ENGINEERING

MATHEMATICS

$$
4^{\mathrm{TH}} \text { EDITION }
$$

INSTRUCTOR'S MANUAL

WORKED SOLUTIONS TO THE ASSIGNMENTS

JOHN BIRD

INTRODUCTION

In 'ENGINEERING MATHEMATICS $\mathbf{4}^{\text {TH }}$ EDITION' there are 61 chapters; each chapter contains numerous fully worked problems and further problems with answers. In addition, there are 16 Assignments at regular intervals within the text. These Assignments do not have answers given since it is envisaged that lecturers could set the Assignments for students to attempt as part of there course structure. The worked solutions to the Assignments are contained in this instructor's manual and with each is a full suggested marking scheme. As a photocopiable resource the main formulae are also included.

CONTENTS

		Page
ASSIGNMENT 1	(chapters 1 to 4)	1
ASSIGNMENT 2	(chapters 5 to 8)	8
ASSIGNMENT 3	(chapters 9 to 12)	14
ASSIGNMENT 4	(chapters 13 to 16)	20
ASSIGNMENT 5	(chapters 17 to 20)	26
ASSIGNMENT 6	(chapters 21 to 23)	35
ASSIGNMENT 7	(chapters 24 to 26)	42
ASSIGNMENT 8	(chapters 27 to 31)	47
ASSIGNMENT 9	(chapters 32 to 35)	56
ASSIGNMENT 10	(chapters 36 to 39)	60
ASSIGNMENT 11	(chapters 40 to 43)	68
ASSIGNMENT 12	(chapters 44 to 46)	75
ASSIGNMENT 13	(chapters 47 to 49)	80
ASSIGNMENT 14	(chapters 50 to 53)	84
ASSIGNMENT 15	(chapters 54 to 58)	90
ASSIGNMENT 16	(chapters 59 to 61)	97
LIST OF FORMULAE		103

This assignment covers the material contained in Chapters 1 to 4.

Problem 1. Simplify (a) $2 \frac{2}{3} \div 3 \frac{1}{3} \quad$ (b) $\frac{1}{\left(\frac{4}{7} \times 2 \frac{1}{4}\right)} \div\left(\frac{1}{3}+\frac{1}{5}\right)+2 \frac{7}{24}$
(a) $2 \frac{2}{3} \div 3 \frac{1}{3}=\frac{8}{3} \div \frac{10}{3}=\frac{8}{3} \times \frac{3}{10}=\frac{8}{10}=\frac{4}{5}$
(b) $\frac{1}{\left(\frac{4}{7} \times 2 \frac{1}{4}\right)} \div\left(\frac{1}{3}+\frac{1}{5}\right)+2 \frac{7}{24}=\frac{1}{\left(\frac{4}{7} \times \frac{9}{4}\right)} \div\left(\frac{5+3}{15}\right)+2 \frac{7}{24}$
$=\frac{1}{\frac{9}{7}} \div \frac{8}{15}+2 \frac{7}{24}$
$=\frac{7}{9} \times \frac{15}{8}+2 \frac{7}{24}$
$=\frac{35}{24}+2 \frac{7}{24}=1 \frac{11}{24}+2 \frac{7}{24}$
$=3 \frac{18}{24}=3 \frac{3}{4}$

Problem 2. A piece of steel, 1.69 m long, is cut into three pieces in the ratio 2 to 5 to 6. Determine, in centimetres, the lengths of the three pieces.

Hence 2 parts $\equiv 2 \times 13=26$
5 parts $\equiv 5 \times 13=65$
6 parts $\equiv 6 \times 13=78$
i.e. 2 : 5 : 6 :: 26 cm : 65 cm : 78 cm
total : 4
Problem 3. Evaluate $\frac{576.29}{19.3}$
(a) correct to 4 significant figures
(b) correct to 1 decimal place
$\frac{576.29}{19.3}=29.859585 \ldots$ by calculator
Hence (a) $\frac{576.29}{19.3}=29.86$, correct to 4 significant figures
(b) $\frac{576.29}{19.3}=29.9$, correct to 1 decimal place

1

1
total : 2

Problem 4. Determine, correct to 1 decimal place, 57% of 17.64 g.
total : 2

Problem 5. Express 54.7 mm as a percentage of 1.15 m , correct to 3 significant figures.
54.7 mm as a percentage of 1.15 m is:

$$
\frac{54.7}{1150} \times 100 \%=4.76 \%, \text { correct to } 3 \text { significant figures }
$$

total: 3
Problem 6.Evaluate the following: (a) $\frac{2^{3} \times 2 \times 2^{2}}{2^{4}}$
(b) $\frac{\left(2^{3} \times 16\right)^{2}}{(8 \times 2)^{3}}$
(c) $\left(\frac{1}{4^{2}}\right)^{-1}$
(d) $(27)^{-\frac{1}{3}}$
(e) $\frac{\left(\frac{3}{2}\right)^{-2}-\frac{2}{9}}{\left(\frac{2}{3}\right)^{2}}$
(a) $\frac{2^{3} \times 2 \times 2^{2}}{2^{4}}=2^{3+1+2-4}=2^{2}=4$
(b) $\frac{\left(2^{3} \times 16\right)^{2}}{(8 \times 2)^{3}}=\frac{\left(2^{3} \times 2^{4}\right)^{2}}{\left(2^{3} \times 2\right)^{3}}=\frac{\left(2^{7}\right)^{2}}{\left(2^{4}\right)^{3}}=\frac{2^{14}}{2^{12}}=2^{14-12}=2^{2}=4$

3

3

3

3

Problem 7. Express the following in standard form: (a) 1623
(b) 0.076
(c) $145 \frac{2}{5}$
(b) $0.076=7.6 \times 10^{\mathbf{- 2}}$
(c) $145 \frac{2}{5}=145.4=1.454 \times 10^{2}$
total : 3
(a) $1623=1.623 \times 10^{3}$

Problem 8.Determine the value of the following, giving the answer in standard form:
(a) $5.9 \times 10^{2}+7.31 \times 10^{2}$
(b) $2.75 \times 10^{-2}-2.65 \times 10^{-3}$
(a) $5.9 \times 10^{2}+7.31 \times 10^{2}=590+731=1321=1.321 \times 10^{3}$
(b) $2.75 \times 10^{-2}-2.65 \times 10^{-3}=0.0275-0.00265$

$$
=0.02485=2.485 \times 10^{-2}
$$

Problem 9. Convert the following binary numbers to decimal form:
(a) 1101
(b) 101101.0101
(a) $1101_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$

$$
=8+4+0+1=13_{10}
$$

(b) $101101.0101_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}$

$$
\begin{aligned}
& \quad+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
& =32+0+8+4+0+1+0+\frac{1}{4}+0+\frac{1}{16} \\
& =45.3125_{10}
\end{aligned}
$$

Problem 10. Convert the following decimal numbers to binary form:
(a) 27
(b) 44.1875
(a)

2	27	Remainder
2	13	1
2	6	1
2	3	0
2	1	1
	0	1
		0

(b)

$2 \mid 44$	Remainder
$2 \mid 22$	\bigcirc
2111	0
2 5	1
2 2	1
21	0
0	1
Hence	$44_{10}=101100_{2}$

4

$$
\begin{aligned}
& 0.1875 \times 2=0.375 \\
& 0.375 \times 2=0.75
\end{aligned}
$$

```
0.75 < = 1.50
0.50\times2=1.00
```

Hence $44.1875_{10}=101100.0011_{2}$
total : 6

Problem 11. Convert the following decimal numbers to binary, via octal:
(a) 479
(b) 185.2890625
(a) $8 \underline{479}$ Remainder

From Table 3.1, page 19, $737_{8}=111011111_{2}$
(b) $8 \lcm{185}$ Remainder

From Table 3.1, page 19, $271_{8}=010111001_{2}$
$0.2890625 \times 8=2.3125$
$0.3125 \times 8=2.5$
$0.5 \times 8=4.0$
i.e. $0.2890625_{10}=.224_{8}=.010010100_{2}$ from Table 3.1, page 19

Hence $185 . \mathbf{2 8 9 0 6 2 5}_{10}=10111001.0100101_{2}$

Problem 12. Convert (a) $5 \mathrm{~F}_{16}$ into its decimal equivalent
(b) 132_{10} into its hexadecimal equivalent

(c) 110101011_{2} into its hexadecimal equivalent

Marks

2
(b) $16 \quad 132 \quad$ Remainder

16	8	4

08
i.e. $\quad \mathbf{1 3 2}_{10}=84_{16}$
(c)Grouping bits in 4's from the right gives:

$$
110101011_{2}=000110101011
$$

and assigning hexadecimal symbols to each group gives: 1 A B Hence $110101011_{2}=1 \mathrm{AB}_{16}$
(a) $5 \mathrm{~F}_{16}=5 \times 16^{1}+\mathrm{F} \times 16^{0}$

$$
=5 \times 16^{1}+15 \times 16^{0}=80+15=95_{10}
$$

2

2
total : 6

Problem 13. Evaluate the following, each correct to 4 significant figure:
(a) 61.22^{2}
(b) $\frac{1}{0.0419}$
(c) $\sqrt{0.0527}$
(a) $61.22^{2}=3748$, correct to 4 significant figures
(b) $\frac{1}{0.0419}=23.87$, correct to 4 significant figures
(c) $\sqrt{0.0527}=\mathbf{0 . 2 2 9 6}$, correct to 4 significant figures

Problem 14. Evaluate the following, each correct to 2 decimal places:
(a) $\left(\frac{36.2^{2} \times 0.561}{27.8 \times 12.83}\right)^{3}$
(b) $\sqrt{\left(\frac{14.69^{2}}{\sqrt{17.42} \times 37.98}\right)}$

6

Marks
(a) $\left(\frac{36.2^{2} \times 0.561}{27.8 \times 12.83}\right)^{3}=\mathbf{8 . 7 6}$, correct to 2 decimal places
(b) $\sqrt{\left(\frac{14.69^{2}}{\sqrt{17.42} \times 37.98}\right)}=1.17$, correct to 2 decimal places
total : 7

Problem 15. If $1.6 \mathrm{~km}=1 \mathrm{mile}$, determine the speed of $45 \mathrm{miles} / \mathrm{hour}$ in kilometres per hour.

45 miles/hour $=45 \times 1.6 \mathrm{~km} / \mathrm{h}=72 \mathrm{~km} / \mathrm{h} \quad$| Marks |
| :---: |
| 3 |

Problem 16. Evaluate B, correct to 3 significant figures, when $W=7.20$, $\mathrm{V}=10.0$ and $g=9.81$, given that $B=\frac{W v^{2}}{2 g}$
$B=\frac{W v^{2}}{2 g}=\frac{(7.20)(10.0)^{2}}{2(9.81)}=\mathbf{3 6 . 7}$, correct to 3 significant figures \quad Marks

7
 ASSIGNMENT 2 (Page 64)

This assignment covers the material contained in Chapters 5 to 8.

Problem 1. Evaluate $3 x y^{2} z^{3}-2 y z$ when $x=\frac{4}{3}, y=2$ and $z=\frac{1}{2}$

$3 x y^{2} z^{3}-2 y z$	$=3\left(\frac{4}{3}\right)(2)^{2}\left(\frac{1}{2}\right)^{3}-2(2)\left(\frac{1}{2}\right)$	
	$=2-2=0$	total $: 3$

Problem 2. Simplify the following: (a) $\frac{8 a^{2} b \sqrt{c^{3}}}{(2 a)^{2} \sqrt{b} \sqrt{c}} \quad$ (b) $3 x+4 \div 2 x+5 \times 2-4 x$
(a) $\frac{8 a^{2} b \sqrt{c^{3}}}{(2 a)^{2} \sqrt{b} \sqrt{c}}=\frac{8 a^{2} b c^{3 / 2}}{4 a^{2} b^{1 / 2} c^{1 / 2}}=2 b^{1 / 2} c$ or $2 \sqrt{b} c$
(b) $3 x+4 \div 2 x+5 \times 2-4 x=3 x+\frac{4}{2 x}+5 \times 2-4 x$

$$
=3 x+\frac{2}{x}+10-4 x
$$

$$
=-x+\frac{\mathbf{2}}{\mathrm{x}}+10 \text { or } \frac{\mathbf{2}}{\mathrm{x}}-\mathrm{x}+10
$$

total : 6

Problem 3. Remove the brackets in the following expressions and simplify:
(a) $(2 x-y)^{2}$
(b) $4 a b-[3\{2(4 a-b)+b(2-a)\}]$
(a) $(2 x-y)^{2}=(2 x-y)(2 x-y)=4 x^{2}-2 x y-2 x y+y^{2}$

$$
=4 x^{2}-4 x y+y^{2}
$$

(b) 4ab - [3\{2(4a - b) + b(2 - a) \}] = 4ab - [3\{8a - 2b + 2b - ab\}]

$$
=4 a b-[3\{8 a-a b\}]
$$

$$
=4 a b-24 a+3 a b
$$

$$
=4 a b-[24 a-3 a b]
$$

Problem 4. Factorise $3 x^{2} y+9 x y^{2}+6 x y^{3}$
Marks
$3 x^{2} y+9 x y^{2}+6 x y^{3}=3 x y\left(x+3 y+2 y^{2}\right)$

Problem 5. If x is inversely proportional to y and $x=12$ when $y=0.4$, determine (a) the value of x when y is 3 , and (b) the value of y when $x=2$
$x \propto \frac{1}{y} \quad$ i.e. $\quad x=\frac{k}{y}$
$x=12$ when $y=0.4$, hence $12=\frac{k}{0.4}$ from which, $k=(12)(0.4)=4.8$
(a) When $y=3, x=\frac{k}{y}=\frac{4.8}{3}=1.6$
(b) When $x=2,2=\frac{4.8}{y}$ and $y=\frac{4.8}{2}=2.4$
total : 4

Problem 6. Factorise $x^{3}+4 x^{2}+x-6$ using the factor theorem. Hence solve the equation $x^{3}+4 x^{2}+x-6=0$

Let $f(x)=x^{3}+4 x^{2}+x-6$
then $f(1)=1+4+1-6=0$, hence $(x-1)$ is a factor
$f(2)=8+16+2-6=20$
$f(-1)=-1+4-1-6=-4$
$f(-2)=-8+16-2-6=0$, hence $(x+2)$ is a factor
$f(-3)=-27+36-3-6=0$, hence $(x+3)$ is a factor
Thus $x^{3}+4 x^{2}+x-6=(x-1)(x+2)(x+3)$
If $x^{3}+4 x^{2}+x-6=0$ then $(x-1)(x+2)(x+3)=0$
from which, $x=1,-2$ or -3

Problem 7. Use the remainder theorem to find the remainder when $2 x^{3}+x^{2}-7 x-6$ is divided by (a) (x-2) (b) $(x+1)$

Hence factorise the cubic expression.
(a) When $2 x^{3}+x^{2}-7 x-6$ is divided by $(x-2)$, the remainder is given by $a p^{3}+b p^{2}+c p+d$, where $a=2, b=1, c=-7, d=-6$ and $p=2$, i.e. the remainder is: $2(2)^{3}+1(2)^{2}-7(2)-6$

$$
=16+4-14-6=0
$$

hence $(x-2)$ is a factor of $2 x^{3}+x^{2}-7 x-6$
(b) When $2 x^{3}+x^{2}-7 x-6$ is divided by $(x+1)$, the remainder is given by: $\quad 2(-1)^{3}+1(-1)^{2}-7(-1)-6=-2+1+7-6=0$
hence $(x+1)$ is a factor of $2 x^{3}+x^{2}-7 x-6$
Either by dividing $2 x^{3}+x^{2}-7 x-6$ by $(x-2)(x+1)$ or by using the factor or remainder theorems the third factor is found to be $(2 x+3)$

Hence $2 x^{3}+x^{2}-7 x-6=(x-2)(x+1)(2 x+3)$

Problem 8. Simplify $\frac{6 x^{2}+7 x-5}{2 x-1}$ by dividing out

$$
\begin{array}{r}
3 x+5 \\
2 x - 1 \longdiv { 6 x ^ { 2 } + 7 x - 5 } \\
\frac{6 x^{2}-3 x}{10 x-5} \\
\frac{10 x-5}{.} .
\end{array}
$$

Hence $\frac{6 x^{2}+7 x-5}{2 x-1}=3 x+5$

Problem 9. Resolve the following into partial fractions:
(a) $\frac{x-11}{x^{2}-x-2}$
(b) $\frac{3-x}{\left(x^{2}+3\right)(x+3)}$
(c) $\frac{x^{3}-6 x+9}{x^{2}+x-2}$
(a) Let $\frac{x-11}{x^{2}-x-2} \equiv \frac{x-11}{(x-2)(x+1)}=\frac{A}{(x-2)}+\frac{B}{(x+1)}=\frac{A(x+1)+B(x-2)}{(x-2)(x+1)}$

Hence

$$
x-11=A(x+1)+B(x-2)
$$

Let $x=2: \quad-9=3 A$ hence $A=-3$
Let $x=-1: \quad-12=-3 B$ hence $\mathbf{B}=4$
Hence $\frac{x-11}{x^{2}-x-2}=\frac{4}{(x+1)}-\frac{3}{(x-2)}$
(b) Let $\frac{3-x}{\left(x^{2}+3\right)(x+3)} \equiv \frac{A x+B}{\left(x^{2}+3\right)}+\frac{C}{(x+3)}=\frac{(A x+B)(x+3)+C\left(x^{2}+3\right)}{\left(x^{2}+3\right)(x+3)}$

Hence

$$
3-x=(A x+B)(x+3)+C\left(x^{2}+3\right)
$$

Let $x=-3: \quad 6=0+12 C$ hence $c=\frac{\mathbf{1}}{\mathbf{2}}$
x^{2} coefficients: $0=A+C$ hence $A=-\frac{1}{\mathbf{2}}$
x coefficients: $-1=3 A+B$ hence $-1=-\frac{3}{2}+B$ and $B=\frac{1}{2}$
Hence $\frac{3-x}{\left(x^{2}+3\right)(x+3)}=\frac{-\frac{1}{2} x+\frac{1}{2}}{\left(x^{2}+3\right)}+\frac{\frac{1}{2}}{(x+3)}$ or $\frac{1-x}{2\left(x^{2}+3\right)}+\frac{1}{2(x+3)}$
(c) Dividing out gives:

$$
\begin{array}{rl}
x^{2}+x-2 & x-1 \\
\begin{array}{l}
x^{3}-6 x+9 \\
x^{3}+x^{2}-2 x \\
-x^{2}-4 x+9 \\
-x^{2}-x+2
\end{array} \\
& \frac{-3 x+7}{}
\end{array}
$$

11

Hence $\frac{x^{3}-6 x+9}{x^{2}+x-2} \equiv x-1+\frac{-3 x+7}{x^{2}+x-2}$
Let $\frac{-3 x+7}{x^{2}+x-2} \equiv \frac{A}{x+2}+\frac{B}{x-1} \equiv \frac{A(x-1)+B(x+2)}{(x+2)(x-1)}$
from which, $\quad-3 x+7=A(x-1)+B(x+2)$
Let $x=-2: \quad 13=-3 A$ hence $A=-\frac{13}{\mathbf{3}}$
Let $x=1: \quad 4=3 B$ hence $B=\frac{4}{3}$
Hence $\frac{-3 x+7}{x^{2}+x-2}=\frac{-13 / 3}{x+2}+\frac{4 / 3}{x-1}$
and $\frac{x^{3}-6 x+9}{x^{2}+x-2}=x-1-\frac{13}{3(x+2)}+\frac{4}{3(x-1)}$

Problem 10. Solve the following equations:
(a) $3 t-2=5 t-4$
(b) $4(k-1)-2(3 k+2)+14=0$
(c) $\frac{a}{2}-\frac{2 a}{5}=1$
(d) $\sqrt{\left(\frac{s+1}{s-1}\right)}=2$
(a) $3 t-2=5 t-4$ from which, $4-2=5 t-3 t$

$$
\text { i.e. } \quad 2=2 t \text { and } t=1
$$

(b) If $4(k-1)-2(3 k+2)+14=0$
then $4 k-4-6 k-4+14=0$
and $\quad-4-4+14=6 k-4 k$
i.e. $6=2 k$ and $k=\frac{6}{2}=3$
(c) $\frac{a}{2}-\frac{2 a}{5}=1$ hence $10\left(\frac{a}{2}\right)-10\left(\frac{2 a}{5}\right)=10(1)$

$$
\text { i.e. } \quad 5 a-4 a=10 \quad \text { and } \quad a=10
$$

(d) $\sqrt{\left(\frac{s+1}{s-1}\right)}=2 \quad$ hence $\quad \frac{s+1}{s-1}=(2)^{2}=4$

$$
\text { and } \quad s+1=4(s-1)
$$

$$
\begin{aligned}
& \text { i.e. } \quad s+1=4 s-4 \\
& \text { hence } 4+1=4 s-s=3 s \\
& \text { and } \\
& 5=3 s
\end{aligned}
$$

$$
\text { from which, } s=\frac{5}{3} \text { or } 1 \frac{2}{3}
$$

Problem 11. A rectangular football pitch has its length equal to twice its width and a perimeter of 360 m . Find its length and width.

