Y.Y.4.8:1040 ->
X.X.2.26:1434

02/07-16:27:00.305843 [**] [1:2192:1] NETBIOS DCERPC
ISystemActivator bind attempt [**]
[Classification: Attempted Administrator Privilege
Gain] [Priority: 1]{TCP} Y.Y.49.147:4996 ->
X.X.2.26:135

02/07-16:27:00.895142 [**] [1:1444:2] TFTP Get [**]
[Classification: Potentially Bad Traffic]
[Priority: 2] {UDP} X.X.2.26:1046 -> Y.Y.49.147:69

The first two alerts are MS-SQL Worm propagation attempts. Even though
this worm is a Priority 2 attack and we’re running Windows 2000 Server on
our network, we’re not running MS SQL or the MSDE, so we can safely ignore
this one.

After the MS-SQL Worm propagation attempts, the log reveals an interesting
one: NETBIOS DCERPC ISystemActivator bind attempt. What the heck is
an ISystemActivator bind attempt? And why is the system with the IP
address Y.Y.49.147 trying to bind to our server (with the IP address of
X.X.2.26)? This NETBIOS DCEPRC alert is classified as an attempted-admin
alert, which throws up a red flag because it’s an attempt to escalate privileges.

Less than a second after the DCERPC alert, Snort logs a TFTP Get (a down-
load attempt) from our server to the same outside system, Y.Y.49.147.
TFTP is a simple, unauthenticated file transfer protocol that is mostly used
for transferring configuration files and software to and from network equip-
ment. Our server with the IP address X.X.2.26 is a Windows 2000 Server
running IIS. The server shouldn’t be TFTP downloading anything from anyone
for any reason. It’s time to delve deeper.

Using Snort to Track an Attack
So you think you’re under attack, either because of a Snort alert or because
your system is behaving strangely? Snort is an excellent tool for tracking and
digging into an attack.

221Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 221

Obtaining more information on an alert
If a particular Snort alert causes you concern, your first step is to get more
information on the alert. In Chapter 8, we talk about the various external
resources that you can include as part of an alert rule; examples are CVE,
Bugtraq, Arachnids, Icat, and URLs inserted into a rule by the rule’s author.
These resources provide more information on a given alert.

ACID makes obtaining more information on an alert easy. In the Signature
column of an alert listing, to the left of the name of the alert and ensconced in
square brackets ([]), are hyperlinks to pertinent resources. All alerts have a
hyperlink to the alert’s own entry in the Snort alert database. (You see this
link as “[snort]” in ACID.)

As an external resource, we recommend the Common Vulnerabilities and
Exposures dictionary. The CVE is nice because it gives you just the simple
facts about a vulnerability, as well as links to more information. If CVE is
available for the particular vulnerability you’re checking on, you see a
“[cve]” hyperlink.

If we take a look at a “NETBIOS DCERPC ISystemActivator bind attempt”
alert (which from hereon out we call DCERPC for short, even though Snort
issues several different NETBIOS DCERPC alerts): We want more information
on DCERPC, so we click the “[cve]” link, The CVE description reveals that
this attempt is a buffer overflow attack in the DCE interface of RPC, that it’s a
Windows vulnerability, and that it’s commonly exploited by worms such as
Blaster and Nachi.

At this point, it looks like we’re the victims of an DCERPC ISystemActivator
attack, either by someone using an attack tool or by a worm. But which one?
And was the attacker or worm successful?

Digging into a triggered alert
If early indications are that an alert may be the real thing, you need to dig a
little deeper into the packet that triggered the alert. To do so, go to the list of
alerts in your ACID console. The ID column contains unique ID numbers for
the alerts listed. Find the alert you want to investigate and click its ID. What
appears is an in-depth look at the packet information that triggered the alert.

Meta information
In red is the Meta information on the alert, which gives you Snort-specific
information, such as when the alert was triggered, the triggered alert signa-
ture, which Snort sensor triggered the alert, and any ACID-specific alert

222 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 222

group information. The signature triggered is important because it tells you
what Snort rule matched the offending packet. By knowing which Snort
sensor triggered the alert, you’ll know where on your network the alert was
first seen.

IP packet information
In blue is the IP packet information. IP packet information is part of Layer 3
of the OSI model. (For a refresher on the layers of the OSI model, see Chap-
ter 1.) What’s most important in the IP packet information are the source and
destination IP addresses, and the host and domain name for the source and
destination (if this information is available via DNS). This information is
useful for tracking down an attacker, or seeing which of your machines are
being attacked.

TCP and UDP protocol information
In green is the TCP or UDP protocol information. (Both are Layer 4 in the OSI
model.) What’s most important here are the TCP or UDP source and destina-
tion ports of the attack. We’re especially concerned about the destination
port because that’s the port that’s being attacked.

Sometimes you may not recognize a TCP or UDP port (you have to remember
only 65,535 of them — come on!), in which case you can use the Internet
Ports Database (found at http://www.portsdb.org) or the Internet
Assigned Numbers Authority (IANA) port numbers document (found at
http://www.iana.org/assignments/port-numbers).

Payload information
At the bottom of the page, in purple, is the Payload of the packet that trig-
gered the alert. (The payload is at Layer 7 in the OSI model.) This section
shows you the actual contents of the packet in question, in both hexadecimal
(hex) and ASCII text. This information is important because it can give you a
better idea of the specifics of the attack, and how far it got.

Using the Meta, IP, Protocol, and Payload information
Figure 10-1, shown earlier in the chapter, shows DCERPC and TFTP alerts. If
you click the link for the DCERPC attempt, labeled #36-(1-47503), you see a
more detailed view of this attack. Figure 10-2 shows the green TCP informa-
tion section. What’s important here is the destination port, which is the port
on the server that was attacked. In this case, it’s TCP port 135. If you do a
search on the Internet Ports Database site, you find that TCP port 135 is the
Windows RPC port, so the alert and the port definitely match up.

223Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 223

A little further down the page in the purple Payload section (also shown in
Figure 10-2) is the data that triggered the DCERPC alert. Unfortunately, the
ASCII-text rendering of the hex data doesn’t mean much, but it obviously
meant enough to Snort to trigger the DCERPC alert.

Perhaps the extra information we need is in the TFTP Get alert? An attack
often happens in a couple of different stops, resulting in several specific
alerts. The TFTP Get alert occurred less than a second after the DCERPC
alert, so there’s a good chance they’re related. To drill down into the TFTP
Get alert, we click its ID link in the ID column, labeled #37-(1-47504).

As with the DCERPC alert, we’re already aware of the Meta and IP information
for the TFTP Get alert from the alert listing page. What really concerns us
about the IP information, though, is that fact that we’re the source IP address,
so we’re the ones doing the “attacking!”

We know that doing a TFTP Get isn’t normal use for our Windows 2000 IIS
system, so something has to be wrong. We scroll down to the green UDP
information section, as shown in Figure 10-3. There we see that the destina-
tion port for the TFTP Get is UDP port 69.

If one of your systems is initiating IP traffic to an external IP address that
causes Snort to throw an alert, and the type of traffic the alert shows doesn’t
look like something normal for the initiating system, then it’s a good idea to
block that traffic at your firewall. This maneuver keeps the system from initi-
ating any further traffic destined to this port until you’ve had time to look
into why the traffic is occurring in the first place.

Next look at the purple Payload section of the TFTP Get alert (also in Figure
10-3). There we do see something interesting: The ASCII-text translation of
the hex data reveals mslaugh.exe.octet. Ah-ha! The file that our server
was downloading via TFTP is a suspicious-sounding binary file called
mslaugh.exe — yet another piece of evidence in our search for what’s going
on with this incident.

Figure 10-2:
The guts of

the DCERPC
attack.

224 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 224

At this point, we know that an external system connected to our server on
TCP port 135. Through this port, the external system attempted (possibly
successfully!) to bind to something called ISystemActivator on the
Microsoft DCE RPC service running on our server. Less than a second later,
our server then downloaded a suspicious program file from that same exter-
nal system called mslaugh.exe. It sounds like we have enough to go on to try
and track down this attack.

Once you have enough basic information on an attack, you can do more
research to try and figure out if you were compromised. A good place to start
is a security Web site, such as:

� Security Focus at http://www.securityfocus.com/

� Microsoft Security http://www.microsoft.com/security/

� Linux Security at http://www.linuxsecurity.org/

� Whitehats Network Security at http://www.whitehats.com/

We also recommend searching your antivirus vendor’s Web site:

� McAfee at http://www.mcafee.com/

� Sophos at http://www.sophos.com/virusinfo/

� Symantec (Norton) at http://securityresponse.symantec.com/

� Trend Micro at http://www.trendmicro.com/vinfo/

In addition, you can go to a popular search engine, such as Google (http://
www.google.com/), Google’s USENET Groups (http://groups.google.
com), or Yahoo! (http://www.yahoo.com/). Sometimes what you’re hunting
may be so obscure that general Internet search engines are the only places
where you can find the answer; just be prepared to wade through many,
many returned URLs.

Figure 10-3:
Digging

into UDP
protocol and

Payload
sections of

the TFTP
Get alert.

225Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 225

Let’s say that we’re the victims of an RPC DCOM attack, and that our system
transferred a file called mslaugh.exe from a foreign web site, To search on
these terms, we can go to the Symantec Security Response Web site, click
the Search button, and enter the following keywords: RPC, TFTP, and
mslaugh.exe. The first result that comes back is a link to information on
W32.Blaster.E.Worm. The critical piece of information is that once it com-
promises a system, it uses Windows 2000 and XP’s built-in TFTP client to
download a program called mslaugh.exe. Bingo!

Halting the Attack
Halting an attack should be your first step in investigating an incident. If an
intruder still has access to your system or your system is infected by a worm,
you first want to prevent the intruder or worm from causing any more damage
or covering its tracks.

Pulling the network plug
If you’re reasonably sure that your system has been compromised by an
intruder or worm and you’re concerned that it’s launching attacks against
other systems or networks, a quick and easy way to halt these attacks is to
pull the network cable. Pulling the network plug has several advantages,
including the following:

� Knocks a logged-in intruder off of your system.

� Keeps programs and processes running for further investigation.

� Prevents your system from being the launching point of further attacks,
while still allowing programs that launch those attacks to run so that
you can investigate their behavior.

Of course, simply pulling the network plug also has a few disadvantages,
including the following:

� The intruder or worm may have left behind a program that looks for a
network disconnect. When the program sees a disconnect, it may
remove evidence files or try to completely destroy the file system.

� Any investigation you do while the system is still booted up has the
chance of destroying or altering evidence, which can include something
as subtle as the date and time stamp on a file.

226 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 226

If the system is plugged into a managed Ethernet switch, you can disable the
Ethernet port the system is plugged into remotely. In many cases, disabling a
switch port is as effective as physically unplugging the network cable, unless
the switch itself is being attacked. The advantage to disabling a switch port is
that it’s possible that this can be done remotely—a definite benefit if you’re
managing systems across a far-flung wide area network!

Pulling the power plug
If you plan on doing a deeper forensic analysis and want to preserve evidence
for a court case, then pulling the power plug — not the power switch — is
your best option.

Don’t shut down using the operating system’s shutdown function or power
down the system using the power switch because the worm or intruder may
have left behind something that looks for these system events and causes
even more destruction.

Advantages of pulling the power plug include the following:

� Knocks a logged-on intruder off of your system.

� Halts any in-progress attacks and keeps the system from being a launch-
ing point of further attacks.

� Ensures you get a snapshot of the file system while the incident is in
progress, without any files or file attributes getting modified.

Disadvantages of pulling the power plug include the following:

� You don’t get an idea of what programs and processes are running.

� Pulling the power plug can cause the system harm and data may be cor-
rupted or lost.

Of course, if you pull the power plug on the system, you eventually have to
plug it back in and turn it back on in order to do any type of investigation.
Or you can pull the hard drives from the system and put them in a separate
forensics system or in a system that creates bit-for-bit images of the hard
drives without writing to them. Either way, our recommendation is that you
not boot the compromised OS, but instead use forensics software that can
access the system’s hard drives (or bit-for-bit images made of the hard
drives), but not write to them. Examples of such software include Encase
(http://www.guidancesoftware.com/), SleuthKit & Autopsy (http://
www.sleuthkit.org/), and SMART (http://www.asrdata.com/).

227Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 227

Looking through Logs
When investigating an incident, your computer’s log files are your best friends.
Network router and firewall logs can also provide you with excellent informa-
tion for tracking down an attack.

Locating Unix and Linux logs
If you’re running Unix or Linux, your system logs are likely in one of the fol-
lowing directories, depending on your Unix or Linux flavor:

/var/log
/var/adm
/usr/log
/usr/adm

On some Unix and Linux systems, logs are in both /var/log and /usr/log,
because one is a symbolic link to the other.

You can look in your syslog.conf file (for traditional syslog) or syslog-
ng.conf file (for syslog-ng) to see which logs are going where. Type the
following at a command prompt to locate your syslog configuration file:

find /etc -name syslog*.conf

The preceding find command locates either the syslog.conf or syslog-
ng.conf file in the /etc directory.

228 Part II: Administering Your Snort Box

It’s all good
In this chapter, we guide you through using a
number of common system tools to investigate
a security breach on your computer system.
Unfortunately, once your system has been
cracked, you can’t necessarily trust those
system tools, as they may have been replaced
with Trojaned copies by the attacker. For that
reason, we suggest that you create CDs filled
with known-good copies of system utilities from

a trusted system, specifically the system utili-
ties we cover in this chapter. If you plan
on pulling the power plug, another option is
o use a Linux Live CD, such as Knoppix (found
at http://www.knopper.net/knoppix/
index-en.html), or the security-specific
Knoppix-STD (found at http://www.
knoppix-std.org/).

15_568353 ch10.qxd 6/2/04 9:26 AM Page 228

Once you’ve found your syslog configuration file, open it in a text editor or
view it with a text file reader like more or less. Inside the syslog or syslog-ng
configuration file is the full path to wherever your logs files are going.

Using Window’s Event Viewer
Windows logs are conveniently visible through the Event Viewer. The Event
Viewer is a handy tool for filtering, sorting, and searching your Windows
event logs. To access the Event Viewer under Windows 2000 or Windows XP,
follow these steps:

1. Click on the Start menu on your task bar.

2. Choose Settings➪Control Panel.

3. Click the Administrative Tools icon.

4. Click the Event Viewer icon.

Windows event logs are split into the following three types:

� Application: The application log is by written is written by Microsoft or
third-party Windows applications. Most programmers write their appli-
cations to write to this log. The application log usually has information
on program errors, program crashes, and other significant application
events (such as configuration changes).

� Security: The security log tells you about successful and unsuccessful
logon attempts, account additions and deletions, and other events for
which auditing is turned on.

� System: The system log is where system service start and stop notifica-
tions are written. Information about networking, remote access, and
drivers is also logged here.

Knowing what to look for in your logs
If you believe a system has been compromised, what you should look for cer-
tain events in that system’s logs (whether it’s on Linux, Unix, or Windows):

� Users added, deleted, or modified. On Linux systems, your logs show
useradd, userdel, or usermod being run when users are added,
deleted, or modified. On Windows systems, the creation or deletion of
user accounts shows up in the Security event log in the Event Viewer
application.

229Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 229

� Password changes on system accounts. On Linux systems, password
changes show up in your syslog logs as an execution of the passwd com-
mand. On Window systems, password changes show up in the Security
event log of the Event Viewer application.

� Users attempting to gain superuser/administrator privileges. On Linux
systems, normal users may use the su (substitute user) command to get
a root shell, or they may use the sudo command to run a command line
as root. Both su and sudo attempts are logged to syslog. On Windows
systems, attempts by a user to run a program as Administrator is logged
to the Security event log in the Event Viewer application.

� Services starting or stopping. A service starting or restarting can be a
sign that a Trojaned version of that service is being loaded. A service
stopping may mean that it’s being killed off on purpose. On Linux sys-
tems, service starts and stops are logged by syslog. On Windows systems,
service starts and stops appear in the Event Viewer under the System
event log.

� System reboots. A reboot may be a sign of an attempt to load a Trojaned
service or driver. Reboots may also occur due to cracking tools or mal-
ware that’s buggy or incompatible with your system. On Linux systems,
reboots are logged by syslog. On Windows systems, reboots appear in
the Event Viewer under the System event log.

If you see any of the preceding events in your logs that look suspicious, write
down the event, along with its date and time.

Several tools can automatically look for unusual or administrator-specified
events in your logs. Three such tools for Linux systems are Swatch (the
syslog-watching tool, available at http://swatch.sourceforge.net/ —
see Chapter 11), Logwatch (http://www.logwatch.org/), and Logcheck/
Logsentry (http://sourceforge.net/projects/sentrytools/). For
Windows 2000, XP, and 2003 systems, you can use GFI LANguard Security
Event Log Monitor (http://www.gfi.com/lanselm/).

Keeping your logs safe
If your computer system is compromised, you always have the threat of the
intruder deleting your logs. One way to avoid this possibility is to not only
log locally, but to log across the network to a centralized logging server.
Logging to a centralized, remote syslog server makes sense not only for your
Snort alerts, but for all your system logs. (See Chapter 6 to find out how to
log to a remote syslog server.)

The importance of remote logging became apparent as we investigated a
Blaster.E infection. We went to our Event Viewer in Windows 2000 Server and
then to the System event log to see whether any services had been restarted.

230 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 230

When we clicked on a logged event to get that event’s properties, we got the
following warning (shown in Figure 10-4) thrown in our faces: Close all
property pages before closing Event Viewer. All property pages
were closed, and we weren’t even trying to close the Event Viewer. Blaster.E
was trying to hide what it did to our system. If we were logging to a remote
syslog server, we may have caught what Blaster.E did before it disabled Event
Viewer.

Looking for Odd Running Processes
Intruders and worms sometimes leave behind running programs. Finding
unusual processes can give you an idea of what the intruder or worm did to
your system. Having a good idea of what’s usually running on your system
helps you determine whether a process is supposed to be there. We suggest
keeping a hard or soft copy of a list of your normal running processes some-
place safe, yet accessible, in case it’s needed.

Viewing processes in Unix and Linux
The command to use under Unix and Linux to pull up a running process list is
the ubiquitous ps command. While the ps command itself comes standard
with every version of Unix and Linux, the syntax of the command can vary
from system to system (even Linux system to Linux system) depending
on whether the installed version of ps follows BSD-style syntax or Unix
SysV-style syntax. Some modern versions of ps support both syntaxes.

Figure 10-4:
Don’t go

there!
Blaster.E

keeps
us from

checking
up on it.

231Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 231

The following ps commands show you a complete process list, along with the
user the process is running as and the time the process started. If you’re not
sure which syntax your ps supports, it doesn’t hurt to try both and see
which one produces the output you need.

When using a ps that supports the BSD-style syntax, type the following at the
command prompt:

ps aux

When using a ps that supports the SysV-style syntax, type the following at
the command prompt:

ps -ef

Look for any processes that seem out of the ordinary and write down or oth-
erwise capture the information you find, along with the date and time you
obtained the information. Be sure to note the time that any suspicious
process started and see whether it matches the time that you believe your
system was attacked. Also note which user the process is running as.

Viewing processes in Windows
Under Windows, you can view running processes with the Task Manager.
The following instructions for running the Task Manager work with Windows
2000, XP, and 2003 systems.

1. Click on the Start menu.

2. Choose Run.

3. When the Run dialog box appears, type taskmgr.exe in the Open field.

The Task Manager appears.

4. Click on the Processes tab.

The Windows process list appears.

Look for any processes that seem out of the ordinary. Write down or other-
wise capture all available information on suspicious processes.

When we opened the Task Manager on the Windows 2000 server that we
suspected was infected with Blaster.E, we found the suspicious process
mslaugh.exe running (see Figure 10-5). Mslaugh.exe is the same program
that Snort caught our server downloading from the Internet using TFTP, and

232 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 232

the same one the Symantec site said was part of Blaster.E. It looks like we’re
definitely infected and are probably trying to attack other systems.

When we tried to kill the mslaugh.exe process using the End Task button on
the Task Manager, we were denied the ability to do so and given a rude mes-
sage (see Figure 10-6). The Blaster.E worm has installed itself in such a way
that we can’t easily remove it!

Figure 10-6:
Mslaugh.

exe is
untouch-

able.

Figure 10-5:
Mslaugh.
exe isn’t a

standard
part of

Windows.
Looks like
the joke’s
on us. . . .

233Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 233

Looking for Odd Files
Suspicious programs and files are often left around by system crackers and
worms. Unfortunately, they can be named anything from random gibberish
like “xxyyzz” to something legitimate-sounding like NTFS.EXE. They may also
be hidden files or directories, or they can be system files that have been
modified.

Rather than looking all over your hard drive for files that look suspicious by
name, it makes more sense to limit your search to files that were modified
around the time you suspect the system breach occurred. Use the time-
stamps of your alerts in your Snort logs and ACID console to determine a
good starting date.

Linux
On a Linux system, you can use the find command to look for files that
were created or modified during the past n number of days (actually, 24-hour
periods). The syntax of the command is

find / -ctime -n -print

So to find files that were created within the past 48 hours, type the following
command:

find / -ctime -2 -print

You can also use the find command to look for files modified within the past
n number of 24-hour periods by using the following syntax:

find / -mtime -n -print

So to find files modified within the past 24 hours, type the following:

find / -mtime -1 -print

Windows 2000
You can search for files created or modified within a certain amount of time
on Windows 2000 systems:

1. Go to the Start menu.

2. Choose Search.

3. Click on For Files And Folders.

234 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 234

4. When the Search Results window appears, click on Search Options.

5. Under Search Options, check the Date check box.

6. In the pull-down menu, choose either Files Modified or Files Created,
depending on whether you want to look for files that were modified
or created on a certain date.

7. Select the radio button next to the word Between and the two date
boxes.

8. Choose the start and end date in your date boxes.

A good choice may be yesterday’s date in the first box and today’s date
in the second box.

9. Click the Search button.

Windows begins searching your file system for files that meet the crite-
ria you specified.

Windows XP
On Windows XP systems, follow these steps:

1. Go to the Start menu.

2. Choose Search and expand the Search sub-menu.

3. Click on For Files And Folders.

4. When the Search Results window appears, click When Was It
Modified?

5. Select the radio button next to Specify Dates.

6. In the drop-down menu, choose either Modified Date or Created Date,
depending on whether you want to look for files that were modified
or created on a certain date.

7. Choose the start and end date in your date boxes.

A good choice may be yesterday’s date in the first box and today’s date
in the second box.

8. Click the Search button.

Windows begins searching your file system for files that meet the crite-
ria you specified.

Once your search is complete, either using the find command on your Linux
system (instructions found under the preceding “Linux” section) or Search
on your Windows system, you’ll have a list of files created or modified within
the dates that concern you. Look for any files created or modified within that
timeframe and write down or otherwise capture information on those files —
including filename, creation/modification time, and file size.

235Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 235

When we searched our Blaster.E infected Windows 2000 server for files cre-
ated on the date the DCERPC alert and TFTP Get alert were generated, we
found mslaugh.exe lurking in the C:\WINNT\system32 directory. Figure 10-7
shows a directory listing of C:\WINNT\system32 with mslaugh.exe (and its
creation date) at the bottom. If you refer back to Figure 10-3, you can see that
mslaugh.exe was created at about the same time Snort generated the TFTP
Get alert. Everything’s tying together.

Looking for Odd Network Services
Hackers and worms often install new network services that sit on your
machine and listen on a specified port. These services are usually back doors
for gaining control of or attacking your system in the future. The presence of
an odd network service running on an unusual port may indicate one of these
tools has been installed.

The netstat utility shows you what ports are listening on your system and
also provides information on what network connections are currently being
made. Netstat’s one of those wonderful TCP/IP networking commands that
started out as a standard part of Unix systems, but has also made its way
over to being a standard part of Windows systems. Even better, the syntax of
the netstat command is the same for Unix, Linux, and Windows.

To run the netstat command and get a listing of all listening TCP and UDP
ports, type the following at a Linux, Unix, or Windows command prompt:

netstat -an | more

The preceding command produces a list of ports your system is listening on,
followed by a list of active connections. Under the column labeled Local
Address is the IP address the port is listening on or the connection is taking
place on (if you see a 0.0.0.0, that means all interfaces), with the port number

Figure 10-7:
Mslaugh.

exe is
lurking in

our system
directory.

236 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 236

itself appearing after the colon (for example, 0.0.0.0:80). Under the column
labeled State is the state the port is in. For listening ports, that column says
LISTEN on Linux systems and LISTENING on Windows systems. For active
connections, you’ll also want to pay attention to the Foreign Address column,
because this system is the one that’s connecting to you or being connected to.

Netstat output is another one of those things, like your process list, that you
should keep a printout of what’s normally available so that you’ll be about to
recognize what’s unusual.

When we ran netstat on our system infected with the Blaster.E worm, we
saw the output in Figure 10-8. We were surprised to see a number of connec-
tion attempts (which show up as SYN_SENT in the State column) from our
machine to TCP port 135 on a sequential list of foreign IP addresses we don’t
recognize. It looks like our system is attempting to infect other systems on
the Internet with Blaster.E! (Fortunately, by this time, we’d already pulled the
Ethernet cable, but Blaster.E doesn’t seem to know that.)

Recovering from the Incident
After you have performed your investigation, your next step is to put the
pieces back together. That’s primarily going to entail rebuilding the compro-
mised system.

If your system was cracked by an intruder, we recommend that you use your
Snort alerts and other information obtained in your investigation, such as file
modification times and system log files, to pinpoint when the attack occurred.
Using the suspected attack date as a starting point, trace backward and find
the last known good backup of that system. Then completely reformat and
reinstall the compromised system and recover your data using the known
good backup.

Figure 10-8:
Looks like
Blaster.E’s

not only
listening,

but scream-
ing, too!

237Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 237

Sure, you can try to locate and remove every single Trojaned system file,
cracking tool, backdoor, and user account left behind by the intruder. Not
only does that take forever, you can never really be sure that you got every-
thing. The safest route is to start with a clean system.

Worms are a slightly different story. The major antivirus firms out there study
each worm under a microscope. Usually within a couple of business days
from a worm’s release, the AV firms have a good idea of how the worm
spreads, what payload it leaves behind, and how to remove it. The AV firms’
Web sites usually contain specific instructions for removing individual
worms. (For a list of AV company Web sites, see the section “Digging into a
triggered alert,” earlier in this chapter.) The antivirus programs these compa-
nies sell can also sometimes remove the worm for you. One copy of Blaster.E
behaves exactly like another copy of Blaster.E (though a different variant,
such as Blaster.F, may require a different set of removal instructions), so it is
usually safe to follow the AV firms’ instructions for removing a specific worm
and expect your system to be clean.

Whether you’re removing a worm from an infected system or restoring a
cracked system from backup, make sure that you patch the hole the worm or
intruder used to crack your system in the first place!

Learning from the Attack
An incident response plan is a feedback system that over time fine-tunes
itself. You take all the information you’ve gathered from the time you discov-
ered the attack and use it to prevent the attack from happening in the future.
Then you can improve the timeliness and thoroughness of your response to
any future attacks.

When the attack is over, your system is back up and running, and you have
time to reflect, we suggest that you look at doing the following:

� Create new Snort rules that can help you better detect the attack.
For example, we may want to create a rule specific to the Blaster.E worm
that looks for the mslaugh.exe file being transferred over TFTP and
give it a Priority of 1. (We tell you how to create new Snort rules in
Chapter 8.)

� Look at what may have led to the attack. For example, were vulnerable
systems not patched quickly enough? Do system administrators have a
process in place to patch systems before putting them on the network?

238 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 238

� Figure out whether there were any investigative tools you ended up
needing that you didn’t have. If so, add those to your CD of known good
utilities.