	Marks
Since length 1 is twice the width w, then $1=2 w$	
Perimeter of pitch $=21+2 w=2(2 w)+2 w=360$	1
Hence $6 \mathrm{w}=360$ and $\mathrm{w}=60 \mathrm{~m}$	
If $w=60 \mathrm{~m}, \mathrm{l}=2 \mathrm{w}=120 \mathrm{~m}$	
Hence length $=120 \mathrm{~m}$ and width $=60 \mathrm{~m}$	3
	total: 4

Problem 1. Solve the following pairs of simultaneous equations:
(a) $7 x-3 y=23$
$2 x+4 y=-8$
(b) $3 a-8+\frac{b}{8}=0$
$b+\frac{a}{2}=\frac{21}{4}$
(a)

$$
\begin{align*}
& 7 x-3 y=23 \tag{1}\\
& 2 x+4 y=-8 \tag{2}
\end{align*}
$$

$4 \times(1)$ gives: $\quad 28 x-12 y=92$
$3 \times(2)$ gives: $\quad 6 x+12 y=-24$
$(3)+(4)$ gives: $34 x=68$
from which,

$$
x=\frac{68}{34}=2
$$

When $x=2$ in equation (1): $14-3 y=23$
from which,
$-3 y=23-14=9$
i.e.

$$
y=\frac{9}{-3}=-3
$$

(b)

$$
3 a-8+\frac{b}{8}=0
$$

$$
b+\frac{a}{2}=\frac{21}{4}
$$

i.e.

$$
\begin{equation*}
3 a+\frac{b}{8}=8 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a}{2}+b=\frac{21}{4} \tag{2}
\end{equation*}
$$

$8 \times(1)$ gives: $\quad 24 a+b=64$
$4 \times(2)$ gives: $\quad 2 a+4 b=21$
$4 \times(3)$ gives: $\quad 96 a+4 b=256$

14
(5) - (4) gives: 94a = 235
from which,

$$
a=\frac{235}{94}=2.5
$$

When $\mathrm{a}=2.5$ in equation (1): $7.5+\frac{\mathrm{b}}{8}=8$
and
$\frac{b}{8}=8-7.5=0.5$
from which,
$\mathbf{b}=8(0.5)=4$

Problem 2. In an engineering process two variables x and y are related by the equation $y=a x+\frac{b}{x}$ where a and b are constants. Evaluate a and b if $y=15$ when $x=1$ and $y=13$ when $x=3$

When $y=15$ and $x=1$,	$15=a+b$
When $y=13$ and $x=3$,	$13=3 a+\frac{b}{3}$
$3 \times(2)$ gives;	$39=9 a+b$
(3) $-(1)$ gives:	$24=8 a \quad$ from which, $a=3$

Problem 3. Transpose the following equations:
(a) $y=m x+c \quad$ for m
(b) $x=\frac{2(y-z)}{t} \quad$ for z
(c) $\frac{1}{R_{T}}=\frac{1}{R_{A}}+\frac{1}{R_{B}}$ for R_{A}
(d) $x^{2}-y^{2}=3 a b$ for y
(e) $K=\frac{p-q}{1+p q} \quad$ for q
(a) Since $y=m x+c$ then $y-c=m x$ and $m=\frac{\mathbf{y}-\mathbf{c}}{\mathbf{x}}$
(b) $x=\frac{2(y-z)}{t}$ hence $x t=2(y-z)$
from which, $\quad \frac{x t}{2}=y-z \quad$ and $z=y-\frac{x t}{2}$ or $\frac{2 y-x t}{2}$
(c) $\frac{1}{R_{T}}=\frac{1}{R_{A}}+\frac{1}{R_{B}}$ hence $\frac{1}{R_{A}}=\frac{1}{R_{T}}-\frac{1}{R_{B}}=\frac{R_{B}-R_{T}}{R_{T} R_{B}}$

$$
\begin{equation*}
\text { and } \quad \mathbf{R}_{\mathrm{A}}=\frac{\mathbf{R}_{\mathrm{T}} \mathbf{R}_{\mathrm{B}}}{\mathbf{R}_{\mathrm{B}}-\mathbf{R}_{\mathrm{T}}} \tag{4}
\end{equation*}
$$

(e) $k=\frac{p-q}{1+p q}$ from which, $K(1+p q)=p-q$

$$
\text { thus } \begin{array}{rlrl}
& K & K+K p q & =p-q \\
\text { and } & K p q+q & =p-K \\
\text { Then } & q(K p+1) & =p-K \\
\text { and } & \mathbf{q} & =\frac{\mathbf{p}-\mathbf{K}}{\mathbf{K p}+\mathbf{1}}
\end{array}
$$

Problem 4. The passage of sound waves through walls is governed by the equation: $v=\sqrt{\frac{K+\frac{4}{3} G}{\rho}}$. Make the shear modulus G the subject of the formula.
$v=\sqrt{\frac{K+\frac{4}{3} G}{\rho}}$ from which, $v^{2}=\frac{K+\frac{4}{3} G}{\rho}$

$$
\begin{aligned}
v^{2} \rho & =k+\frac{4}{3} G \\
v^{2} \rho-k & =\frac{4}{3} G
\end{aligned}
$$

and

$$
G=\frac{3}{4}\left(v^{2} \rho-k\right)
$$

```
total : 4
```

Problem 5. Solve the following equations by factorisation:
(a) $x^{2}-9=0$
(b) $2 x^{2}-5 x-3=0$

16

(a) Since $x^{2}-9=0$ then $(x+3)(x-3)=0$ and $x= \pm 3$
(b) $2 x^{2}-5 x-3=0 \quad$ i.e. $(2 x+1)(x-3)=0$

Hence $2 x+1=0$ and $x-3=0$
i.e. $\quad x=-\frac{1}{2}$ and $x=3$

Problem 6. Determine the quadratic equation in x whose roots are 1 and -3

The quadratic equation whose roots are 1 and -3 is given by:

$$
\begin{array}{ll}
& (x-1)(x+3)=0 \\
\text { i.e. } & x^{2}+3 x-x-3=0 \\
\text { i.e. } & x^{2}+2 x-3=0
\end{array}
$$

2

2
total : 4

Problem 7. Solve the equation $4 x^{2}-9 x+3=0$ correct to 3 decimal places

If $4 x^{2}-9 x+3=0 \quad$ then $\quad x=\frac{--9 \pm \sqrt{\left[(-9)^{2}-4(4)(3)\right]}}{2(4)}$

$$
=\frac{9 \pm \sqrt{81-48}}{8}=\frac{9 \pm \sqrt{33}}{8}=\frac{9 \pm 5.7446}{8}
$$

i.e. $\quad x=\frac{9+5.7446}{8} \quad$ and $\quad x=\frac{9-5.7446}{8}$

$$
\text { Hence } \quad x=1.843 \text { and } \quad x=0.407
$$

Problem 8. The current i flowing through an electronic device is given by:

$$
i=0.005 v^{2}+0.014 v
$$

where v is the voltage. Calculate the values of v when $i=3 \times 10^{-3}$.
$i=0.005 \mathrm{v}^{2}+0.014 \mathrm{v}$ and when $\mathrm{i}=3 \times 10^{-3}$ then

$$
3 \times 10^{-3}=0.005 \mathrm{v}^{2}+0.014 \mathrm{v}
$$

i.e.

$$
0.005 v^{2}+0.014 v-3 \times 10^{-3}=0
$$

and

$$
5 v^{2}+14 v-3=0
$$

from which, $\quad v=\frac{-14 \pm \sqrt{\left[14^{2}-4(5)(-3)\right]}}{\langle 5)}$

$$
=\frac{-14 \pm \sqrt{256}}{10}=\frac{-14+16}{10} \text { and } \frac{-14-16}{10}
$$

i.e.
$v=\frac{2}{10} \quad$ and $\quad \frac{-30}{10}$
Hence voltage $\mathbf{v}=\frac{\mathbf{1}}{\mathbf{5}}$ (or 0.2) and $\mathbf{- 3}$

Problem 9. Evaluate $\log _{16} 8$

Let $x=\log _{16} 8$ then $16^{x}=8$ from the definition of a logarithm
i.e. $\quad 2^{4 x}=2^{3}$
from which, $4 x=3$ and $x=\frac{3}{4}$

Hence $\quad \log _{16} \mathbf{8}=\frac{\mathbf{3}}{4}$
total : 3

Problem 10. Solve (a) $\log _{3} x=-2 \quad$ (b) $\log 2 x^{2}+\log x=\log 32-\log x$
(a) If $\log _{3} x=-2$ then $x=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
(b) If $\log 2 x^{2}+\log x=\log 32-\log x$
then $\log 2 x^{3}=\log \frac{32}{x}$ from the laws of logarithms
i.e. $\quad 2 x^{3}=\frac{32}{x}$ from which, $x^{4}=\frac{32}{2}=16$
and $\quad \mathbf{x}=\sqrt[4]{16}= \pm 2$

Problem 11. Solve the following equations, each correct to 3 significant figures:
(a) $2^{x}=5.5$
(b) $3^{2 \mathrm{t}-1}=7^{\mathrm{t}+2}$
(c) $3 \mathrm{e}^{2 x}=4.2$
(a) Since $2^{x}=5.5$ then $\lg 2^{x}=\lg 5.5$
from which, $\quad x \lg 2=\lg 5.5$
and

$$
\mathbf{x}=\frac{\lg 5.5}{\lg 2}=\mathbf{2 . 4 6}
$$

(b) Since $3^{2 t-1}=7^{t+2}$ then $\lg 3^{2 t-1}=\lg 7^{t+2}$
and

$$
\begin{align*}
(2 t-1) \lg 3 & =(t+2) \lg 7 \\
2 t \lg 3-\lg 3 & =\mathrm{t} \lg 7+2 \lg 7 \\
2 t \lg 3-\mathrm{t} \lg 7 & =2 \lg 7+\lg 3 \\
0.9542 \mathrm{t}-0.8451 \mathrm{t} & =2.1673 \\
0.1091 \mathrm{t} & =2.1673 \\
\mathrm{t} & =\frac{2.1673}{0.1091}=19.9 \tag{5}
\end{align*}
$$

hence
(c) Since $3 e^{2 x}=4.2$ then $e^{2 x}=\frac{4.2}{3}=1.4$
and
i.e.

$$
\ln \mathrm{e}^{2 x}=\ln 1.4
$$

and

$$
2 x=\ln 1.4
$$

$$
x=\frac{\ln 1.4}{2}=0.168
$$

ASSIGNMENT 4 (PAGE 126)

This assignment covers the material contained in chapters 13 to 16.

Problem 1. Evaluate the following, each correct to 4 significant figures:
(a) $e^{-0.683}$
(b) $\frac{5\left(e^{-2.73}-1\right)}{e^{1.68}}$

Marks
(a) $e^{-0.683}=0.5051$
(b) $\frac{5\left(e^{-2.73}-1\right)}{e^{1.68}}=-0.8711$

Problem 2. Expand $x e^{3 x}$ to six terms

$$
\begin{aligned}
x e^{3 x} & =x\left\{1+(3 x)+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\frac{(3 x)^{4}}{4!}+\frac{(3 x)^{5}}{5!}+\ldots\right\} \\
& =x\left\{1+3 x+\frac{9}{2} x^{2}+\frac{9}{2} x^{3}+\frac{27}{8} x^{4}+\frac{81}{40} x^{5}+\ldots\right\} \\
& =x+3 x^{2}+\frac{9}{2} x^{3}+\frac{9}{2} x^{4}+\frac{27}{8} x^{5}+\frac{81}{40} x^{6}+\ldots
\end{aligned}
$$

Problem 3. Plot a graph of $y=\frac{1}{2} e^{-1.2 x}$ over the range $x=-2$ to $x=+1$ and hence determine, correct to 1 decimal place, (a) the value of y when $x=-0.75$, and
(b) the value of x when $y=4.0$

A table of values is drawn up as shown below
X
-2.0
-1.5
-1.0
-0.5
0
0.5
1.0
$y=\frac{1}{2} e^{-1.2 x}$
5.51
3.02
1.66
0.91
0.50 .27
0.15

2

A graph of $y=\frac{1}{2} e^{-1.2 x}$ is shown in Figure 1

Figure 1

(a) When $x=-0.75, y=1.2$
(b) When $y=4.0, x=-1.7$

Problem 4. Evaluate the following, each correct to 3 decimal places:
(a) $\ln 0.0753$
(b) $\frac{\ln 3.68-\ln 2.91}{4.63}$
(a) $\ln 0.0753=-2.586$
(b) $\frac{\ln 3.68-\ln 2.91}{4.63}=0.051$

Problem 5. Two quantities x and y are related by the equation $y=a e^{-k x}$, where a and k are constants. Determine, correct to 1 decimal place, the value of y when $\mathrm{a}=2.114, \mathrm{k}=-3.20$ and $\mathrm{x}=1.429$

$$
y=a e^{-k x}=2.114 e^{-(-3.20)(1.429)}=204.7
$$

Problem 6. Determine the $20^{\text {th }}$ term of the series $15.6,15,14.4,13.8, \ldots$

The $20^{\text {th }}$ term is given by: $a+(n-1) d$
i.e.

$$
\begin{aligned}
& 15.6+(20-1)(-0.6) \\
= & 15.6-19(0.6)=15.6-11.4=4.2
\end{aligned}
$$

Problem 7. The sum of 13 terms of an arithmetic progression is 286 and the common difference is 3. Determine the first term of the series.

S_{n}	$=\frac{n}{2}[2 a+(n-1) d]$
i.e. 286	$=\frac{13}{2}[2 a+(13-1) 3]$
286	$=\frac{13}{2}[2 a+36]$
$\frac{286 \times 2}{13}$	$=2 a+36 \quad$ i.e. $44-36=2 a$

from which, first term $\mathbf{a}=\frac{44-36}{2}=4$

Problem 8. Determine the $11^{\text {th }}$ term of the series $1.5,3,6,12$, .

The $11^{\text {th }}$ term is given by $: \operatorname{ar}^{n-1}$ where $a=1.5$ and common ratio $r=2$	
i.e. $11^{\text {th }}$ term $=(1.5)(2)^{11-1}=1536$	Marks
2	

Problem 9. A machine is to have seven speeds ranging from $25 \mathrm{rev} / \mathrm{min}$ to 500 rev/min. If the speeds form a geometric progression, determine their value, each correct to the nearest whole number.

The G.P. of n terms is given by: $a, ~ a r, ~ a r^{2}, \ldots a r^{n-1}$
The first term $a=25 \mathrm{rev} / \mathrm{min}$
The seventh term is given by ar ${ }^{7-1}$ which is $500 \mathrm{rev} / \mathrm{min}$
i.e. $a r^{6}=500$ from which, $r^{6}=\frac{500}{a}=\frac{500}{25}=20$ thus the common ratio $r=\sqrt[6]{20}=1.64755$

The first term is $25 \mathrm{rev} / \mathrm{min}$
The second term ar $=(25)(1.64755)=41.19$

The third term ar ${ }^{2}=(25)(1.64755)^{2}=67.86$

The fourth term ar ${ }^{3}=(25)(1.64755)^{3}=111.80$
The fifth term $\mathrm{ar}^{4}=(25)(1.64755)^{4}=184.20$

The sixth term ar ${ }^{5}=(25)(1.64755)^{5}=303.48$
Hence, correct to the nearest whole number the speeds of the machine
are: 25, 41, 68, 112, 184, 303 and $500 \mathrm{rev} / \mathrm{min}$

Problem 10. Use the binomial series to expand $(2 a-3 b)^{6}$

Problem 11. Expand the following in ascending powers of t as far as the term in t^{3}
(a) $\frac{1}{1+t}$
(b) $\frac{1}{\sqrt{(1-3 t)}}$.

For each case, state the limits for which the expansion is valid
(a) $\frac{1}{1+t}=(1+t)^{-1}=1+(-1) t+\frac{(-1)(-2)}{2!} t^{2}+\frac{(-1)(-2)(-3)}{3!} t^{3}+\ldots$

$$
=1-t+t^{2}-t^{3}+\ldots
$$

The expansion is valid when $|\mathbf{t}|<\mathbf{1}$ or $\mathbf{- 1}<\mathbf{t}<\mathbf{1}$
(b) $\frac{1}{\sqrt{(1-3 t)}}=(1-3 t)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)(-3 t)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-3 t)^{2}$

$$
+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(-3 t)^{3}+\ldots
$$

$$
=1+\frac{3}{2} t+\frac{27}{8} t^{2}+\frac{135}{16} t^{3}+\ldots
$$

The expansion is valid when $|\mathbf{3 t}|<\mathbf{1}$

$$
\text { i.e. } \quad|\mathrm{t}|<\frac{\mathbf{1}}{\mathbf{3}} \quad \text { or } \quad-\frac{1}{3}<\mathrm{x}<\frac{\mathbf{1}}{\mathbf{3}}
$$

Problem 12. The modulus of rigidity G is given by $G=\frac{R^{4} \theta}{L}$ where R is the radius, θ the angle of twist and L the length. Find the approximate percentage error in G when R is measured 1.5% too large, θ is measure 3% too small and L is measured 1% too small

The new values of R, θ and L are $(1+0.015) R$, $(1-0.03) \theta$ and (1-0.01)L New modulus of rigidity $=\frac{[(1+0.015) R]^{4}[(1-0.03) \theta]}{[(1-0.01) L]}$

$$
\begin{aligned}
& =[(1+0.015) R]^{4}[(1-0.03) \theta][(1-0.01) L]^{-1} \\
& =(1+0.015)^{4} R^{4}(1-0.03) \theta(1-0.01)^{-1} L^{-1} \\
& =(1+0.015)^{4}(1-0.03)(1-0.01)^{-1} R^{4} \theta L^{-1} \\
& \approx[1+4(0.015)][1-0.03][1-(-1)(0.01)] \frac{R^{4} \theta}{L}
\end{aligned}
$$ neglecting products of small terms

$$
\approx[1+0.06-0.03+0.01] \mathrm{G}
$$

$$
=(1+0.04) \mathrm{G}
$$

Problem 13. The solution to a differential equation associated with the path taken by a projectile for which the resistance to motion is proportional to the velocity is given by: $\quad y=2.5\left(e^{x}-e^{-x}\right)+x-25$

Use Newton's method to determine the value of x, correct to 2 decimal places, for which the value of y is zero.

$$
\begin{aligned}
& \text { If } y=0,2.5 e^{x}-2.5 e^{-x}+x-25=0 \\
& \text { Let } f(x)=2.5 e^{x}-2.5 e^{-x}+x-25 \\
& f(0)=2.5-2.5+0-25=-25 \\
& f(1)=-18.12 \\
& f(2)=-4.866 \\
& f(3)=28.09
\end{aligned}
$$

Hence a root lies between $x=2$ and $x=3$. Let $r_{1}=2.2$
$f^{\prime}(x)=2.5 e^{x}+2.5 e^{-x}+1$
$r_{2}=r_{1}-\frac{f\left(r_{1}\right)}{f^{\prime}\left(r_{1}\right)}=2.2-\frac{2.5 e^{2.2}-2.5 e^{-2.2}+2.2-25}{2.5 e^{2.2}+2.5 e^{-2.2}+1}$
$=2.2-\frac{-0.514474146}{23.83954165}=2.222$
$r_{3}=2.222-\frac{f(2.222)}{f^{\prime}(2.222)}=2.222-\frac{0.01542961}{24.33539015}=\mathbf{2 . 2 2 1}$
Hence $\mathbf{x}=\mathbf{2 . 2 2}$, correct to 2 decimal places

ASSIGNMENT 5 (PAGE 168)

This assignment covers the material contained in chapters 17 to 20.

Problem 1. A swimming pool is 55 m long and 10 m wide. The perpendicular depth at the deep end is 5 m and at the shallow end is 1.5 m , the slope from one end to the other being uniform. The inside of the pool needs two coats of a protective paint before it is filled with water. Determine how many litres of paint will be needed if 1 litre covers $10 \mathrm{~m}^{2}$

A sketch of the pool is shown in Figure 2.

Figure 2

Area to be painted $=(55 \times 10)+(10 \times 5)+(10 \times 1.5)+2\left[\frac{1}{2}(5+1.5)(55)\right]$

$$
=550+50+15+357.5=972.5 \mathrm{~m}^{2}
$$

For two coats of paint, area to be covered $=2 \times 972.5=1945 \mathrm{~m}^{2}$
If 1 litre covers $10 \mathrm{~m}^{2}$ then $\frac{1945}{10}=194.5$ litres will be needed
total: 7

Problem 2. A steel template is of the shape shown in Fig. A10.1, the circular area being removed. Determine the area of the template, in square centimetres, correct to 1 decimal place.

Figure A5.1

Marks
Figure A5.1 is re-drawn as shown in Figure 3
Area of Figure $3=(30 \times 200)+(190 \times 30)+\frac{1}{2}(130)(125)-\pi \frac{50^{2}}{4}$

4
since the circle is removed
$=6000+5700+8125-1963.5=17861.5 \mathrm{~mm}^{2}$
$=178.6 \mathrm{~cm}^{2}$, correct to 1 decimal place

Problem 3. The area of a plot of land on a map is $400 \mathrm{~mm}^{2}$. If the scale of the map is 1 to 50000, determine the true area of the land in hectares. (1 hectare $=10^{4} \mathrm{~m}^{2}$)

Marks
True area $=(400)(50000)^{2} \mathrm{~mm}^{2}=\frac{(400)(50000)^{2}}{10^{6}} \mathrm{~m}^{2}=10^{6} \mathrm{~m}^{2}$

$$
=\frac{10^{6}}{10^{4}} \text { hectare }=100 \mathrm{ha}
$$

Problem 4. Determine the shaded area in Figure A5.2, correct to the nearest square centimetre.

Figure A5. 2

Shaded area in Figure A5.2 $=\frac{\pi(22)^{2}}{4}-\frac{\pi(20)^{2}}{4}=\frac{\pi}{4}\left(22^{2}-20^{2}\right)=66 \mathbf{c m}^{2}$
total : 3

Problem 5. Determine the diameter of a circle whose circumference is 178.4 cm .
\qquad
Circumference $c=\pi d$, from which, diameter $d=\frac{c}{\pi}=\frac{178.4}{\pi}=56.79 \mathrm{~cm}$

Problem 6. Convert (a) $125^{\circ} 47^{\prime}$ to radians
(b) 1.724 radians to degrees and minutes
(a) $125^{\circ} 47^{\prime}=125 \frac{47}{60} \circ=\left(125 \frac{47}{60} \times \frac{\pi}{180}\right)$ radians $=2.195 \mathrm{rad}$
(b) $1.724 \mathrm{rad}=1.724 \times \frac{180}{\pi}=98.7779^{\circ}=98^{\circ} 47^{\prime}$

Problem 7. Calculate the length of metal strip needed to make the clip shown in Figure A5.3

Figure A5. 3

$$
\begin{aligned}
\text { Length of metal strip }= & (70-15)+\frac{1}{4}[2 \pi(15)]+(75-15-30) \\
& +\frac{1}{2}[2 \pi(30)]+(75-15-30)+\frac{1}{4}[2 \pi(15)] \\
& +(70-15) \\
= & 55+23.56+30+94.25+30+23.56+55 \\
= & 311.4 \mathrm{~mm}
\end{aligned}
$$

Problem 8. A lorry has wheels of radius 50 cm . Calculate the number of complete revolutions a wheel makes (correct to the nearest revolution) when travelling 3 miles. (Assume 1 mile $=1.6 \mathrm{~km}$).

The equation of a circle, centre (a, b), radius r is given by:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

i.e. of the general form $x^{2}+y^{2}+2 e x+2 f y+c=0$

Hence when the equation is $x^{2}+y^{2}+12 x-4 y+4=0$
then

$$
a=-\frac{2 e}{2}=-\frac{12}{2}=-6, \quad b=-\frac{2 f}{2}=-\frac{-4}{2}=+2
$$

and

$$
r=\sqrt{a^{2}+b^{2}-c}=\sqrt{(-6)^{2}+(2)^{2}-4}=\sqrt{36}=6
$$

Hence (a) the diameter of the circle is 12
(b) the centre of the circle is at ($-6,2$)

Problem 10. Determine the volume (in cubic metres) and the total surface area (in square metres) of a solid metal cone of base radius 0.5 m and perpendicular height 1.20 m. Give answers correct to 2 decimal places.

The cone is shown in Figure 4.

Figure 4
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(0.5)^{2}(1.20)=0.31 \mathrm{~m}^{3}$
Total surface area of cone $=\pi r l+\pi r^{2}$ where $1=\sqrt{0.5^{2}+1.2^{2}}=1.3 \mathrm{~m}$
Marks
Mar

$$
\begin{aligned}
& =\pi(0.5)(1.3)+\pi(0.5)^{2} \\
& =0.65 \pi+0.25 \pi \\
& =0.90 \pi \\
& =2.83 \mathrm{~m}^{2}
\end{aligned}
$$

Problem 11. Calculate the total surface area of a 10 cm by 15 cm rectangular pyramid of height 20 cm .

The pyramid is shown in Figure 5.

Figure 5

In Figure 5, $\mathrm{AC}=\sqrt{20^{2}+7.5^{2}}=21.36 \mathrm{~cm}$
and

$$
A D=\sqrt{20^{2}+5^{2}}=20.62 \mathrm{~cm}
$$

1

Problem 12. A water container is of the form of a central cylindrical part 3.0 m long and diameter 1.0 m , with a hemispherical section surmounted at each end as shown in Figure A5.4. Determine the maximum capacity of the container, correct to the nearest litre. (1 litre $=1000 \mathrm{~cm}^{3}$)

Figure A5.4

Volume of container $=\pi(0.5)^{2}(3.0)+\frac{4}{3} \pi(0.5)^{3}$

$$
=2.3562+0.5236=2.8798 \mathrm{~m}^{3}=2.8798 \times 10^{6} \mathrm{~cm}^{3}
$$

Capacity, in litres $=\frac{2.8798 \times 10^{6}}{1000}=2880 \mathbf{l}$, correct to the nearest litre

3

2

Problem 13. Find the total surface area of a bucket consisting of an inverted frustum of a cone, of slant height 35.0 cm and end diameters 60.0 cm and 40.0 cm .

The bucket is shown in Figure 6.

Figure 6

Surface area of bucket $=\pi l(R+r)+\pi r^{2}$

$$
\begin{aligned}
& =\pi(35)(30+20)+\pi(20)^{2} \\
& =2150 \pi \mathrm{~cm}^{2} \text { or } 6754 \mathrm{~cm}^{2}
\end{aligned}
$$

Problem 14. A boat has a mass of 20000 kg . A model of the boat is made to a scale of 1 to 80. If the model is made of the same material as the boat, determine the mass of the model (in grams).

Mass of model $=\left(\frac{1}{80}\right)^{3}(20000) \mathrm{kg}=0.039 \mathrm{~kg}=39 \mathrm{~g}$
total: 3

Problem 15. Plot a graph of $y=3 x^{2}+5$ from $x=1$ to $x=4$. Estimate, correct to 2 decimal places, using 6 intervals, the area enclosed by the curve, the ordinates $x=1$ and $x=4$, and the x-axis by (a) the trapezoidal rule, (b) the mid-ordinate rule, and (c) Simpson's rule.

A table of values is shown below and a graph plotted as shown in Figure 7.

x	1	1.5	2	2.5	3	3.5	4
$y=3 x^{2}+5$	8	11.75	17	23.75	32	41.75	53

Figure 7

(a) Since six intervals are used ordinates lie at 1, 1.5, 2, 2.5, ..

By the trapezoidal rule,

$$
\begin{aligned}
\text { shaded area } & \approx(0.5)\left\{\frac{1}{2}(8+53)+11.75+17+23.75+32+41.75\right\} \\
& =78.38 \text { square units }
\end{aligned}
$$

(b) With the mid-ordinate rule, ordinates occur at 1.25, 1.75, 2.25, $2.75,3.25$ and 3.75
x
1.25
1.75
2.25
2.75
3.25
3.75
$y=3 x^{2}+5$
9.6875
14.1875
$20.1875 \quad 27.6875$
36.6875
47.1875

By the mid-ordinate rule,

$$
\begin{aligned}
\text { shaded area } \approx(0.5)(9.6875+14.1875+20.1875 & +27.6875 \\
& +36.6875+47.1875)
\end{aligned}
$$

(c) By Simpson's rule,

$$
\begin{aligned}
\text { shaded area } & \left.\approx \frac{1}{3}(0.5)\{(8+53)+4(11.75+23.75+41.75)+\chi 17+32)\right\} \\
& =\frac{1}{3}(0.5)(61+309+98)=78 \text { square units }
\end{aligned}
$$

Problem 16. A vehicle starts from rest and its velocity is measured every second for 6 seconds, with the following results:
$\begin{array}{llllllll}\text { Time t (s) } & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
Velocity v (m/s) $0 \begin{array}{lllllll} & 1.2 & 2.4 & 3.7 & 5.2 & 6.0 & 9.2\end{array}$
Using Simpson's rule, calculate (a) the distance travelled in 6 s (i.e. the area under the v / t graph) and (b) the average speed over this period.
(a) Distance travelled

$$
\begin{aligned}
& =\frac{1}{3}(1)[(0+9.2)+4(1.2+3.7+6.0)+2(2.4+5.2)] \\
& =\frac{1}{3}[9.2+43.6+15.2]=22.67 \mathrm{~m}
\end{aligned}
$$

(b) Average speed $=\frac{22.67 \mathrm{~m}}{6 \mathrm{~s}}=\mathbf{3 . 7 8} \mathrm{m} / \mathrm{s}$
\qquad
total : 6

ASSIGNMENT 6 (PAGE 198)

This assignment covers the material contained in chapters 21 to 23.

Problem 1. Figure A6.l shows a plan view of a kite design. Calculate the lengths of the dimensions shown as a and b.

Figure A6.1

$a=\sqrt{42.0^{2}+20.0^{2}}=46.52 \mathrm{~cm}$

2

2
total : 4

Problem 2. In Figure A6.1 of Problem 1, evaluate (a) angle $\theta \quad$ (b) angle α
(a) $\sin \theta=\frac{42.0}{60.0}$ from which, $\theta=\sin ^{-1}\left(\frac{42.0}{60.0}\right)=44.43^{\circ}$
(b) In Figure $8, \beta=\tan ^{-1}\left(\frac{42.0}{20.0}\right)=64.54^{\circ}$
$\angle A B C=180^{\circ}-90^{\circ}-64.54^{\circ}=25.46^{\circ}$
and $\angle \mathrm{CBD}=180^{\circ}-90^{\circ}-44.43^{\circ}=45.57^{\circ}$
Hence $\alpha=25.46^{\circ}+45.57^{\circ}=71.03^{\circ}$

Figure 8

total : 5

Problem 3. Determine the area of the plan view of a kite shown in Figure A6.l of Problem 1.

Area of plan view $=\frac{1}{2}(42.0)(20.0)+\frac{1}{2}(42.0)(42.85)$ from Figure 8

$$
=420+899.85=1320 \mathrm{~cm}^{2}
$$

$$
\text { total : } 4
$$

Problem 4. If the angle of elevation of the top of a 25 m perpendicular building from point A is measured as 27°, determine the distance to the building. Calculate also the angle of elevation at a point $B, 20 \mathrm{~m}$ closer to the building than point A.

Figure 9

In Figure 9, $\tan 27^{\circ}=\frac{25}{\mathrm{AC}}$,
hence distance to building, $A C=\frac{25}{\tan 27^{\circ}}=49.07 \mathrm{~m}$

Problem 5. Evaluate, each correct to 4 significant figures:
(a) $\sin 231.78^{\circ}$
(b) $\cos 151^{\circ} 16^{\prime}$
(c) $\tan \frac{3 \pi}{8}$
(a) $\sin 231.78^{\circ}=-0.7856$
(b) $\cos 151^{\circ} 16^{\prime}=\cos 151 \frac{16}{60}^{\circ}=-0.8769$
(c) $\tan \frac{3 \pi}{8}=2.414$

Problem 6. Sketch the following curves labelling relevant points:
(a) $y=4 \cos \left(\theta+45^{\circ}\right)$
(b) $y=5 \sin \left(2 t-60^{\circ}\right)$

Marks
(a) $y=4 \cos \left(\theta+45^{\circ}\right)$ is sketched in Figure 10.

Figure 10

(b) $y=5 \sin \left(2 t-60^{\circ}\right)$ is sketched in Figure 11.

Figure 11

Problem 7. Solve the following equations in the range 0° to 360°
(a) $\sin ^{-1}(-0.4161)=x$
(b) $\cot ^{-1}(2.4198)=\theta$

Marks
(a) If $\sin ^{-1}(-0.4161)=x$ then from Figure $12, \alpha=24.59^{\circ}$ and $x=204.59^{\circ}$ and 335.41°

Figure 12

Figure 13
(b) If $\cot ^{-1}(2.4198)=\theta$, then $\tan ^{-1}\left(\frac{1}{2.4198}\right)=\theta$, and from Figure 13, $\alpha=22.45^{\circ}$ and $\theta=22.45^{\circ}$ and 202.45°

Problem 8. The current in an alternating current circuit at any time t seconds is given by: $i=120 \sin (100 \pi t+0.274)$ amperes. Determine:
(a) the amplitude, periodic time, frequency and phase angle (with reference to $120 \sin 100 \pi t)$
(b) the value of current when $t=0$
(c) the value of current when $t=6 \mathrm{~ms}$
(d) the time when the current first reaches 80 A

Sketch one cycle of the oscillation.

(a)Amplitude $=120 \mathrm{~A}$

$\omega=100 \pi$, hence periodic time $\mathbf{T}=\frac{2 \pi}{100 \pi}=\frac{1}{50} \mathrm{~s}=20 \mathrm{~ms}$
Frequency $\mathrm{f}=50 \mathrm{~Hz}$
Phase angle $=0.274 \mathrm{rad}=15.70^{\circ}$ leading
(b)When $\mathrm{t}=0$, $\mathbf{i}=120 \sin 0.274=32.47 \mathrm{~A}$
(c)When $\mathrm{t}=6 \mathrm{~ms}, \mathbf{i}=120 \sin \left(100 \pi \times 6 \times 10^{-3}+0.274\right)$

$$
=120 \sin 2.1589556=99.84 \mathrm{~A}
$$

(d)When i $=80 \mathrm{~A}, \quad 80=120 \sin (100 \pi t+0.274)$
from which, $\frac{80}{120}=\sin (100 \pi t+0.274)$
and $\quad \sin ^{-1} \frac{80}{120}=100 \pi t+0.274$
i.e. $\quad 0.72972766=100 \pi t+0.274$

Hence, $0.72972766-0.274=100 \pi t$
and time $\quad t=\frac{0.72972766-0.274}{100 \pi}=1.451 \mathrm{~ms}$
One cycle of the current waveform is shown in Figure 14.

Figure 14
total : 17

Problem 9. Change the following Cartesian co-ordinates into polar co-ordinates, correct to 2 decimal places, in both degrees and in radians:
(a) $(-2.3,5.4)$
(b) (7.6, -9.2)
(a) From Figure 15, $r=\sqrt{2.3^{2}+5.4^{2}}=5.87$ and $\alpha=\tan ^{-1} \frac{5.4}{2.3}=66.93^{\circ}$

Hence $\theta=180^{\circ}-66.93^{\circ}=113.07^{\circ}$
Thus $(-2.3,5.4)=\left(5.87,113.07^{\circ}\right)$ or $(5.87,1.97 \mathrm{rad})$

Figure 15

Figure 16
(b) From Figure 16, $r=\sqrt{7.6^{2}+9.2^{2}}=11.93$ and $\alpha=\tan ^{-1} \frac{9.2}{7.6}=50.44^{\circ}$

Hence $\quad \theta=360^{\circ}-50.44^{\circ}=309.56^{\circ}$
Thus $(7.6,-9.2)=\left(11.93,309.56^{\circ}\right)$ or $(11.93,5.40 \mathrm{rad})$

Problem 10. Change the following polar co-ordinates into Cartesian co-ordinates, correct to 3 decimal places:
(a) $\left(6.5,132^{\circ}\right)$
(b) $(3,3 \mathrm{rad})$
(a) $\left(6.5,132^{\circ}\right)=\left(6.5 \cos 132^{\circ}, 6.5 \sin 132^{\circ}\right)=(-4.349,4.830)$
(b) $(3,3 \mathrm{rad})=(3 \cos 3,3 \sin 3)=(-2.970,0.423)$

Marks	
2	
total $:$	4

TOTAL ASSIGNMENT MARKS:

ASSIGNMENT 7 (PAGE 224)

This assignment covers the material contained in chapters 24 to 26.

Problem 1. A triangular plot of land $A B C$ is shown in Figure A7.1. Solve the triangle and determine its area.

Figure A7.1

	Marks
Using the sine rule: $\frac{15.4}{\sin 71^{\circ}}=\frac{15.0}{\sin C}$	
from which, $\quad \sin C=\frac{15.0 \sin 71^{\circ}}{15.4}=0.9210$	
and $\quad \angle C=\sin ^{-1} 0.9210=67.07^{\circ}$	3
Hence $\angle B=180^{\circ}-71^{\circ}-67.07^{\circ}=41.93^{\circ}$	1
By the cosine rule: $b^{2}=a^{2}+c^{2}-2 a c \cos B$	
$=15.4^{2}+15.0^{2}-2(15.4)(15.0) \cos 41.93^{\circ}$	
$=118.45$	
and $\quad b=10.88 \mathrm{~m}$	3
Area of triangle $A B C=\frac{1}{2}$ ac sin B	
$=\frac{1}{2}(15.4)(15.0) \sin 41.93^{\circ}$	
$=77.18 \mathrm{~m}^{2}$	3
	total : 10

Problem 2. Figure $A 7.2$ shows a roof truss $P Q R$ with rafter $P Q=3 \mathrm{~m}$. Calculate the length of (a) the roof rise $P P^{\prime}(b)$ rafter $P R$, and (c) the roof span $Q R$. Find also (d) the cross-sectional area of the roof truss.

Figure A7. 2

(b) From triangle $P R P^{\prime}, \sin 32^{\circ}=\frac{1.928}{P R}$
from which, $\mathbf{P R}=\frac{1.928}{\sin 32^{\circ}}=3.638 \mathrm{~m}$
(c) $\angle \mathrm{QPR}=180^{\circ}-40^{\circ}-32^{\circ}=108^{\circ}$

Using the sine rule: $\frac{Q R}{\sin 108^{\circ}}=\frac{3}{\sin 32^{\circ}}$
from which,

$$
\mathbf{Q R}=\frac{3 \sin 108^{\circ}}{\sin 32^{\circ}}=5.384 \mathrm{~m}
$$

(d) Cross-sectional area of roof truss $=\frac{1}{2}(Q R)\left(P P^{\prime}\right)$

$$
\begin{aligned}
& =\frac{1}{2}(5.384)(1.928 \\
& =5.190 \mathrm{~m}^{2}
\end{aligned}
$$

Problem 3. Prove the following identities:
(a) $\sqrt{\left[\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right]}=\tan \theta$
(b) $\cos \left(\frac{3 \pi}{2}+\phi\right)=\sin \phi$
(a)L.H.S. $=\sqrt{\left[\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right]}=\sqrt{\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)}$ since $\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
=\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { R.H.S. }
$$

(b)L.H.S. $=\cos \left(\frac{3 \pi}{2}+\phi\right)=\cos \frac{3 \pi}{2} \cos \phi-\sin \frac{3 \pi}{2} \sin \phi$ from compound angles

$$
=0-(-1) \sin \phi=\sin \phi=\text { R.H.S. }
$$

total : 6

Problem 4. Solve the following trigonometric equations in the range $0^{\circ} \leq x \leq 360^{\circ}$:
(a) $4 \cos x+1=0$
(b) $3.25 \operatorname{cosec} x=5.25$
(c) $5 \sin ^{2} x+3 \sin x=4$
(a)Since $4 \cos x+1=0$ then $\cos x=-\frac{1}{4}$ and $x=\cos ^{-1}(-0.25)$
i.e. $x=104.48^{\circ}$ (or $\left.104^{\circ} 29^{\prime}\right)$ and 255.52° (or $255^{\circ} 31^{\prime}$)
(b)Since 3.25 cosec $x=5.25$ then $\operatorname{cosec} x=\frac{5.25}{3.25}$ and $\sin x=\frac{3.25}{5.25}$
i.e. $\quad x=\sin ^{-1}\left(\frac{3.25}{5.25}\right)=38.25^{\circ}\left(\right.$ or $\left.38^{\circ} 15^{\prime}\right)$ and $141.75^{\circ}\left(\right.$ or $\left.141^{\circ} 45^{\prime}\right)$
(c)Since $5 \sin ^{2} x+3 \sin x=4$ then $5 \sin ^{2} x+3 \sin x-4=0$
and $\sin x=\frac{-3 \pm \sqrt{3^{2}-4(5)(-4)}}{2(5)}=\frac{-3 \pm \sqrt{89}}{10}=0.6434$ or -1.2434
Ignoring the latter, $\sin x=0.6434$ and $x=\sin ^{-1} 0.6434$

$$
=40.05^{\circ} \text { or } 139.95^{\circ}
$$

Problem 5. Solve the equation $5 \sin (\theta-\pi / 6)=8 \cos \theta$ for values $0 \leq \theta \leq 2 \pi$

$$
5 \sin (\theta-\pi / 6)=8 \cos \theta
$$

i.e. $5[\sin \theta \cos \pi / 6-\cos \theta \sin \pi / 6]=8 \cos \theta$

Thus
and

$$
4.33 \sin \theta-2.5 \cos \theta=8 \cos \theta
$$

$$
4.33 \sin \theta=10.5 \cos \theta
$$

Hence

$$
\frac{\sin \theta}{\cos \theta}=\frac{10.5}{4.33}=2.42494226
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}(2.42494226) \\
& \theta=67.59^{\circ} \text { and } 247.59^{\circ}
\end{aligned}
$$

$$
\tan \theta=2.42494226
$$

Problem 6. Express $5.3 \cos t-7.2$ sin t in the form $R \sin (t+\alpha)$. Hence solve the equation $5.3 \cos t-7.2 \sin t=4.5$ in the range $0 \leq t \leq 2 \pi$.

Let $5.3 \cos t-7.2 \sin t=R \sin (t+\alpha)$

$$
\begin{aligned}
& =R[\sin t \cos \alpha+\cos t \sin \alpha] \\
& =(R \cos \alpha) \sin t+(R \sin \alpha) \cos t
\end{aligned}
$$

Hence

$$
5.3=R \sin \alpha \text { i.e. } \sin \alpha=\frac{5.3}{R}
$$

and
$-7.2=R \cos \alpha$
i.e. $\cos \alpha=\frac{-7.2}{R}$

Figure 17

There is only one quadrant where sine is positive and cosine is negative, i.e. the second, as shown in Figure 17.
$R=\sqrt{\left(5.3^{2}+7.2^{2}\right)}=8.94$ and $\phi=\tan ^{-1} \frac{5.3}{7.2}=0.6346 \mathrm{rad}$
hence $\alpha=\pi-0.6346=2.507 \mathrm{rad}$

Thus $\quad 5.3 \cos t-7.2 \sin t=8.94 \sin (t+2.507)$
If $5.3 \cos t-7.2 \sin t=4.5$ then $8.94 \sin (t+2.507)=4.5$
and $\sin (t+2.507)=\frac{4.5}{8.94}=0.50336$
$\mathrm{t}+2.507=\sin ^{-1} 0.50336=0.5275 \mathrm{rad}$ or 2.6141 rad
and
$\mathbf{t}=0.5275-2.507=-1.97952$
$\equiv-1.97952+2 \pi=4.304 \mathrm{~s}$
or
$\mathrm{t}=2.6141-2.507=0.107 \mathrm{~s}$
total : 12

TOTAL ASSIGNMENT MARKS: 60

ASSIGNMENT 8 (PAGE 279)

This assignment covers the material contained in chapters 27 to 31 .

Problem 1. Determine the gradient and intercept on the y-axis for the following equations: (a) $y=-5 x+2 \quad(b) 3 x+2 y+1=0$
(a) $y=-5 x+2$ hence gradient $=-5$ and intercept $=2$
(b) Rearranging $3 x+2 y+1=0$

$$
\begin{array}{ll}
\text { gives: } & 2 y=-3 x-1 \quad \text { and } \quad y=-\frac{3}{2} x-\frac{1}{2} \\
\text { hence } & \text { gradient }=-\frac{3}{2} \quad \text { and intercept }=-\frac{1}{2}
\end{array}
$$

Problem 2. The equation of a line is $2 y=4 x+7$. A table of corresponding values is produced and is as shown below. Complete the table and plot a graph of y against x. Determine the gradient of the graph.

$$
\begin{array}{cccccccc}
x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
y & -2.5 & & & & & 7.5 &
\end{array}
$$

Since $\quad 2 y=4 x+7 \quad$ then $\quad y=2 x+\frac{7}{2}$
The table of values is shown below

x	-3	-2	-1	0	1	2	3
y	-2.5	-0.5	$\mathbf{1 . 5}$	$\mathbf{3 . 5}$	$\mathbf{5 . 5}$	7.5	$\mathbf{9 . 5}$

A graph of y against x is shown plotted in Figure 18.

Gradient $=\frac{A B}{B C}=\frac{9.5-3.5}{3-0}=\frac{6.0}{3}=2$

Problem 3. Plot the graphs $y=3 x+2$ and $\frac{y}{2}+x=6$ on the same axes and determine the co-ordinates of their point of intersection.