� Look at any place where the investigative process broke down and try
to fix it. For example, were your system logs deleted by the intruder? If
so, perhaps it’s time to set up a centralized logging server.

There’s always more to learn. If you want additional information on incident
response, the security wizards at SANS have set up a reading room on its Web
site that’s chock full of free white papers on the subject. Go to http://www.
sans.org/rr/ and click on the Incident Handling category.

239Chapter 10: Dealing with the Real Thing

15_568353 ch10.qxd 6/2/04 9:26 AM Page 239

240 Part II: Administering Your Snort Box

15_568353 ch10.qxd 6/2/04 9:26 AM Page 240

Part III
Moving Beyond

the Basics

16_568353 pt03.qxd 6/2/04 9:27 AM Page 241

In this part . . .

This part takes you into some of those more advanced
features of Snort. It starts by showing you how to

send yourself real-time alerts when your network is being
attacked. Upgrading your Snort rules or Snort itself can
seem like daunting tasks, but we show you how to do
both. If you have a large network, you should take advan-
tage of Snort’s scalability and run multiple Snort sensors.
Finally, this part shows you how to use Snort’s unified log-
ging feature and Barnyard to offload log processing from
your Snort sensors.

16_568353 pt03.qxd 6/2/04 9:27 AM Page 242

Chapter 11

Reacting in Real Time
In This Chapter
� Integrating Snort into your overall security strategy

� Expanding on Snort’s built-in alerting

� Making Snort react to traffic in real time

Snort’s ability to analyze network streams in real time makes it a unique
tool with little competition in the open-source world. With this unique-

ness in mind, the developers have continued to concentrate on improving
this ability, rather than slapping on functionality that may be handled better
by already existing tools. For example, you may want Snort to send you an
e-mail when it detects an intrusion, but you’ll find this ability conspicuously
absent from Snort’s many talents. With a plethora of tools available to handle
log analysis and e-mail alerts, Snort doesn’t need to bog down your packet-
capture engine in an attempt to do something that another tool already does.

The old programming adage that advises against reinventing the wheel has
been taken to heart by Snort’s maintainers. In fact, they not only avoid rein-
venting the wheel, they avoid the wheel altogether where possible. Instead,
they make the best engine possible and let you choose your own wheels.

This focus on modularity results in improved scalability. Because all Snort
wants to do is watch and analyze network traffic, its ability to watch lots of
traffic is improved by off-loading other tasks to other programs. And if you’re
able to put those other programs on other computers, you’re able to scale
Snort and customize its operation to suit the demands of any large, complex,
or high-volume network.

Integrating Snort into Your
Security Strategy

Analyzing packets to detect network shenanigans is just one part of a compre-
hensive network security strategy. The ability to report these transgressions
and take action against them are just as important as detecting them in the
first place.

17_568353 ch11.qxd 6/2/04 9:27 AM Page 243

Reacting to alerts as they occur makes your Snort box more than just an
Intrusion Detection System; real time reactions make Snort an impressive
Intrusion Prevention System with the ability to stop attacks as they happen.
Because Snort is mainly concerned with capturing and analyzing network
traffic, expanding its abilities to include log analysis, e-mail alerts, and
dynamic firewalling means using additional software. Thankfully, there’s a
glut of open-source software out there, just waiting for a clever person like
yourself to put to good use.

Using Syslog-ng for log wrangling
If you like the idea of keeping your Snort alerts in a simple, flat text file for
archiving or processing later, but you want some flexibility in how that text
file is created, then look to syslog-ng. With its native ability to perform pat-
tern matching on incoming log entries and shovel them to different destina-
tions accordingly, syslog-ng makes separate log-parsing scripts unnecessary.
The log destination can be a text file, a TCP or UDP port on another server, a
Unix socket, or the standard input of any program you specify.

Syslog-ng also has the ability to use macros to dictate the specific file desti-
nation when logging to a text file. You can easily write logs to a filename
determined by the date, the hostname of the machine that generated the log,
or even the name of the program that generated the log.

Downloading and installing syslog-ng
You can find syslog-ng at http://www.balabit.com/products/syslog_
ng/ along with documentation, links to mailing lists, and other goodies.
You can find the source code for syslog-ng at http://www.balabit.com/
downloads/syslog-ng/. At the time of this writing, the latest stable version
was based on the 1.6 code base, although future stable versions will be
released based on the 1.9 code. If you’re unsure which is the most recent
version of syslog-ng when you go to download it, check out https://lists.
balabit.hu/mailman/listinfo/syslog-ng to sign up for the mailing list
or browse the archives, which will invariably have a post announcing the
release of the latest stable version.

If your browser barks about the balabit.com SSL certificate, don’t worry.
The web site is based in Hungary, and uses a certificate authority that your
browser probably doesn’t recognize.

While you’re downloading syslog-ng, don’t forget to grab libol, a software
library that syslog-ng depends on. You can get libol at http://www.balabit.
com/downloads/libol/.

Syslog-ng requires libol to run. If you don’t have the libol libraries installed,
syslog-ng won’t even compile, let alone run correctly.

244 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 244

When downloading software, check the PGP (Pretty Good Privacy) or GPG
(Gnu Privacy Guard) signature of the source code. You want to make sure that
what you’re downloading is the code that the author wrote, and not some
Trojaned tarball. For the low down on PGP and GPG, check out Chapter 4.

Download libol and check its PGP signature:

cd /usr/local/src/tarballs/
wget http://www.balabit.com/downloads/libol/0.3/libol-0.3.13.tar.gz
wget http://www.balabit.com/downloads/libol/0.3/libol-0.3.13.tar.gz.asc
gpgv libol-0.3.13.tar.gz.asc

Unless you’ve already checked software using Balazs (Bazsi) Scheidler’s GPG
signature, chances are good that you don’t already have his public key. If not,
the preceding step gives you the following error:

gpgv libol-0.3.13.tar.gz.asc
gpgv: Signature made Fri Jan 23 05:56:17 2004 CST using RSA key ID 9AF8D0A9
gpgv: Can’t check signature: public key not found

You can import Bazsi’s public key using gpg. The preceding error message
tells you which key to grab. The following text shows us importing the key:

gpg --keyserver pgp.mit.edu --recv-keys 9AF8D0A9
gpg: requesting key 9AF8D0A9 from pgp.mit.edu ...
gpg: key 9AF8D0A9: public key imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Now gpgv should be able to confirm the signature, although you may need to
specify where your public keyring resides. To specify the location of your
public keyring, use the --keyring switch to the gpgv command, as shown
below:

gpgv --keyring ~/.gnupg/pubring.gpg libol-0.3.13.tar.gz.asc
gpgv: Signature made Fri Jan 23 05:56:17 2004 CST using RSA key ID 9AF8D0A9
gpgv: Good signature from “Balazs Scheidler (2048) <bazsi@balabit.hu>”

After you know that you’ve got the genuine article, you can compile and
install libol quickly and easily:

cd /usr/local/src
tar -xvzf tarballs/libol-0.3.13.tar.gz
cd libol-0.3.13/
./configure
make
make install

After installing libol, you can proceed to download and install syslog-ng itself.
Don’t forget to check the GPG signature, although this time you should
already have Bazsi’s public key on your keyring.

245Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 245

cd /usr/local/src/tarballs
wget http://www.balabit.com/downloads/syslog-ng/1.6/src/syslog-ng-1.6.2.tar.gz
wget http://www.balabit.com/downloads/syslog-ng/1.6/src/syslog-ng-

1.6.2.tar.gz.asc
gpgv --keyring ~/.gnupg/pubring.gpg syslog-ng-1.6.2.tar.gz.asc
gpgv: Signature made Fri Jan 23 06:11:40 2004 CST using RSA key ID 9AF8D0A9
gpgv: Good signature from “Balazs Scheidler (2048) <bazsi@balabit.hu>”

cd ../
tar -xvzf tarballs/syslog-ng-1.6.2.tar.gz
cd syslog-ng-1.6.2/
./configure
make
make install

Shazam! You should now have syslog-ng compiled and installed on your
system. If any of the preceding steps give you any guff, check out the docu-
mentation included with syslog-ng or look through the mailing list archives.

To make sure that syslog-ng starts at boot time, create an initialization script
using one of the samples in the contrib/ directory of your syslog-ng
source. You can find more detail on initialization scripts in Chapter 4.

Your syslog-ng.conf file
Syslog-ng requires a configuration file to run: /etc/syslog-ng/syslog-
ng.conf by default. Some sample configuration files are included with the
source code. Check the contrib/ directory or the doc/ directory for exam-
ples; you may be lucky enough to have a sample configuration file already tai-
lored to your flavor of Linux. If not, an awk script called syslog2ng is in the
contrib/ directory, and it can handle generating a syslog-ng.conf file
from your existing syslog.conf file.

The syslog-ng.conf file needs to reside in its own directory, and the install
process in the preceding section doesn’t create it for you. The following steps
show you how to create the directory and then run the syslog2ng awk
script to create your new syslog-ng.conf file:

mkdir /etc/syslog-ng
cd /usr/local/src/syslog-ng-1.6.1/contrib
cat /etc/syslog.conf | ./syslog2ng > /etc/syslog-ng/syslog-ng.conf

Creating a configuration file in this manner gets you up and running with
syslog-ng quickly and easily, but because this syslog-ng.conf file is based
on your previously existing syslog.conf file, you can’t take advantage of
any extra functionality. That’s no problem, though, because this chapter will
walk you through hacking your configuration file to make it do all kinds of
crazy stuff. . .

246 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 246

Customizing your configuration
Building a custom syslog-ng.conf file can seem like a tough task because
the syslog-ng logging daemon has so much functionality. We recommend find-
ing a sample configuration file that’s been written for your flavor of Linux and
then spicing it up a bit.

We include our sample syslog-ng.conf configuration file on the CD that
accompanies this book. Our syslog-ng watches for failed login attempts, criti-
cal Snort events, and attempted Web server hacks. It pages the Sys Admin on
critical events and failed logins, and it passes log entries for attempted Web
server hacks to a Perl script that acts as a Jabber instant messenger (IM)
client. This way, any Web developer or Admin can log in to a chat room and
see who’s trying to hack the server. And by using syslog-ng’s ability to expand
macros, we do some basic log management by writing out Snort logs based on
the date. Every day, a new log file is created and written to.

We describe some of the more useful syslog-ng options in the upcoming sec-
tions. For a rundown of all the options, check out the syslog-ng.conf.doc
file in the contrib/ directory of your syslog-ng source code.

The gruesome guts of the configuration file
The syslog-ng.conf file has a couple of basic components: a section for
global options, followed by source, filter, destination, and log statements.
Each statement takes a driver, which modifies the behavior of that statement.
For example, a source statement can take the UDP driver, telling it to take
UDP log packets as a source. Likewise, a destination statement can take the
program driver, telling syslog-ng to send log entries to a waiting program.
(The following tables explain each statement and some recommended drivers.)

In the global options section, you dictate how the syslog-ng daemon behaves
overall. You can apply many of the options listed in the global section to indi-
vidual statements, in which case they’ll override the global options. This
allows you to create a sort of logging template with global options, but over-
ride it for special cases. Table 11-1 lists some of the more useful options when
using syslog-ng for Snort logging.

Table 11-1 Options for Syslog-ng
Option Description

create_dirs No surprises here — this option automatically creates a direc-
tory for logging if one doesn’t exist. You need this directory if
you’re using macros to write filenames.

owner The owner of the newly created files.

group The group ownership of newly created files.

(continued)

247Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 247

Table 11-1 (continued)
Option Description

perm Permissions on log files.

dir_owner The owner of any automatically created log directories
must be specified independently of the file owner.

dir_group Same goes for the group owner.

dir_perm Permissions to give automatically created log directories.

Source drivers
Once you’ve got a decent set of global options specified, you can start listing
source statements. These lines tell syslog-ng where it should get its input
from. Unless you’re accepting input from remote machines, your primary
source is going to be the machine itself. Table 11-2 lists some useful source
drivers. Parentheses indicate required driver arguments, and brackets indi-
cate optional arguments.

Table 11-2 Source Drivers for Syslog-ng
Source Description

internal() These messages are from the syslog-ng daemon itself.

unix-stream These messages are from Unix sockets that are read in a
(“filename” connection-oriented manner. Specify /dev/log as the
[options]) filename if you’re running a Linux kernel earlier than 2.4.

unix-dgram These messages are from Unix sockets that are read in a
(“filename” connectionless datagram mode, like kernel log messages
[options]) (klogd) in the 2.4.x or later Linux kernel.

Destination drivers
Once you know where you’re getting logs from, you can tell syslog-ng where
to stick them using destination statements. Traditionally, syslog destinations
have been flat text files, named pipes, remote machines (over UDP), or a
user’s console. Syslog-ng can send logs to these destinations as well as send
logs to remote machines over the more manageable TCP protocol, as well as
to the standard input of a program. Table 11-3 lists some useful destination
drivers for syslog-ng. Parentheses indicate required driver arguments, and
brackets indicate optional arguments.

248 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 248

Table 11-3 Destination Drivers for Syslog-ng
Driver Description

pipe(“filename”) The pipe driver sends log messages to a named pipe
such as /dev/xconsole.

file(“filename The file driver writes log entries to a text file. Unique to
[$MACRO]”) syslog-ng is the ability to automatically expand macros

when writing files. (Table 11-4 lists available macros.)

tcp(“address” Forwards log entries over TCP to a remote system listen-
[port(port #);]) ing on the specified port.

udp(“address” Forwards log entries over UDP to a remote system listen-
[port(port #);]) ing on the specified port.

program(“/some/ Sends messages straight to the standard input of a
program/name”) program. (Make sure that you know what you’re doing

with this one.)

When writing logs to a text file, syslog-ng can automatically expand macros to
determine the filename. For example, in our syslog-ng.conf file, the desti-
nation statement

destination snort_day { file(“/var/log/snort/snort.log.$MONTH.$DAY.$YEAR”); }

writes a different Snort log file every day. If you run with this destination
statement for a couple of days, then look in /var/log/snort, you see

-rw-r----- 1 root loggers 11k Feb 8 23:59 snort.log.02.08.2004
-rw-r----- 1 root loggers 39k Feb 9 23:59 snort.log.02.09.2004
-rw-r----- 1 root loggers 41k Feb 10 23:59 snort.log.02.10.2004
-rw-r----- 1 root loggers 32k Feb 11 23:59 snort.log.02.11.2004

Splitting out logs based on the date may seem like a boring example, but
what if you’re running a centralized logging server, and you want log files
split out automatically based on the hostname of the machine that sent you
the logs? This destination statement has you covered:

destination remote_logs { file(“/var/log/$HOST/$PROGRAM”); };

Now you’ve got a separate log file for each program on each remote host that
sends you logs — all done with one line! Once you realize the power and flexi-
bility you have with syslog-ng and automatic macro expansion, you’ll want to
install it everywhere. Table 11-4 shows some of the macros available to
syslog-ng.

249Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 249

Table 11-4 Macros Used by Syslog-ng
Name Description

$DATE The date the message was sent.

$DAY The day of the month the message was sent.

$FACILITY The facility name assigned to the message.

$FULLDATE The long form of the transaction date.

$HOUR The hour of the day when the log was received. You can
also use $MIN and $SEC, but we don’t advise it unless
you want a new log file created every second.

$MONTH The month the log was received.

$MSG (or $MESSAGE) The log entry (message) itself.

$PROGRAM The name of the program that generated the log.

$PRIORITY or $LEVEL The priority assigned to the message.

$TZ Time zone, such as CST.

$TZOFFSET The time zone as an offset from GMT.

$WEEKDAY The day of the week the log was received, such as Wed.

$YEAR The year the log was received. This macro is very handy
for archiving logs.

If you use macro expansion to split out log files, make sure that the global
options section of your syslog-ng.conf file allows syslog-ng to automati-
cally create directories and that it sets the permissions correctly. The options
create_dirs(yes), dir_owner(), dir_group(), dir_perm(), owner(),
group(), and perm() can help you out here. See Table 11-1 for more details
on these options.

One of the coolest destination drivers for syslog-ng is the program driver.
Using this driver, you can send log entries directly to the standard input of a
waiting program. We use this driver to send log entries to a Perl script, which
acts as a Jabber IM client. This way, when important log entries come up,
they’re sent to a Jabber chat room where Sys Admins and Help Desk staff see
them immediately and react appropriately.

Because this driver sends log entries to any program you specify, the useful-
ness is limited only by your creativity and programming skills. You’re proba-
bly thinking, “Aha! This is what I can use to get important log entries sent to
me via e-mail or pager!” and you’re right.

250 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 250

Danger! Danger! Watch that e-mail script
A super-simple script to capture input and send it as e-mail looks no more
complicated than

#!/bin/bash
a simple script to take input and email it

while read input;
do
echo $input | mail -s “Snort Trouble” you@yourdomain.com
done

Although automatically sending log entries to the standard input of a waiting
program may seem like a great way to generate real-time alerts based on log
content, it can leave you open to denial-of-service attacks whenever log activ-
ity is very high. Any program you tell syslog-ng to run does so with the same
permissions as sylsog-ng itself and doesn’t terminate until the logging
daemon does, so make that the program you choose is secure and stable.
Also, make sure that you’ve got a good filter in place so that you don’t start
an e-mail flood by accident.

Log filtering
Syslog-ng is an amazing piece of software, but we haven’t talked about its
most wonderful feature: message filtering. With message filtering, syslog-ng
looks at each incoming log entry and decides where to send it based such cri-
teria as the priority of the message, the host that sent the message, the pro-
gram that generated the message, or even whether the text of that message
matches a regular expression. Using message filtering, you can filter incoming
log messages and have all Snort messages with ATTACK-RESPONSES singled
out for special attention. Like syslog, you can configure syslog-ng to filter logs
based on the facility and priority of the message, but unique to syslog-ng is
the ability to filter logs based on pattern matching. To single out ATTACK-
RESPONSES log entries, use the following filter statement:

filter attacks { match(“ATTACK-RESPONSES”); };

Syslog-ng’s pattern matching uses standard regular expressions, which makes
writing your own pattern filters easy.

The file syslog-ng.source/contrib/syslog-ng.conf.doc file has loads
of useful information, including many custom filter examples.

Log statements
After you have your sources and destinations defined and you’ve worked a
little filtering magic, you can put everything together in a log statement. This
statement simply combines the source, destination, and optional filter state-
ments and then handles the message appropriately.

251Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 251

The log statement from the sample syslog-ng.conf file on the CD takes all
locally generated messages that contain the text [Priority: 1] and sends them
to the administrator’s pager (the filter statement and source statements are
defined earlier in the sample syslog-ng.conf file):

log { source(local); filter(snort_crit); destination(page_admin); };

You can combine multiple log statements to send the same message to two
different places.

Using Swatch to Watch Your
Log Files

Swatch, the Simple WATCHer, is an excellent log-monitoring tool that has
been around for years. Unlike syslog-ng, Swatch has the ability to throttle
back its alerts, so if you get 20 of the same alert in a minute, you won’t get
20 e-mails as well. Swatch can also react according to the time of day; if you
don’t want low priority alerts going to your pager in the middle of the night,
Swatch can oblige.

Downloading and installing Swatch
Swatch now lives at http://swatch.sourceforge.net where you can find
links to the source code itself, mailing lists, and forums to seek the help of
Swatch gurus. To download Swatch, follow the download links and choose a
download mirror that’s close to you. Once you have the source code down-
loaded, extract it and get to work. We use /usr/local/src/tarballs to
keep downloaded source code in .tar.gz format and /usr/local/src/ to
keep the extracted code. Untarring Swatch isn’t any different than untarring
any other piece of software:

cd /usr/local/src
tar -xvzf tarballs/swatch-3.0.8.tar.gz

Swatch is written in Perl and installs like a Perl module. Instead of the now
familiar ./configure, make, and make install, Swatch installs with these
commands:

perl Makefile.PL
make
make test
make install
make realclean

252 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 252

Swatch depends on four additional Perl modules:

Date::Calc
Date::Parse
File::Tail
Time::HiRes

Your Linux distribution may already include these modules, but if Swatch
gripes about any of them not being present, download and install them sepa-
rately. The easiest way to download and install Perl modules is to use the
Comprehensive Perl Archive Network (CPAN). At a command prompt, type
the following:

perl -MCPAN -e shell

When you see the cpan> prompt, type the following command:

o conf prerequisites_policy follow
install Date::Calc

What follows after entering this command is voluminous output, which is not
printed for the sake of brevity. Most admins don’t even read the output that
closely, because Perl takes care of just about everything for you when you
install modules this way.

Repeat the install command for each of the other modules you need.

If you’re worried about automatically downloading, compiling, and installing
software that someone else has written, it means you’re doing a good job at
network security. To make sure that you’re not getting something you didn’t
ask for, install the MD5 package from CPAN. Once you’ve run perl -MCPAN -e
shell from your command line, type install MD5 to get the job done.
Any subsequent downloads are checked against their MD5 sum to verify
authenticity.

After you have all the module dependencies downloaded and installed, get
back to compiling and installing Swatch:

perl Makefile.PL
make
make test
make install
make realclean

Configuring Swatch
Swatch won’t run without its configuration file. When a user runs Swatch, it
looks in that user’s home directory for a .swatchrc configuration file. You
can override this action on the command line with the -c switch.

253Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 253

The .swatchrc file is relatively straightforward. Its format consists of a
string to watch out for, followed by an action to take should it see that string.

If you prefer to hack existing files rather than create them from scratch,
you’re in good company. Check out the examples/ directory from within
your Swatch source code for some great example swatchrc files.

To tell Swatch what to watch for, use the watchfor command. The watchfor
statement is not only a good idea, it’s required for Swatch to run. We use
syslog-ng to watch out for ATTACK-RESPONSES in Snort logs; you can tell
Swatch to do the same with this line:

watchfor /ATTACK-RESPONSES/

Seems easy enough, right? You don’t have to put the exact text of what to
watch out for in this command, although it’s the easiest way to go. You can
put any regular expression in this place, and Swatch will watch for any string
that matches it. An excellent site for all things Perl, including handy tutorials
on writing regular expressions, is http://www.perlmonks.org.

You can also tell Swatch to ignore certain text strings or regular expressions.
If you’ve got a Windows system that has the messenger service turned off,
you may want to ignore NETBIOS DCERPC Messenger Service buffer
overflow messages (they wouldn’t apply to your system), but you may want
to watch for NETBIOS DCERPC ISystemActivator bind attempt mes-
sages. You could apply this selective watching bycombining an ignore
statement and a watchfor statement:

ignore /Messenger Service/
watchfor /NETBIOS DCERPC/

After you tell Swatch what to watch out for, you need to tell it what to do when
it sees something it’s been watching for. Table 11-5 lists some of the more
useful actions that Swatch can take when it catches something in the logs.

Table 11-5 Swatch Actions
Action Description

echo [modes] Sends the text of the matched line to standard
output. Use to send data to the console from which
Swatch was launched or to populate the text of an
e-mail message. For your Technicolor life, you can
specify a color for the modes option to have your
text echoed in that color in your console.

bell [n] Sounds the system bell when a log message is
matched. Put a number n after this action to make
your system beep n times.

254 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 254

Action Description

exec command Use this action to execute a command when text is
matched. Analogous to the program destination
driver in syslog-ng, except that Swatch will execute
the program and then terminate it when done. To
use elements of the log entry itself as arguments to
the executed command, use $n to use the nth field
of the log entry. To use the entire entry, use $* or $0.

mail [addresses= Sends alerts via e-mail. If you want e-mail to go to a
someguy@somedomain. whole bunch of people, consider setting up a list in
com:someotherguy@ your /etc/aliases file. Swatch uses Sendmail,
someotherdomain.net], so make sure that you’ve got either a working
[subject=your catchy Sendmail install or a suitable SMTP mailer package
email subject here] that actually replaces the sendmail command.

pipe command Makes Swatch act like the syslog-ng program
[,keep_open] driver: It will pipe matched text to the standard input

of a command. If you use the keep_open option,
the pipe stays open until a different pipe action is
run or Swatch exits.

write [user:other_ Uses the Unix write command to send matched log
user:...] entries to a user’s console. Useful as long as the

user is logged in.

throttle hours: Keeps Swatch from going crazy when your logs are
minutes:seconds going crazy. The throttle action limits the number of

times a specific action is run for a specific matched
pattern. List the time interval to keep Swatch from
reacting to a matched message for the length of that
interval.

when=day_of_week: Limits the execution of all the preceding options to
hour_of_day certain times. If you’re watching for Priority: 1 alerts

and using the mail action to send you e-mail accord-
ingly, maybe you want to have a separate rule that
sends e-mail to your pager after office hours instead
of an unmanned inbox.

The following sample .swatchrc file points out some of the more useful
actions and options when running Swatch on your Snort logs. Note how the
colon after Priority has a backslash in front of it; without this slash, your
colon would be considered part of your regular expression incantation and
not part of the pattern you’re trying to match.

255Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 255

watchfor /Priority\: 1/
echo
mail addresses=admin\@yourdomain.com,subject=Snort_Alert,when=2-6:8-17
Sends regular email to your admin during work hours

watchfor /Priority\: 1/
echo
mail addresses=admin_pager\@yourdomain.com,subject=Snort_Alert,when=1-7:1-24
throttle 0:10:0
Sends pager email to your admin at all hours. The throttle option will only

react to one alert every 10 minutes.

watchfor /Priority\: 2/
echo
bell 5
Your coworkers will *love* this one. Causes your terminal receive the log

entry and beep 5 times when a Priority: 2 Snort alert is detected.

watchfor /su\:/
echo=red
Red Alert! This will send an alert to your terminal when someone runs su

This sample is just a taste of what you can do with Swatch watching your log
files. For more information, check out the Swatch man page by typing “man
swatch”. Like most powerful Unix tools, Swatch gives you some basic func-
tionality and lets you decide how to use it. So be creative and experiment!

Starting Swatch
Swatch has a number of command-line options that affect how it starts and
how it runs. A few of them are highly recommended, almost to the point of
being mandatory — though Swatch still runs without any arguments. If
Swatch is called without any arguments, it runs as if called as

“swatch --config-file=~/.swatchrc --tail-file=/var/log/messages”

or, if no /var/log/messages file exists, as

“swatch --config-file=~/.swatchrc --tail-file=/var/log/syslog”

Table 11-6 details some of the more useful command line options for Swatch.

256 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 256

Table 11-6 Swatch Command-Line Options
Option Description

-c Specifies a configuration file other than
~/.swatchrc.

-t Tells Swatch which file to tail.

—input-record-separator By default, treats the new line character, \n, as
the input record separator. Use this switch to
specify a different delimiter — for example, if
log entries are written in multiple line chunks,
with a blank line between them, use —input-
record-separator=”\n \n”.

—daemon Perhaps the most useful switch of all, starts
Swatch in daemon mode, where it runs contin-
uously in the background.

-p command Use this switch followed by the command if you
want Swatch to watch output from a command
rather than input to a log file.

-f filename Use this switch if you want Swatch to read
over a file that’s already been written rather
than read a log file as it’s being written.

To start Swatch and let it read your Snort logs as they’re written, you can use
a Swatch configuration file in /usr/local/snort/etc/swatchrc (rather
than a .swathrc file in your home directory where other Admins couldn’t
read it) and call Swatch as

/usr/local/bin/swatch -c /usr/local/snort/etc/swatchrc -t
/var/log/snort/snort.alert --daemon

Firewalling Suspicious Traffic
in Real Time

With Swatch and Syslog-ng you’ve got a way to monitor logs as they’re writ-
ten and execute commands based on what those log entries contain. You’re
probably thinking, “Why, I could use this to dynamically change my firewall
rules to block all those baddies from hitting my network!” Technically, you’d
be right. In fact, we’ve done exactly this step in the past and gotten it to
work. However, it borders on the bailing wire and duct tape model of network
engineering, and isn’t recommended.

257Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 257

Here’s another place where the open-source model comes to the rescue.
Because the developers of Snort concentrate their efforts on making Snort
the best traffic analysis system possible, they don’t worry about other tasks
that folks might like Snort to handle. Instead, they make the source code
freely available for anyone to tinker with and leave the optional extras up to
other folks on the Net. One result is the SnortSam tool for blocking attacks.

Blocking malicious network traffic
with SnortSam
SnortSam consists of two different pieces of software. One piece is a set of
modified source files, which extend Snort by adding a new output module:
alert_fwsam. (See Chapter 6 for more information on output modules.)
The other piece is an agent that talks directly to your firewall.

This agent can reside on the firewall itself if you’re running IPTables on a
Linux firewall, or pf on a BSD, or Checkpoint’s Firewall-1 on a Windows host.
If you’re using a hardware firewall, like a Cisco PIX, you must run the Snort
Sam agent on a separate machine dedicated to conversing with your PIX.
Using a client-agent model lets you scale SnortSam to match the size and
complexity of your network, allowing you to use it with multiple Snort sen-
sors and multiple firewalls.

So, Snort watches traffic, and when a defined rule gets triggered, Snort sends
output to the fwsam module. The fwsam module then sends an encrypted
message to your SnortSam agent. The SnortSam agent checks the message to
make sure that it came from an authorized source and then decrypts the mes-
sage. Once the message is decrypted, the SnortSam agent checks the request
to see what IP address you’re asking SnortSam to block, and SnortSam checks
that IP address against a whitelist of systems that should never be blocked. If
the IP address isn’t on the whitelist, then SnortSam tells your firewall to block
that address for a definable time period.

Downloading and installing SnortSam
SnortSam lives at http://www.snortsam.net. Ample links exist to docu-
mentation, mailing lists, example configuration files, and, of course, the
source code itself. In addition to the source code, precompiled binaries are
available for many popular platforms.

SnortSam has two components: the patches to incorporate SnortSam into
Snort, and the agent that talks to your firewall. For our discussion, we detail
using the SnortSam agent on a Linux firewall running IPTables.

258 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 258

Installing the SnortSam agent is a breeze. Grab the source code, untar it,
make the included installation script executable, and run it. Remember the
agent is the piece that talks to your firewall, so SSH on over to your Linux fire-
wall and get to work!

cd /usr/local/src/tarballs
wget http://www.snortsam.net/files/snortsam-v2_multi-threaded/snortsam-src-

2.23.tar.gz
cd ../
tar -xvzf tarballs/snortsam-src-2.23.tar.gz
cd snortsam/
chmod +x makesnortsam.sh
./makesnortsam.sh

Simplicity itself, eh? You should now have a snortsam file in your SnortSam
source directory. Do yourself a favor and copy it somewhere in your path,
like /usr/local/bin/.

Installing the SnortSam patches to Snort can be a little more difficult. The
SnortSam patches are a collection of modified Snort source code files. By
wedging these modified files into your Snort source code directory (always
keep your source code directory around for times like these), you can extend
Snort’s native abilities to include the ability to talk to your SnortSam agent.
Using modified Snort source code means that once the patched source files
are moved over, you need to reconfigure and recompile Snort.

Recompiling Snort with the latest SnortSam patches applied requires GNU
automake Version 1.6. Not Version 1.4 or Version 1.8, but 1.6. Automake 1.6,
in turn, may require an updated autoconf package. The specific versions of
automake and autoconf may already be available on your system, but they
weren’t on ours, which is why we mention it. To find out what version of
each you have, you can run autoconf --version or automake --version.
(Who says Linux commands are arcane?) If you find that your system lacks
these version, you can grab them from http://www.gnu.org/software/
autoconf/ and http://www.gnu.org/software/automake/ respectively.
Because the download and compile process for each of these is not overly
complicated, we include those steps in the following SnortSam install.

Downloading and extracting the SnortSam patches is the same as any other
software package, but instead of the familiar configure, make, and make
install process, the patches use a shell script similar to the SnortSam agent
to patch Snort. After you extract the SnortSam source code, make this shell
script executable before running it.

Here are the steps to download and install SnortSam patches, as well as GNU
automake. We even include the steps to recompile Snort:

259Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 259

cd /usr/local/src/tarballs
wget http://ftp.gnu.org/gnu/automake/automake-1.6.3.tar.gz
cd ../
tar -xvzf tarballs/automake-1.6.3.tar.gz
cd automake-1.6.3/
./configure && make && make install
cd ../tarballs/
wget http://www.snortsam.net/files/snort-plugin/snortsam-patch.tar.gz
cd ../
mkdir snortsam-patch
cd snortsam-patch/
tar -xvzf ../tarballs/snortsam-patch.tar.gz
chmod +x patchsnort.sh
./patchsnort.sh /usr/local/src/snort-2.1.0/
cd /usr/local/src/snort-2.1.0/
./configure --with-mysql=/usr/local/mysql
make
make install

Configuring Snort for SnortSam
After patching and recompiling Snort, you’re ready to configure Snort to use
SnortSam. The first step is to tell Snort that you have a new output module
for it to use. Add the line

output alert_fwsam: <snortsam_agent_system>

to your snort.conf file, where snortsam_agent_system is the name or
IP address of the system where the SnortSam agent is running. In our case,
because we’re using a Linux firewall, we use the IP address of the firewall.
If you want to have the SnortSam agent listen on something other than the
default port (898) or use a password for verification, include those on this
line as

output alert_fwsam:<snortsam_agent_system>:<port>/<password>

For example:

output alert_fwsam:10.100.0.1:8347/bac0n

Now that Snort knows how to use this extra output module, configure which
specific rules you want to trigger SnortSam. Remember that this software is
some pretty serious stuff, and it can be all too easy to over react and inadver-
tently block legitimate traffic. It should be seen as a blessing then, rather
than a burden, that you must edit individual rules to take advantage of this
plug-in. Can you imagine the chaos that would ensue if you automatically
blocked every IP address that tripped your Snort sensor?

260 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 260

To configure Snort rules to use SnortSam, first find a rule that you want to
block traffic on. The WEB-MISC rule that indicates someone trying to poke at
root’s home directory looks good, not only because it’s an indication of seri-
ous shenanigans and unlikely to happen by accident, but because it’s one
that we can easily test using Nikto, a popular Web security scanner. Here’s
the rule without any modifications:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-MISC /~root
access”; flow:to_server,established; uricontent:”/~root”; nocase;
classtype:attempted-recon; sid:1145; rev:6;)

And here it is again modified to use SnortSam:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-MISC /~root
access”; flow:to_server,established; uricontent:”/~root”; nocase;
classtype:attempted-recon; sid:1145; rev:6; fwsam: src,
10 minutes;)

We’ve added the fwsam: src, 10 minutes to tell Snort to use SnortSam
and to block the source of the attack for 10 minutes.

Don’t forget to restart Snort after you’ve changed its rules.

Configuring the SnortSam agent for your firewall
After you configure Snort for SnortSam, configure the SnortSam agent to
talk to your firewall. The SnortSam agent looks for /etc/snortsam.conf
by default.

At a bare minimum, you need to tell the SnortSam agent what machines are
allowed to connect to it, and what firewall it’s going to talk to. Our barebones
/etc/snortsam.conf file looks like this:

accept 64.123.2.28/32
iptables eth1 syslog.info
logfile snortsam.log

Okay, so it’s not totally bare bones. We do include a logging statement to log
all of SnortSam’s activity to /var/log/snortsam.log.

While automatically blocking malicious network traffic may sound like the
best thing since tiny flashing lights, Snort’s false positives suddenly go from
an annoyance to debilitating when you implement automatic blocking. To
prevent your reactive IDS from blocking trusted hosts due to false positives
or spoofed traffic, make sure that you use a whitelist containing IP addresses
that should never be blocked.

261Chapter 11: Reacting in Real Time

17_568353 ch11.qxd 6/2/04 9:27 AM Page 261

The snortsam.conf file is the place to list remote systems that you never
want to block. You can list these systems using the dontblock statement. It’s
wise to include your upstream routers, root DNS servers, and so on. If you
want to manage thislist in separate file, you can use an include statement to
point to your whitelist. Of course, you can do both:

includewhitelist_file
dontblock 192.168.1.1
dontblock a.root-servers.net
dontblock b.root-servers.net

For an exhaustive list of all the options to trick out your snortsam.conf file,
take a peek at the README.conf file in your SnortSam source directory. Don’t
forget to include a list of IP addresses to never block in this file.

Once you have a custom tailored snortsam.conf file whipped up, start up
SnortSam. The only command line option that it wants is the location of your
configuration file:

/usr/local/bin/snortsam /etc/snortsam.conf &

Make sure that you configure your firewall to accept SnortSam traffic from
your Snort sensors. Otherwise, your sensors chatter away with no resulting
action on the firewall.

262 Part III: Moving Beyond the Basics

17_568353 ch11.qxd 6/2/04 9:27 AM Page 262

Chapter 12

Keeping Snort Up to Date
In This Chapter
� Getting new Snort rules

� Updating Snort rules

� Upgrading Snort sensors

� Making sure everything works afterwards

When you have a running Snort sensor, you must regularly manage
updates. The rules files are the most frequently updated part of Snort;

updates, modification, and deletions occur daily. Snort itself is frequently
updated. From December 2003 to February 2004, Snort went through half a
dozen minor modifications and two major upgrades (Snort 2.0 and Snort
2.1.0). Keeping all these modifications current can be a hectic process, espe-
cially if you manage multiple sensors. This chapter gives you some tools and
tips for keeping everything up to date.

Updating Rules with Oinkmaster
Oinkmaster is a Perl script that downloads, modifies, and puts into produc-
tion Snort rules files from snort.org. The configuration file enables or sus-
pends downloads, modifications, and production rule sets.

While Oinkmaster can help you update your rules files, don’t rely too heavily
on it to do higher-level tasks such as keeping your modified rules straight,
updating your snort.conf file, or otherwise running as an unattended
process — especially in a production environment. Oinkmaster is not robust
enough to be an unattended Snort manager, and it can corrupt your rules or
configuration files if something goes haywire.

18_568353 ch12.qxd 6/2/04 9:28 AM Page 263

Obtaining and installing Oinkmaster
Oinkmaster is free software covered under the GNU General Public License.
You can obtain the Oinkmaster from either of the following sites:

� The Snort Web site: http://www.snort.org

� The Oinkmaster Web site: http://oinkmaster.sourceforge.net/

The current version of Oinkmaster is 0.9; its rules update procedures support
up to Snort 2.1.

Platforms and dependencies
Oinkmaster runs on most Unix-based systems and on the Windows platform.
To run Oinkmaster, you must have a Perl interpreter and the tar, gzip, and
wget programs.

Most Unix systems have these programs standard. To run Oinkmaster on the
Windows platform, however, you have two possible approaches:

� Track down the tools you need — wget, a Perl interpreter, and a
file-compression/decompression tool.

• If you don’t have Perl, you can find it at http://www.perl.com/.

• You can get wget for Windows at http://www.interlog.com/
~tcharron/wgetwin.html.

• The file-archiving tool tar is available for the Windows platform at
http://gnuwin32.sourceforge.net/packages/tar.htm.

• You can get hold of gzip at http://www.gzip.org/.

� Install Cygwin (a Unix-like environment for Windows systems).

• You can find Cygwin at http://www.cygwin.com/.

• Perl also comes as a Cygwin package at http://www.perl.org.

Installing Oinkmaster
Oinkmaster is extremely easy to install. It’s really a single Perl script and a
configuration file. To install Oinkmaster, follow these steps:

1. Download the Oinkmaster archive.

2. Go to your source directory and type the following:

tar -xvzf oinkmaster-0.9.tar.gz
cd oinkmaster-0.9.tar.gz
cp oinkmaster.pl /usr/local/bin
cp oinkmaster.conf /usr/local/etc

264 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 264

If you put oinkmaster.conf in a different directory, you must use
the -C path-to-confile option when running Oinkmaster.

3. Ensure that Oinkmaster can read and write to the Snort rules directory.

The easiest way is to change the ownership of the Oinkmaster files to
either

• The snort user (the user account that owns the Snort files).

• The snortgroup (the group that the snort user belongs to).

On our installation, the directory is snortuser:

chown snortuser:snortgroup /usr/local/bin/oinkmaster.pl
chown snortuser:snortgroup /usr/local/etc/oinkmaster.conf

Don’t run Oinkmaster as a privileged user (such as root). Run
oinkmaster.pl as the same user that Snort runs as.

And that’s the entire installation “process.”

Mastering Oinkmaster
Oinkmaster’s configuration is quick and easy. Its configuration file is similar
to the snort.conf and barnyard.conf configuration files: A flat text file that
tells Oinkmaster precisely what you want.

Configuring Oinkmaster
For Oinkmaster to run, it only needs to know two configuration options:

� The path to wget, tar, and gzip

� The types of files to update (the update files statement in
oinkmaster.conf)

To perform its functions, Oinkmaster needs a few more configuration options
enabled and tweaked, including these:

� Where to get rules updates.

� What to do with the rules updates once Oinkmaster has the updates.

� Whether to modify the rules in production or issue a report concerning
the changes.

Open oinkmaster.conf in your favorite text editor and look through the
configuration switches.

265Chapter 12: Keeping Snort Up to Date

18_568353 ch12.qxd 6/2/04 9:28 AM Page 265

General options
General options in the oinkmaster.conf file give oinkmaster.pl important
information about where to download Snort’s rules updates and where to
find the tools Oinkmaster needs to download and extract the rules files.

Oinkmaster can use the following protocols and methods to download Snort
rules files:

http Uses the standard Web protocol to download the
rules archive.

https Uses the standard secure Web protocol to down-
load the rules archive.

ftp Uses the standard File Transfer Protocol to down-
load the rules archive.

scp Uses Secure Copy to download the rules archive.
You must have scp installed on your system for
this to work.

local copy (file://) The file:// method copies the rules archive
from a local directory. This protocol is most often
used when you want to manually download the
rules archive, read through the rules changes,
and make your own modifications before deploy-
ing rules to your sensor.

The general format for the rules-archive download is

url = downloadmethod://address-or-path-to-rules-files.tar.gz

For example, our rules archive download statement looks like the following:

url = http://www.snort.org/dl/rules/snortrules-stable.tar.gz

The rules download command must end in the file type tar.gz. Oink-
master initiates an untar and un-gzip procedure by default once the file
is downloaded.

Path statement
The path = statement in the General Options portion of oinkmaster.conf
must be properly defined for Oinkmaster to function. The path should
include the location of tar and gzip on your system and wget if you are
using http, https, or ftp to transfer your rules archives. For most Unix sys-
tems, the paths to these programs are /usr/bin, /bin, or /usr/local/bin.
The default value in the oinkmaster.conf file includes all three paths:

path = /bin:/usr/bin:/usr/local/bin

266 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 266

More path statements are included for the Windows and Cygwin platforms,
though you probably must change these settings, depending on where tar,
gzip, and wget are installed. The following lines are default values for each
setting; both are commented out by default:

� The native Windows format uses a semicolon (;) in the path statement
to delineate additional path locations:

path = c:\oinkmaster;c:\oinkmaster\bin

� Here’s how it looks on the Cygwin bash shell running under Windows:

path =
/cygdrive/c/oinkmaster:/cygdrive/c/oinkmaster/bin

Temporary directory
Set a temporary directory for Oinkmaster to download the Snort rules
archive to untar and unzip the files and process them. The default is the
/home/oinkmaster/tmp directory in Linux and C:\tmp for Windows, but
you can specify any directory you want with the following commands:

� For Unix:

tmpdir = /home/oinkmaster/tmp/

� For Windows:

tmpdir = c:\tmp

� For Cygwin:

tmpdir = /cygdrive/c/tmp

To enable this setting, uncomment (remove the # sign) the statement rele-
vant to your platform and set the correct path to the temporary directory
you want to use.

The directory you list in the Temporary Directory section of oinkmaster.
conf must exist when Oinkmaster runs.

Update configuration options
The Update section of the configuration file tells Oinkmaster what filename to
look for when it checks for file updates in the expanded archive. The default
contains everything you probably need, so changes in this section are
unnecessary. The update_files setting (either the default or your specific
changes) is needed for Oinkmaster to run, so don’t comment the line out by
accident. This is the default setting:

update_files = \.rules$|\.config$|\.conf$|\.txt$|\.map$

267Chapter 12: Keeping Snort Up to Date

18_568353 ch12.qxd 6/2/04 9:28 AM Page 267

The preceding configuration option tells Oinkmaster to look for all files with
the .rules, .config, .conf, .txt, and .map regular expressions in the file-
name for possible updates.

Skipfile configuration option
In some instances, you may want Oinkmaster to skip analyzing and updating
files it receives — especially if you created any custom rules in your local.
rules or snort.conf files. If Oinkmaster updates the local.rules file with
a “new” version, you lose all your modifications. (In most cases, you end up
with a blank local.rules file.) If Oinkmaster updates your snort.conf
file, you end up with a generic snort.conf — again, losing all your
modifications.

Have Oinkmaster compare the generic snort.conf with the updated snort.
conf file to alert you to changes that you may need to make in your produc-
tion copy of snort.conf, like when more features or settings are introduced.
We talk more about that task in the section “Running Oinkmaster,” later in
this chapter.

To configure Oinkmaster to skip a particular file, the format is simple:

skipfile filename

If you want Oinkmaster to skip analyzing the local.rules file, the configura-
tion looks like this:

skipfile local.rules

Modifysid options
Oinkmaster can modify the downloaded rules on the fly according to your
configuration options. As stated in the oinkmaster.conf file, though, this
operation is only for the “skilled/stupid/brave.”

No checks and balances prevent you from screwing up the rule beyond
repair. While it’s fun to fly by the seat of your pants, having Oinkmaster
download and modify rules files on the fly can both cause Snort to gag and
allow an important attack to slip through Snort’s nose without firing an alert.
To disable certain rules instead, see the “disablesid options” section later
in this chapter.

The format of the modifysid option is

modifysid SID “replacethis” | “withthat”

268 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 268

Item by item, here’s what’s going on in the modifysid option:

� The SID variable is the actual SID (Snort rule ID number) of the rule you
want to modify.

� The “replacethis” variable stands for the search string, the regular
expression text string you want to find in the rule.

� The “withthat” variable stands for the replace value, the new text
string with which you want to replace the regular expression.

Both the search string and the replace value are in quotation marks.
Both values are also case-sensitive.

The oinkmaster.conf file also contains several examples of using the modi-
fysid option.

enablesid options
The enablesid option can enable rules that are typically disabled by default.
The format is simple:

enablesid SID1, SID2, SID3

Here SID1, SID2, and so on stand for the actual SID number(s) of the rule(s)
you want to enable.

Functionally, the enablesid option removes the # from in front of the rule so
the rule is processed by Snort. You can enable multiple SIDs in two ways:

� Separate enablesid calls

� One enablesid call with comma-separated SID numbers

disablesid options
The disablesid option is the opposite of the enablesid option.
Functionally, it inserts a # sign in front of the given rule (by SID) to disable it
from rules processing. The format is the same as for enablesid:

disablesid SID1, SID2, SID3

This option is far more common than any of the others, especially if you run
a targeted Snort sensor — for example, one that’s only monitoring Web ser-
vices for a host or subnet. (See Chapter 13 for all the information you need to
set up a Snort sensor for specific network services on a host or subnet.)

269Chapter 12: Keeping Snort Up to Date

18_568353 ch12.qxd 6/2/04 9:28 AM Page 269

Mastering Oinkmaster
Oinkmaster is at its best when it alerts you to changes to updated rules
archives.

Don’t use Oinkmaster to automatically change your production rules. Even
the developer warns — throughout the installation and configuration files —
that the faint of heart shouldn’t use Oinkmaster as an automated rules
updater.

Configuring Oinkmaster
To start configuring Oinkmaster, set the General options that apply. For us,
we use the latest stable version of Snort and thus use the latest stable ver-
sion of the rules.

� Download the rules to a temporary directory in the /etc/oinkmaster
subdirectory. Oinkmaster is installed in /usr/local/bin. We want to
see all the changes to all the rules. The meat-and-potatoes of our
oinkmaster.conf file looks like this:

url = http://www.snort.org/dl/rules/snortrules-stable.tar.gz
path = /bin:/usr/bin:/usr/local/bin
tmpdir = /usr/local/etc/oinkmaster/tmp
update_files = \.rules$|\.config$|\.conf$|\.txt$|\.map$

� Because we don’t want Oinkmaster enabling, disabling, or modifying
rules on the fly, we need to tell it not to process our local rules, snort.
conf, or the deleted.rules files included in the rules archive. We usu-
ally review the deleted.rules separately and don’t want Oinkmaster
mucking around with it. As a result, the next section of our oinkmaster.
conf file looks like this:

skipfile local.rules
skipfile snort.conf
skipfile deleted.rules

Backing up your production environment
You should do a thorough backup before making any changes to your Snort
environment in case something goes screwy with Oinkmaster, and your Snort
installation becomes corrupted. Back up these essentials:

� Your rules

� Your snort.conf file

� Any other configuration files relevant to Snort (such as the
barnyard.conf file if you use Barnyard, as described in Chapter 14)

After everything’s secured, you can run Oinkmaster.

270 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 270

Running Oinkmaster
From the command line, we run Oinkmaster with these options:

oinkmaster.pl -o /usr/local/snort/rules/tmp

This command tells Oinkmaster to

� Read its oinkmaster.conf file.

� Download the file as configured in the configuration file.

� Compare the new rules to the rules in /usr/local/snort/rules/tmp.

Upon execution, Oinkmaster gives you two-part output:

� It reports the following information:

Loading /usr/local/etc/oinkmaster.conf.
Downloading rules archive from http://www.snort.org/dl/rules/snortrules-

snapshot-2_1.tar.gz... done.
Archive successfully downloaded, unpacking... done.
Processing downloaded rules... disabled 0, enabled 0, modified 0,

total=1987.
Setting up rules structures... done.
Comparing new files to the old ones... done.

� It shows you the changed rules (similar to the following):

2338 || FTP LIST buffer overflow attempt || bugtraq,8486
2339 || TFTP NULL command attempt || bugtraq,7575
2340 || FTP SITE CHMOD overflow attempt || bugtraq,9483

Armed with this knowledge, perform the following steps:

1. Decide which rules to update and which to ignore.

2. Set up the oinkmaster.conf file to ignore the specific rules that you
don’t want.

Use the disablesid option in the oinkmaster.conf file.

3. Run Oinkmaster to update your production rules, like this:

oinkmaster.pl -o /usr/local/snort/rules

Oinkmaster updates all the rules in your production rules directory.

4. Restart Snort and test to make sure that everything’s working properly.

As a Snort “best practice,” run Snort with the -T flag after a major
modification (such as an Oinkmaster rules update). The -T flag runs
Snort in test mode, which tests the Snort configuration and outputs
either success or failure.

If Snort’s running fine, you’re in business.

271Chapter 12: Keeping Snort Up to Date

18_568353 ch12.qxd 6/2/04 9:28 AM Page 271

Upgrading Snort
Upgrading Snort can be a time-intensive process, especially if several sensors
are spread over your entire enterprise.

No tools or proven methods can simplify this process, but the following
guidelines can help make your Snort upgrade as smooth as possible.

Preparing for the upgrade
To prepare for a Snort upgrade, you must understand what’s changed in the
new version of Snort, back up all your relevant configuration information,
and possibly set up a test sensor to ensure that the changes won’t break your
production environment.

Understanding what’s changed
The release notes, available with each Snort distribution, describe changes to
the program, as well as changes needed in the configuration file and rules.

Before you start upgrading, read the release notes and the Snort message
boards to find out as much as you can about the changes and how they can
affect your environment.

Backing up everything
A few minutes backing up now makes sure that you can recover quickly from
potential upgrade problems.

Backing up important files is never more important than when you’re running
Snort. You may have spent tens of hours devoted to rules tweaks, configura-
tions, and database setup. Save that work; back it up.

You should back up the following Snort files regularly, but especially before
you deploy an upgrade:

� snort.conf configuration file

� Rules files

In addition, even though it’s not always a part of every Snort deployment,
regularly backing up your Snort database is a good idea.

If you use syslog or another output method, make sure that your logging
configuration information is properly archived before you do a Snort
upgrade.

272 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 272

Finally, if you use ACID, Barnyard, or one of the other fine tools available to
help Snort do its job better, you’ll want to back up the relevant files from
these applications as well, including any configuration or log files related to
the applications. (ACID is covered in Chapter 7 of this book. Barnyard is cov-
ered in Chapter 14.)

Completing the upgrade
Upgrading Snort is as easy as three simple steps:

1. Download the files.

2. Make your changes.

3. Update your sensor with the new executables, configuration files, and
rules.

Use the information on installing Snort in Chapter 4 (for Linux) or Chapter 5
(for Windows) if you’re not sure how to update your sensors.

The new version of Snort is always available from the snort.org Web site. If
you monitor the mailing list or the Web site, you should have ample warning
that a new version is pending.

Testing
When deploying any complex system into your enterprise environment, a lab-
oratory test is always a good idea if you have the hardware to spare. You
should first make sure that the new version of Snort runs at all in your envi-
ronment. Then, test any quirks of your configuration in the lab environment.

273Chapter 12: Keeping Snort Up to Date

You are not alone
To see how Snort’s changes affect Snort “in
the field,” sign up for Snort’s mailing lists.
Most members of the mailing lists, message
boards, and other online forums are true Snort

eggheads who can tell you what’s changed and
what it means to Snort’s operation.

We provide a list of Snort information resources
for you in Chapter 16.

18_568353 ch12.qxd 6/2/04 9:28 AM Page 273

Make sure that the following statements are true about your Snort
environment:

� The output is in line with what you want to see.

� Snort can talk to your database properly.

� Your rules are firing in just the way you’re used to.

An ounce of testing is worth a pound of troubleshooting. Always set up a test
sensor when a new version of Snort comes out to make sure that it works in
your environment before deploying it for real in the production environment.

1. Run your new Snort sensor in foreground mode.

Doing so tells you whether Snort gags on the configuration file, stumbles
over any rules files, or gives you any grief when an alert is issued.

2. Test any new pre-processors.

The developers at snort.org are constantly replying to their (often
very vocal) users by providing new Snort functionality. See if any new
pre-processors solve existing problems for you.

3. Determine whether the new version of Snort requires more
horsepower.

It’s always best to be surprised about performance changes in a lab envi-
ronment, rather than having to learn it in the school of hard knocks after
your production Snort sensor slows down to a crawl.

4. Test your new Snort sensor.

For example, you can run an automated vulnerability assessment or use
a tool such as Nmap (available at http://www.insecure.org/) to
make Snort fire on a rule and issue an alert.

5. Trace the alert from the console (where you run Snort in foreground
mode), to the log file (if applicable), or to the database by either log-
ging in directly to the database or by using your ACID console.

Did the alert get to where it was supposed to go? Great! No? Track down
the problem and try again.

Once all the bugs are worked out, run Snort as a daemon or service. You’re in
business with a brand new Snort release.

274 Part III: Moving Beyond the Basics

18_568353 ch12.qxd 6/2/04 9:28 AM Page 274

Chapter 13

Filling Your Farm with Pigs
In This Chapter
� Installing multiple sensors

� Logging to multiple sources

� Securing Snort’s output

You probably already know you need Snort. You may have installed it,
kicked it, tested it, kicked it, tried it on various platforms, and kicked it

again. Don’t put those heavy boots away yet! In this chapter, we show you
how to make all your pigs oink in the same direction. With Snort’s ability to
log to various sources, monitor a variety of network architectures, and make
an overall contribution to your network security, you can live your true
dream as a pig farmer.