A table of values is shown for $y=3 x+2$ (just three values since it is a straight line graph) | x | 0 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| $y=3 x+2$ | 2 | 8 | 14 |

$\frac{y}{2}+x=6$, hence $\frac{y}{2}=6-x$ and $y=12-2 x$ or $y=-2 x+12$ A table of values is shown below

x	0	2	4
$y=-2 x+12$	12	8	4

Graphs of $y=3 x+2$ and $y=-2 x+12$ are shown in Figure 19
They intersect at $(\mathbf{2 , 8} \mathbf{8})$

Figure 19

Problem 4. The velocity v of a body over varying time intervals t was measured as follows:

t s	2	5	7	10	14	17
$\mathrm{v} \mathrm{m} / \mathrm{s}$	15.5	17.3	18.5	20.3	22.7	24.5

Plot a graph with velocity vertical and time horizontal. Determine from the graph (a) the gradient, (b) the vertical axis intercept, (c) the equation of the graph,
(d) the velocity after 12.5 s , and (e) the time when the velocity is $18 \mathrm{~m} / \mathrm{s}$

A graph of v against t is shown in Figure 20.

Figure 20
(a) Gradient $=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{24.5-15.5}{17-2}=\frac{9}{15}=0.6$
(b) Vertical axis intercept $=\mathbf{1 4 . 3} \mathbf{~ m} / \mathrm{s}$
(c) The equation of the graph is: $\mathbf{v}=\mathbf{0 . 6 t}+\mathbf{1 4 . 3}$
(d) When $t=12.5 \mathrm{~s}$, velocity $\mathrm{v}=21.8 \mathrm{~m} / \mathrm{s}$
(e) When $v=18 \mathrm{~m} / \mathrm{s}$, time $\mathrm{t}=6.2 \mathrm{~s}$

Problem 5. The following experimental values of x and y are believed to be related by the law $y=a x^{2}+b$, where a and b are constants. By plotting a suitable graph verify this law and find the approximate values of a and b.
X
2.5
4.2
6.0
8.4
$9.8 \quad 11.4$
$\begin{array}{lllllll}y & 15.4 & 32.5 & 60.2 & 111.8 & 150.1 & 200.9\end{array}$

Since $y=a x^{2}+b$ then y is plotted vertically against x^{2} to give a straight line form with gradient a and vertical axis intercept b

A table is produced as shown below:

$$
\begin{array}{lllllll}
x^{2} & 6.25 & 17.64 & 36.0 & 70.56 & 96.04 & 129.96 \\
y & 15.4 & 32.5 & 60.2 & 111.8 & 150.1 & 200.9
\end{array}
$$

A graph is plotted as shown in Figure 21.

Figure 21

Gradient $\mathbf{a}=\frac{A B}{B C}=\frac{200.9-60.2}{129.96-36.0}=1.5$

Problem 6. Determine the law of the form $y=a e^{k x}$ which relates the following

values:	y	0.0306	0.285	0.841	5.21	173.2	1181
	x	-4.0	5.3	9.8	17.4	32.0	40.0

$y=a e^{k x}$ hence $\ln y=\ln \left(a e^{k x}\right)$
i.e. $\quad \ln \mathrm{y}=\ln \mathrm{a}+\ln \mathrm{e}^{\mathrm{kx}}$
i.e. $\ln \mathrm{y}=\mathrm{kx}+\ln \mathrm{a}$

Hence $\ln y$ is plotted vertically and x is plotted horizontally to produce
a straight line graph of gradient k and vertical-axis intercept ln a
A table of values is shown below:

$\ln \mathrm{y}$	-3.49	-1.26	-0.17	1.65	5.15	7.07
x	-4.0	5.3	9.8	17.4	32.0	40.0

A graph of $\ln \mathrm{y} / \mathrm{x}$ is shown in Figure 22.

Figure 22

Gradient $k=\frac{A B}{B C}=\frac{7-2.2}{40-20}=\frac{4.8}{20}=0.24$
Vertical axis intercept, $\ln \mathrm{a}=-2.55$
from which, $\mathbf{a}=\mathrm{e}^{-2.55}=0.08$, correct to 1 significant figure
Hence the law of the graph is: $y=0.08 e^{0.24 x}$

Problem 7. State the minimum number of cycles on logarithmic graph paper needed to plot a set of values ranging from 0.073 to 490.

5 cycles are needed - from 0.01 to $0.1,0.1$ to 1,1 to 10,10 to 100 and 100 to 1000

Problem 8. Plot a graph of $y=2 x^{2}$ from $x=-3$ to $x=+3$ and hence solve the equations: (a) $2 x^{2}-8=0 \quad$ (b) $2 x^{2}-4 x-6=0$

A graph of $y=2 x^{2}$ is shown in Figure 23.
(a) When $2 x^{2}-8=0$ then $2 x^{2}=8$

The points of intersection of $y=2 x^{2}$ and $y=8$ occur when $\mathbf{x}=-2$ and $\mathbf{x}=\mathbf{2}$, which is the solution of $2 x^{2}-8=0$

Figure 23
(b) When $2 x^{2}-4 x-6=0$ then $2 x^{2}=4 x+6$

The points of intersection of $y=2 x^{2}$ and $y=4 x+6$ occur when
$\mathbf{x}=-1$ and $\mathbf{x}=\mathbf{3}$, which is the solution of $2 x^{2}-4 x-6=0$

Problem 9. Plot the graph of $y=x^{3}+4 x^{2}+x-6$ for values of x between $x=-4$ and $x=+2$. Hence determine the roots of the equation $x^{3}+4 x^{2}+x-6=0$

A table of values is drawn up as shown below

x	-4	-3	-2	-1	0	1	2
$y=x^{3}+4 x^{2}+x-6$	-10	0	0	-4	-6	0	20

Figure 24

A graph of $y=x^{3}+4 x^{2}+x-6$ is shown in Figure 24 .
From the graph, the roots of $x^{3}+4 x^{2}+x-6=0$ are seen to be at $x=-3,-2$ and 1

Problem 10. Sketch the following graphs, showing the relevant points:
(a) $y=(x-2)^{2}$
(b) $y=3-\cos 2 x$
(c) $f(x)=$
$-1 \quad-\pi \leq x \leq-\frac{\pi}{2}$
$x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
$1 \quad \frac{\pi}{2} \leq \mathrm{x} \leq \pi$
(a) A graph of $y=(x-2)^{2}$ is shown in Figure 25 .

Figure 25

(b) A graph of $y=3-\cos 2 x$ is shown in Figure 26.

Figure 26

(c) A graph of $f(x)=\left\{\begin{aligned}-1 & -\pi \leq x \leq-\frac{\pi}{2} \\ x & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \quad \text { is shown in Figure } 27 .\end{aligned}\right.$ $1 \quad \frac{\pi}{2} \leq x \leq \pi$

Problem 11. Determine the inverse of $f(x)=3 x+1$

Let $f(x)=y$ then $y=3 x+1$
Transposing for x gives: $x=\frac{y-1}{3}$
and interchanging x and y gives: $y=\frac{x-1}{3}$
Hence the inverse of $f(x)=3 x+1$ is $f^{-1}(x)=\frac{x-1}{3}$

Problem 12. Evaluate, correct to 3 decimal places:
$2 \arctan 1.64+\operatorname{arcsec} 2.43-3 \operatorname{arccosec} 3.85$
$2 \arctan 1.64+\operatorname{arcsec} 2.43-3 \operatorname{arccosec} 3.85$
$=2 \arctan 1.64+\arccos \left(\frac{1}{2.43}\right)-3 \arcsin \left(\frac{1}{3.85}\right)$
$=2(1.02323409 \ldots)+1.14667223 \ldots-3(0.26275322 \ldots)$
$=2.405$

ASSIGNMENT 9 (PAGE 306)

This assignment covers the material contained in chapters 32 to 35.

Problem 1. Four coplanar forces act at a point A as shown in Figure A9.1. Determine the value and direction of the resultant force by (a) drawing (b) by calculation.

Figure A9. 1
(a)From Figure 28, by drawing, resultant $\mathrm{R}=8.7 \mathrm{~N}$ and $\theta=230^{\circ}$

(b)By calculation:

Total horizontal component,
$H=4 \cos 90^{\circ}+5 \cos 180^{\circ}+8 \cos 225^{\circ}+7 \cos 315^{\circ}=-5.7071$
Total vertical component,

$$
V=4 \sin 90^{\circ}+5 \sin 180^{\circ}+8 \sin 225^{\circ}+7 \sin 315^{\circ}=-6.6066
$$

Hence, resultant $R=\sqrt{(-5.7071)^{2}+(-6.6066)^{2}}=8.73 \mathrm{~N}$
and

Problem 2. The instantaneous values of two alternating voltages are given by:

$$
v_{1}=150 \sin \left(\omega t+\frac{\pi}{3}\right) \text { volts and } v_{2}=90 \sin \left(\omega t-\frac{\pi}{6}\right) \text { volts }
$$

Plot the two voltages on the same axes to scales of $1 \mathrm{~cm}=50$ volts and $1 \mathrm{~cm}=\frac{\pi}{6}$ rad. Obtain a sinusoidal expression for the resultant $\mathrm{v}_{1}+\mathrm{v}_{2}$ in the form R sin $(\omega t+\alpha)$: (a) by adding ordinates at intervals, and (b) by calculation
(a)From Figure 29, by adding ordinates at intervals, the waveform of $\mathrm{v}_{1}+\mathrm{v}_{2}$ is seen to have a maximum value of 175 V and is leading by 30°
or $\frac{\pi}{6} \mathrm{rad}$, i.e. 0.52 rad .

Hence $\quad v_{1}+v_{2}=175 \sin (\omega t+0.52)$ volts

Figure 29
(b)By calculation:

At time $t=0$, the phasors v_{1} and v_{2} are shown in Figure 30.

Figure 30

Total horizontal component $H=150 \cos 60^{\circ}+90 \cos -30^{\circ}=152.942$
Total vertical component $V=150 \sin 60^{\circ}+90 \sin -30^{\circ}=84.90$

Resultant, $\mathrm{v}_{1}+\mathrm{v}_{2}=\sqrt{(152.942)^{2}+(84.90)^{2}}=174.93$ volts
Direction of $v_{1}+v_{2}=\tan ^{-1} \frac{84.90}{152.942}=29.04^{\circ}$ or 0.507 rad

Hence $\quad v_{1}+v_{2}=174.93 \sin (\omega t+0.507)$ volts

Problem 3. Solve the quadratic equation $x^{2}-2 x+5=0$ and show the roots on an Argand diagram.
$\mathbf{x}=\frac{--2 \pm \sqrt{\left[(-2)^{2}-4(1)(5)\right]}}{2(1)}=\frac{2 \pm \sqrt{-16}}{2}=\frac{2 \pm j 4}{2}=1 \pm \mathbf{j 2}$
The two roots are shown on the Argand diagram in Figure 31.

Figure 31

Problem 4. If $Z_{1}=2+j 5, Z_{2}=1-j 3$ and $Z_{3}=4-j$ determine, in both Cartesian and polar forms, the value of $\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}+Z_{3}$, correct to 2 decimal places.
$\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{(2+j 5)(1-j 3)}{(2+j 5)+(1-j 3)}=\frac{2-j 6+j 5-j^{2} 15}{3+j 2}=\frac{17-j}{3+j 2}=\frac{17-j}{3+j 2} \times \frac{3-j 2}{3-j 2}$

$$
=\frac{51-j 34-j 3+j^{2} 2}{3^{2}+2^{2}}=\frac{49-j 37}{13}=3.77-j 2.85
$$

Hence $\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}+Z_{3}=3.77-j 2.85+4-j=7.77-j 3.85$

$$
\text { or } \mathbf{8 . 6 7} \angle-\mathbf{2 6 . 3 6}{ }^{\circ}
$$

Problem 5. Determine in both polar and rectangular forms:
(a) $[3.2-j 4.8]^{5}$
(b) $\sqrt{(-1-j 3)}$
(a) $[3.2-j 4.8]^{5}=\left(5.769 \angle-56.31^{\circ}\right)^{5}=5.769^{5} \angle 5 \times-56.31^{\circ}$

$$
=6390 \angle-281.55^{\circ}=6390 \angle 78.45^{\circ}=1279+j 6261
$$

(b) $\sqrt{(-1-j 3)}=\left[\sqrt{10} \angle-108.435^{\circ}\right]^{\frac{1}{2}}=\sqrt{10} \frac{1}{2} \angle \frac{1}{2} \times-108.435^{\circ}$

$$
=1.778 \angle-54.22^{\circ} \text { and } 1.778 \angle 125.78^{\circ}= \pm(1.04-j 1.44)
$$

ASSIGNMENT 10 (PAGE 339)

This assignment covers the material contained in chapters 36 to 39.

Problem 1. A company produces five products in the following proportions:
Product A 24 Product B 16 Product C 15 Product D 11 Product E 6 Present these data visually by drawing (a) a vertical bar chart (b) a percentage component bar chart (c) a pie diagram.
(a) A vertical bar chart is shown in Figure 32.

Figure 32
(b)For the percentage bar chart, $24+16+15+11+6=72$ hence $A \equiv \frac{24}{72} \times 100 \%=33.3 \%, \quad B \equiv \frac{16}{72} \times 100 \%=22.2 \%$,

$$
C \equiv \frac{15}{72} \times 100 \%=20.8 \%, \quad D \equiv \frac{11}{72} \times 100 \%=15.3 \%
$$

and

$$
E \equiv \frac{6}{72} \times 100 \%=8.3 \%
$$

A percentage component bar chart is shown in Figure 33.

Figure 33
(c)Total number of products $=24+16+15+11+6=72$

Hence $A \equiv \frac{24}{72} \times 360^{\circ}=120^{\circ}, B \equiv \frac{16}{72} \times 360^{\circ}=80^{\circ}, C \equiv \frac{15}{72} \times 360^{\circ}=75^{\circ}$

$$
\mathrm{D} \equiv \frac{11}{72} \times 360^{\circ}=55^{\circ}, \quad \mathrm{E} \equiv \frac{6}{72} \times 360^{\circ}=30^{\circ}
$$

A pie diagram is shown in Figure 34.

Figure 34

Problem 2. The following lists the diameters of 40 components produced by a machine, each measured correct to the nearest hundredth of a centimetre:

1.39	1.36	1.38	1.31	1.33	1.40	1.28	1.40	1.24	1.28	1.42	1.34
1.43	1.35	1.36	1.36	1.35	1.45	1.29	1.39	1.38	1.38	1.35	1.42
1.30	1.26	1.37	1.33	1.37	1.34	1.34	1.32	1.33	1.30	1.38	1.41
1.35	1.38	1.27	1.37								

(a) Using 8 classes form a frequency distribution and a cumulative frequency distribution.
(b)For the above data draw a histogram, a frequency polygon and an ogive
(a)Range $=1.24$ to 1.47 i.e. 0.23

Hence let classes be 1.24-1.26, 1.27-1.29, 1.30-1.32, ..
A frequency distribution and cumulative frequency distribution is shown in the following table:

Class	Tally	Frequency	Cumulative frequency
$1.24-1.26$	11	2	2
$1.27-1.29$	1111	4	6
$1.30-1.32$	1111	4	10
$1.33-1.35$	1111 1111	10	20
$1.36-1.38$	1111 1111 1	11	31
$1.39-1.41$	1111	5	36
$1.42-1.44$	111	3	39
$1.45-1.47$	1	1	40

(b)A histogram and frequency polygon are shown in Figure 35

Figure 35
frequency polygon
An ogive is shown in Figure 36.

Figure 36

total : 21

Problem 3. Determine for the 10 measurements of lengths shown below:
(a) the arithmetic mean,
(b) the median,
(c) the mode, an
(d) the standard deviation.
$28 \mathrm{~m}, ~ 20 \mathrm{~m}, ~ 32 \mathrm{~m}, ~ 44 \mathrm{~m}, ~ 28 \mathrm{~m}, ~ 30 \mathrm{~m}, ~ 30 \mathrm{~m}, ~ 26 \mathrm{~m}, ~ 28 \mathrm{~m}$ and 34 m

Marks

2

2
(c) The mode is 28 m
(d)Standard deviation $\left.\sigma=\sqrt{\left[\frac{(28-30)^{2}+(20-30)^{2}+\ldots+(34-30)^{2}}{10}\right.}\right]$

$$
=\sqrt{\left(\frac{344}{10}\right)}=5.865
$$

Problem 4. The heights of 100 people are measured correct to the nearest centimetre with the following results:

| $150-157 \mathrm{~cm}$ | 5 | $158-165 \mathrm{~cm}$ | 18 | $166-173 \mathrm{~cm}$ | 42 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $174-181 \mathrm{~cm}$ | 27 | $182-189 \mathrm{~cm}$ | 8 | | | |

Determine for the data (a) the mean height, and (b) the standard deviation.
(a)Mean height $=\frac{153.5 \times 5+161.5 \times 18+169.5 \times 42+177.5 \times 27+185.5 \times 8}{100}$

$$
=\frac{17070}{100}=170.7
$$

(b)Standard deviation

$$
\begin{aligned}
\sigma=\sqrt{\left\{\frac{\sum \mathrm{f}(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\sum \mathrm{f}}\right\}} & \left.\left.=\sqrt{\left\{\begin{array}{l}
5(153.5-170.7)^{2}+18(161.5-170.7)^{2}+42(169.5-170.7)^{2} \\
+27(177.5-170.7)^{2}+8(185.5-170.7)^{2}
\end{array}\right\}}\right\}^{100}\right\} \\
& =\sqrt{\left\{\frac{1479.2+1523.52+60.48+1248.48+1752.32}{100}\right\}} \\
& =\sqrt{\left\{\frac{6064}{100}\right\}}=\sqrt{60.64}=7.787 \mathrm{~cm}
\end{aligned}
$$

Problem 5. Determine the probabilities of:
(a) drawing a white ball from a bag containing 6 black and 14 white balls
(b) winning a prize in a raffle by buying 6 tickets when a total of 480 tickets are sold
(c) selecting at random a female from a group of 12 boys and 28 girls
(d) winning a prize in a raffle by buying 8 tickets when there are 5 prizes and a total of 800 tickets are sold.
(a) $p=\frac{14}{6+14}=\frac{14}{20}$ or 0.70
(b) $p=\frac{6}{480}=\frac{1}{80}$ or 0.0125
(c) $\mathrm{p}=\frac{28}{12+28}=\frac{28}{40}=\frac{7}{10}$ or 0.70
(d) $p=8 \times \frac{5}{800}=\frac{5}{100}$ or 0.05

Problem 6. In a box containing 120 similar transistors 70 are satisfactory, 37 give too high a gain under normal operating conditions and the remainder give too low a gain.

Calculate the probability that when drawing two transistors in turn, at random, with replacement, of having (a) two satisfactory, (b) none with low gain, (c) one with high gain and one satisfactory, (d) one with low gain and none satisfactory. Determine the probabilities in (a), (b) and (c) above if the transistors are drawn without replacement.

With replacement

(a) $p=\frac{70}{120} \times \frac{70}{120}=\frac{49}{144}$ or 0.3403
(b) $p=\frac{70+37}{120} \times \frac{70+37}{120}=\left(\frac{107}{120}\right)^{2}=0.7951$
(c) $p=\frac{37}{120} \times \frac{70}{120}+\frac{70}{120} \times \frac{37}{120}=0.3597$
(d) $p=\frac{13}{120} \times \frac{50}{120}+\frac{50}{120} \times \frac{13}{120}=0.0903$

Marks

2

2

2

2

2

Problem 7. A machine produces 15% defective components. In a sample of 5, drawn at random, calculate, using the binomial distribution, the probability that:
(a) there will be 4 defective items
(b) there will be not more than 3 defective items
(c) all the items will be non-defective

Let $p=0.15, q=0.85$ and $n=5$
$(q+p)^{5}=q^{5}+5 q^{4} p+\frac{5 \times 4}{2!} q^{3} p^{2}+\frac{5 \times 4 \times 3}{3!} q^{2} p^{3}+\frac{5 \times 4 \times 3 \times 2}{4!} q p^{4}+p^{5}$
(a) The probability of 4 defective items $=\frac{5 \times 4 \times 3 \times 2}{4!} \mathrm{q} \mathrm{p}^{4}$

$$
=5(0.85)(0.15)^{4}=0.00215
$$

(b) Not more than 3 defective items means the sum of the first 4 terms

$$
\begin{aligned}
& =(0.85)^{5}+5(0.85)^{4}(0.15)+10(0.85)^{3}(0.15)^{2}+10(0.85)^{2}(0.15)^{3} \\
& =0.4437+0.3915+0.1382+0.0244=0.9978
\end{aligned}
$$

(c) The probability that all items will be non-defective is 0.4437

Problem 8. 2% of the light bulbs produced by a company are defective. Determine, using the Poisson distribution, the probability that in a sample of 80 bulbs:
(a) 3 bulbs will be defective, (b) not more than 3 bulbs will be defective,
(c) at least 2 bulbs will be defective.
$\lambda=2 \%$ of $80=1.6$
The probability of $0,1,2, .$. defective items are given by

$$
\mathrm{e}^{-\lambda}, \lambda \mathrm{e}^{-\lambda}, \frac{\lambda^{2} \mathrm{e}^{-\lambda}}{2!}, \cdots
$$

(a)The probability of 3 defective bulbs $=\frac{\lambda^{3} e^{-\lambda}}{3!}=\frac{1.6^{3} \mathrm{e}^{-1.6}}{6}=\mathbf{0 . 1 3 7 8}$
(b)The probability of not more than 3 defective bulbs is given by:

$$
\mathrm{e}^{-1.6}+1.6 \mathrm{e}^{-1.6}+\frac{1.6^{2} \mathrm{e}^{-1.6}}{2!}+\frac{1.6^{3} \mathrm{e}^{-1.6}}{3!}
$$

$$
=0.2019+0.3230+0.2584+0.1378=0.9211
$$

(c)The probability that at least two bulbs will be defective is given by:

$$
1-\left(e^{-\lambda}+\lambda e^{-\lambda}\right)=1-(0.2019+0.3230)=0.4751
$$

ASSIGNMENT 11 (PAGE 368)

This assignment covers the material contained in chapters 40 to 43.

Problem 1. Some engineering components have a mean length of 20 mm and a standard deviation of 0.25 mm . Assume the data on the lengths of the components is normally distributed.

In a batch of 500 components, determine the number of components likely to:
(a) have a length of less than 19.95 mm ,
(b) be between 19.95 mm and 20.15 mm ,
(c) be longer than 20.54 mm .
(a) $z=\frac{x-x}{\sigma}=\frac{19.95-20}{0.25}=-0.2$ standard deviations From Table 40.1, page 339, when $z=-0.2$ the partial area under the standardised curve is 0.0793 (i.e. the shaded area in Figure 37 is 0.0793 of the total area)

The area to the left of the shaded area $=0.5-0.0793=0.4207$
Thus for 500 components, 0.4207×500 are likely to have a length
less than 19.95 mm , i.e. 210

Figure 37

(b) When length is $20.15 \mathrm{~mm}, \mathrm{z}=\frac{20.15-20}{0.25}=0.6$ and from Table 42.1, the area under the standardised curve is 0.2257

Hence the total partial area between $z=-0.2$ and $z=0.6$ is $0.0793+0.2257=0.3050$ as shown shaded in Figure 38.

It is likely that 0.3050×500 components will lie between 19.95 mm and 20.15 mm , i.e. 153

Figure 38

(c) When the length is $20.54 \mathrm{~mm}, \mathrm{z}=\frac{20.54-20}{0.25}=2.16$ and the partial area corresponding to this z-value is 0.4846

The area to the right of the shaded area shown in Figure 39 is 0.5 - 0.4846 i.e. 0.0154

Hence 0.0154×500 components are likely to be greater than 20.54 mm , i.e. 8

Problem 2. In a factory, cans are packed with an average of 1.0 kg of a compound and the masses are normally distributed about the average value. The standard deviation of a sample of the contents of the cans is 12 g .

Determine the percentage of cans containing (a) less than 985 g , (b) more than $1030 \mathrm{~g}, \mathrm{(c)}$ between 985 g and 1030 g.
(a) The z-value for 985 g is $\frac{985-1000}{12}=-1.25$

From Table 40.1, page 339, the corresponding area under the standard--ised normal curve is 0.3944 . Hence the area to the left of 1.25 standard deviations is $0.5-0.3944=0.1056$, i.e. $\mathbf{1 0 . 5 6 \%}$ of the cans contain less than 985 g
(b) The z-value for 1030 g is $\frac{1030-1000}{12}=2.5$

From Table 40.1, the area under the normal curve is 0.4938 . hence the area to the right of 2.5 standard deviations is $0.5-0.4938$ $=0.0062$, i.e. 0.62% of the cans contain more than 1030 g.

Problem 3. The data given below gives the experimental values obtained for the torque output, X , from an electric motor and the current, Y , taken from the $\begin{array}{llllllllllllll} & \text { supply. } & \text { Torque } & X & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

$$
\begin{array}{lllllllllll}
\text { Current Y } & 3 & 5 & 6 & 6 & 9 & 11 & 12 & 12 & 14 & 13
\end{array}
$$

Determine the linear coefficient of correlation for this data.

Using a tabular approach:

X	Y	$x=x-\bar{x}$	$y=Y-\bar{y}$	xy	x^{2}	y^{2}
0	3	-4.5	-6.1	27.45	20.25	37.21
1	5	-3.5	-4.1	14.35	12.25	16.81
2	6	-2.5	-3.1	7.75	6.25	9.61
3	6	-1.5	-3.1	4.65	2.25	9.61
4	9	-0.5	-0.1	0.05	0.25	0.01
5	11	0.5	1.9	0.95	0.25	3.61
6	12	1.5	2.9	4.35	2.25	8.41
7	12	2.5	2.9	7.25	6.25	8.41
8	14	3.5	4.9	17.15	12.25	24.01
9	13	4.5	3.9	17.55	20.25	15.21
$\begin{aligned} & \sum X=45 \\ & \bar{x}=\frac{45}{10}=4.5 \end{aligned}$	$\begin{aligned} & \sum Y=91 \\ & \bar{y}=\frac{91}{10}=9.1 \end{aligned}$			$\sum x y=$ 101.5	$\sum x^{2}=$ 82.5	$\begin{aligned} & \sum y^{2}= \\ & 132.9 \end{aligned}$

Coefficient of correlation $r=\frac{\sum x y}{\sqrt{\left(\sum x^{2}\right)\left(\sum y^{2}\right)}}=\frac{101.5}{\sqrt{(82.5)(132.9)}}=0.969$
There is therefore good direct correlation between X and Y.

Problem 4. Some results obtained from a tensile test on a steel specimen are shown below:

Tensile force (kN)	4.8	9.3	12.8	17.7	21.6	26.0
Extension (mm)	3.5	8.2	10.1	15.6	18.4	20.8

Assuming a linear relationship:
(a) determine the equation of the regression line of extension on force,
(b) determine the equation of the regression line of force on extension,
(c) estimate (i) the value of extension when the force is 16 kN , and
(ii) the value of force when the extension is 17 mm .

Force X	Extension Y	X^{2}	XY	Y^{2}
4.8	3.5	23.04	16.80	12.25
9.3	8.2	86.49	76.26	67.24
12.8	10.1	163.84	129.28	102.01
17.7	15.6	313.29	276.12	243.36
21.6	18.4	466.56	379.44	338.56
26.0	20.8	676.00	540.80	432.64
$\sum \mathrm{X}=$	$\sum \mathrm{Y}=$	$\sum \mathrm{X}^{2}=$	$\sum \mathrm{XY}=$	$\sum \mathrm{Y}^{2}=$
92.2	76.6	1729.22	1418.70	1196.06

(a) $\quad \sum Y=a_{0} N+a_{1} \sum X$
$\sum X Y=a_{0} \sum X+a_{1} \sum X^{2}$
Hence $\begin{aligned} 76.6 & =6 \mathrm{a}_{0}+92.2 \mathrm{a}_{1} \\ 1418.70 & =92.2 \mathrm{a}_{0}+1729.22 \mathrm{a}_{1}\end{aligned}$
(2)
$92.2 \times(1)$ gives: $92.2(76.6)=92.2(6) \mathrm{a}_{0}+92.2(92.2) \mathrm{a}_{1}$
$6 \times(2)$ gives: $\quad 6(1418.70)=6(92.2) a_{0}+6(1729.22) a_{1}$
(3) - (4) gives: $\quad-1449.68=0-1874.48 a_{1}$
from which,

$$
a_{1}=\frac{1449.68}{1874.48}=0.773
$$

Substituting in equation (1) gives: $76.6=6 a_{0}+92.2(0.773)$
from which,

$$
a_{0}=\frac{76.6-92.2(0.773)}{6}=0.888
$$

Hence the regression line of extension on tensile force is:

$$
Y=a_{0}+a_{1} X \quad \text { i.e. } \quad Y=0.888+0.773 X
$$

(b) $\sum X=b_{0} N+b_{1} \sum Y$
$\sum X Y=b_{0} \sum Y+b_{1} \sum Y^{2}$
Hence $92.2=6 b_{0}+76.6 b_{1}$

$$
1418.70=76.6 b_{0}+1196.06 b_{1}
$$

and 76.6(92.2) $=76.6(6) b_{0}+76.6(76.6) b_{1}$
$6(1418.70)=6(76.6) b_{0}+6(1196.06) b_{1}$
(3) - (4) gives: $-1449.68=-1308.80 b_{1}$
from which,

$$
b_{1}=\frac{1449.68}{1308.80}=1.108
$$

Substituting in (1) gives: $92.2=6 \mathrm{~b}_{0}+76.6(1.108)$
from which,

$$
b_{0}=\frac{92.2-76.6(1.108)}{6}=1.221
$$

Hence the regression line of force on extension is:

$$
X=b_{0}+b_{1} Y \text { i.e. } X=1.221+1.108 Y
$$

(c)(i)Extension when the force is 16 kN is $\mathrm{Y}=0.888+0.773(16)$

$$
=13.26 \mathrm{~mm}
$$

(ii)Force when the extension is 17 mm is $\mathrm{X}=1.221+1.108(17)$ $=20.06 \mathrm{kN}$

Problem 5. 1200 metal bolts have a mean mass of 7.2 g and a standard deviation of 0.3 g. Determine the standard error of the means. Calculate also the probability that a sample of 60 bolts chosen at random, without replacement, will have a mass of (a) between 7.1 g and 7.25 g , and (b) more than 7.3 g .

For the population: number of bolts, $N_{p}=1200$

$$
\text { standard deviation, } \sigma=0.3 \mathrm{~g} ; \text { mean } \mu=7.2 \mathrm{~g}
$$

For the sample: number in sample, $N=60$
Mean of sampling distribution of means, $\mu_{\bar{x}}=\mu=7.2 \mathrm{~g}$
Standard error of the means, $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} \sqrt{\left(\frac{N_{p}-N}{N_{p}-1}\right)}=\frac{0.3}{\sqrt{60}} \sqrt{\left(\frac{1200-60}{1200-1}\right)}$ $=0.03776 \mathrm{~g}$
$(\mathrm{a}) \mathrm{z}=\frac{\mathrm{x}-\overline{\mathrm{x}}}{\sigma_{\bar{x}}}$ When $x=7.1 \mathrm{~g}, \quad \mathrm{z}=\frac{7.1-7.2}{0.03776}=-2.65$ standard deviations When $x=7.25 \mathrm{~g}, \mathrm{z}=\frac{7.25-7.2}{0.03776}=1.32$ standard deviations From Table 40.1, page 339, the area corresponding these z-values are 0.4960 and 0.4066 . Hence the probability of the mean mass lying between 7.1 g and 7.25 g is $0.4960+0.4066=0.9026$
(b)When $x=7.3 \mathrm{~g}, \quad \mathrm{z}=\frac{7.3-7.2}{0.03776}=2.65$

From Table 40.1, the area corresponding to this z-value is 0.4960 The area lying to the right of this is $0.5-0.4960=0.0040$ hence the probability that a sample will have a mass of more than 7.3 g is 0.0040

Problem 6. A sample of 10 measurements of the length of a component are made, and the mean of the sample is 3.650 cm . The standard deviation of the samples is 0.030 cm . Determine (a) the 99% confidence limits, and (b) the 90% confidence limits for an estimate of the actual length of the component.

For the sample: sample size, $N=10$, mean, $\bar{x}=3.650 \mathrm{~cm}$
standard deviation, $s=0.030 \mathrm{~cm}$
(a)The percentile value corresponding to a confidence coefficient value of $t_{0.99}$ and a degree of freedom value of $v=10-1=9$, is 2.82 from Table 43.2, page 363.

Estimated value of the mean of the population $=\bar{x} \pm \frac{t_{c} s}{\sqrt{(N-1)}}$

$$
\begin{aligned}
& =3.650 \pm \frac{(2.82)(0.030)}{\sqrt{(10-1)}} \\
& =3.650 \pm 0.0282
\end{aligned}
$$

Thus the 99% confidence limits are 3.622 cm to 3.678 cm .
(b)For $t_{0.90}, v=9, t_{c}=1.38$ from Table 43.2.

Estimated value of the 90% confidence limits $=\bar{x} \pm \frac{t_{c} S}{\sqrt{(N-1)}}$

$$
\begin{aligned}
& =3.650 \pm \frac{(1.38)(0.030)}{\sqrt{(10-1)}} \\
& =3.650 \pm 0.0138
\end{aligned}
$$

Thus the 90% confidence limits are 3.636 cm to 3.664 cm

ASSIGNMENT 12 (PAGE 406)

This assignment covers the material contained in chapters 44 to 46.

Problem 1. Differentiate the following with respect to the variable:
(a) $y=5+2 \sqrt{x^{3}}-\frac{1}{x^{2}}$
(b) $s=4 e^{2 \theta} \sin 3 \theta$
(c) $y=\frac{3 \ln 5 t}{\cos 2 t}$
(d) $x=\frac{2}{\sqrt{\left(t^{2}-3 t+5\right)}}$
(a) $y=5+2 \sqrt{x^{3}}-\frac{1}{x^{2}}=5+2 x^{3 / 2}-x^{-2}$

$$
\frac{d y}{d x}=0+(2)\left(\frac{3}{2} x^{1 / 2}\right)-\left(-2 x^{-3}\right)=3 \sqrt{x}+\frac{2}{x^{3}}
$$

(b) $s=4 e^{2 \theta} \sin 3 \theta$ i.e. a product

$$
\begin{aligned}
\frac{\mathbf{d s}}{\mathbf{d} \theta} & =\left(4 \mathrm{e}^{2 \theta}\right)(3 \cos 3 \theta)+(\sin 3 \theta)\left(8 \mathrm{e}^{2 \theta}\right)=4 \mathrm{e}^{2 \theta}(3 \cos 3 \theta+2 \sin 3 \theta) \\
\text { (c) } y & =\frac{3 \ln 5 t}{\cos 2 t} \quad \text { i.e. a quotient }
\end{aligned}
$$

$$
\frac{\mathbf{d y}}{\mathbf{d t}}=\frac{(\cos 2 t)\left(\frac{3}{t}\right)-(3 \ln 5 t)(-2 \sin 2 t)}{(\cos 2 t)^{2}}=\frac{\frac{3}{t} \cos 2 t+6 \ln 5 t \sin 2 t}{\cos ^{2} 2 t}
$$

(d) $x=\frac{2}{\sqrt{\left(t^{2}-3 t+5\right)}} \quad$ Let $u=t^{2}-3 t+5$ then $\frac{d u}{d t}=2 t-3$

Hence $x=\frac{2}{\sqrt{u}}=2 u^{-1 / 2}$ and $\frac{d x}{d u}=-u^{-3 / 2}=-\frac{1}{\sqrt{u^{3}}}$

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{du}} \times \frac{\mathrm{du}}{\mathrm{dt}}=\left(-\frac{1}{\sqrt{\mathrm{u}^{3}}}\right)(2 \mathrm{t}-3)=\frac{3-2 \mathrm{t}}{\sqrt{\left(\mathrm{t}^{2}-3 \mathrm{t}+5\right)^{3}}}
$$

Problem 2. If $f(x)=2.5 x^{2}-6 x+2$ find the co-ordinates at the point at which the gradient is -1
$f(x)=2.5 x^{2}-6 x+2$
Gradient $=f^{\prime}(x)=5 x-6=-1$ from which, $5 x=5$ and $x=1$

When $x=1, f(x)=f(1)=2.5(1)^{2}-6(1)+2=-1.5$
Hence the gradient is -1 at the point (1, -1.5)

Problem 3. The displacement s cm of the end of a stiff spring at time t seconds is given by: $s=a e^{-k t} \sin 2 \pi f t$. Determine the velocity and acceleration of the end of the spring after 2 seconds if $a=3, k=0.75$ and $f=20$.
$s=a e^{-k t} \sin 2 \pi f t \quad$ i.e. a product
Velocity $=\frac{d s}{d t}=\left(a e^{-k t}\right)(2 \pi f \cos 2 \pi f t)+(\sin 2 \pi f t)\left(-k a e^{-k t}\right)$
When $t=2, a=3, k=0.75$ and $f=20$,
velocity $=\left(3 e^{-(0.75)(2)}\right)[2 \pi \times 20 \cos 2 \pi(20)(2)]$

- $[\sin 2 \pi(20)(2)](0.75)\left(3 e^{-(0.75)(2)}\right)$

$$
=120 \pi \mathrm{e}^{-(0.75)(2)}-0=84.12 \mathrm{~cm} / \mathrm{s}
$$

Acceleration $=\frac{d^{2} s}{d t^{2}}=\left(a e^{-k t}\right)\left[-(2 \pi f)^{2} \sin 2 \pi f t\right]+(2 \pi f \cos 2 \pi f t)\left(-k a e^{-k t}\right)$ $+(\sin 2 \pi f t)\left(k^{2} a e^{-k t}\right)+\left(-k a e^{-k t}\right)(2 \pi f \cos 2 \pi f t$

Marks

When $t=2, a=3, k=0.75$ and $f=20$,
acceleration $=0+(40 \pi)\left(-2.25 e^{-1.5}\right)+0+\left(-2.25 e^{-1.5}\right)(40 \pi)$

$$
=-180 \pi \mathrm{e}^{-1.5}=-126.2 \mathrm{~cm} / \mathrm{s}^{2}
$$

total

Problem 4. Find the co-ordinates of the turning points on the curve $y=3 x^{3}+6 x^{2}+3 x-1 \quad$ and distinguish between them.

Since $y=3 x^{3}+6 x^{2}+3 x-1$
then $\frac{d y}{d x}=9 x^{2}+12 x+3=0$ for a turning point

$$
=(3 x+3)(3 x+1)=0
$$

from which, $x=-1$ or $x=-\frac{1}{3}$

When $x=-1, \quad y=3(-1)^{3}+6(-1)^{2}+3(-1)-1=-3+6-3-1=-1$ When $x=-\frac{1}{3}, y=3\left(-\frac{1}{3}\right)^{3}+6\left(-\frac{1}{3}\right)^{2}+3\left(-\frac{1}{3}\right)-1=-\frac{1}{9}+\frac{2}{3}-1-1=-1 \frac{4}{9}$

Hence turning points occur at $(-1,-1)$ and $\left(-\frac{1}{3},-1 \frac{4}{9}\right)$
$\frac{d^{2} y}{d x^{2}}=18 x+12$
When $x=-1, \frac{d^{2} y}{d x^{2}}$ is negative, hence $(-1,-1)$ is a maximum point When $x=-\frac{1}{3}, \frac{d^{2} y}{d x^{2}}$ is positive, hence $\left(-\frac{1}{3},-1 \frac{4}{9}\right)$ is a minimum point

Problem 5. The heat capacity C of a gas varies with absolute temperature θ as
shown: $\quad C=26.50+7.20 \times 10^{-3} \theta-1.20 \times 10^{-6} \theta^{2}$
Determine the maximum value of C and the temperature at which it occurs.
$\frac{d C}{d \theta}=7.20 \times 10^{-3}-2.40 \times 10^{-6} \theta=0$ for a maximum or minimum value,
from which, $\theta=\frac{7.20 \times 10^{-3}}{2.40 \times 10^{-6}}=3000$
$\frac{d^{2} c}{d \theta^{2}}=-2.40 \times 10^{-6}$ which is negative and hence $\theta=3000$ gives a maximum value
$\mathbf{C}_{\max }=26.50+\left(7.20 \times 10^{-3}\right)(3000)-\left(1.20 \times 10^{-6}\right)(3000)^{2}$
$=26.50+21.6-10.8=37.3$
Hence the maximum value of C is 37.3 which occurs at a temperature of $\mathbf{3 0 0 0}$

Problem 6. Determine for the curve $y=2 x^{2}-3 x$ at the point $(2,2)$:
(a) the equation of the tangent
(b) the equation of the normal
(a) Gradient $m=\frac{d y}{d x}=4 x-3$

At the point $(2,2), x=2$ and $m=4(2)-3=5$
Hence equation of tangent is: $y-y_{1}=m\left(x-x_{1}\right)$
i.e. $y-2=5(x-2)$
i.e.

$$
\text { or } \quad y=5 x-8
$$

(b)Equation of normal is:

$$
y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)
$$

i.e.

$$
y-2=-\frac{1}{5}(x-2)
$$

i.e.

$$
\begin{aligned}
& y-2 & =-\frac{1}{5} x+\frac{2}{5} \\
\text { or } & 5 y-10 & =-x+2 \\
\text { or } & 5 y+x & =12
\end{aligned}
$$

Problem 7. A rectangular block of metal with a square cross-section has a total surface area of $250 \mathrm{~cm}^{2}$. Find the maximum volume of the block of metal.

The rectangular block is shown in Figure 40 having dimensions x by x by y Surface area, $A=2 x^{2}+4 x y=250$

Volume, $V=x^{2} y$

Figure 40

From equation (1), $4 x y=250-2 x^{2} \quad$ and $\quad y=\frac{250-2 x^{2}}{4 x}$
Hence $\quad V=x^{2}\left(\frac{250-2 x^{2}}{4 x}\right)=62.5 x-\frac{1}{2} x^{3}$
$\frac{d V}{d x}=62.5-\frac{3}{2} x^{2}=0$ for a maximum or minimum value
i.e. $\quad 62.5=\frac{3}{2} x^{2}$ from which, $x=\sqrt{\frac{2(62.5)}{3}}= \pm 6.455 \mathrm{~cm}$
$\frac{d^{2} V}{d x^{2}}=-3 x$ and when $x=+6.455, \frac{d^{2} V}{d x^{2}}$ is negative, indicating a maximum value
Hence maximum volume $=62.5 x-\frac{1}{2} x^{3}=62.5(6.455)-\frac{1}{2}(6.455)^{3}=269 \mathrm{~cm}^{3}$

ASSIGNMENT 13 (PAGE 425)

This assignment covers the material contained in chapters 47 to 49.
Problem 1. Determine (a) $\int 3 \sqrt{t^{5}} d t$
(b) $\int \frac{2}{\sqrt[3]{x^{2}}} d x$
(c) $\int(2+\theta)^{2} d \theta$

Marks
(a) $\int 3 \sqrt{t^{5}} d t=\int 3 t^{\frac{5}{2}} d t=3 \frac{t^{\frac{7}{2}}}{\frac{7}{2}}+c=\frac{6}{7} \sqrt{t^{7}}+c$
(b) $\int \frac{2}{\sqrt[3]{x^{2}}} d x=\int 2 x^{-\frac{2}{3}} d x=2 \frac{x^{\frac{1}{3}}}{\frac{1}{3}}+c=6 \sqrt[3]{x}+c$
(c) $\int(2+\theta)^{2} d \theta=\int\left(4+4 \theta+\theta^{2}\right) d \theta=4 \theta+\frac{4 \theta^{2}}{2}+\frac{\theta^{3}}{3}+c$

$$
=4 \theta+2 \theta^{2}+\frac{1}{3} \theta^{3}+c
$$

3

3

3
total : 9

Problem 2. Evaluate the following integrals, each correct to 4 significant figures:
(a) $\int_{0}^{\pi / 3} 3 \sin 2 t d t$
(b) $\int_{1}^{2}\left(\frac{2}{x^{2}}+\frac{1}{x}+\frac{3}{4}\right) d x$
(a) $\int_{0}^{\pi / 3} 3 \sin 2 t d t=-\frac{3}{2}[\cos 2 t]_{0}^{\pi / 3}=-\frac{3}{2}\left[\cos \frac{2 \pi}{3}-\cos 0\right]$

$$
=-\frac{3}{2}[-0.5-1]=2.250
$$

(b) $\int_{1}^{2}\left(\frac{2}{x^{2}}+\frac{1}{x}+\frac{3}{4}\right) d x=\int_{1}^{2}\left(2 x^{-2}+\frac{1}{x}+\frac{3}{4}\right) d x=\left[\frac{2 x^{-1}}{-1}+\ln x+\frac{3}{4} x\right]_{1}^{2}$

$$
=\left(-\frac{2}{2}+\ln 2+\frac{6}{4}\right)-\left(-\frac{2}{1}+\ln 1+\frac{3}{4}\right)=2.443
$$