Pigs on the Perimeter
Why would you want more than one Snort installation on your network?
Multiple installations of Snort leverage Snort’s benefits and reduce its liabili-
ties. Snort does some things very well: analyzing network traffic and alerting
on its rules. It doesn’t do anything else well.

If you ask Snort to do much stuff it doesn’t do well, it can’t do the things well
that it does so well.

With the flexibility of monitored services and traffic, platform support and
output plug-ins, Snort can (and should) be installed wherever attackers come
knocking, sniffing, stomping, or breaking down the door. Chapters 4 and 5
show you how to install Snort as a single-machine network IDS logging to a
database (or other logging feature) on that same machine. That setup is ter-
rific for testing purposes, but a single-machine deployment is both resource
intensive and a security risk. If intruders beat the single machine, intruders
get to play with all your toys.

19_568353 ch13.qxd 6/2/04 9:29 AM Page 275

The following sections show you how to

� Set up multiple Snort sensors across your network on various hosts to
perform a variety of intrusion detection tasks.

� Point all those Snort sensors to a central logging repository.

Preparing for deployment
Before you can deploy multiple, targeted Snort sensors, you need to plan.

Before you even gather the hardware and software:

� Decide where best to place your sensors in your network environ-
ment. Chapter 2 shows you how to deploy Snort sensors in a variety
of situations.

� Start with a clean house. Chapters 8 and 9 help you make sure that your
new Snort sensors run as efficiently as possible.

It’s unlikely that you’re installing a stand-alone host network sensor on your
network. Though this setup is possible, such a configuration doesn’t leverage
Snort’s distributed, scaleable nature. You probably want other Snort sensors
monitoring various aspects of your network; these sensors may be logging to
a centralized server. You need the following information to configure each of
the network sensors to operate and log properly in your Snort environment:

� Database information: If you use a database to collect alerts from sev-
eral Snort sensors, you need the hostname and IP address of the data-
base server, and the database name, username, and password for the
Snort database. If your database runs on a nonstandard port — for
example, if MySQL is listening on a port other than 3306 — you need
that information for your Snort sensor configuration.

� Snort sensor conventions: If you have several Snort sensors, create a
logical naming and numbering convention to help recognize where alerts
are coming from when you review your logs or database.

� Plug-in and logging conventions: If you use a logging plug-in (such as
Barnyard or syslog-ng), you need all the configuration and architecture
information for these services.

Once you have all this information, you can set up your new Snort sensors.

276 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 276

Setting up a Snort sensor
for an internal network
When configuring a Snort sensor for an internal network, you want to enable
only those features, rules, and configuration options that apply to that net-
work. Everything else just eats processor time and memory and may report
false positives. If a Snort sensor monitors your user LAN behind a firewall
with all hosts running Windows XP, you want to monitor the subnet only for
those network services that are present on Windows XP. You may also want
to enable certain rules for detecting anomalous activity, such as portscans
originating from an internal source, or client-based services, such as AOL
Instant Messenger. In most cases, network traffic coming from a source out-
side your network to a host on your user LAN should be very rare and either
stopped by your firewall or detected by a Snort sensor between the originat-
ing host and the destination.

Positioning the subnet sensor
Snort works best when it can sniff all the traffic going across the wire.

� In a switched environment, your Snort subnet sensor needs to listen on
the Spanning or Monitor port of your network switch.

� If your subnet operates on a hub, the Snort sensor should have access
to all the traffic it needs for its job.

Once you have all the information you need and install your hardware and
Snort, open snort.conf and tweak that configuration.

Setting network variables
For the subnet sensor, you only need to set the HOME_NET variable to the size
of your subnet.

In our case, we have space for an entire class C on the user network, so our
HOME_NET variable looks like this:

var HOME_NET 172.16.1.0/24

In a switched environment, with Snort physically capable of monitoring only
the subnet it’s attached to, you can use the HOME_NET variable any to moni-
tor all addresses on the subnet. The EXTERNAL_NET should be set to any.

277Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 277

Configuring SERVERS variables
The configuration of the SERVERS variables depends on

� What subnet you’re monitoring

� What’s running on that subnet

For our scenario, we have no servers running on the subnet, so we com-
mented out all the SERVERS variables. One SERVERS variable to check is the
AOL Instant Messenger service, especially if you’re setting up a Snort sensor
to monitor a user subnet. The AIM client allows for interclient chatting, file
transfers, and ads from an AOL push server. If you don’t specifically block
AOL traffic on your subnet, make sure that you enable the following SERVERS
variable in the snort.conf file:

var AIM_SERVERS
[64.12.24.0/24,64.12.25.0/24,64.12.26.14/24,64.12.
28.0/24,64.12.29.0/24,64.12.161.0/24,64.12.163.0/2
4,205.188.5.0/24,205.188.9.0/24]

Choosing your preprocessors
In a subnet, deciding which preprocessor to use is as variable as the SERVERS
configuration. Chapter 9 explains what each preprocessor does.

Each preprocessor uses memory and processor time. Enable the ones you
know you need and comment out the rest. For our user LAN scenario, we
chose the following preprocessors to detect the protocol anomaly:

preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor bo
preprocessor arpspoof_detect_host: 192.168.40.1

f0:0f:00:f0:0f:00

Firewalls should protect the local LAN from TCP tricks. We recommend x to
protect against the silly things that users do.

� The bo preprocessor is designed to detect BackOrifice (a nasty
Windows-based Trojan horse program) network traffic.

� ARP spoofing is all the rage with the kids on the local LAN. By pretend-
ing to be a host that he or she’s not, an internal attacker can monitor
traffic meant for another host while escaping detection. With the
arpspoof_detect_host, the spoof kids must actually do their work,
instead of spying on their coworkers.

Configuring for your output method
Configure it to log to the proper host for your output method, such as
Barnyard or syslog-ng.

278 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 278

Because we’re logging directly to a MySQL database, our only output option
looks like this:

output database: alert, mysql, user=snorty password=shutup
dbname=snort host=172.16.1.34 port=3306
sensor_name=LANsensor1

Enabling rules, rules, rules
The rules files that you enable cost you processor cycles and memory, so you
don’t want Snort parsing traffic against all the rules in your rules directory.
The rules for your subnet are better left for you to decide depending on

� What runs on the subnet

� What you think is important to monitor

For our x subnet, we have very few rules enabled:

include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/other-ids.rules
include $RULE_PATH/backdoor.rules
include $RULE_PATH/chat.rules
include $RULE_PATH/p2p.rules
include $RULE_PATH/local.rules

The bad-traffic, exploit, and icmp rules apply to the stream4
preprocessor.

� Because the bo preprocessor is enabled, the backdoor.rules is
enabled, and chat.rules is enabled for AOL.

� Because this subnet has Windows-based systems, netbios.rules is
enabled.

� To detect when users do bad things, such as using a peer-to-peer net-
work client (such as Kazaa or BearShare), p2p.rules is enabled.

Snort sensor in the DMZ
Snort in the DMZ is more a traditional, all-purpose network sensor installa-
tion (see Chapters 4 and 5). This sensor monitors almost anything and every-
thing, although you still should enable only those features that you know you
need. For example, if you don’t have Windows IIS Web servers, you don’t
need rules to parse for IIS-centric attacks. Attackers (and their custom-made
scripts) still scan your hosts for these vulnerabilities, but the vulnerabilities
aren’t there. Why clutter your logs with semi-false positives?

279Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 279

Centralized management and logging
Deploying a Snort sensor on your DMZ assumes that you have other sensors
in your environment, like those described earlier in this chapter. With so
many sensors, use as many centralized management and logging tools and
methods as you can. It both reduces the workload when you update software
packages and rules files and gives you a clearer picture of your entire net-
work’s security profile. With ACID or another centralized console, you can
see an attempted exploit, such as a portscan alert on your DMZ sensor and
then again on all the other sensors that the attempted exploit touches.

With a single, properly configured, protected and backed-up database server,
all your alerting is stored in one place, is easily accessible by you, and is safe
from attackers. With the addition of such response and management tools
like IDS Center for Windows and others, you can update rules, manage alert
responses, and basically control everything from a single management inter-
face. We summarize IDScenter and other cool Snort tools in Chapter 15.

Secure communications
� Traffic both to and from the Snort box should be secured.

� Management of the Snort computer itself should be conducted with SSH
or another encrypted communication protocol.

� Output logging should be conducted over encrypted protocols, such as
stunnel.

We provide tons of information on stunnel and other secure communications
in the “Getting Snort through a Firewall” section, later in this chapter.

Snort configuration
A DMZ sensor should be tailored as closely as possible to the vulnerabilities
that may be exploited on your DMZ. If you don’t have a Web server in your
DMZ, you don’t need rules for Web servers. You not only have those unused
ports blocked at the firewall (or firewalls) between the DMZ and the rest of
the world (both internal and external), you also probably have unused ports
and services disabled on the servers themselves. Most common in an enter-
prise DMZ is a plethora of network services (for both internal and external
users) managed in a barely controlled chaos of hardware, software, and band-
width. Snort, in turn, should be configured to process as much traffic as its
hardware can handle and alert on anything suspicious that passes through
your firewall.

The best method for accomplishing this is to

� Install Snort with every SERVER variable, rule, and preprocessor
enabled.

� Tweak the configuration with either standard components or custom
rules to catch the right mix of threat traffic on your enterprise network.

280 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 280

Catching All the Oinks
Snort (and its associated output plug-ins) allow you to format output to
almost any usable source, such as databases, syslog, and flat comma-
delimited text files. In this section, we show you how to configure Snort to
output to multiple output sources, as well as manage this output centrally
with multiple ACID consoles.

Multiple output configuration
Snort outputs to a variety of sources via several methods at the same time. In
addition to logging alerts to a database (locally, remotely, or both), you can
dump alerts to any combination of

� syslog

� tcpdump

� Snort’s binary output format for processing by Barnyard or another
output plug-in

This section presents a couple of scenarios where multiple output makes
sense and how best to use Snort’s output flexibility.

Logging to more than one database
Snort can log alerts to more than one database. In many cases, this is a good
idea if you’re running a database locally on the Snort sensor machine and
have a centralized database for logging all Snort sensors. This keeps a
backup of Snort’s alert output in database format on the local machine, in
case the central database is unavailable or somehow compromised.

This procedure is resource intensive because Snort must duplicate its data
translation and normalization efforts while trying to keep up with the net-
work traffic it’s supposed to sniff and analyze. If you’re on a high bandwidth
network and your Snort sensor is performing analysis for a large part of that
network, consider using the unified output and have Barnyard process the
binary file and output to the database. (See the section “Multiple Unified
Alert Files,” later in this chapter.)

Configuring for multiple database logging
Follow these steps to configure Snort to log to multiple databases:

281Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 281

1. Open the snort.conf file and find the introduction line for database
output:

database: log to a variety of databases

2. Configure the proper output database lines for both databases to
include the alert type, database type, and relevant login, host, and port
information.

In our case, our output database lines look like this:

output database: log, mysql, user=snortman, password=shutup, dbname=snortdb
host=localhost

output database: log, mysql, user=snort, password=uh$$huh, dbname=snortdb,
host=172.16.1.34, port=3306, sensor_name=websensor.

Both databases are updated with the same alert information as Snort out-
puts it.

Logging to a database and syslog
Different network environments have different logging needs, and Snort can
accommodate any number of logging combinations.

A common output combination is to log Snort to both a database and a cen-
tralized syslog server:

� Logging to both sources allows for a backup of alerts in case one of the
centralized data servers is down.

� Many enterprise network management and security management pack-
ages rely on the generic nature of syslog to process alert, error, and
informational messages from all kinds of network, host, and server gear.
Many organizations send all their IT devices’ logs to a central syslog
server.

� You may want to log to a database because ACID reads its data from there.

With Snort, the configuration is easy (if still resource intensive) because it’s
double logging again.

1. Open the snort.conf file.

2. Go to the alert syslog configuration section and then make sure that
the following is uncommented (remove the pound sign):

output alert_syslog: LOG_LOCAL3

3. For the database configuration, simply use the information from the
preceding section.

4. Restart Snort after making these changes.

For more information on logging configuration in Snort, see Chapter 6.

282 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 282

Securing Snort’s Output
Snort’s binary output data (while not human readable) is vulnerable to being
read and used by attackers. When you ship this sensitive security informa-
tion around your LAN or WAN or across the Internet, that data must be
extremely secure. This section presents the lowdown on securing Snort’s
output data from Snort to the final destination, whether the destination is a
database, syslog, or another logging function.

Giving an attacker any information about your security profile is akin to the
U.S. government sending the plans for Fort Knox to a group of thieves. It may
not be useful by itself, but it’s really not recommended. When an attacker
receives information about your network, you can guarantee that these skit-
tering roaches share that information with all their fathead hacker buddies.
It’s the nature of the beast.

What’s the danger of not securing Snort’s output traffic? Check the juicy bits
of information that Snort outputs in a given alert and what it communicates
to a database just for access:

� Database IP/hostname, port, username, and password: Every time
Snort starts, it logs in to the database with information that can be dev-
astating in the hands of an attacker.

� IP addresses of systems against which attacks are perpetrated: It’s an
inefficient way of reconnoitering a network, but each piece of informa-
tion adds to the risk that your network resources will be someone’s
warez server.

� Services that you’re monitoring: Information about the services you’re
monitoring indicates that you’re running services. An attacker can use
this information to target attacks.

� Exploits that you monitor: The rules you enable may be as useful to an
attacker as the services you’re monitoring. The attacker can customize
the attacks to specifically avoid triggering Snort rules.

� Actual packet data: If a Web application requires login and password
and also trips a Snort rule, it captures the session and barfs an alert to
the unsecured wire. Nice. Free passwords.

What’s the solution? Stunnel. This program can secure network traffic
between communication ports using Secure Sockets Layer (SSL). Stunnel is
most useful when your spewing Snort alerts either inside your local network
or through a firewall from a remote Snort sensor to a centralized database or
a logging server.

283Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 283

Getting and installing stunnel
Stunnel lives at http://www.stunnel.org. Stunnel’s prerequisites are few.
You need SSL installed on your system. (Our examples use OpenSSL on both
Windows and Linux.) At the time of this writing, the latest stable version of
stunnel was based on the 4.05 code base.

Download the stunnel-version-tar.gz.asc file to check the PGP (Pretty
Good Privacy) or GPG (Gnu Privacy Guard) signature on the source code —
that is, unless you’d like to help out needy script-kiddies out there by provid-
ing your server as another free porn archive.

Follow these steps for stunnel source download success:

1. Switch your the source directory:

cd /your-source-directory

Ours is /usr/local/src

2. Grab stunnel using the following commands from your Linux prompt:

wget http://www.stunnel.org/download/stunnel/src/stunnel-4.05.tar.gz
wget http://www.stunnel.org/download/stunnel/src/stunnel-4.05.tar.gz.asc

3. Get Michal Trojnara’s PGP key (he’s the developer who signs the
source):

gpg --keyserver pgp.mit.edu --recv-keys 74C732D1
gpgkeys: WARNING: this is an *experimental* HKP interface!
gpg: key 74C732D1: public key “Michal Trojnara

<Michal.Trojnara@centertel.pl>” imported
gpg: Total number processed: 1
gpg: imported: 1

gpgv can confirm the signature, although you may need to specify where
your public keyring resides:

gpgv --keyring ~/.gnupg/pubring.gpg stunnel-4.05.tar.gz.asc
gpgv: Signature made Sat Feb 14 08:31:39 2004 CST using DSA key ID 74C732D1
gpgv: Good signature from “Michal Trojnara <Michal.Trojnara@centertel.pl>”
gpgv: aka “Michal Trojnara <MichalT@centertel.pl>”
gpgv: aka “Michal Trojnara <Michal.Trojnara@mirt.net>”
gpgv: aka “Michal.Trojnara <MichalT@PTK_PANSKA.PO_MAIN>”

4. When you know you have the genuine article, compile and install
stunnel:

284 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 284

cd /your-source-directory
tar -xvzf stunnel-4.05.tar.gz.asc
cd stunnel-version/
./configure
make
make install

Stunnel installs itself and its few components in the following paths by
default:

stunnel - /usr/local/sbin/
stunnel.conf - /usr/local/etc/stunnel/
stunnel.pem - /usr/local/etc/stunnel/
man - /usr/local/man/man8/

If /usr/local/sbin isn’t in your path, either modify your path or move
stunnel to a directory that’s in your path.

Configuring and running stunnel
as a server
Once stunnel is installed, it’s time to dig through a flat-text config file.

� Good news: You don’t need a command-line startup with three lines of
arcane switches to make stunnel work. Stunnel uses its configuration file
instead of command-line options.

� Bad news: You must parse through a config file and configure a handful
of arcane switches for stunnel to work.

Open stunnel.conf in your favorite text editor and look at the most impor-
tant configuration options to run stunnel as a server, ready to decrypt incom-
ing alerts from your Snort sensors and forward them to your database server.

Getting your hands dirty with stunnel.conf
As a server, stunnel cares about two things, and two things only:

� Its certification file

� The port it’s supposed to monitor

Finding the pointer
To use the certification file pointer, follow these steps:

1. Open stunnel.conf in your favorite text editor.

2. Find the following line in stunnel.conf:

cert = /usr/local/etc/stunnel/mail.pem

285Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 285

3. Change the preceding line to use the actual name of the certification
file, stunnel.pem.

If necessary, change this line to point to the location of the file. By
default, the file is located in /usr/local/etc/stunnel. If yours is else-
where, edit accordingly.

When you’re done, the cert line should look similar to this:

cert = /usr/local/etc/stunnel/stunnel.pem

A stunnel.conf and stunnel.conf-sample file should be in the
/usr/local/etc/stunnel directory. If either of these files aren’t there,
you can copy /source-directory/stunnel-version/tools/stunnel.
conf-sample to your /usr/local/etc/stunnel directory. (source-
directory and stunnel-version are the source directory and stunnel
source directory where you expanded the stunnel distribution.) Make
sure that you keep a backup of the stunnel.conf file in case it gets
corrupted.

chroot
The chroot command changes the root directory of stunnel to the directory
specified. The default directory /usr/local/var/run/stunnel doesn’t
normally exist. If you’re on your system as root, set the chroot directory to
/var/run/stunnel. (We create it and set up various file permissions next.)

As the comments in stunnel.conf say, set the PID of stunnel in your
chroot jail by configuring the next three options. You don’t want stunnel run-
ning as root, because that’s a big fat security violation. You can leave the pid
value to default, but set the setuid and setgid options both to stunnel.
When you’re done, this section of the conf file should look similar to this:

chroot = /var/run/stunnel/
PID is created inside chroot jail
pid = /stunnel.pid
setuid = stunnel
setgid = stunnel

After you set up stunnel, you want to make sure that it’s working, right? Well
the stunnel developers gave you a perfect tool for that with a configuration
switch within stunnel.conf. Add the line:

foreground = yes

This runs stunnel in the foreground, outputting messages to stdout (in this
case) the terminal window. Any errors (or successes) display for you to see,
curse, and go back and fix. Simply remove this line when everything seems to
work, and stunnel runs as a daemon (in the background).

286 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 286

287Chapter 13: Filling Your Farm with Pigs

Hold the phone! I got no PEM!
Generating a certification file for stunnel is as
easy as anything on Linux. We take that back;
it’s somewhat easier, especially because
OpenSSL comes standard on most Linux distri-
butions. To generate a certification file for stun-
nel with OpenSSL, type the following at the
command line (either inside the stunnel direc-
tory or elsewhere):

openssl req -new -out
stunnel.pem -keyout stun-
nel.pem -nodes -x509 -days
arg

The following table breaks down the command:

openssl Launches the openssl process
with the arguments described
below.

req Uses the X.509 signing request
management. If you want egghead
descriptions of encryption proto-
cols, drink plenty of coffee and
refer to: http://www.ietf.
org/html.charters/pkix
charter.html.

nodes Creates the private key without
encrypting it. Though it’s rather
dangerous, it’s the only way stunnel
can read the key.

out Outputs the certificate to the file-
name specified (stunnel.pem in
this case).

keyout Outputs the private key to the file-
name specified (appends it to stun
nel.pem, in this case).

x509 Uses X.509 to create the certificate.

days Extends (or shrinks) the number of
days that an OpenSSL certificate
is valid. (The default number is 30
days.) Using a short number of days

increases privacy in case someone
gets a hold of your certificate, while
using a longer number of days
means you won’t need a new cer-
tificate as often. We set ours for 60
days, but you may be more or less
paranoid.

Press enter and OpenSSL goes to work. You
should see the message:

Using configuration from
/etc/ssl/openssl.cnf

Generating a 1024 bit RSA private key
...................++++++
........................++++++
writing new private key to ‘stunnel.pem’

Then, OpenSSL asks you a series of questions
(such as country, state, and organization) to
build your Distinguished Name (DN). Though it
sounds lofty, the DN is the general information
about you and your organization to use in your
certificate request. Once OpenSSL finishes with
the interrogation, the PEM file is created. Type
more stunnel.pem to see the key and certifi-
cate, which looks something like the following
gibberish:

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQC/23Qz+1tRWuYhcNPlkartlxkFr

d5YOQtEuuH4jVbFvaF7Kd2g
VYHOWwOaRKjKPzy2L8e6UaduvAQW5pH26J3iGr3dZ

iVowdhzOx/KgTeC3iuTWF7Q
/eZ6gR86I7u0nrpA2FgYGeAIWSr7+y0NrKs0XkBin

HgKSNAk4BnRcLOwQwIDAQABto
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIIDWTCCAsKgAwIBAgIBADANBgkqhkiG9w0BAQQFA

DCBgDELMAkGA1UEBhMCdHgx
DTALBgNVBAgTBGJsYWgxEzARBgNVBAcTCmJ1YnVid

WJ1YnUxETAPBgNVBAoTCGFo
aXAgcmkgMQ4wDAYDVQQLEwVmbmEgZjEPMA0GA1UEA

xMGYWZ1bnMgMRkwFwYJKoZI
-----END CERTIFICATE-----

19_568353 ch13.qxd 6/2/04 9:29 AM Page 287

Skip down the file a ways, and you should see several uncommented services
under Service-level configuration:

Service-level configuration

[pop3s]
accept = 995
connect = 110

Comment all these services out by inserting a # sign before each line with
text on it. Thus, these lines should look like this:

Service-level configuration

#[pop3s]
#accept = 995
#connect = 110

Now, add the mysqls service:

[mysqls]
accept = 3307
connect = 3306

This service-level configuration tells stunnel to listen on port 3307 and send
decoded traffic to port 3306 (where mysql is listening).

Check everything:

� The cert= line is point to your stunnel.pem file.

� Are you running in the foreground? For testing purposes, you want to.
Once everything is working, comment out or removed the foreground =
configuration switch.

� The chroot, pid, setuid, and setgid lines are all pointing to valid
directories and users.

� All service-level configurations are commented out except for mysqls.

If all those are true, save the file and exit.

Getting the server ready for the job
Before running stunnel, you must set up

� The stunnel user and group

� The root directory specified in stunnel.conf

� mysqls as a service

Follow these steps:

288 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 288

1. Type the following at the command line:

groupadd stunnel
adduser stunnel -g stunnel
mkdir /var/run/stunnel
chown -R stunnel /var/run/stunnel
chgrp -R stunnel /var/run/stunnel

2. Create the mysqls service:

echo “mysqls 3307/tcp” >> /etc/services

This command creates the mysqls service in the services file.

Stand back! I’m gonna fire up this thing!
You’re ready for your first stunnel test.

At the command line, type the following:

stunnel

The preceding command should produce something like this:

2004.02.22 05:09:41 LOG5[6376:16384]: stunnel 4.04 on i586-pc-linux-gnu
PTHREAD+LIBWRAP with OpenSSL 0.9.6j 10 Apr 2003

2004.02.22 05:09:41 LOG5[6376:16384]: FD_SETSIZE=1024, file ulimit=1024 -> 500
clients allowed

That means everything is working. If you receive error messages, go back and
check your conf file. The error message should direct you to the problem.

Kill the stunnel server for now by pressing the Control and C keys at the
same time. You return to the command line.

Running stunnel when it matters
Once you configure the Snort sensor client machines to send Snort’s alert
data to the mysqls service on the centralized database server, you can con-
figure stunnel to run automatically at boot up as a daemon. To do so, com-
plete the following steps:

1. Open stunnel.conf and comment out foreground = by typing a #
before the line.

2. Configure stunnel to run at boot up.

On most Linux systems, you just copy the source-directory/tools/
stunnel.init into your /etc/init.d directory, where source-directory
is the directory where you originally un-tarred stunnel for installation.

When the server can accept connections on mysqls, start stunnel on the
Snort sensors.

289Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 289

Configuring and running
stunnel as a client
Configuring stunnel as a client is very much like configuring stunnel as a
server. You download and install stunnel exactly the same, and the configura-
tion is almost exactly the same as in the previous server section. The only
differences are noted in the following sections.

Setting up the client in stunnel.conf
The configuration of stunnel.conf is exactly the same as the server, with
the exceptions of the client switch and the mysqls service-level configuration.

To set stunnel up as a client, open the stunnel.conf file in your favorite text
editor, configure the cert, pid, setuid, and setgid options for this installa-
tion of stunnel (see the previous section for details), and then find the follow-
ing line:

#client = yes

Uncomment that line by removing the # sign from the beginning of the line.

The mysqls service-level configuration is slightly different. In this case, you
send Snort alert data on port 3306 and then connect to 3307 on the remote
database server. (This configuration has implications in the snort.conf file
as well, and we cover that in detail following this section.) So, after you com-
ment out all the other service-level configuration options, add the following
line (where server-ip-address is the IP address of the database server run-
ning stunnel):

[mysqls]
accept = 3306
connect = server-ip-address:3307

The best way to test that stunnel is working correctly is to initially configure
it to run in the foreground. To do so, add this line to the stunnel.conf file:

foreground = yes

When you’re sure that stunnel is connecting, transmitting, and receiving
properly, you can remove this line from the configuration file.

Save the stunnel.conf file and exit the text editor.

290 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 290

Getting the client system ready for the job
You must configure your system properly to make stunnel run correctly.
Refer to the “Getting the server ready for the job” section for details. The
client system configuration is exactly like the server configuration, with a few
exceptions, which we detail below.

Once you complete all the file permissions, mysqls service, and other config-
uration tasks, you must configure Snort to communicate to the remote data-
base using stunnel:

1. Open the snort.conf file in your favorite text editor and find the
following line:

output database: alert, mysql, user=snort dbname=snort

2. Change the output database: line for the configuration of your data-
base (replacing the placeholders with your actual configuration infor-
mation) and the new stunnel configuration:

output database: logging-method, mysql, user=snort-database-user
password=snort-database-password dbname=snort-database,
host=127.0.0.1, port=3306, sensor_name=your-sensor-name

For example, our output database line looks like this:

output database: alert, mysql, user=snorty password=shutup dbname=snortdb,
host=127.0.0.1, port=3306, sensor_name=websensor1

3. Save the configuration file and exit the text editor.

Running Snort and stunnel
After you’ve checked the configuration on both the client and server system,
tested that stunnel runs on both systems, and have the foreground switch
on in stunnel.conf for both the client and server, you’re ready:

1. Start stunnel on the server and then on the client.

2. When everything looks happy, restart Snort on the client machine.

3. Launch stunnel on the server.

4. At the command line, type stunnel and press the Enter key.

You should get good information like this:

2004.02.22 05:46:59 LOG5[6396:16384]: stunnel 4.04 on i586-pc-linux-gnu
PTHREAD+LIBWRAP with OpenSSL 0.9.6j 10 Apr 2003

2004.02.22 05:46:59 LOG5[6396:16384]: FD_SETSIZE=1024, file ulimit=1024 ->
500 clients allowed

291Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 291

Launch stunnel on the client
1. At the command line on the client, type stunnel.