Problem 3. Determine the following integrals:
(a) $\int 5(6 t+5)^{7} d t$
(b) $\int \frac{3 \ln x}{x} d x$
(c) $\int \frac{2}{\sqrt{(2 \theta-1)}} d \theta$
(a) $\int 5(6 t+5)^{7} d t \quad$ Let $u=6 t+5$ then $\frac{d u}{d t}=6$ and $d t=\frac{d u}{6}$ Hence $\int 5(6 t+5)^{7} d t=\int 5 u^{7} \frac{d u}{6}=\frac{5}{6} \int u^{7} d u=\frac{5}{6} \frac{u^{8}}{8}+c$

$$
=\frac{5}{48}(6 t+5)^{8}+c
$$

(b) $\int \frac{3 \ln x}{x} d x \quad$ Let $u=\ln x$ then $\quad \frac{d u}{d x}=\frac{1}{x} \quad$ and $d x=x d u$ Hence $\int \frac{3 \ln x}{x} d x=\int \frac{3 u}{x} x d u=\int 3 u d u=\frac{3 u^{2}}{2}+c=\frac{3}{2}(\ln x)^{2}+c$
(c) $\int \frac{2}{\sqrt{(2 \theta-1)}} d \theta \quad$ Let $u=2 \theta-1$ then $\frac{d u}{d \theta}=2$ and $d \theta=\frac{d u}{2}$

Hence $\int \frac{2}{\sqrt{(2 \theta-1)}} d \theta=\int \frac{2}{\sqrt{u}} \frac{d u}{2}=\int u^{-1 / 2} d u=\frac{u^{1 / 2}}{\frac{1}{2}}+c=2 \sqrt{u}+c$

$$
=2 \sqrt{(2 \theta-1)}+c
$$

total : 9

Problem 4. Evaluate the following definite integrals:
(a) $\int_{0}^{\pi / 2} 2 \sin \left(2 t+\frac{\pi}{3}\right) d t$
(b) $\int_{0}^{1} 3 x e^{4 x^{2}-3} d x$
(a) $\int_{0}^{\pi / 2} 2 \sin \left(2 t+\frac{\pi}{3}\right) d t \quad$ Let $u=2 t+\frac{\pi}{3} \quad$ then $\frac{d u}{d t}=2$ and $d t=\frac{d u}{2}$

Hence $\int 2 \sin \left(2 t+\frac{\pi}{3}\right) d t=\int 2 \sin u \frac{d u}{2}=\int \sin u d u=-\cos u+c$

$$
=-\cos \left(2 t+\frac{\pi}{3}\right)+c
$$

Thus $\int_{0}^{\pi / 2} 2 \sin \left(2 t+\frac{\pi}{3}\right) d t=\left[-\cos \left(2 t+\frac{\pi}{3}\right)\right]_{0}^{\pi / 2}=-\left[\cos \left(\pi+\frac{\pi}{3}\right)-\cos \frac{\pi}{3}\right]$

$$
=-[-0.5-0.5]=1
$$

(b) $\int_{0}^{1} 3 x e^{4 x^{2}-3} d x \quad$ Let $u=4 x^{2}-3$ then $\frac{d u}{d x}=8 x$ and $d x=\frac{d u}{8 x}$ Hence $\int 3 x e^{4 x^{2}-3} d x=\int 3 x e^{u} \frac{d u}{8 x}=\frac{3}{8} \int e^{u} d u=\frac{3}{8} e^{u}+c=\frac{3}{8} e^{4 x^{2}-3}+c$

Thus $\int_{0}^{1} 3 x e^{4 x^{2}-3} d x=\frac{3}{8}\left[e^{4 x^{2}-3}\right]_{0}^{1}=\frac{3}{8}\left[e^{1}-e^{-3}\right]=1.001$

Problem 5. Determine the following integrals:
(a) $\int \cos ^{3} x \sin ^{2} x d x$
(b) $\int \frac{2}{\sqrt{\left(9-4 x^{2}\right)}} d x$
(a) $\int \cos ^{3} x \sin ^{2} x d x=\int \cos x \cos ^{2} x \sin ^{2} x d x=\int \cos x\left(1-\sin ^{2} x\right) \sin ^{2} x d x$

$$
\begin{aligned}
& =\int\left(\cos x \sin ^{2} x-\cos x \sin ^{4} x\right) d x \\
& =\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+c
\end{aligned}
$$

(b) $\int \frac{2}{\sqrt{\left(9-4 x^{2}\right)}} d x=\int \frac{2}{\sqrt{\left[4\left(\frac{9}{4}-x^{2}\right)\right]}} d x=\int \frac{2}{2 \sqrt{\left[\left(\frac{3}{2}\right)^{2}-x^{2}\right]}} d x$

$$
=\int \frac{1}{\sqrt{\left[\left(\frac{3}{2}\right)^{2}-x^{2}\right]}} d x=\arcsin \frac{x}{\frac{3}{2}}+c=\arcsin \frac{2 x}{3}+c
$$

total : 8

Problem 6. Evaluate the following definite integrals, correct to 4 significant figures: (a) $\int_{0}^{\pi / 2} 3 \sin ^{2} t d t$
(b) $\int_{0}^{\pi / 3} 3 \cos 5 \theta \sin 3 \theta d \theta$
(c) $\int_{0}^{2} \frac{5}{4+x^{2}} d x$
(a) $\int_{0}^{\pi / 2} 3 \sin ^{2} \mathrm{tdt}=\int_{0}^{\pi / 2} 3 \frac{1}{2}(1-\cos 2 \mathrm{t}) \mathrm{dt}=\frac{3}{2}\left[\mathrm{t}-\frac{1}{2} \sin 2 \mathrm{t}\right]_{0}^{\pi / 2}$

$$
\begin{aligned}
& =\frac{3}{2}\left[\left(\frac{\pi}{2}-\frac{\sin 2 \frac{\pi}{2}}{2}\right)-\left(0-\frac{\sin 0}{2}\right)\right] \\
& =\frac{3}{4} \pi \text { or } 2.356 \text { correct to } 4 \text { significant figures }
\end{aligned}
$$

(b) $\int_{0}^{\pi / 3} 3 \cos 5 \theta \sin 3 \theta d \theta=\int_{0}^{\pi / 3} \frac{3}{2}[\sin (5 \theta+3 \theta)-\sin (5 \theta-3 \theta)] d \theta$

$$
\begin{aligned}
& =\frac{3}{2} \int_{0}^{\pi / 3}(\sin 8 \theta-\sin 2 \theta) d \theta=\frac{3}{2}\left[-\frac{\cos 8 \theta}{8}+\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 3} \\
& =\frac{3}{2}\left[\left(-\frac{\cos \frac{8 \pi}{3}}{8}+\frac{\cos \frac{2 \pi}{3}}{2}\right)-\left(-\frac{\cos 0}{8}+\frac{\cos 0}{2}\right)\right]^{2} \\
& =\frac{3}{2}[(0.0625-0.25)-(-0.125+0.5)] \\
& =-0.8438 \text { correct to } 4 \text { significant figures }
\end{aligned}
$$

(c) $\int_{0}^{2} \frac{5}{4+x^{2}} d x=5 \int_{0}^{2} \frac{1}{2^{2}+x^{2}} d x=\left[\frac{5}{2} \arctan \frac{x}{2}\right]_{0}^{2}$

$$
=\frac{5}{2}[\arctan 1-\arctan 0]=1.963 \text { correct to } 4 \text { significant }
$$

ASSIGNMENT 14 (PAGE 447)

This assignment covers the material contained in chapters 50 to 53.
Problem 1. Determine (a) $\int \frac{x-11}{x^{2}-x-2} d x$
(b) $\int \frac{3-x}{\left(x^{2}+3\right)(x+3)} d x$

Marks
(a) Let $\frac{x-11}{x^{2}-x-2} \equiv \frac{x-11}{(x-2)(x+1)}=\frac{A}{(x-2)}+\frac{B}{(x+1)}=\frac{A(x+1)+B(x-2)}{(x-2)(x+1)}$

Hence

$$
x-11=A(x+1)+B(x-2)
$$

Let $x=2$:
$-9=3 A$ hence $A=-3$
Let $x=-1: \quad-12=-3 B$ hence $\mathbf{B}=\mathbf{4}$
Hence $\frac{x-11}{x^{2}-x-2}=\frac{4}{(x+1)}-\frac{3}{(x-2)}$
$\int \frac{x-11}{x^{2}-x-2} d x=\int \frac{4}{(x+1)}-\frac{3}{(x-2)} d x=4 \ln (x+1)-3 \ln (x-2)+c$ or $\quad \ln \left\{\frac{(x+1)^{4}}{(x-2)^{3}}\right\}+c$
(b) Let $\frac{3-x}{\left(x^{2}+3\right)(x+3)} \equiv \frac{A x+B}{\left(x^{2}+3\right)}+\frac{C}{(x+3)}=\frac{(A x+B)(x+3)+C\left(x^{2}+3\right)}{\left(x^{2}+3\right)(x+3)}$

Hence

$$
3-x=(A x+B)(x+3)+C\left(x^{2}+3\right)
$$

Let $x=-3: \quad 6=0+12 C$ hence $c=\frac{\mathbf{1}}{\mathbf{2}}$
x^{2} coefficients: $0=A+C$ hence $A=-\frac{\mathbf{1}}{\mathbf{2}}$
x coefficients: $-1=3 A+B$ hence $-1=-\frac{3}{2}+B$ and $B=\frac{1}{2}$
Hence $\int \frac{3-x}{\left(x^{2}+3\right)(x+3)} d x=\int \frac{-\frac{1}{2} x+\frac{1}{2}}{\left(x^{2}+3\right)}+\frac{\frac{1}{2}}{(x+3)} d x$

$$
\begin{aligned}
& =\int \frac{-\frac{1}{2} x}{\left(x^{2}+3\right)}+\frac{\frac{1}{2}}{\left(x^{2}+3\right)}+\frac{\frac{1}{2}}{(x+3)} d x \\
& =-\frac{1}{4} \ln \left(x^{2}+3\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}}\right)+\frac{1}{2} \ln (x+3)+c
\end{aligned}
$$

$$
\begin{equation*}
=-\frac{1}{4} \ln \left(x^{2}+3\right)+\frac{1}{2 \sqrt{3}} \arctan \frac{x}{\sqrt{3}}+\frac{1}{2} \ln (x+3)+c \tag{6}
\end{equation*}
$$

Problem 2. Evaluate $\int_{1}^{2} \frac{3}{x^{2}(x+2)} d x$ correct to 4 significant figures.

Let $\frac{3}{x^{2}(x+2)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(x+2)}=\frac{A x(x+2)+B(x+2)+C x^{2}}{x^{2}(x+2)}$
Hence

$$
3=A x(x+2)+B(x+2)+C x^{2}
$$

$$
\text { Let } x=0: \quad 3=0+2 B+0 \quad \text { hence } \mathbf{B}=\mathbf{3 / 2}
$$

$$
\text { Let } x=-2: \quad 3=0+0+4 C \text { hence } \mathbf{C}=\mathbf{3 / 4}
$$

x^{2} coefficients: $\quad 0=A+C$ hence $A=-3 / 4$
Hence $\int_{1}^{2} \frac{3}{x^{2}(x+2)} d x=\int \frac{-3 / 4}{x}+\frac{3 / 2}{x^{2}}+\frac{3 / 4}{(x+2)} d x$

$$
\begin{aligned}
& =\left[-\frac{3}{4} \ln x-\frac{3}{2 x}+\frac{3}{4} \ln (x+2)\right]_{1}^{2} \\
& =\left(-\frac{3}{4} \ln 2-\frac{3}{2(2)}+\frac{3}{4} \ln 4\right)-\left(-\frac{3}{4} \ln 1-\frac{3}{2}+\frac{3}{4} \ln 3\right) \\
& =(-0.23014)-(-0.67604)=0.4459 \text { correct to } 4
\end{aligned}
$$

Problem 3. Determine: $\int \frac{d x}{2 \sin x+\cos x}$

If $\tan \frac{x}{2}$ then $\sin x=\frac{2 t}{1+t^{2}}, \cos x=\frac{1-t^{2}}{1+t^{2}} \quad$ and $d x=\frac{2 d t}{1+t^{2}}$
Thus $\int \frac{d x}{2 \sin x+\cos x}=\int \frac{\frac{2 d t}{1+t^{2}}}{2\left(\frac{2 t}{1+t^{2}}\right)+\left(\frac{1-t^{2}}{1+t^{2}}\right)}=\int \frac{\frac{2 d t}{1+t^{2}}}{\frac{4 t+1-t^{2}}{1+t^{2}}}=\int \frac{2 d t}{1+4 t-t^{2}}$

$$
=\int \frac{-2 \mathrm{dt}}{\mathrm{t}^{2}-4 \mathrm{t}-1}=\int \frac{-2 \mathrm{dt}}{(\mathrm{t}-2)^{2}-5}=\int \frac{2 \mathrm{dt}}{(\sqrt{5})^{2}-(\mathrm{t}-2)^{2}}
$$

$$
=2\left[\frac{1}{2 \sqrt{5}} \ln \left\{\frac{\sqrt{5}+(\mathrm{t}-2)}{\sqrt{5}-(\mathrm{t}-2)}\right\}\right]+\mathrm{c}
$$

i.e. $\int \frac{d x}{2 \sin x+\cos x}=\frac{1}{\sqrt{5}} \ln \left\{\frac{\sqrt{5}-2+\tan \frac{x}{2}}{\sqrt{5}+2-\tan \frac{x}{2}}\right\}+c$

Problem 4. Determine the following integrals:
(a) $\int 5 x e^{2 x} d x$
(b) $\int \mathrm{t}^{2} \sin 2 \mathrm{t} d \mathrm{t}$
(a) $\int 5 \mathrm{xe}^{2 \mathrm{x}} \mathrm{dx} \quad$ Let $\mathrm{u}=5 \mathrm{x}$ then $\frac{\mathrm{du}}{\mathrm{dx}}=5$ from which $\mathrm{du}=5 \mathrm{dx}$ and $d v=e^{2 x} d x$ then $v=\int e^{2 x} d x=\frac{1}{2} e^{2 x}$

Hence $\int 5 x e^{2 x} d x=(5 x)\left(\frac{1}{2} e^{2 x}\right)-\int\left(\frac{1}{2} e^{2 x}\right)(5 d x)=\frac{5}{2} x e^{2 x}-\frac{5}{2} \int e^{2 x} d x$

$$
=\frac{5}{2} x e^{2 x}-\frac{5}{4} e^{2 x}+c
$$

(b) $\int \mathrm{t}^{2} \sin 2 \mathrm{t} \mathrm{dt}$ Let $\mathrm{u}=\mathrm{t}^{2}$ then $\frac{\mathrm{du}}{\mathrm{dt}}=2 \mathrm{t}$ from which $\mathrm{du}=2 \mathrm{t} \mathrm{dt}$
and $d v=\sin 2 t d t$ then $v=\int \sin 2 t d t=-\frac{1}{2} \cos 2 t$
Hence $\int \mathrm{t}^{2} \sin 2 \mathrm{t} d \mathrm{t}=\left(\mathrm{t}^{2}\right)\left(-\frac{1}{2} \cos 2 \mathrm{t}\right)-\int\left(-\frac{1}{2} \cos 2 \mathrm{t}\right)(2 \mathrm{t} \mathrm{dt})$

$$
\begin{equation*}
=-\frac{1}{2} t^{2} \cos 2 t+\left[\int t \cos 2 t d t\right] \tag{1}
\end{equation*}
$$

$\int t \cos 2 t d t \quad$ Let $u=t$ then $\frac{d u}{d t}=1$ from which $d u=d t$
and $d v=\cos 2 t d t$ then $v=\int \cos 2 t d t=\frac{1}{2} \sin 2 t$
Hence $\int t \cos 2 t d t=(t)\left(\frac{1}{2} \sin 2 t\right)-\int\left(\frac{1}{2} \sin 2 t\right) d t$

$$
=\frac{1}{2} t \sin 2 t+\frac{1}{4} \cos 2 t
$$

Substituting in equation (1) gives:

$$
\int t^{2} \sin 2 t d t=-\frac{1}{2} t^{2} \cos 2 t+\frac{1}{2} t \sin 2 t+\frac{1}{4} \cos 2 t+c
$$

Problem 5. Evaluate correct to 3 decimal places: $\int_{1}^{4} \sqrt{x} \ln x d x$
$\int_{1}^{4} \sqrt{x} \ln x d x \quad$ Let $u=\ln x \quad$ then $\quad \frac{d u}{d x}=\frac{1}{x} \quad$ from which $d u=\frac{d x}{x}$

$$
\text { and } d v=\sqrt{x} d x \text { then } v=\int x^{1 / 2} d x=\frac{x^{3 / 2}}{3 / 2}=\frac{2}{3} x^{3 / 2}
$$

Hence $\int \sqrt{x} \ln x d x=(\ln x)\left(\frac{2}{3} x^{3 / 2}\right)-\int\left(\frac{2}{3} x^{3 / 2}\right) \frac{d u}{x}$

$$
\begin{aligned}
& =\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{2}{3} \int x^{1 / 2} d x=\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{2}{3}\left(\frac{x^{3 / 2}}{3 / 2}\right)+c \\
& =\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{4}{9} \sqrt{x^{3}}+c
\end{aligned}
$$

Thus $\int_{1}^{4} \sqrt{x} \ln x d x=\left[\frac{2}{3} \sqrt{x^{3}} \ln x-\frac{4}{9} \sqrt{x^{3}}\right]_{1}^{4}$

$$
\begin{aligned}
& =\left(\frac{2}{3} \sqrt{4^{3}} \ln 4-\frac{4}{9} \sqrt{4^{3}}\right)-\left(\frac{2}{3} \sqrt{1^{3}} \ln 1-\frac{4}{9} \sqrt{1^{3}}\right) \\
& =\left(\frac{16}{3} \ln 4-\frac{32}{9}\right)-\left(\frac{2}{3} \ln 1-\frac{4}{9}\right) \\
& =(3.83801)-(-0.44444)=4.282 \text { correct to } 3 \text { decimal }
\end{aligned}
$$ places

Problem 6. Evaluate $\int_{1}^{3} \frac{5}{x^{2}} \mathrm{dx}$ using (a) integration (b) the trapezoidal rule (c) the mid-ordinate rule (d) Simpson's rule. In each of the approximate methods use 8 intervals and give the answers correct to 3 decimal places.
(a) $\int_{1}^{3} \frac{5}{x^{2}} \mathrm{dx}=\int_{1}^{3} 5 \mathrm{x}^{-2}=\left[\frac{5 x^{-1}}{-1}\right]_{1}^{3}=-5\left[\frac{1}{x}\right]_{1}^{3}=-5\left[\frac{1}{3}-1\right]$
$=3.333$, correct to 3 decimal places
(b) With the trapezoidal rule, width of interval $=\frac{3-1}{8}=0.25$, hence the ordinates occur at 1, 1.25, 1.5, 1.75, ..

x	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3
$\frac{5}{x^{2}}$	5	3.2	2.2	1.6327	1.25	0.9877	0.8	0.6612	0.5

Hence $\int_{1}^{3} \frac{5}{x^{2}} \mathrm{dx} \approx 0.25\left\{\frac{1}{2}(5+0 . \dot{5})+3.2+2 . \dot{2}+1.6327+1.25+0.9877+0.8+0.6612\right\}$
$=0.25(13.5316)=3.383$
(c)With the mid-ordinate rule, the mid-ordinates occur at 1.125, 1.375, 1.625, ..

x	1.125	1.375	1.625	1.875	2.125	2.375	2.625	2.875
$\frac{5}{x^{2}}$	3.9506	2.6446	1.8935	1.4222	1.1073	0.8864	0.7256	0.6049

Hence $\int_{1}^{3} \frac{5}{x^{2}} d x \approx 0.25(3.9506+2.6446+1.8935+1.4222+1.1073$

$$
+0.8864+0.7256+0.6049)
$$

$$
=0.25(13.2351)=3.309
$$

(d)Using Simpson's rule, using the table of values from part (a),

$$
\left.\left.\left.\left.\begin{array}{rl}
\int_{1}^{3} \frac{5}{x^{2}} \mathrm{dx} \approx & \frac{1}{3}(0.25)\{(5+0.5)+4(3.2+1.6327
\end{array}\right)=0.9877+0.6612\right)\right\}+2(2 . \dot{5}+1.25+0.8)\right\}
$$

total

Problem 7. An alternating current i has the following values at equal intervals of 5 ms

Time t (ms)	0	5	10	15	20	25	30
Current i(A)	0	4.8	9.1	12.7	8.8	3.5	0

Charge q, in coulombs, is given by $q=\int_{0}^{30 \times 10^{-3}} i d t$
Use Simpson's rule to determine the approximate charge in the 30 ms period.

$$
\begin{aligned}
q=\int_{0}^{30 \times 10^{-3}} i d t & \approx \frac{1}{3}\left(5 \times 10^{-3}\right)\{(0)+4(4.8+12.7+3.5)+2(9.1+8.8)\} \\
& =\frac{1}{3}\left(5 \times 10^{-3}\right)\{(0)+84+35.8\}
\end{aligned} \quad \begin{aligned}
& \text { Marks } \\
& \\
& \\
&
\end{aligned}
$$

ASSIGNMENT 15 (PAGE 482)

This assignment covers the material contained in chapters 54 to 58.

Problem 1. The force F newtons acting on a body at a distance x metres from a fixed point is given by $F=2 x+3 x^{2}$. If work done $=\int_{x_{1}}^{x_{2}} F d x$, determine the work done when the body moves from the position when $x=1 \mathrm{~m}$ to that when $x=4 \mathrm{~m}$.

Work done $=\int_{x_{1}}^{x_{2}} F d x=\int_{1}^{4} 2 x+3 x^{2} d x=\left[x^{2}+x^{3}\right]_{1}^{4}=(16+64)-(1+1)$ $=80-2=78 \mathrm{~N}$

Marks
total : 4

Problem 2. Sketch and determine the area enclosed by the curve $y=3 \sin \frac{\theta}{2}$, the θ axis and ordinates $\theta=0$ and $\theta=\frac{2 \pi}{3}$.

Marks
A sketch of $y=3 \sin \frac{\theta}{2}$ is shown in Figure 41.

Figure 41

Shaded area $=\int_{0}^{2 \pi / 3} 3 \sin \frac{\theta}{2} d \theta=\left[-\frac{3}{\frac{1}{2}} \cos \frac{\theta}{2}\right]_{0}^{2 \pi / 3}=-6\left[\cos \frac{2 \pi / 3}{2}-\cos 0\right]$
$=-6\left[\cos \frac{\pi}{2}-\cos 0\right]=3$ square units

2

2

Problem 3. Calculate the area between the curve $y=x^{3}-x^{2}-6 x$ and the x-axis.
$y=x^{3}-x^{2}-6 x=x\left(x^{2}-x-6\right)=x(x-3)(x+2)$
When $y=0, x=0, x=3$ or $x=-2$
When $x=1, y=1$ - 1 - 6 i.e. negative, hence the curve is as shown in Figure 42.

Figure 42

Shaded area $=\int_{-2}^{0}\left(x^{3}-x^{2}-6 x\right) d x-\int_{0}^{3}\left(x^{3}-x^{2}-6 x\right) d x$

$$
\begin{aligned}
& =\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{6 x^{2}}{2}\right]_{-2}^{0}-\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{6 x^{2}}{2}\right]_{0}^{3} \\
& =\left[(0)-\left(4+\frac{8}{3}-12\right)\right]-\left[\left(\frac{81}{4}-9-27\right)-(0)\right] \\
& =\left[5 \frac{1}{3}\right]-\left[-15 \frac{3}{4}\right]=21 \frac{1}{12} \text { or } 21.083 \text { square units }
\end{aligned}
$$

Problem 4. A voltage $v=25$ sin $50 \pi t$ volts is applied across an electrical circuit. Determine, using integration, its mean and r.m.s. values over the range $\mathrm{t}=0$ to $\mathrm{t}=20 \mathrm{~ms}$, each correct to 4 significant figures.

$$
\begin{aligned}
& \text { Mean value }=\frac{1}{20 \times 10^{-3}} \int_{0}^{20 \times 10^{-3}} 25 \sin 50 \pi t \mathrm{dt}=\left(50(25)\left[-\frac{\cos 50 \pi t}{50 \pi}\right]_{0}^{20 \times 10^{-3}}\right. \\
& =-\frac{(50)(25)}{50 \pi}[\cos 50 \pi t]_{0}^{20 \times 10^{-3}}=-\frac{25}{\pi}[-1-1]=\frac{50}{\pi}=15.92 \text { volts } \\
& \text { Rms value }=\sqrt{\left\{\frac{1}{20 \times 10^{-3}} \int_{0}^{20 \times 10^{-3}}(25)^{2} \sin ^{2} 50 \pi \mathrm{t} \mathrm{dt}\right\}} \\
& =\sqrt{\left\{5 \sigma(25)^{2} \int_{0}^{20 \times 10^{-3}} \frac{1-\cos 2(50 \pi \mathrm{t})}{2} \mathrm{dt}\right\}} \\
& =\sqrt{\left\{\frac{5\left((25)^{2}\right.}{2}\left[t-\frac{\sin 100 \pi t}{100 \pi}\right]_{0}^{20 \times 10^{-3}}\right\}} \\
& =\sqrt{\left\{\frac{5 \sigma(25)^{2}}{2}\left[\left(20 \times 10^{-3}-\frac{\sin 100 \pi\left(20 \times 10^{-3}\right)}{100 \pi}\right)-(0)\right]\right\}} \\
& =\sqrt{\left\{\frac{5 \sigma(25)^{2}}{2}\left(20 \times 10^{-3}\right)\right\}}=17.68 \text { volts }
\end{aligned}
$$

Problem 5. Sketch on the same axes the curves $x^{2}=2 y$ and $y^{2}=16 x$ and determine the co-ordinates of the points of intersection. Determine (a) the area enclosed by the curves, and (b) the volume of the solid produced if the area is rotated one revolution about the x-axis.

The curves are equal at the points of intersection. Thus, equating the two y values gives: $\frac{x^{2}}{2}=4 \sqrt{x}$ or $\frac{x^{4}}{4}=16 x$

$$
\begin{aligned}
& x^{4}=64 x \text { and } x^{4}-64 x=0 \\
& x\left(x^{3}-64\right)=0 \text { from which, } x=0 \text { or } x=4
\end{aligned}
$$

When $x=0, y=0$ and when $x=4, y=8$
Hence $(0,0)$ and $(4,8)$ are the co-ordinates of the points of intersection.

The curves are shown in Figure 43.

(a)Shaded area $=\int_{0}^{4}\left(4 \sqrt{x}-\frac{x^{2}}{2}\right) d x=\left[\frac{4 x^{3 / 2}}{3 / 2}-\frac{x^{3}}{6}\right]_{0}^{4}=\left(\frac{8}{3} \sqrt{4^{3}}-\frac{4^{3}}{6}\right)-(0)$

$$
=10 \frac{2}{3} \text { square units }
$$

(b) Volume $=\int_{0}^{4} \pi y^{2} d x=\pi \int_{0}^{4}\left(16 x-\frac{x^{4}}{4}\right) d x=\pi\left[\frac{16 x^{2}}{2}-\frac{x^{5}}{20}\right]_{0}^{4}$

$$
\left.=\pi\left[(q 4)^{2}-\frac{4^{5}}{20}\right)-(0)\right]=\pi[128-51.2]=76.8 \pi \text { cubic units }
$$

$$
\text { or } 241.3 \text { cubic units }
$$

Problem 6. Calculate the position of the centroid of the sheet of metal formed by the x-axis and the part of the curve $y=5 x-x^{2}$ which lies above the x-axis.
$y=5 x-x^{2}=x(5-x)$ and when $y=0$, i.e. the x-axis, $x=0$ or $x=5$.

A sketch of $y=5 x-x^{2}$ is shown in Figure 44 where $\bar{x}=2.5$ by symmetry.

Figure 44

$$
\begin{aligned}
\bar{y} & =\frac{\frac{1}{2} \int_{0}^{5} y^{2} d x}{\int_{0}^{5} y d x}=\frac{\frac{1}{2} \int_{0}^{5}\left(5 x-x^{2}\right)^{2} d x}{\int_{0}^{5} 5 x-x^{2} d x}=\frac{\frac{1}{2} \int_{0}^{5}\left(25 x^{2}-10 x^{3}+x^{4}\right) d x}{\int_{0}^{5} 5 x-x^{2} d x} \\
& =\frac{\frac{1}{2}\left[\frac{25 x^{3}}{3}-\frac{10 x^{4}}{4}+\frac{x^{5}}{5}\right]_{0}^{5}}{\left[\frac{5 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{5}}=\frac{\frac{1}{2}\left[\frac{25(5)^{3}}{3}-\frac{1 G(5)^{4}}{4}+\frac{(5)^{5}}{5}\right]}{\left[\frac{5(25)}{2}-\frac{125}{3}\right]}=\frac{52.08333}{20.8333}=2.5
\end{aligned}
$$

Hence the co-ordinates of the centroid are at (2.5, 2.5)

Problem 7. A cylindrical pillar of diameter 500 mm has a groove cut around its circumference as shown in Figure A15.1. The section of the groove is a semicircle of diameter 40 mm . Given that the centroid of a semicircle from its base is $\frac{4 r}{3 \pi}$, use the theorem of Pappus to determine the volume of material removed, in cm^{3}, correct to 3 significant figures.

Figure A15.1

Distance of the centroid of the semicircle $=\frac{4 r}{3 \pi}=\frac{4(20)}{3 \pi}=\frac{80}{3 \pi} \mathrm{~mm}$
Distance of the centroid from the centre of the pillar $=\left(250-\frac{80}{3 \pi}\right) \mathrm{mm}$
Distance moved by the centroid in one revolution $=2 \pi\left(250-\frac{80}{3 \pi}\right)$

$$
=\left(500 \pi-\frac{160}{3}\right) \mathrm{mm}
$$

From Pappus, volume $=$ area \times distance moved by centroid

$$
=\left(\frac{1}{2} \pi 20^{2}\right)\left(500 \pi-\frac{160}{3}\right)=953450 \mathrm{~mm}^{3}
$$

i.e. volume of material removed $=953 \mathrm{~cm}^{3}$

Problem 8. For each of the areas shown in Figure A15.2 determine the second moment of area and radius of gyration about axis $X X$.

Figure A15. 2

(b) In Figure A15.2(a), $I_{G G}=\frac{1 b^{3}}{12}=\frac{(48)(70)^{3}}{12}=1372000 \mathrm{~mm}^{4}$

The second moment of area about axis $X X$,

$$
I_{x x}=I_{G G}+A d^{2}=1372000+(70 \times 48)(25+35)^{2}=13468000 \mathrm{~mm}^{4}
$$

$I_{x x}=A k_{x x}{ }^{2}$ from which, radius of gyration,

$$
\mathrm{k}_{\mathrm{xx}}=\sqrt{\frac{\mathrm{I}_{\mathrm{xx}}}{\operatorname{area}}}=\sqrt{\frac{13468000}{70 \times 48}}=63.31 \mathrm{~mm}
$$

(b) In Figure A15.2(b), $I_{G 6}=\frac{\pi r^{4}}{4}=\frac{\pi(2.50)^{4}}{4}=9.765625 \pi \mathrm{~cm}^{4}$

$$
\begin{aligned}
I_{x x}=I_{G G}+A d^{2} & =9.765625 \pi+\pi(2.5)^{2}(4.0+2.50)^{2} \\
& =9.765625 \pi+264.0625 \pi=\mathbf{8 6 0 . 2 6} \mathbf{c m}^{4}
\end{aligned}
$$

$I_{x x}=A k_{x x}{ }^{2}$ from which, radius of gyration,

$$
\mathrm{k}_{\mathrm{xx}}=\sqrt{\frac{\mathrm{I}_{\mathrm{xx}}}{\text { area }}}=\sqrt{\frac{860.26}{\pi(2.50)^{2}}}=6.62 \mathrm{~cm}
$$

(c) In Figure A15.2(c), perpendicular height of triangle $=\sqrt{15.0^{2}-9.0^{2}}$

$$
=12.0 \mathrm{~cm}
$$

$$
\begin{aligned}
& I_{G G}=\frac{b h^{3}}{36}=\frac{(18)(12)^{3}}{36}=864 \mathrm{~cm}^{4} \\
& I_{x x}=I_{G G}+A d^{2}=864+\left(\frac{1}{2}(18)(12)\right)\left(5.0+\frac{12.0}{3}\right)^{2}=864+8748=9612 \mathrm{~cm}^{4}
\end{aligned}
$$

Radius of gyration, $\mathrm{k}_{\mathrm{xx}}=\sqrt{\frac{\mathrm{I}_{\mathrm{xx}}}{\text { area }}}=\sqrt{\frac{9612}{\frac{1}{2}(18)(12)}}=9.43 \mathrm{~cm}$

Problem 9. A circular door is hinged so that it turns about a tangent. If its diameter is 1.0 m find its second moment of area and radius of gyration about the hinge.

From Table 58.1, page 474, second moment of area about a tangent

$$
=\frac{5 \pi}{4} r^{4}=\frac{5 \pi}{4}\left(\frac{1}{2}\right)^{4}=0.245 \mathrm{~m}^{3}
$$

Radius of gyration $k=\frac{\sqrt{5}}{2} r=\frac{\sqrt{5}}{2}(0.50)=0.559 \mathrm{~m}$

ASSIGNMENT 16 (PAGE 521)

This assignment covers the material contained in chapters 59 to 61.

Problem 1. Use the laws and rules of Boolean algebra to simplify the following expressions: (a) B. $(A+\bar{B})+A \cdot \bar{B}$
(b) $\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot C$
(a) $B \cdot(A+\bar{B})+A \cdot \bar{B}=A \cdot B+B \cdot \bar{B}+A \cdot \bar{B}=A \cdot B+0+A \cdot \bar{B}=A \cdot B+A \cdot \bar{B}$

$$
=A \cdot(B+\bar{B})=A \cdot(1)=A
$$

(b) $\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C=\bar{A} \cdot \bar{B} \cdot(\bar{C}+C)=\bar{A} \cdot \bar{B} \cdot(1)=\bar{A} \cdot \bar{B}$
and $\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C=\bar{A} \cdot B \cdot(\bar{C}+C)=\bar{A} \cdot B \cdot(1)=\bar{A} \cdot B$

Thus $\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot C=\bar{A} \cdot \bar{B}+\bar{A} \cdot B$

$$
=\bar{A} \cdot(\bar{B}+B)=\bar{A} \cdot(1)=\bar{A}
$$

4
total : 9

Problem 2. Simplify the Boolean expression $\overline{A \cdot \bar{B}+A \cdot B \cdot \bar{C}}$ using de Morgan's laws

$$
\begin{aligned}
\overline{A \cdot \bar{B}+A \cdot B \cdot \bar{C}} & =\overline{A \cdot \bar{B}} \cdot \overline{A \cdot B \cdot \bar{C}}=(\bar{A}+\overline{\bar{B}}) \cdot(\overline{A \cdot B}+\overline{\bar{C}}) \\
& =(\bar{A}+B) \cdot(\bar{A} \cdot B+C)=(\bar{A}+B) \cdot(\bar{A}+\bar{B}+C) \\
& =\bar{A} \cdot \bar{A}+\bar{A} \cdot \bar{B}+\bar{A} \cdot C+\bar{A} \cdot B+B \cdot \bar{B}+B \cdot C=\bar{A}+\bar{A} \cdot \bar{B}+\bar{A} \cdot C+\bar{A} \cdot B+0+B \cdot C \\
& =\bar{A}+\bar{A} \cdot(\bar{B}+C+B)+B \cdot C=\bar{A}+\bar{A}(1+C)+B \cdot C \\
& =\bar{A}+\bar{A}(1)+B \cdot C=\bar{A}+B \cdot C
\end{aligned}
$$

total : 5

Problem 3. Use a Karnaugh map to simplify the Boolean expression:

$$
\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C
$$

C C	00	01	11	10
0	1	1		
1		1		1

The horizontal couple gives: $\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}=\bar{A} \cdot \bar{C}$

The vertical couple gives: $\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C=\bar{A} \cdot B$

The bottom right-hand corner square cannot be coupled and is A. B.C

Hence $\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C=\bar{A} \cdot \bar{C}+\bar{A} \cdot \mathbf{B}+\mathbf{A} \cdot \bar{B} \cdot \mathbf{C}$
total : 6

Problem 4. A clean room has two entrances, each having two doors, as shown in Fig. A16.1. A warning bell must sound if both doors A and B or doors C and D are open at the same time. Write down the Boolean expression depicting this occurrence, and devise a logic network to operate the bell using NAND-gates only.

Figure A16.1

The Boolean expression which will ring the warning bell is A.B + C.D
A circuit using NAND-gates only is shown in Figure 45.

Figure 45

Problem 5. Determine $\left(\begin{array}{cc}-5 & 2 \\ 7 & -8\end{array}\right) \times\left(\begin{array}{cc}1 & 6 \\ -3 & -4\end{array}\right)$
$\left(\begin{array}{cc}-5 & 2 \\ 7 & -8\end{array}\right) \times\left(\begin{array}{cc}1 & 6 \\ -3 & -4\end{array}\right)=\left(\begin{array}{cc}-11 & -38 \\ 31 & 74\end{array}\right)$
total: 4

Problem 6. Calculate $\left|\begin{array}{cc}j 3 & (1+j 2) \\ (-1-j 4) & -j 2\end{array}\right|$
$\left|\begin{array}{cc}j 3 & (1+j 2) \\ (-1-j 4) & -j 2\end{array}\right|=-j^{2} 6-(1+j 2)(-1-j 4)$
$=6-\left[-1-j 4-j 2-j^{2} 8\right]$
$=6-[7-j 6]=-1+j 6$

total : 4

Problem 7. Determine the inverse of $\left(\begin{array}{cc}-5 & 2 \\ 7 & -8\end{array}\right)$

If $B=\left(\begin{array}{cc}-5 & 2 \\ 7 & -8\end{array}\right)$ then $B^{-1}=\frac{1}{40-14}\left(\begin{array}{ll}-8 & -2 \\ -7 & -5\end{array}\right)=\frac{\mathbf{1}}{\mathbf{2 6}}\left(\begin{array}{cc}-8 & -2 \\ -7 & -5\end{array}\right)$
or $\quad\left(\begin{array}{cc}-\frac{4}{13} & -\frac{1}{13} \\ -\frac{7}{26} & -\frac{5}{26}\end{array}\right)$
total : 4

Problem 8. Determine $\left(\begin{array}{ccc}-1 & 3 & 0 \\ 4 & -9 & 2 \\ -5 & 7 & 1\end{array}\right) \times\left(\begin{array}{ccc}2 & -1 & 3 \\ -5 & 1 & 0 \\ 4 & -6 & 2\end{array}\right)$

$$
\left(\begin{array}{ccc}
-1 & 3 & 0 \\
4 & -9 & 2 \\
-5 & 7 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
2 & -1 & 3 \\
-5 & 1 & 0 \\
4 & -6 & 2
\end{array}\right)=\left(\begin{array}{ccc}
-17 & 4 & -3 \\
61 & -25 & 16 \\
-41 & 6 & -13
\end{array}\right) \quad \text { Marks }
$$

Problem 9. Calculate the determinate of $\left(\begin{array}{ccc}2 & -1 & 3 \\ -5 & 1 & 0 \\ 4 & -6 & 2\end{array}\right)$

$$
\begin{aligned}
\left|\begin{array}{ccc}
2 & -1 & 3 \\
-5 & 1 & 0 \\
4 & -6 & 2
\end{array}\right| & =3\left|\begin{array}{rr}
-5 & 1 \\
4 & -6
\end{array}\right|+2\left|\begin{array}{cc}
2 & -1 \\
-5 & 1
\end{array}\right| \text { using the third column } \\
& =3(30-4)+2(2-5)=3(26)+2(-3)=78-6=72
\end{aligned}
$$

tota 1: 5

Problem 10. Using matrices to solve the following simultaneous equations:

$$
\begin{array}{r}
4 x-3 y=17 \\
x+y+1=0
\end{array}
$$

Since $\quad 4 x-3 y=17$

$$
x+y=-1
$$

then $\left(\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right)\binom{x}{y}=\binom{17}{-1}$

The inverse of $\left(\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right)$ is $\frac{1}{4--3}\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)=\frac{1}{7}\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)$
Hence $\frac{1}{7}\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)\left(\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right)\binom{x}{y}=\frac{1}{7}\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)\binom{17}{-1}$

Marks

2

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\frac{1}{7}\binom{14}{-21}
$$

and

$$
\binom{x}{y}=\binom{2}{-3} \quad \text { i.e. } \quad x=2 \text { and } y=-3
$$

Problem 11. Use determinants to solve the following simultaneous equations:

$$
\begin{aligned}
4 x+9 y+2 z & =21 \\
-8 x+6 y-3 z & =41 \\
3 x+y-5 z & =-73
\end{aligned}
$$

$$
\begin{array}{r}
4 x+9 y+2 z-21=0 \\
-8 x+6 y-3 z-41=0 \\
3 x+y-5 z+73=0
\end{array}
$$

Hence
$\frac{x}{\left|\begin{array}{ccc}9 & 2 & -21 \\ 6 & -3 & -41 \\ 1 & -5 & 73\end{array}\right|}=\frac{-y}{\left|\begin{array}{ccc}4 & 2 & -21 \\ -8 & -3 & -41 \\ 3 & -5 & 73\end{array}\right|}=\frac{z}{\left|\begin{array}{ccc}4 & 9 & -21 \\ -8 & 6 & -41 \\ 3 & 1 & 73\end{array}\right|}=\frac{-1}{\left|\begin{array}{ccc}4 & 9 & 2 \\ -8 & 6 & -3 \\ 3 & 1 & -5\end{array}\right|}$
$\frac{x}{9(-424)-2(479)-21(-27)}=\frac{-y}{4(-424)-2(-461)-21(49)}=\frac{z}{4(479)-9(-461)-21(-26)}$

$$
=\frac{-1}{4(-27)-9(49)+2(-26)}
$$

i.e. $\frac{x}{-4207}=\frac{-y}{-1803}=\frac{z}{6611}=\frac{-1}{-601}$

Hence $x=\frac{-4207}{601}=-7 \quad y=\frac{1803}{601}=3 \quad$ and $\quad z=\frac{6611}{601}=11$ (or use Cramer's rule) total

Problem 12. The simultaneous equations representing the currents flowing in an unbalanced, three-phase, star-connected, electrical network are as follows:

$$
\begin{aligned}
2.4 I_{1}+3.6 I_{2}+4.8 I_{3} & =1.2 \\
-3.9 I_{1}+1.3 I_{2}-6.5 I_{3} & =2.6 \\
1.7 I_{1}+11.9 I_{2}+8.5 I_{3} & =0
\end{aligned}
$$

Using matrices, solve the equations for I_{1}, I_{2} and I_{3}
$\left(\begin{array}{ccc}2.4 & 3.6 & 4.8 \\ -3.9 & 1.3 & -6.5 \\ 1.7 & 11.9 & 8.5\end{array}\right)\left(\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right)=\left(\begin{array}{c}1.2 \\ 2.6 \\ 0\end{array}\right)$

The inverse of the 3 by 3 matrix is

$$
\frac{1}{2.4(88.4)-3.6(-22.1)+4.8(-48.62)}\left(\begin{array}{ccc}
88.4 & 26.52 & -29.64 \\
22.1 & 12.24 & -3.12 \\
-48.62 & -22.44 & 17.16
\end{array}\right)
$$

Hence $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right)=\frac{1}{58.344}\left(\begin{array}{ccc}88.4 & 26.52 & -29.64 \\ 22.1 & 12.24 & -3.12 \\ -48.62 & -22.44 & 17.16\end{array}\right)\left(\begin{array}{c}1.2 \\ 2.6 \\ 0\end{array}\right)=\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$
i.e. $I_{1}=3, I_{2}=1$ and $I_{3}=-2$

LIST OF FORMUAE

Laws of indices: | $a^{m} \times a^{n}$ | $=a^{m+n}$ | $\frac{a^{m}}{a^{n}}=a^{m-n}$ | $\left(a^{m}\right)^{n}=a^{m n}$ |
| ---: | :--- | ---: | :--- |
| $a^{\frac{m}{n}}$ | $=\sqrt[n]{a^{m}}$ | $a^{-n}=\frac{1}{a^{n}}$ | $a^{0}=1$ |

Factor theorem	If $x=a$ is a root of the equation $f(x)=0$,
then $(x-a)$ is a factor of $f(x)$	