2. Press the Enter key.

You should get good information like this:

2004.02.21 04:38:25 LOG5[21948:1074092064]: stunnel 4.04 on i686-pc-linux-
gnu PTHREAD+LIBWRAP with OpenSSL 0.9.7c 30 Sep 2003

2004.02.21 04:38:25 LOG5[21948:1074092064]: FD_SETSIZE=1024, file
ulimit=1024 -> 500 clients allowed

Launch Snort on the client
1. Open another terminal to the client system.

2. Find Snort in the process list by entering the following command at
the command line:

ps -ef |grep snort

You should see something like this:

snort 28088 1 0 Feb01 ? 00:54:17 [snort]

3. Copy the process id (28088 in the preceding example) from the
screen.

4. Use the process id in the following command to bounce (restart) the
Snort process:

kill -1 process-id

For example, the following command restarts our example:

kill -1 28088

Snort restarts and reads its newly configured snort.conf file.

You should see results like these in the terminals running stunnel:

• Where stunnel is running on the client:

2004.02.21 04:43:16 LOG5[22499:1082531008]: mysqls connected from
127.0.0.1:57889

• Where you connected to the server:

2004.02.22 04:43:16 LOG5[6398:16386]: mysqls connected from
10.1.1.129:57890

It’s working. You’re done!

292 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 292

Getting it all running for real
On both the client and the server, press the Control and C keys to kill stunnel.
Here’s how to make stunnel run like a real Linux process:

1. Open the stunnel.conf file on the server and comment out the
foreground = line, like this:

foreground = yes

2. Save and close the stunnel.conf file.

3. Open the stunnel.conf file for the client and comment out the
foreground = line, like this:

foreground = yes

4. Save and close the stunnel.conf file.

5. Check by running stunnel on both the server and the client (type
stunnel at the command prompt and pressing the Enter key).

You should get no output from either.

6. Bounce Snort on the client machine by typing the following command
at the command line (replace pid-of-snort with the process id of the
Snort daemon):

kill -1 pid-of-snort

A few tests can confirm that everything is working as it should:

� Type netstat at the command line and press the Enter key.

In addition to other network connections, you should see something like
this:

tcp 0 0 10.1.1.1.pt:mysqls remote-192-16-22-1:58142 ESTABLISHED

This shows that your client is connected to the server on the mysqls
service.

Testing Snort
You need to test that Snort is actually working over the stunnel connection:

1. Fire a Snort rule by running a program, such as Nmap (http://www.
insecure.org/).

2. Confirm that the alert made it to its repository.

You can confirm by pointing your browser at the ACID console.

293Chapter 13: Filling Your Farm with Pigs

19_568353 ch13.qxd 6/2/04 9:29 AM Page 293

294 Part III: Moving Beyond the Basics

19_568353 ch13.qxd 6/2/04 9:29 AM Page 294

Chapter 14

Using the Barnyard Output Tool
In This Chapter
� Barnyard for fast output

� When to use Barnyard

� Installing and configuring Barnyard

Want Snort to process more network data, faster? Barnyard lets Snort
do what it does best: match network attack signatures to its rules.

Barnyard takes over user-definable logging functions.

Barnyard for Fast Output
Like many open-source Unix-based applications, Snort allows many options.
It’s a piece of the security puzzle without any frills such as a GUI interface,
but with hooks into other security tools and output options. Snort can format
and push its alert logs to a database or a human-readable text file, but this
process eats resources that Snort should be using to analyze network pack-
ets and match them to its security rules. When your network traffic is low,
Snort does a fine job of analyzing packets formatting the output, and writing
to a database. As network traffic increases, Snort must devote more time to
formatting data than to analyzing packets. When this happens, Snort drops
packets, meaning that Snort doesn’t analyze every packet like it should.
Barnyard eases these resource problems by

� Formatting Snort’s unified output log data

� Writing logs to an output program, such as a database or syslog

What does Barnyard do?
Barnyard follows this sequence:

1. Read Snort’s unified output logging in binary format (ones and zeroes
instead of text).

20_568353 ch14.qxd 6/2/04 9:30 AM Page 295

2. Parse the data into a human-readable format.

The pcap output plug-in writes to pcap format readable by network
analysis tools.

3. Write the data to your chosen output method.

Seven Barnyard output plug-ins convert the unified log data into something
else:

� Alert_Fast: Writes all Snort alerts to a single, flat text file that you specify.

� Log_Dump: Writes log output to flat text log files.

� Alert_HTML: Writes alert output to HTML Web pages.

� Alert_CSV: Writes alerts to a comma-separated values (CSV) flat text file.

A CSV file can be read by many database and spreadsheet applications,
including Access and Excel.

� Alert_syslog: Writes alerts to the flat text file syslog format in /var/log/
messages on a Unix-based OS.

This format is the most portable between network and security manage-
ment applications.

� Output_pcap: Writes alerts back to a binary pcap format.

This format allows network analysis tools (such as Ethereal) to analyze
the alert information and replay the network intrusion. This format isn’t
human-readable without another application.

� ACID_DB: Writes alerts to a database for use with the ACID console.

This chapter covers configuring Barnyard for database output. Chapter 7
gives you all the information you need about ACID console.

In the section “Fitting Barnyard into your Snort environment” in this chapter,
we present all the information you need on Barnyard’s output plug-in options
with some handy examples.

Unified logging with Snort
With ever-increasing network traffic and gigabit networks becoming more
and more prevalent, the need for Snort to shed “unnecessary” processes
became apparent. It is much faster for Snort to write its logs to a straight
binary format, than for Snort to take the alert data it has already processed,
parse that data to text, then format it to a human-readable output format
(such as writing to a database or to a text log file). What unified logging buys
you is a faster, more efficient Snort IDS system: Snort handles what it’s sup-
posed to, and Barnyard “prettifies” Snort’s data.

Barnyard does what’s known in the world of Snort as “post-processing.”

296 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 296

Installing and Configuring Barnyard
The Barnyard source available on http://www.snort.org runs on Unix-
operating system variants, such as Linux and BSD. Installing Barnyard on a
Unix system is much like installing Snort itself. Unlike Snort, Barnyard Linux
binaries aren’t available on the http://www.snort.org Web site (though
your particular Linux distribution may have created its own binary Barnyard
package — you can check its Web site). We recommend you compile
Barnyard from source.

The latest version of Barnyard is available from the Snort Web site:

http://www.snort.org/dl/barnyard/

Download the Barnyard archive to /usr/local/src, or another source directory
of your choosing on the Unix system where Snort is running.

Prerequisites
� To run Barnyard “out of the box,” Snort must be running and writing to

a binary unified log. We present step-by-step instructions on installing
Snort on your Linux system in Chapter 4.

In the section “Fitting Barnyard into Your Snort Environment” in this
chapter, we present all you need to know to configure Snort to log to
unified logging format.

� If you want Barnyard to write to a database, such as MySQL, you must
have the database running with all the various tables formatted for
Snort alerts.

Chapters 4 and 5 present all the information you need to run MySQL and
configure it for Snort alerts on the Unix and Windows platforms.

� You need root-user access privileges on the Unix system where you’ll
install Barnyard. But you already knew that.

Barnyard is only distributed as un-compiled code, so you must compile and
install it yourself. The basic process is

1. Extract the archive.

2. Configure database options.

3. Compile and install Barnyard.

The following sections cover each step of the installation process.

297Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 297

Extracting the archive
Extract the Barnyard archive by typing the following command at the com-
mand prompt:

tar -xvfz barnyard-version.tar.gz

The version variable is the actual version of Barnyard you downloaded. For
example, when we extracted Barnyard, the command looked like this:

tar -zxvf Barnyard-0.1.0.tar.gz

The files in the archive extract to a directory called barnyard-version.

Configuring Barnyard
After extracting the Barnyard archive, you configure Barnyard.

To install Barnyard with database support, you must enable that support
when you configure the code. Barnyard currently supports the MySQL and
Postgres databases.

No database
To configure the Barnyard code without any database options, change to the
barnyard-version directory and type the following command:

./configure

The default configure script, without option switches, simply configures the
code for your system, placing the default install directories in the install
script. For database support, consider the options in the following sections.

MySQL
The following commands configure the Barnyard installation with MySQL
database support:

� To use all default MySQL directories, enter the following command:

--enable-mysql

This option provides support for MySQL by scanning your system and
finding the default MySQL installation directory.

298 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 298

� If MySQL libraries or includes are installed in some directory other than
the default, you must use one of the following options.

By setting both the includes and libraries configuration option, you
automatically enable Barnyard’s MySQL output module. This means you
don’t need to include the --enable-mysql setting.

� To use non-default directories for only MySQL includes code, insert the
directory into the following command:

--with-mysql-includes=DIR:

For example, if your MySQL includes code is in the directory, enter the
following command:

--with-mysql-includes=x

� To use non-default directories for only MySQL libraries, insert the direc-
tory into the following command:

--with-mysql-libraries=DIR

For example, if your MySQL libraries are in the directory, enter the fol-
lowing command:

--with-mysql-libraries=x

Configuring Barnyard with default MySQL support
To configure Barnyard with the default MySQL configuration support, type
the following command at the command prompt:

./configure --enable-mysql

You must be in the barnyard-version directory to configure Barnyard before
you compile.

Postgres
Barnyard has an output module for the Postgres database management
system. The following commands configure Barnyard with Postgres database
support:

� --enable-postgres

This option supports Postgres by scanning your system and finding the
default Postgres installation directory.

299Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 299

To configure Barnyard to use Postgres, type the following if Postgres is
installed in the default directory structure:

./configure --enable-postgres

� If Postgres libraries or includes are installed in a directory other than
the default, you must use the —enable-postgres option plus at least
one of the following configure options:

• --with-postgres-includes=DIR

This option sets the directory for Postgres includes code (replace
the DIR variable with the actual directory path to your Postgres
include directory).

If you’ve installed Postgres in the default directory structure, you
don’t need this configure option.

• --with-postgres-libraries=DIR

This option sets the directory for the Postgres library files (replace
the DIR variable with the actual directory path to your Postgres
lib directory).

If you’ve installed Postgres in the default directory structure, you
don’t need this configure option. By default, Postgres’s lib direc-
tory is /usr/local/pgsql/lib.

By setting both the includes and libraries configuration option, you
automatically enable Barnyard’s Postgres output module. This
means you don’t need to also use the --enable-postgres option.

Making and installing
To compile and install Barnyard, simply type the following command at the
command prompt:

make && make install

The compiler reads the configuration script, and installs Barnyard components
in the appropriate directories.

Where does it go?
The Barnyard executable and associated files install in the following directo-
ries by default:

barnyard - /usr/local/bin

barnyard.conf - /usr/local/etc/

300 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 300

gen-msg.map - /usr/local/etc

sid-msg.map - /usr/local/etc

The gen-msg.map and sid-msg.map files are included with Barnyard, but not
necessarily intended to replace those already distributed by Snort. Both of
these files are responsible for mapping Snort’s rules to specific messages and
signature IDs. If you’ve customized the gen-msg.map and sid-msg.map files
that came with Snort, don’t replace your files with the default versions dis-
tributed with Barnyard.

Fitting Barnyard into Your
Snort Environment

Before you can get Barnyard running, you must configure Snort for unified
logging and Barnyard to use Snort’s binary log.

Setting up Snort for unified logging
Snort’s unified logging feature allows Snort to write its alerts directly to a
binary file, instead of converting that output to formatted text. The unified
output plug-in is fast, efficient and easy to configure.

Configure the conf file
To configure Snort for unified logging, perform the following steps:

1. Open snort.conf in your favorite plain-text editor, such as vi or pico.

Use pico -w to turn off word-wrap.

2. Find the output section labeled:

Step #3: Configure output plugins

3. In the # Step #3 output section, find the output plug-ins that you’ve
enabled for Snort for plain-text or database alerting and logging.

4. Type a pound sign (#) in front of each output plug-in line you found.

Typing a # sign in front of the line makes it a comment, so the snort exe-
cutable ignores the line.

Examples of output lines that might need to be commented out include:

output alert_fast: alert.ids
output log_fast: log.ids
output database: alert,mysql, user=snort dbname=snort

host=127.0.0.1

301Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 301

5. Remove the pound sign (#) from the following line in the output section:

output alert_unifed: filename snort.alert, limit 128

6. Change the limit option number in the output alert_unifed line of
the output section to the maximum size of the barnyard log file in
megabytes.

The default is 128 megabytes (“128” in the output alert_unifed line),
which should be fine unless you’re short of disk space.

7. Save the file and exit the text editor.

Test Snort’s output
To test whether Snort is writing to a binary file, follow these steps:

1. Execute the following command at the command line:

snort -dev -c path-to-snort-conf -l /var/log

2. Change to the /var/log directory. You should see a file similar to the
following:

snort.alert.1074420820

The long number appended to the filename is a timestamp of when snort
was started, so different log files with the same name don’t get mixed
up. The size of this file changes as Snort adds alerts.

Configuring Barnyard
To configure Barnyard to process Snort’s unified alert logs, you must

� Make configuration settings changes to the System Configurations, Data
Processor, and Output Plugins sections of the barnyard.conf file

� Start Barnyard with the proper command-line switches

Make a backup of the barnyard.conf file before you start modifying it. It’s much
easier than digging for the original in the install directory.

Configuration declarations
The first section to configure is labeled:

Step 0: configuration declarations

1. In the configuration declarations section, find these three lines:

set the hostname (currently only used for the acid db output plugin)
config hostname: hostname

set the interface name (currently only used for the acid db output plugin)
config interface: fx1

302 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 302

The lines preceded by a pound sign (#) are comments and are not
processed by the Barnyard executable. The three lines that start with
“config” are the lines to change.

2. On the config hostname line, replace the word “hostname” with the
hostname of your computer.

If you don’t know your computer’s hostname, type the command
hostname at the command prompt and press the Enter key.

3. On the config interface line, replace “fx1” with the Ethernet net-
work adapter on your computer.

On Linux systems, standard Ethernet cards are such x as eth0 and eth1.

As an example, our configuration declarations look like this:

set the hostname (currently only used for the acid db output plugin)
config hostname: machine

set the interface name (currently only used for the acid db output plugin)
config interface: eth0

Barnyard requires configuration settings for the type of data processor it is to
use to process Snort’s unified logs:

1. Find the section in the barnyard.conf file labeled:

Step 1: setup the data processors

2. In this section, find the lines labeled:

dp_alert

The dp_alert data processor is capable of reading the alert (event)

format
generated by Snort’s spo_unified plug-in. It is used with output plug-ins
that support the “alert” input type. This plug-in takes no arguments.
processor dp_alert

dp_log

The dp_log data processor is capable of reading the log format generated
by Snort’s spo_unified plug-in. It is used with output plug-ins
that support the “log” input type. This plug-in takes no arguments.
#
processor dp_log

3. Remove the pound sign (#) from in front of “processor dp_alert” and/
or “processor dp_log” depending on which method you use to write
Snort’s unified alerts or log files. Barnyard reads either Snort’s uni-
fied logs or alerts, but not both at the same time.

303Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 303

Output plug-ins
To configure Barnyard’s output plug-ins, you must first decide how you want
your output to appear. Do you want to view Snort alert logs in flat text format?
How about HTML? Do you want the logs to go into a database? Or to comma-
separated value text files? Barnyard can output Snort’s logs to a variety of for-
mats for a variety of applications.

Alert_Fast
To configure Barnyard to read Snort’s unified alert file and output it to
alert_fast format, follow these steps:

1. Open barnyard.conf in your favorite text editor (such as vi or pico)
and locate the following lines:

alert_fast
#-----------------------------
Converts data from the dp_alert plugin into an approximation of Snort’s
“fast alert” mode. Argument: <filename>

output alert_fast:

2. Remove the pound sign (#) from in front of the “output alert_fast:” line
and type in a filename for Barnyard to output the alert log to. For exam-
ple, the alert_fast section of our barnyard.conf file looks like this:

output alert_fast: /var/log/snort/alert.ids

For the alert fast logging feature to function, the dp_alert data processor
must be enabled earlier in the barnyard.conf file.

So, Barnyard takes Snort’s incoming unified alert file, parses it into the
alert_fast format and writes it to a file in /var/log/snort called alert.ids. If you
change to that directory and issue the command “tail -f alert.ids”, you see
some juicy alerts:

--
01/18/04-14:03:20.275942 {ICMP} 10.10.10.1 -> 10.10.10.2
[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
[Xref => http://www.whitehats.com/info/IDS154]

01/18/04-14:03:20.455048 {ICMP} 10.10.10.1 -> 10.10.10.2
[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
[Xref => http://www.whitehats.com/info/IDS154]

Log_Dump
To configure Barnyard to read Snort’s unified log file and output it to
log_dump format, follow these steps:

304 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 304

1. Open barnyard.conf in your favorite text editor (such as vi or pico)
and locate the following lines:

log_dump
#-----------------------------
Converts data from the dp_log plugin into an approximation of Snort’s
“ASCII packet dump” mode. Argument: <filename>

output log_dump:

2. Remove the pound sign (#) from in front of the “output log_dump:”
line and type in a filename for Barnyard to output the log dump to.
For example, the log_dump section of our barnyard.conf file looks
like this:

output log_dump: /var/log/logdump.ids

For the log_dump logging feature to function, the dp_log data processor
must be enabled earlier in the barnyard.conf file.

So, Barnyard takes Snort’s incoming unified log file, parses it into the log_dump
format and writes it to a file in /var/log/snort called logdump.ids. Change to
that directory and issue the command “tail -f logdump.ids” to see some juicy
logs.

Alert_HTML
Sometime in the future, Barnyard will parse Snort’s unified output log into an
HTML file that you specify. In Barnyard version 0.1, the alert_html feature
doesn’t work.

If it ever works, you just find the alert_html section in your barnyard.conf file
and uncomment one of the “output alert_html” configuration lines, then
change the path and filename to where ever you want Barnyard to dump the
HTML file.

Theoretically, the barnyard.conf file will look like this:

alert_html (experimental)
#---------------------------
Creates a series of html pages about recent alerts
Arguments:
[webroot] - base directory for storing the html pages
#
Example:
output alert_html: /var/www/htdocs/op_alert_html
output alert_html: /var/www/htdocs/op_alert_html

In the future, we’ll all have jet-powered backpacks, and Barnyard will output
to an HTML file that looks something like Figure 14-1.

305Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 305

Alert_CSV
Unlike the alert_html, alert_csv actually works. Follow these steps to use it:

1. Uncomment (remove the # sign from in front of) the alert_csv line in
your barnyard.conf file.

2. Add a path and filename for Barnyard to dump the CSV formatted text
file.

Once it works, the configuration looks something like this:

alert_csv (experimental)
#---------------------------
Creates a CSV output file of alerts (optionally using a user specified format)
Arguments: filepath [format]
#
Examples:
output alert_csv: /var/log/snort/csv.out
output alert_csv: /var/log/snort/csv.out

timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

The additional switches (beginning with “timestamp,” and ending with “icode”)
are formatting switches for the outputted data. Snort’s alert information is gen-
erated in “buckets” like the timestamp of the alert, the source and destination IP
addresses, and source and destination port numbers. The alert_csv output plug-
in can configure how those “buckets” appear in the comma-separated value
text file, so columns and rows line up correctly when the log file is imported
into another format (such as Excel or a database). The following example
shows a few of the more important buckets in the example that follows. The
barnyard.conf file has a complete list of the buckets with descriptions.

Figure 14-1:
Stand back!

I’m gonna
fire this up!

306 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 306

The output from our example output_csv configuration looks like this:

“2004-01-18 22:27:54”,SCAN SOCKS Proxy attempt, 10.1.1.1,59424,
10.1.1.2,,”TCP”,,

“2004-01-18 22:27:53”,ICMP PING NMAP,10.1.1.1,, 10.1.1.2,,”ICMP”,8,0
“2004-01-18 22:27:54”,SNMP trap tcp, 10.1.1.1,59424,67.107.81.221,162,”TCP”,,
“2004-01-18 22:27:54”,SCAN Proxy \(8080\) attempt, 10.1.1.1,59424,

10.1.1.2,8080,”TCP”,,

Table 14-1 breaks down the first line of the preceding output, with a descrip-
tion of each bucket.

Table 14-1 Output Explained from the output_csv Plug-in
Output Switch Relevance

“2004-01-18 22:27:54” timestamp Time of the Snort alert

SCAN SOCKS Proxy attempt msg Alert message text

10.1.1.1 srcip Source IP of the alert

59424 sport Source port of the alert

10.1.1.2 dstip Destination IP of the traffic

,, dport Destination port (there isn’t
one in this particular alert)

“TCP” protoname Network protocol of the sus-
pect traffic

,, itype ICMP type (none on this par-
ticular alert)

Alert_syslog
The alert_syslog feature outputs to the standard Unix syslog format. Typically
this log is found in /var/log/messages. To configure Barnyard to process and
parse Snort’s unified log and write that to syslog, follow these steps:

1. Find the following section of the barnyard.conf file:

alert_syslog
#-----------------------------
Converts data from the alert stream into an approximation of Snort’s
syslog alert output plugin. Same arguments as the output plugin in snort.
#
Win32 can also optionally specify a particular hostname/port. Under

307Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 307

Win32, the default hostname is ‘127.0.0.1’, and the default port is 514.
#
[Unix flavours should use these formats...]
output alert_syslog
output alert_syslog: LOG_AUTH LOG_ALERT

2. Remove the # sign from the line:

output alert_syslog

3. Save the barnyard.conf file and restart Barnyard.

If you tail -f /var/log/messages, you see a pigpile of juicy alerts, interspersed
with your normal system alerts:

Jan 18 08:27:47 elvis sshd[27332]: Did not receive identification string from
10.1.1.1

Jan 18 08:30:00 elvis CRON[27334]: (root) CMD (test -x /usr/sbin/run-crons &&
/usr/sbin/run-crons)

Jan 18 08:47:46 elvis sshd[27362]: Did not receive identification string from
10.1.1.1

Jan 18 09:30:11 elvis barnyard: [1:1228:2] SCAN nmap XMAS [Classification:
Attempted Information Leak] [Priority: 2] {TCP} 10.1.1.1:60196 ->
10.1.1.2:1

Jan 18 09:31:00 elvis CRON[27349]: (root) CMD (test -x /usr/sbin/run-crons &&
/usr/sbin/run-crons)

Jan 18 09:32:17 elvis barnyard: [1:469:1] ICMP PING NMAP [Classification:
Attempted Information Leak] [Priority: 2] {ICMP} 10.1.1.2 ->
10.1.1.1

This isn’t the best or most intuitive way to read Snort alerts, but with net-
work or security management packages, this information can be re-parsed
and displayed as you want it. You can also use log-watching tools (such as
Swatch) to notify you when an alert comes across the wire.

Output_pcap
The output_pcap configuration option allows Barnyard to read the Snort uni-
fied alert logs and output them to the binary pcap format. This format isn’t
human-readable in its raw form, but network analysis tools such as Ethereal
can read it and display alert information in a graphical format.

To configure Barnyard to output to pcap format, follow these steps:

1. Find the section of the barnyard.conf file that looks like this:

log_pcap
#-----------------------------
Converts data from the dp_log plugin into standard pcap format
Argument: <filename>

#output log_pcap

308 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 308

2. Remove the pound sign (#) from in front of the line “#output
log_pcap.”

3. After this line, add a colon (:) and a filename for Barnyard where you
want to write the pcap log.

For instance, our log_pcap configuration line looks like this:

output log_pcap: /var/log/snort/log.pcap

4. Save the barnyard.conf file and exit the text editor, then restart
Barnyard.

To test Barnyard’s pcap logging file, you can open the log.pcap file with tcp-
dump with the “replay” switch from the command line like this:

tcpdump -r /var/log/snort/log.pcap

Database reporting
Barnyard can parse Snort’s unified alerts and logs in to ACID database for-
mats that you specify using the ACID_DB output option in the barnyard.conf
file. Before you configure Barnyard to report to a database, you need to con-
sider prerequisites, Snort’s configuration, and Barnyard’s configuration.

Prerequisites
Before you can run Barnyard to process Snort’s unified alerts and output that
to a database, you must have a database management system running with
ACID tables created. We present all the information you need for database
setup in Chapters 4 (for Linux) and Chapter 5 (for Windows).

You don’t need ACID running for Barnyard to write to the database, but you
need ACID or another database front end to see and manage the alerts in any
meaningful way. Chapter 7 gives you all the information you need to set up
ACID for your Snort IDS.

Configuring Snort for Barnyard database output
The only configuration change you need to make to Snort is to disable its
database output option, if it is enabled. (If you’ve been following along in this
chapter, we disabled it in the “Setting up Snort for unified logging” section.)

1. Open snort.conf with your favorite text editor, such as vi or pico.

2. Find the following lines in the output section:

database: log to a variety of databases

See the README.database file for more information about configuring
and using this plugin.
#
output database: log, mysql, user=snortman password=snortman dbname=snort

host=127.0.0.1

309Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 309

output database: alert, postgresql, user=snort dbname=snort
output database: log, unixodbc, user=snort dbname=snort
output database: log, mssql, dbname=snort user=snort password=test

3. Ensure that each of the “output database:” lines have a pound sign (#)
in front of them.

In the snort.conf file, find the lines that look similar to this:

output alert_unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

4. Ensure that the # sign is removed from the “output alert_unified:” line
and that there’s a filename for Snort’s unified alert log and a file size
limit (maximum is 128MB).

5. Save the file and exit the text editor.

Don’t restart Snort yet, because we still need to make sure the database and
Barnyard are properly set up.

Configuring Barnyard for database output
To configure Barnyard for database output, just enable the acid_db switch in
the barnyard.conf file and ensure that it’s properly configured:

1. Open the barnyard.conf file in your favorite text editor, such as vi
or pico.

2. Locate the acid_db section of the configuration file (it’s located at the
bottom):

acid_db
#-------------------------------
Available as both a log and alert output plugin. Used to output data into
the db schema used by ACID
Arguments:
$db_flavor - what flavor of database (ie, mysql)
sensor_id $sensor_id - integer sensor id to insert data as
database $database - name of the database
server $server - server the database is located on
user $user - username to connect to the database as
password $password - password for database authentication
output alert_acid_db: mysql, sensor id 1, database snort, server,

localhost, database snort, user root
output alert_acid_db: mssql, database snort, server localhost, user

snort, password test

3. Enable the appropriate line (for either MySQL or MSSQL) by removing
the # sign from in front of it, and configure the line with the proper
information. This line should look very similar to the corresponding
line in the snort.conf file that you just disabled.

310 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 310

For example, our output alert_acid_db line looks like this:

output alert_acid_db: mysql, database snorty, server 127.0.0.1, user elvis,
password shutup, detail full

4. Once it is configured, save the barnyard.conf file and exit the text
editor.

Starting Snort with the new configuration
To test our work, start Snort with its new snort.conf file.

1. Type the following in the directory where the snort executable
resides:

snort -dev -c snort-conf -l /var/log/snort

The variable snort-conf is the path to the file snort.conf. For our configu-
ration, this line looks like this:

snort -dev -c /usr/local/etc/snort.conf -l /var/log/snort

2. Change to the /var/log directory, and you should see a file similar to
the following:

snort.alert.1074420820

The size of this file changes as Snort adds alerts. Until you run Barnyard,
this is the only way to tell whether Snort’s doing what it’s supposed to.

The following section, “Starting Barnyard,” starts Barnyard with the switches
to read the Snort unified alert and parse that information to the database.

Starting Barnyard
We dedicate a section to starting Barnyard because it isn’t as easy as it sounds.
In typical Unix fashion, Barnyard has a multitude of switches that are some-
what less arcane than the Talmud. Once you understand what they do, it’s easy
to run Barnyard, process Snort’s unified alerts and output them to the format
that you want.

Barnyard command-line switches
Barnyard uses command-line switches to configure input, output and other
administrative tasks. The following are valid Barnyard command-line switches,
description and examples.

To view the command-line switches for Barnyard, type the following in the
directory where the Barnyard executable resides:

barnyard -help

311Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 311

Input switches
Input switches tell Barnyard where to read Snort unified output logs.

� -d <directory>: This switch configures Barnyard to monitor a given direc-
tory where Snort spools its unified log. Without this switch, Barnyard
fails to operate.

� -f <file>: This switch configures Barnyard to monitor a base spool file-
name. A spool filename is a fancy name for a file that’s continually
updated by a process or program. In this case, it’s the Snort unified alert
log file.

� -t <time>: This option sets the “starting unified filestamp” for Barnyard
to look for when processing Snort unified logs. Snort unified logs output
in this format: filename.timestamp. The timestamp is the <time> string
you need for the -t switch.

The actual output filename is configured in Snort when you set the “output
alert_unified” output option in the snort.conf file. See the section “Configuring
Snort for Barnyard database output” earlier in this chapter for the specific
configuration of this option.

The -d, -f and -t input switches operate in concert to direct Barnyard to the
specific directory and Snort unified alert file. For example, to properly config-
ure Barnyard to read the Snort unified filename snort.alert.1074463235 in the
/var/log/snort directory, the command looks like this:

barnyard -d /var/log/snort -f /var/log/snort/snort.alert -t 1074463235

The preceding command requires some output options for Barnyard to write
its parsed file.

Output switches
Barnyard’s output switches direct Barnyard to a directory and file to output
its processed Snort unified log file:

� -a <directory>: This switch archives the processed unified alert file to a
specified directory.

This switch isn’t necessary if you’ve configured the barnyard.conf file
with an output plug-in. It’s useful for testing, or if you’ve written your
own output plug-in and need the raw text file for further processing.

� -L <directory>: This switch configures Barnyard to output it’s parsed
unified alert log file to a specific directory. The actual filename for the
parsed file is configured in the barnyard.conf file for the particular
output plug-in you use.

312 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 312

� -w <file>: This switch configures Barnyard to output the text of the last
alert Barnyard processed from Snort’s unified alert log into a file.

In the world of Snort and Barnyard, this is called a “waldo” file. By
checking the waldo file, Barnyard “remembers” where it was in the alert
log processing so that if Barnyard is stopped and restarted, it doesn’t
need to re-process the entire Snort unified alert log. (A unified alert log
can be as large as 128 megabytes of binary data. Barnyard requires a lot
of resources to re-process the entire file if stopped and restarted.)

To configure Barnyard to process a Snort unified alert and output the data to a
log file and output the last alert processed to a waldo file, the command at the
command line for the example from the preceding section would look like this:

barnyard -w barn.waldo -d /var/log/snort -f /var/log/snort/snort.alert -t
1074463235

This command still requires some configuration options must be set at the
command line.

Configuration switches
Barnyard needs even more information for it to properly operate at the com-
mand line.

� - c <conffile>: The -c switch is used if either

• Your barnyard.conf file isn’t in the default install directory (/usr/
local/etc/snort/).

• You want to use a barnyard.conf file other than in the default
location.

You must input the full path to the barnyard.conf file.

� -g <file>: The -g switch sets the location of the alert generator file that
Snort uses to generate alerts (gen-msg.map).

You only must use this switch if the generator file isn’t in the default
location (/usr/local/etc/snort).

� -s <file>: The -s switch sets the location of the sid-msg.map file that Snort
uses to map an attack’s Signature ID to a description message. You only
must use this switch if the sid-msg.map file isn’t in the default location
(/etc/snort).

We now have enough information to run Barnyard from the command line!
We told you it was arcane. The following example scenario produces view
Barnyard command-line execution success:

313Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 313

Snort unified alert file:

/var/log/snort/snort.alert.1074463235

Barnyard configuration file:

/usr/local/etc/barnyard.conf

Generator and SID files:

/usr/local/etc/gen-msg.map
/usr/local/etc/sid-msg.map

We want to output the processed Snort unified logs to the following directory:

/var/log/barnyard

And we want the waldo file to output to the directory where barnyard.conf
resides with the following filename:

barn.waldo

With all that information, we construct the Barnyard command with switches
at the command line, like so:

barnyard -w barn.waldo -c /usr/local/etc/barnyard.conf -d
/var/log/snort/ -g /usr/local/etc/gen-msg.map -s
/usr/local/etc/sid-msg.map -f
/var/log/snort/snort.alert -t 1074463235

The output at the command line for our example command looks like this:

-*> Barnyard! <*-
Version 0.1.0 (Build 17)
By Andrew R. Baker (andrewb@snort.org)
and Martin Roesch (roesch@sourcefire.com, www.snort.org)

Loading Data Processors...
dp_alert loaded
dp_log loaded
dp_stream_stat loaded
Loading Built-in Output Plugins...
Fast Alert plugin initialized
AlertSyslog initialized
Log Dump plugin initialized
LogPcap initialized
AcidDb output plugin initialized
AlertCSV initialized
Parsing Config file: /usr/local/etc/barnyard.conf
Barnyard Version 0.1.0 (Build 17) started

314 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 314

If you missed a configuration option, fat-fingered a command-line switch, or
otherwise made a mistake, Barnyard issues an error at or near the error point
and exits the program.

To check your work, navigate to the directory where you output the parsed
unified alerts and issue the “tail -f” command on the Barnyard alert file. You
should see the alert file continually updating with Snort alerts.

Optional switches
Barnyard command-line switches can control these administrative tasks:

� -D: Use -D switch when you’re ready for Barnyard to run in the back-
ground (after you’ve tested that your miles long Barnyard command
actually will work). Simply add the -D switch to the Barnyard command,
along with all the other switches.

You can also configure Barnyard to start as a daemon in the
barnyard.conf file.

� -o: The -o switch process a Snort unified log, outputs as directed by
other output switches and then closes Barnyard. This command is
useful when you want to test your configuration file, command-line
switches and output file.

� -R: The -R switch directs Barnyard to run through its various configura-
tion options and command-line switches, but then exit without process-
ing a unified log or outputting to a log file. This switch tests your
Barnyard configuration and command-line switches.

� -V: The -V switch simply outputs the Barnyard version information and
exits. You don’t need any other switches for this one to function.

� -X <file>: The -X switch specifies a process ID (pid) file when Barnyard
runs in daemon mode.

� -h: The -h switch shows the help file with Barnyard usage information,
switches and descriptions.

Finally, your barnyard.conf and snort.conf files are configured correctly, and
Snort is writing its alerts to a unified alert log. Your database receives alerts,
and you’ve constructed your Barnyard command with all the various
switches. Congratulations! You now have Barnyard processing your alerts,
letting Snort do what it does best: sniffing the network for attacks.

315Chapter 14: Using the Barnyard Output Tool

20_568353 ch14.qxd 6/2/04 9:30 AM Page 315

316 Part III: Moving Beyond the Basics

20_568353 ch14.qxd 6/2/04 9:30 AM Page 316

Part IV
The Part of Tens

21_568353 pt04.qxd 6/2/04 9:31 AM Page 317

In this part . . .

This part points you to tools and resources to help you
get the most out of your Snort IDS. It starts by show-

ing you the top ten coolest tools for Snort, many of which
help you visualize what Snort’s telling you, or e-mail you
convenient summaries of Snort’s alert information. Finally,
it tells you where you can go for extra Snort help and
information.

21_568353 pt04.qxd 6/2/04 9:31 AM Page 318

Chapter 15

Ten Cool Tools for Snort
In This Chapter
� Managing alerts with SnortSnarf, Snort Alert Monitor, and Pig Sentry

� Reporting alerts with RDD-Snort and Snortalog

� Responding to alerts with SnortFW and Guardian

� Managing intrusions with MIDAS, Demarc PureSecure, and IDScenter

Developers are designing a ton of cool Snort tools. Some are actively sup-
ported, and some are left to the vultures. In this chapter, we present a

quick rundown of a good mix of these up-and-coming tools.

Alert-Management Tools
The alert management tools in this section parse Snort log files and provide
alert log viewing in a more convenient format. Most provide similar function-
ality to ACID (as discussed in Chapter 7) but either have less functionality or
a slightly different approach.

SnortSnarf
SnortSnarf is a Perl script with more modules, installs in 5 minutes, and con-
figures from the command line to do everything it needs. SnortSnarf parses
Snort’s alert or log data and outputs that data to handy HTML files.

What does it do?
SnortSnarf runs against Snort’s alert and log files or, with a plug-in module,
reads Snort data straight out of your MySQL database and outputs all that
data to a stack of HTML files, similar to ACID console.

Where can I get it?
SnortSnarf is distributed from the Silicon Defenses Web site at http://www.
silicondefense.com/software/snortsnarf/. All the information you need

22_568353 ch15.qxd 6/2/04 9:32 AM Page 319

to run SnortSnarf is at the Silicon Defense site, in addition to some handy plug-
ins for reading alerts out of a MySQL database.

What’s cool about it?
SnortSnarf gives you a quick and easy way to transform those arcane Snort
log files or database entries into easy-to-use, fully referenced Web pages.
SnortSnarf can be run straight from the command line as either a one-off
process or as a regularly scheduled process using the Linux cron utility.

SnortSnarf is a memory hog. Don’t expect to run it directly on a high-traffic
Snort sensor or a server with little memory to spare.

Figure 15-1 displays SnortSnarf’s output.

Snort Alert Monitor
Snort Alert Monitor (SAM) is a Java-based console that gives you a quick look
at the Snort alerts in your MySQL database.

Don’t confuse this tool with SnortSam, the real-time attack blocker in
Chapter 11.

What does it do?
SAM runs as a Java-console, so it’s platform independent. SAM monitors your
MySQL database and gives you a real-time view of incoming Snort alerts. SAM
also gives you audible alerts (using a dictionary of sound files) for every alert
you receive.

You can configure SAM to send you an e-mail when Snort alerts to an
attempted exploit on your network. Although SAM hasn’t been updated since
2002, it’s still a pretty useful tool.

Figure 15-1:
SnortSnarf’s
handy Web-
page output.

320 Part IV: The Part of Tens

22_568353 ch15.qxd 6/2/04 9:32 AM Page 320

Where can I get it?
SAM is available from the SourceForge developer site at http://sourceforge.
net/projects/snortalertmon/.

What’s cool about it?
SAM takes all of 3 minutes to install and configure. You instantly have a
window into your incoming Snort alerts. The audio alerts are taken from
2001: A Space Odyssey, and who doesn’t think HAL is cool?

SAM only outputs 60 minutes of Snort alerts to its console, and you don’t get
the drill-down detail and forensics options available for each alert (such as
looking up an attacker’s address via WHOIS) you get with ACID console or
SnortSnarf.

Figure 15-2 is a screen shot of what SnortSnarf looks like.

Pig Sentry
Pig Sentry is a lightweight script that generates real-time alerts from a Snort
alert log on a high-volume network.

What does it do?
Pig Sentry is a set of Perl scripts that monitors Snort’s alert log and keeps a
state table of recent alerts and then sends a notice for

� New alerts

� Increases in alert trending

� Patterns of existing alerts that indicate probable compromise

Pig Sentry’s self-monitoring system keeps it “aware” of the state of your
incoming alerts, even after it exits, making it easy to roll into a log rotation
mechanism.

Where can I get it?
Pig Sentry is available at the Solv Web site at http://web.solv.com/tools/
pigsentry/.

What’s cool about it?
Instead of sitting in front of an ACID console waiting for an update, you can
be out playing beach volleyball.

Pig Sentry was written to work with Snort 1.8.1 or earlier with full log output,
so it may not be cool for you. But hey, beach volleyball is cool.

321Chapter 15: Ten Cool Tools for Snort

22_568353 ch15.qxd 6/2/04 9:32 AM Page 321

Alert-Reporting Tools
For those who need those pretty graphics (especially those with managers
who need the pretty graphics), these tools add some graphic capability to
the Snort alert-logging functions.

RRD-Snort
RRD-Snort is a graphing utility that creates a graphic of alerts/events stored
in a Snort database. RRD allows you to develop a graphic representation of
the top attack methods detected by your Snort sensor.

What does it do?
RRD-Snort is a Perl script that reads stored alerts or events in the Snort data-
base and converts that data to a distribution of top attack methods that the
Snort sensor has detected. You choose the number of methods.

Where can I get it?
RRD-Snort is available at the Freshmeat Web site at http://freshmeat.net/
projects/rrd-snort/.

Figure 15-2:
“It’s

puzzling.
I don’t

think I’ve
ever seen

anything like
this before,”

says HAL.

322 Part IV: The Part of Tens

22_568353 ch15.qxd 6/2/04 9:32 AM Page 322

What’s cool about it?
Who doesn’t love cool 3-D graphics of flying X-Wings fighting the Emperor
Zurg for control of the entire freakin’ galaxy? Unfortunately, RRD-Snort out-
puts the most frequent attack methods detected by Snort in 2-D bar graphs.
It’s still pretty darn cool, though.

Snortalog
Snortalog is a Perl-based Snort log analyzer on steroids with output options
to ASCII text, HTML, and graphs (formatted in JPEG, GIF, or PNG).

What does it do?
Snortalog is configured and managed from a GUI interface, and it runs on
either Linux or Windows. It reads output from Snort in any format (no other
tool that we’ve seen has this feature), including syslog, provides fast and full
alerts, and then builds flat text or HTML summary reports. Snortalog’s sum-
mary reports are similar to ACID’s reports, but more compact. ACID is fully
covered in Chapter 7.

In Linux, Snortalog outputs an impressive set of graphs based on the data it
summarizes. The graphs are available in JPEG, GIF, and PNG formats.

Snortalog also reads log formats of Checkpoint FireWall-1 and Cisco PIX
firewalls.

Where can I get it?
You can download the latest version of Snortalog from either

� The Snortalog author’s homepage, which has all the information you need
to run Snortalog: http://jeremy.chartier.free.fr/snortalog/

� The Snort Web site: http://www.snort.org/dl/contrib/data_
analysis/snortalog/

What’s cool about it?
Ever sit like a Pavlovian experiment waiting for little nuggets of data in your
ACID console on a very busy network and database? Snortalog summarizes
what you need to know about the state of your network security right now. It
supports multiple sensors and produces pretty graphics for the management.

Alert-Response Tools
Everyone wants to press a button and launch a hundred Tomahawk missiles
every time a real alert comes across the wire. Though these tools don’t

323Chapter 15: Ten Cool Tools for Snort

22_568353 ch15.qxd 6/2/04 9:32 AM Page 323

necessarily allow that functionality, they do allow you to update your firewall
to block an incoming attack that Snort has alerted on.

SnortFW
Tired of hand-configuring iptables when an attacker fires a Snort alert?
SnortFW does all that for you.

What does it do?
SnortFW analyzes incoming Snort alerts and (depending on the scan thresh-
olds and danger level assignments) updates your iptables firewall to block
the attacker. SnortFW also can e-mail alert information to any number of mail-
boxes for more intrusion response.

Where can I get it?
SnortFW is available at the Cipherdyne Web site at: http://www.cipherdyne.
org/fwsnort/download/fwsnort-0.6.1.tar.gz

What’s cool about it?
Though SnortFW code is still in the alpha development stage and has a few
hitches, it’s fast and effective at shutting down attacks as they happen.

Guardian
Guardian is an active response utility that updates firewall rules based on
Snort alerts.

What does it do?
Guardian updates firewall rules on the fly off of Snort alerts, actively blocking
all incoming data from an attacker’s IP address. Other configuration options
allow you to “whitelist” certain machines to prevent false positives from
causing your firewall to go haywire. Guardian includes shell scripts for

� Commercial firewalls (Checkpoint Firewall-1 and Cisco PIX)

� Open source firewalls based on Unix, BSD, and Linux (ipchains,
iptables, ipfwadm IPFW, and ipfilter firewalls and packet filters)

Where can I get it?
Guardian is available from the Chaotic Web site at http://www.chaotic.org/
guardian/.

324 Part IV: The Part of Tens

22_568353 ch15.qxd 6/2/04 9:32 AM Page 324

What’s cool about it?
Guardian lets you strike back at your attackers by blocking their work before
it can harm your systems. What could be cooler than that? Other than an
automatic Tomahawk missile launch to the attacker’s spider hole, we can’t
think of anything cooler.

Intrusion-Management Tools
Intrusion-management tools are considered the “whole package.” The two
tools covered here provide Snort configuration and management tools,
reporting and some limited response capabilities. When you don’t want to
tickle 15 different configuration files, find some marginal Snort graphical util-
ity, and tweak your firewall after every alert, these centralized management
consoles are for you.

MIDAS
MIDAS is a centralized cross-platform network monitoring and network intru-
sion detection server that uses Snort as its base intrusion detection engine.

What does it do?
MIDAS stores the raw incoming Snort packet information locally and only
sends specific packet information when an alert occurs. MIDAS features cen-
tralized configuration management, network monitoring, and built-in RRD
graphics support.

Where can I get it?
MIDAS is available at the SourceForge Web site at http://freshmeat.net/
projects/midas-nms/.

What’s cool about it?
MIDAS is still in the alpha development stage, so it has some issues, but it’s
already shaping up as a solid, centralized intrusion detection server and
manager, with nice support for distributed clients. Keep an eye on MIDAS.
(We won’t make a joke about gold, in case you were holding your breath.)

Demarc PureSecure
PureSecure is the total package when it comes to Snort tools. Integrating the
Snort detection engine, PureSecure is a centralized intrusion detection and
security suite. PureSecure is also a commercial product.

325Chapter 15: Ten Cool Tools for Snort

22_568353 ch15.qxd 6/2/04 9:32 AM Page 325

What does it do?
PureSecure combines major aspects of network security into a centralized
management console. It uses the Snort IDS engine, a host-based System
Integrity Verification system, and an Extensible Service Monitoring system to
keep your network security under one all-seeing umbrella. And an all-seeing
umbrella is as cool as fried taters.

Where can I get it?
Demarc PureSecure is available at the Freshmeat Web site at http://
freshmeat.net/projects/demarc/.

What’s cool about it?
Looking at one console for all your network security needs is cool unto itself.
PureSecure also can generate reports, give you a host-based intrusion detec-
tion system, and use that work-pig Snort for the network IDS workload.

PureSecure is only free for non-commercial use.

IDScenter
IDScenter is a graphical front-end for managing Snort, alerts, and network
security.

What does it do?
IDScenter touts the following features:

� Provides a centralized console for monitoring Snort alerts, managing
rules and configuration files, and distributing updates

� Generates handy reports in HTML from your SQL database

� Includes an e-mail, audible alarm and visual alarm notification system

� Allows you to write your own plug-ins for your firewall

Where can I get it?
IDScenter is available on the Engage Security Web site at:
http://www.engagesecurity.com/products/idscenter/.

What’s cool about it?
The coolest thing about IDScenter is that it’s Windows-based! The fact that
it’s one of the few stable, extensible, and feature-rich centralized Snort con-
soles available for Windows propels it to “cool” status immediately.

326 Part IV: The Part of Tens

22_568353 ch15.qxd 6/2/04 9:32 AM Page 326

Chapter 16

Ten Snort Information Resources
In This Chapter
� Tracking down information on Snort, intrusion detection, and incident response

� Knowing where to go when you need help with Snort

This book gives you everything you need to know to run a fully functional
Snort IDS on your network. If you want to go beyond this book, a number

of resources are available to help you. Part of the beauty of Snort’s open-
source software model is its community support. If you run into a problem,
someone else probably has found a solution.

The Snort.org Web Site
The Snort.org Web site at http://www.snort.org/ is the first stop for all
things Snort. This open-source, community-driven Web page is for the Snort
IDS project and is also the home of Snort itself. At this site, you find

� The Snort source code, Linux pre-compiled binaries, and Windows pre-
compiled binaries

� The latest and greatest Snort rules

� A Snort news Web log that gives you the latest news on Snort’s develop-
ment and identifies where Snort appears in the news on other sites

� Lots and lots of Snort documentation: official docs, FAQs, setup guides
for specific platforms, and IDS deployment guides

If you don’t know what you need, snort.org is a great place to start.

23_568353 ch16.qxd 6/2/04 9:32 AM Page 327

The Snort Mailing Lists
The Snort team maintains a number of Snort-related e-mail lists to which you
can subscribe and post. Among the mailing lists are the following:

� snort-announce contains announcements of new releases and other offi-
cial Snort news. This list has a pretty low amount of traffic — on average
only a couple of posts per month. Because this list is moderated, your
average Joe or Jane can’t post directly to it without the message being
approved.

� snort-users is a mailing list where you can post your Snort questions.
An entire community of Snort users on this list can help you with your
problem. This list is busy, sometimes exceeding 1,000 posts per month.

� snort-sigs is a discussion forum for the development of Snort rules. This
list generally has a couple hundred posts per month.

If you’re programming for Snort or running bleeding-edge Snort code (recom-
mended for testing purposes only), you may want to check out a couple of
other lists. You can subscribe by completing Web-based forms available at
http://www.snort.org/lists.html. You can also find searchable archives
at this site, which is a great start for help with Snort.

The SANS Institute
The security gurus at the SANS Institute have an excellent collection of white
papers in their Web site’s Reading Room, found at http://www.sans.org/
rr/. Its Intrusion Detection section has a collection of papers on Snort and
other IDS programs. An excellent section, “Incident Handling,” of papers on
responding to computer attacks and intrusions.

The Whitehats Security Forums
Whitehats is the home of the arachNIDS database of network attack signature
information and a general security news site. Its URL is http://www.
whitehats.com/. The Whitehats site contains a number of security forums,
and no less than four forums devoted to intrusion detection, including one
specifically for Snort.

328 Part IV: The Part of Tens

23_568353 ch16.qxd 6/2/04 9:32 AM Page 328

The SecurityFocus IDS Mailing List
SecurityFocus is a respected computer security news site, as well as the home
of a number of respected and popular computer security mailing lists. It has
an IDS-specific section on its site at http://www.securityfocus.com/
ids/. From there, you can subscribe to the Focus on IDS mailing list, which is
a moderately busy list that mostly contains general IDS discussions, but also
the occasional specific post about Snort.

The WINSNORT.com Web Site
WINSNORT.com is actually a company that creates its own Windows and
Linux-based Snort sensor appliances that it offers for sale. This site also con-
tains a lot of information on running Snort on Windows and Linux. Its URL is
http://www.winsnort.com/.

The My-snort.org Web Site
My-snort.org is a Web log-style site that contains a lot of information on intru-
sion detection and Snort. Its URL is http://www.my-snort.org/.

The LinuxSecurity.com Web Site
While this site has “Linux” in its URL, it also contains a lot of great general
information about security. It’s constantly updated with the latest security
news, with links to their sources, and has a number of original feature arti-
cles. Resources on IDS and Snort also are available at this site. Just point
your browser to http://www.linuxsecurity.com/.

The Freshmeat.net Web Site
While not strictly a Snort or IDS-related site, Freshmeat.net is the best place
to find out about open-source software releases and updates. The next time
you say, “I wish Snort did this,” or “I wish I had a tool to do that to my Snort

329Chapter 16: Ten Snort Information Resources

23_568353 ch16.qxd 6/2/04 9:32 AM Page 329

logs, but I don’t have the time or skills to program it,” visit Freshmeat.net:
Someone else probably has wished for the same things and programmed
them for you. Simply go to http://www.freshmeat.net/ and search on
“snort”. Almost every Snort-related open-source project shows up.

Our Web Site
Visit http://www.vorpalmedia.com/ (run by the authors of this book). On
it, you find informative updates on Snort and other topics we cover in Snort
For Dummies. You can also use the mail form to ask us questions.

330 Part IV: The Part of Tens

23_568353 ch16.qxd 6/2/04 9:32 AM Page 330

Appendix A

What’s on the CD-ROM
In This Appendix
� CD-ROM contents.

� CD-ROM considerations

Instead of going to the Internet to install Snort, its components, and extra
tools, feel free to use this CD-ROM. It may save you some time if you are

setting up Snort to learn more about it. For putting Snort into production,
however, we always recommend grabbing the latest and greatest stable ver-
sions of these programs off of the Web sites we point out in individual chap-
ters. In addition to enhanced functionality, newer versions of these software
packages may contain important security updates.

CD-ROM Contents
The CD-ROM includes the Snort IDS software, the ACID visualization console,
the prerequisites to get them running, and other helpful tools.

JpGraph OO Graphic Library
The JpGraph OO Graphic Library is one of the many prerequisites for the
ACID visualization console, covered in Chapter 7. This runs on both Linux
and Windows.

SnortSam
SnortSam is a Linux-based real-time attack blocking utility covered in
Chapter 11.

24_568353 AppA.qxd 6/2/04 9:33 AM Page 331

Snort
Snort is what this book’s all about. We include versions for both Linux
and Windows. We cover installing Snort for Linux in Chapter 4 and Snort
for Windows in Chapter 5.

PHP
PHP is a scripting language parser that’s required for the ACID console, cov-
ered in Chapter 7. We include versions for Linux and Windows.

MySQL
MySQL is a client/server database package that can accept Snort logs. We
cover it in Chapters 4 (Linux), 5 (Windows), and 7 (using MySQL with ACID).
We include versions for Linux and Windows.

WinPcap
WinPcap is a packet capture library and a prerequisite for Snort on Windows
systems. We cover WinPcap in Chapter 5.

ACID
ACID is a Web-based visualization console for Snort alerts. ACID runs on Linux
and Windows. We cover ACID in Chapter 7.

ADODB Database Library for PHP
ADODB Database Library for PHP lets PHP talk to databases such as
MySQL. ADODB is a prerequisite for ACID, covered in Chapter 7.

Apache HTTPD Server
The Apache HTTPD Server is a popular Web server. We include the Linux
version on the CD. Having a Web server is a prerequisite for ACID, which we
cover in Chapter 7.

332 Snort For Dummies

24_568353 AppA.qxd 6/2/04 9:33 AM Page 332

Barnyard
Barnyard is a helper application that takes the load off of Snort for log
writing. We include the Linux version on the CD. Barnyard is covered in
Chapter 14.

SnortSnarf
SnortSnarf is a Perl script that generates HTML pages from Snort logs. You
must have Perl installed for SnortSnarf to run (see http://www.perl.com/ for
information on obtaining Perl if you don’t already have it). We cover SnortSnarf
in Chapter 15.

PHPLOT
PHPLOT is a PHP add-on for generating graphs. PHPLOT is yet another prereq-
uisite for ACID, which we cover in Chapter 7.

Swatch
Swatch is a system-log watcher that can be used to send you real-time Snort
alerts. We include the Linux version of Swatch on the CD. We cover Swatch in
Chapter 11.

Guardian
Guardian is an active response utility that updates firewall rules based on
Snort alerts. We include the Linux version. We cover Guardian in Chapter 15.

PigSentry
PigSentry is a lightweight Perl script that generates real-time alerts from a
Snort alert log on a high-volume network (see http://www.perl.com/ for infor-
mation on obtaining Perl if you don’t already have it). We include the Linux
version on the CD-ROM. We cover PigSentry in Chapter 15.