Remainder theorem

$$
\begin{aligned}
& \text { If }\left(a x^{2}+b x+c\right) \text { is divided by }(x-p) \text {, the remainder } \\
& \text { will be: } a p^{2}+b p+c \\
& \text { or if }\left(a x^{3}+b x^{2}+c x+d\right) \text { is divided by }(x-p) \text {, the } \\
& \text { remainder will be: } a p^{3}+b p^{2}+c p+d
\end{aligned}
$$

Partial fractions

Provided that the numerator $f(x)$ is of less degree than the relevant denominator, the following identities are typical examples of the form of partial fractions used:

$$
\begin{aligned}
\frac{f(x)}{(x+a)(x+b)(x+c)} & \equiv \frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)} \\
\frac{f(x)}{(x+a)^{3}(x+b)} & \equiv \frac{A}{(x+a)}+\frac{B}{(x+a)^{2}}+\frac{C}{(x+a)^{3}}+\frac{D}{(x+b)} \\
\frac{f(x)}{\left(a x^{2}+b x+c\right)(x+d)} & \equiv \frac{A x+B}{\left(a x^{2}+b x+c\right)}+\frac{C}{(x+d)}
\end{aligned}
$$

Quadratic formula: If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Definition of a logarithm: If $y=a^{x}$ then $x=\log _{a} y$

Laws of logarithms: $\log (A \times B)=\log A+\log B$

$$
\log \left(\frac{A}{B}\right)=\log A-\log B \quad A^{n}=n \times \log A
$$

Exponential series: $\quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad$ (valid for all values of x)

Arithmetic progression:

If $a=$ first term and $d=$ common difference, then the arithmetic progression
is: $\quad a, a+d, a+2 d, \ldots$
The n'th term is : $a+(n-1) d \quad$ Sum of n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Geometric progression:

```
If a = first term and r = common ratio, then the geometric progression
is: a, ar, ar 2,..
The n'th term is: ar n-1
                                    Sum of }n\mathrm{ terms, }\mp@subsup{S}{n}{}-\frac{a(l-\mp@subsup{r}{}{n})}{(1-r)}\mathrm{ or }\frac{a(\mp@subsup{r}{}{n}-1)}{(r-1)
If -1<r<1, S S = \frac{a}{(1-r)}
```

Permutation: $\quad{ }^{n} P_{r}=\frac{n!}{(n-r)!} \quad$ Combination: $\quad{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$

Binomial series:

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots \\
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
\end{aligned}
$$

Newton-Raphson iterative method

If r_{1} is the approximate value for a real root of the equation $f(x)=0$, then a closer approximation to the root, r_{2}, is given by:

$$
r_{2}=r_{1}-\frac{f\left(r_{1}\right)}{f^{\prime}\left(r_{1}\right)}
$$

Areas of plane figures:
(i)

Rectangle
Area $=1 \times b$
(ii)

Parallelogram
Area $=\mathrm{b} \times \mathrm{h}$

(iii) Trapezium

Area $=\frac{1}{2}(a+b) h$

(iv)

Triangle

$$
\text { Area }=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}
$$

(v) Circle

$$
\text { Area }=\pi r^{2} \quad \text { Circumference }=2 \pi r
$$

Radian measure: $\quad 2 \pi$ radians $=360$ degrees
For a sector of circle: arc length, $s=\frac{\theta^{\circ}}{360}(2 \pi r)=r \theta \quad(\theta$ in rad)

$$
\text { shaded area }=\frac{\theta^{\circ}}{360}\left(\pi r^{2}\right)=\frac{1}{2} r^{2} \theta \quad(\theta \text { in } r a d)
$$

(vi)
Ellipse

$$
\text { Area }=\pi a b
$$

Perimeter $\approx \pi(a+b)$

Volumes and surface areas of regular solids:
(i) Rectangular prism (or cuboid) Volume $=1 \times \mathrm{b} \times \mathrm{h}$

Surface area $=2(b h+h l+1 b)$
(ii) Cylinder

$$
\begin{aligned}
& \text { Volume }=\pi r^{2} h \\
& \text { Total surface area }=2 \pi r h+2 \pi r^{2}
\end{aligned}
$$

(iii) Pyramid
If area of base $=A$ and perpendicular height $=h$ then:
Volume $=\frac{1}{3} \times A \times h$
Total surface area $=$ sum of areas of triangles forming sides + area of base

(iv) Cone

$$
\text { Volume }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Curved surface area }=\pi r l
$$

$$
\text { Total surface area }=\pi r l+\pi r^{2}
$$


```
Areas of irregular figures/numerical integration:
Trapezoidal rule
\[
\text { Area } \approx\binom{\text { width of }}{\text { int erval }}\left[\frac{1}{2}\binom{\text { first }+ \text { last }}{\text { ordinate }}+\text { sum of remaining ordinates }\right]
\]
```


Mid-ordinate rule

$$
\text { Area } \approx \text { (width of interval) (sum of mid-ordinates) }
$$

Simpson's rule

$$
\text { Area } \approx \frac{1}{3}\binom{\text { width of }}{\text { int erval }}\left[\binom{\text { first }+ \text { last }}{\text { ordinate }}+4\binom{\text { sum of even }}{\text { ordinates }}+2\binom{\text { sum of remaining }}{\text { odd ordinates }}\right]
$$

Mean or average value of a waveform

$$
\text { mean value, } y=\frac{\text { area under curve }}{\text { length of base }}=\frac{\text { sum of mid }- \text { ordinates }}{\text { number of mid }- \text { ordinates }}
$$

Theorem of Pythagoras: $\quad b^{2}=a^{2}+c^{2}$

Trigonometry

Identities: $\sec \theta=\frac{1}{\cos \theta}, \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}, \cot \theta=\frac{1}{\tan \theta}, \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad \cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta
$$

Triangle formulae:

$$
\text { Sine rule } \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
\text { Cosine rule } \quad a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Area of any triangle
(i) $\frac{1}{2} \times$ base \times perpendicular height
(ii) $\frac{1}{2} a b \sin C$ or $\frac{1}{2} a c \sin B$ or $\frac{1}{2} b c \sin A$
(iii) $\sqrt{[s(s-a)(s-b)(s-c)]}$ where $s=\frac{a+b+c}{2}$

Compound angle formulae

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

If $R \sin (\omega t+\alpha)=a \sin \omega t+b \cos \omega t$,

$$
\text { then } a=R \cos \alpha, \quad b=R \sin \alpha, \quad R=\sqrt{\left(a^{2}+b^{2}\right)} \text { and } \alpha=\tan ^{-1} \frac{b}{a}
$$

Double angles $\quad \sin 2 A=2 \sin A \cos A$

$$
\begin{aligned}
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Products of sines and cosines into sums or differences

$$
\begin{aligned}
& \sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& \cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)] \\
& \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
& \sin A \sin B=-\frac{1}{2}[\cos (A+B)-\cos (A-B)]
\end{aligned}
$$

Sums or differences of sines and cosines into products

$$
\begin{aligned}
& \sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\
& \sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
& \cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\
& \cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
\end{aligned}
$$

For a general sinusoidal function $y=A \sin (\omega t \pm \alpha)$, then
A = amplitude
$\omega=$ angular velocity $=2 \pi \mathrm{rad} / \mathrm{s}$
$\frac{2 \pi}{\omega}=$ periodic time T seconds $\quad \frac{\omega}{2 \pi}=$ frequency, f hertz
$\alpha=$ angle of lead or lag (compared with $y=A \sin \omega t$)

Cartesian and polar co-ordinates

$$
\begin{aligned}
& \text { If co-ordinate }(x, y)=(r, \theta) \text { then } r=\sqrt{x^{2}+y^{2}} \text { and } \theta=\tan ^{-1} \frac{y}{x} \\
& \text { If co-ordinate }(x, \theta)=(x, y) \text { then } x=r \cos \theta \text { and } y=r \sin \theta
\end{aligned}
$$

Equations of functions

Equation of a straight line: $\quad y=m x+c$

Equation of a parabola: $\quad y=a x^{2}+b x+c$
Circle, centre at origin, radius $r: \quad x^{2}+y^{2}=r^{2}$
Circle, centre (a, b), radius $r: \quad(x-a)^{2}+(y-b)^{2}=r^{2}$
Equation of an ellipse, centre at origin, semi-axes and $\mathbf{b}: \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Equation of a hyperbola: $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Equation of a rectangular hyperbola: $\quad x y=c^{2}$

Reduction of equations to linear form

If . . . then	Vertical axis	Gradient	Horizontal axis	Intercept on vertical axis
$y=a x^{n}$	1 g y	n	$\lg x$	lga
$y=a b^{x}$	$\lg Y$	$\operatorname{lg~b}$	x	1 ga
$y=a e^{k x}$	$\ln Y$	k	\mathbf{x}	$\ln a$
$y=a x^{n}+b x^{n-1}$	$\frac{y}{x^{n-1}}$	a	x	b

Complex numbers

```
z=a+jb=r(\operatorname{cos}0+j\operatorname{sin}0)=r\angle0=r e j0}\mathrm{ where j ' w = -1
Modulus r }r=|z|=\sqrt{}{(\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2})}\quad\mathrm{ Argument }0=\operatorname{arg}z=\mp@subsup{\operatorname{tan}}{}{-1}\frac{b}{a
Addition: }\quad(a+jb)+(c+jd)=(a+c)+j(b+d
Subtraction: (a+jb)-(c+jd)=(a-c)+j(b-d)
Complex equations: If m}+jn=p+jq then m=p and n m q q
Multiplication: }\quad\mp@subsup{z}{1}{}\mp@subsup{z}{2}{}=\mp@subsup{r}{1}{}\mp@subsup{r}{2}{}\angle(\mp@subsup{0}{1}{}+\mp@subsup{0}{2}{}
Division: }\quad\frac{\mp@subsup{z}{1}{}}{\mp@subsup{z}{2}{}}=\frac{\mp@subsup{r}{1}{}}{\mp@subsup{r}{2}{}}\angle(\mp@subsup{0}{1}{}-\mp@subsup{0}{2}{}
De Moivre's theorem: [r L0] n}=\mp@subsup{r}{}{n}\anglen0=\mp@subsup{r}{}{n}(\operatorname{cos}n0+j\operatorname{sin}n0
```


Matrices and determinants

Matrices:

$$
\begin{aligned}
& \text { If } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \text { then } \\
& A+B=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right) \quad A-B=\left(\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right) \\
& A \times B=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right) \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& \text { If } A=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right) \text { then } A^{-1}=\frac{B^{T}}{|A|} \text { where } B^{T}=\text { transpose of }
\end{aligned}
$$

Determinants: $\quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
$$

Standard derivatives

y or $f(x)$	$\frac{d y}{d x}$ or $f^{\prime}(x)$
$a x^{n}$	$a n x^{n-1}$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$
$\tan a x$	$a \sec ^{2} a x$
$\sec a x$	$a \sec a x \tan a x$
$\operatorname{cosec} a x$	$-a \operatorname{cosec} a x \cot a x$
$\cot a x$	$-a \operatorname{cosec}^{2} a x$
$e^{a x}$	$a e^{a x}$
$\ln a x$	$\frac{1}{x}$

Product rule: When $y=u v$ and u and v are functions of x then:

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Quotient rule: When $y=\frac{u}{v}$ and u and v are functions of x then:

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Function of a function:

If u is a function of x then: $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$

Maximum and minimum values: If $y=f(x)$ then $\frac{d y}{d x}=0$ for stationary points. Let a solution of $\frac{d y}{d x}=0$ be $x=a$; if the value of $\frac{d^{2} y}{d x^{2}}$ when $x=a$ is: positive, the point is a minimum, negative, the point is a maximum

Velocity and acceleration If distance $x=f(t)$, then

$$
\text { velocity } v=f^{\prime}(t) \text { or } \frac{d x}{d t} \quad \text { and acceleration } a=f^{\prime \prime}(t) \text { or } \frac{d^{2} x}{d t^{2}}
$$

Tangents and normals

Equation of tangent to curve $y=f(x)$ at the point (x_{1}, y_{1}) is:

$$
y-y_{1}=m\left(x-x_{1}\right) \quad \text { where } m=\text { gradient of curve at }\left(x_{1}, y_{1}\right)
$$

Equation of normal to curve $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ is:

$$
y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)
$$

Standard integrals

y	$\int y d x$
$a x^{n}$	$a \frac{x^{n+1}}{n+1}+c \quad($ except where $n=-1)$
$\cos a x$	$\frac{1}{a} \sin a x+c$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\sec ^{2} a \mathrm{ax}$	$\frac{1}{a} \tan a x+c$
$\operatorname{cosec}^{2} \mathrm{ax}$	$-\frac{1}{a} \cot a x+c$
cosec ax cot ax	$-\frac{1}{a} \operatorname{cosec} a x+c$
$\sec a x \tan$ ax	$\frac{1}{a} \sec a x+c$
$e^{a x}$	$\frac{1}{a} e^{a x}+c$
$\frac{1}{x}$	$\ln x+c$
$\tan a x$	$\frac{1}{a} \ln (\sec a x)+c$
$\cos ^{2} x$	$\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)+c$
$\sin ^{2} x$	$\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)+c$

$$
\begin{array}{l|l}
\tan ^{2} x & \tan x-x+c \\
\cot ^{2} x & -\cot x-x+c \\
\frac{1}{\sqrt{\left(a^{2}-x^{2}\right)}} & \sin \frac{x}{a}+c \\
\sqrt{\left(a^{2}-x^{2}\right)} & \frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\frac{x}{2} \sqrt{\left(a^{2}-x^{2}\right)}+c \\
\frac{1}{a^{2}+x^{2}} & \frac{1}{a} \tan ^{-1} \frac{x}{a}+c
\end{array}
$$

Integration by parts If u and v are both functions of x then:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Area under a curve:
area $A=\int_{a}^{b} y d x$

Mean value:

$$
\text { mean value }=\frac{1}{b-a} \int_{a}^{b} y d x
$$

R.m.s. value:
r.m.s. value $=\sqrt{\left\{\frac{1}{b-a} \int_{a}^{b} y^{2} d x\right\}}$

Volume of solid of revolution: \quad volume $=\int_{a}^{b} \pi y^{2} d x$ about the x-axis

Centroids

$$
\bar{x}=\frac{\int_{a}^{b} x y d x}{\int_{a}^{b} y d x} \text { and } \bar{y}=\frac{\frac{1}{2} \int_{a}^{b} y^{2} d x}{\int_{a}^{b} y d x}
$$

Theorem of Pappus

$$
\begin{aligned}
& \text { When the curve } y=f(x) \text { is rotated one revolution about the } \\
& x \text {-axis between the limits } x=a \text { and } x=b \text {, the volume } V \\
& \text { generated is given by: } V=2 \pi A \bar{y}
\end{aligned}
$$

Summary of standard results of the second moments of areas of regular sections

Shape	Position of axis	Second moment of area, I	Radius of gyration, \mathbf{k}
Rectangle length 1 breadth b	(1) Coinciding with b (2) Coinciding with 1 (3) Through centroid, parallel to b (4) Through centroid, parallel to 1	$\begin{aligned} & \frac{\mathrm{bl}^{3}}{3} \\ & \frac{1 \mathrm{~b}^{3}}{3} \\ & \frac{\mathrm{bl}{ }^{3}}{12} \\ & \frac{1 \mathrm{~b}^{3}}{12} \end{aligned}$	$\frac{1}{\sqrt{3}}$ $\frac{\mathrm{b}}{\sqrt{3}}$ $\frac{1}{\sqrt{12}}$ $\frac{\mathrm{b}}{\sqrt{12}}$
Triangle Perpendic- -ular height h base b	(1) Coinciding with b (2) Through centroid, parallel to basc (3) Through vertex, parallel to base	$\begin{aligned} & \frac{\mathrm{bh}^{3}}{12} \\ & \frac{\mathrm{bh}^{3}}{36} \\ & \frac{\mathrm{bh}^{3}}{4} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{h}}{\sqrt{6}} \\ & \frac{\mathrm{~h}}{\sqrt{18}} \\ & \frac{\mathrm{~h}}{\sqrt{2}} \end{aligned}$
Circle radius r	(1) Through centre, perpendicular to plane (i.e. polar axis) (2) Coinciding with diameter (3) About a tangent	$\begin{aligned} & \frac{\pi r^{4}}{2} \\ & \frac{\pi r^{4}}{4} \\ & \frac{5 \pi r^{4}}{4} \end{aligned}$	$\begin{aligned} & \frac{r}{\sqrt{2}} \\ & \frac{r}{2} \\ & \frac{\sqrt{5}}{2} r \end{aligned}$
Semicircle radius r	Coinciding with diameter	$\frac{\pi r^{4}}{8}$	$\frac{r}{2}$

Boolean algebra

Laws and rules of Boolean algebra

Commutative Laws:

$$
\begin{aligned}
A+B & =B+A \\
A \cdot B & =B \cdot A
\end{aligned}
$$

Associative Laws:

$$
\begin{aligned}
A+B+C & =(A+B)+C \\
A \cdot B \cdot C & =(A \cdot B) \cdot C
\end{aligned}
$$

Distributive Laws:

$$
\begin{aligned}
& A \cdot(B+C)=A \cdot B+A \cdot C \\
& A+(B \cdot C)=(A+B) \cdot(A+C)
\end{aligned}
$$

Sum rules:

$$
\begin{aligned}
& A+\bar{A}=1 \\
& A+1=1 \\
& A+0=A \\
& A+A=A
\end{aligned}
$$

Product rules:

$$
\begin{aligned}
& A \cdot \bar{A}=0 \\
& A \cdot 0=0 \\
& A \cdot 1=A \\
& A \cdot A=A
\end{aligned}
$$

Absorption rules:

$$
\begin{aligned}
A+A \cdot B & =A \\
A \cdot(A+B) & =A \\
A+\bar{A} \cdot B & =A+B
\end{aligned}
$$

De Morgan's Laws:

$$
\begin{aligned}
\overline{A+B} & =\bar{A} \cdot \bar{B} \\
\overline{A \cdot B} & =\bar{A}+\bar{B}
\end{aligned}
$$

Statistics

Mean, median, mode and standard deviation
If $x=$ variate and $f=$ frequency then:

$$
\text { mean } \bar{x}=\frac{\sum f x}{\sum f}
$$

The median is the middle term of a ranked set of data.
The mode is the most commonly occurring value in a set of data.
Standard deviation

$$
\sigma=\sqrt{\left[\frac{\sum\left\{f(x-\bar{x})^{2}\right\}}{\sum f}\right]} \text { for a population }
$$

Binomial probability distribution

If $n=$ number in sample, $p=$ probability of the occurrence of an event and $q=1-p$, then the probability of $0,1,2,3, \ldots$ occurrences is given by:

$$
\begin{aligned}
& q^{n}, \quad n q^{n-1} p, \quad \frac{n(n-1)}{2!} q^{n-2} p^{2} \\
& \frac{n(n-1)(n-2)}{3!} q^{n-3} p^{3} \ldots
\end{aligned}
$$

(i.e. successive terms of the $(q+p)^{n}$ expansion).

Normal approximation to a binomial distribution:

Mean $=n p \quad$ Standard deviation $\sigma=\sqrt{(n p q)}$

Poisson distribution

If λ is the expectation of the occurrence of an event then the probability of $0,1,2,3, \ldots$ occurrences is given by:

$$
\mathrm{e}^{-\lambda}, \quad \lambda \mathrm{e}^{-\lambda} . \quad \lambda^{2} \frac{\mathrm{e}^{-\lambda}}{2!}, \quad \lambda^{3} \frac{\mathrm{e}^{-\lambda}}{3!} \ldots
$$

Product-moment formula for the linear correlation coefficient

$$
\text { Coefficient of correlation } r=\frac{\sum x y}{\sqrt{\left[\left(\sum x^{2}\right)\left(\sum y^{2}\right)\right]}}
$$

where $x=X-\bar{X}$ and $y=Y-\bar{Y}$ and $\left(X_{1}, Y_{1}\right)$, (X_{2}, Y_{2}), ... denote a random sample from a bivariate normal distribution and \bar{X} and \bar{Y} are the means of the X and Y values respectively.

Normal probability distribution

Partial areas under the standardized normal curve see Table 40.1 on page 341 .

Student's t distribution

Percentile values (t_{p}) for Student's t distribution with ν degrees of freedom - see Table 43.2 on page 365 .

Symbols:

Population

number of members N_{p}, mean μ, standard deviation σ.

Sample

number of members N, mean \bar{x}, standard deviation s.

Sampling distributions
mean of sampling distribution of means $\mu_{\bar{x}}$ standard error of means $\sigma_{\bar{x}}$ standard error of the standard deviations σ_{s}.

Standard error of the means

Standard error of the means of a sample distribution, i.e. the standard deviation of the means of samples, is:

$$
\sigma_{\overline{\mathrm{r}}}=\frac{\sigma}{\sqrt{N}} \sqrt{\left(\frac{N_{p}-N}{N_{p}-1}\right)}
$$

for a finite population and/or for sampling without replacement, and

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}
$$

for an infinite population and/or for sampling with replacement.

The relationship between sample mean and population mean

$\mu_{\bar{x}}=\mu$ for all possible samples of size N drawn from a population of size N_{p}.

Estimating the mean of a population (σ known)
The confidence coefficient for a large sample size, ($N \geq 30$) is z_{c} where:

Confidence level $\%$	Confidence coefficient z_{c}
99	2.58
98	2.33
96	2.05
95	1.96
90	1.645
80	1.28
50	0.6745

Table I
The confidence limits of a population mean based on sample data are given by:

$$
\bar{x} \pm \frac{z_{c} \sigma}{\sqrt{N}} \sqrt{\left(\frac{N_{p}-N}{N_{p}-1}\right)}
$$

for a finite population of size N_{p}, and by

$$
\bar{x} \pm \frac{z_{c} \sigma}{\sqrt{N}} \text { for an infinite population }
$$

Estimating the mean of a population (σ unknown)
The confidence limits of a population mean based on sample data are given by: $\mu_{\bar{x}} \pm z_{c} \sigma_{\bar{x}}$.

Estimating the standard deviation of a population
The confidence limits of the standard deviation of a population based on sample data are given by: $s \pm z_{c} \sigma_{s}$.

Estimating the mean of a population based on a

 small sample sizeThe confidence coefficient for a small sample size ($N<30$) is t_{c} which can be determined using Table 1 . The confidence limits of a population mean based on sample data is given by:

$$
\bar{x} \pm \frac{t_{c} s}{\sqrt{(N-1)}}
$$