333Appendix A: What’s on the CD-ROM

24_568353 AppA.qxd 6/2/04 9:33 AM Page 333

Snortalog
Snortalog is a Perl-based Snort log analyzer on steroids with output options to
text (ASCII) or HTML, as well as JPEG, GIF, and PNG formatted graphs. It should
run on any system that has Perl (see http://www.perl.com/ for information on
obtaining Perl if you don’t already have it). We cover Snortalog in Chapter 15.

libpcap
libpcap is a packet capture library that is required for running Snort on your
Linux system. We cover installing and using libpcap in Chapter 4.

OpenSSL
OpenSSL is an SSL library that is required for running OpenSSH and a number
of other security tools. We include the Linux version on the CD-ROM. We cover
installing OpenSSL in Chapter 4.

OpenSSH
OpenSSH is a secure remote-management utility. We include the Linux version
on the CD-ROM. We cover installing OpenSSH in Chapter 4.

zlib
Zlib is a compression library, and is one of the many prerequisites for the
ACID console. We cover installing zlib in Chapter 7.

libpng
Libpng is a graphics library for Linux and Windows, and is another prereq-
uisite if you want ACID to graph your alert data. We cover installing it in
Chapter 7.

334 Snort For Dummies

24_568353 AppA.qxd 6/2/04 9:33 AM Page 334

Oinkmaster
Oinkmaster is a Perl script that can be used to update your Snort rules. It
should run on any system that has Perl (see http://www.perl.com/ for infor-
mation on obtaining Perl if you don’t already have it). We cover Oinkmaster
in Chapter 12.

CD-ROM Considerations
This CD-ROM was created in a format that should be readable by Microsoft
Windows, Linux, and Macintosh OS X computers. Refer to your operating
system’s documentation for mounting and reading a CD-ROM, if necessary.

Some of the software on this CD-ROM requires un-archiving or un-compressing
utilities to open them. Specifically, you might see software with the following
filename extensions:

� .tar_These files are Unix TAR files.

� .gz_These files have been compressed using the GNU Zip algorithm.

� .tar.gz or .tgz_These formats are Unix TAR files that have also been
compressed using the GNU Zip algorithm.

� .zip_These files have been compressed using the ZIP algorithm, sup-
ported by a number of utilities.

For Windows systems, the WinZIP utility (found at http://www.winzip.com) or
WinRAR utility (found at http://www.rarlab.com/) can open all of these formats.
Windows XP compressed file and folder feature will only handle files in the
ZIP format, so you might need WinZIP or WinRAR, anyway.

For Linux systems, just make sure you have the tar, gunzip, and unzip utilities
available on your system. The whereis, locate, and find utilities can help you
locate them. Consult the documentation for your specific Linux distribution
for more information on these utilities.

335Appendix A: What’s on the CD-ROM

24_568353 AppA.qxd 6/2/04 9:33 AM Page 335

336 Snort For Dummies

24_568353 AppA.qxd 6/2/04 9:33 AM Page 336

• Symbols •
> (arrow) direction operator, 181
<> (arrows) directionless operator, 181
\ (backslash)

line continuation character, 143
normalization of, 208

: (colon) rule port number separator, 183
$ (dollar sign)

Linux command prompt, 42
variable prefix, 179

() (parentheses)
rule body delimiters, 184
syslog-ng driver argument

delimiters, 248
% (percent sign) URL escape character, 207
| (pipe) or operator, 129
(pound sign)

comment prefix, 90
Linux command prompt, 42

" " (quotation marks, double) rule value
delimiters, 184

' ' (quotation marks, single) ADODB path
delimiters, 149

; (semicolon)
ADODB line suffix, 149
MySQL command suffix, 99
Oinkmaster path separator, 267
PHP line prefix, 147
rule body option separator, 184
rule line suffix, 184

/ (slash)
CIDR notation component, 183
Unix directory prefix, 97

• A •
ACID (Analysis Console for Intrusion

Detection). See also reporting
Access database support, 79
ADODB requirement, 134, 135

AG link, 162
backing up, 273
Barnyard ACID output, 296, 309–311
browser, opening in, 161
CD-ROM with this book, included on, 332
configuration file, 157–159
database management system, 173
downloading, 136
functionality overview, 134
Graph Alert data page, 169–172
IIS setup, 159–161
installing, 156–157
introduced, 16
JpGraph requirement, 134
main page, 163–169
Maintenance page, 172–174
MySQL setup, 151–153
path, 156–157, 160
permission, 160
PHP dependency, 133, 134, 147,

160–161, 172
version, 136
Web server requirement, 133

acid_conf.php file, 157–159
ACID_DB Barnyard plug-in, 296, 309–311
action plan, 213–214. See also incident

response plan
Address Resolution Protocol (ARP)

spoofing, 211, 278
ADODB (Active Data Objects Data Base)

ACID ADODB requirement, 134, 135
CD-ROM with this book, included on, 333
downloading, 137
installing, 147–149

adodb.inc.php file, 148, 149
AIX support, 30
alert

analyzing using SnortFW, 324
benign, 219
brute force attack alert, 220
classification.config file, 66, 92

Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 337

alert (continued)
CSV output, 119–122, 296, 306–307
database, 222
DMZ alert, 24
DOS alert, 220
e-mailing, 255
facility, 109, 130, 179
fast, 112–113, 296, 304
file size, 80
firewall, triggering, 224
full, 113–114
HTML output, 296, 305–306
ID number, 166
IP address information, 164, 166–167,

168–169, 173–174
IP packet information, 223
ISystemActivator bind attempt alert,

221, 222, 225, 254
level, 92
management utility overview, 319–322
Meta information, 222–223
mode, 112–114, 128
monitoring, assigning responsibility

for, 219
monitoring using Swatch, 254
NETBIOS DCERPC alert, 221, 222,

223–224, 254
network scan, benign, 219
packet payload information, 168, 223, 224
partitioning for, 80–81
pcap output, 296, 308–309
ping alert, 109, 219
port information, 15, 164, 165
preprocessor evasion alert, 203
preprocessor reassembly alert, 205
priority, 15, 115–116
privilege escalation alert, 220
real-time, 219, 251
reporting alert information, 164–172, 173,

220–221, 222–226, 322–323
response utility overview, 323–325
rule alert action, 179, 181–182
shellcode detection alert, 220
sig_generator statement, 109
sig_id statement, 109

signature, 15–16, 166, 168
sig_revision statement, 109
snort.conf file

disable_evasion_alerts
keyword, 203

snort.conf file noalerts keyword, 205
socket, sending to, 128
switch overview, 128–129
syslog output, 114–117, 119, 296, 307–308
TCP information, 223
TFTP Get alert, 221, 224
timestamp, 165, 166, 306
tracing, 274
UDP information, 223
unfiltered Internet traffic, 24
unified, 132, 302
unsock, 128

alert_CSV
Barnyard plug-in, 296, 306–307
module, 119–122

alert_fast
Barnyard plug-in, 296, 304
module, 90, 112–113

alert_full module, 113–114
alert_fwsam module, 260
Alert_HTML Barnyard plug-in, 296, 305–306
alert_syslog

Barnyard plug-in, 296, 307–308
module, 68, 114–119, 282

alert_unified module, 132, 302
American Registry of Internet Numbers

(ARIN), 170
Analysis Console for Intrusion Detection.

See ACID
anomaly detection, 10
Apache HTTP Server Project Web site, 138
Apache HTTPD Server (on the CD), 333
Apache Software Foundation Web site

(www.apache.org), 136
Apache Web server

configuration file, 144
downloading, 136, 138
installing, 138–139
PHP setup, 143–145
run level, 144

338 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 338

starting automatically, 144–145
URL white space normalization, 208
version, 138

apachectl file, 144
APNIC (Asia Pacific Network Information

Center), 170
application layer data, dumping, 103, 125
arachNIDS signature database, 192, 214
archive

MySQL table, 154, 156
rule archive, downloading, 266, 270

ARIN (American Registry of Internet
Numbers), 170

ARP (Address Resolution Protocol)
spoofing, 211, 278

arrow (>) direction operator, 181
arrows (<>) directionless operator, 181
ASCII

logging, 108, 122–126, 128, 130
rule content matching, 185

Asia Pacific Network Information Center
(APNIC), 170

ASR Data Web site, 227
ATTACK-RESPONSES log entry, 251, 254
auditing, 9, 214–215
Automake utility, 259
Autopsy software, 227

• B •
Back Orifice utility, 211, 278
back-door.rules file, 186
background service, running Snort as,

102–103, 111
backslash (\)

line continuation character, 143
normalization of, 208

backup
ACID, 273
Barnyard, 270, 273, 302
incident recovery, using in, 237
logging configuration, 272
rule, 195, 270
snort.conf file, 176–177, 270
updating Snort, before, 272–273

BalaBit Web site, 244
bandwidth, 24
Barnyard utility (on the CD)

ACID output, 296, 309–311
alert_CSV output, 296, 306–307
alert_fast output, 296, 304
alert_HTML output, 296, 305–306
alert_syslog output, 307–308
background, running in, 315
backing up, 270, 273, 302
binary output, 296, 301–302
command line switches, 311–315
compiling, 300
configure command, 298
downloading, 297
enable command, 298
Ethernet setup, 303
flat text output, 296
gen-msg.map file, 301, 313
input, reading, 295, 312
installing, 300–301
Log_Dump output, 304–305
MySQL setup, 298–300
parsing, 296
pcap output, 296, 308–309
pid file output, 315
plug-in, 296, 304–309
Postgres support, 299–300
sid-msg.map file, 301, 313
snort.conf file setup, 301–302
snort-conf variable, 311
spool filename, 312
starting, 311–315
timestamp switches, 306, 312
unified output, 301–302, 310, 312–314
version, returning, 315
waldo file, 313, 314
with command, 299

Baseline Security Analyzer, 83
base-16 format, 185
base64 string, 130
BIOS password, 54
black-hat hacker, 8
Blaster.E worm, 226, 230–231, 232, 236, 237
bo preprocessor, 211, 278

339Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 339

boot
hard drive, restricting to, 81
starting Snort at, 74–75
starting syslog-ng at, 246

bridge, 8
brute force attack, 220
BugTraq Vulnerability mailing list, 192, 214

• C •
cat Linux command, 56
CDC (Cult of the Dead Cow), 211
CD-ROM with this book, 331–336
Center for Internet Security, 83
CERT Web site, 180
Chaotic Web site, 324
chkconfig Linux command, 44
chown utility, 69
chroot utility, 286
CIDR (Classless Inter-Domain Routing)

notation, 14, 183
Cipherdyne Web site, 324
classification.config file, 66, 92
.cnf files, 97
colon (:) rule port number separator, 183
Comma Separated Values (CSV) alert

output, 119–122, 296
command line

Barnyard, 311–315
Snort, 94, 111, 177

commenting code, 90, 99, 194, 212
Common Vulnerabilities and Exposures

(CVE) database, 192, 214, 222
Comprehensive Perl Archive Network

(CPAN), 253
configure

Barnyard command, 298
script, 58, 65

console, outputting log entry to,
124, 129, 255

cost
hardware, 34
Linux, 33
MySQL, 79
Snort, 13

CPAN (Comprehensive Perl Archive
Network), 253

cracker, 8
create_mysql file, 153
CSV (Comma Separated Values) alert

output, 119–122, 296
Cult of the Dead Cow (CDC), 211
CVE (Common Vulnerabilities and

Exposures) database, 192, 214, 222
Cygwin utility, 264, 267

• D •
daemon. See also background service,

running Snort as
introduced, 48
MySQL, 60–61
Snort, running as, 111, 122
SSH, 48–54
syslog, 69, 119
syslog-ng, 247

Danyliw, Roman (ACID developer), 136
data spitter, 108
database server, 27
DDOS (Distributed Denial of Service)

attack, 8, 220
.deb files, 47
decoder, 14, 15, 68
deleted.rules file, 270
Demarc PureSecure utility (on the CD),

325–326, 332
De-Militarized Zone (DMZ), 22–24, 279–280
Denial of Service (DOS) attack, 8, 220, 251
detection engine, 14–15
direction operator, 181
directionless operator, 181
Distributed Denial of Service (DDOS)

attack, 8, 220
DMZ (De-Militarized Zone), 22–24, 279–280
DNS (Domain Name Server), 67, 194
dns.rules file, 194
dollar sign ($)

Linux command prompt, 42
variable prefix, 179

DOS (Denial of Service) attack, 8, 220, 251

340 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 340

downloading
ACID, 136
ADODB, 137
Apache Web server, 136, 138
Barnyard, 297
MySQL, 56, 95
Perl, 264
PHP, 136
rule archive, 266, 270
Snort source code, 63
Snort update, 13
SnortSam, 258
stunnel, 284
Swatch, 252
syslog-ng, 244

downtime, 32

• E •
echo Linux command, 58
e-mailing

alert, 255
log entry, 251

enable Barnyard command, 298
Encase software, 227
encryption

log output, 280
MD5 hash, 50, 58, 64, 85
PGP signature, 49, 58, 64
public key, 49

Engage Security Web site, 326
Ethernet

NIC, 39
OSI layer, 11
port, disabling upon attack, 227
tap, passive, 28

exploit.rules file, 213–214
expression, regular, 62–63, 192, 254,

255, 268
EXTERNAL_NET variable, 20, 67, 277

• F •
false negative, 9–10, 205
false positive, 9, 25, 212–215, 261

fault tolerance, 38
file

checking for odd, 234–236
integrity, verifying, 11, 85
modification time, using in tracing

attack, 237
monitoring using Swatch, 257
sharing, p2p, 279

FIN packet flag, 211
find Linux command, 234
firewall

alert, triggering firewall from, 224
IDS, using in conjunction with, 12
introduced, 12
iptables firewall, 258, 324
LAN, 278
rule, 324–325
SnortSam, using with, 258–259, 261–262
switch, placing between router and, 24

fragmentation, packet, 205
frag2 preprocessor, 205–206
FreeBSD support, 30
Freshmeat.net Web site, 322, 326,

329–330

• G •
GD library, 141–142
gen-msg.map file, 301, 313
GFI LANguard Security Event Log

Monitor, 230
GNU Automake utility, 259
GNU Privacy Guard Web site, 49
GNU Project Web site (www.gnu.org), 259
GNU Zip software, 137
GnuPG utility, 85
Google USENET newsgroup, 225
GPG (Gnu Privacy Guard) signature, 245
gpgv Linux command, 245
grant MySQL command, 152
graphing, 163, 169–172, 322–323
grep utility, 127
group setup, 64
Guardian utility (on the CD), 324–325, 334
Guidance Software Web site, 227

341Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 341

• H •
hacker, 8
hard drive

boot, restricting to, 81
parity, 38
partitioning, 80–81
RAID, 38
reformatting after incident, 237
SCSI, 38
system requirement, 37–38

hardware requirement, 34–39, 77–78, 79–80
headless server, 27
Hexadecimal format, 168, 185
HIDS (host-based IDS), 10–11, 12, 21
home network logging, 128. See also LAN

(Local Area Network)
HOME_NET variable, 20, 25, 67, 88–89, 277
host

multi-processor, 26, 36
single-processor, 26

host-based IDS (HIDS), 10–11, 12, 21
HP Tru64 support, 30
HTML (HyperText Markup Language) alert

output, 296
HTTP (HyperText Transport Protocol),

11, 206–208
httpd.conf file, 144
http_decode preprocessor, 206
http_inspect preprocessor, 206–208
hub, 21–22
Hyper-Threading, 36

• I
IANA (Internet Assigned Numbers

Authority), 223
IBM AIX support, 30
IDS (Intrusion Detection System), 9–12
IDSCenter utility (on the CD), 326, 331
ifconfig Linux command, 75
IIS (Internet Information Services)

ACID setup, 159–161
\ (backslash) normalization, 208
installing, 140

PHP setup, 145
securing, 83
version, 136

IIS Lockdown Tool, 83
incident response plan, 217–218, 238–239.

See also action plan
index.php file, 144
info.rules file, 187
Insecure.org Web site, 212
inspection, stateful, 201
INSTALL Windows command, 103
installing ACID, 156–157
installing ADODB, 147–149
installing Apache Web server, 138–139
installing Barnyard, 300–301
installing IIS, 140
installing MySQL, 58–59, 95–97
installing PHP, 141, 145
installing Snort

binary package, 85–86
compiling, 65–66
component selection, 86
configuration file location, specifying, 64
group setup, 64
ld.so.conf file setup, 63
libpcap requirement, 61–62, 65
logging setup, 64, 85
MySQL support setup, 65
Oracle setup, 85
PCRE requirement, 62–63
service, as, 103
SQL Server setup, 85
tarball, opening, 65
testing installation, 73–74, 93–94, 273–274
upgrade, 272–274
user account setup, 64
WinPcap requirement, 84

International PGP Home Page Web site, 49
Internet Assigned Numbers Authority

(IANA), 223
Internet Information Services. See IIS
Internet Ports Database, 223
Internet traffic, monitoring unfiltered, 24
Internetwork Packet Exchange/Sequenced

Packet Exchange (IPX/SPX) support, 15
Intrusion Detection System (IDS), 9–12

342 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 342

IP (Internet Protocol) address
alert IP address information, reporting,

164, 166–167, 168–169, 173–174
CIDR notation, 14, 183
conversion mask, 128
monitoring, 88, 182
NAT, 22
OSI layer, 11
port information, 15
registry, 170
tracing, 169
whitelist, 261–262

iptables firewall, 258, 324
IPX/SPX (Internetwork Packet Exchange

/Sequenced Packet Exchange)
support, 15

• J •
Jabber chat room, outputting

log entry to, 250
JpGraph graph library (on the CD),

134, 135, 137, 151, 159

• K •
kernel, 31
keystroke logger attack, 21
Kiwi Syslog Daemon, 119
Knoppix Linux Live CD, 228

• L •
LACNIC (Latin American and Caribbean

Addresses Registry), 170
LAN (Local Area Network)

firewall, 278
monitoring, 25, 230, 277–279
preprocessor, 278
rule setup, 279
sensor setup, 277–279

LANguard Security Event Log Monitor, 230
Latin American and Caribbean Addresses

Registry (LACNIC), 170
ldconfig Linux command, 58, 59

ld.so.conf file, 58, 63
libol library, 244–245
libpcap library (on the CD),

26, 61–62, 65, 131
libpng library (on the CD), 141, 142
Linux

advantages/disadvantages, 30, 34
cat command, 56
chkconfig command, 44
chown utility, 69
chroot utility, 286
configure script, 58, 65
cost, 33
echo command, 58
encryption, 49–50
find command, 234
gpgv command, 245
grep utility, 127
Hyper-Threading support, 36
ifconfig command, 75
initialization script, 43–44, 45,

52–53, 74–75
kernel, 31
ldconfig command, 58, 59
log, 228–229
make command, 58, 143
make install command, 58, 143
memory requirement, 37
mysqladmin program, 59
netstat command, 42–43, 82, 236
network status, checking, 42–43
PAM, 52
patching, 32
PGP signature, 49, 58, 64
port setup, 53
process control, 43–46
ps command, 231–232
rule setup, 66, 67, 71
runlevel command, 44
script command, 52
SSH daemon, 48–54
sshd_config file, 53–54
su command, 230
sudo command, 230
support, commercial, 33
swap space, 36

343Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 343

Linux (continued)
TCP/IP stack, 31
touch command, 69
update-rc.d command, 45–46
Windows versus, 31–32

Linux Live CD, 228
Linux Security Web site, 225
LinuxSecurity.com Web Site, 329
Local Area Network. See LAN
local.rules file, 118, 268
log facility, 109–111, 129–130, 179
Logcheck utility, 230
Log_Dump Barnyard plug-in, 296, 304–305
logging. See also alert; MySQL (on the CD)

analyzing log using Snortalog, 323
application-layer data, dumping,

103, 125, 128
ASCII output, 108, 122–126, 128, 130
ATTACK-RESPONSES log entry, 251, 254
backing up logging configuration, 272
Barnyard Log_Dump output, 304–305
binary output, 126–127, 128, 130, 296,

301–302
compromise of system, reviewing log

after, 229–230
console output, 124, 129, 255
databases, to multiple, 281–282
default, 122–126
e-mailing log entry, 251
encryption, 280
existence of log file, checking, 69
fast, 131
filtering, 251
flat text output, 127, 129, 296
full, 131
HIDS, 11
home network, 128
installing Snort, setup during, 64, 85
IP address conversion mask, 128
Jabber chat room output, 250
link-layer data, 128
Linux log, 228–229
location of log file, 64, 111, 128
messages file, excluding log entry

from, 70

monitoring log using LANguard Security
Event Log Monitor, 230

monitoring log using
Logcheck/Logsentry, 230

monitoring log using Logwatch, 230
monitoring log using Swatch, 252–257
monitoring log using syslog-ng, 244–252
NIDS, 10
Oracle output, 85
overhead, 34, 281
partitioning for, 80–81
password change, reviewing log for, 230
Perl script output, 250
ping, 126, 219
Postgres output, 129, 299–300
privilege escalation, reviewing log for, 230
reboot, reviewing log for, 230
remote, 116–117, 119, 230–231,

248–249, 291
securing log file, 230–231, 283, 291
sensor setup, 276, 278–279
server, using centralized, 239, 249
service starting/stopping, reviewing

log for, 230
size of log file, 127
snap length, 129
snort.conf file output database

module, 70, 129–130, 282
snort.log file, 69, 111, 117
SnortSam, 261
sorting log file, 127
SQL Server output, 85
switch overview, 128–129
syslog output, 68–70, 114–119, 129,

282, 307–308
tcpdump binary file output, 126–127, 128
timestamp, 127, 129, 312
tracing attack, using system log

file in, 237
unified, 131–132, 296, 301–302, 310,

312–314
Unix log, 228–229
user change, reviewing log for, 229
verbosity, 93, 95, 111
waldo file, 313, 314

344 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 344

Windows Event Viewer, 229, 230–231
year, including in log file, 129

Logsentry utility, 230
log_tcpdump module, 126–127
Logwatch utility, 230

• M •
MAC (Media Access Control) address, 21
MacOS X support, 30
mailing list

BugTraq Vulnerability, 192, 214
snort-announce, 328
Snort.org Web site, 63
snort-sigs, 328
snort-users, 328
USENET newsgroup, 225

make install Linux command, 58, 143
make Linux command, 58, 143
makefile.linux file, 142
man-in-the-middle attack, 202
McAfee Web site, 192, 225
MD5 hash, 50, 58, 64, 85
MD5Summer utility, 85
Media Access Control (MAC) address, 21
memory requirement, 36–37
messages file, 70
Microsoft Security Web site, 225
MIDAS server, 325
modular nature of Snort, 25
MSDE (Microsoft Data Engine), 219
mslaugh.exe file, 224, 225, 226, 232–233,

236. See also Blaster.E worm
MS-SQL worm, 15, 196, 220–221
my.ini file, 97, 98–99, 101
My-snort.org Web site, 329
MySQL (on the CD)

ACID setup, 151–153
Admin console, 96, 98
Admin traffic light, 97
archive table, 154, 156
background service, running as, 102–104
Barnyard setup, 298–300
binary distribution, 55, 56
client, 71

command syntax, 99
compiling, 57–59
cost, 79
daemon, 60–61
database setup, 153–156
downloading, 56, 95
grant command, 152
installing, 58–59, 95–97
key_buffer setup, 98
ld.so.conf file, 58
login, 96–97
MD5 hash, 58
my.ini file, 97, 98–99, 101
naming database, 91
outputting to, 79, 90–92, 99–101, 279
PASS variable, 97
password, 59, 91, 97, 102, 152
path, 151–152
permission, 71, 101, 152–153
PGP signature, 58
port setup, 98
root account, Linux environment, 57, 59
root account, Windows environment,

97, 99, 100, 102
set password command, 102
show databases command, 100
Snort installation, setup during, 65
snort table, 153–154, 156
snort.conf file setup, 70–71
SQLPath variable, 97
starting/stopping, 60–61
stunnel mysqls service, 288, 289, 290
support, native, 79
testing installation, 101
user account, 56, 70, 101, 151–153
USER variable, 97

MySQL Web site, 56
mysqladmin program, 59
mysqld-nt.exe file, 101

• N •
NAT (Network Address Translation), 22
negative, false, 9–10, 205
Nessus utility, 192, 214–215

345Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 345

network
cataloging, 212
disconnecting upon attack, 226–227
protocol, disabling unneeded, 82
protocol, rule support, 182
p2p, 279
scan, benign, 219
scanning for rogue computer, 212
service, checking for odd, 236–237
status, checking, 42–43
summary, 213
topology map, 212
trusted/untrusted, 39
wireless, 20

Network Address Translation (NAT), 22
network-based IDS (NIDS), 10, 19–25
NIC (network interface card)

Ethernet NIC, 39
multiple NIC environment, 26–27,

38–39, 75
NIDS NIC, 10
OSI layer, 11
packet sniffing, dedicated, 39
promiscuous mode, 10, 11, 20
sensor NIC, 38–39
system requirement, 38–39
un-addressed, 27

NIDS (network-based IDS), 10, 19–25
Nikto utility, 261
nmap utility, 109, 212
Novell support, 15
N-tier architecture, 27
NULL packet flag, 211

• O •
octet, 220
Oinkmaster (on the CD), 263–271
Open Systems Interconnection (OSI)

Reference Model, 11
OpenBSD support, 30
OpenSSH utility (on the CD), 48, 49, 51–54
OpenSSL library (on the CD), 51–52, 287
OpenSSL Project Web site, 51
Oracle log output, 85

OS (operating system). See also specific
operating system

access control, 81–82
choosing, 29–34, 78
kernel, 31
rebooting compromised system, 227
shutting down upon attack, 227
support, 13, 29–30

OSI (Open Systems Interconnection)
Reference Model, 11

output
facility, 108
plug-in, 112
snort.conf file module, 27, 112, 260

output database module,
70, 129–130, 282

Output_pcap Barnyard plug-in,
296, 308–309

• P •
packet

analysis, 14–15, 39
capture library, 14
decoder, 14, 15, 68
dropping, 17, 35, 79, 113
flag, 211
fragmentation, 205
Hexadecimal display, 168
IP information, 223
malformed, 201
payload, reporting, 168, 223, 224
reassembly by preprocessor, 204–205
scope, 201
stealth, 201

PAM (Pluggable Authentication
Module), 52

parentheses ()
rule body delimiters, 184
syslog-ng driver argument

delimiters, 248
parity, 38
partitioning hard drive, 80–81
PASS variable, 97

346 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 346

password
BIOS password, 54
log, reviewing for password change, 230
MySQL, 59, 91, 97, 102, 152
policy, 82

PATH variable, 57
pattern matching, 184–187, 206, 244.

See also regular expression
pcap library, 199, 296
PCRE (Perl-Compatible Regular

Expressions), 62–63
peer-to-peer (p2p) network, 279
PEM files, 287
percent sign (%) URL escape character, 207
Perl

CPAN, 253
downloading, 264
log entry, outputting to, 250
PCRE, 62–63
wget interpreter, 264

Perl Monks Web site, 254
perl.com Web site, 264
Perl-Compatible Regular Expressions

(PCRE), 62–63
permission. See also privilege

ACID, 160
MySQL, 71, 101, 152–153

PGP (Pretty Good Privacy) signature,
49, 58, 64, 245

PHP scripting language (on the CD)
ACID dependency, 133, 134, 147,

160–161, 172
Apache setup, 143–145
downloading, 136
GD library, 141–142
IIS setup, 145
index.php file, 144
installing, 141, 145
location, 142, 145

PHP Web site, 136
PHPEveryWhere Web site

(php.weblogs.com), 137
php.exe file, 145
php4ts.dll file, 147
php.ini file, 146–147

php.ini-dist file, 146
PHPlot graph library (on the CD), 134, 135,

137, 150, 159
physical security, 54, 81
Pig Sentry script (on the CD), 321, 334
ping

alert, 109, 219
logging, 126, 219

pipe (|) or operator, 129
.pkg files, 47
planning

action plan, 213–214
incident response plan, 217–218, 238–239
sensor deployment, 276

Pluggable Authentication Module
(PAM), 52

plug-in. See also specific plug-in
Barnyard, for, 296, 304–309
Nessus, for, 214
output plug-in, 112
preprocessor plug-in, 14, 201
support, 15

port
alert port information, 15, 164, 165
Ethernet port, disabling upon attack, 227
IANA, 223
Internet Ports Database, 223
Linux port setup, 53
listening status, checking, 43, 236–237
monitoring port, 22, 23
MySQL setup, 98
OpenSSH daemon port, 53
preprocessing, restricting to specific, 205
RPC, 208–209
rule, applying to port number range, 183
scan detection, 109, 201, 203, 209–211
SPAN port, 22
stunnel setup, 290

portmapper, 209
positive, false, 9, 25, 212–215, 261
Postgres log output, 129, 299–300
post-processing, 296
pound sign (#)

comment prefix, 99, 212
Linux command prompt, 42

347Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 347

power plug, pulling upon attack, 227, 228
preprocessing

ARP spoofing detection, 211
ball sorting analogy, 200
bo preprocessor, 211, 278
decoder level, 201
evasion alert, 203
frag2 preprocessor, 205–206
http_decode preprocessor, 206
http_inspect preprocessor, 206–208
inspection, restricting stateful, 204
introduced, 14
LAN environment, 278
packet reassembly, 204–205
plug-in, 14, 201
port, restricting to specific, 205
portscanning detection, 203, 209–211
purpose, 200
rpc_decode preprocessor, 208–209
session reassembly, 204–205
session tracking, 200, 202, 204
snort.conf file preprocessor line,

203, 207, 210, 211
speed, effect on, 201–202
statistics, 204
stream4 preprocessor, 202–205, 279
TCP packet flow state analysis, 203
telnet_decode preprocessor, 208
testing preprocessor, 274
timeout, 204
traffic normalization, 122, 206–209
TTL, 203

Pretty Good Privacy (PGP) signature,
49, 58, 64, 245

privilege. See also permission
escalation, 220, 230
Oinkmaster, 265

process
killing, 43
reviewing for sign of attack, 231–233

processor
multi-processor system, 26, 36
single-processor system, 26
system requirement, 35–36

ps Linux command, 231–232

p2p (peer-to-peer) network, 279
PureSecure Professional utility (on the

CD), 325–326, 332

• Q •
quotation marks, double (" ") rule value

delimiters, 184
quotation marks, single (' ') ADODB path

delimiters, 149

• R •
RAID (Redundant Array of Independent

Disks), 38
RARLabs Web site, 137
RDBMS (Relational Database Management

System), 78
reboot

compromise of system, upon, 227
log, reviewing for, 230

recovering from incident, 237–238
Redundant Array of Independent Disks

(RAID), 38
reference.config file, 66, 93
reformatting hard drive after incident, 237
Regional Internet Registry (RIR), 170
regular expression, 62–63, 192, 254,

255, 268
Relational Database Management System

(RDBMS), 78
Remote Procedure Call (RPC), 208–209
repeater. See hub
reporting

alert information, 164–172, 173, 220–221,
222–226, 322–323

destination information, 168
graphing, 163, 169–172, 322–323
IP address information, 164, 166–167,

168–169, 173–174
packet payload information, 168, 223, 224
port information, 164, 165
protocol information, 164, 166
sensor information, 164

348 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 348

signature-based intrusion detection
compared, 175–176

source information, 168
resource justification, 9
RIPE (Reséaux IP Européens), 170
RIR (Regional Internet Registry), 170
Roesch, Marty (Snort creator), 13
router, 24
RPC (Remote Procedure Call), 208–209
rpc_decode preprocessor, 208–209
.rpm files, 47
RRD-Snort utility, 322–323
rservices.rules file, 213
rule
activate action, 182
alert action, 179, 181–182
any keyword, 183
arachNIDS keyword, 192
archive, downloading, 266, 270
attempted-admin rule, 220, 221
attempted-dos rule, 220
attempted-recon rule, 219
attempted-user rule, 220
backdoor.rules rule, 279
backing up, 195, 270
bad-traffic rule, 279
body, 184–193
bugtraq keyword, 192
category overview, 178
chat.rules rule, 279
classtype keyword, 189–190
commenting out, 194, 212
content matching, 184–187, 206
creating, 195–197, 238
cve keyword, 192
deleted.rules file, 270
depth keyword, 186
destination argument, 179, 182–183
Destination Unreachable rule, 166
direction operator, 181
directionless operator, 181
DNS rule, 194
dynamic action, 182
editing, 176–177, 193–195
exploit rule, 279

firewall rule, 324–325
flow keyword, 180, 181, 192, 202
header, 181–183
icmp rule, 279
LAN environment, 279
Linux environment, 66, 67, 71
local.rules file, 118, 268
location, 66, 67
log action, 181
match information, 180
McAfee keyword, 192
mesg keyword, 191
Nessus keyword, 192
netbios.rules rule, 279
network protocol support, 182
nocase keyword, 187, 188
offset keyword, 187
pass action, 182
path, 89, 177, 266
port number range, applying to, 183
priority keyword, 188–189
production rule, 270
p2p.rules rule, 279
referencing external resource,

180, 191–192, 222
removing unnecessary, 194, 212, 213
rev keyword, 191
shellcode-detect rule, 220
SID rule, 188, 269
snort.conf file rule section, 177
SnortSam setup, 261
source argument, 179, 182–183
string parser, 193
successful-admin rule, 220
suspicious-login rule, 220
syntax, 184
tcp keyword, 179
text matching, 183, 185, 187
updating, 13, 215, 265–266, 267–271,

324–325
uricontent keyword, 180, 187–188
URL, referencing, 180, 191–192
variable, declaring, 179
Web site, referencing, 180, 191–192
WEB-MISC rule, 261

349Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 349

rule (continued)
wildcard, using, 183
Windows environment, 89, 93

RULE_PATH variable, 89, 177
runlevel Linux command, 44

• S •
SAM (Snort Alert Monitor), 320–321, 322
SamSpade Web site, 169
SANS Institute, 14, 83, 239, 328
scalability, 25, 27
script Linux command, 52
script-kiddie, 8
SCSI (Small Computer System Interface)

hard drive, 38
security auditing tool, 214–215
SecurityFocus Web site, 192, 214, 225, 329
semicolon (;)

ADODB line suffix, 149
MySQL command suffix, 99
Oinkmaster path separator, 267
PHP line prefix, 147
rule body option separator, 184
rule line suffix, 184

sensor
deploying multiple sensors, 27–28,

275–276
DMZ, deploying in, 279–280
hiding using passive Ethernet tap, 28
LAN setup, 277–279
location, 22–23, 25–28, 88, 277
logging setup, 276, 278–279
naming convention, 276
NIC, 38–39
numbering convention, 276
planning, 276
security, physical, 54, 81
testing, 274

SERVERS variable, 278
service

disabling unneeded, 43–46, 82, 212
MySQL, running as background service,

102–104
network service, checking for odd,

236–237

Snort, running as background service,
102–103

starting/stopping, reviewing log for, 230
SERVICE Windows command, 103
session

introduced, 200
preprocessing session reassembly,

204–205
preprocessing session tracking,

200, 202, 204
set password MySQL command, 102
shellcode.rules file, 213
show databases MySQL command, 100
shutting down upon attack, 227
SID (Snort IDentification), 180, 188, 269
sid-msg.map file, 301, 313
signature

alert signature, 15–16, 166
analysis, 199
arachNIDS signature database, 192, 214
GPG, 245
PGP, 49, 58, 64, 245
rule-based intrusion detection compared,

175–176
Slammer worm. See MS-SQL worm
slash (/)

CIDR notation component, 183
Unix directory prefix, 97

Slashdot Web site, 32
SleuthKit software, 227
Small Computer System Interface (SCSI)

hard drive, 38
SMART software, 227
SMS (Systems Management Server), 83
Sniffer mode, 93–94
S99Snort script, 74–75
Snort Alert Monitor (SAM), 320–321, 322
Snort IDentification (SID), 180, 188, 269
Snortalog utility (on the CD), 323, 334
snort-announce mailing list, 328
snort.conf file
alert keyword, 129–130
alert_CSV module, 119–122
alert_fast module, 90, 112–113
alert_full module, 113–114
alert_fwsam module, 260

350 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 350

alert_syslog module, 68, 114–119, 282
alert_unified module, 132, 302
apache_whitespace keyword, 208
backing up, 176–177, 270
Barnyard setup, 301–302
both keyword, 205
clientonly keyword, 205
command line, overriding from, 111, 177
commenting, 90
config detection line, 68
decoder setup, 68
detect_scans keyword, 203
detect_state_problems keyword, 203
disable_evasion_alerts keyword, 203
double_encode keyword, 207
editing, 66, 176–177
EXTERNAL_NET variable, 20, 67, 277
HOME_NET variable, 20, 25, 67, 88–89, 277
iis_backslash keyword, 208
iis_unicode keyword, 207
iis_unicode_map keyword, 207
keepstats keyword, 204
log keyword, 129
log_flushed_streams keyword, 204
MySQL setup, 70–71
noalerts keyword, 205
noinspect keyword, 204
output database module,

70, 129–130, 282
output module, 27, 112, 260
ports keyword, 205
preprocessor line, 203, 207, 210, 211
rule location, specifying, 67
rule section, 177
RULE_PATH variable, 89, 177
serveronly keyword, 205
SERVERS variable, 278
Snortpath line, 86, 103
timeout keyword, 204
ttl_limit keyword, 203
updating using Oinkmaster, 263, 268

snort-conf variable, 311
snort.exe file, 101
SnortFW utility, 324
snort.log file, 69, 111, 117

Snort.org Web site
Barnyard download, 297
binary distribution download, 30, 85
mailing list, 63
Oinkmaster download, 264
overview, 327
passive Ethernet tap tutorial, 28
Snortalog download, 323
source code download, 63
update download, 13

SnortSam utility (on the CD), 258–262
snort-sigs mailing list, 328
SnortSnarf utility (on the CD), 319–320, 333
snort-users mailing list, 328
Software Update Services (SUS), 83
Solaris support, 30
Sophos Web site, 225
source code distribution, 29, 46–48, 63–65
SourceForge.net Web site, 136
SPAN port, 22
spitter, data, 108
SQL Server, logging to, 85
SQLPath variable, 97
SSH daemon, 48–54
sshd_config file, 53–54
state preservation, 201
statefulness, 201
stealth packet, 201
stream4 preprocessor, 202–205, 279
stunnel utility, 283–286, 288–293
su Linux command, 230
subnet, monitoring, 25, 26–27, 88, 277–279.

See also LAN (Local Area Network)
sudo Linux command, 230
Sun Solaris support, 30
SUS (Software Update Services), 83
swap space, 36
Swatch utility (on the CD), 230, 252–257
switch, 21–22, 23, 24
Symantec Web site, 225
SYN packet flag, 211
syslog facility, 68–70, 114–119, 129, 282,

307–308
syslog-ng utility, 118–119, 244–252
syslog2ng script, 246

351Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 351

system requirement, 34–39, 77–78, 79–80
Systems Management Server (SMS), 83

• T •
T flag, 177
tar software, 137, 264
tarball, 51, 65
Task Manager (Windows), 232–233
tcpdump utility, 13, 20, 107, 126–127, 128
tcpdump/libpcap Web site, 13
TCP/IP (Transmission Control

Protocol/Internet Protocol)
alert TCP information, 223
header, outputting to screen, 93
Linux TCP/IP stack, 31
OSI layer, 11
preprocessing, TCP packet flow state

analysis in, 203
telnet_decode preprocessor, 208
Time To Live (TTL), 203
timestamp

alert, 165, 166, 306
Barnyard timestamp switches, 306, 312
log, 127, 129, 312

touch Linux command, 69
tracing alert, 274
tracing attack

file modification time, using in, 237
IP address of attacker, 169
system log file, using in, 237

Transmission Control Protocol/Internet
Protocol. See TCP/IP

Trend Micro Web site, 225
Tru64 support, 30
TTL (Time To Live), 203

• U •
UDP (Universal Datagram Protocol)

alert UDP information, 223
OSI layer, 11
syslog-ng source, taking UDP

packet as, 247
Unicode character encoding, 207

Uniform Resource Identifier. See URI
Uniform Resource Locator. See URL
Universal Coordinated Time (UTC), 129
Unix log, 228–229
update-rc.d Linux command, 45–46
updating rule, 13, 215, 265–266, 267–271,

324–325
updating Snort

downloading update, 13
snort.conf file, 263, 268
version, upgrading, 13, 272–274

URI (Uniform Resource Identifier)
encoding, 207
rule, restricting to, 180, 187–188

URL (Uniform Resource Locator)
encoding, 206, 207
normalization by preprocessor,

206, 207–208
rule, referencing in, 180, 191–192
white space normalization, 208

USENET newsgroup, 225
user account

MySQL, 56, 70, 101, 151–153
Snort, 64, 265

user change, reviewing log for, 229
USER variable, 97
UTC (Universal Coordinated Time), 129
UTF-8 character encoding, 207

• V •
Vorpal Media Web site, 330

• W •
waldo file, 313, 314
Web server, 133, 135. See also Apache

Web server; IIS (Internet Information
Services)

Web site, referencing in rule, 180, 191–192
webiis.rules file, 179
web-misc.rules file, 186
wget Perl interpreter, 264
Whitehats Web site, 192, 214, 225, 328
wildcard, using in rule, 183

352 Snort For Dummies

25_568353 bindex.qxd 6/2/04 9:33 AM Page 352

Windows
access control, 81–82
advantages/disadvantages, 30, 33
alert output setup, 90, 92
component installation, limiting to

necessary, 82
Event Viewer, 229, 230–231
Hyper-Threading support, 36
INSTALL command, 103
Linux versus, 31–32
monitoring setup, 87–89
netstat command, 236
network protocol, disabling unneeded, 82
overhead considerations, 79–80
packet dropping considerations, 79
patching, 32, 83
rule setup, 89, 93
SERVICE command, 103
syslog daemon, 119
system requirement, 77–78, 79–80
Task Manager, 232–233
technical support considerations, 33
updating, 83

version, choosing appropriate, 78
version support, 33

winmysqladmin console, 98, 101
WinPcap utility (on the CD), 84, 94
WinRAR software, 137
WINSNORT.com Web site, 329
WinZip utility, 137, 336
wireless network, 20
with Barnyard command, 299
worm

Blaster.E, 226, 230–231, 232, 236, 237
introduced, 8
MS-SQL, 15, 196, 220–221
recovering from, 238
removing, 238

• X •
XMAS packet flag, 211

• Z •
zlib utility (on the CD), 141–142

353Index

25_568353 bindex.qxd 6/2/04 9:33 AM Page 353

Notes

25_568353 bindex.qxd 6/2/04 9:33 AM Page 354

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc.”WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software” solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin- board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the “What’s on the CD” appendix of
this Book. These limitations are also contained in the individual license agreements recorded
on the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the “What’s on the CD” appendix and
on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

26_568353 License.qxd 6/2/04 9:33 AM Page 355

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE,
THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES
DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CON-
TAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: Snort For Dummies, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for delivery.
This Limited Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S. Government”
is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

26_568353 License.qxd 6/2/04 9:33 AM Page 356

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term “modifica-
tion”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appro-
priate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute

26_568353 License.qxd 6/2/04 9:33 AM Page 357

them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it con-
tains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as dis-
tribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

26_568353 License.qxd 6/2/04 9:33 AM Page 358

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license prac-
tices. Many people have made generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that system; it is up to the author/
donor to decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

26_568353 License.qxd 6/2/04 9:33 AM Page 359

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

26_568353 License.qxd 6/2/04 9:33 AM Page 360

PERSONAL FINANCE

Also available:

Estate Planning For Dummies
(0-7645-5501-4)
401(k)s For Dummies
(0-7645-5468-9)
Frugal Living For Dummies
(0-7645-5403-4)
Microsoft Money “X” For
Dummies
(0-7645-1689-2)
Mutual Funds For Dummies
(0-7645-5329-1)

Personal Bankruptcy For
Dummies
(0-7645-5498-0)
Quicken “X” For Dummies
(0-7645-1666-3)
Stock Investing For Dummies
(0-7645-5411-5)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:

Business Plans Kit For
Dummies
(0-7645-5365-8)
Consulting For Dummies
(0-7645-5034-9)
Cool Careers For Dummies
(0-7645-5345-3)
Human Resources Kit For
Dummies
(0-7645-5131-0)
Managing For Dummies
(1-5688-4858-7)

QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)
Selling For Dummies
(0-7645-5363-1)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business For
Dummies
(0-7645-1547-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

BUSINESS & CAREERS

Also available:

Controlling Cholesterol For
Dummies
(0-7645-5440-9)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Martial Arts For Dummies
(0-7645-5358-5)
Menopause For Dummies
(0-7645-5458-1)

Nutrition For Dummies
(0-7645-5180-9)
Power Yoga For Dummies
(0-7645-5342-9)
Thyroid For Dummies
(0-7645-5385-2)
Weight Training For Dummies
(0-7645-5168-X)
Yoga For Dummies
(0-7645-5117-5)

HEALTH, SPORTS & FITNESS

0-7645-5231-7 0-7645-2431-3 0-7645-5331-3

0-7645-5314-3 0-7645-5307-0 0-7645-5471-9

0-7645-5167-1 0-7645-5146-9 0-7645-5154-X

27_568353 BOB.qxd 6/2/04 9:35 AM Page 361

Also available:

America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)
France For Dummies
(0-7645-6292-4)

London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts For
Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)
Walt Disney World & Orlando
For Dummies
(0-7645-5444-1)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

A world of resources to help you grow

HOME, GARDEN & HOBBIES

Also available:

Auto Repair For Dummies
(0-7645-5089-6)
Chess For Dummies
(0-7645-5003-9)
Home Maintenance For
Dummies
(0-7645-5215-5)
Organizing For Dummies
(0-7645-5300-3)
Piano For Dummies
(0-7645-5105-1)

Poker For Dummies
(0-7645-5232-5)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Roses For Dummies
(0-7645-5202-3)
Sewing For Dummies
(0-7645-5137-X)

Also available:

Bartending For Dummies
(0-7645-5051-9)
Chinese Cooking For
Dummies
(0-7645-5247-3)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Low-Fat Cooking For
Dummies
(0-7645-5035-7)
Slow Cookers For Dummies
(0-7645-5240-6)

FOOD & WINE

TRAVEL

0-7645-5295-3 0-7645-5130-2 0-7645-5106-X

0-7645-5250-3 0-7645-5390-9 0-7645-5114-0

0-7645-5453-0 0-7645-5438-7 0-7645-5448-4

27_568353 BOB.qxd 6/2/04 9:35 AM Page 362

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Plain-English solutions for everyday challenges

COMPUTER BASICS

Also available:

PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Pocket PC For Dummies
(0-7645-1640-X)
Treo and Visor For Dummies
(0-7645-1673-6)
Troubleshooting Your PC For
Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)

Also available:

Excel Data Analysis For
Dummies
(0-7645-1661-2)
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Excel 2002 For Dummies
Quick Reference
(0-7645-0829-6)
GoldMine “X” For Dummies
(0-7645-0845-8)

Microsoft CRM For Dummies
(0-7645-1698-1)
Microsoft Project 2002 For
Dummies
(0-7645-1628-0)
Office XP For Dummies
(0-7645-0830-X)
Outlook 2002 For Dummies
(0-7645-0828-8)

BUSINESS SOFTWARE

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0822-9 0-7645-0839-3 0-7645-0819-9

• Find listings of even more For Dummies titles

• Browse online articles

• Sign up for Dummies eTips™

• Check out For Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

27_568353 BOB.qxd 6/2/04 9:35 AM Page 363

Also available:

Adobe Acrobat 5 PDF For
Dummies
(0-7645-1652-3)
Fireworks 4 For Dummies
(0-7645-0804-0)
Illustrator 10 For Dummies
(0-7645-3636-2)

QuarkXPress 5 For Dummies
(0-7645-0643-9)
Visio 2000 For Dummies
(0-7645-0635-8)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Helping you expand your horizons and realize your potential

INTERNET

Also available:

America Online 7.0 For
Dummies
(0-7645-1624-8)
Genealogy Online For
Dummies
(0-7645-0807-5)
The Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)
Internet Explorer 6 For
Dummies
(0-7645-1344-3)

The Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Researching Online For
Dummies
(0-7645-0546-7)
Starting an Online Business
For Dummies
(0-7645-1655-8)

Also available:

CD and DVD Recording For
Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
Digital Photography For
Dummies Quick Reference
(0-7645-0750-8)
Home Recording for
Musicians For Dummies
(0-7645-1634-5)

MP3 For Dummies
(0-7645-0858-X)
Paint Shop Pro “X” For
Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Scanners For Dummies
(0-7645-0783-4)

DIGITAL MEDIA

GRAPHICS

0-7645-0894-6 0-7645-1659-0 0-7645-1642-6

0-7645-1664-7 0-7645-1675-2 0-7645-0806-7

0-7645-0817-2 0-7645-1651-5 0-7645-0895-4

27_568353 BOB.qxd 6/2/04 9:35 AM Page 364

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

The advice and explanations you need to succeed

Also available:

Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
The GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For
Dummies
(0-7645-5426-3)
The SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

SELF-HELP, SPIRITUALITY & RELIGION

Also available:

The Bible For Dummies
(0-7645-5296-1)
Buddhism For Dummies
(0-7645-5359-3)
Christian Prayer For Dummies
(0-7645-5500-6)
Dating For Dummies
(0-7645-5072-1)
Judaism For Dummies
(0-7645-5299-6)

Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Spirituality For Dummies
(0-7645-5298-8)
Weddings For Dummies
(0-7645-5055-1)

Also available:

Labrador Retrievers For
Dummies
(0-7645-5281-3)
Aquariums For Dummies
(0-7645-5156-6)
Birds For Dummies
(0-7645-5139-6)
Dogs For Dummies
(0-7645-5274-0)
Ferrets For Dummies
(0-7645-5259-7)

German Shepherds For
Dummies
(0-7645-5280-5)
Golden Retrievers For
Dummies
(0-7645-5267-8)
Horses For Dummies
(0-7645-5138-8)
Jack Russell Terriers For
Dummies
(0-7645-5268-6)
Puppies Raising & Training
Diary For Dummies
(0-7645-0876-8)

PETS

EDUCATION & TEST PREPARATION

0-7645-5302-X 0-7645-5418-2 0-7645-5264-3

0-7645-5255-4 0-7645-5286-4 0-7645-5275-9

0-7645-5194-9 0-7645-5325-9 0-7645-5210-4

27_568353 BOB.qxd 6/2/04 9:35 AM Page 365

WEB DEVELOPMENT

Also available:

ASP.NET For Dummies
(0-7645-0866-0)
Building a Web Site For
Dummies
(0-7645-0720-6)
ColdFusion “MX” For
Dummies (0-7645-1672-8)
Creating Web Pages
All-in-One Desk Reference
For Dummies
(0-7645-1542-X)

FrontPage 2002 For Dummies
(0-7645-0821-0)
HTML 4 For Dummies Quick
Reference
(0-7645-0721-4)
Macromedia Studio “MX”
All-in-One Desk Reference
For Dummies
(0-7645-1799-6)
Web Design For Dummies
(0-7645-0823-7)

Also available:

Beginning Programming For
Dummies
(0-7645-0835-0)
Crystal Reports “X”
For Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)
JavaScript For Dummies
(0-7645-0633-1)
Oracle9i For Dummies
(0-7645-0880-6)

Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)
SQL For Dummies
(0-7645-0737-0)
VisualBasic .NET For
Dummies
(0-7645-0867-9)
Visual Studio .NET All-in-One
Desk Reference For Dummies
(0-7645-1626-4)

We take the mystery out of complicated subjects

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

PROGRAMMING & DATABASES

Also available:

CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies with CD-ROM
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
TCP/IP For Dummies
(0-7645-1760-0)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1643-4 0-7645-0723-0 0-7645-1630-2

0-7645-0746-X 0-7645-1657-4 0-7645-0818-0

0-7645-1545-4 0-7645-0772-9 0-7645-0812-1

27_568353 BOB.qxd 6/2/04 9:35 AM Page 366

	Cover
	About the Authors
	Authors' Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Who Should Read This Book?
	About This Book
	How to Use This Book
	What You Don't Need to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know Snort and Intrusion Detection
	Chapter 1: Looking Up Snort's Nose
	Why All the Hubbub about Security?
	What Is an IDS, and Why Have One?
	Why Snort?
	Snort's Components
	Glancing at Snort's Output
	Visualizing with Consoles
	Getting to Know Snort's Buddies

	Chapter 2: Fitting In Snort
	Network-Based IDS
	Inviting More Pigs to the Party

	Chapter 3: Readying Your Preflight Checklist
	Choosing Your Operating System
	Sizing Up Your System

	Chapter 4: Makin' Bacon: Installing Snort for Linux
	Staying Safe
	Securing the SSH Daemon
	Installing MySQL for Linux
	Installing Snort for Linux

	Chapter 5: Installing Snort and MySQL for Windows
	The Windows Snort IDS Box
	Keeping Your Windows Locked
	Installing the Base Snort System
	Bending Snort to Your Will
	Testing the Installation
	Setting Up MySQL for Snort
	Configuring Snort as a Service

	Part II: Administering Your Snort Box
	Chapter 6: Snorting through Logs and Alerts
	Snort's Basic Output
	Snort's Output Modules

	Chapter 7: Adding Visuals and Getting Reports
	The ACID Dependency Soup
	Preparing ACID and Its Dependencies
	Installing and Configuring ACID
	Using ACID to View Snort Alerts

	Chapter 8: Making Your Own Rules
	The Power of the Pig
	The Center of Snort's Universe
	Rule Installation
	Rule Refinements

	Chapter 9: What, Me Worry?
	Preprocessing Punk Packets
	Fine Tuning: Reducing False Positives

	Chapter 10: Dealing with the Real Thing
	Developing an Incident Response Plan
	Houston, We Have an Incident
	Using Snort to Track an Attack
	Halting the Attack
	Looking through Logs
	Looking for Odd Running Processes
	Looking for Odd Files
	Looking for Odd Network Services
	Recovering from the Incident
	Learning from the Attack

	Part III: Moving Beyond the Basics
	Chapter 11: Reacting in Real Time
	Integrating Snort into Your Security Strategy
	Using Swatch to Watch Your Log Files
	Firewalling Suspicious Traffic in Real Time

	Chapter 12: Keeping Snort Up to Date
	Updating Rules with Oinkmaster
	Upgrading Snort

	Chapter 13: Filling Your Farm with Pigs
	Pigs on the Perimeter
	Catching All the Oinks
	Securing Snort's Output

	Chapter 14: Using the Barnyard Output Tool
	Barnyard for Fast Output
	Installing and Configuring Barnyard
	Fitting Barnyard into Your Snort Environment

	Part IV: The Part of Tens
	Chapter 15: Ten Cool Tools for Snort
	Alert-Management Tools
	Alert-Reporting Tools
	Alert-Response Tools
	Intrusion-Management Tools

	Chapter 16: Ten Snort Information Resources
	The Snort. org Web Site
	The Snort Mailing Lists
	The SANS Institute
	The Whitehats Security Forums
	The SecurityFocus IDS Mailing List
	The WINSNORT. com Web Site
	The My-snort. org Web Site
	The LinuxSecurity. com Web Site
	The Freshmeat. net Web Site
	Our Web Site

	Appendix A: What's on the CD-ROM
	CD-ROM Contents
	CD-ROM Considerations

	Index

